

Supporting Validation of UAV Sense-and-

Avoid Algorithms with Agent-Based

Simulation and Evolutionary Search

Xueyi Zou

Doctor of Philosophy

University of York

Computer Science

August 2016

2

 To my family.

3

Abstract

A Sense-and-Avoid (SAA) capability is required for the safe integration of Unmanned Aerial

Vehicles (UAVs) into civilian airspace. Given their safety-critical nature, SAA algorithms

must undergo rigorous verification and validation before deployment. The validation of UAV

SAA algorithms requires identifying challenging situations that the algorithms have

difficulties in handling. By building on ideas from Search-Based Software Testing, this thesis

proposes an evolutionary-search-based approach that automatically identifies such situations

to support the validation of SAA algorithms.

Specifically, in the proposed approach, the behaviours of UAVs under the control of selected

SAA algorithms are examined with agent-based simulations. Evolutionary search is used to

guide the simulations to focus on increasingly challenging situations in a large search space

defined by (the variations of) parameters that configure the simulations. An open-source tool

has been developed to support the proposed approach so that the process can be partially

automated.

Positive results were achieved in a preliminary evaluation of the proposed approach using a

simple two-dimensional SAA algorithm. The proposed approach was then further

demonstrated and evaluated using two case studies, applying it to a prototype of an industry-

level UAV collision avoidance algorithm (specifically, ACAS XU) and a multi-UAV conflict

resolution algorithm (specifically, ORCA-3D). In the case studies, the proposed evolutionary-

search-based approach was empirically compared with some plausible rivals (specifically,

random-search-based approaches and a deterministic-global-search-based approach). The

results show that the proposed approach can identify the required challenging situations more

effectively and efficiently than the random-search-based approaches. The results also show

that even though the proposed approach is a little less competitive than the deterministic-

global-search-based approach in terms of effectiveness in relatively easy cases, it is more

effective and efficient in more difficult cases, especially when the objective function becomes

highly discontinuous. Thus, the proposed evolutionary-search-based approach has the

potential to be used for supporting the validation of UAV SAA algorithms although it is not

possible to show that it is the best approach.

4

5

List of Contents

Abstract .. 3

List of Contents ... 5

List of Figures... 9

List of Tables .. 13

Acknowledgement ... 15

Declaration ... 17

 Introduction ... 19

1.1 Sense-and-Avoid .. 19

1.2 Validation of SAA Algorithms ... 20

1.3 Search-Based Software Testing .. 22

1.4 Research Hypothesis and Propositions ... 23

1.5 Research Methods .. 24

1.6 Thesis Structure ... 24

 Survey of Relevant Fields .. 27

2.1 Sense-and-Avoid .. 28

 Surveillance Technologies ... 28

 Threat Evaluation and Detection .. 32

 Decision-Making and Avoidance... 34

 Remarks on SAA ... 42

2.2 SAA Verification and Validation ... 43

 Formal Methods ... 44

 Software Testing .. 46

 Simulation Analyses .. 47

 Flight Tests .. 48

 Remarks on V&V of SAA Algorithms .. 48

2.3 Search-Based Software Testing .. 49

6

2.4 SAA Simulation Techniques ... 51

 Agent-Based Simulations .. 51

 Physics-Engine-Based Simulations ... 53

 Remarks on Simulation Techniques .. 53

2.5 Techniques for Guiding Simulations .. 54

 Monte-Carlo Methods .. 54

 Design of Experiments ... 55

 Meta-heuristic Search .. 56

 Remarks on Techniques for Guiding Simulations ... 57

2.6 Evolutionary Search ... 58

2.7 Conclusions .. 59

 SAA Validation: Requirements and the Proposed Approach 61

3.1 Requirements Analysis ... 61

3.2 Proposed Method ... 62

 Method Overview .. 64

 Comparison with Existing Similar Approaches ... 66

 Preliminary Evaluation with a Simple SAA Algorithm 69

4.1 Introduction ... 69

4.2 SAA Algorithm under Test: SVO ... 69

4.3 Implementation of the Proposed Approach .. 73

4.4 Experiments ... 79

 Experiment 1: Perfect Sensing Ability... 79

 Experiment 2: Sensor Value Uncertainty ... 86

 Discussion .. 90

4.5 Summary and Conclusions ... 91

 Open-source Supporting Tool ... 93

5.1 Overview of the Supporting Tool ... 93

5.2 Scenario Encoding and Generation .. 95

5.3 Agent-Based Simulation ... 97

5.4 Evolutionary Search ... 100

7

5.5 Summary and Conclusions .. 102

 Application to a Collision Avoidance Algorithm 103

6.1 Introduction ... 103

6.2 SAA Algorithm under Test: ACAS XU ... 104

 Background .. 104

 A Simple Example ... 106

 ACAS XU ... 108

6.3 Problem Analysis ... 111

6.4 Solution: Evolutionary Search ... 113

6.5 Experiments ... 114

 Experiment 1 .. 115

 Experiment 2 .. 127

 Discussion .. 132

6.6 Summary and Conclusions .. 134

 Application to a Conflict Resolution Algorithm 137

7.1 Introduction ... 137

7.2 SAA Algorithm under Test: ORCA-3D.. 138

7.3 Problem Analysis ... 140

7.4 Solution: Evolutionary Multi-Objective Search ... 141

7.5 Experiments ... 143

 Experiment 1: Random Search .. 145

 Experiment 2: Evolutionary Multi-Objective Search ... 147

 Discussion .. 153

7.6 Summary and Conclusions .. 154

 Conclusions .. 155

8.1 Evaluation of the Research Hypothesis .. 155

8.2 Summary of Thesis Contributions ... 157

8.3 Summary of Thesis Limitations ... 158

8.4 Opportunities for Further Research .. 158

8

8.5 Overall Conclusions ... 159

Appendix 1: Source Code Links ... 161

Appendix 2: Glossary .. 163

References .. 165

9

List of Figures

Figure 2-1 UAV Sense-and-Avoid, from [19]. .. 28

Figure 2-2 Illustration of the mechanism of ADS-B, from [32]. ... 31

Figure 2-3 Future state prediction methods: (a) nominal projection; (b) probabilistic projection;

(c) worst-case projection; (d) intent sharing. The figure was adapted from [34]. 33

Figure 2-4 Geometrical illustration of velocity obstacle in 2-D, adapted from [47]. 36

Figure 2-5 TCAS sense selection, from [25]. .. 37

Figure 2-6 TCAS strength selection, from [25]. .. 38

Figure 2-7 ACAS X workflow, from [18]. .. 40

Figure 2-8 Relationship between V&V, adapted from [66]. ... 43

Figure 2-9 A typical agent structure, from [88]. .. 52

Figure 3-1 Overall validation process. .. 63

Figure 3-2 A search-based approach to identifying challenging situations. 64

Figure 4-1 UAV encounter types, adapted from manned air traffic [119]. 70

Figure 4-2 SVO behaves in some typical encounters in the horizontal plane. 72

Figure 4-3 Our definition of three encounter types: (a) head-on; (b) crossing; (c) overtaking-

overtaken. .. 75

Figure 4-4 Definition of distance between two UAVs. ... 76

Figure 4-5 GA flow. .. 77

Figure 4-6 (a) Uniform Crossover, (b)One-point Crossover, and (c) Two-point Crossover. 78

Figure 4-7 A typical encounter found in Experiment 1.1. ... 80

Figure 4-8 Distribution of the minimum distances between two UAVs in random searches.

 ... 81

Figure 4-9 Shape of the fitness function. ... 82

Figure 4-10 Average minimum distance between two UAVs in each generation of Experiment

1.3. ... 84

Figure 4-11 Average fitness over generations of Experiment 1.3. .. 85

Figure 4-12 Typical encounters found in Experiment 1.3. .. 86

Figure 4-13 Collisions shown in Figure 4-12 can be avoided with a slightly larger turning rate.

 ... 86

Figure 4-14 A left side crossing: (a) Trajectory with sensor noise; (b) Trajectory without

sensor noise. .. 87

10

Figure 4-15 Average minimum distance between two UAVs in each generation of Experiment

2.3. ...89

Figure 4-16 Average fitness over generations of Experiment 2.3..89

Figure 4-17 A typical encounter in Experiment 2.3, (a) with sensor noise; (b) without sensor

noise. ..90

Figure 5-1 Screenshot of the supporting tool run in visualization mode.94

Figure 5-2 (a) Representation of the UAV's velocity. (b) Illustration of the relative position of

the intruder (i) with respect to the own-ship (o) at the CPA. The own-ship is at the origin. .95

Figure 5-3 The simulation of a multi-UAV encounter generated by the parameters in Table

5-1. ...97

Figure 5-4 Simulation of a head-on encounter with ACAS XU in action.100

Figure 5-5 Part of an ECJ parameter file. ..101

Figure 6-1 ACAS X development process, adapted from [37]. ...105

Figure 6-2 A simple 2-D two-UAV encounter. ...106

Figure 6-3 Look-up tables: (a) entry time look-up table, (b) rewards look-up table.109

Figure 6-4 Collision avoidance for a head-on encounter with ACAS XU.111

Figure 6-5 Collision avoidance for a crossing encounter with ACAS XU.111

Figure 6-6 Accident rates for randomly generated encounters. ...117

Figure 6-7 Accident rate distribution for randomly generated encounters.117

Figure 6-8 A high-accident-rate encounter found by the random search.118

Figure 6-9 Accident rates for encounters generated by evolutionary search.121

Figure 6-10 Learning curve of the evolutionary search. ..121

Figure 6-11 Accident rate distribution for encounters generated by evolutionary search. ..122

Figure 6-12 A high-accident-rate encounter found by the evolutionary search.122

Figure 6-13 A successful collision avoidance in the high-accident-rate encounter shown in

Figure 6-12. ..123

Figure 6-14 Deterministic global search flow. ...124

Figure 6-15 Accident rates for encounters generated by deterministic global search.126

Figure 6-16 Accident rate distribution for encounters generated by deterministic global search.

 ...126

Figure 6-17 A high-accident-rate encounter found by the deterministic global search.127

Figure 6-18 Learning curves for GA with a population size of 1000.130

Figure 6-19 Learning curves for GA with a population size of 2000.130

Figure 6-20 A typical high-accident-rate situation found in Experiment 2.1.131

Figure 6-21 Accident rates for searches with the DIRECT algorithm.132

Figure 7-1 Geometrical illustration of Collision Cone in 2-D. ..138

11

Figure 7-2 (a) two-agent ORCA. (b) Multi-agent ORCA. .. 139

Figure 7-3 Overview of the testing method that combines agent-based simulation and multi-

objective search. .. 142

Figure 7-4 Simulation of a multi-UAV encounter generated by the parameters in Table 7-2.

 ... 144

Figure 7-5 A simulated random encounter of 9 UAVs. No incident occurred. 146

Figure 7-6 Encoding multi-UAV encounters in genomes for the use of evolutionary multi-

objective search. .. 148

Figure 7-7 A simulated 4 UAV encounter that leads to an incident. 152

12

13

List of Tables

Table 4-1 UAV performance limits. .. 73

Table 4-2 Parts of parameter settings for mid-air collisions found in Experiment 1.1. 79

Table 4-3 GA parameters for Experiment 1.3. .. 83

Table 5-1 Parameters for the generation of an example multi-UAV encounter 96

Table 6-1 Bounding values for the parameters for testing ACAS XU. 115

Table 6-2 Statistics of the random search for testing ACAS XU in Experiment 1.1. 116

Table 6-3 GA parameters for Experiment 1.2. .. 118

Table 6-4 Statistics of the evolutionary search for testing ACAS XU in Experiment 1.2. .. 120

Table 6-5 Statistics of the deterministic global search for testing ACAS XU in Experiment 1.3.

 ... 124

Table 6-6 Statistics of the evolutionary search for testing ACAS XU in Experiment 2.1. ... 129

Table 6-7 Statistics of the deterministic global search for testing ACAS XU in Experiment 2.2.

 ... 132

Table 7-1 The UAV performance limits. ... 143

Table 7-2 Parameters for the generation of an example multi-UAV encounter. 144

Table 7-3 Bounding values for the parameters for testing ORCA-3D. 145

Table 7-4 Time costs of random searches for testing ORCA-3D. 146

Table 7-5 Parameters for NSGA-II. .. 151

Table 7-6 Statistics of the 5 evolutionary multi-objective searches for testing ORCA-3D. 151

14

15

Acknowledgement

I would like to thank my two supervisors, Prof. John McDermid and Dr. Rob Alexander, for

all their advice, guidance and encouragement throughout the development of this thesis.

I would like to thank the University of York for providing a tuition waiver for my Ph.D. study,

and thank the China Scholarship Council (CSC) for providing a living stipend. Without these

financial support, this thesis would not have been possible.

I would like to thank my two former supervisors, Prof. Minyan Lu and Dr. Deming Zhong, at

Beihang University, for encouraging me to study abroad and providing continuing support

during my overseas study.

I would like to thank my external assessor Prof. Wen-Hua Chen and my internal assessor Prof.

Tim Kelly for their invaluable advice on the correction of this thesis.

I also would like to thank all my friends and colleagues in the Department of Computer

Science, particularly Dr. Xiaocheng Ge, Zhan Huang, Hao Wei, Dr. Jian Jiao, Guo Zhou, Dr.

Kester Clegg and Dr. Abdulaziz Al-Humam. I’d especially like to thank Kangfeng Ye and

Miao Mai for being close, supportive friends with my family and me.

Finally, I would like to thank my beloved wife, Yuqi Chen, for her company. And I would

like to thank my parents for their support during my years of Ph.D. study.

16

17

Declaration

I declare that the contents of this thesis are derived from my own original research between

October 2012 and September 2016, during which I was registered for the degree of Doctor of

Philosophy at the University of York. This work has not previously been presented for an

award at this, or any other, University. All sources are acknowledged as References.

Contributions from this thesis have been published in the following papers:

1) Xueyi Zou. Validating Unmanned Aerial Vehicle Sense-and-Avoid Algorithms with

Evolutionary Search. Student forum of the 46th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), June 2016.

Based on research described in Chapter 1 and Chapter 3 of this thesis.

2) Xueyi Zou, Rob Alexander, and John McDermid. Safety Validation of Sense-and-

Avoid Algorithms Using Simulation and Evolutionary Search. The 33rd International

Conference on Computer Safety, Reliability and Security (SAFECOMP ’14),

September 2014.

Based on research described in Chapter 4 of this thesis.

3) Xueyi Zou, Rob Alexander, and John McDermid. On the Validation of a UAV

Collision Avoidance System Developed by Model-Based Optimization: Challenges

and a Tentative Partial Solution. The 2nd International Workshop on Safety and

Security of Intelligent Vehicles, held in conjunction with the 46th DSN, June 2016.

Based on research described in Chapter 6 of this thesis.

4) Xueyi Zou, Rob Alexander, and John McDermid. A Testing Method for Multi-UAV

Conflict Resolution using Agent-Based Simulation and Multi-Objective Search.

AIAA Journal of Aerospace Information Systems, 2016.

Based on research described in Chapter 7 of this thesis.

18

19

 Introduction

1.1 Sense-and-Avoid

Unmanned Aerial Vehicles (UAVs) are attracting the attention of innovators and companies due

to their enormous potential for civilian and commercial use. Several large technology companies

are developing and testing UAVs for delivering goods (e.g. Amazon’s Prime Air project1, and

Google’s Project Wing2), providing Internet access (e.g. Facebook Connectivity Lab’s work3),

etc., and they are seeking to get permits to operate UAVs beyond visual line of sight. Once such

operation is allowed, manufacturers and operators will race to exploit UAVs for various

applications, and future airspace is likely to be very crowded with all kinds of UAVs. Air traffic

management for these UAVs will be a major concern, particularly because of the increased

opportunity for unsafe encounters.

To make safe operation possible, UAVs must provide a Sense-and-Avoid (SAA) capability,

which, according to the FAA’s “Integration of Civil Unmanned Aircraft Systems (UAS) in the

National Airspace System (NAS) Roadmap” [1], is defined as

“the capability of a UAS to remain well clear from and avoid collisions with other

airborne traffic. Sense and Avoid provides the functions of self-separation and collision

avoidance to establish an analogous capability to ‘see and avoid’ required by manned

aircraft.”

From this definition, we can understand SAA as the combination of two parts: the “sense” part

and the “avoid” part.

For the “sense” part, UAVs must be able to conduct surveillance of surrounding airspace, and to

detect and track threats using sensing technologies, such as Radar, cameras, and ADS-B

(Automatic Dependent Surveillance-Broadcast). ADS-B is a cooperative surveillance technology

with which a UAV will send its real-time information, such as position and velocity, to its peers

via a radio link. Because of its advantages in improving aircraft’s situation awareness, ADS-B

equipment has been or will be mandatory in several countries’ airspace. In addition, it is one of

1 http://www.amazon.com/b?node=803772001.

2 https://www.youtube.com/watch?v=cRTNvWcx9Oo.

3 https://info.internet.org/en/story/connectivity-lab/.

http://www.amazon.com/b?node=803772001
https://www.youtube.com/watch?v=cRTNvWcx9Oo
https://info.internet.org/en/story/connectivity-lab/

20

the key elements of the US Next Generation Air Transportation System (NextGen) [2] and the

Single European Sky ATM Research (SESAR) [3]. In this thesis, UAVs are assumed to be

equipped with ADS-B or its equivalent (possibly a combination of Radar and cameras) so that

they have good sensing capability to know the positions, velocities, shapes, etc. of the other air

traffic.

For the “avoid” part, according to the above FAA definition, UAVs must be capable of avoiding

accidents with other air traffic by two means (i.e. sub-capabilities): self-separation and collision

avoidance. These two sub-capabilities of “avoid” form a safety barrier with two layers. In the first

layer (i.e. self-separation), UAVs strategically plan their flight paths to resolve conflicts with each

other (and potentially with conventional aircraft), and maintain a defined safe separation distance.

If this safe separation is predicted to be violated or the collision risk is predicted to be higher than

a defined threshold, the second layer (i.e. collision avoidance) will provide tactical evasive

manoeuvres for the UAVs to avoid an imminent collision. Both layers function in a similar way

— each UAV uses its situation awareness to calculate and execute a change to its flight path to

avoid violations of safe separations or collisions. Usually, collision avoidance algorithms deal

with pair-wise encounters and take no account of restoring the UAVs to their original flight paths,

while self-separation algorithms deal with multi-UAV (two or more UAVs) encounters and need

to take the recovery to the intended flight path into account.

Over the last three decades, a wide variety of collision avoidance approaches (e.g. [4-8]) and

conflict resolution approaches (e.g. [9-11]) have been proposed in the fields of air traffic

management, automatic control, and mobile robotics. These approaches have the potential to be

adapted for UAVs to achieve the collision avoidance sub-capability and the self-separation sub-

capability required by SAA. However, given the strict safety requirements of the aviation sector,

an algorithm cannot be accepted and deployed without rigorous validation.

1.2 Validation of SAA Algorithms

In software or system development, validation is usually conducted to determine whether a

product (e.g. a piece of implemented software or a system) has the desired properties from the

perspective of the intended user(s). By “desired properties”, it means validation is with respect to

intent, but very often, whether the intent is satisfied, or in what cases the intent is not satisfied,

cannot be fully determined without the use of hindsight. By “intended user(s)”, it means the

properties are those related to the real-world environment where the intended users would operate

the system.

In the case of SAA algorithm validation, one of the desired properties is that the host UAV of the

SAA algorithm should be able to avoid collisions with other air traffic. However, it not easy to

21

ensure that the algorithm will have this desired property. There are so many possible situations

where the host UAV could collide with other air traffic that one cannot explicitly enumerate and

then experiment (or examine) all of them. For example, one may experiment to check that the

host UAV can indeed avoid collisions with an intruder (i.e. other air traffic that pose a high

collision risk to the host UAV, for example, another UAV) in head-on encounters, in crossing

encounters, and in overtaking-overtaken encounters. But what if there are more than one intruders

the host UAV should avoid4 at the same time? And what if there is a strong wind that the host

UAV cannot execute the collision avoidance manoeuvres precisely? There are simply too many

possibilities that would happen when using a system/software in the real operational environment,

and some of the possibilities may not even be foreseen until we actually run into them (i.e. they

may not be found without hindsight). To ensure the system/software indeed has the desired

properties, validation first figures out as big part of these challenging possibilities as reasonably

possible and then examines the system/software in these possibilities.

In this thesis, validation of SAA algorithms means the process of determining whether or not a

UAV controlled by the selected SAA algorithm will behave safely in all kinds of situations with

different intruders and under various sources of uncertainty of the environment.

Both actual flight tests and simulation studies are required and often conducted for the validation

of SAA algorithms. Flight tests evaluate the system in actual operational environments, but can

only be performed in very limited situations due to constraints in time, cost, and safety. Simulation

studies evaluate the system in a simulated environment so that they can be carried out to examine

the system in a broader range of situations to find system deficiencies. However, they are subject

to limitations in the fidelity of the simulation.

Since simulation studies can examine the tested SAA algorithm in a much broader range of

situations and with fewer constraints (in time, cost, and safety), simulation-based validation of

SAA algorithms is the main interest of this thesis.

As discussed above, for SAA algorithm validation, it is extremely difficult, and perhaps not

possible, to prove that the algorithms will behave safely in all real-world conditions. Instead,

efforts are often put into confirming that the host UAVs will not have unsafe behaviours in a large

set of diverse simulated situations. To gain high assurance, this set of simulated situations should

be as large as reasonably possible and the simulations should be as close as reasonably practicable

to the real world.

4 In this case, the exact placement of the intruders and the host UAV matters, but the number of

possible placements is infinitely large.

22

However, since, on the one hand, the space of all possible situations is enormous (possibly,

infinite), and on the other hand, unsafe behaviours are very rare for a moderately good SAA

algorithm, random testing strategies are likely to be extremely costly regarding computation

resource and time. Better strategies are needed to make the simulations only focus on challenging

situations that the SAA algorithms have difficulties in handling.

1.3 Search-Based Software Testing

Search-Based Software Testing (SBST) [12] is the activity that considers software testing as an

optimization problem and applies meta-heuristic search techniques, such as Genetic Algorithms

(GAs) [13], simulated annealing [14], and tabu search [15], to solve the optimization problem.

Over the last decade, SBST has been increasingly used to generate test data for functional or

structural testing, prioritize test cases, reduce human oracle cost, optimize software test oracles,

and minimize test suites [12].

For the use of SBST to be successful, the testing problems usually show the following

characteristics5 as summarized by Clark et al. [17]:

 It is easy to check whether a candidate solution is acceptable but it is difficult to construct

such a solution;

 The requirement is to find an acceptable solution rather than the optimal solution;

 There are often competing constraints to satisfy.

When used to generate test cases, the main advantage of SBST is that it can generate test cases

satisfying certain requirements which human beings have difficulties in doing, and that it can be

used to partially automate the test case generation process.

Considering the problem of SAA algorithm validation, especially the problem of identifying

challenging situations that the algorithms have difficulties in handling, it is noted that at least two

(the first two) of the above characteristics are visible. Here, challenging situations are

counterexamples that show the tested SAA algorithm cannot keep the host UAV from collisions

with other air traffic. Note that the “challenging” situations we are looking for match the first

characteristics very well: it is easy to check whether a situation is challenging by observing the

results of flight tests or simulation runs of this situation, but it is difficult to construct a situation

that will result in a mid-air collision for the tested SAA algorithm. As for the second

characteristics, finding some acceptable challenging situations would suffice for the problem of

5 These characteristics are not specific to SBST, but they are actually true for all search-based

work, such as the broader field of Search-Based Software Engineering [16].

23

SAA algorithm validation. As for the third characteristics, it is likely that some competing

constraints are exerted to the problem. For example, on the one hand, it may require that the

challenging situations should be able to stress the SAA algorithm, which usually means the

situations are complex, but on the other hand, it may also require that the challenging situations

should be prone to happen in real-world conditions, which often means the situations are simple.

It is desirable that the process of finding challenging situations for SAA algorithm validation can

be automated or at least partially automated. By building on ideas from SBST, this thesis attempts

to formulate the problem of identifying challenging situations (i.e. counterexamples) for the

validation of SAA algorithms as an optimization problem and use meta-heuristic search

techniques, specifically, evolutionary search techniques, to find the solutions.

1.4 Research Hypothesis and Propositions

Motivated by the need to improve the validation process of SAA algorithms required for the safe

integration of UAVs into civilian airspace, by building on ideas from SBST, this thesis proposes

an approach to support validation of UAV SAA algorithms with agent-based simulation and

evolutionary search.

The research hypothesis of this thesis is as follows:

The validation of UAV SAA algorithms requires identifying challenging situations that the

algorithms have difficulties in handling. It is possible to identify such situations using an

evolutionary-search-based approach and the process can be partially automated. The

evolutionary-search-based approach is more effective and efficient than some plausible

rivals.

The first sentence of the hypothesis is an assumption. According to the common practice of

software testing, which heavily involves finding counterexamples showing the tested software is

not valid in all situations, this assumption is clearly sound. Specifically, for the validation of SAA

algorithms, it involves finding challenging situations that can give rise to unsafe behaviours of

the tested SAA algorithms.

Four propositions can be identified in this hypothesis:

1) Feasibility: it is possible to identify challenging situations for the selected SAA

algorithms using the proposed evolutionary-search-based approach;

24

2) Partial6 automation: the process of identifying challenging situations for supporting the

validation of SAA algorithms can be partially automated if using the proposed

evolutionary-search-based approach;

3) Effectiveness: the proposed evolutionary-search-based approach is more effective than

some plausible rivals in identifying challenging situations for the selected SAA

algorithms.

4) Efficiency: the proposed evolutionary-search-based approach is more efficient than some

plausible rivals in identifying challenging situations for the selected SAA algorithms.

1.5 Research Methods

The main research methods are:

 Demonstration with case studies: This thesis will demonstrate the application of the

proposed approach to three SAA algorithms (specifically, SVO [6], ACAS XU [18], and

ORCA-3D [11]). SVO (Selective Velocity Obstacle) is a relatively simple 2-D collision

avoidance algorithm, and it will be used for a preliminary demonstration and evaluation

of the proposed approach. ACAS XU (Airborne Collision Avoidance System X for UAVs)

is a prototype of an industry-level 3-dimensional UAV collision avoidance algorithm, and

it will be used to further demonstrate and evaluate the proposed approach. ORCA-3D

(Optimal Reciprocal Collision Avoidance in 3-Dimension) is a multi-UAV conflict

resolution algorithm, which poses new requirements for validation, and it will be used to

show how the proposed approach can be augmented to accommodate the new

requirements.

 Evaluation through comparisons: This thesis will conduct comparative experiments to

evaluate the proposed approach with some plausible rivals regarding feasibility,

effectiveness, and efficiency in finding required challenging situations (i.e.

counterexamples). These plausible rivals are random-search-based approaches and a

deterministic-global-search-based approach.

1.6 Thesis Structure

The rest of the thesis is organized as follows:

6 Note that full automation, if ever possible, is by no means pursued in this thesis.

25

Chapter 2 is an introduction and survey of fields that underpin this thesis. It further reviews SAA

for UAVs and the key ideas of SBST, and it gives an overview of evolutionary search algorithms.

It also surveys techniques for SAA verification and validation, simulation techniques relevant for

SAA, and techniques for guiding7 simulations.

Chapter 3 analyses the requirements for UAV SAA algorithm validation, and gives an overview

of the proposed approach. It also compares the proposed approach with some existing similar

approaches.

Chapter 4 demonstrates the feasibility of using the proposed approach to find mid-air collision

situations for a simple 2-D collision avoidance algorithm (specifically, SVO). A preliminary

evaluation of the effectiveness of the proposed approach is conducted by comparing it with a

random-search-based approach.

Chapter 5 describes the open-source tool developed to support the proposed approach. With this

supporting tool, the process of identifying challenging situations for SAA algorithm validation

can be partially automated.

Chapter 6 demonstrates the application of the proposed approach to a prototype of an industry-

level UAV collision avoidance algorithm (specifically, ACAS XU) in finding challenging

situations (i.e. situations that can cause a high accident rate for the host UAVs). The effectiveness

and efficiency of the proposed approach are empirically evaluated by comparing it with a random-

search-based approach and a deterministic-global-search-based approach.

Chapter 7 demonstrates the application of the proposed approach to a multi-UAV conflict

resolution algorithm (specifically, ORCA-3D) in finding situations satisfying two requirements:

(1) despite the help of the conflict resolution algorithm, the host UAVs still experience violation

of safe separation in these situations; (2) the situations should also be simple so that they are very

likely to happen in the real-world environment. The problem is formulated as a multi-objective

search problem and the proposed approach is augmented to accommodate multi-objective search

in order to find solutions satisfying the two requirements. The effectiveness and efficiency of the

augmented approach are empirically evaluated by comparing it with a random-search-based

approach.

Chapter 8 evaluates the research hypothesis and identifies the contributions and limitations of this

thesis. Opportunities for further research are also suggested.

7 Here, guiding simulations means to control and direct the simulations to only focus on situations

that are “useful” for some specific purposes in a huge (possibly, infinite) space of all possible

situations.

26

27

 Survey of Relevant Fields

The purpose of the survey presented in this chapter is to provide the necessary background

knowledge and a review of key parts of the relevant literature. This chapter is broken down into

sections, specifically:

Sense-and-Avoid An introduction to SAA systems and algorithms. It includes surveillance

technologies for UAVs to sense the environment, collision risk evaluation approaches to detect

threats, and planning and decision-making techniques to generate avoidance strategies.

SAA Verification and Validation Existing work for verifying and validating SAA algorithms

(or systems), which includes formal methods, software testing, simulation analyses and flight tests.

Search-Based Software Testing A brief introduction to the research field of SBST, which

utilizes meta-heuristic search techniques to automate the process of software testing.

SAA Simulation Techniques A brief survey of typical simulation techniques related to UAV

SAA. They include agent-based simulations and physics-engine-based simulations.

Techniques for Guiding Simulations A survey of techniques used to guide the simulations to

only focus on “useful” situations. Three techniques are surveyed, and they are Monte-Carlo

methods, Design of Experiments, and meta-heuristic search.

Evolutionary Search A brief introduction to evolutionary search approaches.

28

2.1 Sense-and-Avoid

The purpose of SAA is to prevent UAVs from colliding with other mid-air objects. Even though

some static objects (such as high buildings and electricity pylons) and moving objects (such as

birds) may also pose collision threats to UAVs, the major concern of SAA is to prevent UAVs

from colliding with other air traffic (such as manned aircraft and other UAVs). Typically, the

SAA capability is achieved by three sub-functions conducted in a sequence of three stages, which

are “Surveillance”, “Threat Detection”, and “Avoidance”, as illustrated in Figure 2-1.

Figure 2-1 UAV Sense-and-Avoid, from [19].

At the “Surveillance” stage, an SAA system must be able to detect and track other air traffic, and

be able to extract useful information about these aircraft. Based on the information, at the “Threat

Detection” stage, the SAA system evaluates and prioritizes the risk of colliding with the detected

air traffic and declares if they are a threat or not. When a threat is declared, the SAA system enters

the stage of “Avoidance”, where it determines an avoidance strategy and then commands the host

UAV (i.e. UAV running the SAA algorithm) to execute the strategy. The avoidance strategy can

either be a self-separation strategy or a collision avoidance strategy. The two differ in the volumes

(see Figure 2-1) used to declare threats and to determine avoidance strategies. Different UAVs

may use different self-separation volumes and collision volumes, but a self-separation volume is

usually larger than the corresponding collision volume (for example, a self-separation volume

may be 3 minutes ahead of a physical collision while a collision volume is 20-40 seconds ahead

of a physical collision).

The following three subsections of this section will survey some typical sensing technologies for

surveillance, threat detection paradigms, and some approaches to deriving avoidance manoeuvres.

For a deeper review of SAA technologies, readers are referred to [20].

 Surveillance Technologies

The means to sense the environment can be classified into two categories: cooperative methods

and non-cooperative methods. A cooperative method can usually detect other objects (typically,

29

other air traffic) more reliably and with a larger range than non-cooperative methods, but it

requires that the other objects carry the same or compatible sensors. So, cooperative methods

cannot detect objects such as high buildings or other aircraft without a compatible sensor. The

non-cooperative methods, however, do not require other objects to be equipped with the same

devices, and can be applied to detect air and ground obstacles. Typical sensors for non-

cooperative sensing are cameras and Radar, and typical sensors for cooperative sensing are TCAS

transponders and ADS-B equipment. In this thesis, ADS-B is assumed to be the prime sensor for

surveillance, but before making this assumption, the four most common surveillance technologies

are surveyed.

A. Cameras

Cameras are a kind of passive non-cooperative sensor in that they do not need to emit energy to

detect other objects. Because of their low weight and low cost, cameras are a very attractive way

to provide a sensing capability for UAVs. Apart from the quality of the cameras and the

illumination conditions, the detection ability of cameras is highly dependent on the algorithms

used for processing and extracting information from the acquired images or video streams. It is

related to the research field of Computer Vision, which is very active these days and exhibiting

fast progress.

In [21], Carnie et al. compared two image processing algorithms designed to detect small, point-

like features (which potentially corresponds to distant, collision-course aircraft) from image

streams. The algorithms’ performance was compared with the measured detection times of an

alerted human observer against a variety of daytime backgrounds. The result showed that the

algorithms could detect other aircraft at distances of approximately 6.5km, which are 35-40%

greater than the capability of the alerted human observer.

In [8, 22], researchers from CMU Robotics Institute developed a field deployable SAA system

for both UAVs and small aircraft using cameras as the main sensing modality. Their approach

was based on morphological filters augmented with a trained classifier, yielding intruder aircraft

detection rates of 99.7% up to 3.5 miles (~5.6Km) and 96.1% up to 4.5 miles (~6.4Km).

Furthermore, almost all the false positives that occurred were due to objects that may be relevant

to collision avoidance: birds, and radio towers.

The main advantages of cameras for UAV’s SAA include low cost, low weight, low power

requirements, and proven effectiveness in detecting both static and moving objects under certain

conditions. Drawbacks of cameras for UAV SAA include: (1) the sensors may not be effective in

the case of adverse weather (e.g. smoke, fog, and dust) or bad illumination conditions; (2) arrays

of sensors are required to achieve a wide field-of-view with adequate angular resolution; (3) very

limited information (primarily bearing information and target size) is provided for SAA [20].

30

B. Radar

Radar is an active non-cooperative sensor which works by emitting radio waves from fixed

antennas to other objects and then interpreting the reflected signals. It obtains a distance

measurement based on the time-of-flight: the distance is one-half the product of the round-trip

time and the speed of the signal (usually, it is the speed of light). It is also possible to get a speed

measurement either by using the difference of two successive distance measurements or by using

the Doppler effect [23] to get an instant speed measurement.

Radar antennas usually revolve at a certain (fixed) rate to detect all surrounding objects. Most of

them revolve at a rate of ~5 revolutions-per-minute (rpm). Therefore the time between signal

returns is ~12 seconds. For an aircraft flying at 250ft/s, this means that the aircraft can move

3000ft (~0.9Km) between returns, which may be too large to maintain safety in collision

avoidance applications.

Radar can be used in all-weather conditions, and it is prevalent in manned aircraft. New Radar

devices are being developed that are lighter, cheaper and less energy-consuming, and some studies

have been conducted to use Radar for small UAVs (e.g. [24]). However, Radar systems do not

provide the same degree of real-time imagery as compared to cameras, and their detection ranges

vary a lot depending on their size and energy, and ultimately depending on their prices.

C. TCAS Transponders

TCAS transponders are cooperative sensors that are used in the Traffic Collision Avoidance

System (TCAS), an airborne collision avoidance system mandated worldwide on large transport

aircraft to reduce the risk of mid-air collisions [25]. TCAS uses an on-board transponder to

communicate with all nearby aircraft equipped with an appropriate transponder. Each TCAS-

equipped aircraft interrogates all nearby aircraft in a determined range about their position (via

the 1.03GHz radio frequency) and all other aircraft reply to other interrogations (via 1.09GHz).

This interrogation-and-response cycle usually occurs at a frequency of 1Hz [26].

