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Abstract

This thesis contributes to improving support for complex textual modeling languages.
This support refers to the automatic generation of tools for the end user – e.g. parsers, edi-
tors, views, etc. – and (parts of) the standard specifications defined to describe the languages
– e.g. the Object Management Group open specifications for varied modeling languages.

The particular subset of languages considered in the thesis are textual, model-based and
complex. They are considered textual when their concrete syntax is textual, in particular, de-
fined by a grammar. They are considered model-based when their abstract syntax is defined
by a meta-model. They are considered complex when there is a significant gap between
the concrete and abstract syntax of the language; in other words, when the abstract syntax
meta-model cannot directly be derived or inferred from the concrete syntax grammar.

The contributions of this thesis address the problem of bridging the concrete and abstract
syntax of complex textual modeling languages. In particular, the contributions include (a)
a gap analysis of the limitations of related work; (b) a domain-specific transformation lan-
guage for defining and executing concrete syntax to abstract syntax bridges; (c) an experi-
mental evaluation of the proposed solution including studies to compare with related work.

Existing related work presents different issues when working on complex textual mod-
eling languages. Either sufficient automatic tooling generation is not provided (Gra2Mol),
or model-based languages are not appropriately supported (Spoofax), or complex gaps be-
tween the concrete and abstract syntax cannot be bridged (Xtext).

This thesis identifies the different concerns that arise when bridging the concrete and
abstract syntax of complex textual modeling languages. In addition, some limitations of
relevant related work are shown. With the aim of addressing these identified concerns a new
approach is proposed, showing how these concerns are particularly addressed. Specifically,
the proposed approach consists of complementing relevant related work (Xtext) with a novel
domain-specific transformation language to declare bridges between the concrete syntax
and abstract syntax of complex textual modeling languages.

The domain-specific transformation language is the main contribution of this thesis and
is evaluated by means of qualitative and quantitative studies. Subject to the presented ex-
amples, the conducted experiments show that the proposed approach brings measurable
benefits – in terms of size of specification artefacts and execution time of the underlying
implementation – when compared to the state-of-the-art.
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Chapter 1

Introduction

Throughout this thesis, the reader may note different coloured bubbles used to add
side notes. In some cases, they comprise either a brief recap or an important note to
emphasize and/or clarify parts of the thesis content. The semantics of the different
colours are explained as follows:

• A blue bubble (bulb icon) represents just a hint that adds additional informa-
tion. They are not required to understand the surrounding content.

• A yellow bubble (exclamation mark in a triangle icon) represents a warning
note. Although they are not required to understand the surrounding content,
they may help to clarify and/or remove a reader concern.

• A red bubble (exclamation mark in a circle icon) represents an important note.
They are used to bring the attention to a particular part of the thesis because the
discussed concern is relevant for further content.

1.1 Context

This document constitutes the doctoral thesis of a research project in an Engineering Doctor-
ate (EngD) programme in Large-Scale and Complex IT Systems (LSCITS). An EngD programme
differs from traditional PhD studies in that the research project is directed by both an aca-
demic supervisor and an industrial one. In this research project, the industrial sponsor is
Willink Transformations Ltd1.

Understanding the context of the research is important. As noted in Section 1.3, the
research project scope is partly established by the sponsoring industrial partner.

On the one hand, the industrial partner’s interests focus on Object Management Group
(OMG) standardised specifications, particularly Object Constraint Language (OCL) [39] and
Query/View/Transformation (QVT) [38]. On the other hand, the industry supervisor, Dr Ed-
ward D. Willink is a committer in the official Eclipse [25] projects created to provide an
implementation of these specifications.

1 http://www.willinktransformations.co.uk/
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OCL and QVT are open2 specifications, which describe standardised languages that op-
erate on models3. In the case of the former, the specification provides an expression lan-
guage for different purposes [12], for instance, to traverse models (also known as models
navigation) and to create queries with the aim of retrieving information from them. Like-
wise, OCL lets modelers create constraints on modeling languages. These constraints help
the definition of more precise rules to specify when models are well formed. In the case of
the latter, the specification describes three different languages used for defining Model-to-
Model (M2M) transformations. Briefly, the QVT specification defines one imperative lan-
guage, QVT Operational Mappings (QVTo), and two declarative [9] languages, QVT Rela-
tions (QVTr) and QVT Core (QVTc). The languages defined in the QVT specification are an
extension of OCL; that is, they use the OCL expressions language to navigate or query the
models that are transformed.

The modeling community has built a large ecosystem of technologies around the Eclipse [25]
platform to provide a wide set of modeling tools to end users. OMG specifications, like
OCL and QVT, have their own official Eclipse projects. Eclipse OCL [24] provides the corre-
sponding language implementation, as well as facilities like textual editors and evaluation
consoles. In addition, there are two projects to support the languages defined in the QVT
specification: Eclipse QVTd [26] focuses on the two declarative languages, and Eclipse QVTo
[27] focuses on the imperative one.

Eclipse is an open-source platform. In its umbrella modeling project, there are official
Eclipse projects aimed at providing an implementation for the OCL and QVT specifi-
cations. The main development activities are tied to these open-source projects.

1.2 Motivation

OMG specifications, such OCL and QVT, are the focus of interest in this research project,
whereas the Eclipse OCL, QVT Declarative (QVTd) and QVTo projects host the correspond-
ing implementations. In this context, this section introduces the reasons that have motivated
this research project, discussed from two different points of view: industry and academia.

1.2.1 Industry

Eclipse OCL has been an active project since 20064. In 2010, it started to evolve by providing
a new implementation to align with new changes in the OMG specification. Additionally,
the project was enhanced with high-quality textual editors, with the aim of facilitating bet-
ter tooling when adding model constraints. These high-quality editors have the particular

2 In the sense of publicly available for download, as well as referring to the processes which take place to
evolve them.

3 The concept of model in this thesis is further discussed.
4 https://www.eclipse.org/modeling/mdt/downloads/?project=ocl



1.2. Motivation 3

feature of being largely automatically generated using Xtext [21]. Briefly, Xtext is a Lan-
guage Workbench (LW) [31], which lets language engineers build tooling to support tex-
tual languages (e.g. Java, OCL, a textual Domain Specific Language (DSL) etc.), including
parsers, editors, complementary views and, generally speaking, a high-quality Integrated
Development Environment (IDE) for the Eclipse platform5. These IDEs aim to improve user
experience when dealing with instances of the language.

By contrast, Eclipse QVTo is a mature project, which relies on Eclipse OCL (the old im-
plementation). It has not evolved as Eclipse OCL has; thus, it is not aligned with the new
Eclipse OCL implementation. This is where Willink Transformations Ltd become important
for this research project, since they are pursuing an alignment between the new Eclipse OCL
implementation and a new Eclipse QVTo one. As an additional note, despite the fact that
Eclipse QVTo already has its own high-quality textual editor, this was completely hand-
coded. Therefore, moving the Eclipse QVTo project in the same direction as Eclipse OCL
– i.e. towards the automatic generation of tools – has been considered as beneficial by the
industrial partner.

The sponsoring industrial partner is also in charge of the Eclipse QVTd project. This
project gives supports to the QVTd languages of the specification: QVTr and QVTc. The
Eclipse QVTd project can also benefit from any results that can leverage and facilitate the de-
velopment and maintainability of the tooling that supports the languages defined by OMG.

To conclude, the industrial partner is also interested in improving the open specifica-
tions defined by OMG: they not only present several typos and inconsistencies [66], but also
– according to the industrial partner – there are parts of the specification that are not im-
plementable. Therefore, one of the goals of the industrial partner is to have well-defined
models from which both useful tools and parts of OMG specifications can be generated.
In this way, with the right models and tools (validators, generators) specifications can be
consistent, and implementations consistently compliant.

1.2.2 Academia

Although it is important to know the reasons that motivate the industrial partner to col-
laborate on this project, the research requires scientific motivations to qualify for an EngD.
In particular, this EngD project offers the opportunity to investigate the improvement of
existing approaches to support Complex Textual Modeling Language (CTML).

Xtext is a language workbench used by official Eclipse projects to create the tools (parsers,
editors) that support the OCL and QVT specifications. Whilst Xtext is a good candidate [20]
when dealing with DSLs, which do not usually place any imposition on its Abstract Syntax
(AS) and Concrete Syntax (CS) (topic discussed in section 2.2.4), in specification-driven lan-
guages such as OCL and QVT there is a significant gap between its AS and CS definitions.
For these kinds of complex languages 6, Xtext grammars are not powerful enough to pro-
duce a parser capable of processing an input conforming to the defined CS (a grammar) and
producing the expected output conforming to the defined AS (a meta-model). Forthcoming

5 From version 2.9 you can produce Xtext-based editors targeting other technologies (IntelliJ, web browsers).
6 Section 1.3 describes the scope in which we investigate CTMLs.
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1 x.y
LISTING 1.1: Simple OCL property navigation

subsections briefly introduce the problem, how it is currently overcome by the Eclipse OCL
implementation, and the shortcomings of the current solution. These limitations, and the
benefits of overcoming them, constitute the academic motivation of this research project.

Specification-based languages, such as OCL and QVT, are defined with a specific
CS and AS. Pre-established CS and AS may present a wide gap between them, as
exemplified by these OMG specifications.

Problem

As explained before, OCL and QVT languages have a specific CS grammar and AS meta-
model defined by the corresponding OMG specifications. Although this situation is legiti-
mate, there are difficulties when the specifications are implemented by means of a language
workbench such as Xtext. The main reason is the gap that exists between the CS and AS
imposed by the specification. A first example to understand the problem is shown by List-
ing 1.1, depicting a trivial OCL expression.

According to the CS of OCL, this navigation expression can be considered as two name
expressions (e.g. x and y) separated by a navigation symbol (e.g. dot). According to the AS,
this simple expression may entail different concepts. Whilst y unambiguously is a Property-
CallExp, x can be either a VariableExp – for instance, referring to a variable previously defined
by an outer let expression – or another PropertyCallExp – referring to an x-named property
of self, the context element in which that expression is evaluated. Figure 1.1 depicts the two
different AS alternatives that can be obtained from the x.y OCL expression.

x.y

x: 
Property
CallExp

y: 
Property
CallExp

self: 
Variable
Exp

:ownedSource

Cross-references towards Property 
and Variable have been omitted

:ownedSource

y: 
Property
CallExp

x: 
Variable
Exp

:ownedSource

Textual input AS model

a)

b)

FIGURE 1.1: AS alternatives for the x.y OCL expression
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This example shows the kind of gap between the CS and AS that requires attention.
Whilst this gap is completely legitimate, problems arise when the tools do not provide ad-
equate means to bridge it. In this case, by means of Xtext specification artefacts (i.e. a
grammar), there is no way to generate automatically a parser that produces AS models
(conforming to the OCL meta-model specified by OMG) from textual inputs (conforming to
the OCL grammar defined by OMG).

Current Solution

The problem above does not prevent a language engineer from using Xtext when working
on languages like OCL and QVT. As previously mentioned in Section 1.2.1, Eclipse OCL
already has an Xtext-based implementation to give support (parsers, editors) to the OCL
specification. However, due to the gap between the CS and AS of the language, a parser
capable of directly producing models conforming to the AS meta-model cannot be fully
generated from an Xtext grammar.

Therefore, the problem has been addressed within Eclipse OCL by splitting the process
into two steps. The approach is depicted in Figure 1.2. From an Xtext-based grammar spec-
ification Ê, the generated parser Ë is capable of producing models Ì that conform to the CS
meta-model Í of the language. In a second step, these CS models are processed by an anal-
yser Î that finally produces the expected models Ï that conform to the AS meta-model Ð.

Analyser

Editor

Parser

OCL Grammar
(Xtext)

OCL
Input

OCL AS
MM

CS Model

conformsTo conformsTo conformsTo

Generates

Manual artefact

Generated artefact

AS Model

1

2

OCL CS
MM

4

5

7

3 6

FIGURE 1.2: Current CS2AS design in Eclipse OCL

The main shortcoming of the current solution is that the analyser Î in charge of produc-
ing the AS models is implemented in Java, and it currently comprises a substantial amount
of source code. Given that these kinds of analysers are required by other languages, such as
QVTo, QVTr, QVTc etc., acquiring new mechanisms to reduce the amount of hand-written
code required to support the mentioned activities, motivates this research from an academic
point of view.
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The main objective of this doctoral thesis is to provide adequate means to help lan-
guage engineers that work on complex textual modeling languages. In particular,
given that a language is defined by well-known specification artefacts, such as gram-
mars and meta-models to define the CS and AS of a language respectively, additional
specification artefacts to bridge the gap between the CS and AS are pursued.

1.3 Scope

This section establishes the scope of the research and development activities. Since this
thesis is focused on Model-Driven Engineering and Language Engineering, it is important
to set the boundaries of the kind of language that is actually targeted.

The title of this thesis refers to Complex Textual Modeling Language (CTML)s. When
referring to them throughout this thesis, we mean the following:

Chapter 2 defines all the related terminology.

• Modeling. A language is considered to be modeling or model-based when working
on instances of the language implies editing an underlying model that conforms to
a meta-model. In particular, the meta-model defines the abstract syntax of the lan-
guage. Although there are other forms of modeling (e.g. spreadsheets [33]), this thesis
only focuses on languages whose abstract syntax is formalised by meta-models. When
introducing the field survey, Section 2.1 defines models and meta-models.

• Textual. A language is considered to be textual when the instances of the language that
the user edits are text that conforms to a grammar. In particular, the grammar defines
the CS of the language. Although there are other ways to provide textual concrete
syntax to modeling languages (e.g. via meta-model annotations [43]), this thesis only
focuses on those languages whose concrete syntax is formalised by a grammar. When
introducing the field survey, Section 2.2 defines grammars.

• Complex. A language is considered to be complex when there is a significant gap be-
tween the CS and AS of the language. Note that some tools, such as Xtext, allow the
automatic generation of an AS meta-model from a grammar definition. Thus, a differ-
ent way of seeing this complexity is the following: when a particular AS meta-model
definition cannot be derived from a CS grammar definition, the textual modeling lan-
guage is considered to be complex. When explaining the problems related to bridging
the gap between the CS and AS of a language, Section 3.4.4 gives a more accurate
explanation of what a complex language is.

Note that languages from the OCL and QVT specifications fall into this definition of
CTML.
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In the context of this EngD doctoral thesis, and according to the sponsoring company,
there are additional requirements to highlight regarding the kind of technology and tools on
which the solution development should be based:

• The language and tools created for this thesis must work on the Eclipse Modeling
Framework (EMF), which is the official modeling framework within the Eclipse plat-
form.

• The language and tools created for this thesis must work with Xtext, which is the
official language workbench to work on textual modeling languages within the Eclipse
platform.

1.4 Research Methodology and Questions

1.4.1 Research Method

The research method that has driven this project is the engineering method. According
to Basili [3], this research method consists of “observing existing solutions, propose better
solutions, measure and analyse“. In this particular project, there has been a study of existing
solutions:

• Xtext is a language workbench to support textual modeling languages. However, lim-
itations have been identified that prevent the adequate support to CTMLs.

• Eclipse OCL and QVTd projects provide implementations for CTMLs and use Xtext.
They have implemented ad-hoc solutions to the Xtext limitations. However, their so-
lutions are based on writing Java source code.

Given the problems of existing solutions, this research project investigates better alter-
natives that should address Xtext specification artefacts limitations. At the same time, the
new solution should remove – as far as possible – any need for additional hand-written Java
code.

Additionally, other technologies that may be used to support CTMLs have been identi-
fied. These existing solutions (e.g. Gra2Mol [42] and Spoofax [46]) have been studied with
the aim of helping the creation of the new alternative that can be used within the boundaries
of this project (Section 1.3). Moreover, empirical research [83] has been conducted to show
the benefits of the new solution compared to the existing ones.

1.4.2 Research Questions

This subsection presents the questions that drive the research and development activities of
this doctoral thesis. The research questions are presented from two different points of view:
a more specific technology-centred industrial perspective, and a wider academic perspec-
tive.
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Industrial Perspective

Xtext is a language workbench that helps language engineers to generate tools (i.e. parsers
and editors) that support textual modeling languages. However, CTMLs present a signifi-
cant gap between the CS and AS that prevents these tools from being created by means of
Xtext specification artefacts (i.e. grammars). Alternatives exist to complement the source
code generated by Xtext, so that a parser can consume textual inputs and produce the ex-
pected AS models. However, these solutions are hand-coded in Java and the amount of
manually written code is substantial compared to, for instance, the amount of manually
written code for the corresponding grammar.

The following research questions can now be formulated:

• Can a new alternative solution decrease the amount of hand-written code required to
support CTMLs within Xtext?

• If so, can this alternative solution also be used for automatically producing parts of
OMG specifications?

Academic Perspective

Although the Xtext language workbench and OMG-based CTMLs are the main inter-
ests of this thesis from an industrial point of view, additional research questions have
emerged from a wider academic perspective.

There exist different approaches to helping language engineers to create support for
CTMLs. This support is realised in the form of tools (e.g. parsers) that end users can use to
work on instances of their target CTML. As Chapter 3 further analyses, there are different
identified concerns that need to be addressed in order to bridge the CS and AS of CTMLs.

The following research questions can now be formulated:

• Do existing approaches address all the identified concerns that are required to support
CTMLs?

• Can a new approach improve the performance (in terms of execution time) of existing
approaches to produce AS models from textual files of CTMLs?

• Can a new approach reduce the size of specification artefacts required by existing ap-
proaches to bridge the gap between the CS and AS of CTMLs?

1.5 Thesis Contributions

As part of this introductory chapter, this section discusses the contributions of this doctoral
thesis. First, a brief description of the proposed solution to the problem introduced in Sec-
tion 1.2.2 is shown. Finally, the contributions of this thesis are discussed.
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1.5.1 Proposed Solution

When introducing the problem to explain the motivation of this research project in Sec-
tion 1.2.2, Figure 1.2 showed how Eclipse OCL overcomes the limitations of Xtext. Now,
Figure 1.3 depicts the overall solution that this thesis proposes as an alternative means of
overcoming these limitations. The solution consists of having a Domain Specific Transfor-
mation Language (DSTL) that lets language engineers describe the bridges Ê between the
CS and AS of CTMLs. Then, additional tooling is responsible for generating the source
code of an M2M transformation Ë capable of producing AS models from CS ones. Finally,
this M2M transformation can be integrated in the editors Ì generated by Xtext, so that AS
models can be produced every time the end user edits input files.

Editor

M2M
Transformation

Parser

CS2AS Bridge
(DSTL)

CS Grammar
(Xtext)

Textual
Input

AS
MM

CS Model

conformsTo conformsTo conformsTo

Generates

Manual artefact

Generated artefact

AS Model

CS
MM

2

From To

integratedIn

1

3

FIGURE 1.3: Proposed solution: a DSTL to describe CS2AS bridges

As discussed in Chapter 4, the following characteristics are highlighted:

• Producing tools (e.g. parsers and editors) that support CTMLs is a matter of providing
specification artefacts rather than writing source code. These specification artefacts
consist of meta-models, grammars and Concrete Syntax to Abstract Syntax (CS2AS)
bridges.

• Although the developed prototype has been used within Xtext, the proposed solution
is independent of the front-end (i.e. parsing technology). As long as textual informa-
tion is comprised by a CS model, the CS2AS transition can be achieved by means of
the proposed solution.

1.5.2 Contributions

This subsection lists the main contributions of this research project.
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A DSTL to Specify CS2AS Bridges

The proposed DSTL (Section 4.2) comprises the main contribution of this thesis, which has
been recently published [65] in the 9th International Conference in Model Transformations7.
This transformation language is coined in this thesis as Concrete Syntax to Abstract Syntax
Transformation Language (CS2AS-TL) and provides the required means to describe com-
plex CS2AS scenarios existing in CTMLs. The CS2AS bridges can be seen as domain-specific
M2M transformations8. As shown in subsequent chapters, some features of the proposed
language are either not supported by existing approaches or are provided via out-of-the-box
solutions (e.g. external black-boxed behaviour) to support them.

A Prototype to Execute CS2AS Model Transformations

Additionally, a prototype has been developed to make instances of the CS2AS-TL executable.
After several compilation steps (Section 4.1.1), a Java class comprising an M2M transforma-
tion is generated. This Java class transforms CS models (generated by a parser) into AS
models.

Note that this contribution is part of the development accomplished to produce the re-
sults of this thesis, but it is not coupled to CS2AS-TL. This means that, from instances of the
same proposed CS2AS-TL, other M2M technologies could be targeted to produce executable
M2M transformations.

1.6 Intended Audience

This section briefly discusses the target audience that may be interested in the performed
activities and obtained results of this research project.

• Xtext Users. Language engineers that work with Xtext may be interested in CS2AS-
TLs to give support to CTMLs. Note that if the language is simple enough that the AS
meta-model can be directly obtained from (or mapped to) a grammar specification, the
outcomes of this research are largely irrelevant.

• Language Workbench Engineers. Language Workbench engineers may be interested
in CS2AS-TL or the fundamentals behind it. If their users (language engineers) need to
create support to CTMLs, all the concerns identified in this thesis need to be supported.
As is further discussed, the proposed solution is parsing-technology and language-
workbench independent. Therefore, the proposed solution can be used not only within
Xtext, but within other technologies such as IMP [14].

• Specification writers, maintainers and readers. The OMG is a consortium that pro-
duces specifications for several CTMLs. Instances of CS2AS-TL can be used as addi-
tional specification artefacts and/or to drive the generation of the part of the specifica-
tion designed to describe CS2AS bridges (e.g. Clause 9.3 from [39]). The introduction

7 http://is.ieis.tue.nl/research/ICMT16/
8Therefore, these bridges are set in the modelware technological space (Section 2.2).

http://is.ieis.tue.nl/research/ICMT16/
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of models to generate parts of the OMG specifications not only eases the task of speci-
fication maintainers, but also produces more robust specifications.

1.7 Thesis Overview & Structure

To conclude the chapter, this section gives an overview of the remaining thesis content and
how it is structured.

Chapter 2 describes the field survey in depth, explaining concepts and ideas in the field
of Model-Driven Engineering (MDE) (modelware), Language Engineering (particularly, gram-
marware), and introduces modern technologies designed to work on language creation called
Language Workbenches. In this chapter, the relevant related work is also identified.

Chapter 3 shows a detailed analysis of the problem of working on CTMLs. In partic-
ular, it identifies the concerns that need to be addressed when bridging the CS and AS of
CTMLs. The analysis is done from two different perspectives: a coarse-grained and a fine-
grained view. Among others, several topics such as CS disambiguation or name resolution
are explained in detail. The chapter concludes by demonstrating how a relevant technology
(Xtext) that deals with textual modeling languages cannot adequately address some of the
identified concerns.

Chapter 4 explains the proposed solution, including discussions of the approach and
related work. After an overview of the solution, the chapter focuses on a detailed descrip-
tion of CS2AS-TL designed to define CS2AS bridges for CTMLs. Additionally, it is shown
how the different identified concerns are addressed by the solution, including all the CS2AS
scenarios of a running example. Then, a technical but brief explanation of the compila-
tion process to make instances of CS2AS-TL executable is given. This compilation process
includes the generation of instances of an OCL-based internal DSTL [66], QVTm transfor-
mations [77] and, eventually, the Java classes in charge of transforming CS models into AS
models. Finally, the additional work developed to integrate the CS2AS functionality within
the Xtext language workbench is shown.

Chapter 5 shows the evaluation of this thesis’ contributions. After a brief discussion
of the benefits of CS2AS-TL compared to general-purpose M2M transformation languages,
two qualitative studies are presented. These studies aim at comparing the proposed solution
to relevant related work: Gra2Mol and Spoofax. Finally, with the objective of answering
some of the research questions, a quantitative study is conducted to show the benefits of
CS2AS-TL, particularly with respect to the size of specification artefacts required to declare
CS2AS bridges for several examples, and the performance (in terms of execution time) of
the developed prototype.

Finally, Chapter 6 describes the future work that could build on this research project, and
the conclusions of this thesis.
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Chapter 2

Field Survey

In this chapter, core concepts related to the topics of this thesis are explained, along with
some comments and citations to related work. The chapter is split into four sections. Sec-
tion 2.1 introduces Model-Driven Development (MDD) and several related concepts that are
used throughout this document. Since this thesis is focused on textual modeling languages,
Section 2.2 explains important concepts, such as grammarware and modelware technological
spaces, along with a summary of some tools that aim to bridge them. Modern tools called
Language Workbench (LW)s are introduced in Section 2.3, along with a justification of their
usage. Section 2.4 mentions the relevant work that this thesis focuses on. Finally, Section 2.5
concludes with a summary of the chapter.

2.1 Model-Driven Development

2.1.1 Introduction

Software Engineering (SE) [60] is a branch of the computer science field which aims to set
standards, principles, techniques, methods and tools aimed at easing engineers’ tasks when
building software.

Since the middle of the last century, different types of programming languages have
arisen to cover new needs of software developers. In the early XXIth century, a new trend
named Model-Driven Development (MDD), also known as Model-Driven Software Devel-
opment (MDSD), emerged to move beyond the traditional programming languages paradigm.
This change of paradigm is a natural evolution in terms of raising the abstraction levels that
engineers use to specify what needs to be done, and how it should be done, when software
executes.

In traditional software development, programs are the main artefact used by software
developers. In Model-Driven Development (MDD), the model is the key artefact to use for
the same purposes. As in other science fields, models help scientists to work with abstrac-
tions, which are usually created to hide the complexity of the real world. These abstractions
ease the understanding of the problem, the consequent reasoning and, in general, facilitate
the scientists’ labour. In MDD, a model is an abstraction of a piece of software1, which is
designed to be run by a computer.

