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Abstract 

A Sense-and-Avoid (SAA) capability is required for the safe integration of Unmanned Aerial 

Vehicles (UAVs) into civilian airspace. Given their safety-critical nature, SAA algorithms 

must undergo rigorous verification and validation before deployment. The validation of UAV 

SAA algorithms requires identifying challenging situations that the algorithms have 

difficulties in handling. By building on ideas from Search-Based Software Testing, this thesis 

proposes an evolutionary-search-based approach that automatically identifies such situations 

to support the validation of SAA algorithms.  

Specifically, in the proposed approach, the behaviours of UAVs under the control of selected 

SAA algorithms are examined with agent-based simulations. Evolutionary search is used to 

guide the simulations to focus on increasingly challenging situations in a large search space 

defined by (the variations of) parameters that configure the simulations. An open-source tool 

has been developed to support the proposed approach so that the process can be partially 

automated.  

Positive results were achieved in a preliminary evaluation of the proposed approach using a 

simple two-dimensional SAA algorithm. The proposed approach was then further 

demonstrated and evaluated using two case studies, applying it to a prototype of an industry-

level UAV collision avoidance algorithm (specifically, ACAS XU) and a multi-UAV conflict 

resolution algorithm (specifically, ORCA-3D). In the case studies, the proposed evolutionary-

search-based approach was empirically compared with some plausible rivals (specifically, 

random-search-based approaches and a deterministic-global-search-based approach). The 

results show that the proposed approach can identify the required challenging situations more 

effectively and efficiently than the random-search-based approaches. The results also show 

that even though the proposed approach is a little less competitive than the deterministic-

global-search-based approach in terms of effectiveness in relatively easy cases, it is more 

effective and efficient in more difficult cases, especially when the objective function becomes 

highly discontinuous. Thus, the proposed evolutionary-search-based approach has the 

potential to be used for supporting the validation of UAV SAA algorithms although it is not 

possible to show that it is the best approach. 
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 Introduction 

1.1 Sense-and-Avoid 

Unmanned Aerial Vehicles (UAVs) are attracting the attention of innovators and companies due 

to their enormous potential for civilian and commercial use. Several large technology companies 

are developing and testing UAVs for delivering goods (e.g. Amazon’s Prime Air project1, and 

Google’s Project Wing2), providing Internet access (e.g. Facebook Connectivity Lab’s work3), 

etc., and they are seeking to get permits to operate UAVs beyond visual line of sight. Once such 

operation is allowed, manufacturers and operators will race to exploit UAVs for various 

applications, and future airspace is likely to be very crowded with all kinds of UAVs. Air traffic 

management for these UAVs will be a major concern, particularly because of the increased 

opportunity for unsafe encounters. 

To make safe operation possible, UAVs must provide a Sense-and-Avoid (SAA) capability, 

which, according to the FAA’s “Integration of Civil Unmanned Aircraft Systems (UAS) in the 

National Airspace System (NAS) Roadmap” [1], is defined as 

“the capability of a UAS to remain well clear from and avoid collisions with other 

airborne traffic. Sense and Avoid provides the functions of self-separation and collision 

avoidance to establish an analogous capability to ‘see and avoid’ required by manned 

aircraft.” 

From this definition, we can understand SAA as the combination of two parts: the “sense” part 

and the “avoid” part.  

For the “sense” part, UAVs must be able to conduct surveillance of surrounding airspace, and to 

detect and track threats using sensing technologies, such as Radar, cameras, and ADS-B 

(Automatic Dependent Surveillance-Broadcast). ADS-B is a cooperative surveillance technology 

with which a UAV will send its real-time information, such as position and velocity, to its peers 

via a radio link. Because of its advantages in improving aircraft’s situation awareness, ADS-B 

equipment has been or will be mandatory in several countries’ airspace. In addition, it is one of 

                                                      

1 http://www.amazon.com/b?node=803772001.  

2 https://www.youtube.com/watch?v=cRTNvWcx9Oo. 

3 https://info.internet.org/en/story/connectivity-lab/. 

http://www.amazon.com/b?node=803772001
https://www.youtube.com/watch?v=cRTNvWcx9Oo
https://info.internet.org/en/story/connectivity-lab/
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the key elements of the US Next Generation Air Transportation System (NextGen) [2] and the 

Single European Sky ATM Research (SESAR) [3]. In this thesis, UAVs are assumed to be 

equipped with ADS-B or its equivalent (possibly a combination of Radar and cameras) so that 

they have good sensing capability to know the positions, velocities, shapes, etc. of the other air 

traffic. 

For the “avoid” part, according to the above FAA definition, UAVs must be capable of avoiding 

accidents with other air traffic by two means (i.e. sub-capabilities): self-separation and collision 

avoidance. These two sub-capabilities of “avoid” form a safety barrier with two layers. In the first 

layer (i.e. self-separation), UAVs strategically plan their flight paths to resolve conflicts with each 

other (and potentially with conventional aircraft), and maintain a defined safe separation distance. 

If this safe separation is predicted to be violated or the collision risk is predicted to be higher than 

a defined threshold, the second layer (i.e. collision avoidance) will provide tactical evasive 

manoeuvres for the UAVs to avoid an imminent collision. Both layers function in a similar way 

— each UAV uses its situation awareness to calculate and execute a change to its flight path to 

avoid violations of safe separations or collisions. Usually, collision avoidance algorithms deal 

with pair-wise encounters and take no account of restoring the UAVs to their original flight paths, 

while self-separation algorithms deal with multi-UAV (two or more UAVs) encounters and need 

to take the recovery to the intended flight path into account.  

Over the last three decades, a wide variety of collision avoidance approaches (e.g. [4-8]) and 

conflict resolution approaches (e.g. [9-11]) have been proposed in the fields of air traffic 

management, automatic control, and mobile robotics. These approaches have the potential to be 

adapted for UAVs to achieve the collision avoidance sub-capability and the self-separation sub-

capability required by SAA. However, given the strict safety requirements of the aviation sector, 

an algorithm cannot be accepted and deployed without rigorous validation. 

1.2 Validation of SAA Algorithms 

In software or system development, validation is usually conducted to determine whether a 

product (e.g. a piece of implemented software or a system) has the desired properties from the 

perspective of the intended user(s). By “desired properties”, it means validation is with respect to 

intent, but very often, whether the intent is satisfied, or in what cases the intent is not satisfied, 

cannot be fully determined without the use of hindsight. By “intended user(s)”, it means the 

properties are those related to the real-world environment where the intended users would operate 

the system. 

In the case of SAA algorithm validation, one of the desired properties is that the host UAV of the 

SAA algorithm should be able to avoid collisions with other air traffic. However, it not easy to 
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ensure that the algorithm will have this desired property. There are so many possible situations 

where the host UAV could collide with other air traffic that one cannot explicitly enumerate and 

then experiment (or examine) all of them. For example, one may experiment to check that the 

host UAV can indeed avoid collisions with an intruder (i.e. other air traffic that pose a high 

collision risk to the host UAV, for example, another UAV) in head-on encounters, in crossing 

encounters, and in overtaking-overtaken encounters. But what if there are more than one intruders 

the host UAV should avoid4 at the same time? And what if there is a strong wind that the host 

UAV cannot execute the collision avoidance manoeuvres precisely? There are simply too many 

possibilities that would happen when using a system/software in the real operational environment, 

and some of the possibilities may not even be foreseen until we actually run into them (i.e. they 

may not be found without hindsight). To ensure the system/software indeed has the desired 

properties, validation first figures out as big part of these challenging possibilities as reasonably 

possible and then examines the system/software in these possibilities.  

In this thesis, validation of SAA algorithms means the process of determining whether or not a 

UAV controlled by the selected SAA algorithm will behave safely in all kinds of situations with 

different intruders and under various sources of uncertainty of the environment.  

Both actual flight tests and simulation studies are required and often conducted for the validation 

of SAA algorithms. Flight tests evaluate the system in actual operational environments, but can 

only be performed in very limited situations due to constraints in time, cost, and safety. Simulation 

studies evaluate the system in a simulated environment so that they can be carried out to examine 

the system in a broader range of situations to find system deficiencies. However, they are subject 

to limitations in the fidelity of the simulation.  

Since simulation studies can examine the tested SAA algorithm in a much broader range of 

situations and with fewer constraints (in time, cost, and safety), simulation-based validation of 

SAA algorithms is the main interest of this thesis.  

As discussed above, for SAA algorithm validation, it is extremely difficult, and perhaps not 

possible, to prove that the algorithms will behave safely in all real-world conditions. Instead, 

efforts are often put into confirming that the host UAVs will not have unsafe behaviours in a large 

set of diverse simulated situations. To gain high assurance, this set of simulated situations should 

be as large as reasonably possible and the simulations should be as close as reasonably practicable 

to the real world.  

                                                      

4 In this case, the exact placement of the intruders and the host UAV matters, but the number of 

possible placements is infinitely large. 
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However, since, on the one hand, the space of all possible situations is enormous (possibly, 

infinite), and on the other hand, unsafe behaviours are very rare for a moderately good SAA 

algorithm, random testing strategies are likely to be extremely costly regarding computation 

resource and time. Better strategies are needed to make the simulations only focus on challenging 

situations that the SAA algorithms have difficulties in handling. 

1.3 Search-Based Software Testing 

Search-Based Software Testing (SBST) [12] is the activity that considers software testing as an 

optimization problem and applies meta-heuristic search techniques, such as Genetic Algorithms 

(GAs) [13], simulated annealing [14], and tabu search [15], to solve the optimization problem. 

Over the last decade, SBST has been increasingly used to generate test data for functional or 

structural testing, prioritize test cases, reduce human oracle cost, optimize software test oracles, 

and minimize test suites [12].  

For the use of SBST to be successful, the testing problems usually show the following 

characteristics5 as summarized by Clark et al. [17]: 

 It is easy to check whether a candidate solution is acceptable but it is difficult to construct 

such a solution; 

 The requirement is to find an acceptable solution rather than the optimal solution; 

 There are often competing constraints to satisfy. 

When used to generate test cases, the main advantage of SBST is that it can generate test cases 

satisfying certain requirements which human beings have difficulties in doing, and that it can be 

used to partially automate the test case generation process.  

Considering the problem of SAA algorithm validation, especially the problem of identifying 

challenging situations that the algorithms have difficulties in handling, it is noted that at least two 

(the first two) of the above characteristics are visible. Here, challenging situations are 

counterexamples that show the tested SAA algorithm cannot keep the host UAV from collisions 

with other air traffic. Note that the “challenging” situations we are looking for match the first 

characteristics very well: it is easy to check whether a situation is challenging by observing the 

results of flight tests or simulation runs of this situation, but it is difficult to construct a situation 

that will result in a mid-air collision for the tested SAA algorithm. As for the second 

characteristics, finding some acceptable challenging situations would suffice for the problem of 

                                                      

5 These characteristics are not specific to SBST, but they are actually true for all search-based 

work, such as the broader field of Search-Based Software Engineering [16]. 
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SAA algorithm validation. As for the third characteristics, it is likely that some competing 

constraints are exerted to the problem. For example, on the one hand, it may require that the 

challenging situations should be able to stress the SAA algorithm, which usually means the 

situations are complex, but on the other hand, it may also require that the challenging situations 

should be prone to happen in real-world conditions, which often means the situations are simple. 

It is desirable that the process of finding challenging situations for SAA algorithm validation can 

be automated or at least partially automated. By building on ideas from SBST, this thesis attempts 

to formulate the problem of identifying challenging situations (i.e. counterexamples) for the 

validation of SAA algorithms as an optimization problem and use meta-heuristic search 

techniques, specifically, evolutionary search techniques, to find the solutions. 

1.4 Research Hypothesis and Propositions 

Motivated by the need to improve the validation process of SAA algorithms required for the safe 

integration of UAVs into civilian airspace, by building on ideas from SBST, this thesis proposes 

an approach to support validation of UAV SAA algorithms with agent-based simulation and 

evolutionary search.  

The research hypothesis of this thesis is as follows: 

The validation of UAV SAA algorithms requires identifying challenging situations that the 

algorithms have difficulties in handling. It is possible to identify such situations using an 

evolutionary-search-based approach and the process can be partially automated. The 

evolutionary-search-based approach is more effective and efficient than some plausible 

rivals. 

The first sentence of the hypothesis is an assumption. According to the common practice of 

software testing, which heavily involves finding counterexamples showing the tested software is 

not valid in all situations, this assumption is clearly sound. Specifically, for the validation of SAA 

algorithms, it involves finding challenging situations that can give rise to unsafe behaviours of 

the tested SAA algorithms.  

Four propositions can be identified in this hypothesis:  

1) Feasibility: it is possible to identify challenging situations for the selected SAA 

algorithms using the proposed evolutionary-search-based approach;  
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2) Partial6 automation: the process of identifying challenging situations for supporting the 

validation of SAA algorithms can be partially automated if using the proposed 

evolutionary-search-based approach;  

3) Effectiveness: the proposed evolutionary-search-based approach is more effective than 

some plausible rivals in identifying challenging situations for the selected SAA 

algorithms. 

4) Efficiency: the proposed evolutionary-search-based approach is more efficient than some 

plausible rivals in identifying challenging situations for the selected SAA algorithms. 

1.5 Research Methods 

The main research methods are: 

 Demonstration with case studies: This thesis will demonstrate the application of the 

proposed approach to three SAA algorithms (specifically, SVO [6], ACAS XU [18], and 

ORCA-3D [11]). SVO (Selective Velocity Obstacle) is a relatively simple 2-D collision 

avoidance algorithm, and it will be used for a preliminary demonstration and evaluation 

of the proposed approach. ACAS XU (Airborne Collision Avoidance System X for UAVs) 

is a prototype of an industry-level 3-dimensional UAV collision avoidance algorithm, and 

it will be used to further demonstrate and evaluate the proposed approach. ORCA-3D 

(Optimal Reciprocal Collision Avoidance in 3-Dimension) is a multi-UAV conflict 

resolution algorithm, which poses new requirements for validation, and it will be used to 

show how the proposed approach can be augmented to accommodate the new 

requirements. 

 Evaluation through comparisons: This thesis will conduct comparative experiments to 

evaluate the proposed approach with some plausible rivals regarding feasibility, 

effectiveness, and efficiency in finding required challenging situations (i.e. 

counterexamples). These plausible rivals are random-search-based approaches and a 

deterministic-global-search-based approach. 

1.6 Thesis Structure 

The rest of the thesis is organized as follows:  

                                                      

6 Note that full automation, if ever possible, is by no means pursued in this thesis. 
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Chapter 2 is an introduction and survey of fields that underpin this thesis. It further reviews SAA 

for UAVs and the key ideas of SBST, and it gives an overview of evolutionary search algorithms. 

It also surveys techniques for SAA verification and validation, simulation techniques relevant for 

SAA, and techniques for guiding7 simulations. 

Chapter 3 analyses the requirements for UAV SAA algorithm validation, and gives an overview 

of the proposed approach. It also compares the proposed approach with some existing similar 

approaches. 

Chapter 4 demonstrates the feasibility of using the proposed approach to find mid-air collision 

situations for a simple 2-D collision avoidance algorithm (specifically, SVO). A preliminary 

evaluation of the effectiveness of the proposed approach is conducted by comparing it with a 

random-search-based approach. 

Chapter 5 describes the open-source tool developed to support the proposed approach. With this 

supporting tool, the process of identifying challenging situations for SAA algorithm validation 

can be partially automated. 

Chapter 6 demonstrates the application of the proposed approach to a prototype of an industry-

level UAV collision avoidance algorithm (specifically, ACAS XU) in finding challenging 

situations (i.e. situations that can cause a high accident rate for the host UAVs). The effectiveness 

and efficiency of the proposed approach are empirically evaluated by comparing it with a random-

search-based approach and a deterministic-global-search-based approach. 

Chapter 7 demonstrates the application of the proposed approach to a multi-UAV conflict 

resolution algorithm (specifically, ORCA-3D) in finding situations satisfying two requirements: 

(1) despite the help of the conflict resolution algorithm, the host UAVs still experience violation 

of safe separation in these situations; (2) the situations should also be simple so that they are very 

likely to happen in the real-world environment. The problem is formulated as a multi-objective 

search problem and the proposed approach is augmented to accommodate multi-objective search 

in order to find solutions satisfying the two requirements. The effectiveness and efficiency of the 

augmented approach are empirically evaluated by comparing it with a random-search-based 

approach. 

Chapter 8 evaluates the research hypothesis and identifies the contributions and limitations of this 

thesis. Opportunities for further research are also suggested. 

                                                      

7 Here, guiding simulations means to control and direct the simulations to only focus on situations 

that are “useful” for some specific purposes in a huge (possibly, infinite) space of all possible 

situations.  
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 Survey of Relevant Fields 

The purpose of the survey presented in this chapter is to provide the necessary background 

knowledge and a review of key parts of the relevant literature. This chapter is broken down into 

sections, specifically: 

Sense-and-Avoid An introduction to SAA systems and algorithms. It includes surveillance 

technologies for UAVs to sense the environment, collision risk evaluation approaches to detect 

threats, and planning and decision-making techniques to generate avoidance strategies.  

SAA Verification and Validation Existing work for verifying and validating SAA algorithms 

(or systems), which includes formal methods, software testing, simulation analyses and flight tests. 

Search-Based Software Testing A brief introduction to the research field of SBST, which 

utilizes meta-heuristic search techniques to automate the process of software testing. 

SAA Simulation Techniques A brief survey of typical simulation techniques related to UAV 

SAA. They include agent-based simulations and physics-engine-based simulations. 

Techniques for Guiding Simulations A survey of techniques used to guide the simulations to 

only focus on “useful” situations. Three techniques are surveyed, and they are Monte-Carlo 

methods, Design of Experiments, and meta-heuristic search. 

Evolutionary Search A brief introduction to evolutionary search approaches. 
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2.1 Sense-and-Avoid 

The purpose of SAA is to prevent UAVs from colliding with other mid-air objects. Even though 

some static objects (such as high buildings and electricity pylons) and moving objects (such as 

birds) may also pose collision threats to UAVs, the major concern of SAA is to prevent UAVs 

from colliding with other air traffic (such as manned aircraft and other UAVs). Typically, the 

SAA capability is achieved by three sub-functions conducted in a sequence of three stages, which 

are “Surveillance”, “Threat Detection”, and “Avoidance”, as illustrated in Figure 2-1. 

 

Figure 2-1 UAV Sense-and-Avoid, from [19]. 

At the “Surveillance” stage, an SAA system must be able to detect and track other air traffic, and 

be able to extract useful information about these aircraft. Based on the information, at the “Threat 

Detection” stage, the SAA system evaluates and prioritizes the risk of colliding with the detected 

air traffic and declares if they are a threat or not. When a threat is declared, the SAA system enters 

the stage of “Avoidance”, where it determines an avoidance strategy and then commands the host 

UAV (i.e. UAV running the SAA algorithm) to execute the strategy. The avoidance strategy can 

either be a self-separation strategy or a collision avoidance strategy. The two differ in the volumes 

(see Figure 2-1) used to declare threats and to determine avoidance strategies. Different UAVs 

may use different self-separation volumes and collision volumes, but a self-separation volume is 

usually larger than the corresponding collision volume (for example, a self-separation volume 

may be 3 minutes ahead of a physical collision while a collision volume is 20-40 seconds ahead 

of a physical collision).  

The following three subsections of this section will survey some typical sensing technologies for 

surveillance, threat detection paradigms, and some approaches to deriving avoidance manoeuvres. 

For a deeper review of SAA technologies, readers are referred to [20]. 

 Surveillance Technologies 

The means to sense the environment can be classified into two categories: cooperative methods 

and non-cooperative methods. A cooperative method can usually detect other objects (typically, 
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other air traffic) more reliably and with a larger range than non-cooperative methods, but it 

requires that the other objects carry the same or compatible sensors. So, cooperative methods 

cannot detect objects such as high buildings or other aircraft without a compatible sensor. The 

non-cooperative methods, however, do not require other objects to be equipped with the same 

devices, and can be applied to detect air and ground obstacles. Typical sensors for non-

cooperative sensing are cameras and Radar, and typical sensors for cooperative sensing are TCAS 

transponders and ADS-B equipment. In this thesis, ADS-B is assumed to be the prime sensor for 

surveillance, but before making this assumption, the four most common surveillance technologies 

are surveyed. 

A. Cameras 

Cameras are a kind of passive non-cooperative sensor in that they do not need to emit energy to 

detect other objects. Because of their low weight and low cost, cameras are a very attractive way 

to provide a sensing capability for UAVs. Apart from the quality of the cameras and the 

illumination conditions, the detection ability of cameras is highly dependent on the algorithms 

used for processing and extracting information from the acquired images or video streams. It is 

related to the research field of Computer Vision, which is very active these days and exhibiting 

fast progress.  

In [21], Carnie et al. compared two image processing algorithms designed to detect small, point-

like features (which potentially corresponds to distant, collision-course aircraft) from image 

streams. The algorithms’ performance was compared with the measured detection times of an 

alerted human observer against a variety of daytime backgrounds. The result showed that the 

algorithms could detect other aircraft at distances of approximately 6.5km, which are 35-40% 

greater than the capability of the alerted human observer. 

In [8, 22], researchers from CMU Robotics Institute developed a field deployable SAA system 

for both UAVs and small aircraft using cameras as the main sensing modality. Their approach 

was based on morphological filters augmented with a trained classifier, yielding intruder aircraft 

detection rates of 99.7% up to 3.5 miles (~5.6Km) and 96.1% up to 4.5 miles (~6.4Km). 

Furthermore, almost all the false positives that occurred were due to objects that may be relevant 

to collision avoidance: birds, and radio towers. 

The main advantages of cameras for UAV’s SAA include low cost, low weight, low power 

requirements, and proven effectiveness in detecting both static and moving objects under certain 

conditions. Drawbacks of cameras for UAV SAA include: (1) the sensors may not be effective in 

the case of adverse weather (e.g. smoke, fog, and dust) or bad illumination conditions; (2) arrays 

of sensors are required to achieve a wide field-of-view with adequate angular resolution; (3) very 

limited information (primarily bearing information and target size) is provided for SAA [20]. 
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B. Radar 

Radar is an active non-cooperative sensor which works by emitting radio waves from fixed 

antennas to other objects and then interpreting the reflected signals. It obtains a distance 

measurement based on the time-of-flight: the distance is one-half the product of the round-trip 

time and the speed of the signal (usually, it is the speed of light). It is also possible to get a speed 

measurement either by using the difference of two successive distance measurements or by using 

the Doppler effect [23] to get an instant speed measurement.  

Radar antennas usually revolve at a certain (fixed) rate to detect all surrounding objects. Most of 

them revolve at a rate of ~5 revolutions-per-minute (rpm). Therefore the time between signal 

returns is ~12 seconds. For an aircraft flying at 250ft/s, this means that the aircraft can move 

3000ft (~0.9Km) between returns, which may be too large to maintain safety in collision 

avoidance applications. 

Radar can be used in all-weather conditions, and it is prevalent in manned aircraft. New Radar 

devices are being developed that are lighter, cheaper and less energy-consuming, and some studies 

have been conducted to use Radar for small UAVs (e.g. [24]). However, Radar systems do not 

provide the same degree of real-time imagery as compared to cameras, and their detection ranges 

vary a lot depending on their size and energy, and ultimately depending on their prices.  

C. TCAS Transponders 

TCAS transponders are cooperative sensors that are used in the Traffic Collision Avoidance 

System (TCAS), an airborne collision avoidance system mandated worldwide on large transport 

aircraft to reduce the risk of mid-air collisions [25]. TCAS uses an on-board transponder to 

communicate with all nearby aircraft equipped with an appropriate transponder. Each TCAS-

equipped aircraft interrogates all nearby aircraft in a determined range about their position (via 

the 1.03GHz radio frequency) and all other aircraft reply to other interrogations (via 1.09GHz). 

This interrogation-and-response cycle usually occurs at a frequency of 1Hz [26]. 

Standard TCAS transponders can detect objects within a range up to 129km, and the latest one 

(version 7.1) can detect an object 160km away [26]. Some research (e.g. [27]) was conducted to 

evaluate its potential usage for UAVs. However, due to the weight and cost of current TCAS 

transponders, they may not directly be applicable for small UAVs, which are cost-sensitive and 

with limited payload. In addition, it is ineffective in detecting non-cooperative objects. 

D. ADS-B 

ADS-B (Automatic Dependent Surveillance-Broadcast) is another kind of cooperative sensor that 

has gained considerable interest in the aviation industry as the next generation of surveillance 
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technology [28]. Figure 2-2 illustrates the mechanism of ADS-B. It is dependent on a Global 

Navigation Satellite System (GNSS), such as the Global Positioning System (GPS), to get the 

position of the host aircraft. It works by automatically and continuously broadcasting aircraft 

position and other data (e.g. the identification, velocity, and intent of the aircraft) to any nearby 

aircraft or ground station equipped to receive ADS-B signals.  

Compared with the aforementioned sensing technologies, ADS-B is favourable for UAV SAA 

since it can provide accurate and reliable information for improved situation awareness. It has 

been demonstrated in [29] that a commercial ADS-B receiver can reliably receive data-link 

broadcast by other aircraft within a range of 200km. Example uses of ADS-B for small UAV 

SAA are presented in [30] and [31]. 

 

Figure 2-2 Illustration of the mechanism of ADS-B, from [32]. 

However, like TCAS transponders, ADS-B is ineffective in the case of detecting ground-based 

obstacles, such as terrain features, towers, or power lines [20], which may also pose collision 

risks. Moreover, the currently available commercial ADS-B systems are still too expensive to be 

used in many commercial UAVs. 

One potential risk of ADS-B is that because the content of standard ADS-B messages is neither 

encrypted nor authenticated, it may be read by anybody, and additional means are needed to 

distinguish fake messages. For example, in 2012 a group of hackers claimed that they could 

interfere with aircraft navigation with spoof ADS-B messages [33].  
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In this section, four typical types of sensors for UAVs to sense other objects (particularly, other 

aircraft) have been introduced. It is noted that some other sensors of this kind can be found in the 

literature, e.g. LIDAR (LIght Detection And Ranging), acoustic systems, and infrared sensors, 

but they are relatively less used for UAV SAA. For ADS-B, because of its advantages in 

improving situation awareness for aircraft, its equipment has been or will be mandatory in several 

countries’ airspace. Moreover, ADS-B is one of the key elements of the US Next Generation Air 

Transportation System (NextGen) [2] and the Single European Sky ATM Research (SESAR) [3].  

In this thesis, UAVs are assumed to be equipped with ADS-B or its equivalent (possibly a 

combination of Radar and cameras) so that they have good sensing capability to know the 

positions, velocities, and shapes, etc. of the other air traffic. However, when building and 

analysing the decision-making algorithms, sensing uncertainty will also be considered if it is 

appropriate to do so.  

 Threat Evaluation and Detection 

Once a UAV has sensed other objects in the environment, it needs to determine if the objects 

cause a real risk of collision. The way to evaluate the collision risk has a significant impact on the 

performance the SAA system. On the one hand, this evaluation should not be too sensitive to 

result in over frequent false alarms, but on the other hand, it should not be too insensitive to affect 

safety. If an object is determined to be posing a high risk, it is declared as a “threat”, and if it is a 

moving object, we may call it as an “intruder”. In this thesis, for convenience, we designate one 

UAV hosting the selected SAA system as the “own-ship”, and others are called as intruders if 

they pose a high collision risk to the own-ship. 

The threat evaluation relies on the future state prediction of the own-ship and the sensed objects. 

If the future state is a collision state and it is with high probability, a threat will usually be declared. 

Figure 2-3 shows four different types of future state prediction, which are described in the 

following subsections. 
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Figure 2-3 Future state prediction methods: (a) nominal projection; (b) probabilistic projection; (c) worst-

case projection; (d) intent sharing. The figure was adapted from [34].  

A. Nominal Projection  

Shown in Figure 2-3(a). In this method, the states of the own-ship and the object (if it is moving) 

are projected into the future without direct consideration of trajectory uncertainties. An example 

would be extrapolating the aircraft's position based on their current velocity vectors and turning 

rates. This method is simple and computationally very efficient, and it assumes that the object 

will not do any manoeuvring in the predicted time horizon. So, it can only be used for aircraft that 

have very predictable trajectories and in a short time horizon. Example uses of this projection 

method are SVO [6], ORCA (Optimal Reciprocal Collision Avoidance) [11], TCAS [25], and the 

ACCoRD (Airborne Coordinated Conflict Resolution and Detection) framework [35] developed 

by NASA Langley. 

B. Probabilistic Projection  

Shown in Figure 2-3(b). In this method, uncertainties are explicitly taken into consideration in 

predicting the future states of the own-ship and the detected moving objects. Under the effects of 

uncertainties, it develops a set of possible future trajectories, each weighted by its probability of 

occurring, and the possible future states are assigned a probability of the corresponding trajectory 

leading to the state. This method enables decision-making under uncertainty, and may give a 

better balance in the trade-off between the high safety requirement and the low false alarm rate 

requirement. If the probabilities are to be derived on-line, Monte-Carlo techniques are usually 

used (e.g. [36]). However, due to the real-time constraint, the accuracy of the estimation usually 

suffers. If the probabilities are to be derived off-line, dynamic programming techniques are 

typically utilized (e.g. [37]) to build look-up tables for on-line use. Example uses of this projection 

method are ACAS X (Airborne Collision Avoidance System X) [36, 37] and the work reported 

in [38, 39]. 
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C. Worst-Case Projection  

Shown in Figure 2-3(c). In this method, the own-ship and the moving object are assumed to 

perform a set of trajectories. If any two of these trajectories can lead to a collision, a threat is 

declared. As a consequence, this method may be too sensitive to result in very frequent false 

alarms. An example use of this approach is described in [40]. 

D. Intent Sharing 

Shown in Figure 2-3(d). In this method, a UAV will share its intent, specifically, in the form of 

flight plans, to other neighbouring aircraft. Based on the shared intent information, the prediction 

of future state can be very accurate. This method is enabled by ADS-B, and it is usually used in 

self-separation (or conflict resolution) cases. Example uses of this approach are a tactical conflict 

resolution algorithm named Chorus [41], and a strategic conflict resolution algorithm named 

Stratway [42], both of which were developed by NASA Langley. 

 Decision-Making and Avoidance 

UAVs are a kind of mobile robots that travel in an aerial environment. In the field of mobile 

robotics, path planning is used to determine a collision free path from a start position to a goal 

position for a robot to navigate safely in a workspace cluttered with obstacles. Usually, the 

obstacles are static and a global map of the environment has been given. So, a path planner is a 

global planner. [43] introduces some typical path planning algorithms for robots. Note that path 

planning is primarily meant to avoid collisions with known static obstacles.  

To avoid collisions with dynamic obstacles that are not presented on the map, additional planning 

approaches are needed, and they are often called collision avoidance. Collision avoidance plans 

avoidance manoeuvres using information about local obstacles (e.g. their positions and velocities) 

only. Therefore, a collision avoidance planner is regarded as a local planner. 