Standard TCAS transponders can detect objects within a range up to 129km, and the latest one

(version 7.1) can detect an object 160km away [26]. Some research (e.g. [27]) was conducted to

evaluate its potential usage for UAVs. However, due to the weight and cost of current TCAS

transponders, they may not directly be applicable for small UAVs, which are cost-sensitive and

with limited payload. In addition, it is ineffective in detecting non-cooperative objects.

D. ADS-B

ADS-B (Automatic Dependent Surveillance-Broadcast) is another kind of cooperative sensor that

has gained considerable interest in the aviation industry as the next generation of surveillance

31

technology [28]. Figure 2-2 illustrates the mechanism of ADS-B. It is dependent on a Global

Navigation Satellite System (GNSS), such as the Global Positioning System (GPS), to get the

position of the host aircraft. It works by automatically and continuously broadcasting aircraft

position and other data (e.g. the identification, velocity, and intent of the aircraft) to any nearby

aircraft or ground station equipped to receive ADS-B signals.

Compared with the aforementioned sensing technologies, ADS-B is favourable for UAV SAA

since it can provide accurate and reliable information for improved situation awareness. It has

been demonstrated in [29] that a commercial ADS-B receiver can reliably receive data-link

broadcast by other aircraft within a range of 200km. Example uses of ADS-B for small UAV

SAA are presented in [30] and [31].

Figure 2-2 Illustration of the mechanism of ADS-B, from [32].

However, like TCAS transponders, ADS-B is ineffective in the case of detecting ground-based

obstacles, such as terrain features, towers, or power lines [20], which may also pose collision

risks. Moreover, the currently available commercial ADS-B systems are still too expensive to be

used in many commercial UAVs.

One potential risk of ADS-B is that because the content of standard ADS-B messages is neither

encrypted nor authenticated, it may be read by anybody, and additional means are needed to

distinguish fake messages. For example, in 2012 a group of hackers claimed that they could

interfere with aircraft navigation with spoof ADS-B messages [33].

32

In this section, four typical types of sensors for UAVs to sense other objects (particularly, other

aircraft) have been introduced. It is noted that some other sensors of this kind can be found in the

literature, e.g. LIDAR (LIght Detection And Ranging), acoustic systems, and infrared sensors,

but they are relatively less used for UAV SAA. For ADS-B, because of its advantages in

improving situation awareness for aircraft, its equipment has been or will be mandatory in several

countries’ airspace. Moreover, ADS-B is one of the key elements of the US Next Generation Air

Transportation System (NextGen) [2] and the Single European Sky ATM Research (SESAR) [3].

In this thesis, UAVs are assumed to be equipped with ADS-B or its equivalent (possibly a

combination of Radar and cameras) so that they have good sensing capability to know the

positions, velocities, and shapes, etc. of the other air traffic. However, when building and

analysing the decision-making algorithms, sensing uncertainty will also be considered if it is

appropriate to do so.

 Threat Evaluation and Detection

Once a UAV has sensed other objects in the environment, it needs to determine if the objects

cause a real risk of collision. The way to evaluate the collision risk has a significant impact on the

performance the SAA system. On the one hand, this evaluation should not be too sensitive to

result in over frequent false alarms, but on the other hand, it should not be too insensitive to affect

safety. If an object is determined to be posing a high risk, it is declared as a “threat”, and if it is a

moving object, we may call it as an “intruder”. In this thesis, for convenience, we designate one

UAV hosting the selected SAA system as the “own-ship”, and others are called as intruders if

they pose a high collision risk to the own-ship.

The threat evaluation relies on the future state prediction of the own-ship and the sensed objects.

If the future state is a collision state and it is with high probability, a threat will usually be declared.

Figure 2-3 shows four different types of future state prediction, which are described in the

following subsections.

33

Figure 2-3 Future state prediction methods: (a) nominal projection; (b) probabilistic projection; (c) worst-

case projection; (d) intent sharing. The figure was adapted from [34].

A. Nominal Projection

Shown in Figure 2-3(a). In this method, the states of the own-ship and the object (if it is moving)

are projected into the future without direct consideration of trajectory uncertainties. An example

would be extrapolating the aircraft's position based on their current velocity vectors and turning

rates. This method is simple and computationally very efficient, and it assumes that the object

will not do any manoeuvring in the predicted time horizon. So, it can only be used for aircraft that

have very predictable trajectories and in a short time horizon. Example uses of this projection

method are SVO [6], ORCA (Optimal Reciprocal Collision Avoidance) [11], TCAS [25], and the

ACCoRD (Airborne Coordinated Conflict Resolution and Detection) framework [35] developed

by NASA Langley.

B. Probabilistic Projection

Shown in Figure 2-3(b). In this method, uncertainties are explicitly taken into consideration in

predicting the future states of the own-ship and the detected moving objects. Under the effects of

uncertainties, it develops a set of possible future trajectories, each weighted by its probability of

occurring, and the possible future states are assigned a probability of the corresponding trajectory

leading to the state. This method enables decision-making under uncertainty, and may give a

better balance in the trade-off between the high safety requirement and the low false alarm rate

requirement. If the probabilities are to be derived on-line, Monte-Carlo techniques are usually

used (e.g. [36]). However, due to the real-time constraint, the accuracy of the estimation usually

suffers. If the probabilities are to be derived off-line, dynamic programming techniques are

typically utilized (e.g. [37]) to build look-up tables for on-line use. Example uses of this projection

method are ACAS X (Airborne Collision Avoidance System X) [36, 37] and the work reported

in [38, 39].

34

C. Worst-Case Projection

Shown in Figure 2-3(c). In this method, the own-ship and the moving object are assumed to

perform a set of trajectories. If any two of these trajectories can lead to a collision, a threat is

declared. As a consequence, this method may be too sensitive to result in very frequent false

alarms. An example use of this approach is described in [40].

D. Intent Sharing

Shown in Figure 2-3(d). In this method, a UAV will share its intent, specifically, in the form of

flight plans, to other neighbouring aircraft. Based on the shared intent information, the prediction

of future state can be very accurate. This method is enabled by ADS-B, and it is usually used in

self-separation (or conflict resolution) cases. Example uses of this approach are a tactical conflict

resolution algorithm named Chorus [41], and a strategic conflict resolution algorithm named

Stratway [42], both of which were developed by NASA Langley.

 Decision-Making and Avoidance

UAVs are a kind of mobile robots that travel in an aerial environment. In the field of mobile

robotics, path planning is used to determine a collision free path from a start position to a goal

position for a robot to navigate safely in a workspace cluttered with obstacles. Usually, the

obstacles are static and a global map of the environment has been given. So, a path planner is a

global planner. [43] introduces some typical path planning algorithms for robots. Note that path

planning is primarily meant to avoid collisions with known static obstacles.

To avoid collisions with dynamic obstacles that are not presented on the map, additional planning

approaches are needed, and they are often called collision avoidance. Collision avoidance plans

avoidance manoeuvres using information about local obstacles (e.g. their positions and velocities)

only. Therefore, a collision avoidance planner is regarded as a local planner.

However, to satisfy the high safety requirements in the aviation sector, in addition to collision

avoidance, an additional safety layer is used to prevent mid-air collisions for UAVs and other air

traffic. This safety layer is called self-separation, and it is primarily used to prevent other UAVs

(or other air traffic) from even entering the self-separation volume (see Figure 2-1) of the own-

ship, in order to maintain a safe separation distance. Since the self-separation volume is larger

than the collision volume and information within a wider range area is needed to do planning, we

may view a self-separation planner as a planner in between a global planner and a local planner.

So, there are two layers of protections to prevent collisions with moving objects, and they form

the two sub-functions for achieving “avoid” for SAA: self-separation and collision avoidance. In

35

the first layer (i.e. self-separation), UAVs strategically plan their flight paths to resolve conflicts

with each other (and potentially with conventional aircraft) and maintain a defined safe separation

distance. If this safe separation is predicted to be violated or the collision risk is predicted to be

higher than a defined threshold, the second layer (i.e. collision avoidance) will provide tactical

evasive manoeuvres for the UAVs to avoid an imminent collision. Both layers function in a

similar way — each UAV uses its situation awareness to calculate and execute a change to its

flight path to avoid violation of safe separations or collisions. Usually, collision avoidance

algorithms deal with pair-wise encounters and take no account of restoring the UAVs to their

original flight paths, while self-separation algorithms deal with multi-UAV (two or more)

encounters and need to take the recovery to the intended flight path into account.

A wide variety of collision avoidance approaches (e.g. [4-7]) that have been proposed in the fields

of air traffic management (ATM), automatic control, and mobile robotics have the potential to be

adapted for UAVs to achieve collision avoidance capability. However, it is found that few

approaches are developed specially for UAV self-separation in the literature. This may be

reasonable because, after all, self-separation is only required for UAV SAA, but UAV SAA is a

very recent concept. Nevertheless, it is also found that many automatic conflict resolution

approaches (e.g. [9-11]) for manned aircraft (or UAVs) or for ATM systems were adapted for

UAVs to achieve self-separation capability in the literature. Indeed, for example, in [41, 42]

NASA Langley researchers developed some conflict resolution algorithms for ATM, but they

suggested that the algorithms can also potentially be used for UAV self-separation.

In the following, some state-of-the-art paradigms for UAV collision avoidance and conflict

resolution are surveyed.

A. Collision Avoidance

As a local planner, collision avoidance uses limited available information of the local environment

to plan a strategy for avoiding an imminent collision with obstacles (either static or moving).

Usually, it takes no account of restoring the UAVs to their original flight paths. It is desired to be

a balanced trade-off between the high safety requirement and the low false alarm rate requirement.

That is, on the one hand, the collision avoidance command should be emitted if there is a real risk

of collision, but on the other hand, it should be emitted only when it is necessary.

a. Velocity Obstacle Approaches

A velocity obstacle (VO) [44] (a.k.a. collision cone [45]) is the set of all velocities of a robot

(more generally, an agent) that will result in a collision with another robot (or object) at some

future moment, assuming that the other robot maintains its current velocity. As is shown in Figure

2-4 (a), assuming A and B are two planar agents moving in a 2-D plane. Let PA, VA and rA denote

36

the current position, velocity vector and radius of agent A, and let PB, VB and rB be the position,

velocity vector and radius of agent B. The velocity obstacle for agent A induced by B (denoted

as VOA|B) is then the set consisting of all those velocities VA that will result in a collision at some

moment in time (say t) with B if B keeps moving at velocity VB. Formally, VOA|B is defined by

equation (2-1):

 𝐕𝐎𝑨|𝑩 = {𝑽𝑨|∃𝑡 > 0 ∶ (𝑽𝑨 − 𝑽𝑩) ∗ 𝑡 ∈ 𝐷(𝑷𝑩 − 𝑷𝑨, 𝑟𝐴 + 𝑟𝐵)} (2-1)

Where the notation D(x, r) represents a disc with centre x and radius r. A geometric interpretation

of VOA|B is shown in Figure 2-4 (b).

It follows that if agent A chooses a velocity vector outside VOA|B, it can then avoid a collision

with B.

The same idea as above can be naturally extended to three dimensions, resulting in the 3-D version

of the velocity obstacle approach.

The original velocity obstacle approach was introduced for robot navigation among passively

moving obstacles. For moving obstacles that will also actively try to avoid collisions, it can result

in oscillations [46], much like the phenomenon happening very often when two human beings try

to avoid a collision with each other in a corridor.

 PB – PA +VB

(a) (b)

y

x

y

x

B

A

PA

rA

PB
rB

o

o

VOA|B

PB – PA rA+rB

Figure 2-4 Geometrical illustration of velocity obstacle in 2-D, adapted from [47].

To avoid oscillations, in [46] the Reciprocal Velocity Obstacle (RVO) approach was proposed

for real-time multi-agent navigation. The approach takes into account the reactive behaviour of

the other agents by implicitly assuming that the other agents use similar collision-avoidance

37

reasoning. In [48], a 3-D RVO approach was used on physical quadrotor helicopters (specifically,

Parrot AR.Drones) for real-time collision avoidance, and experiment results has shown that RVO

is able to avoid pairwise collisions by using on-board cameras as the prime sensor.

Many variations of velocity obstacle approach exist. Examples include Generalized Velocity

Obstacles (GVO) [49], Hybrid Reciprocal Velocity Obstacles (HRVO) [47], ORCA [11], and

recursive Probabilistic Velocity Obstacles (PVO) [50].

Specifically for UAVs, in [6] a velocity obstacle approach named Selective Velocity Obstacles

(SVO) was designed for cooperative collision avoidance, where each UAV in an encounter

cooperatively avoids each other while obeying the right-of-way rules [51] of the airspace. Because

of its simplicity and popularity, in Chapter 4, a 2-D SVO algorithm will be used to conduct a

preliminarily demonstration and evaluation of the approach proposed by this thesis. A more

extensive introduction to SVO will be given there.

b. TCAS

TCAS is an airborne collision avoidance system mandated worldwide on large transport aircraft

to reduce the risk of mid-air collisions [25]. TCAS avoids collisions only in the vertical direction.

It does not select turning manoeuvres because “bearing accuracy is generally not sufficient

to determine whether a turn to the left or the right is appropriate” [25]. TCAS determines

collision avoidance manoeuvres in two steps: in the first step, the algorithm decides the vertical

sense (direction) of the manoeuvre (i.e. to climb or to descend); in the second step, the algorithm

decides the strength of the manoeuvre (i.e. the target vertical speed of the manoeuvre).

Figure 2-5 TCAS sense selection, from [25].

Figure 2-5 shows the sense-selection mechanism. Two manoeuvre templates are examined: one

based on a climb, and another based on a descent. Each template assumes that the host aircraft

begins to response after a 5 seconds delay, and it responds by a 0.25g vertical acceleration until

reaching a target vertical rate of 1500ft/min [25]. In the meantime, the intruder aircraft is assumed

38

to continue its trajectory at its current velocity (i.e. nominal projection, see Section 2.1.2.A).

TCAS selects the sense that provides the largest separation at the predicted Closest Point of

Approach (CPA). In the situation shown in Figure 2-5, the descending manoeuvre will be selected.

Once the sense of the manoeuvre has been selected, the strength is determined by using additional

manoeuvre templates [25]. Figure 2-6 shows the strength selection mechanism. Each template

again assumes a 5s delay, followed by a 0.25g acceleration until reaching the target vertical rate

of that template. TCAS selects the strength that requires the smallest vertical-rate change that

achieves at least a certain minimum separation [25]. In the situation shown in Figure 2-6, the own-

ship is currently descending at a vertical speed of 1000ft/min and a head-on aircraft is declared

as a threat. Five manoeuvre templates are examined, each corresponding to a different target

vertical speed. Since the template that changes the descending speed to 500ft/min results in a

minimum vertical speed change, but still provides the required vertical separation (400ft), the

selected strength is “limit descent 500ft/min”.

Figure 2-6 TCAS strength selection, from [25].

If the intruder is also equipped with TCAS, the senses of the two manoeuvres are coordinated

through a data link between the two TCAS devices to ensure that the two aircraft do not select the

same vertical direction. Moreover, TCAS also includes algorithms that monitor the evolution of

the encounter and, if necessary, modify the collision avoidance command during manoeuvring.

Safety studies estimate that TCAS improves safety by a factor of between 3 and 5 [52]. However,

limitations and misuse of the system still resulted in some fatal accidents, one of which is

the Überlingen mid-air collision [53] between a Boeing 757 and a Tu-154 in 2002. Seconds

before the accident, the Tu-154’s TCAS instructed the Tu-154 to climb, while at about the same

https://en.wikipedia.org/wiki/%C3%9Cberlingen_mid-air_collision
https://en.wikipedia.org/wiki/Boeing_757
https://en.wikipedia.org/wiki/Tupolev_Tu-154
https://en.wikipedia.org/wiki/Tupolev_Tu-154

39

time the Boeing 757’s TCAS instructed the Boeing 757 to descend. However, the Tu-154’s pilot

instead followed the instruction from the air traffic controller to also descend, resulting in a mid-

collision. The accident wasn’t primarily caused by TCAS itself, but it showed how the misuse of

TCAS in a wider system environment could result in a serious accident.

One major problem of TCAS is that it predicts the future state by a nominal projection (see Section

2.1.2.A), and does not take the effects of different sources of uncertainty into consideration.

Consequently, the decision-making is far from optimal. Because of this and other limitations,

ACAS X was introduced to replace TCAS, and will be introduced next.

c. ACAS X

ACAS X [18] is a collision avoidance system under development, which is intended to replace

TCAS in the future. It explicitly takes sources of uncertainty into account when making decisions

for collision avoidance.

ACAS X uses an off-line pre-built look-up table to accelerate the on-line computation. The look-

up table was built by computer optimization of a probabilistic sequential decision model

(specifically, a Partially Observable Markov Decision Process (POMDP) model). It specifies the

cost for each possible collision avoidance action in every possible state8. The possible collision

avoidance actions are in the form of “no action”, or “climb/descend at a certain speed”, etc.

With the look-up table built off-line, the on-line workflow of ACAS X is shown in Figure 2-7.

First, ACAS X detects and tracks nearby aircraft by receiving sensor measurements from on-

board surveillance systems (TCAS transponders or ADS-B), and estimates the relative position

and velocity of these aircraft. To handle uncertainties, a “state estimation” module explicitly takes

the probabilistic sensor model and the probabilistic aircraft dynamic model into account, and

represents the encounter situation as a probabilistic state distribution (i.e. weighted states). Then,

with the look-up table at hand, an “action selection” module calculates the cost for every possible

collision avoidance action by the weighted average over the state distribution, and selects the

optimal one. This optimal action will then be announced as the Resolution Advisory (RA). ACAS

X receives sensor updates once per second (1Hz), and the process described above will also be

conducted at the same frequency.

8 A state here is an abstract representation of an encounter situation, which is described by several

variables, such as the horizontal distance and the relative horizontal velocity.

40

Figure 2-7 ACAS X workflow, from [18].

The approach for ACAS X development brings benefit regarding optimal collision avoidance

strategies, and it is easier to maintain and upgrade the system than TCAS. However, it also poses

new challenges for the safety assurance and the certification of the system.

In Chapter 6, a version of ACAS X for UAVs (i.e. ACAS XU) will be further explored, and more

information about its development process and the challenges it poses for safety assurance will

be presented.

B. Conflict Resolution

Compared with collision avoidance algorithms, conflict resolution algorithms work at a larger

distance (or time) scale and often deal with multiple aircraft. Different from collision avoidance,

after resolving the conflicts, the algorithm usually guides the host UAV to restore its original

flight path. It is desired to be a balanced trade-off between safety and economic efficiency

amongst other factors. That is, on the one hand, the conflict resolution should re-plan flight path

to avoid possible violations of safe separation (the extreme of which are physical collisions), but

on the other hand, the re-planned flight path should not result in a too much additional cost9.

Depending on how the conflict is resolved and the time horizon, conflict resolution algorithms

can again be divided into tactical conflict resolution algorithms and strategic conflict resolution

algorithms. Tactical conflict resolution algorithms resolve conflicts by direct manoeuvres, such

as climbing, descending, speed changing, and turning, in a smaller time horizon, while strategic

conflict resolution algorithms resolve conflicts usually by modifying flight plans (i.e. the

waypoints to navigate by) in a larger time horizon.

9 This constraint is usually formalized as shortest path or minimum flight path deviation.

41

Many conflict resolution approaches can be found in the literature, for example, geometric

approaches [41, 54], potential field approaches [10, 55], sampling-based approaches [8, 22, 56],

and game-theory-based approaches [57, 58]. A slightly outdated review of conflict resolution

approaches can be found in [59]. In this thesis, three recently widely used approaches are surveyed.

a. Velocity Obstacle Approaches

Velocity Obstacle approaches can also be used for UAV tactical conflict resolution. In this case,

the sizes of the agents are enlarged to be half of the safe separation distance, so that the total

distance when two agents start to collide is the safe separation distance. To deal with multi-UAV

situations, the velocity obstacles induced by all the intruders are combined as a union. At each

time step, the algorithm chooses a velocity vector that lies outside of this union and is closest to

a preferred velocity leading to the desired target.

ORCA [11] is an example of this kind of algorithm, where two agents cooperatively choose new

conflict-free velocities that cause minimum deviations from their original velocity. It has been

used in [60] for UAVs and showed promising results. In Chapter 7, ORCA will be further

explored, and a more extensive introduction to it will be presented.

b. Optimization-Based Approaches

Optimization-based approaches typically combine kinematic models of the UAVs with a set of

cost metrics. An optimal conflict resolution strategy is then determined by solving for the

trajectories with the lowest cost.

For example, [61] studied the design of optimal conflict-free manoeuvres for multiple aircraft

encounters. The candidate manoeuvres involve changes in heading, speed, altitude or their

combination. The goal is to determine a manoeuvre that minimizes a certain energy cost function.

For the sake of passenger comfort, vertical manoeuvres are penalized with respect to horizontal

ones. A numerical algorithm was given and used to compute the optimal resolution manoeuvres

in two-aircraft cases. However, for multiple-aircraft cases, only suboptimal solutions were

computed by using an approximation scheme.

When the optimization problem is very complex and includes many constraints, it often cannot

be solved by conventional methods. Genetic Algorithms (GAs) and their variations are usually

used to find a feasible solution. However, the solution may not be optimal. Examples of this kind

are [62-64].

Optimization-based approaches require the definition of appropriate cost functions — typically

path distance, flying time delay, or fuel cost. The derivation of costs may be straightforward for

economic values but difficult when modelling subjective human utilities, e.g. passenger comfort.

Another problem with this approach is that when the optimization problem is too complex to solve

42

by conventional methods, only suboptimal solutions can be achieved, and the real-time property

of the algorithm may suffer when using GAs and the like.

c. Predefined Strategies Searching Approaches

In this category of conflict resolution approaches, some strategies for resolving conflicts are

predefined. During conflict resolution, these strategies will be tried in turn to find the final strategy.

Examples within this category are the work in [65] and Stratway [42], a strategic conflict

resolution algorithm developed by NASA Langley.

The Stratway program has about a dozen basic strategies and multiple variations for many of

these for resolving conflicts. It assumes that the conflict can be resolved by only making small

changes to the original flight plans. Each of these strategies uses heuristic iterative techniques to

search for solutions, and by default, these strategies are applied in a pre-determined order. Once

a candidate solution is found, that is, a solution that is conflict free, it is tested for physical

feasibility (e.g. whether ground speeds are within appropriate limits, whether turns are not too

sharp). If the candidate solution meets the feasibility constraints, no further solutions are sought,

and it will be returned as the final solution.

An advantage of predefined strategies searching approaches is that the strategies are usually

defined in a human understandable way. However, they may not be optimal. Moreover, since the

approaches involve searching for solutions over an enormous state space by applying heuristics,

they present difficult challenges for software verification.

 Remarks on SAA

Considering the advantages of ADS-B in improving situation awareness for aircraft and its

increasing adoption, in this thesis, UAVs are assumed to be equipped with ADS-B or its

equivalent so that they have good sensing capability. With this assumption, this thesis mainly

focuses on the “threat evaluation” part and the “avoidance” part of SAA, that is, the decision-

making of when and how to avoid mid-air accidents.

As case studies, this thesis will use SVO (see 2.1.3.A.a), ACAS X (see 2.1.3.A.c), and ORCA

(see 2.1.3.B.a) to demonstrate and evaluate the proposed approach. SVO was chosen mainly

because it is specifically developed for UAVs to accommodate the right-of-way rules of the

airspace, and it is relatively simple to be used for a preliminary demonstration and evaluation of

the proposed approach. ACAS X was chosen because it has great potential to be used as the next

generation standard of collision avoidance system. Also, it is more complex than SVO, resulting

in a good choice for the further demonstration and evaluation of the proposed approach. ORCA

was chosen because it is the only conflict resolution algorithm that has been found to be with a

43

publicly available open-source implementation and with moderate complexity. ORCA will be

used to demonstrate how the proposed approach can be augmented for supporting the validation

of conflict resolution algorithms, which poses new requirements.

2.2 SAA Verification and Validation

In software or system development, verification and validation (V&V) are two important

activities that aim at ensuring the final product have the desired properties. The relationship

between the two is illustrated in Figure 2-8. In a typical sequential system development life cycle

(e.g. the controversial waterfall model), verification is often conducted to determine whether a

product of a development stage (e.g. system design, and implementation, etc.) accurately

represents the developer's conceptual description and specifications. Whereas, validation is often

conducted to determine whether a product (e.g. a piece of implemented software or a system) can

fulfill the intent of the intended user(s) when placed in its intended environment. It is entirely

possible that a product passes verification but fails validation, for example when the specification

has not captured what the users actually want or need.

Figure 2-8 Relationship between V&V, adapted from [66].

V&V are needed to ensure that an SAA algorithm can indeed avoid mid-air collisions for the host

UAVs in the real-world environment. Many techniques can be used for SAA V&V. In the

following sub-sections, four types of commonly used techniques are surveyed; these are formal

methods, software testing, simulation analysis, and flight test. Formal methods are usually used

for verification; simulation analysis and flight tests are generally used for validation; software

testing is very broad, and can be used for both.

User's intent

Developer's
conceptual model

System design

Implementation

V
a
li

d
a
ti

o
n

V
er

if
ic

a
ti

o
n

44

 Formal Methods

Formal methods refer to mathematically rigorous techniques and tools for the specification,

design, and verification of software and hardware systems [67]. In formal methods, well-formed

statements in a mathematical logic framework express the specifications of the system. With

formal specifications, two techniques are usually used to verify that the system meets the

specifications, and they are model checking and theorem proving. In the following, these two

techniques are introduced, and their uses for SAA verification are surveyed. Remarks on the use

of formal methods for SAA algorithms will be given at the end of this section.

A. Model Checking

Model checking (a.k.a. property checking) refers to the following problem: given a formal finite-

state model of a system, check whether this model meets given formal specifications (usually in

the form of temporal logic formulas) automatically. A model checker is a tool which implements

symbolic algorithms to exhaustively and automatically traverse the state space of the model. If a

specification is violated during the traversing, the system fails to meet the specification and a

counterexample is usually given to show the failure. If all the specifications are met after

traversing the whole state space, the correctness of system is said to hold.

The following are two examples found in the survey that use model checking for the verification

of UAV SAA or control software:

 In [68] Webster et al. assessed the feasibility of using model checking for the certification

of UAV control systems within civilian airspace. They first modelled a basic UAV control

system in PROMELA10, and verified it against a selected subset of the CAA’s Rules of

the Air using the SPIN11 model checker. They then built a more advanced UAV control

system using an autonomous agent language named Gwendolen, and verified it against a

small subset of the Rules of the Air using an agent model checker named AJPF. They

concluded that their approach could verify such a level of autonomy.

 In [69] Essen et al. identified some verification challenges for ACAS X and developed a

probabilistic model checking framework to address these challenges. They described the

application of the framework to analyse a simplified version of the ACAS X. However,

since their work was very preliminary, apart from the tentative probabilistic model

10 http://spinroot.com/spin/Man/promela.html.

11 http://spinroot.com/spin/whatispin.html.

http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/whatispin.html

45

checking framework and some demonstrations, no significant result can be found from

[69].

B. Theorem Proving

Theorem proving is a subfield of automated reasoning and mathematical logic dealing with

proving mathematical theorems by computer programs. To use it for system verification, the

system must be expressed in a formal logic framework, which comprises the following four

components [70]:

 A formal language to express formulas;

 A collection of formulas called axioms to express system/environment properties that are

interpreted as self-evident truths;

 A collection of inference rules for deriving new formulas from existing ones;

 A collection of theorems that express system properties to be proven.

The purpose of theorem proving is to find a deduction from the axioms to the theorems by using

the inference rules. If there is such a deduction, the property of the system is verified and said to

hold.

The following are some examples found in the survey that use theorem proving for the verification

of UAV SAA or some related software:

 Researchers from NASA Langley Formal Method group developed several SAA

algorithms and software, and used theorem proving (with the PVS12 theorem prover) to

verify critical portions of these algorithms. These algorithms includes: (1) ACCoRD [54],

a set of state-based conflict detection and resolution algorithms; (2) Chorus [41], a state-

based multiple aircraft conflict resolution algorithm using kinematic models (e.g. turns,

speed, accelerations); and (3) Stratway [42], a strategic conflict detection and resolution

algorithm that uses intent information (in the form of flight plans).

 In [71] Jeannin et al. demonstrated how formal, hybrid approaches are helping ensure the

safety of ACAS X. Using hybrid systems theorem proving techniques, they formally

verified a set of the geometric configurations under which the advice given by ACAS X

is safe under a precise set of assumptions.

12 http://pvs.csl.sri.com/.

http://pvs.csl.sri.com/

46

C. Remarks on Formal Methods

The value of formal methods is that they provide a means to symbolically examine the entire state

space (as defined by the model) of a system and establish a correctness or safety property that is

true for all possible inputs. However, the effectiveness of formal methods heavily relies on the

model. On the one hand, due to the expressiveness of the formal languages, the model can only

model certain parts of the system and the environment. On the other hand, if, in order to be more

expressive, the model would have to be very complex, and it would take a considerable

computational expense for a model checker to traverse the state space, or it may require human

intervention for a theorem prover to prove some system properties. As a result, even though there

has been great progress, formal methods are still rarely (at least not commonly) used in practice

today (except for the critical components of safety-critical systems) because of the enormous

complexity of real systems.

Moreover, many mainstream formal methods (e.g. SPIN, PVS, and NuSMV13) usually have

difficulty in modelling the various sources of uncertainty14 a real SAA system has to consider in

real-world conditions because they do not incorporate such components into either the modelling

languages or the traversal algorithms.

 Software Testing

 “Testing shows the presence, not the absence of bugs.” — Edsger W. Dijkstra.

Software testing is aimed at finding errors in the software under test (SUT) and giving confidence

in its correct behaviour by executing the SUT with selected inputs or environments. Software

testing is a very broad field involving many kinds of specific testing techniques (e.g. functional

testing, structural testing). It is one of the most commonly used techniques for V&V, and can be

used to verify that a software program meets the specification or to validate that a software

program works as expected.

Software testing of SAA algorithms often involves executing the algorithms in specific simulated

situations. Software testing using simulations will be surveyed in the next sub-section. In this part,

some related work on non-simulation related software testing for SAA algorithms will be

surveyed.

13 http://nusmv.fbk.eu/.

14 The recent probabilistic model checking approaches (e.g. [69] and [72]) are exploring in this

direction and may be an exception.

http://nusmv.fbk.eu/

47

Because of the safety-critical nature of SAA algorithms and that (according to the de facto

standard DO-178B/C [73],) the certification of safety-critical airborne software usually requires

software testing satisfying certain coverage requirements, the primary literature on non-

simulation related SAA software testing is in the form of coverage-based test case generation

techniques. For example, some studies by researchers from NASA Ames used model checking to

generate test cases for testing the built-in conflict resolution algorithms of the TSAFE [74]

software and the AutoResolver [75] software. Specifically:

 In [76], Bushnell et al. used Symbolic PathFinder (an extension to Java PathFinder15 that

combines symbolic execution and constraint solving) to generate test cases that achieve

a variety of coverage criteria including Modified Condition/Decision Coverage (MCDC)

[77] automatically.

 In [78], Giannakopoulou et al. developed and demonstrated a light-weight and automated

testing environment for generating test cases that cover the behavioural space of the

AutoResolver software to some predefined degree. Their evaluation of the testing

environment showed that it was able to generate thousands of meaningful test cases that

run in a matter of minutes, which was a significant improvement over previous practice.

Compared with formal methods, most16 of which analyse a system indirectly through the use of

formal descriptions (i.e. models) of the system, software testing is applied directly to the system,

which avoids introducing errors when building formal models. Also, software testing requires

fewer specialist skills, and relevant skills are more available amongst the software engineering

workforce.

The difficulty of using software testing to verify and validate SAA algorithms lies in that the set

of possible scenarios is too large to obtain a reasonable coverage.

 Simulation Analyses

Simulation analyses, especially large-volume Monte-Carlo simulations, are typically used to

evaluate the performance (e.g. accident rate, and the maximum number of intruders that can be

dealt with) of SAA algorithms. For example:

 In [79], Paielli described a trajectory scripting language to help automatically generate

large-volume simulated air traffic encounters, and ran simulations of the generated

encounters to evaluate the conflict resolution algorithms of the TSAFE software.

15 http://babelfish.arc.nasa.gov/trac/jpf.

16 An exception is the Java Pathfinder that can verify executable Java bytecode programs directly.

http://babelfish.arc.nasa.gov/trac/jpf

48

 A Monte-Carlo simulation approach [80] and an accelerated Monte-Carlo approach [81]

were used for probabilistic risk analysis of a next-generation air traffic control operational

concept. Both studies derived quantitative results of the mean time between mid-air

collisions and identified some significant failure modes.

 Blom and Bakker in [82] investigated the collision risk of an airborne self-separation

concept using techniques in agent-based modelling and rare-event Monte-Carlo

simulation. Their results show that the specific self-separation concept they consider can

safely accommodate very high en route traffic demands.

To analyze the behavior of a target system, the real system/software (or at least the core of it) is

usually simulated with modelled environments. Compared with formal models used for system

verification, models for simulations need not be formal, and can usually be more expressive. The

fidelity of the simulation depends on the how detailed the model is and how close the model is to

the real world. With good models, simulations have the potential to handle various sources of

uncertainty of the system and the environment very well. Compared with flight tests, which are

conducted in the real-world environment, simulation analysis is more cost-effective to cover a

larger part of the possible operational situations. However, it is also subject to limitations in the

fidelity of the simulation.

More survey of simulation techniques and the way to guide simulations will be presented in

Section 2.4 and Section 2.5.

 Flight Tests

Flight tests evaluate the system in actual operational environments and are indispensable for

system validation. However, due to the high cost and safety risks, they can only be conducted for

a very limited time, thus covering very limited operational situations. Although flight testing does

have the great advantage of testing real aircraft behaviours, the assurance it can give is limited.

 Remarks on V&V of SAA Algorithms

To ensure an SAA algorithm can indeed avoid mid-air collisions for UAVs, all the V&V

techniques surveyed in this section are needed. Each of them has strengths and weaknesses.

Specifically:

 Formal methods can theoretically cover all the situations, but these situations are only

defined by abstract formal models. The tractability of models is a problem, and the

models usually cannot easily incorporate environment uncertainties, which can be crucial

for SAA algorithms;

49

 Software testing can be applied directly to the SUT itself, but it can only cover a limited

number of situations;

 Simulation analysis can simulate the system in various situations cost-effectively, but

these situations need to be specifically modelled and it can still cover only a limited

number of situations;

 Flight tests examine the system in actual operation environments, so are the most realistic,

but they can only be conducted for a very limited time and cover very limited operational

situations.

Based on the above comparisons, this thesis chooses simulation analyses as the means for SAA

algorithm validation. However, it is acknowledged that any “complete” V&V approach will need

to employ a range of techniques inevitably including flight testing.

The advantage of having a good simulation-based validation approach for SAA algorithms is that

it can help to find limitations of the tested algorithms with a higher level of fidelity than most

formal analysis techniques (e.g. theorem proving and model checking), but at the same time

avoiding the high cost and risk of flight tests. As a result, such an approach can help to evaluate

various UAV SAA algorithms, and contribute to the safe integration of UAVs into civilian

airspace.

2.3 Search-Based Software Testing

As a way to conduct software testing activities, SBST [12] considers software testing as an

optimization problem, and applies meta-heuristic search techniques, such as GAs [13], simulated

annealing [14] and tabu search [15], to solve the optimization problem.

As mentioned in Section 1.3, the testing problems where uses of SBST are successful usually

show the following characteristics, as summarized by Clark et al. [17]:

 It is easy to check whether a candidate solution is acceptable but it is difficult to construct

such a solution;

 The requirement is to find an acceptable solution rather than the optimal solution;

 There are often competing constraints to satisfy.

SBST is increasingly used to generate test data for functional or structural testing, prioritize test

cases, reduce human oracle cost, optimize software test oracles, and minimize test suites. In

various case studies, it has been shown that SBST has the potential to improve the effectiveness

and efficiency of the testing process significantly [12]. An overview of different applications of

SBST is provided by McMinn in [12]. In the following, a brief introduction to the use of SBST

for automated test input generation is given.