1 A piece of software ranges from a whole complex application to a small and simple part of it.
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In the remainder of this section, some concepts are clarified, such as what models, meta-
models and model transformations are, as well as why they are needed. In introducing
common terminology, a broader term coined Model-Driven* (MD*) – also referred to as
Model-Driven Whatever [10] – is introduced. Finally, model transformations are briefly ex-
plained, as well as their role within MDD.

2.1.2 What is a Model?

One obstacle encountered by engineers when they are introduced to any model-driven ap-
proach, is understanding the concept of model. It cannot be claimed that there is a clear
and unambiguous definition about what a model, in the SE context, is. For instance, the Ob-
ject Management Group (OMG) through their Model-Driven Architecture (MDA) initiative,
defines a model in their MDA-guide [56] as follows:

“A model of a system is a description or specification of that system and its
environment for some certain purpose. A model is often presented as a combi-
nation of drawings and text. The text may be in a modeling language or in a
natural language.”

Nevertheless, in MDD a ’model’ can be rather interpreted in terms of some inherent char-
acteristics:

• Models are abstractions of concrete specimens of the real world (e.g. a system).

• Models describe concepts (entities), their properties and the relationships between
them.

• In the context of software development, models provide a higher level of abstraction
than traditional programs do.

• Models are usually associated with graphical representations, but not necessarily.

For instance, Figure 2.1a depicts an example of a model in a graphical syntax, whereas
Figure 2.1b denotes the same model in a textual one. Both models are abstractions of the real
world. In both models, there are two different entities: User and Blog, which have a property
to identify them (a name), Willy and ResearchRants respectively, and there is a relationship
between them indicating that the user Willy owns the ResearchRants blog.

2.1.3 Why are Models Used?

As Martin Fowler explains in his book "UML Distilled: A Brief Guide to the Standard Object
Modeling Language" [32], visual modeling languages emerged from the need for providing
a higher level of abstraction of than existing programming languages. In particular, after
the success of Object Oriented Programming (OOP) languages to develop software, it hap-
pened that those languages did not provide enough level of abstraction to discuss properly,



2.1. Model-Driven Development 15

(A) A graphically notated model

(B) A textually notated model

FIGURE 2.1: Some examples of models

for instance, software design. Therefore, the Unified Modeling Language (UML)2 [40] was
conceived to fill this gap.

By that time, models were mainly for communication and documentation purposes to
help in the early stages of the software development process, during the analysis and de-
sign phases. These models were even passed to software developers as input documenta-
tion to understand the system they had to implement. Whilst there have been defenders
of these model-based engineering processes, there have also been detractors who consider
this kind of documentation as a mere overhead in the development process. Additionally,
these models usually go out of date as soon as the initial software requirements, design and
implementation evolve. Figure 2.2 depicts the traditional software development life cycle,
as exposed by Kleppe et al. [48].

There is a subtle difference between model-based and model-driven development,
explained in Section 2.1.5.

FIGURE 2.2: The traditional software development life cycle, according to
Kepple et al. (Figure 1-1 from [48])

2 The most widely known modeling language [69].



16 Chapter 2. Field Survey

Nevertheless, by switching from a model-based development to a model-driven one in
which (semi-)automation can be achieved to produce the source code to run an application,
the usage of the models can be rather justified. Section 2.1.5 will further explain the key
difference between the model-based and model-driven approaches.

2.1.4 What is a Meta-Model?

The concept of meta-model is one of the most important foundational concepts in MDD.
Prior to its adoption, models were used as mere notational artefacts which helped the user
to create abstractions upon which to reason and discuss. However, these artefacts required
some conventions in the meaning of every visual element in the model. There was no spec-
ification about, for instance, what a square represented and what was its underlying mean-
ing when it was drawn in a model. In other words, there was no language specification
that defined the use of every visual notation element. Figure 2.3 shows an example of a
model, which has a couple of squares, with some names on it, and an arrow between them.
Although we could figure out that the model represents a object-oriented model, it is not
certain what this model really means.

Entity1 Entity2

FIGURE 2.3: What does this visually notated model mean?

A meta-model is the required modeling language specification, which defines the con-
cepts, their properties and relationships, that a modeler can make use of. Bézivin [5] explains
a meta-model and its relation to conforming models as follows:

"We say that the map conforms to its legend, i.e. that the map is written in
the (graphical) language defined by its legend. This immediately generalizes to a
model conforming to its metamodel, the second relation (conformsTo) associated
with principle [P2].

The relation between a model and its metamodel is also related to the rela-
tion between a program and the programming language in which it is written,
defined by its grammar, or between an XML document and the defining XML
schema."

Therefore, in order to create models, the meta-model to which they conform should be
firstly defined.
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More recent works about flexible modeling [52, 87] propose a different methodology
in which the models and their notation are firstly created. Subsequently, the meta-
model is (semi-)automatically inferred.

In our example, the meta-model could define that the modeler can make use of, for
instance, Class elements that have a String-valued name property, and that they may refer
to other Class elements. With that simple modeling language definition in mind, the model
shown in Figure 2.3 would then make sense.

In the literature, a meta-model is also known as the abstract syntax of a modeling
language.

The reader may note that the meta-model doesn’t actually specify what a square is. That
will be defined by the notation specification (also referred to as concrete syntax), including
how these visual elements map to meta-model concepts, e.g. a square corresponds with a
Class (see further discussion about concrete and abstract syntax in Section 2.2.4).

To conclude this subsection, we introduce the popular [5, 7] modeling stack, as described
by the MDA initiative [56]. As we can see in Figure 2.4, real running systems (M0 level) are
represented by models (M1 level). These models conform to their respective meta-models
(M2 level). Finally, there is a third modeling layer, in which the so-called meta-meta-model
(M3 level) is placed. This language is required to provide the concepts needed to create
meta-models. No further modeling levels are required, because M3 can be defined in terms
of itself.

2.1.5 What is Model-Driven*?

When introduced to the "Model-Driven" world, different terminology and related acronyms
can be found. Bambrilla et al. [10] include them in the broader concept they coin as Model-
Driven* (MD*) (or Model-Driven Whatever). This subsection explains some of them.

When searching through the literature about Model-Driven* (MD*), it is very usual to
find terms like Model-Driven Development (MDD), also referred to as Model-Driven Soft-
ware Development (MDSD), Model-Driven Engineering (MDE) and Model-Driven Archi-
tecture (MDA). Figure 2.5 illustrates the boundaries between the different terms.

As the reader may note, all these terms have in common what was explained before: that
models play a role in their underlying processes. These terms are explained as follows:

• Model-Driven Development. Also known as Model-Driven Software Development,
it refers to the paradigm of using models as a driver (main artefact) to develop soft-
ware. Once we have defined the required models, the implementation can be (semi-
)automatically generated from them.

• Model-Driven Architecture. It is the name coined by the OMG for its Model-Driven
initiative. It provides a particular vision about how the model-driven approach should
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FIGURE 2.4: Modeling stack according to the MDA-initiative (Figure 5 from
[5])

FIGURE 2.5: Boundaries of different MD-* approaches (Figure 2.1 from [10])
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be undertaken (hence, a subset of MDD). The key points in the development process
are the need of Computation-Independent Model (CIM)s and Platform Independent
Model (PIM)s, which by means of model transformations should be transformed into
Platform Specific Model (PSM)s (platform-dependent). From the latter, source code
for a target platform can then be generated. Figure 2.6 depicts this particular MDD
approach.

FIGURE 2.6: OMG vision of MDD, also known as MDA (Figure 1–3 from [48])

• Model-Driven Engineering. MDE stands for a wider concept, which again focuses on
models as the main drivers for the underlying processes. In this case, other activities
which are not related to the mere generation of software, such as reverse engineering
or process engineering, can be scoped in this category.

• Model-Based Engineering. Finally, Marco Brambilla et al. [10] explain Model-Based
Engineering (MBE) as "the process in which software models play an important role
although they are not necessarily the key artefacts of the development". In essence,
models are used as mere documentation; they are not meant to be involved in further
automated processes (e.g. source code generation). Therefore, we have MDE as a
particular case of MBE.

In this thesis, there is extensive use of models (and the modeling languages they con-
form to) and model transformations (introduced next). Although one of the ultimate
goals is producing source code, hence an MDD approach, in the remainder of this
thesis, MDD and MDE are used interchangeably.

2.1.6 What is a Model Transformation?

A model transformation can be defined, from a high-level point of view, as the process
of producing one or more output artefacts from one or more input models, as depicted in
Figure 2.7. In MDE, model transformations are critical artefacts because they provide the
required automation that justifies the whole paradigm. Without model transformations,
models could only play the role of documentation artefacts only.

The output artefacts could either be other models or textual artefacts [18], such as source
code or some pretty documentation. In the former case, the transformations are called
Model-to-Model (M2M). In the latter case, the transformations are called Model-to-Text
(M2T).
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Input Models
Models 

Transformation
Output 

Artefacts

FIGURE 2.7: High-level model transformations overview

The input artefacts are usually models, although we can find particular scenarios in
which they are not. For instance, in model-driven reverse engineering, models are
created from source code. In this kind of scenarios, the output artefacts are models
and the involved transformations are called Text-to-Model (T2M) [42].

The remainder of this subsection explains in more detail the process of an M2M trans-
formation, which is depicted in Figure 2.8. The transformation process is driven by a trans-
formation specification Ê, written in a model transformation language Ë. This transforma-
tion specification plays the role of an execution plan that is normally run by a transforma-
tion engine Ì. The transformation specification essentially relates concepts from the source
meta-model/s Í to concepts from the target meta-model/s Î. When the transformation is
executed, the engine transforms the source model/s Ï into the target model/s Ð, according
to the rules defined in the transformation specification.
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FIGURE 2.8: Detailed M2M transformation process (Figure 10.1 from [34])



2.2. From Grammarware to Modelware 21

Note that the source and target models and meta-models do not need to be unique.
There may be many of them defined as sources or targets. Likewise, source and target
meta-models do not need to be different. Additionally, for in-place transformations
(also referred to as endogenous transformations), the source model/s are also the
target ones. This kind of transformations is designed to modify existing models.

2.2 From Grammarware to Modelware

As the title of this thesis suggests, the research is focused on complex textual modeling lan-
guages. Therefore, this section introduces some concepts related to textual languages, such
as grammars and grammarware. Additional concepts, such as modelware, are commented
upon, along with how previous works have attempted to create bridges between grammar-
ware and modelware (e.g. Marcus Alanen et al. [2], Wimmer et al. [81] and Eysholdt et al.[21]).

2.2.1 Introduction

As commented in Section 1.2, this thesis focuses on textual languages. In order to create in-
stances of this kind of languages, the user will write and combine textual constructs to build
a valid realisation of these languages. For instance, Java, Prolog, Matlab or OCL are exam-
ples of textual languages. Regarding this kind of language, there has been a long-standing
computer science field named Programming Language Theory, which among other topics fo-
cuses on compilers theory for programming languages, code generation, code optimisation
etc. One of the main concepts to highlight in this field is the term Grammar3. Aho et al. [1]
introduce this concept as follows:

"The analysis phase of a compiler breaks up a source program into constituent
pieces and produces an internal representation for it, called intermediate code.
The synthesis phase translates the intermediate code into the target program.

Analysis is organised around the ’syntax’ of the language to be compiled.
The syntax of a programming language describes the proper form of its pro-
grams, while the semantics of the language defines what its programs mean;
that is, what a program does when it executes. For specifying syntax, we present
a widely used notation, called context-free grammars or BNF (for Backus-Naur
Form)."

A grammar allows language designers to define the syntax of textual languages; in other
words, which textual constructs are allowed to use and how to combine them in order to
write correct realisations of that language (e.g. programs). Listing 2.1 shows a simple gram-
mar excerpt in Backus Naur Form (BNF).

In traditional compilers theory these grammar definitions are used for creating parsers
that, for a given programming language instance, produce intermediate code or directly the

3 Also commonly referred to as context-free grammars.
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1 exp −> exp op exp
2 exp −> digit
3 op −> + | − | ∗ | /
4 digit −> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

LISTING 2.1: Production rules of a grammar

target code to be executed by a computer. However, as a result of a Model-Driven approach,
the output of these parsers will naturally be models. Therefore, from the point of view of a
language engineer, there is a switch from the so-called grammarware technological space to
the pursued modelware one.

In the following subsections, the origins of the technological space concept will be briefly
explained, focusing on two specific ones: grammarware and modelware. Likewise, some im-
portant clarifications will be made regarding two main concepts related to the topic: the
Concrete Syntax and the Abstract Syntax of a language. Finally, the section concludes with
a survey of previous work related to bridging grammarware and modelware.

2.2.2 What are Technological Spaces?

The concept of technological space was introduced by Kurtev et al. [54] and was defined as
follows:

"A technological space is a working context with a set of associated concepts,
body of knowledge, tools, required skills, and possibilities. It is often associated
to a given user community with shared know-how, educational support, com-
mon literature and even workshop and conference meetings. It is at the same
time a zone of established expertise and ongoing research and a repository for
abstract and concrete resources."

The concept technological space may be also found in the literature as technical space [6].

In this work, authors envision the need for talking about different technological spaces and,
more importantly, the need for creating bridges between them. Figure 2.9 depicts their initial
proposal, including some terms of interest, such as grammars and meta-models. Nowadays,
the technological spaces this research focuses on are commonly referred to as grammarware
and modelware.

The concept of grammarware, associated to the Abstract Concrete Syntaxes technological
space defined by Kurtev (see Figure 2.9), emerged years later in the work of Paul Klint et
al. [49]. This work proposes a research agenda and highlights engineering activities around
grammars. They define grammarware as follows:

"We coin the term grammarware to comprise grammars and grammar de-
pendent software:
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FIGURE 2.9: Technological spaces and bridges between them (Figure 1 from
[54])

- The term grammar is used in the sense of all established grammar for-
malisms and grammar notations including context-free grammars, class dictio-
naries, and XML schemas as well as some forms of tree and graph grammars.
Grammars are used for numerous purposes, for example, for the definition of
concrete or abstract programming language syntax, and for the definition of ex-
change formats in component-based software applications.

- The term grammar-dependent software is meant to refer to all software that
involves grammar knowledge in an essential manner. Archetypal examples of
grammar-dependent software are parsers, program converters, and XML docu-
ment processors. All such software either literally involves or encodes grammat-
ical structure: compare generated versus hand-crafted parsers."

The concept of modelware, which is associated to the MDA technological space by Kurtev
(see Figure 2.9), comprises all the terminology explained in Section 2.1. As a reference,
Bézivin[6] introduces MDE as a kind of technological space:

"The main role of the M3-level in a technological space is to define the rep-
resentation structure and a global typing system for underlying levels. The
MOF for example is based on some kind of non-directed graphs where nodes
are classes and links are associations. The notion of ’association end’ plays an
important role in this representation system."

Following up on the identification of the technological spaces of interest, the next sub-
section will explain the rationale behind the creation of bridges between them, and how
previous work has attempted to do it.
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2.2.3 Why Bridge Grammarware and Modelware?

Whilst the grammarware technological space has been researched since the 1960s, the model-
ware one is more recent. Therefore, the need to create bridges between both of them usually
comes from MDE supporters. In essence, the need comes from textual language engineers
who want to obtain models from the corresponding textual inputs.

The motivation to bridge these technological spaces is the following. On the one hand,
the important role of textual languages is widely accepted [62]. On the other hand, as soon
as models are obtained, engineers can benefit from all the advantages that MDE tooling
provides. In these circumstances, there is a need to obtain models (i.e. modelware) corre-
sponding to their textual representations (i.e. grammarware), which justifies the creation of
bridges between these technical spaces.

Although Kurtev et al. [54] identified the need to bridge these technological spaces, the
authors only provided a basis for further research. However, some works which aimed
to bridge this gap started to appear afterwards, such as Marcus Alanen et al. [2]. In their
technical report, they propose a relation between context-free grammars and Meta-Object
Facility (MOF), so that, for instance, we can obtain Java models from Java programs and
vice versa, by defining a relation between the corresponding Java BNF grammar and Java
meta-model:

"The relation between a metamodel and a BNF grammar can in practice be
defined using two mappings, one transforming a BNF grammar to a MOF meta-
model, and one transforming a MOF metamodel to a BNF grammar."

Other works have followed, including those of Wimmer et al. [81] and Eysholdt et al. [21].
The aim of these works is not only to establish the relations between these two technologi-
cal spaces, but to enhance or complement the initial grammars with descriptive information
about these relations. That information can then be used for generating vital artefacts (i.e.
the meta-models) of the modelware technological space. For instance, Figure 2.10 shows the
various bridges which apply to the different (meta-)levels between grammarware and mod-
elware. The key point is what Wimmer et al. [81] call Grammar Parser (GP in the figure).
By means of a correspondence between the Extended Backus Naur Form (EBNF) and MOF
concepts, that grammar parser can take as input a given EBNF grammar and generate the
corresponding (raw) meta-model. Additionally, from the same EBNF grammar definition, it
could generate the corresponding Program Parser (PP in the figure). This Program Parser is re-
sponsible for generating, from a given program, the corresponding (raw) model conforming
to the aforementioned meta-model.

Although the mentioned works are steps in the right direction, in this thesis we aim to
delve into some overlooked issues that arise when dealing with complex textual languages.
These issues are not solvable by their proposed approaches and they will be analysed and
discussed in Chapter 3.
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FIGURE 2.10: A grammarware to modelware bridging approach (Figure 1 from
[81])

2.2.4 Concrete Syntax vs Abstract Syntax

The concept of syntax has been used in grammarware for decades and its meaning is clear.
Conversely, when we are introduced to modelware, it is normal to find across the literature
concepts such as Abstract Syntax (AS) and Concrete Syntax (CS). Similarly, whilst in gram-
marware it is common to talk about semantic analysis as part of a compiler process, in mod-
elware, it is also common to find concepts such as language semantics.

Although all these concepts have similarities and correspondences between them, there
are also some differences, and this normally leads to a confusing terminology and misunder-
standings. In this subsection, the different terminology normally used in both technological
spaces is explained, and the remainder of this thesis will adhere to these clarifications.

Terminology in Grammarware

When working on grammarware, this thesis follows the terminology defined in Aho et al. [1],
a reference book in compilers theory. A language compiler will typically undertake a lexical
analysis, a syntactic analysis and a semantic analysis (aside from further activities, such
as code generation and code optimisation). Figure 2.11 shows these stages, and they are
explained as follows:

• Lexical analysis: It is the process responsible for splitting the whole textual input into
so-called tokens. These tokens, produced by a lexical analyser (also known as lexer),
will constitute the further input of the parser to compute the syntax trees.

• Syntax analysis: After the lexical analysis has taken place, the syntax analysis is the
process responsible for combining the tokens produced by that language lexer. The
syntactic analyser (also known as parser) firstly produces the so-called parse trees
based on the syntactic rules (defined in a grammar) of a language. The final goal is
producing the so-called Abstract Syntax Tree (AST)s or simply syntax trees, which are
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FIGURE 2.11: Lexical, syntax and semantic analysis of a compiler

created from the parse trees. These ASTs differ from the parse trees in that they sup-
press irrelevant tree nodes which are not needed in order to understand the syntactical
structure of a textual language input, for instance, the semicolon which ends the state-
ments in some programming languages (e.g. Java).

• Semantic analysis: After the syntactic analysis has taken place, a language-dependent
semantic analysis might process the produced syntax trees to accomplish further ac-
tivities like type checking or type conversions. These activities could lead to compiler
error reports or even abstract syntax tree refinements. At this point, these trees are
often referred to as Abstract Syntax Graph (ASG)s because they do not have a tree struc-
ture. Instead, the nodes of the abstract syntax tree may refer to other nodes; a graph
rather than a tree. In the context of this semantic analysis, there is also a categorisation
between static and dynamic semantic analysis. A simple “2 + 2” expression is used for
showing the differences between them.

Static semantics. The “2 + 2” expression denotes a simple sum of two operands.
This expression could have a type associated, which is computed from the type of the
operands. In this case, they are two integer literals, although they might be other con-
structs like variables or function call expressions. The semantic analysis accomplished
to compute the type of an expression is considered as part of the static semantics of a
language. This analysis takes place at compile time.

Dynamic semantics. Conversely, the mentioned “2 + 2” expression has an intended
meaning which consists of summing the two values and returning the result of the
sum. This semantics, which defines how the expression is evaluated, is considered a
part of the dynamic (or execution) semantics of the language. Dynamic semantics are
relevant at runtime4.

Terminology in Modelware

When working on modelware, the terms commonly used across the literature are the abstract
syntax, the concrete syntax and the semantics of a language.

• Abstract Syntax: The AS of a language defines the concepts or entities, their properties
and the relationships between them. This definition matches with the one previously
used for a meta-model. Indeed, the AS of a language and a meta-model are treated
as analogous in modelware [41]. The concept of AS (i.e. a meta-model), in modelware,

4 Or by a compiler intermediate code generator.
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would correspond with the result of performing the syntactic and the static semantic
analysis, in grammarware.

• Concrete Syntax: The CS of a language refers to the way that a user specifies valid
instances of the abstract syntax, in other words, its notation. This could vary from
textual syntax (e.g. as in traditional programming languages) to diagrammatic syntax
(e.g. UML notation), or a tabular syntax (e.g. as in spreadsheets).

• Semantics: The semantics of a language refers to the meaning of its concepts. For ex-
ample, whilst the abstract syntax of a typical expression language describes that there
could be an "add" operator which expects two operands, the semantics of the language
usually specifies that the operator computes a result by summing the first operand and
the second one. In modelware, the semantics of a language might be specified in natu-
ral language (as in many language specifications proposed by the OMG), although it
may lead to ambiguous interpretations of that semantics. Some works have emerged
attempting to clarify the meaning of semantics in modelware [41], whereas others have
worked towards a more formal way of specifying them [57]. The concept of seman-
tics in modelware correspond with dynamic semantics in the grammarware technological
space.

Figure 2.12 shows the differences between the abstract and concrete syntaxes of a lan-
guage, as well as the semantics for a typical while expression.

1 WhileExp:
2 ’while’
3 ’(’ConditionExp’)’
4 ’{’Statements’}’
5 ;

(A) CS example

WhileExp

ConditionExp Statement

[0..*] statements[1..1] condition

(B) AS example

1 Evaluate the condition:
2 − If true =>
3 evaluate statements
4 − If false =>
5 do nothing

(C) Semantics example

FIGURE 2.12: CS vs AS vs Semantics

Whilst a given language is usually defined by a unique AS, the language designer can
choose among several CSs, e.g. textual or graphical notation. Moreover, instances of the
same language can be manipulated by means of different CSs in a synchronised way [63].

2.2.5 Tools to Bridge Grammarware and Modelware

To conclude this section, a summary of tools designed to produce models from textual inputs
is introduced. A valid classification of plausible approaches is presented by Javier Cánovas
et al. [42]:

• Dedicated parsers. Many traditional parser generator technologies, such as YACC,
ANTLR, LPG [61, 55], could be used for creating parsers which consume textual files
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and produce models conforming to a given meta-model. The classic/mature (see in-
troductory Section 1.2.1) versions of Eclipse OCL/QVTo are based on this solution.

The main issue with this approach is that the language engineer needs to work on
both sides, the grammar and the meta-model, and there is a considerable amount of
additional hand-written source code involved in producing the conforming models.
This issue turns the process of giving support to reasonable complex languages into a
tedious and error-prone task.

Javier Cánovas et al. [42] also include in this category a more recent technology for
reverse engineering, called MoDisco[29], which is an open source platform designed
to, among other tasks, extract models from code written in different programming
languages. For instance, it provides Java source file extractors (Java discoverer) via
integrating the Java Development Tools (JDT) compiler and producing Java models.

• DSL definition tools. These more modern tools are an evolution of the traditional
parser generator technologies and emerged in the context of modelware to give quick
support to textual DSLs.

The main improvement with respect to the previous category is that the language engi-
neering only focuses either on the grammar or the meta-model, whereas the tool gen-
erates the other one for them. In addition, some technologies aim to provide language-
specific IDEs which improve the experience of those users creating instances of their
DSLs.

With respect to these tools, Javier Cánovas et al. [42] identify two approaches which
are inherent in working on bridging the two technological spaces in hand:

Grammar-focused approach: Focusing on the grammar so that an enriched EBNF
is provided, which allows one to map concepts from grammarware to modelware. See
listing 2.2 as an example. With this approach, language engineers can firstly and auto-
matically produce the output language meta-model, and secondly they are able to pro-
duce the parser5 which will create the models conforming to that meta-model. Some
examples of these tools are Xtext [30] and Spoofax [72].

Meta-model focused approach: Focusing on the meta-model so that the additional
concrete syntax information is provided in the form of annotations attached to the
meta-model or as separate files with their own syntax specification languages. Simi-
larly, the grammars to generate the parser that will create those models conforming to
that meta-model can be produced. Some examples of these tools are EMFText [19] and
TCS [43].

• Program transformation languages. Although they were not originally designed to
create models, program transformation languages, such as Stratego/XT [75] and TXL [16],
could be used for that purpose. However, as Javier Cánovas et al. [42] identify, “the
result of a program transformation execution, is a program conforming to a grammar,

5 Using a third party parser generator such as ANTLR [61] or LPG [55]
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and a tool for bridging grammarware and modelware would still, therefore, be needed to
obtain the model conforming to the target metamodel”.

With the consolidation of Spoofax [46], there is an accurate identification of the role
of Stratego/XT in the required grammarware and modelware bridge: a grammar-like
specification language called SDF [47] is firstly used for producing a parser capable of
consuming the textual inputs. According to the strategy rules defined in a specifica-
tion based on Stratego/XT, models conforming to a meta-model are obtained from the
outputs of that parser. A more recent publication [63] demonstrates how this grammar-
ware and modelware bridge can be achieved within Spoofax.