However, to satisfy the high safety requirements in the aviation sector, in addition to collision 

avoidance, an additional safety layer is used to prevent mid-air collisions for UAVs and other air 

traffic. This safety layer is called self-separation, and it is primarily used to prevent other UAVs 

(or other air traffic) from even entering the self-separation volume (see Figure 2-1) of the own-

ship, in order to maintain a safe separation distance. Since the self-separation volume is larger 

than the collision volume and information within a wider range area is needed to do planning, we 

may view a self-separation planner as a planner in between a global planner and a local planner.  

So, there are two layers of protections to prevent collisions with moving objects, and they form 

the two sub-functions for achieving “avoid” for SAA: self-separation and collision avoidance. In 
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the first layer (i.e. self-separation), UAVs strategically plan their flight paths to resolve conflicts 

with each other (and potentially with conventional aircraft) and maintain a defined safe separation 

distance. If this safe separation is predicted to be violated or the collision risk is predicted to be 

higher than a defined threshold, the second layer (i.e. collision avoidance) will provide tactical 

evasive manoeuvres for the UAVs to avoid an imminent collision. Both layers function in a 

similar way — each UAV uses its situation awareness to calculate and execute a change to its 

flight path to avoid violation of safe separations or collisions. Usually, collision avoidance 

algorithms deal with pair-wise encounters and take no account of restoring the UAVs to their 

original flight paths, while self-separation algorithms deal with multi-UAV (two or more) 

encounters and need to take the recovery to the intended flight path into account.  

A wide variety of collision avoidance approaches (e.g. [4-7]) that have been proposed in the fields 

of air traffic management (ATM), automatic control, and mobile robotics have the potential to be 

adapted for UAVs to achieve collision avoidance capability. However, it is found that few 

approaches are developed specially for UAV self-separation in the literature. This may be 

reasonable because, after all, self-separation is only required for UAV SAA, but UAV SAA is a 

very recent concept. Nevertheless, it is also found that many automatic conflict resolution 

approaches (e.g. [9-11]) for manned aircraft (or UAVs) or for ATM systems were adapted for 

UAVs to achieve self-separation capability in the literature. Indeed, for example, in [41, 42] 

NASA Langley researchers developed some conflict resolution algorithms for ATM, but they 

suggested that the algorithms can also potentially be used for UAV self-separation.  

In the following, some state-of-the-art paradigms for UAV collision avoidance and conflict 

resolution are surveyed.  

A. Collision Avoidance 

As a local planner, collision avoidance uses limited available information of the local environment 

to plan a strategy for avoiding an imminent collision with obstacles (either static or moving). 

Usually, it takes no account of restoring the UAVs to their original flight paths. It is desired to be 

a balanced trade-off between the high safety requirement and the low false alarm rate requirement. 

That is, on the one hand, the collision avoidance command should be emitted if there is a real risk 

of collision, but on the other hand, it should be emitted only when it is necessary. 

a. Velocity Obstacle Approaches 

A velocity obstacle (VO) [44] (a.k.a. collision cone [45]) is the set of all velocities of a robot 

(more generally, an agent) that will result in a collision with another robot (or object) at some 

future moment, assuming that the other robot maintains its current velocity. As is shown in Figure 

2-4 (a), assuming A and B are two planar agents moving in a 2-D plane. Let PA, VA and rA denote 
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the current position, velocity vector and radius of agent A, and let PB, VB and rB be the position, 

velocity vector and radius of agent B. The velocity obstacle for agent A induced by B (denoted 

as VOA|B) is then the set consisting of all those velocities VA that will result in a collision at some 

moment in time (say t) with B if B keeps moving at velocity VB. Formally, VOA|B is defined by 

equation (2-1): 

 𝐕𝐎𝑨|𝑩 = {𝑽𝑨|∃𝑡 > 0 ∶  (𝑽𝑨 − 𝑽𝑩) ∗ 𝑡 ∈ 𝐷(𝑷𝑩 − 𝑷𝑨, 𝑟𝐴 + 𝑟𝐵)} (2-1) 

Where the notation D(x, r) represents a disc with centre x and radius r. A geometric interpretation 

of VOA|B is shown in Figure 2-4 (b).  

It follows that if agent A chooses a velocity vector outside VOA|B, it can then avoid a collision 

with B.  

The same idea as above can be naturally extended to three dimensions, resulting in the 3-D version 

of the velocity obstacle approach.  

The original velocity obstacle approach was introduced for robot navigation among passively 

moving obstacles. For moving obstacles that will also actively try to avoid collisions, it can result 

in oscillations [46], much like the phenomenon happening very often when two human beings try 

to avoid a collision with each other in a corridor.  
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Figure 2-4 Geometrical illustration of velocity obstacle in 2-D, adapted from [47]. 

To avoid oscillations, in [46] the Reciprocal Velocity Obstacle (RVO) approach was proposed 

for real-time multi-agent navigation. The approach takes into account the reactive behaviour of 

the other agents by implicitly assuming that the other agents use similar collision-avoidance 
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reasoning. In [48], a 3-D RVO approach was used on physical quadrotor helicopters (specifically, 

Parrot AR.Drones) for real-time collision avoidance, and experiment results has shown that RVO 

is able to avoid pairwise collisions by using on-board cameras as the prime sensor. 

Many variations of velocity obstacle approach exist. Examples include Generalized Velocity 

Obstacles (GVO) [49], Hybrid Reciprocal Velocity Obstacles (HRVO) [47], ORCA [11], and 

recursive Probabilistic Velocity Obstacles (PVO) [50]. 

Specifically for UAVs, in [6] a velocity obstacle approach named Selective Velocity Obstacles 

(SVO) was designed for cooperative collision avoidance, where each UAV in an encounter 

cooperatively avoids each other while obeying the right-of-way rules [51] of the airspace. Because 

of its simplicity and popularity, in Chapter 4, a 2-D SVO algorithm will be used to conduct a 

preliminarily demonstration and evaluation of the approach proposed by this thesis. A more 

extensive introduction to SVO will be given there. 

b. TCAS 

TCAS is an airborne collision avoidance system mandated worldwide on large transport aircraft 

to reduce the risk of mid-air collisions [25]. TCAS avoids collisions only in the vertical direction. 

It does not select turning manoeuvres because “bearing accuracy is generally not sufficient 

to determine whether a turn to the left or the right is appropriate” [25]. TCAS determines 

collision avoidance manoeuvres in two steps: in the first step, the algorithm decides the vertical 

sense (direction) of the manoeuvre (i.e. to climb or to descend); in the second step, the algorithm 

decides the strength of the manoeuvre (i.e. the target vertical speed of the manoeuvre).  

 

Figure 2-5 TCAS sense selection, from [25]. 

Figure 2-5 shows the sense-selection mechanism. Two manoeuvre templates are examined: one 

based on a climb, and another based on a descent. Each template assumes that the host aircraft 

begins to response after a 5 seconds delay, and it responds by a 0.25g vertical acceleration until 

reaching a target vertical rate of 1500ft/min [25]. In the meantime, the intruder aircraft is assumed 
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to continue its trajectory at its current velocity (i.e. nominal projection, see Section 2.1.2.A). 

TCAS selects the sense that provides the largest separation at the predicted Closest Point of 

Approach (CPA). In the situation shown in Figure 2-5, the descending manoeuvre will be selected.  

Once the sense of the manoeuvre has been selected, the strength is determined by using additional 

manoeuvre templates [25]. Figure 2-6 shows the strength selection mechanism. Each template 

again assumes a 5s delay, followed by a 0.25g acceleration until reaching the target vertical rate 

of that template. TCAS selects the strength that requires the smallest vertical-rate change that 

achieves at least a certain minimum separation [25]. In the situation shown in Figure 2-6, the own-

ship is currently descending at a vertical speed of 1000ft/min and a head-on aircraft is declared 

as a threat. Five manoeuvre templates are examined, each corresponding to a different target 

vertical speed. Since the template that changes the descending speed to 500ft/min results in a 

minimum vertical speed change, but still provides the required vertical separation (400ft), the 

selected strength is “limit descent 500ft/min”. 

 

Figure 2-6 TCAS strength selection, from [25]. 

If the intruder is also equipped with TCAS, the senses of the two manoeuvres are coordinated 

through a data link between the two TCAS devices to ensure that the two aircraft do not select the 

same vertical direction. Moreover, TCAS also includes algorithms that monitor the evolution of 

the encounter and, if necessary, modify the collision avoidance command during manoeuvring. 

Safety studies estimate that TCAS improves safety by a factor of between 3 and 5 [52]. However, 

limitations and misuse of the system still resulted in some fatal accidents, one of which is 

the Überlingen mid-air collision [53] between a Boeing 757 and a Tu-154 in 2002. Seconds 

before the accident, the Tu-154’s TCAS instructed the Tu-154 to climb, while at about the same 

https://en.wikipedia.org/wiki/%C3%9Cberlingen_mid-air_collision
https://en.wikipedia.org/wiki/Boeing_757
https://en.wikipedia.org/wiki/Tupolev_Tu-154
https://en.wikipedia.org/wiki/Tupolev_Tu-154
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time the Boeing 757’s TCAS instructed the Boeing 757 to descend. However, the Tu-154’s pilot 

instead followed the instruction from the air traffic controller to also descend, resulting in a mid-

collision. The accident wasn’t primarily caused by TCAS itself, but it showed how the misuse of 

TCAS in a wider system environment could result in a serious accident. 

One major problem of TCAS is that it predicts the future state by a nominal projection (see Section 

2.1.2.A), and does not take the effects of different sources of uncertainty into consideration. 

Consequently, the decision-making is far from optimal. Because of this and other limitations, 

ACAS X was introduced to replace TCAS, and will be introduced next. 

c. ACAS X 

ACAS X [18] is a collision avoidance system under development, which is intended to replace 

TCAS in the future. It explicitly takes sources of uncertainty into account when making decisions 

for collision avoidance.  

ACAS X uses an off-line pre-built look-up table to accelerate the on-line computation. The look-

up table was built by computer optimization of a probabilistic sequential decision model 

(specifically, a Partially Observable Markov Decision Process (POMDP) model). It specifies the 

cost for each possible collision avoidance action in every possible state8. The possible collision 

avoidance actions are in the form of “no action”, or “climb/descend at a certain speed”, etc.  

With the look-up table built off-line, the on-line workflow of ACAS X is shown in Figure 2-7. 

First, ACAS X detects and tracks nearby aircraft by receiving sensor measurements from on-

board surveillance systems (TCAS transponders or ADS-B), and estimates the relative position 

and velocity of these aircraft. To handle uncertainties, a “state estimation” module explicitly takes 

the probabilistic sensor model and the probabilistic aircraft dynamic model into account, and 

represents the encounter situation as a probabilistic state distribution (i.e. weighted states). Then, 

with the look-up table at hand, an “action selection” module calculates the cost for every possible 

collision avoidance action by the weighted average over the state distribution, and selects the 

optimal one. This optimal action will then be announced as the Resolution Advisory (RA). ACAS 

X receives sensor updates once per second (1Hz), and the process described above will also be 

conducted at the same frequency.  

                                                      

8 A state here is an abstract representation of an encounter situation, which is described by several 

variables, such as the horizontal distance and the relative horizontal velocity. 
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Figure 2-7 ACAS X workflow, from [18]. 

The approach for ACAS X development brings benefit regarding optimal collision avoidance 

strategies, and it is easier to maintain and upgrade the system than TCAS. However, it also poses 

new challenges for the safety assurance and the certification of the system. 

In Chapter 6, a version of ACAS X for UAVs (i.e. ACAS XU) will be further explored, and more 

information about its development process and the challenges it poses for safety assurance will 

be presented. 

B. Conflict Resolution 

Compared with collision avoidance algorithms, conflict resolution algorithms work at a larger 

distance (or time) scale and often deal with multiple aircraft. Different from collision avoidance, 

after resolving the conflicts, the algorithm usually guides the host UAV to restore its original 

flight path. It is desired to be a balanced trade-off between safety and economic efficiency 

amongst other factors. That is, on the one hand, the conflict resolution should re-plan flight path 

to avoid possible violations of safe separation (the extreme of which are physical collisions), but 

on the other hand, the re-planned flight path should not result in a too much additional cost9.  

Depending on how the conflict is resolved and the time horizon, conflict resolution algorithms 

can again be divided into tactical conflict resolution algorithms and strategic conflict resolution 

algorithms. Tactical conflict resolution algorithms resolve conflicts by direct manoeuvres, such 

as climbing, descending, speed changing, and turning, in a smaller time horizon, while strategic 

conflict resolution algorithms resolve conflicts usually by modifying flight plans (i.e. the 

waypoints to navigate by) in a larger time horizon. 

                                                      

9 This constraint is usually formalized as shortest path or minimum flight path deviation. 
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Many conflict resolution approaches can be found in the literature, for example, geometric 

approaches [41, 54], potential field approaches [10, 55], sampling-based approaches [8, 22, 56], 

and game-theory-based approaches [57, 58]. A slightly outdated review of conflict resolution 

approaches can be found in [59]. In this thesis, three recently widely used approaches are surveyed. 

a. Velocity Obstacle Approaches 

Velocity Obstacle approaches can also be used for UAV tactical conflict resolution. In this case, 

the sizes of the agents are enlarged to be half of the safe separation distance, so that the total 

distance when two agents start to collide is the safe separation distance. To deal with multi-UAV 

situations, the velocity obstacles induced by all the intruders are combined as a union. At each 

time step, the algorithm chooses a velocity vector that lies outside of this union and is closest to 

a preferred velocity leading to the desired target. 

ORCA [11] is an example of this kind of algorithm, where two agents cooperatively choose new 

conflict-free velocities that cause minimum deviations from their original velocity. It has been 

used in [60] for UAVs and showed promising results. In Chapter 7, ORCA will be further 

explored, and a more extensive introduction to it will be presented. 

b. Optimization-Based Approaches 

Optimization-based approaches typically combine kinematic models of the UAVs with a set of 

cost metrics. An optimal conflict resolution strategy is then determined by solving for the 

trajectories with the lowest cost.  

For example, [61] studied the design of optimal conflict-free manoeuvres for multiple aircraft 

encounters. The candidate manoeuvres involve changes in heading, speed, altitude or their 

combination. The goal is to determine a manoeuvre that minimizes a certain energy cost function. 

For the sake of passenger comfort, vertical manoeuvres are penalized with respect to horizontal 

ones. A numerical algorithm was given and used to compute the optimal resolution manoeuvres 

in two-aircraft cases. However, for multiple-aircraft cases, only suboptimal solutions were 

computed by using an approximation scheme. 

When the optimization problem is very complex and includes many constraints, it often cannot 

be solved by conventional methods. Genetic Algorithms (GAs) and their variations are usually 

used to find a feasible solution. However, the solution may not be optimal. Examples of this kind 

are [62-64]. 

Optimization-based approaches require the definition of appropriate cost functions — typically 

path distance, flying time delay, or fuel cost. The derivation of costs may be straightforward for 

economic values but difficult when modelling subjective human utilities, e.g. passenger comfort. 

Another problem with this approach is that when the optimization problem is too complex to solve 
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by conventional methods, only suboptimal solutions can be achieved, and the real-time property 

of the algorithm may suffer when using GAs and the like. 

c. Predefined Strategies Searching Approaches 

In this category of conflict resolution approaches, some strategies for resolving conflicts are 

predefined. During conflict resolution, these strategies will be tried in turn to find the final strategy. 

Examples within this category are the work in [65] and Stratway [42], a strategic conflict 

resolution algorithm developed by NASA Langley.  

The Stratway program has about a dozen basic strategies and multiple variations for many of 

these for resolving conflicts. It assumes that the conflict can be resolved by only making small 

changes to the original flight plans. Each of these strategies uses heuristic iterative techniques to 

search for solutions, and by default, these strategies are applied in a pre-determined order. Once 

a candidate solution is found, that is, a solution that is conflict free, it is tested for physical 

feasibility (e.g. whether ground speeds are within appropriate limits, whether turns are not too 

sharp). If the candidate solution meets the feasibility constraints, no further solutions are sought, 

and it will be returned as the final solution.  

An advantage of predefined strategies searching approaches is that the strategies are usually 

defined in a human understandable way. However, they may not be optimal. Moreover, since the 

approaches involve searching for solutions over an enormous state space by applying heuristics, 

they present difficult challenges for software verification. 

 Remarks on SAA 

Considering the advantages of ADS-B in improving situation awareness for aircraft and its 

increasing adoption, in this thesis, UAVs are assumed to be equipped with ADS-B or its 

equivalent so that they have good sensing capability. With this assumption, this thesis mainly 

focuses on the “threat evaluation” part and the “avoidance” part of SAA, that is, the decision-

making of when and how to avoid mid-air accidents. 

As case studies, this thesis will use SVO (see 2.1.3.A.a), ACAS X (see 2.1.3.A.c), and ORCA 

(see 2.1.3.B.a) to demonstrate and evaluate the proposed approach. SVO was chosen mainly 

because it is specifically developed for UAVs to accommodate the right-of-way rules of the 

airspace, and it is relatively simple to be used for a preliminary demonstration and evaluation of 

the proposed approach. ACAS X was chosen because it has great potential to be used as the next 

generation standard of collision avoidance system. Also, it is more complex than SVO, resulting 

in a good choice for the further demonstration and evaluation of the proposed approach. ORCA 

was chosen because it is the only conflict resolution algorithm that has been found to be with a 
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publicly available open-source implementation and with moderate complexity. ORCA will be 

used to demonstrate how the proposed approach can be augmented for supporting the validation 

of conflict resolution algorithms, which poses new requirements. 

2.2 SAA Verification and Validation 

In software or system development, verification and validation (V&V) are two important 

activities that aim at ensuring the final product have the desired properties. The relationship 

between the two is illustrated in Figure 2-8. In a typical sequential system development life cycle 

(e.g. the controversial waterfall model), verification is often conducted to determine whether a 

product of a development stage (e.g. system design, and implementation, etc.) accurately 

represents the developer's conceptual description and specifications. Whereas, validation is often 

conducted to determine whether a product (e.g. a piece of implemented software or a system) can 

fulfill the intent of the intended user(s) when placed in its intended environment. It is entirely 

possible that a product passes verification but fails validation, for example when the specification 

has not captured what the users actually want or need.  

 

Figure 2-8 Relationship between V&V, adapted from [66]. 

V&V are needed to ensure that an SAA algorithm can indeed avoid mid-air collisions for the host 

UAVs in the real-world environment. Many techniques can be used for SAA V&V. In the 

following sub-sections, four types of commonly used techniques are surveyed; these are formal 

methods, software testing, simulation analysis, and flight test. Formal methods are usually used 

for verification; simulation analysis and flight tests are generally used for validation; software 

testing is very broad, and can be used for both.  
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 Formal Methods 

Formal methods refer to mathematically rigorous techniques and tools for the specification, 

design, and verification of software and hardware systems [67]. In formal methods, well-formed 

statements in a mathematical logic framework express the specifications of the system. With 

formal specifications, two techniques are usually used to verify that the system meets the 

specifications, and they are model checking and theorem proving. In the following, these two 

techniques are introduced, and their uses for SAA verification are surveyed. Remarks on the use 

of formal methods for SAA algorithms will be given at the end of this section. 

A. Model Checking 

Model checking (a.k.a. property checking) refers to the following problem: given a formal finite-

state model of a system, check whether this model meets given formal specifications (usually in 

the form of temporal logic formulas) automatically. A model checker is a tool which implements 

symbolic algorithms to exhaustively and automatically traverse the state space of the model. If a 

specification is violated during the traversing, the system fails to meet the specification and a 

counterexample is usually given to show the failure. If all the specifications are met after 

traversing the whole state space, the correctness of system is said to hold.  

The following are two examples found in the survey that use model checking for the verification 

of UAV SAA or control software: 

 In [68] Webster et al. assessed the feasibility of using model checking for the certification 

of UAV control systems within civilian airspace. They first modelled a basic UAV control 

system in PROMELA10, and verified it against a selected subset of the CAA’s Rules of 

the Air using the SPIN11 model checker. They then built a more advanced UAV control 

system using an autonomous agent language named Gwendolen, and verified it against a 

small subset of the Rules of the Air using an agent model checker named AJPF. They 

concluded that their approach could verify such a level of autonomy. 

 In [69] Essen et al. identified some verification challenges for ACAS X and developed a 

probabilistic model checking framework to address these challenges. They described the 

application of the framework to analyse a simplified version of the ACAS X. However, 

since their work was very preliminary, apart from the tentative probabilistic model 

                                                      

10 http://spinroot.com/spin/Man/promela.html.  

11 http://spinroot.com/spin/whatispin.html.  

http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/whatispin.html
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checking framework and some demonstrations, no significant result can be found from 

[69].  

B. Theorem Proving 

Theorem proving is a subfield of automated reasoning and mathematical logic dealing with 

proving mathematical theorems by computer programs. To use it for system verification, the 

system must be expressed in a formal logic framework, which comprises the following four 

components [70]:  

 A formal language to express formulas; 

 A collection of formulas called axioms to express system/environment properties that are 

interpreted as self-evident truths; 

 A collection of inference rules for deriving new formulas from existing ones; 

 A collection of theorems that express system properties to be proven. 

The purpose of theorem proving is to find a deduction from the axioms to the theorems by using 

the inference rules. If there is such a deduction, the property of the system is verified and said to 

hold. 

The following are some examples found in the survey that use theorem proving for the verification 

of UAV SAA or some related software: 

 Researchers from NASA Langley Formal Method group developed several SAA 

algorithms and software, and used theorem proving (with the PVS12 theorem prover) to 

verify critical portions of these algorithms. These algorithms includes: (1) ACCoRD [54], 

a set of state-based conflict detection and resolution algorithms; (2) Chorus [41], a state-

based multiple aircraft conflict resolution algorithm using kinematic models (e.g. turns, 

speed, accelerations); and (3) Stratway [42], a strategic conflict detection and resolution 

algorithm that uses intent information (in the form of flight plans). 

 In [71] Jeannin et al. demonstrated how formal, hybrid approaches are helping ensure the 

safety of ACAS X. Using hybrid systems theorem proving techniques, they formally 

verified a set of the geometric configurations under which the advice given by ACAS X 

is safe under a precise set of assumptions.  

 

  

                                                      

12 http://pvs.csl.sri.com/.  

http://pvs.csl.sri.com/
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C. Remarks on Formal Methods 

The value of formal methods is that they provide a means to symbolically examine the entire state 

space (as defined by the model) of a system and establish a correctness or safety property that is 

true for all possible inputs. However, the effectiveness of formal methods heavily relies on the 

model. On the one hand, due to the expressiveness of the formal languages, the model can only 

model certain parts of the system and the environment. On the other hand, if, in order to be more 

expressive, the model would have to be very complex, and it would take a considerable 

computational expense for a model checker to traverse the state space, or it may require human 

intervention for a theorem prover to prove some system properties. As a result, even though there 

has been great progress, formal methods are still rarely (at least not commonly) used in practice 

today (except for the critical components of safety-critical systems) because of the enormous 

complexity of real systems. 

Moreover, many mainstream formal methods (e.g. SPIN, PVS, and NuSMV13) usually have 

difficulty in modelling the various sources of uncertainty14 a real SAA system has to consider in 

real-world conditions because they do not incorporate such components into either the modelling 

languages or the traversal algorithms.  

 Software Testing 

 “Testing shows the presence, not the absence of bugs.” — Edsger W. Dijkstra. 

Software testing is aimed at finding errors in the software under test (SUT) and giving confidence 

in its correct behaviour by executing the SUT with selected inputs or environments. Software 

testing is a very broad field involving many kinds of specific testing techniques (e.g. functional 

testing, structural testing). It is one of the most commonly used techniques for V&V, and can be 

used to verify that a software program meets the specification or to validate that a software 

program works as expected.  

Software testing of SAA algorithms often involves executing the algorithms in specific simulated 

situations. Software testing using simulations will be surveyed in the next sub-section. In this part, 

some related work on non-simulation related software testing for SAA algorithms will be 

surveyed.  

                                                      

13 http://nusmv.fbk.eu/.  

14 The recent probabilistic model checking approaches (e.g. [69] and [72]) are exploring in this 

direction and may be an exception. 

http://nusmv.fbk.eu/
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Because of the safety-critical nature of SAA algorithms and that (according to the de facto 

standard DO-178B/C [73],) the certification of safety-critical airborne software usually requires 

software testing satisfying certain coverage requirements, the primary literature on non-

simulation related SAA software testing is in the form of coverage-based test case generation 

techniques. For example, some studies by researchers from NASA Ames used model checking to 

generate test cases for testing the built-in conflict resolution algorithms of the TSAFE [74] 

software and the AutoResolver [75] software. Specifically:  

 In [76], Bushnell et al. used Symbolic PathFinder (an extension to Java PathFinder15 that 

combines symbolic execution and constraint solving) to generate test cases that achieve 

a variety of coverage criteria including Modified Condition/Decision Coverage (MCDC) 

[77] automatically.  

 In [78], Giannakopoulou et al. developed and demonstrated a light-weight and automated 

testing environment for generating test cases that cover the behavioural space of the 

AutoResolver software to some predefined degree. Their evaluation of the testing 

environment showed that it was able to generate thousands of meaningful test cases that 

run in a matter of minutes, which was a significant improvement over previous practice. 

Compared with formal methods, most16 of which analyse a system indirectly through the use of 

formal descriptions (i.e. models) of the system, software testing is applied directly to the system, 

which avoids introducing errors when building formal models. Also, software testing requires 

fewer specialist skills, and relevant skills are more available amongst the software engineering 

workforce. 

The difficulty of using software testing to verify and validate SAA algorithms lies in that the set 

of possible scenarios is too large to obtain a reasonable coverage. 

 Simulation Analyses 

Simulation analyses, especially large-volume Monte-Carlo simulations, are typically used to 

evaluate the performance (e.g. accident rate, and the maximum number of intruders that can be 

dealt with) of SAA algorithms. For example: 

 In [79], Paielli described a trajectory scripting language to help automatically generate 

large-volume simulated air traffic encounters, and ran simulations of the generated 

encounters to evaluate the conflict resolution algorithms of the TSAFE software.  

                                                      

15 http://babelfish.arc.nasa.gov/trac/jpf.  

16 An exception is the Java Pathfinder that can verify executable Java bytecode programs directly. 

http://babelfish.arc.nasa.gov/trac/jpf
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 A Monte-Carlo simulation approach [80] and an accelerated Monte-Carlo approach [81] 

were used for probabilistic risk analysis of a next-generation air traffic control operational 

concept. Both studies derived quantitative results of the mean time between mid-air 

collisions and identified some significant failure modes. 

 Blom and Bakker in [82] investigated the collision risk of an airborne self-separation 

concept using techniques in agent-based modelling and rare-event Monte-Carlo 

simulation. Their results show that the specific self-separation concept they consider can 

safely accommodate very high en route traffic demands.  

To analyze the behavior of a target system, the real system/software (or at least the core of it) is 

usually simulated with modelled environments. Compared with formal models used for system 

verification, models for simulations need not be formal, and can usually be more expressive. The 

fidelity of the simulation depends on the how detailed the model is and how close the model is to 

the real world. With good models, simulations have the potential to handle various sources of 

uncertainty of the system and the environment very well. Compared with flight tests, which are 

conducted in the real-world environment, simulation analysis is more cost-effective to cover a 

larger part of the possible operational situations. However, it is also subject to limitations in the 

fidelity of the simulation. 

More survey of simulation techniques and the way to guide simulations will be presented in 

Section 2.4 and Section 2.5. 

 Flight Tests 

Flight tests evaluate the system in actual operational environments and are indispensable for 

system validation. However, due to the high cost and safety risks, they can only be conducted for 

a very limited time, thus covering very limited operational situations. Although flight testing does 

have the great advantage of testing real aircraft behaviours, the assurance it can give is limited. 

 Remarks on V&V of SAA Algorithms 

To ensure an SAA algorithm can indeed avoid mid-air collisions for UAVs, all the V&V 

techniques surveyed in this section are needed. Each of them has strengths and weaknesses. 

Specifically: 

 Formal methods can theoretically cover all the situations, but these situations are only 

defined by abstract formal models. The tractability of models is a problem, and the 

models usually cannot easily incorporate environment uncertainties, which can be crucial 

for SAA algorithms; 
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 Software testing can be applied directly to the SUT itself, but it can only cover a limited 

number of situations; 

 Simulation analysis can simulate the system in various situations cost-effectively, but 

these situations need to be specifically modelled and it can still cover only a limited 

number of situations; 

 Flight tests examine the system in actual operation environments, so are the most realistic, 

but they can only be conducted for a very limited time and cover very limited operational 

situations. 

Based on the above comparisons, this thesis chooses simulation analyses as the means for SAA 

algorithm validation. However, it is acknowledged that any “complete” V&V approach will need 

to employ a range of techniques inevitably including flight testing.  

The advantage of having a good simulation-based validation approach for SAA algorithms is that 

it can help to find limitations of the tested algorithms with a higher level of fidelity than most 

formal analysis techniques (e.g. theorem proving and model checking), but at the same time 

avoiding the high cost and risk of flight tests. As a result, such an approach can help to evaluate 

various UAV SAA algorithms, and contribute to the safe integration of UAVs into civilian 

airspace. 

2.3 Search-Based Software Testing 

As a way to conduct software testing activities, SBST [12] considers software testing as an 

optimization problem, and applies meta-heuristic search techniques, such as GAs [13], simulated 

annealing [14] and tabu search [15], to solve the optimization problem.  

As mentioned in Section 1.3, the testing problems where uses of SBST are successful usually 

show the following characteristics, as summarized by Clark et al. [17]: 

 It is easy to check whether a candidate solution is acceptable but it is difficult to construct 

such a solution; 

 The requirement is to find an acceptable solution rather than the optimal solution; 

 There are often competing constraints to satisfy. 

SBST is increasingly used to generate test data for functional or structural testing, prioritize test 

cases, reduce human oracle cost, optimize software test oracles, and minimize test suites. In 

various case studies, it has been shown that SBST has the potential to improve the effectiveness 

and efficiency of the testing process significantly [12]. An overview of different applications of 

SBST is provided by McMinn in [12]. In the following, a brief introduction to the use of SBST 

for automated test input generation is given. 
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The problem of automated test input generation involves finding inputs that cause execution to 

reveal faults, if they are present, and to give confidence in their absence if none are found. 

However, in general, test data generation is an undecidable problem17 [84]. Since the input space 

of a program is enormous (and sometimes continuous and infinite), an exhaustive enumeration is 

infeasible. In SBST, the task is transformed into an optimization problem, and it can be solved 

with meta-heuristic search techniques. The search space is represented by the input domain of the 

program under test. From this search space, the test data are firstly randomly generated. If the test 

data fulfill the test objectives under consideration (e.g. covering an uncovered branch), they will 

be kept as part of the required test data. If the test data do not fulfill all the objectives, they will 

be measured by the extent that they are able to satisfy the objectives. Those with a bigger extent 

will more likely be selected and used to generate more test data, in the hope that finally, all the 

objectives will be satisfied.  

