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Abstract 

Finance Theory is built mainly based on the assumption that investors are risk neutral. We 

run two finance experiments to test American option pricing theory. Dynamic programming 

and optimal stopping theory are used for the construction of the models. Simulation studies 

are conducted for the experiments. In the first experiment, we test a disinvestment case of 

real options theory in discrete time. Our results show that risk aversion explains better the 

decisions of the participants than risk neutrality as few of the participants appeared to be 

risk neutral. Furthermore, risk aversion explains better the behaviour of the subjects than 

myopic behaviour. In the second experiment, we examine the timing of the exercising of an 

American call option contract in continuous time. We estimate the risk aversion parameters 

of the subjects from the main experiment, and we elicit their risk aversion parameters by 

running another small experiment with allocation questions. Based on these parameters we 

find the estimated and the elicited risk averse optimal trigger respectively. From our analysis 

we show that the estimated risk averse optimal trigger explains better the actual stopping 

decisions of the subjects, while the risk neutral optimal trigger has the next highest 

explanatory power and the elicited risk optimal trigger the lowest. The third project tests the 

stochastic assumptions underlying an analysis by examining the statistical properties of the 

estimated parameters and comparing them to the actual values. This study shows that the 

stochastic specification underlying any analysis matters for the interpretation of its results. 

In the last project, we check the interdependency relationships among the five major market 

sectors of Greece, Italy and Portugal. By using dependency tests, such as Johansen 

cointegration and Granger causality tests, we find that the Greek sectors provide some 

diversification benefits for sector-level investments, while the opposite is true for the Italian 

sectors. Only in the case of Portugal do the results suggest non-existence of interdependency 

relationships among the sectors before the financial crisis and their existence after it. 

Moreover, by using the variance decomposition and the time-varying volatility 

methodologies we conclude that for all the three countries the majority of the sectors are 

exogenous and their volatility is highly increased after the financial crisis, particularly in the 

case of the Financials sector. 
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“Είμαστε αυτό που πράττουμε επανειλημμένα. ΄Ετσι, η τελειότητα δεν είναι πράξη αλλά 

συνήθεια.”  

Αριστοτέλης 

 

 

“We are what we repeatedly do. Excellence then is not an act but a habit. “ 

Aristotle 
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Chapter 1 

Introduction 

Finance theory is built based on the assumption that investors are rational in a very strong 

sense, and, often, that they are risk-neutral. However, empirical and experimental studies 

have proved that economic behaviour is much more complex. Even if all the investors try to 

maximise their utility, some of them deviate from the optimal choice due a number of 

reasons, such as irrationality, inefficiency or liquidity constraints. Moreover, some of these 

studies have proved that preference-based explanations play a key role in financial markets 

and explain better the behaviour of people than risk neutrality. More specifically, Levy et al 

(2000) argue that one of the explanations that dominates in markets is risk aversion. 

Therefore, it is rational to check if this theory can explain better than risk neutrality the actual 

behaviour of people in the context of option pricing theory. As option contracts are some of 

the most used derivative assets in financial markets, it is crucial to check the reliability of 

option pricing theory in real world. In the second chapter and the third chapter of the thesis, 

we test experimentally the American option pricing theory and more specifically the optimal 

exercising time of this type of contract. We also test risk aversion as a reason that causes 

people to deviate from the optimal decision.  

The disinvestment decision is of crucial importance in many contexts: if funds are tied up for 

too long in a poorly-performing project, then opportunities for re-investment may be missed. 

Optimal disinvestment theory is a component of real options theory; in some senses it is 

simply the converse of optimal investment theory, but is relatively ignored by 
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experimentalists. Two papers that do consider it conclude that decision-makers stay in 

projects longer than that prescribed by the optimal behaviour of a risk-neutral agent. This 

departure is ‘explained’ through risk-aversion, but without a formal hypothesis under test. 

In the second chapter, we report on a similar experiment that we run, but we explain the 

behaviour of the subjects with the estimation of the level of risk-aversion. We also explore 

an alternative hypothesis to explain behaviour – that subjects are myopic. Our results show 

that few subjects appear to be risk-neutral, many seem to be risk-averse but few are myopic. 

In the third chapter, we test one fundamental financial theory in continuous time, that of the 

optimal time of exercising an American call option contract. We notice that few experimental 

papers test continuous time theories and that there is only one other paper that tests 

experimentally this theory but that paper focuses on the learning process of the subjects. Its 

authors suspect that risk aversion is the reason that the subjects deviate from the risk neutral 

optimal trigger but they do not test it formally. Through a two-stage experiment that we run, 

we check if risk neutrality or risk aversion explains better the behaviour of the subjects. More 

specifically, we test if the estimated risk averse optimal trigger, which is extracted by the first 

stage (main experiment), or the elicited risk averse optimal trigger, which is elicited by some 

allocation questions (second stage of the experiment), explains better than the risk neutral 

optimal trigger the actual decision of the subjects. In our analysis, we check also the 

explanatory power of each of the two risk averse optimal triggers in conjunction with some 

demographic variables on the actual behaviour of the subjects. Our conclusions are that the 

estimated risk averse optimal trigger does better than the elicited risk averse optimal trigger 

generally, while the risk neutral optimal trigger explains the actual choices of the subjects 

better than the elicited risk averse one but worse than the estimated risk averse optimal 

trigger. 
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The fourth chapter would appear to take us off at a tangent, and in some senses this is true, 

but it highlights the importance and significance of the stochastic assumptions underlying 

any empirical analysis. The context is not either of the contexts of the chapters 2 and 3, but 

the message that emerges from chapter 4 is an important one: that the stochastic 

specification underlying any statistical analysis matters for the interpretation of its results. 

Usually the stochastic assumptions in any data analysis are implicit, rather than explicitly, 

stated. For example, in chapter 2 it was implicitly assumed that the observations were 

independent observations of a binary random variable, while in chapter 3 it was assumed 

that the divergence between the actual triggers and the theoretically optimal ones could be 

described by an zero-mean homoscedastic normally distributed random variable (this is the 

usual assumption lurking behind any regression analysis). Chapter 4 considers a different 

context: the statistical properties of stated allocations (in an allocation problem) and their 

relation to the optimal allocation. It is closest to the analysis contained in chapter 3. Our 

results show that whether the stochastic specification matters depend on what one is 

interested it. Chapter 4 suggests that before doing any statistical analysis one should carry 

out extensive simulations. This is an important message - though perhaps not one that we 

ourselves have listened to in the other chapters of the thesis. Still one cannot do everything 

in a single thesis! 

The fifth chapter investigates the interdependency links among the stock market sectors of 

Greece, Italy and Portugal before and after the  global financial crisis of 2008. The Johansen 

cointegration and the Granger causality tests show that Greek market sectors provide good 

diversification benefits as the interdependency relationships are very limited due to the lack 

of cointegration and strong causality relationships among them in both pre-crisis and post-

crisis periods. On the contrary, the same tests indicate that the diversification benefits from 

the Italian sectors are limited when it comes to sector-level investments because of the 

strong appearance of long-run and short-run relationships among the sectors for both the 
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pre-crisis and post-crisis periods. Portuguese sectors are not cointegrated before the 

financial crisis with just very few causality relationships, but they are found to be 

cointegrated with more causality relationships after it. The variance decomposition results 

indicate that most of the sectors are exogenous both before and after the financial crisis with 

the Financials sector being the most endogenous out of all across the three countries. Finally, 

through our investigation it is found that the time-varying volatilities of the sectors are 

shown to have substantially increased after the financial crisis.  
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Chapter 2 

Do People Disinvest Optimally?1 

 

2.1 Introduction  

This chapter reports on an experimental study of the disinvestment problem. In this problem, 

the decision-maker (DM) holds an asset which yields stochastic cash flows until its disposal. 

There is a deadline for the disposal of the asset. The decision problem consists of deciding 

when to dispose of the asset; the optimal disposal point is dependent on both the time 

period and the cash flow at that time2. 

Clearly this problem is a special case of the class of dynamic decision problems, and, more 

particularly, of the class of real options problems. It is in some ways the converse of the 

optimal investment problem, but we single out its investigation because of its importance in 

many fields of economics, affecting the performance of many firms and individuals. 

Moreover, although theorists may regard it as the converse of an investment problem, it 

remains to be seen whether actual decision-makers regard it as such. 

Our inspiration for this study are the papers by Sandri et al (2010) and by Musshoff et al 

(2013), who experimentally explore a disinvestment problem. Their main experimental 

finding is implicit in the title of their articles, and is that many subjects hold on to the asset 

for longer than that prescribed by the theory appropriate for a risk-neutral DM. They 

                                                           
1 This chapter is based on join work with John Hey. 
2 And perhaps other things ‒ depending upon the objective function ‒ as we shall show later. 
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conjecture from this that risk-aversion may have a role to play. The way that they model this 

is not to assume that the objective function of the DM is a concave function of the payoff(s), 

but by using “risk-adjusted discount rates”. Their analysis concludes with their Proposition 

P3: “The larger an individual’s risk aversion, the earlier the disinvestment occurs” in the first 

paper and the similar Hypothesis H4: “Risk-averse farmers disinvest earlier” in the second. 

These propositions seem to go against the conclusions of the theoretical paper by Henderson 

and Hobson (2013), in which they report that risk-aversion may delay the disinvestment 

decision: it depends upon the objective function. 

Sandri et al and Musshoff et al elicited risk-attitudes independently of the disinvestment 

problem, using a Holt-Laury (2002) price list, and used these elicited risk-attitudes to explain 

observed behaviour. In contrast, in this paper, we fit to the data two models of risk-averse 

DMs, and find the risk-attitude and the model which best explains the behaviour of our 

subjects. Thus, our risk indices are not elicited independently of the disinvestment problem, 

but estimated from the disinvestment behaviour. The reason for this is that it would not be 

clear what one could infer from the results if the independent elicitation differed from that 

implied by behaviour – other than that the elicitation method influenced the elicitation 

result. Furthermore, it is proved3 that different elicitation methods of the risk aversion 

parameter give different results. Therefore, this study shows that the level of risk aversion 

of a person is different from decision task to decision task. Hence, it seems that the best way 

to find the risk aversion coefficient as an explanatory variable of a person’s decisions in a 

financial risky problem is based on the person’s decisions in this specific decision task. 

We also explore an alternative hypothesis in an attempt to explain behaviour. This 

hypothesis embodies the idea that DMs are unable to solve the backward induction solution 

                                                           
3 For example, in the paper of Loomes and Pogrebna (2014). 
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to the dynamic problem, and instead use a shorter horizon, which they roll forward period-

by-period as the problem unfolds. We call this the Rolling Strategy; we give details later. 

The chapter is structured as follows. In the next section we describe the decision problem 

and find its optimal solution for two different objective functions (both embodying risk-

aversion); we also find its solution for a DM who follows the Rolling Strategy. In section 3 we 

describe the experimental implementation, and in section 4 we present our findings. Section 

5 concludes. 

 

2.2 Theory 

We start from the set-up of Sandri et al. We operate in a discrete world. The DM owns some 

asset which must be disposed of by some final period, denoted by T. Until the asset is 

disposed of, the DM receives cash flows every period. These cash flows follow a binomial 

random walk: if we denote the cash flow in period t by xt, then the cash flow in period t+1 is 

either xt+h or xt-h with respective probabilities p and 1-p. The parameters h and p are 

constant. The theory usually embodies a discount rate applied to future incomes, but, 

because of the impossibility of having real discounting in an experiment lasting around one 

hour, we introduce interest on the disposal value of the asset, L, from the time when disposal 

occurs until T. So if the asset is disposed of in period t the value of the disposal is LrT-t where 

r is the rate of return (one plus the rate of interest). Interest is not received on the cash flows. 

After disposal takes place no further cash flows are received. The DM receives the value of 

the asset plus interest and the sum of the cash flows experienced until disposal. We have the 

usual trade-off: the later disposal takes place the more cash flows are received but the lower 

the disposal value of the asset.  
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The solution is found in the normal way, using backward induction. We start with a risk-

neutral DM and later generalise to a risk-averse DM. Let us denote by Vt(xt)  the expected 

payoff to the DM as viewed from period t when the cash flow in that period is xt. In the final 

period T the DM must dispose of the asset if he or she has not done so earlier. It follows that 

VT(xT) = L + xT                                 (1) 

Let us proceed to the general backward induction on V. In any period t, the DM disposes of 

the asset if the payoff from so doing exceed the expected payoff from continuing to hold the 

asset. So we have 

Vt(xt) = max[xt + LrT-t, pVt+1(xt+h)+(1-p)Vt+1(xt-h)]                                             (2) 

the first term in this expression being the payoff from disposing of it now and the second 

term the expected payoff from continuing to hold the asset. The decision in t is implicit in 

this expression: if the first term is the maximum it is best to dispose of it now; if the second 

term is the maximum it is best to continue holding it. Notice that previous cash flows do not 

enter into this equation as they cancel out on both sides. This provides the optimal strategy 

for a risk-neutral DM. 

Now we turn to a non-risk-neutral DM, that is, one with a non-linear function u(.) over 

payoffs. In many dynamic decision problems, with the monetary payoff in period t denoted 

by yt, the objective function is normally assumed to be the maximisation of the expectation 

of the expression 

u(y1) + u(y2) +…+ u(yT)                                                                                       (3) 

Taking this to be the objective function, which we are going to call Objective Function 1 (OF1), 

equations (1) and (2) above become 

VT(xT) = u(L + xT)                                                                                              (1’) 

and 
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Vt(xt) = max[u(xt + LrT-t), pVt+1(xt+h)+(1-p)Vt+1(xt-h)]                                      (2’) 

As before the sum of the utilities of previous cash flows cancel out from both sides of (2’).  

This provides the optimal strategy for a DM with OF1, which is given by equation (3). 

Obviously the solution depends upon the form of the utility function u(.). In what follows we 

consider both the Constant Relative Risk Aversion (CRRA) form and the Constant Absolute 

Risk Aversion (CARA) form. 

However, in the context of an experiment OF1 may seem a bit odd. The subject walks out of 

the laboratory with some money; presumably therefore it is the expected value of the utility 

of that money which concerns him or her. If that is so, then the objective is the maximisation 

of the expectation of the expression  

u(y1 + y2 + … + yT)                                                                             (4) 

This we call Objective Function 2 (OF2) – the maximisation of the expected value of the utility 

of the sum of the payoffs – in contrast to OF1 – the maximisation of the expected value of 

the sum of the utilities of the payoffs. 

It may appear that OF2 is more reasonable from a behavioural point of view – though it is 

only by looking at behaviour can we be sure; in the analysis section we shall see which fits 

behaviour best. For the moment we note a complication with computing the optimal 

strategy. With OF2 past cash flows no longer cancel out of the two sides of equation (2’). This 

means that the decision in any period with any given cash flow in that period depends also 

on the accumulated cash flows to that point. Equation (2’) is no longer valid. We present the 

solution in Appendix A. 

Finally, we describe in more detail the Rolling Strategy. This embodies the notion that the 

DM is myopic and looks ahead every period only S periods; the DM has a short horizon that 

is rolled forward every period. If S=T-1 then the DM behaves as above, but if S<T-1 then until 



24 

 

period T-S+1 the DM acts as if he or she thinks that he or she has to dispose of the asset in 

period t+S. So if S=3 and T=6, then in period 1 the DM acts as if he or she thinks that he or 

she has to dispose of the asset in period 4, in period 2 the DM acts as if he or she thinks that 

he or she has to dispose of the asset in period 5, while in periods 3, 4, 5 and 6 the DM 

correctly acts as if he or she thinks that he or she has to dispose of the asset in period 6. 

Obviously it is not optimal, but it is not clear in general how much the DM loses by using it.  

We assume that a DM who uses the Rolling Strategy is risk-neutral4. The implied decision 

rules can be immediately found from those above, though some new notation is required. 

Let us denote by D(t,xt,T) the optimal decision (either 1 for continue or 0 for disposal) of a 

risk-neutral DM (implied by equation (2)) in time period t with cash flow xt when the true 

horizon is T, and denote by d(t,xt,S,T) the decisions of someone with a rolling horizon of S in 

the same position but with a true horizon of T.  

We have that: 

-if t ≥ T-S then d(t,xt,S,T) = D(t,xt,T) because the true horizon is within the correct  

horizon 

-if t < T-S then d(t,xt,S,T) = D(t,xt,t+S) because the DM is optimising under the (wrong) 

assumption that he/she has to liquidate in period t+S. 

Full details are given in Appendix A.  

 

                                                           
4 Alternatively we could have assumed risk-aversion, so that all the models considered are nested 
within this model.  
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2.3 Experimental implementation 

The experiment was carried out in the EXEC laboratory. Subjects started by reading the 

written Instructions5; they could ask questions for clarification. The experiment was 

computerised, with the code written in Visual Studio. The core of the experiment was a 

binomial tree – a screen shot is in Figure 1. Subjects were presented with a series of 15 

different problems (chosen after extensive simulation by us6). All problems had a final 

disposal period of T=15. At the start of each problem they were told: the initial cash flow, x1; 

the disposal value, L; the rate of interest on the disposal value, r; the jump size, h; and the 

probability of an upward jump, p. They then had to decide each period (until they disposed 

of the asset) whether to dispose of it or not. If they chose not to dispose of it, Nature moved 

randomly (according to the specified probability) and the appropriate part of the tree 

eliminated. Figure 1 shows the situation in a problem with initial cash flow 20, liquidation 

value 280, interest rate 5%, jump size 5 and probability of jumping up 0.9, where the DM has 

decided not to dispose of the asset in the first period, Nature has moved Up and it is now the 

time for the DM to decide what to do in the second period. In order to encourage the subjects 

to think about the problem the ‘Continue’ and ‘Stop’ buttons did not appear until 20 seconds 

had elapsed, but they were restricted to a total time of 40 seconds in any one period7. The 

‘Confirm’ button did not appear until they had clicked on either ‘Continue’ or ‘Stop’. 

In the tree, each vertically-aligned pair of small boxes represents a node that the DM might 

reach (depending on their decisions and Nature’s moves) – with the top number indicating 

the cash flow at that node and the bottom number indicating the probability of getting to 

                                                           
5 The Instructions are available in Appendix B. 
6 The problems were chosen in such a way that different degrees of risk aversion, or different rolling 
horizons, would imply different optimal strategies – so that we could distinguish between subjects. 
See the simulation code. 
7 If they had not taken a decision by the time that these 40 seconds had elapsed, the software 
assumed that the subject wished not to dispose of the asset. 

http://www.york.ac.uk/economics/research/centres/experimental-economics/laboratory/
https://www.york.ac.uk/economics/research/centres/experimental-economics/research/unpublishedpapers1/#tab-3
https://www.york.ac.uk/economics/research/centres/experimental-economics/research/unpublishedpapers1/#tab-3
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that node (if the DM had not disposed of the asset earlier). So, in the example in Figure 1, 

where the DM is in period 2, the possible nodes reachable in period 3 imply cash flows of 30, 

if Nature moves Up, or 20, if Nature moves Down (with respective probabilities 0.9 and 0.1). 

At the left-hand side of the screen (not shown in Figure 1) was a summary of the Instructions, 

and, as will be seen from the figure, information is provided about the move that Nature has 

just made, the cash flow of that period, and the disposal value of the asset if disposed of in 

that period (the disposal value plus interest to the end of the problem). Written Instructions 

were also provided, with a number of examples. Subjects read the Instructions before the 

experiment started. Any questions were answered by the experimenters. 

Subjects were paid the sum of the show up fee (£2.50) and their total payoff in one of the 15 

problems chosen randomly, using the exchange rate of 100 tokens equalling £1. There was 

a total of 74 subjects; the average payment was £10.67. 

We note that the 15 problems were chosen after extensive simulations using Matlab 

following a small pilot study. A key requirement for the problem set was that we could infer 

from the data the level of risk-aversion of the subjects, and/or the length of their rolling 

horizon (if they were following the rolling strategy). This meant that we needed problems 

where different levels of risk-aversion, or different lengths of the rolling horizon, implied 

different decisions. We should briefly explore what this means and how we took it into 

account.  

The decisions that we observe are binary decisions: either Stop (coded 0) or Continue (coded 

1). So a strategy is defined by a set of 0’s or 1’s at each of the nodes in the tree. Let us confine 

the discussion to OF18. The nodes in a tree of length T consist of 1 in the first period, 2 in the 

second period, … , t in the t’th period, … , up to T-1 in the (T-1)’th period: a total of (T-1)T/2 

                                                           
8 With OF2 we need to define nodes not just by the period and the vertical positioning in the tree at 
that point but also by the accumulated cash flow at that point. 

https://www.york.ac.uk/economics/research/centres/experimental-economics/research/unpublishedpapers1/#tab-3
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nodes9. At each of these nodes a strategy implies a decision D which is either 0 or 1. If we 

add together these 0’s and 1’s we get a total (call it N) which indicates the number of 

continuation nodes in the tree. We want different values of N for different levels of risk 

aversion (or of the rolling horizon). So we looked for problems where the variance of N over 

a reasonable set of risk aversion levels (or over different horizons) was as large as possible. 

We also wanted problems where a risk-neutral person behaving optimally would expect to 

earn around £10 (the conversion rate between experimental tokens and money was 1 token 

= 1p). To decide on our problem set we carried out pre-experimental simulations. The 

problem set is given in Table 1. 

An alternative experimental task, possibly for future work, would have been to ask subjects 

to specify a strategy – a statement of what they would do at each possible decision node 

that they might reach. Given the number of such decision nodes this would have been time-

consuming and complicated. We could simplify the task of specifying a strategy by asking 

them to impose a threshold in each time period – above which they would liquidate – but 

this would suggest to them the nature of the optimal strategy, and we would be pushing 

them towards the ‘correct’ solution. 

 

2.4 Analysis and results 

The data that we have on each subject and in each problem are the decisions of the subject 

at each node that the subject reached – for each problem, the data are a string of 1’s followed 

by a ‘0’. Because of the nature of the data, we proceed as follows. We would like to know, 

for each of OF1 and OF2, for each utility function (CRRA and CARA), which level of risk-

aversion, and for the Rolling strategy which horizon, best explains the behaviour of each 

                                                           
9 We ignore the final period as the compulsory decision is to dispose of the asset. 

https://www.york.ac.uk/economics/research/centres/experimental-economics/research/unpublishedpapers1/#tab-3
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subject, and how much of that behaviour it explains. Suppose a subject takes a total of N 

decisions throughout the course of the experiment (this number varies from subject to 

subject), then, for each Objective Function, for each utility function (CRRA and CARA), and 

for each level of risk-aversion, and for the Rolling strategy for each horizon, we can calculate 

how many of the decisions of the subject are consistent with that specification. We can then 

calculate the percentage of the decisions taken by the subject that are consistent with that 

specification. Call this pc. It depends in general on the specification. This variable definitely 

is not smooth; if we graph it against, for example, the risk aversion, or against the rolling 

horizon, it is a step function. Finding its maximum (which would give us the best-fitting risk-

aversion or the best-fitting horizon) using Maximum Likelihood techniques would not work 

due to the fact that it is not smoothly concave. But we need to find where it reaches its 

maximum and find its value at the maximum. We show this graphically; Figure 2 illustrates ‒ 

this is for subject 66. On the vertical axis is the variable pc. On the horizontal axis is the rolling 

horizon S for the rolling strategy. The horizontal axis also indicates the level of risk-aversion, 

with risk-aversion decreasing from left to right, going from very risk-averse at the left to risk-

neutrality at the right when x=14. There are five ‘curves’ in the picture, with ‒ indicating OF1 

CRRA and so on. It will be seen that all the five curves finish (at x=14) at the same vertical 

point. This is because when the horizon is the correct horizon (14) and the DM is risk-neutral, 

all five strategies lead to the same decisions. So for this subject, assuming he or she is risk-

neutral, or working with the correct horizon, explains just 70% of the subject’s decisions. It 

will be noticed that all the curves are indeed step-functions: the horizontal line shows that 

for OF2 CARA changing the level of risk-aversion has no effect on decisions; this is an 

implication of the CRRA utility function in the context of OF2. The greatest percentage 

correct is with OF1 CRRA – with 91% correct; the second highest is with OF1 CARA – with 

79% correct. We might ask whether 91% is significantly larger than 79%. This, of course, 

depends upon the number of decisions, which, for this subject, was 43. Carrying out the 
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standard test as to whether one proportion is greater than another shows that 91% is 

significantly greater than 70% at 10% but not at 5%. However the hypothesis that the subject 

is risk-averse explains significantly more than the hypothesis that the subject is risk-neutral. 

The CRRA utility function is u(x)=xr and the best-fitting value of r for this subject is between10 

0.70 and 0.73 – a moderately risk-averse person. 

Table 2 lists the best-fitting specifications and the best-fitting risk-aversion index or best-

fitting rolling horizon subject by subject. For some subjects there are clear unique winners – 

as Table 3 shows. If Risk-Neutrality is the best, then, since all the other specifications have 

risk-neutrality nested within them, we do not list them for the other specifications. So a 

subject whose behaviour is listed in the category OF1 CRRA is strictly risk-averse, and so on. 

We note that OF2 CRRA only appears the best for the risk-neutral subjects; in fact, as a glance 

at Figure 2 will show, the optimal decisions for someone with an OF2 CRRA preference 

functional are not dependent on the level of risk-aversion11, and are therefore the same as 

for a risk-neutral subject.  

It is clear from Table 3 that the Rolling Strategy does not do well – only coming joint winner 

with OF1 CRRA for two subjects. The best-performing specification is OF1 CRRA coming first 

on its own for 38 subjects, and joint first with OF1 CARA 10 times. 

It is of interest to see whether the winning specification is significantly better than the others, 

and, in particular, significantly better than risk-neutrality. Table 4 gives the details of 

standard t-tests of the difference between two proportions. It will be seen that with the 

exception of the 5 risk-neutral subjects, for 43 out of our 74 subjects the winning 

                                                           
10 We only get a range estimate because the pc function is horizontal at its peak – again a consequence 
of the the data that we have. 
11 This is a consequence of the CRRA utility function. 
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specification fits significantly better than risk-neutrality at 1%, for 6 subjects at 5%, and for 1 

subject at 10%. 

 

2.5 Conclusions 

It is clear from these results that Sandri et al and Musshoff et al were right – risk-aversion is 

needed to rationalise the behaviour of the subjects; our Rolling Strategy does not do very 

well. It is also clear from our results that risk-aversion varies considerably across the subjects. 

Taking into account the risk-aversion significantly improves the results – as Table 4 shows. 

Looking at Figure 3 it seems that we can explain much of the behaviour with one or other of 

our specifications for many of our subjects.  

However, Figure 3 also shows that for some subjects we can only rationalise a rather small 

percentage of their decisions (as low as 62% for one subject).  This suggests that there may 

be some other decision rule that these subjects were following. One possibility is that 

subjects thought that Nature may have had a memory (though this was not true). In this case, 

earlier sequences of moves by Nature may have affected their future decisions. Another 

heuristic could be that subjects try to avoid any possible future regret which can occur if they 

continue following the moves of Nature or they decide based on the regret that they have 

already experienced by their past decisions and the released moves by Nature. Also, the 

gambler’s fallacy is a cognitive bias which could possibly explain the subjects’ behaviour as 

people tend to believe in this kind of problems that if an outcome (random event) happens 

many times in a sequence during a period, it will happen less frequently in the future, and 

vice versa. Investigating these cases may be of interest for future work.  After all, backward 

induction is a complicated and computationally complex procedure. It would not be 

surprising if subjects developed simple heuristics for tackling the problem. 
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Tables 

Table 1: The Problem Set 

Number p h L r x1 

1 0.6 1 40 1.25 10 

2 0.1 1 75 1.2 20 

3 0.3 1 40 1.25 20 

4 0.8 1 150 1.15 15 

5 0.5 1 75 1.2 20 

6 0.2 2 80 1.2 20 

7 0.3 2 135 1.15 35 

8 0.9 5 280 1.05 20 

9 0.7 1 80 1.2 5 

10 0.4 2 140 1.15 30 

11 0.8 1 45 1.25 0 

12 0.1 2 40 1.25 25 

13 0.6 1 70 1.2 20 

14 0.3 1 45 1.25 10 

15 0.4 5 260 1.1 5 

 
p: probability of jumping Up 
h: jump size 
L: disposal value 
r: rate of return on disposal 
x1: initial cash flow 
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Table 2: The ‘Winning’ hypotheses subject by subject (Note: ranges are given when the best-fitting value is not unique) 

SUBJE
CT OF1 CRRA OF1 CARA OF2 CRRA OF2 CARA ROLLING RN 

1 0.11-0.41 0.024-0.0445     

2 0.83-1 0-0.001 0.11-1 0-0.018 7-14 Y 

3 0.11-0.5 0.0095-0.0445     

4 0.66 , 0.7      

5    0.0185   

6 0.68-0.69      

7 0.58-0.59      

8 0.11-0.5 0.03-0.0445     

9 0.58      

10    0.029   

11 0.11-0.5 , 0.54-0.58 0.0065 , 0.0075-0.0445     

12 0.68-0.69      

13 0.11-0.5 0.007-0.008 , 0.031-0.0445       

14 0.59      

15    0.0185   

16    0.031 , 0.0355   

17 0.7-0.72      

18 0.58-0.59 , 0.62-0.63 , 0.69      

19 0.67-0.68      

20    0.0185   

21 0.81-0.82    5  

22 0.67      

23    0.0355 , 0.0365   

24    0.029   

25 0.67      

26 0.7      

27 0.67 , 0.7-0.71      
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28 0.58-.059      

29 0.58      

30  0.005     

31 0.67-0.69      

32 0.67 , 0.7      

33 0.71-0.74      

34 0.6-0.63      

35 0.75 , 0.79-0.82 , 0.84-1 0-0.002 0.11-1 0-0.018 7-14 Y 

36 0.81-0.82      

37 0.59      

38 0.66      

39 0.6-0.63      

40 0.11-0.46 0.011-0.0445     

41    0.0395   

42    0.039   

43 0.59      

44    
0.0285-0.029 , 0.0355 , 0.0365 
, 0.0385   

45 0.83-1 0-0.001 0.11-1 0-0.018 7-14 Y 

46 0.73-0.75      

47    0.019   

48 0.73-0.75      

49 0.11-0.5 , 0.54-0.59 0.0075-0.0445     

50 0.66    2 , 3  

51 0.77-0.8 0.0015-0.002     

52 0.11-0.5 , 0.54-0.55 , 0.58-0.59 
0.006-0.0065 , 0.0075-0.008 , 0.031-
0.0445     

53 0.11-0.5 0.005 , 0.007-0.0445     

54  0.013-0.0305     

55    0.019, 0.0205   

56 0.6-0.63 , 0.67      

57 0.59 , 0.67      
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58 0.67      

59    0.019   

60 0.67-0.69      

61 
0.58-0.59 , 0.62-0.63 , 0.65 , 0.67-
0.69 , 0.71 0.004  0.0445   

62 0.67 , 0.7-0.71      

63 0.58-0.59 , 0.62-0.63 , 0.68      

64    0.019   

65    0.0185   

66 0.7-0.73      

67    0.0185   

68 0.83-1 0-0.001 0.11-1 0-0.018 7-14 Y 

69 0.83-1 0-0.001 0.11-1 0-0.018 7-14 Y 

70 0.11-0.5 0.0085-0.0445     

71 0.59      

72    0.0365 , 0.0385   

73 0.68 , 0.7-0.72 , 0.76      

74 0.6-0.63      
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       Table 3: A Classification of the Winners 

specification(s) n 

RN 5 

OF1 CRRA 38 

OF1 CARA 2 

OF2 CARA 16 

OF1 CRRA and OF1 CARA 10 

OF1 CRRA and Rolling 2 

OF1 CRRA, OF1 CARA and OF2 CARA 1 

Total 74 

 

n = the number of subjects for which this/these are the best   
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Table 4: Tests of Significance 

 
subject 

Number 
decisions 

 
p 

Risk-
Neutral? 

t-stat  
1st vs 2nd 

t-stat  
1st vs 3rd 

t-stat  
1st vs 4th 

t-stat  
1st vs RN 

1 129 88 N 0,00 3,04*** 6,16*** 11,42*** 

2 29 100 Y - - - - 

3 68 78 N 0,00 1,19 3,73*** 4,51*** 

4 44 77 N 0,95 0,95 1,14 1,14 

5 21 90 N 0,40 0,40 0,40 0,40 

6 50 84 N 0,76 0,76 2,86*** 2,86*** 

7 73 82 N 0,16 2,20** 3,05*** 5,43*** 

8 77 83 N 0,00 3,76*** 5,14*** 7,46*** 

9 52 79 N 0,25 0,48 0,94 2,50*** 

10 65 80 N 0,42 0,42 2,26** 4,44*** 

11 65 80 N 0,00 0,28 2,49*** 3,80*** 

12 50 90 N 1,40* 1,64** 2,90*** 3,65*** 

13 44 68 N 0,00 0,69 1,90** 2,73*** 

14 51 78 N 0,36 1,24 1,45* 2,26** 

15 22 73 N 0,36 0,36 0,36 0,36 

16 51 75 N 0,23 0,45 1,92** 4,06*** 

17 31 77 N 1,04 1,36* 2,06** 2,36*** 

18 61 80 N 0,14 1,39* 1,97** 3,89*** 

19 88 90 N 0,82 2,17** 2,76*** 7,19*** 

20 37 81 N 0,32 0,32 0,32 0,32 

21 29 72 N 0,00 0,25 0,25 0,49 

22 56 82 N 0,40 0,40 0,66 3,38*** 

23 43 77 N 0,32 0,74 1,03 1,03 

24 35 69 N 0,53 0,53 0,79 1,70** 

25 53 83 N 1,13 2,01** 2,22** 3,12*** 

26 39 79 N 0,21 0,52 0,52 0,52 

27 52 85 N 1,04 1,04 1,94** 2,85*** 

28 83 89 N 0,20 3,80*** 3,92*** 6,48*** 

29 50 74 N 0,23 1,49* 3,24*** 4,40*** 

30 68 82 N 0,15 0,44 0,44 7,00*** 

31 45 73 N 0,21 0,21 0,62 0,92 

32 51 82 N 0,50 0,86 2,15** 2,35*** 

33 50 86 N 0,55 1,04 2,93*** 2,93*** 

34 62 81 N 0,28 0,55 2,01** 3,94*** 

35 38 76 Y 0,00 0,00 0,00 0,00 

36 48 90 N 0,31 1,49* 2,14** 3,39*** 

37 65 82 N 0,29 1,10 1,10 4,38*** 

38 50 78 N 0,47 0,47 1,54* 2,14** 

39 58 83 N 0,55 1,18 2,85*** 3,56*** 

40 98 86 N 0,00 2,41*** 2,99*** 7,94*** 

41 75 84 N 0,16 0,48 2,79*** 5,66*** 
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42 49 76 N 0,56 0,56 1,19 2,57*** 

43 74 84 N 0,32 1,49* 2,77*** 5,63*** 

44 38 68 N 0,46 0,46 1,60* 1,85** 

45 35 83 Y 0,00 0,00 0,00 0,00 

46 24 67 N 0,64 0,64 0,64 0,64 

47 25 72 N 0,31 0,31 0,31 0,61 

48 26 65 N 0,52 0,81 1,09 1,09 

49 83 86 N 0,00 1,64** 3,27*** 6,49*** 

50 31 71 N 0,00 0,26 1,54* 1,84** 

51 39 85 N 0,00 0,69 0,90 1,20 

52 60 80 N 0,00 1,50* 2,92*** 3,65*** 

53 71 82 N 0,00 1,02 2,30** 5,68*** 

54 146 95 N 0,37 4,43*** 5,46*** 12,51*** 

55 22 68 N 0,28 0,28 0,28 0,28 

56 55 76 N 0,36 1,26 1,26 4,94*** 

57 54 78 N 0,49 1,28* 1,71** 2,63*** 

58 58 81 N 0,40 1,72** 3,00*** 4,52*** 

59 39 79 N 0,52 0,52 0,52 0,52 

60 46 78 N 0,66 0,66 2,61*** 2,61*** 

61 54 80 N 0,00 0,00 0,74 2,87*** 

62 45 82 N 0,47 0,70 0,70 1,02 

63 46 72 N 0,21 1,50* 1,79** 1,79** 

64 25 68 N 0,59 0,59 0,59 0,59 

65 32 69 N 0,26 0,26 0,26 0,26 

66 43 91 N 1.56 * 2.07 ** 2.46 *** 2.46 *** 

67 24 79 N 0,33 0,33 0,33 0,33 

68 35 83 Y 0,00 0,00 0,00 0,00 

69 18 78 Y 0,00 0,00 0,00 0,00 

70 84 87 N 0,00 2,68*** 5,75*** 6,68*** 

71 59 81 N 0,40 1,51* 1,85** 2,71*** 

72 45 78 N 0,97 0,97 1,17 1,46* 

73 29 62 N 0,23 0,23 1,07 1,07 

74 50 76 N 0,46 1,31* 1,51* 4,22*** 

 
 
p: the percentage of decisions consistent with the best-fitting specification. 
First entry is the test statistic, the asterisks indicate significance: 
* at 10% (1,28),  ** at 5% (1,64), *** at 1% (2,32) 
  



38 

 

Figures 

Figure 1: An Example of a Binomial Tree 
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Figure 2: Subject 66 
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 Figure 3: Histogram of Maximum Percentage Consistent Over All 74 Subjects 
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Appendix A 

Theory and Programming 

The DM owns an asset with liquidation value L which earns interest at the rate of return rr 

until the forced liquidation date in period T. We start in period 1 with a cash flow x1. 

Thereafter the cash flow follows a binomial random walk: given x in period t the cash flow in 

period t+1 is either x+h (with probability p) or x-h (with probability 1-p). 

 
We start with Objective Function 1: the maximisation of the expectation of the sum of the 

utilities of the payoffs (cash flow plus liquidation when it occurs). 

    
There are various nodes that the DM may reach. In period 1 there is just 1; in period 2 there 

are 2;...;  in period t, there are t of them;…, in period T there are T of them. The total number 

of such nodes is 1+2+…+T = T(T+1)/2. We could refer to these nodes with a pair of numbers 

(t,j) where j goes from 1 to t in period t. A better way is to define k nodes which go 

sequentially from 1 to T(T+1)/2. In period 1, k is just 1; in period 2, k is 2 and 3; in period t, k 

goes from (t-1)t/2+1 to t(t+1)/2; in period T, k goes from (T-1)T/2+1 to T(T+1)/2. We call the 

total number of k nodes totk. This is equal to T(T+1)/2. 

