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Abstract

This thesis investigates approaches to virtual room acoustic modelling and auralisation
in order to a develop hybrid modelling solution that is capable of efficient and accurate
simulation of enclosed sound propagation. Emphasis is placed on the advantages and
disadvantages of state of the art numerical and geometric acoustic modelling methods.
Numerical methods have been shown to preserve important sound wave characteristics
such as diffraction and room modes, and are considered more accurate for low fre-
quency acoustic modelling than geometric techniques which fail to preserve such wave
effects. However, the implementation of numerical acoustic models inherently requires
large computational effort compared to more efficient geometric techniques such as
ray-tracing. This is particularly problematic for simulations of large-scale 3D acoustic
environments and for high spatio-temporal sampling rates. A novel acoustic modelling
solution is presented, which seeks to circumvent the disadvantageous computational
requirements of 3D numerical models while producing a suitable approximation to low
frequency sound behaviour. This modelling technique incorporates multiple planar
cross-sectional 2D Finite Difference schemes that are utilised in combination to syn-
thesise low frequency wave propagation throughout the target acoustic field. In this
way a subset of prominent low frequency sound wave characteristics may be emulated
with low computational cost compared to 3D numerical schemes. These low-frequency
results can then be combined with the high-frequency output from efficient geometric
simulations to create a hybrid model providing accurate broadband results at a rela-
tively low computational cost. Investigation of room impulse response rendering for a
series of theoretic and real spaces demonstrates advantages of this new hybrid acoustic
modelling technique over purely ray-based methods in terms of low frequency accuracy,
and over 3D numerical methods in terms of computational efficiency. Conclusions are
drawn from objective measurements obtained from simulation results of the virtual
models produced. Results demonstrate the applicability of the novel hybrid approach
to the enhancement of purely ray-based room impulse response rendering by which a
more realistic representation of low frequency wave phenomena may be simulated in an
efficient manner, improving the theoretical accuracy of objective and audible results.
This study contributes towards research and design of high-speed, interactive virtual

acoustic simulations appropriate for industrial and creative virtual reality applications.
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