To apply a search-based optimization technique to a testing problem, two key requirements need 

to be fulfilled [12, 85, 86]:  

 Solution representation. The candidate solutions for the testing problem must be able to 

be encoded so that the search algorithms can manipulate them. In the case of GAs, the 

solution is usually represented as chromosomes (or genomes), which are essentially 

arrays of numbers. 

 Fitness function. There should be a way to define a problem-specific fitness function that 

measures how good a solution is. It is used to guide the search to promising areas of the 

search space. For the case of GAs, a fitness function is used to compare individual 

solutions and to guide the selection of the fittest ones. 

As has been pointed out in Chapter 1 (Section 1.3), one of the main advantages of SBST is that it 

can generate test data satisfying certain requirements which human beings have difficulty in doing. 

In addition, by using automated meta-heuristic search techniques, the test case generation process 

can be partially automated. 

This thesis focuses on the problem of SAA algorithm validation, specifically, the problem of 

determining whether or not there are challenging situations that the algorithms have difficulties 

in handling. It is noted that at least two (the first two) of the characteristics identified by Clark et 

al. are visible. It is desirable that the process of finding challenging situations for SAA algorithm 

validation can be automated or at least partially automated. By building on ideas from SBST, this 

thesis attempts to formulate the problem of identifying challenging situations for supporting SAA 

                                                      

17  An undecidable problem is a decision problem for which it is known to be impossible to 

construct a single algorithm that always leads to a correct yes-or-no answer [83]. 

https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/Algorithm


 

 

51 

 

algorithm validation as an optimization problem and use meta-heuristic search techniques to find 

the solutions. 

2.4 SAA Simulation Techniques 

In the field of engineering, a wide variety of simulation techniques are used to conduct simulation 

analysis for different problems. In this section, two types of simulation techniques that are 

frequently found in the UAV SAA related literature are surveyed. They are agent-based 

simulations and physics-engine-based simulations. It is noted that equation-based simulations, for 

example, those using MATLAB/SIMULINK, are also used frequently for UAV simulations (e.g. 

[87]). However, since the main focus of equation-based simulations (in this context) is on the 

low-level control of UAVs, it will not be surveyed in this thesis, whose focus is on simulations at 

the behaviour level. 

 Agent-Based Simulations 

In agent-based simulations, the actions and interactions of (autonomous) agents are simulated to 

assessing the aggregate effects on the system as a whole. It is a widely-used technique for 

simulating complex systems to observe emergent behaviours. Agent-based simulations rely on 

agent-based modelling , and a typical agent-based model has three elements [88]: 

 a set of agents, their attributes, and behaviours; 

 the environment the agents occupy; 

 a set of relationships defining how the agents interact with each other and with the 

environment. 

Agent-based modelling is based on the agent structure illustrated in Figure 2-9. In an agent-based 

model, everything associated with an agent is either an attribute or a method. Attributes describe 

properties of the agent, and they can be static (not changeable during the simulation), or dynamic 

(varying as the simulation progresses). Methods operate on the agent, and they include behaviours 

that perceive or act on other agents and the environment, behaviours that modify other behaviours, 

and behaviours updating dynamic attributes, etc.  
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Figure 2-9 A typical agent structure, from [88]. 

After building the agent-based model, agent-based simulation executes the model and derives the 

aggregate effects (e.g. patterns, structures, self-organization, etc.) of the whole system emerging 

from the low-level interactions. One of the key modules of agent-based simulations is the 

simulation engine that schedules the behaviours of agents. Usually, the engine is time-driven, 

which means that the simulated time is advanced in constant time steps, in contrast to event driven 

mechanism, where the time is advanced based on when the next event takes place. Many platforms 

provide utilities to facilitate agent-based model construction and simulation. Examples are 

Swarm18, NetLogo19, and MASON20. 

Common uses of agent-based simulations are in optimization problems and social simulations, 

such as urban simulations, traffic flow, and supply chain optimization, and in crowd behaviour 

simulations. Agent-based simulation tools specially for air traffic include the Airspace Concept 

Evaluation System (ACES) [89] and the Future ATM Concepts Evaluation Tool (FACET) [90], 

all developed by NASA. 

The most significant advantage of agent-based simulations is that it can derive the system-wide 

emergent behaviours by modelling simple behaviours of agents at lower levels. Another 

advantage is that, like the Object-Oriented modelling paradigm, the agent-based approach models 

                                                      

18 http://www.swarm.org/wiki/Main_Page. 

19 https://ccl.northwestern.edu/netlogo/. 

20 http://cs.gmu.edu/~eclab/projects/mason/. Open source. 

http://www.swarm.org/wiki/Main_Page
https://ccl.northwestern.edu/netlogo/
http://cs.gmu.edu/~eclab/projects/mason/
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the simulated reality in a way that is described to be more intuitive and natural, which makes the 

modelling process easier and less error-prone than with other modelling formalisms (especially 

Equation-Based Modelling, such as System Dynamics [91]). 

 Physics-Engine-Based Simulations 

Physics-engine-based simulations are often found in video games and robot simulations. It relies 

on a physics engine, which is computer software that approximately simulates certain physical 

systems, such as rigid body dynamics (including collision detection), soft body dynamics, and 

fluid dynamics, etc. The physics engine allows simulating interactions between objects that are 

near to real-world object interactions. For example, it can simulate a vehicle rolling in a realistic 

fashion over uneven terrain. Note that Physics-engine-based simulations are surveyed here not 

because it is an alternative simulation paradigm to agent-based simulations (it is not), but because 

it is often found in the UAV SAA related literature. Agent-based simulation can also be physics-

engine-based if it is really necessary. 

Tools for physics-engine-based simulations include the Gazebo21 robot simulator, the V-REP22 

robot simulator, and FlightGear 23  for aircraft simulations. RotorS [92] is a Gazebo-based 

simulator under development specifically for UAVs. By providing several low-level controllers 

for UAVs, it facilitates the simulation of high-level functions, such as path planning and collision 

avoidance. 

To accurately simulate the physics of the interactions between the system and the environment, 

physics-engine-based simulations are very costly regarding computation power and time. 

Especially, for a system including multiple agents (i.e. robots, UAVs), the simulation can be very 

slow. 

 Remarks on Simulation Techniques 

Agent-based simulations have the advantage of simulating multi-agent interactions to observe the 

emerging effects. Usually, agent-based approaches are also computationally cheaper than physic-

engine-based simulations. For the simulation of UAV conflict resolution algorithms, where often 

there are multiple UAVs, the focus is usually on the behaviour level of interactions rather than on 

                                                      

21 http://gazebosim.org/. Open source. 

22 http://www.coppeliarobotics.com/. 

23 http://www.flightgear.org/. Open source. 

http://gazebosim.org/
http://www.coppeliarobotics.com/
http://www.flightgear.org/
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the physics level of interactions. So, agent-based simulations are a good choice for conflict 

resolution simulations.  

Physics-engine-based simulations have the advantage of simulating the interactions between 

physical objects (e.g. robots, chairs, winds) with high fidelity. In doing so, it is at the cost of high 

computational power. In UAV collision avoidance cases, often there are only two UAVs, and the 

effects of the environment (such as the effect of wind) may be considerable. So, physics-engine-

based simulations are a good choice for collision avoidance simulations. 

However, in this thesis, it is required to run large-volume simulations. To save the computation 

power and time, only agent-based simulations are chosen. To compensate, in the agent-based 

simulations, some physics aspects (e.g. a very basic model of wind effect) of the system will also 

be modelled. Another reason to choose agent-based simulation techniques is that it has been 

commonly used in air traffic simulations, where the major concern is in the behaviour level of 

interactions between airspace users and in the system-wide emergent effects. 

2.5 Techniques for Guiding Simulations 

For simulation-based validation of SAA algorithms, there are a huge, if not infinite, number of 

situations to be simulated and tested. In this section, techniques for guiding simulations will be 

surveyed. By guiding simulations, it means to direct the simulations to only focus on situations 

that are “useful” for some specific purposes in a huge (possibly infinite) space of all possible 

situations. Three techniques will be surveyed, and they are Monte-Carlo methods, Design of 

Experiments, and meta-heuristic search. 

 Monte-Carlo Methods 

Monte-Carlo methods are a class of computational algorithms that rely on repeated random 

sampling to obtain numerical results. Monte-Carlo methods vary, but tend to follow the following 

pattern [93]: 

1. Define the domain of possible inputs; 

2. Generate inputs randomly from a probability distribution over the domain; 

3. Perform computations on the inputs; 

4. Aggregate the results. 

In the second step, if the probability distribution over the domain is unknown, the inputs can then 

be randomly generated from a uniform distribution. This form of Monte-Carlo method is often 

called as a random search. In the third step, the computations can be done through simulations. 
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Monte-Carlo methods guide simulations by only simulating situations generated according to the 

probability distribution. Situations that happen very often according to the distribution will be 

more frequently simulated. 

Monte-Carlo methods are usually used to evaluate the performance of a system. For example, in 

[5, 94], Monte-Carlo methods were used to assess the performance (e.g. accident rate and false 

alarm rate) of the generated logic of ACAS X (see Section 2.1.3.A.c). In this case, the domain of 

inputs is the possible situations of two-UAV encounters, which can be described by the evolution 

of the states (e.g. positions and velocities) of the two UAVs. The probability distribution is 

defined by what are called statistical aircraft encounter models [95, 96] that use dynamic Bayesian 

networks to derive probabilities. The encounter models were derived from real radar data. With 

the encounter models, a large number of encounters were generated and simulated to observe the 

accident rate and false alarm rate for ACAS X. 

Monte-Carlo methods are subject to the law of large numbers, which means a significant number 

of inputs need to be generated and evaluated to derive a reasonable result. Monte-Carlo method 

samples very little in the very low probability regions ("rare events"). For distributions with very 

long tails, advanced techniques (e.g. rare-event sampling [97]) are needed to sample rare events 

to accelerate the process. 

 Design of Experiments 

Design of experiments (DOE) [98] is a systematic method to determine the relationship between 

multiple factors affecting a system and the output of that system by using statistical analysis. In 

other words, it is used to find the cause-and-effect relationships between system inputs and output. 

The information on the relationships can then be used to figure out system inputs to optimize the 

output.  

Different from many traditional methods in the field of industrial engineering or system 

engineering, such as the OFAT (One Factor at a Time) approach, which examine one factor at a 

time while holding other factors constant, DOE utilizes systematic approaches (e.g. orthogonal 

arrays) to explore the interactions of factors and the way the whole system works. An advantage 

of DOE is that it identifies significant interactions between multiple input variables. 

Apart from being used in experimental design and process control, DOE can also be used in 

software testing, which is often referred to as combinatorial testing, to provide a high level of 

coverage of the input domain with a small number of tests [99]. Here, testing all combinations of 

the input variables is not possible, and the objective is to cover the input domain of the SUT as 

efficiently as possible. DOE is used to select a subset of these combinations to have a high 

coverage of the important outputs. In the same vein, DOE can be used to guide simulations to 
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focus on situations (analogous to test input) that can result in covering the desired behaviours 

(analogous to output) of the simulated system. For example, in [100] Lazić et al. presented some 

solutions with regard to the deployment of the U.S. Department of Defence Simulation, Test and 

Evaluation Process (DoD STEP). By applying simulation and DOE to the embedded software 

testing process of an automated target tracking radar system, they reported a minimum 

productivity increase of 100 times regarding minimized number of test cases in comparison to 

their practice before using the approach. 

By statistical analysis, DOE identifies the relationship between input variables and system output, 

and it identifies the interactions between multiple input variables. When used to guiding 

simulations, it has the potential to reduce the number of simulated situations but at the same time 

to cover the behavioural space to a high extent.  

One weakness of DOE is that it requires the input variables to be discrete. For many systems 

whose inputs are continuous, discretization is needed, and this may be problematic. Moreover, if 

the input space is large, DOE necessarily only samples a small part of it, thus, it also has difficulty 

in handling rare events. 

 Meta-heuristic Search 

Meta-heuristic search is a major subfield of stochastic optimization, which employs some degree 

of randomness to search for optimal (or as optimal as possible) solutions to hard problems. Meta-

heuristics are strategies used to guide the search process. Usually, the solution found is 

approximate and dependent on the set of random variables generated. Meta-heuristic search can 

often find good solutions to hard problems with less computational effort than conventional 

optimization algorithms, iterative methods, or simple heuristics [101]. Techniques which 

constitute meta-heuristic algorithms range from simple local search procedures (e.g. hill-climbing) 

to complex learning processes (e.g. reinforcement learning), from single-state methods (e.g. tabu 

search) to population methods (e.g. evolutionary search), and from physics-inspired methods (e.g. 

simulated annealing) to nature-inspired methods (e.g. ant colony algorithms). 

Meta-heuristic searches are often applied to “I know it when I see it” problems: it is unclear 

beforehand what the optimal solution looks like; it is unclear how to find the optimal solution in 

a principled way; there is very little heuristic information to go on; the search space is too large 

to use brute-force search; but given a candidate solution to the problem, it is easy to test it and 

assess how good it is. That is you know a good one when you see it. 

Many software testing problems are “I know it when I see it” problems. For example, for the 

problem of automated branch-coverage-based test generation, it is unclear how to generate such 
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test cases directly using computers, but given a test case, it is easy to figure out if it covers a 

certain branch. With meta-heuristic search, this problem can be solved by the following steps: 

1. Initialization: generate a random test as the current version, and initialize the heuristic as 

null. 

2. Mutation: make random changes to the current version. The result is the new version. 

3. Evaluation: examine if the new version covers an uncovered branch, and generate a new 

heuristic (possibly by using the extent the new version covers an uncovered branch). 

4. Update: update the current version based on heuristics (for example, if the heuristic value 

is less than a threshold, the new version will be discarded; else it will be treated as the 

current version).  

5. Repeat 2-4 until all branches are covered. 

The use of meta-heuristic search in software testing results in the research field of SBST (see 

Section 2.3). In the same vein, meta-heuristic search can also be used to guide simulations. For 

example, in [102], meta-heuristic search was used to automate the traditional test process for 

autonomous vehicle software controllers: by evaluating fault scenarios in a vehicle simulator, a 

GA was used to search for fault combinations that can produce noteworthy actions in the 

controller. This approach was applied to find a minimal set of faults that produces degraded 

vehicle performance and a maximal set of faults that can be tolerated without significant 

performance loss. 

Meta-heuristic search has the advantage in adaptively searching for solutions satisfying certain 

requirements. Its strength lies in the heuristics it uses to guide the search to promising areas of the 

search space. So, if with appropriate heuristics, it can handle rare events very well. However, it is 

easy to get stuck at local minima, meaning that the result is sub-optimal.  

 Remarks on Techniques for Guiding Simulations 

The three techniques surveyed above to guide simulations have different focuses, and they have 

strengths and weaknesses in different aspects. Specifically: 

 The strength of Monte-Carlo methods lies in that they evaluate system performance 

according to the system’s operational profile. When used to guide simulations to test a 

system, it can provide confirmatory results. That is, when it does not find problematic 

situations for the system, it can provide statistical confidence that the system is fault-free. 

However, it has difficulty in dealing with rare events and it is computationally expensive. 

 The strength of Design of Experiments lies in that it systematically explores the 

relationship between multiple inputs and the system output, and the interactions between 

multiple inputs. When used to guide simulations to test a system, it can do sensitivity 
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analyses of the system inputs, and it can find the minimum set of system inputs that cover 

the output domain. However, if the input space is large, DOE necessarily only samples a 

small part of it, thus, it also has difficulty in handling rare events. Moreover, DOE has 

difficulty in dealing with continuous system inputs. 

 The strength of meta-heuristic search lies in the fact that it can adaptively search for 

solutions satisfying certain requirements. When used to guide simulations to test a system, 

it is effective in bug-finding as it can adaptively search for faulty states of the system. 

However, it suffers from local minima. Moreover, it cannot provide statistical confidence 

that the system is fault-free. 

The validation of UAV SAA algorithms requires identifying some challenging situations that 

the algorithms have difficulties in handling. When the tested SAA algorithms are moderately 

good, the challenging situations are usually very rare. Neither Monte-Carlo methods nor DOE 

is good at dealing with such rare events. In contrast, meta-heuristic search can adaptively 

search for such rare events because it is able to follow “clues” (i.e. heuristics) towards high-

interest regions.  

Meta-heuristic search methods have been used in SBST, and have shown many promising 

results (refer to Section 2.3). This thesis will focus on the use of meta-heuristic search to 

search for challenging situations for supporting the validation of SAA algorithms. In 

particular, a kind of meta-heuristic search named evolutionary search will be utilized because 

of its wide adaptation in SBST. In the next section (i.e. Section 2.6), evolutionary search will 

be introduced. 

2.6 Evolutionary Search 

Evolutionary search is a kind of population-based evolutionary meta-heuristic search. By 

“population-based”, it means that the algorithm holds a set of candidate solutions to a specific 

problem. By “evolutionary”, it means that these candidate solutions evolve by a mechanism 

mimicking natural evolution (“survival of the fittest”). In each generation of the evolution, the 

population retains the solutions most likely to solve the problem, and the others are eliminated. 

Evolutionary search uses mechanisms inspired by biological evolution, such as reproduction, 

mutation, recombination, and selection. Candidate solutions to the optimization problem play the 

role of individuals in a population, and a fitness function is used to quantify how good the 

solutions are. 

Many specific algorithms exist for evolutionary search, among which GAs [13] are the most basic 

and popular one. Usually, the flow of GAs is as follows [103]: 

1. Generate the initial population of individuals randomly; 
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2. Evaluate the fitness of every individual in that population; 

3. Repeat until termination (time limit, sufficient fitness achieved, etc.): 

1) Select the best-fit individuals for reproduction; 

2) Breed new individuals through crossover and mutation operations to give birth 

to offspring; 

3) Evaluate the individual fitness of new individuals; 

4) Replace least-fit population with new individuals. 

Other types of evolutionary search include the 1-Population Competitive Coevolution algorithm 

[104] and the 2-Population Competitive Coevolution algorithm [104] for coevolution, and the 

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [105] and the Strength Pareto 

Evolutionary Algorithm 2 (SPEA2) [106] for multi-objective optimization. For more information 

on evolutionary search, readers are referred to [104]. 

2.7 Conclusions 

SAA is crucial for the safe integration of UAVs into civilian airspace, and a full SAA system 

includes several parts. Considering the advantages of ADS-B in improving situation awareness 

for aircraft and its increasing adoption, in this thesis, UAVs are assumed to be equipped with 

ADS-B or its equivalent so that they have good sensing capability to know the positions, velocities, 

shapes, etc. of the other air traffic. The main interest of this thesis is thus in the “threat evaluation” 

part and the “avoidance” part of SAA, rather than the surveillance part. 

V&V are needed to ensure that the SAA algorithms have the desired properties. Many techniques 

can be used for SAA V&V. Formal methods realize the task by using formal models of the system 

and the environment, while flight tests fulfill the job by directly using the actual system and in 

the real-world environment. Software testing methods lie in between: some parts of the system or 

the environment may be modelled, and other parts remain actual. If some parts of the system or 

the environment are modelled, simulations are usually used to examine the system by executing 

the model along with the other parts. Since simulations can examine the system in a wide variety 

of situations, and some simulation models can be very expressive, especially in modelling various 

sources of uncertainty a system has to manage, simulation-based software testing for validation 

is the main interest of this thesis. 

Since, for SAA algorithms, the focus is on decision-making and the concern is on the behaviour 

level of the system, rather than on the control level or the physical level, agent-based simulation 

techniques are the main interest of this thesis.  
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The validation of SAA algorithms involves exploring and examining a large space of possible 

encounter situations to identify some very challenging ones. To explore the large situation space 

effectively and efficiently, techniques are needed to control the simulations to only focus on 

situations that are “useful” for our specific purpose (i.e. to focus on challenging situations that 

can cause the SAA algorithms fail to avoid collisions). For many problems, the “useful” situations 

are usually rare events. Three techniques for guiding simulations have been surveyed, and meta-

heuristic search was found to be better than the other two at handling rare events. In addition, 

meta-heuristic search methods, especially evolutionary search, have been commonly used in 

SBST, and have shown many promising results. 

Motivated by the need to improve the validation process of SAA algorithms required for the safe 

integration of UAVs into civilian airspace, by building on ideas from SBST, this thesis explores 

the use of agent-based simulation and evolutionary search for supporting the validation of UAV 

SAA algorithms. 
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 SAA Validation: Requirements and 

the Proposed Approach 

Drawing on the survey and discussions in the preceding chapters, this chapter analyses the 

requirements for an effective SAA validation method. An approach is proposed to partially solve 

the problem, and will be compared with some existing similar studies. 

3.1 Requirements Analysis  

In the following, the requirements for an SAA algorithm validation approach will be analysed and 

developed.  

A. Ideal Case 

Ideally, a validation technique (1) would reveal all the faults24 of the validated system if there are 

any; otherwise, it would confirm that the system is fault-free. Moreover, (2) the validation should 

be applied to the SAA algorithm/system directly, and be conducted in the actual operational 

environment, rather than to models of the system or the environment. The reasons for this are that, 

on the one hand, models are an abstraction of the system or the environment, but they are not 

identical, and on the other hand, there is a possibility of introducing faults in building the models.  

For the first requirement, because of the infinite possible situations the SAA algorithms may 

encounter, it is impossible to assert that the SAA algorithm will behave as expected in all the 

situations. Just as the famous quote by Edsger W. Dijkstra “Testing shows the presence, not the 

absence of bugs”, validation cannot confirm fault-freeness either. The second requirement is also 

very difficult to satisfy because it would be very costly and with high safety risk to validate SAA 

algorithms in actual UAV encounters. 

In this thesis, compromises are made: (1) we will endeavor to find as many faults as possible, but 

we will not aim at proving that the system is fault-free; (2) in order to examine the system in a 

large number of situations at a reasonably low cost and risk, we will validate the SAA algorithms 

through simulations — specifically, we will conduct software-in-the-loop simulations, where the 

                                                      

24 A fault is a flaw in a system that can cause the system to fail to perform its intended functions 

or fail to achieve certain performance. 
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actual code of SAA algorithms are directly tested in a simulated environment (i.e. simulated 

inputs). 

B. Using Simulations 

When simulations are used to validate SAA algorithms, to reveal as many faults as possible, (1) 

a wide range of diverse encounter situations should be examined, and it is desirable to have an 

automated process to support this; (2) it is important to favour situations that have a high 

likelihood of causing undesired behaviors of the validated system; otherwise, computation cost is 

wasted in evaluating normal behaviors; (3) simulations should be conducted with adequate 

fidelity, in particular there should not be faults in the system that the simulation cannot reveal 

because they depend on details that are not modeled.  

With respect to the above requirements, this thesis, (1) will design a way to automatically generate 

a broad range of diverse encounters; (2) will use evolutionary search to guide the simulation, so 

that the process can be partially automated and the simulation can focus on situations that are 

most likely to reveal faults of the system; (3) will build agent-based models for the simulations, 

and the focus will be at the behavioral level of the system. We will not build the low-level 

controller for controlling the host UAVs to execute the avoidance commands generated by the 

SAA algorithms, but when necessary, we will model the effect of imperfect control, the effect of 

some environmental forces (e.g. gravity, winds), and the effect of the uncertainties (e.g. sensor 

noise). 

That being said, we acknowledge the potential implications of modelling simplifications made 

during the simulation experiments. As said by the quote “All models are wrong, but some are 

useful” [107], even though we will make simplifications when building simulation models, we 

will endeavour to make the simulation models consistent with the specifications and assumptions 

about the environment made in the original SAA algorithms. In this way, we try to use the 

models/simulations to reveal potential faults of the SAA algorithms. If the SAA algorithms are 

found to work well in our simulations, it is not guaranteed that they will work as well in the real-

world conditions. However, if the SAA algorithms are found not work as expected in simulations, 

it is very likely that they will not work in real-world conditions either.  

3.2 Proposed Method 

To support the validation process of SAA algorithms, this thesis proposes an evolutionary-search-

based approach to efficiently identifying rare challenging situations that the algorithms have 

difficulties in handling (i.e. counterexamples). This proposed method plays an important role in 

the overall validation process, as shown in Figure 3-1. 
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Figure 3-1 Overall validation process. 

In this validation process, the proposed method includes building simulations and using 

evolutionary search to guide the simulations. After the SAA algorithm is implemented, it is 

plugged into the simulation part of the proposed method. The proposed method will then search 

for situations that can challenge the SAA algorithm. Those very challenging situations are the 

counterexamples that could possibly mean that there are true failures in the SAA algorithm, but 

it could also mean that there are errors in the implementation of the algorithm, or that those 

counterexamples are due to simulation artefacts. So, further investigation is needed to decide what 

the real reasons are. 

The method for counterexample investigation varies and sometimes it is very difficult to decide 

the real reason. To alleviate this difficulty, it is suggested that some proactive actions should be 

taken. To prevent implementation errors, software quality assurance activities, such as code 

walkthrough, functional test, and various software verification techniques can be used to reduce 

the likelihood of introducing implementation errors before using the proposed method. For 

simulation artefacts, there are two major sources from which they can be introduced: simulation 

model design and simulation model implementation. Various methods for simulation model 

verification and validation (see [108-110]) can be used to reduce the likelihood of introducing 

simulation artefacts. Here, model verification is meant to confirm that “the model implementation 

matches specifications and assumptions deemed acceptable for the given purpose of application” 

[110] (i.e. the simulation model implementation matches the simulation model design), while 

model validation is meant to confirm that “a computerized model within its domain of 

applicability possesses a satisfactory range of accuracy consistent with the intended application 

of the model” [108] (i.e. the simulation model design and implementation match the reality). 

Once those proactive actions are taken, working out the true reasons for the counterexamples is 

mostly a debugging activity. 

This thesis focuses mainly on finding counterexamples rather than investigating them. As 

discussed in the previous two paragraphs, given enough resources for software quality assurance, 
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model verification and validation, and debugging, counterexample investigation can also be done, 

but it is beyond the scope of this thesis. By using the combination of agent-based simulation and 

evolutionary search, this thesis proposes an efficient means to finding counterexamples for SAA 

algorithms, thus supporting the validation of them. 

 Method Overview  

The proposed approach is the integration of agent-based simulation and evolutionary search. 

Agent-based simulations are built to provide a test arena for UAVs with various SAA algorithms 

to explore potential conflict situations. The simulation is configured by a set of parameters, which 

define a huge search space. Evolutionary search is used to explore the search space efficiently, 

and to guide the simulation towards increasingly challenging situations, thus accelerating the 

process of finding faults and supporting the validation process. 

Evolutionary

Search
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Simulation

Scenario

Generator

Space of all 
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scenarios

Fitness Scenario

Scenario configuration

 

Figure 3-2 A search-based approach to identifying challenging situations. 

The approach is shown schematically in Figure 3-2. In this approach, encounter scenarios are 

parameterized so that they can be encoded as chromosomes (or genomes) for the use of 

evolutionary search. Based on the encoded information (which actually configures encounter 

scenarios), encounter scenarios can be generated by a scenario generator. The generated scenarios 

are then evaluated by running agent-based simulations. Based on the simulation result, a fitness 

value is derived and passed to the evolutionary search. Using the fitness as the clue, the 

evolutionary search evolves the encoded scenarios in the hope of getting a higher fitness in the 
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next iteration. The process iterates until a scenario with the desired fitness is found or the allotted 

time is over. 

The proposed approach is quite general, and could possibly be used to search for any situation 

where certain desired events happen. One of the biggest advantages of the proposed approach is 

that we need not define what the situation we search for is, but instead, we define what the desired 

events (which are the properties of the situations) are, and then the evolutionary search will 

automatically find the situations. So, this approach is most suitable for cases where it is difficult 

to define exactly what the target we search for is, but it is relatively easy to define some of the 

properties of the target. In other words, this approach is most suitable for the “I know it when I 

see it” problems.  

In the case of using the proposed approach to find challenging situations for supporting the 

validation of SAA algorithms, it is difficult to define (or describe) what challenging situations are 

in the abstract and it is even more difficult to construct such challenging situations. However, 

given a situation, it is easy to judge whether this situation is challenging or not. For example, one 

can run simulations with this situation and then check whether this situation will result in a high 

accident rate or cause the UAVs pass each other at a very small distance. If that is the case, this 

situation can then be treated as challenging. Therefore, it is suitable to use the proposed approach 

to the problem of identifying challenging situations for supporting the validation of SAA 

algorithms. 

One of the key requirements to use the proposed approach is that a fitness function should be 

defined to adequately quantify the extent to which any generated scenario matches the properties 

of the searched-for situations. A good fitness function should provide a higher quantitative value 

for the scenarios that are closer to the target of the search. Using this value as a heuristic, 

evolutionary search algorithms can then guide the search to increasingly promising areas of the 

search space. However, we acknowledge that, to generalise the proposed approach to more 

general cases, it may be difficult to define a good fitness function and thus to find the target, 

which often happens when the properties of the searched-for target cannot easily be formalized 

and defined in a computer-understandable way25 or when the discrepancy between a candidate 

solution and the target cannot easily be quantified26. 

                                                      

25 For example, the properties are patterns that can be understood by human beings, but it is 

difficult to make computers understand them. (Consider the general difficulty for computer vision 

and natural language processing.) 

26 That is, it is difficult to define a quantitative distance metric to describe how far off the 

candidate solution is from the desired solution. 
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It is likely that the proposed approach can play a role during the iterative development process of 

SAA algorithms, although we have not been able to test that in this thesis. At the end of each 

iteration, the proposed approach can be used to check if there are situations that the SAA 

algorithm cannot deal with successfully. If such situations exist, the proposed method is likely to 

find them quickly. The SAA algorithm can then be further analyzed in these challenging situations 

that have been found to decide if it is because of true failures of the algorithm, or it is due to 

simulation artefacts, or it is because of implementation errors. If it is because of true failures, the 

analysis results will then be used to improve the algorithm in the next iteration. 

 Comparison with Existing Similar Approaches 

This thesis builds on ideas from SBST (in particular, search-based test generation, see Section 

2.3), so they share commonalities. In SBST, test data are usually generated as the input for a piece 

of code (or software), while in this thesis, the evolutionary search is used to generate input data 

(e.g. configuration parameters for challenging situations) for agent-based simulations. The use of 

simulations is because, for SAA algorithms, validation cannot be conducted without consideration 

of other UAVs and the environment. 

The earliest comparable work appears to be [102], dating back to 1993, where a similar approach 

was used to automate the process of testing an intelligent controller for guiding a jet aircraft to fly 

to and land on an aircraft carrier. The intelligent controller was subjected to an adaptively chosen 

set of fault scenarios in a vehicle simulator. A GA was used to find a minimal set of faults that 

produces degraded aircraft performance and a maximal set of faults that can be tolerated without 

significant performance loss. The approach modelled faults (e.g. control faults, sensor faults, and 

model faults [102]) at a very high level, and it modelled the effects of these faults in a rule-based 

way (i.e. in the form of “initial state + triggers  fault mode”). Given the very limited information 

provided by [102], that approach is perhaps most usable in a very high-level fault-tolerance 

analysis (or robustness analysis) for controllers.  