50

The problem of automated test input generation involves finding inputs that cause execution to

reveal faults, if they are present, and to give confidence in their absence if none are found.

However, in general, test data generation is an undecidable problem17 [84]. Since the input space

of a program is enormous (and sometimes continuous and infinite), an exhaustive enumeration is

infeasible. In SBST, the task is transformed into an optimization problem, and it can be solved

with meta-heuristic search techniques. The search space is represented by the input domain of the

program under test. From this search space, the test data are firstly randomly generated. If the test

data fulfill the test objectives under consideration (e.g. covering an uncovered branch), they will

be kept as part of the required test data. If the test data do not fulfill all the objectives, they will

be measured by the extent that they are able to satisfy the objectives. Those with a bigger extent

will more likely be selected and used to generate more test data, in the hope that finally, all the

objectives will be satisfied.

To apply a search-based optimization technique to a testing problem, two key requirements need

to be fulfilled [12, 85, 86]:

 Solution representation. The candidate solutions for the testing problem must be able to

be encoded so that the search algorithms can manipulate them. In the case of GAs, the

solution is usually represented as chromosomes (or genomes), which are essentially

arrays of numbers.

 Fitness function. There should be a way to define a problem-specific fitness function that

measures how good a solution is. It is used to guide the search to promising areas of the

search space. For the case of GAs, a fitness function is used to compare individual

solutions and to guide the selection of the fittest ones.

As has been pointed out in Chapter 1 (Section 1.3), one of the main advantages of SBST is that it

can generate test data satisfying certain requirements which human beings have difficulty in doing.

In addition, by using automated meta-heuristic search techniques, the test case generation process

can be partially automated.

This thesis focuses on the problem of SAA algorithm validation, specifically, the problem of

determining whether or not there are challenging situations that the algorithms have difficulties

in handling. It is noted that at least two (the first two) of the characteristics identified by Clark et

al. are visible. It is desirable that the process of finding challenging situations for SAA algorithm

validation can be automated or at least partially automated. By building on ideas from SBST, this

thesis attempts to formulate the problem of identifying challenging situations for supporting SAA

17 An undecidable problem is a decision problem for which it is known to be impossible to

construct a single algorithm that always leads to a correct yes-or-no answer [83].

https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/Algorithm

51

algorithm validation as an optimization problem and use meta-heuristic search techniques to find

the solutions.

2.4 SAA Simulation Techniques

In the field of engineering, a wide variety of simulation techniques are used to conduct simulation

analysis for different problems. In this section, two types of simulation techniques that are

frequently found in the UAV SAA related literature are surveyed. They are agent-based

simulations and physics-engine-based simulations. It is noted that equation-based simulations, for

example, those using MATLAB/SIMULINK, are also used frequently for UAV simulations (e.g.

[87]). However, since the main focus of equation-based simulations (in this context) is on the

low-level control of UAVs, it will not be surveyed in this thesis, whose focus is on simulations at

the behaviour level.

 Agent-Based Simulations

In agent-based simulations, the actions and interactions of (autonomous) agents are simulated to

assessing the aggregate effects on the system as a whole. It is a widely-used technique for

simulating complex systems to observe emergent behaviours. Agent-based simulations rely on

agent-based modelling , and a typical agent-based model has three elements [88]:

 a set of agents, their attributes, and behaviours;

 the environment the agents occupy;

 a set of relationships defining how the agents interact with each other and with the

environment.

Agent-based modelling is based on the agent structure illustrated in Figure 2-9. In an agent-based

model, everything associated with an agent is either an attribute or a method. Attributes describe

properties of the agent, and they can be static (not changeable during the simulation), or dynamic

(varying as the simulation progresses). Methods operate on the agent, and they include behaviours

that perceive or act on other agents and the environment, behaviours that modify other behaviours,

and behaviours updating dynamic attributes, etc.

52

Figure 2-9 A typical agent structure, from [88].

After building the agent-based model, agent-based simulation executes the model and derives the

aggregate effects (e.g. patterns, structures, self-organization, etc.) of the whole system emerging

from the low-level interactions. One of the key modules of agent-based simulations is the

simulation engine that schedules the behaviours of agents. Usually, the engine is time-driven,

which means that the simulated time is advanced in constant time steps, in contrast to event driven

mechanism, where the time is advanced based on when the next event takes place. Many platforms

provide utilities to facilitate agent-based model construction and simulation. Examples are

Swarm18, NetLogo19, and MASON20.

Common uses of agent-based simulations are in optimization problems and social simulations,

such as urban simulations, traffic flow, and supply chain optimization, and in crowd behaviour

simulations. Agent-based simulation tools specially for air traffic include the Airspace Concept

Evaluation System (ACES) [89] and the Future ATM Concepts Evaluation Tool (FACET) [90],

all developed by NASA.

The most significant advantage of agent-based simulations is that it can derive the system-wide

emergent behaviours by modelling simple behaviours of agents at lower levels. Another

advantage is that, like the Object-Oriented modelling paradigm, the agent-based approach models

18 http://www.swarm.org/wiki/Main_Page.

19 https://ccl.northwestern.edu/netlogo/.

20 http://cs.gmu.edu/~eclab/projects/mason/. Open source.

http://www.swarm.org/wiki/Main_Page
https://ccl.northwestern.edu/netlogo/
http://cs.gmu.edu/~eclab/projects/mason/

53

the simulated reality in a way that is described to be more intuitive and natural, which makes the

modelling process easier and less error-prone than with other modelling formalisms (especially

Equation-Based Modelling, such as System Dynamics [91]).

 Physics-Engine-Based Simulations

Physics-engine-based simulations are often found in video games and robot simulations. It relies

on a physics engine, which is computer software that approximately simulates certain physical

systems, such as rigid body dynamics (including collision detection), soft body dynamics, and

fluid dynamics, etc. The physics engine allows simulating interactions between objects that are

near to real-world object interactions. For example, it can simulate a vehicle rolling in a realistic

fashion over uneven terrain. Note that Physics-engine-based simulations are surveyed here not

because it is an alternative simulation paradigm to agent-based simulations (it is not), but because

it is often found in the UAV SAA related literature. Agent-based simulation can also be physics-

engine-based if it is really necessary.

Tools for physics-engine-based simulations include the Gazebo21 robot simulator, the V-REP22

robot simulator, and FlightGear 23 for aircraft simulations. RotorS [92] is a Gazebo-based

simulator under development specifically for UAVs. By providing several low-level controllers

for UAVs, it facilitates the simulation of high-level functions, such as path planning and collision

avoidance.

To accurately simulate the physics of the interactions between the system and the environment,

physics-engine-based simulations are very costly regarding computation power and time.

Especially, for a system including multiple agents (i.e. robots, UAVs), the simulation can be very

slow.

 Remarks on Simulation Techniques

Agent-based simulations have the advantage of simulating multi-agent interactions to observe the

emerging effects. Usually, agent-based approaches are also computationally cheaper than physic-

engine-based simulations. For the simulation of UAV conflict resolution algorithms, where often

there are multiple UAVs, the focus is usually on the behaviour level of interactions rather than on

21 http://gazebosim.org/. Open source.

22 http://www.coppeliarobotics.com/.

23 http://www.flightgear.org/. Open source.

http://gazebosim.org/
http://www.coppeliarobotics.com/
http://www.flightgear.org/

54

the physics level of interactions. So, agent-based simulations are a good choice for conflict

resolution simulations.

Physics-engine-based simulations have the advantage of simulating the interactions between

physical objects (e.g. robots, chairs, winds) with high fidelity. In doing so, it is at the cost of high

computational power. In UAV collision avoidance cases, often there are only two UAVs, and the

effects of the environment (such as the effect of wind) may be considerable. So, physics-engine-

based simulations are a good choice for collision avoidance simulations.

However, in this thesis, it is required to run large-volume simulations. To save the computation

power and time, only agent-based simulations are chosen. To compensate, in the agent-based

simulations, some physics aspects (e.g. a very basic model of wind effect) of the system will also

be modelled. Another reason to choose agent-based simulation techniques is that it has been

commonly used in air traffic simulations, where the major concern is in the behaviour level of

interactions between airspace users and in the system-wide emergent effects.

2.5 Techniques for Guiding Simulations

For simulation-based validation of SAA algorithms, there are a huge, if not infinite, number of

situations to be simulated and tested. In this section, techniques for guiding simulations will be

surveyed. By guiding simulations, it means to direct the simulations to only focus on situations

that are “useful” for some specific purposes in a huge (possibly infinite) space of all possible

situations. Three techniques will be surveyed, and they are Monte-Carlo methods, Design of

Experiments, and meta-heuristic search.

 Monte-Carlo Methods

Monte-Carlo methods are a class of computational algorithms that rely on repeated random

sampling to obtain numerical results. Monte-Carlo methods vary, but tend to follow the following

pattern [93]:

1. Define the domain of possible inputs;

2. Generate inputs randomly from a probability distribution over the domain;

3. Perform computations on the inputs;

4. Aggregate the results.

In the second step, if the probability distribution over the domain is unknown, the inputs can then

be randomly generated from a uniform distribution. This form of Monte-Carlo method is often

called as a random search. In the third step, the computations can be done through simulations.

55

Monte-Carlo methods guide simulations by only simulating situations generated according to the

probability distribution. Situations that happen very often according to the distribution will be

more frequently simulated.

Monte-Carlo methods are usually used to evaluate the performance of a system. For example, in

[5, 94], Monte-Carlo methods were used to assess the performance (e.g. accident rate and false

alarm rate) of the generated logic of ACAS X (see Section 2.1.3.A.c). In this case, the domain of

inputs is the possible situations of two-UAV encounters, which can be described by the evolution

of the states (e.g. positions and velocities) of the two UAVs. The probability distribution is

defined by what are called statistical aircraft encounter models [95, 96] that use dynamic Bayesian

networks to derive probabilities. The encounter models were derived from real radar data. With

the encounter models, a large number of encounters were generated and simulated to observe the

accident rate and false alarm rate for ACAS X.

Monte-Carlo methods are subject to the law of large numbers, which means a significant number

of inputs need to be generated and evaluated to derive a reasonable result. Monte-Carlo method

samples very little in the very low probability regions ("rare events"). For distributions with very

long tails, advanced techniques (e.g. rare-event sampling [97]) are needed to sample rare events

to accelerate the process.

 Design of Experiments

Design of experiments (DOE) [98] is a systematic method to determine the relationship between

multiple factors affecting a system and the output of that system by using statistical analysis. In

other words, it is used to find the cause-and-effect relationships between system inputs and output.

The information on the relationships can then be used to figure out system inputs to optimize the

output.

Different from many traditional methods in the field of industrial engineering or system

engineering, such as the OFAT (One Factor at a Time) approach, which examine one factor at a

time while holding other factors constant, DOE utilizes systematic approaches (e.g. orthogonal

arrays) to explore the interactions of factors and the way the whole system works. An advantage

of DOE is that it identifies significant interactions between multiple input variables.

Apart from being used in experimental design and process control, DOE can also be used in

software testing, which is often referred to as combinatorial testing, to provide a high level of

coverage of the input domain with a small number of tests [99]. Here, testing all combinations of

the input variables is not possible, and the objective is to cover the input domain of the SUT as

efficiently as possible. DOE is used to select a subset of these combinations to have a high

coverage of the important outputs. In the same vein, DOE can be used to guide simulations to

56

focus on situations (analogous to test input) that can result in covering the desired behaviours

(analogous to output) of the simulated system. For example, in [100] Lazić et al. presented some

solutions with regard to the deployment of the U.S. Department of Defence Simulation, Test and

Evaluation Process (DoD STEP). By applying simulation and DOE to the embedded software

testing process of an automated target tracking radar system, they reported a minimum

productivity increase of 100 times regarding minimized number of test cases in comparison to

their practice before using the approach.

By statistical analysis, DOE identifies the relationship between input variables and system output,

and it identifies the interactions between multiple input variables. When used to guiding

simulations, it has the potential to reduce the number of simulated situations but at the same time

to cover the behavioural space to a high extent.

One weakness of DOE is that it requires the input variables to be discrete. For many systems

whose inputs are continuous, discretization is needed, and this may be problematic. Moreover, if

the input space is large, DOE necessarily only samples a small part of it, thus, it also has difficulty

in handling rare events.

 Meta-heuristic Search

Meta-heuristic search is a major subfield of stochastic optimization, which employs some degree

of randomness to search for optimal (or as optimal as possible) solutions to hard problems. Meta-

heuristics are strategies used to guide the search process. Usually, the solution found is

approximate and dependent on the set of random variables generated. Meta-heuristic search can

often find good solutions to hard problems with less computational effort than conventional

optimization algorithms, iterative methods, or simple heuristics [101]. Techniques which

constitute meta-heuristic algorithms range from simple local search procedures (e.g. hill-climbing)

to complex learning processes (e.g. reinforcement learning), from single-state methods (e.g. tabu

search) to population methods (e.g. evolutionary search), and from physics-inspired methods (e.g.

simulated annealing) to nature-inspired methods (e.g. ant colony algorithms).

Meta-heuristic searches are often applied to “I know it when I see it” problems: it is unclear

beforehand what the optimal solution looks like; it is unclear how to find the optimal solution in

a principled way; there is very little heuristic information to go on; the search space is too large

to use brute-force search; but given a candidate solution to the problem, it is easy to test it and

assess how good it is. That is you know a good one when you see it.

Many software testing problems are “I know it when I see it” problems. For example, for the

problem of automated branch-coverage-based test generation, it is unclear how to generate such

57

test cases directly using computers, but given a test case, it is easy to figure out if it covers a

certain branch. With meta-heuristic search, this problem can be solved by the following steps:

1. Initialization: generate a random test as the current version, and initialize the heuristic as

null.

2. Mutation: make random changes to the current version. The result is the new version.

3. Evaluation: examine if the new version covers an uncovered branch, and generate a new

heuristic (possibly by using the extent the new version covers an uncovered branch).

4. Update: update the current version based on heuristics (for example, if the heuristic value

is less than a threshold, the new version will be discarded; else it will be treated as the

current version).

5. Repeat 2-4 until all branches are covered.

The use of meta-heuristic search in software testing results in the research field of SBST (see

Section 2.3). In the same vein, meta-heuristic search can also be used to guide simulations. For

example, in [102], meta-heuristic search was used to automate the traditional test process for

autonomous vehicle software controllers: by evaluating fault scenarios in a vehicle simulator, a

GA was used to search for fault combinations that can produce noteworthy actions in the

controller. This approach was applied to find a minimal set of faults that produces degraded

vehicle performance and a maximal set of faults that can be tolerated without significant

performance loss.

Meta-heuristic search has the advantage in adaptively searching for solutions satisfying certain

requirements. Its strength lies in the heuristics it uses to guide the search to promising areas of the

search space. So, if with appropriate heuristics, it can handle rare events very well. However, it is

easy to get stuck at local minima, meaning that the result is sub-optimal.

 Remarks on Techniques for Guiding Simulations

The three techniques surveyed above to guide simulations have different focuses, and they have

strengths and weaknesses in different aspects. Specifically:

 The strength of Monte-Carlo methods lies in that they evaluate system performance

according to the system’s operational profile. When used to guide simulations to test a

system, it can provide confirmatory results. That is, when it does not find problematic

situations for the system, it can provide statistical confidence that the system is fault-free.

However, it has difficulty in dealing with rare events and it is computationally expensive.

 The strength of Design of Experiments lies in that it systematically explores the

relationship between multiple inputs and the system output, and the interactions between

multiple inputs. When used to guide simulations to test a system, it can do sensitivity

58

analyses of the system inputs, and it can find the minimum set of system inputs that cover

the output domain. However, if the input space is large, DOE necessarily only samples a

small part of it, thus, it also has difficulty in handling rare events. Moreover, DOE has

difficulty in dealing with continuous system inputs.

 The strength of meta-heuristic search lies in the fact that it can adaptively search for

solutions satisfying certain requirements. When used to guide simulations to test a system,

it is effective in bug-finding as it can adaptively search for faulty states of the system.

However, it suffers from local minima. Moreover, it cannot provide statistical confidence

that the system is fault-free.

The validation of UAV SAA algorithms requires identifying some challenging situations that

the algorithms have difficulties in handling. When the tested SAA algorithms are moderately

good, the challenging situations are usually very rare. Neither Monte-Carlo methods nor DOE

is good at dealing with such rare events. In contrast, meta-heuristic search can adaptively

search for such rare events because it is able to follow “clues” (i.e. heuristics) towards high-

interest regions.

Meta-heuristic search methods have been used in SBST, and have shown many promising

results (refer to Section 2.3). This thesis will focus on the use of meta-heuristic search to

search for challenging situations for supporting the validation of SAA algorithms. In

particular, a kind of meta-heuristic search named evolutionary search will be utilized because

of its wide adaptation in SBST. In the next section (i.e. Section 2.6), evolutionary search will

be introduced.

2.6 Evolutionary Search

Evolutionary search is a kind of population-based evolutionary meta-heuristic search. By

“population-based”, it means that the algorithm holds a set of candidate solutions to a specific

problem. By “evolutionary”, it means that these candidate solutions evolve by a mechanism

mimicking natural evolution (“survival of the fittest”). In each generation of the evolution, the

population retains the solutions most likely to solve the problem, and the others are eliminated.

Evolutionary search uses mechanisms inspired by biological evolution, such as reproduction,

mutation, recombination, and selection. Candidate solutions to the optimization problem play the

role of individuals in a population, and a fitness function is used to quantify how good the

solutions are.

Many specific algorithms exist for evolutionary search, among which GAs [13] are the most basic

and popular one. Usually, the flow of GAs is as follows [103]:

1. Generate the initial population of individuals randomly;

59

2. Evaluate the fitness of every individual in that population;

3. Repeat until termination (time limit, sufficient fitness achieved, etc.):

1) Select the best-fit individuals for reproduction;

2) Breed new individuals through crossover and mutation operations to give birth

to offspring;

3) Evaluate the individual fitness of new individuals;

4) Replace least-fit population with new individuals.

Other types of evolutionary search include the 1-Population Competitive Coevolution algorithm

[104] and the 2-Population Competitive Coevolution algorithm [104] for coevolution, and the

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [105] and the Strength Pareto

Evolutionary Algorithm 2 (SPEA2) [106] for multi-objective optimization. For more information

on evolutionary search, readers are referred to [104].

2.7 Conclusions

SAA is crucial for the safe integration of UAVs into civilian airspace, and a full SAA system

includes several parts. Considering the advantages of ADS-B in improving situation awareness

for aircraft and its increasing adoption, in this thesis, UAVs are assumed to be equipped with

ADS-B or its equivalent so that they have good sensing capability to know the positions, velocities,

shapes, etc. of the other air traffic. The main interest of this thesis is thus in the “threat evaluation”

part and the “avoidance” part of SAA, rather than the surveillance part.

V&V are needed to ensure that the SAA algorithms have the desired properties. Many techniques

can be used for SAA V&V. Formal methods realize the task by using formal models of the system

and the environment, while flight tests fulfill the job by directly using the actual system and in

the real-world environment. Software testing methods lie in between: some parts of the system or

the environment may be modelled, and other parts remain actual. If some parts of the system or

the environment are modelled, simulations are usually used to examine the system by executing

the model along with the other parts. Since simulations can examine the system in a wide variety

of situations, and some simulation models can be very expressive, especially in modelling various

sources of uncertainty a system has to manage, simulation-based software testing for validation

is the main interest of this thesis.

Since, for SAA algorithms, the focus is on decision-making and the concern is on the behaviour

level of the system, rather than on the control level or the physical level, agent-based simulation

techniques are the main interest of this thesis.

60

The validation of SAA algorithms involves exploring and examining a large space of possible

encounter situations to identify some very challenging ones. To explore the large situation space

effectively and efficiently, techniques are needed to control the simulations to only focus on

situations that are “useful” for our specific purpose (i.e. to focus on challenging situations that

can cause the SAA algorithms fail to avoid collisions). For many problems, the “useful” situations

are usually rare events. Three techniques for guiding simulations have been surveyed, and meta-

heuristic search was found to be better than the other two at handling rare events. In addition,

meta-heuristic search methods, especially evolutionary search, have been commonly used in

SBST, and have shown many promising results.

Motivated by the need to improve the validation process of SAA algorithms required for the safe

integration of UAVs into civilian airspace, by building on ideas from SBST, this thesis explores

the use of agent-based simulation and evolutionary search for supporting the validation of UAV

SAA algorithms.

61

 SAA Validation: Requirements and

the Proposed Approach

Drawing on the survey and discussions in the preceding chapters, this chapter analyses the

requirements for an effective SAA validation method. An approach is proposed to partially solve

the problem, and will be compared with some existing similar studies.

3.1 Requirements Analysis

In the following, the requirements for an SAA algorithm validation approach will be analysed and

developed.

A. Ideal Case

Ideally, a validation technique (1) would reveal all the faults24 of the validated system if there are

any; otherwise, it would confirm that the system is fault-free. Moreover, (2) the validation should

be applied to the SAA algorithm/system directly, and be conducted in the actual operational

environment, rather than to models of the system or the environment. The reasons for this are that,

on the one hand, models are an abstraction of the system or the environment, but they are not

identical, and on the other hand, there is a possibility of introducing faults in building the models.

For the first requirement, because of the infinite possible situations the SAA algorithms may

encounter, it is impossible to assert that the SAA algorithm will behave as expected in all the

situations. Just as the famous quote by Edsger W. Dijkstra “Testing shows the presence, not the

absence of bugs”, validation cannot confirm fault-freeness either. The second requirement is also

very difficult to satisfy because it would be very costly and with high safety risk to validate SAA

algorithms in actual UAV encounters.

In this thesis, compromises are made: (1) we will endeavor to find as many faults as possible, but

we will not aim at proving that the system is fault-free; (2) in order to examine the system in a

large number of situations at a reasonably low cost and risk, we will validate the SAA algorithms

through simulations — specifically, we will conduct software-in-the-loop simulations, where the

24 A fault is a flaw in a system that can cause the system to fail to perform its intended functions

or fail to achieve certain performance.

62

actual code of SAA algorithms are directly tested in a simulated environment (i.e. simulated

inputs).

B. Using Simulations

When simulations are used to validate SAA algorithms, to reveal as many faults as possible, (1)

a wide range of diverse encounter situations should be examined, and it is desirable to have an

automated process to support this; (2) it is important to favour situations that have a high

likelihood of causing undesired behaviors of the validated system; otherwise, computation cost is

wasted in evaluating normal behaviors; (3) simulations should be conducted with adequate

fidelity, in particular there should not be faults in the system that the simulation cannot reveal

because they depend on details that are not modeled.

With respect to the above requirements, this thesis, (1) will design a way to automatically generate

a broad range of diverse encounters; (2) will use evolutionary search to guide the simulation, so

that the process can be partially automated and the simulation can focus on situations that are

most likely to reveal faults of the system; (3) will build agent-based models for the simulations,

and the focus will be at the behavioral level of the system. We will not build the low-level

controller for controlling the host UAVs to execute the avoidance commands generated by the

SAA algorithms, but when necessary, we will model the effect of imperfect control, the effect of

some environmental forces (e.g. gravity, winds), and the effect of the uncertainties (e.g. sensor

noise).

That being said, we acknowledge the potential implications of modelling simplifications made

during the simulation experiments. As said by the quote “All models are wrong, but some are

useful” [107], even though we will make simplifications when building simulation models, we

will endeavour to make the simulation models consistent with the specifications and assumptions

about the environment made in the original SAA algorithms. In this way, we try to use the

models/simulations to reveal potential faults of the SAA algorithms. If the SAA algorithms are

found to work well in our simulations, it is not guaranteed that they will work as well in the real-

world conditions. However, if the SAA algorithms are found not work as expected in simulations,

it is very likely that they will not work in real-world conditions either.

3.2 Proposed Method

To support the validation process of SAA algorithms, this thesis proposes an evolutionary-search-

based approach to efficiently identifying rare challenging situations that the algorithms have

difficulties in handling (i.e. counterexamples). This proposed method plays an important role in

the overall validation process, as shown in Figure 3-1.

63

Implementation
SAA

Algorithm

Build

Simulation

Evolutionary

Search
Investigation

Implementation Errors

Simulation Artefacts

True Failures

Proposed Method

Counterexamples

Figure 3-1 Overall validation process.

In this validation process, the proposed method includes building simulations and using

evolutionary search to guide the simulations. After the SAA algorithm is implemented, it is

plugged into the simulation part of the proposed method. The proposed method will then search

for situations that can challenge the SAA algorithm. Those very challenging situations are the

counterexamples that could possibly mean that there are true failures in the SAA algorithm, but

it could also mean that there are errors in the implementation of the algorithm, or that those

counterexamples are due to simulation artefacts. So, further investigation is needed to decide what

the real reasons are.

The method for counterexample investigation varies and sometimes it is very difficult to decide

the real reason. To alleviate this difficulty, it is suggested that some proactive actions should be

taken. To prevent implementation errors, software quality assurance activities, such as code

walkthrough, functional test, and various software verification techniques can be used to reduce

the likelihood of introducing implementation errors before using the proposed method. For

simulation artefacts, there are two major sources from which they can be introduced: simulation

model design and simulation model implementation. Various methods for simulation model

verification and validation (see [108-110]) can be used to reduce the likelihood of introducing

simulation artefacts. Here, model verification is meant to confirm that “the model implementation

matches specifications and assumptions deemed acceptable for the given purpose of application”

[110] (i.e. the simulation model implementation matches the simulation model design), while

model validation is meant to confirm that “a computerized model within its domain of

applicability possesses a satisfactory range of accuracy consistent with the intended application

of the model” [108] (i.e. the simulation model design and implementation match the reality).

Once those proactive actions are taken, working out the true reasons for the counterexamples is

mostly a debugging activity.

This thesis focuses mainly on finding counterexamples rather than investigating them. As

discussed in the previous two paragraphs, given enough resources for software quality assurance,

64

model verification and validation, and debugging, counterexample investigation can also be done,

but it is beyond the scope of this thesis. By using the combination of agent-based simulation and

evolutionary search, this thesis proposes an efficient means to finding counterexamples for SAA

algorithms, thus supporting the validation of them.

 Method Overview

The proposed approach is the integration of agent-based simulation and evolutionary search.

Agent-based simulations are built to provide a test arena for UAVs with various SAA algorithms

to explore potential conflict situations. The simulation is configured by a set of parameters, which

define a huge search space. Evolutionary search is used to explore the search space efficiently,

and to guide the simulation towards increasingly challenging situations, thus accelerating the

process of finding faults and supporting the validation process.

Evolutionary

Search

Agent-based

Simulation

Scenario

Generator

Space of all

possible encounter

scenarios

Fitness Scenario

Scenario configuration

Figure 3-2 A search-based approach to identifying challenging situations.

The approach is shown schematically in Figure 3-2. In this approach, encounter scenarios are

parameterized so that they can be encoded as chromosomes (or genomes) for the use of

evolutionary search. Based on the encoded information (which actually configures encounter

scenarios), encounter scenarios can be generated by a scenario generator. The generated scenarios

are then evaluated by running agent-based simulations. Based on the simulation result, a fitness

value is derived and passed to the evolutionary search. Using the fitness as the clue, the

evolutionary search evolves the encoded scenarios in the hope of getting a higher fitness in the

65

next iteration. The process iterates until a scenario with the desired fitness is found or the allotted

time is over.

The proposed approach is quite general, and could possibly be used to search for any situation

where certain desired events happen. One of the biggest advantages of the proposed approach is

that we need not define what the situation we search for is, but instead, we define what the desired

events (which are the properties of the situations) are, and then the evolutionary search will

automatically find the situations. So, this approach is most suitable for cases where it is difficult

to define exactly what the target we search for is, but it is relatively easy to define some of the

properties of the target. In other words, this approach is most suitable for the “I know it when I

see it” problems.

In the case of using the proposed approach to find challenging situations for supporting the

validation of SAA algorithms, it is difficult to define (or describe) what challenging situations are

in the abstract and it is even more difficult to construct such challenging situations. However,

given a situation, it is easy to judge whether this situation is challenging or not. For example, one

can run simulations with this situation and then check whether this situation will result in a high

accident rate or cause the UAVs pass each other at a very small distance. If that is the case, this

situation can then be treated as challenging. Therefore, it is suitable to use the proposed approach

to the problem of identifying challenging situations for supporting the validation of SAA

algorithms.

One of the key requirements to use the proposed approach is that a fitness function should be

defined to adequately quantify the extent to which any generated scenario matches the properties

of the searched-for situations. A good fitness function should provide a higher quantitative value

for the scenarios that are closer to the target of the search. Using this value as a heuristic,

evolutionary search algorithms can then guide the search to increasingly promising areas of the

search space. However, we acknowledge that, to generalise the proposed approach to more

general cases, it may be difficult to define a good fitness function and thus to find the target,

which often happens when the properties of the searched-for target cannot easily be formalized

and defined in a computer-understandable way25 or when the discrepancy between a candidate

solution and the target cannot easily be quantified26.

25 For example, the properties are patterns that can be understood by human beings, but it is

difficult to make computers understand them. (Consider the general difficulty for computer vision

and natural language processing.)

26 That is, it is difficult to define a quantitative distance metric to describe how far off the

candidate solution is from the desired solution.

66

It is likely that the proposed approach can play a role during the iterative development process of

SAA algorithms, although we have not been able to test that in this thesis. At the end of each

iteration, the proposed approach can be used to check if there are situations that the SAA

algorithm cannot deal with successfully. If such situations exist, the proposed method is likely to

find them quickly. The SAA algorithm can then be further analyzed in these challenging situations

that have been found to decide if it is because of true failures of the algorithm, or it is due to

simulation artefacts, or it is because of implementation errors. If it is because of true failures, the

analysis results will then be used to improve the algorithm in the next iteration.

 Comparison with Existing Similar Approaches

This thesis builds on ideas from SBST (in particular, search-based test generation, see Section

2.3), so they share commonalities. In SBST, test data are usually generated as the input for a piece

of code (or software), while in this thesis, the evolutionary search is used to generate input data

(e.g. configuration parameters for challenging situations) for agent-based simulations. The use of

simulations is because, for SAA algorithms, validation cannot be conducted without consideration

of other UAVs and the environment.

The earliest comparable work appears to be [102], dating back to 1993, where a similar approach

was used to automate the process of testing an intelligent controller for guiding a jet aircraft to fly

to and land on an aircraft carrier. The intelligent controller was subjected to an adaptively chosen

set of fault scenarios in a vehicle simulator. A GA was used to find a minimal set of faults that

produces degraded aircraft performance and a maximal set of faults that can be tolerated without

significant performance loss. The approach modelled faults (e.g. control faults, sensor faults, and

model faults [102]) at a very high level, and it modelled the effects of these faults in a rule-based

way (i.e. in the form of “initial state + triggers  fault mode”). Given the very limited information

provided by [102], that approach is perhaps most usable in a very high-level fault-tolerance

analysis (or robustness analysis) for controllers.

In [111, 112], Bühler and Wegener used evolutionary search (specifically, a GA) to automate the

functional test of an autonomous parking system. The papers presented and evaluated two

different approaches to calculating fitness functions: one using the distance between the vehicle

and the collision area as a measure, and the other using the area between the vehicle and the

collision area. The numerical comparison showed that the area based fitness was more efficient

in finding functional errors in an automated way. From a methodological point of view, it is noted

that the work is very similar to the proposed approach in this thesis. However, the two differ in

specifics. In particular, in this thesis, UAV SAA algorithms are the objects to test, and there are

some very different requirements to satisfy (see Chapter 6 and Chapter 7).

67

Alam et al. in [113, 114] and Clegg and Alexander in [115] used similar approaches for safety

analysis of ATM systems. Their main concern was to identify the combination of airspace

configurations and Air Traffic Controller’s actions that can result in a high aircraft collision risk.

In contrast, the purpose of this thesis is to seek specific counterexamples to challenge UAV SAA

algorithms. While their work could be adapted for the purpose, no follow-up work in this direction

can be found, and the adaptation work may be considerable.

Srikanthakumar et al. in [116-118] developed an automatic approach to finding the worst case

situation for moving obstacle avoidance algorithms in the presence of uncertainties (i.e. structural

uncertainty, parameter uncertainty, and sensor data uncertainty, see [118]). The approach was

based on simulations and optimization techniques, and it concluded that to do worst case analysis,

a deterministic global optimization technique is needed since the local optimization method and

the stochastic global optimization methods (e.g. GAs) fail to find the global minimum. However,

their approach can only be guaranteed to find the worst case when the objective function is

continuous or at least continuous in the neighbourhood of the global optimum. In real problems,

this requirement may be difficult to satisfy, for example, when there are discrete control variables

for the simulations, or when we need to exclude part of the search space by setting the objective

function value in that part to infinity. Moreover, their optimization problem has only one objective

— to find a worst-case situation that causes a collision. As a result, the worst-case situations found

may happen so rarely in real-world conditions that they may not be very helpful in improving the

obstacle avoidance algorithms.

Compared with the work of Srikanthakumar et al., apart from using different cases (UAV SAA

algorithms vs robot moving obstacle avoidance algorithms), the focus of this thesis is on

stochastic optimization techniques, specifically, evolutionary search methods. The reasons are:

(1) our purpose is to find some challenging cases for the SAA algorithms for to improve the

algorithms, rather than to find the worst case to prove the algorithms are safe under all (simulated)

conditions; (2) we aim at fast iteration of the SAA algorithm development, but using deterministic

global optimization techniques for this purpose would be very time-consuming. In addition, rather

than to find the worst case, this thesis will try to find challenging situations that are most likely

to happen in real-world conditions by using an evolutionary multi-objective search technique (see

Chapter 7).

Note that none of the source code for the similar work discussed above is publicly available. So,

it is not easy to build directly on their work. For the work of this thesis, however, the code will

be open-source, and further research can thus easily build on it. Appendix 1 summarizes the links

for source code used in this thesis.

68

69

 Preliminary Evaluation with a

Simple SAA Algorithm

4.1 Introduction

This chapter reports a preliminary demonstration and evaluation of the proposed approach. The

proposed approach was applied to identify challenging situations for a simple collision avoidance

algorithm (SVO) in two-dimensional space.

Two experiments were conducted. In the first experiment, it was assumed that the UAVs have

perfect sensing ability. Both random search and evolutionary search were used to find mid-air

collision situations for SVO. It was found that the evolutionary search could find some interesting

collision situations that the random search has difficulty in finding. In the second experiment,

sensor noise was added to the simulation model. The random search found similar problems as it

did in the first experiment, but the evolutionary search found some new interesting problems. The

two experiments show that the proposed evolutionary-search-based approach can help to find

challenging situations for the selected SAA algorithm, and it is more effective than random search.

The major contributions in this chapter are:

1. Demonstrated that the proposed approach can be applied to a simple SAA algorithm;

2. Provided preliminary empirical evidence of the effectiveness of the proposed approach

by comparing it with a random search;

3. Showed a basic heuristic for turning parameters for GA.

4.2 SAA Algorithm under Test: SVO

SVO [6] improves the widely studied idea of velocity obstacle (for the introduction to velocity

obstacle approaches, see 2.1.3.A.a) to accommodate the common right-of-way rules of the

airspace. SVO was designed for cooperative collision avoidance, where each UAV in an

encounter cooperatively avoids each other while obeying the right-of-way rules. The rules are as

follows [51]:

 On a converging encounter, the one on the right has the right-of-way;

 On a head-on encounter, both aircraft should move to the right side;

70

 The one that is about to be overtaken has the right-of-way;

 Avoidance manoeuvres should not go over, under, or in front of other aircraft

that have the right-of-way, except when it is clear.

Three types of encounters are defined in the rules: converging, head-on, and overtaking as

illustrated in Figure 4-1.

Figure 4-1 UAV encounter types, adapted from manned air traffic [119].

SVO defines a way to selectively avoid the other UAV(s) by defining three manoeuvre modes [6],

which are

 Avoid, where the host UAV takes a manoeuvre to avoid collision with others;

 Maintain, where the host UAV keeps its current velocity vector;

 Restore, where the collision avoidance system gives back the control to the auto-

pilot/pilot.

It is noted that, for a UAV to use the SVO approach, the only information it needs with respect to

the others is their current positions, velocity vectors, and shapes. Since in this thesis UAVs are

assumed to be fitted with ADS-B devices, they can share this information conveniently.