• Model Transformation Languages. Similarly, but more specific to MDE, M2M trans-
formation languages can also be used. As Javier Cánovas et al. [42] explain, firstly,
an intermediate model (e.g. a syntax tree model) is obtained from a dedicated parser.
Then, an M2M transformation can be in charge of producing the target AS models.

1 LetExpCS returns LetExpCS:
2 ’let’ variable+=LetVariableCS (’,’ variable+=LetVariableCS)∗
3 ’in’ in=ExpCS;
4 ;

LISTING 2.2: Xtext-based grammar excerpt for OCL

2.3 Language Workbenches

Although grammars and parsers are a key part of this research, modern technologies have
made substantial progress in providing better tools to support a given language. These
modern technologies are currently under the umbrella of a concept called Language Work-
bench (LW). This section focuses on explaining some notions about this concept and how it
is related to this thesis.

2.3.1 Introduction

Supporting a textual language not only consists of producing the corresponding parser that
produces AS models from a given textual input, but also of producing some high-quality
tooling which eases the writing of textual inputs. High-quality tools usually consist of edit-
ing facilities, such as syntax highlighting, content assistant, text-folding, error markers etc.
(more features exist [20]). In this section, the concept of language workbench will be intro-
duced, focusing on a particular tool called Xtext [21]. Although the reasons for choosing this
particular tool were briefly introduced in Section 1.2, they will be expanded in Section 2.3.5.

2.3.2 What are Language Workbenches?

The concept of LW was introduced by Martin Fowler in his book Domain Specific Languages [31]:
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"Language workbenches are, in essence, tools that help you build your own
DSLs and provide tool support for them in the style of modern IDEs. The idea
is that these tools don’t just provide an IDE to help create DSLs; they support
building IDEs for editing these DSLs."

An LW is a meta-tool which helps engineers build the tools required to support a lan-
guage, including the IDE to edit instances of that language. An LW can give support to
languages with different kinds of notations (e.g. textual, graphical etc.). Provided that some
LWs can also target textual modeling languages, they should be categorised in the classifi-
cation of tools that bridge grammarware and modelware (see Section 2.2.5). In this case, they
would belong to the DSL definition tools category, although to be more accurate, an LW can
also target General Purpose Language (GPL)s.

Nowadays, we can find several types of language workbenches based on different tech-
nologies: some of them are the result of academic research and some of industrial Research
and Development.

An overview of the state-of-the-art [20] bore some results on comparing different lan-
guage workbenches all at once. The work provides the following contributions:

• Firstly, it contributes a feature model highlighting all the features that a language
workbench should support. This feature model is shown in Figure 2.13. Detailing
all these features is beyond the scope of this thesis. However, some of these features
are related to the already mentioned topic of interest for this thesis: producing a high-
quality editor for a particular language.

FIGURE 2.13: Feature model for LWs (Figure 1 from [20])

• Secondly, it briefly introduces ten LWs which participated in the 2013 Language Work-
bench Challenge [71]. Additionally, it provides a table which shows how these LWs
cover the different features shown in Figure 2.13. Figure 2.14 depicts the feature model
coverage by the different implementations.

For this research, Xtext will be the target LW. According to Figure 2.14, it provides a
fair coverage of the features expected for an LW. In fact, certain features that are not
covered, such as providing support for graphical, tabular or symbol notations, are not
of interest for this research project.
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FIGURE 2.14: Features coverage by the ten LWs (Table 1 from [20])
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• Finally, this comparative study provides some results on how different LWs can pro-
vide support for a specific example (see [20] for details). In justifying the rationale
behind the hypotheses of this thesis, some metrics are introduced here in order to
measure the solutions based on the different technologies. Figure 2.15 shows these
results. As can be observed, Xtext is not the ideal solution in terms of the amount of
artefacts that need to be manually produced to give support to the challenge example.

FIGURE 2.15: 2013 Language Workbench Challenge results (Table 4 from [20])

2.3.3 Why Use Language Workbenches?

In Section 2.2, the motivation for using existing technologies to bridge grammarware and
modelware was explained. In essence, in order to support textual modeling languages, there
is a need for creating parsers capable of consuming textual inputs, and of producing output
models. However, when working on textual languages, modern tools (e.g. editors, outlines
etc.) that help to work with instances of a language are also desired. Provided that LWs
not only generate these parsers from specification artefacts (i.e. a grammar), but also some
default edition facilities designed to help the final user of a language, the usage of modern
LWs is justified.

Projects like Eclipse OCL [24], Eclipse QVTo [27] pursue the provision of textual editing
facilities. Indeed, the former currently uses an LW called Xtext to generate textual editors.
The following subsections provide some more details on that.

2.3.4 What is Xtext?

Xtext is an LW, which provides facilities to build high-quality IDEs for textual languages.
Figure 2.16 shows a simplified overview. By means of writing annotated EBNF-style gram-
mars Ê and source code generation techniques, Xtext produces source code comprising a
parser Ë. This parser is capable of consuming instances of the corresponding textual lan-
guage Ì. The output of the parser is a model Í conforming to an AS meta-model Î which
will be auto-generated from its own grammar definition.
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Xtext allows one to either auto-generate a meta-model from a grammar definition, or
make the grammar work with a pre-existing meta-model.

Additionally, it will generate a high-quality editor Ï with advanced features, such as
syntax highlighting, content assistance and auto-completion, hyper-linking etc.

Lang Grammar
(Xtext)

Editor

Parser

AS
Meta-
Model

Lang
Input

conformsTo conformsTo

Generates

Manual artefact

Generated artefact

1

23 4

5

6

AS Model

FIGURE 2.16: Brief Overview of Xtext.

2.3.5 Why Use Xtext?

Following the introduction of Xtext, this subsection discusses the rationale behind its choice
as an LW.

Figure 2.14 (in Section 2.3.2) indicates that, among the compared LWs, Xtext is a good
candidate for building languages based on textual CS: it does not support some features
which are out of scope for that kind of languages, such as graphical notation, tabular notation,
symbol notation and projectional editing form. To the contrary, it supports most of the remain-
ing features excluding but a few: naming validation, concrete syntax semantics, composeable
syntax/views and refactoring editor service.

Details about these specific unsupported features can be found in [20], although they
are not relevant for the purposes of this thesis.

Further, some of the arguments introduced in Chapter 1 need to be recalled.

• Eclipse OCL currently uses Xtext. As stated in Section 1.2.1, QVT languages reuse Es-
sential OCL as expressions language. A dependency between the Eclipse QVTo/QVTd
projects and Eclipse OCL is natural. Indeed, many artefacts and functionalities, such
as grammars and editor’s facilities, can be freely reused by the Eclipse QVTo/QVTd
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implementation. Since Eclipse OCL grammars and editors are based on Xtext, it is also
natural that Eclipse QVTo and QVTd adhere to the same technology.

• Xtext is an official Eclipse project. Due to the fact that Xtext is an official and mature
project participating in the Eclipse simultaneous release train [28], the processes and
efforts to develop and deliver the required implementation for the Eclipse QVTo and
QVTd projects are simplified and decreased respectively. In fact, this has been one of
the reasons why Eclipse OCL moved onto an Xtext-based implementation [80].

Although the rationale has been identified as a constraint for the research project, us-
ing Xtext as the target LW is not really an inconvenience. Instead, it actually brings some
advantages:

• Official Eclipse project. Xtext is an official Eclipse open source project belonging to the
simultaneous release train [28], which means that it has an open project plan, and an
advanced and stable release schedule. This will ensure that the Eclipse OCL and QVTo
components will be available and integrated with the upstream dependent projects
(including Xtext) in every planned release.

• Good documentation. In order to use third party projects, good documentation is
usually a valuable asset to consider and, indeed, Xtext provides an extensive docu-
mentation in various formats [85].

• Active community. As can be observed in its forum [86], Xtext has a wide and active
community which is indicative that not only the project is not dead, but that one can
also find support when encountering particular issues.

2.4 Related Work of Interest

To conclude the chapter, this section focuses on related work that is considered of interest
to this thesis and is, therefore, referred to in later chapters. In particular, this subsection
enumerates three technologies considered as relevant, and how they are linked to the corre-
sponding thesis chapters. The rationale of why this three particular technologies are consid-
ered as relevant follows. From the wide spectrum of technologies mentioned in this thesis
(e.g. see Figure 2.14), Xtext, Spoofax and Gra2Mol have documented or showed, at the time
of writing this thesis, some support to CTMLs (characterised in Section 1.3).

2.4.1 Xtext

As commented in the previous section, considering Xtext as a relevant language workbench
mainly stems from the motivation and scope of this EngD project, as presented in Chapter 1.
Xtext can provide straightforward support to textual modeling languages, but it presents
some limitations when the languages are complex. Chapter 3 shows the Xtext limitations in
solving some identified concerns presented in that chapter. Additionally, Xtext is involved
in the approach presented in Chapter 4, as part of the complete solution for supporting
CTMLs (editors, parsers etc.).
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2.4.2 Spoofax

Spoofax is another language workbench designed to give support (e.g. parsers, editors) to
complex textual languages. Although it was not originally designed to work with model-
ing languages, there is work [63] demonstrating that Spoofax can be used for this purpose.
Spoofax provides the means to overcome some of the identified concerns described in Chap-
ter 3. Therefore, Chapter 5 presents a qualitative study to compare in depth Spoofax and the
proposed solution.

More specifically, Chapter 5 introduces Spoofax languages and features, explaining which
of the identified concerns described in Chapter 3 are actually addressed. Finally, it discusses
how the proposed solution differs to Spoofax taking into account features such as parsing
technology dependency, language nature, name resolution support, etc.

2.4.3 Gra2Mol

Gra2Mol is a text-to-model technology used for software modernization. It is designed to
produce models from textual inputs, including instances of CTMLs. However, it is not a lan-
guage workbench. Gra2Mol provides a DSTL to overcome some of the identified concerns
described in Chapter 3. Therefore, qualitative and quantitative studies to evaluate in depth
Gra2Mol and the proposed solution are presented in Chapter 5.

More specifically, Chapter 5 introduces the Gra2Mol language and features, explaining
which of the identified concerns described in Chapter 3 are actually addressed. As done
with Spoofax, it discusses how the proposed solution differs to Gra2Mol taking into account
features such as parsing technology dependency, language nature, name resolution support,
etc. Additionally, Section 5.4, Section 5.5 and Section 5.6 provide a detailed quantitative
study which compares Gra2Mol and the proposed solution in terms of performance (par-
ticularly, execution time of CS2AS transformations) and the size of artefacts (particularly,
transformation language instances).

2.5 Summary

Chapter 2 presented a survey of the field related to this thesis. It focused on three main
topics: Model-Driven Development, bridging grammarware and modelware, and Language
Workbenches.

MDD is an area of software engineering that proposes models as the first class artefacts
to use during the software development process. Several concepts such as models, meta-
models and model transformations were explained.

Grammarware and Modelware were introduced as two types of technological spaces. The
former focuses on textual languages and grammars, whilst the latter focuses on models and
meta-models. Some important clarifications about concepts such as concrete syntax, abstract
syntax and semantics were explained. Since this thesis focuses on creating textual modeling
languages, which require bridging grammarware and modelware, different approaches (and
related technologies) to achieve this goal were introduced.
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The concept of LW was introduced. This kind of modern tool allows language engineers
to generate fit-for-purpose editors. Since these editors help final users to manipulate in-
stances of a language, the adoption of LWs becomes justified. Due to the context and scope
of this thesis, the choice in favour of Xtext as the target LW was also clarified.

Finally, the relevant work that is discussed throughout this thesis was described. Whilst
Xtext is part of the solution (Chapter 4), Spoofax and Gra2Mol are used for evaluating the
proposed approach (Chapter 5).
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Chapter 3

Problem Analysis

In Chapter 1, the problem that has motivated this research was introduced. This chapter
provides a deeper analysis of the different concerns that need to be addressed to bridge the
gap between the CS and AS of CTMLs. Section 3.1 summarises key concepts from grammar-
ware and modelware. Section 3.2 introduces a running example that will be used throughout
the rest of the thesis. Section 3.3, Section 3.4 and Section 3.5 analyse the different concerns
identified during this research. Before introducing the solution (Chapter 4) that addresses
these concerns, Section 3.6 shows how Xtext can cope with some but not all them. Finally,
Section 3.7 concludes the chapter.

3.1 Summary of Required Concepts

To understand the problem analysis adequately, this section introduces a brief summary of
key concepts related to grammars and meta-models.

When referring to grammar terminology (the source involved in a CS2AS bridge), the
following concepts [1] are relevant:

• Terminals, sometimes referred to as tokens, are the textual units into which a textual
input is split. Their definitions are language dependent and they comprise the leafs of
the so-called syntax trees (produced by a parser). Some examples of tokens might be
12 (an integer number), var1 (an identifier) or "foo" (a string).

• Keywords are special terminals (tokens), whose main characteristic is that they cannot
be used as normal identifiers (which are used for defining, and referring to, named
elements, e.g. a variable called var1). For instance, class and package are keywords in
Java.

• Non-terminals are the syntactic variables, used within a context-free grammar, that
define and participate in the syntactic rules of the grammar. They represent a set of
strings of the language. For instance, the syntactic rule of a variable declaration in
Java could be VarDecl –> TypeRef ID (’=’ VarInit)?. This syntactic rule comprises two
terminals – the token ID (an identifier) and the symbol ’=’–, and three non-terminals
–VarDecl, TypeRef and VarInit–. The non-terminal definition VarDecl represents a set of
language strings, such as ’int count’ or ’String foo = "bar"’.
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• Left Hand Side (LHS) non-terminals are the non-terminals that appear at the left of
the arrow of a syntactic rule, i.e. the non-terminal that defines the syntactic rule. For
instance, in the previous example, VarDecl is the LHS non-terminal.

• Right Hand Side (RHS) non-terminals are the non-terminals that appear at the right
of the arrow of a syntactic rule, i.e. the non-terminal(s) that participate in the syntactic
rule definition. For instance, in the previous example, TypeRef and VarInit are RHS
non-terminals.

When referring to meta-model terminology (the target involved in a CS2AS bridge), the
following concepts [70] are relevant:

• (Meta-)Classes are the concepts involved in a model, i.e. the kind (or type) of model
elements. For instance, a Department may be a (meta-)class denoting the type of Com-
puter Science and Biology model elements.

Model elements are instances of a (meta-)class. For example, in this thesis, an
instance of Department can be referred to as a Department model element. In
other words, Computer Science and Biology are instances of the Department meta-
class.

• Data types are the kind of (primitive) values involved in a model, i.e. the kind of val-
ues that a model element can hold. For instance, Integer might be a data type denoting
the type of integer values, such as 46.

• Properties are the additional features of (meta-)classes. They may be either Attributes
or References.

• Attributes are a kind of property with data type values for model elements. For in-
stance, age may be a Department attribute to denote that the Computer Science depart-
ment is 46 years old.

• References are a kind of property with (meta-)class reference values. They may be
either Containment References or Cross-References.

• Containment References are a kind of reference that implies an ’owning’ (or contain-
ing) relationship between the source and target model element, so that the former
owns (or contains) the latter. This relationship has strong implications. For instance,
if a model element owns (or contains) another one, whenever the former is deleted,
the latter should also be deleted. Another important implication is that a model ele-
ment can be referred to by at most one containment reference. In other words, a model
element can be owned (or contained) by only one model element1. For instance, a De-
partment (meta-)class may have containment reference modules, so that the Computer
Science department may contain a Theory and Practice of Programming module.

1Model elements cannot contain themselves.
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• Cross-References are a kind of reference that does not imply owning; therefore, model
elements refer to existing model elements located anywhere in the model2. An impor-
tant characteristic is that the same model element may be referred to by many model
elements, via the same (or even different) cross-reference. For instance, a Deparment
(meta-)class may have a cross-reference collaboratesWith, so that the Computer Science
department may collaborate with the Biology department.

3.2 Running Example: Mini OCL

This section introduces the target language that is used throughout the thesis as the running
example. This target language is called Mini OCL (mOCL) and consists of a restricted subset
of OCL. The following subsections explain the rationale behind using Mini OCL (mOCL),
as well as a description of the language.

3.2.1 Why Mini OCL?

The rationale behind creating and using a new language (rather than using OCL directly) is
the following:

• mOCL comprises the essence of concerns that need to be addressed for OCL. Whilst
OCL is a substantial language with a wide variety of expressions, many of them are
irrelevant (or duplicated) with respect to the concerns that are explained throughout
this chapter. mOCL will be used in this thesis to show a complete solution for a CTML,
without the need to inflate the thesis with the additional exposition that supports the
irrelevant3 or duplicated parts of OCL. Likewise, a smaller language is better for de-
bugging and testing.

• Whilst being a smaller language than OCL, mOCL captures the essence of OCL as
a language to define queries and constraints on models. Conversely, it provides the
opportunity to add useful syntax to explain the analysed concerns. In this case, mOCL
additionally provides some basic support to define meta-models textually.

• Although providing a solution for a smaller language may bring external validity
threats (i.e. can the proposed solution deal with the entire OCL language?), these
threats are addressed in the next chapter (Section 4.2.10). After explaining the so-
lution, Section 4.2.10 justifies why the missing OCL concepts can be excluded from
mOCL (see Section 4.2.10).

3.2.2 Mini OCL Description

This subsection describes mOCL, which reuses a subset of OCL constructs and introduces
new ones. Rather than inflating this thesis with a detailed CS and AS of the language, the

2Model elements could (cross-)refer to themselves.
3From the point of view of the presented concerns that arise in implementing CS2AS bridges.
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constructs are shown by means of examples. As a reference, Appendix A shows the whole
CS grammar definition and Appendix B shows the AS meta-model.

Some knowledge about OCL [39] specification is assumed.

Meta-model Import

mOCL supports meta-model import as a new construct. Imports can be declared within
mOCL files with the goal of explicitly making meta-models available. In this way, the differ-
ent constraints and expressions can refer to the imported packages, classes, operations and
properties. The imported meta-model may declare an alias. Listing 3.1 shows an example
of the notation.

1 import mm : ’./aMetamodel.xmi’;
LISTING 3.1: Meta-model import notation

Meta-model Definition

mOCL supports meta-model definition as a new construct. Alternative to importing meta-
models, meta-models can be explicitly defined with a simple notation. The notation allows
defining packages, classes, properties and operations. Properties can declare its multiplicity
(by default, they are optional and single-valued). Operation bodies consist of a single ex-
pression whose context is the class in which they are defined. Listing 3.2 shows an example
of the notation.

1 package APackage {
2 class AClass {
3 prop p1 : AnotherClass[1];
4 op getAString() : String = p1.getProp();
5 }
6 class AnotherClass {
7 prop aString : String;
8 op getProp() : String = self .aString;
9 }

10 class ClassExtension extends AClass {}
11 }

LISTING 3.2: Meta-model definition notation

Constraint Definition

OCL provides notation to declare constraints. mOCL provides a similar notation for the
same purpose. In this case, only invariant definitions on meta-classes can be declared. List-
ing 3.3 shows an example of the notation.
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1 context APackage::AClass {
2 inv : getAString() <> null;
3 }

LISTING 3.3: Constraint definition notation

Types

OCL provides a non-trivial type system; in particular, when dealing with collections and the
uncommon4 invalid value. From the point of view of bridging the CS and AS, the complex-
ity of the type system only impacts on the following:

• Computing expression types. The more complex the type system is, the more complex
the required logic to compute the expression types (e.g. more complex type confor-
mance rules).

• Special CS2AS scenarios. There are some special CS2AS scenarios that are highly cou-
pled to the type system (particularly, for expression types).

The mOCL type system has been reduced to support the type system-related CS2AS
scenarios that are present in OCL. The decision of simplifying the type system for mOCL
does not compromise the ability of the proposed solution to be used for a more complex
language like OCL. This assertion is properly discussed in Section 4.2.10.

The mOCL built-in type system consists of:

• String Boolean and Integer primitive types to represent some primitive values.

• OclAny type to represent all possible model elements and primitive values.

• OclVoid type to represent the absence of value/model element.

• Collection type to represent a collection of model elements or primitive values.

• Finally, all user meta-classes (e.g. classes defined in a meta-model definition) are also
types within the language.

Literal Expressions

As with OCL, mOCL provides literal expressions to specify the values corresponding to
several types of the built-in type system. With respect to collection literals, collection ranges
can be used. Listing 3.4 shows an example of the notation of different literal expressions.

1 true −− a boolean literal expression
2 10 −− an integer literal expression
3 Collection {1 ,2, 3..10} −− a collection literal expression
4 null −− a null literal expression ( of type OclVoid)

LISTING 3.4: Literal expressions notation

4When compared to traditional object-oriented languages.



42 Chapter 3. Problem Analysis

Let Expressions

As with OCL, mOCL supports let expressions to provide reusable variable declarations that
can be referred to by inner expressions. Listing 3.5 shows an example of the notation.

1 let foo : String = ’foo’,
2 bar = foo
3 in bar

LISTING 3.5: Let expressions notation

Variable Expressions

As with OCL, mOCL supports variable expressions to refer variables that have been pre-
viously defined. Candidate variables are the implicit contextual ’self’ variable, operation
parameters or variables defined in outer let expressions. Listing 3.6 shows several exam-
ples.

1 class AClass {
2 prop a : Integer;
3 op same(b : Integer) : Integer =
4 let letVar = self .a −− Variable expression referring to ’ self ’ context variable
5 in letVar = −− Variable expression referring to ’ letVar ’ let variable
6 b; −− Variable expression referring to ’b’ parameter
7 }

LISTING 3.6: Variable expressions notation

Call Expressions

As with OCL, mOCL supports model navigation and queries by means of call expressions.
These call expressions are used on a source expression which evaluates to a model element,
a (primitive) value or a collection. There are three kinds of call expressions:

• Property call expressions to navigate through model elements. The source has to be a
model element.

• Operation call expressions to invoke an operation. The source can be model elements,
values or collections.

• Loop expressions to iterate over a collection. The source has to be a collection.

The loop expressions included in mOCL are the collect iterator expression and the
iterate expression.

mOCL also provides two kinds of operators for these call expressions: the ’.’ symbol is
used for either navigating through a model element, or invoking an operation on a model
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element or a (primitive) value. The ’->’ symbol is used for either invoking an operation on
a collection or iterating over a collection. Listing 3.7 shows several examples.

1 self .aProperty −− a property call expression on a model element
2 1.max(2) −− an operation call expression on a primitive value
3 Collection{1,2}−>size() −− an operation call expression on a collection
4 Collection{1,2}−>collect(x | x = 1) −− collect iterator expression on a collection
5 Collection{1,2}−>iterate (x : Integer; acc : Integer = 0
6 | acc.sum(x)) −− iterate expression on a collection

LISTING 3.7: Call expressions notation

Although these rules concerning the call expressions operators are easy to understand,
mOCL is complicated because the syntax permits using the ’.’ operator with collections, as
well as the ’->’ operator with single model elements or values. In the former case, there
is an implicit collect iteration expression, so that the call expression is performed on every
single element of the collection. In the latter case, there is an implicit collection conversion,
so that the call expression is performed on a new collection with the single model element
(or primitive value). Listing 3.8 shows examples of the notation, where the expression in
line 1 is equivalent to the expression in line 2, and the expression in line 3 is equivalent to
the expression in line 4.

1 self .multipleValueProperty.size() −− equivalent to the next expression
2 self .multipleValueProperty−>collect(x | x.size())
3 self .singleValueProperty−>size() −− equivalent to the next expression
4 self .singleValueProperty.asCollection()−>size()

LISTING 3.8: Call expressions with syntactic sugar

Equality Expressions

mOCL has reduced the set of expressions to deal with one kind of binary expression, in this
case an equality to test if two operands are equal (or distinct) between them. Listing 3.9
shows an example.

1 1 <> 2 −− simple equality expression that evaluates to true
2 1 <> 2 = false −− more complex equality expression that evaluates to false

LISTING 3.9: Equality expressions notation

3.3 Bridging Concrete and Abstract Syntax: Coarse Grained Anal-
ysis

Now that the running example has been introduced, this section analyses the concerns to
be addressed when bridging the gap between the CS and AS of CTMLs. In particular, this
section makes a coarse grained classification of the kind of mappings that are required to
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bridge that gap. This classification will be explained by showing particular examples of
mapping scenarios that need to be addressed for mOCL.

In this and future chapters, the concept of mapping will be used for relating CS terms
to AS terms. In other words, bridging the gap between the CS and AS of a language
will be described by defining mappings between CS and AS terms.

On the one hand, this thesis targets languages whose CS is textual. Therefore, this section
shows the different mapping scenarios by referring to grammar terms (e.g. terminals and
non-terminals), as the source CS concepts to be mapped. On the other hand, this thesis
targets languages whose AS is defined by meta-models. Therefore, this section shows the
different mapping scenarios by referring to meta-model terms (e.g. meta-classes and their
properties), as the target AS concepts to be mapped.

The following subsections will go into detail about the presented coarse grained classifi-
cation:

• 1-to-1 mappings, in which each CS grammar term can be directly mapped to a single
AS meta-model term.

• N-to-1 mappings, in which many CS grammar terms can be mapped to a single AS
meta-model term.

• 1-to-N mappings, in which a single CS grammar term can be mapped to many AS
meta-model terms.

• N-to-M mappings, as a generalisation of the previous ones, in which many CS gram-
mar terms can be mapped to many AS meta-model terms.

3.3.1 1-to-1 Mappings

This subsection explains 1-to-1 mappings, in which each CS grammar term is directly mapped
to an AS meta-model term. The following example is used for exposing the mapping sce-
nario.

As shown in Section 3.2.2, mOCL supports Package definitions. Listing 3.10 shows the
relevant excerpt of the CS grammar in EBNF notation.