In [111, 112], Bühler and Wegener used evolutionary search (specifically, a GA) to automate the 

functional test of an autonomous parking system. The papers presented and evaluated two 

different approaches to calculating fitness functions: one using the distance between the vehicle 

and the collision area as a measure, and the other using the area between the vehicle and the 

collision area. The numerical comparison showed that the area based fitness was more efficient 

in finding functional errors in an automated way. From a methodological point of view, it is noted 

that the work is very similar to the proposed approach in this thesis. However, the two differ in 

specifics. In particular, in this thesis, UAV SAA algorithms are the objects to test, and there are 

some very different requirements to satisfy (see Chapter 6 and Chapter 7). 
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Alam et al. in [113, 114] and Clegg and Alexander in [115] used similar approaches for safety 

analysis of ATM systems. Their main concern was to identify the combination of airspace 

configurations and Air Traffic Controller’s actions that can result in a high aircraft collision risk. 

In contrast, the purpose of this thesis is to seek specific counterexamples to challenge UAV SAA 

algorithms. While their work could be adapted for the purpose, no follow-up work in this direction 

can be found, and the adaptation work may be considerable.  

Srikanthakumar et al. in [116-118] developed an automatic approach to finding the worst case 

situation for moving obstacle avoidance algorithms in the presence of uncertainties (i.e. structural 

uncertainty, parameter uncertainty, and sensor data uncertainty, see [118]). The approach was 

based on simulations and optimization techniques, and it concluded that to do worst case analysis, 

a deterministic global optimization technique is needed since the local optimization method and 

the stochastic global optimization methods (e.g. GAs) fail to find the global minimum. However, 

their approach can only be guaranteed to find the worst case when the objective function is 

continuous or at least continuous in the neighbourhood of the global optimum. In real problems, 

this requirement may be difficult to satisfy, for example, when there are discrete control variables 

for the simulations, or when we need to exclude part of the search space by setting the objective 

function value in that part to infinity. Moreover, their optimization problem has only one objective 

— to find a worst-case situation that causes a collision. As a result, the worst-case situations found 

may happen so rarely in real-world conditions that they may not be very helpful in improving the 

obstacle avoidance algorithms.  

Compared with the work of Srikanthakumar et al., apart from using different cases (UAV SAA 

algorithms vs robot moving obstacle avoidance algorithms), the focus of this thesis is on 

stochastic optimization techniques, specifically, evolutionary search methods. The reasons are: 

(1) our purpose is to find some challenging cases for the SAA algorithms for to improve the 

algorithms, rather than to find the worst case to prove the algorithms are safe under all (simulated) 

conditions; (2) we aim at fast iteration of the SAA algorithm development, but using deterministic 

global optimization techniques for this purpose would be very time-consuming. In addition, rather 

than to find the worst case, this thesis will try to find challenging situations that are most likely 

to happen in real-world conditions by using an evolutionary multi-objective search technique (see 

Chapter 7).  

Note that none of the source code for the similar work discussed above is publicly available. So, 

it is not easy to build directly on their work. For the work of this thesis, however, the code will 

be open-source, and further research can thus easily build on it. Appendix 1 summarizes the links 

for source code used in this thesis. 
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 Preliminary Evaluation with a 

Simple SAA Algorithm 

4.1 Introduction 

This chapter reports a preliminary demonstration and evaluation of the proposed approach. The 

proposed approach was applied to identify challenging situations for a simple collision avoidance 

algorithm (SVO) in two-dimensional space.  

Two experiments were conducted. In the first experiment, it was assumed that the UAVs have 

perfect sensing ability. Both random search and evolutionary search were used to find mid-air 

collision situations for SVO. It was found that the evolutionary search could find some interesting 

collision situations that the random search has difficulty in finding. In the second experiment, 

sensor noise was added to the simulation model. The random search found similar problems as it 

did in the first experiment, but the evolutionary search found some new interesting problems. The 

two experiments show that the proposed evolutionary-search-based approach can help to find 

challenging situations for the selected SAA algorithm, and it is more effective than random search. 

The major contributions in this chapter are: 

1. Demonstrated that the proposed approach can be applied to a simple SAA algorithm; 

2. Provided preliminary empirical evidence of the effectiveness of the proposed approach 

by comparing it with a random search; 

3. Showed a basic heuristic for turning parameters for GA. 

4.2 SAA Algorithm under Test: SVO 

SVO [6] improves the widely studied idea of velocity obstacle (for the introduction to velocity 

obstacle approaches, see 2.1.3.A.a) to accommodate the common right-of-way rules of the 

airspace. SVO was designed for cooperative collision avoidance, where each UAV in an 

encounter cooperatively avoids each other while obeying the right-of-way rules. The rules are as 

follows [51]: 

 On a converging encounter, the one on the right has the right-of-way;  

 On a head-on encounter, both aircraft should move to the right side; 
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 The one that is about to be overtaken has the right-of-way; 

 Avoidance manoeuvres should not go over, under, or in front of other aircraft 

that have the right-of-way, except when it is clear. 

Three types of encounters are defined in the rules: converging, head-on, and overtaking as 

illustrated in Figure 4-1.  

 

Figure 4-1 UAV encounter types, adapted from manned air traffic [119]. 

SVO defines a way to selectively avoid the other UAV(s) by defining three manoeuvre modes [6], 

which are  

 Avoid, where the host UAV takes a manoeuvre to avoid collision with others; 

 Maintain, where the host UAV keeps its current velocity vector; 

 Restore, where the collision avoidance system gives back the control to the auto-

pilot/pilot. 

It is noted that, for a UAV to use the SVO approach, the only information it needs with respect to 

the others is their current positions, velocity vectors, and shapes. Since in this thesis UAVs are 

assumed to be fitted with ADS-B devices, they can share this information conveniently. 
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In two UAVs encounter situation, the SVO algorithm is written as [6]: 

Data: own-ship’s current velocity cvo, own-ship’s velocity obstacle induced by the 

intruder VOoi, own-ship’s diverging velocity obstacle VOdiv, the distance between 

own-ship and the intruder D, and the minimum distance at which the own-ship 

should start to avoid Davo. 

 

Result: manoeuvre modes Q. 

 

Initialization: Q=Restore. 

Algorithm Starts: 

While(True) 

Read current; 

if D<Davo && cvo ∉ VOdiv 

if cvo ∊ VOoi && (own-ship is heading towards || left-converging with 

||overtaking the intruder) 

   Q=Avoid; 

else 

  Q=Maintain; 

end 

else 

    Q=Restore; 

end 

end 

 

Note that the core of SVO is the geometric approach using the available information to decide 

when to avoid a collision rather than how to avoid one. Users of SVO should use an additional 

algorithm (e.g. the original velocity obstacle approach) to decide how to avoid a collision when 

the SVO is in “avoid” mode. 

We have implemented SVO in Java. It is open-source and can be found from 

https://github.com/xueyizou/SVO_Java. This implementation is the target SAA algorithm to 

be analysed by the proposed approach in this chapter. When running the implemented SVO in 

some typical encounters and some randomly generated encounters in simulation, it was found that 

the host UAVs could avoid collisions as expected. So, it seems that the implementation is correct. 

The collision avoidance manoeuvres in some typical encounters are shown in Figure 4-2. In this 

figure and the following figures in this chapter, the black filled arrows represent UAVs, and the 

small black dots combining with the unfilled arrows represent the UAVs’ intended flight paths. 

The own-ship always starts from the middle of the left side. Other points in the diagram were 

generated by the SVO algorithm to denote the waypoints the host UAV should navigate by — the 

big red points generated from “avoid” modes, the yellow points from “maintain” modes, and the 

black hollow points from “restore” modes. 

https://github.com/superxueyizou/SVO_Java
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(a)

maintainavoid restore
own-ship

intruder

 

(a) In a head-on encounter, each 

UAV avoids the other by turning 

right. 

(b)

 

(b) In an overtaking encounter, 

the front one has the right-of-

way. The overtaking one should 

avoid by turning right. 

70deg

(c)

 

(c) In a right converging 

encounter, the intruder has the 

right-of-way. The own-ship 

should avoid by turning right. 

70deg

(d)

 

(d) In a left converging 

encounter, the own-ship has the 

right-of-way. The intruder should 

avoid by turning right. 

 

Figure 4-2 SVO behaves in some typical encounters in the horizontal plane. 
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4.3 Implementation of the Proposed Approach 

The proposed approach is used to identify challenging situations (specifically, mid-air collision 

situations) for SVO. In this section, some key implementation details are introduced.  

As a preliminary demonstration and evaluation, for simplicity, the simulations were confined to 

two-UAV encounters, where the two UAVs run the same SAA algorithm. Some dynamic 

constraints for the UAVs are shown in Table 4-1, which were converted from the performance 

data of Global Hawk given in [7]. For SVO, when in the “avoid” mode, it is desirable for the host 

UAV to select a new velocity vector outside its velocity obstacle induced by others but still obey 

the right-of-way rules. However, considering the dynamic constraints, it was assumed that each 

UAV avoids others only by turning right at a rate of 2.5deg/s. It means that during one simulation 

run, the magnitude of each UAV’s velocity vector keeps constant, and only the direction of the 

velocity vector will change. Note that, between simulation runs, the magnitude of velocity also 

varies.  

Table 4-1 UAV performance limits. 

Max speed 92.6 m/s Min speed 51.4 m/s 

Normal speed 77.2 m/s Max turning rate 2.5 deg/s 

A. Agent-Based Simulation 

MASON27, an open source agent-based simulation platform in Java, was used as the agent-based 

simulation framework. In a typical agent-based simulation, there are three core elements: agents, 

environment, and their interactions. The agents in our simulation are UAVs with SVO as the 

collision avoidance algorithm. They have attributes, such as maximum and minimum speed, and 

maximum turning rate, and they also have behaviours, such as sensing other UAVs and avoiding 

them. The environment in our simulation is simplified as a 2-D rectangular flight area in the 

horizontal plane. The size of the flight area was set according to the detection range for the 

“Traffic Advisory (TA)” of the TCAS (i.e. 40 sec ahead of the CPA) so that it is large enough to 

accommodate the collision avoidance simulations. Apart from UAVs, some other entities in the 

environment are waypoints for navigation, and the start point and target of each UAV. The 

interactions between the UAVs are only via the SAA algorithms — explicit communication 

between UAVs was not modelled. The interactions between UAVs and the environment include 

UAVs following waypoints and generating new waypoints for collision avoidance. 

                                                      

27 http://cs.gmu.edu/~eclab/projects/mason/. 

http://cs.gmu.edu/~eclab/projects/mason/
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To validate the SVO algorithm, a wide variety of encounters should be simulated and evaluated. 

An “encounter generator” was developed that can generate three kinds of encounters, each 

involving two UAVs: (1) head-on encounters, (2) crossing encounters, and (3) overtaking-

overtaken encounters. We refer to one of the UAVs as the own-ship and the other as an intruder. 

Using the “encounter generator”, the intruder's start point, velocity vector, and target can be 

decided on the premise that the type of the encounter, the own-ship's start point, velocity vector, 

and target have been fixed. The three encounters are shown in Figure 4-3 and explained as follows: 

 The head-on encounter is where the own-ship and the intruder approach each other in 

opposite directions, as illustrated in Figure 4-3(a). The intruder can approach the own-

ship from either the left side or the right side with a certain offset. 

 The crossing encounter is where the own-ship and the intruder approach each other at an 

encounter angle ranging from 0° (exclusive) to 180o (exclusive) from either the left side 

or the right side, as illustrated in Figure 4-3(b). If the encounter angle equals 180o, it is a 

head-on encounter without offset. If the encounter angle equals 0°, it is an overtaking-

overtaken encounter without offset, which will be discussed next. 

 The overtaking-overtaken encounter is where the intruder overtakes or is overtaken by 

the own-ship flying on parallel tracks, as illustrated in Figure 4-3(c). The intruder can 

overtake or be overtaken by the own-ship from the left side or the right side with a certain 

offset.  

Note that the above definition of encounters is a little different from SVO’s definition of encounter 

types as illustrated in Figure 4-1. This is mainly because the above definition is convenient to 

implement. In principle, SVO’s definition could also be used. Here, by using a model different 

from the model used for system development, it may help to reveal faults neglected by the system 

development (especially as it is more general than the original as it includes offsets). 
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Figure 4-3 Our definition of three encounter types: (a) head-on; (b) crossing; (c) overtaking-overtaken. 

Some global agents were utilized to monitor the simulations: a “proximity measurer” measures 

the nearest distance between the two UAVs in every simulation step and the most dangerous 

proximity during a simulation run; an “accident detector” monitors the simulations, and logs 

accidents and terminates a simulation run when an accident happens. These global monitoring 

agents play a major role in gathering information for computing the fitness function, which was 

used to guide the search towards increasingly challenging situations.  

Note that when using the global agents to monitor the simulations, the distance (d) between two 

UAVs is defined as shown in Figure 4-4. Here, r denotes the enlarged size of a UAV and is set to 
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be half of radius of the collision volume (rather than a physical UAV). When d is less than or 

equal to zero, an accident happens and the simulation would be stopped by the “accident detector”. 

 

Figure 4-4 Definition of distance between two UAVs. 

As mentioned above, the simulations were configured by a series of parameters, which can be 

divided into three categories:  

 Parameters for encounter instances, e.g. the parameter to decide which encounter type 

should be simulated in a simulation run, and the parameters used to generate an instance 

of that type;  

 Parameters for the own-ship, e.g. the own-ship’s target, its speed, and turning rate; 

 Parameters for the intruder, e.g. the intruder’s speed and turning rate. 

B. Evolutionary Search 

The evolutionary search part of the approach was implemented by using ECJ28, which is a Java-

based evolutionary search library. GA was chosen as the evolutionary search algorithm because 

of its popularity and the convenience to use it.  

The use GA is illustrated in Figure 4-5. First, the initial population is set up with n individuals, 

with the genome of each representing the settings for the configuration parameters identified 

above. Then each individual of the population is evaluated by a simulation run, and the fitness of 

that individual can be calculated. According to the fitness, the selection process (re)sample n 

individuals from the population, and the selected individuals' genome will be “crossed-over" and 

mutated. After these genetic operations, the individuals are used to form the next generation of 

the population, which will replace the old population. This process goes on until it run out of time, 

or the ideal individual(s) has been found.  

                                                      

28 http://cs.gmu.edu/~eclab/projects/ecj/. 

http://cs.gmu.edu/~eclab/projects/ecj/
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Individual 1

Individual 2

Individual n
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Crossover

Mutation
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Out of time or 
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Config Para
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Figure 4-5 GA flow. 

There are two typical approaches to select individuals from the old population for further genetic 

operations (i.e. crossover and mutation): Fit-proportionate Selection and Tournament Selection 

[104]. In Fit-proportionate Selection, the probability of selecting an individual to be a parent is 

proportionate to its fitness value. In Tournament Selection, several “tournaments” are run among 

a fixed size (i.e. tournament size) of individuals chosen randomly from the population. The winner 

of each tournament (i.e. the one with the best fitness value) is selected. The larger the tournament 

size, the smaller the chance a weak individual will be selected. 

The crossover of genomes involves mixing and matching parts of two old genomes to form new 

genomes. The Uniform Crossover approach swaps every corresponding gene in the genome with 

certain probability as illustrated in Figure 4-6 (a). The One-point Crossover approach randomly 

selects a position for crossover and swaps the genes before that position as illustrated in Figure 

4-6 (b), and the Two-point Crossover approach randomly selects two positions and swaps the 

genes in between as illustrated in Figure 4-6 (c).  
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(b) One-point Crossover

swap

swap

(c) Two-point Crossover

(a) Uniform Crossover

pp p p p p p p p p p pp p

 

Figure 4-6 (a) Uniform Crossover, (b)One-point Crossover, and (c) Two-point Crossover. 

The mutation of genomes involves modifying each gene in a genome with a certain probability. 

If a gene is selected to mutate, some noise is applied to the information stored in that gene, or the 

gene is set to some certain values. If the applied noise is Gaussian noise 𝑁(0,  𝜎2), this type of 

mutation is named as Gaussian Mutation. In Gaussian Mutation, if the current value stored in one 

gene is value, then the new value (𝑣𝑎𝑙𝑢𝑒′) in the mutated gene is defined by equations (4-1) and 

(4-2). 

 𝑣𝑎𝑙𝑢𝑒′ = (1 + 𝑟𝑛𝑑) ∗ 𝑣𝑎𝑙𝑢𝑒 (4-1) 

 𝑟𝑛𝑑 ~ 𝑁(0,  𝜎2) (4-2) 

The fitness of an individual was calculated by applying a “fitness function” to it. Defining an 

adequate fitness function is a crucial task for the successful use of GA, as it will ultimately 

determine the direction of the search. In our case, a good fitness function should favour those 

individuals that embody challenging situations, while avoiding premature convergence (i.e. 

avoiding the population becoming very homogenous too early). Since the main concern of SAA 

is mid-air collisions, we defined a fitness function based on the nearest distance between the pair 
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of UAVs during each simulation run observed by our “proximity measurer”. More details of the 

fitness function will be given in Section 4.4.1.C. 

Several parameters (e.g. the population size, generations of evolution, crossover type, and 

mutation probability) are used to configure a specific GA flow. The source code for the 

experiments presented in the next section as well as the specific values for these GA parameters 

can be found from https://github.com/xueyizou/SVO_Tesing.git. Some of the parameter 

values were set based on ECJ’s recommendations, and some (e.g. population size, and generation 

size) were arrived at by using some basic heuristics discussed in the next section. 

4.4 Experiments 

Two experiments were conducted. In the first experiment, both random search and evolutionary 

search were used to find mid-air collision situations where UAVs have perfect sensing ability. 

The second experiment added sensor noise to the simulation model to see if there are more notable 

faults than the first experiment. With these two experiments, it also shows how to tune some of 

the parameters with some basic heuristics to make the evolutionary searches converge quickly 

and consistently. 

 Experiment 1: Perfect Sensing Ability 

Experiment 1 was conducted under the assumption that both UAVs have perfect sensing ability 

— they know both their own and the other UAV’s real-time position and velocity vector. As a 

simple demonstration and evaluation, in this experiment, no randomness was modeled. That is, 

there is no uncertainty in the UAV’s motion, and there is no sensor noise. 

A. Experiment 1.1  

Table 4-2 Parts of parameter settings for mid-air collisions found in Experiment 1.1. 

 Own-ship speed Is right side Encounter angle Intruder speed 

Trial 1 92.00 NO 46.15 54.34 

Trial 2 
90.70 NO 45.18 54.30 

…. …. …. …. 

Trial 3 

89.86 NO 45.27 52.70 

…. …. …. …. 

92.60 NO 46.75 55.50 

Average 90.98 N/A 46.01 54.33 

https://github.com/xueyizou/SVO_Tesing.git
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It first used random search, where encounters were randomly generated, to find some “obvious” 

mid-air collisions. It had conducted three random searches, with 250,000 uniformly distributed 

sample points (simulation runs) for each. Overall, there were 9 mid-air collisions, all of which 

happened in crossing encounters. Some examples and parts of their parameter settings are shown 

in Table 4-2. 

From Table 4-2 one pattern can be found — the encounters are all left side crossing (according 

to Figure 4-3) with encounter angles around 46o; and the own-ship’s speed is very high (92.6 is 

the maximum speed for this type of UAV) while the intruder’s speed is very low (51.4 is the 

minimum speed for this type of UAV). 

After scrutinizing all these encounters, a typical situation is shown in Figure 4-7. This situation is 

a “left converging” encounter according to Figure 4-1, where the own-ship has the right-of-way. 

Immediately after the encounter began, SVO decided that it was in “avoid” mode, and the intruder 

made a right turn manoeuvre. However, since the turning rate was fixed at 2.5deg/s, the turns 

were not enough to avoid a collision.  

45deg

 

Figure 4-7 A typical encounter found in Experiment 1.1. 

It is noted that of all the 3×250,000=750,000 randomly searched points, only 9 “obvious” mid-air 

collisions were found. Either the SVO is excellent in that there are few obvious collision situations, 

or random search has difficulty in finding more challenging situations. 

It was not clear whether or not these “obvious” situations found so far constitute all, at least most 

of, the possible situations that would result in a mid-air collision for the SVO algorithm. This was 

explored in Experiment 1.2 and Experiment 1.3. 

B. Experiment 1.2  

Experiment 1.2 was intended to find new subtler situations that would result in mid-air collisions 

other than those found in Experiment 1.1 by using random search again. To this end, when a point 

that corresponded to the class of collision situations found in Experiment 1.1 was sampled, it was 
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discarded without ever being simulated, and a new one would be resampled. The discarded points 

were identified based on them satisfying all the following conditions:  

 It is a left side crossing encounter; 

 The own-ship’s speed minus the intruder’s speed is more than 18m/s; 

 The encounter angle is greater than 45o, but it is less than 51.2o. 

The above numbers were estimated from the figures in the “Average” row of Table 2 with some 

extra margins. In this way, it excluded the “obvious” dangerous encounters already identified, 

ensuring that the random search was only looking for “new” problems.  

Again, three random searches were conducted, with 250,000 sample points each time. Of all the 

sampled points, no mid-air collision was found, and thus the random searches failed to find new 

interesting situations. 

Figure 4-8 shows the distribution of the minimum distance between two UAVs in each trial. From 

the figure, we can conclude that most of the samples would result in a minimum distance in the 

range of [20, 70] with a significant part in the range of around 25-40 m. 

 

Figure 4-8 Distribution of the minimum distances between two UAVs in random searches. 
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C. Experiment 1.3 

The purpose of Experiment 1.3 was the same as Experiment 1.2, but evolutionary search (i.e. GA) 

was used instead. The conditions for excluding situations already found were the same as those 

in Experiment 1.2. Whenever a new individual was created that matched all the conditions, it was 

immediately awarded the worst possible fitness value (i.e. 0) without ever being simulated.  

In the experiment, since it only considered two UAV encounters, the objective was thus to 

minimize the minimum distance (dmin) between two UAVs in every simulation run. Formally, the 

minimum distance was defined as: 

 𝑑𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑠∈[0,𝑆]{𝑑𝑜𝑖𝑠
} (4-3) 

Where S is the total number of simulation steps in a simulation run; 𝑑𝑜𝑖𝑠
 is the distance between 

the own-ship and the intruder in the sth simulation step as illustrated in Figure 4-4.  

ECJ requires a fitness function whose range is [0,1], with greater fitness values for fitter 

individuals. In this experiment, we used a widely-used Koza-style [120] fitness function defined 

as equation (4-4): 

 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  

1.0

1.0 + 𝑑𝑚𝑖𝑛
 (4-4) 

This fitness function has the shape shown in Figure 4-9. 

 

Figure 4-9 Shape of the fitness function. 

Even though this fitness function is non-linear and thus not very intuitive, it has a big advantage 

as explained as follows: From the shape of the fitness function, we can notice that when d is small 

(e.g. in the range [0, 10]), the fitness function is very sensitive and the fitness value changes very 
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fast; and when d is large (e.g. in the range [20, 50]), the fitness function is very insensitive and 

the fitness value changes very slow and stays around a very small value. When using Fit-

proportionate Selection29 (see Section 4.3.B) as the selection method, the search with GA will 

become more sensitive in areas of the search space that can cause a small distance between the 

two UAVs, since individuals in that area are more likely to be selected. 

According to equation (4-4), this fitness function reaches its maximum (i.e. 1.0) when 𝑑𝑚𝑖𝑛equals 

0, meaning that there is a mid-air collision. 

Since the random search we used in previous experiments is a very weak search approach, in this 

experiment, we deliberately30 paid no particular attention to parameter tuning for GA and set some 

of the parameter values based on ECJ’s recommendations. Given the constraint that the number 

of total sample points should be the same as before (i.e. 250,000), the population size was set to 

500 and the number of generations was thus also 500. Other parameters are listed in Table 4-3. 

Table 4-3 GA parameters for Experiment 1.3. 

 Type Type-specific parameters 

Selection Fit-proportionate Selection N/A 

Crossover Two-point Crossover crossover rate = 0.8 

Mutation Gaussian Mutation 
per-gene mutation rate = 0.05 

σ = 0.1 

 

To take the advantage of our definition of fitness function, Fit-proportionate Selection (see 

Section 4.3.B) was used. Here, the crossover operation was meant to generate different encounter 

situations. So, its probability was set to be high to encourage the evolutionary search to explore 

various encounter situations. In contrast, the mutation operation was meant to fine-tune some of 

the parameters to cause an already very challenging encounter situation to result in a collision 

exactly. Therefore, its probability and the standard deviation of the Gauss noise were set to be 

relatively small.  

Three trials were made. Each trial took less than 3 minutes to finish using an ordinary desktop 

PC, slightly longer than the previous random searches, which took about 2.5 minutes. 

                                                      

29 When using Tournament Selection (see Section 4.3.B) as the GA selection method, this fitness 

function will have the same effect as using a simple fitness function defined as (  
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  −𝑑𝑚𝑖𝑛 ), since Tournament Selection uses relative magnitudes to select fitter 

individuals. 

30 The idea here is that if a minimally-tuned GA search beats random search, that's a pretty strong 

indicator that a well-tuned one would do even better. 
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From the log, we can see a fast decrease in average minimum distances (i.e. average dmin) between 

two UAVs in the beginning generations as illustrated by the curves in Figure 4-10. It means that 

over these generations, the evolutionary searches were guiding the simulations towards more and 

more challenging situations. The figures also show that the average minimum distances curves 

all reached a near-plateau before 50 generations, though their values varied. The first trial got a 

relatively high average value (around 4.5 m) and the third trial got the smallest value (around 0.25 

m). Compared with the results of Experiment 1.2, where most of the values of the minimum 

distances were around 25 m to 40 m, these values are significantly small. This means that the GA 

was guiding the searches to increasingly challenging situations. 

 

Figure 4-10 Average minimum distance between two UAVs in each generation of Experiment 1.3. 

The average fitness values over generations were plotted in Figure 4-11, which shows that all the 

trials converged at quite different values. This can be understood from two aspects. On the one 

hand, due to the stochastic nature of GA and the fact that we did not specially tune the parameters 

for GA, it is not surprising that different trials would converge to quite different values. Therefore, 

further parameter tuning is needed (as will be discussed in Experiment 2.3). On the other hand, 

owing to the definition of fitness function (in equation (4-4)), which is very sensitive in small ds 

(i.e. distances), even though these trials converged to very different fitness values, the minimum 

distance between two UAVs they converged to are not very different (see Figure 4-10).  
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Figure 4-11 Average fitness over generations of Experiment 1.3. 

The first two trials did not find any mid-air collision, but the third trial found many. When 

checking these mid-air collisions found in trial 3, it was found that the genomes (settings for the 

simulation parameters) were almost the same — the genomes that code for accident scenarios 

were almost clones of each other. This is because during evolution, once the GA finds some very 

good individuals, it will have a high probability to stick at these individuals (through selection), 

and then breed many new individuals by combining the genes of these good individuals (through 

crossover) and making minute modifications to the combined genes (through mutation). Because 

of selection, GA usually has a strong tendency to converge (i.e. the gene pool shrinks very 

quickly). After initialization, only the mutation operator can introduce new genes into the gene 

pool31. So, if the initial genomes are not very good and the mutation operator is not powerful 

enough to generate some better genes, GA may fail to find the best individuals in a finite number 

of generations (i.e. “premature convergence”). That was the reason why the first two trials did not 

find mid-air collision situations. It would be possible to overcome this by using a bigger initial 

population size so that it is more likely to get some good initial genomes and genes, as will be 

tried in Experiment 2.3. 

Two typical encounters that resulted in mid-air collisions are shown in Figure 4-12. These 

encounters are not so attractive, as the initial positions of the two UAVs are too close. However, 

                                                      

31 Crossover operator can generate new individuals by combining genes from the gene pool, but 

it cannot generate new genes. 
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even in such close initial positions conditions, if the UAV’s maximum turning rate is a bit greater 

than 2.5deg/s, say 3deg/s, all the collisions can be avoided, as shown in Figure 4-13. 

(a) (b)
 

Figure 4-12 Typical encounters found in Experiment 1.3. 

(a) (b)
 

Figure 4-13 Collisions shown in Figure 4-12 can be avoided with a slightly larger turning rate. 

So far, two patterns of encounters have been found that are likely to result in mid-air collisions. 

The two patterns are summarized as follows: 

1. Pattern 1 is crossing encounters, where all the following conditions are true: 

 It is a left side crossing encounter; 

 The own-ship’s speed minus the intruder’s speed is more than 18m/s; 

 The encounter angle is greater than 45o but less than 51.2o. 

2. Pattern 2 is close initial positions encounters, where all the following conditions are true: 

 The encounter angle is less than 20o; 

 The own-ship’s speed minus the intruder’s speed is less than 5m/s. 

 Experiment 2: Sensor Value Uncertainty 

Experiment 2 was conducted without making the perfect sensing ability assumption in the hope 

of finding more safety issues with SVO. Gaussian noise was added to the sensing result of the 
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other UAV’s position and velocity vector32. The mean (µ) of the Gaussian noise is 0, and the 

standard deviation (σ) is 0.05*{real value}. The sensing rate is the same as TCAS, which is 1Hz.  

A. Experiment 2.1 

Again, the experiment first used random search to find “obvious” mid-air collisions. Five random 

searches were conducted, with 250,000 sample points for each.  

In the first four trials, all the collision situations found can either be categorized as Pattern 1 or 

Pattern 2 identified in Experiment 1, except one. No collision was found in trial 5. The one 

exception is a left side crossing according to Figure 4-3, where even though the own-ship’s and 

the intruder’s speeds are very close (i.e. 85.84m/s and 83.04m/s), their encounter angle is larger 

(28.56o) than that in Pattern 2. The replay of this exceptional encounter is shown in Figure 4-14(a). 

(a) (b)

intruder

 

Figure 4-14 A left side crossing: (a) Trajectory with sensor noise; (b) Trajectory without sensor noise. 

According to SVO, this is an overtaking-overtaken encounter, where the speeds of the UAVs 

were very close. Due to the sensor noise, the intruder sometimes decided its speed was greater 

than the own-ship’s, and took avoidance manoeuvres, while in fact, it should not have. The result 

is that the intruder’s right turn avoidance manoeuvres canceled out some of the effects of the own-

ship’s avoidance and they collide sometime in the future. However, if there were no sensor noise, 

the collision would not have happened as shown in Figure 4-14(b).  

Again, we ask whether or not the situations found so far constitute all the possible situations that 

will result in mid-air collisions under sensor noise. This was explored in Experiment 2.2 and 

Experiment 2.3. 

  

                                                      

32 We acknowledge the possibility that the added sensor noise may result in simulation artefacts. 

Here, we use this example to demonstrate our proposed approach. However, the justification for 

adding this specific kind of sensor noise and the strength of the noise is beyond the scope of this 

thesis. 
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B. Experiment 2.2 

Experiment 2.2 tried to find new subtler situations that would result in mid-air collisions other 

than those found in Experiment 2.1 using random search. Five random searches were conducted, 

with 250,000 sample points for each. Of all the sampled points, no mid-air collision was found. 