71

In two UAVs encounter situation, the SVO algorithm is written as [6]:

Data: own-ship’s current velocity cvo, own-ship’s velocity obstacle induced by the

intruder VOoi, own-ship’s diverging velocity obstacle VOdiv, the distance between

own-ship and the intruder D, and the minimum distance at which the own-ship

should start to avoid Davo.

Result: manoeuvre modes Q.

Initialization: Q=Restore.

Algorithm Starts:

While(True)

Read current;

if D<Davo && cvo ∉ VOdiv

if cvo ∊ VOoi && (own-ship is heading towards || left-converging with

||overtaking the intruder)

 Q=Avoid;

else

 Q=Maintain;

end

else

 Q=Restore;

end

end

Note that the core of SVO is the geometric approach using the available information to decide

when to avoid a collision rather than how to avoid one. Users of SVO should use an additional

algorithm (e.g. the original velocity obstacle approach) to decide how to avoid a collision when

the SVO is in “avoid” mode.

We have implemented SVO in Java. It is open-source and can be found from

https://github.com/xueyizou/SVO_Java. This implementation is the target SAA algorithm to

be analysed by the proposed approach in this chapter. When running the implemented SVO in

some typical encounters and some randomly generated encounters in simulation, it was found that

the host UAVs could avoid collisions as expected. So, it seems that the implementation is correct.

The collision avoidance manoeuvres in some typical encounters are shown in Figure 4-2. In this

figure and the following figures in this chapter, the black filled arrows represent UAVs, and the

small black dots combining with the unfilled arrows represent the UAVs’ intended flight paths.

The own-ship always starts from the middle of the left side. Other points in the diagram were

generated by the SVO algorithm to denote the waypoints the host UAV should navigate by — the

big red points generated from “avoid” modes, the yellow points from “maintain” modes, and the

black hollow points from “restore” modes.

https://github.com/superxueyizou/SVO_Java

72

(a)

maintainavoid restore
own-ship

intruder

(a) In a head-on encounter, each

UAV avoids the other by turning

right.

(b)

(b) In an overtaking encounter,

the front one has the right-of-

way. The overtaking one should

avoid by turning right.

70deg

(c)

(c) In a right converging

encounter, the intruder has the

right-of-way. The own-ship

should avoid by turning right.

70deg

(d)

(d) In a left converging

encounter, the own-ship has the

right-of-way. The intruder should

avoid by turning right.

Figure 4-2 SVO behaves in some typical encounters in the horizontal plane.

73

4.3 Implementation of the Proposed Approach

The proposed approach is used to identify challenging situations (specifically, mid-air collision

situations) for SVO. In this section, some key implementation details are introduced.

As a preliminary demonstration and evaluation, for simplicity, the simulations were confined to

two-UAV encounters, where the two UAVs run the same SAA algorithm. Some dynamic

constraints for the UAVs are shown in Table 4-1, which were converted from the performance

data of Global Hawk given in [7]. For SVO, when in the “avoid” mode, it is desirable for the host

UAV to select a new velocity vector outside its velocity obstacle induced by others but still obey

the right-of-way rules. However, considering the dynamic constraints, it was assumed that each

UAV avoids others only by turning right at a rate of 2.5deg/s. It means that during one simulation

run, the magnitude of each UAV’s velocity vector keeps constant, and only the direction of the

velocity vector will change. Note that, between simulation runs, the magnitude of velocity also

varies.

Table 4-1 UAV performance limits.

Max speed 92.6 m/s Min speed 51.4 m/s

Normal speed 77.2 m/s Max turning rate 2.5 deg/s

A. Agent-Based Simulation

MASON27, an open source agent-based simulation platform in Java, was used as the agent-based

simulation framework. In a typical agent-based simulation, there are three core elements: agents,

environment, and their interactions. The agents in our simulation are UAVs with SVO as the

collision avoidance algorithm. They have attributes, such as maximum and minimum speed, and

maximum turning rate, and they also have behaviours, such as sensing other UAVs and avoiding

them. The environment in our simulation is simplified as a 2-D rectangular flight area in the

horizontal plane. The size of the flight area was set according to the detection range for the

“Traffic Advisory (TA)” of the TCAS (i.e. 40 sec ahead of the CPA) so that it is large enough to

accommodate the collision avoidance simulations. Apart from UAVs, some other entities in the

environment are waypoints for navigation, and the start point and target of each UAV. The

interactions between the UAVs are only via the SAA algorithms — explicit communication

between UAVs was not modelled. The interactions between UAVs and the environment include

UAVs following waypoints and generating new waypoints for collision avoidance.

27 http://cs.gmu.edu/~eclab/projects/mason/.

http://cs.gmu.edu/~eclab/projects/mason/

74

To validate the SVO algorithm, a wide variety of encounters should be simulated and evaluated.

An “encounter generator” was developed that can generate three kinds of encounters, each

involving two UAVs: (1) head-on encounters, (2) crossing encounters, and (3) overtaking-

overtaken encounters. We refer to one of the UAVs as the own-ship and the other as an intruder.

Using the “encounter generator”, the intruder's start point, velocity vector, and target can be

decided on the premise that the type of the encounter, the own-ship's start point, velocity vector,

and target have been fixed. The three encounters are shown in Figure 4-3 and explained as follows:

 The head-on encounter is where the own-ship and the intruder approach each other in

opposite directions, as illustrated in Figure 4-3(a). The intruder can approach the own-

ship from either the left side or the right side with a certain offset.

 The crossing encounter is where the own-ship and the intruder approach each other at an

encounter angle ranging from 0° (exclusive) to 180o (exclusive) from either the left side

or the right side, as illustrated in Figure 4-3(b). If the encounter angle equals 180o, it is a

head-on encounter without offset. If the encounter angle equals 0°, it is an overtaking-

overtaken encounter without offset, which will be discussed next.

 The overtaking-overtaken encounter is where the intruder overtakes or is overtaken by

the own-ship flying on parallel tracks, as illustrated in Figure 4-3(c). The intruder can

overtake or be overtaken by the own-ship from the left side or the right side with a certain

offset.

Note that the above definition of encounters is a little different from SVO’s definition of encounter

types as illustrated in Figure 4-1. This is mainly because the above definition is convenient to

implement. In principle, SVO’s definition could also be used. Here, by using a model different

from the model used for system development, it may help to reveal faults neglected by the system

development (especially as it is more general than the original as it includes offsets).

75

V

Own-ship Left side

Right side

V’

Encounter angle

Intruder

V

Own-ship

Left side

Right side

V’Intruder

V’

V’

Offset

Offset

V V’ Intruder

Own-ship

V’

V’

Left side

Right side

Offset

Offset

(a)

(b)

(c)

Figure 4-3 Our definition of three encounter types: (a) head-on; (b) crossing; (c) overtaking-overtaken.

Some global agents were utilized to monitor the simulations: a “proximity measurer” measures

the nearest distance between the two UAVs in every simulation step and the most dangerous

proximity during a simulation run; an “accident detector” monitors the simulations, and logs

accidents and terminates a simulation run when an accident happens. These global monitoring

agents play a major role in gathering information for computing the fitness function, which was

used to guide the search towards increasingly challenging situations.

Note that when using the global agents to monitor the simulations, the distance (d) between two

UAVs is defined as shown in Figure 4-4. Here, r denotes the enlarged size of a UAV and is set to

76

be half of radius of the collision volume (rather than a physical UAV). When d is less than or

equal to zero, an accident happens and the simulation would be stopped by the “accident detector”.

Figure 4-4 Definition of distance between two UAVs.

As mentioned above, the simulations were configured by a series of parameters, which can be

divided into three categories:

 Parameters for encounter instances, e.g. the parameter to decide which encounter type

should be simulated in a simulation run, and the parameters used to generate an instance

of that type;

 Parameters for the own-ship, e.g. the own-ship’s target, its speed, and turning rate;

 Parameters for the intruder, e.g. the intruder’s speed and turning rate.

B. Evolutionary Search

The evolutionary search part of the approach was implemented by using ECJ28, which is a Java-

based evolutionary search library. GA was chosen as the evolutionary search algorithm because

of its popularity and the convenience to use it.

The use GA is illustrated in Figure 4-5. First, the initial population is set up with n individuals,

with the genome of each representing the settings for the configuration parameters identified

above. Then each individual of the population is evaluated by a simulation run, and the fitness of

that individual can be calculated. According to the fitness, the selection process (re)sample n

individuals from the population, and the selected individuals' genome will be “crossed-over" and

mutated. After these genetic operations, the individuals are used to form the next generation of

the population, which will replace the old population. This process goes on until it run out of time,

or the ideal individual(s) has been found.

28 http://cs.gmu.edu/~eclab/projects/ecj/.

http://cs.gmu.edu/~eclab/projects/ecj/

77

Individual 1

Individual 2

Individual n

Individual 3

Selection

Crossover

Mutation

FitnessSimulation

Update

Sampled by

Evaluated by Referred by

Genetic Algorithm Flow

Out of time or

find the ideal

Config Para

Fitness

Figure 4-5 GA flow.

There are two typical approaches to select individuals from the old population for further genetic

operations (i.e. crossover and mutation): Fit-proportionate Selection and Tournament Selection

[104]. In Fit-proportionate Selection, the probability of selecting an individual to be a parent is

proportionate to its fitness value. In Tournament Selection, several “tournaments” are run among

a fixed size (i.e. tournament size) of individuals chosen randomly from the population. The winner

of each tournament (i.e. the one with the best fitness value) is selected. The larger the tournament

size, the smaller the chance a weak individual will be selected.

The crossover of genomes involves mixing and matching parts of two old genomes to form new

genomes. The Uniform Crossover approach swaps every corresponding gene in the genome with

certain probability as illustrated in Figure 4-6 (a). The One-point Crossover approach randomly

selects a position for crossover and swaps the genes before that position as illustrated in Figure

4-6 (b), and the Two-point Crossover approach randomly selects two positions and swaps the

genes in between as illustrated in Figure 4-6 (c).

78

(b) One-point Crossover

swap

swap

(c) Two-point Crossover

(a) Uniform Crossover

pp p p p p p p p p p pp p

Figure 4-6 (a) Uniform Crossover, (b)One-point Crossover, and (c) Two-point Crossover.

The mutation of genomes involves modifying each gene in a genome with a certain probability.

If a gene is selected to mutate, some noise is applied to the information stored in that gene, or the

gene is set to some certain values. If the applied noise is Gaussian noise 𝑁(0, 𝜎2), this type of

mutation is named as Gaussian Mutation. In Gaussian Mutation, if the current value stored in one

gene is value, then the new value (𝑣𝑎𝑙𝑢𝑒′) in the mutated gene is defined by equations (4-1) and

(4-2).

 𝑣𝑎𝑙𝑢𝑒′ = (1 + 𝑟𝑛𝑑) ∗ 𝑣𝑎𝑙𝑢𝑒 (4-1)

 𝑟𝑛𝑑 ~ 𝑁(0, 𝜎2) (4-2)

The fitness of an individual was calculated by applying a “fitness function” to it. Defining an

adequate fitness function is a crucial task for the successful use of GA, as it will ultimately

determine the direction of the search. In our case, a good fitness function should favour those

individuals that embody challenging situations, while avoiding premature convergence (i.e.

avoiding the population becoming very homogenous too early). Since the main concern of SAA

is mid-air collisions, we defined a fitness function based on the nearest distance between the pair

79

of UAVs during each simulation run observed by our “proximity measurer”. More details of the

fitness function will be given in Section 4.4.1.C.

Several parameters (e.g. the population size, generations of evolution, crossover type, and

mutation probability) are used to configure a specific GA flow. The source code for the

experiments presented in the next section as well as the specific values for these GA parameters

can be found from https://github.com/xueyizou/SVO_Tesing.git. Some of the parameter

values were set based on ECJ’s recommendations, and some (e.g. population size, and generation

size) were arrived at by using some basic heuristics discussed in the next section.

4.4 Experiments

Two experiments were conducted. In the first experiment, both random search and evolutionary

search were used to find mid-air collision situations where UAVs have perfect sensing ability.

The second experiment added sensor noise to the simulation model to see if there are more notable

faults than the first experiment. With these two experiments, it also shows how to tune some of

the parameters with some basic heuristics to make the evolutionary searches converge quickly

and consistently.

 Experiment 1: Perfect Sensing Ability

Experiment 1 was conducted under the assumption that both UAVs have perfect sensing ability

— they know both their own and the other UAV’s real-time position and velocity vector. As a

simple demonstration and evaluation, in this experiment, no randomness was modeled. That is,

there is no uncertainty in the UAV’s motion, and there is no sensor noise.

A. Experiment 1.1

Table 4-2 Parts of parameter settings for mid-air collisions found in Experiment 1.1.

 Own-ship speed Is right side Encounter angle Intruder speed

Trial 1 92.00 NO 46.15 54.34

Trial 2
90.70 NO 45.18 54.30

…. …. …. ….

Trial 3

89.86 NO 45.27 52.70

…. …. …. ….

92.60 NO 46.75 55.50

Average 90.98 N/A 46.01 54.33

https://github.com/xueyizou/SVO_Tesing.git

80

It first used random search, where encounters were randomly generated, to find some “obvious”

mid-air collisions. It had conducted three random searches, with 250,000 uniformly distributed

sample points (simulation runs) for each. Overall, there were 9 mid-air collisions, all of which

happened in crossing encounters. Some examples and parts of their parameter settings are shown

in Table 4-2.

From Table 4-2 one pattern can be found — the encounters are all left side crossing (according

to Figure 4-3) with encounter angles around 46o; and the own-ship’s speed is very high (92.6 is

the maximum speed for this type of UAV) while the intruder’s speed is very low (51.4 is the

minimum speed for this type of UAV).

After scrutinizing all these encounters, a typical situation is shown in Figure 4-7. This situation is

a “left converging” encounter according to Figure 4-1, where the own-ship has the right-of-way.

Immediately after the encounter began, SVO decided that it was in “avoid” mode, and the intruder

made a right turn manoeuvre. However, since the turning rate was fixed at 2.5deg/s, the turns

were not enough to avoid a collision.

45deg

Figure 4-7 A typical encounter found in Experiment 1.1.

It is noted that of all the 3×250,000=750,000 randomly searched points, only 9 “obvious” mid-air

collisions were found. Either the SVO is excellent in that there are few obvious collision situations,

or random search has difficulty in finding more challenging situations.

It was not clear whether or not these “obvious” situations found so far constitute all, at least most

of, the possible situations that would result in a mid-air collision for the SVO algorithm. This was

explored in Experiment 1.2 and Experiment 1.3.

B. Experiment 1.2

Experiment 1.2 was intended to find new subtler situations that would result in mid-air collisions

other than those found in Experiment 1.1 by using random search again. To this end, when a point

that corresponded to the class of collision situations found in Experiment 1.1 was sampled, it was

81

discarded without ever being simulated, and a new one would be resampled. The discarded points

were identified based on them satisfying all the following conditions:

 It is a left side crossing encounter;

 The own-ship’s speed minus the intruder’s speed is more than 18m/s;

 The encounter angle is greater than 45o, but it is less than 51.2o.

The above numbers were estimated from the figures in the “Average” row of Table 2 with some

extra margins. In this way, it excluded the “obvious” dangerous encounters already identified,

ensuring that the random search was only looking for “new” problems.

Again, three random searches were conducted, with 250,000 sample points each time. Of all the

sampled points, no mid-air collision was found, and thus the random searches failed to find new

interesting situations.

Figure 4-8 shows the distribution of the minimum distance between two UAVs in each trial. From

the figure, we can conclude that most of the samples would result in a minimum distance in the

range of [20, 70] with a significant part in the range of around 25-40 m.

Figure 4-8 Distribution of the minimum distances between two UAVs in random searches.

82

C. Experiment 1.3

The purpose of Experiment 1.3 was the same as Experiment 1.2, but evolutionary search (i.e. GA)

was used instead. The conditions for excluding situations already found were the same as those

in Experiment 1.2. Whenever a new individual was created that matched all the conditions, it was

immediately awarded the worst possible fitness value (i.e. 0) without ever being simulated.

In the experiment, since it only considered two UAV encounters, the objective was thus to

minimize the minimum distance (dmin) between two UAVs in every simulation run. Formally, the

minimum distance was defined as:

 𝑑𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑠∈[0,𝑆]{𝑑𝑜𝑖𝑠
} (4-3)

Where S is the total number of simulation steps in a simulation run; 𝑑𝑜𝑖𝑠
 is the distance between

the own-ship and the intruder in the sth simulation step as illustrated in Figure 4-4.

ECJ requires a fitness function whose range is [0,1], with greater fitness values for fitter

individuals. In this experiment, we used a widely-used Koza-style [120] fitness function defined

as equation (4-4):

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =

1.0

1.0 + 𝑑𝑚𝑖𝑛
 (4-4)

This fitness function has the shape shown in Figure 4-9.

Figure 4-9 Shape of the fitness function.

Even though this fitness function is non-linear and thus not very intuitive, it has a big advantage

as explained as follows: From the shape of the fitness function, we can notice that when d is small

(e.g. in the range [0, 10]), the fitness function is very sensitive and the fitness value changes very

83

fast; and when d is large (e.g. in the range [20, 50]), the fitness function is very insensitive and

the fitness value changes very slow and stays around a very small value. When using Fit-

proportionate Selection29 (see Section 4.3.B) as the selection method, the search with GA will

become more sensitive in areas of the search space that can cause a small distance between the

two UAVs, since individuals in that area are more likely to be selected.

According to equation (4-4), this fitness function reaches its maximum (i.e. 1.0) when 𝑑𝑚𝑖𝑛equals

0, meaning that there is a mid-air collision.

Since the random search we used in previous experiments is a very weak search approach, in this

experiment, we deliberately30 paid no particular attention to parameter tuning for GA and set some

of the parameter values based on ECJ’s recommendations. Given the constraint that the number

of total sample points should be the same as before (i.e. 250,000), the population size was set to

500 and the number of generations was thus also 500. Other parameters are listed in Table 4-3.

Table 4-3 GA parameters for Experiment 1.3.

 Type Type-specific parameters

Selection Fit-proportionate Selection N/A

Crossover Two-point Crossover crossover rate = 0.8

Mutation Gaussian Mutation
per-gene mutation rate = 0.05

σ = 0.1

To take the advantage of our definition of fitness function, Fit-proportionate Selection (see

Section 4.3.B) was used. Here, the crossover operation was meant to generate different encounter

situations. So, its probability was set to be high to encourage the evolutionary search to explore

various encounter situations. In contrast, the mutation operation was meant to fine-tune some of

the parameters to cause an already very challenging encounter situation to result in a collision

exactly. Therefore, its probability and the standard deviation of the Gauss noise were set to be

relatively small.

Three trials were made. Each trial took less than 3 minutes to finish using an ordinary desktop

PC, slightly longer than the previous random searches, which took about 2.5 minutes.

29 When using Tournament Selection (see Section 4.3.B) as the GA selection method, this fitness

function will have the same effect as using a simple fitness function defined as (
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = −𝑑𝑚𝑖𝑛), since Tournament Selection uses relative magnitudes to select fitter

individuals.

30 The idea here is that if a minimally-tuned GA search beats random search, that's a pretty strong

indicator that a well-tuned one would do even better.

84

From the log, we can see a fast decrease in average minimum distances (i.e. average dmin) between

two UAVs in the beginning generations as illustrated by the curves in Figure 4-10. It means that

over these generations, the evolutionary searches were guiding the simulations towards more and

more challenging situations. The figures also show that the average minimum distances curves

all reached a near-plateau before 50 generations, though their values varied. The first trial got a

relatively high average value (around 4.5 m) and the third trial got the smallest value (around 0.25

m). Compared with the results of Experiment 1.2, where most of the values of the minimum

distances were around 25 m to 40 m, these values are significantly small. This means that the GA

was guiding the searches to increasingly challenging situations.

Figure 4-10 Average minimum distance between two UAVs in each generation of Experiment 1.3.

The average fitness values over generations were plotted in Figure 4-11, which shows that all the

trials converged at quite different values. This can be understood from two aspects. On the one

hand, due to the stochastic nature of GA and the fact that we did not specially tune the parameters

for GA, it is not surprising that different trials would converge to quite different values. Therefore,

further parameter tuning is needed (as will be discussed in Experiment 2.3). On the other hand,

owing to the definition of fitness function (in equation (4-4)), which is very sensitive in small ds

(i.e. distances), even though these trials converged to very different fitness values, the minimum

distance between two UAVs they converged to are not very different (see Figure 4-10).

85

Figure 4-11 Average fitness over generations of Experiment 1.3.

The first two trials did not find any mid-air collision, but the third trial found many. When

checking these mid-air collisions found in trial 3, it was found that the genomes (settings for the

simulation parameters) were almost the same — the genomes that code for accident scenarios

were almost clones of each other. This is because during evolution, once the GA finds some very

good individuals, it will have a high probability to stick at these individuals (through selection),

and then breed many new individuals by combining the genes of these good individuals (through

crossover) and making minute modifications to the combined genes (through mutation). Because

of selection, GA usually has a strong tendency to converge (i.e. the gene pool shrinks very

quickly). After initialization, only the mutation operator can introduce new genes into the gene

pool31. So, if the initial genomes are not very good and the mutation operator is not powerful

enough to generate some better genes, GA may fail to find the best individuals in a finite number

of generations (i.e. “premature convergence”). That was the reason why the first two trials did not

find mid-air collision situations. It would be possible to overcome this by using a bigger initial

population size so that it is more likely to get some good initial genomes and genes, as will be

tried in Experiment 2.3.

Two typical encounters that resulted in mid-air collisions are shown in Figure 4-12. These

encounters are not so attractive, as the initial positions of the two UAVs are too close. However,

31 Crossover operator can generate new individuals by combining genes from the gene pool, but

it cannot generate new genes.

86

even in such close initial positions conditions, if the UAV’s maximum turning rate is a bit greater

than 2.5deg/s, say 3deg/s, all the collisions can be avoided, as shown in Figure 4-13.

(a) (b)

Figure 4-12 Typical encounters found in Experiment 1.3.

(a) (b)

Figure 4-13 Collisions shown in Figure 4-12 can be avoided with a slightly larger turning rate.

So far, two patterns of encounters have been found that are likely to result in mid-air collisions.

The two patterns are summarized as follows:

1. Pattern 1 is crossing encounters, where all the following conditions are true:

 It is a left side crossing encounter;

 The own-ship’s speed minus the intruder’s speed is more than 18m/s;

 The encounter angle is greater than 45o but less than 51.2o.

2. Pattern 2 is close initial positions encounters, where all the following conditions are true:

 The encounter angle is less than 20o;

 The own-ship’s speed minus the intruder’s speed is less than 5m/s.

 Experiment 2: Sensor Value Uncertainty

Experiment 2 was conducted without making the perfect sensing ability assumption in the hope

of finding more safety issues with SVO. Gaussian noise was added to the sensing result of the

87

other UAV’s position and velocity vector32. The mean (µ) of the Gaussian noise is 0, and the

standard deviation (σ) is 0.05*{real value}. The sensing rate is the same as TCAS, which is 1Hz.

A. Experiment 2.1

Again, the experiment first used random search to find “obvious” mid-air collisions. Five random

searches were conducted, with 250,000 sample points for each.

In the first four trials, all the collision situations found can either be categorized as Pattern 1 or

Pattern 2 identified in Experiment 1, except one. No collision was found in trial 5. The one

exception is a left side crossing according to Figure 4-3, where even though the own-ship’s and

the intruder’s speeds are very close (i.e. 85.84m/s and 83.04m/s), their encounter angle is larger

(28.56o) than that in Pattern 2. The replay of this exceptional encounter is shown in Figure 4-14(a).

(a) (b)

intruder

Figure 4-14 A left side crossing: (a) Trajectory with sensor noise; (b) Trajectory without sensor noise.

According to SVO, this is an overtaking-overtaken encounter, where the speeds of the UAVs

were very close. Due to the sensor noise, the intruder sometimes decided its speed was greater

than the own-ship’s, and took avoidance manoeuvres, while in fact, it should not have. The result

is that the intruder’s right turn avoidance manoeuvres canceled out some of the effects of the own-

ship’s avoidance and they collide sometime in the future. However, if there were no sensor noise,

the collision would not have happened as shown in Figure 4-14(b).

Again, we ask whether or not the situations found so far constitute all the possible situations that

will result in mid-air collisions under sensor noise. This was explored in Experiment 2.2 and

Experiment 2.3.

32 We acknowledge the possibility that the added sensor noise may result in simulation artefacts.

Here, we use this example to demonstrate our proposed approach. However, the justification for

adding this specific kind of sensor noise and the strength of the noise is beyond the scope of this

thesis.

88

B. Experiment 2.2

Experiment 2.2 tried to find new subtler situations that would result in mid-air collisions other

than those found in Experiment 2.1 using random search. Five random searches were conducted,

with 250,000 sample points for each. Of all the sampled points, no mid-air collision was found.

When checking some of the near mid-air collisions, another situation was found that may lead to

actual mid-air collisions — the intruder approaches the own-ship from the right side with an

encounter angle a little greater than 45o, and the intruder has a high speed while the own-ship has

a low speed. This situation is actually the same as those identified in Pattern 1 except that the

intruder now approaches from the right side. It follows that the random search should have found

some collisions of this kind as it did in Experiment 1.1 considering that it had searched such a

huge number of sample points. One explanation for this could be that with the Gaussian noise

added, more uncertainty was added, and the set of possible paths through the simulation became

far larger than before.

C. Experiment 2.3

Experiment 2.3 tried to find even more subtle situations that will result in mid-air collisions other

than those found in Experiment 2.1 and 2.2 using evolutionary search. As discussed in Experiment

1.3, GA has a strong tendency to converge, and the existence of some good initial genomes has a

significant effect on whether or not it can find the “best” individuals in a finite number of

generations. So, in this experiment, we try to use a larger population size than that of Experiment

1.3, in the hope that the search will then converge to some more consistent results. In addition, it

was noted that in Experiment 1.3 all of the searches converged before 50 generations. Therefore,

in order to keep the number (i.e. 250,000) of total sample points the same as those in Experiment

2.1 and Experiment 2.2, in this experiment, the population size was set to be 5,000 (10 × the

previous size), and the search ran for 50 generations (1/10 × the previous generations). The fitness

function, the selection method, and the parameters for genetic operations (i.e. crossover and

mutation) were the same as those of Experiment 1.3.

Five trials were made. Figure 4-15 shows the plots of average minimum distance between two

UAVs in each generation and Figure 4-16 shows the plots of average fitness over generations.

The figures show that all the trials converged before 40 generations to some very consistent results.

Also, note that the average fitness values all the trials converged to are now around 0.92, better

than those of Experiment 1.3. The results suggest that the strategy of using a large population size

can indeed contribute to the fast and consistent convergence of GA.

89

Figure 4-15 Average minimum distance between two UAVs in each generation of Experiment 2.3.

Figure 4-16 Average fitness over generations of Experiment 2.3.

All the five trials found mid-air collisions. Considering the results shown in Figure 4-15 and

Figure 4-16 and the fact that all the trials found mid-air collisions, it clearly suggests that no

premature convergence happened in this case. A typical collision situation is shown in Figure

4-17(a). This situation is similar to those identified as the Pattern 1, except that the encounter

angle is now a little greater (51.7o for this typical encounter). Due to the sensor noise, sometimes

the intruder decided to “maintain” its velocities, while in fact, it should have made an “avoid”

manoeuvre, resulting in a collision.

90

When replaying this encounter without sensor noise, the trajectory is shown in Figure 4-17(b).

The intruder did avoid the own-ship, but it could not get to its target (the little cyan dot) due to

the maximum turning rate constraint. So, it kept circling the target, which is undesirable, and also

forms a hazard because it may cause the UAV to run out of fuel and finally crash. As can be seen

from the figure, this happened in the “restore” stage, and it is actually not the responsibility of the

collision avoidance system but the autopilot's (or other controllers’). This problem can be solved

by making the autopilot instruct the UAV to take a Dubins Curve [121] to its target.

51.7deg
51.7deg

(a) (b)

Figure 4-17 A typical encounter in Experiment 2.3, (a) with sensor noise; (b) without sensor noise.

 Discussion

In the experiments, both random search and the proposed approach were used to find mid-air

collision situations for supporting the validation of SVO. Through the experiments, the following

has been found:

1) Whether with random search or evolutionary search, the agent-based simulations can be

used to reveal safety issues of SVO. Using the encounters generated by the “encounter

generator”, SAA algorithms can be tested in various situations;

2) Even though the random search can find some relatively obvious collision situations, the

evolutionary search has the ability to guide the simulations towards much more subtle

and challenging situations for SVO to handle. Therefore, by using evolutionary search to

guide agent-based simulations, it is more effective to identify challenging situations for

the SAA algorithm than random search and the validation process has the potential to be

accelerated;

3) A properly large population size will contribute to the fast and consistent convergence of

GA.

4) Some plausible safety issues with SVO have been revealed during the experiments, in

particular, by the evolutionary search. These safety issues are: the 45o encounter angle for

crossing is a dangerous boundary value for SVO; the SVO algorithm is sensitive to sensor

noise on velocity (because SVO uses the current velocities measured as the primary

91

information for decision-making, rather than also considering the historical

measurements).

Considering the overall validation process, the safety issues found by the proposed evolutionary-

search-based approach need to be further investigated to decide whether they are true failures of

the SAA algorithm, implementation errors, or simulation artefacts. In the cases of this chapter,

the SVO algorithm is very simple, so it is easy to check and debug implementation errors. And

by observing the replay of the simulations in the identified mid-air collision situations (as shown

in Figure 4-7, Figure 4-12, Figure 4-14 and Figure 4-17), it is clear that the safety issues are

because of true failures, or at least, limitations, of the SAA algorithm, rather than simulation

artefacts.

4.5 Summary and Conclusions

In this chapter, a preliminary demonstration and evaluation of the proposed evolutionary-search-

based approach were conducted to test a simple SAA algorithm. Through experiments, it has

shown that the proposed approach can find challenging situations for SVO that the random search

has difficulty in finding (or takes a long time to find), and that the proposed approach may

accelerate the validation process. During the experiments, some specific safety issues with the

SVO algorithm were also identified.

When building the agent-based simulations, the SVO algorithm was treated as a black box — the

information on positions, velocities, and shapes of UAVs was passed in as input, and the next

waypoint to which the host UAV should navigate was returned as output. Therefore, this approach

can be easily used for a variety of SAA algorithms as long as they follow that input and output

protocol (or can be adapted to do so).

The SVO algorithm tested in this chapter is very simple, and the simulations were only in two-

dimensional space. In the following chapters, more sophisticated algorithms (e.g. the ACAS XU

algorithm [5] for UAV collision avoidance in 3-D, and the ORCA-3D [11] algorithm for multi-

UAV conflict resolution) will be studied. To accommodate the validation requirements of these

algorithms, three-dimensional simulation is needed. In Chapter 5, an open-source tool developed

to support the proposed approach will be introduced.

92

93

 Open-source Supporting Tool

Chapter 4 conducted a preliminary demonstration and evaluation of the proposed approach using

a simple 2-dimensional collision avoidance algorithm as a case study. It has shown that the

proposed approach is promising in finding challenging situations effectively for supporting the

validation of SAA algorithms. To extend the proposed approach to more sophisticated SAA

algorithms, an open-source tool has been developed to support the process. In this chapter, an

overview of the tool is given, and some key details of the tool will be given from the following

aspects:

1. Scenario Encoding and Generation: how to encode three-dimensional UAV encounter

situations and generate encounters automatically;

2. Agent-Based Simulation: how to build agent-based simulations for testing SAA

algorithms;

3. Evolutionary Search: how to guide the simulations with evolutionary search.

5.1 Overview of the Supporting Tool

Referring to Figure 3-2 (in Page 64), the supporting tool implements all the components described

there.

It builds parametric models of possible encounter scenarios in 3-D. An example scenario could

be a situation where there are 3 UAVs, one intruder heading towards the own-ship and another

intruder overtaking the own-ship. The positions, and velocities, etc. of these UAVs are described

by parameters (i.e. variables). Changing the value these parameters results in different specific

encounter scenarios, and all the possible assignments to these parameters define the search space,

i.e. the space of all possible scenarios. A “scenario generator” was implemented to generate

specific scenarios for the simulations based on specific assignments of the parameters.

To test SAA algorithms, they are incorporated into the UAVs as the local controllers that control

the UAVs to deal with conflict situations. In the simulations, SAA algorithms are treated as a

black box: the state variables, such as the relative position and velocity, are passed in, and a

waypoint is returned, to which the host UAV should navigate. In this way, the tested SAA

algorithms can be very close to the real ones, so that it is possible to test the original SAA

algorithms directly or with the minimum of changes. The simulation only models the dynamics

of the system at the behavioral level, and the control level dynamics is omitted. This means, for

example, that once the SAA algorithm returns a waypoint for the host UAV to navigate to, the

94

host UAV will be moved to the vicinity of that waypoint in the next simulation step. To model

the uncertainty of the UAVs’ dynamics, the deviation of the actual position from the returned

waypoint is controlled by a predefined probabilistic distribution. Note that here it does not model

the control mechanics that controls the host UAV to fly to the returned waypoint.

Based on the result of the simulation run(s), the “fitness” of the scenario is evaluated with respect

to how effective it is to challenge the tested SAA algorithm. According to the fitness, the

evolutionary search will search for more effective scenarios in the search space, thus guiding the

simulation to increasingly challenging situations. Specific evolutionary search algorithms need to

be designed and implemented to make the search more effective and efficient for specific

problems. Here, by utilizing an evolutionary search library, users do not have to implement

evolutionary search algorithms from scratch, and it is very convenient for them to experiment

with different evolutionary search algorithms. More information will be given in Section 5.4.

The simulation part of the tool is primarily intended to run in “headless” mode. In the headless

mode, the search can be faster because it can quickly get the required fitness values without the

need to do extra work on rendering. It can also be run in visualization mode, where the identified

challenging situations can be replayed and further analysed. In the visualization mode, users can

also configure and experiment with different encounters with convenient GUIs. A screenshot of

the tool is shown in Figure 5-1.

Figure 5-1 Screenshot of the supporting tool run in visualization mode.

The tool is open-source and written in Java. The links to the source code for different case studies

presented in this thesis are summarized in Appendix 1.

95

5.2 Scenario Encoding and Generation

This section explains how to encode 3-D encounter scenarios with a minimum set of parameters,

and how to generate encounters based on this parameterized representation. This parametric

representation defines how the candidate solutions are encoded (as genomes) so that the

evolutionary search algorithms can manipulate them.

In the simulations, the velocity of a UAV can be represented either by the three velocity

components in each dimension as [Vx, Vy, Vz]T, or by ground speed, bearing, and vertical speed

as [Gs, β, Vs]T. This is illustrated in Figure 5-2(a), and the relationship between these two

representations is as in equation (5-1).

Figure 5-2 (a) Representation of the UAV's velocity. (b) Illustration of the relative position of the intruder

(i) with respect to the own-ship (o) at the CPA. The own-ship is at the origin.

[
𝑉𝑥
𝑉𝑦
𝑉𝑧

] = [
𝐺𝑠 ∗ cos(𝛽)

𝑉𝑠
𝐺𝑠 ∗ sin(𝛽)

]
(5-1)

In two-UAV encounters, assuming that the initial state of the own-ship has been decided (say, its

initial position is [Xo, Yo, Zo]T, and the initial velocity is [Gso, βo, Vso]T) and assuming that there

is no intervention of the SAA algorithm, an intruder can be described by specifying the time for

the own-ship and the intruder to arrive at the CPA, the intruder's relative position at the CPA with

respect to the own-ship as is shown in Figure 5-2(b), and the intruder's velocity vector at the CPA.

Therefore, to specify the state of the intruder, seven parameters are used, which are:

 The time (T) left for the intruder to arrive at the CPA;

96

 The horizontal distance (R) between the two UAVs at the CPA, the angle (θ) of this

approach, and the vertical distance (Y) at the CPA;

 The velocity [Gsi, βi, Vsi]T of the intruder at the CPA.