 
At each k node there is an associated cash flow. Letting xk denote the cash flow at the node 

k. From the binomial process we have the following Matlab code: 

 
for t=2:1:T                     % going through the periods 

    for j=1:1:t                 % for each period going through the j nodes 

        k=(t-1)*t/2+j;          % calculating the corresponding k node 

        x(k)=x(1)+(t-2*j+1)*h;  % calculating the cash flow at that k node 

    end 

end 

 

 

Now let us find the solution for Objective Function 1, where the objective is the maximisation 

of the expected value of the sum of the utilities. We use the following notation. dk is the 

optimal decision at node k. EVk is the expected value of the objective function as viewed from 
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node k. At this node the previous elements u(x1) + u(x2) + … are given and known and 

therefore do not enter the objective function. 

 
Denote by lqvk the liquidation value of liquidating at that node, and by ctvk the continuation 

(expected) value at that node. 

 

From node k the DM either moves Up or Down. We need to know to which k nodes these 

moves take us. From the tree (see Figure 1) it can be seen that if at node k in period t 

moving Up takes the DM to node k+t in period t+1, while moving Down takes the DM to 

node k+t+1 in period t+1. 

 
We work backwards starting in period T. Here there are no decisions to take and we have 

simply for k between (T-1)T/2+1 and T(T+1)/2 that: 

 
(1) EVk = u(xk+L)   This is for the period T nodes. 

 

We work backwards now. Here we take the general case of k<=(T-1)T/2 (that is in periods 1 

through T-1). We first write the solution in equations and then transfer it into Matlab code. 

The backward induction starts in period T-1 and then works backwards to period 1. In period 

t (note that in period t the index k takes values from (t-1)t/2+1 to t(t+1)/2 inclusive) the 

relevant equations are: 

 
(2) ctvk = u(xk) + pEVk+t + (1-p)EVk+t+1 

(3) lqvk = u(xk + LrrT-t) 

(4) dk = 1 if ctvk ≥ lqvk; 0 otherwise (We are assuming a DM who is indifferent 

continues). 

(5) EVk = max[ctvk,lqvk] 
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The Matlab code follows (note we use here a generic utility function; in the code we 

distinguish between CRRA and CARA). 

 

for t=T-1:-1:1                             % for each period working back 

for k=1+t*(t-1)/2:1:t*(t+1)/2            % for the k nodes in that period 

           ctv(k)=u(x(k))+p*EV(k+t)+(1-p)*EV(k+t+1);  % continuation value 

             lqv(k)=u(L*(rr^(T-t))+x(k));               % liquidation value 

             if lqv(k)<=ctv(k)             % if continuing is better 

                   EV(k)=ctv(k);           % the continuation value is EV 

                   d(k)=1;                 % decision is to continue 

             end 

             if lqv(k)>ctv(k)              % if liquidating is better 

                   EV(k)=lqv(k);           % the liquidation value is EV 

                   d(k)=0;                 % the decision is to liquidate 

             end 

end 

end 

 

Now let us turn to Objective Function 2, where the objective function is the maximisation of 

the expected utility of the sum of payoffs. This means that the optimal decision at any k-

node depends not only on that node but also the accumulated cash flows at that node. Note 

crucially that knowing one is at a particular k-node is not sufficient to know the accumulated 

cash flow at that node; this latter depends upon the route by which the DM has reached that 

node. For example consider k=5 in t=3. This node could have been reached by going Up from 

period 1 to 2 and then Down from period 2 to 3; or it could have been reached by going 

Down from period 1 to 2 and then Up from period 2 to 3. In the former case the accumulated 

cash flow would be x1 + (x1+h) + x1 = 3x1+h; in the latter case the accumulated cash flow would 

be x1 + (x1-h) + x1 = 3x1-h. In order to deal with this, we need to introduce what we call l-

nodes, indicating not only which k-node the DM is at, but also the accumulated cash flow he 

or she has. We should note that two different l-nodes do not necessarily have different 

accumulated cash flows. 

 
How many l-nodes are there? It can be seen from Figure 1 that in period t there are a total 

of 2t-1 l-nodes, half of them reached by going Up from the 2t-2 l-nodes in period t-1 and half 

of them reached by going Down from the 2t-2 l-nodes in period t-1. Thus, the total number of 

l-nodes in a tree of length T is 1 + 2 + 22 + 23 + 24 + …+ 2T-1 = 2T-1. We need to calculate the 
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optimal decisions at all of these with the exception of the 2T-1 nodes in period T where the 

only decision is to stop. Hence we have (where the subscript now is the l-node):  

 
(6) dl = 0 if 2T-2 + 1 ≤ l ≤ 2T-1.  

 
Also we have (in the final period if it is reached): 

 
(7) EVl = u(Xl + L) if 2T-2 + 1 ≤ l ≤ 2T-1where Xl denotes the accumulated cash flow at node 

l, and EVl denotes the value of the objective function at node l. 

 
Now the optimisation procedure is straightforward. We already have the (default) decisions 

in the final period and the Expected Value of the objective function at each of the final period 

l-nodes. Hence we can write (recall that the vector upl(l) tells us to which l-node a movement 

Up from node l takes the DM, and dnl(l) tells us to which l-node a movement Down takes the 

DM from node l): 

 
For all the other l-nodes in periods t<T we have: 

 
(8)  ctvl = pEVupl(l)  +  (1-p)EVdnl(l) 

(9)  lqvl = u(Xl + LrrT-t) 

(10)  dl = 1 if ctvl ≥ lqvl; 0 otherwise (We are assuming a DM who is indifferent 

continues). 

(11)  EVl = max[ctvl,lqvl] 

 
Note that in these expressions the value of t is that corresponding to the period in which 

that l-node is in. 

 

Let us number the l nodes so that we have the following. 
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t k e(k) the 
number 

of l 
nodes 

in the k 
node 

l up l 
node 

in k 
node 

down l-
node 

in k 
node 

1 1 1 1 2 2 3 3 

2 2 1 2 4 4 6 4 

3 1 3 5 5 7 6 

 
3 

4 1 4 8 7 11 8 

5 2 5 9 8 13 9 

6 10 8 14 9 

6 1 7 12 9 15 10 

 
 
 

4 

7 1 8 16 11 20 12 

8 3 9 17 12 24 13 

10 18 12 25 13 

11 19 12 26 13 

9 3 12 21 13 28 14 

13 22 13 29 14 

14 23 13 30 14 

10 1 15 27 14 31 15 

 
 
 
 
 
 
 

5 

11 1 16 32 16 37 17 

12 4 17 33 17 44 18 

18 34 17 45 18 

19 35 17 46 18 

20 36 17 47 18 

13 6 21 38 18 52 19 

22 39 18 53 19 

23 40 18 54 19 

24 41 18 55 19 

25 42 18 56 19 

26 43 18 57 19 

14 4 27 48 19 59 20 

28 49 19 60 20 

29 50 19 61 20 

30 51 19 62 20 

15 1 31 58 20 63 21 

 
 
 
Hence the implied tree and the j, k and l nodes are as follows. 

 
1 (1) 2 (2 to 3) 3 (4 to 7) 4 (8 to 15) 5 (16 to 31) 6 (32 to 63) 

     1; 16; 32 

    1; 11; 16  

   1; 7; 8  2; 17; 33, 34, 35, 36, 37 

  1; 4; 4  2; 12; 17, 18, 19,20  

 1; 2; 2  2; 8; 9, 10, 11   3; 18; 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 

1; 1; 1  2; 5; 5, 6  3; 13; 21, 22, 23, 24, 25, 26  

 2; 3; 3  3; 9; 12, 13, 14  4; 19; 48, 49, 50, 51, 52,53,54, 55, 56, 57 

  3; 6; 7  4; 14; 27, 28, 29, 30  

   4; 10; 15  5; 20;  58, 59, 60, 61, 62 

    5; 15;  31  

     6; 21; 63 

 

The numbers in the top row are the t-values. 
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At each node, the first number is what we call the j-value; the second number is the k-node; 

and all the other numbers are the l-nodes. Of these other numbers, the ones in normal font 

are the l-nodes reached by coming DOWN from the previous period, and those in italics those 

reached by coming UP. 

 
Thus, if we number the l nodes this way, it is nice and simple: l goes up to 2l and goes down 

to 2l+1, for all l from 1 to 2T-2-1 (up to the penultimate period)      

 
Moreover the accumulated cash flow at node l is the cash flow in the associated k node plus 

the accumulated cash flow in the k node from where it came. 

 
(12)       X(l) = X(l/2)+x(k)  if l is even 

(13)       X(l) = X((l-1)/2)+x(k)  if l is odd 

where k is the k node in which l is. 

We should do this for all l from 2 to 2T-1. 

 
Now how to find the k node in which a particular l value is.  The following Matlab code 

appears to work. Note that there are (t-1)!/[(j-1)!(t-j)!] l nodes in node (t,j). This expression 

is calculated using nchoosek in Matlab. 

 

l=0; 

k=0; 

clk(1)=1; 

for t=2:1:T 

      for j=1:1:t 

      k=k+1; 

      nl=nchoosek(t-1,j-1); 

      for ll=1:1:nl 

      l=l+1; 

      clk(l)=k; 

                 end 

end 

end 

 

We also need to know (see above for the liquidation values) the t node corresponding to a 

particular k node. Here is the Matlab code the vector ckt: 
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% now we need to find the t value corresponding to any k value 

k=0; 

for t=1:1:T 

    for j=1:1:t 

        k=k+1; 

        ckt(k)=t; 

    end 

end 

 
% this does the important stuff 

for l=2^(T-1):1:2^T-1;           % these are the period T nodes 

    if rt==1 

       EV(l)=crra(L+X(l),r); 

    end 

    if rt==2 

       EV(l)=cara(L+X(l),r); 

    end  

end 

 
% this is the important recursion for the other periods going backwards 

% this is for a generic utility function 
for t=T-1:-1:1 

    for l=2^(t-1):1:2^t-1 

        kk=clk(l); 

        tt=ckt(kk); 

        ctv(l)=p*EV(2*l)+(1-p)*EV(2*l+1); 

        lqv(l)=u(L*(rr^(T-tt))+X(l)); 

        if lqv(l)<=ctv(l) 

            EV(l)=ctv(l); 

            d(l)=1; 

        end 

        if lqv(l)>ctv(l) 

            EV(l)=lqv(l); 

            d(l)=0; 

        end 

    end 

end 

 

 

Finally let us show the decisions of a DM with a rolling strategy. Here we assume risk-

neutrality. 

 
We need to start with the fully-optimal strategy – backwardly inducting from the end. Let us 

denote the Expected Value to the decision-maker of fully optimising if he or she is at node k 

by EVT,k (the first argument indicating the horizon used by the decision-maker and the second 

the node). Let us denote by DT,k the optimal decision, taking the value 1 for continuing and 

the value 0 for liquidating. We work backwards. We are now making the notation consistent 

with the Matlab code. 

In T we have (ignoring the accumulated cash flows which are given and the decision-maker 

will get anyhow): 
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(14)    DT,k = 0    for k from 1+(T-1)T/2 to T(T+1)/2 

(15)    EVT,k = xk + L    for k from 1+(T-1)T/2 to T(T+1)/2 

 
Now we work backwards, from t=T-1 to t=1, using the following recursion. Note that if the 

DM is at node k in period t, then going up arrives at node k+t in period t+1, and going down 

arrives at node k+t+1 in period t+1.  

 
(16)    DT,k = 0 if xk + Lr(T-t) > pEVT,k+t + (1-p)EVT,k+t+1  

                       = 1 if xk + Lr(T-t)≤ pEVT,k+t + (1-p) EVT,k+t+1 

(17)    EVT,k = max[xk + Lr(T-t), xtj + pEVT,k+t + (1-p) EVT,k+t+1] 

So we have the optimal decision at each cash flow node. 

 
Now let us consider someone who has a rolling strategy with an horizon of S periods – so in 

period t works as if he or she has to liquidate in period t+S or in period T whichever is the 

sooner (the true liquidation date is T). Let us use dS,T,k to denote the decision of such a 

decision-maker at node k, the first argument indicating the rolling horizon, the second the 

true horizon and the third the node. 

 
Be careful about the notation: DT,k denotes the optimal decision at node k for an optimising 

decision who has to liquidate in period T. In contrast dS,T,k denotes the decision at node k of 

a DM with a rolling horizon of S periods ahead in a problem where he/she actually has to 

liquidate in period T but wrongly working on the presumption that they have to liquidate S 

periods ahead. 

It follows that we have the following results: 

 
(18)    If t ≥ T-S then dS,T,k = DT,k because the true horizon is within the correct horizon. 

(19)    If t < T-S then dS,T,k = Dt+s,k because the DM is optimising under the (wrong) 
assumption that he/she has to liquidate in period t+S.  
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Appendix B 

Experimental Instructions 

 

The Instructions of the Experiment which were given to the subjects follow. 

 

 

 

Instructions 

 

Preamble 

Welcome to this experiment. Thank you for coming. You are going to participate in an 

experiment. Please read carefully the instructions, they are to help you to understand what 

you will be asked to do. You are going to earn money for your participation in the experiment 

and you will be paid immediately after the completion of the experiment. 

 

The Experiment 

You will be presented with a sequence of 15 different problems. In each problem you start 

owning some asset which you have to dispose of during or at the end of the problem. It has 

a value. When you dispose of the asset, this value will earn interest until the end of the 

problem, and this will constitute part of your payment for that problem. In each problem 

there is a sequence of time periods and you can dispose of the asset in any of these. In each 
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of the time periods, until you dispose of the asset you will also earn a cash flow (which could 

be positive or negative) and which will be added to (or subtracted from if it is negative) your 

payment from the disposal. The cash flow follows a random path, determined by Nature, 

jumping either up or down by a fixed specified amount each period with specified and fixed 

probabilities. The disposal decision can be taken in any one of the periods of the problem, 

though you will have to dispose of it in the final period if you have not disposed of it before 

then. More specifically, your task is to decide in each time period in each of the problems 

whether you want to continue holding the asset to the next period of the problem, or 

whether you want to stop and dispose of the asset in that period. You will be given the 

following information in each problem: the value of the asset on disposal, the initial cash 

flow, the size of the jump in the cash flow, the probability that the cash flow jumps up (and 

the residual probability that the cash flows move down), the number of periods in the 

problem at the end of which you have to dispose of it, and the rate of interest on the disposal 

value.  
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 The Interface of the Experiment 

 

Figure 1 

At the beginning of the experiment you will see the Introduction to these Instructions. After 

reading these and when you are ready to start, you should click on “Click when you are ready 

to start” (Figure 1). 
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Figure 2 

When you click to start the experiment, a picture like the Figure 2 appears. On the left of the 

screen is a summary of the instructions, while on the right appears the decision tree. The red 

numbers on the decision tree are the possible cash flows in the disposal problem in each of 

the periods of the problem, and the blue numbers are the corresponding probabilities. At 

the bottom under the tree are two boxes. If you are in the first period of a problem the first 

box tells you the jump in the cash flows, the probability of jumping up (the probability of 

moving down is the residual from 1) in that problem, the disposal value of the asset and the 

rate of interest on this value. In subsequent periods, this box shows the number of the 

current period, the decision by Nature as to whether the cash flow has jumped up, and the 

implied cash flow in this period. The second box shows the time that you have left to take 

the decision in that particular period. At the top left above the tree is a box. This box tells 

you the disposal value plus interest if you decide to dispose of it in this period, as well as the 

total cash flows you have accumulated up to this period. 
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For example, in Figure 2, you can see that the change in the cash flows in the next period is 

equal to +1 or -1 with probabilities 0.6 and 0.4 respectively. 

 

Figure 3 

 

In each period you cannot take a decision until at least 20 seconds have elapsed; after these 

20 seconds the “Continue” and “Stop” buttons appears (Figure 3). You will have a maximum 

time of 40 seconds in each period. 
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Figure 4 

 

When you have taken your decision you should click on “Continue” or “Stop” as appropriate, 

and then, when you are sure about your decision, you should click on “Click to confirm” as 

shown in Figure 4. You can change your mind about whether to stop or continue as many 

times as you want, as long as you have not clicked “Click to confirm” and you still have time. 

Notice that if you continue until the final period the disposal decision is then compulsory. 
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Figure 5 

 

Be careful!                                                                           

You should answer before 40 seconds have elapsed. In the case that you run out of time a 

message box appears (like in Figure 5) that the time is up. In this case, the program assumes 

that you continue to the next period of the problem.  
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Figure 6 

 

When you take the decision to dispose of the asset, by clicking on “Stop” and then on “Click 

to confirm”, a box like that in Figure 6 appears informing you about the total payment in that 

liquidation problem.  

 

At the end of the experiment a message will appear asking you to call over the experimenter. 

Please click on this message to let us know that you have finished the experiment. 

 

Example 

By following the numbers in the Figures we are going to present an example. By looking at 

Figure 2, we know that the initial cash flow is equal to 10, the probability the cash flow of 

moving up in the next period, that is + 1, is equal to 0.6 while the probability of moving down, 

that is -1, is equal to 0.4. The disposal value is equal to 40 and the interest rate on it is equal 
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to 25%. You can also notice that the disposal value with the interest rate is equal to 909 (be 

careful, this value changes during the periods) and the accumulated cash flows are equal to 

10, i.e. the cash flow of the first period. After the passage of the first 20 seconds, you can 

decide to continue or stop (Figure 3). Let us assume that you decide to continue in the next 

period. You just click “Continue” and “Click to confirm”. Let us also assume that Nature 

decided the cash flow to go down in period two. Therefore, the cash flow earned in the 

second period is equal to 9 (Figure 4), while your accumulated cash flows are equal to 19 (= 

10 + 9) and the disposal value with the interest rate is equal to 728. If you decide to Stop in 

the second period, your payoff is going to be equal to 747 (= 19 + 728). 

 

How long the experiment will last 

We expect you to be in the laboratory no more than one and a half hours.  

 

Payment  

Your payment from the experiment will be your payment in one randomly-chosen problem 

of the experiment; you will randomly choose one numbered disk from a bag containing 15 

disks numbered from 1 to 15, and the number on the disk chosen will determine the problem 

on which you will be paid. In the experiment payments are denominated in tokens. These 

tokens will be converted into real money using the exchange rate: 100 tokens = £1. If the 

payment in the randomly chosen problem is negative, this will be negative. 

 

The show up fee is £2.50 and this will be added to your payment from the experiment, 

described above. In no circumstances will your payment be negative. 

 

If you have any questions, please raise your hand and an experimenter will come to you.  
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Chapter 3 

Optimal Timing of the Exercising of a 
Financial Option Contract12 

 

3.1 Introduction 

In recent years, physicists and mathematicians have entered the fascinating world of 

financial derivatives. Their influence has led to many complex financial products, such as 

options and mortgage-backed securities. More specifically, these include some of the most 

complicated financial instruments, such as the call, put, barrier, compound and rainbow 

options, the collateralised mortgage obligations (CMOs) and the collateralised debt 

obligations (CDOs).  Nowadays, all the above play a key role in financial markets. 

We decided to experimentally explore one of the most commonly-used of these instruments: 

the American call option. More specifically, we wanted to investigate a key component of 

modern finance theory: the optimal timing of the exercising of an American call option. It is 

a key component since it is built into option pricing theory, and that, in turn, is built into 

general theories of financial markets. If the theory on the optimal exercising of a call option 

is shown to be empirically invalid, then the whole building constructed on top of it may come 

crashing down. 

An American call option is a financial contract which gives the holder the right but not the 

obligation to buy an asset at a pre-specified price, which is called the strike or exercise price. 

                                                           
12 This chapter is based on join work with John Hey. 
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The holder of this contract can exercise it, if he or she wants, any time up to the end time 

point, which is stated in the contract, or he or she may decide to leave the contract to expire 

without exercising it. His profit is equal to the price that the asset had at the exercising point 

minus the exercise price. The question then is when the holder of the contract should 

exercise it, that is, at what asset price; or equivalently, when is the optimal time point to stop 

holding the contract unexercised. The theory of the optimal stopping time answers this. 

The theory can be applied to both real (tangible) and financial (intangible) assets. For the 

former ones, we refer to the theory as irreversible decision making under uncertainty, or real 

option pricing, and for the latter ones as financial option pricing.  

Henry (1974), McDonald and Siegel (1986), and Dixit and Pindyck (1994) were among the 

first researchers who studied the optimal timing of an investment in an irreversible project 

by using option pricing theory. A key issue is whether people indeed follow this theory, and 

invest “optimally” according to it. Even if the theory has been generalised and applied in 

many different contexts and kind of investments, it seems that empirical studies of the 

theory and of its extensions are rather few. 

Furthermore, it seems that researchers do not study quite often experimentally this kind of 

theory in continuous time. In the literature, there is only one paper which tests 

experimentally the theory of an American call option in continuous time – that by Oprea et 

al (2009). They gave their subjects a set of problems in each of which the subject owned a 

call option and had to decide when to exercise it. Oprea et al tested the theory under the 

usual neoclassical finance assumption – that the decision-makers are risk-neutral. They 

found that the theory did not fit the experimental evidence particularly well. However, their 

study focused on the learning process of the subjects in exercising an American call option 

contract at the optimal exercising point. Based on their results it seems that subjects exercise 

their option contract closer to the optimal trigger as their experience increases. 
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We also work with a continuous time American call option problem. We built our software 

in Python and, in contrast to Oprea et al (2009), we use a discrete time approximation of the 

continuous time model to build our software and choose our parameters and our problems 

set, and not binomial approximations of the Brownian process. We concentrate our study on 

the behavioural aspect of risk aversion; that is we investigate whether risk-aversion can 

explain the departure from the theory (which is based on risk-neutrality as we have already 

noted).  

More specifically, we ran a two part experiment. The first part looked at the exercising 

behaviour of our subjects faced with a decision as to when to exercise an option that they 

owned. In the second part, we elicited the risk attitude of our subjects through a set of lottery 

questions. We tested whether risk aversion affects the subjects’ decisions. We did this in two 

ways. First, we used the data from the second part to elicit the risk-aversion parameter of 

the subjects, and tested whether this parameter explained their behaviour.  Second, we 

estimated the risk aversion parameter which best explains the subjects’ behaviour from the 

subject’s decisions in the exercising problem. 

We also collected demographic data for each of our subjects. We use this in our data analysis 

to test whether and how demographics play a role in this story.  

 

3.2 Theory            

We consider an American call option in continuous time. By holding this contract the holder 

has the right but not the obligation to buy an asset, for example a stock, at a pre-specified 

price. This is called the strike or exercise price. The holder can exercise the option at any time 

up to the contract’s maturity date. If the holder exercises the option contract before the 

maturity date, his or her profit is be the difference between the price of the asset at the time 
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that he or she exercised the option and the exercise price. If the holder does not exercise the 

option the profit is zero. 

It is usually assumed in continuous time theory that the asset price follows Geometric 

Brownian Motion (GBM) – a well-loved construct in finance theory. Under this assumption, 

as we will show, there is a well-defined trigger/price at which the option should be exercised.   

In Section 3.2.1, we give an overview of the use of GBM in the asset pricing literature, as this 

will help us to understand better the nature of the movement of the asset’s price. This is 

important as the asset price that our subjects were watching in their screens, and the one 

that we used to build our software, was derived from the discretisation of the continuous 

time model which includes the stochastic process of the GBM. Furthermore, as this is the 

base, this will help us to understand the main theory in Section 3.2.2 which gives us the 

formula for the optimal trigger, that is, the price at which the holder of the option should 

exercise it (according to the optimal stopping theory). The main theory can be found in Dixit 

and Pindyck (1994) and Peskir and Shiryaev (2006). We follow mainly Dixit and Pindyck 

(1994). 

 

3.2.1 The significance of geometric Brownian motion in asset pricing 

GBM is often used in continuous time pricing models. We use the following model to predict 

the asset’s future price: 

𝑆𝑡 = 𝑆0𝑒
(𝜇−

1

2
𝜎2)𝑡+𝜎 𝜀𝑡√𝑡

                                                                                                                          (1) 

Here S0 denotes the current price of the asset and St the price at time t. This equation implies 

that the future price of the stock depends only on the current price. In other words, according 

to this equation, we do not need to use the past prices of a stock in order to predict its future 
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price. This means that the above equation has the Markov property which is the 

independence of the future from the past, given the present. 

A Markov process is a stochastic model that has the Markov property. Brownian motion is a 

well-known Markov process. We prove equation (1) by using the GBM and the Ito’s Lemma. 

Geometric Brownian Motion is given by 

dSt = μS0dt + σS0 dWt,                                                  (2) 

where μ is the trend of the stock price, σ is its volatility, and dWt is the increment of a Wiener 

process and is equal to 𝜀𝑡√𝑑𝑡, where dt is an infinitesimally small positive number, and εt is 

a random variable which has a unit normal distribution. 

A Wiener process (in addition to the Markov property) has the following properties:  

1) it is continuous; 2) it is non-differentiable with respect to time t (because dt is 

infinitesimally small) ; 3) at time 0, W0=0; 4) it has independent increments13; 5) the 

increment of a Wiener process follows a normal process with mean 0 and variance dt. 

We notice that the Markov property is in line with the Weak Form Hypothesis (WFH) of 

Market Efficiency which states that all past prices of a stock are reflected in today's price. 

This means that the current price of a stock involves all the past information. 

It seems to be empirically true that the WFH operates in markets as a result of competition 

between market participants. Specifically, arbitrage opportunities do not stay for long in the 

market, disappearing very soon due to the actions of the investors. This means that even if 

some investors hold private information or are informed of a specific pattern that the stock 

follows (after performing technical analysis), due to their actions in the market, the other 

                                                           
13 For any n times 0<t1<t2<t3…<tn, the increment random variables Wt1 − W0, Wt2 − Wt1, Wt3 – Wt2, ..., 
Wtn −Wtn-1 are independent. 
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investors become aware of their private information very soon, so at the end the information 

is no longer private but public. This puts an end to these trading opportunities (Hull, 2008). 

As the future prices of a stock are uncertain, we use a Markov process in order to describe 

them. Specifically, equation (1) is using the GBM process.  

Here we derive equation (1). We will use Ito’s Lemma. 

Ito’s lemma states that for any function f(St,t) 

𝑑𝑓 =
𝜕𝑓

𝜕𝑡
𝑑𝑡 +

𝜕𝑓

𝜕𝑆
𝑑𝑆 +

1

2

𝜕2𝑓

𝜕𝑆2 𝑑𝑆2 + ⋯    

Using equation (2) we get 

𝑑𝑓 =
𝜕𝑓

𝜕𝑡
𝑑𝑡 +

𝜕𝑓

𝜕𝑆
(𝜇𝑆𝑑𝑡 +  𝜎𝑆𝑑𝑊𝑡) +

1

2

𝜕2𝑓

𝜕𝑆2 (𝜇𝑆𝑑𝑡 +  𝜎𝑆𝑑𝑊𝑡)2     

and hence 

𝑑𝑓 =
𝜕𝑓

𝜕𝑡
𝑑𝑡 +

𝜕𝑓

𝜕𝑆
(𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊𝑡) +

1

2

𝜕2𝑓

𝜕𝑆2 (𝜇2𝑆2𝑑𝑡2 + 2𝜇𝑆𝜎𝑆2𝑑𝑡𝑑𝑊𝑡 + 𝜎2𝑆2 𝑑𝑊𝑡
2)         (3) 

Now, using property 5) of a Wiener process (dWt = 𝜀𝑡√𝑑𝑡 ~ N (0,𝑑𝑡)), we get 

Var(dWt) = E(dWt
2) - [E(dWt)]2  

and hence 

E(dWt
2) = Var(dWt) + [E(dWt)]2  

which implies that 

E(dWt
2) = dt                                                (4) 

In equation (3), as the term dt is infinitesimally small, that is, has a value approaching zero, 

𝑑𝑡
3
2 and dt2 go to zero before dt gets to zero. This is the reason that we get zero for the terms 

dt2 and dtdWt=𝜀𝑡𝑑𝑡
3
2. 

Therefore, we get: 
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𝑑𝑓 = (
𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑆
𝜇𝑆 +

1

2

𝜕2𝑓

𝜕𝑆2 𝜎2𝑆2)𝑑𝑡 +
𝜕𝑓

𝜕𝑆
𝜎𝑆 𝑑𝑊𝑡                                                             (5) 

By using that f=lnS, the equation (5) becomes: 

𝑑𝑙𝑛𝑆 = [0 +
1

𝑆
𝜇𝑆 +

1

2
(−

1

𝑆2)𝜎2𝑆2]𝑑𝑡 +
1

𝑆
𝜎𝑆 𝑑𝑊𝑡  

which implies that 

𝑙𝑛𝑆𝑡 − 𝑙𝑛𝑆0 = (𝜇 −
1

2
𝜎2) (𝑡 − 0) + 𝜎 𝑑𝑊𝑡  

and hence 

𝑙𝑛𝑆𝑡 = 𝑙𝑛𝑆0 + [(𝜇 −
1

2
𝜎2) 𝑡 + 𝜎 𝑑𝑊𝑡] 𝑙𝑛𝑒  

and hence 

𝑙𝑛𝑆𝑡 = 𝑙𝑛𝑆0 + 𝑙𝑛𝑒
(𝜇−

1
2

𝜎2)𝑡+𝜎 𝑑𝑊𝑡   

and hence 

𝑙𝑛𝑆𝑡 = 𝑙𝑛(𝑆0 ∗ 𝑒
(𝜇−

1
2

𝜎2)𝑡+𝜎 𝑑𝑊𝑡) 

Thus 

𝑆𝑡 = 𝑆0 ∗ 𝑒
(𝜇−

1

2
𝜎2)𝑡+𝜎 𝑑𝑊𝑡  

Now we know that dWt =  𝜀𝑡√𝑑𝑡  

Thus finally we get equation (1): 

𝑆𝑡 = 𝑆0𝑒
(𝜇−

1

2
𝜎2)𝑡+𝜎 𝜀𝑡√𝑡

  

Note that, in addition to what we have previously stated, this implies that, as time t increases, 

the variance of St increases.  
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3.2.2 Optimal timing of the exercising of a financial option contract 

Let us suppose that a decision-maker holds an option contract on a financial asset, for 

example a stock, whose price is S which evolves stochastically based on the following Ito’s 

drift-diffusion process: 

dS(t)=μ(S(t),t)dt+σ(S(t),t)dW(t)                                                               (6) 

Let us simplify the above model by taking the case of a specific Wiener process, the standard 

GBM, with μ(S(t),t)=μS and σ(S(t),t)=σS: 

dS=μSdt+σSdW                                                                 (7) 

where μ and σ are constant non-negative numbers. 

Equation (7) represents a stochastic differential equation (SDE) where μ is the trend of the 

stock price, σ is the volatility of the stock price and dW is the increment of the Wiener 

process. More specifically, the increment of the Wiener process is:  

dWt= 𝜀𝑡√𝑑𝑡 ~ N (0,𝑑𝑡)                                    (8) 

where dt is an infinitesimally small positive number, and εt is a unit normal random variable.  

Based on the SDE of equation (7), we will find the optimal stopping time, or more precisely, 

the optimal value of S at which the holder should exercise the option. 

The solution is derived from the fact that the holder should exercise the option when the 

value of it, F(S), is equal to the maximum expected present value of the profit of acquiring 

the financial asset.  

F(S)=maxΕ[(ST-K)e-ρT]                                    (9) 

where E is the expectation, ST is the value of the underlying asset at the optimal time of the 

investment T, K is the strike price that the owner of the contract pays on exercising the option 

and ρ is the discount rate. We set δ=ρ-μ. 
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We assume that μ<ρ. Otherwise, we will not be able to find the optimal value of the asset S*, 

as the asset value S will be increasing in time and thus it will never be optimal to stop. 

By using the Taylor series, the Bellman equation, and the three Boundary Conditions which 

the investment opportunity F(S) must satisfy to obtain its maximum value, we can obtain the 

trigger value S* and the value of the option F(S*) at the critical value S*. These are the steps 

we follow below. 

We do not obtain any profits before exercising the option. However, there is a gain from 

holding the option and not exercising it. This gain is the investment opportunity that the 

option offers, that is, its expected present value. As long as S is not the optimal price at which 

to exercise the option, the Bellman equation is the following:  

ρF(S)dt=E(dF)                                                (10) 

Therefore, the expected return of the option in a time interval dt is equal to its expected 

present value. 

In order to describe the derivative of the option value as a SDE, we apply the Taylor Series 

and we get:  

dF(S)=
1

1!

𝜕𝐹(𝑆)

𝜕𝑆
𝑑𝑆 +

12

2!

𝜕𝐹(𝑆)2

𝜕2𝑆
𝑑𝑆2 +

13

3!
+

𝜕𝐹(𝑆)3

𝜕3𝑆
𝑑𝑆3 + ⋯                                             (11) 

By denoting derivatives with primes, we get: 

𝑑𝐹 = 𝐹΄(𝑆)𝑑𝑆 +
1

2
𝐹΄΄(𝑆)𝑑𝑆2 +

1

6
𝐹΄΄΄(𝑆)𝑑𝑆3 + ⋯                                   (12) 

We know that the term dt is a positive number infinitesimally close to zero. This means that 

all the order condition terms above the second order condition are zero. Thus equation (12) 

is: 

𝑑𝐹 = 𝐹΄(𝑆)𝑑𝑆 +
1

2
𝐹΄΄(𝑆)𝑑𝑆2                                      (13) 
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In the above equation the Ito’s Lemma appears applied on the derivative of the option value 

F. 

By substituting equation (6) in equation (13) we get: 

𝑑𝐹 = 𝐹΄(𝑆)(𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊) +
1

2
𝐹΄΄(𝑆)(𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊)2 

which implies 

 𝑑𝐹 = F΄(S)(𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊) +
1

2
F΄΄(S)(𝜇2𝑆2𝑑𝑡2 + 2𝜇𝑆𝜎𝑆𝑑𝑡𝑑𝑊 + 𝜎2𝑆2𝑑𝑊2) 

𝑑𝐹 = 𝜇𝑆F΄(S)𝑑𝑡 + 𝜎𝑆F΄(S)dW +
1

2
F΄΄(S)(𝜎2𝑆2𝑑𝑊2)                                                    (14) 

By using the statistical properties of the GBM, dW ~ N(0, dt), we get: 

E(dW)=0 and 

E(dW2)=Var(dW)+E(dW)2  

E(dW2)=dt+0=dt 

Therefore, the expectation of equation (14) is: 

𝑑𝐹 = 𝜇𝑆F΄(S)𝑑𝑡 + 0 +
1

2
F΄΄(S)(𝜎2𝑆2𝑑𝑡) 

which implies 

𝑑𝐹 = [𝜇𝑆F΄(S) +
1

2
𝜎2𝑆2F΄΄(S)]𝑑𝑡                                   (15) 

Therefore, the Bellman equation is: 

ρF(S)dt=[𝜇𝑆𝐹΄(𝑆) +
1

2
𝜎2𝑆2𝐹΄΄(𝑆)]𝑑𝑡 

which implies 

ρF(S)=𝜇𝑆𝐹΄(𝑆) +
1

2
𝜎2𝑆2𝐹΄΄(𝑆) 

and hence 
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1

2
𝜎2𝑆2𝐹΄΄(𝑆) + 𝜇𝑆𝐹΄(𝑆) − 𝜌𝐹(𝑆) = 0                                                                                           (16) 

or 

1

2
𝜎2𝑆2F΄΄(S) + (ρ − δ)𝑆F΄(S) − 𝜌𝐹(𝑆) = 0                                                                   (17) 

The investment opportunity F(S) must also satisfy the following three Boundary Conditions: 

1) F(0)=0                                                  (18) 

2) Value-Matching Condition: 

F(S*)=S*-K                         (19) 

3) Smooth-Pasting Condition: 

F΄(S*)=1                    (20) 

 

The first boundary condition simply says that when the value of the stock is zero, the value 

of the option is also zero. At the critical value S*, which is also called the trigger, the value-

matching condition says that by exercising the option the net return is S*-K. This condition 

implies that F(S) is continuous at the optimal investment price S*. Finally, the third condition 

secures that F(S) is smooth at the optimal investment point S* which ensures that there is 

not a better point to exercise the option contract.  

We want to solve equation (17) and find the value of F(S) by using a possible functional form. 

This functional form is not proposed by chance. Equation (17) is a Cauchy-Euler equation 

type. To find the solution for this kind of equations, we assume that: 

F(S)=Sβ                    (21) 

Therefore: 

F΄(S)=βSβ-1                    (22) 

and 

F”(S)=β(β-1)Sβ-2                    (23) 

Substituting the above values for F(S), F΄(S) and F”(S) into equation (17) and we get: 
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1

2
𝜎2𝑆2𝛽(𝛽 − 1)𝑆𝛽−2 + (ρ − δ)𝑆𝛽𝑆𝛽−1 − 𝜌𝑆𝛽 = 0 

which implies 

1

2
𝜎2𝛽(𝛽 − 1)𝑆𝛽 + (ρ − δ)𝛽𝑆𝛽 − 𝜌𝑆𝛽 = 0 

and hence 

𝑆𝛽[
1

2
𝜎2𝛽(𝛽 − 1) + (ρ − δ)𝛽 − 𝜌] = 0                                                                                          (24) 

Because S is the price of the stock, Sβ>0. 

Therefore: 

𝑄(𝛽) =
1

2
𝜎2𝛽(𝛽 − 1) + (𝜌 − 𝛿)𝛽 − 𝜌 =0                                 (25) 

The solution of the above formula is of the following form: 

F(S)=A1Sβ1+ A2Sβ2                             (26) 

where A1 and A2 are constants and β1 and β2 are the known roots of the equation (25) which 

is similar to equation (17). 

Equation (25) is an upward parabola because the coefficient of β2,  
1

2
σ2, is positive. Solving 

for β, we see that the value of β depends upon the values of the parameters σ, ρ and δ. We 

note that Q(0)=-ρ and Q(1)=-δ. Figure 1 illustrates the above. 
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Figure 1: Graph related to the Derivation of the Option Value formula 

 

Therefore, β1 is a number greater than 1 and β2 is a negative number. It is obviously irrational 

to exercise when the value of S is far from the critical value S*. Thus, we want to ensure that 

when the value of S is very small and approaches zero, that the option value F(S) goes also 

to zero (and not to infinity). This is also implied by the first Boundary Condition (equation 

18)). This means that we must set to zero the coefficient of the negative root β2 in equation 

(26), that is, A2=0.  

Therefore, according to equations (18) and (26), the form of F(S) is: 

𝐹(𝑆) = 𝐴𝑆𝛽1                                 (27) 

where A is a constant and β1 is greater than one known constant number. 