When checking some of the near mid-air collisions, another situation was found that may lead to 

actual mid-air collisions — the intruder approaches the own-ship from the right side with an 

encounter angle a little greater than 45o, and the intruder has a high speed while the own-ship has 

a low speed. This situation is actually the same as those identified in Pattern 1 except that the 

intruder now approaches from the right side. It follows that the random search should have found 

some collisions of this kind as it did in Experiment 1.1 considering that it had searched such a 

huge number of sample points. One explanation for this could be that with the Gaussian noise 

added, more uncertainty was added, and the set of possible paths through the simulation became 

far larger than before. 

C. Experiment 2.3 

Experiment 2.3 tried to find even more subtle situations that will result in mid-air collisions other 

than those found in Experiment 2.1 and 2.2 using evolutionary search. As discussed in Experiment 

1.3, GA has a strong tendency to converge, and the existence of some good initial genomes has a 

significant effect on whether or not it can find the “best” individuals in a finite number of 

generations. So, in this experiment, we try to use a larger population size than that of Experiment 

1.3, in the hope that the search will then converge to some more consistent results. In addition, it 

was noted that in Experiment 1.3 all of the searches converged before 50 generations. Therefore, 

in order to keep the number (i.e. 250,000) of total sample points the same as those in Experiment 

2.1 and Experiment 2.2, in this experiment, the population size was set to be 5,000 (10 × the 

previous size), and the search ran for 50 generations (1/10 × the previous generations). The fitness 

function, the selection method, and the parameters for genetic operations (i.e. crossover and 

mutation) were the same as those of Experiment 1.3. 

Five trials were made. Figure 4-15 shows the plots of average minimum distance between two 

UAVs in each generation and Figure 4-16 shows the plots of average fitness over generations. 

The figures show that all the trials converged before 40 generations to some very consistent results. 

Also, note that the average fitness values all the trials converged to are now around 0.92, better 

than those of Experiment 1.3. The results suggest that the strategy of using a large population size 

can indeed contribute to the fast and consistent convergence of GA. 
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Figure 4-15 Average minimum distance between two UAVs in each generation of Experiment 2.3. 

 

Figure 4-16 Average fitness over generations of Experiment 2.3. 

All the five trials found mid-air collisions. Considering the results shown in Figure 4-15 and 

Figure 4-16 and the fact that all the trials found mid-air collisions, it clearly suggests that no 

premature convergence happened in this case. A typical collision situation is shown in Figure 

4-17(a). This situation is similar to those identified as the Pattern 1, except that the encounter 

angle is now a little greater (51.7o for this typical encounter). Due to the sensor noise, sometimes 

the intruder decided to “maintain” its velocities, while in fact, it should have made an “avoid” 

manoeuvre, resulting in a collision. 
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When replaying this encounter without sensor noise, the trajectory is shown in Figure 4-17(b). 

The intruder did avoid the own-ship, but it could not get to its target (the little cyan dot) due to 

the maximum turning rate constraint. So, it kept circling the target, which is undesirable, and also 

forms a hazard because it may cause the UAV to run out of fuel and finally crash. As can be seen 

from the figure, this happened in the “restore” stage, and it is actually not the responsibility of the 

collision avoidance system but the autopilot's (or other controllers’). This problem can be solved 

by making the autopilot instruct the UAV to take a Dubins Curve [121] to its target.  

51.7deg
51.7deg

(a) (b)
 

Figure 4-17 A typical encounter in Experiment 2.3, (a) with sensor noise; (b) without sensor noise. 

 Discussion  

In the experiments, both random search and the proposed approach were used to find mid-air 

collision situations for supporting the validation of SVO. Through the experiments, the following 

has been found: 

1) Whether with random search or evolutionary search, the agent-based simulations can be 

used to reveal safety issues of SVO. Using the encounters generated by the “encounter 

generator”, SAA algorithms can be tested in various situations; 

2) Even though the random search can find some relatively obvious collision situations, the 

evolutionary search has the ability to guide the simulations towards much more subtle 

and challenging situations for SVO to handle. Therefore, by using evolutionary search to 

guide agent-based simulations, it is more effective to identify challenging situations for 

the SAA algorithm than random search and the validation process has the potential to be 

accelerated; 

3) A properly large population size will contribute to the fast and consistent convergence of 

GA. 

4) Some plausible safety issues with SVO have been revealed during the experiments, in 

particular, by the evolutionary search. These safety issues are: the 45o encounter angle for 

crossing is a dangerous boundary value for SVO; the SVO algorithm is sensitive to sensor 

noise on velocity (because SVO uses the current velocities measured as the primary 
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information for decision-making, rather than also considering the historical 

measurements). 

Considering the overall validation process, the safety issues found by the proposed evolutionary-

search-based approach need to be further investigated to decide whether they are true failures of 

the SAA algorithm, implementation errors, or simulation artefacts. In the cases of this chapter, 

the SVO algorithm is very simple, so it is easy to check and debug implementation errors. And 

by observing the replay of the simulations in the identified mid-air collision situations (as shown 

in Figure 4-7, Figure 4-12, Figure 4-14 and Figure 4-17), it is clear that the safety issues are 

because of true failures, or at least, limitations, of the SAA algorithm, rather than simulation 

artefacts. 

4.5 Summary and Conclusions 

In this chapter, a preliminary demonstration and evaluation of the proposed evolutionary-search-

based approach were conducted to test a simple SAA algorithm. Through experiments, it has 

shown that the proposed approach can find challenging situations for SVO that the random search 

has difficulty in finding (or takes a long time to find), and that the proposed approach may 

accelerate the validation process. During the experiments, some specific safety issues with the 

SVO algorithm were also identified.  

When building the agent-based simulations, the SVO algorithm was treated as a black box — the 

information on positions, velocities, and shapes of UAVs was passed in as input, and the next 

waypoint to which the host UAV should navigate was returned as output. Therefore, this approach 

can be easily used for a variety of SAA algorithms as long as they follow that input and output 

protocol (or can be adapted to do so). 

The SVO algorithm tested in this chapter is very simple, and the simulations were only in two-

dimensional space. In the following chapters, more sophisticated algorithms (e.g. the ACAS XU 

algorithm [5] for UAV collision avoidance in 3-D, and the ORCA-3D [11] algorithm for multi-

UAV conflict resolution) will be studied. To accommodate the validation requirements of these 

algorithms, three-dimensional simulation is needed. In Chapter 5, an open-source tool developed 

to support the proposed approach will be introduced. 
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 Open-source Supporting Tool 

Chapter 4 conducted a preliminary demonstration and evaluation of the proposed approach using 

a simple 2-dimensional collision avoidance algorithm as a case study. It has shown that the 

proposed approach is promising in finding challenging situations effectively for supporting the 

validation of SAA algorithms. To extend the proposed approach to more sophisticated SAA 

algorithms, an open-source tool has been developed to support the process. In this chapter, an 

overview of the tool is given, and some key details of the tool will be given from the following 

aspects:  

1. Scenario Encoding and Generation: how to encode three-dimensional UAV encounter 

situations and generate encounters automatically;  

2. Agent-Based Simulation: how to build agent-based simulations for testing SAA 

algorithms; 

3. Evolutionary Search: how to guide the simulations with evolutionary search. 

5.1 Overview of the Supporting Tool 

Referring to Figure 3-2 (in Page 64), the supporting tool implements all the components described 

there.  

It builds parametric models of possible encounter scenarios in 3-D. An example scenario could 

be a situation where there are 3 UAVs, one intruder heading towards the own-ship and another 

intruder overtaking the own-ship. The positions, and velocities, etc. of these UAVs are described 

by parameters (i.e. variables). Changing the value these parameters results in different specific 

encounter scenarios, and all the possible assignments to these parameters define the search space, 

i.e. the space of all possible scenarios. A “scenario generator” was implemented to generate 

specific scenarios for the simulations based on specific assignments of the parameters.  

To test SAA algorithms, they are incorporated into the UAVs as the local controllers that control 

the UAVs to deal with conflict situations. In the simulations, SAA algorithms are treated as a 

black box: the state variables, such as the relative position and velocity, are passed in, and a 

waypoint is returned, to which the host UAV should navigate. In this way, the tested SAA 

algorithms can be very close to the real ones, so that it is possible to test the original SAA 

algorithms directly or with the minimum of changes. The simulation only models the dynamics 

of the system at the behavioral level, and the control level dynamics is omitted. This means, for 

example, that once the SAA algorithm returns a waypoint for the host UAV to navigate to, the 
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host UAV will be moved to the vicinity of that waypoint in the next simulation step. To model 

the uncertainty of the UAVs’ dynamics, the deviation of the actual position from the returned 

waypoint is controlled by a predefined probabilistic distribution. Note that here it does not model 

the control mechanics that controls the host UAV to fly to the returned waypoint. 

Based on the result of the simulation run(s), the “fitness” of the scenario is evaluated with respect 

to how effective it is to challenge the tested SAA algorithm. According to the fitness, the 

evolutionary search will search for more effective scenarios in the search space, thus guiding the 

simulation to increasingly challenging situations. Specific evolutionary search algorithms need to 

be designed and implemented to make the search more effective and efficient for specific 

problems. Here, by utilizing an evolutionary search library, users do not have to implement 

evolutionary search algorithms from scratch, and it is very convenient for them to experiment 

with different evolutionary search algorithms. More information will be given in Section 5.4. 

The simulation part of the tool is primarily intended to run in “headless” mode. In the headless 

mode, the search can be faster because it can quickly get the required fitness values without the 

need to do extra work on rendering. It can also be run in visualization mode, where the identified 

challenging situations can be replayed and further analysed. In the visualization mode, users can 

also configure and experiment with different encounters with convenient GUIs. A screenshot of 

the tool is shown in Figure 5-1. 

 

Figure 5-1 Screenshot of the supporting tool run in visualization mode. 

The tool is open-source and written in Java. The links to the source code for different case studies 

presented in this thesis are summarized in Appendix 1. 
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5.2 Scenario Encoding and Generation 

This section explains how to encode 3-D encounter scenarios with a minimum set of parameters, 

and how to generate encounters based on this parameterized representation. This parametric 

representation defines how the candidate solutions are encoded (as genomes) so that the 

evolutionary search algorithms can manipulate them.  

In the simulations, the velocity of a UAV can be represented either by the three velocity 

components in each dimension as [Vx, Vy, Vz]T, or by ground speed, bearing, and vertical speed 

as [Gs, β, Vs]T. This is illustrated in Figure 5-2(a), and the relationship between these two 

representations is as in equation (5-1). 

 

Figure 5-2 (a) Representation of the UAV's velocity. (b) Illustration of the relative position of the intruder 

(i) with respect to the own-ship (o) at the CPA. The own-ship is at the origin. 

 

[
𝑉𝑥
𝑉𝑦
𝑉𝑧

] = [
𝐺𝑠 ∗ cos(𝛽)

𝑉𝑠
𝐺𝑠 ∗ sin(𝛽)

] 
(5-1) 

In two-UAV encounters, assuming that the initial state of the own-ship has been decided (say, its 

initial position is [Xo, Yo, Zo]T, and the initial velocity is [Gso, βo, Vso]T) and assuming that there 

is no intervention of the SAA algorithm, an intruder can be described by specifying the time for 

the own-ship and the intruder to arrive at the CPA, the intruder's relative position at the CPA with 

respect to the own-ship as is shown in Figure 5-2(b), and the intruder's velocity vector at the CPA. 

Therefore, to specify the state of the intruder, seven parameters are used, which are: 

 The time (T) left for the intruder to arrive at the CPA; 
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 The horizontal distance (R) between the two UAVs at the CPA, the angle (θ) of this 

approach, and the vertical distance (Y) at the CPA; 

 The velocity [Gsi, βi, Vsi]T of the intruder at the CPA. 

So, the initial velocity and the initial position of the intruder can be obtained by the vector 

equations (5-2) and (5-3): 

 

[

𝑉𝑥𝑖

𝑉𝑦𝑖

𝑉𝑧𝑖

] = [

𝐺𝑠𝑖 ∗ cos(𝛽𝑖)
𝑉𝑠𝑖

𝐺𝑠𝑖 ∗ sin(𝛽𝑖)
] 

(5-2) 

 

[

𝑋𝑖

𝑌𝑖

𝑍𝑖

] = [

𝑋𝑜

𝑌𝑜

𝑍𝑜

] + [

𝐺𝑠𝑜 ∗ cos(𝛽𝑜)
𝑉𝑠𝑜

𝐺𝑠𝑜 ∗ sin(𝛽𝑜)
] ∗ 𝑇 + [

𝑅 ∗ cos(𝜃)
𝑌

𝑅 ∗ sin(𝜃)
] − [

𝑉𝑥𝑖

𝑉𝑦𝑖

𝑉𝑧𝑖

] ∗ 𝑇 
(5-3) 

Due to the fact that the SAA algorithms tested as case studies in this thesis, and many others, only 

consider the relative states, to reduce the search space and to simplify the visualization, we can 

fix the own-ship’s initial position [Xo, Yo, Zo]T and initial bearing βo to some convenient values. 

So, only 9 parameters are needed to encode an encounter, and they are {Gso, Vso, T, R, θ, Y, Gsi, 

βi, Vsi}. 

Multi-UAV encounters are generated by first fixing the initial state of the own-ship (i.e. [Xo, Yo, 

Zo]T, βo, Gso, Vso), and then generating various intruders using the above parameterized pairwise 

encounter representation. In the tool, a “scenario generator” has been developed to generate all 

kinds of encounters according to different assignments to these parameters. A random encounter 

can be generated by uniformly selecting the values for the parameters from their ranges. 

For example, for the convenience of visualization, the initial position of the own-ship can be fixed 

at the middle left of the simulated flight space, and its bearing is directly pointing to the right (0o). 

If we pass the two groups of parameters shown in Table 5-1 to the “scenario generator”, a multi-

UAV encounter will be generated, and the simulation of it (with conflict resolution algorithms in 

action) is shown in Figure 5-3. 

Table 5-1 Parameters for the generation of an example multi-UAV encounter33 

                                                      

33  Note that R denotes the minimum distance that two UAVs would be apart without the 

intervention of the SAA algorithms. 

Gso Vso T R θ Y Gsi βi Vsi 

5 0 
20 5 90 17 7 131 -2 

18 0 90 8 10 0 1 
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Figure 5-3 The simulation of a multi-UAV encounter generated by the parameters in Table 5-1. 

The first row of arguments specifies a left-crossing intruder (intruder 1) with a crossing angle of 

131o, and the second row of arguments specifies an overtaking intruder (intruder 2) since its 

bearing is 0o and its ground speed is faster than the own-ship's (10m/s > 5m/s) 

It is noted that the encounter model only includes the position and the velocity information to 

describe encounter scenarios, but other information (or parameters), for example, sizes and shapes 

of the UAVs, are excluded. One reason for doing so is that these parameters are deemed as less 

critical for the tested SAA algorithms, so they can be controlled globally (i.e. all the UAVs share 

the same parameters). Another reason is to minimize the set of parameters to reduce the 

dimensions of the search space. That being said, other parameters could also be incorporated with 

appropriate coding work in building the agent-based simulation models. 

5.3 Agent-Based Simulation 

MASON34, an open-source agent-based simulation platform in Java, was chosen as the simulation 

framework. It has been selected mainly because it is open-source, and the user can easily build 

agent-based simulations and control the fidelity of the simulations so that they can be run faster 

than real-time. The agent-based simulation model is coded in Java. During simulations, the 

simulation engine performs the agent behaviours at each simulation step. The core of the 

simulation engine is a component known as the “scheduler”. All the agents are registered with 

                                                      

34 http://cs.gmu.edu/~eclab/projects/mason/.  

http://cs.gmu.edu/~eclab/projects/mason/
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this “scheduler”, but with different scheduling frequencies and priorities. The simulation proceeds 

by scheduling the corresponding registered agents to conduct their defined behaviours at each 

simulation step. In a typical agent-based simulation, there are three core elements: agents, the 

environment, and their interactions. These elements are described in the following three sub-

sections. 

Agents 

There are two kinds of agents in our simulation: UAVs, and global monitoring agents. 

UAVs have attributes, such as position, velocity, size, and performance. UAVs also have 

behaviours, such as flying to their targets, sensing other UAVs, and avoiding collisions or 

violations of safe separation with them. When simulation begins, the UAVs fly by following their 

initial velocities but can also be affected by environment disturbances. The selected SAA 

algorithms are incorporated into the UAVs as local controllers. If the SAA algorithm emits 

collision avoidance commands or conflict resolution commands, the host UAV will then 

manoeuvre according to the commands. To model UAVs’ dynamic uncertainties, the resultant 

effect is not perfect, i.e. the UAVs cannot perfectly follow the commands, and there is a deviation 

governed by predefined probabilistic distributions. 

Global monitoring agents include a “proximity measurer” and an “incidents/accidents 35 detector”. 

The “proximity measurer” measures the proximities (in horizontal distance and vertical distance) 

between the own-ship and the intruders at each simulation step, and records the minimum 

proximity experienced by the own-ship so far in a simulation run. The “incident/accident detector” 

monitors the simulations, and detects any incidents/accidents involving the own-ship. However, 

the incidents/accidents between intruders are not monitored; we are only interested in 

incidents/accidents involving the own-ship. This is a simplification, but it is thought to be 

reasonable, because: (1) our main purpose is to find faults of an SAA algorithm, rather than to 

prove an algorithm is fault-free; it is thus not fatal for us to miss some incidents/accidents, 

provided that we discover some other ones; and (2) since the intruders are generated to all have 

conflicts with the own-ship, incidents/accidents involving the own-ship will be much more likely 

to happen than those only involving pure intruders. 

  

                                                      

35 In the UAV collision avoidance case, we define the consequence of the failure of collision 

avoidance as an accident, even though the UAVs do not necessarily contact each other physically. 

To distinguish, in the conflict resolution case, we define the consequence of the failure of conflict 

resolution as an incident, which is usually far from a physical collision. 
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Environment 

The environment for the simulations is a 3-D cuboid flight area. The size of this flight area varies 

depending on the SAA algorithms under testing. The principle to decide the size is that it should 

be large enough to accommodate the simulations. For collision avoidance algorithms, it can be 

set according to the detection range for the “Traffic Advisory (TA)” of the TCAS (i.e. 40 sec 

ahead of CPA). While for conflict resolution algorithms, the size needs to be much larger, because 

usually the conflicts are detected and resolved at least 1 minute ahead of arriving at the CPA. It 

assumes that the UAVs fly high in the air, so no ground terrain is considered. However, if UAVs 

are flying at low altitudes, terrain may need to be considered, since a vertical collision avoidance 

manoeuvre may result in a collision with a mountain. 

Apart from the agents described above, some other entities in the environment are the starting 

point and target (end point) for each UAV. In a simulation, UAVs fly from their starting points 

to the corresponding targets. If due to the effect of SAA algorithms, a UAV flies out of this cuboid 

flight area it will still be monitored by the global monitoring agents. The effects of winds are 

modelled by simply adding certain randomness (e.g. Gaussian noise) to the UAVs’ movement. 

Other objects, such as weather, buildings, and other air traffic, have not been modelled, but this 

may be one of the directions for future study. 

Interactions 

The interactions between the UAVs are only via the SAA algorithms. The simulation assumes 

that in each simulation step the UAVs broadcast their state information (such as position and 

velocity) via ADS-B. It explicitly models the sensor noise by adding certain white noise to the 

received information by each UAV. For the case of ACAS XU presented in Chapter 6, it also 

models the coordination mechanism (which is very reliable according to [5]) between the two 

UAVs. For example, if the own-ship chooses a “climb” manoeuvre, it will send a coordination 

command to the intruder to require it not to choose manoeuvres in the same direction. Otherwise, 

it has not modelled any other explicit communication between UAVs. 

The interactions between UAVs and the environment include UAVs following waypoints and 

generating new waypoints according to the SAA algorithm. 

 

Figure 5-4 shows the simulation of a head-on encounter with a collision avoidance algorithm 

(ACAS XU, see Chapter 6) in action. The big yellow dot represents the own-ship, and the cyan 

dot represents the intruder. In this encounter, the own-ship’s collision avoidance algorithm 

chooses “climb” manoeuvres (represented by the red dots), and by coordination, the intruder 

chooses “descend” manoeuvres (represented by the green dots). The different sizes of the red dots 
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and the green dots denote the strengths of the corresponding manoeuvres. Due to the execution 

of the manoeuvres, a mid-air collision was avoided. 

 

Figure 5-4 Simulation of a head-on encounter with ACAS XU in action. 

All the elements described above have been coded in Java based on the MASON framework. It 

has been used to conduct experiments presented in Chapter 6 and Chapter 7. For those who are 

interested in using this tool for their own SAA algorithms, please refer to MASON’s manual36 for 

more information. 

5.4 Evolutionary Search 

ECJ37, an open-source evolutionary search library in Java, was chosen as the evolutionary search 

framework. With ECJ users can customize the process of evolutionary search by a parameter file. 

This parameter file is problem-specific, and the files for the two case studies presented in Chapter 

6 and Chapter 7 can be found in the corresponding source code (see Appendix 1). In the following, 

an example is given to show the key ideas. 

Figure 5-5 shows an example of the parameter file. In the parameter file, users can set the size of 

the population (200), the type of genomes (DoubleVector), the number of generations (500), and 

the pipeline of genetic operations (FitPropotionateSelection  VectorCrossover  

VectorMutation), etc. Users are also required to designate the problem for the search, i.e. how to 

                                                      

36 http://cs.gmu.edu/~eclab/projects/mason/manual.pdf.  

37 http://cs.gmu.edu/~eclab/projects/ecj/.  

http://cs.gmu.edu/~eclab/projects/mason/manual.pdf
http://cs.gmu.edu/~eclab/projects/ecj/
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evaluate the fitness of a candidate solution (an individual in evolutionary search’s jargon). It is 

done through the bold item shown in Figure 5-5, and the user should define a Java class 

(search.MaxAccident) to implement the evaluation process. In our case, a method (or function) 

in this class will first call the “scenario generator” to generate an encounter based on the genome, 

and then call the agent-based simulation to simulate the encounter. Finally, the value of the fitness 

will be calculated and returned based on the simulation result as monitored by the global agents 

(i.e. the “proximity measurer” and the “incident/accident detector”). 

# Licensed under the Academic Free License version 3.0. Copyright 2006 by Sean 
Luke and George Mason University 

parent.0 = /home/xueyi/EclipseWorkSpace/Java/ECJ/src/ec/simple/simple.params 

seed.0 = 679463479 

pop.subpop.0.size = 200 

pop.subpop.0.species  = ec.vector.FloatVectorSpecies 

pop.subpop.0.species.ind = ec.vector.DoubleVectorIndividual 

pop.subpop.0.species.fitness  = ec.simple.SimpleFitness  

generations = 500 

eval.problem            = search.MaxAccident 

 

pop.subpop.0.species.pipe = ec.vector.breed.VectorMutationPipeline 

pop.subpop.0.species.pipe.source.0 = ec.vector.breed.VectorCrossoverPipeline 

pop.subpop.0.species.pipe.source.0.source.0 = ec.select.FitProportionateSelection 

pop.subpop.0.species.pipe.source.0.source.1 = ec.select.FitProportionateSelection 

 

pop.subpop.0.species.crossover-type = two 

pop.subpop.0.species.crossover-likelihood = 0.8 

pop.subpop.0.species.mutation-prob = 0.05 

pop.subpop.0.species.mutation-type= gauss 

pop.subpop.0.species.mutation-stdev= 0.1 

pop.subpop.0.species.mutation-bounded = true 

pop.subpop.0.species.out-of-bounds-retries = 20 

 

# the size of simulation parameters 

pop.subpop.0.species.genome-size =9 

#own-ship Vy 

pop.subpop.0.species.min-gene.0 = -67 

pop.subpop.0.species.max-gene.0 = 58 

#own-ship Gs 

pop.subpop.0.species.min-gene.1 =169 

pop.subpop.0.species.max-gene.1 =304  

# intruder CPAY 
 

Figure 5-5 Part of an ECJ parameter file. 
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If users are not satisfied with the built-in parts of the evolutionary search algorithms provided by 

ECJ, they can easily build their own by inheriting the corresponding base classes in ECJ. For 

those who are interested in using this tool, please refer to ECJ’s manual38 for more information. 

5.5 Summary and Conclusions 

In this chapter, a tool to support the proposed approach is presented. With this tool, the process 

of SAA algorithm validation can be partially automated. The tool is open-source so that further 

research can easily build on it. With the proposed approach and the supporting tool at hand, two 

case studies will be presented in the following two chapters. 

  

                                                      

38 http://cs.gmu.edu/~eclab/projects/ecj/docs/manual/manual.pdf. 

http://cs.gmu.edu/~eclab/projects/ecj/docs/manual/manual.pdf
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 Application to a Collision 

Avoidance Algorithm 

6.1 Introduction 

To further demonstrate and evaluate the proposed approach in more complex cases, in this chapter, 

the proposed evolutionary-search-based approach is applied to a prototype of an industry-level 

UAV collision avoidance algorithm, specifically, ACAS XU (Airborne Collision Avoidance 

System X for UAVs). 

The development of ACAS XU adopts a model-based optimization approach, where the collision 

avoidance logic is automatically generated based on a probabilistic model and a set of preferences. 

This chapter provides a high-level overview of the development process. Given some of the key 

techniques used in the process may be unfamiliar to many readers, it walks through an example 

of the development of a simple UAV collision avoidance system to show some of the key ideas. 

It then analyses the challenges the new development process poses to safety assurance, with a 

particular focus on system validation.  

With the challenges in mind, the proposed evolutionary-search-based approach is used to find 

high-accident-rate situations to support the validation of ACAS XU. Experiments were conducted 

to demonstrate the use of the proposed approach, and to compare it with a random-search-based 

approach and a deterministic-global-search-based approach. The results suggest that the proposed 

evolutionary-search-based approach can find the high-accident-rate encounters more effectively 

and efficiently than the random-search-based approach. Even though the proposed evolutionary-

search-based approach is a little less competitive than the deterministic-global-search-based 

approach in terms of effectiveness in relatively easy cases, it is more effective and efficient in 

more difficult cases, especially when the objective function becomes highly discontinuous. All 

the search methods identified a similar type of challenging situations for the tested ACAS XU, 

and these challenging situations can potentially be used to identify limitations of ACAS XU and 

to improve it. In addition, it has also found that a properly larger population size can contribute 

to the faster convergence of GA to better and more consistent results.  

The major contributions in this chapter are: 

1. Demonstrated the proposed approach on a prototype of an industry-level UAV collision 

avoidance algorithm; 
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2. Evaluated the proposed approach by comparing it with a random-search-based approach 

and a deterministic-global-search-based approach; 

3. Showed how the proposed evolutionary-search-based approach can be used effectively 

in finding counterexamples; 

4. Identified a type of very challenging situations for the tested ACAS XU. 

Some minor contributions in this chapter are: 

1. Illustrated the model-based optimization approach to developing ACAS XU by walking 

through the development of a simple 2-D collision avoidance system; 

2. Analysed the challenges that the model-based optimization development approach poses 

to safety assurance; 

3. Developed a prototype of ACAS XU and shared its source code; 

6.2 SAA Algorithm under Test: ACAS XU  

 Background 

TCAS (version 7.1) is the current version of airborne collision avoidance systems mandated 

worldwide on large transport aircraft to reduce the risk of mid-air collisions. TCAS uses onboard 

transponders to monitor local air traffic, and can alert pilots to potential collisions and recommend 

vertical manoeuvres to avoid the collisions. With the introduction of new airspace operational 

concepts (e.g. free flight [122]), new airspace users (e.g. UAVs), and new sensor systems (e.g. 

ADS-B), upgrading is needed for the system to accommodate the new requirements and 

technologies. However, due to its long course of evolutionary development beginning in the 1970s, 

the TCAS logic has resulted in very complex pseudocode with many heuristic rules and parameter 

settings whose justification has been lost [37]. To upgrade the system, MIT Lincoln Laboratory 

chose to re-engineer the system by adopting a model-based optimization approach. The resultant 

system is called ACAS X (Airborne Collision Avoidance System X) with several versions for 

different aircraft types, surveillance techniques, and operational situations. ACAS XU is the 

version for UAVs, and is the one addressed in this thesis. 

Different from the TCAS development approach where the collision avoidance logic was hand-

crafted, the new model-based optimization approach can automatically generate optimal collision 

avoidance logic based on a probabilistic model and a set of preferences [5, 37, 94]. Such an 

approach allows developers to focus their effort on building models and setting preferences. The 

difficult task of optimizing the logic can then be left for computers.  
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The ACAS X development process is illustrated in Figure 6-1. The first step is to build a model 

describing the evolution (i.e. states transition) of an encounter involving two aircraft. The 

evolution of an encounter is affected by two kinds of factors: stochastic factors and non-

deterministic control factors. There are stochastic factors because the aircraft are affected by 

environmental disturbances, winds, etc., and the dynamics of the aircraft is inherently uncertain. 

There are non-deterministic control factors because the aircraft can be controlled by commands 

given by the collision avoidance system, but the result of the control is non-deterministic (i.e. 

uncertain). Therefore the evolution of an encounter shows both stochastic properties and non-

deterministic properties, and it can be modelled as a Markov Decision Process (MDP) [123]. 

Simulation Evaluation

manual model  revision

Statistical

Encounter

Model

Performance

Metrics

Optimization

MDP Model

Encounter

 Evolution Model

Reward/Punishment

Logic

Table

 

Figure 6-1 ACAS X development process, adapted from [37]. 

Here, “Markov” is an assumption, meaning the probability distribution of the future states 

depends only on the current state and not on the sequence of events that preceded it. This 

assumption can generally be made to hold by properly defining the state representation. 

Incorporated in the MDP model also is a reward or punishment mechanism (preferences) that is 

used to represent the system requirements. This mechanism describes which state or collision 

avoidance action is good (/bad) and how good (/bad) it is. Taking the MDP model as input, an 

optimization technique called Dynamic Programming [123] can be used to generate collision 

avoidance logic automatically that maximizes (/minimizes) the reward (/punishment) with respect 

to the probabilistic model.  

Once the above has been performed, the generated ACAS X logic is evaluated against certain 

performance metrics (e.g. accident rate and false alarm rate) through simulations using statistical 

encounter models (Monte-Carlo simulations). If the generated logic failed to achieve the required 

performance, revisions are made to the MDP model manually in the hope of generating new 

improved logic. 

This model-based optimization approach has several benefits over the traditional development 

approach used for the TCAS, including: 
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1) Dramatically reducing the error-prone hand-coding work, thus potentially reducing 

coding errors and shortening the development cycle; 

2) Better managing different sources of uncertainty by using probabilistic models. As a 

result, if developed with a good model, the generated logic can outperform TCAS 

regarding safety and false alarm rate; 

3) Easier to maintain and upgrade. 

According to the reports [5, 94], an early prototype system has already demonstrated the above 

second benefit in simulations. 

 A Simple Example 

The full model and the detailed process for generating ACAS XU logic is complex and involves 

several non-trivial engineering techniques, such as state decomposition and representation, 

sampling and interpolation, aircraft dynamics modelling, and reward or punishment assignment. 