1 PackageCS:
2 ’package’ ID ’{’
3 (ClassCS | PackageCS)∗
4 ’}’
5 ;

LISTING 3.10: CS of a Package definition

According to the CS, the syntactic rule for the non-terminal PackageCS consists of the
keyword ’package’ followed by the token ID, followed by the token ’{’, optionally followed
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by a number of non-terminals (either a ClassCS or another PackageCS), and finally followed
by the token ’}’.

The relevant abstract syntax of a Package definition is shown in Figure 3.1.

Class

 ownedOperations : Operation
 ownedProperties : Property

NamedElement

name : EString

Package [0..*] ownedClasses

[0..*] ownedPackages

FIGURE 3.1: AS of a Package definition

According to the AS, a Package definition has a name, and may contain a number of Classes
and/or Packages.

This example requires trivial 1-to-1 mappings between grammar and meta-model terms,
because all AS terms are mapped from a single CS term. For instance:

• The LHS non-terminal PackageCS maps to the Package meta-class.

• The terminal ID maps to the name attribute of the NamedElement meta-class.

• The RHS ClassCS maps to the ownedClasses reference of the Package meta-class. In this
way, any Class model element obtained by a further ClassCS-to-Class mapping can be
referred to via this Package::ownedClasses reference.

• The RHS PackageCS maps to the ownedPackages reference of the Package meta-class. In
this way, any (nested) Package model element obtained by the mentioned PackageCS-
to-Package mapping can be referred to via that Package::ownedPackages reference.

According to these mapping definitions, Figure 3.2 shows an example of a textual input of a
Package definition, and the expected AS model.

3.3.2 N-to-1 Mappings

This subsection explains N-to-1 mappings, in which many CS grammar terms are mapped
to a single AS meta-model term. The following example is used for exposing the mapping
scenario.

As introduced in Section 3.2.2, mOCL supports Class definitions. In particular, a Class
may extend to additional Classes. Listing 3.11 shows the relevant excerpt of the CS grammar
in EBNF notation.
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package p1 {
     class c1 { }
     class c2 { }
     package p1_1 {
         class c3 { }
     }
}

p1 : 
Package

p1_1 : 
Package

c3 : 
Class

c2 : 
Class

c1 : 
Class

:ownedPackages

:ownedClasses

:ownedClasses

:ownedClasses

FIGURE 3.2: Example: Package notation and corresponding AS model

1 ClassCS:
2 ’class’ ID ClassExtensionCS? ’{’
3 // the remainder of Class definition syntax has been omitted
4 ’}’
5 ClassExtensionCS:
6 ’extends’ PathNameCS (’,’ PathNameCS)∗
7 PathNameCS:
8 PathElementCS (’::’ PathElementCS)∗
9 PathElementCS:

10 ID
LISTING 3.11: CS of a Class extension definition

According to the CS, a Class definition may optionally include extension definitions.
The syntactic rule for the non-terminal ClassExtensionCS consists of the keyword ’extends’
followed by a non-terminal PathNameCS, and optionally followed by a comma-separated,
undetermined number of additional PathNameCS. The syntactic rule for the non-terminal
PathNameCS consists of the non-terminal PathElementCS, optionally followed by a double
colon-separated, undetermined number of additional PathElementCS. Finally, the syntactic
rule for the non-terminal PathElementCS consists of the token ID.

The relevant abstract syntax of a Class definition is shown in Figure 3.3.

Class

 ownedOperations : Operation
 ownedProperties : Property

NamedElement

name : EString

[0..*] superClasses

FIGURE 3.3: AS of a Class extension definition
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According to the AS, a Class may optionally refer to a number of additional Classes, via
the Class::superClasses reference.

This example conforms to an N-to-1 mapping between grammar and meta-model terms:

• A set of LHS non-terminals, PathNameCS and PathElementCS, maps to the Class meta-
class. In this way, the Class model element that corresponds to a particular textual
input – which conforms to the PathNameCS syntactic rule – can be referred to by the
Class on which the class extension is defined, via that Class::superClasses reference.

According to this mapping definition, Figure 3.4 shows an example of a textual input of
a Class extension definition, and the corresponding AS model.

package p1 {
  class c1 { }
}

package p2 {
  class c2 extends p1::c1 { }
}

p1 : 
Package

c2 : 
Class

c1 : 
Class

:ownedClasses

:ownedClasses

p2 : 
Package

:superClasses

FIGURE 3.4: Example: Class extension notation and corresponding AS model

3.3.3 1-to-N Mappings

This subsection explains 1-to-N mappings, in which a single CS grammar term is mapped
to many AS meta-model terms. The following example is used for exposing the mapping
scenario.

As introduced in Section 3.2.2, mOCL supports Operation definitions. In particular, we
are interested in the definition of the operation body. Listing 3.12 shows the relevant excerpt
of the CS grammar in EBNF notation.

1 OperationCS:
2 ’op’ ID ’(’ ParametersDeclarationCS ’)’
3 ’:’ PathNameCS
4 ’=’ ExpCS ’;’

LISTING 3.12: CS of an Operation definition

According to the CS, the syntactic rule for the non-terminal OperationCS starts with the
keyword ’op’. The non-terminal related to the operation body is ExpCS, which follows the
token ’=’ and precedes the token ’;’. This non-terminal comprises an arbitrary expression,
which is the body of the operation.

The relevant abstract syntax of an Operation definition is shown in Figure 3.5.
According to the AS, an Operation owns an ExpressionInOCL, which owns a self Variable

and the target OCLExpression – i.e. the operation body expression.
This example requires a 1-to-N mapping between grammar and meta-model terms:
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Feature

 type : Class

NamedElement

name : EString

OCLExpression

 type : Class

Operation

 type : Class
 ownedParameters : Parameter
 owningClass : Class

Variable

 type : Class

ExpressionInOCL

 type : Class
[1..1] ownedBodyExpression

[1..1] ownedSelfVar

[1..1] ownedBody

FIGURE 3.5: AS of an Operation body definition

• The RHS non-terminal ExpCS maps to the ownedBodyExpression reference of the Op-
eration meta-class. However, the scenario also requires mapping to additional meta-
classes, such as ExpressionInOCL and Variable. In this way, any OCLExpression model
element obtained by a further ExpCS-to-OCLExpression mapping can be adequately
contained in the corresponding ExpressionInOCL model element, via the Expression-
InOCL::ownedBody reference. Likewise, this ExpressionInOCL model element can be
contained via the aforementioned Operation::ownedBodyExpression reference.

.
Figure 3.6 shows an example of a textual input of an Operation body definition, and the

corresponding AS model.

op op1() : String =
    ‘aString’;

op1 : 
Operation

aString : 
String
LiteralExp

 : 
Expression
InOCL

self : 
Variable

:ownedBodyExpression :ownedBody

:ownedSelfVar

FIGURE 3.6: Example: Operation body notation and corresponding AS model

3.3.4 N-to-M Mappings

Finally, this subsection explains N-to-M mappings, in which, as a generalisation of the pre-
vious kind of mappings, many CS grammar terms are mapped to many AS meta-model
terms. The following example is used for demonstrating the mapping scenario.
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As introduced in Section 3.2.2, mOCL supports property call expressions (i.e. model
property navigation). Listing 3.13 shows the relevant excerpt of the CS grammar in EBNF
notation.

1 CallExpCS:
2 PrimaryExpCS ((’.’ | ’->’) NameExpCS)∗
3 NameExpCS:
4 PathNameCS (RoundedBracketClauseCS)?
5 PathNameCS:
6 PathElementCS (’::’ PathElementCS)∗
7 PathElementCS:
8 ID

LISTING 3.13: CS of a PropertyCallExp

According to the CS, the syntactic rule for the non-terminal CallExpCS starts with the
non-terminal PrimaryExpCS, optionally followed by a number of call-operator separated
NameExpCS. The latter consists of a non-terminal PathNameCS, optionally followed by a
non-terminal RoundedBracketClauseCS (used for operation call expressions).

The relevant abstract syntax of a PropertyCallExp is shown in Figure 3.7.

CallExp

 type : Class

Feature

 type : Class

NamedElement

name : EString

OCLExpression

 type : Class

Property

 type : Class
owningClass : Class

PropertyCallExp

 type : Class

Variable

 type : Class

VariableExp

 type : Class

[1..1] ownedSource

[1..1] referredProperty

[1..1] referredVariable

FIGURE 3.7: AS of a PropertyCallExp

According to the AS, a PropertyCallExp owns another OCLExpression via the CallExp::ownedSource
reference, and it refers to a Property via the PropertyCallExp::referredProperty reference.

This example requires an N-to-M mapping between grammar and meta-model terms:

• As the introduction explained (Section 1.2.2), a simple expression ’x’ may be a short-
hand for the expression ’self.x’. It turns out that a set of LHS non-terminals, Name-
ExpCS, PathNameCS and PathElementCS may map to a set of meta-classes, VariableExp
and a PropertyCallExp.

Figure 3.8 shows an example of a textual input of a PropertyCallExp usage, and the cor-
responding AS model.
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class c1 { 
   prop p1 : String;
   op getP1() : String =
      p1;
}

: 
Property
CallExp

p1 : 
Property

: 
Expression
InOCL

self : 
Variable

: Variable
Exp

:ownedBody :ownedSource

:ownedSelfVariable :referredVariable

:referredProperty
c1 Class and getP1 Operation 
have been omitted

FIGURE 3.8: Example: PropertyCallExp notation and corresponding AS model

3.4 Bridging Concrete and Abstract Syntax: Fine Grained Analysis

Following the introduction of a coarse grained view of the kind of mappings necessary to
bridge the CS (text) and AS (models) of a textual modeling language, this section goes into
detail regarding the fine grained concerns that need to be addressed.

3.4.1 Concern 1: Mapping an LHS non-terminal to a meta-class

The first concern relates to the need for mapping an LHS non-terminal to a meta-model
concept. In this case, LHS non-terminals are mapped to meta-classes. This kind of mapping
is split into two different categories: mappings with the goal of creating new AS model
elements and mappings with the goal of referring to AS model elements already created by
other mappings. These categories are explained below.

LHS non-terminal mappings that create new AS elements

When introducing 1-to-1 mappings in Section 3.3.1, it was mentioned that “the LHS non-
terminal PackageCS maps to the Package meta-class“. In this particular mapping, for every
textually-defined package that has been parsed, according to the syntactic rule for the non-
terminal PackageCS, a new Package model element must be created.

For instance, according to the example shown in Figure 3.2, for the textually-defined p1
and p1_1 packages, the AS model must contain two Package model elements called p1 and
p1_1 respectively.

LHS non-terminal mappings that refer to existing AS elements

When introducing N-to-1 mappings in Section 3.3.2, it was mentioned that “a set of LHS
non-terminals, PathNameCS and PathElementCS, maps to the Class meta-class“. In this case,
the corresponding Class model element is not meant to be created, but to be referred to by
the extending Class that defines the class extension. The referred Class model element should
have been created by another ClassCS-to-Class mapping.
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For instance, according to the example shown in Figure 3.4, the class extension defi-
nition ’p1::c1’ should be parsed conforming to the syntactic rules corresponding to Path-
NameCS and PathElementCS. The first ’p1’ PathElementCS corresponds to the ’p1’ Package,
which should have been created according to a mapping defined on the non-terminal Pack-
ageCS. Likewise, the second ’c1’ PathElementCS corresponds to the ’c1’ Class, which should
have been created according to a mapping defined on the non-terminal ClassCS. Finally,
the ’p1::c1’ PathNameCS corresponds to the ’c1’ Class, which is the AS model element corre-
sponding to the last PathElementCS of that PathNameCS.

3.4.2 Concern 2: Mapping an RHS non-terminal to a reference

The second concern relates to the need for mapping one RHS non-terminal to a meta-model
concept. As mentioned in Section 3.1, an RHS non-terminal appears in a syntactic rule and
is related to an LHS non-terminal defined somewhere else in the grammar. Whilst LHS
non-terminals are mapped to meta-classes, RHS non-terminals are mapped to references.

When introducing 1-to-1 mappings in Section 3.3.1, it was mentioned that “the RHS
ClassCS maps to the ownedClasses reference of the Package meta-class“. As a reminder, the
RHS non-terminal ClassCS appears in the syntactic rule of the LHS non-terminal PackageCS
(see Listing 3.10). In this case, the RHS non-terminal ClassCS maps to the containment refer-
ence Package::ownedClasses.

According to the example shown in Figure 3.2, for the textually-defined ’c1’ and ’c2’
classes, the AS model must contain the ’c1’ and ’c2’ Class model elements. In particular,
these model elements end up contained by the ’p1’ Package model element, via the Pack-
age::ownedClasses containment reference.

Note that there is no distinction between containment and cross-references, because LHS
non-terminal mappings may map to either new or existing model elements. However, a
correct mapping specification should take into account whether the mapped reference is a
containment or not. On the one hand, if a mapping for an LHS non-terminal is designed
to create new AS model elements, any RHS non-terminal should map to a containment
reference, otherwise the created element may end up as an orphan model element5. On the
other hand, if a mapping for an LHS non-terminal is designed to refer to already existing AS
model elements, any RHS non-terminal should map to a cross-reference, otherwise already
existing AS model elements would be removed from their current container (child-stealing
in [79]), which may not be the original intention.

3.4.3 Concern 3: Mapping a terminal to an attribute

The third concern relates to the need for mapping one terminal to a meta-model concept.
Terminals correspond to information from the textual input, and comprise the (primitive)
values to be held inside the model. Therefore, they are naturally mapped to attributes of

5Orphan model elements are those model elements that are not contained by any other. Therefore, they are
located at the root of the model.
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meta-classes. In this way, whatever token is parsed from the text may end up as an attribute
value of an AS model element.

Note that not every terminal has to be mapped to an attribute. For example, some of
them are keywords and punctuation symbols, which are not normally relevant to the AS of
a language.

When introducing 1-to-1 mappings in Section 3.3.1, it was mentioned that “the terminal
ID maps to the name attribute of the NamedElement meta-class“. For instance, according to
the example shown in Figure 3.2, the identifier p1 corresponds to the name of the p1 Package.

3.4.4 Recap: Simple vs. Complex CS2AS Bridges

So far, the fine grained concerns that have been explained cover the 1-to-1 and N-to-1 map-
pings that were introduced in Section 3.3.

On the one hand, by means of these fine grained mappings, every single grammar term
(or as many as required) could be mapped to a meta-model term. In this thesis, if a language
AS meta-model can be fully mapped from the CS grammar (by means of the fine grained
mappings discussed), the language is considered sufficiently trivial that it only requires a
simple CS2AS bridge.

On the other hand, by means of these fine grained mappings, it cannot be assured that
every single AS meta-model term has been likewise mapped. If this is the case, this thesis
considers the language sufficiently complex that it requires a complex CS2AS bridge.

Giving support to the 1-to-N mappings presented in the previous Section 3.3, and more
generally N-to-M mappings, turns out to be necessary for supporting complex CS2AS bridges.
The following subsections detail the additional fine grained concerns to be addressed to
cover 1-to-N and N-to-M mappings.

3.4.5 Concern 4: Mapping an RHS non-terminal to a reference and additional
meta-classes

The fourth concern relates to the need for mapping one RHS non-terminal to additional
meta-classes, apart from the target reference explained in Section 3.4.2. More precisely, this
concern comprises the need for creating an arbitrary number of connected model elements
so that:

• One (or many) of these additional model elements are referred to via the target refer-
ence.

• The AS model element obtained from a further mapping (for the corresponding LHS
non-terminal) is referred to by one (or many) of these additional model elements.

• In essence, this kind of mapping allows us to produce more complex structures of
model elements that are referred to via the target reference.

When introducing 1-to-N mappings in Section 3.3.3, it was mentioned that “the RHS
non-terminal ExpCS maps to the ownedBodyExpression reference of the Operation meta-class.
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However, it also requires mapping to additional meta-classes, such as ExpressionInOCL and
Variable“. For instance, according to the example shown in Figure 3.6, the textually-defined
’aString’ corresponds to a StringLiteralExp model element, to be added to the ownedBody-
Expression reference of the Operation. However, this StringLiteralExp model element is not
directly considered as the model element to refer to. Instead, an ExpressionInOCL model
element is created for that purpose. This ExpressionInOCL also includes an implicit Vari-
able model element named ’self’. Finally, ExpressionInOCL is responsible for containing the
former StringLiteralExp model element, via the ExpressionInOCL::ownedBody reference.

3.4.6 Concern 5: Mapping an LHS non-terminal to many meta-classes

The fifth concern relates to the need for mapping one LHS non-terminal to additional meta-
classes, apart from the target meta-class explained in Section 3.4.1. More precisely, this con-
cern comprises the need for creating an arbitrary number of additional connected model
elements so that:

• One (or many) of these additional model elements is (are) referred to by the model
element that conforms to the mapped target meta-class.

• In essence, this kind of mapping allows us to produce more complex structures of
model elements, rather than a single one.

When introducing N-to-M mappings in Section 3.3.4, it was mentioned that “a simple ex-
pression ’x’ may be a shorthand for the expression ’self.x’. It turns out that a set of LHS non-
terminals, NameExpCS, PathNameCS and PathElementCS may map to a set of meta-classes,
VariableExp and PropertyCallExp“. For instance, according to the example shown in Fig-
ure 3.8, the textually-defined ’p1’ corresponds to a PropertyCallExp model element, which
contains (via the CallExp::ownedSource reference) a VariableExp model element (that refers to
the ’self’ Variable).

3.4.7 Concern 6: Multi-way mappings from LHS non-terminals to meta-classes

The sixth concern relates to the need for expressing multi-way mappings from one LHS non-
terminal to its corresponding meta-class(es). In this thesis, a multi-way mapping refers to
the situation where a non-terminal can be mapped to different meta-classes, in an exclusive
manner, driven by some conditions.

The x.y expression from the introduction (Section 1.2.2) exposes the problem. According
to the CS, x and y are simple NameExpCS (definition presented in Listing 3.13). However, this
expression may correspond to different AS model elements, depending on some conditions.
In this case, it depends on the context in which they are used. Whilst y is unambiguously
a PropertyCallExp, x may be either a VariableExp (referring, for instance, to a variable previ-
ously defined by an outer let expression) or another PropertyCallExp (referring to an x named
property of self, the context model element in which that expression is evaluated). Figure 3.9
shows a complete example.
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class c1 {
    prop y : String;
}
class c2 {
   prop x : c1;
   op op1() : String =
       x.y;
   op op2() : String =
       let x : c2 = self
       in x.y;
}

‘y’:
Property
CallExp

‘x’: 
Property
CallExp

:ownedSource ‘self’: 
Variable
Exp

:ownedSource

‘y’:
Property
CallExp

‘x’: 
Variable
Exp

:ownedSource

Referred Variables and Properties have been omitted

FIGURE 3.9: Example: Two different outcomes of a multi-way mapping

The way in which these multi-way mappings are executed depends on several condi-
tions. In this thesis, these conditions are called disambiguation rules. It may arise that,
depending on the design of the source CS grammar and the target AS meta-model, some CS
non-terminals turn out to be ambiguous from the point of view of the AS, and these rules
serve to disambiguate.

In the case of mOCL, NameExpCS is an example of ambiguous non-terminal (from the
point of view of the AS) because there is a need to determine if it corresponds to a Variable-
Exp or a PropertyCallExp. The disambiguation rule to decide if NameExpCS corresponds to a
VariableExp (instead of a PropertyCallExp), consists of checking that the contained PathName-
ExpCS corresponds to a Variable (instead of a Property of self ).

For instance, according to the example shown in Figure 3.9, in the ’x.y’ expression within
the ’op1’ operation, the ’x’ parsed by the syntactic rule of the non-terminal PathNameCS cor-
responds to a PropertyCallExp model element. On the contrary, in the ’x.y’ expression within
the ’op2’ operation, the ’x’ parsed by the syntactic rule of the non-terminal PathNameCS cor-
responds to a VariableExp model element.

3.4.8 Concern 7: Mapping properties from non grammar terms

The seventh concern relates to the need for computing additional AS meta-class proper-
ties that do not necessarily map from CS terms. When the differences between simple and
complex CS2AS bridges were explained (Section 3.4.4), it was identified that all meta-model
concepts need to be mapped. Whilst the two concerns from Section 3.4.5 and Section 3.4.6,
ensure that all AS model elements can be created, this concern ensures that all its corre-
sponding properties can be likewise computed (ensuring the required completeness).

The following exposition explains this need. mOCL is a statically typed language (i.e. it
defines a type system), and every OCLExpression must refer to a Type model element, via the
TypedElement::type cross-reference. The information about types for OCLExpressions is not
provided in the CS, but there exist additional rules (i.e. a type system definition) to compute
the type for every expression. Consequently, any CS2AS bridge requires the means that
allow the mapping of any meta-class property, even though the required information does
not come directly from the textual input.
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It could be argued that:

• A type system should not be embedded within the AS meta-model. For in-
stance, XSemantics [4] allows the definition of a separate type system for Xtext-
based languages. Although this is a valid approach, it is not the case for the
OCL language, whose specification [39] states that the type system is embed-
ded within the AS meta-model.

• The definition of a type system embedded within the AS meta-model should be
done as a set of derived propertiesa. Although this is a valid approach, it is not
the case for the OCL language, whose specification [39] states that type property
is not derived. For the sake of giving support to a wider range of target meta-
models this concern should be considered as part of the CS2AS activity.

aDerived properties are special in the sense that their values are automatically computed by an ex-
pression (which, for instance, can use the values from other properties) defined at the meta-model level.
In consequence, they are transient properties and the modeler cannot establish their value.

Note that these mappings do not specify the kind of properties (e.g. either references or
attributes) for which this concern applies. The example above applies to (cross-)references.
Regarding attributes, they are normally initialised with information from the textual input
(see Section 3.4.3). However, this is not always the case. For instance, Figure 3.10 shows the
relevant AS definition of an ExpressionInOCL.

OCLExpression OpaqueExpression

language : EString

Variable

TypedElement

 type : Class

ExpressionInOCL

[1..1] ownedSelfVar[1..1] ownedBody

FIGURE 3.10: AS of ExpressionInOCL

According to the OCL specification, an ExpressionInOCL is a kind of OpaqueExpression.
The latter has a String-valued attribute called language. The specification states that every
ExpressionInOCL instance must have this attribute initialised to the ’OCL’ String value.

3.5 Concern 8: Name Resolution

Name resolution is an important activity of Programming Language Theory and Practice (e.g.
in compilers [1]) and it plays a key role in this thesis. As further explained, name resolution
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is related to several fine grained concerns that were introduced in Section 3.4. Due to its
length and the amount of different topics to study, name resolution is separately analysed
in its own section.

3.5.1 Overview

Name resolution, also known as named-based lookup, consists of performing a lookup ac-
tivity with the aim of finding (named) model elements located in the AS model. The input
of this lookup activity is normally CS related information (e.g. a name), whilst the output is
the desired AS model element.

Name resolution is relevant to this thesis, because it can be used for relating two AS
model elements via a cross-reference. Therefore, this lookup activity is closely related to
Concern 1 (when a mapping pursues the retrieval of already existing AS model elements)
from Section 3.4.1, and Concern 7 (where arbitrary property computations can be done to
relate AS model elements via a cross-reference) from Section 3.4.8. Additionally, these name-
based lookups can also be used in disambiguation rules to decide which AS model element
should be created. Therefore, name resolution is also related to Concern 6 from Section 3.4.7.

The following example illustrates the role of name resolution. The left hand side of
Figure 3.11 denotes a LetExp usage in mOCL. It declares and initialises a variable named var
for use within the LetExp ’in’ expression. In this example, the ’in’ expression comprises a
VariableExp usage that refers to the former variable ’var’. The right hand side of Figure 3.11
exposes the corresponding AS model, in which it can be observed how the VariableExp model
element refers to the Variable one, via the referredVariable cross-reference.

let var : String = ‘foo’
in var

: 
LetExp

: 
Variable
Exp

var : 
Variable

:ownedIn

:ownedVariable :ownedInitExp ‘foo’: 
String
LiteralExp

:referredVariable

FIGURE 3.11: Example: LetExp notation and its corresponding AS model

In order to make the VariableExp model element refer to the Variable one, name resolution
is required, so that the declared variable (i.e. the Variable model element) is looked up (and
found) in the scope of the variable usage (i.e. the VariableExp model element).

The class extension example introduced in Section 3.3.2 can also be referred to as an
example that requires name resolution. In order to make a derived class extend to a super
class, via the Class::superClasses cross-reference, a name resolution activity is required to find
the actual Class that is meant to be extended.
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3.5.2 Targets, Inputs, Providers and Consumers

In a name resolution activity, the following roles are identified:

• Targets. These are the AS model elements that need to be found via name resolution.
In the example shown in Figure 3.11, the Variable model element is the target of the
name resolution activity.

In a name resolution activity, targets are identified by a name, i.e. the corre-
sponding meta-classes have a String-valued attribute to identify these instances.
This attribute is normally called name, although it could be any other. In this the-
sis, targets can also be referred to as target (model) elements or named (model)
elements.

• Inputs. These are the values that are used as the input to find targets via name reso-
lution. In the example shown in Figure 3.11, the String "var" is the input of the name
resolution activity.

• Providers. These are the AS model elements that add targets to a scope or environ-
ment (see further Section 3.5.3) so that they can be found via name resolution. In the
example shown in Figure 3.11, the LetExp model element is the provider during the
name resolution activity.

In this thesis, providers can also be referred to as provider (model) elements.

• Consumers. These are the AS model elements that need to find a target via name
resolution. In the example shown in Figure 3.11, the VariableExp model element is the
consumer during the name resolution activity.

In this thesis, consumers can also be referred to as consumer (model) elements.

From the point of view of these roles, a name resolution activity can be explained as
follows. A consumer requires performing name resolution in order to find a target that is
located somewhere else in the AS model. The goal of the name resolution is to make the
consumer refer to the found target via a cross-reference. To perform the name resolution,
an input is required so that the target can be found by matching its name with the pro-
vided input. The target can be matched as long as a provider contributes that target to the
consumer’s scope (see next Section 3.5.3).