We will substitute the value of the option in equation (27) into the smooth-pasting condition: 

𝐹΄(𝑆∗) = ( AS∗β1)΄ = 1 

and hence 

𝛽1𝐴𝑆∗𝛽1−1 = 1  

-ρ 

β 
0 1 
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which implies 

𝐴 𝑆∗𝛽1

𝑆∗ =
1

𝛽1
  

and hence 

𝐴 𝑆∗𝛽1 =
𝑆∗

𝛽1
                      (28) 

We notice that the RHS of equation (28) is equal to the RHS of equation (19), thus by 

substituting, we get: 

𝑆∗

𝛽1
= 𝑆∗ − 𝐾  

which implies 

𝑆∗ =
𝛽1

𝛽1−1
𝐾                               (29) 

We substitute in equation (19) the functions of F(S*) and S* as found in equations (27) and 

(29) and we get: 

𝐴 =

𝛽1
𝛽1−1

𝐾−𝐾

(
𝛽1

𝛽1−1
𝐾)𝛽1

  

or 

𝛢 =
(𝛽1−1)𝛽1−1

𝛽1
𝛽1𝐾𝛽1−1

                     (30) 

We can obtain now the optimal investment value of the underlying asset S* and the value of 

the option at that time F(S*) by using equations (27), (29) and (30). As we notice, equation 

(29) determines a wedge of β1/(β1-1)>1 between the value of the stock and the strike price 

of the option which means that it is not optimal to exercise when the value of the stock is 

just equal to the exercise price. 

By substituting the values that we found previously, we can verify the equation below: 
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F(S*)+K=S* 

The above equation is actually the value-matching condition. We see that the value of the 

option at the critical value S* is: 

𝐹(𝑆∗) = 𝑆∗ − 𝐾 =
𝛽1

𝛽1−1
𝐾 − 𝐾 = 𝐾 (

𝛽1

𝛽1−1
− 1) =

1

𝛽1−1
𝐾                             (31) 

Therefore, we note that the optimal price at which to exercise S* is equal to K+[1/(β1-1)]K, 

which simply means that in order the investment to be optimal, the net return at the 

investment time should be at least [1/(β1-1)]K. This appears graphically in Figure 2. 

 

 

 

 

 

Figure 2: Theory Graph of Trigger and Exercise Price formulas 

 

3.3 Experimental design and implementation 

3.3.1 Experimental design 

We ran a two part experiment. The first part looked at the exercising behaviour of our 

subjects faced with a decision as to when to exercise an option that they owned. In the 

second part, we elicited the risk attitude of our subjects through a set of lottery questions. 

The first part of the experiment was computerised with the code written in Python; for the 

second part the code was written in Visual Studio.  
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3.3.1.1 Reproducing a continuous time problem in a laboratory 

Doing an experiment on a continuous time theory is a big challenge and few do it. There were 

many problems that we had to solve. First, some thoughts crossed our minds. Does 

continuous time really exist? Is time continuous? Can we measure the price and reproduce 

it continuously? 

We necessarily adopt a discrete time approximation to the continuous process as we cannot 

program the problem continuously on a computer. Hence the screen figure looks continuous 

but it is not.  

Another problem is the infinite time horizon and discounting of the theory. It is obvious that 

we cannot reproduce these in a laboratory experiment. Kreps (1990) notes that due to the 

stopping probability of an investment opportunity a discount rate naturally emerges. 

Therefore, instead of a discount rate, we had a random stopping time in each problem or 

more specifically a continuation probability equivalent to the discount rate. Appendix A 

provides an explanation of this. Crucially, this can be done as a random horizon problem 

without discounting is analytically identical to an infinite horizon problem with discounting 

– and is a feature regularly used by experimenters. In the case that the random stopping 

point occurred before the subject had exercised, the profit for that problem was zero.  

 

3.3.1.2 Telling the subjects about geometric Brownian motion 

One of the main difficulties of this project was to explain to the subjects what exactly 

Brownian Motion14 is. If we had gone into the technical characteristics of this process in the 

                                                           
14 From now and on, whenever we refer to Brownian Motion, we mean Geometric Brownian Motion 
(GBM). 
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Instructions, it would have been impossible for the majority of the subjects to understand 

them. So we decided to show them Brownian motion rather than to describe or explain it. 

To each of our subjects we gave a set of 100 problems. Specifically, we gave 4 blocks of 25 

problems. We decided to make the human beings of our experiment familiar with GBM in 

each block of problems by giving them several specimen problems where the subject could 

exercise and observe the asset’s price up to the random stopping time and hence try to 

understand through experience some of the sequence’s characteristics. Specifically, the first 

5 problems in any block were practice problems to make the subjects feel familiar with the 

parameters for the Brownian motion and for determining the random stopping time. 

 

3.3.1.3 Choice of problems sets 

We chose the problems in part 1 of our experiment by conducting extensive pre-

experimental simulations in Matlab. We wanted to achieve as small time intervals as possible 

in order to be closest to the continuous time of the theory. However, we found that we had 

to deal with another issue. The choice of problems with extremely tiny time intervals was 

not possible to be implemented in Python as the software sometimes was demanding up to 

73GB of memory to run! Therefore, we started increasing gradually the time intervals up to 

the point that there were not such issues. We managed to keep the time intervals indeed 

very small. 

The choice of the problems set for the first part had also other difficulties. We wanted to 

have a specific number of values for the trend, the volatility and the stopping probability and 

at the same time a specific variety of average profits in each problem. The trend and the 

volatility were important for the Brownian Motion and the stopping probability was 

responsible for the random stopping point. In addition, we wanted to make sure that the 
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problems in Matlab were repeated exactly the same in Python. To achieve this we used the 

same random seed in both softwares.  

Another key factor determining the choice of problems in the first part was that we had to 

choose the set in a way that we could infer from the data the risk-aversion level of the 

subjects. Therefore, the problems sets had to be built in a way that we could infer different 

levels of risk-aversion by having different decisions from the subjects. 

After solving all the above issues, we ended up that the participants in our experiment would 

have to participate in four problems with different triggers and different optimal profits: 1 

low profit, 2 medium profits and 1 large profit. This was needed in order to keep a good 

number for the main problems and avoid biases originating from the level of the optimal 

profits. In order to avoid biases such as order effects in the data analysis, we gave to our 

subjects the 4 blocks of our problems in 24 different orders. Furthermore, we allocated to 

each participant in our experiment different seeds for the stochastic parameter in the 

Brownian Motion. 

For the first part our four problems were the following: 

Problem Trend Volatility Starting 
price 

Strike/Exercise 
Price 

Time 
Interval 

Stopping 
Probability 

Optimal 
Trigger 

S* 

1 0.026 0.28 40 40 0.002 0.6 
49.9850 

2 0.026 0.44 40 40 0.002 0.4 
63.6428 

3 0.055 0.44 40 40 0.002 0.6 
57.3905 

4 0.055 0.28 40 40 0.002 0.4 
56.5700 

Table 1: Part 1 - Problem Set 
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We tried to keep a good variety among the values for the three main parameters, that is, the 

trend, the volatility and the stopping probability. As already noted, the starting and the 

exercise price are the same in all problems; we chose the same values for these two 

parameters for two reasons: first, we wanted to avoid having an exercise price smaller than 

the starting price because possibly some of the subjects could have taken the exercise 

decision immediately after the start of each round, as they could have profit for sure15; 

second, if the profit was negative at the start of each problem, that is, the exercise price was 

higher than the initial price, there would have been a possibility that the price would not 

increase enough to reach a value above the exercise price during the life of the option. For 

all the above reasons, we wanted to start the profit at zero in all problems in order to avoid 

having effects from the differences in the initial values of these two parameters. 

In the second part of the experiment, we chose to elicit risk aversion with the Allocation 

Method. The Allocation method was established by Loomes (1991). Some years later, 

Andreoni and Miller (2002), and Choi et al (2007) revived it and used it in a social and risky 

choice context respectively. Allocation Method appears in finance in portfolio choice 

problems. Through this method, the elicitation of the risk aversion parameter of a subject is 

obtained by observing the subject’s allocation of an amount of experimental money, that the 

subject has been given, to various states of the world, with a specific probability for each 

state and given exchange rates between experimental money and real money for each of the 

states. There are also other well-known methods for eliciting the risk aversion parameter of 

the subjects which are used widely by economists. Among the others, the most established 

                                                           

15 As it is stated by (Brandimarte, 2006):”The main difficulty in pricing an American option is the 
existence of a free boundary due to the possibility of early exercise. To avoid arbitrage, the option 
value at each point in the (S, t) space cannot be less than the intrinsic value (i.e., the immediate payoff 
if the option is exercised).” This means that the American call option value F(S,t) should satisfy the 
following condition F(S, t) ≥ max{S( t ) - K, 0} and given the fact that the subjects in our experiment do 
not pay to obtain the option contract, it is rational that the starting stock price is equal to the strike 
price. 

http://link.springer.com/article/10.1007/s11166-014-9198-8/fulltext.html#CR5
http://link.springer.com/article/10.1007/s11166-014-9198-8/fulltext.html#CR9
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ones are Holt-Laury Price Lists, pioneered originally by Holt and Laury (2002), the Pairwise 

Choice questions used by Hey and Orme (1994) and the Becker-DeGroot-Marschak 

mechanism created by Becker et al (1964)16. In Holt and Laury Price Lists subjects are 

presented with an ordered list of pairwise choices and in Pairwise Choice questions they are 

also presented with pairwise choices but not in a list and not ordered ones. In both cases 

subjects have to choose one of the two choices. However, these two methods do not inform 

us about the strength of preference between the two choices. This can be done using the 

Allocation method or the Becker-DeGroot-Marschak mechanism, and thus these latter are 

considered more informative methods for eliciting the risk aversion level of the subjects. As 

the Becker-DeGroot-Marschak mechanism seems to be more complicated for subjects to 

understand, we chose the Allocation method. As in the first part, we also needed a carefully 

chosen problem set that we could use to extract different risk aversion preferences from 

different decisions. We chose a subset of the problem set that Zhou and Hey (2016) used. 

The 40 different allocation problems that we used are attached in Table T1. 

 

3.3.2 Experimental implementation 

The experiment took place in the EXEC laboratory. As already noted, the experiment was in 

two parts. The first part was called the Financial Option Decision Problem and it concerned 

the exercising decision. The Allocation Decision Problem followed and it concerned the 

elicitation of the risk aversion of the participants. The experiment lasted approximately 2 

hours and 9617 people participated.  

                                                           
16 Further methods are discussed in Charness et al (2013) 

17 The number 96 was not chosen by chance. We repeated 4 times the 24 different orders of the 4 
main problems in order to avoid any order effects. 
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3.3.2.1 Part 1: Financial option decision problem 

We welcomed our subjects in the experiment and we gave them time to read the Instructions 

for the first part and asked if any clarification was needed. When most subjects were happy 

with the Instructions, we started the experiment. Subjects who still had not finished reading 

the Instructions, could still continue reading them as it was an individual decision making 

experiment. The Instructions given to the subjects are attached in Appendix B. A summary 

of the Instructions was also available on the screen during the whole of the first part of the 

experiment. 

The first part was built in four main blocks. In each block one of our main problems was used. 

More specifically, in each block we repeated the problem twenty five times in a row. Each of 

the four blocks in the problems set kept the same values for the parameters of the Brownian 

Motion, the starting price, the exercise price and the random stopping point for all the 

twenty five rounds. Because GBM is stochastic, even when the same problem was repeated, 

that is, with exactly the same values for the parameters, the actual path of the asset price 

was different each time due to the random seed. Thus, the subjects did not observe the same 

asset price for the twenty five rounds but at the same time the parameters were the same. 

The subjects were informed that they had four main problems and the following table was 

appeared in the Instructions and also close to their screen to remind them which the sample 

rounds were. As can be seen from the table, the first five rounds of each block were practice 

problems; these did not count for payment. 

Block number Practice Problems Problems for payment 

1 1-5 6-25 

2 26-30 31-50 

3 51-55 56-75 

4 76-80 81-100 

Table 2: Practice and Payment Rounds 
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In each problem, the subject held an American call option. He or she had the right but not 

the obligation to exercise it during the life of the option. Figure 3 shows a screen shot from 

the software. 

The participant could see the summary of the Instructions before the start of the problem 

and also during it. He or she could also see the number of the problem that he or she was 

going to start, thus he or she was informed if it was a practice problem. 

 

Figure 3: A Screen Shot from the First Part Software 

   

In each problem, the subject held an option contract on a financial asset, for example, a 

stock, the price of which evolved continuously, randomly and exogenously. 

The vertical axis represents the asset price and the horizontal one shows the time. The 

display adjusted in the case that the random stopping point had not occurred in the initial 

time interval18 or the price was over 100 units of experimental money. The green line in 

Figure 3 shows the exercise price and the blue one displays the asset price. 

                                                           
18 The time axis was actually starting adjusting after the point 0.8. 
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The subject had to observe the blue line and when and if he or she wanted, he or she could 

exercise by clicking on the “Exercise” button. After clicking, he or she could still observe the 

line up to the random stopping point; this was so that he or she could understand further 

the behaviour of the asset price. 

The profit in each problem is the difference between the asset price at the exercise point 

and the strike price. For example, for the problem in Figure 3, if the participant had exercised 

slightly before point 0.8 in the time scale, he or she would have achieved as profit some 12.5 

units of experimental money. We implemented the following procedure to determine the 

payment to a subject: he or she chose randomly one disk from a bag containing 80 disks 

numbered from 6 to 25, from 31 to 50, from 56 to 75 and from 81 to 100. The number on 

the disk chosen determined the problem on which participant was paid. Each unit of 

experimental money was worth £1.5. Therefore, in the above example, the profit is equal to 

£18.75 (=12.5*1.5). An example was given also to subjects. At the end of each round, the 

participant was informed of his profit. In the case that he or she had not exercised during the 

life of the option or he or she had exercised when the profit was negative19, he or she had 

zero profit. 

 

3.3.2.2 Part 2: Allocation decision problem 

After finishing the first part, we distributed the Instructions for the second part. As before, 

the subjects were given enough time to read the Instructions for this second part and they 

could ask questions for clarification. The screenshot from this part of the experiment is 

shown in Figure 4. 

                                                           
19 This was the case when the exercise price was higher than the asset price at the exercise time. 
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Figure 4: A Screen Shot from the Second Part Software 

 

In this part of the experiment, in each problem the subjects had an initial endowment of 100 

tokens. Their task was to allocate the tokens between two colours. Each of the colours had 

a specific probability of occurring. 

There was an exchange rate between the allocation of tokens to each colour and the real 

money that the subjects would get paid depending on the outcome of the lottery; this rate 

was shown on the screen. The subjects were not able to take a decision until at least 5 

seconds had elapsed. They could distribute the tokens among the two colours as they 

preferred and they could observe the exact amount of real money they would get paid given 

their current allocation and the exchange rates. After 5 seconds had elapsed, a “Confirm” 

button appeared and participants could confirm their decision when they were ready by 

clicking on the button. 

The probability of each colour was shown on the screen. Subjects could also see this 

probability on the horizontal axis in the diagram and the real money they could get from 

their allocation and the lottery’s result on the vertical one. 
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As an example, let us take Figure 4. Let us assume that a subject wants to allocate equally 

the 100 given experimental money between the two states; ‘Red’ and ‘Yellow’.  They have 

respective probabilities 0.7 and 0.3. The exchange rates between tokens and money for Red 

is 1 token to £0.125 and for Yellow is 1 token to £0.100. The optimal allocation for a particular 

subject depends on the subject’s attitude to risk and the exchange rates. The subject gets 

payment based on the outcome of a random device, for instance a lottery, in one of the 

problems he or she has played which is also chosen through a random device. Suppose the 

problem in Figure 4 was chosen among the 40 problems through a lottery. To determine the 

state to be realised in this problem, the subject chose one disk out of 100 disks. In the 

example in Figure 4, if the subject chooses any number from 1 to 70, the outcome of the 

allocation is Red and the participant gets £(50*0.125) = £6.25. Otherwise, a number between 

71 and 100 means that the outcome of the allocation is Yellow and the corresponding 

payment is £(50*0.1) = £5.  Overall subjects were paid the earnings on each part of the 

experiment plus a show up fee of £2.50. 

After the end of this part a demographic questionnaire was distributed to the participants. 

The questionnaire is available in Appendix C. 

  

3.4 Analysis and results 

In the first part of the experiment, in each problem, whenever the participant had exercised 

before the expiration point, the price of the underlying asset at the exercised time was 

observed and saved. This price was the actual trigger of the participant for that specific 

problem. In all the analysis that follows we exclude from our dataset data from the practice 

rounds and any data from rounds in which subject’s decisions to exercise would have led to 

negative profits (subjects knew that they would get paid zero for such a round). In Sections 

3.4.1 and 3.4.2, we do not include rounds in which the subject did not exercise before the 
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expiration time point and thus rounds in which we were not able to observe his or her actual 

trigger for these rounds. In contrast, in Section 3.4.3 we do include problems in which the 

subject had not exercised by the time that the option expired. This latter data is informative 

– it tells us that the maximum price of the stock reached before the expiry of the round was 

lower than the subject’s trigger. In  Section 3.4.3 we accordingly carry out truncated 

regressions and check if the results are similar with those in Section 3.4.1. 

We assumed a CARA utility function and we obtained estimates of the risk aversion 

parameters of each of our subjects in two ways. First, we used the data from the Allocation 

part of the experiment to provide an elicited risk aversion parameter for each of our subjects. 

Second, we obtained an estimated risk aversion coefficient of each participant through the 

financial option decision problems by finding the risk-aversion index which best explains the 

behaviour of that subject. 

To estimate the best-fitting risk-aversion indices, we proceeded as follows. First, we had a 

program that calculated numerically (because an analytical solution was not possible) the 

optimal triggers for any given level of risk-aversion. Then, subject by subject, we compared 

the actual triggers with the optimal triggers for all levels of risk-aversion and used this to find 

the level of risk-aversion which best explained the subject's decisions. The first part is simple. 

The optimal trigger is that which maximises Expected Utility, which is simply (if we normalise 

the utility function so that u(0)=0) equal to the utility of the trigger minus the exercise price 

times the probability that the trigger is reached. (Note that there are just two possibilities - 

either the price reaches the trigger or it does not). The utility from exercising is an increasing 

function of the trigger while the probability that the trigger is reached is a decreasing 

function of the trigger. We found the latter through a simulation of the Brownian Motion. 

Therefore, we have not only the optimal trigger for a risk-neutral agent in each problem, but 

also the optimal trigger for each of the participants in each problem; first based on the 
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elicited risk aversion parameter and second based on the estimated risk aversion parameter. 

Notice that this latter definitionally fits the data best. Also, note that each of these two 

triggers for a specific subject is not the same in Sections 3.4.1 and 3.4.2 as no one of the two 

risk aversion parameters is kept the same in both Sections. 

After this, we regressed the actual trigger of the subjects on the optimal triggers given both 

the elicited and estimated risk aversion parameters, and on some demographic data. The 

demographic data concern the age, the gender, the ethnicity, the education, the subject’s 

field of study, the participant’s work experience in economics/finance area, the experience 

in stock markets and in financial option markets, the impatience and the stress the 

participant felt during the experiment and the risk-averse level based on the subjects’ belief. 

The last three factors were measured by the subjects in a scale from 1 to 5 and the level of 

each of these characteristics was increasing as the numbers were increasing. 

 

3.4.1 Relation of actual subjects’ trigger with risk-neutral and risk-
averse optimal trigger 

We began by regressing the actual trigger of the participants on the risk-neutral optimal 

trigger. If the theory is right we expect that the intercept should be zero and the coefficient 

of the risk-neutral optimal trigger should be one. 

Actual Trigger = α + β1 risk-neutral Optimal Trigger 

 Estimated Coefficient Confidence Interval at 95% 

Intercept 32.8982 30.0763, 35.7202 

risk-neutral Optimal Trigger 0.2825 0.2333, 0.3318 

                                                    R2 = 0.0361 

Table 3: Regression of the actual trigger on the risk-neutral optimal trigger 
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As can be seen, the intercept is not zero. Also, the coefficient of the risk-neutral optimal 

trigger is not one. Indeed the former is significantly different from zero while the latter is 

significantly different from one. However, this latter is positive showing that participants 

were increasing/decreasing their actual trigger when the one based on the theory was 

increasing/decreasing.  

If we force the intercept to be zero, as it should be based on the theory, and run again the 

regression, we get Table 4: 

Actual Trigger = 0 + β1 risk-neutral Optimal Trigger 

 Estimated Coefficient Confidence Interval at 95% 

risk-neutral Optimal Trigger 0.8546 0.8502, 0.8591 

Table 4: Regression of the actual trigger on the risk-neutral optimal trigger (without 
intercept) 

 

As can be seen, the estimated coefficient is 0.8546 which is again positive and this time quite 

close to the value that the theory supports, that is one. Unfortunately the coefficient is 

significantly different from one. 

In Table 5, a regression of the actual trigger on the elicited risk-averse optimal trigger (elicited 

from the allocation questions) shows that the coefficient of the independent variable is 

significantly different from zero. Unfortunately, it is also significantly different from one and 

the explanatory power of this variable is low. The intercept is also significantly different from 

zero, which it should not be. 

Actual Trigger = α + β1 Elicited risk-averse Optimal Trigger 

 Estimated Coefficient Confidence Interval at 95% 

Intercept 46.7091 44.9766, 48.4416 

Elicited risk-averse Optimal 
Trigger 

0.0530 0.0138, 0.0922 

                                                     R2 = 0.0021 

Table 5: Regression of the actual trigger on the elicited risk-neutral optimal trigger 
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In contrast, in Table 6, the estimated risk-averse optimal trigger can be seen to do much 

better. It seems that it influences the trigger of the subjects to an important degree. It 

appears that when the estimated risk-averse optimal trigger is increased by one unit the 

chosen trigger by the subjects is increased by 0.5278.  The coefficient is significantly positive, 

but unfortunately it is also significantly different from 1.  

Actual Trigger = α + β1 Estimated risk-averse Optimal Trigger 

 Estimated Coefficient Confidence Interval at 95% 

Intercept 25.2917 22.4236, 28.1599 

Estimated risk-averse 
Optimal Trigger 

0.5278 0.4642, 0.5913 

                                                      R2 = 0.0728 

Table 6: Regression of the actual trigger on the estimated risk-averse optimal trigger 

  

A graphical representation of the above regressions follows below. 

                     

    Figure 5: Scatter of Actual Trigger against Risk Neutral Optimal Trigger 
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       Figure 6: Scatter of Actual Trigger against Elicited Risk Averse Optimal Trigger 

 

                  

 

 

 

 

 

 

               

 

                     Figure 7: Scatter of Actual Trigger against Estimated Risk Averse Optimal Trigger 

 

Based on the above results, it seems that the estimated risk-averse optimal trigger can 

explain behaviour better than the risk-neutral optimal trigger and the elicited risk-averse 

optimal one. The last comes third in the ranking as the risk-neutral optimal trigger does 

better. All of them have a positive relationship with the actual trigger of the participants in 

the experiment, showing that subjects have intuition about when the trigger should increase 
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or decrease, but the magnitude of the response is too low. However, it will be seen from the 

above graphs that subjects tend to exercise at too high a price when the optimal trigger is 

low, and exercise at too low a price when the optimal trigger is high: the fitted line has a 

positive intercept and a positive slope less than one. 

 

3.4.2 Relation of actual subjects’ trigger with risk aversion and other 
variables 

In this Section we report a number of regressions. In each of these regressions, we use as 

independent variables the estimated or the elicited risk-averse optimal trigger (which is part 

of our main study) and one of the demographic variables (which describe demographic, 

educational, experience and emotional characteristics of the participants).  

We first present the results for the estimated risk-averse optimal trigger case. An example of 

the kind of regressions that we have run is in Table 7. 

Actual Trigger = α + β1 Estimated risk-averse Optimal Trigger + β2 Gender + β3 Estimated 
risk-averse Optimal Trigger * Gender 

 Estimated Coefficient Confidence Interval at 95% 

Intercept 24.8125 20.4246, 29.2004 

Estimated risk-averse 
Optimal Trigger 

0.5395 0.4434, 0.6355 

Gender 0.9974 -4.8432, 6.8379 

Estimated risk-averse 
Optimal Trigger * Gender 

-0.0242 -0.1532, 0.1049 

                                                      R2 = 0.0729 

Table 7: Regression of the actual trigger on the estimated risk-averse optimal trigger and 
gender 

 

We do the same for all the demographic variables, keeping the estimated risk-averse optimal 

trigger on the right hand side of the regressions. The purpose of this first series of regressions 

is to find the statistically significant demographic variables. We find that the statistically 
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significant demographic variables are: if the subjects are students; if they have studied 

financial options in the past; their working experience in economics or finance field; their 

self-perceived risk aversion level; and if they are or have been students in social sciences or 

natural sciences20. 

Then we ran again regressions like the above one in Table 7 but this time we started by 

including all of the demographic variables on the right hand side. Starting with this 

regression, we then dropped the least significant variable and kept the other ones, and we 

repeated this procedure up to the point that all of them in the regression are statistically 

significant. In the case with the estimated risk optimal trigger on the right hand side, we need 

two more regressions after the first series of regressions to end up at this point. The final 

regression with all the significant statistically demographic variables is presented in Table 8. 

It seems that the coefficient of the estimated risk-averse optimal trigger is negative but also 

not statistically significant from zero and not explanatory powerful in a regression with the 

other independent variables. First, it seems that people who have studied financial options 

tend to increase their trigger significantly compared to people who have not. This could 

possibly mean that their previous knowledge of the subject matter of the experiment make 

them feel more secure, that is, causing them the feeling of confidence, and thus they demand 

a higher trigger than the one that people with no previous educational background on 

financial options want. We also notice that the higher is the self-perceived risk aversion level 

of the subject, the lower is his actual trigger. This seems a rational result. People who study 

or have studied one of the natural sciences seem to be more conservative, as their actual 

trigger is reduced by -12.2605 in comparison with the ones who do not study these kind of 

sciences. One reason could be the fact that these people are more technical and they may 

                                                           
20 Social Sciences include anthropology, ethnic and cultural studies, archaeology, area studies, 
economics, gender and sexuality studies, geography, organisational studies, political science, 
psychology and sociology. Natural Sciences include biology, chemistry, physics, earth sciences and 
space sciences. 



90 

 

understand better the characteristics of the Brownian Motion and how flexible the price of 

a stock can be. This thought and intuition at one point could lead them to decide to stop 

earlier if we take into account that the majority of people are risk-averse and thus this action 

could make them feel safer. We also notice that both the last two demographic variables 

increase the slope of the fitted line and make it again positive in total. The goodness of fit is 

8.66% which may seem small but it is usual not to be really very high when we try to explain 

human behaviour by taking into account characteristics such as psychological ones (Frost, 

2013). 

Actual Trigger = α + β1 Estimated risk-averse Optimal Trigger + β2 Study of Financial 
Options + β3 Estimated risk-averse Optimal Trigger * Study of Financial Options + β4 risk-
averse Level based on Subject’s Belief + β5 Estimated risk-averse Optimal Trigger * risk-
averse Level based on Subject’s Belief + β6 Natural Sciences + β7 Estimated risk-averse 
Optimal Trigger * Natural Sciences 

 Estimated Coefficient Confidence Interval at 95% 

Intercept 49.9334 38.8199, 61.0469 

Estimated risk-averse 
Optimal Trigger 

-0.0010 -0.2512, 0.2492 

Study of Financial Options 14.7530 6.9109, 22.5951 

Estimated risk-averse 
Optimal Trigger * Study of 

Financial Options 

-0.3396 -0.5165, -0.1627 

risk-averse Level based on 
Subject’s Belief 

-7.7649 -11.0055, -4.5243 

Estimated risk-averse 
Optimal Trigger * risk-
averse Level based on 

Subject’s Belief 

0.1673 0.0944, 0.2403 

Natural Sciences -12.2605 -21.0812, -3.4398 

Estimated risk-averse 
Optimal Trigger * Natural 

Sciences 

0.2560 0.0651, 0.4468 

                                                     R2 = 0.0866 

Table 8: Regression of the actual trigger on the estimated risk-averse optimal trigger and all 
the final statistically significant demographic variables 
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We repeated the same procedure this time but using the elicited risk-averse optimal trigger 

instead of the estimated risk-averse optimal one. By the first series of regressions find that 

there are more statistically significant demographic variables than there are with the 

estimated risk-averse optimal trigger. More specifically, we find that the statistically 

significant variables are: the age of the subjects: if they belong to the White category; their 

work experience in economics/finance; if they have studied financial options; their trading 

experience in stock markets; their trading experience in financial option contracts; their level 

of impatience during the experiment; their level of stress during the experiment; their self-

perceived risk aversion level; if they are or have been students in humanities or natural 

sciences; and if they are or have been students in professions21. We follow the same 

procedure as in the previous case with the estimated risk-averse optimal trigger. More 

specifically, after running other two regressions after the first series of regressions, we end 

up that the statistical significant demographic variables are the ones in Table 9. 

 

 

 

 

 

 

 

                                                           
21 Humanities include history, linguistics, literature, performing arts, philosophy, religion and visual 
arts. 
Professions include agriculture, architecture and design, business, divinity, education, engineering 
and technology, environmental studies and forestry, family and consumer science, human physical 
performance and recreation, journalism, media studies and communication, law, library and 
museum studies, medicine, military sciences, public administration, social work and transportation.  
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Actual Trigger = α + β1 Elicited risk-averse Optimal + β2 Age + β3 Elicited risk-averse 
Optimal Trigger * Age + β4 White + β5 Elicited risk-averse Optimal Trigger * White + β6 
Level of Stress + β7 Elicited risk-averse Optimal Trigger * Level of Stress 

 Estimated Coefficient Confidence Interval at 95% 

Intercept 41.8786 34.6817, 49.0756 

Elicited risk-averse Optimal 
Trigger 

0.1490 -0.0140, 0.3121 

Age 9.4882 6.1118, 12.8647 

Elicited risk-averse Optimal 
Trigger * Age 

-0.2249 -0.3009, -0.1488 

White 4.0470 0.4178, 7.6762 

Elicited risk-averse Optimal 
Trigger * White 

-0.0831 -0.1648, -0.0014 

Level of Stress -3.8980 -5.3859, -2.4101 

Elicited risk-averse Optimal 
Trigger * Level of Stress 

0.0968 0.0626, 0.1310 

                                                     R2 = 0.0296 

Table 9: Regression of the actual trigger on the elicited risk-averse optimal trigger and all 
the statistically significant demographic variables 

 

We find that the coefficient of the elicited risk-averse optimal trigger is positive but not 

statistically significantly so. It seems that the higher is the age of the subject, the more he or 

she increases his actual trigger. Therefore, older people appear to be more demanding about 

their trigger value. People who are white seem to have a higher trigger by 4.0470 than the 

ones who are not. As we can notice the level of stress has negative relationship with the 

chosen trigger by the subject. Therefore, the more stressed is one, the lower is his actual 

trigger. The overall goodness of fit is very low. We finally notice that the final regression with 

the estimated risk-averse optimal trigger and the most significant demographic variables on 

the right hand side fits the data better than the regression in Table 9 (which uses the elicited 

risk-averse optimal trigger). 
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3.4.3 Relation of actual subjects’ trigger with risk-neutral and risk-
averse optimal trigger including the data for the rounds in which the 
subject had not exercised by the time the option expired 

We began by implementing a truncated regression of the actual trigger of the participants 

on the risk-neutral optimal trigger. If the theory is right the intercept should be zero and the 

coefficient of the risk-neutral optimal trigger should be one. 

Actual Trigger = α + β risk-neutral Optimal Trigger + ε,  where  ε ~ N (o, σ2) 

parameter Estimated Coefficient Confidence Interval at 95% 

α 38.0352 (0.0237) 37.9888, 38.0816 

β 0.2249 (0.0013) 0.2224, 0.2273 

σ 7.7408 (0.0213) 7.6991, 7.7825 

Log-Likelihood = -12384 

Table 10: Truncated regression of the actual trigger on the risk-neutral optimal trigger 

 

As can be seen from Table 10, the intercept is not zero. Also, the coefficient of the risk-

neutral optimal trigger is not one. Indeed the former is significantly different from zero while 

the latter is significantly different from one. However, this latter is positive showing that 

participants were increasing/decreasing their actual trigger when the one based on the 

theory was increasing/decreasing. The Log-Likelihood is very low and the estimate of σ shows 

us that there is lot of noise. 

In Table 11, a truncated regression of the actual trigger on the elicited risk-averse optimal 

trigger (elicited from the allocation questions) shows that the coefficient of the independent 

variable is not statistically important to the model as it is not significantly different from zero; 

it is also significantly lower than one. Thus, the explanatory power of this variable is low. The 

intercept is significantly different from zero, which it should not be. There is lot of noise and 

the Log-Likelihood is lower than the one in Table 10, showing us that the regression with the 
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elicited risk-averse optimal trigger on the right hand side has a worse fit than the one with 

the risk neutral optimal trigger (Table 10). 

Actual Trigger = α + β Elicited risk-averse Optimal Trigger + ε,  where  ε ~ N (o, σ2) 

parameter Estimated Coefficient Confidence Interval at 95% 

α 47.8893 (4.2285) 39.6015, 56.1772 

β 0.0681 (1.6370) -3.1406, 3.2767 

σ 7.8147 (1.0033) 5.8483, 9.7810 

Log-Likelihood = -12418 

Table 11: Truncated regression of the actual trigger on the elicited risk-averse optimal 
trigger 

 

In contrast, in Table 12, the estimated risk-averse optimal trigger can be seen to do much 

better. It seems that it influences the trigger of the subjects to an important degree. It implies 

that when the optimal estimated risk-averse optimal trigger is increased by one unit the 

chosen trigger by the subjects is increased by 0.6234.  The coefficient is significantly positive, 

and not far away from 1 as was the case in the regression with the risk neutral optimal trigger 

and in the regression with the elicited risk-averse optimal trigger (Tables 10 and 11 

respectively). The Log-Likelihood is larger than those in the previous two tables. However, 

there is still lot of noise. 

Actual Trigger = α + β Estimated risk-averse Optimal Trigger + ε,  where  ε ~ N (o, σ2) 

parameter Estimated Coefficient Confidence Interval at 95% 

α 22.6560 (0.033802) 22.5898, 22.7223 

β 0.6234 (0.010142) 0.6035, 0.6433 

σ 7.4934 (0.012396) 7.4691, 7.5177 

Log-Likelihood = -12245 

Table 12: Truncated regression of the actual trigger on the estimated risk-averse optimal 

trigger 

 

Graphical representations of the above regressions are shown below.  
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              Figure 8: Scatter of Actual Trigger against Risk Neutral Optimal Trigger 

          

 

                           Figure 9: Scatter of Actual Trigger against Elicited Risk Averse Optimal Trigger 
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                     Figure 10: Scatter of Actual Trigger against Estimated Risk Averse Optimal 

Trigger 

 

Based on the above results, it seems that the estimated risk-averse optimal trigger can 

explain behaviour better than the risk-neutral optimal trigger and the elicited risk-averse 

optimal one. The last comes third in the ranking as the regression with the risk-neutral 

optimal trigger fits better the data. All of them have a positive relationship with the actual 

trigger of the participants in the experiment, showing that subjects have intuition about 

when the trigger should increase or decrease, but the magnitude of the response is too low. 

However, it will be seen from the above graphs that the fitted line has a positive intercept 

and a positive slope less than one, implying that subjects tend to exercise at too high a price 

when the optimal trigger is low, and exercise at too low a price when the optimal trigger is 

high. Hence, the results confirm what we found in Section 3.4.1. concerning  the ranking of 

the three different optimal triggers. Also, the Log-Likelihood in this Section, the R2 in Section 

3.4.1 and the values of the coefficients in both Sections lead to very similar results. 

Therefore, it seems that it does not make much difference  whether  we exclude or include 

the data from the rounds in which  the subjects did not exercise. This is the reason that we 
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do not repeat the analysis of the demographic data (Section 3.4.2) using the dataset of 

Section 3.4.3. 

 

3.5 Conclusions 

We have tested in a laboratory experiment the theory of the timing of the exercising of an 

American call option. This is a crucial component of finance theory and underlies the theory 

of option pricing. The theory assumes that the decision-maker is risk-neutral, which we think 

is an implausible assumption. We therefore extended the theory to apply to risk-averse 

agents and tested this extension with our experimental data. Indeed we applied it in two 

different ways: first, by eliciting (in a separate part of the experiment) the risk-aversion of 

each of our subjects; and second, by finding the risk-aversion index for each subject which 

best explains their decisions. 

The theory concerns a decision-maker who owns an American call option on some asset. This 

gives the decision-maker the right but not the obligation to buy one unit of the asset at a 

pre-specified price (called the exercise price). The profit that the decision-maker gets is the 

difference between the price of the asset at the time that the option is exercised and the 

exercise price. It is assumed in the theory that the price of the asset follows Geometric 

Brownian Motion (which implies that proportional changes in the price follows a random 

walk) in a continuous infinite-horizon world with constant discounting. The theory says that 

the optimal strategy of the decision-maker is to exercise the option when the price reaches 

some price (called the trigger price). This trigger price depends upon the mean and variance 

of the stochastic price process and the discount rate. We show that with risk-averse decision 

makers the trigger also depends upon the risk-aversion of the decision-maker – with more 

risk-averse agents having lower triggers, and hence exercising earlier than less risk-averse 

agents. 
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Clearly in an experiment lasting at most two hours we cannot implement an infinite-horizon 

constant-discounting scenario, so instead we implement an experiment with a random 

horizon. Specifically we had a random stopping device such that the probability of a problem 

terminating at the end of any period is constant. The implied continuation probability is the 

experimental equivalent of the discount rate. This is standard experimental practice. 

We presented our subjects with 100 problems, in each of which they faced a stochastic asset 

price and had to decide when to exercise an option (on that asset) that they had been given. 

These 100 problems were 25 repetitions of 4 basic problems. The 4 basic problems had 

different values for the key parameters: the mean and variance of the stochastic problem 

and the continuation probability, chosen in such a way that there was variability in the 

implied optimal triggers, and the implied optimal profits. 

To check if risk aversion or risk neutrality does better we used two datasets; one without 

including the rounds in which the subjects did not exercise and one in which we included 

these rounds (since we can infer  that the subject’s trigger was above the highest price that 

the stock reached during the round). The conclusions for both datasets were the same. 

Specifically, the first thing that we did was to see how well the risk-neutral theory described 

the behaviour of the subjects. The answer was ‘not very well’. We then used a part of the 

experiment in which we had elicited the risk-aversion of our experiment to see if the elicited 

risk aversion explained better the behaviour of the subjects. To do this, we obviously had to 

calculate the implied optimal trigger for any risk-aversion. Explanation of behaviour with this 

elicited risk-aversion was worse. However, having knowledge of the relationship between 

the trigger and the level of risk-aversion enabled us to do one further thing: find, for each 

subject, the level of risk-aversion that best explains their behaviour. We call this level the 

estimated risk-aversion. Obviously it explains behaviour at least as well as risk-neutrality or 

the elicited risk-aversion. The relation between the actual trigger and the optimal trigger is 
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highest with the estimated risk-aversion, next highest that with risk-neutrality and lowest 

with the elicited risk-aversion. 