To explain how the model is built and how it is possible to generate collision avoidance logic 

automatically, we will walk through a fictional example of the development of a simple 2-D 

collision avoidance system. This will help readers to appreciate the challenges this new 

development approach poses to safety assurance, especially, to system validation. Readers who 

are very familiar with MDP models and solvers may choose to skip this section. 

Figure 6-2 shows a 2-D vertical plane where two UAVs encounter each other. We assume that 

the UAVs move in discrete steps. We denote the UAV at the origin as the own-ship and the other 

as an intruder.  
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Figure 6-2 A simple 2-D two-UAV encounter. 
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To model this situation, four variables are used:  

 xo: the x coordinate of the own-ship; 

 yo: the y coordinate of the own-ship; 

 xi: the x coordinate of the intruder; 

 yi: the y coordinate of the intruder. 

In the horizontal direction, due to relative velocity, we can assume that the own-ship’s horizontal 

movement is 0, and at each time step, the intruder will move left by one grid square. So, the states 

can be represented with only three variables: (yo, xr, yi), where xr represents the relative horizontal 

distance between the two UAVs and also the x coordinate of the intruder.  

We can only control the movement of the own-ship in the vertical direction. The own-ship can 

choose a movement from a hypothetical action set {level off (0), move up (+1), move down (-

1)}. The +1/-1 means moving up/down by one grid square.  

The dynamics of the own-ship is uncertain. We model this by building a probabilistic model for 

the own-ship's actions. For example, if the own-ship is at (0, 0) at the moment, and it chooses to 

move up by one grid, this may result in it being at (0, 0), (0, 1) and (0, -1) with a hypothetical 

probability distribution {0.2, 0.7, 0.1}. Here we denote this probability distribution as {(0, 0)0.2, 

(0, 1)0.7, (0, -1)0.1}. A similar distribution applies to the “move down” action. 

The intruder cannot be controlled, and its dynamics is also uncertain. However, to simplify the 

explanation, we assume the intruder’s horizontal movement is deterministic, i.e. at each time step 

the intruder will move left by one grid square. We assume the intruder's movement in the vertical 

direction is influenced by white noise, i.e. at each time step it may move up/down according to a 

hypothetical distribution: {00.5, -10.15, +10.15, -20.1, +20.1}. Elements in front of 

the “” mean the direction and size of a movement, and elements after it are the probabilities for 

the corresponding movements. So, if the intruder is at (9, 0) at the moment, after one time step, it 

may be at {(8, 0) 0.5, (8, -1) 0.15, (8, 1) 0.15, (8, -2) 0.1, (8, 2)0.1}.  

Having decided the state representation, action set, and state transition probabilities, we also 

specify the extent of the desirability of different states and actions (i.e. “preferences”). For 

example, we punish a collision state (where yo = yi and xr = 0) with a cost of 10,000, and punish a 

move up/down action with a cost of 100, and reward a level off action with a reward of 50 (in 

order to make the own-ship level off if there is no collision risk).  

The above paragraphs describe the stochastic and nondeterministic evolution (or development) of 

a two-UAV encounter and a preference system. It can be modelled as a Markov Decision Process 

(MDP). 
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The purpose is to devise a strategy for the own-ship to avoid collisions with the intruder but at the 

same time not to generate too frequent false alerts. A strategy for the own-ship can be represented 

as a look-up table (i.e. logic table) mapping from a state (yo, xr, yi) to an action (e.g. level off, 

move up, or move down). The best strategy is the one that achieves the least average cost for 

every state.  

Taking this MDP model as input, Dynamic Programming techniques [123] (e.g. Value Iteration 

or Policy Iteration) can automatically generate the best strategy (an optimal “policy” in MDP’s 

parlance). The Dynamic Programming techniques are very efficient39 with modern computers. 

The resultant logic can be evaluated in simulations, and if it does not meet certain requirements, 

we can modify the MDP model (e.g. by setting more representative state transition probabilities 

and/or by better assignments for preferences) to regenerate the look-up table.  

 ACAS XU 

The above example shows the key ideas of how ACAS XU is developed. The actual ACAS XU 

models are more complex and in 3-D. Following is a brief description of the form of the final 

ACAS XU algorithm. The algorithm includes two parts: the off-line part to generate look-up 

tables, and the on-line part to generate collision avoidance actions using the look-up tables. 

A. Off-line part 

The off-line part of ACAS XU involves the generation of two look-up tables off-line by using 

model-based optimization approaches. 

The first look-up table saves the “entry time distribution” for each discrete state. “Entry time” is 

a term used in ATM, which means the time left for two aircraft in an encounter to reach a state 

where the horizontal distance between the two aircraft is less than a defined value from a start 

state. In other words, this look-up table saves the probabilities for every discrete state that the two 

aircraft will become less than a certain distance separated horizontally in t seconds if the two 

UAVs do not make any collision avoidance manoeuvre. Visually, this look-up table is a 2-D table 

shown in Figure 6-3 (a). It maps a (state, entry time) pair to a probability. This look-up table is 

generated with a Discrete-Time Markov Chain (DTMC) [124] model. 

The second look-up table saves the rewards for choosing an action in a discrete state when the 

entry time is t. Visually, this look-up table is a 3-D table shown in Figure 6-3 (b). It maps a (state, 

                                                      

39 For the actual ACAS XU model, Dynamic Programming takes several minutes on an ordinary 

laptop PC to get the optimal solution [5]. 
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entry time, action) tuple to a reward value. This look-up table is generated with a MDP model 

that is similar to the one described above. 

entry times
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(a) entry time look-up table (b) rewards look-up table

S1

S2

Sn

t1 t2 tn-1tn-2 tn

P

…

...

S1

S2

Sn

...

a1 a2 an-1an-2 an…

Rewards

t1
t2

tn-1
tn

 

Figure 6-3 Look-up tables: (a) entry time look-up table, (b) rewards look-up table. 

B. On-line part 

With the two look-up tables generated off-line, the on-line part of ACAS XU selects the best action 

for a specific state by computing the expected rewards for each action. Following is a brief 

description of the approach. 

Data: entry time look-up table (T1), rewards look-up table (T2) 

 

Input: a continuous state 

 

Output: the best action. 

 

Algorithm Starts: 

1. Find all discrete states {S1, S2, …, Sn} that are neighbours of the continuous 

state in a high dimensional space expanded by the dimensions of the state. 

2. For each discrete state in {S1, S2, …, Sn}, calculate the expected rewards of 

all possible actions in that state. This can be done by the following steps: 

a) Find the entry time distribution of the discrete state by looking up 

T1. 

b) For each entry time, find the rewards for all possible actions of the 

discrete state by looking up T2. 

c) Calculate the expected rewards of all possible actions in the discrete 

state by convolving the entry time distribution and the action 

rewards.  
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3. Based on the expected rewards for each discrete state and actions, calculate 

the rewards for the continuous state choosing every possible action. This is 

done through interpolation. 

4. Choose the action that gets the highest rewards in the continuous state as the 

best action. Return the best action. 

 

Since there is no publicly available source code for ACAS XU, we implemented one based on its 

technical reports [5, 94]. The source code includes the DTMC model and the MDP model, Value 

Iteration solvers for the DTMC model and the MDP model, and a graphical simulation interface 

for the generated logic. It was written in Java and can be found from 

https://github.com/xueyizou/ACASX_3D.git. We have tried to make sure the implementation 

is as faithful as possible to the reports (mainly by code walkthrough and functional testing), and 

the parameter settings were from there, but we cannot guarantee the performance of the resultant 

system. It is certainly not ready to be used in any real aircraft. After testing it in several common 

encounter situations, we are confident, however, that the implementation captures the properties 

of the ACAS XU algorithm sufficiently to support the testing techniques described in this chapter. 

Figure 6-4 shows how ACAS XU behaves in a simulated head-on encounter. The big yellow dot 

represents the own-ship, and the cyan dot represents the intruder. In this encounter, the own-ship’s 

ACAS XU chose “climb” manoeuvres (represented by the red dots), and by coordination, the 

intruder chose “descend” manoeuvres (represented by the green dots). The different sizes of the 

red dots and the green dots denote the strengths of the corresponding manoeuvres. Due to the 

execution of the manoeuvres, a mid-air collision was avoided. Figure 6-5 shows how ACAS XU 

behaves in a simulated crossing encounter, where the own-ship chose “climb” and the intruder 

chose “descend”. Again, no collision happened. 

https://github.com/superxueyizou/ACASX_3D.git
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Figure 6-4 Collision avoidance for a head-on encounter with ACAS XU. 

 

Figure 6-5 Collision avoidance for a crossing encounter with ACAS XU. 

6.3 Problem Analysis 

Along with the convenience brought by the use of the model-based optimization approach for 

automatic collision avoidance logic generation, there are some challenges for model construction 

and challenges for the improvement of the generated logic, which include: 
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 To construct tractable mathematical models, the state space needs to be discretized with 

certain resolution, and in doing so, interpolation is needed, which may cause inaccuracy 

problems; 

 Because of the discretized state space and the stochastic nature of the system, sampling 

techniques are used in model construction, which again may cause inaccuracy problems; 

 When the performance of the generated logic fails to meet requirements, it is not easy to 

figure out how to improve the logic by modifying the model, because the link from the 

logic to the model is indirect. 

Due to its safety-critical nature, a collision avoidance system must undergo rigorous safety 

analysis and assurance process before deployment.  

Models are placed at the key position in this new development process. Since the logic is auto-

generated by computer optimization, it can be proved that the generated policy is optimal with 

respect to the model. In other words, as long as the model is representative enough of the reality 

and the users’ concern, the generated logic is the best logic that can be derived.  

So, the possible deficiencies of this approach mainly lie in the models used. The key question is: 

Whether the MDP model can properly represent the reality and incorporate the users’ 

concern? 

This question can be viewed from the following two aspects: 

 Model structure: Is the modelling technique chosen (i.e. DTMC and MDP) expressive 

enough to capture the key features of the reality of the problem and to incorporate the 

users’ concern? Alternatively, should another model (e.g. a POMDP [123] model) be 

used?  

 Model parameters: If a certain mathematical model (say MDP) is chosen, how should 

values be assigned to the model parameters so that it best describes the reality and the 

users’ concern? For example, what should the state transition probabilities be, and how 

should reward and penalty (cost) values be assigned to different actions and states? 

No single solution exists that can answer all the questions. Amongst the various safety assurance 

activities and techniques, V&V are the two most important activities for ensuring the correctness 

and safety of a system.  

These questions can perhaps be better answered by validation rather than verification. In general, 

verification is to determine whether the product of a system development stage (e.g. design, and 

implementation, etc.) accurately represents the developer's conceptual description and 

specifications. In the ACAS XU case, we do not have a conventional set of development stages. 

The specification, in this case, might be the MDP model, and the product might be the auto-
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generated logic. However, since the logic is synthesized by computer optimization techniques, 

which have been proved and used for many years, we can have high confidence that the optimized 

logic is correct with respect to the model. Whereas validation is to determine whether a product 

can indeed satisfy the real-world requirements. In the ACAS XU case, the key validation question 

is whether or not the generated logic can actually have a low accident rate and a low false alarm 

rate. 

In [5, 94], Monte-Carlo simulations were used to evaluate the generated logic and to decide 

whether the model was good. If the performance of the generated logic outperforms the current 

TCAS logic in simulation, the model is accepted as a good model. The Monte-Carlo simulation 

uses statistical aircraft encounter models [95, 96] that were derived from real radar data. However, 

the radar data are almost entirely of manned aircraft encounters. (After all, there are not many 

UAVs in the airspace at the moment, and UAV encounters are even rarer.) It is unclear how 

representative the models are of real UAV encounters.  

6.4 Solution: Evolutionary Search 

The development of ACAS XU is an iterative process that incrementally improves the logic (and 

the model) based on simulation results. The whole process terminates when the probabilities of 

certain events (e.g. mid-air collisions and false alarms) meet the quantitative requirements. 

Monte-Carlo simulations depend on statistical aircraft encounter models. First, representative 

encounter models are non-existent (at least not publicly available) for UAVs. Second, even if such 

encounter models exist, simulations guided by Monte-Carlo simulations are too costly to conduct 

during the iterations of developing ACAS XU because of the reasons analysed in Section 2.5.1 of 

Chapter 2. 

So, instead of deriving probabilities for certain events, we can search for situations (i.e. 

counterexamples) where certain undesired events happen. If any are found, we can analyse the 

counterexample situations, and then improve the models to generate better ACAS XU logic. 

However, if we have searched enough but still cannot find any undesired events, we can then be 

more confident that the undesired event will not happen, or we can further evaluate the system 

using Monte-Carlo approaches. Such an approach can contribute to the fast iteration and 

validation of the system. 

This chapter tries to find situations where the accident rates are extremely high for ACAS XU. 

With respect to efficiently finding such situations, there are some specific challenges: 

 Large search space: on the one hand, the generated logic has a large number of states, and 

on the other hand, to model the environment with moderate fidelity (e.g. to model the 
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wind effects), many control variables are needed. As a result, a huge number of possible 

situations need to be simulated and evaluated; 

 Rare non-deterministic events: with a moderately good collision avoidance system in 

action, the happening of mid-air collisions is very rare. It is also non-deterministic 

because of the influence of modelled random factors. As a result, a large number of 

simulation runs are needed to get a good probabilistic estimation of accident rates. 

For this purpose, the approach proposed in Chapter 3 that exploits evolutionary search to guide 

the simulations were used to efficiently finding the high-accident-rate situations for ACAS XU. 

Experiments were conducted to evaluate the approach and are reported in the next section. 

6.5 Experiments 

This section reports the use of a random-search-based approach, the proposed evolutionary-

search-based approach, and a deterministic-global-search-based approach, to find situations 

where the accident rates are extremely high for ACAS XU. The random-search-based approach is 

a degenerate case of Monte-Carlo approaches in that it uses a uniform distribution as the statistical 

aircraft encounter model. The global search approach was introduced to the experiments because 

it was used in some similar work presented in [116-118], where a stochastic global search 

approach (using GA) and a deterministic global search approach (using the DIRECT algorithm 

[125]) were applied to find the worst case for moving obstacle avoidance algorithms. Through 

comparison, the authors concluded that the deterministic global search they used can be 

guaranteed to find the worst case.  

ACAS XU was evaluated by using 3-D simulations. The environment in the simulations was a 3-

D cuboid flight area. The size of this flight area was infinitely large, but every simulation would 

last for at most 60 simulation steps (equivalent to 60 seconds in real-world time). This is because 

ACAS XU was designed to resolve imminent collisions (less than 30sec ahead of collision). 60 

simulation steps are long enough for the two UAVs to pass each other.  

For the collision avoidance problem, we only consider two-UAV encounter situations. The 

“scenario generator” described in Chapter 5 was used to generate encounter scenarios 

automatically. The parameters and their bounding values for generating encounters are listed in 

Table 6-1 (see Section 5.2 for the meaning of these parameters). The bounding values were set 

based on information given in [5] and the performance data of Global Hawk given in [7]. The unit 

for all the speeds (i.e. Gso, Vso, Gsi, Vsi) is “feet/second”. The unit for all the distances (i.e. R, Y) 

is “feet”. The unit for time (i.e. T) is “seconds”, and the unit for angles (i.e. θ, βi) is “degrees”. 
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Table 6-1 Bounding values for the parameters for testing ACAS XU. 

 

The initial position of the own-ship was fixed at the middle left of the simulated flight space for 

the convenience of visualization. We describe the encounter with the initial positions and 

velocities of the UAVs. After the simulation begins, the two UAVs are assumed to follow their 

initial velocities, but they can also be affected by environmental disturbance and the collision 

avoidance manoeuvres. Figure 6-4 (on Page 111) shows the simulation of an auto-generated head-

on encounter and Figure 6-5 (on Page 111) shows the simulation of an auto-generated crossing 

encounter. 

To find situations where the accident rates are extremely high for ACAS XU, the “accident 

detector” described in Chapter 5 was used to detect and count mid-air collisions. In this case, a 

mid-air collision occurs when the horizontal distance between two UAVs is less than 500ft, and 

the vertical distance is less than 100ft at the same time. The accident rate for an encounter is then 

calculated as the frequency of collisions that happened during 100 simulation runs with the same 

initial conditions but using different seeds for the random number generator to control the 

randomness. 

All the experiments40 described below were done on a PC with an Intel Core i5-6200U 2.30GHz 

CPU and the 64-bit Ubuntu 16.04 Operating System. The experiments were run using JavaSE-

1.7 with an initial memory of 512MB and a maximum memory of 1024MB for the JVM (Java 

Virtual Machine). 

 Experiment 1 

The three search methods (i.e. a random-search-based approach, the proposed evolutionary-

search-based approach, and a deterministic-global-search-based approach) were applied to search 

for high-accident-rate situations for ACAS XU. No extra condition (as compared with the later 

Experiment 2) was exerted to the search approaches. So, it was expected that all the search 

methods should find some situations with very high accident rates. For every search method, we 

                                                      

40 Java Code for experiments: https://github.com/xueyizou/ACASX_3D_Testing.git.  

parameter Gso Vso T R θ Y Gsi βi Vsi 

min 169 -67 20 0 -180 -100 169 -180 -67 

max 304 58 30 500 180 100 304 180 58 

https://github.com/superxueyizou/ACASX_3D_Testing.git
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ran 5 searches to avoid the bias of randomness. In each search, we confined the number of 

encounters evaluated to be 3,000. 

A. Experiment 1.1: Random Search 

a. Setup 

Since there is no publicly available aircraft encounter model to run Monte-Carlo simulations, a 

random search approach was used to guide the simulations. An encounter is generated by the 

“scenario generator” by passing in the uniformly sampled parameter values whose bounds are 

given in Table 6-1.  

b. Results 

The time costs for the searches and the maximum accident rates found are shown in Table 6-2. 

The time for running each random search is about 1,700 seconds. The highest accident rate (0.88) 

was observed in the first search (with seed 324185792).  

Table 6-2 Statistics of the random search for testing ACAS XU in Experiment 1.1. 

Seeds 324185792 54896327 567672542 588764357 884185771 

Time(sec) 1674 1696 1633 1789 1720 

Max accident rate 0.88 0.84 0.83 0.86 0.85 

 

The accident rates for all the encounters evaluated in the first search are shown in Figure 6-6, and 

the accident rates distribution is shown in Figure 6-7. The two figures show that an overwhelming 

majority (2,750 out of 3,000) of the encounters are with very low accident rate (equal or less than 

0.02), and very rare (only 2 out 3,000) encounters are with a high accident rate (greater than 0.8).  

The result suggests that (1) the tested ACAS XU is good at avoiding mid-air collisions in most 

situations, and (2) the random research is not good at finding situations with a very high accident 

rate.  



 

 

117 

 

 

Figure 6-6 Accident rates for randomly generated encounters. 

 

Figure 6-7 Accident rate distribution for randomly generated encounters. 

By visually checking those encounters whose accident rate is over 0.85, a common situation is 

shown in Figure 6-8. Those high-accident-rate encounters found are a combination of the 

overtaking-overtaken form and the climbing-descending form, where one UAV (e.g. the cyan 

intruder) was descending, and the other (e.g. the yellow own-ship) was climbing and approaching 

the first one from the tail direction. 
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Figure 6-8 A high-accident-rate encounter found by the random search. 

B. Experiment 1.2: Evolutionary Search 

a. Setup 

The specific evolutionary search algorithm used in this experiment is a GA (see Figure 4-5 for 

the flow of GA). In order to keep the total number (i.e. 3,000) of encounters generated and 

evaluated in one search same as that of the random search, the population size was set to 100 and 

the number of generations was thus set to 30. Other parameters for GA are listed in Table 6-3. 

Table 6-3 GA parameters for Experiment 1.2. 

 Type Type-specific parameters 

Selection Tournament Selection tournament size = 2 

Crossover Uniform crossover per-gene crossover rate = 0.1 

Mutation Gaussian Mutation 
per-gene mutation rate = 0.4 

σ = 0.15 

 

A central problem of setting parameters for GA and many other evolutionary search algorithms 

includes the balance of exploration of new possibilities and exploitation of old certainties [126]. 

Usually, the selection procedure is thought to be very exploitative, while the mutation procedure 

is thought to be very explorative. The crossover procedure is somewhere in between since it will 

generate various individuals (i.e. exploration) by combining genes from the gene pool (i.e. 

exploitation) but it won’t create new genes to enlarge the gene pool.  



 

 

119 

 

The above parameters for GA were set by making use of the intuitions of exploration and 

exploitation but also by trial-and-error: some initial values for the parameters were set quite 

arbitrarily (but also within some reasonable ranges 41), and then the parameters were tuned 

according to the following rules: 

 if the search converges to some good results, keep the parameter settings;  

 if the search takes a long time to converge or cannot converge, increase the crossover rate, 

and/or decrease the mutation rate and/or the standard deviation value; 

 if the search converges too early, decrease the crossover rate, and/or increase the mutation 

rate and/or the standard deviation value; 

 if, when running several searches, they converge to some very inconsistent values, try 

increasing the population sizes and/or the generation size42; 

 finally, whenever the search reaches unfavourable results (e.g. those described in the 

above rules), it is worth trying increasing the population sizes and/or the generation size. 

A good evolutionary search should keep a good balance between exploration and exploitation, 

however, how to set the optimal values for the parameters is problem-specific43 and still an open 

research problem [127-129]. In this thesis, some good parameters (so that the results are good) 

are presented, but many other settings for the parameters may also get good (or even better) results. 

Further exploration on tuning optimal parameters is beyond the scope of this thesis since we have 

provided some good parameters with which we will show later that our proposed approach does 

better than its rivals. 

To use a GA, a good fitness function needs to be defined for the specific problem at hand. To 

provide heuristics for the GA to find high-accident-rate situations, a distance-based fitness 

function was defined: if a mid-air collision happened in a simulated encounter, a value of 1.0 

would be assigned; if no collision happened, the closer the two UAVs were, the larger the assigned 

value (up to 1.0). Since we have modelled environment disturbance by random noise, the 

simulations are not deterministic. It evaluates every encounter by running 100 simulations, and 

then calculates the average assigned value, which is the fitness for this encounter. Formally, the 

fitness function is: 

                                                      

41 For example, normally, the mutation rate is to be less than 0.5 and the standard deviation of the 

Gaussian noise is less than 0.2, so that the evolution process is not so radical that the algorithm 

never converges.  

42 This rule will be further explored in Experiment 2.1. 

43 It depends on the landscape of the search space, and there is no extant method for characterising 

landscapes in a way that tells you what search algorithms and parameters to use. 
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𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

100
∗ ∑

1.0

1 + 𝑑𝑘

100

𝑘=1

 
(6-1) 

where 𝑑𝑘 is the minimum distance44 between the two UAVs in the kth simulation run. If a mid-air 

collision happens, 𝑑𝑘 will be 0, and this encounter will get the maximum fitness value (1.0) for 

this simulation run. It is noted that this fitness function is very similar to that used in Chapter 4, 

and indeed, we used it because of the same reasons as discussed in Section 4.4.1.C. By defining 

this fitness function, the worse the ACAS XU behaves in an encounter, the higher fitness value 

the encounter will get. 

b. Results 

Five evolutionary searches were conducted, each with a different number as the seed for the 

random number generator. The time costs and the maximum accident rates found for the searches 

are shown in Table 6-4. The time for running each evolutionary search is about 1,000 seconds. 

The highest accident rate (0.97) was observed in the third search (with seed 567672542). Those 

highest accident rates found by the GA are all higher than those found by the random searches, 

and the time costs of GA searches are much lower than those of random searches45. Therefore, 

we can conclude that the evolutionary search (i.e. GA) is more effective and efficient than random 

search in finding high-accident-rate situations for ACAS XU. 

Table 6-4 Statistics of the evolutionary search for testing ACAS XU in Experiment 1.2. 

Seeds 324185792 54896327 567672542 588764357 884185771 

Time(sec) 1056 1002 918 945 976 

Max accident rate 0.94 0.92 0.97 0.92 0.95 

 

The accident rates for encounters evaluated in the third search are shown in Figure 6-9, and the 

learning curves (i.e. the plots of the maximum accident rates and the average accident rates over 

generations) is shown in Figure 6-10. The two figures show that over generations, the 

evolutionary search was moving to areas with increasingly higher accident rates.  

                                                      

44 See Figure 4-4 for the definition and illustration of this distance. 

45 This is due to the fact that the encounters searched by GA tend to have a high accident rate and 

once an accident happened in a simulation run, that run would be terminated. Whereas for random 

search, most of encounters are with very low accident rate and the simulation runs for them would 

only be terminated after a specified number of simulation steps (here, it was set to 60). 
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Figure 6-9 Accident rates for encounters generated by evolutionary search. 

 

Figure 6-10 Learning curve of the evolutionary search. 

The accident rates distribution is shown in Figure 6-11, which shows that even though a big 

number (507 + 44 + 39 + 6 = 596 out of 3,000) of encounters searched are with a very low accident 

rate (less than 0.1), more (53 + 149 + 166 + 122 + 386 + 390 + 478 = 1,744 out of 3,000) are with 

a relatively high accident rate (greater than 0.8). From this, on the one hand, it suggests that the 

ACAS XU was trying to avoid mid-air collisions, and indeed it was good (at least not bad). On 

the other hand, it suggests that the evolutionary search was guiding the simulations to more and 

more challenging situations for the ACAS XU. 
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Figure 6-11 Accident rate distribution for encounters generated by evolutionary search. 

By further scrutinizing those encounters with an extremely high accident rate (greater than or 

equal to 0.95) found by the GA searches, it was found that all of them are again the combination 

of the overtaking-overtaken form and the climbing-descending form, which are similar to those 

found by the random search. One of such encounter is shown in Figure 6-12, and occasionally the 

collision can be avoided as is shown in Figure 6-13.  

 

Figure 6-12 A high-accident-rate encounter found by the evolutionary search. 
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Figure 6-13 A successful collision avoidance in the high-accident-rate encounter shown in Figure 6-12. 

C. Experiment 1.3: Deterministic Global Search 

a. Setup 

Because of the stochastic property of evolutionary search, it cannot be guaranteed to find the 

global minimum/maximum. In this experiment, a deterministic global search algorithm named 

DIRECT (DIviding RECTangles) [125] was used to find the situation(s) with the globally 

maximum accident rate in the search space of all possible encounters.  

DIRECT was created to solve difficult global optimization problems with bound constraints and 

a real-valued objective function, and it will converge to the global minimum/ maximum value of 

the objective function when the objective function is continuous or at least continuous in the 

neighbourhood of the global optimum [125]. Formally, DIRECT deals with problems in the 

following form: 

 min 𝑓(𝑥) 𝑜𝑟 max 𝑓(𝑥) 

s. t.  𝑥𝐿  ≤ 𝑥 ≤ 𝑥𝑈 
(6-2) 

DIRECT requires no knowledge of the gradient (i.e. derivative) of the objective function. 

Therefore, it can be very useful when the objective function is a "black box" function or obtained 

through simulations. DIRECT is a sampling algorithm: the algorithm samples points in the search 

space, and uses the information it has obtained to decide where to search next.  

The strength of the DIRECT algorithm lies in the balanced effort it gives to local searches and 

global searches. It is also easy to use due to the few parameters it requires to run. Unfortunately, 
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to converge to the global minimum/ maximum, the objective function should be continuous or at 

least continuous in the neighbourhood of the global optimum [125], and in some difficult cases, 

it may require a large number of (or even exhaustive) searches over the domain [130].  

Only MATLAB code and FORTRAN code for the DIRECT algorithm are publicly available. To 

avoid introducing error in the re-implementation of the algorithm in Java, it was decided to use 

the available MATLAB code to guide the agent-based simulation, which was coded in Java. The 

simulation was packed as a .jar package and was treated as a black box by the DIRECT algorithm. 

The flow of the deterministic-global-search-based approach is shown in Figure 6-14. The 

DIRECT algorithm searched the space defined by the parameters that configure the possible 

encounters. For every searched point, the assignment of the parameters was passed to the .jar 

simulation. With the arguments passed in, the simulation (.jar package) generated and evaluated 

the corresponding encounter, and then returned the accident rate for that encounter. 

 

Figure 6-14 Deterministic global search flow. 

The MATLAB code for the DIRECT algorithm can be found from 

http://www4.ncsu.edu/~ctk/Finkel_Direct/. More information about DIRECT and the use of 

the MATLAB code can be found in [130]. The experiment was done on the same computer as 

before, and the Java heap size for MATLAB was set to 1024MB. 

b. Results 

Five deterministic global searches were conducted, each with a different number as the seed for 

the random number generator inside the .jar package. For each search, it generated and evaluated 

around463,000 encounters.  

Table 6-5 Statistics of the deterministic global search for testing ACAS XU in Experiment 1.3. 

Seeds 324185792 54896327 567672542 588764357 884185771 

Time (sec) 1407 1384 1356 1226 1372 

Max accident rate 0.97 0.95 0.96 0.98 0.96 

                                                      

46 DIRECT may exceed this value (3,000) if it is in the middle of an iteration when this budget 

has been exhausted. 

DIRECT
MATLAB

Simulation
.jar

http://www4.ncsu.edu/~ctk/Finkel_Direct/
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The time costs and the maximum accident rates found for all the searches are shown in Table 6-5. 

The time for running each search is about 1,300 seconds. However, these time costs are not 

directly comparable with those of the random search and the evolutionary search since they were 

run on different software platforms (MATLAB vs Eclipse). It is noted that most of the time cost 

was consumed by the simulations, rather than by the DIRECT algorithm itself. The same 

encounters searched and evaluated in one deterministic global search take about 1,250 seconds to 

run in MATLAB, while they take about 1,200 seconds to run in the same condition as the 

evolutionary search (i.e. on the Eclipse platform). Note that, in Experiment 1.2, it takes about 

1,000 seconds to run one evolutionary search. So, in this case, it takes a little longer to evaluate 

the encounters searched by the deterministic global search than to evaluate those searched by the 

evolutionary search. This may be because of the fact that, in order to guarantee global optimality, 

the deterministic global search spent more effort to do global searches than GA, and in doing this, 

many of the encounters searched were with a relatively lower accident rate. 

However, since the two searches were run on different software platforms, we cannot be confident 

that there is a real difference caused by the search algorithms. Nonetheless, we can at least 

conclude that the evolutionary search and the deterministic global search are comparable in terms 

of time efficiency. 

All the five searches found very high accident rates (>=0.95). The highest accident rate (0.98) 

was observed in the fourth search (with seed 588764357). It seems that the deterministic global 

search can indeed find extremely dangerous, if not the worst47, situations for the tested ACAS XU. 

Compared with evolutionary search conducted in Experiment 1.2, which found a highest accident 

rate of 0.97, the deterministic global search seems to be a little more competitive. Also, the results 

of the deterministic global search are more consistent than those of evolutionary search. This, on 

the one hand, resulted from the nature of evolutionary search, which is stochastic and prone to 

local minima, and on the other hand, suggests that there is a potential for tuning parameters to 

make GA get better results. 