For instance, according to the example shown in Figure 3.11, a VariableExp model ele-
ment requires performing name resolution in order to find a Variable model element that is
located somewhere else in the AS model. The goal of the name resolution is to make the
VariableExp model element refer to the found Variable model element via the referredVariable
cross-reference. To perform the name resolution, a String value, ’var’ in this case, is required
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mOCL meta-class T P C Explanation

Class X X X
It may be referred to by other classes
It contributes properties and operations
It may refer to other classes

ExpressionInOCL X It contributes the ’self’ contextual variable
Import X It contributes the imported elements
IterateExp X It contributes the iterator and accumulator variables
IteratorExp X It contributes the iterator variable
LetExp X It contributes the let variable

Package X X
It contributes classes and nested packages
It may be target of qualified name-based lookups

Property X It may be referred to by property call expressions
PropertyCallExp X It refers to properties
Operation X It may be referred to by operation call expressions
OperationCallExp X It refers to operations
NamedElement X It may be target of name-based lookups
Root X It contributes packages and imports
Variable X It may be referred to by variable expressions
VariableExp X It refers to variables
TypedElement X It refers to a class (as type of the element)

TABLE 3.1: Correspondence between targets (T), providers (P), consumers (C)
and mOCL meta-classes

so that the Variable model element can be found by matching its name with the provided
String value. The Variable model element can be matched because a LetExp model element
contributes that Variable model element to the VariableExp model element scope.

To conclude this subsection, Table 3.1 summarises a correspondence between targets,
providers, consumers and the related AS meta-class of mOCL. The following subsection
goes into detail regarding the concept of scopes.

3.5.3 Lookup Scopes

The concept of scope, or lookup scope, was previously mentioned. It is another important
concept relevant to name resolution. Scopes, also known as environments in [39], are data
structures that keep a name-to-target key-value map. Figure 3.12 shows how this data struc-
ture is used by consumers and providers, with target and input being the data that flows to
make a consumer find a target contributed by a provider.

Scope
name1 -> target1
name2 -> target2

...

target
input

Provider Consumer
target

1
2

3

FIGURE 3.12: Overview of a scope
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This name-to-target map comprises all the candidate (named) targets of a name-based
lookup for a particular consumer. The candidate targets inside a scope are those contributed
by providers Ê. A consumer can look up a target by means of a given input Ë. If the lookup
scope contains the target whose name matches the input, the target is found Ì. Figure 3.13
shows how the scope is used during the name resolution required for the example from
Figure 3.11.

Scope
‘var’-> var :Variable var:Variable

var:Variable
‘var’

:LetExp :VariableExp
1

2

3

FIGURE 3.13: Scope involved in the LetExp example from Figure 3.11

In this case, a LetExp model element contributes a Variable named ’var’ to the scope Ê.
Conversely, a VariableExp model element performs a name resolution activity using the
String ’var’ as an input Ë. Since the lookup scope contains a Variable model element whose
name matches the provided input, this Variable model element is retrieved as the result of
the name resolution activity Ì.

Scope propagation

Scopes are data structures that let consumers find a target contributed by a provider. The key
characteristic of this kind of information passing is that the consumer is unaware of which
are the target providers and where they are located in the AS model, and the provider is
unaware of which are the consumers and where they are located in the AS model.

In order to explain how this mechanism of information passing works, the concept of
scope propagation is introduced. Since name resolution is defined to perform name-based
lookups across the AS model, scope propagation consists of transferring the scope in a top-
down fashion. In other words, the scope flows between model elements, starting from the
root, from parent to children across the containment hierarchy. By default, lookup scopes are
propagated as they are (initially, they are empty). However, when providers propagate their
current scope to their children, the former have the ability to add new targets (selectively)
to the propagated scope. In this way, whenever a consumer needs to perform a name-based
lookup, its current scope already contains all candidate targets that can be found by that
particular consumer.

A provider selectively configures the lookup scope for their children model elements.
This means that it has the ability to decide if the scope is propagated as it was received
(from its parent element), or it is modified to include more targets. This configuration
is selective in the sense that, if a provider contains different model elements (e.g. via
several containment references), the propagated scope can likewise be different.



60 Chapter 3. Problem Analysis

For instance, according to the example shown in Figure 3.11, the scope propagation
mechanism is depicted in Figure 3.14 (the final content of each scope is shown in Table 3.2).
The AS model has been enhanced so that the target LetExp model element is contained by a
proper ExpressionInOCL model element. The actual context in which the LetExp usage may
appear is not relevant for the following exposition.

:Expression
InOCL

:Variable
Exp

S1  = Scope{} -- Empty

var:
Variable

S2 = S1

self:
Variable

:LetExp
:ownedBody :ownedIn

:ownedVariable ‘foo’:
String
LiteralExp

S3 = S1 ∪ self:Variable

:ownedInitExp

1

2

3

4 5

6

S6 = S3 ∪ var:Variable

S4 = S3 S5 = S4

Scope 
Propagation

:referredVariable

:ownedSelfVar

FIGURE 3.14: Scope propagation, according to the example from Figure 3.11

In this example, the ExpressionInOCL model element Ê corresponds to the root model
element and, therefore, its lookup scope S1 is empty. This scope must be propagated to its
children. ExpressionsInOCL is a kind of provider in mOCL. On the one hand, the scope is
propagated as it is for its child ’self’ Variable model element Ë, contained via the ownedSelfVar
reference. Therefore, the corresponding scope S2 must also be empty. On the other hand, the
scope S3 that is propagated for its child LetExp model element Ì, contained via the owned-
Body reference, additionally includes the mentioned target ’self’ Variable model element.

LetExp is another kind of provider in mOCL. On the one hand, the scope is propagated
as it is for its child ’var’ Variable model element Í, contained via the ownedVariable reference.
Therefore, the corresponding scope S4 is the same as S3. Note that Variable is not a provider
in mOCL, so the current scope is propagated as it is to the ’var’ StringLiteralExp model el-
ement Î. As a result, S5 is the same scope as S4 and S3. On the other hand, the scope S6

that is propagated for the child VariableExp model element Ï, contained via the ownedBody
reference, additionally includes the mentioned target ’var’ Variable model element.

For this particular example, Table 3.2 shows the values of all the propagated scopes of
their corresponding AS model element.

Model Element Corresponding Scope
Ê :ExpressionInOCL S1 = {}
Ë self:Variable S2 = {}
Ì :LetExp S3 = {self:Variable}
Í var:Variable S4 = {self:Variable}
Î ’var’:StringLiteralExp S5 = {self:Variable}
Ï :VariableExp S6 = {self:Variable, var:Variable}

TABLE 3.2: Computed scopes for every AS model element of Figure 3.14
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Nested scopes

Nested scope is a concept that emerges to give support to name occlusion; in other words,
to let some target model elements be occluded by others that have exactly the same name.
Figure 3.15 shows an example for this particular language requirement.

let var = ‘foo’
in let var = ‘bar’
    in var

: 
LetExp

: 
Variable
Exp

var : 
Variable

:ownedIn

:ownedVariable :ownedInitExp ‘bar’: 
String
LiteralExp

:referredVariable

: 
LetExp

var : 
Variable

:ownedVariable :ownedInitExp ‘foo’: 
String
LiteralExp

:ownedIn

1

23

45

FIGURE 3.15: Example: Nested LetExp notation and corresponding AS model

The nested LetExp example notation, in the left hand side of the figure, represents a
valid expression of mOCL. According to the AS, in the right hand side of the figure, the
VariableExp model element Ê refers to the Variable (initialised with the String ’bar’) model
element Ë contained by the inner LetExp model element Ì. This occurs because that Variable
model element Ë occludes the equally named Variable (initialised with the String ’bar’) model
element Í contained by the outer LetExp model element Î.

This scenario is supported by the concept of scopes nesting, which allows the creation of
a hierarchy of composed scopes. In this way, any target model element that belongs to an
inner (nested) scope may occlude any other target model element with the same name that
belongs to the outer (parent) scope. Figure 3.16 shows how the scopes are configured and
used during the name resolution required for this example from Figure 3.15.

Scope
‘var’-> var :Variable

(‘bar’)

var:Variable
(‘bar’)

‘var’

:LetExp :VariableExp

Scope
‘var’-> var :Variable

(‘foo’)

nested
parent

var:Variable
(‘foo’)

var:Variable
(‘bar’)

1

:LetExp

2
3

4

FIGURE 3.16: Scopes involved in the nested LetExp example from Figure 3.15

In this case, the outer LetExp model element contributes a target Variable named ’var’
(initialized with the String ’foo’) to the lookup scope Ê. The inner LetExp model element
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contributes another target Variable named ’var’ (initialized with the String ’bar’) to the corre-
sponding lookup scope Ë. However, this second scope is not the same as the first one, but a
nested one. In this way, the outer variable gets occluded by the inner one. Finally, a Variable-
Exp model element performs a name resolution activity using the String ’var’ as an input Ì.
Since the nested lookup scope contains a Variable model element whose name matches the
provided input, this Variable model element is retrieved as the result of the name resolution
activity Í.

3.5.4 Name-based Lookups

The previous subsection explained how the scopes are configured by providers and how
they are propagated from parents to children across the entire AS model. This subsection
explains how these scopes are used by consumers of the name resolution activity.

Any AS model element has access to its corresponding scope, which comprises all the
visible targets that the former can find. As commented in subsection 3.5.2, a name-based
lookup is performed by consumers in order to find a target element located elsewhere in the
AS model. In this case, these targets are the model elements that have been contributed to
its corresponding scope by providers.

A name-based lookup simply consists of querying the corresponding scope of the con-
sumer. This query requires the provision of an input (e.g. a String value) that is used for
matching a target, and the type of that target. This information required to perform the
lookup is also referred to throughout this thesis as lookup criteria. When the scopes con-
tain a map entry, whose entry-key matches the provided input, and the entry-value (i.e the
target) conforms to the provided type, the corresponding target is returned as the result of
the name-based lookup. If such a match is not found, the result would be empty, meaning
that there is no visible model element in that scope that matches the lookup criteria. If sev-
eral entries match the lookup criteria, there is a case of ambiguous name usage (see the next
sub-subsection).

The additional information on the type is needed to support selective name-based
lookups. The type information is used as a filtering criterion. For instance, in mOCL,
a Class model element can contribute, within the propagated scope, a Property model
element and an Operation model element with exactly the same name. In this case, any
children model element names should not obtain ambiguous results as the outcome of
named-based lookup. If consumers (e.g. PropertyCallExp) have the ability to provide
additionally the type of target they are looking for (e.g. Property), ambiguous lookups
can be avoided.

According to the previous example shown in Figure 3.14, the VariableExp model ele-
ment Ï requires performing a name-based lookup to locate the Variable that it needs to refer
to, via the referredVariable cross-reference. In this case, this cross-reference can be set be-
cause the corresponding scope (S6) of that VariableExp model element comprises a Variable Í

model element whose name is ’var’ (see Table 3.2). In terms of this name-based lookup, the
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input is the String ’var’, the target type is Variable and the outcome of the lookup is the
Variable model element with name ’var’.

Ambiguous Names

Name-based lookups are not guaranteed to be successful. A trivial example of this is the case
where no target element is found in the corresponding scope. The other possible erroneous
situation is where the outcome comprises more than one candidate target. In this case,
it turns out that the input, i.e. the name, provided to perform the name-based lookup is
ambiguous. In this thesis, this situation is referred to as an ambiguous lookup. Ambiguous
names can be cured by means of qualified name-based lookups (see further Section 3.5.5).

For instance, in UML and OCL (hence mOCL), multiple inheritance is allowed among
Class model elements. OperationCallExp model elements refer to the corresponding Opera-
tion model element, via the referredOperation cross-reference. Then, it may occur that when
an OperationCallExp performs a name-based lookup to locate the corresponding Operation
model element, the input value used for performing the lookup may correspond to two dif-
ferent Operation model elements in that particular scope. In this case, the name-based lookup
has been performed with an ambiguous name. As it is explained in the next Section 3.5.5,
using the fully qualified name of the operation can solve the ambiguity.

Nested Scopes

The previous subsection explained why nested scopes are needed and how they are popu-
lated. In this subsection, it is described how the name-based lookup is performed providing
that it operates on nested scopes.

A name-based lookup works with nested scopes in nearly the same way as if they were
not nested. The difference is that, if there is no target in the nested scope that fulfils the
lookup criteria, the lookup is retried in its parent scope.

Nesting scopes prevents ambiguous lookups from occurring, provided that in a par-
ticular language an ambiguity is not expected for that particular name-based lookup. For
instance, as was previously explained in the example from Figure 3.15, the ’var’ name is un-
ambiguously resolved to the Variable model element that belongs to the inner (nested) scope.
This occurs because, within the nested scope, the Variable ’var’ is unique. Besides, nesting
scopes does not prevent targets belonging to outer (parent) scopes from being found, pro-
viding that no target fulfils the lookup criteria in the inner (nested) scope.

3.5.5 Qualified Name-based Lookups

So far, basic name-based lookups, which are performed by AS model elements to find an-
other one located somewhere else in the AS model, have been introduced. Whilst this mech-
anism allows name resolution to occur without letting a consumer know where the provider
is located in the AS model (and vice versa), the lookups are restricted to accessing the tar-
gets visible in the corresponding current scope of a consumer. This is the normal case when
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resolving the name resolution, but there are special scenarios where a consumer has to re-
fer legally to a target which is not within its corresponding scope. This and the following
subsection explain these scenarios and the corresponding name-based lookup mechanisms.

This subsection introduces a new kind of name-based lookup required to overcome new
scenarios that cannot be tackled with the lookup mechanisms shown in the previous sub-
section. For instance, in mOCL, it may occur that an OperationCallExp model element has to
refer to a static Operation model element. The problem arises when the latter is not visible
because the former’s scope is not propagated from the Class model element that contributes
that Operation model element.

The required particular lookup is called qualified name-based lookup and is described
by means of the following characteristics:

• The lookup relies on giving the targets the ability to qualify other target elements. In
essence, a target element can be qualified by another preceding target. A sequence of
preceding qualifying targets comprises the qualification of the desired target to look
up.

• The lookup criteria are enhanced with a more complex input. The lookup is performed
with a list of inputs, rather than a single one. Each input is used for sequentially
matching each of the preceding targets of the desired one.

• The actual wanted target does not necessarily need to be within the corresponding
scope of a consumer. A target that is not visible in the corresponding scope of a con-
sumer could be found, as long as: the target corresponding to the first input of the list
is in the consumer’s scope, and the subsequent names of the input’s list match all the
subsequent targets of the qualification, including the final wanted target.

An example of this qualified name-based lookup can be found in mOCL, where Pack-
age model elements qualify Class and other nested Package model elements. Moreover, Class
model elements also qualify Operation and Property model elements. In this way, a fully qual-
ified Operation model element can be found by any consumer, such as an OperationCallExp
model element, regardless of whether the former is in the scope of the latter.

p1 : 
Package

c1 : 
Class

:ownedOperations:ownedClasses

p1::c1::o1

o1 : 
Operation

c2 : 
Class

...
: 
Operation
CallExp

:ownedClasses

:referredOperation

FIGURE 3.17: Qualified name-based lookups

Figure 3.17 shows a concrete example. The Operation ’o1’ is qualified by the Class ’c1’,
which is qualified by the Package ’p1’. An OperationCallExp model element that is indirectly
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contained by the Class ’c2’ may need to refer to that Operation ’o1’. However, the target
model element is contained by a different Class ’c1’, which does not contribute the wanted
Operation ’o1’ to the scope of the OperationCallExp model element. Therefore, a qualified
name-based lookup can be performed to locate that operation. In mOCL, fully qualified
names are specified by separating simple names with a double colon (i.e. ’::’), comprising
the list of simple names that the lookup needs as part of the lookup criteria. Providing that
there is a Package model element with name ’p1’ (the first name of the list) within the scope
of the OperantionCallExp model element, the lookup can proceed to find the subsequent Class
’c1’ and, finally, the wanted Operation ’o1’.

Qualified name-based lookups can be used for disambiguating lookups (explained
in the previous subsection). Provided that a name lookup (within the scope of a
consumer) returned more than one target (ambiguous lookup), the ambiguity could
be solved by performing a qualified name-based lookup that uses the corresponding
fully qualified name of the wanted target.

3.5.6 Name-based External Lookups

This subsection introduces the analysis of another problem related to name resolution, namely
the need for performing lookups out of the corresponding scope of a consumer. Specifically,
this external lookup is done in an exported scope of a particular provider that the consumer
has access to. Figure 3.18 shows a scenario in mOCL that motivates the need for external
lookups.
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FIGURE 3.18: Example: PropertyCallExp accessing an out of the scope Property

According to the example’s notation, in the left hand side of the figure, there is an ex-
pression ’c1.p1’ which is the body of the Operation ’getP1’. This valid expression corresponds
to a PropertyCallExpression model element Ê that refers to the Property ’p1’ Ë. The source of
that PropertyCallExpresion Ê is another PropertyCallExpression model element Ì that refers to
the Property ’c1’ Í.

Whilst the Property ’c1’ Í is within the corresponding scope of the PropertyCallExp Ì, the
Property ’p1’ Ë is not. In other words, the target property belongs to the Class ’c1’ Î rather
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than the Class ’c2’ Ï; hence, it is not visible from PropertyCallExp Ê. However, the contributor
Class ’c1’ of that Property ’p1’ can be accessed from that PropertyCallExp model element Ê (the
navigation to access the exported scope of the contributing Class model element is shown
in Listing 3.14). Therefore, a name-based external lookup can be performed to find that
Property ’p1’, within the exported scope of the Class ’c1’.

1 ownedSource.referredProperty.type
LISTING 3.14: Navigation from PropertyCallExp Ê to Class ’c1’ Î

As will be explained in the proposed solution (Section 4.2.5), the current AS model el-
ement’s scope (that can only be accessed by the provider’s children) and the exported
one (that can be accessed by anyone) do not necessarily comprise the same targets. In
essence, a provider may contribute different targets in each scope.

3.5.7 Additional Lookup Criteria

This subsection illustrates another problem related to name resolution, namely the need
for enhancing the lookup criteria to perform additional filtering of the candidate targets.
This requirement can be explained when going into more detail regarding Operation model
element lookups that are performed from OperationCallExp model elements. In this case, the
lookup criteria, which comprise the type of model element to look up (Operation) and the
input name to match an instance of that type, are not enough.

The reason is that different Operation model elements, within the same scope, can legally
have the same name. Therefore, they have to be further filtered according to an additional
criterion, for instance, the Operation signature. In this case, the lookup criteria have to be
enhanced with additional inputs related to the arguments involved in the operation call
expression.

3.5.8 Looking Up into External Models

Finally, this subsection introduces the last relevant concern regarding name resolution. In
this case, it is related to the need for performing name-based lookups into external models.
For instance, OCL is a language designed to write constraints defined on (meta-)models. On
the one hand, the AS defines some language constructs, such as PropertyCallExp and Opera-
tionCallExp, that are required to link to external (meta-)models with the aim of referring to
the corresponding Property or Operation. Figure 3.19 shows the excerpt for this kind of AS
concepts.

On the other hand, unlike other object-oriented languages such as Java, OCL does not
provide any concrete syntax to define these external (meta-)models. Instead, the specifica-
tion [39] delegates to implementors to provide the required mechanism to make the external
(meta-)models available. Practical implementations, such as Eclipse OCL, provide an Import
construct so that the involved meta-models can be explicitly loaded by the tools (e.g. parser,
editors).
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FIGURE 3.19: Meta-model excerpt of the OCL AS (Figure 8.3 from [39])

In general, the concern here consists of letting AS models parsed from some textual in-
puts refer to external models. These models do not even mandate to have a specific textual
notation. They can be just external models loaded by the involved modeling tools.

3.6 How Does Xtext Address These Concerns?

In the previous sections, the different concerns that have to be addressed to bridge the CS
and AS of CTMLs were analysed. Prior to explaining the proposed solution for all these
problems, we expose how Xtext is able to cope with these concerns, exposing the limitations
that have motivated this research project. Note that Xtext is not only one of the related of
work of interest (see Section 2.4), but also an industrial sponsor requirement (see Section 1.3).

3.6.1 Xtext Grammar Introduction

When introducing Xtext in Section 2.3.4, a brief overview of the technology was given in Fig-
ure 2.16. This subsection introduces the language specification artefacts required by Xtext,
i.e. the grammars that let language engineers define the CS of a language and, at the same
time, map the CS with the AS.

In Section 3.3.1, Listing 3.10 showed an EBNF excerpt of the mOCL grammar, partic-
ularly a Package definition. The following Listing 3.15 shows the corresponding excerpt
conforming to the Xtext grammar language.

Compared to EBNF, Xtext grammars provide additional syntax to declare how the dif-
ferent CS terms map to the AS concepts. For instance:
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1 PackageCS returns Package:
2 ’package’ name=ID ’{’
3 (ownedClasses+=ClassCS | ownedPackages+=PackageCS)∗
4 ’}’
5 ;

LISTING 3.15: Xtext grammar of a Package definition

• In line 1, the LHS non-terminal PackageCS maps to the meta-class Package.

• In line 2, the terminal ID maps to the attribute name.

• In line 3, the RHS non-terminal ClassCS maps to the multi-valued containment refer-
ence ownedClasses.

• In line 3, the RHS non-terminal PackageCS maps to the multi-valued containment ref-
erence ownedPackages.

Xtext grammars support 1-1 mappings directly when declaring the instances of their
specification artefacts (i.e. Xtext grammars); hence, they provide direct support to simple
textual modeling languages. The following subsections explain how Xtext can or cannot
address the different fine grained concerns introduced in Section 3.4, and name resolution
from Section 3.5.

3.6.2 Concern 1: Mapping an LHS non-terminal to a meta-class

According to Listing 3.15, in line 1, this concern is supported by Xtext by declaring the name
of the meta-class with the preceding keyword returns. In this example, the LHS non-terminal
PackageCS maps to the meta-class Package.

3.6.3 Concern 2: Mapping an RHS non-terminal to a reference

According to Listing 3.15, in line 3, this concern is supported by Xtext by assigning that
RHS non-terminal to the name of a reference. This reference must exist within the meta-
class (or any of their super meta-classes) that is mapped to the LHS non-terminal of the
corresponding syntactic rule. According to Listing 3.15, the RHS non-terminal ClassCS maps
to the reference Package::ownedClasses.

With respect to the kind of reference, the following comments apply:

• The ’=’ or ’+=’ assignment operator is used, depending on whether the reference is
mono-valued or multi-valued.

• Only containment references are expected. Cross-references cannot be used with RHS
non-terminals. However, Section 3.6.9 further shows how some cross-references can
be assigned to what Xtext denominates as cross-referenceable terminals.



3.6. How Does Xtext Address These Concerns? 69

3.6.4 Concern 3: Mapping a terminal to an attribute

According to Listing 3.15, in line 2, this concern is supported by Xtext by assigning the termi-
nal to the name of an attribute. The attribute must exist within the meta-class (or any of their
super meta-classes) that is mapped to the LHS non-terminal of the corresponding syntactic
rule. According to Listing 3.15, the terminal ID maps to the attribute NamedElement::name.

3.6.5 Concern 4: Mapping an RHS non-terminal to a reference and additional
meta-classes

By means of their language specification artefacts, this concern cannot be addressed with
Xtext.

3.6.6 Concern 5: Mapping an LHS non-terminal to many meta-classes

By means of their language specification artefacts, this concern cannot be addressed with
Xtext. That said, from a technical point of view, a language engineer could customise the
generated Java code so that a post-processor can actually create the additional model ele-
ments and add them to the model element that conforms to the mapped meta-class.

3.6.7 Concern 6: Multi-way mappings from LHS non-terminals to meta-classes

By means of their language specification artefacts, this concern cannot be addressed with
Xtext.

3.6.8 Concern 7: Mapping properties from non grammar terms

By means of their language specification artefacts, this concern cannot be addressed with
Xtext. That said, from a technical point of view, a language engineer could customise the
generated Java code so that a post-processor can actually compute all the missing properties.

3.6.9 Concern 8: Name Resolution

By means of their language specification artefacts, Xtext can partially cope with the name
resolution concerns. That said, from a technical point of view, a language engineer could
customise the generated Java code so that the required lookup algorithms are consumed by
the Xtext name resolution infrastructure.

With respect to how name resolution concerns are partially addressed, Xtext provides
a default name resolution support so that Xtext grammars can be enough for certain tex-
tual modeling languages. To explain the underlying behaviour, Listing 3.16 shows the Xtext
grammar corresponding to the Listing 3.11 from Section 3.3.2. The EBNF grammar excerpt
has been reworked so that it is a valid Xtext example that exposes the name resolution de-
fault behaviour.

The default name resolution support is characterised as follows:
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1 ClassCS returns Class:
2 ’class’ name=ID
3 ’extends’ (superClasses+=[Class|QualifiedID] (’,’ superClasses+=[Class|

QualifiedID] )∗ )? ’{’
4 // the remainder of Class definition syntax has been omitted
5 ’}’
6 ;
7

8 QualifiedID returns Ecore::EString:
9 ID (’::’ ID)∗

10 ;
LISTING 3.16: Xtext grammar of a Class extension definition

• Firstly, name resolution is performed to compute cross-references. In line 3, the su-
perClasses reference name that appears before the ’+=’ operator is a cross-reference. In
this case, it is a cross-reference of the Class meta-class (the return type of that syntactic
rule).

• Name resolution is expressed by means of the ’[’ and ’]’ operators that appear after
the assignment operator (’+=’) (see line 3). The type of the element to look up is pro-
vided in square brackets, followed by a separator ’|’ to specify which is the token that
provides the input (i.e. String value) to perform the name-based lookup.