We also checked the effect of some demographic variables in conjunction with the estimated 

or the elicited risk-averse optimal trigger on the subjects’ actual triggers (we had collected 

such data through a questionnaire at the end of the experiment). The actual trigger regressed 

on the estimated risk-averse optimal trigger in conjunction with the demographic variables 

again does better than the regression of the actual trigger against the elicited risk-averse 

optimal one with the demographic variables. In the former regression, the educational 

background on financial options theory, the level of self-perceived risk-aversion and the 

study of natural sciences seem to influence their choice of the trigger. 

Therefore, the risk-neutral story does not explain the behaviour of our subjects particularly 

well. Introducing risk-aversion into the story improves the explanatory power – though not 

by very much: a lot remains to be explained. There are, of course, other possible 

explanations. Given the context, regret and loss aversion are two obvious contenders. 

Subjects might suffer regret if the problem stops before they had exercised or if they had 

exercised early and subsequently saw the price rise. It follows that subjects could experience 

regret about actions they did not take and actions they took respectively. Another theory 

that could possibly explain why people stop earlier than the optimal time is loss aversion. 

Loss aversion refers to the fact that a loss counts more for someone than a profit of equal 

amount. Future research can also check whether regret and loss aversion explain the 

behaviour of our subjects better than the theories that we have tested. If so, they might be 

useful theories to apply in other contexts. 
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Tables 

Table T1: Problems Set for the Allocation Decision Problem Part 

Problem 
Number 

Initial 
Endowment 

Probability 
X 

Probability 
Y 

Exchange 
X 

Exchange 
Y 

1 100 0.1 0.9 0.57 1 

2 100 0.1 0.9 0.8 1 

3 100 0.1 0.9 1.25 1 

4 100 0.1 0.9 1.75 1 

5 100 0.2 0.8 0.5 1 

6 100 0.2 0.8 0.67 1 

7 100 0.2 0.8 1 1 

8 100 0.2 0.8 1.5 1 

9 100 0.2 0.8 2 1 

10 100 0.3 0.7 0.57 1 

11 100 0.3 0.7 0.8 1 

12 100 0.3 0.7 1.25 1 

13 100 0.3 0.7 1.75 1 

14 100 0.4 0.6 0.5 1 

15 100 0.4 0.6 0.67 1 

16 100 0.4 0.6 1 1 

17 100 0.4 0.6 1.5 1 

18 100 0.4 0.6 2 1 

19 100 0.5 0.5 0.57 1 

20 100 0.5 0.5 0.8 1 

21 100 0.5 0.5 1.25 1 

22 100 0.5 0.5 1.75 1 

23 100 0.6 0.4 0.5 1 

24 100 0.6 0.4 0.67 1 

25 100 0.6 0.4 1 1 

26 100 0.6 0.4 1.5 1 

27 100 0.6 0.4 2 1 

28 100 0.7 0.3 0.57 1 

29 100 0.7 0.3 0.8 1 

30 100 0.7 0.3 1.25 1 

31 100 0.7 0.3 1.75 1 

32 100 0.8 0.2 0.5 1 

33 100 0.8 0.2 0.67 1 

34 100 0.8 0.2 1 1 

35 100 0.8 0.2 1.5 1 

36 100 0.8 0.2 2 1 

37 100 0.9 0.1 0.57 1 

38 100 0.9 0.1 0.8 1 

39 100 0.9 0.1 1.25 1 

40 100 0.9 0.1 1.75 1 
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Appendix A 

Notes on connection between stopping probability and the discount factor 

ρ is the discount parameter. 

Q is the probability of expiration in a period of length 1. 

We divide a time interval of 1 into T = 1/Δt sub-intervals each of length Δt.  

q is the expiration probability in an interval of length Δt. 

We have 

e-ρ = 1-Q = (1-q)T = (1-q) 1/Δt 

Taking logs we get 

-ρ = (1/Δt)ln(1-q) 

or  

ρ = [-ln(1-q)]/ Δt 

ρ is used in the calculation of the optimal trigger. 

The relationship between q and Q is given by (1-Q) = (1-q)T 

So (1-q) = (1-Q)1/T 

From this it follows that q = 1 - (1-Q)1/T = 1 - (1-Q) Δt 

We note that ρ = -ln(1-Q). Hence, the discount rate is directly tied to Q ‒ the probability of 

stopping in a period of length 1. Therefore, changing dt changes q but does not change ρ. 

What are the expected number of mini-periods before expiry? 
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event Probability Number of periods extant 

expiration after period 1 Q 1 

expiration after period 2 (1-q)q 2 

expiration after period 3 (1-q)2q 3 

:  : 

expiration after period n (1-q)n-1q n 

 

Check sum of probabilities = q[1+(1-q)+(1-q)2+…+(1-q)n-1+…] = q[1/(1-1+q)] = 1. 

Expected expiry period = q[1 + 2(1-q) + 3(1-q)2 + … + n(1-q)n-1 + …  

                                          = -qd[(1-q)+(1-q)2+(1-q)3+…+(1-q)n+...]/dq 

                                          = -qd[{1+(1-q)+(1-q)2+(1-q)3+…+(1-q)n+...}-1]/dq 

                                          = -qd[1/q – 1]/dq 

                                          = q/q2 = 1/q 
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Appendix B 

Experimental Instructions 

 

The Instructions of the Experiment which were given to the subjects follow. 

 

 

Welcome to this experiment. Thank you for coming. These instructions are to help you to 

understand what you are being asked to do during the experiment, and how you can earn 

money from it. This will be paid to you in cash after you have completed the experiment. The 

payments described below are in addition to the participation fee of £2.50 for the 

experiment as a whole that you will be paid independently of your answers. 

The experiment is in two parts. The first part is about a financial option; the second part 

consists of a set of allocation problems. All will be explained below. The two parts are 

completely independent of each other. Here there are Instructions for the first part; we will 

distribute Instructions for the second part after you have completed the first part. We should 

note that the first part is estimated to take around 1 hour; the second part will last around 

15 minutes, but this partly depends on how you respond. 

You will be paid for both parts, and receive in addition a show-up fee of £2.50. How payments 

for each part will be determined is explained below. 
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If you have any questions on either part of this experiment, please raise your hand and an 

experimenter will come to you. 

Konstantina Mari 
John Hey  
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Instructions for Part 1 

Financial Option Decision Problem 

You will be presented with a sequence of 100 problems. In each problem, there is a financial 

asset whose price varies continuously, randomly and exogenously through time. You start 

each problem owning what is called a financial ‘call option’ contract (with a given exercise 

price) on the financial asset. This call option gives you the right but not the obligation to 

exercise it at any time during the problem. When and if you do exercise it, your profit for 

that particular problem will be the difference between the price of the asset at the time that 

you exercise the option and the exercise price – that is the price you pay for exercising it. 

Clearly you should not exercise the option when the asset price is below the exercise price 

(as your profit would be negative). Thus, all you have to do in each problem is to click on a 

button labelled ‘Exercise’ when you want to exercise the option. Of course, you may not 

want to exercise it and you do not have to. There is no cost to not exercising (but your profit 

for that problem would be zero). 

 

The Asset Price 

As we have already noted, the asset price varies continuously, randomly and exogenously 

through time. It is generated by the software which is programmed so that the price follows 

what is called in the literature ‘Geometric Brownian Motion’, which is a special case of a 

stochastic process. Intuitively the price sequence in each problem is such that the 

proportional change from one price to the next is a normally distributed random variable 

with constant mean and variance (which may differ across problems). An example is shown 

in the second figure below. 

 



106 

 

The active life of the option 

In each problem, the option remains active for a random length of time, after which it can 

no longer be exercised. While it is active, you will be shown the path of the asset price – as 

in the second figure below. When it becomes inactive, the screen as in the second figure 

below disappears, and if you have not exercised the option by then, a message appears to 

inform you that your profit for that problem is zero. The lifetime of each problem is 

determined randomly by the computer, in such a way that it has no memory: this means 

that, however long it has been active, it is equally likely to be active for any given future 

length of time. For example, suppose that the option is still active at time 1, then, if the 

probability the option is still active by time 2 is some number p, then if the option is still 

active at time 2, then the probability the option is still active by time 3 is the same number 

p. 

 

An example 

Suppose the exercise price is 10; suppose you exercise the option when the asset price is 15; 

then your profit for that problem would be 5. Please note that these figures are stated in 

Experimental Currency Units (ECU). They will be converted into real money with an exchange 

rate that we will describe later. 

 

The problems 

There will be 100 problems in 4 blocks each of 25. The first 5 problems in any block will be 

practice problems and will not be considered for payment; they are there to get you a feel 

for each problem. Each problem in any one block will have the same parameters for both the 

Brownian motion and for determining the random stopping time. Of course, since each 
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problem has both random motion and random stopping, the actual path of the asset price 

and the actual stopping time will be different from problem to problem. The following table 

shows you which problems are practice problems and which will count towards payment. 

Block number Practice Problems Problems for payment 

1 1-5 6-25 

2 26-30 31-50 

3 51-55 56-75 

4 76-80 81-100 

 

The Interface 

When you arrive in the laboratory, you will find the screen displaying the EXEC logo. Do not 

touch the computer until after all the participants in the experiment have read the 

instructions. When all have done so, we will let you know what to do to see the first screen 

of the experiment, which is pictured below. 

 

On this first screen there will be a summary of the instructions on the left of the screen and 

a button on the bottom right of the screen informing you which problem you are going to 

start. By clicking on the button, you will move on to the second screen where the problem 

will start. Then a screen like that below will appear:  
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On the left of the screen is the summary of the instructions, at the top a message informs 

you in which out the 100 problems you are, at the bottom is the ‘Exercise’ button and at the 

middle of the screen is the graph. On the vertical axis is the price of the asset and on the 

horizontal axis is time. The green line shows the exercise price of the contract. The blue line 

shows you the asset price and its movement. You can exercise the contract when you want 

by clicking on the ‘Exercise’ button. When you click on it, you will no longer have the option 

to exercise in this problem (as you would have done already) but you will continue seeing 

the movement of the asset price up to the point that the problem will reach the random 

stopping time. When the option becomes inactive, a screen will appear which will inform you 

also for your payoff in the problem which just finished. 

 

How long the experiment will last 

We expect this part of the experiment to last around one hour. When you have completed 

all 100 problems, the EXEC logo and a message will appear informing you that the first part 
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of the experiment is over. At this point, do not touch the computer but alert one of the 

experimenters. When you have finished Part 1, an experimenter will start Part 2 for you. 

 

Payment for Part 1 

You will randomly choose one numbered disk from a bag containing 100 disks numbered 

from 6 to 25, from 31 to 50, from 56 to 75 and from 81 to 100. The number on the disk 

chosen will determine the problem on which you will be paid. In the experiment profits are 

denominated in Experimental Currency Units (ECU). Each ECU is worth £1.50; that is 10 ECU 

are equivalent to £15. If the profit in the randomly chosen problem is zero or negative, this 

payment will be zero.  

 

Instructions for Part 2 

Allocation Decision Problem 

In this part of the experiment you will be given 40 different problems. In each problem, you 

hold 100 tokens (the conversion between tokens and money will be displayed at the top left 

of your screen) which you have to decide how to allocate between two risky states. These 

states are represented by colours (red and yellow) and each of them has a specific chance 

(that is, probability) of occurring. When one of the problems is played out at the end of this 

Part, one of the two risky states will occur (as we will explain shortly). 

 

The Interface of the Experiment 

When an experimenter starts Part 2 of the Experiment for you, you should then click on two 

‘Start’ buttons in sequence. Then a figure like that below will appear. 
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At the top right of the screen, you are told how many problems are left in this part of the 

experiment. At the top left of the screen, you are told the exchange rate between tokens 

and money in that particular problem (these exchange rates may vary from problem to 

problem). The screen also reminds you that you have 100 tokens to allocate between the 

two states (red and yellow). You can allocate them in any way that you want. You can vary 

the allocation by moving the slider on the bottom left of the screen. When a problem starts, 

the initial allocation is 50 tokens to red and 50 to yellow. The picture at the bottom right 

shows you the implications of your current allocation for the amount of money you would 

earn in either state – the heights of the red and yellow boxes. This will also be written at the 

left-hand side of the screen. In this example, with an equal allocation of the 100 tokens, you 

would earn £6.25 (50 times 12.5 pence) if red occurred and £5.00 (50 times 10 pence) if 

yellow occurred. The widths of the boxes indicate the chances of each state occurring – in 

this example, the chance of red is 70 out of 100 and the chance of yellow is 30 out of 100. If 

you do not like the implications of your current allocation, you can vary it by moving the 

slider. 
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In each problem, you cannot take a decision until at least five seconds have elapsed, but you 

can take as long as you like. You can see the timer on the top left of the screen (“Thinking 

Time”). After the first 5 seconds the ‘Confirm’ button appears (see below). When you are 

happy with your current allocation, you should click on ‘Confirm’. 

 

 

Playing out a particular problem 

In any particular problem, you will have decided an allocation between red and yellow. This 

will imply a payment on this particular problem if red occurs and a payment if yellow occurs: 
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To determine your payment, you will draw a disk out of a bag (without looking inside the 

bag) containing 100 disks.  The number on the disk will determine a point on the horizontal 

axis in the figure above; the corresponding amount on the vertical axis will be your payment 

from the lottery. 

 

An Example 

Let us assume you are going to play out the problem in the figure immediately above. If the 

number on the disk that you draw is between 1 and 70 inclusive, you earn £8.75; if the 

number is between 71 and 100 inclusive, you earn £5.00. It is clear that the probability of 

getting £8.75 is 0.7 and the probability of getting £5.00 is 0.3. Assume that the number on 

the disk  
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that you draw is 80. Then, your corresponding payment would be £5.                

 

Payment for Part 2 

You will randomly choose one numbered disk from a bag containing 40 disks numbered from 

1 to 40; the number on the disk chosen will determine the problem on which lottery will take 

place. The experimenter will then retrieve from the computer your decision (that is, your 

allocation of the 100 tokens) on that problem. After this, the playout will take place as 

described above: you will choose a disk out of 100 disks numbered from 1 to 100 and the 

number on it will determine your payment. 

 

 

 



114 

 

Appendix C 

Demographic questionnaire 

 

Subject                 Number: 

 

Please provide us the following information about you. 

 

Q. Sex: Male/Female                                                                        (Cycle the right one) 

 

Q. Age: What is your age?              (Cycle the right one) 

 Under 12 years old 

 12-17 years old 

 18-24 years old 

 25-34 years old 

 35-44 years old 

 45-54 years old 

 55-64 years old 

 65-74 years old 

 75 years or older 

 

Q. Ethnicity origin (or Race): Please specify your ethnicity.          (Cycle the right one) 

 White 

 Hispanic or Latino 

 Black or African American 

 Native American or American Indian 

 Asian / Pacific Islander 

 Other22 

                                                           
22 This is a combination of the other choices. 
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Q. Education: What is the highest degree or level of school you have completed? If currently 

enrolled, highest degree received.                    (Cycle the right one) 

 No schooling completed 

 Nursery school to 8th grade 

 Some high school, no diploma 

 High school graduate, diploma or the equivalent (for example: GED) 

 Some college credit, no degree 

 Trade/technical/vocational training 

 Associate degree 

 Bachelor’s degree 

 Master’s degree 

 Professional degree 

 Doctorate degree 

 

Please answer also the following questions. 

 

Q. Are you currently a student? If so, in which level you are currently enrolled? 

 

 

 

Q. What are you studying? Or what have you studied? 

 

 

 

Q. Do you have any work experience in Finance or Economics? If so, for how long did/do you 

work in this field and which was/is your job title/titles? 
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Q. Have you studied financial options in the past? 

 

 

 

Q. Have you ever traded in a stock market in reality in the past? 

 

 

 

Q. Have you ever traded option contracts in reality in the past? 

 

 

 

Q. Did you feel impatience during the experiment?          (Cycle the right one) 

 

1: Not at all 

 2: Mainly disagree 

 3: Neither agree nor disagree 

 4: Mainly agree 

 5: Totally agree 
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Q. Did you feel stress during the experiment?           (Cycle the right one) 

 1: Not at all 

 2: Mainly disagree 

 3: Neither agree nor disagree 

 4: Mainly agree 

 5: Totally agree 

 

Q. Which is your risk aversion level? From 1 to 5 the risk aversion level is increasing.  

                                                                                                            (Cycle the right one) 

            1  2  3  4   5 

 

Q. What did you like in the experiment?  

 

 

Q. What you did not like in the experiment? 

 

 

Q. Any suggestions for improvement? 

 

 

Thank you for your participation!  
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Chapter 4 

Does the Stochastic Specification 
Matter? 

 

4.1 Introduction 

Underlying any statistical test of any hypothesis or any estimation of any model is some 

stochastic specification.  It is fair to say that many economists generally pay scant attention 

to this, usually assuming normality somewhere. This chapter explores the implications of 

this, both for the hypothesis under study and the parameters being estimated. 

The context in which we do this exploration is the estimation of the risk-aversion of decision-

makers. This is crucial to most theories of decision-making under risk, and to many policy 

issues. There are several experimental methods of eliciting risk-aversion indices, the most 

prominent being Holt-Laury price lists (Holt and Laury 2002), pairwise choice questions (Hey 

and Orme 1994), the Becker-Degroot-Marschak mechanism (Becker et al 1964) and 

allocation problems (Loomes 1991). We concentrate here on the latter method. Wilcox 

(2009) has done a similar analysis using the method of pairwise choice (which can be 

considered to be a sort of unstructured Holt-Laury price list); he concludes that the stochastic 

specification may well be more important than the functional specifications23. We do not 

                                                           
23 The preference functional  (Expected Utility or some other), the weighting function and the utility 
function. 
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have different functional specifications, so as to concentrate on the effect of the stochastic 

specification. 

Like all methods of eliciting preferences, one can make a variety of stochastic assumptions, 

but these depend on the elicitation method. Here we use allocation problems. We describe 

these in Section 2. In Section 3 we describe what the DM ought to be doing. But in 

experiments there is noise in subjects’ behaviour. When we use experimental data to 

estimate their risk-aversion we need to take this noise into account. It is the description of 

this noise that is our stochastic specification. In Section 4 we discuss possible stochastic 

specifications. In order to compare between specifications we carry out extensive 

simulations – generating data under a variety of stochastic specifications and then estimating 

under them. We discuss our simulation and estimation methods in Section 5. Our results are 

in Section 6 and Section 7 concludes. 

  

4.2 The allocation method for eliciting risk-aversion 

This is one of a variety of methods for eliciting risk-aversion. Its advantages are that it is 

simple to describe and simple for subjects to understand – in contrast, for example, with the 

Becker-DeGroot-Marschak mechanism. One possible disadvantage, in an experimental 

setting, is that it implies that subjects must optimise rather than just choose, which latter is 

the case if the pairwise choice method is used. 

In its simplest form, with the allocation method subjects are presented with a number of 

problems, each of the same form. In each problem, subjects are endowed with a quantity of 

tokens which they are asked to allocate between two ex ante risky states, with specified 

probabilities for the two states, and with specified exchange rates between tokens and real 

money for each of the states. Usually the experiment is computerised and the computer 
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records their chosen allocations on each problem. After they have responded to all the 

problems, one of them is chosen at random, and their allocation on that problem retrieved 

from the computer records. Then a random device is implemented and one of the two states 

is realised. The subject is paid the money value of their allocation of tokens to the realised 

state, using the specified exchange rate for that state. 

Let us give a simple example. Suppose the two states are labelled ‘Red’ and ‘Blue’, and 

suppose the probabilities are respectively 0.4 and 0.6. Suppose the subject is given 100 

tokens to allocate and is told that the exchange rates between tokens and money for Red is 

0.8 tokens to a £1 (so that a token allocated to Red is worth £1.25) and for Blue is 1.25 tokens 

to a £ (so that a token allocated to Blue is worth 80p). The allocation that the subject makes 

is obviously dependent on his or her attitude to risk (this being the whole point of the 

exercise) and the exchange rates. Suppose that the subject decides to allocate 40 to Red and 

60 to Blue. If this problem was randomly selected to be played out for real, and if the random 

device resulted in Red being selected, then the subject would be paid £(40/0.8) = £50; if the 

random device resulted in Blue being selected, then the subject would be paid £(60/1.25) = 

£48.  

To estimate the level of risk-aversion ‒ assuming that the subject obeys Expected Utility 

theory ‒ a utility function should be specified and the parameter(s) of it would be estimated. 

To keep things simple in this simulation, we assume24 a CRRA (Constant Relative Risk 

Aversion) utility function  

1

( )
1

rx
u x

r






 

                                                           
24 An alternative would be the CARA (Constant Absolute Risk Aversion) function. 
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and estimate the parameter r. If this takes the value 0 the individual is risk-neutral; if positive, 

risk-averse and if negative, risk-loving; a higher value of r indicates a higher level of risk-

aversion. 

 

4.3 The optimal allocation 

The decision made by each subject on each problem is an allocation of their endowment in 

that problem between the two states of the world. Let us call them State 1 and State 2. We 

normalise the endowment to 1, and denote the allocation to State 1 by x (so that the 

allocation to State 2 is 1-x). Let us denote the probability of State 1 by p (so that the 

probability of State 2 is 1-p), and the exchange rate between tokens and money in State 1 by 

e (normalising the exchange rate in State 2 to 1). As noted above, we assume that the DM is 

an Expected Utility maximiser with the CRRA  utility function specified above. There is an 

optimal allocation given by the maximization of 

1 1(1 )
( ) (1 )

1 1

r rex x
EU X p p

r r

 
  

 
 

The solution if r > 0  (the DM is risk-averse) is  

1

1 1

( )
*

( ) (1 )

r

r r

pe
x

pe p e



 

 

Thus if r>0 one immediate implication is that x* is strictly bounded between 0 and 1 for non-

zero p and e. Throughout this study we will use this property. This has implications for our 

choice of one of the stochastic specifications.  

If r≤0 (the DM is risk-neutral or risk-loving) the DM will want to allocate as much as possible 

to one of the two states (the one depending on the problem and the exchange rate). If the 
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experiment puts bounds on the allocation (see below) the DM will want to allocate all or 

nothing. 

 

4.4 Assumed stochastic specifications 

While an optimal allocation exists for any given value of r, we assume that there is some 

noise in its implementation. We denote the actual allocation by x. We assume that the error 

is purely stochastic and that it has no systematic component (otherwise we would take that 

into account in our preference functional). It is the specification of this error that is our 

stochastic specification. In principle, if perhaps not in practice, the economist ought to take 

into account behavioural considerations when deciding on the specification. Our stochastic 

specifications follow. 

 

4.4.1 Additive normal (an) 

We start with the standard assumption in the economist’s toolbox: that the noise is in the 

calculation of the optimal allocation, and that noise is added to the optimal allocation. 

Furthermore this noise is normal. To avoid it having a systematic component, it is assumed 

that this normal distribution has a zero mean. Thus there is no bias in the implementation of 

the allocation: on average it is equal to the optimal allocation. However it does not have a 

zero variance. We characterise this specification as x = x* + ε where ε is N(0,1/s2). Following 

convention, we refer to s, the inverse of the standard deviation, as the precision of the 

allocation. The larger is s the lower is the magnitude of the error. 

One problem with using the normal distribution is that it is unbounded. In an experiment, 

subjects would not be allowed to allocate more than the endowment to any one State, as 
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this would imply a negative allocation to the other state, and hence imply the possibility of 

the subject losing money. So actual decisions have to be truncated at 0 and 1. 

 

4.4.2 Beta (b) 

An alternative specification, and one that takes the boundedness of the optimal allocation 

into account, is to assume that x has a Beta distribution. This is bounded between 0 and 1, 

and has two parameters α and β. Its mean and variance are given by 

2
 and  respectively.

( ) ( 1)

 

        
 If we put α=x*(s-1) and β=(1-x*)(s-1), then 

the mean and variance are given by 
*(1 *)

*  and  respectively.
x x

x
s


  This is an attractive 

specification: it means that x is unbiased, and that the noise reduces to zero as x* approaches 

the bounds (0 and 1). This is behaviourally plausible: when the optimal allocation is around 

one-half the DM suffers the most uncertainty about it, but when it is close to 0 or 1 the DM 

is very sure about it. Figure 1 illustrates. 

 

4.4.3 Random preferences normal (rpn) 

This postulates that the noise is generated before the allocations are determined: the noise 

is in the risk-aversion parameter r. Here the story is that the DM is unsure about his or her 

value of r and it is this that is random. But, given any value for r, the DM implements the 

optimal allocation for that r without error. Notice that this is quite a different behavioural 

story.  

Our first implementation of this random preferences story is to assume that r has a normal 

distribution with a given precision s. Clearly we have to specify the mean value of r (which 
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might be termed the DM’s true value) and the precision. Note that negative values of r could 

be generated with this specification; these would imply risk-loving behaviour and hence all-

or-nothing allocations. Again the larger is s the lower is the magnitude of the error. 

 

4.4.4 Additive logistic (al) 

This is almost identical to the additive normal, the only difference being that x = x* + ε where 

ε has now a logistic distribution with mean 0 and scale parameter 1/s. Again we refer to s as 

the precision: the larger is s the lower is the magnitude of the scale of the distribution. 

This distribution is very similar to the normal – but it has slightly heavier tails. Figure 2, in 

which the normal pdf is the blue dashed one, illustrates. 

 

4.4.5 Random preferences lognormal (rpl) 

This is similar to random preferences normal, though the similarities are less than between 

the additive normal and the additive logistic. The normal distribution is symmetrical while 

the log-normal is skewed to the right. Figure 3, in which the normal pdf is the blue dashed 

curve, illustrates. 

 

4.5 The simulation and estimation program 

We carried out an extensive simulation and estimation. The program, and the input files 

needed to run the program, can be found on the EXEC website. We ran 1000 simulations, a 

simulation corresponding to a decision-maker. In each simulation, we first used each of the 

specifications to generate some random allocations, and then we fitted under each of the 

https://www.york.ac.uk/economics/research/centres/experimental-economics/research/unpublishedpapers2/#tab-3
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specifications. For each simulation, fitting involved the estimation of either a parameter r 

(being the risk-attitude for that simulation for the additive normal, beta and additive logistic 

specifications) or a parameter25 r (being the mean of the random preferences normal and 

lognormal specifications); plus a precision parameter s. 

In order to generate the random allocations we need to work with some numerically-

specified preference parameters and with some specific allocation problems. The former can 

be found in the file PreferenceParameters.csv. This contains 17 lines the first 9 being a guide 

to the remaining 8. The data can be summarised as follows: 

Parameter 
set 

r for 
an, b 

and al 

s for 
an 

s for b (mean) r 
for rpn 

s for 
rpn 

s for 
al 

(mean) r 
for rpl 

s for 
rpl 

1 0.5 25 40 0.5 10 20 -0.7 5 

2 0.5 50 40 0.5 20 40 -0.7 9 

3 0.5 25 40 0.5 10 20 -0.7 5 

4 0.5 50 40 0.5 20 40 -0.7 9 

5 1.5 25 80 1.5 10 20 0.4 5 

6 1.5 50 80 1.5 20 40 0.4 9 

7 1.5 25 80 1.5 10 20 0.4 5 

8 1.5 50 80 1.5 20 40 0.4 9 

 

It will be seen that we chose two values for the r for an, b and al, each combined with two 

values for the precision s. A similar pattern was chosen elsewhere. 

The simulation also requires some allocation problems. These we took from an experiment 

(Zhou and Hey 2016) investigating different elicitation methods. One of the methods 

explored was the allocation method. In that experiment, subjects were presented with 81 

allocation problems (with different p’s and e’s). Here we used these 81 problems. In addition, 

because we were interested in the effect of the number of problems on the accuracy of the 

estimation, we also took a subset of 41 of these 81 problems, and we also doubled them up 

– thus creating a file consisting of 162 problems. In what follows, we refer to the 41 problems 

                                                           
25 We trust that the use of the same notation will not confuse the reader. 
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file as the small data set, the 81 problems file as the medium data set and the 162 problems 

file as the large data set. 

The program was written in Matlab, and used Maximum Likelihood estimation, implemented 

with the Matlab procedure patternsearch. The program produces estimates of r and s, and 

reports the maximised log-likelihoods. 

 

4.6 Results 

We report our results in several ways. First, we report the maximised log-likelihoods and ask 

the question as to whether the true specification is identified in the estimation. Then we look 

at the estimates of r, then the standard deviation of the estimates of r, and finally the 

estimates of s. 

Tables 1 report the maximised log-likelihoods – our measure of goodness-of-fit: tables 1.1s 

through to 1.8s for the small data set; tables 1.1m through to 1.8m for the medium data set; 

and tables 1.1l through to 1.8l for the large data set. On each page there are 8 tables – 

corresponding to the eight parameter sets26. The rows indicate the true specification – that 

generating the data; the columns indicate the estimated specification. What should be the 

case is that in each row the diagonal element should be the largest value in the row – 

indicating that the estimation has correctly identified the true specification. We indicate with 

(blue) shading the estimated specification with the highest log-likelihood in each row. It can 

be seen that for the small data set only 21 times out of 40 was the true specification correctly 

identified. Things were considerably better with the medium data set, with the true 

specification correctly identified 34 times out of 40; and they were marginally better again 

                                                           
26 As there are minor differences between the results for the different parameter sets, we do not 
comment on them. 
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with the large data set – with 35 out of 40 correctly identified. Indeed, there is a greater 

separation of the log-likelihoods for the large data set. It should be noted that the log-

likelihoods for an are generally very close to those for al – which is hardly surprising as the 

specifications are very close (see Figure 2). Interestingly the log-likelihoods for b when it is 

true are generally very close to those for rpl. 

The message emerging from these tables is that, if the data set is large enough, the true 

specification is generally correctly identified, but that is not the case with the small data set. 

Tables 2 report the mean value of the estimated r values: tables 2.1s through to 2.8s for the 

small data set: tables 2.1m through to 2.8m for the medium data set; and tables 2.1l through 

to 2.8l for the large data set. As before, on each page there are 8 tables – corresponding to 

the eight parameter sets. The rows indicate the true specification – that generating the data; 

the columns indicate the estimated specification. The column headed ‘True value’ is the r 

value used for generating the data. 

Before we look at these tables we should note something about the rpl specification. Here 

the r value reported for rpl in the table above is not the mean of the r values. Here r is 

lognormally distributed with parameters r and s. This means that log(x) is normally 

distributed with mean r and precision s. So the mean of r is 
2

1
exp( )

2
r

s
   and its precision is 

the inverse of the square root of 
2 2

1 1
exp( 1)exp(2 )

2
r

s s
  . In constructing tables 2, we 

have taken this into account. This explains, for example, why the ‘True value’ for parameter 

set 1 with the small data set is 0.507, rather than the -0.7 in the table above. 

The clear message that emerges from Tables 2 is that the mean r value is generally extremely 

precisely estimated. When the true r is 0.5, virtually all the mean estimates for the three data 

sets are between 0.49 and 0.51, and they are particularly close to 0.5 when the estimated 

specification is the true specification. When the true r is 1.5, virtually all the mean estimates 
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for the three data sets are between 1.48 and 1.52, and they are particularly close to 1.5 when 

the estimated specification is the true specification. In other words it seems to be the case 

that in this context our maximum likelihood estimates are unbiased, which is not normally 

necessarily the case27. The message here seems to suggest that, if one is only interested in 

the mean value of r then the specification does not really matter. 

However, we should take into account the standard deviation of the estimates of r. These 

are given in Tables 3: tables 3.1s through to 3.8s for the small data set; tables 3.1m through 

to 3.8m for the medium data set; and tables 3.1l through to 3.8l for the large data set. As 

before, on each page there are 8 tables – corresponding to the eight parameter sets. The 

rows indicate the true specification – that generating the data; the columns indicate the 

estimated specification. What should be the case is that in each row the smallest element 

should be along the main diagonal – where the estimated specification is the true 

specification. As in Tables 1 we highlight (in blue) where this is the case. It can be seen that 

for the small data set 29 times out of 40 this was the case; with the medium data set, 30 

times out of 40; and with the large data set 32 times out of 40. Generally the standard 

deviations are very low (in comparison with the mean estimated r values) and importantly 

they decrease with the size of the problem set. 

It should be remembered that the standard deviation indicates the accuracy of the estimates 

of r. While Tables 2 indicate that the mean estimates of r are very close to their true values, 

in practice one only has one data set (and not the 1000 in the simulation). Hence, when the 

standard deviation is high, individual estimates of r could depart quite significantly from the 

true value, but when the standard deviation is low, individual estimates of r will be generally 

closer to the true value. Looking at Tables 3, it is clear that the standard deviation of the r 

                                                           
27 It can be shown that in general maximum likelihood estimates are consistent but not necessarily 
unbiased. Our results could emerge if our sample sizes are considered to be ‘close enough to infinity’. 
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estimates decreases with the number of problems in the data set. So size does matter: with 

a larger set of problems one gets more precise estimates. 

If one is interested in estimates of the precision, a different story emerges, and here our 

estimates are not even unbiased – unless the estimated specification is the true specification. 

Tables 4 report the average value of the estimated s values: tables 4.1s through to 4.8s for 

the small data set; tables 4.1m through to 4.8m for the medium data set; and tables 4.1l 

through to 4.8l for the large data set. As before, on each page there are 8 tables – 

corresponding to the eight parameter sets. The rows indicate the true specification – that 

generating the data; the columns indicate the estimated specification. The column headed 

‘True value’ is the s value used for generating the data. If one looks down the main diagonal 

it will be seen that when the estimated specification is the true specification, the mean s 

estimate is close to its true value. However, when one departs from the main diagonal 

significant differences emerge. So, in general, the estimated precision is quite far (and in 

some cases very far) from the true precision. Yet, considering Tables 2, it does not seem to 

be the case that misestimating s affects the mean estimates of r28. 

 

4.7 Conclusions 

We should first note, and as is clear from Figures 1, 2 and 3, that our chosen specifications 

are very close. As a consequence it may not be surprising that, whatever is the estimated 

specification, the parameter set and the size of the problem set,  the mean estimates of the 

r parameter are close to their true values. In particular it seems to be the case that the 

stochastic specification does not matter when it comes to estimating the mean level of risk-

                                                           
28 Incidentally this seems to be also true even if the maximum likelihood routine hits the bounds in 
the program – for example in Table 4.6s when rpn is the true specification and b the estimated 
specification. 
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aversion. Moreover, the effect of the size of the problem set on the mean of the estimates 

seems to be very low. However, when it comes to identifying the true specification, size does 

appear to have an effect: the bigger the problem set the better the identification. Size does 

also appear to have an effect on the standard deviation of the estimates of r: with a larger 

problem set one gets more precise estimates of r.  

Furthermore, if one is interested in the estimates of s the precision, the specification and the 

size of the problem set do have a significant effect.  

Does all this matter? Well, it depends on what use is to be made of the estimates: if one is 

going to use them for prediction of the optimal allocation with associated confidence 

intervals, then getting estimates correct is crucial. Figure 4 illustrates: this reports the 

distribution of 100,000 simulated allocations for particular preference parameters (set 1), a 

particular problem (number 22 from the small data set), and a particular true specification. 

The true specification here is b. The thick black curve is the (kernel29) density function for the 

implied distribution using the true parameters, and the thin black curve is the density 

function for the implied distribution using the estimated parameters with b estimated; the 

green curve is that with an estimated; the blue curve with rpn estimated; the yellow curve 

with al estimated; and the magenta curve with rpl estimated. The complete set (consisting 

of 164030 graphs), can be found on the EXEC website. 

This Figure shows that when the estimated specification is the true specification, the 

distribution based on the estimated parameters is very close to that based on the true 

parameters, but when the estimated specification is not  the true specification, the 

distribution can be quite different: when rpn is estimated the distribution is biased and 

                                                           
29 Kernel density estimation (KDE) is a non-parametric way to estimate the probability density 
function of a random variable. We did not want to impose particular functional forms on the density 
functions, particularly as the distributions are truncated. 
30 Composed of the combination of 8 parameter sets, 41 problems (the small data set) and 5 true 
models. 

https://www.york.ac.uk/economics/research/centres/experimental-economics/research/unpublishedpapers2/#tab-3
https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Random_variable
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skewed – leading to biased and skewed predictions; when rpl is estimated the distribution is 

also biased and skewed, though less so; with an and al the distributions are unbiased but 

have too small a spread. All the non-true distributions are quite different from the true 

distribution, and so will be any predictions and their associated confidence intervals. 