                                                      

47 Because the 5 searches found 4 different maximum accident rates, it means that at least 3 of 

them are not the worst, and thus not the global maximum. This may be caused by the randomness 

of the simulations. 
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Figure 6-15 Accident rates for encounters generated by deterministic global search. 

The accident rates for encounters evaluated in the fourth search are shown in Figure 6-15. The 

figure shows that DIRECT was searching and focusing on areas with (steadily) increasing 

accident rates. The accident rates distribution is shown in Figure 6-16, which shows a similar 

distribution as that of the evolutionary search. 

 

Figure 6-16 Accident rate distribution for encounters generated by deterministic global search. 

By further scrutinizing the high-accident-rate (>=0.95) encounters found by the five searches, it 

was found that all of them are once again the combination of the overtaking-overtaken form and 

the climbing-descending form, which are similar to those found by the random search and the 

evolutionary search. One such encounter is shown in Figure 6-17. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
1

0
0

1
9

9
2

9
8

3
9

7
4

9
6

5
9

5
6

9
4

7
9

3
8

9
2

9
9

1
1

0
9

0
1

1
8

9
1

2
8

8
1

3
8

7
1

4
8

6
1

5
8

5
1

6
8

4
1

7
8

3
1

8
8

2
1

9
8

1
2

0
8

0
2

1
7

9
2

2
7

8
2

3
7

7
2

4
7

6
2

5
7

5
2

6
7

4
2

7
7

3
2

8
7

2
2

9
7

1
3

0
7

0

A
cc

id
en

t 
R

at
e

Encounter



 

 

127 

 

 

Figure 6-17 A high-accident-rate encounter found by the deterministic global search. 

From this experiment, we can conclude (1) that this type of encounter that combines the 

overtaking-overtaken form and the climbing-descending form is very likely 48  to be a very 

common challenging situation for the tested ACAS XU, and (2) that in this relatively easy case, 

the evolutionary search is a little less competitive than the deterministic global search in terms of 

effectiveness in identifying situations that can cause a very high accident rate for ACAS XU. 

 Experiment 2 

In Experiment 1, it has shown that the proposed evolutionary-search-based approach is obviously 

superior to random-search-based approach in terms of effectiveness and efficiency, and that in 

the relatively easy case, the proposed approach is a little less effective than the deterministic-

global-search-based approach. It has also found that a similar kind of encounter that combines the 

overtaking-overtaken form and the climbing-descending form is most likely to result in an 

extremely high accident rate for ACAS XU. By checking the logged parameter values for this type 

of encounter, we use the following criteria to identify them: 

 The difference between the own-ship’s ground speed and the intruder’s ground speed is 

small (less than 50), i.e. | Gso - Gsi | < 50; 

                                                      

48 Here, we cannot be certain because there is a possibility that the high accident rate resulted 

from implementation errors or simulation artefacts. Further investigation is needed to decide the 

real reason. However, since in the random searches, most simulated situations were with a very 

low accident rate, it seems the implemented ACASU and the simulation platform were functioning 

correctly.  
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 And one UAV is climbing while the other is descending, i.e. Vso * Vsi < 0; 

 And it is a type of overtaking-overtaken encounter with a small encounter angle (less than 

15o), i.e. |βi | < 15o. 

In Experiment 2, we exclude this kind of encounters from the search space and try to use the 

proposed approach and the deterministic-global-search-based approach to find other situations 

that can also result in a very high accident rate. Due to the fact that DIRECT was created to solve 

optimization problems with bound constraints (see equation (6-2)), to exclude the type of 

encounters found in Experiment 1, we simply set the accident rates (or the fitness values) of them 

to be 0. That is, when sampling or generating an encounter, if all the criteria identified above are 

satisfied, this encounter will be assigned an accident rate or a fitness value of 0 without even being 

evaluated in simulations. In this way, the search will keep away from these encounters. 

Because of the way we exclude the type of high-accident-rate situations already found in 

Experiment 1, the objective function now becomes (even) discontinuous49. Therefore, it might 

become more challenging for the searches in Experiment 2 to find other high-accident-rate 

situations. The purpose of Experiment 2 is to show how effective the proposed evolutionary-

search-based approach can be in finding counterexamples to support the validation of SAA 

algorithms (specifically, ACAS XU) in this more difficult case.  

A. Experiment 2.1: Evolutionary Search 

a. Setup 

GA was used as the evolutionary search algorithm. The fitness function, the selection method, 

and the parameters for the genetic operations (i.e. crossover and mutation) were the same as those 

of Experiment 1.2. 

In the beginning, we set the population size to 100, and set the number of generations of evolution 

to 900 as suggested by the MATLAB GA toolbox50. So, the total number of encounters generated 

and evaluated in one search is 90,000. We ran 5 searches with different seeds to avoid the bias of 

randomness. 

Since in Chapter 4 we have noticed that a larger population size can contribute to the faster 

convergence of GA to better and more consistent results, we also tried a population size of 300, 

500, 1000, and 2000. In addition, we reduced the number of encounters evaluated in every search 

                                                      

49 The objective function of Experiment 1 might also be discontinuous. 

50 The MATLAB GA toolbox suggests that the maximum number of generations can be set to 

100 times the number of the parameters, in this case 100*9 = 900. 
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from 90,000 to 60,000. So, the corresponding number of generations were 200, 120, 60, and 30. 

Again, we ran 5 searches for each population size. 

b. Results 

The time costs and the maximum accident rates found for the searches are shown in Table 6-6. 

The time for running 90,000 encounters is about 23,000 seconds, and the time costs for running 

60,000 encounters are about 15,000 seconds. Since 15,000 is about 2/3 of 23,000, here it is 

concluded that the difference between time costs of these different searches is not significant. 

However, when checking the rows showing “Max accident rate”, it is noticed that the searches 

with a population size of 500 or 1,000 can achieve the best and the most consistent results on the 

constraint that the total number of encounters evaluated is 60,000. These results are even much 

better than those achieved by the searches with a population size of 100 and a generation number 

of 900, where a total number of 90,000 encounters were evaluated. 

Table 6-6 Statistics of the evolutionary search for testing ACAS XU in Experiment 2.1. 

Seeds 324185792 54896327 567672542 588764357 884185771 

Ti
m

e 
(s

ec
) 

   

100*900 22372 24430 24052 24809 23326 

300*200 14927 14801 14530 15801 14974 

500*120 14890 14724 14982 15654 15828 

1000*60 15332 15483 15611 15964 15998 

2000*30 15742 15247 16469 15641 15095 

M
ax

 a
cc

id
en

t 
ra

te
 

   

100*900 0.88 0.95 0.93 0.93 0.90 

300*200 0.89 0.96 0.96 0.94 0.92 

500*120 0.96 0.97 0.97 0.98 0.98 

1000*60 0.98 0.97 0.97 0.98 0.99 

2000*30 0.96 0.97 0.94 0.97 0.97 

 
The learning curves (i.e. plots of maximum accident rates and average accident rates over 

generations) for searches with a population size of 1,000 and 2,000 are shown in Figure 6-18 and 

Figure 6-19 respectively. Figure 6-18 shows that the searches with a population size of 1,000 all 

reached a near plateau after 45 generations of evolution, while the searches with a population size 

of 2,000 had not yet converged in 30 generations as shown in Figure 6-19. From these figures and 

Table 6-6, it is noticed that, if the total number of sample points in a GA search is fixed, a properly 

larger population size can contribute to the faster convergence of GA to better and more consistent 

results. This finding is in accordance with that found in Chapter 4. In this case, 500 and 1,000 

were found to be good choices for the population size. However, 2,000 is too large. 
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Figure 6-18 Learning curves for GA with a population size of 1000. 

 

Figure 6-19 Learning curves for GA with a population size of 2000. 

A typical situation that can result in an extremely high accident rate is shown in Figure 6-20. As 

can be seen from the “Front View”, this situation is a form of climbing-descending encounter, 

and as can be seen from the “Top View”, this situation is a form of crossing encounter, with an 

encounter angle of a little greater than 15o. In fact, this encounter type is very similar to that found 

in Experiment 1, and it satisfies the first two conditions presented before (on Page 127), but it 

violates the third condition slightly. 
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Front View 

 

Top View 

 

 Side View 

Figure 6-20 A typical high-accident-rate situation found in Experiment 2.1. 

B. Experiment 2.2: Deterministic Global Search 

a. Setup 

The setup for this experiment is the same as that of Experiment 1.3, except that we exclude the 

high-accident-rate encounters already found by setting the accident rate of them to be 0 and that 

the number of encounters evaluated in a search is set to 60,000. However, DIRECT may exceed 

this number of evaluations (i.e. 60,000) if it is in the middle of an iteration when this budget has 

been exhausted. 

b. Results 

The numbers of encounters evaluated, the time costs, and the maximum accident rates found for 

the searches are shown in Table 6-7. The time cost for running a deterministic global search for 

evaluating 60,000 sample points (i.e. encounter) is about 24,000 seconds. This is much higher 

than that with evolutionary search, which is about 15,000 seconds. The highest accident rate 
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(0.88) was observed in the first, the third, and the fifth search, but it lower than those found by 

the evolutionary search. 

Table 6-7 Statistics of the deterministic global search for testing ACAS XU in Experiment 2.2. 

Seeds 324185792 54896327 567672542 588764357 884185771 

No. of evaluations 122577 91157 64915 292691 105143 

Time (sec) 48072 36184 29426 115042 40276 

Max accident rate 0.88 0.87 0.88 0.84 0.88 

 

The plots for accident rates of the searches are shown in Figure 6-21. This figure shows that all 

the searches got stuck at accident rates of equal or lower than 0.88 after searching and evaluating 

20,000 encounters. It is noted that the search with seed 588764357 sampled and evaluated 292691 

encounters, which is far larger than 60,000, but the maximum accident rate it found is only 0.84. 

This clearly indicates that the search was stuck at a sub- optimum. 

From Table 6-7 and Figure 6-21, it is noticed that the deterministic global searches can only find 

situations with a highest accident rate of 0.88 and the time cost is much higher. So, in this case, 

the deterministic global search is less effective and efficient than the evolutionary search. 

 

Figure 6-21 Accident rates for searches with the DIRECT algorithm. 

 Discussion 

In Experiment 1, we did not exert any condition to the search problem. The proposed 

evolutionary-search-based approach can find situations with a very high accident rate more 
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effectively and efficiently than the random search. The key difference lies in the evolutionary 

search’s use of meta-heuristics, with which it actively and adaptively searches for such rare 

challenging situations. Both the evolutionary-search-based approach and the deterministic-

global-search-based approach had found situations with very high accident rates (>=0.95). 

However, due to the nature of deterministic global search and the fact that it spends balanced 

effort on local searches and global searches, in this relatively easy case, the proposed 

evolutionary-search-based approach is a little less competitive than the deterministic-global-

search-based approach in terms of effectiveness. 

In Experiment 2, we excluded 51  the type of very challenging situations already found in 

Experiment 1, and used the proposed approach and the deterministic-global-search-based 

approach to find new high-accident-rate situations. The results show that in this case, however, 

the proposed evolutionary-search-based approach is more effective and efficient. This is because, 

with the exerted condition (i.e. the exclusion of situations already found by setting the values of 

the objective function in those situations to 0), the objective function now becomes highly 

discontinuous. As a result, the deterministic global search has difficulty in finding the global 

optimum. Whereas, the evolutionary search can still find some very good results, especially when 

the population size of GA is set to some properly larger values. 

Of all the three types of searches, similar encounters that combine the overtaking-overtaken form 

and the climbing-descending form were found to be most likely to result in an extremely high 

accident rate. This may be an indicator that this type of encounter is really a very common 

challenging situation for the tested ACAS XU.  

Considering the overall validation process, this type of high-accident-rate situations need to be 

further investigated to decide whether they are because of true failures of the SAA algorithm, 

implementation errors of the algorithm, or simulation artefacts. In the case of this chapter, the 

ACAS XU algorithm is very complex, so it is not easy to distinguish the true source of these 

counterexamples. However, since we have tried to make the implementation as faithful as possible 

to the ACAS XU algorithm presented in [5, 94] (mainly by code walkthrough and functional 

testing), and considering the fact that our implementation have passed all the tests on common 

encounter situations in our simulation environment (see, for example, Figure 6-4 and Figure 6-5), 

it is very likely that there are limitations in the ACAS XU algorithm itself (but we cannot be certain 

about this given the resources available to this thesis project). 

                                                      

51 It is noted that this exclusion of challenging situations (i.e. counterexamples) already found is 

a very realistic requirement, especially when doing bug hunting. 
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Reasons for the high accident rate in such situations need further investigation, which may include 

scrutinizing the relevant items in the look-up table. One possibility might be that since the relative 

speed is very small in the overtaking-overtaken encounter, the ACAS XU logic thinks the collision 

risk is low, and does not emit collision avoidance commands even when the two UAVs are very 

close. However, if then there is a small disturbance making the collision risk become high, it may 

be too late for the two UAVs to avoid a collision, since they are already in very close proximity. 

The evolutionary-search-based approach is probably most valuable in the early stages of the UAV 

collision avoidance algorithm’s development. It can quickly find challenging situations for a 

collision avoidance algorithm, such that the algorithm can be improved. One weakness of the 

approach is that there is no way to assign statistical confidence to the results — it is effective at 

fault-finding, but not at providing confirmatory evidence of fault-freeness. In contrast, 

deterministic-global-search-based approaches (if the objective function is continuous or at least 

continuous in the neighbourhood of the global optimum) and Monte-Carlo approaches (if there is 

a statistically representative aircraft encounter model) can provide such confidence — see, for 

example, the work of Stroeve et al. as discussed in [131]. In practice, these techniques may thus 

prove complementary, i.e. using the evolutionary-search-based approach at the development 

iterations of the algorithms, and using deterministic-global-search-based approaches or Monte-

Carlo approaches at the later stages (e.g. certification preparation and acceptance testing). 

Some limitations of the work presented in this chapter are:  

 The evolutionary-search-based approach (also the random search and the deterministic 

global search) only directly identifies discrete situations (points in the search space) that 

show problems. It might be possible to extend the approach to find areas of the search 

space that show certain properties (e.g. having an extremely high accident rate) instead. 

Data mining techniques, such as clustering [132], could potentially be used to analyse the 

logged data to find such areas; 

 More work is needed to evaluate the real value of the challenging situations (i.e. the high-

accident-rate encounters) identified by the approaches. However, this may require 

feedback from the ACAS XU developers. 

6.6 Summary and Conclusions 

In this chapter, the proposed evolutionary-search-based approach was applied to support the 

validation process of ACAS XU, an industry-level collision avoidance algorithm for UAVs. It 

introduced the model-based optimization approach adopted to develop ACAS XU, and analysed 

the challenges posed by the new approach to safety assurance, particularly to system validation. 

Experiments were conducted to evaluate the proposed approach by comparing it with a random-
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search-based approach and a deterministic-global-search-based approach in finding high-

accident-rate situations for ACAS XU.  

The results show that the proposed evolutionary-search-based approach can find the high-

accident-rate encounters more effectively and efficiently than the random-search-based approach. 

And even though the proposed evolutionary-search-based approach is a little less competitive 

than the deterministic-global-search-based approach in terms of effectiveness in relatively easy 

cases, it is more effective and efficient in more difficult cases, especially when the objective 

function becomes highly discontinuous. 

Through comparisons, it has also shown how the proposed evolutionary-search-based approach 

can be used effectively for our purpose. Particularly, through empirical comparisons, it has found 

that a properly larger population size can contribute to the faster convergence of GA to better and 

more consistent results. 

Of all the high-accident-rate situations found by the experimented approaches, a class of very 

challenging encounters that combine the overtaking-overtaken form and the climbing-descending 

form are most prominent. These challenging situations may be further analysed to identify the 

limitations of the ACAS XU algorithm and to improve it. Therefore, the proposed evolutionary-

search-based approach has the potential to offer an effective and efficient means to supporting the 

validation, or at least determining some limits, of collision avoidance algorithms. 
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 Application to a Conflict Resolution 

Algorithm 

7.1 Introduction 

Both Chapter 4 and Chapter 6 use collision avoidance algorithms as case studies. In this chapter, 

the proposed approach is applied to test a multi-UAV conflict resolution algorithm, specifically, 

the widely-cited open-source ORCA-3D (Optimal Reciprocal Collision Avoidance in 3-D) 

algorithm. Even though, as its name suggests, ORCA-3D is originally a multi-agent collision 

avoidance algorithm, it can also be used for multi-UAV conflict resolution by enlarging the 

collision volume to the safe separation volume.  

To test ORCA-3D for conflict resolution, two requirements were identified. They are: (1) to find 

encounters where, despite the help of the conflict resolution algorithm, UAVs still experience 

violations of safe separation; (2) the encounters found should also be simple so that they are very 

likely to happen in the real-world environment. The problem was thus formulated as a multi-

objective search problem.  

By augmenting the proposed approach to accommodate multi-objective search, it was applied to 

identify safety incidents satisfying the two requirements for ORCA-3D. As a comparison, a 

plausible random-search-based approach was also used to do the same job. The two methods’ 

performance was compared, and the results show that the proposed approach can find the required 

encounters more effectively and efficiently than random search. The identified safety incidents 

are then the starting points for understanding limitations of the conflict resolution algorithm. 

The major contributions in this chapter are: 

1. Formulated the problem of identifying challenging situations to support the validation of 

UAV conflict resolution algorithms as a multi-objective search problem, and used 

evolutionary search to solve it; 

2. Demonstrated the use of the proposed approach to identify challenging situations for a 

UAV conflict resolution algorithm; 

3. Showed the effectiveness and efficiency of the proposed approach by comparing it with 

a random-search-based approach. 
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7.2 SAA Algorithm under Test: ORCA-3D 

ORCA-3D [11] is a cooperative collision avoidance algorithm for multi-agent systems. The 

ORCA-3D algorithm is an improvement of the Collision Cone approach [45] (or the similar 

Velocity Obstacle approach [133], see Section 2.1.3A.a), specifically, it avoids the oscillation 

phenomenon often exhibited in Collision Cone applications. Here, ORCA-3D is used for UAV 

conflict resolution — to do this, it enlarges the collision volume to the safe separation volume 

(see Section 2.1). 

As its name suggests, ORCA-3D works in 3-D space, but to simplify the explanation here, the 

discussion will use only two dimensions. Assuming A and B are two agents moving in a 2-D 

plane. Let PA, VA, and rA denote the current position, velocity vector, and radius of agent A, and 

let PB, VB, and rB be the position, velocity vector and radius of agent B, as is shown in Figure 

7-1(a). We define the Collision Cone, which is written as CCA|B, as the set of colliding relative 

velocities (Vrel) between A and B. If A and B maintain a relative velocity in CCA|B, a collision 

will happen at some future moment, say t. Formally, CCA|B is defined by equation (7-1): 

 𝐂𝐂𝑨|𝑩 = {𝑽𝒓𝒆𝒍|∃𝑡 > 0 ∶  𝑽𝒓𝒆𝒍 ∗ 𝑡 ∈ 𝐷(𝑷𝑩 − 𝑷𝑨, 𝒓𝑨 + 𝒓𝑩)} 
(7-1) 

Where the notation D(x, r) represents a disc with centre x and radius r. A geometric interpretation 

of CCA|B is shown in Figure 7-1(b).  

rB

rA

y

x

B

A

PB

PA

y

x

CCA|B

O

(a) (b)

PB - PA
rA + rB

 

Figure 7-1 Geometrical illustration of Collision Cone in 2-D. 

It follows that if the two agents choose a relative velocity outside CCA|B, then a collision will not 

occur in a time horizon t. For a decentralized system, this can be achieved in one of two 

approaches: (1) one of the agents chooses a new velocity vector while assuming the other will 
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maintain its old velocity vector, or (2) the two agents cooperatively choose new velocity vectors. 

In either approach, the new relative velocity should not be inside CCA|B. The original Collision 

Cone approach uses the first approach, and it sometimes results in oscillations [46], since the 

other agent may also choose a new velocity vector instead of maintaining its old one, resulting in 

a new conflict situation.  

The ORCA approach uses approach (2) — given a minimum change for the relative velocity to 

be outside of CCA|B denoted by u, each agent is required to take at least half of the responsibility 

to make this change happen. So, agent A should change its velocity by at least 0.5u such that the 

end point of its velocity vector should fall in the half plane divided by a line (L1) through VA + 

0.5u perpendicular to u, as is shown in Figure 7-2(a). 

This provides one constraint for A to choose its new velocity.  
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Figure 7-2 (a) two-agent ORCA. (b) Multi-agent ORCA. 

If there is more than one agent for A to avoid, each agent will exert a constraint for A, and the 

new velocity vector A chooses should satisfy all the constraints. The new velocity vector can be 

computed efficiently by using linear programming since the end point of the new velocity vector 

should fall inside the convex region surrounded by the lines (L1, L2, L3 ...) denoting the half-

planes. See Figure 7-2(b) for an illustration. 

If we extend the above algorithm to three dimensions, we have ORCA-3D (the use of the term 

“cone” above illustrates how the algorithm is extended).  

For an agent to use the ORCA-3D approach, the only information it needs about the other agents 

is their current relative positions, relative velocities, and shapes. Here it is assumed that each UAV 
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is fitted with ADS-B or its equivalent to broadcast the information to its peer UAVs. It also 

assumes that the noise to this information follows normal distributions.  

There is an open-source C++ implementation52 of ORCA-3D, but we re-implemented it in Java 

for easy integration with the other parts of the testing framework. The re-implementation can be 

found from https://github.com/xueyizou/ORCA_3D_UAV.git. Because of the close similarity 

between C++ and Java, the re-implementation work is relatively easy, and the Java 

implementation should be very faithful to the original. Indeed, by running the same set of 

examples, the two got highly similar results (with some minor differences in float point values). 

7.3 Problem Analysis 

In this chapter, we focus on small civilian UAVs, and a typical operational scenario is using UAVs 

to deliver parcels from a distribution centre to customers’ houses53. It is therefore only concerned 

with conflicts between UAVs, not with conflicts between UAVs and commercial manned aircraft. 

In the UAV collision avoidance case, we define the consequence of the failure of collision 

avoidance as an accident. To distinguish, in the conflict resolution case, we define the 

consequence of the failure of conflict resolution as an incident. An incident is thus the violation 

of safe separation. It is noted that there is no well-accepted definition of what is a safe separation 

and several metrics exist, which include distance-based metrics, time-based metrics, and risk-

based metrics, etc. The former two metrics concern the distance between two UAVs or the time 

left for two UAVs to collide. Risk-based metrics, e.g. the one proposed in [134], defines a safe 

separation as a relative state between UAVs where the risk of collision is lower than an 

unacceptable level. 

In this chapter, we adopt a simple distance-based metric — if the horizontal distance and the 

vertical distance between two UAVs are smaller than some threshold values at the same time, 

safe separation is violated, and an incident occurs. These two threshold values are both set to be 

20m, which is reasonable given the properties of the UAVs studied including the operational 

scenario, slow speed, small size, and high manoeuvrability. However, it does not claim that this 

creates an acceptable level of collision risk for a comparable real application. The proposed 

approach does not, of course, depend on the exact values chosen. 

To support the validation of multi-UAV conflict resolution algorithms, we want to find 

counterexamples. That is, we want to find encounters where, (1) despite the help of the conflict 

                                                      

52 Original ORCA-3D can be found from http://gamma.cs.unc.edu/RVO2/downloads/.  

53 At the time of writing Amazon has just announced plans to test exactly this sort of service.  

https://github.com/superxueyizou/ORCA_3D_UAV.git
http://gamma.cs.unc.edu/RVO2/downloads/
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resolution algorithms, UAVs still experience incidents; and (2) The encounters should also be 

simple so that they are very likely to happen in the real-world environment. We define the 

cardinality of an encounter to be the number of UAVs involved in this encounter. It is assumed 

that encounters with lower cardinality are more likely to happen in the real-world environment (it 

is recognized that other factors could be considered, but for the sake of this thesis, simply meeting 

the low-cardinality requirement is an adequate challenge). 

Obviously, the problem can be solved by first randomly generating lots (millions, perhaps) of 

encounters with different cardinalities, and then running simulations to evaluate these encounters. 

If an encounter leads to an incident, this encounter will be recorded. After gathering enough 

(thousands, perhaps) of these encounters, we can select those encounters with the lowest 

cardinality (the simplest). They constitute simple counterexamples to any claim that the conflict 

resolution algorithm is perfect, and they can be used as the starting point for further analysis 

(maybe manually) of the limitations of the conflict resolution algorithm. In this chapter, this 

approach is called as a random-search-based approach. 

A primary drawback of this random-search-based approach is that, to gather enough encounters 

that will lead to incidents, millions of random encounters may need to be generated and evaluated 

(if the conflict resolution algorithm is moderately good). The cost of running simulations to 

evaluate such a huge number of encounters is considerable. 

7.4 Solution: Evolutionary Multi-Objective Search 

In the hope of reducing the number of simulations it needs to run, the problem of identifying 

challenging situations for the validation of UAV conflict resolution algorithms is formulated as a 

multi-objective search problem, where we actively search for encounters satisfying the following 

two objectives:  

1. Be able to lead to an incident;  

2. Have a low cardinality. 

The above two objectives are equally important to our problem. An encounter that can lead to an 

incident but is so complex that it will rarely, if ever, happen may not be insightful for analysing 

the conflict resolution algorithm. Similarly, a simple encounter that causes no problem for the 

tested algorithm is useless for our purposes. These two objectives are in opposition, because the 

fewer UAVs involved in an encounter, the less likely it is to lead to an incident. The two objectives 

are also incomparable — we cannot merge them into a single objective by allocating different 

weights to each. This problem, therefore, cannot be solved using a single objective search 

approach.  
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An encounter that satisfies the two objectives is a candidate solution to the multi-objective search 

problem. Like previous chapters, agent-based simulations are used to evaluate the encounters with 

respect to achieving the two objectives.  

Because encounters are evaluated by simulations, the multi-objective search problem cannot be 

fully represented in mathematical formulations. Thus, classical mathematical optimization 

techniques, such as Newton’s method and its many relatives and variants, cannot be used to solve 

the problem because there is no way to get the derivatives. Consequently, we treat the simulation 

as a black-box, and adopt a population-based evolutionary search method to avoid the use of 

derivatives. Specifically, we combine agent-based simulation and evolutionary multi-objective 

search (specifically, NSGA-II [28]) to evolve encounters adaptively and to find encounters that 

satisfy the two objectives. The resultant method is a testing framework that augmented the 

proposed approach developed through the previous chapters. It is shown schematically in Figure 

7-3. 

 

Figure 7-3 Overview of the testing method that combines agent-based simulation and multi-objective 

search. 

In this testing framework, encounters (candidate solutions) are treated as individuals that evolve 

by the law of “survival of the fittest”, where fitness is determined based on how well they meet 

the two objectives. As noted above, simulation is treated as a black-box: its inputs are various 

encounters, and its outputs are quantitative measurements of the extent of the encounters to 

challenge the conflict resolution algorithm (fitness).  
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In Figure 7-3, P is the population holding the individuals of a generation, and it is initialized 

randomly. A is an archive to hold the “best” individuals (“elites”) found through the history of 

the evolution, and it is initialized to be empty. The representation for encounters has been 

described in Section 5.2, and it is encoded by the genomes of individuals — each individual thus 

describes a (multi-intruder) encounter. Individuals in P and A are evaluated with respect to the 

two objectives using agent-based simulations. According to the evaluation results, individuals are 

ranked (using Non-dominated Sort and Sparsity Sort, explained later in Section 7.5.2), and good 

individuals (those that have high rankings) are used to update the old elites in A. These good 

individuals also compete to be selected to breed the new population through genetic operators 

(genome crossover, gene removal, and gene mutation, see Section 7.5.2). The search process 

repeats until the termination condition becomes true. F1 is the Pareto Front, which is a collection 

of the best individuals. The output of the process is the individuals (i.e. encounters that satisfy the 

two objectives) in F1. 

7.5 Experiments 

This section reports the use of the random-search-based approach described in Section 7.3 and 

the evolutionary multi-objective search approach to find challenging situations satisfying the two 

objectives identified in Section 7.4 for supporting the validation of ORCA-3D.  

Some of the important performance limitations for the UAVs are listed in Table 7-1, which are 

based on those of the Parrot AR.Drone and the DJI Phantom UAVs (these UAVs are about the 

same size as Amazon’s delivery drones).  

Table 7-1 The UAV performance limits. 

 

The environment in the simulations is a 3-D cuboid flight area (limited to 1000m×1000m×300m 

in length, width, and height respectively). The horizontal area (1000m×1000m) is arbitrary but 

adequate for the analysis we are carrying out given the limited speeds of the UAVs. The vertical 

limit (300m) is based on some proposed regulations for commercial UAVs, e.g. those in [135] — 

we assume they are only permitted to fly below 300 meters in the airspace.  

The initial position of the own-ship is fixed at the middle left of the simulated flight space for the 

convenience of visualization. Its initial velocity vector is specified by a ground speed of 5m/s 

(which is a very normal speed for the Parrot AR.Drone), a bearing directly to the right (0o), and a 

Min Ground Speed 0m/s Max Ground Speed 10m/s 

Min Vertical Speed -10m/s Max Vertical Speed 2m/s 
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zero vertical speed. Its size is specified by a sphere with a radius of 10m (half of the distance of 

safe separation). It is noted that many conflict resolution algorithms are based on relative positions 

and velocities. Therefore, fixing the initial state of the own-ship will usually not do much harm 

to the simulation.  

After the initial state of the own-ship is fixed, various intruders can be generated using the 

“scenario generator” of the open-source tool presented in Chapter 5. For example, if we pass the 

two groups of parameters (see Section 5.2 for the meaning of these parameters) shown in Table 

7-2 to the “scenario generator”, a multi-UAV encounter will be generated, and the simulation of 

it (with ORCA-3D in action) is shown in Figure 7-4. 

Table 7-2 Parameters for the generation of an example multi-UAV encounter. 

parameters T (sec) R (m) θ (deg) Y (m) Gsi (m/s) βi (deg) Vsi (m/s) 

intruder 1 20 5 90 17 7 131 -2 

intruder 2 18 0 90 8 10 0 1 

 

 

Figure 7-4 Simulation of a multi-UAV encounter generated by the parameters in Table 7-2. 

The first row of arguments specifies a left-crossing intruder (intruder 1) with a crossing angle of 

131o, and the second row of arguments specifies an overtaking intruder (intruder 2) as its bearing 

is 0o and its ground speed is faster than the own-ship's (10m/s > 5m/s). With the help of ORCA-

3D, the safe separation was achieved. Otherwise the “incident detector” would have detected the 

incident and shown it visually. 
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All the experiments54 described below were done on a PC with an Intel Core i3-2350M 2.30GHz 

CPU and the 64-bit Ubuntu 14.04 Operating System. The experiments were run using JavaSE-

1.7 with an initial memory of 512MB and a maximum memory of 1024MB for the JVM. 

 Experiment 1: Random Search 

A. Setup 

In the random search method, a stream of encounters were generated using a simple random 

approach, only terminating when a certain (large) number of encounters have been generated and 

evaluated, or a certain (more modest) number of encounters that lead to incidents have been found. 