So, the initial velocity and the initial position of the intruder can be obtained by the vector

equations (5-2) and (5-3):

[

𝑉𝑥𝑖

𝑉𝑦𝑖

𝑉𝑧𝑖

] = [

𝐺𝑠𝑖 ∗ cos(𝛽𝑖)
𝑉𝑠𝑖

𝐺𝑠𝑖 ∗ sin(𝛽𝑖)
]

(5-2)

[

𝑋𝑖

𝑌𝑖

𝑍𝑖

] = [

𝑋𝑜

𝑌𝑜

𝑍𝑜

] + [

𝐺𝑠𝑜 ∗ cos(𝛽𝑜)
𝑉𝑠𝑜

𝐺𝑠𝑜 ∗ sin(𝛽𝑜)
] ∗ 𝑇 + [

𝑅 ∗ cos(𝜃)
𝑌

𝑅 ∗ sin(𝜃)
] − [

𝑉𝑥𝑖

𝑉𝑦𝑖

𝑉𝑧𝑖

] ∗ 𝑇
(5-3)

Due to the fact that the SAA algorithms tested as case studies in this thesis, and many others, only

consider the relative states, to reduce the search space and to simplify the visualization, we can

fix the own-ship’s initial position [Xo, Yo, Zo]T and initial bearing βo to some convenient values.

So, only 9 parameters are needed to encode an encounter, and they are {Gso, Vso, T, R, θ, Y, Gsi,

βi, Vsi}.

Multi-UAV encounters are generated by first fixing the initial state of the own-ship (i.e. [Xo, Yo,

Zo]T, βo, Gso, Vso), and then generating various intruders using the above parameterized pairwise

encounter representation. In the tool, a “scenario generator” has been developed to generate all

kinds of encounters according to different assignments to these parameters. A random encounter

can be generated by uniformly selecting the values for the parameters from their ranges.

For example, for the convenience of visualization, the initial position of the own-ship can be fixed

at the middle left of the simulated flight space, and its bearing is directly pointing to the right (0o).

If we pass the two groups of parameters shown in Table 5-1 to the “scenario generator”, a multi-

UAV encounter will be generated, and the simulation of it (with conflict resolution algorithms in

action) is shown in Figure 5-3.

Table 5-1 Parameters for the generation of an example multi-UAV encounter33

33 Note that R denotes the minimum distance that two UAVs would be apart without the

intervention of the SAA algorithms.

Gso Vso T R θ Y Gsi βi Vsi

5 0
20 5 90 17 7 131 -2

18 0 90 8 10 0 1

97

Figure 5-3 The simulation of a multi-UAV encounter generated by the parameters in Table 5-1.

The first row of arguments specifies a left-crossing intruder (intruder 1) with a crossing angle of

131o, and the second row of arguments specifies an overtaking intruder (intruder 2) since its

bearing is 0o and its ground speed is faster than the own-ship's (10m/s > 5m/s)

It is noted that the encounter model only includes the position and the velocity information to

describe encounter scenarios, but other information (or parameters), for example, sizes and shapes

of the UAVs, are excluded. One reason for doing so is that these parameters are deemed as less

critical for the tested SAA algorithms, so they can be controlled globally (i.e. all the UAVs share

the same parameters). Another reason is to minimize the set of parameters to reduce the

dimensions of the search space. That being said, other parameters could also be incorporated with

appropriate coding work in building the agent-based simulation models.

5.3 Agent-Based Simulation

MASON34, an open-source agent-based simulation platform in Java, was chosen as the simulation

framework. It has been selected mainly because it is open-source, and the user can easily build

agent-based simulations and control the fidelity of the simulations so that they can be run faster

than real-time. The agent-based simulation model is coded in Java. During simulations, the

simulation engine performs the agent behaviours at each simulation step. The core of the

simulation engine is a component known as the “scheduler”. All the agents are registered with

34 http://cs.gmu.edu/~eclab/projects/mason/.

http://cs.gmu.edu/~eclab/projects/mason/

98

this “scheduler”, but with different scheduling frequencies and priorities. The simulation proceeds

by scheduling the corresponding registered agents to conduct their defined behaviours at each

simulation step. In a typical agent-based simulation, there are three core elements: agents, the

environment, and their interactions. These elements are described in the following three sub-

sections.

Agents

There are two kinds of agents in our simulation: UAVs, and global monitoring agents.

UAVs have attributes, such as position, velocity, size, and performance. UAVs also have

behaviours, such as flying to their targets, sensing other UAVs, and avoiding collisions or

violations of safe separation with them. When simulation begins, the UAVs fly by following their

initial velocities but can also be affected by environment disturbances. The selected SAA

algorithms are incorporated into the UAVs as local controllers. If the SAA algorithm emits

collision avoidance commands or conflict resolution commands, the host UAV will then

manoeuvre according to the commands. To model UAVs’ dynamic uncertainties, the resultant

effect is not perfect, i.e. the UAVs cannot perfectly follow the commands, and there is a deviation

governed by predefined probabilistic distributions.

Global monitoring agents include a “proximity measurer” and an “incidents/accidents 35 detector”.

The “proximity measurer” measures the proximities (in horizontal distance and vertical distance)

between the own-ship and the intruders at each simulation step, and records the minimum

proximity experienced by the own-ship so far in a simulation run. The “incident/accident detector”

monitors the simulations, and detects any incidents/accidents involving the own-ship. However,

the incidents/accidents between intruders are not monitored; we are only interested in

incidents/accidents involving the own-ship. This is a simplification, but it is thought to be

reasonable, because: (1) our main purpose is to find faults of an SAA algorithm, rather than to

prove an algorithm is fault-free; it is thus not fatal for us to miss some incidents/accidents,

provided that we discover some other ones; and (2) since the intruders are generated to all have

conflicts with the own-ship, incidents/accidents involving the own-ship will be much more likely

to happen than those only involving pure intruders.

35 In the UAV collision avoidance case, we define the consequence of the failure of collision

avoidance as an accident, even though the UAVs do not necessarily contact each other physically.

To distinguish, in the conflict resolution case, we define the consequence of the failure of conflict

resolution as an incident, which is usually far from a physical collision.

99

Environment

The environment for the simulations is a 3-D cuboid flight area. The size of this flight area varies

depending on the SAA algorithms under testing. The principle to decide the size is that it should

be large enough to accommodate the simulations. For collision avoidance algorithms, it can be

set according to the detection range for the “Traffic Advisory (TA)” of the TCAS (i.e. 40 sec

ahead of CPA). While for conflict resolution algorithms, the size needs to be much larger, because

usually the conflicts are detected and resolved at least 1 minute ahead of arriving at the CPA. It

assumes that the UAVs fly high in the air, so no ground terrain is considered. However, if UAVs

are flying at low altitudes, terrain may need to be considered, since a vertical collision avoidance

manoeuvre may result in a collision with a mountain.

Apart from the agents described above, some other entities in the environment are the starting

point and target (end point) for each UAV. In a simulation, UAVs fly from their starting points

to the corresponding targets. If due to the effect of SAA algorithms, a UAV flies out of this cuboid

flight area it will still be monitored by the global monitoring agents. The effects of winds are

modelled by simply adding certain randomness (e.g. Gaussian noise) to the UAVs’ movement.

Other objects, such as weather, buildings, and other air traffic, have not been modelled, but this

may be one of the directions for future study.

Interactions

The interactions between the UAVs are only via the SAA algorithms. The simulation assumes

that in each simulation step the UAVs broadcast their state information (such as position and

velocity) via ADS-B. It explicitly models the sensor noise by adding certain white noise to the

received information by each UAV. For the case of ACAS XU presented in Chapter 6, it also

models the coordination mechanism (which is very reliable according to [5]) between the two

UAVs. For example, if the own-ship chooses a “climb” manoeuvre, it will send a coordination

command to the intruder to require it not to choose manoeuvres in the same direction. Otherwise,

it has not modelled any other explicit communication between UAVs.

The interactions between UAVs and the environment include UAVs following waypoints and

generating new waypoints according to the SAA algorithm.

Figure 5-4 shows the simulation of a head-on encounter with a collision avoidance algorithm

(ACAS XU, see Chapter 6) in action. The big yellow dot represents the own-ship, and the cyan

dot represents the intruder. In this encounter, the own-ship’s collision avoidance algorithm

chooses “climb” manoeuvres (represented by the red dots), and by coordination, the intruder

chooses “descend” manoeuvres (represented by the green dots). The different sizes of the red dots

100

and the green dots denote the strengths of the corresponding manoeuvres. Due to the execution

of the manoeuvres, a mid-air collision was avoided.

Figure 5-4 Simulation of a head-on encounter with ACAS XU in action.

All the elements described above have been coded in Java based on the MASON framework. It

has been used to conduct experiments presented in Chapter 6 and Chapter 7. For those who are

interested in using this tool for their own SAA algorithms, please refer to MASON’s manual36 for

more information.

5.4 Evolutionary Search

ECJ37, an open-source evolutionary search library in Java, was chosen as the evolutionary search

framework. With ECJ users can customize the process of evolutionary search by a parameter file.

This parameter file is problem-specific, and the files for the two case studies presented in Chapter

6 and Chapter 7 can be found in the corresponding source code (see Appendix 1). In the following,

an example is given to show the key ideas.

Figure 5-5 shows an example of the parameter file. In the parameter file, users can set the size of

the population (200), the type of genomes (DoubleVector), the number of generations (500), and

the pipeline of genetic operations (FitPropotionateSelection  VectorCrossover 

VectorMutation), etc. Users are also required to designate the problem for the search, i.e. how to

36 http://cs.gmu.edu/~eclab/projects/mason/manual.pdf.

37 http://cs.gmu.edu/~eclab/projects/ecj/.

http://cs.gmu.edu/~eclab/projects/mason/manual.pdf
http://cs.gmu.edu/~eclab/projects/ecj/

101

evaluate the fitness of a candidate solution (an individual in evolutionary search’s jargon). It is

done through the bold item shown in Figure 5-5, and the user should define a Java class

(search.MaxAccident) to implement the evaluation process. In our case, a method (or function)

in this class will first call the “scenario generator” to generate an encounter based on the genome,

and then call the agent-based simulation to simulate the encounter. Finally, the value of the fitness

will be calculated and returned based on the simulation result as monitored by the global agents

(i.e. the “proximity measurer” and the “incident/accident detector”).

Licensed under the Academic Free License version 3.0. Copyright 2006 by Sean
Luke and George Mason University

parent.0 = /home/xueyi/EclipseWorkSpace/Java/ECJ/src/ec/simple/simple.params

seed.0 = 679463479

pop.subpop.0.size = 200

pop.subpop.0.species = ec.vector.FloatVectorSpecies

pop.subpop.0.species.ind = ec.vector.DoubleVectorIndividual

pop.subpop.0.species.fitness = ec.simple.SimpleFitness

generations = 500

eval.problem = search.MaxAccident

pop.subpop.0.species.pipe = ec.vector.breed.VectorMutationPipeline

pop.subpop.0.species.pipe.source.0 = ec.vector.breed.VectorCrossoverPipeline

pop.subpop.0.species.pipe.source.0.source.0 = ec.select.FitProportionateSelection

pop.subpop.0.species.pipe.source.0.source.1 = ec.select.FitProportionateSelection

pop.subpop.0.species.crossover-type = two

pop.subpop.0.species.crossover-likelihood = 0.8

pop.subpop.0.species.mutation-prob = 0.05

pop.subpop.0.species.mutation-type= gauss

pop.subpop.0.species.mutation-stdev= 0.1

pop.subpop.0.species.mutation-bounded = true

pop.subpop.0.species.out-of-bounds-retries = 20

the size of simulation parameters

pop.subpop.0.species.genome-size =9

#own-ship Vy

pop.subpop.0.species.min-gene.0 = -67

pop.subpop.0.species.max-gene.0 = 58

#own-ship Gs

pop.subpop.0.species.min-gene.1 =169

pop.subpop.0.species.max-gene.1 =304

intruder CPAY

Figure 5-5 Part of an ECJ parameter file.

102

If users are not satisfied with the built-in parts of the evolutionary search algorithms provided by

ECJ, they can easily build their own by inheriting the corresponding base classes in ECJ. For

those who are interested in using this tool, please refer to ECJ’s manual38 for more information.

5.5 Summary and Conclusions

In this chapter, a tool to support the proposed approach is presented. With this tool, the process

of SAA algorithm validation can be partially automated. The tool is open-source so that further

research can easily build on it. With the proposed approach and the supporting tool at hand, two

case studies will be presented in the following two chapters.

38 http://cs.gmu.edu/~eclab/projects/ecj/docs/manual/manual.pdf.

http://cs.gmu.edu/~eclab/projects/ecj/docs/manual/manual.pdf

103

 Application to a Collision

Avoidance Algorithm

6.1 Introduction

To further demonstrate and evaluate the proposed approach in more complex cases, in this chapter,

the proposed evolutionary-search-based approach is applied to a prototype of an industry-level

UAV collision avoidance algorithm, specifically, ACAS XU (Airborne Collision Avoidance

System X for UAVs).

The development of ACAS XU adopts a model-based optimization approach, where the collision

avoidance logic is automatically generated based on a probabilistic model and a set of preferences.

This chapter provides a high-level overview of the development process. Given some of the key

techniques used in the process may be unfamiliar to many readers, it walks through an example

of the development of a simple UAV collision avoidance system to show some of the key ideas.

It then analyses the challenges the new development process poses to safety assurance, with a

particular focus on system validation.

With the challenges in mind, the proposed evolutionary-search-based approach is used to find

high-accident-rate situations to support the validation of ACAS XU. Experiments were conducted

to demonstrate the use of the proposed approach, and to compare it with a random-search-based

approach and a deterministic-global-search-based approach. The results suggest that the proposed

evolutionary-search-based approach can find the high-accident-rate encounters more effectively

and efficiently than the random-search-based approach. Even though the proposed evolutionary-

search-based approach is a little less competitive than the deterministic-global-search-based

approach in terms of effectiveness in relatively easy cases, it is more effective and efficient in

more difficult cases, especially when the objective function becomes highly discontinuous. All

the search methods identified a similar type of challenging situations for the tested ACAS XU,

and these challenging situations can potentially be used to identify limitations of ACAS XU and

to improve it. In addition, it has also found that a properly larger population size can contribute

to the faster convergence of GA to better and more consistent results.

The major contributions in this chapter are:

1. Demonstrated the proposed approach on a prototype of an industry-level UAV collision

avoidance algorithm;

104

2. Evaluated the proposed approach by comparing it with a random-search-based approach

and a deterministic-global-search-based approach;

3. Showed how the proposed evolutionary-search-based approach can be used effectively

in finding counterexamples;

4. Identified a type of very challenging situations for the tested ACAS XU.

Some minor contributions in this chapter are:

1. Illustrated the model-based optimization approach to developing ACAS XU by walking

through the development of a simple 2-D collision avoidance system;

2. Analysed the challenges that the model-based optimization development approach poses

to safety assurance;

3. Developed a prototype of ACAS XU and shared its source code;

6.2 SAA Algorithm under Test: ACAS XU

 Background

TCAS (version 7.1) is the current version of airborne collision avoidance systems mandated

worldwide on large transport aircraft to reduce the risk of mid-air collisions. TCAS uses onboard

transponders to monitor local air traffic, and can alert pilots to potential collisions and recommend

vertical manoeuvres to avoid the collisions. With the introduction of new airspace operational

concepts (e.g. free flight [122]), new airspace users (e.g. UAVs), and new sensor systems (e.g.

ADS-B), upgrading is needed for the system to accommodate the new requirements and

technologies. However, due to its long course of evolutionary development beginning in the 1970s,

the TCAS logic has resulted in very complex pseudocode with many heuristic rules and parameter

settings whose justification has been lost [37]. To upgrade the system, MIT Lincoln Laboratory

chose to re-engineer the system by adopting a model-based optimization approach. The resultant

system is called ACAS X (Airborne Collision Avoidance System X) with several versions for

different aircraft types, surveillance techniques, and operational situations. ACAS XU is the

version for UAVs, and is the one addressed in this thesis.

Different from the TCAS development approach where the collision avoidance logic was hand-

crafted, the new model-based optimization approach can automatically generate optimal collision

avoidance logic based on a probabilistic model and a set of preferences [5, 37, 94]. Such an

approach allows developers to focus their effort on building models and setting preferences. The

difficult task of optimizing the logic can then be left for computers.

105

The ACAS X development process is illustrated in Figure 6-1. The first step is to build a model

describing the evolution (i.e. states transition) of an encounter involving two aircraft. The

evolution of an encounter is affected by two kinds of factors: stochastic factors and non-

deterministic control factors. There are stochastic factors because the aircraft are affected by

environmental disturbances, winds, etc., and the dynamics of the aircraft is inherently uncertain.

There are non-deterministic control factors because the aircraft can be controlled by commands

given by the collision avoidance system, but the result of the control is non-deterministic (i.e.

uncertain). Therefore the evolution of an encounter shows both stochastic properties and non-

deterministic properties, and it can be modelled as a Markov Decision Process (MDP) [123].

Simulation Evaluation

manual model revision

Statistical

Encounter

Model

Performance

Metrics

Optimization

MDP Model

Encounter

 Evolution Model

Reward/Punishment

Logic

Table

Figure 6-1 ACAS X development process, adapted from [37].

Here, “Markov” is an assumption, meaning the probability distribution of the future states

depends only on the current state and not on the sequence of events that preceded it. This

assumption can generally be made to hold by properly defining the state representation.

Incorporated in the MDP model also is a reward or punishment mechanism (preferences) that is

used to represent the system requirements. This mechanism describes which state or collision

avoidance action is good (/bad) and how good (/bad) it is. Taking the MDP model as input, an

optimization technique called Dynamic Programming [123] can be used to generate collision

avoidance logic automatically that maximizes (/minimizes) the reward (/punishment) with respect

to the probabilistic model.

Once the above has been performed, the generated ACAS X logic is evaluated against certain

performance metrics (e.g. accident rate and false alarm rate) through simulations using statistical

encounter models (Monte-Carlo simulations). If the generated logic failed to achieve the required

performance, revisions are made to the MDP model manually in the hope of generating new

improved logic.

This model-based optimization approach has several benefits over the traditional development

approach used for the TCAS, including:

106

1) Dramatically reducing the error-prone hand-coding work, thus potentially reducing

coding errors and shortening the development cycle;

2) Better managing different sources of uncertainty by using probabilistic models. As a

result, if developed with a good model, the generated logic can outperform TCAS

regarding safety and false alarm rate;

3) Easier to maintain and upgrade.

According to the reports [5, 94], an early prototype system has already demonstrated the above

second benefit in simulations.

 A Simple Example

The full model and the detailed process for generating ACAS XU logic is complex and involves

several non-trivial engineering techniques, such as state decomposition and representation,

sampling and interpolation, aircraft dynamics modelling, and reward or punishment assignment.

To explain how the model is built and how it is possible to generate collision avoidance logic

automatically, we will walk through a fictional example of the development of a simple 2-D

collision avoidance system. This will help readers to appreciate the challenges this new

development approach poses to safety assurance, especially, to system validation. Readers who

are very familiar with MDP models and solvers may choose to skip this section.

Figure 6-2 shows a 2-D vertical plane where two UAVs encounter each other. We assume that

the UAVs move in discrete steps. We denote the UAV at the origin as the own-ship and the other

as an intruder.

3

2

1

0 1 2 3 4 5

-1

-2

-3

6 7 8 9
x

y

Figure 6-2 A simple 2-D two-UAV encounter.

107

To model this situation, four variables are used:

 xo: the x coordinate of the own-ship;

 yo: the y coordinate of the own-ship;

 xi: the x coordinate of the intruder;

 yi: the y coordinate of the intruder.

In the horizontal direction, due to relative velocity, we can assume that the own-ship’s horizontal

movement is 0, and at each time step, the intruder will move left by one grid square. So, the states

can be represented with only three variables: (yo, xr, yi), where xr represents the relative horizontal

distance between the two UAVs and also the x coordinate of the intruder.

We can only control the movement of the own-ship in the vertical direction. The own-ship can

choose a movement from a hypothetical action set {level off (0), move up (+1), move down (-

1)}. The +1/-1 means moving up/down by one grid square.

The dynamics of the own-ship is uncertain. We model this by building a probabilistic model for

the own-ship's actions. For example, if the own-ship is at (0, 0) at the moment, and it chooses to

move up by one grid, this may result in it being at (0, 0), (0, 1) and (0, -1) with a hypothetical

probability distribution {0.2, 0.7, 0.1}. Here we denote this probability distribution as {(0, 0)0.2,

(0, 1)0.7, (0, -1)0.1}. A similar distribution applies to the “move down” action.

The intruder cannot be controlled, and its dynamics is also uncertain. However, to simplify the

explanation, we assume the intruder’s horizontal movement is deterministic, i.e. at each time step

the intruder will move left by one grid square. We assume the intruder's movement in the vertical

direction is influenced by white noise, i.e. at each time step it may move up/down according to a

hypothetical distribution: {00.5, -10.15, +10.15, -20.1, +20.1}. Elements in front of

the “” mean the direction and size of a movement, and elements after it are the probabilities for

the corresponding movements. So, if the intruder is at (9, 0) at the moment, after one time step, it

may be at {(8, 0) 0.5, (8, -1) 0.15, (8, 1) 0.15, (8, -2) 0.1, (8, 2)0.1}.

Having decided the state representation, action set, and state transition probabilities, we also

specify the extent of the desirability of different states and actions (i.e. “preferences”). For

example, we punish a collision state (where yo = yi and xr = 0) with a cost of 10,000, and punish a

move up/down action with a cost of 100, and reward a level off action with a reward of 50 (in

order to make the own-ship level off if there is no collision risk).

The above paragraphs describe the stochastic and nondeterministic evolution (or development) of

a two-UAV encounter and a preference system. It can be modelled as a Markov Decision Process

(MDP).

108

The purpose is to devise a strategy for the own-ship to avoid collisions with the intruder but at the

same time not to generate too frequent false alerts. A strategy for the own-ship can be represented

as a look-up table (i.e. logic table) mapping from a state (yo, xr, yi) to an action (e.g. level off,

move up, or move down). The best strategy is the one that achieves the least average cost for

every state.

Taking this MDP model as input, Dynamic Programming techniques [123] (e.g. Value Iteration

or Policy Iteration) can automatically generate the best strategy (an optimal “policy” in MDP’s

parlance). The Dynamic Programming techniques are very efficient39 with modern computers.

The resultant logic can be evaluated in simulations, and if it does not meet certain requirements,

we can modify the MDP model (e.g. by setting more representative state transition probabilities

and/or by better assignments for preferences) to regenerate the look-up table.

 ACAS XU

The above example shows the key ideas of how ACAS XU is developed. The actual ACAS XU

models are more complex and in 3-D. Following is a brief description of the form of the final

ACAS XU algorithm. The algorithm includes two parts: the off-line part to generate look-up

tables, and the on-line part to generate collision avoidance actions using the look-up tables.

A. Off-line part

The off-line part of ACAS XU involves the generation of two look-up tables off-line by using

model-based optimization approaches.

The first look-up table saves the “entry time distribution” for each discrete state. “Entry time” is

a term used in ATM, which means the time left for two aircraft in an encounter to reach a state

where the horizontal distance between the two aircraft is less than a defined value from a start

state. In other words, this look-up table saves the probabilities for every discrete state that the two

aircraft will become less than a certain distance separated horizontally in t seconds if the two

UAVs do not make any collision avoidance manoeuvre. Visually, this look-up table is a 2-D table

shown in Figure 6-3 (a). It maps a (state, entry time) pair to a probability. This look-up table is

generated with a Discrete-Time Markov Chain (DTMC) [124] model.

The second look-up table saves the rewards for choosing an action in a discrete state when the

entry time is t. Visually, this look-up table is a 3-D table shown in Figure 6-3 (b). It maps a (state,

39 For the actual ACAS XU model, Dynamic Programming takes several minutes on an ordinary

laptop PC to get the optimal solution [5].

109

entry time, action) tuple to a reward value. This look-up table is generated with a MDP model

that is similar to the one described above.

entry times

sta
te

s sta
te

s

actions

(a) entry time look-up table (b) rewards look-up table

S1

S2

Sn

t1 t2 tn-1tn-2 tn

P

…

...

S1

S2

Sn

...

a1 a2 an-1an-2 an…

Rewards

t1
t2

tn-1
tn

Figure 6-3 Look-up tables: (a) entry time look-up table, (b) rewards look-up table.

B. On-line part

With the two look-up tables generated off-line, the on-line part of ACAS XU selects the best action

for a specific state by computing the expected rewards for each action. Following is a brief

description of the approach.

Data: entry time look-up table (T1), rewards look-up table (T2)

Input: a continuous state

Output: the best action.

Algorithm Starts:

1. Find all discrete states {S1, S2, …, Sn} that are neighbours of the continuous

state in a high dimensional space expanded by the dimensions of the state.

2. For each discrete state in {S1, S2, …, Sn}, calculate the expected rewards of

all possible actions in that state. This can be done by the following steps:

a) Find the entry time distribution of the discrete state by looking up

T1.

b) For each entry time, find the rewards for all possible actions of the

discrete state by looking up T2.

c) Calculate the expected rewards of all possible actions in the discrete

state by convolving the entry time distribution and the action

rewards.

110

3. Based on the expected rewards for each discrete state and actions, calculate

the rewards for the continuous state choosing every possible action. This is

done through interpolation.

4. Choose the action that gets the highest rewards in the continuous state as the

best action. Return the best action.

Since there is no publicly available source code for ACAS XU, we implemented one based on its

technical reports [5, 94]. The source code includes the DTMC model and the MDP model, Value

Iteration solvers for the DTMC model and the MDP model, and a graphical simulation interface

for the generated logic. It was written in Java and can be found from

https://github.com/xueyizou/ACASX_3D.git. We have tried to make sure the implementation

is as faithful as possible to the reports (mainly by code walkthrough and functional testing), and

the parameter settings were from there, but we cannot guarantee the performance of the resultant

system. It is certainly not ready to be used in any real aircraft. After testing it in several common

encounter situations, we are confident, however, that the implementation captures the properties

of the ACAS XU algorithm sufficiently to support the testing techniques described in this chapter.

Figure 6-4 shows how ACAS XU behaves in a simulated head-on encounter. The big yellow dot

represents the own-ship, and the cyan dot represents the intruder. In this encounter, the own-ship’s

ACAS XU chose “climb” manoeuvres (represented by the red dots), and by coordination, the

intruder chose “descend” manoeuvres (represented by the green dots). The different sizes of the

red dots and the green dots denote the strengths of the corresponding manoeuvres. Due to the

execution of the manoeuvres, a mid-air collision was avoided. Figure 6-5 shows how ACAS XU

behaves in a simulated crossing encounter, where the own-ship chose “climb” and the intruder

chose “descend”. Again, no collision happened.

https://github.com/superxueyizou/ACASX_3D.git

111

Figure 6-4 Collision avoidance for a head-on encounter with ACAS XU.

Figure 6-5 Collision avoidance for a crossing encounter with ACAS XU.

6.3 Problem Analysis

Along with the convenience brought by the use of the model-based optimization approach for

automatic collision avoidance logic generation, there are some challenges for model construction

and challenges for the improvement of the generated logic, which include:

112

 To construct tractable mathematical models, the state space needs to be discretized with

certain resolution, and in doing so, interpolation is needed, which may cause inaccuracy

problems;

 Because of the discretized state space and the stochastic nature of the system, sampling

techniques are used in model construction, which again may cause inaccuracy problems;

 When the performance of the generated logic fails to meet requirements, it is not easy to

figure out how to improve the logic by modifying the model, because the link from the

logic to the model is indirect.

Due to its safety-critical nature, a collision avoidance system must undergo rigorous safety

analysis and assurance process before deployment.

Models are placed at the key position in this new development process. Since the logic is auto-

generated by computer optimization, it can be proved that the generated policy is optimal with

respect to the model. In other words, as long as the model is representative enough of the reality

and the users’ concern, the generated logic is the best logic that can be derived.

So, the possible deficiencies of this approach mainly lie in the models used. The key question is:

Whether the MDP model can properly represent the reality and incorporate the users’

concern?

This question can be viewed from the following two aspects:

 Model structure: Is the modelling technique chosen (i.e. DTMC and MDP) expressive

enough to capture the key features of the reality of the problem and to incorporate the

users’ concern? Alternatively, should another model (e.g. a POMDP [123] model) be

used?

 Model parameters: If a certain mathematical model (say MDP) is chosen, how should

values be assigned to the model parameters so that it best describes the reality and the

users’ concern? For example, what should the state transition probabilities be, and how

should reward and penalty (cost) values be assigned to different actions and states?

No single solution exists that can answer all the questions. Amongst the various safety assurance

activities and techniques, V&V are the two most important activities for ensuring the correctness

and safety of a system.

These questions can perhaps be better answered by validation rather than verification. In general,

verification is to determine whether the product of a system development stage (e.g. design, and

implementation, etc.) accurately represents the developer's conceptual description and

specifications. In the ACAS XU case, we do not have a conventional set of development stages.

The specification, in this case, might be the MDP model, and the product might be the auto-

113

generated logic. However, since the logic is synthesized by computer optimization techniques,

which have been proved and used for many years, we can have high confidence that the optimized

logic is correct with respect to the model. Whereas validation is to determine whether a product

can indeed satisfy the real-world requirements. In the ACAS XU case, the key validation question

is whether or not the generated logic can actually have a low accident rate and a low false alarm

rate.

In [5, 94], Monte-Carlo simulations were used to evaluate the generated logic and to decide

whether the model was good. If the performance of the generated logic outperforms the current

TCAS logic in simulation, the model is accepted as a good model. The Monte-Carlo simulation

uses statistical aircraft encounter models [95, 96] that were derived from real radar data. However,

the radar data are almost entirely of manned aircraft encounters. (After all, there are not many

UAVs in the airspace at the moment, and UAV encounters are even rarer.) It is unclear how

representative the models are of real UAV encounters.

6.4 Solution: Evolutionary Search

The development of ACAS XU is an iterative process that incrementally improves the logic (and

the model) based on simulation results. The whole process terminates when the probabilities of

certain events (e.g. mid-air collisions and false alarms) meet the quantitative requirements.

Monte-Carlo simulations depend on statistical aircraft encounter models. First, representative

encounter models are non-existent (at least not publicly available) for UAVs. Second, even if such

encounter models exist, simulations guided by Monte-Carlo simulations are too costly to conduct

during the iterations of developing ACAS XU because of the reasons analysed in Section 2.5.1 of

Chapter 2.

So, instead of deriving probabilities for certain events, we can search for situations (i.e.

counterexamples) where certain undesired events happen. If any are found, we can analyse the

counterexample situations, and then improve the models to generate better ACAS XU logic.

However, if we have searched enough but still cannot find any undesired events, we can then be

more confident that the undesired event will not happen, or we can further evaluate the system

using Monte-Carlo approaches. Such an approach can contribute to the fast iteration and

validation of the system.

This chapter tries to find situations where the accident rates are extremely high for ACAS XU.

With respect to efficiently finding such situations, there are some specific challenges:

 Large search space: on the one hand, the generated logic has a large number of states, and

on the other hand, to model the environment with moderate fidelity (e.g. to model the

114

wind effects), many control variables are needed. As a result, a huge number of possible

situations need to be simulated and evaluated;

 Rare non-deterministic events: with a moderately good collision avoidance system in

action, the happening of mid-air collisions is very rare. It is also non-deterministic

because of the influence of modelled random factors. As a result, a large number of

simulation runs are needed to get a good probabilistic estimation of accident rates.

For this purpose, the approach proposed in Chapter 3 that exploits evolutionary search to guide

the simulations were used to efficiently finding the high-accident-rate situations for ACAS XU.

Experiments were conducted to evaluate the approach and are reported in the next section.

6.5 Experiments

This section reports the use of a random-search-based approach, the proposed evolutionary-

search-based approach, and a deterministic-global-search-based approach, to find situations

where the accident rates are extremely high for ACAS XU. The random-search-based approach is

a degenerate case of Monte-Carlo approaches in that it uses a uniform distribution as the statistical

aircraft encounter model. The global search approach was introduced to the experiments because

it was used in some similar work presented in [116-118], where a stochastic global search

approach (using GA) and a deterministic global search approach (using the DIRECT algorithm

[125]) were applied to find the worst case for moving obstacle avoidance algorithms. Through

comparison, the authors concluded that the deterministic global search they used can be

guaranteed to find the worst case.

ACAS XU was evaluated by using 3-D simulations. The environment in the simulations was a 3-

D cuboid flight area. The size of this flight area was infinitely large, but every simulation would

last for at most 60 simulation steps (equivalent to 60 seconds in real-world time). This is because

ACAS XU was designed to resolve imminent collisions (less than 30sec ahead of collision). 60

simulation steps are long enough for the two UAVs to pass each other.

For the collision avoidance problem, we only consider two-UAV encounter situations. The

“scenario generator” described in Chapter 5 was used to generate encounter scenarios

automatically. The parameters and their bounding values for generating encounters are listed in

Table 6-1 (see Section 5.2 for the meaning of these parameters). The bounding values were set

based on information given in [5] and the performance data of Global Hawk given in [7]. The unit

for all the speeds (i.e. Gso, Vso, Gsi, Vsi) is “feet/second”. The unit for all the distances (i.e. R, Y)

is “feet”. The unit for time (i.e. T) is “seconds”, and the unit for angles (i.e. θ, βi) is “degrees”.

115

Table 6-1 Bounding values for the parameters for testing ACAS XU.

The initial position of the own-ship was fixed at the middle left of the simulated flight space for

the convenience of visualization. We describe the encounter with the initial positions and

velocities of the UAVs. After the simulation begins, the two UAVs are assumed to follow their

initial velocities, but they can also be affected by environmental disturbance and the collision

avoidance manoeuvres. Figure 6-4 (on Page 111) shows the simulation of an auto-generated head-

on encounter and Figure 6-5 (on Page 111) shows the simulation of an auto-generated crossing

encounter.

To find situations where the accident rates are extremely high for ACAS XU, the “accident

detector” described in Chapter 5 was used to detect and count mid-air collisions. In this case, a

mid-air collision occurs when the horizontal distance between two UAVs is less than 500ft, and

the vertical distance is less than 100ft at the same time. The accident rate for an encounter is then

calculated as the frequency of collisions that happened during 100 simulation runs with the same

initial conditions but using different seeds for the random number generator to control the

randomness.

All the experiments40 described below were done on a PC with an Intel Core i5-6200U 2.30GHz

CPU and the 64-bit Ubuntu 16.04 Operating System. The experiments were run using JavaSE-

1.7 with an initial memory of 512MB and a maximum memory of 1024MB for the JVM (Java

Virtual Machine).

 Experiment 1

The three search methods (i.e. a random-search-based approach, the proposed evolutionary-

search-based approach, and a deterministic-global-search-based approach) were applied to search

for high-accident-rate situations for ACAS XU. No extra condition (as compared with the later

Experiment 2) was exerted to the search approaches. So, it was expected that all the search

methods should find some situations with very high accident rates. For every search method, we

40 Java Code for experiments: https://github.com/xueyizou/ACASX_3D_Testing.git.

parameter Gso Vso T R θ Y Gsi βi Vsi

min 169 -67 20 0 -180 -100 169 -180 -67

max 304 58 30 500 180 100 304 180 58

https://github.com/superxueyizou/ACASX_3D_Testing.git

116

ran 5 searches to avoid the bias of randomness. In each search, we confined the number of

encounters evaluated to be 3,000.

A. Experiment 1.1: Random Search

a. Setup

Since there is no publicly available aircraft encounter model to run Monte-Carlo simulations, a

random search approach was used to guide the simulations. An encounter is generated by the

“scenario generator” by passing in the uniformly sampled parameter values whose bounds are

given in Table 6-1.

b. Results

The time costs for the searches and the maximum accident rates found are shown in Table 6-2.

The time for running each random search is about 1,700 seconds. The highest accident rate (0.88)

was observed in the first search (with seed 324185792).

Table 6-2 Statistics of the random search for testing ACAS XU in Experiment 1.1.