So our conclusion must be: the stochastic specification does matter.  
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Figures 

Figure 1: Beta distributions of x for x*=0.05 (green on the left), 0.25 red (in the middle) and 
0.5 blue (on the right); s=50 

 
 
 
Figure 2: Normal (blue dashed) and logistic (red solid) distributions 

 
 
 
Figure 3: Normal (blue dashed) and lognormal (red solid) distributions 
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Figure 4: Simulated allocations based on preference parameters 1 and problem number 29 

 
Key: The true specification here is b, the parameter set number 1 and the problem number 22. The thick black 
curve is the (kernel) density function for the beta distribution using the true parameters, and the thin black curve 
is the function for the beta distribution using the estimated parameters; the green curve is that with an estimated; 
the blue curve with rpn estimated; the yellow curve with al estimated; the magenta curve with rpl estimated. 
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Table 1.1s: Log-Likelihoods parameter set 1, small data set                                          Table 1.2s: Log-Likelihoods parameter set 2, small data set 

Specification Estimated 

an b Rpn al rpl 

 
 
True       

an -110.89 -111.56 -114.33 -111.11 -108.87 

b -126.78 -115.67 -133.00 -126.03 -115.10 

rpn -106.47 -101.21 -91.07 -104.69 -92.09 

al -142.01 -136.71 -145.54 -141.14 -120.99 

rpl -105.77 -100.06 -91.66 -104.09 -90.81 

  
Table 1.3s: Log-likelihoods parameter set 3, small data set                                           Table 1.4s: Log-likelihoods parameter set 4, small data set 

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an -110.98 -111.43 -114.56 -111.27 -109.19 

b -126.84 -115.84 -130.55 -125.85 -115.06 

rpn -106.32 -101.55 -90.95 -104.68 -91.69 

al -141.78 -136.87 -149.03 -141.19 -121.10 

rpl -105.74 -100.32 -92.13 -104.33 -91.13 

 
 
Table 1.5s: Log-Likelihoods parameter set 5, small data set                                          Table 1.6s: Log-Likelihoods parameter set 6, small data set                             

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an -113.78 -114.56 -152.90 -114.64 -115.66 

b -124.20 -123.84 -211.65 -124.76 -121.92 

rpn -63.96 -65.85 -53.09 -62.77 -52.82 

al -146.97 -149.45 -405.17 -147.02 -129.10 

rpl -107.42 -109.41 -92.42 -105.61 -91.63 

 
Table 1.7s: Log-Likelihoods parameter set 7, small data set                                          Table 1.8s: Log-Likelihoods parameter set 8, small data set                                               

 
 
 
 
 
 
 
 

 
Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal 
 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -84.18 -89.90 -93.79 -84.30 -90.39 

b -126.73 -115.87 -144.76 -125.75 -114.75 

rpn -78.81 -74.40 -66.09 -76.61 -66.39 

al -115.48 -115.08 -118.89 -114.75 -111.01 

rpl -82.25 -78.19 -69.83 -80.67 -69.74 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -84.20 -90.21 -91.47 -84.30 -90.55 

b -126.62 -115.86 -139.78 -125.85 -114.66 

rpn -78.70 -73.88 -65.87 -76.90 -66.48 

al -115.55 -114.66 -117.21 -114.67 -110.81 

rpl -82.41 -78.32 -69.94 -80.90 -69.74 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -86.07 -86.34 -117.73 -86.43 -96.37 

b -124.29 -123.67 -546.80 -124.63 -121.92 

rpn -38.97 -50.82 -32.51 -38.47 -32.61 

al -119.18 -119.54 -384.26 -118.42 -118.35 

rpl -84.15 -85.47 -70.32 -82.38 -69.95 

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an -114.21 -114.46 -142.21 -114.68 -115.53 

b -124.31 -123.60 -221.51 -124.83 -121.80 

rpn -64.02 -65.98 -52.81 -62.88 -53.06 

al -146.58 -149.30 -406.93 -146.58 -129.34 

rpl -107.22 -109.62 -92.57 -105.69 -91.69 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -86.03 -86.42 -109.32 -86.22 -96.77 

b -124.32 -124.03 -518.55 -124.50 -122.06 

rpn -39.02 -50.74 -32.61 -38.49 -32.55 

al -118.92 -120.04 -369.84 -118.42 -117.80 

rpl -83.92 -85.91 -70.10 -82.32 -70.04 
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Table 1.1m: Log-Likelihoods parameter set 1, medium data set                                  Table 1.2m: Log-Likelihoods parameter set 2, medium data set 

Specification Estimated 

an b Rpn al rpl 

 
 
True       

an -220.69 -222.91 -230.90 -221.02 -224.16 

b -252.02 -230.36 -282.04 -250.14 -239.71 

rpn -213.20 -204.68 -181.86 -208.80 -184.11 

al -282.07 -272.65 -294.85 -280.24 -246.95 

rpl -211.69 -201.26 -183.42 -207.99 -181.92 

 
Table 1.3m: Log-likelihoods parameter set 3, medium data set                                   Table 1.4m: Log-likelihoods parameter set 4, medium data set 

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an -220.49 -222.84 -230.92 -221.00 -224.46 

b -252.39 -230.88 -279.27 -250.07 -239.41 

rpn -213.67 -204.69 -181.73 -209.80 -183.51 

al -281.77 -273.29 -291.37 -280.41 -247.65 

rpl -211.55 -201.28 -183.85 -207.96 -182.32 

 
 
Table 1.5m: Log-Likelihoods parameter set 5, medium data set                                   Table 1.6m: Log-Likelihoods parameter set 6, medium data set                             

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an -226.20 -227.38 -290.60 -227.29 -241.29 

b -246.84 -246.06 -414.46 -247.83 -251.37 

rpn -127.70 -131.54 -104.82 -124.81 -104.85 

al -291.93 -297.20 -746.99 -291.26 -260.27 

rpl -213.82 -218.20 -184.05 -209.88 -181.84 

 
Table 1.7m: Log-Likelihoods parameter set 7, medium data set                                   Table 1.8m: Log-Likelihoods parameter set 8, medium data set                                               

 
 
 
 
 
 
 
 

 
Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal 
 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -167.56 -180.21 -183.18 -167.90 -189.31 

b -251.89 -230.62 -340.76 -249.90 -241.66 

rpn -157.64 -149.79 -132.88 -153.87 -133.42 

al -229.73 -229.14 -247.31 -228.20 -227.37 

rpl -165.52 -157.22 -140.64 -161.48 -140.13 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -167.42 -179.89 -182.95 -167.80 -188.14 

b -252.53 -230.42 -337.85 -250.10 -240.57 

rpn -158.25 -149.71 -132.55 -153.90 -133.18 

al -229.72 -229.03 -246.87 -227.97 -227.61 

rpl -165.74 -157.08 -140.66 -162.20 -140.28 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -170.86 -171.73 -225.68 -171.56 -209.29 

b -246.81 -245.79 -887.16 -247.31 -251.00 

rpn -77.66 -100.40 -63.97 -76.11 -64.09 

al -236.54 -238.02 -717.05 -235.34 -244.19 

rpl -167.41 -170.63 -139.84 -163.32 -139.22 

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an -226.40 -227.36 -299.06 -227.59 -241.88 

b -247.28 -245.55 -382.28 -247.98 -251.54 

rpn -127.77 -131.57 -104.81 -124.42 -104.86 

al -291.30 -297.72 -758.16 -291.00 -261.37 

rpl -213.71 -217.89 -183.83 -209.54 -182.06 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -170.84 -171.76 -234.97 -171.70 -209.72 

b -246.42 -245.92 -952.76 -247.53 -250.88 

rpn -78.02 -100.41 -63.79 -75.98 -63.93 

al -236.07 -239.05 -689.76 -235.53 -245.12 

rpl -167.21 -171.19 -139.67 -164.08 -139.26 
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Table 1.1l: Log-Likelihoods parameter set 1, large data set                                           Table 1.2l: Log-Likelihoods parameter set 2, large data set 

Specification Estimated 

an b Rpn al rpl 

 
 
True       

an -442.07 -447.18 -463.19 -442.41 -451.71 

b -505.66 -461.76 -550.58 -501.42 -484.20 

rpn -429.43 -411.16 -364.97 -419.24 -369.32 

al -565.48 -547.53 -592.59 -561.18 -496.64 

rpl -425.92 -403.88 -368.26 -417.60 -364.91 

 
Table 1.3l: Log-likelihoods parameter set 3, large data set                                            Table 1.4l: Log-likelihoods parameter set 4, large data set 

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an -442.03 -447.00 -466.02 -443.07 -452.59 

b -505.51 -462.33 -549.22 -502.11 -483.96 

rpn -429.93 -411.89 -364.54 -420.32 -368.61 

al -565.68 -548.22 -577.19 -561.31 -497.29 

rpl -425.66 -404.24 -368.58 -417.58 -365.24 

 
 
Table 1.5l: Log-Likelihoods parameter set 5, large data set                                           Table 1.6l: Log-Likelihoods parameter set 6, large data set                             

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an -453.77 -456.30 -594.31 -455.86 -486.87 

b -494.67 -492.52 -809.77 -496.35 -506.74 

rpn -258.05 -264.89 -210.19 -251.16 -210.39 

al -584.58 -596.53 -1484.2 -583.30 -524.36 

rpl -429.10 -437.85 -369.22 -421.34 -364.97 

 
Table 1.7l: Log-Likelihoods parameter set 7, large data set                                           Table 1.8l: Log-Likelihoods parameter set 8, large data set                                               

 
 
 
 
 
 
 
 

 
Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -335.95 -361.26 -369.68 -337.08 -383.33 
b -505.42 -462.01 -663.29 -500.68 -483.92 

rpn -317.02 -301.66 -266.32 -309.06 -267.72 

al -460.55 -460.40 -499.27 -457.58 -457.97 

rpl -333.17 -315.49 -282.31 -324.56 -281.50 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -336.00 -361.56 -372.51 -336.77 -382.46 

b -505.82 -462.40 -665.04 -501.44 -484.95 

rpn -317.99 -300.97 -266.43 -309.47 -267.56 

al -460.32 -459.92 -505.19 -457.64 -458.99 

rpl -332.73 -315.62 -282.33 -325.16 -281.56 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -343.16 -344.12 -461.50 -344.54 -426.49 

b -494.55 -492.75 -1753.0 -495.64 -505.12 

rpn -156.94 -201.20 -129.59 -153.40 -128.75 

al -473.84 -478.11 -1429.5 -471.95 -492.07 

rpl -336.92 -343.50 -280.97 -327.99 -279.11 

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an -453.83 -455.97 -597.50 -455.74 -487.70 

b -495.04 -492.59 -821.08 -496.22 -505.57 

rpn -257.79 -265.00 -210.40 -250.06 -210.81 

al -583.71 -597.72 -1496.1 -582.29 -525.17 

rpl -429.37 -438.06 -368.35 -420.57 -364.91 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an -342.74 -344.44 -470.41 -344.33 -428.16 

b -494.25 -492.57 -1765.0 -496.30 -504.76 

rpn -157.67 -201.08 -128.95 -153.44 -128.98 

al -473.79 -479.22 -1441.2 -471.93 -494.67 

rpl -336.94 -343.43 -280.40 -328.83 -279.47 



137 

 

Table 2.1s: r estimates, parameter set 1, small data set                                                                                Table 2.2s: r estimates, parameter set 2, small data set 

 
 
 
 
 
 
 

 
Table 2.3s: r estimates, parameter set 3, small data set                                                                                 Table 2.4s: r estimates, parameter set 4, small data set 

 
 
 
 
 
 
 

 Table 2.5s: r estimates, parameter set 5, small data set                                                                               Table 2.6s: r estimates, parameter set 6, small data set                                                                               
 
 
 
 
 
 
 

 Table 2.7s: r estimates, parameter set 7, small data set                                                                               Table 2.8s: r estimates, parameter set 8, small data set                                                                               
 
 
 
 
 
 
 
 

 
 

Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.503 0.497 0.524 0.503 0.523 

b 0.500 0.502 0.500 0.539 0.496 0.535 

rpn 0.500 0.494 0.495 0.500 0.499 0.499 

al 0.500 0.519 0.483 0.569 0.515 0.566 

rpl 0.507 0.499 0.501 0.506 0.499 0.505 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.500 0.500 0.507 0.500 0.507 

b 0.500 0.501 0.500 0.539 0.497 0.535 

rpn 0.500 0.498 0.500 0.500 0.499 0.500 

al 0.500 0.504 0.496 0.526 0.503 0.526 

rpl 0.500 0.497 0.499 0.500 0.497 0.499 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.505 0.496 0.524 0.502 0.522 

b 0.500 0.502 0.500 0.539 0.497 0.536 

rpn 0.500 0.494 0.494 0.500 0.499 0.499 

al 0.500 0.522 0.481 0.568 0.513 0.567 

rpl 0.507 0.499 0.501 0.505 0.498 0.506 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.501 0.499 0.507 0.500 0.508 

b 0.500 0.500 0.500 0.540 0.496 0.533 

rpn 0.500 0.498 0.500 0.500 0.500 0.500 

al 0.500 0.504 0.495 0.527 0.503 0.527 

rpl 0.500 0.497 0.499 0.500 0.497 0.500 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.502 1.503 1.587 1.501 1.580 

b 1.500 1.501 1.501 1.615 1.495 1.614 

rpn 1.500 1.496 1.496 1.500 1.498 1.500 

al 1.500 1.511 1.483 1.704 1.508 1.726 

rpl 1.522 1.483 1.478 1.524 1.489 1.522 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.502 1.500 1.525 1.500 1.523 

b 1.500 1.503 1.502 1.587 1.500 1.616 

rpn 1.500 1.498 1.499 1.500 1.499 1.500 

al 1.500 1.501 1.495 1.585 1.497 1.597 

rpl 1.501 1.487 1.487 1.501 1.490 1.501 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.503 1.499 1.593 1.503 1.584 

b 1.500 1.503 1.506 1.617 1.497 1.622 

rpn 1.500 1.495 1.494 1.499 1.498 1.500 

al 1.500 1.511 1.486 1.685 1.506 1.716 

rpl 1.522 1.481 1.477 1.521 1.486 1.521 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.499 1.500 1.526 1.500 1.526 

b 1.500 1.503 1.504 1.601 1.495 1.618 

rpn 1.500 1.498 1.499 1.500 1.499 1.500 

al 1.500 1.504 1.495 1.570 1.504 1.596 

rpl 1.501 1.489 1.488 1.501 1.488 1.501 
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Table 2.1m: r estimates, parameter set 1, medium data set                                                                          Table 2.2m: r estimates, parameter set 2, medium data set 

  
 
 
 
 
 
 

 
Table 2.3m: r estimates, parameter set 3, medium data set                                                                          Table 2.4m: r estimates, parameter set 4, medium data set 

 
 
 
 
 
 
 

 Table 2.5m: r estimates, parameter set 5, medium data set                                                                        Table 2.6m: r estimates, parameter set 6, medium data set                                                                               
 
 
 
 
 
 
 

 Table 2.7m: r estimates, parameter set 7, medium data set                                                                        Table 2.8m: r estimates, parameter set 8, medium data set                         
 
 
 
 
 
 
 
 

 

Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal 
                                                       

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.502 0.496 0.517 0.502 0.519 

b 0.500 0.503 0.499 0.542 0.496 0.541 

rpn 0.500 0.495 0.495 0.500 0.498 0.500 

al 0.500 0.518 0.483 0.571 0.511 0.578 

rpl 0.507 0.500 0.501 0.506 0.499 0.506 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.501 0.500 0.502 0.500 0.502 

b 0.500 0.502 0.500 0.544 0.496 0.543 

rpn 0.500 0.498 0.500 0.500 0.499 0.500 

al 0.500 0.504 0.496 0.520 0.503 0.523 

rpl 0.500 0.498 0.499 0.499 0.497 0.499 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.503 0.495 0.516 0.502 0.521 

b 0.500 0.502 0.501 0.542 0.496 0.541 

rpn 0.500 0.494 0.494 0.500 0.499 0.500 

al 0.500 0.519 0.484 0.571 0.511 0.580 

rpl 0.507 0.499 0.502 0.506 0.499 0.507 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.501 0.500 0.502 0.500 0.503 

b 0.500 0.502 0.499 0.541 0.496 0.543 

rpn 0.500 0.498 0.500 0.500 0.499 0.500 

al 0.500 0.504 0.495 0.520 0.503 0.525 

rpl 0.500 0.497 0.499 0.499 0.497 0.500 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.503 1.498 1.618 1.501 1.623 

b 1.500 1.500 1.502 1.639 1.495 1.667 

rpn 1.500 1.496 1.495 1.500 1.498 1.499 

al 1.500 1.514 1.477 1.737 1.501 1.799 

rpl 1.522 1.479 1.473 1.521 1.488 1.520 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.501 1.500 1.539 1.501 1.542 

b 1.500 1.500 1.502 1.659 1.497 1.665 

rpn 1.500 1.498 1.499 1.500 1.499 1.500 

al 1.500 1.501 1.496 1.634 1.499 1.635 

rpl 1.501 1.487 1.486 1.501 1.489 1.501 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.500 1.501 1.538 1.500 1.539 

b 1.500 1.500 1.504 1.632 1.495 1.665 

rpn 1.500 1.498 1.499 1.500 1.498 1.500 

al 1.500 1.500 1.498 1.628 1.502 1.634 

rpl 1.501 1.489 1.486 1.502 1.489 1.501 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.501 1.499 1.616 1.500 1.622 

b 1.500 1.499 1.503 1.643 1.498 1.670 

rpn 1.500 1.494 1.494 1.500 1.498 1.500 

al 1.500 1.512 1.473 1.721 1.502 1.795 

rpl 1.522 1.479 1.473 1.522 1.487 1.522 



139 

 

Table 2.1l: r estimates, parameter set 1, large data set                                                                                    Table 2.2l: r estimates, parameter set 2, large data set 

 
 
 
 
 
 
 

 
Table 2.3l: r estimates, parameter set 3, large data set                                                                                   Table 2.4l: r estimates, parameter set 4, large data set 

 
 
 
 
 
 
 

 Table 2.5l: r estimates, parameter set 5, large data set                                                                                Table 2.6l: r estimates, parameter set 6, large data set                                                                               
 
 
 
 
 
 
 

 Table 2.7l: r estimates, parameter set 7, large data set                                                                                Table 2.8l: r estimates, parameter set 8, large data set                                                                               
 
 
 
 
 
 
 
 

 
 

Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.502 0.496 0.514 0.502 0.521 

b 0.500 0.502 0.500 0.538 0.496 0.546 

rpn 0.500 0.494 0.495 0.500 0.498 0.500 

al 0.500 0.518 0.483 0.565 0.510 0.584 

rpl 0.507 0.500 0.502 0.506 0.499 0.507 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.501 0.500 0.502 0.501 0.503 

b 0.500 0.502 0.500 0.546 0.497 0.545 

rpn 0.500 0.498 0.500 0.500 0.500 0.500 

al 0.500 0.504 0.495 0.518 0.503 0.526 

rpl 0.500 0.497 0.499 0.499 0.497 0.499 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.501 0.500 0.502 0.500 0.504 

b 0.500 0.501 0.500 0.545 0.497 0.547 

rpn 0.500 0.498 0.499 0.500 0.500 0.500 

al 0.500 0.504 0.495 0.519 0.503 0.527 

rpl 0.500 0.497 0.499 0.500 0.497 0.500 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 0.500 0.503 0.496 0.515 0.502 0.523 

b 0.500 0.502 0.500 0.538 0.497 0.545 

rpn 0.500 0.494 0.495 0.500 0.499 0.500 

al 0.500 0.518 0.483 0.565 0.512 0.585 

rpl 0.507 0.499 0.502 0.506 0.499 0.507 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.501 1.497 1.616 1.502 1.635 

b 1.500 1.499 1.503 1.669 1.496 1.686 

rpn 1.500 1.496 1.494 1.500 1.498 1.500 

al 1.500 1.509 1.477 1.801 1.501 1.826 

rpl 1.522 1.480 1.473 1.522 1.486 1.521 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.500 1.500 1.538 1.501 1.550 

b 1.500 1.499 1.502 1.734 1.497 1.685 

rpn 1.500 1.498 1.499 1.500 1.499 1.500 

al 1.500 1.502 1.496 1.681 1.500 1.648 

rpl 1.501 1.488 1.486 1.501 1.489 1.501 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.501 1.500 1.539 1.501 1.550 

b 1.500 1.502 1.501 1.744 1.496 1.679 

rpn 1.500 1.498 1.499 1.500 1.499 1.500 

al 1.500 1.499 1.497 1.665 1.502 1.651 

rpl 1.501 1.488 1.486 1.501 1.489 1.501 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 1.500 1.501 1.498 1.622 1.500 1.638 

b 1.500 1.501 1.501 1.660 1.496 1.684 

rpn 1.500 1.495 1.494 1.500 1.498 1.500 

al 1.500 1.507 1.473 1.787 1.500 1.825 

rpl 1.522 1.479 1.472 1.523 1.487 1.522 
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Table 3.1s: Standard deviation of r estimates, parameter set 1, small data set         Table 3.2s: Standard deviation of r estimates, parameter set 2, small data set 

Specification Estimated 

an b rpn al rpl 

 
 
True       

an 0.019 0.023 0.035 0.019 0.055 

b 0.028 0.024 0.045 0.027 0.065 

rpn 0.023 0.021 0.017 0.021 0.033 

al 0.041 0.050 0.074 0.041 0.103 

rpl 0.023 0.021 0.017 0.022 0.031 

 
 
Table 3.3s: Standard deviation of r estimates, parameter set 3, small data set        Table  3.4s: : Standard deviation of r estimates, parameter set 4, small data set 

 
 
 
 
 
 
 
 

 
Table 3.5s: Standard deviation of r estimates, parameter set 5, small data set         Table 3.6s: Standard deviation of r estimates, parameter set 6, small data set                             

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.054 0.056 0.118 0.054 0.062 

b 0.067 0.064 0.153 0.071 0.075 

rpn 0.023 0.023 0.018 0.022 0.011 

al 0.119 0.133 0.317 0.117 0.110 

rpl 0.064 0.069 0.051 0.063 0.031 

 
Table 3.7s: Standard deviation of r estimates, parameter set 7, small data set         Table 3.8s: Standard deviation of r estimates, parameter set 8, small data set                                               

 
 
 
 
 
 
 
 

 
Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal 
 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.009 0.013 0.016 0.009 0.029 

b 0.029 0.025 0.046 0.028 0.064 

rpn 0.011 0.010 0.008 0.010 0.017 

al 0.021 0.026 0.036 0.020 0.062 

rpl 0.012 0.011 0.009 0.012 0.018 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.018 0.024 0.033 0.019 0.055 

b 0.028 0.025 0.044 0.027 0.065 

rpn 0.022 0.021 0.016 0.022 0.034 

al 0.043 0.049 0.068 0.041 0.104 

rpl 0.022 0.020 0.017 0.021 0.034 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.009 0.012 0.016 0.009 0.031 

b 0.029 0.025 0.044 0.027 0.063 

rpn 0.011 0.010 0.008 0.010 0.017 

al 0.021 0.025 0.036 0.020 0.060 

rpl 0.012 0.011 0.009 0.012 0.018 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.027 0.027 0.056 0.028 0.035 

b 0.068 0.064 0.221 0.066 0.078 

rpn 0.011 0.012 0.010 0.011 0.006 

al 0.062 0.065 0.207 0.055 0.066 

rpl 0.038 0.038 0.027 0.036 0.019 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.026 0.026 0.060 0.027 0.036 

b 0.068 0.067 0.264 0.068 0.075 

rpn 0.012 0.012 0.010 0.011 0.006 

al 0.061 0.063 0.184 0.057 0.067 

rpl 0.036 0.037 0.027 0.034 0.019 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.055 0.053 0.125 0.056 0.061 

b 0.065 0.064 0.150 0.069 0.077 

rpn 0.022 0.024 0.017 0.021 0.012 

al 0.124 0.132 0.352 0.121 0.112 

rpl 0.064 0.066 0.049 0.061 0.033 
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 Table 3.1m: Standard deviation of r estimates, parameter set 1, medium data set       Table 3.2m: Standard deviation of r estimates, parameter set 2, medium data set 

 
        

 
 
 
 

 
Table 3.3m: Standard deviation of r estimates, parameter set 3, medium data set      Table 3.4m: Standard deviation of r estimates, parameter set 4, medium data set 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.013 0.016 0.023 0.014 0.043 

b 0.019 0.017 0.037 0.019 0.048 

rpn 0.016 0.015 0.011 0.015 0.025 

al 0.030 0.035 0.054 0.029 0.083 

rpl 0.016 0.014 0.012 0.015 0.023 

 
Table 3.5m: Standard deviation of r estimates, parameter set 5, medium data set       Table 3.6m: Standard deviation of r estimates, parameter set 6, medium data set         

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.040 0.040 0.122 0.040 0.049 

b 0.048 0.047 0.201 0.049 0.060 

rpn 0.016 0.017 0.013 0.015 0.008 

al 0.085 0.102 0.363 0.081 0.084 

rpl 0.044 0.046 0.035 0.045 0.024 

 
Table 3.7m: Standard deviation of r estimates, parameter set 7, medium data set        Table 3.8m: Standard deviation of r estimates, parameter set 8, medium data set                                               

 
 
 
 
 
 
 
 

 
Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal 
 

Specification Estimated 

an b rpn al rpl 

 
 
True       

an 0.013 0.017 0.023 0.014 0.044 

b 0.021 0.017 0.038 0.019 0.050 

rpn 0.016 0.015 0.011 0.015 0.024 

al 0.030 0.034 0.052 0.027 0.079 

rpl 0.016 0.014 0.012 0.015 0.023 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.007 0.009 0.011 0.007 0.026 

b 0.020 0.018 0.055 0.019 0.052 

rpn 0.008 0.007 0.006 0.007 0.012 

al 0.015 0.018 0.024 0.014 0.047 

rpl 0.009 0.008 0.006 0.009 0.013 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.006 0.009 0.011 0.007 0.026 

b 0.020 0.017 0.052 0.020 0.053 

rpn 0.008 0.007 0.006 0.008 0.012 

al 0.015 0.018 0.025 0.014 0.047 

rpl 0.009 0.007 0.007 0.008 0.013 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.020 0.019 0.058 0.020 0.032 

b 0.049 0.046 0.302 0.049 0.062 

rpn 0.008 0.009 0.007 0.008 0.005 

al 0.045 0.045 0.242 0.041 0.054 

rpl 0.026 0.026 0.020 0.026 0.014 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.039 0.039 0.118 0.038 0.053 

b 0.049 0.047 0.176 0.049 0.061 

rpn 0.016 0.017 0.012 0.015 0.009 

al 0.085 0.097 0.312 0.082 0.086 

rpl 0.045 0.048 0.035 0.044 0.024 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.019 0.019 0.050 0.019 0.032 

b 0.048 0.047 0.238 0.050 0.060 

rpn 0.009 0.008 0.007 0.008 0.005 

al 0.042 0.046 0.247 0.042 0.055 

rpl 0.026 0.026 0.020 0.025 0.013 
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Table 3.1l: Standard deviation of r estimates, parameter set 1, large data set                  Table 3.2l: Standard deviation of r estimates, parameter set 2, large data set 

Specification Estimated 

an b rpn al rpl 

 
 
True       

an 0.009 0.012 0.015 0.010 0.031 

b 0.014 0.012 0.025 0.014 0.037 

rpn 0.011 0.011 0.008 0.010 0.017 

al 0.021 0.024 0.040 0.020 0.057 

rpl 0.011 0.010 0.009 0.010 0.016 

 
Table 3.3l: Standard deviation of r estimates, parameter set 3, large data set               Table 3.4l: Standard deviation of r estimates, parameter set 4, large data set 

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an 0.009 0.011 0.016 0.010 0.031 

b 0.014 0.012 0.025 0.014 0.035 

rpn 0.012 0.011 0.008 0.011 0.017 

al 0.021 0.024 0.037 0.020 0.057 

rpl 0.011 0.010 0.008 0.011 0.016 

 
 
Table 3.5l: Standard deviation of r estimates, parameter set 5, large data set             Table 3.6l: Standard deviation of r estimates, parameter set 6, large data set                             

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an 0.027 0.029 0.115 0.028 0.034 

b 0.035 0.033 0.236 0.034 0.042 

rpn 0.011 0.011 0.009 0.010 0.006 

al 0.060 0.070 0.402 0.059 0.059 

rpl 0.032 0.033 0.026 0.032 0.017 

 
Table 3.7l: Standard deviation of r estimates, parameter set 7, large data set             Table 3.8l: Standard deviation of r estimates, parameter set 8, large data set                                               

 
 
 
 
 
 
 
 

 
Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal  

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.005 0.006 0.008 0.005 0.019 

b 0.014 0.013 0.076 0.014 0.036 

rpn 0.006 0.005 0.004 0.005 0.009 

al 0.011 0.013 0.017 0.010 0.033 

rpl 0.006 0.006 0.005 0.006 0.009 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.005 0.006 0.008 0.005 0.019 

b 0.014 0.012 0.080 0.013 0.037 

rpn 0.006 0.005 0.004 0.005 0.009 

al 0.011 0.013 0.042 0.010 0.034 

rpl 0.006 0.005 0.005 0.006 0.009 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.014 0.014 0.036 0.014 0.022 

b 0.034 0.034 0.368 0.034 0.042 

rpn 0.006 0.006 0.005 0.006 0.003 

al 0.031 0.032 0.301 0.029 0.039 

rpl 0.019 0.019 0.014 0.018 0.009 

Specification Estimated 

an b Rpn al rpl 

 
 
True 

an 0.027 0.027 0.145 0.028 0.037 

b 0.033 0.032 0.214 0.034 0.043 

rpn 0.011 0.011 0.009 0.011 0.006 

al 0.059 0.069 0.398 0.058 0.060 

rpl 0.031 0.034 0.025 0.030 0.016 

Specification Estimated 

an b rpn al rpl 

 
 
True 

an 0.013 0.013 0.040 0.014 0.022 

b 0.035 0.032 0.371 0.034 0.043 

rpn 0.006 0.006 0.005 0.006 0.003 

al 0.030 0.032 0.281 0.031 0.039 

rpl 0.019 0.019 0.014 0.018 0.009 
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Table 4.1s: s estimates, parameter set 1, small data set                                                                                   Table 4.2s: s estimates, parameter set 2, small data set 

  
 
 
 
 
 
 

Table 4.3s: s estimates, parameter set 3, small data set                                                                                Table 4.4s: s estimates, parameter set 4, small data set 
 
 
 
 
 
 
 

 Table 4.5s: s estimates, parameter set 5, small data set                                                                               Table 4.6s: s estimates, parameter set 6, small data set                                                                               
 
 
 
 
 
 
 

 Table 4.7s: s estimates, parameter set 7, small data set                                                                               Table 4.8s: s estimates, parameter set 8, small data set                                                                               
 
 
 
 
 
 
 
 
 

 

Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 54.06 169.37 10.48 95.47 3.21 

b 40.00 19.00 42.26 4.59 35.15 1.40 

rpn 20.00 62.33 375.08 20.69 120.33 6.18 

al 40.00 25.05 48.38 4.99 45.73 1.53 

rpl 5.41 57.18 293.34 18.68 108.81 5.60 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 27.95 56.23 5.30 49.33 1.67 

b 40.00 18.98 42.68 4.51 34.92 1.38 

rpn 10.00 31.43 91.84 10.30 60.21 2.94 

al 20.00 13.10 19.62 2.80 24.05 0.73 

rpl 2.92 31.87 96.00 10.12 60.79 3.04 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 27.89 56.39 5.26 49.19 1.65 

b 40.00 18.96 42.30 4.48 35.07 1.39 

rpn 10.00 31.52 89.56 10.36 60.21 2.97 

al 20.00 13.17 19.51 2.80 24.01 0.73 

rpl 2.92 31.90 95.70 10.02 60.49 3.01 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 54.05 165.03 10.53 95.58 3.20 

b 40.00 19.05 42.38 4.49 35.11 1.41 

rpn 20.00 62.51 384.39 20.83 119.45 6.16 

al 40.00 25.01 49.02 4.92 45.85 1.53 

rpl 5.41 56.91 291.35 18.61 107.88 5.60 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 26.00 136.08 1.67 44.96 0.49 

b 80.00 20.15 85.83 1.38 35.13 0.37 

rpn 10.00 91.07 1394.94 10.38 168.50 3.47 

al 20.00 11.59 24.63 1.10 20.59 0.19 

rpl 1.06 30.56 179.74 3.44 58.48 1.10 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 51.55 546.74 3.17 90.36 1.00 

b 80.00 20.09 86.60 2.03 35.24 0.36 

rpn 20.00 182.72 1600.00 21.35 330.73 7.10 

al 40.00 22.85 109.21 2.07 41.50 0.44 

rpl 1.99 54.40 567.33 6.24 104.10 2.07 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 25.72 137.08 1.65 44.92 0.49 

b 80.00 20.11 87.02 1.38 35.05 0.36 

rpn 10.00 90.75 1390.86 10.47 168.15 3.45 

al 20.00 11.69 24.91 1.11 20.85 0.19 

rpl 1.06 30.70 177.50 3.43 58.33 1.10 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 51.60 544.50 3.13 90.90 0.99 

b 80.00 20.09 85.29 2.03 35.37 0.36 

rpn 20.00 182.69 1600.00 21.29 329.97 7.12 

al 40.00 23.01 105.95 2.09 41.55 0.44 

rpl 1.99 54.68 557.47 6.28 104.08 2.07 
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Table 4.1m: s estimates, parameter set 1, medium data set                                                                           Table 4.2m: s estimates, parameter set 2, medium data set 

  
 
 
 
 
 
 

 
Table 4.3m: s estimates, parameter set 3, medium data set                                                                            Table 4.4m: s estimates, parameter set 4, medium data set 

 
 
 
 
 
 
 

 Table 4.5m: s estimates, parameter set 5, medium data set                                                                           Table 4.6m: s estimates, parameter set 6, medium data set                                                                               
 
 
 
 
 
 
 

 Table 4.7m: s estimates, parameter set 7, medium data set                                                                           Table 4.8m: s estimates, parameter set 8, medium data set                                                                               
 
 
 
 
 
 
 
 

 
 

Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 27.28 53.24 5.25 48.23 1.48 

b 40.00 18.52 41.26 3.95 34.29 1.15 

rpn 10.00 30.09 82.22 10.15 58.29 2.89 

al 20.00 12.78 18.63 2.48 23.52 0.62 

rpl 2.92 30.61 89.52 9.94 58.65 2.98 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 53.02 160.04 10.41 93.50 2.87 

b 40.00 18.55 41.12 4.00 34.40 1.12 

rpn 20.00 60.36 350.26 20.38 115.67 6.09 

al 40.00 24.42 46.70 4.79 44.67 1.37 

rpl 5.41 54.53 283.12 18.26 104.97 5.52 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 27.35 53.17 5.24 48.27 1.47 

b 40.00 18.44 41.02 3.88 34.32 1.16 

rpn 10.00 29.91 81.73 10.20 57.62 2.91 

al 20.00 12.83 18.44 2.51 23.48 0.62 

rpl 2.92 30.66 89.44 9.88 58.68 2.97 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 53.10 161.42 10.41 93.66 2.93 

b 40.00 18.41 41.20 4.09 34.31 1.14 

rpn 20.00 59.83 350.39 20.47 115.74 6.10 

al 40.00 24.43 46.54 4.81 44.84 1.37 

rpl 5.41 54.37 284.13 18.27 104.01 5.50 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 25.47 131.56 1.43 44.39 0.38 

b 80.00 19.72 82.35 1.23 34.43 0.28 

rpn 10.00 88.77 1402.67 10.19 167.83 3.38 

al 20.00 11.31 23.06 1.04 20.32 0.15 

rpl 1.06 29.78 166.95 3.35 57.33 1.08 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 50.84 530.53 2.69 89.09 0.76 

b 80.00 19.73 82.99 2.00 34.65 0.29 

rpn 20.00 178.10 1600.00 20.60 331.01 6.87 

al 40.00 22.44 102.50 2.02 40.67 0.35 

rpl 1.99 53.27 549.07 6.13 102.82 2.03 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 50.87 530.24 2.72 88.99 0.77 

b 80.00 19.82 82.69 2.00 34.57 0.29 

rpn 20.00 177.34 1600.00 20.65 331.73 6.90 

al 40.00 22.58 101.97 2.02 40.57 0.35 

rpl 1.99 53.37 541.65 6.14 101.78 2.02 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 25.40 131.73 1.44 44.21 0.38 

b 80.00 19.61 83.56 1.23 34.35 0.28 

rpn 10.00 88.62 1401.38 10.19 168.71 3.38 

al 20.00 11.40 22.75 1.04 20.40 0.15 

rpl 1.06 29.82 168.26 3.36 57.55 1.08 
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Table 4.1l: s estimates, parameter set 1, large data set                                                                           Table 4.2l: s estimates, parameter set 2, large data set 

  
 
 
 
 
 
 

 
Table 4.3l: s estimates, parameter set 3, large data set                                                                             Table 4.4l: s estimates, parameter set 4, large data set 

 
 
 
 
 
 
 

 Table 4.5l: s estimates, parameter set 5, large data set                                                                               Table 4.6l: s estimates, parameter set 6, large data set                                                                               
 
 
 
 
 
 
 

 Table 4.7l: s estimates, parameter set 7, large data set                                                                              Table 4.8l: s estimates, parameter set 8, large data set                                                                               
 
 
 
 
 
 
 
 

 
 

Key an: additive normal; b:beta; rpn: random preferences normal; al: additive normal; rpn: random preferences lognormal

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 27.11 52.11 4.99 48.05 1.42 

b 40.00 18.29 40.82 3.46 33.99 1.08 

rpn 10.00 29.40 79.21 10.06 57.60 2.85 

al 20.00 12.64 18.11 2.27 23.37 0.59 

rpl 2.92 30.02 87.28 9.82 57.93 2.95 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 52.65 156.67 10.14 92.60 2.73 

b 40.00 18.32 40.66 3.75 34.13 1.09 

rpn 20.00 59.43 335.47 20.25 114.44 6.03 

al 40.00 24.20 45.10 4.55 44.25 1.31 

rpl 5.41 53.63 277.30 18.10 103.74 5.45 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 27.12 52.18 4.98 47.87 1.41 

b 40.00 18.31 40.54 3.48 33.84 1.09 

rpn 10.00 29.31 78.38 10.10 57.27 2.87 

al 20.00 12.62 18.03 2.30 23.37 0.60 

rpl 2.92 30.07 86.68 9.81 57.97 2.95 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 52.62 156.13 10.12 92.78 2.75 

b 40.00 18.27 40.47 3.74 33.98 1.08 

rpn 20.00 59.08 338.60 20.24 114.24 6.04 

al 40.00 24.23 45.19 4.59 44.28 1.31 

rpl 5.41 53.78 276.93 18.09 103.32 5.45 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 25.21 128.11 1.37 43.95 0.36 

b 80.00 19.56 81.49 1.16 34.22 0.26 

rpn 10.00 86.87 1406.74 10.12 166.22 3.35 

al 20.00 11.23 22.16 1.01 20.19 0.14 

rpl 1.06 29.42 162.04 3.32 56.66 1.07 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 50.29 522.46 2.53 88.16 0.70 

b 80.00 19.58 81.22 2.00 34.37 0.27 

rpn 20.00 174.87 1600.00 20.16 327.71 6.79 

al 40.00 22.28 98.52 2.00 40.29 0.33 

rpl 1.99 52.39 529.54 6.06 101.66 2.01 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 50.00 50.43 520.29 2.53 88.30 0.69 

b 80.00 19.62 81.39 2.00 34.23 0.27 

rpn 20.00 173.88 1600.00 20.28 327.60 6.78 

al 40.00 22.29 98.27 2.00 40.31 0.32 

rpl 1.99 52.38 530.06 6.08 101.10 2.01 

 True 
value 

Estimated value 

an b rpn al rpl 

 
 
True       

an 25.00 25.20 128.65 1.36 43.99 0.35 

b 80.00 19.52 81.44 1.16 34.24 0.27 

rpn 10.00 87.00 1407.58 10.10 167.45 3.34 

al 20.00 11.29 21.84 1.01 20.32 0.14 

rpl 1.06 29.38 161.53 3.33 56.93 1.07 
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Chapter 5 

Stock Market Sectors’ Dependencies 
Pre and Post the Financial Crisis of 
2007: the cases of Greece, Italy and 
Portugal 

 

5.1 Introduction 

After the collapse of the fourth largest investment bank in the USA (Lehman Brothers) on 

2007, which caused many markets around the world to experience a very volatile economic 

environment with an increased level of uncertainty (Bartram and Bodnar, 2009), the 

subprime crisis of the USA transmitted its shocks to the other side of the Atlantic Ocean: the 

European continent. The first victim of the European sovereign debt crisis was Greece in 

2007-2008. Greece had a very high level of government debt.  In addition to Greece, other 

Southern European countries, after a short time, proved that they were also in a similar 

financial position, and they had to deal with high debt and deficit (Samitas and Tsakalos, 

2013). These European countries were named with the acronym PIIGS; this included the 

following countries: Greece, Italy, Ireland, Spain and Portugal. It was necessary for people to 

understand that this crisis was not in reality confirmed to these countries but that it was a 

global financial crisis, and possibly the biggest in the history of the European Union. After 

Greece, the next countries that experienced the deficit problem were Belgium, the UK and 

France. 
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In this chapter, we focus on the effects of the European debt crisis on the relationships of 

sectoral stock market indices, by testing the dependency relationships among the stock 

market sectors. We examine three out of the five PIIGS countries, specifically Greece, Italy 

and Portugal. We choose these three countries as they had the biggest drop in their average 

real GDP % change Year on Year after the crisis compared to Ireland and Spain (see Appendix 

A). We will conduct cointegration and Granger causality analysis for the stock market sector 

indices in each of the three countries separately. We explore these tests for the five most 

powerful sectors of each of the corresponding stock markets. 