• All AS meta-classes with an attribute name are possible targets of Xtext name resolu-
tion. In other words, any named target forcibly requires an attribute called name (see
line 2).

• There is a default scoping policy, as long as inner named targets are directly contained
by another named target. Otherwise, all non-scoped targets are visible across the entire
AS model. In our example, the default scoping policy would apply, because Class
model elements are directly contained by Package model elements.

• More complex qualified named-based lookups are also supported by default, based
on the default scoping policy. In other words, a non-visible Class model element is
accessible, as long as the fully qualified name of that model element (i.e. writing <my-
PackageName>::<myClassName>) is provided.

Making name resolution work in Xtext requires designing the grammar with some re-
strictions in mind (i.e. forcing the AS to adopt the Xtext conventions). Although many of
the Xtext conventions are reasonable, they may not adjust to a particular AS meta-model
definition. Moreover, some name resolution scenarios introduced previously do not adjust
to the default behaviour, or simply the default name resolution scenario may not apply to a
particular textual modeling language.
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3.7 Summary

Chapter 3 presented an analysis of the different concerns that need to be taken into account
when bridging the CS and AS of CTMLs.

Firstly, some additional terminology and the running example were introduced in Sec-
tion 3.1 and Section 3.2 respectively.

Then, the difficulties related to bridging CS and AS were detailed in Section 3.3 and
Section 3.4, from a coarse grained and fine grained perspective respectively.

Name resolution is a substantial concern that was introduced in its own Section 3.5,
showing the different scenarios that a name resolution activity needs to address.

Finally, it was pointed out how Xtext can address some of the presented concerns. At the
same time, the limitations that prevent it from addressing some of the other concerns were
likewise introduced.
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Chapter 4

Solution Design & Implementation

In the previous chapter, all the different concerns that arise when bridging the CS and AS
of a Complex Textual Modeling Language (CTML) were explained. This chapter focuses
on describing a solution proposed to address all these problems, including the technical
description of the prototype developed to realise that solution and the limitations that the
solution provides.

4.1 Solution Overview

This section introduces the overall solution, identifying the existing technologies that are
reused within the whole approach, and the different layers or stages in which that approach
is divided, including discussions about related work. Further sections focus individually on
the technical details of each stage, including how the solution integrates within a modern
language workbench such as Xtext.

4.1.1 Overall Approach

The overall approach is depicted in Fig. 4.1. As occurs with traditional approaches, the CS
for a particular textual language is given in the form of a grammar Ê. Likewise, the ap-
proach relies on existing related work to move from grammarware to modelware, so that a
meta-model Ë can be derived automatically from the grammar definition. However, this
meta-model (referred to as the CS meta-model) represents the syntactic structure of the tex-
tual input. Therefore, it can differ substantially from the actual meta-model Ì that repre-
sents the AS of the modeling language. Expressing potentially complex bridges Í between
the CS and AS of a CTML consists of establishing mappings between the concepts of the
CS and AS meta-models. In the same way that current technologies are able to generate the
parser Î responsible for consuming textual inputs to produce the corresponding CS models,
the proposed solution generates the M2M transformation Ï responsible for transforming CS
models into AS models.

With respect to how the M2M transformation is generated from CS2AS bridge descrip-
tions, Figure 4.2 shows the overall approach. Instances of a new external DSTL Ê [65],
called CS2AS-TL, are in charge of bridging the gap between CS and AS meta-models. These
instances are then transformed into a set of Complete OCL files, according to an OCL-based
internal DSTL Ë [66]. This set of Complete OCL files are transformed into a declarative
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FIGURE 4.1: Overall approach

M2M transformation, in particular one of the low-level declarative QVT languages Ì [76].
Finally, a Java-based transformation Í is generated that is capable of consuming CS models
to produce AS ones.

Design and implementation details about this overall solution are shown in further sec-
tions of this chapter. The following subsections discuss the overall approach, including
comments about related work.
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FIGURE 4.2: Compilation process from CS2AS-TL to Java
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All the developed source code is publicly available in a GitHub repositorya so that it
can be consulted and used as required. The third party code used by the prototype is
also publicly available in official Eclipse repositoriesbc.

ahttps://github.com/adolfosbh/cs2as
bhttps://git.eclipse.org/r/ocl/org.eclipse.ocl
chttps://git.eclipse.org/r/mmt/org.eclipse.qvtd

4.1.2 Approach Discussion

Grammarware-to-Modelware vs CS2AS

The gap between CS and AS requires to be bridged, and there should be a technological
space shift from grammarware to modelware. At runtime, it turns out that a textual input
(conforming to the CS) needs to be transformed into a model (conforming to the AS).

From a technological space perspective, the solution proposed in this thesis works as
shown in Figure 4.3. Firstly, a grammarware to modelware technological space shift is per-
formed, so that a CS model is obtained from the corresponding textual input file. This
model conforms to the so-called CS meta-model, which can be derived automatically (as
Xtext does) with no requirement to comply with a particular structure or design. Then,
bridging the gap between the CS and AS can be performed by means of M2M transforma-
tions so that the final AS model can be obtained. Therefore, this CS2AS activity entirely
operates in the modelware technological space.

Grammarware to
Modelware

CS to AS
(Modelware)

Textual
Input

CS 
Model

AS
Model

FIGURE 4.3: Grammarware-to-Modelware vs CS-to-AS

Reformulating the CS2AS Fine Grained Concerns

In order to understand how the solution can address the fine grained concerns explained in
Chapter 3, a reformulation is required. This requirement comes from the fact that the CS2AS
bridges are established in the modelware technological space. Therefore, concepts from the
grammarware technological space (e.g. terminals, non-teminals etc.) no longer apply.

The reformulation relies on how current related work deals with grammarware-to-modelware
bridges, i.e:

• An LHS non-terminal corresponds to a CS meta-class.

• An RHS non-terminal corresponds to a CS reference.

• A terminal corresponds to a CS attribute.

https://github.com/adolfosbh/cs2as
https://git.eclipse.org/r/ocl/org.eclipse.ocl
https://git.eclipse.org/r/mmt/org.eclipse.qvtd
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In consequence, the seven concerns presented in Section 3.4 are reformulated as follows:

• Concern 1: Mapping a CS meta-class to an AS meta-class.

• Concern 2: Mapping a CS reference to an AS reference.

• Concern 3: Mapping a CS attribute to an AS attribute.

• Concern 4: Mapping a CS reference to an AS reference and additional AS meta-classes.

• Concern 5: Mapping a CS meta-class to many AS meta-classes.

• Concern 6: Multi-way mappings from CS meta-classes to AS meta-classes.

• Concern 7: Mapping AS properties from non CS meta-model terms.

CS2AS As a Modelware Activity

The activity of bridging the CS2AS gap has been reformulated as an activity of transforming
models. In consequence, this part of the solution operates in the modelware technological
space. Likewise, all the facilities that M2M transformations offer can be used for solving the
complexities of dealing with CTMLs. Section 4.2 shows how they are particularly addressed
within CS2AS-TL.

Moreover, moving away from the grammarware technological space brings additional
advantages that are summarised below:

• Parsing-related concerns do not have to be considered by CS2AS-TL. Dealing with am-
biguous context-free grammars, left/right recursion, operators precedence etc. [1] are
grammarware concerns that still need to be addressed by the particular parser technol-
ogy or language workbench.

• Although this thesis presents a complete solution based on Xtext, the overall approach
is independent of a parsing technology (ANTLR [61], LPG [55]) or a particular lan-
guage workbench (Xtext [21] or IMP [14]). The requirement for the proposed approach
is the existence of a CS meta-model.

Testing the Approach

One of the concerns that the reader may find when analysing the proposed approach is how
it can be tested. Taking into account that the approach proposes the generation of M2M
transformations, the way of testing the original CS2AS bridges consists of applying testing
solutions from the M2M field. In particular, test cases are designed to check that output AS
models produced from M2M transformations are the same as the AS models expected by
the particular CS2AS scenario that is tested.

During this research project, different CS2AS scenarios have been tested. They are hosted
in the examples folder of the Eclipse QVTd project1. The test cases load generated M2M

1https://git.eclipse.org/r/mmt/org.eclipse.qvtd

https://git.eclipse.org/r/mmt/org.eclipse.qvtd
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transformations, which take a set of textual inputs conforming to the concrete syntax of test
languages. Then, the loaded transformations produce the corresponding AS models, which
are compared to reference AS models.

4.1.3 Related Work Discussion

To conclude the solution overview, this subsection presents a brief discussion on how the
proposed overall solution relates to previous work.

CS Meta-Model

The first body of work to mention is Muller et al. [58, 59], in which they introduce the concept
of the CS meta-model. However, this concept has some differences with respect to the one
introduced in the previous subsection. Figure 4.4 shows these differences. Muller et al. [58,
59] propose just one CS meta-model Ê that plays the role of the EBNF notation Ë. In this
way, specifying the CS of a language consists of creating a CS model Ì conforming to that
CS meta-model Ê. Additional features of this meta-model let a language engineer relate CS
concepts to AS meta-classes and properties of the target AS meta-model Í. In the case of
the proposed solution, a language-specific CS meta-model Ï is derived automatically from
a grammar definition Î. Then, an external artefact Ð is in charge of relating concepts from
the specific CS meta-model and the AS one Ñ.

EBNF
Notation

CS2AS
Bridge

CS
Grammar

CS
MM

AS
MMfrom to

CS
MM

AS
MM

CS
Model

conformsTo

Generates
Manual 
artefact
Generated 
artefact
Tool
artefact

refersTo

conformsTo

1 2

3 4 5 6 7 8

FIGURE 4.4: General CS meta-model vs language-specific CS meta-model

Looking at the principles of their CS meta-model [59], their approach has the same lim-
itations as Xtext (see Section 3.6). Although Muller et al. do not go into detail about the
different scenarios they do not support, they mention for instance that they cannot define a
“full type system“. As will be mentioned in Section 4.2, CS2AS-TL allows the computation
of the properties in charge of defining the type system of a language.

Cánovas et al. [13, 42] also introduce a similar concept, called Concrete Syntax Tree (CST)
meta-model. However, contrary to Muller et al.’s approach, this meta-model only creates a
structured model with the syntactic information of the input file. Figure 4.5 shows Muller
et al.’s CS meta-model (4.5a) and Cánovas et al.’s CST meta-model side by side (4.5b).

When compared to the proposed solution, Cánovas et al.’s CST meta-model [13] is dis-
cussed along with Figure 4.6. As with the proposed solution, a language CS definition is
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(A) A general CS meta-model from [59]

(B) A CST meta-model from [13]

FIGURE 4.5: CS meta-model based approaches

specified by means of a CS grammar Ê that conforms to the EBNF notation Ë. However,
there is no language-specific CS meta-model generation. Instead, an internal and homoge-
neous CST meta-model Ì is used, so that the specific parser Í can produce a first model Î

with the syntactic tree structure of the corresponding input file. Besides, although the def-
inition of the CS2AS bridge is defined by means of another external DSTL Ï, the instances
of that language refer (by name) to the grammar terms Ê, rather than the CS meta-model
terms.
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FIGURE 4.6: General CST meta-model vs language-specific CS meta-model

Grammarware-to-Modelware vs CS2AS

The previous subsection discussed how bridging Grammarware-to-Modelware and the CS2AS
was distinguished within the proposed approach. This subsection shows a simplified vision
of how related work tackles these activities, depicted in Figure 4.7.
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In contrast to how the proposed approach addresses these activities (see Figure 4.3),
Xtext Ê tackles them in one shot. This is done by enhancing the grammar specification lan-
guage with additional syntax to map the different grammar terms to meta-model terms.
Gra2Mol Ë presents a similar approach, although the mappings between grammar and
meta-model terms are done by means of an external DSTL. Spoofax Ì works with its own
representation of AST and, therefore, it requires an additional step to transform ASTs into
AS models.

Although it was previously mentioned that Gra2Mol uses an intermediate CST meta-
model, the latter is an implementation internal artefact. Conceptually, they present
their CS2AS bridges as a bridge between grammars and meta-models.

With respect to Xtext, Section 3.6 presented some limitations of the corresponding ap-
proach. Regarding Gra2Mol and Spoofax, Chapter 5 presents a comparative study.
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FIGURE 4.7: How Xtext Ê, Gra2Mol Ë and Spoofax Ì tackle the grammarware-
to-modelware techonological space shift.

4.2 Concrete Syntax to Abstract Syntax Transformation Language

Having outlined the overall solution, this section presents the main contribution of this the-
sis: a Domain Specific Transformation Language (DSTL) designed to define bridges between
the CS and the AS of Complex Textual Modeling Language (CTML)s. This new language is
called Concrete Syntax to Abstract Syntax Transformation Language (CS2AS-TL).
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4.2.1 Overview

As part of the overall solution that was shown in the previous Section 4.1.1, a new external
DSTL is proposed to define CS2AS bridges (see Figure 4.1). In fact, given that a grammarware-
to-modelware shift previously takes place, CS2AS-TL is a M2M transformation language that
maps CS meta-models to AS meta-models.

Rather than using a general purpose M2M transformation language, a domain-specific
one has been designed and developed to provide a more concise language that addresses the
concerns presented in Chapter 3. In particular, it is considered as domain-specific because:

• One input and output domain. CS2AS model transformations involve just one source
input domain and one target output domain. There is no need to support in-place
transformations.

• Specific name resolution related constructs. The language comprises additional con-
structs to define name resolution in a declarative and concise manner.

• Specific disambiguation rules. With the aim to support multi-way mappings, there is
a dedicated section to specify the disambiguation rules that drive this kind of mapping
execution.

Some high-level features that characterise this CS2AS-TL are the following:

• It is a declarative language, meaning that the comprising mappings specify which AS
concepts (meta-classes, properties etc.) are mapped from which CS ones, but there
is no control specification about how the transformation actually executes. Because of
this, bridges expressed in the language tend to be more concise than bridges expressed
in imperative languages.

• The base expression language corresponds to Essential OCL [39]. This facilitates the
development of the subsequent compilation steps. Additionally, this feature also sim-
plifies the development of tools designed to generate parts of OMG specifications,
such as OCL and QVT.

The language has been developed with Xtext [85]. It is divided into five parts: pre-
liminaries, helpers section, mappings section, disambiguation section and name resolution
section. The upcoming subsections delve into more detail on the CS2AS-TL syntax, but a
brief description about these five parts is introduced here. Additionally, Figure 4.8 shows
the four main language parts (called sections) and the dependencies between them.

• The preliminaries part declares the source and target domains involved during the
transformation.

• The helpers section Ê declares reusable functionality in the form of helper operations.

• The name resolution section Ë declares which AS concepts are involved in name res-
olution. In essence, targets, inputs and providers (including how they contribute tar-
gets to lookup scopes) are declared in this section. Helpers may be reused within this
section.
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• The disambiguation section Ì declares the CS disambiguation rules required by multi-
way mappings. Helpers may be reused within this section. Name resolution may be
performed from these rules.

• The mappings section Í declares how AS concepts are mapped from the CS ones.
Helpers may be reused and name resolution may be performed to compute AS prop-
erties. Multi-way mappings refer to the rules declared in the disambiguation section.

4.2.2 Expressions Syntax

The previous subsection introduced an overview of CS2AS-TL. In the following sub-
sections the whole syntax of the language is explained. Since CS2AS-TL has been
designed by means of Xtext, the language syntax is presented in the form of Xtext
grammar excerpts, along with some example scenarios to show syntax usage.

CS2AS-TL reuses Essential OCL [39] as the expression language to support navigation
of the models involved. Additionally, Essential OCL is expressive enough for creating elab-
orated expressions with potentially complex computations. In addition to the set of ex-
pressions from Essential OCL, new expressions are required which are introduced in the
following sub-subsections.

Shadow Expressions

Shadow expressions have been discussed as a possible addition (Section 3.1 from [11]) to the
OCL specification. Shadow expressions permit the construction of objects in a record-based
representation. Aligned with OCL tuples approach, these constructed shadow objects do not
have an object ID and do not impact on the system state. Therefore, they can be considered
as side-effect free shared objects.
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Listing 4.1 shows the syntax to declare shadow expressions. The syntax is similar to
OCL Tuple literal expression declarations. Firstly, instead of a Tuple keyword, a path name
is used to identify the type of the object to create (line 2). Then, a list of comma-separated
parts can be specified (line 3), enclosed by a pair of curly brackets (lines 1 and 4). Each part
consists of a property (of the constructed object type) name, followed by the ’=’ symbol and
the corresponding expression that computes the property value (line 7).

1 ShadowExpCS:
2 pathName=PathNameCS ’{’
3 (parts+=ShadowPartCS (’,’ parts+=ShadowPartCS)∗)?
4 ’}’
5 ;
6 ShadowPartCS:
7 propertyName=ID ’=’ initExp=ExpCS
8 ;

LISTING 4.1: Shadow expression syntax

Eclipse OCL supports the usage of shadow expressions. Since CS2AS-TL Xtext gram-
mar extends the Essential OCL one from the Eclipse project, CS2AS-TL does not ac-
tually need to provide new syntax for them.

Listing 4.2 shows a simple example in which a Variable model element is constructed
using a shadow expression. Line 1 declares the name of the shadow object type. Line 2
declares a part of the shadow expression, in which the Variable::name attribute is initialised
to ’self’ String value.

The usage of these shadow expressions is common in the mappings section, and they are
mainly used to declare which additional model elements are created as a result of a mapping
execution. They are used for addressing Concerns 4 and 5 from the previous chapter.

1 as :: Variable {
2 name = ’self’
3 }

LISTING 4.2: Shadow expression usage example

Trace Expressions

Trace expressions are an addition to the set of Essential OCL expressions that can be used
across the transformation language. The concept is borrowed from M2M languages like
Epsilon Transformation Language (ETL), ATL Transformation Language (ATL) and QVTo,
which provide special constructs to return target (output) model elements from source (in-
put) ones. During execution, this traceability is internally managed by means of traces that
are updated when the different mappings are executed.

Listing 4.3 shows the syntax to declare trace expressions. The syntax simply consists of
the trace keyword (line 3).
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1 TraceExp:
2 {TraceExp}
3 ’trace’ ;

LISTING 4.3: Trace expression syntax

Listing 4.4 shows a simple example in which trace expressions are used. The example
corresponds to a simplified version of a mapping that produces LetExp model elements from
LetExpCS model elements (line 1). Line 4 shows the usage of a trace expression. Whatever
CS model element is contained by the contextual LetExpCS model element, via the LetEx-
pCS::inExp containment reference, the corresponding AS model element (another OCLEx-
pression) is returned. The type of the created LetExp model element is the type of its inner
OCLExpression.

The usage of these trace expressions is common in the mappings section, particularly
when specifying the OCL expression designed to provide the initial value of an AS property.
They are mainly used for addressing Concern 7, explained in Section 3.4.8.

1 create LetExp from LetExpCS {
2 ownedVariable := letVar; −− equivalent to letVar . trace
3 ownedIn := inExp; −− equivalent to inExp. trace
4 type := inExp.trace.type;
5 }

LISTING 4.4: Trace expression usage example

Trace expressions are a kind of CallExp, which requires that the object on which they
are evaluated belong to the source (input) domain. This means that only the target
domain can be accessed from the source domain, and not the other way around.

Lookup Expressions

Finally, lookup expressions are added to the set of Essential OCL expressions that are sup-
ported by CS2AS-TL. This kind of expressions is used for performing name-based lookups,
so that the result obtained by the lookup can be used to set cross-references of target AS
model elements (name resolution consumers). They are mainly used for addressing Con-
cern 8, explained in Section 3.5.

Lookup expressions are explained in Section 4.2.5, where the syntax to declare name
resolution is shown.

4.2.3 Preliminaries Syntax

The main goal of the preliminaries is to declare the source and target domains, i.e. which
files correspond to the CS and AS meta-models. A domain is defined by one or more meta-
models, comprising all the meta-classes and data types that are available at design time.

Listing 4.5 shows the corresponding syntax. Source (lines 1–2) and target (lines 3–4)
domain declarations comprise a list of comma-separated meta-model declarations (at least
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one is required). The latter (lines 5–6) consists of an optional identifier to denote an alias and
a Uniform Resource Identifier (URI) path name, which permits specifying the URI of the
corresponding meta-model file. The previous Listing 4.6 shows an example of the notation.

1 SourceDomain:
2 ’source’ metamodels+=MetaModelDecl (’,’ metamodels+=MetaModelDecl)∗ ;
3 TargetDomain:
4 ’target’ metamodels+=MetaModelDecl (’,’ metamodels+=MetaModelDecl)∗ ;
5 MetaModelDecl:
6 ( alias=ID ’:’)? uri=STRING;

LISTING 4.5: Source and target domain syntax

Listing 4.6 shows an example of this declaration, where the mOCL CS meta-model gener-
ated by Xtext is declared (line 1). The manually created AS meta-model is likewise declared
(line 2).

1 source cs : ’generated/MiniOCLCS.ecore#/’
2 target as : ’/org.eclipse.qvtd.doc.miniocl/model/MiniOCL.ecore#/’

LISTING 4.6: Source and target domain declaration

4.2.4 Helpers Section Syntax

The helpers section is designed to declare reusable functionality. In particular, contextual
operations can be defined so that they can be invoked by any OCL expression.

Listing 4.7 shows the syntax of the helpers section. Lines 1–4 show the syntax of the top
level declaration of the section. It consists of the helper keyword (line 2) and an arbitrary
number of helper class declarations (line 3) enclosed by a pair of curly brackets (lines 2 and
4). Lines 5–8 show the syntax of the helper class declaration. It consists of a context declara-
tion (line 6) and an arbitrary number of class helper operation declarations (line 7) between
a pair of curly brackets (lines 6 and 8). Lines 9–13 show the syntax of the helper operation
declaration. It consists of a name (line 10), an arbitrary number of parameter definitions
between rounded brackets (line 11), the operation result type (line 12) and the helper body
(line 13), which is an expression. Finally, lines 15–16 show a parameter definition. It consists
of a name and the corresponding type declaration (line 16).

Listing 4.8 shows some general helpers that are required by mOCL. For instance, the
commonSupertype helper operation (lines 3–6) can be invoked on a Class model element (line
2) to determine which is the common super class between that Class model element and an
another Class model element (line 3). An additional conformsTo helper operation (lines 7–9)
can be invoked to determine whether the contextual Class model element (line 2) is the same
type or subtype of another Class model element (line 7).

4.2.5 Name Resolution Syntax

The name resolution section is designed to declare how name resolution (Concern 8 from
Section 3.5) is addressed for a particular language.
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1 HelpersSect:
2 {HelpersSect} ’helpers’ ’{’
3 classHelpers+=ClassHelper∗
4 ’}’ ;
5 HelperClass:
6 context=PathNameCS ’{’
7 helpers+=HelperDef∗
8 ’}’ ;
9 HelperOperation:

10 name=ID
11 ’(’ (params+=ParameterDef (’,’ params+=ParameterDef)∗)? ’)’
12 (’:’ type=PathNameCS)?
13 ’:=’ helperBody=ExpCS
14 ’;’ ;
15 ParameterDef:
16 name=ID ’:’ type=PathNameCS ;

LISTING 4.7: Helpers section syntax

1 helpers {
2 as :: Class {
3 commonSupertype(another : Class) : Class :=
4 let allSupertypes = self−>asOrderedSet()−>closure(superClasses),
5 allOtherSupertypes = another−>asOrderedSet()−>closure(superClasses)
6 in allSupertypes−>intersection(allOtherSupertypes)−>any(true) ;
7 conformsTo(another : Class) : Boolean :=
8 self = another or
9 superClasses−>exists(conformsTo(another));

10 }
11 }

LISTING 4.8: Helpers section example
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When the concern was analysed in Section 3.5, four different roles were identified: tar-
gets, inputs, providers and consumers. This name resolution section deals with the first
three. Regarding the fourth, consumers make use of lookup expressions to perform a name-
based lookup. Lookup expressions are explained at the end of this subsection.

Listing 4.9 shows the syntax of the top level declaration of the section. It consists of the
name_resolution keyword (line 3). Then, a pair of curly brackets (lines 3 and 7) enclose the
declaration of targets (line 4), inputs (line 5) and providers (line 6) clauses.

1 NameResolutionSect:
2 {NameResolutionSect}
3 ’name_resolution’ ’{’
4 targetsDef=Targets?
5 inputsDef=Inputs?
6 providersDef=Providers?
7 ’}’ ;

LISTING 4.9: Name resolution section syntax

The following sub-subsections delve into the details of these three clauses. The fourth
sub-subsection details how the consumers perform name resolution by means of lookup
expressions.

Targets

The first clause, called targets, is used for declaring which are the AS meta-classes of targets
of name-based lookups (including an identifying identifier expression). Optionally, an addi-
tional filter definition can be used for filtering the possible candidates that match a particular
name. Targets can also qualify other targets.

Listing 4.10 shows the syntax to declare the targets involved in a name resolution ac-
tivity. It consists of the targets keyword (line 3), followed by an arbitrary number of target
declarations (line 4) between a pair of curly brackets (lines 3 and 5). A target declaration
consists of the name of an AS meta-class (line 7), optionally followed by the using keyword
and an expression that evaluates to a (primitive) value to identify the target (line 8); this
expression is referred to as identifying expression. An optional ignore_case keyword (line
8) can be specified, so that the target name-based lookups are name case-insensitive. An op-
tional definition of escape sequences (line 9) can be defined, so that a prefix, and optionally
a suffix (line 16), can be used to match target names. Then, an optional filter definition (line
10) and a qualification definition (line 11) complete the target definition (further explained).