Seeds 324185792 54896327 567672542 588764357 884185771

Time(sec) 1674 1696 1633 1789 1720

Max accident rate 0.88 0.84 0.83 0.86 0.85

The accident rates for all the encounters evaluated in the first search are shown in Figure 6-6, and

the accident rates distribution is shown in Figure 6-7. The two figures show that an overwhelming

majority (2,750 out of 3,000) of the encounters are with very low accident rate (equal or less than

0.02), and very rare (only 2 out 3,000) encounters are with a high accident rate (greater than 0.8).

The result suggests that (1) the tested ACAS XU is good at avoiding mid-air collisions in most

situations, and (2) the random research is not good at finding situations with a very high accident

rate.

117

Figure 6-6 Accident rates for randomly generated encounters.

Figure 6-7 Accident rate distribution for randomly generated encounters.

By visually checking those encounters whose accident rate is over 0.85, a common situation is

shown in Figure 6-8. Those high-accident-rate encounters found are a combination of the

overtaking-overtaken form and the climbing-descending form, where one UAV (e.g. the cyan

intruder) was descending, and the other (e.g. the yellow own-ship) was climbing and approaching

the first one from the tail direction.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

9
8

1
9

5

2
9

2
3

8
9

4
8

6

5
8

3

6
8

0

7
7

7
8

7
4

9
7

1

1
0

6
8

1
1

6
5

1
2

6
2

1
3

5
9

1
4

5
6

1
5

5
3

1
6

5
0

1
7

4
7

1
8

4
4

1
9

4
1

2
0

3
8

2
1

3
5

2
2

3
2

2
3

2
9

2
4

2
6

2
5

2
3

2
6

2
0

2
7

1
7

2
8

1
4

2
9

1
1

A
cc

id
en

t
R

at
e

Encounter

118

Figure 6-8 A high-accident-rate encounter found by the random search.

B. Experiment 1.2: Evolutionary Search

a. Setup

The specific evolutionary search algorithm used in this experiment is a GA (see Figure 4-5 for

the flow of GA). In order to keep the total number (i.e. 3,000) of encounters generated and

evaluated in one search same as that of the random search, the population size was set to 100 and

the number of generations was thus set to 30. Other parameters for GA are listed in Table 6-3.

Table 6-3 GA parameters for Experiment 1.2.

 Type Type-specific parameters

Selection Tournament Selection tournament size = 2

Crossover Uniform crossover per-gene crossover rate = 0.1

Mutation Gaussian Mutation
per-gene mutation rate = 0.4

σ = 0.15

A central problem of setting parameters for GA and many other evolutionary search algorithms

includes the balance of exploration of new possibilities and exploitation of old certainties [126].

Usually, the selection procedure is thought to be very exploitative, while the mutation procedure

is thought to be very explorative. The crossover procedure is somewhere in between since it will

generate various individuals (i.e. exploration) by combining genes from the gene pool (i.e.

exploitation) but it won’t create new genes to enlarge the gene pool.

119

The above parameters for GA were set by making use of the intuitions of exploration and

exploitation but also by trial-and-error: some initial values for the parameters were set quite

arbitrarily (but also within some reasonable ranges 41), and then the parameters were tuned

according to the following rules:

 if the search converges to some good results, keep the parameter settings;

 if the search takes a long time to converge or cannot converge, increase the crossover rate,

and/or decrease the mutation rate and/or the standard deviation value;

 if the search converges too early, decrease the crossover rate, and/or increase the mutation

rate and/or the standard deviation value;

 if, when running several searches, they converge to some very inconsistent values, try

increasing the population sizes and/or the generation size42;

 finally, whenever the search reaches unfavourable results (e.g. those described in the

above rules), it is worth trying increasing the population sizes and/or the generation size.

A good evolutionary search should keep a good balance between exploration and exploitation,

however, how to set the optimal values for the parameters is problem-specific43 and still an open

research problem [127-129]. In this thesis, some good parameters (so that the results are good)

are presented, but many other settings for the parameters may also get good (or even better) results.

Further exploration on tuning optimal parameters is beyond the scope of this thesis since we have

provided some good parameters with which we will show later that our proposed approach does

better than its rivals.

To use a GA, a good fitness function needs to be defined for the specific problem at hand. To

provide heuristics for the GA to find high-accident-rate situations, a distance-based fitness

function was defined: if a mid-air collision happened in a simulated encounter, a value of 1.0

would be assigned; if no collision happened, the closer the two UAVs were, the larger the assigned

value (up to 1.0). Since we have modelled environment disturbance by random noise, the

simulations are not deterministic. It evaluates every encounter by running 100 simulations, and

then calculates the average assigned value, which is the fitness for this encounter. Formally, the

fitness function is:

41 For example, normally, the mutation rate is to be less than 0.5 and the standard deviation of the

Gaussian noise is less than 0.2, so that the evolution process is not so radical that the algorithm

never converges.

42 This rule will be further explored in Experiment 2.1.

43 It depends on the landscape of the search space, and there is no extant method for characterising

landscapes in a way that tells you what search algorithms and parameters to use.

120

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

100
∗ ∑

1.0

1 + 𝑑𝑘

100

𝑘=1

(6-1)

where 𝑑𝑘 is the minimum distance44 between the two UAVs in the kth simulation run. If a mid-air

collision happens, 𝑑𝑘 will be 0, and this encounter will get the maximum fitness value (1.0) for

this simulation run. It is noted that this fitness function is very similar to that used in Chapter 4,

and indeed, we used it because of the same reasons as discussed in Section 4.4.1.C. By defining

this fitness function, the worse the ACAS XU behaves in an encounter, the higher fitness value

the encounter will get.

b. Results

Five evolutionary searches were conducted, each with a different number as the seed for the

random number generator. The time costs and the maximum accident rates found for the searches

are shown in Table 6-4. The time for running each evolutionary search is about 1,000 seconds.

The highest accident rate (0.97) was observed in the third search (with seed 567672542). Those

highest accident rates found by the GA are all higher than those found by the random searches,

and the time costs of GA searches are much lower than those of random searches45. Therefore,

we can conclude that the evolutionary search (i.e. GA) is more effective and efficient than random

search in finding high-accident-rate situations for ACAS XU.

Table 6-4 Statistics of the evolutionary search for testing ACAS XU in Experiment 1.2.

Seeds 324185792 54896327 567672542 588764357 884185771

Time(sec) 1056 1002 918 945 976

Max accident rate 0.94 0.92 0.97 0.92 0.95

The accident rates for encounters evaluated in the third search are shown in Figure 6-9, and the

learning curves (i.e. the plots of the maximum accident rates and the average accident rates over

generations) is shown in Figure 6-10. The two figures show that over generations, the

evolutionary search was moving to areas with increasingly higher accident rates.

44 See Figure 4-4 for the definition and illustration of this distance.

45 This is due to the fact that the encounters searched by GA tend to have a high accident rate and

once an accident happened in a simulation run, that run would be terminated. Whereas for random

search, most of encounters are with very low accident rate and the simulation runs for them would

only be terminated after a specified number of simulation steps (here, it was set to 60).

121

Figure 6-9 Accident rates for encounters generated by evolutionary search.

Figure 6-10 Learning curve of the evolutionary search.

The accident rates distribution is shown in Figure 6-11, which shows that even though a big

number (507 + 44 + 39 + 6 = 596 out of 3,000) of encounters searched are with a very low accident

rate (less than 0.1), more (53 + 149 + 166 + 122 + 386 + 390 + 478 = 1,744 out of 3,000) are with

a relatively high accident rate (greater than 0.8). From this, on the one hand, it suggests that the

ACAS XU was trying to avoid mid-air collisions, and indeed it was good (at least not bad). On

the other hand, it suggests that the evolutionary search was guiding the simulations to more and

more challenging situations for the ACAS XU.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
9

5
1

8
9

2
8

3
3

7
7

4
7

1
5

6
5

6
5

9
7

5
3

8
4

7
9

4
1

1
0

3
5

1
1

2
9

1
2

2
3

1
3

1
7

1
4

1
1

1
5

0
5

1
5

9
9

1
6

9
3

1
7

8
7

1
8

8
1

1
9

7
5

2
0

6
9

2
1

6
3

2
2

5
7

2
3

5
1

2
4

4
5

2
5

3
9

2
6

3
3

2
7

2
7

2
8

2
1

2
9

1
5

A
cc

id
en

t
R

at
e

Encounter

122

Figure 6-11 Accident rate distribution for encounters generated by evolutionary search.

By further scrutinizing those encounters with an extremely high accident rate (greater than or

equal to 0.95) found by the GA searches, it was found that all of them are again the combination

of the overtaking-overtaken form and the climbing-descending form, which are similar to those

found by the random search. One of such encounter is shown in Figure 6-12, and occasionally the

collision can be avoided as is shown in Figure 6-13.

Figure 6-12 A high-accident-rate encounter found by the evolutionary search.

123

Figure 6-13 A successful collision avoidance in the high-accident-rate encounter shown in Figure 6-12.

C. Experiment 1.3: Deterministic Global Search

a. Setup

Because of the stochastic property of evolutionary search, it cannot be guaranteed to find the

global minimum/maximum. In this experiment, a deterministic global search algorithm named

DIRECT (DIviding RECTangles) [125] was used to find the situation(s) with the globally

maximum accident rate in the search space of all possible encounters.

DIRECT was created to solve difficult global optimization problems with bound constraints and

a real-valued objective function, and it will converge to the global minimum/ maximum value of

the objective function when the objective function is continuous or at least continuous in the

neighbourhood of the global optimum [125]. Formally, DIRECT deals with problems in the

following form:

 min 𝑓(𝑥) 𝑜𝑟 max 𝑓(𝑥)

s. t. 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈
(6-2)

DIRECT requires no knowledge of the gradient (i.e. derivative) of the objective function.

Therefore, it can be very useful when the objective function is a "black box" function or obtained

through simulations. DIRECT is a sampling algorithm: the algorithm samples points in the search

space, and uses the information it has obtained to decide where to search next.

The strength of the DIRECT algorithm lies in the balanced effort it gives to local searches and

global searches. It is also easy to use due to the few parameters it requires to run. Unfortunately,

124

to converge to the global minimum/ maximum, the objective function should be continuous or at

least continuous in the neighbourhood of the global optimum [125], and in some difficult cases,

it may require a large number of (or even exhaustive) searches over the domain [130].

Only MATLAB code and FORTRAN code for the DIRECT algorithm are publicly available. To

avoid introducing error in the re-implementation of the algorithm in Java, it was decided to use

the available MATLAB code to guide the agent-based simulation, which was coded in Java. The

simulation was packed as a .jar package and was treated as a black box by the DIRECT algorithm.

The flow of the deterministic-global-search-based approach is shown in Figure 6-14. The

DIRECT algorithm searched the space defined by the parameters that configure the possible

encounters. For every searched point, the assignment of the parameters was passed to the .jar

simulation. With the arguments passed in, the simulation (.jar package) generated and evaluated

the corresponding encounter, and then returned the accident rate for that encounter.

Figure 6-14 Deterministic global search flow.

The MATLAB code for the DIRECT algorithm can be found from

http://www4.ncsu.edu/~ctk/Finkel_Direct/. More information about DIRECT and the use of

the MATLAB code can be found in [130]. The experiment was done on the same computer as

before, and the Java heap size for MATLAB was set to 1024MB.

b. Results

Five deterministic global searches were conducted, each with a different number as the seed for

the random number generator inside the .jar package. For each search, it generated and evaluated

around463,000 encounters.

Table 6-5 Statistics of the deterministic global search for testing ACAS XU in Experiment 1.3.

Seeds 324185792 54896327 567672542 588764357 884185771

Time (sec) 1407 1384 1356 1226 1372

Max accident rate 0.97 0.95 0.96 0.98 0.96

46 DIRECT may exceed this value (3,000) if it is in the middle of an iteration when this budget

has been exhausted.

DIRECT
MATLAB

Simulation
.jar

http://www4.ncsu.edu/~ctk/Finkel_Direct/

125

The time costs and the maximum accident rates found for all the searches are shown in Table 6-5.

The time for running each search is about 1,300 seconds. However, these time costs are not

directly comparable with those of the random search and the evolutionary search since they were

run on different software platforms (MATLAB vs Eclipse). It is noted that most of the time cost

was consumed by the simulations, rather than by the DIRECT algorithm itself. The same

encounters searched and evaluated in one deterministic global search take about 1,250 seconds to

run in MATLAB, while they take about 1,200 seconds to run in the same condition as the

evolutionary search (i.e. on the Eclipse platform). Note that, in Experiment 1.2, it takes about

1,000 seconds to run one evolutionary search. So, in this case, it takes a little longer to evaluate

the encounters searched by the deterministic global search than to evaluate those searched by the

evolutionary search. This may be because of the fact that, in order to guarantee global optimality,

the deterministic global search spent more effort to do global searches than GA, and in doing this,

many of the encounters searched were with a relatively lower accident rate.

However, since the two searches were run on different software platforms, we cannot be confident

that there is a real difference caused by the search algorithms. Nonetheless, we can at least

conclude that the evolutionary search and the deterministic global search are comparable in terms

of time efficiency.

All the five searches found very high accident rates (>=0.95). The highest accident rate (0.98)

was observed in the fourth search (with seed 588764357). It seems that the deterministic global

search can indeed find extremely dangerous, if not the worst47, situations for the tested ACAS XU.

Compared with evolutionary search conducted in Experiment 1.2, which found a highest accident

rate of 0.97, the deterministic global search seems to be a little more competitive. Also, the results

of the deterministic global search are more consistent than those of evolutionary search. This, on

the one hand, resulted from the nature of evolutionary search, which is stochastic and prone to

local minima, and on the other hand, suggests that there is a potential for tuning parameters to

make GA get better results.

47 Because the 5 searches found 4 different maximum accident rates, it means that at least 3 of

them are not the worst, and thus not the global maximum. This may be caused by the randomness

of the simulations.

126

Figure 6-15 Accident rates for encounters generated by deterministic global search.

The accident rates for encounters evaluated in the fourth search are shown in Figure 6-15. The

figure shows that DIRECT was searching and focusing on areas with (steadily) increasing

accident rates. The accident rates distribution is shown in Figure 6-16, which shows a similar

distribution as that of the evolutionary search.

Figure 6-16 Accident rate distribution for encounters generated by deterministic global search.

By further scrutinizing the high-accident-rate (>=0.95) encounters found by the five searches, it

was found that all of them are once again the combination of the overtaking-overtaken form and

the climbing-descending form, which are similar to those found by the random search and the

evolutionary search. One such encounter is shown in Figure 6-17.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
1

0
0

1
9

9
2

9
8

3
9

7
4

9
6

5
9

5
6

9
4

7
9

3
8

9
2

9
9

1
1

0
9

0
1

1
8

9
1

2
8

8
1

3
8

7
1

4
8

6
1

5
8

5
1

6
8

4
1

7
8

3
1

8
8

2
1

9
8

1
2

0
8

0
2

1
7

9
2

2
7

8
2

3
7

7
2

4
7

6
2

5
7

5
2

6
7

4
2

7
7

3
2

8
7

2
2

9
7

1
3

0
7

0

A
cc

id
en

t
R

at
e

Encounter

127

Figure 6-17 A high-accident-rate encounter found by the deterministic global search.

From this experiment, we can conclude (1) that this type of encounter that combines the

overtaking-overtaken form and the climbing-descending form is very likely 48 to be a very

common challenging situation for the tested ACAS XU, and (2) that in this relatively easy case,

the evolutionary search is a little less competitive than the deterministic global search in terms of

effectiveness in identifying situations that can cause a very high accident rate for ACAS XU.

 Experiment 2

In Experiment 1, it has shown that the proposed evolutionary-search-based approach is obviously

superior to random-search-based approach in terms of effectiveness and efficiency, and that in

the relatively easy case, the proposed approach is a little less effective than the deterministic-

global-search-based approach. It has also found that a similar kind of encounter that combines the

overtaking-overtaken form and the climbing-descending form is most likely to result in an

extremely high accident rate for ACAS XU. By checking the logged parameter values for this type

of encounter, we use the following criteria to identify them:

 The difference between the own-ship’s ground speed and the intruder’s ground speed is

small (less than 50), i.e. | Gso - Gsi | < 50;

48 Here, we cannot be certain because there is a possibility that the high accident rate resulted

from implementation errors or simulation artefacts. Further investigation is needed to decide the

real reason. However, since in the random searches, most simulated situations were with a very

low accident rate, it seems the implemented ACASU and the simulation platform were functioning

correctly.

128

 And one UAV is climbing while the other is descending, i.e. Vso * Vsi < 0;

 And it is a type of overtaking-overtaken encounter with a small encounter angle (less than

15o), i.e. |βi | < 15o.

In Experiment 2, we exclude this kind of encounters from the search space and try to use the

proposed approach and the deterministic-global-search-based approach to find other situations

that can also result in a very high accident rate. Due to the fact that DIRECT was created to solve

optimization problems with bound constraints (see equation (6-2)), to exclude the type of

encounters found in Experiment 1, we simply set the accident rates (or the fitness values) of them

to be 0. That is, when sampling or generating an encounter, if all the criteria identified above are

satisfied, this encounter will be assigned an accident rate or a fitness value of 0 without even being

evaluated in simulations. In this way, the search will keep away from these encounters.

Because of the way we exclude the type of high-accident-rate situations already found in

Experiment 1, the objective function now becomes (even) discontinuous49. Therefore, it might

become more challenging for the searches in Experiment 2 to find other high-accident-rate

situations. The purpose of Experiment 2 is to show how effective the proposed evolutionary-

search-based approach can be in finding counterexamples to support the validation of SAA

algorithms (specifically, ACAS XU) in this more difficult case.

A. Experiment 2.1: Evolutionary Search

a. Setup

GA was used as the evolutionary search algorithm. The fitness function, the selection method,

and the parameters for the genetic operations (i.e. crossover and mutation) were the same as those

of Experiment 1.2.

In the beginning, we set the population size to 100, and set the number of generations of evolution

to 900 as suggested by the MATLAB GA toolbox50. So, the total number of encounters generated

and evaluated in one search is 90,000. We ran 5 searches with different seeds to avoid the bias of

randomness.

Since in Chapter 4 we have noticed that a larger population size can contribute to the faster

convergence of GA to better and more consistent results, we also tried a population size of 300,

500, 1000, and 2000. In addition, we reduced the number of encounters evaluated in every search

49 The objective function of Experiment 1 might also be discontinuous.

50 The MATLAB GA toolbox suggests that the maximum number of generations can be set to

100 times the number of the parameters, in this case 100*9 = 900.

129

from 90,000 to 60,000. So, the corresponding number of generations were 200, 120, 60, and 30.

Again, we ran 5 searches for each population size.

b. Results

The time costs and the maximum accident rates found for the searches are shown in Table 6-6.

The time for running 90,000 encounters is about 23,000 seconds, and the time costs for running

60,000 encounters are about 15,000 seconds. Since 15,000 is about 2/3 of 23,000, here it is

concluded that the difference between time costs of these different searches is not significant.

However, when checking the rows showing “Max accident rate”, it is noticed that the searches

with a population size of 500 or 1,000 can achieve the best and the most consistent results on the

constraint that the total number of encounters evaluated is 60,000. These results are even much

better than those achieved by the searches with a population size of 100 and a generation number

of 900, where a total number of 90,000 encounters were evaluated.

Table 6-6 Statistics of the evolutionary search for testing ACAS XU in Experiment 2.1.

Seeds 324185792 54896327 567672542 588764357 884185771

Ti
m

e
(s

ec
)

100*900 22372 24430 24052 24809 23326

300*200 14927 14801 14530 15801 14974

500*120 14890 14724 14982 15654 15828

1000*60 15332 15483 15611 15964 15998

2000*30 15742 15247 16469 15641 15095

M
ax

 a
cc

id
en

t
ra

te

100*900 0.88 0.95 0.93 0.93 0.90

300*200 0.89 0.96 0.96 0.94 0.92

500*120 0.96 0.97 0.97 0.98 0.98

1000*60 0.98 0.97 0.97 0.98 0.99

2000*30 0.96 0.97 0.94 0.97 0.97

The learning curves (i.e. plots of maximum accident rates and average accident rates over

generations) for searches with a population size of 1,000 and 2,000 are shown in Figure 6-18 and

Figure 6-19 respectively. Figure 6-18 shows that the searches with a population size of 1,000 all

reached a near plateau after 45 generations of evolution, while the searches with a population size

of 2,000 had not yet converged in 30 generations as shown in Figure 6-19. From these figures and

Table 6-6, it is noticed that, if the total number of sample points in a GA search is fixed, a properly

larger population size can contribute to the faster convergence of GA to better and more consistent

results. This finding is in accordance with that found in Chapter 4. In this case, 500 and 1,000

were found to be good choices for the population size. However, 2,000 is too large.

130

Figure 6-18 Learning curves for GA with a population size of 1000.

Figure 6-19 Learning curves for GA with a population size of 2000.

A typical situation that can result in an extremely high accident rate is shown in Figure 6-20. As

can be seen from the “Front View”, this situation is a form of climbing-descending encounter,

and as can be seen from the “Top View”, this situation is a form of crossing encounter, with an

encounter angle of a little greater than 15o. In fact, this encounter type is very similar to that found

in Experiment 1, and it satisfies the first two conditions presented before (on Page 127), but it

violates the third condition slightly.

131

Front View

Top View

 Side View

Figure 6-20 A typical high-accident-rate situation found in Experiment 2.1.

B. Experiment 2.2: Deterministic Global Search

a. Setup

The setup for this experiment is the same as that of Experiment 1.3, except that we exclude the

high-accident-rate encounters already found by setting the accident rate of them to be 0 and that

the number of encounters evaluated in a search is set to 60,000. However, DIRECT may exceed

this number of evaluations (i.e. 60,000) if it is in the middle of an iteration when this budget has

been exhausted.

b. Results

The numbers of encounters evaluated, the time costs, and the maximum accident rates found for

the searches are shown in Table 6-7. The time cost for running a deterministic global search for

evaluating 60,000 sample points (i.e. encounter) is about 24,000 seconds. This is much higher

than that with evolutionary search, which is about 15,000 seconds. The highest accident rate

132

(0.88) was observed in the first, the third, and the fifth search, but it lower than those found by

the evolutionary search.

Table 6-7 Statistics of the deterministic global search for testing ACAS XU in Experiment 2.2.

Seeds 324185792 54896327 567672542 588764357 884185771

No. of evaluations 122577 91157 64915 292691 105143

Time (sec) 48072 36184 29426 115042 40276

Max accident rate 0.88 0.87 0.88 0.84 0.88

The plots for accident rates of the searches are shown in Figure 6-21. This figure shows that all

the searches got stuck at accident rates of equal or lower than 0.88 after searching and evaluating

20,000 encounters. It is noted that the search with seed 588764357 sampled and evaluated 292691

encounters, which is far larger than 60,000, but the maximum accident rate it found is only 0.84.

This clearly indicates that the search was stuck at a sub- optimum.

From Table 6-7 and Figure 6-21, it is noticed that the deterministic global searches can only find

situations with a highest accident rate of 0.88 and the time cost is much higher. So, in this case,

the deterministic global search is less effective and efficient than the evolutionary search.

Figure 6-21 Accident rates for searches with the DIRECT algorithm.

 Discussion

In Experiment 1, we did not exert any condition to the search problem. The proposed

evolutionary-search-based approach can find situations with a very high accident rate more

133

effectively and efficiently than the random search. The key difference lies in the evolutionary

search’s use of meta-heuristics, with which it actively and adaptively searches for such rare

challenging situations. Both the evolutionary-search-based approach and the deterministic-

global-search-based approach had found situations with very high accident rates (>=0.95).

However, due to the nature of deterministic global search and the fact that it spends balanced

effort on local searches and global searches, in this relatively easy case, the proposed

evolutionary-search-based approach is a little less competitive than the deterministic-global-

search-based approach in terms of effectiveness.

In Experiment 2, we excluded 51 the type of very challenging situations already found in

Experiment 1, and used the proposed approach and the deterministic-global-search-based

approach to find new high-accident-rate situations. The results show that in this case, however,

the proposed evolutionary-search-based approach is more effective and efficient. This is because,

with the exerted condition (i.e. the exclusion of situations already found by setting the values of

the objective function in those situations to 0), the objective function now becomes highly

discontinuous. As a result, the deterministic global search has difficulty in finding the global

optimum. Whereas, the evolutionary search can still find some very good results, especially when

the population size of GA is set to some properly larger values.

Of all the three types of searches, similar encounters that combine the overtaking-overtaken form

and the climbing-descending form were found to be most likely to result in an extremely high

accident rate. This may be an indicator that this type of encounter is really a very common

challenging situation for the tested ACAS XU.

Considering the overall validation process, this type of high-accident-rate situations need to be

further investigated to decide whether they are because of true failures of the SAA algorithm,

implementation errors of the algorithm, or simulation artefacts. In the case of this chapter, the

ACAS XU algorithm is very complex, so it is not easy to distinguish the true source of these

counterexamples. However, since we have tried to make the implementation as faithful as possible

to the ACAS XU algorithm presented in [5, 94] (mainly by code walkthrough and functional

testing), and considering the fact that our implementation have passed all the tests on common

encounter situations in our simulation environment (see, for example, Figure 6-4 and Figure 6-5),

it is very likely that there are limitations in the ACAS XU algorithm itself (but we cannot be certain

about this given the resources available to this thesis project).

51 It is noted that this exclusion of challenging situations (i.e. counterexamples) already found is

a very realistic requirement, especially when doing bug hunting.

134

Reasons for the high accident rate in such situations need further investigation, which may include

scrutinizing the relevant items in the look-up table. One possibility might be that since the relative

speed is very small in the overtaking-overtaken encounter, the ACAS XU logic thinks the collision

risk is low, and does not emit collision avoidance commands even when the two UAVs are very

close. However, if then there is a small disturbance making the collision risk become high, it may

be too late for the two UAVs to avoid a collision, since they are already in very close proximity.

The evolutionary-search-based approach is probably most valuable in the early stages of the UAV

collision avoidance algorithm’s development. It can quickly find challenging situations for a

collision avoidance algorithm, such that the algorithm can be improved. One weakness of the

approach is that there is no way to assign statistical confidence to the results — it is effective at

fault-finding, but not at providing confirmatory evidence of fault-freeness. In contrast,

deterministic-global-search-based approaches (if the objective function is continuous or at least

continuous in the neighbourhood of the global optimum) and Monte-Carlo approaches (if there is

a statistically representative aircraft encounter model) can provide such confidence — see, for

example, the work of Stroeve et al. as discussed in [131]. In practice, these techniques may thus

prove complementary, i.e. using the evolutionary-search-based approach at the development

iterations of the algorithms, and using deterministic-global-search-based approaches or Monte-

Carlo approaches at the later stages (e.g. certification preparation and acceptance testing).

Some limitations of the work presented in this chapter are:

 The evolutionary-search-based approach (also the random search and the deterministic

global search) only directly identifies discrete situations (points in the search space) that

show problems. It might be possible to extend the approach to find areas of the search

space that show certain properties (e.g. having an extremely high accident rate) instead.

Data mining techniques, such as clustering [132], could potentially be used to analyse the

logged data to find such areas;

 More work is needed to evaluate the real value of the challenging situations (i.e. the high-

accident-rate encounters) identified by the approaches. However, this may require

feedback from the ACAS XU developers.

6.6 Summary and Conclusions

In this chapter, the proposed evolutionary-search-based approach was applied to support the

validation process of ACAS XU, an industry-level collision avoidance algorithm for UAVs. It

introduced the model-based optimization approach adopted to develop ACAS XU, and analysed

the challenges posed by the new approach to safety assurance, particularly to system validation.

Experiments were conducted to evaluate the proposed approach by comparing it with a random-

135

search-based approach and a deterministic-global-search-based approach in finding high-

accident-rate situations for ACAS XU.

The results show that the proposed evolutionary-search-based approach can find the high-

accident-rate encounters more effectively and efficiently than the random-search-based approach.

And even though the proposed evolutionary-search-based approach is a little less competitive

than the deterministic-global-search-based approach in terms of effectiveness in relatively easy

cases, it is more effective and efficient in more difficult cases, especially when the objective

function becomes highly discontinuous.

Through comparisons, it has also shown how the proposed evolutionary-search-based approach

can be used effectively for our purpose. Particularly, through empirical comparisons, it has found

that a properly larger population size can contribute to the faster convergence of GA to better and

more consistent results.

Of all the high-accident-rate situations found by the experimented approaches, a class of very

challenging encounters that combine the overtaking-overtaken form and the climbing-descending

form are most prominent. These challenging situations may be further analysed to identify the

limitations of the ACAS XU algorithm and to improve it. Therefore, the proposed evolutionary-

search-based approach has the potential to offer an effective and efficient means to supporting the

validation, or at least determining some limits, of collision avoidance algorithms.

136

137

 Application to a Conflict Resolution

Algorithm

7.1 Introduction

Both Chapter 4 and Chapter 6 use collision avoidance algorithms as case studies. In this chapter,

the proposed approach is applied to test a multi-UAV conflict resolution algorithm, specifically,

the widely-cited open-source ORCA-3D (Optimal Reciprocal Collision Avoidance in 3-D)

algorithm. Even though, as its name suggests, ORCA-3D is originally a multi-agent collision

avoidance algorithm, it can also be used for multi-UAV conflict resolution by enlarging the

collision volume to the safe separation volume.

To test ORCA-3D for conflict resolution, two requirements were identified. They are: (1) to find

encounters where, despite the help of the conflict resolution algorithm, UAVs still experience

violations of safe separation; (2) the encounters found should also be simple so that they are very

likely to happen in the real-world environment. The problem was thus formulated as a multi-

objective search problem.

By augmenting the proposed approach to accommodate multi-objective search, it was applied to

identify safety incidents satisfying the two requirements for ORCA-3D. As a comparison, a

plausible random-search-based approach was also used to do the same job. The two methods’

performance was compared, and the results show that the proposed approach can find the required

encounters more effectively and efficiently than random search. The identified safety incidents

are then the starting points for understanding limitations of the conflict resolution algorithm.

The major contributions in this chapter are:

1. Formulated the problem of identifying challenging situations to support the validation of

UAV conflict resolution algorithms as a multi-objective search problem, and used

evolutionary search to solve it;

2. Demonstrated the use of the proposed approach to identify challenging situations for a

UAV conflict resolution algorithm;

3. Showed the effectiveness and efficiency of the proposed approach by comparing it with

a random-search-based approach.

138

7.2 SAA Algorithm under Test: ORCA-3D

ORCA-3D [11] is a cooperative collision avoidance algorithm for multi-agent systems. The

ORCA-3D algorithm is an improvement of the Collision Cone approach [45] (or the similar

Velocity Obstacle approach [133], see Section 2.1.3A.a), specifically, it avoids the oscillation

phenomenon often exhibited in Collision Cone applications. Here, ORCA-3D is used for UAV

conflict resolution — to do this, it enlarges the collision volume to the safe separation volume

(see Section 2.1).

As its name suggests, ORCA-3D works in 3-D space, but to simplify the explanation here, the

discussion will use only two dimensions. Assuming A and B are two agents moving in a 2-D

plane. Let PA, VA, and rA denote the current position, velocity vector, and radius of agent A, and

let PB, VB, and rB be the position, velocity vector and radius of agent B, as is shown in Figure

7-1(a). We define the Collision Cone, which is written as CCA|B, as the set of colliding relative

velocities (Vrel) between A and B. If A and B maintain a relative velocity in CCA|B, a collision

will happen at some future moment, say t. Formally, CCA|B is defined by equation (7-1):

 𝐂𝐂𝑨|𝑩 = {𝑽𝒓𝒆𝒍|∃𝑡 > 0 ∶ 𝑽𝒓𝒆𝒍 ∗ 𝑡 ∈ 𝐷(𝑷𝑩 − 𝑷𝑨, 𝒓𝑨 + 𝒓𝑩)}
(7-1)

Where the notation D(x, r) represents a disc with centre x and radius r. A geometric interpretation

of CCA|B is shown in Figure 7-1(b).

rB

rA

y

x

B

A

PB

PA

y

x

CCA|B

O

(a) (b)

PB - PA
rA + rB

Figure 7-1 Geometrical illustration of Collision Cone in 2-D.

It follows that if the two agents choose a relative velocity outside CCA|B, then a collision will not

occur in a time horizon t. For a decentralized system, this can be achieved in one of two

approaches: (1) one of the agents chooses a new velocity vector while assuming the other will

139

maintain its old velocity vector, or (2) the two agents cooperatively choose new velocity vectors.

In either approach, the new relative velocity should not be inside CCA|B. The original Collision

Cone approach uses the first approach, and it sometimes results in oscillations [46], since the

other agent may also choose a new velocity vector instead of maintaining its old one, resulting in

a new conflict situation.

The ORCA approach uses approach (2) — given a minimum change for the relative velocity to

be outside of CCA|B denoted by u, each agent is required to take at least half of the responsibility

to make this change happen. So, agent A should change its velocity by at least 0.5u such that the

end point of its velocity vector should fall in the half plane divided by a line (L1) through VA +

0.5u perpendicular to u, as is shown in Figure 7-2(a).

This provides one constraint for A to choose its new velocity.

rA + rB

y

x

CCA|B

PB - PA

O

(a) (b)

u

0.5u

xO

0.5u1

y L1

0.5u2 0.5u3

L3

L2

L1

Figure 7-2 (a) two-agent ORCA. (b) Multi-agent ORCA.

If there is more than one agent for A to avoid, each agent will exert a constraint for A, and the

new velocity vector A chooses should satisfy all the constraints. The new velocity vector can be

computed efficiently by using linear programming since the end point of the new velocity vector

should fall inside the convex region surrounded by the lines (L1, L2, L3 ...) denoting the half-

planes. See Figure 7-2(b) for an illustration.

If we extend the above algorithm to three dimensions, we have ORCA-3D (the use of the term

“cone” above illustrates how the algorithm is extended).

For an agent to use the ORCA-3D approach, the only information it needs about the other agents

is their current relative positions, relative velocities, and shapes. Here it is assumed that each UAV

140

is fitted with ADS-B or its equivalent to broadcast the information to its peer UAVs. It also

assumes that the noise to this information follows normal distributions.

There is an open-source C++ implementation52 of ORCA-3D, but we re-implemented it in Java

for easy integration with the other parts of the testing framework. The re-implementation can be

found from https://github.com/xueyizou/ORCA_3D_UAV.git. Because of the close similarity

between C++ and Java, the re-implementation work is relatively easy, and the Java

implementation should be very faithful to the original. Indeed, by running the same set of

examples, the two got highly similar results (with some minor differences in float point values).

7.3 Problem Analysis

In this chapter, we focus on small civilian UAVs, and a typical operational scenario is using UAVs

to deliver parcels from a distribution centre to customers’ houses53. It is therefore only concerned

with conflicts between UAVs, not with conflicts between UAVs and commercial manned aircraft.

In the UAV collision avoidance case, we define the consequence of the failure of collision

avoidance as an accident. To distinguish, in the conflict resolution case, we define the

consequence of the failure of conflict resolution as an incident. An incident is thus the violation

of safe separation. It is noted that there is no well-accepted definition of what is a safe separation

and several metrics exist, which include distance-based metrics, time-based metrics, and risk-

based metrics, etc. The former two metrics concern the distance between two UAVs or the time

left for two UAVs to collide. Risk-based metrics, e.g. the one proposed in [134], defines a safe

separation as a relative state between UAVs where the risk of collision is lower than an

unacceptable level.

In this chapter, we adopt a simple distance-based metric — if the horizontal distance and the

vertical distance between two UAVs are smaller than some threshold values at the same time,

safe separation is violated, and an incident occurs. These two threshold values are both set to be

20m, which is reasonable given the properties of the UAVs studied including the operational

scenario, slow speed, small size, and high manoeuvrability. However, it does not claim that this

creates an acceptable level of collision risk for a comparable real application. The proposed

approach does not, of course, depend on the exact values chosen.