While there is a massive literature on the dependence relationships between countries’ basic 

stock market indices, there are just few papers which explore the effect of the recent global 

financial crisis on the dependencies of the PIIGS countries’ stock market main indices. More 

specifically, Chouliaras et al (2012) explore whether cointegration and causality relationships 

exist among the basic stock markets indices of the PIIGS countries.  By using daily data from 

01/02/2005 to 30/06/2011, they find long and short run relations among the main indices of 

the markets. Kazemi and Sohrabji (2012) look for contagion among the PIIGS: they discover 

higher post-crisis correlation among the PIIGS countries. Tamakoshi and Hamori (2011) look 

for transmission of stock indices among the European PIIGS, Germany and the UK before and 

during the European sovereign debt crisis. They conclude that there are short run 

relationships mainly from Ireland and Portugal to other countries, especially to Germany, 

prior to the crisis. Ahmad et al (2013) assess the financial contagion by looking at the 

contagion effect of the PIIGS countries, the USA, the UK and the Japanese markets on the 

BRIICKS countries’ stock markets.  These are Brazil, Russia, India, Indonesia, China, South 

Korea and South Africa. Their main findings are that Ireland, Italy and Spain have higher level 

of contagion than Greece for BRIICKS stock markets, while Brazil, India, Russia, China and 

South Africa were significantly affected by the contagion shock during the Eurozone crisis. 

Tiwari et al (2016) examine co-movements, contagion and rolling correlation between the 
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basic stock market indices of the PIIGS countries and Germany and the UK. Their conclusion 

in the short run is that correlation was high during the crisis, while in the long run the co-

movements were present for the entire period. 

The analysis of a market’s long run and short run relationships among its sectors is very 

important for a country’s optimal portfolio allocation and risk management. From a policy 

perspective, the analysis provides useful implications for the government of each country on 

how to take measures to rescue it when the country appears to be vulnerable. Furthermore, 

as Ewing (2002) states, stock sector indices act as benchmarks for the profitability of the 

publicly traded stocks that are included in the sector or the performance of actively managed 

portfolios that include publicly traded stocks of a sector. In addition, Ewing (2002) claims that 

indices are also used as the basis for other financial instruments, such as index mutual funds.  

Based on the existing literature review on PIIGS countries presented above, there is no paper 

that studies the sectoral stock indices relationships of any of the PIIGS countries before and 

after the financial crisis. Actually, this is the first paper that tests these relationships in a 

country’s stock market before and after a financial crisis. Furthermore, it examines these 

relationships in three countries which experienced the same crisis. In addition to this lack of 

research, we carry out this analysis by taking into consideration the benefits that a sectoral 

stock market analysis offers to a country’s policy and its investors. 

Below we refer to some of the few papers that conduct a sectoral cointegration and causality 

analysis. The first paper is the only one that relates to one of the countries in our analysis. 

Patra and Poshakwale (2008) examine the case of the Athens stock exchange using daily data 

from 01/01/1996 to 31/12/2003 and report that there is not a consistent cointegration 

relationship. However, the banking sector appears to be very influential on the return and 

volatility of other sectors in the short run. By using variance decomposition analysis they also 

show that the banking sector is able to explain 25% of the variance of the construction and 
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insurance sectors, as well as 15% of the variance of the industrial, investment and the holding 

sectors. Vardhan et al (2015) study the Indian sector stock price indices in the post subprime 

crisis period and report minimal benefits from diversifying investments to different sectors. 

Here again, the banking sector plays a key role and seems to move other indices, while other 

indices seem to be driven by the Realty and the Metal sectors. Ewing (2002) studies the 

interrelationships of five important S&P stock indices and how shocks of each of the indices 

are transmitted to other indices. Ahmed (2012) analyses the interdependence of the four 

market sector indices of the Qatar Exchange. His results suggest that there is a cointegration 

relationship and that the banking and financial institutions sector seems to drive other 

sectors in the short run. Wang et al (2005) study the dependence relationships across and 

within the two Chinese Stock Exchanges in Shanghai and Shenzhen and show a high degree 

of interdependence among the sectors. This means that a portfolio based only on the sectors 

of the Chinese stock markets offers limited diversification. Policymakers could take this into 

consideration, and possibly try to create policies to stop any negative transmission of shocks 

between the sectors. Arbeláez et al (2001) assesses the linkages among the sectoral stock 

indices of the former Medellin Stock Exchange in Colombia. The results show that indices 

exhibit long-term relationships between them and short-term linkages in half of the cases. 

In addition, impulse response results show that responses to innovations in other indexes 

are small but also fast and persistent.  

 

5.2 Data 

In our analysis, we investigate the interdependencies among the five major stock market 

sector indices in each of the PIG (Portugal, Italy and Greece) countries: Athens Stock Market 

Sector Indices, Italy Stock Market Sector Indices and Portugal Stock Market Sector Indices. 

The sample consists of the natural logarithm of monthly closing prices for each sector index 
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from the 1st of June 1998 to the 1st of November 2016. This period is divided into two sub-

periods: 01/06/1998 to 01/08/2007 and 01/09/2007 to 01/11/2016. The data was obtained 

from the Datastream database. We consider the first sub-period as the pre-crisis period, and 

the second sub-period as the post-crisis period; there are 111 observations in each. We use 

the sector classification ICB of Datastream which includes the following ten sectors: Basic 

Materials, Consumer Goods, Consumer Services, Financials, Health Care, Industrials, Oil and 

Gas, Technology, Telecommunications and Utilities. After removing the sectors for which we 

do not have a full data sample for the period under investigation, we select the five main 

sectors of each country based on their share of the country’s total stock market 

capitalization. Based on this analysis, we use the Financials, Telecommunications, Consumer 

Services, Consumer Goods, and Basic Materials sectors for Greece, the Financials, Oil and 

Gas, Utilities, Telecommunications, and Consumer Goods sectors for Italy, and the Financials, 

Utilities, Consumer Services, Telecommunications and Industrials sectors for Portugal. For 

the specific percentage of each sector within the country’s total stock market capitalization, 

please see Appendix B.  

 

5.3 Methodology 

The first step in the data analysis is to check the time series for stationarity. A time series is 

called stationary when its main characteristics are time-invariant; that is, when its mean, 

variance and covariance are constant over time. If this is not the case, the time series is said 

to be non-stationary. When a time series 𝑉𝑡 is not stationary in levels but its pth differences 

are stationary, it is called integrated of order p ‒ abbreviated as I(p). For instance, if 𝑉𝑡  is 

non-stationary in level prices but it is stationary in 1st differences, 𝑉𝑡 is integrated of order 1 

with abbreviation I(1), while the abbreviation of its first differences is I(0). Let us suppose 

that the time series 𝑉𝑡 is not stationary. In this case there are some problems. The first is that 
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the results we obtain from the classical regression techniques – such as the OLS estimators 

– are not reliable. That is, the dependency results of the tests can be spurious, meaning that 

it might not exist in reality. The second problem is that the 𝑉𝑡 suffers from permanent effects. 

That is, the effects of an unpredictable sudden change (shock) on a stationary time series will 

be gradually reduced to zero. On the other hand, the effects of a shock on a non-stationary 

time series last forever. Moreover, a stationary time series is also called mean-reverting 

because its values are always fluctuating around the underlying mean, but the values of the 

non-stationary 𝑉𝑡 can increase or decrease continuously following an unpredictable path, 

such as a random walk. A random walk without a drift (intercept) is the most well-known 

example of a process that a non-stationary time series can follow. This model suggests that 

the value of 𝑉 is equal to its value yesterday plus an unpredictable shock (𝜀𝑡). It is an 

autoregressive model of order one (AR(1)) with the autoregressive parameter equal to unity  

and it is given as follow:  

𝑅𝑎𝑛𝑑𝑜𝑚 𝑤𝑎𝑙𝑘 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑎 𝑑𝑟𝑖𝑓𝑡:                    𝑉𝑡 = 𝑎𝑉𝑡−1 + 𝜀𝑡                                                                     (1) 

where a =1. In order for 𝑉𝑡 to be stationary, 𝑎 (the coefficient of 𝑉𝑡−1) in absolute value 

should be less than one. In the case that 𝑉𝑡 is non-stationary, it is also said that 𝑉𝑡 has a unit 

root as 𝑎 will be equal to one. This can be explained with the help of the lag operator (L) in 

equation (1):  

𝑉𝑡 = 𝑎𝑉𝑡−1 + 𝜀𝑡  ⇔ 𝐿0𝑉 = 𝑎𝐿1𝑉 + 𝜀𝑡  ⇔ 𝑉 − 𝑎𝐿𝑉 = 𝜀𝑡 ⇔ 𝑉(1 − 𝑎𝐿) = 𝜀𝑡                             (2) 

(1 − 𝑎𝐿) is called the characteristic equation and the value of L that sets (1 − 𝑎𝐿) to zero is 

called the characteristic root; that is (1 − 𝑎𝐿) = 0 and 𝐿 =
1

𝑎
. The value of α is on the unit 

circle, if its value is equal to 1 the time series has a unit root so it is non-stationary, while 

when 𝑎’s absolute value is less than 1, the time series does not have a unit root and it is 

stationary. 
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5.3.1 Dickey-Fuller GLS unit root test 

The most common unit root test is the Augmented Dickey-Fuller (ADF) unit root test 

proposed by Dickey and Fuller (1979). This test is based on a modified version of equation 

(1), which is produced by subtracting the value of 𝑉 at the 𝑡 − 1 period, adding q lagged 

values of the first differences of  𝑉 and adding the 𝑋𝑡 vector which contains the possible 

exogenous data, and its coefficient δ:  

𝛥𝑉𝑡 = 𝑎𝑉𝑡−1 − 𝑉𝑡−1 + 𝛿𝑋𝑡 + ∑ 𝛾𝑖𝛥𝑉𝑡−𝑖

𝑞

𝑖=1

+ 𝜀𝑡 = (𝑎 − 1)𝑉𝑡−1 + 𝛿𝑋𝑡 + ∑ 𝛾𝑖𝛥𝑉𝑡−𝑖

𝑞

𝑖=1

+ 𝜀𝑡 

        = 𝛽𝑉𝑡−1 + 𝛿𝑋𝑡 + ∑ 𝛾𝑖𝛥𝑉𝑡−𝑖
𝑞
𝑖=1 + 𝜀𝑡                                                                                                                  (3) 

In equation (3) 𝛽 is equal to (𝑎 − 1) and 𝜀𝑡 is the disturbance term (errors) which is assumed 

to be white noise: that is, its mean is zero and its variance is constant over time, and is 

abbreviated as 𝜀𝑡~𝐼𝐼𝐷(0, 𝜎𝜀
2). 𝐼𝐼𝐷 means that these random variables (shocks) 𝜀𝑡 are 

Independent and Identically Distributed. Moreover, the 𝑋𝑡 vector can contain either an 

intercept and a trend, or only an intercept, or neither. Thus the ADF unit root test relies on 

three different models which depend on the exogenous data of the 𝑋𝑡 vector. The ADF unit 

root test has the following null and alternative hypotheses: 

(𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) 𝐻0: 𝛽 = 0 ⇔ 𝑌𝑡  ℎ𝑎𝑠 𝑎 𝑢𝑛𝑖𝑡 𝑟𝑜𝑜𝑡 

(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) 𝐻1: 𝛽 < 0 ⇔ 𝑌𝑡  𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑎𝑣𝑒 𝑎 𝑢𝑛𝑖𝑡 𝑟𝑜𝑜𝑡 

In order to decide if the null hypothesis should be rejected or not, the t-statistic of  𝛽 should 

be computed based on the following formula below where �̂� is the estimator of 𝛽 

and 𝑠𝑒(�̂�) is the standard error of the �̂� estimator. 

�̂� =
�̂� 

𝑠𝑒(�̂� )
                                                                                                                              (4)                                               
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The value of �̂� is then compared to the Dickey–Fuller critical values and the null hypothesis 

is rejected if �̂� in absolute value is larger than the absolute value of the critical value at the 

selected significance level, here at 5%31. Note that there are different critical values for each 

of the three ADF models.  

Although the ADF unit root test is a very common tool to check stationarity, it is not the 

preferred one when it comes to small datasets as it is known to have low power against the 

alternative hypothesis; that is, it tends to not reject the null hypothesis of unit root existence 

more often than it should. As the number of observations in this study is 111 per period 

tested, a modified version of the ADF unit root test, called the Dickey–Fuller GLS unit root 

test (DF-GLS) is used (Elliot et al, 1996). The DF-GLS unit root test is based on the de-trended 

𝑉𝑡 data, denoted by 𝑉𝑡
𝑑 which are equal to the 𝑉𝑡 data minus the exogenous variables 𝑋𝑡. 

Specifically, the method suggested by Elliot et al starts by defining the value of  𝑉𝑡 based on 

the time t and the value of 𝛽. 

𝑑(𝑉𝑡|𝛽) = {
       𝑉𝑡          ,   𝑖𝑓 𝑡 = 1
𝑉𝑡 − 𝛽𝑉𝑡−1,   𝑖𝑓 𝑡 > 1

 

Then δ is estimated by the following model where 𝑋𝑡 is either an intercept (1) or an intercept 

and a trend (1+t): 

𝑑(𝑉𝑡|𝛽) = 𝑑(𝑋𝑡|𝛽)𝛿(𝛽) + 𝑢𝑡                                                                (5) 

𝑋𝑡 = {
1

1 + 𝑡
 

In order to run the model in equation (5), 𝛽 should be defined. Elliot et al (1996) suggested 

using the following �̅� which depends upon the value of 𝑋𝑡:  

�̅� = {
1 − 7𝑇             𝑖𝑓  𝑋𝑡 = {1}

      1 − 13.5𝑇        𝑖𝑓  𝑋𝑡 = {1 + 𝑡}
 

                                                           
31 We choose the 5% significance level, as this is the significance level that most researchers use. The 
1% significance level is considered very strict and the 10% significance level too loose.  
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Finally, the  𝑉𝑡 and 𝛥𝑉𝑡 in equation (3) are replaced by the de-trended values 𝑉𝑡
𝑑= 𝑉𝑡 −

 𝑋𝑡𝛿(𝛽) and 𝛥𝑉𝑡
𝑑 =  𝑉𝑡 − 𝑉𝑡

𝑑 respectively. Thus, the DF-GLS model is as follow:  

𝛥𝑉𝑡
𝑑 = β𝑉𝑡−1

𝑑 + ∑ 𝛾𝑖Δ𝑉𝑡−𝑖
𝑑𝑞

𝑖=1 + 𝜀𝑡                                                                                                                                   (6) 

In the software we use, Eviews, the number of lags (q) is defined by using an information 

criterion such as the Schwarz Information Criterion and the Akaike Information Criterion. The 

null and the alternative hypotheses of the DF-GLS test remain the same with the ones in ADF 

unit root test, as well as the formula for the t-statistic.  

(𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) 𝐻0: 𝛽 = 0 ⇔ 𝑌𝑡  ℎ𝑎𝑠 𝑎 𝑢𝑛𝑖𝑡 𝑟𝑜𝑜𝑡 

(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) 𝐻1: 𝛽 < 0 ⇔ 𝑌𝑡  𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑎𝑣𝑒 𝑎 𝑢𝑛𝑖𝑡 𝑟𝑜𝑜𝑡                          

�̂� =
�̂� 

𝑠𝑒(�̂�)
 

However, the value of this statistic is compared with different critical values (cvGLS) than those 

used in the ADF unit root test. In the case that  𝑋𝑡 = {1} (only intercept), the critical values 

of the DF-GLS test are same as the ones in the ADF model without intercept and trend. 

However, in the case that  𝑋𝑡 = {1 + 𝑡} (intercept and trend) Elliot et al (1996) have 

estimated different critical values (Appendix C – Table 1). If |�̂�| > |𝑐𝑣 𝐺𝐿𝑆|, the null 

hypothesis of unit root (non-stationarity) is rejected. If the inequality is reversed, the null 

hypothesis cannot be rejected and the time series 𝑉𝑡 is declared non-stationary. 

 

5.3.2 The Johansen cointegration test 

Assuming that the variables of interest are I(1) the next step is to analyse the data for long-

run relationships by applying a cointegration test. There are many different cointegration 

techniques widely used when researchers want to examine the possibility of two or more 

variables to be cointegrated (have a long-run equilibrium relationship). Namely, two time 
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series are called cointegrated when their price deviations are generally nearly the same by 

size and direction (positive or negative), so that their value paths have an almost stable 

distance. A common requirement for all the different cointegration tests is that the 

dependent variables are integrated of the same order (usually integrated of order one). After 

testing all the time series for unit root, the Johansen cointegration test is in order (Johansen, 

1991). The Johansen cointegration test is based on a VAR model of order q, where 𝑉𝑡 is a n x 

1 vector which contains the non-stationary time series which we want to test for 

cointegration, q is the number of lags, 𝑋𝑡 is a vector consisting of the possible deterministic 

variables (intercept and trend) and 𝜀𝑡  is 𝐼𝐼𝐷.  

𝑉𝑡 = 𝐾1𝑉𝑡−1 + 𝐾2𝑉𝑡−2 + ⋯ + 𝐾𝑞𝑉𝑡−𝑞 + Γ𝑋𝑡 + 𝜀𝑡                                                                                         (7) 

This model can be rewritten in error correction form with dependent variable a vector 

consisting of the stationary 1st differences of the time series tested as follows: 

Δ𝑉𝑡 = Π𝑉𝑡−1 + ∑ 𝐴𝑖Δ𝑉𝑡−𝑖
𝑞−1
𝑖=1 + Γ𝑋𝑡 + 𝜀𝑡                                                                                                        (8) 

with the coefficient matrix Π = ∑ 𝐾𝑖 − 𝐼
𝑞
𝑖=1  and 𝐴𝑖 = − ∑ 𝐾𝑗

𝑞
𝑗=𝑖+1 . I is the identity matrix 

and the number of lags is defined through an unrestricted VAR model on 𝑉𝑡 including an 

intercept and a trend if your variables are trended and based on the Akaike Information 

Criterion (AIC), so that there is no serial correlation among the residuals. A proof of how 

equation (8) can give the same result as equation (7) can be found on Appendix D. The 

formula for the AIC is as follows: 

𝐴𝐼𝐶 = 2𝜃 − 2ln (�̂�) 

where 𝜃 is the number of the parameters to be estimated and �̂� is the maximised value of 

the likelihood function of the model in equation (8).  

If the rank (r) of the coefficient matrix Π is less than the number of the endogenous variables 

n (𝑟 < 𝑛) and for suitable n x  r matrices α and β,  Π = αβ′ and β′𝑉𝑡~ I(0). r is the number of 
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the cointegration relations (rank), β is a matrix with cointegration vectors in each column,  β′ 

is the transpose matrix of β and the data of matrix α are the adjustment parameters which 

will be used in a Vector Error Correction model in the case that cointegration exists. When r 

is equal to zero there is no cointegration among the non-stationary time series, while when 

r is between 1 and n-1 there are r cointegration equations among them. In the case that the 

rank of Π matrix is full (r=n), the logarithmic prices 𝑉𝑡 are stationary. 

The first thing in the Johansen cointegration test is to estimate the matrix Π and test a series 

of null hypotheses for r = 0, 1, 2, 3..., n-1 against an alternative. Johansen (1991) 

recommended two different cointegration tests to choose from. The first is the Trace Test 

and the second is the Maximum Eigenvalue Test with the following formulas, where 𝜆𝑗 is the 

jth largest eigenvalue of the coefficient matrix Π.  

𝜆𝑡𝑟𝑎𝑐𝑒 = −𝑇 ∑ log(1 − 𝜆�̂�)𝑛
𝑗=𝑟+1                                                                                           (9) 

𝜆𝑚𝑎𝑥 = −𝑇 ∑ log(1 − 𝜆𝑟+1̂)𝑛
𝑗=𝑟+1                                                                                                                         (10) 

The alternative hypotheses are r=n and r=r+1, respectively. The process of the tests is to test 

sequentially the null hypotheses of r = 0, 1…, n-1, until we fail to reject the null. The null 

hypothesis is rejected when the corresponding test statistic is larger than the matching 

critical value at the 5% significance level. Note that each null hypothesis has different critical 

values which depend on the existence of deterministic variables and the number of 

dependent variables in the equation (8). 

 

5.3.3 Granger causality test 

Apart from the long-run relationships between the data, the short-term interactions 

between them can be tested by using the methodology that Granger (1969) suggested. The 

following bivariate VAR model is applied 
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(
Δ𝑉1

Δ𝑉2
) = (

𝛾0

𝜑0
) + (

𝛿1

𝛿2
) (𝑉2,𝑡−𝑖 − 𝑉1,𝑡−𝑖) + (

∑ 𝛾1,𝑖
𝑞
𝑖=1

∑ 𝜑1,𝑖
𝑞
𝑖=1

) Δ𝑉1,𝑡−𝑖 + (
∑ 𝛾2,𝑖

𝑞
𝑖=1

∑ 𝜑2,𝑖
𝑞
𝑖=1

) Δ𝑉2,𝑡−𝑖

+ (
𝜀1,𝑡

𝜀2,𝑡
) 

⇔     Δ𝑉1 = 𝛾0 + 𝛿1(𝑉2,𝑡−𝑖 − 𝑉1,𝑡−𝑖) + ∑ 𝛾1,𝑖
𝑞
𝑖=1  Δ𝑉1,𝑡−𝑖 + ∑ 𝛾2,𝑖

𝑞
𝑖=1  Δ𝑉2,𝑡−𝑖 + 𝜀1,𝑡           (11) 

and   Δ𝑉2 = 𝜑0 + 𝛿2(𝑉2,𝑡−𝑖 − 𝑉1,𝑡−𝑖) + ∑ 𝜑1,𝑖Δ𝑉1,𝑡−𝑖 +
𝑞
𝑖=1 ∑ 𝜑2,𝑖

𝑞
𝑖=1  Δ𝑉2,𝑡−𝑖 + 𝜀2,𝑡          (12) 

There are two different versions of equations (11) and (12) depending on whether a 

cointegration relationship exists or not among the data. Equations (11) and (12) are used 

when the time series tested are found to be cointegrated, while in the case of no 

cointegration 𝛿1 = 𝛿2 = 0 so 𝛿1(𝑉2,𝑡−𝑖 − 𝑉1,𝑡−𝑖) and 𝛿2(𝑉2,𝑡−𝑖 − 𝑉1,𝑡−𝑖) are not included. 

This is because when there is cointegration, a Vector Error Correction Model (VECM) should 

be used with 𝛿1 and 𝛿2 representing the speed of adjustment to the equilibrium in the case 

of cointegration. The null and alternative hypotheses of equation (11) are as follow 

Cointegration found 

H0: 𝛾2,1 = 𝛾2,2 = ⋯ = 𝛾2,𝑞 = 0 and δ1=0  (𝑉2 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝐺𝑟𝑎𝑛𝑔𝑒𝑟 𝑐𝑎𝑢𝑠𝑒 𝑉1) 

H1: at least one of the 𝛾2,𝑖 and δ1 to be different from zero (𝑉2 𝐺𝑟𝑎𝑛𝑔𝑒𝑟 𝑐𝑎𝑢𝑠𝑒𝑠 𝑉1) 

No cointegration found 

H0: 𝛾2,1 = 𝛾2,2 = ⋯ = 𝛾2,𝑞 = 0 (𝑉2 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝐺𝑟𝑎𝑛𝑔𝑒𝑟 𝑐𝑎𝑢𝑠𝑒 𝑉1) 

H1: at least one of the 𝛾2,𝑖 to be different from zero (𝑉2 𝐺𝑟𝑎𝑛𝑔𝑒𝑟 𝑐𝑎𝑢𝑠𝑒𝑠 𝑉1) 

The same hypotheses, but for the 𝜑1,𝑖 coefficients of Δ𝑉1,𝑡−𝑖 and δ2, are tested for the 

equation (12). The no rejection of the null hypothesis imposes that the values of one variable 

in the test do not influence the future values of the other. Specifically, if 𝑉2 variable is found 

to Granger cause the 𝑉1 variable, it means that the past values of 𝑉2 variable contain useful 

information for the prediction of the future values of 𝑉1 variable. 
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5.3.4 Generalised impulse responses and variance decomposition 

Researchers usually use Cholesky factorisation to orthogonalise the VAR innovations 

(shocks), so that they are uncorrelated contemporaneously. However, this method can be 

complicated because of its high level of sensitivity to the variable ordering. That is, a small 

change in the order of the variables in the VAR model can produce extremely different 

results. For this reason we use the generalised impulse response analysis (Koop et al, 1996, 

Pesaran and Shin, 1998). Generalised Impulse Response Functions (IRF) analysis is invariant 

of the ordering of the data series in the VAR or the VECM model. 

Let us refer to equation (8). 𝛥𝑉𝑡 can be expressed as a moving average representation as 

below: 

𝛥𝑉𝑡 = ∑ 𝑎𝑖
∞
𝑖=1 𝜀𝑡−𝑖              , for i=1,… ∞ and t=1,2,3,… T                                                                

Where ai are the impulse response functions. The generalised formula of them is given by 

the equation: 

𝛹𝑗(𝑛) = 𝜎
𝑗𝑗

−
1

2𝛼𝑛𝛴𝑒𝑗             , for j=0,1, 2,…. n 

Where Σ is the variance-covariance matrix with dimensions nxn, jj is the jjth element of the Σ 

matrix, and ej is a nx1 vector with unity as its jth row and zero elsewhere. The above equation 

is also equal to the difference between the expected value of  𝑉𝑡 when we know the 

information set of yesterday (Ω𝑡−1) and the size of the shock (μ), and the expected value of 

the 𝑉𝑡 when we know only the Ω𝑡−1: 

𝛹𝑗(𝑛, μ, Ω𝑡−1) = 𝐸(𝑉𝑡+1|𝜀𝑡 = 𝜇, Ω𝑡−1) − 𝐸(𝑉𝑡+1|Ω𝑡−1) 

For the variance decomposition we work with the following process (Sheng and Tu, 2000). 

We start the analysis from the equation (7) 

𝑉𝑡 = 𝐾1𝑉𝑡−1 + 𝐾2𝑉𝑡−2 + ⋯ + 𝐾𝑞𝑉𝑡−𝑞 + Γ𝑋𝑡 + 𝜀𝑡                                                                                                                                                 
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which can be rewritten as a vector moving average (VMA) process 

𝑉𝑡 = 𝜇 + ∑ 𝐾1
𝑞

𝜀𝑡−𝑞

∞

𝑞=0

 

where μ= (I+𝐾1+𝐾2+…+𝐾𝑞) and 𝐾0 is the unconditional mean of 𝑉𝑡. By using the above 

equation to conditionally forecast the n-step ahead 𝑉𝑡+𝑛 we get 

𝑉𝑡+𝑛 − 𝐸𝑡𝑉𝑡+𝑛 = ∑ 𝐾1
𝑞

𝜀𝑡−𝑞

𝑛−1

𝑞=0

 

where 𝐸𝑡 is the conditional expectations operator. The forecast error variance of the first 

sector in our 5-sector system (𝑉1,𝑡) is given below by 

𝜎1(𝑛)2 = 𝜎1
2 ∑ 𝑘1,2(𝑞)2 + ⋯ +

𝑛−1

𝑞=1

𝜎5
2 ∑ 𝑘1,5(𝑞)2

𝑛−1

𝑞=1

 

were 𝐾1
𝑞

 is a matrix 5x5 which contains the values of 𝑘𝑖𝑗 for two sectors i and j of the system 

and Var(𝜀𝑖𝑗) = 𝜎𝑖
2. Thus the ratio which gives the percentage by which the forecast error 

variance of the first sector in the system is due to innovations in another sector of the system 

(p) is given by 

𝑊1(𝑝) = 𝜎𝑝
2 ∑ 𝛼1,𝑝(𝑗)2/𝜎1(𝑛)2

𝑛−1

𝑗=1

 

This process was frequently used in the past. However, during recent years the generalised 

formula of forecast error variance is more frequently used. The reason is that the method 

we use depends on the ordering of the variables of the system. Namely, the results of the 

test is possible to change significantly if we change the ordering of the variables in the VAR 

model. On the other hand, the generalised version of the variance decomposition is 

independent of the variables ordering. In this study, we order the sectors in the VAR models 
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based on their average correlation with the rest of the sectors from the one with the lowest 

average correlation towards the one with the greatest average correlation.  

 

5.3.5 Dynamic conditional correlation (DCC) 

Correlation tests examine whether the information that one variable contains can help to 

predict how another variable will act. The correlation coefficient of two variables 𝑉𝑖 and 𝑉𝑗 is 

abbreviated as 𝜌𝑖𝑗  and its range is between -1 and 1. In the case that  𝜌𝑖𝑗  = −1, there is a 

perfect negative correlation between 𝑉𝑖 and 𝑉𝑗 which means that if the price of 𝑉𝑖 drops by 

2% then the price of 𝑉𝑗 will increase by 2%. In the opposite case that  𝜌𝑖𝑗  = 1, it is said that  

𝑉𝑖 and 𝑉𝑗 are perfectly positive correlated which means that if the price of one of them 

decreases by 2%, then the price of the other one will also decrease by 2%. Finally in the case 

where  𝜌𝑖𝑗  = 0, the two variables are not correlated at all. The correlation coefficient can 

also be equal to any decimal number between -1 and 1, and it is said that when  𝜌𝑖𝑗  is closer 

to 0 there is weak correlation, while when  𝜌𝑖𝑗 is closer to -1 and 1 there is high-degree of 

negative and positive correlation, respectively. Correlation is a very important tool especially 

for investors, as it can show if there are diversification benefits among the assets. For 

instance, if 𝑉𝑖 and 𝑉𝑗 represent two stocks and they have 𝜌𝑖𝑗  equal to -1 or a decimal number 

close to -1, portfolio investors can see that there are diversification benefits as a big loss on 

𝑉𝑖 will be balanced by a gain in 𝑉𝑗. This is the reason that many investors build portfolios with 

negatively correlated international stocks, as these stocks are exposed to different countries, 

market economies and laws.  

As the economic environment continuously changes, it is expected that the correlation 

between any two assets will also potentially change over time.  Engle (2002) proposed the 

dynamic conditional correlation model (DCC) which has the flexibility of univariate GARCH 
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models coupled with parsimonious parametric models for the correlations.  Consider the nx1 

vector of logarithmic returns 𝛥𝑉𝑡 of n assets at time t, which is given by  

𝛥𝑉𝑡 = 𝐸(𝛥𝑉𝑡/𝐼𝑡−1) + 𝜋𝑡                                                                                                                                       (13) 

where 𝐸(𝛥𝑉𝑡/𝐼𝑡−1) is the nx1 vector of the expected value of the conditional 𝛥𝑉𝑡 with 𝐼𝑡−1 

to represent all the past information, and 𝜋𝑡 = 𝐻1/2𝜈𝑡 with zero mean and conditional 

variance 𝐻𝑡, which is the nxn matrix of conditional variances of 𝜋𝑡 at time t. Also 𝜈𝑡 is a nx1 

vector of IID errors such that its mean is zero and its variance is the identity matrix of order 

n, (In). Moreover, 𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 where 𝐷𝑡 is the nxn diagonal matrix of the conditional 

standard deviations of 𝜋𝑡 at time t given by 

 𝐷𝑡 = 𝑑𝑖𝑎𝑔 (ℎ1,𝑡
1/2

… ℎ𝑛,𝑡
1/2

)  

where ℎ𝑖,𝑡 follows a GARCH(1,1) model as follow 

 ℎ𝑖,𝑡 = 𝛾𝑖,0 + 𝑎𝑖,1𝜋𝑖,𝑡−1
2 + 𝛽𝑖,1ℎ𝑖,𝑡−1. 

𝑅𝑡 is the nxn conditional correlation matrix with elements equal to or less than one, given by  

𝑅𝑡 = 𝑑𝑖𝑎𝑔 (𝑞11,𝑡
−1/2

… 𝑞𝑛𝑛,𝑡
−1/2

) 𝑄𝑡𝑑𝑖𝑎𝑔 (𝑞11,𝑡
−1/2

… 𝑞𝑛𝑛,𝑡
−1/2

)                                                                                (14) 

where 𝑄𝑡 = (𝑞𝑖𝑗,𝑡) and it is a nxn symmetric positive definite matrix with elements given by 

𝑞𝑖𝑗,𝑡 = (1 − 𝛼 − 𝛽)�̅�𝑖𝑗 + 𝑎𝜋𝑖,𝑡−1𝜋𝑗,𝑡−1 + 𝛽𝑞𝑖𝑗,𝑡−1                                                                         (15) 

 where �̅�𝑖𝑗 is the unconditional variances of 𝜋𝑡. 𝐻𝑡 should be positive definite as it is a 

covariance matrix, so 𝑅𝑡 and 𝐷𝑡 should be positive definite as well. Also 𝛼 and 𝛽 should be 

positive and 𝛼 + 𝛽 should be less than 1 in order to ensure that the 𝐻𝑡 will be positive 

definite. The above model (DCC) is a generalisation of the Constant Conditional Correlation 

(CCC) model by Bollerslev (1990). The difference between the DCC model and the CCC model 

is that the latter considers the correlation matrix (𝑅) to be time-invariant, while the former 

considers it to change over time.  
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5.3.6 Time-varying volatility 

Finally, we will check if the volatilities of the time series are unstable over time: that is, if 

they are time-varying. To do so, we follow the procedure suggested by Griffiths et al (2008) 

and we apply an Autoregressive Conditional Heteroskedastic (ARCH) model of order p 

[ARCH(p)]. By regressing the data (Δ𝑉𝑡) on an intercept (c) and the random error terms 𝜀𝑡 

(also called innovations), 

Δ𝑉𝑡 = 𝑐 + 𝜀𝑡                                                                                                                                                         (16) 

we obtain the residuals (𝜀�̂�) which are used on the ARCH model. 𝜀𝑡 are normally distributed 

with zero mean and ℎ𝑡 variance which follows an ARCH process. Let us suppose that the 

order of this model is one and it is as follows:  

ℎ𝑡 = 𝛼0 + 𝑎1𝜀𝑡−1
2                                                                                                                                                 (17) 

There are two restrictions about the values of 𝛼0 and 𝑎1. Namely, 𝑎0 and 𝑎1 should be 

positive in order to ensure that the variance will be positive, and 𝑎1 should be less than 1 

because otherwise the variance will continuously increase. 

In order to ensure that an ARCH(1) model is a proper one for the data, the estimated 𝜀�̂�
2 

should be regressed on their lag values 𝜀�̂�−1
2  and then check the existence of ARCH effects 

through an ARCH LM test.  

𝜀�̂�
2 = 𝛽0 + 𝛽1𝜀�̂�−1

2 + 𝜂𝑡                                                                                                                                       (18) 

In order to examine if there are ARCH effects in the residuals, the null of H0: 𝛽1 = 0 is tested 

against the alternative 𝛽1 ≠ 0. If the null hypothesis is not rejected, there are no ARCH 

effects and the ARCH model of order 1 is a good fit for the data. In the opposite case, there 

are ARCH effects and the order of the model, p, should be increased by 1. The value of p is 

increased until the null hypothesis of no ARCH effect is not rejected. When the order of the 
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ARCH model is specified, we generate the ARCH-Variance Series and their plot gives the time-

varying volatility charts (Engle et al, 1991). 

To sum up, we use a variety of tests to identify the interdependency relationships among the 

sectors of Greece, Italy and Portugal. We begin with the descriptive statistics to see how the 

statistical characteristics of the sectoral returns changed after the financial crisis of 2008. 

Then, in order to have consistent and reliable results we use the Dickey–Fuller GLS test to 

examine the sectors for stationarity and we apply the Johansen cointegration test to the 

sectors that are integrated of the same order to check the possibility of a long-run 

equilibrium among the sectors. Thereafter, we use an unrestricted VAR model for the non-

cointegrated sectors and a VECM for the cointegrated ones to get the results of Granger 

causality test (short-run dynamics), the impulse responses and the variance decomposition. 

From the impulse responses we check if the sectors react positively or negatively to a positive 

shock in another sector of the system and how long it takes for the effects of this shock to 

die out, while from the variance decomposition we obtain the percentage of a change in the 

variance of a sector which is due to its own innovations. Finally, we produce the time-varying 

volatilities of the sectors and the time-varying correlations between them to observe how 

and by how much they are affected by the financial crisis of 2008.  

 

5.4 Empirical results  

5.4.1 Greece 

5.4.1.1 Descriptive statistics  

Table 1 displays a summary of the main statistical characteristics for the logarithmic returns 

of the five most important market economic sectors of Greece: basic materials (BASMAT), 

consumer goods (CONGDS), consumer services (CONSVS), financials (FIN) and 
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telecommunications (TEL). Panel A contains the results for the whole period under 

investigation while Panels B and C exhibit the results for the pre-crisis period and post-crisis 

period respectively.  There are several interesting results that come out of this table. The 

first thing to be noticed is that during the pre-crisis period all the average returns of the 

sectors are positive, while during the post-crisis period they are negative except that of 

CONGDS which is reduced by almost 100% but it remains positive. The average returns of 

the five sectors for the whole period are also negative except CONGDS which is positive. This 

similarity to the post-crisis period results shows that most of the returns were strongly 

negative during the post-crisis period. This is a result that supports the fact that Greece is 

still struggling with the financial crisis. Another important outcome is that the FIN sector is 

the one that experienced the largest decrease in its average return of approximately 1064%. 

This result illustrates the high degree of financial crisis that Greece faced during the last nine 

years. The average returns of the remaining sectors also decreased by more than 100%.  