Escape sequences for name lookups are used in order to find targets that clash with
language keywords (e.g. a property of a meta-class named and). In previous versions
of OCL, this was supported by preceding the target name with an underscore symbol
(e.g. _and). Although this approach is not recommended (e.g. an and property cannot
be accessed if there exists also an _and property), CS2AS-TL supports it by means of
these escape sequence definitions.
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1 Targets:
2 {Targets}
3 ’targets’ ’{’
4 targets+=Target∗
5 ’}’ ;
6 Target:
7 classRef=PathNameCS
8 (’using’ identifyingExp=ExpCS ignoreCase?=’ignore_case’?
9 escapingSeqDef=EscapeSequenceDef? )?

10 filter =FilterDef?
11 qualification =QualificationDef?
12 ’;’ ;
13 EscapeSequenceDef:
14 ’escaped_with’ escapes+=EscapeSequence (’,’ escapes+=EscapeSequence)∗ ;
15 EscapeSequence:
16 prefix=StringLiteral (’and’ suffix=StringLiteral)? ;

LISTING 4.10: Targets definition syntax

The specification of the identifying expression can be omitted as long as the target
meta-class extends (directly or indirectly) another target meta-class for which an iden-
tifying expression has been defined (See the example below).

Listing 4.11 shows a simple example where a meta-class NamedElement is declared as a
target type and the expression name is used for identifying NamedElement targets. Addition-
ally, the meta-class Class is also declared as a possible lookup target. Since Class extends
NamedElement, the declaration of the identifying expression is omitted.

1 targets {
2 NamedElement using name escaped_with ’_’;
3 Class;
4 }

LISTING 4.11: Targets definition example

As explained in Section 3.5.7, when looking up a particular target, additional inputs may
enhance the lookup criteria to choose among several candidates that may match a particular
name. An example of this scenario in mOCL occurs when looking up Operation model ele-
ments. Not only is the name of the operation required, but also additional arguments (from
the operation call) are used to discriminate among different operations with the same name.

Listing 4.12 shows the syntax of a filter definition. It consists of the filtered_by keyword,
followed by an arbitrary number of parameters to declare the additional input that is re-
quired, and a when condition expression that refers to these parameters. This condition is
used for evaluating whether the particular target fully complies with the lookup criteria.

Listing 4.13 shows an example of how the Operation meta-class is declared as a target of
name resolution. It requires an additional arguments filtering parameter (line 3) to enhance
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1 FilteringDef :
2 ’filtered_by’
3 params+=ParameterDef (’,’ params+=ParameterDef)∗
4 ’when’ expression=ExpCS;

LISTING 4.12: Filters definition syntax

the lookup criteria. This parameter is used by a filtering condition (lines 4–7) to filter the
adequate Operation model elements. In this case, the condition consists of checking that the
number of operation parameters is the same as the number of arguments (the additional in-
put that forms the lookup criteria). Additionally, the type of every argument must conform
to the type of the corresponding operation parameter.

1 targets {
2 NamedElement using name;
3 Operation filtered_by arguments : OrderedSet(OCLExpression)
4 when ownedParameters−>size() = arguments−>size() and
5 arguments−>forAll(x |
6 let argIdx = arguments−>indexOf(x)
7 in x.type.conformsTo(ownedParameters−>at(argIdx).type));
8 }

LISTING 4.13: Filters definition example

In mOCL, OperationCallExp model elements are the consumers of Operation model
elements. The former contain and provide the required arguments to perform lookups
of the latter.

As explained in Section 3.5.5, a target can qualify other targets, with the aim of facili-
tating qualified name-based lookups. For instance, Property model elements can be looked
up by using their qualified name, which consists of the name of their own Property model
element, preceded by the ’::’ symbol-separated list of its transitive qualifiers. In this case,
Property model elements are qualified by Class model elements, which are qualified by Pack-
age model elements. In CS2AS-TL, the qualification definitions rely on declarations specified
by the qualifier target. In this way, the qualifier target declares, by means of OCL expres-
sions, which are the actual model elements that it qualifies.

Listing 4.14 shows the syntax of a target qualification definition. It consists of the qualifies
keyword (line 2), followed by an arbitrary number (at least one) of qualifications (line 2).
A qualification consists of one or more path names to refer to the qualified class/es (line
4), followed by the using keyword and a comma-separated list of OCL expressions that
comprise the model elements that are actually qualified (line 5).

CS2AS-TL requires that the referred meta-class/es of a qualification definition is/are
declared as a target.
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1 QualificationDef:
2 ’qualifies’ qualifications+=Qualification (’,’ qualifications+=Qualification)∗ ;
3 Qualification :
4 qualifiedClasses=MultiplePathNames
5 ’using’ contributions+=ExpCS (’,’ contributions+=ExpCS)∗ ;
6 MultiplePathNames:
7 pathNames+=PathNameCS (’,’ pathNames+=PathNameCS)∗ ;

LISTING 4.14: Qualification definition syntax

Listing 4.15 shows an example of the declarations required to allow qualified name
lookups of Property targets. Lines 3–5 declare that Package model elements qualify other
(nested) Package model elements and Class model elements. Regarding the latter, the ac-
tual qualified model elements are those owned via the Package::ownedClasses containment
reference. Additionally, lines 6–7 declare that Class model elements qualify Property model
elements, particularly those owned via the Class::ownedProperties containment reference.

1 targets {
2 NamedElement using name;
3 Package qualifies
4 Package using ownedPackages
5 Class using ownedClasses
6 Class qualifies
7 Property using ownedProperties;
8 Property;
9 }

LISTING 4.15: Qualified/qualifier targets example

Inputs

The second clause, called inputs, is used for declaring which kind of CS information takes
part in the lookup criteria. By default, any (primitive) value that conforms to the type of the
identifying expression of a target can be used as a lookup input. However, additional model
elements that conform to CS meta-classes can also be used as alternative lookup inputs.
These additional input types have to be declared in this clause. An input type declaration
may refer to CS meta-classes designed to comprise qualified names.

Listing 4.16 shows the syntax to declare the type of inputs involved in a name resolution
activity. It consists of the inputs keyword (line 3), followed by an arbitrary number of input
declarations (line 4) enclosed by a pair of curly brackets (lines 3 and 5). An input decla-
ration consists of a name of a CS meta-class (line 8), followed by the using keyword and a
expression that is used for matching targets. Therefore, the type of this expression must be
another input type (explicitly defined or any default input type). Finally, the input type dec-
laration may be preceded by the qualifier keyword (line 7), meaning that the input comprises
a qualified name (or a list of inputs).
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1 Inputs:
2 {Inputs}
3 ’inputs’ ’{’
4 inputs+=Input∗
5 ’}’;
6 Input:
7 ( qualifier ?=’qualifier’)?
8 typeRef=PathNameCS (’using’ matchExp=ExpCS)? ’;’ ;

LISTING 4.16: Inputs definition syntax

Listing 4.17 shows the type of inputs defined for mOCL. Apart from the default String
data type to match NamedElement targets, two additional input types are declared. A first
input type PathElementCS is declared (line 3), being the elementName expression (whose type
is String) used for matching targets. A qualifier input type PathNameCS is also declared (line
4), being the pathElements expression (whose type is a collection of PathElementCS), used for
comprising the list of inputs for a qualified name.

1 inputs {
2 −− NB String is a default input type
3 PathElementCS using elementName;
4 qualifier PathNameCS using pathElements;
5 }

LISTING 4.17: Inputs definition example

Providers

This clause is presented in an incremental way, so that the syntax for simple scenarios
is shown first, along with an illustrative example, and then the syntax is incrementally
enhanced to show more elaborated scenarios.

The third clause, called providers, is used for declaring how AS meta-classes contribute
targets to lookup scopes. The contributions can be made into the current lookup scope (see
Section 3.5.4) or into the exported lookup scope (see Section 3.5.6).

Recall that there is a default behaviour with respect to the scopes. In the case of the
current lookup scope, this is propagated from parent to children as it stands, without modi-
fication. In the case of the exported lookup scope, it is empty. Therefore, this clause includes
contribution declarations on the particular providers that modify the default behaviour, in
this case by adding targets to the scope.

Listing 4.18 shows the syntax to declare the providers involved in a name resolution
activity. It consists of the providers keyword (line 3), followed by an arbitrary number of
provider declarations (line 4) enclosed by a pair of curly brackets (lines 3 and 5). A provider
declaration consists of a name (line 7) of an AS meta-class, followed by an optional variables
declaration (line 8) and optional declarations of the current and exported scopes (lines 9–10),
enclosed by a pair of curly brackets (lines 7 and 11). The provider variables declaration is a
sub-clause to declare variables that can be reused across the provider declaration. It consists
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of the vars keyword (line 13), followed by an arbitrary number (at least one) of variable
declarations (line 13). The current scope definition (line 9) and the exported scope definition
(line 10) are explained below.

1 Providers:
2 {Providers}
3 ’providers’ ’{’
4 providers+=Provider∗
5 ’}’ ;
6 Provider:
7 classRef=PathNameCS ’{’
8 varsDecl=ProviderVarsDecl?
9 currentScope=CurrentScopeDecl?

10 exportedScope=ExportedScopeDecl?
11 ’}’ ;
12 ProviderVarsDecl:
13 ’vars’ varDecl+= LetVariableCS (’,’ varDecl+=LetVariableCS)∗ ’;’ ;

LISTING 4.18: Providers definition syntax

A provider can declare how targets are contributed to the current scope. Listing 4.19
shows the syntax to deal with this requirement for simple scenarios. The syntax consists of
the keywords in and current_scope (line 2), followed by at least one provision definition (line
3). The syntax of a provision definition starts with the keyword provides (line 5), followed
by an arbitrary number (at least one) of provisions (line 5), and ends with a semicolon (line
6). These provisions declare which are the actual targets contributed to the current scope.
The syntax consists of an optional declaration of the names (line 8) of the kind of targets
that are provided, and the keyword using (line 8). Then, a contribution definition (line 9) is
required, whose syntax consists of at least one comma-separated contribution (line 13). For
the simple case, the contribution syntax comprises the OCL expression (line 15) that collects
one or many contributed targets.

1 CurrentScopeDecl:
2 ’in’ ’current_scope’
3 provisionDefs+=CurrentScopeProvisionDef+ ;
4 CurrentScopeProvisionDef:
5 ’provides’ provision+=Provision+
6 ’;’ ;
7 Provision:
8 (providedClasses=MultiplePathNames ’using’)?
9 contributionDef=ContributionDef ;

10 MultiplePathNames:
11 pathNames+=PathNameCS (’,’ pathNames+=PathNameCS)∗ ;
12 ContributionDef:
13 contributions+=Contribution (’,’ contributions+=Contribution)∗ ;
14 Contribution:
15 expression=ExpCS ;

LISTING 4.19: Current scope contributions syntax
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The names of the provided meta-classes can be omitted because they can be inferred
from the expression/s involved in the contribution definition.

Listing 4.20 shows an example. It declares that the AS meta-class Class (line 2) is a target
provider. It contributes to the current scope (line 3) its owned properties (line 6) and its
owned operations (line 7). In this way, any of their children could find these targets by
means of a name-based lookup.

1 providers {
2 Class {
3 in current_scope provides
4 −− The target type specification could be omitted because
5 −− it could be inferred from the contribution expression
6 Property using ownedProperties
7 Operation using ownedOperations;
8 }
9 }

LISTING 4.20: Simple current scope provision example

By default, current scopes are propagated to children as they are passed from parents,
and specific providers can include new targets in them. However, Section 3.5.3 explained
that nested scopes can be rather propagated, with the aim of occluding equally named tar-
gets contributed by the provider’s ancestors.

Listing 4.21 shows the syntax to comply with this requirement. In this case, the current
scope provision definition syntax is enhanced by an optional declaration of keywords (line
3) that precedes the provisions (line 4). These keywords specify in which kind of scope the
provided targets are included:

• adding means that targets are contributed to the same scope propagated from the par-
ent. This is the default, in the case of keyword absence.

• occluding means that targets are contributed to a new nested scope (see Section 3.5.3).

• resetting means that targets are contributed to a new empty scope.

1 CurrentScopeProvisionDef:
2 ’provides’
3 (’occluding’ | sameScope?=’adding’ | emptyScope?=’resetting’)?
4 provisions+=Provision+
5 ’;’ ;

LISTING 4.21: Children selection syntax
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There is no case in mOCL in which resetting a propagated scope is actually needed.
However, for completeness, CS2AS-TL supports the case where targets available in a
model element current scope are no longer so for its children.

Listing 4.22 shows an example. It is similar to the previous example, except that this one
includes the occluding keyword (line 4). On the one hand, in mOCL the propagation of a
nested scope from Class model elements is not required. According to the containment hi-
erarchy, the possible parents of Class model elements (e.g. a Package model element) do not
contribute properties or operations. On the other hand, there are object-oriented languages
like Java, where inner class definitions are allowed. As a language requirement, the prop-
erties from inner classes must occlude identically named fields defined in outer classes. In
that case, the propagation of a nested scope would be mandatory.

1 providers {
2 Class {
3 in current_scope provides
4 occluding
5 ownedProperties, ownedOperations; −− Target type spec can be omitted
6 }
7 }

LISTING 4.22: Propagating a nested scope

In object-oriented languages like OCL and Java, property and operation call expressions
can refer not only to the properties and operations of the contextual class in which they
are used, but also to those properties and operations that belong to super classes that are
(directly and indirectly) extended by the contextual class. Additionally, any property of the
contextual class should occlude any property that belongs to any of their super classes. This
means that there is a need for creating an arbitrary number of nested scopes, rather than just
one with all the contributed elements.

Listing 4.23 shows the syntax to comply with this requirement. In this case, the pro-
vision syntax is enhanced by an optional declaration of an arbitrary number of occluding
definitions (line 4). The syntax of the latter is a normal contribution definition, preceded
by the keyword occluding (line 6). By introducing many occluding definitions, more nested
environments are created.

1 Provision:
2 (providedClasses=MultiplePathNames ’using’)?
3 contribution=ContributionDef
4 occludingDefs+=OccludingDef∗ ;
5 OccludingDef:
6 ’occluding’ contribution=ContributionDef ;

LISTING 4.23: Occlusion definition syntax

Listing 4.24 shows an example. The example comprises a more elaborate declaration
for the provider Class (line 2). Firstly, a variable declaration appears (line 3). Then, the
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set of target model elements contributed to the current scope is declared. In this case, the
contribution consists of the properties and operations belonging to the contextual class (line
6). Finally, this first set of targets occludes a new set of properties and operations owned by
the super classes (line 8).

1 providers {
2 Class {
3 vars allSuperClasses = self−>closure(superClasses);
4 in current_scope provides
5 occluding
6 ownedProperties, ownedOperations
7 occluding
8 allSuperClasses.ownedProperties, allSuperClasses.ownedOperations;
9 }

10 }
LISTING 4.24: Occlusion definition example

When contributing targets to the current scope, there are situations where the contribu-
tion needs to be different depending on whether the propagated scope is for a child or any
other. In other words, there is a selective contribution depending on which is the contain-
ment reference the child is contained in.

Listing 4.25 shows the syntax to comply with this requirement. In this case, the current
scope provision definition syntax is enhanced by the optional declaration of a children selec-
tion definition (line 2) preceding the provides keyword. This definition is used for declaring
to which provider’s children the provision applies. By default, in the absence of any selec-
tion definition, the scope with the contributed targets is propagated to all their children. The
syntax of a selection definition consists of the keyword for (line 7) followed by either an all
selection (lines 8–9) or a specific selection (lines 10–11) syntax:

• The former is used for declaring that the targets provision is propagated to all its chil-
dren. The syntax consists of the keyword all (line 9). Optionally, a list of exceptions can
be declared by means of a comma-separated list of the containment reference names
(line 9). This declares that the targets provision applies to all the provider’s children,
excepting those contained by the specified containment reference/s.

• The latter is used for declaring that the targets provision is propagated to specific chil-
dren. The declaration consists of an arbitrary number (at least one) of containment ref-
erence names (line 11). This declares that the targets provision applies to the provider’s
children contained by the specified containment reference(s).

Listing 4.26 shows two analogous examples that conform to the explained syntax. On
the left hand side, it is declared how LetExp model elements contribute target Variable model
elements. The key point of this scenario is the following. The init expression of a Variable
contained by a LetExp is not allowed to refer to the own Variable that is initialising. There-
fore, it is declared that LetExp model elements (line 2), in the current scope (line 3), for all
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1 CurrentScopeProvisionDef:
2 selectionDef=SelectionDef? ’provides’
3 (’occluding’ | sameScope?=’adding’ | emptyScope?=’resetting’)?
4 provisions+=Provision+
5 ’;’ ;
6 SelectionDef:
7 ’for’
8 ( {SelectionAll}
9 ’all’(’excepting’ exceptions+=PathNameCS(’,’ exceptions+=PathNameCS)

∗)?
10 | { SelectionSpecific }
11 selections+=PathNameCS (’,’ selections+=PathNameCS)∗
12 ) ;

LISTING 4.25: Selective contribution definition syntax

children excepting those contained via the LetExp::ownedVariable containment reference (line
4), provide the target Variable model elements obtained from the ’ownedVariable’ expression
(line 5).

On the right hand side of the figure, there is another way of declaring the same pro-
vision. Given that there is just one additional containment property belonging to LetExp,
a selective provision can be declared. Therefore, it is declared that LetExp model elements
(line 11), in the current scope (line 12), for the children contained via the LetExp::ownedIn
containment reference (line 13), provide the target Variable model elements obtained from
the ’ownedVariable’ expression (line 14).

1 providers {
2 LetExp {
3 in current_scope
4 for all excepting ownedVariable
5 provides ownedVariable;
6 }
7 }
8

9

10 providers {
11 LetExp {
12 in current_scope
13 for ownedIn
14 provides ownedVariable;
15 }
16 }

Listing 4.26: Children
selection example

Some languages prevent the creation of forward cross-references between a consumer
and a target that is defined further on. For instance, in Java, a variable expression can only
refer to a variable that has been previously defined. To provide a concrete example related
to the running example, let’s assume that multiple variable declarations are supported in
mOCL by keeping them in a multiple valued LetExp::ownedVars containment reference. The
language requirement to support is the following: every expression that initialises a let vari-
able can only refer to previously defined variables. Figure 4.9 shows an example with valid
and invalid situations. In this case, there is a problem with the ’a’ variable initialisation
because the corresponding variable expression refers to a further defined variable (see the
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red dashed arrow from the figure). From the point of view of name resolution, the provider
requires contributing different targets depending on the particular child that is performing
the name-based lookup.

let a = b, -- error
     b = 1, 
     c = b,
in a = c

: 
LetExp

a:
Variable

:ownedVars :
Variable
Exp

:ownedInitExp

:ownedVars 1:
Integer
LiteralExp

:ownedInitExpb:
Variable

c:
Variable

:
Variable
Exp

:ownedInitExp

:referredVariable

:referredVariable

:ownedVars

in expression omitted

FIGURE 4.9: Let expression defining multiple variables

Listing 4.27 shows the syntax. In this case, the contribution syntax is enhanced with an
optional declaration of a child definition between the keywords child and in (line 2). The
syntax of a child definition consists of a name that represents the child, and is optionally
followed by the ’:’ symbol and a type name (line 5). This child definition represents the
actual child for which the scope is computed, so that the child can be used as a variable in
the contribution expression.

1 Contribution:
2 (’child’ child=ChildDef ’in’)?
3 expression=ExpCS ;
4 ChildDef:
5 name=ID (’:’ typeRef=PathNameCS)? ;

LISTING 4.27: Child definition syntax

Listing 4.28 shows an example that conforms to the explained syntax and addresses the
scenario shown in Figure 4.9. The contribution of targets for the children contained via the
LetExp::ownedIn containment reference (line 4) is the same as before. However, now there
is a specific contribution defined for any child contained via the ownedVars containment
reference (line 6). In this case, a child variable is defined (line 7) so that the contributed
targets for a particular child variable are all the variables that are previously defined to that
child.

A child definition is tied to a particular child type, so that a child definition is subject
to being used along with a children selection definition. Therefore, the type of the
child can be omitted. It can be inferred from the type of the reference used for the
children selection definition.
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1 providers {
2 LetExp {
3 in current_scope
4 for ownedIn provides
5 ownedVars;
6 for ownedVars provides
7 child childVar −− type is inferred from the children selection definition
8 in ownedVars−>select(x | self.ownedVars−>indexOf(x) <
9 self .ownedVars−>indexOf(childVar));

10

11 }
12 }

LISTING 4.28: Contribution using a child definition

Due to the fact that this expression (line 8) is quite verbose and it encodes a pattern that
is common to several languages (e.g. imperative languages only allow referring to variables
that are previously defined), CS2AS-TL defines a more concise syntax to deal with this kind
of scenario. Listing 4.29 shows the syntax that enhances a contribution with an optional
preceding keyword prior to the expression.

1 Contribution:
2 ((’child’ child=ChildDef ’in’)
3 | isPreceding?=’preceding’)?
4 expression=ExpCS ;

LISTING 4.29: Children selection syntax

Listing 4.30 shows the previous example reformulated with the more concise syntax.

1 providers {
2 LetExp {
3 in current_scope
4 for ownedIn provides ownedVars;
5 for ownedVars provides preceding ownedVars;
6 }
7 }

LISTING 4.30: Example of a contribution using preceding children

A provider can declare how targets are contributed to the exported scope. The syntax
is similar to the one required for current scope declarations but, in general, it is simpler
since there is no concept of scope propagation. Listing 4.31 shows the syntax to deal with
this requirement. It consists of the keywords in and exported_scope (line 2), followed by an
arbitrary number (at least one) of provision definitions (line 3). The syntax of a provision
definition starts with the keyword provides (line 5), followed by an arbitrary number (at
least one) of provisions (line 5), ending with the ’;’ symbol (line 6). These provisions declare
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which are the actual targets contributed to the exported scope. The syntax of a provision
was previously shown in Listing 4.19.

1 ExportedScopeDecl:
2 ’in’ ’exported_scope’
3 provisionDefs+=ExportedScopeProvisionDef+;
4 ExportedScopeProvisionDef:
5 ’provides’ provisions+=Provision+
6 ’;’ ;

LISTING 4.31: Exported scope declaration syntax

The syntax of a provision is reused for exported scope declarations. However, the
additions explained for the simple contribution syntax are forbidden. In essence,
using the preceding keyword or a child definition does not make sense for exported
scope declarations; hence, it is forbidden.

Listing 4.32 shows an example. It is a continuation of the example shown in Listing 4.24.
In this case, several reusable variables are declared (lines 3–5). The contribution consists of
a set of the properties and operations the class contains (line 13), which occlude (line 14) the
properties and operations of all the super classes (line 15).

1 providers {
2 Class {
3 vars allSuperClasses = self−>closure(superClasses),
4 allSuperProperties = allSuperClasses.ownedProperties,
5 allSuperOperations = allSuperClasses.ownedOperations;
6 in current_scope provides
7 occluding
8 ownedProperties, ownedOperations
9 occluding

10 allSuperProperties, allSuperOperations;
11

12 in exported_scope provides
13 ownedProperties, ownedOperations
14 occluding
15 allSuperProperties, allSuperOperations;
16 }
17 }

LISTING 4.32: Exported scope declaration example
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According to the standard [39], “The OCL specification puts no restriction on the
visibility declared for a property defined in the model (such as ‘private’, ‘protected’
or ‘public’)“. Therefore, the same group of properties and operations are contributed
to the current and exported scopes. However, different expressions could be used to
add additional contributions, for instance, to filter the contributed targets based on
their visibility.

Exported scopes are normally used by consumers (e.g. by means of lookup expressions,
see next sub-subsection). However, these scopes can also be reused within the name resolu-
tion section. In this way, targets exported by a provider can be added to the scope of another
provider. In particular, this is useful for mOCL imports, which can refer to the root model
element of an imported external model. In this way, the high-level requirement consists
of making the exported targets from the imported model available throughout the entire
importing model.

Listing 4.33 shows the syntax to comply with this requirement. In this case, the contri-
bution syntax is enhanced with additional alternatives that precede the contribution expres-
sion.

On the one hand, an optional declaration of the keyword exported (line 4) may precede
the contribution expression (line 8). The keyword may be followed by an arbitrary number
of comma-separated type names and the keyword from (line 5). In this way, rather than con-
tributing the model elements evaluated from the contribution expression, the actual targets
to contribute are those that exist in the exported scope of these model elements. Given that
in an exported scope different kinds of targets may coexist, the optional type names are used
for specifying the specific targets that are wanted.

On the other hand, an optional declaration of the keyword loaded (line 6), followed by
a type name and the keyword ’from’ (line 7), may precede the contribution expression (line
8). This expression must be String valued. The declaration expresses that the model element
to contribute has to be loaded using the URI comprised by the contribution expression’s
value. In case that the computed URI corresponds to a model file, the root model elements
are considered as the ones to load. Since the contribution expression has to be String valued,
and there is no static information about the kind of object to be contributed, the type name
declaration is mandatory.

1 Contribution:
2 ( (’child’ child=ChildDef ’in’)
3 | isPreceding?=’preceding’
4 | (isExported?=’exported’
5 (typeRefs+=PathNameCS (’,’ typeRefs+=PathNameCS)∗ ’from’)?)
6 | (isLoaded?=’loaded’
7 typeRefs+=PathNameCS ’from’))?
8 expression=ExpCS ;

LISTING 4.33: Syntax to use contributions from exported scopes
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Taking the above into account, Listing 4.34 shows an example that conforms to the ex-
plained syntax and exposes how external model imports are supported. Firstly, Import
model elements (line 2) provide targets to the exported scope (line 3). In this case, target
Package model elements will be loaded from an external model (line 4). The URI of the exter-
nal model is held by the Import::uri attribute (line 4). Finally, in order to make this imported
target available throughout the entire AS model, Root model elements (line 6) add to their
current scope (line 7) all the targets exported by their owned imports (line 9).