To support the validation of multi-UAV conflict resolution algorithms, we want to find

counterexamples. That is, we want to find encounters where, (1) despite the help of the conflict

52 Original ORCA-3D can be found from http://gamma.cs.unc.edu/RVO2/downloads/.

53 At the time of writing Amazon has just announced plans to test exactly this sort of service.

https://github.com/superxueyizou/ORCA_3D_UAV.git
http://gamma.cs.unc.edu/RVO2/downloads/

141

resolution algorithms, UAVs still experience incidents; and (2) The encounters should also be

simple so that they are very likely to happen in the real-world environment. We define the

cardinality of an encounter to be the number of UAVs involved in this encounter. It is assumed

that encounters with lower cardinality are more likely to happen in the real-world environment (it

is recognized that other factors could be considered, but for the sake of this thesis, simply meeting

the low-cardinality requirement is an adequate challenge).

Obviously, the problem can be solved by first randomly generating lots (millions, perhaps) of

encounters with different cardinalities, and then running simulations to evaluate these encounters.

If an encounter leads to an incident, this encounter will be recorded. After gathering enough

(thousands, perhaps) of these encounters, we can select those encounters with the lowest

cardinality (the simplest). They constitute simple counterexamples to any claim that the conflict

resolution algorithm is perfect, and they can be used as the starting point for further analysis

(maybe manually) of the limitations of the conflict resolution algorithm. In this chapter, this

approach is called as a random-search-based approach.

A primary drawback of this random-search-based approach is that, to gather enough encounters

that will lead to incidents, millions of random encounters may need to be generated and evaluated

(if the conflict resolution algorithm is moderately good). The cost of running simulations to

evaluate such a huge number of encounters is considerable.

7.4 Solution: Evolutionary Multi-Objective Search

In the hope of reducing the number of simulations it needs to run, the problem of identifying

challenging situations for the validation of UAV conflict resolution algorithms is formulated as a

multi-objective search problem, where we actively search for encounters satisfying the following

two objectives:

1. Be able to lead to an incident;

2. Have a low cardinality.

The above two objectives are equally important to our problem. An encounter that can lead to an

incident but is so complex that it will rarely, if ever, happen may not be insightful for analysing

the conflict resolution algorithm. Similarly, a simple encounter that causes no problem for the

tested algorithm is useless for our purposes. These two objectives are in opposition, because the

fewer UAVs involved in an encounter, the less likely it is to lead to an incident. The two objectives

are also incomparable — we cannot merge them into a single objective by allocating different

weights to each. This problem, therefore, cannot be solved using a single objective search

approach.

142

An encounter that satisfies the two objectives is a candidate solution to the multi-objective search

problem. Like previous chapters, agent-based simulations are used to evaluate the encounters with

respect to achieving the two objectives.

Because encounters are evaluated by simulations, the multi-objective search problem cannot be

fully represented in mathematical formulations. Thus, classical mathematical optimization

techniques, such as Newton’s method and its many relatives and variants, cannot be used to solve

the problem because there is no way to get the derivatives. Consequently, we treat the simulation

as a black-box, and adopt a population-based evolutionary search method to avoid the use of

derivatives. Specifically, we combine agent-based simulation and evolutionary multi-objective

search (specifically, NSGA-II [28]) to evolve encounters adaptively and to find encounters that

satisfy the two objectives. The resultant method is a testing framework that augmented the

proposed approach developed through the previous chapters. It is shown schematically in Figure

7-3.

Figure 7-3 Overview of the testing method that combines agent-based simulation and multi-objective

search.

In this testing framework, encounters (candidate solutions) are treated as individuals that evolve

by the law of “survival of the fittest”, where fitness is determined based on how well they meet

the two objectives. As noted above, simulation is treated as a black-box: its inputs are various

encounters, and its outputs are quantitative measurements of the extent of the encounters to

challenge the conflict resolution algorithm (fitness).

143

In Figure 7-3, P is the population holding the individuals of a generation, and it is initialized

randomly. A is an archive to hold the “best” individuals (“elites”) found through the history of

the evolution, and it is initialized to be empty. The representation for encounters has been

described in Section 5.2, and it is encoded by the genomes of individuals — each individual thus

describes a (multi-intruder) encounter. Individuals in P and A are evaluated with respect to the

two objectives using agent-based simulations. According to the evaluation results, individuals are

ranked (using Non-dominated Sort and Sparsity Sort, explained later in Section 7.5.2), and good

individuals (those that have high rankings) are used to update the old elites in A. These good

individuals also compete to be selected to breed the new population through genetic operators

(genome crossover, gene removal, and gene mutation, see Section 7.5.2). The search process

repeats until the termination condition becomes true. F1 is the Pareto Front, which is a collection

of the best individuals. The output of the process is the individuals (i.e. encounters that satisfy the

two objectives) in F1.

7.5 Experiments

This section reports the use of the random-search-based approach described in Section 7.3 and

the evolutionary multi-objective search approach to find challenging situations satisfying the two

objectives identified in Section 7.4 for supporting the validation of ORCA-3D.

Some of the important performance limitations for the UAVs are listed in Table 7-1, which are

based on those of the Parrot AR.Drone and the DJI Phantom UAVs (these UAVs are about the

same size as Amazon’s delivery drones).

Table 7-1 The UAV performance limits.

The environment in the simulations is a 3-D cuboid flight area (limited to 1000m×1000m×300m

in length, width, and height respectively). The horizontal area (1000m×1000m) is arbitrary but

adequate for the analysis we are carrying out given the limited speeds of the UAVs. The vertical

limit (300m) is based on some proposed regulations for commercial UAVs, e.g. those in [135] —

we assume they are only permitted to fly below 300 meters in the airspace.

The initial position of the own-ship is fixed at the middle left of the simulated flight space for the

convenience of visualization. Its initial velocity vector is specified by a ground speed of 5m/s

(which is a very normal speed for the Parrot AR.Drone), a bearing directly to the right (0o), and a

Min Ground Speed 0m/s Max Ground Speed 10m/s

Min Vertical Speed -10m/s Max Vertical Speed 2m/s

144

zero vertical speed. Its size is specified by a sphere with a radius of 10m (half of the distance of

safe separation). It is noted that many conflict resolution algorithms are based on relative positions

and velocities. Therefore, fixing the initial state of the own-ship will usually not do much harm

to the simulation.

After the initial state of the own-ship is fixed, various intruders can be generated using the

“scenario generator” of the open-source tool presented in Chapter 5. For example, if we pass the

two groups of parameters (see Section 5.2 for the meaning of these parameters) shown in Table

7-2 to the “scenario generator”, a multi-UAV encounter will be generated, and the simulation of

it (with ORCA-3D in action) is shown in Figure 7-4.

Table 7-2 Parameters for the generation of an example multi-UAV encounter.

parameters T (sec) R (m) θ (deg) Y (m) Gsi (m/s) βi (deg) Vsi (m/s)

intruder 1 20 5 90 17 7 131 -2

intruder 2 18 0 90 8 10 0 1

Figure 7-4 Simulation of a multi-UAV encounter generated by the parameters in Table 7-2.

The first row of arguments specifies a left-crossing intruder (intruder 1) with a crossing angle of

131o, and the second row of arguments specifies an overtaking intruder (intruder 2) as its bearing

is 0o and its ground speed is faster than the own-ship's (10m/s > 5m/s). With the help of ORCA-

3D, the safe separation was achieved. Otherwise the “incident detector” would have detected the

incident and shown it visually.

145

All the experiments54 described below were done on a PC with an Intel Core i3-2350M 2.30GHz

CPU and the 64-bit Ubuntu 14.04 Operating System. The experiments were run using JavaSE-

1.7 with an initial memory of 512MB and a maximum memory of 1024MB for the JVM.

 Experiment 1: Random Search

A. Setup

In the random search method, a stream of encounters were generated using a simple random

approach, only terminating when a certain (large) number of encounters have been generated and

evaluated, or a certain (more modest) number of encounters that lead to incidents have been found.

Assuming this process has indeed generated some encounters that lead to incidents (thus meeting

the first objective given in Section 7.4), it then selects a subset of those that have the lowest

cardinalities (thus meeting the second objective).

For the first step, it uses a process that repeats a simple step a large number of times —selecting

the cardinality of the encounter from a uniform probability distribution, and generating a multi-

UAV encounter with this cardinality by uniformly selecting parameter values from their bounds,

then running a simulation to decide whether or not it can lead to an incident; if an incident happens,

this encounter is recorded. The bounding values for the parameters are shown in Table 7-3 (see

Section 5.2 for the meaning of these parameters). The cardinality of the generated encounters is

between 2 to 11 — the upper limit was set at a value we thought should be sufficient to “stress”

the ORCA-3D algorithm.

Table 7-3 Bounding values for the parameters for testing ORCA-3D.

As noted above, this process terminates when a certain (large) number of encounters have been

generated and evaluated, or enough encounters that lead to incidents have been found. In this case,

the limits were set to 100,000 encounters overall and 500 with incidents.

54 Java Code for experiments: https://github.com/xueyizou/ORCA-3D-Testing.git.

parameters T (sec) R (m) θ (deg) Y (m) Gsi (m/s) βi (deg) Vsi (m/s)

min 10 0 -180 -20 2 -180 -2

max 30 20 180 20 10 180 2

https://github.com/superxueyizou/ORCA-3D-Testing.git

146

A randomly generated encounter and the associated simulation run is visualized in Figure 7-5.

There are eight intruders. In this case, with the help of the ORCA-3D, every UAV reached its

target safely.

Figure 7-5 A simulated random encounter of 9 UAVs. No incident occurred.

B. Results

Five trials were conducted, each with a different number as the seed for the random number

generator. In each trial, 100,000 encounters were generated and evaluated. So, in all, 500,000

encounters were simulated and evaluated. However, no incidents occurred. The time it took for

each trial is shown in Table 7-4. It can be noted that these times are not huge — even using a

single ordinary PC.

Table 7-4 Time costs of random searches for testing ORCA-3D.

Since the random search could not find enough encounters that can lead to an incident (indeed, it

found none at all), we could not proceed with the second step. The random-search-based approach

failed, at least in this case. Since no incidents occurred in these 500,000 encounters, it appears

that the ORCA-3D algorithm is very likely to be capable of handling more than 11 UAVs.

Seeds 97846789 194679667 249719121 567971664 946163716

Time (sec) 412 410 410 397 395

147

 Experiment 2: Evolutionary Multi-Objective Search

A. Setup

In the evolutionary multi-objective search approach, the NSGA-II [105], which is a specific form

of GA for multi-objective search, were used to search for solutions satisfying the two objectives

given in Section 7.4. Referring to Figure 7-3, the NSGA-II procedure is as follows.

1. Set up a population (P) to hold encounters as individuals in a generation. The size of P is

n, and the initial individuals are randomly generated;

2. Set up an Archive (A) to hold the best individuals (elites) found through the history of the

evolution. The size of A is also n, and A is initialized to be empty;

3. Run simulations to evaluate individuals in P and A with respect to the two objectives;

4. Rank the individuals in P and A according to the evaluation result. Store the best

individuals in a collection F1 (F1 for “rank 1 Pareto Front” — see Subsection c, below, for

an explanation);

5. Select from the individuals the best n individuals to update the old elites in A;

6. Run tournament selection with replacement to select n individuals from the new elites in

A;

7. Breed a new population from the selected individuals through genetic operators (i.e.

genome crossover, gene removal, and gene mutation) and update the old population P;

8. When (1) an ideal individual is found55, or (2) the allotted time is over, or (3) a certain

number of generations have been evaluated, terminate the process and output the

individuals in F1. Otherwise, repeat steps 3-8.

The evolutionary multi-objective search was implemented by using ECJ, with some

modifications56 to the ECJ’s routine in order to fit the purpose of this thesis. In the following

subsections, the design of the multi-objective search technique is detailed.

a. Encoding Encounters with Genomes

A multi-UAV encounter is a candidate solution to the multi-objective search problem, and it is

represented in the search as an individual. Each individual has one and only one genome, which

is a variable-length collection of genes. Each gene has seven slots to store the seven arguments

(see Section 5.2) for generating an intruder. The genome of an individual thus encodes a multi-

55 An ideal individual is unlikely to be found in our case due to the opposing nature of the two

objectives.

56 Particularly, the gene removal was added to occasionally remove some genes from the genome.

148

UAV encounter. The evolution of the individuals is thus the improvement of the multi-UAV

encounters so that they (are more likely to) satisfy the two objectives. This relationship is shown

in Figure 7-6.

Figure 7-6 Encoding multi-UAV encounters in genomes for the use of evolutionary multi-objective

search.

b. Objectives

To quantify the values of the two objectives in our problem (see Section 7.4), considering the fact

that ECJ requires a fitness function whose range is [0,1] with greater fitness values for fitter

individuals, we formally define the two objectives into the following fitness functions:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1 =

1.0

1 + 𝑝𝑚𝑖𝑛
 (7-2)

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 2 = 1.0 −

|E| − 2

𝐶𝑚𝑎𝑥 − 2
 (7-3)

Equation (7-2) is Koza-style [120] fitness function, where 𝑝𝑚𝑖𝑛 is the scalar value of the

minimum proximity experienced by the own-ship with any intruders in a simulation run. It is

defined by equation (7-4):

 𝑝𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑠𝜖[0,𝑆]{𝑚𝑖𝑛𝑘𝜖[1,|𝐸|−1]{𝑝𝑘𝑠
}}

(7-4)

Where S is the number of the total simulation steps, |E| is the cardinality of an encounter E, 𝑝𝑘𝑠

is the scalar value of the proximity between the own-ship and the 𝑘𝑡ℎ intruder at the simulation

step s; the value of proximity between two UAVs is defined by equation (7-5):

 𝑝 = 𝑚𝑎𝑥{0, 𝑑𝑖𝑠𝑡𝐻 − 𝐻} + 𝑚𝑎𝑥{0, 𝑑𝑖𝑠𝑡𝑉 − 𝑉}
(7-5)

Where 𝑑𝑖𝑠𝑡𝐻 and 𝑑𝑖𝑠𝑡𝑉 are respectively the horizontal distance and the vertical distance between

the centre points of the two UAVs, 𝐻 and 𝑉 are the required horizontal and vertical distance of

safe separation (both are 20m in this case).

149

In equation (7-3), 𝐶𝑚𝑎𝑥 is the maximum cardinality allowed in the search problem, and in this

case, it is 11 (i.e. at most 10 intruders are allowed in an encounter57. The -2 is because there should

always be at least two UAVs — the own-ship and at least one intruder.

The definition of the objectives is such that larger values are better. For objective 1, if there is an

incident, 𝑝𝑚𝑖𝑛 will be 0, and it will get its largest value, 1.0. For objective 2, if there is only one

intruder (the cardinality is 2), its value is 1.0, which is the largest possible value.

c. Selection of the Fittest Individuals

In multi-objective search, it is often the case that there is no optimal solution that achieves all

objectives simultaneously. Instead, there is a set of “best options” which are equally good. To

find these best options, we need to define what it means for one solution to be “better” than

another. Suppose there are only two candidate solutions, S1 and S2. S1 is said to be better than S2

if and only is S1 is at least as good as S2 in all objectives and is better than S2 in at least one

objective. If this is the case, S1 is said to Pareto dominate S2. Neither S1 nor S2 Pareto dominates

the other if they are equally good in all objectives, or if S1 is better in some objectives while S2 is

better in others. In those cases, both S1 and S2 are best options, and we say they are on the Pareto

Front of the space of candidate solutions. The main target of the multi-objective search is to find

those solutions at the Pareto Front.

For a population of individuals (i.e. candidate solutions), we can compute the Pareto Front in the

following way: go through the population and add an individual to the front if it is not Pareto

dominated by any individual currently in the Pareto Front, and remove individuals from the front

if they are dominated by this new individual [104].

The individuals in the population can be grouped according to how close an individual is to the

Pareto Front. To do this, we assign a rank to each individual. Individuals presently in the Pareto

Front are in rank 1. If we remove the rank 1 individuals from the population and compute the new

Pareto Front, the individuals in the new front are assigned a rank of 2. Likewise for rank 3, and

so on until no individual remains. This is the mechanism for the Non-dominated Sort, which is

used by the NSGA-II as the prime criterion to rank individuals. Individuals with rank r are stored

in Fr and individuals with lower ranks are first selected as elites to form the Archive (A). For full

details, readers are referred to [104].

Considering the second criterion, if there are too many individuals with the same rank competing

to be selected as elites (since the size of the A is fixed at n), those evenly spread across that front

57 This number was used for the work described here, but it can be changed to a bigger number if

the search cannot find any encounters satisfying the two objectives in reasonable time.

150

would be chosen. The NSGA-II achieves this purpose by defining the sparsity for an individual.

An individual is of high sparsity if the closest individuals on either side of it on the front are not

too close to it. For the definition and computation of sparsity and the Sparsity Sort, readers are

referred to [104].

After the new elites are selected, they compete to be selected as the fittest individuals to breed the

new population. The process is a Tournament Selection (see Section 4.3.B), where individuals

are randomly selected with replacement to compete with the champion so far. The criteria for the

competition are first based on rank and then on sparsity.

d. Genetic Operators

After selecting the fittest individuals, their genomes are modified randomly (“tweaked”) in the

hope of generating better individuals. As with biological evolution, not all such operations are

beneficial, but some are, and those are the ones that will most likely survive into later generations.

Three genetic operators were used to tweak the genome: genome crossover, gene removal, and

gene mutation.

Genome crossover mixes and matches parts of two old genomes to form new genomes. The One-

point Crossover approach was adopted that randomly selects a position for crossover and swaps

the genes before that position, as is illustrated in Figure 4-6 (b).

Gene removal randomly selects one gene in the genome and removes it. If the length of the

genome is only one, then it does nothing. It is a customized additional genetic operator to the

standard NSGA-II operators. We use it to reduce the number of intruders involved in an encounter,

thus favouring the second objective.

Gene mutation has a certain probability of mutating each gene in a genome. Gaussian mutation

(see Section 4.3.B) was adopted in this case.

e. Formation of the Next Generation

In the most common form of GA, the next generation of the population is generated from the old

population. NSGA-II differs from this — it holds an archive of the same size as the population

which contains the best n individuals (elites) found so far. Every generation, the population

competes with the existing elites to be selected as one of the new elites. After the new elites are

selected, they are used to breed the next generation of the population.

f. NSGA-II Parameters

Since in Chapter 4 and Chapter 6 we have found that a properly larger initial population size can

contribute to the faster convergence of GA to better and more consistent results, in this experiment,

the NSGA-II algorithm was set to be with a large population size (5,000). To have the same

151

number (i.e. 100,000) of encounters evaluated in a single search as the random search experiment,

the number of generations for NSGA-II was set to 20.

As with the random search, the length of the genome is uniformly chosen from 1 to 10 (all

inclusive), giving a maximum cardinality of encounters of 11. The bounding values of the

parameters are the same as those used in the random-search-based approach.

Other parameters for NSGA-II are listed in Table 7-5. The rules used to tune these parameters are

the same as those presented in Section 6.5.1.B.a. A small value (0.2) was assigned to the gene

removal rate for the customized gene removal operator, which was found work well in our case.

Nevertheless, it could also be tuned by making use of the intuitions of exploration and exploitation

(see Section 6.5.1.B.a).

Table 7-5 Parameters for NSGA-II.

 Type Type-specific parameters

Selection Tournament Selection tournament size = 2

Crossover One-point Crossover crossover rate = 0.8

Removal Uniform gene removal rate = 0.2

Mutation Gaussian Mutation
per-gene mutation rate = 0.2

σ = 0.2

B. Results

Again, five searches were run with different seeds for the random number generator. The results

are shown in Table 7-6. In this table, row 1 lists the seed for each search; row 2 lists the time cost

for each search; row 3 lists the number of encounters in the Pareto Front; row 4 lists the number

of encounters in the Pareto Front that can lead to an incident; and row 5 lists the minimum number

of intruders in an encounter that can lead to an incident.

Table 7-6 Statistics of the 5 evolutionary multi-objective searches for testing ORCA-3D.

seeds 567672542 588764257 679463479 884185791 898946497

time 221s 213s 226s 169s 198s

in Pareto Front 27 18 6 49 13

with incidents 20 11 0 0 8

fewest intruders 9 3 >10 >10 9

152

In these multi-objective searches, we are interested in encounters in the Pareto Front. Three out

of five searches found encounters that can lead to incidents in the Pareto Front. The minimum

number of intruders that can cause an incident involving the own-ship is 3. This 4 UAV encounter

is shown in Figure 7-7.

Front View

Top View

 Side View

Figure 7-7 A simulated 4 UAV encounter that leads to an incident.

In this encounter, the own-ship first traveled at a constant level from left to right. At the time

when the manoeuvres began, intruder 1 was climbing in above the own-ship and intruder 2 was

flying outwards from the left of the own-ship and also above the own-ship. This caused the own-

ship to descend. However, intruder 3 was climbing from below the own-ship, and a violation of

safe separation happened.

Considering the overall validation process, this challenging encounter should be further

investigated to decide whether it resulted from true failures of the ORCA-3D algorithm,

implementation errors, or simulation artefacts. As has been said in Section 7.2, we used a Java re-

implementation of the original C++ source code provided by the ORCA-3D developers. So, there

is less chance for introducing implementation errors than implementing the algorithm from

153

scratch. Given the visualization of this challenging encounter shown in Figure 7-7 and the fact

that the simulation is consistent with the assumptions about the environment made in the ORCA-

3D paper [11], it is most likely that this challenging encounter indicates true failures of the ORCA-

3D algorithm.

Since it had found an encounter with a cardinality of 4 that can lead to an incident, we conclude

that the ORCA-3D algorithm cannot handle 4 UAVs in all cases. The exact reason for the incident

can possibly be determined by further analysis of this encounter, especially by visualizing and

examining the feasible region for choosing new velocity vectors (see Figure 7-2(b)). However,

this further analysis is beyond the scope of this thesis. For our purposes, it is sufficient to observe

that, with certain traffic patterns, ORCA-3D is not able to find paths that avoid the violation of

safe separation with the own-ship, because of the constraints imposed by the other UAVs.

 Discussion

The evolutionary multi-objective search approach can find incidents which the random-search-

based approach cannot easily find. The key difference between the two is the former's use of meta-

heuristic search in NSGA-II. NSGA-II's key strength is that it maintains an archive of best

candidate solutions (elites) found so far and breeds further candidate solutions from those best

candidates. Each new generation of the population, therefore, tends to have desirable features

descended from these elites. After each generation, the addition of the best new individuals to the

set of elites generally leads to the set of elites improving over time.

In order to have the new generation inherit the good features of the elites, the desirable features

should be quantified and embodied in the fitness function (the quantification of the objectives).

In our case, the good features chosen are (1) a lower proximity between the own-ship and the

intruders during a simulated encounter, and (2) a lower cardinality of the encounter. They are

quantified and embodied in the valuation functions of the two objectives. Better selection of

features58 may, in the future, make the proposed approach even more powerful.

The evolutionary multi-objective search approach can find the encounters meeting the two criteria

more effectively and efficiently (in a practical time with modest processing facilities) than the

random-search-based approach. The random-search-based approach takes about 400s on average

to explore 100,000 encounters, while the evolutionary multi-objective search approach only takes

about 210s. For the random-search-based approach, the main time expense is the simulation runs

to evaluate these encounters, whereas, for the multi-objective search approach, the expense

58 The selection of good features is, as ever, problem-specific, and relies on a deep understanding

of the problem.

154

includes two parts: the simulation runs, and the overhead of the multi-objective search framework.

The multi-objective search approach is faster because the evolutionary search algorithm favours

individuals that score well on the low-cardinality objective, and thus the simulated encounters

tend to have fewer UAVs involved. This reduces the computing effort required to simulate them.

There are some limitations of the approach when used to support validation of ORCA-3D:

1) In the simulations, all intruders are generated to have conflicts with the own-ship.

However, it is noted that some dangerous situations may well exist that do not start with

intruders in conflict with own-ship (but where conflict resolution actions then place it in

conflict with them later);

2) It also ignored incidents between pure intruders, and it was only interested in incidents

involving the own-ship. It is acknowledged that some intruder-intruder incidents might

also be interesting because they are caused by own-ship's actions. By doing so, some

specific types of faults in the conflict resolution algorithm may be ignored;

3) Considering the small size and operational scenarios of the studied UAVs, follow-up

research may be needed to model the effects of the wind and static obstacles (e.g. high

buildings) in the simulations.

7.6 Summary and Conclusions

In this chapter, the proposed evolutionary-search-based approach was augmented and applied to

support the validation of ORCA-3D, a multi-UAV conflict resolution algorithm. Two

requirements were identified for the problem, i.e. (1) to find encounters where, despite the help

of the conflict resolution algorithm, UAVs still experience violations of safe separation; and (2)

the encounters found should also be simple, so that they are very likely to happen in the real-

world environment. The problem was formulated as a multi-objective search problem, and the

proposed approach developed through the previous chapters was augmented to find solutions for

this problem. Experiments were conducted to compare the evolutionary multi-objective search

approach with the random-search-based approach in finding multi-UAV encounters satisfying the

two identified objectives.

The results show that the evolutionary multi-objective search approach can find encounters

meeting these objectives more effectively and efficiently than the random-search-based approach.

The resulting encounters provide the starting points for further analysis of the conflict resolution

algorithm, which will allow algorithm developers and users to fully understand its limitations.

Thus, the evolutionary multi-objective search has the potential to offer an effective and efficient

way to support the validation, or at least determining some limitations, of conflict resolution

algorithms.

155

 Conclusions

8.1 Evaluation of the Research Hypothesis

This thesis was motivated by the need to improve the validation process of SAA algorithms

required for the safe integration of UAVs into civilian airspace. By building on ideas from SBST,

this thesis explored the use of agent-based simulation and evolutionary search to support the

validation process of UAV SAA algorithms, with the research hypothesis as follows:

The validation of UAV SAA algorithms requires identifying challenging situations that the

algorithms have difficulties in handling. It is possible to identify such situations using an

evolutionary-search-based approach and the process can be partially automated. The

evolutionary-search-based approach is more effective and efficient than some plausible

rivals.

As noted in Section 1.4, the first sentence of the hypothesis is an assumption — we assume that

the identification of challenging situations that the tested UAV SAA algorithms have difficulties

in handling is a part of the validation work. Firstly, according to the common practice of software

testing, which heavily involves finding counterexamples showing the tested software is not valid

in all situations, this assumption is clearly sound. Secondly, if the tested SAA algorithms are

moderately good, the challenging situations are actually very rare, which is evidenced by that, in

all the case studies, the random search either could not, or took a lot of trials to, find even one

challenging situation. This is the precondition that it is necessary to develop new approaches to

support the validation of SAA algorithms, otherwise, conventional techniques (e.g. random-

search-based simulation analysis) would be capable of identifying such situations.

Four propositions can be identified in this hypothesis:

1) Feasibility: it is possible to identify challenging situations for the selected SAA

algorithms using the proposed evolutionary-search-based approach;

2) Partial automation: the process of identifying challenging situations for supporting the

validation of SAA algorithms can be partially automated if using the proposed

evolutionary-search-based approach;

3) Effectiveness: the proposed evolutionary-search-based approach is more effective than

some plausible rivals in identifying challenging situations for the selected SAA

algorithms.

156

4) Efficiency: the proposed evolutionary-search-based approach is more efficient than some

plausible rivals in identifying challenging situations for the selected SAA algorithms.

The research described in this thesis explored and evaluated these four propositions as follows.

Feasibility is positively supported.

Evidence:

1) In Chapter 4 the proposed evolutionary-search-based approach was used to find

mid-air collision situations for SVO either under perfect sensing ability or with

sensor noise. Results (Section 4.4.3) showed that the proposed approach can

identify some required situations;

2) In Chapter 6 the proposed approach was used to find high-accident-rate situations

for ACAS XU. The results showed that it can indeed find some, with a type of

encounter combining the overtaking-overtaken form and the climbing-

descending form to be very noteworthy, since it was also found by the random

search and the deterministic global search;

3) In Chapter 7 the proposed approach was used to find the violation of safe-

separation situations that are most likely to happen in the real-world environment

for ORCA-3D. By formalizing the problem as a multi-objective search problem,

the proposed approach successfully found the required situations.

Partial automation is positively supported.

Evidence:

1) In all the case studies, having built the simulations and defined the evolutionary

search processes, the evolutionary search can then automatically search for the

required situations;

2) An open-source tool was developed to support the proposed approach. The tool

was used in the case studies as presented in Chapter 6 and Chapter 7. With this

supporting tool, the process of identifying challenging situations for SAA

algorithm validation can be partially automated.

Effectiveness is positively supported.

Evidence:

1) In Chapter 4 the proposed evolutionary-search-based approach was empirically

compared with a random search approach. Results showed that the proposed

approach can effectively identify some very subtle situations that random search

cannot find in reasonable time;

157

2) In Chapter 6 the proposed approach was empirically compared with a random-

search-based approach and a deterministic-global-search-based approach. The

results showed that the proposed evolutionary-search-based approach can find

high-accident-rate encounters more effectively than the random-search-based

approach, and even though it is a little less competitive than the deterministic-

global-search-based approach in the relatively easy case, it is more effective in

more difficult cases, especially when the objective function becomes highly

discontinuous.

3) In Chapter 7 the proposed approach was empirically compared with a random-

search-based approach. The results showed that the proposed approach can

effectively find the low-cardinality encounter situations that can cause violations

of safe separation, while the random-search-based approach has difficulty in

finding them.

Efficiency is positively supported.

Evidence:

1) In Chapter 6 the proposed approach was empirically compared with a random-

search-based approach and a deterministic-global-search-based approach. The

results showed that the proposed evolutionary-search-based approach can find

high-accident-rate encounters more efficiently than the random-search-based

approach, and it is also more efficient than, or at least comparable with, the

deterministic-global-search-based approach, especially when the objective

function is highly discontinuous.

2) In Chapter 7 the proposed approach was empirically compared with a random-

search-based approach. Since the random-search-based approach failed to find

the required situations with a specified number of searches, it is obvious that the

proposed evolutionary-search-based approach is more efficient.

8.2 Summary of Thesis Contributions

The research presented in this thesis lies in the intersection of software testing, safety-critical

system engineering, and mobile robotics. Specifically, it is about an automated software testing

method for a safety-critical component of UAVs.

The major contributions of this thesis are:

 Surveyed and analysed three different techniques for guiding simulations (Section 2.3),

and by building on ideas from for SBST (Section 2.5), proposed an evolutionary-search-

158

based approach to find rare but challenging situations for supporting the validation of

UAV SAA algorithms (Chapter 3);

 Demonstrated the proposed approach using three SAA algorithms as case studies, and

empirically evaluated the proposed approach by comparing it with some plausible rivals

(Chapter 4, Chapter 6, and Chapter 7);

 Developed an open-source tool to support the proposed approach and provided all the

source code for the case studies (Chapter 5 and Appendix 1);

Some minor contributions of this thesis are:

 Illustrated the model-based optimization development approach to developing ACAS XU

by walking through the development a simple 2-D collision avoidance system (Section

6.2), and analysed the challenges posed by the new development approach to safety

assurance and system validation (Section 6.3);

 Identified a type of very challenging situations for the tested ACAS XU, which was also

found by the random search and the deterministic global search (Section 6.5.1);

 Showed how the proposed evolutionary-search-based approach can be used effectively

in finding counterexamples (Section 4.4 and Section 6.5.2).

 Formulated the problem of identifying challenging situations for the validation of a multi-

UAV conflict resolution algorithm as a multi-objective search problem (Section 7.3), and

used evolutionary search to solve it (Section 7.4).

8.3 Summary of Thesis Limitations

An identified limitation of the research described in this thesis is that this thesis adopted agent-

based simulation as the only simulation paradigm, which mainly focuses on modelling and

simulating at the behaviour level. However, to further explore the safety issues with SAA

algorithms, it may need to build simulation models at the control level and/or the physics level,

that is, to incorporate the low-level controller and other dynamics of the real world into the model,

and to simulate with a higher fidelity.

8.4 Opportunities for Further Research

Some possible opportunities for further research are:

 As identified in Section 8.3, the agent-based simulation model is a limitation of this

research. Further research could proceed in two directions: (1) modelling at a lower level,

that is, building low-level controllers for the UAVs to achieve the high-level behaviours

159

commanded by the SAA algorithms. Example work in this direction includes [116, 117];

(2) modelling at a higher-fidelity level, that is, building simulations that are closer to the

real world using physics-engine-based simulators (e.g. Gazebo, V-rep). With better

models and simulations, more safety issues can be better explored. As a result, more

parameters will be needed to configure the simulations, and the search space will become

much larger, so that the power of using evolutionary search to guide the simulations can

be further evaluated.

 A limitation of the proposed evolutionary-search-based approach (and the random search,

and the deterministic global search) is that it only directly identifies discrete situations

(points in the search space) that show problems. It might be possible to extend the

approach to find areas of the search space that show certain properties (e.g. having high

accident rate) instead. Data mining techniques, such as clustering [132], could potentially

be used to analyse the logged data to find such areas.

 SAA algorithms studied in this thesis are local planning algorithms. Further research

could study global planning algorithms (e.g. path planning and mission planning) or the

integration of global and local planning algorithms. Also, decision-making under

uncertainty algorithms could also be considered. The proposed approach could possibly

be used to test these applications. One possible problem of using the proposed approach

in this direction might be that since the tested system is more complex, more parameters

are needed to configure the simulations, and the size of the search space may grow

exponentially.

 Finally, industrial trials of the proposed approach could be conducted.

8.5 Overall Conclusions

Motivated by the need to improve the validation process of SAA algorithms required for the safe

integration of UAVs into civilian airspace, by building on ideas from SBST, this thesis proposed

an evolutionary-search-based approach to automatically identify rare but challenging situations

that the tested SAA algorithms have difficulties in handling to support the validation process of

UAV SAA algorithms. An open-source tool was developed to support the proposed approach.

With three case studies, the proposed approach was demonstrated and empirically evaluated by

comparisons with some plausible rivals. Results show that the proposed approach has the potential

to offer an effective and efficient means for supporting the validation of SAA algorithms, thereby,

helping developers to improve the algorithms and helping regulators decide whether these

important algorithms can be deployed.

160

161

Appendix 1: Source Code Links

My implementations:

 SVO implementation:

https://github.com/xueyizou/SVO_Java.git

 SVO testing

https://github.com/xueyizou/SVO_Tesing.git

 ACAS XU implementation:

https://github.com/xueyizou/ACASX_3D.git

 ACAS XU testing:

https://github.com/xueyizou/ACASX_3D_Testing.git

 Java implementation of ORCA-3D:

https://github.com/xueyizou/ORCA_3D_UAV.git

 ORCA-3D testing:

https://github.com/xueyizou/ORCA-3D-Testing.git

Others’ implementations:

 MASON:

http://cs.gmu.edu/~eclab/projects/mason/

 ECJ

http://cs.gmu.edu/~eclab/projects/ecj/

 ORCA-3D Original C++ implementation:

http://gamma.cs.unc.edu/RVO2/downloads/

 DIRECT algorithm MATLAB code:

http://www4.ncsu.edu/~ctk/Finkel_Direct/

https://github.com/xueyizou/SVO_Java.git
https://github.com/xueyizou/SVO_Tesing.git
https://github.com/superxueyizou/ACASX_3D.git
https://github.com/xueyizou/ACASX_3D_Testing.git
https://github.com/superxueyizou/ORCA_3D_UAV.git
https://github.com/superxueyizou/ORCA_3D_UAV.git
https://github.com/superxueyizou/ORCA-3D-Testing.git
https://github.com/superxueyizou/ORCA-3D-Testing.git
http://cs.gmu.edu/~eclab/projects/mason/
http://cs.gmu.edu/~eclab/projects/ecj/
http://gamma.cs.unc.edu/RVO2/downloads/
http://www4.ncsu.edu/~ctk/Finkel_Direct/

162

163

Appendix 2: Glossary

ACAS X Airborne Collision Avoidance System X

ACAS XU Airborne Collision Avoidance System X for UAVs

ACCoRD Airborne Coordinated Conflict Resolution and Detection

ACES Airspace Concept Evaluation System

ADS-B Automatic Dependent Surveillance-Broadcast

ATM Air Traffic Management

CPA Closest Point of Approach

DOE Design of Experiments

EO Electro-Optical

FAA Federal Aviation Administration

FACET Future ATM Concepts Evaluation Tool

GA Genetic Algorithm

GNSS Global Navigation Satellite System

GPS Global Positioning System

GVO Generalized Velocity Obstacles

HRVO Hybrid Reciprocal Velocity Obstacles

JVM Java Virtual Machine

LIDAR Light Detection And Ranging

MDP Markov Decision Process

164

MILP Mixed-Integer Linear Program

NextGen Next Generation Air Transportation System

NSGA-II Non-Dominated Sorting Genetic Algorithm II

OFAT One Factor at a Time

ORCA Optimal Reciprocal Collision Avoidance

ORCA-3D Optimal Reciprocal Collision Avoidance in 3-Dimension

POMDP Partially Observable Markov Decision Process

PVO Probabilistic Velocity Obstacles

RA Resolution Advisory

RVO Reciprocal Velocity Obstacle

SAA Sense-and-Avoid

SBST Search-Based Software Testing

SESAR Single European Sky ATM Research

SPEA2 Strength Pareto Evolutionary Algorithm 2

SUT Software under Testing

SVO Selective Velocity Obstacle

TCAS Traffic Collision Avoidance System

UAV Unmanned Aerial Vehicles

V&V Verification and Validation

VO Velocity Obstacle

165

References

[1] FAA, "Integration of Civil Unmanned Aircraft Systems (UAS) in the National Airspace

System (NAS) Roadmap," ed: Federal Aviation Administration, U.S. Department of

Transportation, Washington, DC, US, 2013, pp. p18-19.