By comparing the standard deviation results, which indicate the risk that these sectors have 

during the different periods, it can be detected that during the pre-crisis period the CONGDS 

has the highest risk but also the highest return which is in line with the Markovitz theory that 

a higher return comes with higher risk. However, during the post-crisis period this theory 

does not hold as the CONGDS sector, which has the highest return, also has the lowest risk; 

and the FIN sector, which has the lowest return, has the largest risk; with big differences in 

the other sectors, something that also holds for the whole period. Moreover, the majority of 

the sectors do not follow a normal distribution as the Jarque-Bera test of normality is 

rejected, which means that the null hypothesis of skewness equal to zero and kurtosis equal 

to three is not accepted. 
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5.4.1.2 Dickey-Fuller GLS unit root test 

The Dickey-Fuller GLS test is used in order to check the existence of a unit root in the levels 

data as they should be integrated of the same order for the possibility of the existence of a 

long-run equilibrium relationship among them (cointegration). After visual inspection of the 

Table 1 
Descriptive statistics of returns in different periods – Greece 

Period   BASMAT     CONGDS     CONSVS         FIN        TEL 

Panel A   Whole Period 01/06/1998 – 01/11/2016 
Mean -0.0012  0.0090 -0.0006 -0.0287  -0.0030 
Median -0.0060  0.0161  0.0041 -0.0151  -0.0025 
Maximum  0.3249  0.4685  0.5162  0.5155   0.5193 
Minimum -0.2652 -0.6879 -0.3605 -0.9494  -0.7302 
Std. deviation  0.0993  0.1308  0.0994  0.1645   0.1166 
Skewness  0.3618 -0.5975  0.4649 -0.9954  -0.5479 
Kurtosis  3.9263  7.1626  6.9709  8.1442 11.0205 
Jarque-Bera   12.723***  172.71***  153.16***  280.17***   603.42*** 
      

Panel B   Pre-crisis Period 01/06/1998 – 01/08/2007 

Mean   0.0081   0.0166   0.0073   0.0067   0.0015 
Median  -0.0019   0.0284   0.0071   0.0009   0.0011 
Maximum   0.3249   0.4685   0.5162   0.2223   0.2744 
Minimum  -0.2051  -0.6879  -0.2739  -0.3275  -0.2040 
Std. deviation   0.0893   0.1673   0.1112   0.0930   0.0776 
Skewness   0.7063  -0.5593   0.8960  -0.2510   0.1710 
Kurtosis   4.6761   5.1666   6.9610   4.1980   4.4391 
Jarque-Bera 22.0212*** 27.2506*** 86.6272***   7.7326** 10.0279*** 

      

Panel C   Post-crisis Period 01/09/2007 – 01/11/2016 

Mean -0.0099   0.0008  -0.0085  -0.0642  -0.0081 
Median -0.0123   0.0097   0.0041  -0.0638  -0.0092 
Maximum  0.2735   0.1491   0.2073   0.5155   0.5193 
Minimum -0.2652  -0.3584  -0.3605  -0.9494  -0.7302 
Std. deviation  0.1082   0.0799   0.0864   0.2084   0.1460 
Skewness  0.2370  -1.1214  -0.6564  -0.5564  -0.5113 
Kurtosis  3.3348   6.1696   4.6233   5.6638   8.6379 
Jarque-Bera  1.5432 69.1020*** 19.9771*** 38.1978*** 150.480*** 
Notes: ***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. The summary statistics 
represent the five most important market economic sectors of Greece: Basic Materials (BASMAT), Consumer Goods 
(CONGDS), Consumer Services (CONSVS), Financials (FIN) and Telecommunications (TEL). The null hypothesis of the Jarque-
Bera test is the skewness to be equal to zero and the kurtosis to be equal to three.  
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graphs, we found that nearly all the Greek market sectors data do not exhibit a trend. 

However, the FIN sector during the post-crisis period does exhibit a trend, hence a trend is 

used in the Dickey-Fuller GLS test. Table 2 displays the results of the Dickey-Fuller GLS for 

both the pre-crisis period (Panel A) and the post-crisis period (Panel B), where the null 

hypothesis of unit root in levels  is not rejected for any of the sectors in the two sub-periods 

as the t-statistic is much smaller than the critical value at the 5% significance level. However, 

the null hypothesis of unit root in returns (first differences) is strongly rejected at 1% for all 

the sectors and sub-periods as the t-statistic is much larger than the critical value at 1%. Thus, 

the DF-GLS unit root test gives the result that the price level of all the five sectors is 

integrated of order one (I(1)) which means that the price level has a unit root (that is, it is 

non-stationary) while the returns are found to be I(0), that is stationary. These result 

suggests that these five sectors can be tested for cointegration before and after the financial 

crisis. 

 

 

Table 2 
Dickey-Fuller GLS unit root test - Greece  

Period  BASMAT  CONGDS  CONSVS  FIN  TEL 

Panel A – Pre-crisis period 
Log prices          

 Lag 0  0  0  0  0 

 τμ -0.3127  -0.2761  -0.8945  -0.6865  -1.2710 

Log returns          
 Lag 2  2  0  0  0 

 τμ -2.9147***  -2.9603***  -8.9144***  -9.6197***  -11.014*** 

Panel B – Post-crisis period 

   Log prices           
 Lag 0  0  0  0  0 
 τμ -0.5221  -1.2606  -0.4100  -1.6282  -0.8408 

Log returns           
 Lag 0  2  0  0  2 
 τμ -7.2189***  -2.8492***  -9.6554***  -9.3712 ***  -3.6445*** 

Notes: ***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. The shaded cells indicate trend 
existence. The critical values for Dickey-Fuller GLS unit root test when there is no trend are -2.586350, -1.943796 and -1.614784 
at 1%, 5% and 10% levels of significance, respectively. In the case of trend existence, the critical values change to -3.568000,     
-3.020000 and -2.730000, respectively.  
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5.4.1.3 Johansen cointegration test 

Table 3 illustrates the results of the multivariate Johansen cointegration test. This examines 

the possibility of the existence of a long-run equilibrium relationship among these five 

sectors. In order to apply this test the number of lags that will be used should be defined. 

We use an unrestricted VAR model on the level of the series together with the Akaike 

Information Criterion (AIC) to determine the number of lags needed; AIC suggests one lag. In 

order to ensure that this number of lags is enough, we check the residuals of the unrestricted 

VAR model for serial correlation to confirm that one lag is enough to eliminate the existence 

of autocorrelation in the data. The null hypothesis of the serial correlation test is the non-

existence of autocorrelation in the residuals of the VAR model against the alternative of 

existence. The null hypothesis of the Johansen cointegration test changes every time as it 

can be seen from the first column of Table 3.  

The first null hypothesis tests the non-existence of a cointegration relationship which is 

actually not rejected in this case for both pre-crisis and post-crisis periods. This means that 

there is no long-run relationship among the price series of the Greek sectors for both sub-

periods and so there cannot exist long-run causality relationships as well. In order to reject 

the null hypothesis the trace estimator or the eigenvalue estimator should be larger than the 

matching critical values at the 5% significance level.  

 

 

 

 

 

Table 3 
Multivariate Johansen cointegration test - Greece 
BASMAT, CONGDS, CONSVS, FIN, TEL 

      Pre-crisis   Post-crisis  

    λtrace   λmax   λtrace   λmax 

r = 0  67.7566 30.6184  61.0101 29.4158 

r ≤ 1  37.1383 16.3510  31.5943 15.2595 
r ≤ 2  20.7873 11.8894  16.3348 10.0195 

r ≤ 3    8.8978   6.8297    6.3153   5.4361 

r ≤ 4    2.0682   2.0682    0.8793   0.8793 

Notes: The optimal lag length for the cointegration testing is defined 
by the Schwarz information criterion (SC). ***, ** and * denote 
statistical significance at the 1%, 5% and 10% levels, respectively.  
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5.4.1.4 Granger causality  

As the Johansen cointegration test suggests that there is no cointegration relationship 

among the five economic sectors of Greece, we can test the existence of short-run 

relationships between the returns of the sectors by using an unrestricted VAR model and the 

Table 4  
Granger causality test results – Greece 
Panel A: Pairwise Granger causality results 

 Pre-crisis period Post-crisis period 

BASMAT→CONGDS 0.583556 3.404276* 
CONGDS→BASMAT  0.352693 1.270877 
    

BASMAT→CONSVS 0.276462 1.638332 
CONSVS→BASMAT 0.247723 0.525996 
   

BASMAT→FIN 0.214531 0.372657 
FIN→BASMAT 0.076264 0.030619 
   

BASMAT→TEL 0.642589 0.994387 
TEL→BASMAT 1.044656 0.010374 
   

CONGDS→CONSVS 0.021123 0.238803 
CONSVS→CONGDS 0.158511 0.183534 
   

CONGDS→FIN 0.652362 0.136352 
FIN→CONGDS 2.914622* 0.794077 
   

CONGDS→TEL 0.056950 0.308536 
TEL→CONGDS 3.095316* 0.023507 
   

CONSVS→FIN 0.465648 1.488708 
FIN→CONSVS 0.026560 3.246060* 
   

CONSVS→TEL 0.014002 0.038071 
TEL→CONSVS 1.825566 0.252877 
   

FIN→TEL 0.051814 1.327027 
TEL→FIN  0.191303 1.051570 

Panel B: multivariate Granger causality results 
 Pre-crisis period Post-crisis period 

TEL, CONSVS, CONGDS & BASMAT → FIN 1.462853 3.736870 
   

FIN, CONSVS, CONGDS & BASMAT → TEL 1.024455 2.548292 
   

FIN, TEL, CONGDS & BASMAT → CONSVS 2.293877 4.168848 
   

FIN, TEL, CONSVS & BASMAT → CONGDS 4.131618 3.467807 
   

FIN, TEL, CONSVS & CONGDS → BASMAT 1.543121 1.651601 
Notes: The null hypothesis is rejected based on the x2 statistics. ***, ** and * denote statistical significance at the 

1%, 5% and 10% levels, respectively. 
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Granger Causality test. As previously mentioned, the number of lags that this VAR model 

needs in order to ensure that the residuals do not have serial correlation is one.  The results 

of the Granger Causality test are displayed in Table 4. From Panel A of Table 4 we can see 

that there are four causality relationships which run from BASMAT, FIN and TEL to CONGDS 

and from FIN to CONSVS at the 10% significance level showing that the CONGDS sector is 

more likely to be caused by other sectors. However, at our chosen significance level of 5% 

there are no causality relationships. Finally, as it is shown in Panel B of Table 4 the null 

hypothesis of no block exogeneity of each sector with respect to the remaining sectors (joint 

causality) is not rejected at 5% significance level for neither of the two sub-periods. 

 

5.4.1.5 Impulse responses and variance decomposition 

The next step is to check the impulse responses of the system of variables by using the 

generalized impulse responses. The impulse responses examine how a shock to a particular 

variable at time t, affects the general system of variables in t and future periods. Namely, 

how fast and towards which direction (positively or negatively) a dependent variable reacts 

to a shock which happens to another variable. Any shock to a dependent variable should 

decrease gradually to zero as the underlying variables being modelled are stationary; 

otherwise there is a permanent effect. The Figure 1 in Appendix F.1 shows the impulse 

responses between pairs of Greek sectors for the pre-crisis period. The first thing to notice 

is that the initial reaction of all the variables to a positive shock to another variable is positive 

and that after one and a half month to two and a half months every shock has died away. 

Their reaction after the first month differs among different pairs of variables with half of 

them reacting positively and the rest negatively. Another thing that can be noticed is that all 

the responses of the TEL, or to the TEL, sector produce the same pattern of positive reaction 

during the first month and slightly negative during the second month. The Figure 2 in 
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Appendix F.1 present the generalized impulse responses in the post-crisis period; the results 

suggest that all the variables react positively from the beginning of the first month and they 

remain positive until the shocks fade out. However, the responses of the TEL and CONSVS 

sectors to the FIN sector are different during the pre-crisis period and the rest of the 

responses of the post-crisis period. Their reaction to a positive shock to another sector is 

positive during the first month and negative during the second month until the shock equals 

zero. Moreover, the time needed for the shock to fade out is the same as during the pre-

crisis period of approximately one and a half to two and a half months.  

In addition to the impulse responses we also perform forecast error variance decomposition. 

Variance decomposition investigates the proportion of a variable’s variance movements 

which are caused by its own innovations against the proportion of variance movements 

which are due to shocks in other variables of the system. Based on this proportion, each 

variable of the system can be classified as exogenous or endogenous: that is, a variable is 

called exogenous when its variance decomposition is mainly due to its own shocks and 

endogenous when its variance decomposition is more than 50% explained by shocks in other 

variables. As for the variance decomposition we use the Cholesky factorisation to 

orthogonalise the VAR innovations in order that the shocks are uncorrelated 

contemporaneously, we need to pay attention to the ordering of the sectors in the VAR 

model; that is, this method can provide very different results depending on the ordering of 

the variables in the VAR model. To determine the ordering we start by computing the 

average correlation of each sector with the others to find the level of exogeneity of each one. 

The ordering is then set from the sector with the lowest average correlation to the sector 

with the highest average correlation. The pre-crisis period’s results (Appendix F.2) indicate 

that the TEL and CONGDS sectors are the most exogenous variables out of all. This means 

that the shocks that happen to these sectors are consequences of innovations in themselves. 

Over a period of five months CONSVS, BASMAT and FIN are endogenous sectors and less 



171 

 

than 50% of their variances are explained by innovations that happen in these sectors. For 

instance, the variance of CONSVS is 31% and 18% explained by innovations in the CONGDS 

sector and the TEL sector respectively while 49% is explained by innovations in itself. On the 

contrary, during the post-crisis period the variables that are considered as exogenous are the 

CONGDS, TEL and FIN and the rest are considered as endogenous because their variance 

depends mostly on the other sectors (Appendix F.2). To sum up, the CONGDS and TEL sectors 

are exogenous through the whole period tested, the BASMAT and CONSVS are endogenous 

and the FIN sector changes between pre-crisis and post-crisis period.   

 

5.4.1.6 Time-varying volatilities and correlations 

Appendix F.3 shows the time-varying correlation and time-varying volatility results for the 

whole period tested. From the time-varying correlation it is noticeable that we can divide 

these results into two groups. The first group includes the correlation between TEL and 

CONGDS, TEL and CONSVS, and TEL and BASMAT. The second group includes the correlations 

of the rest of the pairs. The correlations between the pairs of the first group illustrate that 

the correlations of TEL with CONGDS, CONSVS and BASMAT were significantly lower during 

the period of 1999 to 2001 but they increased a lot after 2001 and they are still at high levels. 

The correlations of the pairs in the second group were much higher during the pre-crisis 

period but they decreased considerably by an average of 11% during the post-crisis period 

and they are still gradually diminishing. Finally, a very important result of the time-varying 

correlations is that the correlations between all the different pairs of variables are positive 

through the whole period of 1998 to 2016.  

The results of time-varying volatility suggest that the FIN, TEL and CONGDS sectors are the 

ones that experienced high and sudden increases in the volatility of their returns, while the 

CONSVS and BASMAT did not have significant surges in their volatility. Specifically, CONGDS 
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and CONSVS experienced high levels of volatility during the beginning of the pre-crisis period 

and they remain at low levels since then. Conversely, FIN and TEL had extreme rises in their 

volatility during the post-crisis period. This sharp increase in the volatility of the FIN sector is 

a result of the financial crisis in Europe which began on 2008 as already mentioned. The FIN 

sector reached its highest peak of 0.55 at the middle of 2015 probably due to the 

referendum, which took place in June of 2015, about the austerity measures and the 

possibility of Greece rejecting a further bailout loan. In addition to that, the enforcement of 

capital controls on the residents by the government made the economic market even more 

uncertain and volatile.   

 

5.4.2 Italy 

5.4.2.1 Descriptive statistics 

Table 5 provides a summary of the descriptive statistics of the five most important sectors in 

Italy. These are the consumer goods (CONGDS), the financials (FIN), the oil and gas (OG), the 

telecommunications (TEL) and the utilities (UTI) sectors. Panel A contains the statistical 

characteristics for the whole period tested and the results show that four out of the five 

sectors have a negative average return, while only the CONGDS sector has a very low positive 

return of 0.11%.   As expected, the negative returns are accompanied by high standard 

deviation (risk). Moreover, the skewness of all the sectoral data is negative which implies 

that there is higher possibility for negative returns to exist, rather than positive. In addition, 

the values of skewness and kurtosis confirm the results of the Jarque-Bera test, that the data 

are not normally distributed. That is the prices of the sectoral data are not distributed 

approximately 50% above and 50% below the mean value.  
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By comparing the data of Panels B and C in Table 5 one can notice that the mean return of 

the sectors have almost the exact opposite pattern comparing the pre-crisis and post-crisis 

periods. During the pre-crisis period the mean of the CONGDS and the TEL sectors were 

negative and the rest of the sectors were positive, while during the post-crisis period only 

CONGDS had a positive mean return and the rest of the sectors had a negative one. The 

sector which had the largest decrease in its return was the FIN sector by 694%. This is a sign 

Table 5 
Descriptive statistics of returns in different periods – Italy 
Period CONGDS    FIN    OG    TEL    UTI 

Panel A   Whole Period 01/06/1998 – 01/11/2016 
Mean  0.0011 -0.0050 -0.0003 -0.0056 -0.0002 
Median  0.0097  0.0028  0.0064 -0.0031  0.0048 
Maximum  0.2332  0.2149  0.1619  0.2510  0.2400 
Minimum -0.2617 -0.2588 -0.2155 -0.2756 -0.1792 
Std. deviation  0.0709  0.0799  0.0590  0.0820  0.0535 
Skewness -0.6578 -0.5883 -0.4372 -0.1732 -0.1814 
Kurtosis  4.6401  3.9406  3.3895  3.6847  5.1275 
Jarque-Bera  40.7083***  20.8962***  8.4409**  5.4221*  42.893*** 
      
Panel B   Pre-crisis Period 01/06/1998 – 01/08/2007 
Mean -0.0005  0.0021  0.0065 -0.0025  0.0026 
Median  0.0111  0.0084  0.0186 -0.0022  0.0055 
Maximum  0.1432  0.1650  0.1164  0.2510  0.2400 
Minimum -0.2617 -0.2257 -0.2155 -0.2153 -0.1792 
Std. deviation   0.0709  0.0635  0.0542  0.0818  0.0538 
Skewness -1.1455 -1.1015 -0.8784   0.1154   0.0381 
Kurtosis  5.1329  5.4986  4.3974   3.9140  7.1006 
Jarque-Bera  44.9093***  50.8568***  23.0974***  4.0734  77.0957*** 
      
Panel C  Post-crisis Period 01/09/2007 – 01/11/2016 
Mean  0.0030 -0.0124 -0.0071 -0.0083 -0.0032 
Median  0.0100 -0.0062 -0.0048 -0.0057  0.0003 
Maximum  0.2332  0.2149  0.1619  0.1659  0.1148 
Minimum -0.2160 -0.2588 -0.1783 -0.2756 -0.1416 
Std. deviation  0.0716  0.0935  0.0634  0.0826  0.0534 
Skewness -0.1906 -0.2664 -0.0788 -0.4355 -0.3981 
Kurtosis  4.0483  3.0596  2.9248  3.4037  2.9901 
Jarque-Bera  5.7026  1.3176  0.1397  4.2241  2.9059 
Notes: ***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. The 
summary statistics represent the five most important market economic sectors of Italy: Consumer 
Goods (CONGDS), Financials (FIN), Oil & Gas (OG), Telecommunications (TEL) and Utilities (UTI). The 
null hypothesis of the Jarque-Bera test is the skewness to be equal to zero and the kurtosis to be 
equal to three.  
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of how much the FIN sector was affected by the global financial crisis. The rest of the sectors, 

except the CONGDS sector which noted an increase between the pre and post-crisis period, 

were reduced by nearly 221%. The risk of the sectors remains almost the same between the 

two different periods tested. The only exception is in the FIN sector where the risk increased 

significantly more than in the other sectors. This is not surprising as it also experienced the 

largest decrease in its mean return. Furthermore, the negative skewness results indicate that 

there were more possibilities to experience high negative returns and the positive skewness 

shows the exact opposite of larger possibilities to have large positive returns. The skewness 

of the TEL and UTI sectors is positive during the pre-crisis period, while it is negative for all 

the sectors during the post-crisis period. This is probably a result of the general financial crisis 

which usually gives rise to negative returns. In addition, we observe from the results of the 

Jarque-Bera normality test that the sectoral returns of Italy are not normally distributed in 

the pre-crisis period (except for the TEL sector), but they are all follow a normal distribution 

after the global financial crisis of 2008. That means that these returns in the post-crisis period 

were distributed evenly around the average return.   

 

5.4.2.2 Dickey – Fuller GLS unit root test 

The first step in the analysis of the Italian sectors is to check them for stationarity. In order 

for the possibility of a long-run equilibrium to exist among the data, it is necessary for the 

level prices of the sectors to be non-stationary. After checking the graph of each individual 

sector of both sub-periods for the possibility of trend existence, we see that only the OG 

sector exhibits a trend during the pre-crisis period, while the CONGDS and OG sectors exhibit 

a trend during the post-crisis period. Hence we include trend in the Dickey – Fuller GLS 

regressions for these sectors. The DF-GLS unit root test results for both level prices and first 

differences are displayed in Table 6.  Panels A and B contain the results for the pre-crisis and 
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post-crisis periods respectively. Based on these results we find that none of the data series 

are stationary in level values for both the pre-crisis and post-crisis periods. All of them are 

integrated of order one (I(1)), which means that their levels have a unit root, but they are 

stationary in first differences. This gives rise to the possibility of the existence of a long-run 

equilibrium relationship between the variables. 

 

5.4.2.3 Johansen cointegration test 

As the sectoral data are I(1) for both subsamples, they can be tested for cointegration 

relationships by applying the Johansen cointegration test to the levels of the prices. The 

number of lags for the test is selected based on an unrestricted VAR which uses the level 

prices and it is equal to the number for which there is no serial correlation left in the 

residuals. For the first sub-sample, five lags were used. The Akaike information criterion (AIC) 

recommended one lag. However, one lag is not sufficient to remove the serial correlation 

Table 6 
Dickey-Fuller GLS unit root test – Italy 
Period     CONGDS  FIN  OG  TEL  UTI 

Panel A – Pre-crisis period 
Log prices          

 Lag 0  0  0  0  0 

 τμ -0.9191  -1.3002  -1.7724  -1.3758  -1.2089 

Log returns          
 Lag 0  1  1  0  2 

 τμ -9.2954***  -7.0223***  -
6.3924*** 

 -
8.8035*** 

 -2.2002** 

Panel B – Post-crisis period 

   Log prices           
 Lag 1  0  0  0  0 
 τμ -1.4908  -0.0632  -0.1798  -0.4203  -0.7334 

Log returns           
 Lag 0  0  0  0  0 
 τμ -7.8238***  -9.2789***  -

8.8158*** 
 -

9.2419*** 
 -

8.0065*** 
Notes: ***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. The shaded cells indicate 
trend existence. The critical values for Dickey-Fuller GLS unit root test when there is no trend are -2.586350, -1.943796 and 
-1.614784 at 1%, 5% and 10% levels of significance, respectively. In the case of trend existence, the critical values change to 
-3.568000, -3.020000 and -2.730000, respectively.  
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from the residuals. After checking other number of lags, we end up using five lags. For the 

second sub-period the serial correlation is eliminated for two lags. The outcome of the 

Johansen Trace test for cointegration is displayed in Table 7 and it suggests that there is a 

cointegration relationship among the series during both the pre-crisis and post-crisis periods. 

This means that there is a long run equilibrium relationship among the five sectors of Italy 

over both sub-periods. The speed of adjustment of the sectoral variables towards this 

equilibrium after a shock to their price can be produced by the vector error correction model 

(VECM). This should be negative and significant in order for the variables to return back to 

their equilibrium. In the opposite case that it is positive and after an exogenous shock, the 

variables will move continuously away from the equilibrium.  From the VECM model, we can 

test the short-run relationships of the sectors for each period by applying the Granger 

causality test.  

 

 

  

  

  

  

  

 

5.4.2.4 Granger causality 

Although the Johansen cointegration test suggests that there is a long-run equilibrium 

relationship among the sectors, it does not give any information about the possibility of 

short-run relationships between them. The Granger causality test is used on the logarithmic 

Table 7 
Multivariate Johansen cointegration test – Italy 
CONGDS, FIN, OG, TEL, UTI 

  Pre-crisis    Post-crisis  

    λtrace   λmax    λtrace   λmax 

r = 0   78.4828**  42.8660**  73.7352**  31.3476 

r ≤ 1   35.6168  15.7990   42.3876  25.8014 

r ≤ 2   19.8177  12.7665   16.5862    9.8056 

r ≤ 3     7.0513    3.7048     6.7806    6.6692 

r ≤ 4     3.3464    3.3464     0.1113    0.1113 

Notes: The optimal lag length for the cointegration testing is defined 
by the Schwarz information criterion (SC). ***, ** and * denote 
statistical significance at the 1%, 5% and 10% levels, respectively.  
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returns of the sectors and it shows that there are several causality relationships among them 

during the pre-crisis period. Specifically, from panel A of Table 8 one can notice that there is 

causality running from the UTI sector to the CONGDS sector at the 1% significance level 

(given that the test estimator is greater than the critical value at the 1% significance level). 

This means that the past values of UTI sector contain information which can be important 

for the prediction of the future stock price movements of the CONGDS sector. Similarly, it is 

found that the UTI sector is Granger-caused by both the FIN and TEL sectors at the 5% 

significance level, but not the other way around. Furthermore, there are bi-directional causal 

relationships between the OG & TEL sectors and between the TEL & CONGDS sectors at the 

10% and the 5% significance level, respectively. Although, the sectors have a long run 

equilibrium during both sub-periods and there are many short-run relationships during the 

pre-crisis-period, there are only two causal relationships during the post-crisis period. This is 

the causality which runs from the OG sector to the TEL sector at the 5% significance level and 

from the CONGDS sector to the FIN sector at the 10% significance level. It can be noticed that 

almost all the pairwise causal relationships which exist before the financial crisis no longer 

exist after it. Finally, the Granger causality test examines the probability of the lagged values 

of one sector to improve the forecast of another sector but also the probability of the lagged 

values of four out of the five sectors to jointly improve the forecast of the fifth one. Panel B 

of Table 8 gives the results of the multivariate Granger causality test for both the pre-crisis 

and the post-crisis periods. In particular, there are four strong jointly causal relationships 

among the sectors in the period before the financial crisis. For instance, the lagged returns 

of the FIN, OG, TEL and UTI sectors jointly cause the CONGDS sector at the 1% significance 

level. That means that the FIN, OG, TEL and UTI sectors carry past information which can be 

used to forecast the future values of the CONGDS sector. Similarly, the FIN sector, the TEL 

sector and the UTI sector are caused jointly by the remaining variables. The only exception 

is the case of OG sectors, where there is no jointly causal relationship running from the 



178 

 

CONGDS, FIN, TEL and UTI sectors to the OG sector. On the contrary, after the financial crisis 

there is no jointly causal relationship for none of the Italian sectors. 

 

Table 8 
Granger causality test results – Italy 
Panel A: Pairwise Granger causality results 

 Pre-crisis period Post-crisis period 

OG→CONGDS 4.2142 0.2687 
CONGDS→OG 1.1185 1.3512 

   

OG→UTI 1.0490 0.1197 
UTI→OG 7.2673 0.0024 

   

OG→FIN 1.6469 0.0535 
FIN→OG 7.3341 1.0529 

   

OG→TEL   8.9472*     4.8244** 
TEL→OG  8.9935* 0.4311 

   

CONGDS→UTI 7.2265 0.4933 
UTI→CONGDS      14.4828*** 0.2239 

   

CONGDS→FIN 6.8791 2.7814* 
FIN→CONGDS 7.5850 0.0491 

   

CONGDS→TEL   10.7912** 0.2017 
TEL→CONGDS     23.9916*** 0.3596 

   

UTI→FIN 6.0045 0.0659 
FIN→UTI   10.7787** 0.0003 

   

UTI→TEL 4.2254 0.1070 
TEL→UTI  12.7167** 0.0849 

   

FIN→TEL 6.4176 1.1401 
TEL→FIN 7.8641 0.0029 

Panel B: multivariate Granger causality results 
 Pre-crisis period Post-crisis period 

TEL, UTI, CONGDS, FIN → OG        20.2268 5.2402 
   

OG, UTI, CONGDS, FIN → TEL 44.0651*** 6.3553 
   

OG, TEL, CONGDS, FIN → UTI 52.5870*** 1.0735 
   

OG, TEL, UTI, FIN → CONGDS 37.9639*** 1.7344 
   

OG, TEL, UTI, CONGDS → FIN 32.0502*** 2.8500 
Notes: The null hypothesis is rejected based on the x2 statistics. ***, ** and * denote statistical 

significance at the 1%, 5% and 10% levels, respectively. 



179 

 

5.4.2.5 Impulse responses and variance decomposition 

Following the Granger causality test we now examine the impulse responses of the system 

and the variance decomposition of the sectoral returns. As mentioned earlier, the impulse 

responses used in this study are the generalised ones and they show how a sector of the 

system reacts to a shock which occurs in another sector of the system independently of the 

variable ordering. For the variance decomposition which illustrates the proportion of 

movements in a sector’s price due to its own innovations, also called the “degree of 

exogeneity”, a Cholesky decomposition is performed on the covariance matrix of the shocks 

and therefore these results depend on the ordering of the variables in the system. 

Figure 1 in Appendix G.1 shows the graphs of the impulse responses for the pre-crisis period 

and one of the first things to notice is that all of the sectors have an initial positive reaction 

to shocks in other sectors. However, some of them have a negative response after the first 

month. These are the response of the TEL sector to the OG and UTI sectors, and the response 

of the UTI sector to the OG and TEL sectors. The rest, which are the majority of the sectors, 

have a positive response to a shock which occurs to other sectors. One issue which is really 

interesting is whether a shock has a permanent effect on another sector or whether it is 

transitory. This is a question which arises from the fact that the sectors have been found to 

be cointegrated during this period of time. In the case that they were not cointegrated the 

shock effect would be temporary and it would gradually approach zero. Out of all the 

responses only the response of the TEL sector to the CONGDS and FIN sectors, and the 

response of the UTI sector to the CONGDS and FIN sectors are found to have a transitory 

effect of a shock on another sector. Finally, for almost all the responses at least 10 months 

are needed for the shock’s effects to die out or to stabilise. The results of the post-crisis 

period are exhibited in Figure 2 in Appendix G.1 where one can immediately notice that all 

the responses are positive with the majority of them being stabilised after a range of five to 
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seven months. All the sectors react in a more discernible way than during the pre-crisis 

period and the effects of other sectors on them are permanent, meaning they do not die out. 

The reactions of the OG, TEL, FIN and CONGDS sectors are slightly more positive and there 

are less fluctuations to their responses until the shock effects are stabilised. Furthermore, 

the reactions of the UTI sector to a positive shock to the rest of the sectors are positive while 

they are negative before the financial crisis. An interesting outcome of the comparison 

between the pre-crisis and post-crisis period is that the effect of a shock dies out much faster 

during the post-crisis period.  

The tables in Appendix G.2 demonstrate the results of the variance decomposition of the 

sectoral data for the pre-crisis and post-crisis periods, respectively. During the period before 

the financial crisis the most exogenous sector was the OG sector and the most endogenous 

was the FIN sector, while after the financial crisis the most endogenous remained the FIN 

sector but the most exogenous was the TEL sector. Also during the pre-crisis period OG, TEL 

and UTI are considered as exogenous and the rest of the sectors as endogenous. For 

example, 69% of the innovations of the UTI sector approximately depend on shocks in the 

UTI sector and 31% of them are due to shock in other sectors. During the post-crisis period 

there are some changes. Firstly, all the sectors seem to be a bit more exogenous. That is, 

their forecast error variance is mostly due to innovations to themselves. The only exception 

is the FIN sector which appears to be more endogenous compared to the pre-crisis period 

with only 25% of its forecast error variance being explained by innovations to the same 

sector. In addition, the FIN sector seems to be affected a lot by shocks in the TEL and CONGDS 

sectors. The influence of TEL to FIN sector seems to decrease gradually while the CONGDS 

sector appears to have a growing influence on the FIN sector, which is also supported by the 

causality relationship which runs from CONGDS to the FIN sector. 
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5.4.2.6 Time-varying volatilities and correlations 

In the left column of the figure in Appendix G.3 one can see the graphs of the time-varying 

volatility of the Italian sectors. The results imply that there were not large fluctuations in the 

volatility of the sectors either before or after the financial crisis of 2008. There is only a slight 

increase in the volatility after 2008, especially for the FIN, TEL and OG sectors.  

The middle and right columns of the Figure in Appendix G.3 summarise the results of the 

pairwise Dynamic Conditional Correlation (DCC) for the five Italian sectors. To begin with, 

there are only four pairs which experienced an increase in their correlation after the financial 

crisis of 2008. In particular, the average correlations between the CONGDS and UTI sectors, 

OG and UTI sectors, TEL and UTI sectors and UTI and FIN sectors were increased after 2008, 

while the average correlation of the rest of the pairs tested remained almost the same as 

during the period before 2008. Finally, we notice that during the first three years after the 

start of the financial crisis of 2008, there is either a visible increase or decrease in all the 

pairs. All of these movements are positive, except for the correlation between TEL and FIN, 

TEL and UTI, and TEL and OG. Generally, the correlation of the TEL sector with the rest of the 

sectors seems to have been reduced immediately after the financial crisis of 2008.  

 

5.4.3 Portugal 

5.4.3.1 Descriptive statistics  

Table 9 summarises the statistical properties of the sectors’ returns defined as the first 

differences of their logarithmic prices. Panel A of Table 9 contains the results for the whole 

period tested. The CONSVS sector is the only one which exhibits a positive but also small 

return with a relatively low risk level (standard deviation), while the other four sectors are 

characterised by negative returns accompanied by high standard deviations something 
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which is expected as the average returns are negative and this results in a higher degree of 

uncertainty and risk. 

 

The FIN sector has the most negative average return of 1.5097% and it also has the higher 

risk. All returns have negative skewness which indicates that the distribution has a long right 

tail, meaning that there are more negative returns than positive. The kurtosis values are 

higher than three implying that the distribution has longer and fatter tails than the normal 

Table 9 
Descriptive statistics of returns in different periods – Portugal 
Period CONSVS     FIN     IND     TEL     UTI 

Panel A   Whole Period 01/06/1998 – 01/11/2016 
Mean  0.0003 -0.0151 -0.0042 -0.0098 -0.0020 
Median  0.0015 -0.0052 -0.0001 -0.0024 -0.0040 
Maximum  0.1485  0.2983  0.1657  0.4179  0.2244 
Minimum -0.2730 -0.4912 -0.3278 -0.3839 -0.2415 
Std. deviation  0.0624  0.0996  0.0691  0.0951  0.0642 
Skewness -0.6767 -0.5882 -0.9849 -0.3839 -0.1260 
Kurtosis  4.9431  5.8200  6.3515  6.4391  4.3616 
Jarque-Bera  51.631***  85.974***  139.16***  114.34***   17.656*** 
      
Panel B   Pre-crisis Period 01/06/1998 – 01/08/2007 
Mean -0.0002  0.0033  0.0063  0.0002 -0.0010 
Median  0.0048  0.0066  0.0059 -0.0019 -0.0079 
Maximum  0.0944  0.2320  0.1380  0.4179  0.2244 
Minimum -0.1821 -0.2306 -0.2256 -0.3644 -0.1261 
Std. deviation  0.0494  0.0560  0.0559  0.0978  0.0625 
Skewness -0.5670 -0.0818 -0.5810  0.2003  0.6154 
Kurtosis  3.6151  7.4712  5.1564  6.8939  4.1851 
Jarque-Bera  7.6283**  91.752***  27.503***  70.230***  13.380*** 
      
Panel C  Post-crisis Period 01/09/2007 – 01/11/2016 
Mean  0.0012 -0.0332 -0.0144 -0.0196 -0.0028 
Median  0.0006 -0.0450 -0.0082 -0.0030  0.0005 
Maximum  0.1485  0.2983  0.1657  0.1532  0.1387 
Minimum -0.2730 -0.4912 -0.3278 -0.3839 -0.2415 
Std. deviation  0.0734  0.1273  0.0792  0.0922  0.0663 
Skewness -0.6902 -0.2191 -0.9268 -1.1362 -0.7471 
Kurtosis  4.4971  3.8748  5.6362  5.3332  4.3771 
Jarque-Bera  19.007***  4.3879  47.599***  48.617***  18.926*** 
Notes: ***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. The 
summary statistics represent the five most important market economic sectors of Portugal: Consumer 
Services (CONSVS), Financials (FIN), Industrials (IND), Telecommunications (TEL) and Utilities (UTI). The 
null hypothesis of the Jarque-Bera test is the skewness to be equal to zero and the kurtosis to be equal 
to three.  



183 

 

distribution. The values of skewness and kurtosis confirm the results of the Jarque-Bera 

normality test which examines if the returns follow a normal distribution. As its null 

hypothesis of normality is rejected, it is implied that the returns are not normally distributed.  

Panels B and C of the same table provide statistical details of the sectors for the pre-crisis 

and post-crisis period, respectively. Before the financial crisis three out of the five sectors 

have positive mean returns; these are the FIN, IND and TEL with IND having the highest mean 

return and the second lowest risk. The other two sectors, CONSVS and UTI, have negative 

average rate of returns, but not the highest risk. Out of the sectors with a positive mean 

return the IND sector has the highest return and the lowest risk – a result which goes against 

the theory that higher return is accompanied by higher risk. Furthermore, the skewness of 

the data is negative for CONSVS, FIN and IND indicating the high possibility of negative 

returns; the skewness of the other two sectors is positive.  In addition, for all the sectors 

kurtosis is larger than three but it is very close to it in the case of CONSVS. Thus, we can say 

that the CONSVS sector has a mesokurtic distribution and the rest a leptokurtic distribution. 

Again the values of skewness and kurtosis ensure the result of the Jarque-Bera test that the 

returns do not follow a normal distribution. As mentioned above, panel C shows the results 

of the post-crisis period. To begin with, the majority of the sectors have a negative mean 

return with only exception the CONSVS sector. The latter seems to have a significant increase 

in its returns because, although during the pre-crisis period it has a negative average return, 

over the whole period it is characterised by a positive return. Thus, its returns after the 

financial crisis are higher than the returns it experienced during the period before the crisis. 

The rest of the sectors have a negative average return indicating the effect of the financial 

crisis on their prices. The sector which experienced the highest decrease in its average return 

is the TEL followed by the FIN where both have their mean returns reduced by more than 

1000%. Skewness is negative for all the sectors and kurtosis is close but not equal to three. 

Thus, they do not follow a normal distribution except the FIN sector which seems to follow 
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such a distribution as the null hypothesis of normality by the Jarque-Bera test is not rejected 

at the 1% significance level. 

 

5.4.3.2 Dickey-Fuller GLS unit root test 

Table 10 shows the results of the Dickey-Fuller unit root test. After checking the graph of 

each individual sector in order to inspect the possible existence of a trend in the data, the 

results show that all the sectors are characterised by a trend apart from the TEL sector in the 

pre-crisis period and the UTI sector in the post-crisis period. Testing the data for the 

Portuguese sectors for stationarity with the Dickey-Fuller unit root test for both the pre-crisis 

and post-crisis periods, we conclude that all of them, except the TEL sector, are integrated 

of order one as the null hypothesis of unit root is not rejected when the test is applied to the 

levels of the prices but is rejected when it is applied to their first differences.  