Assuming this process has indeed generated some encounters that lead to incidents (thus meeting 

the first objective given in Section 7.4), it then selects a subset of those that have the lowest 

cardinalities (thus meeting the second objective). 

For the first step, it uses a process that repeats a simple step a large number of times —selecting 

the cardinality of the encounter from a uniform probability distribution, and generating a multi-

UAV encounter with this cardinality by uniformly selecting parameter values from their bounds, 

then running a simulation to decide whether or not it can lead to an incident; if an incident happens, 

this encounter is recorded. The bounding values for the parameters are shown in Table 7-3 (see 

Section 5.2 for the meaning of these parameters). The cardinality of the generated encounters is 

between 2 to 11 — the upper limit was set at a value we thought should be sufficient to “stress” 

the ORCA-3D algorithm.  

Table 7-3 Bounding values for the parameters for testing ORCA-3D. 

 

As noted above, this process terminates when a certain (large) number of encounters have been 

generated and evaluated, or enough encounters that lead to incidents have been found. In this case, 

the limits were set to 100,000 encounters overall and 500 with incidents.  

                                                      

54 Java Code for experiments: https://github.com/xueyizou/ORCA-3D-Testing.git. 

parameters T (sec) R (m) θ (deg) Y (m) Gsi (m/s) βi (deg) Vsi (m/s) 

min 10 0 -180 -20 2 -180 -2 

max 30 20 180 20 10 180 2 

https://github.com/superxueyizou/ORCA-3D-Testing.git
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A randomly generated encounter and the associated simulation run is visualized in Figure 7-5. 

There are eight intruders. In this case, with the help of the ORCA-3D, every UAV reached its 

target safely. 

 

Figure 7-5 A simulated random encounter of 9 UAVs. No incident occurred. 

B. Results 

Five trials were conducted, each with a different number as the seed for the random number 

generator. In each trial, 100,000 encounters were generated and evaluated. So, in all, 500,000 

encounters were simulated and evaluated. However, no incidents occurred. The time it took for 

each trial is shown in Table 7-4. It can be noted that these times are not huge — even using a 

single ordinary PC. 

Table 7-4 Time costs of random searches for testing ORCA-3D. 

 

Since the random search could not find enough encounters that can lead to an incident (indeed, it 

found none at all), we could not proceed with the second step. The random-search-based approach 

failed, at least in this case. Since no incidents occurred in these 500,000 encounters, it appears 

that the ORCA-3D algorithm is very likely to be capable of handling more than 11 UAVs. 

Seeds 97846789 194679667 249719121 567971664 946163716 

Time (sec) 412 410 410 397 395 
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 Experiment 2: Evolutionary Multi-Objective Search 

A. Setup 

In the evolutionary multi-objective search approach, the NSGA-II [105], which is a specific form 

of GA for multi-objective search, were used to search for solutions satisfying the two objectives 

given in Section 7.4. Referring to Figure 7-3, the NSGA-II procedure is as follows.  

1. Set up a population (P) to hold encounters as individuals in a generation. The size of P is 

n, and the initial individuals are randomly generated; 

2. Set up an Archive (A) to hold the best individuals (elites) found through the history of the 

evolution. The size of A is also n, and A is initialized to be empty; 

3. Run simulations to evaluate individuals in P and A with respect to the two objectives; 

4. Rank the individuals in P and A according to the evaluation result. Store the best 

individuals in a collection F1 (F1 for “rank 1 Pareto Front” — see Subsection c, below, for 

an explanation); 

5. Select from the individuals the best n individuals to update the old elites in A; 

6. Run tournament selection with replacement to select n individuals from the new elites in 

A; 

7. Breed a new population from the selected individuals through genetic operators (i.e. 

genome crossover, gene removal, and gene mutation) and update the old population P; 

8. When (1) an ideal individual is found55, or (2) the allotted time is over, or (3) a certain 

number of generations have been evaluated, terminate the process and output the 

individuals in F1. Otherwise, repeat steps 3-8.  

The evolutionary multi-objective search was implemented by using ECJ, with some 

modifications56 to the ECJ’s routine in order to fit the purpose of this thesis. In the following 

subsections, the design of the multi-objective search technique is detailed. 

a. Encoding Encounters with Genomes 

A multi-UAV encounter is a candidate solution to the multi-objective search problem, and it is 

represented in the search as an individual. Each individual has one and only one genome, which 

is a variable-length collection of genes. Each gene has seven slots to store the seven arguments 

(see Section 5.2) for generating an intruder. The genome of an individual thus encodes a multi-

                                                      

55 An ideal individual is unlikely to be found in our case due to the opposing nature of the two 

objectives. 

56 Particularly, the gene removal was added to occasionally remove some genes from the genome. 
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UAV encounter. The evolution of the individuals is thus the improvement of the multi-UAV 

encounters so that they (are more likely to) satisfy the two objectives. This relationship is shown 

in Figure 7-6. 

 

Figure 7-6 Encoding multi-UAV encounters in genomes for the use of evolutionary multi-objective 

search. 

b. Objectives 

To quantify the values of the two objectives in our problem (see Section 7.4), considering the fact 

that ECJ requires a fitness function whose range is [0,1] with greater fitness values for fitter 

individuals, we formally define the two objectives into the following fitness functions: 

 
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1 =

1.0

1 + 𝑝𝑚𝑖𝑛
 (7-2) 

 
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 2 = 1.0 −

|E| − 2

𝐶𝑚𝑎𝑥 − 2
 (7-3) 

Equation (7-2) is Koza-style [120] fitness function, where 𝑝𝑚𝑖𝑛  is the scalar value of the 

minimum proximity experienced by the own-ship with any intruders in a simulation run. It is 

defined by equation (7-4): 

 𝑝𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑠𝜖[0,𝑆]{𝑚𝑖𝑛𝑘𝜖[1,|𝐸|−1]{𝑝𝑘𝑠
}} 

(7-4) 

Where S is the number of the total simulation steps, |E| is the cardinality of an encounter E, 𝑝𝑘𝑠
 

is the scalar value of the proximity between the own-ship and the 𝑘𝑡ℎ intruder at the simulation 

step s; the value of proximity between two UAVs is defined by equation (7-5): 

 𝑝 = 𝑚𝑎𝑥{0, 𝑑𝑖𝑠𝑡𝐻 − 𝐻} + 𝑚𝑎𝑥{0, 𝑑𝑖𝑠𝑡𝑉 − 𝑉} 
(7-5) 

Where 𝑑𝑖𝑠𝑡𝐻 and 𝑑𝑖𝑠𝑡𝑉 are respectively the horizontal distance and the vertical distance between 

the centre points of the two UAVs, 𝐻 and 𝑉 are the required horizontal and vertical distance of 

safe separation (both are 20m in this case). 



 

 

149 

 

In equation (7-3), 𝐶𝑚𝑎𝑥 is the maximum cardinality allowed in the search problem, and in this 

case, it is 11 (i.e. at most 10 intruders are allowed in an encounter57. The -2 is because there should 

always be at least two UAVs — the own-ship and at least one intruder. 

The definition of the objectives is such that larger values are better. For objective 1, if there is an 

incident, 𝑝𝑚𝑖𝑛 will be 0, and it will get its largest value, 1.0. For objective 2, if there is only one 

intruder (the cardinality is 2), its value is 1.0, which is the largest possible value. 

c. Selection of the Fittest Individuals 

In multi-objective search, it is often the case that there is no optimal solution that achieves all 

objectives simultaneously. Instead, there is a set of “best options” which are equally good. To 

find these best options, we need to define what it means for one solution to be “better” than 

another. Suppose there are only two candidate solutions, S1 and S2. S1 is said to be better than S2 

if and only is S1 is at least as good as S2 in all objectives and is better than S2 in at least one 

objective. If this is the case, S1 is said to Pareto dominate S2. Neither S1 nor S2 Pareto dominates 

the other if they are equally good in all objectives, or if S1 is better in some objectives while S2 is 

better in others. In those cases, both S1 and S2 are best options, and we say they are on the Pareto 

Front of the space of candidate solutions. The main target of the multi-objective search is to find 

those solutions at the Pareto Front. 

For a population of individuals (i.e. candidate solutions), we can compute the Pareto Front in the 

following way: go through the population and add an individual to the front if it is not Pareto 

dominated by any individual currently in the Pareto Front, and remove individuals from the front 

if they are dominated by this new individual [104]. 

The individuals in the population can be grouped according to how close an individual is to the 

Pareto Front. To do this, we assign a rank to each individual. Individuals presently in the Pareto 

Front are in rank 1. If we remove the rank 1 individuals from the population and compute the new 

Pareto Front, the individuals in the new front are assigned a rank of 2. Likewise for rank 3, and 

so on until no individual remains. This is the mechanism for the Non-dominated Sort, which is 

used by the NSGA-II as the prime criterion to rank individuals. Individuals with rank r are stored 

in Fr and individuals with lower ranks are first selected as elites to form the Archive (A). For full 

details, readers are referred to [104].  

Considering the second criterion, if there are too many individuals with the same rank competing 

to be selected as elites (since the size of the A is fixed at n), those evenly spread across that front 

                                                      

57 This number was used for the work described here, but it can be changed to a bigger number if 

the search cannot find any encounters satisfying the two objectives in reasonable time. 
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would be chosen. The NSGA-II achieves this purpose by defining the sparsity for an individual. 

An individual is of high sparsity if the closest individuals on either side of it on the front are not 

too close to it. For the definition and computation of sparsity and the Sparsity Sort, readers are 

referred to [104].  

After the new elites are selected, they compete to be selected as the fittest individuals to breed the 

new population. The process is a Tournament Selection (see Section 4.3.B), where individuals 

are randomly selected with replacement to compete with the champion so far. The criteria for the 

competition are first based on rank and then on sparsity. 

d. Genetic Operators 

After selecting the fittest individuals, their genomes are modified randomly (“tweaked”) in the 

hope of generating better individuals. As with biological evolution, not all such operations are 

beneficial, but some are, and those are the ones that will most likely survive into later generations. 

Three genetic operators were used to tweak the genome: genome crossover, gene removal, and 

gene mutation.  

Genome crossover mixes and matches parts of two old genomes to form new genomes. The One-

point Crossover approach was adopted that randomly selects a position for crossover and swaps 

the genes before that position, as is illustrated in Figure 4-6 (b).  

Gene removal randomly selects one gene in the genome and removes it. If the length of the 

genome is only one, then it does nothing. It is a customized additional genetic operator to the 

standard NSGA-II operators. We use it to reduce the number of intruders involved in an encounter, 

thus favouring the second objective.  

Gene mutation has a certain probability of mutating each gene in a genome. Gaussian mutation 

(see Section 4.3.B) was adopted in this case.  

e. Formation of the Next Generation 

In the most common form of GA, the next generation of the population is generated from the old 

population. NSGA-II differs from this — it holds an archive of the same size as the population 

which contains the best n individuals (elites) found so far. Every generation, the population 

competes with the existing elites to be selected as one of the new elites. After the new elites are 

selected, they are used to breed the next generation of the population. 

f. NSGA-II Parameters 

Since in Chapter 4 and Chapter 6 we have found that a properly larger initial population size can 

contribute to the faster convergence of GA to better and more consistent results, in this experiment, 

the NSGA-II algorithm was set to be with a large population size (5,000). To have the same 
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number (i.e. 100,000) of encounters evaluated in a single search as the random search experiment, 

the number of generations for NSGA-II was set to 20. 

As with the random search, the length of the genome is uniformly chosen from 1 to 10 (all 

inclusive), giving a maximum cardinality of encounters of 11. The bounding values of the 

parameters are the same as those used in the random-search-based approach. 

Other parameters for NSGA-II are listed in Table 7-5. The rules used to tune these parameters are 

the same as those presented in Section 6.5.1.B.a. A small value (0.2) was assigned to the gene 

removal rate for the customized gene removal operator, which was found work well in our case. 

Nevertheless, it could also be tuned by making use of the intuitions of exploration and exploitation 

(see Section 6.5.1.B.a). 

Table 7-5 Parameters for NSGA-II. 

 Type Type-specific parameters 

Selection Tournament Selection tournament size = 2 

Crossover One-point Crossover crossover rate = 0.8 

Removal Uniform gene removal rate = 0.2 

Mutation Gaussian Mutation 
per-gene mutation rate = 0.2 

σ = 0.2 

 

B. Results 

Again, five searches were run with different seeds for the random number generator. The results 

are shown in Table 7-6. In this table, row 1 lists the seed for each search; row 2 lists the time cost 

for each search; row 3 lists the number of encounters in the Pareto Front; row 4 lists the number 

of encounters in the Pareto Front that can lead to an incident; and row 5 lists the minimum number 

of intruders in an encounter that can lead to an incident. 

Table 7-6 Statistics of the 5 evolutionary multi-objective searches for testing ORCA-3D. 

 

seeds 567672542 588764257 679463479 884185791 898946497 

time 221s 213s 226s 169s 198s 

in Pareto Front 27 18 6 49 13 

with incidents 20 11 0 0 8 

fewest intruders 9 3 >10 >10 9 
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In these multi-objective searches, we are interested in encounters in the Pareto Front. Three out 

of five searches found encounters that can lead to incidents in the Pareto Front. The minimum 

number of intruders that can cause an incident involving the own-ship is 3. This 4 UAV encounter 

is shown in Figure 7-7. 

 

Front View 

 

Top View 

 

 Side View 

Figure 7-7 A simulated 4 UAV encounter that leads to an incident. 

In this encounter, the own-ship first traveled at a constant level from left to right. At the time 

when the manoeuvres began, intruder 1 was climbing in above the own-ship and intruder 2 was 

flying outwards from the left of the own-ship and also above the own-ship. This caused the own-

ship to descend. However, intruder 3 was climbing from below the own-ship, and a violation of 

safe separation happened.  

Considering the overall validation process, this challenging encounter should be further 

investigated to decide whether it resulted from true failures of the ORCA-3D algorithm, 

implementation errors, or simulation artefacts. As has been said in Section 7.2, we used a Java re-

implementation of the original C++ source code provided by the ORCA-3D developers. So, there 

is less chance for introducing implementation errors than implementing the algorithm from 
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scratch. Given the visualization of this challenging encounter shown in Figure 7-7 and the fact 

that the simulation is consistent with the assumptions about the environment made in the ORCA-

3D paper [11], it is most likely that this challenging encounter indicates true failures of the ORCA-

3D algorithm. 

Since it had found an encounter with a cardinality of 4 that can lead to an incident, we conclude 

that the ORCA-3D algorithm cannot handle 4 UAVs in all cases. The exact reason for the incident 

can possibly be determined by further analysis of this encounter, especially by visualizing and 

examining the feasible region for choosing new velocity vectors (see Figure 7-2(b)). However, 

this further analysis is beyond the scope of this thesis. For our purposes, it is sufficient to observe 

that, with certain traffic patterns, ORCA-3D is not able to find paths that avoid the violation of 

safe separation with the own-ship, because of the constraints imposed by the other UAVs. 

 Discussion 

The evolutionary multi-objective search approach can find incidents which the random-search-

based approach cannot easily find. The key difference between the two is the former's use of meta-

heuristic search in NSGA-II. NSGA-II's key strength is that it maintains an archive of best 

candidate solutions (elites) found so far and breeds further candidate solutions from those best 

candidates. Each new generation of the population, therefore, tends to have desirable features 

descended from these elites. After each generation, the addition of the best new individuals to the 

set of elites generally leads to the set of elites improving over time.  

In order to have the new generation inherit the good features of the elites, the desirable features 

should be quantified and embodied in the fitness function (the quantification of the objectives). 

In our case, the good features chosen are (1) a lower proximity between the own-ship and the 

intruders during a simulated encounter, and (2) a lower cardinality of the encounter. They are 

quantified and embodied in the valuation functions of the two objectives. Better selection of 

features58 may, in the future, make the proposed approach even more powerful. 

The evolutionary multi-objective search approach can find the encounters meeting the two criteria 

more effectively and efficiently (in a practical time with modest processing facilities) than the 

random-search-based approach. The random-search-based approach takes about 400s on average 

to explore 100,000 encounters, while the evolutionary multi-objective search approach only takes 

about 210s. For the random-search-based approach, the main time expense is the simulation runs 

to evaluate these encounters, whereas, for the multi-objective search approach, the expense 

                                                      

58 The selection of good features is, as ever, problem-specific, and relies on a deep understanding 

of the problem. 
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includes two parts: the simulation runs, and the overhead of the multi-objective search framework. 

The multi-objective search approach is faster because the evolutionary search algorithm favours 

individuals that score well on the low-cardinality objective, and thus the simulated encounters 

tend to have fewer UAVs involved. This reduces the computing effort required to simulate them. 

There are some limitations of the approach when used to support validation of ORCA-3D:  

1) In the simulations, all intruders are generated to have conflicts with the own-ship. 

However, it is noted that some dangerous situations may well exist that do not start with 

intruders in conflict with own-ship (but where conflict resolution actions then place it in 

conflict with them later);  

2) It also ignored incidents between pure intruders, and it was only interested in incidents 

involving the own-ship. It is acknowledged that some intruder-intruder incidents might 

also be interesting because they are caused by own-ship's actions. By doing so, some 

specific types of faults in the conflict resolution algorithm may be ignored;  

3) Considering the small size and operational scenarios of the studied UAVs, follow-up 

research may be needed to model the effects of the wind and static obstacles (e.g. high 

buildings) in the simulations. 

7.6 Summary and Conclusions 

In this chapter, the proposed evolutionary-search-based approach was augmented and applied to 

support the validation of ORCA-3D, a multi-UAV conflict resolution algorithm. Two 

requirements were identified for the problem, i.e. (1) to find encounters where, despite the help 

of the conflict resolution algorithm, UAVs still experience violations of safe separation; and (2) 

the encounters found should also be simple, so that they are very likely to happen in the real-

world environment. The problem was formulated as a multi-objective search problem, and the 

proposed approach developed through the previous chapters was augmented to find solutions for 

this problem. Experiments were conducted to compare the evolutionary multi-objective search 

approach with the random-search-based approach in finding multi-UAV encounters satisfying the 

two identified objectives. 

The results show that the evolutionary multi-objective search approach can find encounters 

meeting these objectives more effectively and efficiently than the random-search-based approach. 

The resulting encounters provide the starting points for further analysis of the conflict resolution 

algorithm, which will allow algorithm developers and users to fully understand its limitations. 

Thus, the evolutionary multi-objective search has the potential to offer an effective and efficient 

way to support the validation, or at least determining some limitations, of conflict resolution 

algorithms.  
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 Conclusions 

8.1 Evaluation of the Research Hypothesis 

This thesis was motivated by the need to improve the validation process of SAA algorithms 

required for the safe integration of UAVs into civilian airspace. By building on ideas from SBST, 

this thesis explored the use of agent-based simulation and evolutionary search to support the 

validation process of UAV SAA algorithms, with the research hypothesis as follows: 

The validation of UAV SAA algorithms requires identifying challenging situations that the 

algorithms have difficulties in handling. It is possible to identify such situations using an 

evolutionary-search-based approach and the process can be partially automated. The 

evolutionary-search-based approach is more effective and efficient than some plausible 

rivals. 

As noted in Section 1.4, the first sentence of the hypothesis is an assumption — we assume that 

the identification of challenging situations that the tested UAV SAA algorithms have difficulties 

in handling is a part of the validation work. Firstly, according to the common practice of software 

testing, which heavily involves finding counterexamples showing the tested software is not valid 

in all situations, this assumption is clearly sound. Secondly, if the tested SAA algorithms are 

moderately good, the challenging situations are actually very rare, which is evidenced by that, in 

all the case studies, the random search either could not, or took a lot of trials to, find even one 

challenging situation. This is the precondition that it is necessary to develop new approaches to 

support the validation of SAA algorithms, otherwise, conventional techniques (e.g. random-

search-based simulation analysis) would be capable of identifying such situations.  

Four propositions can be identified in this hypothesis:  

1) Feasibility: it is possible to identify challenging situations for the selected SAA 

algorithms using the proposed evolutionary-search-based approach;  

2) Partial automation: the process of identifying challenging situations for supporting the 

validation of SAA algorithms can be partially automated if using the proposed 

evolutionary-search-based approach;  

3) Effectiveness: the proposed evolutionary-search-based approach is more effective than 

some plausible rivals in identifying challenging situations for the selected SAA 

algorithms. 
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4) Efficiency: the proposed evolutionary-search-based approach is more efficient than some 

plausible rivals in identifying challenging situations for the selected SAA algorithms. 

The research described in this thesis explored and evaluated these four propositions as follows. 

Feasibility is positively supported. 

Evidence:  

1) In Chapter 4 the proposed evolutionary-search-based approach was used to find 

mid-air collision situations for SVO either under perfect sensing ability or with 

sensor noise. Results (Section 4.4.3) showed that the proposed approach can 

identify some required situations; 

2) In Chapter 6 the proposed approach was used to find high-accident-rate situations 

for ACAS XU. The results showed that it can indeed find some, with a type of 

encounter combining the overtaking-overtaken form and the climbing-

descending form to be very noteworthy, since it was also found by the random 

search and the deterministic global search; 

3) In Chapter 7 the proposed approach was used to find the violation of safe-

separation situations that are most likely to happen in the real-world environment 

for ORCA-3D. By formalizing the problem as a multi-objective search problem, 

the proposed approach successfully found the required situations. 

Partial automation is positively supported.  

Evidence:  

1) In all the case studies, having built the simulations and defined the evolutionary 

search processes, the evolutionary search can then automatically search for the 

required situations; 

2) An open-source tool was developed to support the proposed approach. The tool 

was used in the case studies as presented in Chapter 6 and Chapter 7. With this 

supporting tool, the process of identifying challenging situations for SAA 

algorithm validation can be partially automated. 

Effectiveness is positively supported. 

Evidence: 

1) In Chapter 4 the proposed evolutionary-search-based approach was empirically 

compared with a random search approach. Results showed that the proposed 

approach can effectively identify some very subtle situations that random search 

cannot find in reasonable time; 
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2) In Chapter 6 the proposed approach was empirically compared with a random-

search-based approach and a deterministic-global-search-based approach. The 

results showed that the proposed evolutionary-search-based approach can find 

high-accident-rate encounters more effectively than the random-search-based 

approach, and even though it is a little less competitive than the deterministic-

global-search-based approach in the relatively easy case, it is more effective in 

more difficult cases, especially when the objective function becomes highly 

discontinuous. 

3) In Chapter 7 the proposed approach was empirically compared with a random-

search-based approach. The results showed that the proposed approach can 

effectively find the low-cardinality encounter situations that can cause violations 

of safe separation, while the random-search-based approach has difficulty in 

finding them.  

Efficiency is positively supported. 

Evidence: 

1) In Chapter 6 the proposed approach was empirically compared with a random-

search-based approach and a deterministic-global-search-based approach. The 

results showed that the proposed evolutionary-search-based approach can find 

high-accident-rate encounters more efficiently than the random-search-based 

approach, and it is also more efficient than, or at least comparable with, the 

deterministic-global-search-based approach, especially when the objective 

function is highly discontinuous.  

2) In Chapter 7 the proposed approach was empirically compared with a random-

search-based approach. Since the random-search-based approach failed to find 

the required situations with a specified number of searches, it is obvious that the 

proposed evolutionary-search-based approach is more efficient. 

8.2 Summary of Thesis Contributions 

The research presented in this thesis lies in the intersection of software testing, safety-critical 

system engineering, and mobile robotics. Specifically, it is about an automated software testing 

method for a safety-critical component of UAVs.  

The major contributions of this thesis are: 

 Surveyed and analysed three different techniques for guiding simulations (Section 2.3), 

and by building on ideas from for SBST (Section 2.5), proposed an evolutionary-search-
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based approach to find rare but challenging situations for supporting the validation of 

UAV SAA algorithms (Chapter 3);  

 Demonstrated the proposed approach using three SAA algorithms as case studies, and 

empirically evaluated the proposed approach by comparing it with some plausible rivals 

(Chapter 4, Chapter 6, and Chapter 7); 

 Developed an open-source tool to support the proposed approach and provided all the 

source code for the case studies (Chapter 5 and Appendix 1); 

Some minor contributions of this thesis are: 

 Illustrated the model-based optimization development approach to developing ACAS XU 

by walking through the development a simple 2-D collision avoidance system (Section 

6.2), and analysed the challenges posed by the new development approach to safety 

assurance and system validation (Section 6.3); 

 Identified a type of very challenging situations for the tested ACAS XU, which was also 

found by the random search and the deterministic global search (Section 6.5.1); 

 Showed how the proposed evolutionary-search-based approach can be used effectively 

in finding counterexamples (Section 4.4 and Section 6.5.2). 

 Formulated the problem of identifying challenging situations for the validation of a multi-

UAV conflict resolution algorithm as a multi-objective search problem (Section 7.3), and 

used evolutionary search to solve it (Section 7.4). 

8.3 Summary of Thesis Limitations 

An identified limitation of the research described in this thesis is that this thesis adopted agent-

based simulation as the only simulation paradigm, which mainly focuses on modelling and 

simulating at the behaviour level. However, to further explore the safety issues with SAA 

algorithms, it may need to build simulation models at the control level and/or the physics level, 

that is, to incorporate the low-level controller and other dynamics of the real world into the model, 

and to simulate with a higher fidelity. 

8.4 Opportunities for Further Research 

Some possible opportunities for further research are: 

 As identified in Section 8.3, the agent-based simulation model is a limitation of this 

research. Further research could proceed in two directions: (1) modelling at a lower level, 

that is, building low-level controllers for the UAVs to achieve the high-level behaviours 
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commanded by the SAA algorithms. Example work in this direction includes [116, 117]; 

(2) modelling at a higher-fidelity level, that is, building simulations that are closer to the 

real world using physics-engine-based simulators (e.g. Gazebo, V-rep). With better 

models and simulations, more safety issues can be better explored. As a result, more 

parameters will be needed to configure the simulations, and the search space will become 

much larger, so that the power of using evolutionary search to guide the simulations can 

be further evaluated. 

 A limitation of the proposed evolutionary-search-based approach (and the random search, 

and the deterministic global search) is that it only directly identifies discrete situations 

(points in the search space) that show problems. It might be possible to extend the 

approach to find areas of the search space that show certain properties (e.g. having high 

accident rate) instead. Data mining techniques, such as clustering [132], could potentially 

be used to analyse the logged data to find such areas. 

 SAA algorithms studied in this thesis are local planning algorithms. Further research 

could study global planning algorithms (e.g. path planning and mission planning) or the 

integration of global and local planning algorithms. Also, decision-making under 

uncertainty algorithms could also be considered. The proposed approach could possibly 

be used to test these applications. One possible problem of using the proposed approach 

in this direction might be that since the tested system is more complex, more parameters 

are needed to configure the simulations, and the size of the search space may grow 

exponentially. 

 Finally, industrial trials of the proposed approach could be conducted. 

8.5 Overall Conclusions 

Motivated by the need to improve the validation process of SAA algorithms required for the safe 

integration of UAVs into civilian airspace, by building on ideas from SBST, this thesis proposed 

an evolutionary-search-based approach to automatically identify rare but challenging situations 

that the tested SAA algorithms have difficulties in handling to support the validation process of 

UAV SAA algorithms. An open-source tool was developed to support the proposed approach. 

With three case studies, the proposed approach was demonstrated and empirically evaluated by 

comparisons with some plausible rivals. Results show that the proposed approach has the potential 

to offer an effective and efficient means for supporting the validation of SAA algorithms, thereby, 

helping developers to improve the algorithms and helping regulators decide whether these 

important algorithms can be deployed. 
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Appendix 1: Source Code Links 

My implementations: 

 SVO implementation: 

https://github.com/xueyizou/SVO_Java.git 

 SVO testing 

https://github.com/xueyizou/SVO_Tesing.git 

 ACAS XU implementation:  

https://github.com/xueyizou/ACASX_3D.git 

 ACAS XU testing: 

https://github.com/xueyizou/ACASX_3D_Testing.git 

 Java implementation of ORCA-3D: 

https://github.com/xueyizou/ORCA_3D_UAV.git 

 ORCA-3D testing: 

https://github.com/xueyizou/ORCA-3D-Testing.git 

 

Others’ implementations: 

 MASON: 

http://cs.gmu.edu/~eclab/projects/mason/ 

 ECJ 

http://cs.gmu.edu/~eclab/projects/ecj/ 

 ORCA-3D Original C++ implementation: 

http://gamma.cs.unc.edu/RVO2/downloads/ 

 DIRECT algorithm MATLAB code: 

http://www4.ncsu.edu/~ctk/Finkel_Direct/ 

 

  

https://github.com/xueyizou/SVO_Java.git
https://github.com/xueyizou/SVO_Tesing.git
https://github.com/superxueyizou/ACASX_3D.git
https://github.com/xueyizou/ACASX_3D_Testing.git
https://github.com/superxueyizou/ORCA_3D_UAV.git
https://github.com/superxueyizou/ORCA_3D_UAV.git
https://github.com/superxueyizou/ORCA-3D-Testing.git
https://github.com/superxueyizou/ORCA-3D-Testing.git
http://cs.gmu.edu/~eclab/projects/mason/
http://cs.gmu.edu/~eclab/projects/ecj/
http://gamma.cs.unc.edu/RVO2/downloads/
http://www4.ncsu.edu/~ctk/Finkel_Direct/
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Appendix 2: Glossary 

ACAS X  Airborne Collision Avoidance System X 

ACAS XU Airborne Collision Avoidance System X for UAVs 

ACCoRD Airborne Coordinated Conflict Resolution and Detection 

ACES Airspace Concept Evaluation System  

ADS-B Automatic Dependent Surveillance-Broadcast 

ATM Air Traffic Management 

CPA Closest Point of Approach 

DOE Design of Experiments 

EO Electro-Optical 

FAA  Federal Aviation Administration 

FACET Future ATM Concepts Evaluation Tool 

GA Genetic Algorithm 

GNSS Global Navigation Satellite System  

GPS Global Positioning System 

GVO Generalized Velocity Obstacles 

HRVO Hybrid Reciprocal Velocity Obstacles 

JVM Java Virtual Machine 

LIDAR Light Detection And Ranging 

MDP Markov Decision Process 
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MILP Mixed-Integer Linear Program 

NextGen Next Generation Air Transportation System 

NSGA-II Non-Dominated Sorting Genetic Algorithm II 

OFAT One Factor at a Time 

ORCA Optimal Reciprocal Collision Avoidance 

ORCA-3D Optimal Reciprocal Collision Avoidance in 3-Dimension 

POMDP Partially Observable Markov Decision Process 

PVO Probabilistic Velocity Obstacles 

RA Resolution Advisory 

RVO Reciprocal Velocity Obstacle 

SAA Sense-and-Avoid 

SBST Search-Based Software Testing 

SESAR Single European Sky ATM Research 

SPEA2 Strength Pareto Evolutionary Algorithm 2 

SUT Software under Testing 

SVO Selective Velocity Obstacle 

TCAS Traffic Collision Avoidance System 

UAV Unmanned Aerial Vehicles 

V&V Verification and Validation 

VO Velocity Obstacle 
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