[2] G. Gugliotta. (2009, 16 June). An Air-Traffic Upgrade to Improve Travel by Plane.

Available:

http://www.nytimes.com/2009/11/17/science/17air.html?ref=science&pagewanted=all&

_r=0

[3] W. R. Richards, K. O’Brien, and D. C. Miller, New Air Traffic Surveillance Technology

vol. 2016, 2010.

[4] A. Richards and J. P. How, "Aircraft trajectory planning with collision avoidance using

mixed integer linear programming," in Proceedings of the 2002 American Control

Conference, 2002, pp. 1936-1941 vol.3.

[5] M. J. Kochenderfer and J. Chryssanthacopoulos, "Robust airborne collision avoidance

through dynamic programming," Massachusetts Institute of Technology, Lincoln

Laboratory, Project Report ATC-371, 2011.

[6] Y. I. Jenie, E.-J. Van Kampen, C. C. de Visser, and Q.-P. Chu, "Selective velocity

obstacle method for cooperative autonomous collision avoidance system for UAVs," in

AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, 2013.

[7] S. Temizer, M. J. Kochenderfer, L. P. Kaelbling, T. Lozano-Pérez, and J. K. Kuchar,

"Collision avoidance for unmanned aircraft using Markov decision processes," presented

at the AIAA Guidance, Navigation, and Control Conference, 2010.

[8] C. Geyer, D. Dey, and S. Singh, "Prototype sense-and-avoid system for UAVs," Robotics

Institute, Carnegie Mellon University, CMU-RI-TR-09-092009.

[9] P. Menon, G. Sweriduk, and B. Sridhar, "Optimal strategies for free-flight air traffic

conflict resolution," Journal of Guidance, Control, and Dynamics, vol. 22, pp. 202-211,

1999.

[10] R. Ghosh and C. Tomlin, "Maneuver design for multiple aircraft conflict resolution," in

Proceedings of the 2000 American Control Conference, 2000, pp. 672-676 vol.1.

[11] J. van den Berg, S. Guy, M. Lin, and D. Manocha, "Reciprocal n-Body Collision

Avoidance," in Robotics Research. vol. 70, C. Pradalier, R. Siegwart, and G. Hirzinger,

Eds., ed: Springer Berlin Heidelberg, 2011, pp. 3-19.

[12] P. McMinn, "Search-based software testing: Past, present and future," in IEEE Fourth

International Conference on Software Testing, Verification and Validation Workshops

(ICST-W), 2011, pp. 153-163.

http://www.nytimes.com/2009/11/17/science/17air.html?ref=science&pagewanted=all&_r=0
http://www.nytimes.com/2009/11/17/science/17air.html?ref=science&pagewanted=all&_r=0

166

[13] D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine learning," Machine

learning, vol. 3, pp. 95-99, 1988.

[14] R. Eglese, "Simulated annealing: a tool for operational research," European journal of

operational research, vol. 46, pp. 271-281, 1990.

[15] F. Glover, "Tabu search: A tutorial," Interfaces, vol. 20, pp. 74-94, 1990.

[16] M. Harman, "Search Based Software Engineering," in Computational Science – ICCS

2006: 6th International Conference, Reading, UK, May 28-31, 2006, Proceedings, Part

IV, V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, Eds., ed Berlin,

Heidelberg: Springer Berlin Heidelberg, 2006, pp. 740-747.

[17] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell, S.

Mancoridis, K. Rees, M. Roper, and M. Shepperd, "Reformulating software engineering

as a search problem," IEE Proceedings - Software, vol. 150, pp. 161-175, 2003.

[18] M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopoulos, "Next generation

airborne collision avoidance system," Lincoln Laboratory Journal, vol. 19, pp. 17-33,

2012.

[19] R. E. Cole. (2011). MIT Lincoln Laboratory Support to Unmanned Aircraft Systems

Integration into the US National Airspace. Available:

http://ilp.mit.edu/images/conferences/2011/RD/Cole.pdf

[20] X. Yu and Y. Zhang, "Sense and avoid technologies with applications to unmanned

aircraft systems: Review and prospects," Progress in Aerospace Sciences, vol. 74, pp.

152-166, 2015.

[21] R. Carnie, R. Walker, and P. Corke, "Image processing algorithms for UAV" sense and

avoid"," in Proceedings 2006 IEEE International Conference on Robotics and

Automation (ICRA 2006), 2006, pp. 2848-2853.

[22] D. Dey, C. Geyer, S. Singh, and M. Digioia, "Passive, long-range detection of aircraft:

towards a field deployable sense and avoid system," in Field and Service Robotics, 2010,

pp. 113-123.

[23] Wikipedia. (07 May). Doppler effect. Available:

https://en.wikipedia.org/wiki/Doppler_effect

[24] L. R. Sahawneh, J. Mackie, J. Spencer, R. W. Beard, and K. F. Warnick, "Airborne Radar-

Based Collision Detection and Risk Estimation for Small Unmanned Aircraft Systems,"

Journal of Aerospace Information Systems, vol. 12, pp. 756-766, 2015/12/01 2015.

[25] J. Kuchar and A. C. Drumm, "The traffic alert and collision avoidance system," Lincoln

Laboratory Journal, vol. 16, p. 277, 2007.

[26] FAA, "Introduction to TCAS II Version 7.1," ed: Federal Aviation Administration, U.S.

Department of Transportation, Washington, DC, US, 2011.

http://ilp.mit.edu/images/conferences/2011/RD/Cole.pdf

167

[27] A. D. Zeitlin and M. P. McLaughlin, "Safety of Cooperative Collision Avoidance for

Unmanned Aircraft," in 2006 IEEE/AIAA 25th Digital Avionics Systems Conference,

Portland, OR, 2006, pp. 1-7.

[28] Wikipedia. (07 May). Automatic Dependent Surveillance-Broadcast. Available:

https://en.wikipedia.org/wiki/Automatic_dependent_surveillance_%E2%80%93_broadc

ast

[29] R. Francis, R. Vincent, J.-M. Noël, P. Tremblay, D. Desjardins, A. Cushley, and M.

Wallace, "The Flying Laboratory for the Observation of ADS-B Signals," International

Journal of Navigation and Observation, vol. 2011, p. 5, 2011.

[30] B. Stark, B. Stevenson, and Y. Chen, "ADS-B for small Unmanned Aerial Systems: Case

study and regulatory practices," in 2013 International Conference on Unmanned Aircraft

Systems (ICUAS), Atlanta, GA, 2013, pp. 152-159.

[31] Y. Lin and S. Saripalli, "Sense and avoid for Unmanned Aerial Vehicles using ADS-B,"

in Robotics and Automation (ICRA), 2015 IEEE International Conference on, 2015, pp.

6402-6407.

[32] A.-B. T. LLC. (09 May). How does ADS-B work? Available: http://www.ads-

b.com/default.htm

[33] B. Prince. (2012, 08 May). Air Traffic Control Systems Vulnerabilities Could Make for

Unfriendly Skies [Black Hat]. Available: http://www.securityweek.com/air-traffic-

control-systems-vulnerabilities-could-make-unfriendly-skies-black-hat

[34] H. Alturbeh, "Collision avoidance systems for UAS operating in civil airspace," P.h.D,

School of Engineering, Cranfield University, 2014.

[35] M. Cesar, N. Anthony, and C. James, "A TCAS-II Resolution Advisory Detection

Algorithm," in AIAA Guidance, Navigation, and Control (GNC) Conference, ed Boston,

MA: American Institute of Aeronautics and Astronautics, 2013.

[36] J. P. Chryssanthacopoulos and M. J. Kochenderfer, "Accounting for State Uncertainty in

Collision Avoidance," Journal of Guidance, Control, and Dynamics, vol. 34, pp. 951-

960, 2011/07/01 2011.

[37] M. J. Kochenderfer, J. P. Chryssanthacopoulos, and R. E. Weibel, "A new approach for

designing safer collision avoidance systems," Air Traffic Control Quarterly, vol. 20, p.

27, 2012.

[38] K. Kwang-Yeon, P. Jung-Woo, and T. Min-Jea, "UAV collision avoidance using

probabilistic method in 3-D," in Control, Automation and Systems, 2007. ICCAS '07.

International Conference on, Seoul, 2007, pp. 826-829.

[39] M. Prandini, J. Hu, J. Lygeros, and S. Sastry, "A probabilistic approach to aircraft conflict

detection," IEEE Transactions on Intelligent Transportation Systems, vol. 1, pp. 199-220,

2000.

http://www.ads-b.com/default.htm
http://www.ads-b.com/default.htm
http://www.securityweek.com/air-traffic-control-systems-vulnerabilities-could-make-unfriendly-skies-black-hat
http://www.securityweek.com/air-traffic-control-systems-vulnerabilities-could-make-unfriendly-skies-black-hat

168

[40] A. Strobel and M. Schwarzbach, "Cooperative sense and avoid: Implementation in

simulation and real world for small unmanned aerial vehicles," in 2014 International

Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, 2014, pp. 1253-1258.

[41] R. W. Butler, G. E. Hagen, and J. M. Maddalon, "The Chorus conflict and loss of

separation resolution algorithms," NASA Langley Research Center, NASA/TM-2013-

2180302013.

[42] H. George, B. Ricky, and M. Jeffrey, "Stratway: A Modular Approach to Strategic

Conflict Resolution," in 11th AIAA Aviation Technology, Integration, and Operations

(ATIO) Conference, ed Virginia Beach: American Institute of Aeronautics and

Astronautics, 2011.

[43] S. M. LaValle, Planning algorithms: Cambridge university press, 2006.

[44] P. Fiorini and Z. Shiller, "Motion planning in dynamic environments using velocity

obstacles," The International Journal of Robotics Research, vol. 17, pp. 760-772, 1998.

[45] A. Chakravarthy and D. Ghose, "Obstacle avoidance in a dynamic environment: A

collision cone approach," Systems, Man and Cybernetics, Part A: Systems and Humans,

IEEE Transactions on, vol. 28, pp. 562-574, 1998.

[46] J. van den Berg, M. Lin, and D. Manocha, "Reciprocal Velocity Obstacles for real-time

multi-agent navigation," in Proceedings of the 2008 IEEE International Conference on

Robotics and Automation, 2008, pp. 1928-1935.

[47] J. Snape, J. v. d. Berg, S. J. Guy, and D. Manocha, "The Hybrid Reciprocal Velocity

Obstacle," IEEE Transactions on Robotics, vol. 27, pp. 696-706, 2011.

[48] P. Conroy, D. Bareiss, M. Beall, and J. v. d. Berg, "3-D reciprocal collision avoidance on

physical quadrotor helicopters with on-board sensing for relative positioning," arXiv

preprint arXiv:1411.3794, 2014.

[49] D. Wilkie, J. v. d. Berg, and D. Manocha, "Generalized velocity obstacles," in 2009

IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO,

2009, pp. 5573-5578.

[50] B. Kluge and E. Prassler, "Recursive Probabilistic Velocity Obstacles for Reflective

Navigation," in Field and Service Robotics: Recent Advances in Research and

Applications, S. i. Yuta, H. Asama, E. Prassler, T. Tsubouchi, and S. Thrun, Eds., ed

Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 71-79.

[51] Federal Aviation Administration, "Federal Aviation Regulations (FAR) Chapter I,

subchapter F Air Traffic and General Operating Rules, 91.113 Right-of-way rules: Except

water operations," ed, 1989.

[52] Thierry Arino, Ken Carpenter, Stephan Chabert, Harry Hutchinson, Thierry Miquel,

Beatrice Raynaud, Kevin Rigotii, and Q. Eric Vallauri (CENA, Sofréavia), "ACAS

PROGRAMME, ACASA PROJECT Work Package 1 — Studies on the safety of ACAS

II in Europe," ACAS/ACASA/02-0142002.

169

[53] Wikipedia. (07 July). Überlingen mid-air collision. Available:

https://en.wikipedia.org/wiki/%C3%9Cberlingen_mid-air_collision

[54] C. e. Muñoz, R. Butler, A. Narkawicz, J. Maddalon, and G. Hagen, "A Criteria Standard

for Conflict Resolution: A Vision for Guaranteeing the Safety of Self-Separation in

NextGen," NASA, Langley Research Center, Hampton VA 23681-2199, USA, Technical

MemorandumOctober 2010.

[55] V. N. Duong and E. G. Hoffman, "Conflict Resolution Advisory Service in autonomous

aircraft operations," in Digital Avionics Systems Conference, 1997. 16th DASC.,

AIAA/IEEE, Irvine, CA, 1997, pp. 9.3-10-9.3-17 vol.2.

[56] Y. Lin, "Moving Obstacle Avoidance for Unmanned Aerial Vehicles," ARIZONA

STATE UNIVERSITY, 2015.

[57] C. J. Tomlin, J. Lygeros, and S. S. Sastry, "A game theoretic approach to controller design

for hybrid systems," Proceedings of the IEEE, vol. 88, pp. 949-970, 2000.

[58] J. K. Archibald, J. C. Hill, N. A. Jepsen, W. C. Stirling, and R. L. Frost, "A Satisficing

Approach to Aircraft Conflict Resolution," IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), vol. 38, pp. 510-521, 2008.

[59] J. K. Kuchar and L. C. Yang, "A review of conflict detection and resolution modeling

methods," IEEE Transactions on Intelligent Transportation Systems, vol. 1, pp. 179-189,

2000.

[60] D. Alejo, J. A. Cobano, G. Heredia, and A. Ollero, "Optimal Reciprocal Collision

Avoidance with mobile and static obstacles for multi-UAV systems," in 2014

International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, 2014,

pp. 1259-1266.

[61] J. Hu, M. Prandini, and S. Sastry, "Optimal coordinated maneuvers for three-dimensional

aircraft conflict resolution," Journal of Guidance, Control, and Dynamics, vol. 25, pp.

888-900, 2002.

[62] N. Durand, J.-M. Alliot, and J. Noailles, "Automatic aircraft conflict resolution using

genetic algorithms," presented at the Proceedings of the 1996 ACM symposium on

Applied Computing, Philadelphia, Pennsylvania, USA, 1996.

[63] X. Zhang, X. Guan, I. Hwang, and K. Cai, "A hybrid distributed-centralized conflict

resolution approach for multi-aircraft based on cooperative co-evolutionary," Science

China Information Sciences, vol. 56, pp. 1-16, 2013.

[64] C. Sheila and M. Stephane, "An airborne conflict resolution approach using a genetic

algorithm," in AIAA Guidance, Navigation, and Control Conference and Exhibit, ed

Montreal,Canada: American Institute of Aeronautics and Astronautics, 2001.

[65] H. Erzberger, "Automated Conflict Resolution for Air Traffic Control," presented at the

25th International Congress of the Aeronautical Sciences (ICAS), Hamburg, Germany,

2006.

170

[66] S. Easterbrook, "Lecture 18: Verification and Validation," vol. 2016, ed. Department of

Computer Science, University of Toronto:

http://www.cs.toronto.edu/~sme/CSC340F/slides/18-VandV.pdf, 2004.

[67] Wikipedia. (07 May). Formal methods. Available:

https://en.wikipedia.org/wiki/Formal_methods

[68] M. Webster, M. Fisher, N. Cameron, and M. Jump, "Formal Methods for the Certification

of Autonomous Unmanned Aircraft Systems," in Computer Safety, Reliability, and

Security: 30th International Conference,SAFECOMP 2011, Naples, Italy, September 19-

22, 2011. Proceedings, F. Flammini, S. Bologna, and V. Vittorini, Eds., ed Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 228-242.

[69] C. von Essen and D. Giannakopoulou, "Analyzing the next generation airborne collision

avoidance system," in Tools and Algorithms for the Construction and Analysis of Systems,

ed: Springer, 2014, pp. 620-635.

[70] S. Ray, "Overview of Formal Verification," in Scalable Techniques for Formal

Verification, ed Boston, MA: Springer US, 2010, pp. 9-23.

[71] J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt, E. Zawadzki, and A.

Platzer, "A formally verified hybrid system for the next-generation airborne collision

avoidance system," in Tools and Algorithms for the Construction and Analysis of Systems,

ed: Springer, 2015, pp. 21-36.

[72] G. Norman, D. Parker, and X. Zou, "Verification and Control of Partially Observable

Probabilistic Real-Time Systems," in Formal Modeling and Analysis of Timed Systems:

13th International Conference, FORMATS 2015, Madrid, Spain, September 2-4, 2015,

Proceedings, S. Sankaranarayanan and E. Vicario, Eds., ed Cham: Springer International

Publishing, 2015, pp. 240-255.

[73] RTCA, "DO-178B: Software Considerations in Airborne Systems and Equipment

Certification," Inc., Washington, DC, USA, 2011.

[74] R. A. Paielli, H. Erzberger, D. Chiu, and K. R. Heere, "Tactical conflict alerting aid for

air traffic controllers," Journal of Guidance, Control, and Dynamics, vol. 32, pp. 184-

193, 2009.

[75] H. Erzberger, T. A. Lauderdale, and Y.-C. Chu, "Automated conflict resolution, arrival

management, and weather avoidance for air traffic management," Proceedings of the

Institution of Mechanical Engineers, Part G: Journal of aerospace engineering, p.

0954410011417347, 2011.

[76] D. Bushnell, D. Giannakopoulou, P. Mehlitz, R. Paielli, and C. Pasareanu, "Verification

and validation of air traffic systems: Tactical separation assurance," in Proceedings of the

2009 IEEE Aerospace conference, 2009, pp. 1-10.

[77] J. J. Chilenski and S. P. Miller, "Applicability of modified condition/decision coverage

to software testing," Software Engineering Journal, vol. 9, pp. 193-200(7), September

1994.

http://www.cs.toronto.edu/~sme/CSC340F/slides/18-VandV.pdf

171

[78] D. Giannakopoulou, F. Howar, M. Isberner, T. Lauderdale, Rakamaric, Zvonimir, and V.

Raman, "Taming Test Inputs for Separation Assurance," in Proceedings of the 29th

ACM/IEEE International Conference on Automated Software Engineering, New York,

NY, USA, 2014, pp. 373-384.

[79] R. A. Paielli, "Automated Generation of Air Traffic Encounters for Testing Conflict-

Resolution Software," Journal of Aerospace Information Systems, vol. 10, pp. 209-217,

2013.

[80] D. M. Blum, D. Thipphavong, T. L. Rentas, Y. He, X. Wang, and M. E. Pate-Cornell,

"Safety analysis of the advanced airspace concept using Monte Carlo simulation," in

Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2010.

[81] D. Thipphavong, "Accelerated Monte Carlo simulation for safety analysis of the

advanced airspace concept," in Proceedings of the 10th AIAA Aviation Technology,

Integration, and Operations (ATIO) Conference, 2010, p. 5.

[82] H. A. P. Blom and G. J. Bakker, "Safety Evaluation of Advanced Self-Separation Under

Very High En Route Traffic Demand," Journal of Aerospace Information Systems, vol.

12, pp. 413-427, 2015/06/01 2015.

[83] Wikipedia. (07 May). Undecidable problem. Available:

https://en.wikipedia.org/wiki/Undecidable_problem

[84] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, "A comprehensive survey of trends in

oracles for software testing," University of Sheffield, Department of Computer Science,

Tech. Rep. CS-13-01, 2013.

[85] M. Harman and B. F. Jones, "Search-based software engineering," Information and

software Technology, vol. 43, pp. 833-839, 2001.

[86] M. Harman, "The current state and future of search based software engineering," in 2007

Future of Software Engineering, 2007, pp. 342-357.

[87] R. D. Nardi, "The QRSim Quadrotor Simulator," Department of Computer Science,

University College London, RN/13/08, Gower Street, London UK2013.

[88] C. M. Macal and M. J. North, "Tutorial on agent-based modelling and simulation,"

Journal of Simulation, vol. 4, pp. 151-162, 2010.

[89] G. Sapa, S. Goutam, M. Vikram, P. Kee, M. Larry, L. Todd, D. Michael, R. Mohamad,

and D. Richard, "Build 8 of the Airspace Concept Evaluation System," presented at the

AIAA Modeling and Simulation Technologies Conference, Portland, Oregon. , 2011.

[90] K. Bilimoria, B. Sridhar, G. Chatterji, K. Sheth, and S. Grabbe, "FACET: FUTURE ATM

CONCEPTS EVALUATION TOOL," Air Traffic Control Quarterly, vol. 9, 2001.

[91] J. W. Forrester, "The beginning of system dynamics," McKinsey Quarterly, pp. 4-17,

1995.

172

[92] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, "RotorS — A Modular Gazebo MAV

Simulator Framework," in Robot Operating System (ROS), ed: Springer, 2016, pp. 595-

625.

[93] Wikipedia. (07 May). Monte Carlo method. Available:

https://en.wikipedia.org/wiki/Monte_Carlo_method

[94] M. Kochenderfer, J. Chryssanthacopoulos, L. Kaelbling, and T. Lozano-Perez, "Model-

Based Optimization of Airborne Collision Avoidance Logic," Massachusetts Institute of

Technology, Lincoln Laboratory, Project Report ATC-360, 2010.

[95] M. J. Kochenderfer, M. W. M. Edwards, L. P. Espindle, J. K. Kuchar, and J. D. Griffith,

"Airspace encounter models for estimating collision risk," Journal of Guidance, Control,

and Dynamics, vol. 33, pp. 487-499, 2010.

[96] M. W. M. Edwards, M. J. Kochenderfer, J. K. Kuchar, and L. P. Espindle, "Encounter

Models for Unconventional Aircraft," Massachusetts Institute of Technology, Lincoln

Laboratory, Project Report ATC-348, 2009.

[97] S. Juneja and P. Shahabuddin, "Chapter 11 Rare-Event Simulation Techniques: An

Introduction and Recent Advances," in Handbooks in Operations Research and

Management Science. vol. Volume 13, G. H. Shane and L. N. Barry, Eds., ed: Elsevier,

2006, pp. 291-350.

[98] K. Sundararajan. (09 July). Design of Experiments — A Primer. Available:

https://en.wikipedia.org/wiki/%C3%9Cberlingen_mid-air_collision

[99] D. R. Kuhn and M. J. Reilly, "An investigation of the applicability of design of

experiments to software testing," in Proceeding of the 27th Annual NASA Goddard/IEEE

Software Engineering Workshop, 2002, pp. 91-95.

[100] L. Lazić and D. Velašević, "Applying simulation and design of experiments to the

embedded software testing process," Software testing, Verification and reliability, vol.

14, pp. 257-282, 2004.

[101] C. Blum and A. Roli, "Metaheuristics in combinatorial optimization: Overview and

conceptual comparison," ACM Comput. Surv., vol. 35, pp. 268-308, 2003.

[102] A. C. Schultz, J. J. Grefenstette, and K. A. D. Jong, "Test and evaluation by genetic

algorithms," IEEE Expert, vol. 8, pp. 9-14, 1993.

[103] Wikipedia. (07 May). Evolutionary algorithm. Available:

https://en.wikipedia.org/wiki/Evolutionary_algorithm

[104] S. Luke, Essentials of Metaheuristics: Lulu, second edition, available at

http://cs.gmu.edu/∼sean/book/metaheuristics/, 2013.

[105] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, "A Fast Elitist Non-dominated Sorting

Genetic Algorithm for Multi-objective Optimization: NSGA-II," in Parallel Problem

Solving from Nature PPSN VI: 6th International Conference Paris, France, September

18–20, 2000 Proceedings, M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J.

http://cs.gmu.edu/∼sean/book/metaheuristics/

173

Merelo, and H.-P. Schwefel, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg,

2000, pp. 849-858.

[106] E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: Improving the strength Pareto

evolutionary algorithm," in Eurogen, 2001, pp. 95-100.

[107] G. E. P. Box, "Science and Statistics," Journal of the American Statistical Association,

vol. 71, pp. 791-799, 1976/12/01 1976.

[108] R. G. Sargent, "Verification and validation of simulation models," Journal of Simulation,

vol. 7, pp. 12-24, 2013.

[109] Wikipedia. (11 April). Verification and validation of computer simulation models.

Available:

https://en.wikipedia.org/wiki/Verification_and_validation_of_computer_simulation_mo

dels

[110] J. S. Carson, "Model verification and validation," in Proceedings of the Winter Simulation

Conference, 2002, pp. 52-58.

[111] O. Buhler and J. Wegener, "Automatic testing of an autonomous parking system using

evolutionary computation," SAE SP, pp. 115-122, 2004.

[112] J. Wegener and O. Bühler, "Evaluation of Different Fitness Functions for the

Evolutionary Testing of an Autonomous Parking System," in Genetic and Evolutionary

Computation – GECCO 2004: Genetic and Evolutionary Computation Conference,

Seattle, WA, USA, June 26-30, 2004. Proceedings, Part II, K. Deb, Ed., ed Berlin,

Heidelberg: Springer Berlin Heidelberg, 2004, pp. 1400-1412.

[113] S. Alam, C. Lokan, and H. Abbass, "What can make an airspace unsafe? characterizing

collision risk using multi-objective optimization," in Proceedings of the 2012 IEEE

Congress on Evolutionary Computation (CEC), 2012, pp. 1-8.

[114] S. Alam, C. Lokan, G. Aldis, S. Barry, R. Butcher, and H. Abbass, "Systemic

identification of airspace collision risk tipping points using an evolutionary multi-

objective scenario-based methodology," Transportation Research Part C: Emerging

Technologies, vol. 35, pp. 57 - 84, 2013.

[115] K. Clegg and R. Alexander, "The discovery and quantification of risk in high dimensional

search spaces," presented at the Proceeding of the fifteenth annual conference companion

on Genetic and evolutionary computation conference companion, 2013.

[116] S. Srikanthakumar, C. Liu, and W.-H. Chen, "Optimization-Based Safety Analysis of

Obstacle Avoidance Systems for Unmanned Aerial Vehicles," Journal of Intelligent &

Robotic Systems, vol. 65, pp. 219-231, 2012.

[117] S. Thedchanamoorthy, "Optimisation-based verification process of obstacle avoidance

systems for unmanned vehicles," PhD Theses (Aeronautical and Automotive Engineering)

Department of Aeronautical and Automotive Engineering, Loughborough University,

2014.

174

[118] S. Srikanthakumar and W.-H. Chen, "Worst-case analysis of moving obstacle avoidance

systems for unmanned vehicles," Robotica, vol. 33, pp. 807-827, 5 2015.

[119] FAA, "JO 7110.65U, Air Traffic Control, Chapter 1: General.," U. S. D. o. T. Federal

Aviation Administration, Washington, DC, US, Ed., ed, 2012

[120] S. Luke. (09 Feb). Class KozaFitness. Available:

http://cs.gmu.edu/~eclab/projects/ecj/docs/classdocs/ec/gp/koza/KozaFitness.html

[121] L. E. Dubins, "On curves of minimal length with a constraint on average curvature, and

with prescribed initial and terminal positions and tangents," American Journal of

mathematics, pp. 497-516, 1957.

[122] Wikipedia. (16 July). Free flight (air traffic control). Available:

https://en.wikipedia.org/wiki/Free_flight_(air_traffic_control)

[123] Stuart Russell and P. Norvig, Artificial Intelligence: A Modern Approach: Prentice Hall

Press, 2009.

[124] N. Privault, "Discrete-Time Markov Chains," in Understanding Markov Chains, ed:

Springer, 2013, pp. 77-94.

[125] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, "Lipschitzian optimization without the

Lipschitz constant," Journal of Optimization Theory and Applications, vol. 79, pp. 157-

181, 1993.

[126] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control and Artificial Intelligence: MIT Press, 1992.

[127] L. D. Chambers, The Practical Handbook of Genetic Algorithms: Applications, Second

Edition: CRC Press, Inc., 2000.

[128] M. Andersson, S. Bandaru, and A. H. C. Ng, "Tuning of Multiple Parameter Sets in

Evolutionary Algorithms," presented at the Proceedings of the Genetic and Evolutionary

Computation Conference 2016, Denver, Colorado, USA, 2016.

[129] X.-S. Yang, S. Deb, M. Loomes, and M. Karamanoglu, "A framework for self-tuning

optimization algorithm," Neural Computing and Applications, vol. 23, pp. 2051-2057,

2013.

[130] D. E. Finkel, "DIRECT optimization algorithm user guide," Center for Research in

Scientific Computation, North Carolina State University, vol. 2, 2003.

[131] S. H. Stroeve, H. A. P. Blom, and G. J. Bakker, "Contrasting safety assessments of a

runway incursion scenario: Event sequence analysis versus multi-agent dynamic risk

modelling," Reliability Engineering & System Safety, vol. 109, pp. 133-149, 2013.

[132] R. Carlson, H. Do, and A. Denton, "A clustering approach to improving test case

prioritization: An industrial case study," in 27th IEEE International Conference on

Software Maintenance (ICSM), 2011, pp. 382-391.

http://cs.gmu.edu/~eclab/projects/ecj/docs/classdocs/ec/gp/koza/KozaFitness.html

175

[133] P. Fiorini and Z. Shiller, "Motion planning in dynamic environments using the relative

velocity paradigm," in Proceedings of the 1993 IEEE International Conference on

Robotics and Automation, 1993, pp. 560-565 vol.1.

[134] W. Roland, E. Matthew, and F. Caroline, "Establishing a Risk-Based Separation Standard

for Unmanned Aircraft Self Separation," in 11th AIAA Aviation Technology, Integration,

and Operations (ATIO) Conference, ed: American Institute of Aeronautics and

Astronautics, 2011.

[135] FAA. (8 July). Overview of Small UAS Notice of Proposed Rulemaking. Available:

http://www.faa.gov/regulations_policies/rulemaking/media/021515_sUAS_Summary.p

df

http://www.faa.gov/regulations_policies/rulemaking/media/021515_sUAS_Summary.pdf
http://www.faa.gov/regulations_policies/rulemaking/media/021515_sUAS_Summary.pdf

	Abstract
	List of Contents
	List of Figures
	List of Tables
	Acknowledgement
	Declaration
	Chapter 1 Introduction
	1.1 Sense-and-Avoid
	1.2 Validation of SAA Algorithms
	1.3 Search-Based Software Testing
	1.4 Research Hypothesis and Propositions
	1.5 Research Methods
	1.6 Thesis Structure

	Chapter 2 Survey of Relevant Fields
	2.1 Sense-and-Avoid
	2.1.1 Surveillance Technologies
	A. Cameras
	B. Radar
	C. TCAS Transponders
	D. ADS-B

	2.1.2 Threat Evaluation and Detection
	A. Nominal Projection
	B. Probabilistic Projection
	C. Worst-Case Projection
	D. Intent Sharing

	2.1.3 Decision-Making and Avoidance
	A. Collision Avoidance
	a. Velocity Obstacle Approaches
	b. TCAS
	c. ACAS X

	B. Conflict Resolution
	a. Velocity Obstacle Approaches
	b. Optimization-Based Approaches
	c. Predefined Strategies Searching Approaches

	2.1.4 Remarks on SAA

	2.2 SAA Verification and Validation
	2.2.1 Formal Methods
	A. Model Checking
	B. Theorem Proving
	C. Remarks on Formal Methods

	2.2.2 Software Testing
	2.2.3 Simulation Analyses
	2.2.4 Flight Tests
	2.2.5 Remarks on V&V of SAA Algorithms

	2.3 Search-Based Software Testing
	2.4 SAA Simulation Techniques
	2.4.1 Agent-Based Simulations
	2.4.2 Physics-Engine-Based Simulations
	2.4.3 Remarks on Simulation Techniques

	2.5 Techniques for Guiding Simulations
	2.5.1 Monte-Carlo Methods
	2.5.2 Design of Experiments
	2.5.3 Meta-heuristic Search
	2.5.4 Remarks on Techniques for Guiding Simulations

	2.6 Evolutionary Search
	2.7 Conclusions

	Chapter 3 SAA Validation: Requirements and the Proposed Approach
	3.1 Requirements Analysis
	A. Ideal Case
	B. Using Simulations

	3.2 Proposed Method
	3.2.1 Method Overview
	3.2.2 Comparison with Existing Similar Approaches

	Chapter 4 Preliminary Evaluation with a Simple SAA Algorithm
	4.1 Introduction
	4.2 SAA Algorithm under Test: SVO
	4.3 Implementation of the Proposed Approach
	A. Agent-Based Simulation
	B. Evolutionary Search

	4.4 Experiments
	4.4.1 Experiment 1: Perfect Sensing Ability
	A. Experiment 1.1
	B. Experiment 1.2
	C. Experiment 1.3

	4.4.2 Experiment 2: Sensor Value Uncertainty
	A. Experiment 2.1
	B. Experiment 2.2
	C. Experiment 2.3

	4.4.3 Discussion

	4.5 Summary and Conclusions

	Chapter 5 Open-source Supporting Tool
	5.1 Overview of the Supporting Tool
	5.2 Scenario Encoding and Generation
	5.3 Agent-Based Simulation
	Agents
	Environment
	Interactions

	5.4 Evolutionary Search
	5.5 Summary and Conclusions

	Chapter 6 Application to a Collision Avoidance Algorithm
	6.1 Introduction
	6.2 SAA Algorithm under Test: ACAS XU
	6.2.1 Background
	6.2.2 A Simple Example
	6.2.3 ACAS XU
	A. Off-line part
	B. On-line part

	6.3 Problem Analysis
	6.4 Solution: Evolutionary Search
	6.5 Experiments
	6.5.1 Experiment 1
	A. Experiment 1.1: Random Search
	a. Setup
	b. Results

	B. Experiment 1.2: Evolutionary Search
	a. Setup
	b. Results

	C. Experiment 1.3: Deterministic Global Search
	a. Setup
	b. Results

	6.5.2 Experiment 2
	A. Experiment 2.1: Evolutionary Search
	a. Setup
	b. Results

	B. Experiment 2.2: Deterministic Global Search
	a. Setup
	b. Results

	6.5.3 Discussion

	6.6 Summary and Conclusions

	Chapter 7 Application to a Conflict Resolution Algorithm
	7.1 Introduction
	7.2 SAA Algorithm under Test: ORCA-3D
	7.3 Problem Analysis
	7.4 Solution: Evolutionary Multi-Objective Search
	7.5 Experiments
	7.5.1 Experiment 1: Random Search
	A. Setup
	B. Results

	7.5.2 Experiment 2: Evolutionary Multi-Objective Search
	A. Setup
	a. Encoding Encounters with Genomes
	b. Objectives
	c. Selection of the Fittest Individuals
	d. Genetic Operators
	e. Formation of the Next Generation
	f. NSGA-II Parameters

	B. Results

	7.5.3 Discussion

	7.6 Summary and Conclusions

	Chapter 8 Conclusions
	8.1 Evaluation of the Research Hypothesis
	8.2 Summary of Thesis Contributions
	8.3 Summary of Thesis Limitations
	8.4 Opportunities for Further Research
	8.5 Overall Conclusions

	Appendix 1: Source Code Links
	Appendix 2: Glossary
	References