 

5.4.3.3 Johansen cointegration test 

Since based on the Dickey-Fuller GLS unit root test all the data series are found to be 

integrated of the same order except TEL on the pre-crisis period, the next step in the analysis 

is to test the sectors for cointegration. The Johansen cointegration results for the pre and 

post crisis periods are provided in Table 11 below. For the pre-crisis period the Johansen 

cointegration test is used with all the sectors included except TEL, as the variables included 

in the test should be integrated of the same order. The number of lags used for the Johansen 

cointegration test is 1 (selected by the AIC) which appears to be sufficient in terms of no 

remaining serial correlations. Both the Trace and Maximum Eigenvalue statistics suggest that 

there is no cointegration among the data (long-run equilibrium) as the first null hypothesis 
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of no cointegration (𝑟 = 0) is not rejected at 5% significance level by neither of the tests. 

That is, the test statistics were smaller than the critical values of the test.  

The Johansen test is also used for the post-crisis period. This time all the sectors are included 

as all of them are I(1). The serial correlation is eliminated with three lags which is not 

consistent with the AIC recommendation. The AIC information criterion suggests one lag, but 

this is not enough for the serial correlation to be eliminated. After trying two lags, which 

were not enough either, we conclude that the number of lags we need is three. Based on the 

Trace test of Johansen (1991) there is a long-run equilibrium relationship among the five 

main Portuguese sectors for the post-crisis period. To sum up, the sectors are not 

cointegrated during the pre-crisis period but they are during the post-crisis period.  

 

Table 10 
Dickey-Fuller GLS unit root test – Portugal 
Period    CONSVS  FIN  IND  TEL  UTI 

Panel A – Pre-crisis period 
Log prices          

 Lag 1  1  0  0  0 

 τμ -0.4642  -0.6378  -0.0406  -2.2531**  -0.3376 

Log returns          
 Lag 0  0  0      0 

 τμ -8.3888***  -8.5859***  -
9.7977*** 

 -
10.525*** 

 -
5.4417*** 

Panel B – Post-crisis period 

   Log prices           
 Lag 0  1  0  0  3 
 τμ -1.6414  -2.2092  -2.2570  -1.3618  -1.1132 

Log returns           
 Lag 0  0  0  0  0 
 τμ -9.4287***  -8.3708***  -

9.4615*** 
 -

10.491*** 
 -

11.272*** 
Notes: ***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. The shaded cells indicate 
trend existence. The critical values for Dickey-Fuller GLS unit root test when there is no trend are -2.586350, -1.943796 and 
-1.614784 at 1%, 5% and 10% levels of significance, respectively. In the case of trend existence, the critical values change to 
-3.568000, -3.020000 and -2.730000, respectively.  
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5.4.3.4 Granger causality  

As a consequence of the missing cointegration among the data on the pre-crisis period, we 

will use an unrestricted VAR model with the first differences to examine the data for short-

run relationships (causality) during this period. We also use a VECM model with the level 

prices on the post-crisis period as we found cointegration. There are some Granger causality 

relationships among the data. First, during the pre-crisis period the CONSVS sector seems to 

Granger-cause the UTI sector as the null hypothesis of CONSVS to not cause the UTI sector is 

rejected at the 5% significance level. Similarly, the FIN sector causes the IND sector at the 

10% significance level. Moreover, as it can be seen from panel B of Table 12, for the pre-crisis 

period the null hypothesis of no Granger causality to each sector from the remaining sectors 

is not rejected for any of the five sectors, indicating that there are no joint causality 

relationships among the data.  

Secondly, during the post-crisis period the short-run relationships have doubled. The causal 

relationship of the FIN sector to the IND sector still exists at the 10% significance level. There 

are also some new short-run relationships. One unidirectional from the TEL to the CONSVS 

sector and a bi-directional one between the TEL and the UTI sectors. Thus after the financial 

 
 
 
 
 
Table 11 
Multivariate Johansen cointegration test - Portugal 
CONSVS, FIN, IND, TEL, UTI 

  Pre-crisis   Post-crisis 

  λtrace λmax  λtrace λmax 

r = 0  42.3115 20.6397  74.3143**     31.98719 
r ≤ 1  21.6718 15.9042  42.3272  19.46959 

r ≤ 2   5.7676  5.7105  22.8576  17.39109 

r ≤ 3   0.0572  0.0572    5.4664  5.059822 

Notes: The optimal lag length for the cointegration testing is defined 
by the Akaike information criterion (AIC). ***, ** and * denote 
statistical significance at the 1%, 5% and 10% levels, respectively. 
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crisis the causality relationships between the data have risen and there are new relationships 

created mostly from and to the TEL sector. 

 

Lastly, the combined Granger causality from four sectors to the fifth one is rejected in all 

cases apart from the IND sector which seems to be caused by the other sectors at the 1% 

Table 12 
Granger causality test results - Portugal 
Panel A: Pairwise Granger causality results 

 Pre-crisis period Post-crisis period 
IND→CONSVS 0.6783 0.7306 
CONSVS→IND 0.0110 1.6508 

   

IND→UTI 0.3786 0.5602 
UTI→IND 0.0202 2.3478 

   

IND→FIN 0.3939 0.3942 
FIN→IND   3.1025*   2.7744* 

   

IND→TEL 0.6858 0.0154 
TEL→IND 0.1028 0.2728 

   

CONSVS→UTI             4.1099** 1.7659 
UTI→CONSVS 1.2316 0.3029 

   

CONSVS→FIN 2.1118 0.6434 
FIN→CONSVS 2.5021 1.5831 

   

CONSVS→TEL 0.5494 0.1641 
TEL→CONSVS 1.8096   3.2550* 

   

UTI→FIN 1.0830 0.0233 
FIN→UTI 0.0004 0.4086 

   

UTI→TEL 0.1559     4.1252** 
TEL→UTI 0.6578     4.0128** 

   

FIN→TEL 0.0319 1.1540 
TEL→FIN 0.3521 0.5951 

Panel B: multivariate Granger causality results 
 Pre-crisis period Post-crisis period 

FIN, IND, TEL & UTI → CONSVS 5.3518 4.2873 
   

CONSVS, IND, TEL & UTI → FIN 5.4376 2.3113 
   

  CONSVS, FIN, TEL & UTI → IND 5.4654    14.1456*** 
   

CONSVS, FIN, IND, & UTI → TEL 1.1650 5.0167 
   

CONSVS, FIN, IND & TEL  → UTI 4.3286 5.2347 
Notes: The null hypothesis is rejected based on the x2 statistics. ***, ** and * denote statistical 

significance at the 1%, 5% and 10% levels, respectively. 
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significance level. That is, the past values of the CONSVS, FIN, TEL and UTI sectors can be 

helpful in the prediction of the future values of the IND sector.  

 

5.4.3.5 Impulse responses and variance decomposition 

The impulse responses for the pre-crisis and post-crisis periods are displayed respectively in 

Figure 1 and Figure 2 of Appendix H.1. The first results of the impulse response analysis 

indicate that all the sectors before and after the financial crisis react positively during the 

first month after an exogenous shock to another sector of the system. The majority of the 

sectors’ responses during the pre-crisis period remain positive until they reach zero. 

However, there is the case of the UTI sector responses to the IND, TEL and FIN sectors, as 

well as the case of the TEL sector responses to UTI and FIN which have a positive reaction in 

the first month but after the first month their reactions become negative until the shock’s 

effects die out. The time needed until the responses reach zero is between 2.5 and 3.5 

months. By comparing the results of the post-crisis period to the results of the pre-crisis 

period it is observed that during the post-crisis period all the responses of the Portuguese 

sectors to random shocks to the rest of the sectors in the system are positive and the shocks’ 

effects are permanent for all the sectors. Furthermore, the average period needed so that 

the shocks effect to a sector is stabilised is highly increased as it lies between 11 and 15 

months.  

In addition to the results of the impulse responses, we have the variance decomposition of 

the sectors. Appendix H.2 provides the results of the variance decomposition analysis of each 

sector for both sub-periods tested.  During the pre-crisis period three out of the five sectors 

seem to be exogenous. These are the IND, CONSVS and UTI which explain their variance 

decomposition by their own innovations at a degree of 88%, 75% and 62%, respectively. The 

rest are found to be endogenous sectors as at the 5-month horizon 52% of the TEL sector 



189 

 

and 58% of the FIN sector innovations are explained by the remaining sectors, with the 

CONSVS sector being the most important in their variance explanation. By analysing the 

results of the variance decomposition for the period after the financial crisis, we notice that 

the level of exogeneity has increased for all the sectors, except the CONSVS sector. This 

means that the innovations of each sector are mostly due to their own shocks. Moreover, 

the IND sector remains the most exogenous and the FIN the most endogenous, the same as 

for the pre-crisis period.  

 

5.4.3.6 Time-varying volatilities and correlations 

The graph in Appendix H.3 represents the results of the time-varying volatility and the 

pairwise time-varying correlation of the sectors. With regard to the results of time-varying 

volatility, a significant increase in the volatility of all sectors is highlighted after 2008 possibly 

due to the financial crisis that influenced Portugal during this period. Moreover, the FIN 

sector has the highest risk with a volatility as high as 0.15, while the rest of the sectors have 

a volatility of less than 0.02. This is a sign of how risky the FIN sector is considered and how 

volatile its value was after 2008. The next most risky sector is CONSVS, the volatility of which 

has the highest peak of 0.018 in 2008 but after this year its value is not so volatile. To 

conclude, the Portuguese sectors are not characterised by high levels of volatility with the 

FIN sector being the most volatile one.  

The final step in the analysis is to check the time-varying correlations of the sectors. The 

results in the two right-hand columns of the Figure in Appendix E.3 show that the correlations 

between the sectors are not very volatile. However, there are some peaks in 2008, 2012 and 

2014. In 2008, the correlation increased for all the different sector pairs except the FIN sector 

with the IND and the TEL sector, and the UTI and TEL sectors. In 2012, the correlation 

between the IND sector and the remaining sectors decreased significantly, while the 
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correlation of the UTI and TEL sectors surged by 0.15 units. Finally, in 2015 the correlation of 

the FIN sector with the TEL, UTI and CONSVS sectors, as well as that between the TEL and 

CONSVS sectors increased. In a nutshell the correlations only exhibit a moderate degree of 

fluctuation but there are some brief periods during the period examined where they 

increased significantly.  

 

5.5 Summary and conclusions 

The purpose of this study was to investigate the interdependency relationships among the 

stock market sector indices of Greece, Italy and Portugal. The data cover the period June 

1998 through November 2016 for the five most important market sectors (based on their 

share in each country’s total market capitalisation). The methodology applied includes unit 

root tests, long-run and short-run relationship tests, impulse response and variance 

decomposition analyses, and time-varying volatilities and correlations checks.   

Our findings indicate that the Greek sectors were influenced greatly after the beginning of 

the financial crisis since all the mean returns of all the sectors reduced significantly, with the 

Financials sector being the most influenced ‒ with a loss in its value greater than 1000%. All 

the sectors are found to be integrated of order one and they do not share a long-run 

equilibrium relationship for neither of the sub-periods under investigation. However, there 

are some short-run relationships which show that the Consumer Services sector has the 

highest possibility to be caused by the other sectors.  

Moreover, the Italian sectors show that most of their average returns are negative, especially 

after the financial crisis of 2008. The FIN sector has again the highest decrease out of all the 

Italian sectors in its average returns but also the highest risk. Only in the case of Italy there 

is cointegration found among the data for the pre-crisis period which is accompanied by 
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many causality relationships. These are mainly pairwise relationships which run from the 

Financials and Oil & Gas sectors to the Telecommunication sector and from 

Telecommunication and Utilities sectors to the Consumer Goods sector. Moreover, there are 

short-run dynamics of joint causality during the pre-crisis period running to each individual 

sector from the remaining ones, except the Oil & Gas sector. However, after the financial 

crisis there is cointegration but there is only one short-run relationship from the Consumer 

Goods sector to the Financials sector. This is a sign that when sectors are cointegrated, there 

is higher possibility for short-run relationships to exist.  

Finally, the Portuguese sectors have mostly positive returns before the crisis and negative 

after it. In addition, the Portuguese Financials sector is the one that was most affected by 

the financial crisis, as well as in Greece and Italy. The risk of the sectors also significantly 

increased after the start of the financial crisis at the end of 2007, especially for the Financials 

sector. The Johansen cointegration test showed that there is no long-run equilibrium among 

the sectors during the pre-crisis period but there is during the post-crisis period. Moreover, 

there is a unidirectional causality relationship from the Consumer Services sector to Utilities 

sector during the first sub-period and a bi-directional causality relationship between the 

Utilities sector and the Telecommunication sector during the post-crisis period. Moreover, 

after the financial crisis there is joint causality relationship running to the Utilities sector from 

the other sectors.  

To sum up, we conclude with some very interesting observations. First, the Financials sector 

is the most sensitive one in these countries, having a substantial decrease in its average 

return. Second, the Financials and Telecommunication sectors have a significant share of the 

total countries’ market capitalization as they are included in the main sectors of the countries 

under investigation. Third, the sectors are not strongly cointegrated most of the time and 

they have limited causality relationships. This can provide diversification benefits to 



192 

 

investors, as there are very weak interdependency relationships (Wang et al, 2005). 

Furthermore, the impulse response functions indicate that in order for the effects of a shock 

to a sector to die out, an average of two and a half months is needed. The variance 

decomposition analysis shows that most of the sectors are exogenous rather than 

endogenous and they experience a much higher volatility after a financial crisis. This is not 

surprising as when a financial crisis occurs, the degree of uncertainty is significantly 

increased. Last but not least, the time-varying correlations show that most of the pairwise 

correlations for Greek sectors have considerably declined over the second sub-period under 

investigation (after the end of 2007). On the contrary, in the case of the Italian sectors the 

pairwise correlations have increased, while the correlations between the Portuguese sectors 

seem to not have changed.  

We conclude that there are no interdependency relationships among the sectors of Greece, 

Italy and Portugal. They are mainly affected in their volatility levels and their pairwise 

correlations.  In addition, we conclude that the volatility levels of the sectors are increased 

significantly after a financial crisis as the uncertainty is also surged. However, it is not clear 

how the correlations react after a financial crisis as the results of the time-varying 

correlations for the countries we examined provide very diverse results.  
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Appendix A  

   
Real GDP % change YoY 

 

 

 

Table 1 

Periods 
IT GDP 

(REAL, %YOY ) 

GR 
GDP (REAL, 

%YOY ) 
IR GDP 

(REAL, %YOY ) 
PT GDP 

(REAL, %YOY ) 
ES GDP 

(REAL, %YOY ) 

1998 1.49 4.15 7.84 4.8 4.31 

1999 1.52 3.05 11.03 3.9 4.48 

2000 3.91 4.23 10.65 3.79 5.29 

2001 1.61 3.61 5.28 1.94 4 

2002 0.25 4 5.95 0.77 2.88 

2003 0.24 5.81 3.69 -0.93 3.19 

2004 1.37 4.78 6.8 1.81 3.17 

2005 1.15 0.8 5.79 0.77 3.72 

2006 2.1 5.58 5.88 1.55 4.17 

2007 A 0.665 1.585 1.875 1.245 1.885 

      

2007 1.33 3.17 3.75 2.49 3.77 

2007 B 0.665 1.585 1.875 1.245 1.885 

2008 -1.07 -0.23 -4.4 0.2 1.12 

2009 -5.52 -4.31 -4.61 -2.98 -3.57 

2010 1.65 -5.46 2 1.9 0.01 

2011 0.72 -9.18 -0.06 -1.83 -1 

2012 -2.85 -7.32 -1.08 -4.03 -2.93 

2013 -1.75 -3.17 1.08 -1.13 -1.71 

2014 0.17 0.39 8.45 0.89 1.38 

2015 0.61 -0.31 26.29 1.6 3.2 

2016 0.83 0.04 4.26 1.16 3.22 

      

average of pre-
crisis period 1.4305 3.7595 6.4785 1.9645 3.7095 

average of post-
crisis period -0.6545 -2.7965 3.3805 -0.2975 0.1605 

      

difference % -1.4575 -1.7438 -0.4781 -1.1514 -0.9567 
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Appendix B  
 

Share of total market capitalisation 

 

 

 

 

 

 

 

 

 

 

  

Greece 

Sectors Average Market Value (%) Percentages 

GREECE-DS Financials - MARKET VALUE 46.7699 

GREECE-DS Telecom - MARKET VALUE 15.7975 

GREECE-DS Consumer Svs - MARKET VALUE 12.5933 

GREECE-DS Consumer Gds - MARKET VALUE   7.3617 

GREECE-DS Basic Mats - MARKET VALUE   6.4210 

  

Italy 

Sectors Average Market Value (%) Percentages 

ITALY-DS Financials - MARKET VALUE 37.08441871 

ITALY-DS Oil & Gas - MARKET VALUE 14.1916548 

ITALY-DS Utilities - MARKET VALUE 12.30382934 

ITALY-DS Telecom - MARKET VALUE 11.45146251 

ITALY-DS Consumer Gds - MARKET VALUE 7.684180825 

  

Portugal 

Sectors Average Market Value (%) Percentages 

PORTUGAL-DS Financials - MARKET VALUE 23.405312 

PORTUGAL-DS Utilities - MARKET VALUE 16.45241574 

PORTUGAL-DS Consumer Svs - MARKET VALUE 15.03660562 

PORTUGAL-DS Telecom - MARKET VALUE 14.22134026 

PORTUGAL-DS Industrials - MARKET VALUE 8.135696006 
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Appendix C 
 

Critical values of the Dickey – Fuller GLS unit root test 

 

 

Appendix D  
 

Proof of equation (8) 

 

For t=3 and q=2, equation (7) is 

𝑽𝟑 = 𝑲𝟏𝑽𝟐 + 𝑲𝟐𝑽𝟏 + 𝜞𝑿𝟑 + 𝜺𝟑 

And equation (8) is 

Δ𝑉3 = Π𝑉2 + ∑ 𝐴𝑖Δ𝑉3−𝑖

1

𝑖=1

+ Γ𝑋3 + 𝜀3 =  (∑ 𝐾𝑖 − 𝐼

2

𝑖=1

) 𝑉2 + 𝐴1Δ𝑉2 + Γ𝑋3 + 𝜀3 

⇔ Δ𝑉3 = (𝐾1 + 𝐾2 − 𝐼)𝑉2 + (− ∑ 𝐾𝑗

2

𝑗=2

) Δ𝑉2 + Γ𝑋3 + 𝜀3 

⇔ Δ𝑉3 = 𝐾1𝑉2 + 𝐾2𝑉2 − 𝐼𝑉2 − 𝐾2Δ𝑉2 + Γ𝑋3 + 𝜀3 

⇔ 𝑉3 − 𝑉2 = 𝐾1𝑉2 + 𝐾2𝑉2 − 𝑉2 − 𝐾2(𝑉2 − 𝑉1) + Γ𝑋3 + 𝜀3 

⇔ 𝑉3 = 𝐾1𝑉2 + 𝐾2𝑉2 − 𝐾2𝑉2+𝐾2𝑉1 + Γ𝑋3 + 𝜀3 

⇔ 𝑽𝟑 = 𝑲𝟏𝑽𝟐+𝑲𝟐𝑽𝟏 + 𝚪𝑿𝟑 + 𝜺𝟑 

Both equation (7) and (8) give the same result, so these two equations are equal. 

Table 1. Dickey-Fuller GLS critical values 

 1% 5% 10% 

Panel A – Intercept model 

 -2.74 -1.96 -1.60 
Panel B – Intercept and trend model 

50 -3.77  -3.19  -2.89 
100 - 3.58 - 3.03  -2.74 
200 - 3.46 - 2.93  - 2.64 
∞ -3.48 - 2.89  - 2.57 
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Appendix E 
 

Serial correlations of the VAR models for the lag selection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A 
Serial Correlation Results 
                    GREECE ITALY PORTUGAL 

 Pre-crisis Post-crisis Pre-crisis Post-crisis Pre-crisis Post-crisis 
Lags LM-Stat  LM-Stat  LM-Stat  LM-Stat  LM-Stat LM-Stat 

1 11.569 17.218  29.527  32.063 23.263  17.127 
2 19.482 30.302  26.220  28.357 10.220  33.471 
3 24.152 24.966  16.963  37.358* 19.927  22.915 
4 30.596 29.030  21.378  27.069 15.179  35.773 
5 22.922 27.227  22.827  20.645 10.776  32.739 
6 22.278 26.582  17.311  14.938 20.575  20.429 

Note: The null hypothesis is the no existence of serial correlation to the residuals of the VAR or 
VECM model. It is rejected based on the LM-statistics. ***, ** and * denote statistical 
significance at the 1%, 5% and 10% levels, respectively. There are 16 degrees of freedom. 
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Appendix F 

Greece 

 

Appendix F.1  Impulse responses  

Figure 1: Pre-crisis period 
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Figure 2: Post-crisis period 
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Appendix F.2  Variance decomposition 

 

 

 

 

 

 

 

 

 

Variance decomposition for the pre-crisis period - Greece 
Variance decomposition of R_LGR_TEL   
Month R_LGR_TEL R_LGR_CONGDS R_LGR_CONSVS R_LGR_BASMAT R_LGR_FIN 

1 100.0000 0.0000 0.0000 0.0000 0.0000 
2 99.0675 0.0463 0.2585 0.5800 0.0478 
3 99.0542 0.0536 0.2586 0.5849 0.0486 
4 99.0537 0.0537 0.2587 0.5851 0.0488 
5 99.0537 0.0537 0.2587 0.5851 0.0488 

 Variance decomposition of R_LGR_CONGDS 
Month R_LGR_TEL R_LGR_CONGDS R_LGR_CONSVS R_LGR_BASMAT R_LGR_FIN 

1 18.8902 81.1098 0.0000 0.0000 0.0000 
2 18.7501 78.4095 0.2171 0.0033 2.6201 
3 18.7609 78.3895 0.2243 0.0065 2.6188 
4 18.7608 78.3882 0.2244 0.0066 2.6200 
5 18.7608 78.3881 0.2244 0.0066 2.6200 

 Variance decomposition of R_LGR_CONSVS 
Month R_LGR_TEL R_LGR_CONGDS R_LGR_CONSVS R_LGR_BASMAT R_LGR_FIN 

1 18.7186 31.2561 50.0253 0.0000 0.0000 
2 18.5783 31.6432 49.3216 0.4329 0.0241 
3 18.5539 31.6590 49.2738 0.4872 0.0262 
4 18.5533 31.6597 49.2720 0.4886 0.0264 
5 18.5533 31.6597 49.2719 0.4886 0.0265 

 Variance decomposition of R_LGR_BASMAT 
Month R_LGR_TEL R_LGR_CONGDS R_LGR_CONSVS R_LGR_BASMAT R_LGR_FIN 

1 23.6085 20.5594 11.3461 44.4860      0.0000 
2 23.5937 20.9900 11.2131 44.1331 0.0701 
3 23.5858 20.9892 11.2096 44.1249 0.0905 
4 23.5857         20.9891 11.2101 44.1245 0.0906 
5 23.5857 20.9891 11.2101 44.1245 0.0906 

 Variance decomposition of R_LGR_FIN 
Month R_LGR_TEL R_LGR_CONGDS R_LGR_CONSVS R_LGR_BASMAT R_LGR_FIN 

1 43.7944 17.6798 2.3035 8.3594 27.8629 
2 43.2829 17.6997 2.9915 8.3086 27.7173 
3 43.2618 17.6935 2.9951 8.3120 27.7376 
4 43.2611 17.6933 2.9960 8.3126 27.7370 
5 43.2611 17.6934 2.9960 8.3126 27.7370 
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Variance decomposition for the post-crisis period - Greece 

Variance decomposition of R_LGR_CONGDS   

Month R_LGR_CONGDS R_LGR_FIN R_LGR_TEL R_LGR_BASMAT R_LGR_CONSVS 

1 100.000 0.0000 0.0000 0.0000 0.0000 

2 96.8874 0.0033 0.0446 2.8986 0.1661 

3 96.7498 0.0352 0.0502 2.8999 0.2650 

4 96.7446 0.0386 0.0503 2.9006 0.2659 

5 96.7445 0.0386 0.0503 2.9007 0.2659 

 Variance decomposition of R_LGR_FIN 

Month R_LGR_CONGDS R_LGR_FIN R_LGR_TEL R_LGR_BASMAT R_LGR_CONSVS 

 1 10.0583 89.9417 0.0000 0.0000 0.0000 
 2 10.9684 86.7236 0.0018 0.9592 1.3470 

 3 10.9721 86.6491 0.0114 0.9814 1.3861 

 4 10.9717 86.6466 0.0122 0.9814 1.3881 

 5 10.9717 86.6466 0.0122 0.9814 1.3881 

 Variance decomposition of R_LGR_TEL 

Month R_LGR_CONGDS R_LGR_FIN R_LGR_TEL R_LGR_BASMAT R_LGR_CONSVS 

 1 22.3736 5.4273 72.1991 0.0000 0.0000 

 2 21.6968 6.2123 70.9503 1.1061 0.0345 

 3 21.6592 6.2289 70.8503 1.1181 0.1434 

 4 21.6583 6.2296 70.8487 1.1182 0.1453 

 5 21.6583 6.2295 70.8487 1.1182 0.1453 

 Variance decomposition of R_LGR_BASMAT 

Month R_LGR_CONGDS R_LGR_FIN R_LGR_TEL R_LGR_BASMAT R_LGR_CONSVS 

 1 27.4683 19.6092 7.4769 45.4455 0.0000 

 2 28.2525 19.2006 7.4882 44.5768 0.4819 

 3 28.2557 19.2233 7.4812 44.5497 0.4902 

 4 28.2567 19.2233 7.4811 44.5487 0.4902 

 5 28.2567 19.2233 7.4811 44.5487 0.4902 

 Variance decomposition of R_LGR_CONSVS 

Month R_LGR_CONGDS R_LGR_FIN R_LGR_TEL R_LGR_BASMAT R_LGR_CONSVS 

1 30.6698 9.4068 23.4493 3.4122 33.0619 
 2 29.7372 10.9910 22.6093 4.8239 31.8386 

 3 29.6764 10.9827 22.5635 4.8289 31.9484 

 4 29.6747 10.9858 22.5632 4.8286 31.9477 

 5 29.6747 10.9858 22.5632 4.8286 31.9477 
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Appendix F.3  Time-varying volatilities and correlations 
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Appendix G 

Italy 

 

Appendix G.1  Impulse responses  

Figure 1: Pre-crisis period 

 

 

 

 

 

 

 

 

 

 

 

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_OG to R_LIT_TEL

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_OG to R_LIT_UTI

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_OG to R_LIT_CONGDS

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_OG to R_LIT_FIN

-.04

.00

.04

.08

5 10 15

Response of R_LIT_TEL to R_LIT_OG

-.04

.00

.04

.08

5 10 15

Response of R_LIT_TEL to R_LIT_UTI

-.04

.00

.04

.08

5 10 15

Response of R_LIT_TEL to R_LIT_CONGDS

-.04

.00

.04

.08

5 10 15

Response of R_LIT_TEL to R_LIT_FIN

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_UTI to R_LIT_OG

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_UTI to R_LIT_TEL

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_UTI to R_LIT_CONGDS

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_UTI to R_LIT_FIN

-.02

.00

.02

.04

.06

.08

5 10 15

Response of R_LIT_CONGDS to R_LIT_OG

-.02

.00

.02

.04

.06

.08

5 10 15

Response of R_LIT_CONGDS to R_LIT_TEL

-.02

.00

.02

.04

.06

.08

5 10 15

Response of R_LIT_CONGDS to R_LIT_UTI

-.02

.00

.02

.04

.06

.08

5 10 15

Response of R_LIT_CONGDS to R_LIT_FIN

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_FIN to R_LIT_OG

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_FIN to R_LIT_TEL

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_FIN to R_LIT_UTI

-.02

.00

.02

.04

.06

5 10 15

Response of R_LIT_FIN to R_LIT_CONGDS

Response to Generalized One S.D. Innovations



203 

 

Figure 2: Post-crisis period 
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Appendix G.2  Variance decomposition 

 

Variance decomposition for the pre-crisis period - Italy 

Variance decomposition of R_LGR_OG   
Month R_LGR_OG R_LGR_TEL R_LGR_UTI R_LGR_CONGDS R_LGR_FIN 

1 100.000 0.0000 0.0000 0.0000 0.0000 

2 96.9814 0.5996 0.5161 1.8599 0.0431 

3 91.2305 0.5256 0.6395 3.2146 4.3898 

4 89.0041 0.6098 1.5900 2.9688 5.8273 

5 88.0935 1.6627 1.7036 2.8378 5.7024 

 Variance decomposition of R_LGR_ TEL 
Month R_LGR_OG R_LGR_TEL R_LGR_UTI R_LGR_CONGDS R_LGR_FIN 

1 2.0167 97.9833 0.0000 0.0000 0.0000 
2 12.6748 84.5601 0.9112 0.1211 1.7328 

3 11.7309 82.7252 2.5238 1.2713 1.7489 

4 12.6409 81.7089 2.2931 1.7667 1.5904 

5 16.9264 75.4497 4.1953 1.9632 1.4653 

 Variance decomposition of R_LGR_UTI 
Month R_LGR_OG R_LGR_TEL R_LGR_UTI R_LGR_CONGDS R_LGR_FIN 

1 19.8193 1.9209 78.2599 0.0000 0.0000 

2 19.3488 4.1106 74.3973 1.7249 0.4185 

3 17.8622 5.2683 70.3607 1.6870 4.8218 

4 17.4981 5.1689 69.0310 2.5839 5.7182 

5 23.4910 4.9013 62.0716 2.5020 7.0341 

 Variance decomposition of R_LGR_ CONGDS 
Month R_LGR_OG R_LGR_TEL R_LGR_UTI R_LGR_CONGDS R_LGR_FIN 

1 19.2388 13.4759 5.6732 61.6122 0.0000 

2 15.6691 27.0559 5.0981 52.0801 0.0968 

3 16.5077 26.0454 4.6887 52.5212 0.2369 

4 17.8355 24.1992 6.2104 49.4283 2.3266 

5 17.0071 26.7966 5.8755 48.1217 2.1992 

 Variance decomposition of R_LGR_FIN 
Month R_LGR_OG R_LGR_TEL R_LGR_UTI R_LGR_CONGDS R_LGR_FIN 

1 19.6761 17.7306 10.2597 14.8704 37.4632 
2 18.3177 21.3154 10.4886 14.0836 35.7948 

3 17.6535 18.9241 9.0343 13.4720 40.9161 

4 17.3912 18.8329 10.6545 14.6860 38.4354 

5 17.3026 17.7404 9.7208 13.2113 42.0249 
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Variance decomposition for the post-crisis period - Italy 

Variance decomposition of R_LGR_TEL   
Month R_LGR_TEL R_LGR_OG R_LGR_CONGDS R_LGR_UTI R_LGR_FIN 

1 100.0000 0.0000 0.0000 0.0000 0.0000 

2 98.3258 0.8152 0.5611 0.0835 0.2144 

3 94.3197 4.1412 1.1336 0.1522 0.2534 

4 84.9222 7.5764 7.0986 0.1512 0.2516 

5 83.5780 7.6964 8.0605 0.1429 0.5223 

 Variance decomposition of R_LGR_OG 
Month R_LGR_TEL R_LGR_OG R_LGR_CONGDS R_LGR_UTI R_LGR_FIN 

 1  7.970477  92.02952  0.000000  0.000000  0.000000 
 2  6.877233  82.13125  9.033846  1.059985  0.897684 

 3  7.023305  78.39723  11.85338  1.650987  1.075099 

 4  6.213941  73.53976  15.42038  3.545220  1.280699 

 5  5.726107  73.05402  16.24050  3.207115  1.772261 

 Variance decomposition of R_LGR_CONGDS 
Month R_LGR_TEL R_LGR_OG R_LGR_CONGDS R_LGR_UTI R_LGR_FIN 
 1  20.04719  25.32757  54.62524  0.000000  0.000000 

 2  18.09522  19.88106  61.60267  0.018299  0.402751 

 3  20.33218  16.59794  61.37526  1.163054  0.531563 

 4  22.08362  18.57353  57.91437  0.951165  0.477309 

 5  23.00643  17.79314  57.86430  0.888974  0.447155 

 Variance decomposition of R_LGR_UTI 
Month R_LGR_TEL R_LGR_OG R_LGR_CONGDS R_LGR_UTI R_LGR_FIN 
 1  32.32411  24.55101  2.359355  40.76552  0.000000 

 2  32.02209  23.21679  5.344047  39.09540  0.321669 

 3  29.55555  21.16395  8.250158  40.11263  0.917710 

 4  27.04521  19.12110  8.931863  44.13485  0.766972 

 5  27.58911  18.05605  10.28541  43.35288  0.716547 

 Variance decomposition of R_LGR_FIN 
Month R_LGR_TEL R_LGR_OG R_LGR_CONGDS R_LGR_UTI R_LGR_FIN 

 1  35.42152  15.73558  12.29239  7.768815  28.78169 
 2  32.04247  13.10342  21.08854  7.541307  26.22427 

 3  29.99135  12.46480  24.11890  9.086740  24.33821 

 4  27.81977  10.88358  25.23507  9.672109  26.38947 

 5  27.85151  9.870564  27.41224  9.634174  25.23152 
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Appendix G.3  Time-varying volatilities and correlations 
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Appendix H 

Portugal 

 

Appendix H.1  Impulse responses  

Figure 1: Pre-crisis period 
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Figure 2: Post-crisis period 
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Appendix H.2  Variance decomposition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variance decomposition for the pre-crisis period – Portugal 
Variance decomposition of R_LGR_IND   
Month R_LGR_IND R_LGR_ CONSVS R_LGR_UTI R_LGR_TEL R_LGR_FIN 

1 100.000 0.0000 0.0000 0.0000 0.0000 

2 96.9814 0.5996 0.5161 1.8599 0.0431 

3 91.2305 0.5256 0.6395 3.2146 4.3898 

4 89.0041 0.6098 1.5900 2.9688 5.8273 

5 88.0935 1.6627 1.7036 2.8378 5.7024 

Variance decomposition of R_LGR_ CONSVS 
Month R_LGR_IND R_LGR_ CONSVS R_LGR_UTI R_LGR_  TEL R_LGR_FIN 

1 2.0167 97.9833 0.0000 0.0000 0.0000 

2 12.6748 84.5601 0.9112 0.1211 1.7328 

3 11.7309 82.7252 2.5238 1.2713 1.7489 

4 12.6409 81.7089 2.2931 1.7667 1.5904 

5 16.9264 75.4497 4.1953 1.9632 1.4653 

Variance decomposition of R_LGR_UTI 
Month R_LGR_IND R_LGR_ CONSVS R_LGR_UTI R_LGR_ TEL R_LGR_FIN 

1 19.8193 1.9209 78.2599 0.0000 0.0000 

2 19.3488 4.1106 74.3973 1.7249 0.4185 

3 17.8622 5.2683 70.3607 1.6870 4.8218 

4 17.4981 5.1689 69.0310 2.5839 5.7182 

5 23.4910 4.9013 62.0716 2.5020 7.0341 

Variance decomposition of R_LGR_  TEL 
Month R_LGR_IND R_LGR_ CONSVS R_LGR_UTI R_LGR_ TEL R_LGR_FIN 

1 19.2388 13.4759 5.6732 61.6122 0.0000 

2 15.6691 27.0559 5.0981 52.0801 0.0968 

3 16.5077 26.0454 4.6887 52.5212 0.2369 

4 17.8355 24.1992 6.2104 49.4283 2.3266 

5 17.0071 26.7966 5.8755 48.1217 2.1992 

Variance decomposition of R_LGR_FIN 
Month R_LGR_IND R_LGR_ CONSVS R_LGR_UTI R_LGR_ TEL R_LGR_FIN 

1 19.6761 17.7306 10.2597 14.8704 37.4632 

2 18.3177 21.3154 10.4886 14.0836 35.7948 

3 17.6535 18.9241 9.0343 13.4720 40.9161 

4 17.3912 18.8329 10.6545 14.6860 38.4354 

5 17.3026 17.7404 9.7208 13.2113 42.0249 
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Variance decomposition for the post-crisis period – Portugal 
Variance decomposition of R_LGR_IND   
Month R_LGR_IND R_LGR_ TEL R_LGR_UTI R_LGR_CONSVS R_LGR_FIN 

1 100.0000 0.0000 0.0000 0.0000 0.0000 

2 91.1062 3.2062 4.2788 1.2245 0.1843 

3 90.1368 3.2330 4.4854 1.2040 0.9409 

4 79.5335 3.1493 14.1241 2.1522 1.0409 

5 72.4827 3.8484 16.7095 2.3914 4.5680 

Variance decomposition of R_LGR_ TEL 
Month R_LGR_IND R_LGR_ TEL R_LGR_UTI R_LGR_CONSVS R_LGR_FIN 

1 11.8563 88.1437 0.0000 0.0000 0.0000 

2 13.9017 85.5817 0.0036 0.5018 0.0112 

3 13.6519 80.5594 0.1466 1.7769 3.8652 

4 14.8239 78.9761 0.1488 2.0004 4.0508 

5 15.9540 77.0710 0.6774 1.9498 4.3478 

Variance decomposition of R_LGR_UTI 
Month R_LGR_IND R_LGR_ TEL R_LGR_UTI R_LGR_CONSVS R_LGR_FIN 

1 31.4009 7.8962 60.7029 0.0000 0.0000 

2 30.1783 9.7168 56.5707 2.0410 1.4934 

3 27.7023 9.6479 53.1029 6.3472 3.1997 

4 28.5592 7.8084 55.8136 5.1465 2.6723 

5 29.3707 7.4044 54.9504 5.5209 2.7535 

Variance decomposition of R_LGR_  CONSVS 
Month R_LGR_IND R_LGR_ TEL R_LGR_UTI R_LGR_CONSVS R_LGR_FIN 

1  39.66951  10.12338  3.044973  47.16213  0.000000 

2  36.82899  9.368486  5.967624  47.14492  0.689982 

3  33.93295  14.82670  6.782853  43.44848  1.009020 

4  31.73087  15.50745  9.925450  41.31087  1.525357 

5  31.72194  14.01733  13.87323  38.88012  1.507375 

Variance decomposition of R_LGR_FIN 
Month R_LGR_IND R_LGR_ TEL R_LGR_UTI R_LGR_CONSVS R_LGR_FIN 

1  13.28433  31.03981  6.380882  0.254428  49.04054 

2  14.66928  29.34216  6.449072  1.469725  48.06977 

3  13.27900  26.84185  11.76319  2.465232  45.65072 

4  12.15105  26.03841  16.93496  2.213535  42.66204 

5  11.28502  25.30229  24.12125  1.904013  37.38743 
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Appendix H.3  Time-varying volatilities and correlations 
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