1 providers {
2 Import {
3 in exported_scope
4 provides loaded Package from uri;
5 }
6 Root {
7 in current_scope
8 provides ownedPackages,
9 exported ownedImports;

10 }
11 }

LISTING 4.34: Example of using contributions from an exported scope

To conclude this sub-subsection, the final additional syntax to support aliases is intro-
duced. A scope consists of a map between a name-key and a target-value (see Section 3.5.3),
where that name-key is normally the name that identifies the target-value. However, this is
not always the case, and another name can be used. This is useful to create aliases for the
model elements imported by means of imports. These aliases turn out to be crucial when
the two different imported model elements have a clashing name.

Listing 4.35 shows the syntax to comply with this requirement. In this case, the contri-
bution syntax is enhanced by introducing an optional keyword with_alias, followed by an
expression that evaluates the new name that is used for the contribution of the target to the
scope. The alias expression type must conform to the type of target identifying expression.

1 Contribution:
2 ( (’child’ child=ChildDef ’in’)
3 | isPreceding?=’preceding’
4 | (isExported?=’exported’
5 (typeRefs+=PathNameCS (’,’ typeRefs+=PathNameCS)∗ ’from’)?)
6 | (isLoaded?=’loaded’
7 typeRef+s=PathNameCS ’from’))?
8 expression=ExpCS
9 (’with_alias’ alias=ExpCS)?

10 ;
LISTING 4.35: Alias declaration syntax

Listing 4.36 shows an example. The previous example is enhanced with new syntax. In
this case, the loaded Package model element is contributed to the exported scope using the
Import::alias (line 4) name rather than the NamedElement::name that identifies target Packages.
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1 providers {
2 Import {
3 in exported_scope
4 provides loaded Package from uri with_alias alias;
5 }
6 Root {
7 in current_scope
8 provides ownedPackages, ownedContraints,
9 exported ownedImports;

10 }
11 }

LISTING 4.36: Alias declaration example

Consumers

Finally, this sub-subsection introduces how consumers perform name-based lookups. As
mentioned in Section 4.2.2, additional lookup expressions are introduced in CS2AS-TL with
the aim of looking up targets. These expressions can be used throughout CS2AS-TL, for
instance, to compute the initial value of an AS reference, or as part of a disambiguation rule.

Listing 4.37 shows the syntax to declare lookup expressions, which are similar to OCL
operation call expressions, but there is a dedicated keyword to classify them. The syntax
consists of either the lookup or lookupExported keyword (line 2). The former is used for per-
forming a lookup within the current scope, whereas the latter is used for performing lookups
within the exported scope. Then, a rounded-brackets clause follows (line 3), which consists
of an arbitrary number of comma-separated OCL expressions enclosed by a pair of paren-
theses (line 5).

Note that both lookups are actually performed from the AS model element correspond-
ing to the source expression of the lookup one. The arguments expected by both expressions
are different:

• A name-based lookup in the current scope expects: firstly, the kind of target that is
required, followed by an expression that provides the lookup input (see Inputs sub-
subsection above), optionally followed by an expression providing additional filtering
arguments (see Targets sub-subsection above).

• A name-based lookup in an exported scope expects: firstly, the kind of target that is
required, followed by an expression that evaluates the AS model element that provides
the exported scope (see Providers sub-subsection above), followed by an expression
that provides the lookup input (see Inputs sub-subsection above), optionally followed
by an expression providing additional filtering arguments (see Targets sub-subsection
above).

Listing 4.38 shows some examples of lookup expressions. They are related to the disam-
biguation and mappings sections (further explained). Here, only the usage of the lookup
expressions is considered.
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1 LookupExp:
2 (’lookup’ | isExported?=’lookupExported’)
3 RoundedBracketCS ;
4 RoundedBracketsCS:
5 ’(’ (args+=ExpCS (’,’ args+=ExpCS)∗)? ’)’ ;

LISTING 4.37: Lookup expression syntax

A lookup in the current scope is used in the context of a disambiguation rule (lines 1–
5), in particular, the one required to determine whether NameExpCS model elements corre-
spond to VariableExp model elements. In essence, the rule involves discovering whether a
Variable with the name held by the NameExpCS is found in the current scope. In this case,
the lookup expression (line 4) receives the name Variable as the kind of target to look up, and
an expression that provides the input PathNameCS model element (which is held via the
NameExpCS::expName containment reference).

A lookup in an exported scope is used in the context of a mapping declaration (lines
7–14), in particular, the one that creates OperationCallExp model elements from NameExpCS
model elements. In essence, the mapping requires looking up an Operation model element
in the exported scope of a Class referred to by the type cross-reference of the created Op-
erationCallExp model element. In this case, the lookupExported expression (line 11) receives
the name Operation as the kind of target to look up, an expression to provide the mentioned
Class model element, an expression that provides the input PathNameCS model element, and
an expression that provides the additional filtering arguments to match the right Operation
model element.

1 disambiguation {
2 NameExpCS {
3 isVariableExp := roundedBrackets = null and not isNavExpOfACallExpCS()
4 and lookup(Variable, expName) <> null;
5 }
6 }
7 mappings {
8 create OperationCallExp from NameExpCS
9 when isOpCallExpWithExplicitSource {

10 −− other property initializations are omitted
11 referredOperation := lookupExported(Operation, trace.ownedSource.type,
12 expName, trace.ownedArguments);
13 }
14 }

LISTING 4.38: Lookup expression usage examples

4.2.6 Mappings Section Syntax

The mappings section is the main section where the CS meta-model terms are related to
the AS meta-model terms. It is a completely declarative section, so the order in which the
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mappings are declared is not relevant. There can only be one mapping per CS meta-class,
unless the term is ambiguous. In that case, all the mappings for the same meta-class must
be accompanied by a disambiguation rule name.

Listing 4.39 shows the syntax of the top-level declaration of the section. It starts with
the mappings keyword (line 3). Then, a pair of curly brackets (lines 3 and 5) enclose the
declaration of an arbitrary number of mapping definitions (line 4). A mapping definition
can either be a creation mapping or a reference mapping (line 7).

1 MappingSect:
2 {MappingSect}
3 ’mappings’ ’{’
4 mappings+=MappingDef∗
5 ’}’ ;
6 MappingDef:
7 MappingCreation | MappingReference ;

LISTING 4.39: Mappings section syntax

The following sub-subsections present the mapping definitions in detail.

Creation Mappings

A creation mapping is designed to relate source CS meta-classes to target AS meta-classes,
and to declare how the properties of the latter are computed. The particular semantics of
this kind of mapping consists of creating instances of the target meta-classes and initialise
the values of their properties.

A new CS2AS scenario of mOCL is introduced to explain creation mappings. Listing 4.40
shows the CS definition of one kind of mOCL expression: equality expression. In this case,
EqualityExpCS model elements are produced (line 3), when the corresponding (in)equality
operators (line 4) are processed. The model element (left sub-expression) obtained when
processing the first RHS non-terminal CallExpCS (line 2) is held by the EqualityExpCS::left
containment reference. The model element (right sub-expression) obtained when process-
ing the second RHS non-terminal CallExpCS (line 5) is held by the EqualityExpCS::right con-
tainment property.

1 EqualityExpCS:
2 CallExpCS
3 ({EqualityExpCS.left=current}
4 opName=(’=’ | ’<>’)
5 right=CallExpCS)∗ ;

LISTING 4.40: CS definition of equality expression

A concrete example of this kind of expression is shown in Figure 4.10. On the left, there is
the CS model corresponding to the ’1 <> 2 = true’ expression. On the right, the expected AS
model is shown. In this case, EqualityExpCS model elements (e.g. Ê) are transformed into
OperationCallExp model elements (e.g. Ë). The left sub-expression (e.g. Ì) corresponds to
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the source (e.g. Í) of the OperationCallExp model element, whereas the right sub-expression
(e.g. Î) corresponds to the argument (e.g. Ï).

Example:
1 <> 2 = true

1 :
Integer
LiteralCS

:right

‘<>’ :
Equality
ExpCS

2 :
Integer
LiteralCS

true :
Boolean
LiteralCS

‘=’ :
Equality
ExpCS

:right

:left

:left

:ownedArguments

2:
Integer
LiteralExp

:ownedArguments

1:
Integer
LiteralExp

true:
Boolean
LiteralExp

‘<>’:
Operation
CallExp

‘=’:
Operation
CallExp

:ownedSource

:ownedSource

References to the referred operations have been omitted

CS AS

1 2

3 4
5

6

FIGURE 4.10: Equality expression example (left) and corresponding AS model
(right)

Listing 4.41 shows the syntax to declare creation mappings. It consists of the keyword
create, followed by the class name of an AS meta-class, followed by the keyword from, fol-
lowed by the class name of a CS meta-class. Then, an arbitrary number of property assign-
ments (line 3) can be enclosed by a pair of curly brackets (lines 2 and 4). The syntax of a
property assignment consists of an LHS property name (of the created AS meta-class), fol-
lowed by the ’:=’ symbol and an RHS OCL expression that declares how the property is
mapped or computed. The context of that OCL expression is the source CS meta-class.

1 MappingCreation:
2 ’create’ to=PathNameCS ’from’ from=PathNameCS ’{’
3 properties += PropertyAssignment∗
4 ’}’ ;
5 PropertyAssignment:
6 propRef=PathNameCS ’:=’
7 propInit=ExpCS
8 ’;’ ;

LISTING 4.41: Creation mappings syntax

The RHS of the property assignment is either Ê an OCL property call expression that
refers to a compatible CS property, or Ë a compatible OCL expression that returns AS model
elements. This compatibility is explained by introducing the semantics of a property assign-
ment. In terms of the semantics, the following applies:

• In the former case Ê, the RHS expression is evaluated so that it returns one or many
CS model elements. All these CS model elements have the corresponding AS model
elements that are assigned or added to the LHS AS property. Statically, it can be deter-
mined if there exists a mapping defined for the CS meta-class that is a type of the RHS
property call expression, as well as whether the corresponding AS meta-class target of
that mapping conforms to the type of the LHS AS property.
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• In the latter case Ê, the RHS expression is evaluated so that it returns one or many
AS model elements, or (primitive) values that are assigned or added to the LHS AS
property. Statically, it can be determined if the AS meta-class that is a type of the RHS
expression conforms to the type of the LHS AS property.

Apart from type conformance, there are additional restrictions with respect to multiplici-
ties. Table 4.1 explains the different scenarios. In essence, the only invalid situation is having
a single-valued AS property name in the LHS of the property assignment, and an RHS OCL
expression that returns many model elements or values.

Ê PropertyCallExp in the CS domain Ë OCLExpression in the AS domain
AS Property Single-Value Multi-Value Single-Value Multi-Value
Single-Value OK Error OK Error
Multi-Value OK OK OK OK

TABLE 4.1: Valid property assignment scenarios based on LHS property mul-
tiplicity and RHS expression type

Listing 4.42 shows the creation mapping that addresses the explained CS2AS scenario.
In this case, the mapping declares that OperationCallExp model elements are created from
EqualityExpCS model elements (line 2). The OperationCallExp::ownedSource property is mapped
from the EqualityExpCS::left property (line 3), whereas the OperationCallExp::ownedArguments
property is mapped from the EqualityExpCS::right property (line 4). Finally, there is a prop-
erty computation of the OperationCallExp::referredOperation property (line 5). In this case, a
name-based lookup is performed in order to locate the corresponding (in)equality Operation
model element.

1 mappings {
2 create OperationCallExp from EqualityExpCS {
3 ownedSource := left;
4 ownedArguments := right;
5 referredOperation := lookupExported(Operation, trace.ownedSource.type,
6 opName, trace.ownedArguments);
7 }
8 }

LISTING 4.42: Example of a creation mapping

Reference Mappings

A reference mapping is designed to relate source CS meta-classes to target AS meta-classes.
However, in contrast to creation mappings, they are not designed to create new AS model
elements, but rather to refer to a particular one by means of an OCL expression. These map-
pings permit the creation of trace links between CS model elements and AS model elements,
even though the former are not meant to create the latter. In this way, trace expressions can
be used on CS model elements that do not create AS model elements.

A new scenario from mOCL syntax is introduced to explain reference mappings. List-
ing 4.43 shows the CS definition of another kind of mOCL expression: call expression. In this



106 Chapter 4. Solution Design & Implementation

case, CallExpCS model elements are produced (line 3) when the corresponding call operators
(line 4) are processed. The model element (left sub-expression) obtained when processing
the RHS non-terminal PrimaryExpCS (line 2) is held by the CallExpCS::source containment
reference (line 3). The model element (right sub-expression) obtained when processing the
RHS non-terminal NavigationExpCS (line 5) is held by the CallExpCS::navExp containment
property (line 5).

1 CallExpCS:
2 PrimaryExpCS
3 ({CallExpCS.source=current}
4 opName=(’.’ | ’->’)
5 navExp=NavigationExpCS)∗ ;
6 PrimaryExpCS:
7 LiteralExpCS | NameExpCS | SelfExpCS | LetExpCS;
8 NavigationExpCS:
9 LoopExpCS | NameExpCS ;

LISTING 4.43: CS definition of call expression

A concrete example is shown in Figure 4.11. On the left, there is the CS model corre-
sponding to the ’self.x.y’ expression. On the right, the expected AS model is shown. With
respect to the previous example, the main differences can be observed. In this case, Call-
ExpCS model elements (e.g. Ê) are not transformed into AS model elements. As expected,
different PropertyCallExpression model elements (e.g. Ë) are produced, but they are created
from the NameExpCS model elements (e.g. Ì) contained by these CallExpCS model elements.
However, there is a need for relating these CallExpCS model elements to AS model elements,
so that any trace expressions defined on the former can return sensible AS model elements.

Example:
self.x.y

self :
Self
ExpCS

:nameExp

‘.’ :
Call
ExpCS

x :
Name
ExpCS

y:
Name
ExpCS

‘.’ :
Call
ExpCS

:nameExp

:source

:source

self:
Variable
LiteralExp

x:
Property
CallExp

y:
Property
CallExp

:ownedSource

:ownedSource

References to the referred properties 
and self variable have been omitted

CS AS

1 2

3

FIGURE 4.11: Call expression example (left) and corresponding AS model
(right)

Listing 4.44 shows the syntax to declare reference mappings. It consists of the keyword
refer, followed by the class name of an AS meta-class, followed by the keyword from, fol-
lowed by the class name of a CS meta-class, followed by the ’:=’ symbol. Then, an OCL
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expression declares how the corresponding AS model element can be accessed from the
contextual CS model element.

1 MappingReference:
2 ’refer’ to=PathNameCS ’from’ from=PathNameCS
3 ’:=’ expression=ExpCS
4 ’;’ ;

LISTING 4.44: Reference mappings syntax

Listing 4.45 shows the reference mapping that addresses the previous CS2AS scenario. In
this case, the mapping declares that CallExp model elements are referred to from CallExpCS
model elements (line 2). The OCL expression (line 3) that follows the ’:=’ declares which
is the corresponding AS model element of the contextual CallExpCS model element. In this
case, it corresponds to the AS model element corresponding to the NavigationExpCS model
element contained via the CallExpCS::navExp containment reference.

1 mappings {
2 refer CallExp from CallExpCS :=
3 self .navExp.trace;
4 }

LISTING 4.45: Example of a reference mapping

Multi-way mappings

Multi-way mappings are a set of different mappings that are defined on the same source CS
meta-class. The execution of this kind of mapping is subject to the successful evaluation of a
disambiguation rule. Therefore, multi-way mappings require the specification of the corre-
sponding disambiguation rules. These rules are declared within a separate disambiguation
section (see Section 4.2.7), so the mappings only need to refer to them by name.

In order to explain multi-way mappings, a new mOCL scenario is introduced. Fig-
ure 4.12 shows an example of an mOCL collection literal expression and the AS definition
designed to deal with them. According to the AS definition, a CollectionLiteralExp optionally
comprises an arbitrary number of CollectionLiteralParts, which can be either a CollectionItem
(consisting of a single OCLExpression) or a CollectionRange (consisting of two OCLExpressions
to form the range).

1 Collection{1, 2, 3...5}
2

3 −− equivalent to :
4

5 −− Collection{1, 2, 3, 4,
5}

CollectionLiteralExp

kind : CollectionKind =
Collection
 type : Class

CollectionItem

 type : Class

CollectionLiteralPart

 type : Class

CollectionRange

 type : Class

OCLExpression

 type : Class

CollectionKind

Collection
[0..*] ownedParts

[1..1] ownedItem

[1..1] ownedFirst

[1..1] ownedLast

FIGURE 4.12: CollectionLiteralExp example (left) and AS meta-model (right)
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Figure 4.13 shows the Xtext grammar definition (on the left) to deal with CollectionLit-
eralExp textual syntax, and the corresponding automatically derived CS meta-model (on the
right). According to the CS definition, a CollectionLiteralExpCS (line 4) consists of the kind of
collection (line 5), followed by an arbitrary number of the expression parts (line 6), enclosed
by a pair of curly brackets (lines 5 and 7). A CollectionLiteralPartCS (line 9) consists of a first
expression (line 10), and is optionally followed by the ’..’ symbol and a second expression
(line 11), to represent integer ranges.

1 enum CollectionKindCS:
2 ’Collection’
3 ;
4 CollectionLiteralExpCS:
5 kind=CollectionKindCS ’{’
6 (parts+=CollectionLiteralParCS)∗
7 ’}’
8 ;
9 CollectionLiteralPartCS:

10 first =ExpCS
11 (’..’ last=ExpCS)?
12 ;

CollectionLiteralExpCS

kind : CollectionKindCS =
Collection

ExpCS

CollectionLiteralPartCS

CollectionKindCS

Collection

[0..*] parts

[1..1] first [0..1] last

FIGURE 4.13: CollectionLiteralExp grammar (left) and CS meta-model (right)

The key point of the scenario is the following: from a CollectionLiteralPartCS model el-
ement, either a CollectionItem or aCollectionRange model element has to be created. In this
case, it depends on whether the CollectionLiteralPartCS declares a last expression. This kind
of scenario requires multi-way mappings.

Listing 4.46 shows the syntax introduced to deal with this requirement. In this case, the
syntax of a creation mapping is enhanced by the addition of an optional when clause (line 2).
It consists of the keyword when, followed by either an identifier of a rule defined within the
disambiguation section, or the keyword fall_back. The latter is used for designing a mapping
to be executed, when no disambiguation rule succeeds for a particular CS model element.

1 MappingCreation:
2 ’create’ to=PathNameCS ’from’ from=PathNameCS (’when’ (ruleName=ID |

isFallback?=’fall_back’))? ’{’
3 properties += PropertyAssignment∗
4 ’}’ ;

LISTING 4.46: When clause syntax

Listing 4.47 shows the mappings section that addresses the scenario. Lines 2–6 comprise
a simple mapping to create AS CollectionLiteralExp model elements from CollectionLiteralEx-
pCS model elements. Between the curly brackets, there are three assignments: on the left
hand side, property references of mapped AS meta-classes; on the right hand side, different
OCL expressions are used for declaring how the assignments take place.
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1 mappings {
2 create CollectionLiteralExp from CollectionLiteralExpCS {
3 kind := kind;
4 ownedParts := parts;
5 type := lookup(Class,’Collection’);
6 }
7 create CollectionItem from CollectionLiteralPartCS
8 when withoutLastExpression {
9 ownedItem := first;

10 type := first . trace . type;
11 }
12 create CollectionRange from CollectionLiteralPartCS
13 when withLastExpression {
14 ownedFirst := first ;
15 ownedLast := last;
16 type := first . trace . type;
17 }
18 }

LISTING 4.47: Multi-way mappings definition example

After the first mapping declaration, there is an example of two-way mappings (lines 7–
11 and 12–17). In this case, the CollectionLiteralPartCS meta-class is mapped to two different
AS meta-classes, particularly CollectionItem and CollectionRange. This kind of mapping in-
corporates an additional when clause (lines 8 and 13) that refers to a disambiguation rule
defined in the corresponding section (see next Section 4.2.7).

4.2.7 Disambiguation Section Syntax

The disambiguation section comprises the disambiguation rules required by multi-way map-
pings. These rules are boolean expressions that determine which one of the multi-way map-
pings is actually executed. They are similar to the guards defined in rule-based M2M trans-
formations. However, these rules are grouped together within the same section rather than
belonging to individual mappings. This characteristic allows the section to provide addi-
tional semantics to the declared rules. Specifically, the rules are prioritised based on the
order in which they are defined within the disambiguation section. In this way, during
execution time, the first rule to succeed is the one that determines how the CS element is
disambiguated (i.e. which is the mapping that is actually executed). The explained seman-
tics are useful in arbitrating the situation where the involved disambiguation rules are not
exclusive (i.e. when more than one disambiguation rule evaluates to true for the same CS
model element).

Listing 4.48 shows the syntax of the top-level declaration of the section. It starts with the
disambiguation keyword (line 3). Then, a pair of curly brackets (lines 3 and 5) encloses the
declaration of the disambiguation definition (line 4). The syntax of the latter consists of the
class name of a CS meta-class (line 7), followed by an arbitrary number of disambiguation
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rules enclosed by a pair of curly brackets (lines 7 and 9). The syntax of a disambiguation
rule consists of an identifier followed by the ’:=’ symbol (line 11) and an OCL expression
that must be boolean-valued (line 12).

1 DisambiguationSect:
2 {DisambiguationSect}
3 ’disambiguation’ ’{’
4 disambiguations+=DisambiguationDef∗
5 ’}’ ;
6 DisambiguationDef:
7 classRef=PathNameCS ’{’
8 rules+=DisambiguationRule∗
9 ’}’ ;

10 DisambiguationRule:
11 name=ID ’:=’
12 exp=ExpCS ’;’ ;

LISTING 4.48: Disambiguation section syntax

Listing 4.49 shows the disambiguation rules required for the CollectionLiteralExp example
introduced earlier. The name CollectionLiteralPartCS (line 2) represents the CS meta-class
on which the disambiguation rules are declared. Between the curly brackets, there are two
assignments corresponding to the two rules. On the left hand side, the rule name is declared.
On the right hand side, a boolean-valued OCL expression evaluates if the rule applies for
the particular expression context (i.e. CollectionLiteralPartCS model elements).

1 disambiguation {
2 CollectionLiteralPartCS {
3 withoutLastExpression := last = null;
4 withLastExpression := last <> null;
5 }
6 }

LISTING 4.49: Disambiguation section usage example

The reader may note that both expressions are mutually exclusive, meaning that only one
of the disambiguation rules can apply to a particular CollectionLiteralPartCS model element.
Therefore, the order in which they are declared is not relevant. However, there may be
CS2AS scenarios in which this is not always true. In these cases, the priority in which the
rules are defined for a particular CS meta-class is important.

Section 4.2.8 shows how the different scenarios introduced in Chapter 3 are ad-
dressed. When resolving the scenario concerned with multi-way mappings, the sub-
section shows an example in which the order of the disambiguation rules is relevant.
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4.2.8 How Does the CS2AS-TL Address the Identified Concerns?

The previous subsections introduced the syntax of CS2AS-TL, including some exam-
ples from mOCL to demonstrate its usage. The upcoming subsections show how the
syntax is used to solve other CS2AS scenarios that are present in mOCL, including
those presented during the problem analysis.

After presenting the problem analysis in Chapter 3, Section 3.6 discussed how Xtext
specification artefacts partly addressed the different concerns introduced in the chapter. In
consequence, following the proposed solution explanation, this subsection shows how these
concerns are fully addressed with CS2AS-TL.

Appendix C shows the complete CS2AS bridge for mOCL. Additionally, the source
code for the mOCL example can be found in the examples folder of the Eclipse QVTd
project repositorya

ahttps://git.eclipse.org/r/mmt/org.eclipse.qvtd

Concern 1: Mapping a CS Meta-class to an AS Meta-class

Concern 1 is supported within CS2AS-TL mappings section, particularly by declaring a
mapping between a CS meta-class and an AS meta-class.

Listing 4.50 shows the CS2AS declaration for the Package example (see Section 3.4.1).
Line 2 shows how both meta-classes are mapped.

1 mappings {
2 create Package from PackageCS {
3 name := name;
4 ownedPackages := packages;
5 ownedClasses := classes ;
6 }
7 }

LISTING 4.50: CS2AS definition of Package

According to the concern explanation, two kinds of mappings are required. They can
be designed either to create new AS elements at execution time, or to refer to existing AS
elements. As was explained in Section 4.2.6, CS2AS-TL supports the distinction by means
of the keywords create and refer.

Concern 2: Mapping a CS Reference to an AS Reference

Concern 2 is supported within CS2AS-TL mappings section, particularly by declaring a
property assignment. On the left hand side, a reference of the AS meta-class is specified.
On the right hand side, there is an OCL property call expression that refers to the mapped
CS reference.

Lines 4–5 from the previous Listing 4.50 show two examples of how this concern is ad-
dressed.

https://git.eclipse.org/r/mmt/org.eclipse.qvtd
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Concern 3: Mapping a CS Attribute to an AS Attribute

Concern 3 is supported within CS2AS-TL mappings section, particularly by declaring a
property assignment. On the left hand side, an attribute of the AS meta-class is specified.
On the right hand side, there is an OCL property call expression that refers to the mapped
CS attribute.

Line 3 from the previous Listing 4.50 shows an example of how this concern is addressed.

Concern 4: Mapping a CS Reference to an AS Reference and Additional AS Meta-classes

Concern 4 is supported within CS2AS-TL mappings section, particularly by declaring a
property assignment. On the left hand side, a reference of the AS meta-class is specified.
On the right hand side, a more complex OCL shadow expression is used to declare a pattern
that involves the set of the required meta-classes (and their corresponding properties).

Listing 4.51 shows the CS2AS declaration for the Operation example (see Section 3.4.5).
Lines 6–10 show how this concern is addressed. In this case, the Operation::ownedBodyExpression
reference is assigned (line 6), but it is not directly mapped from the expected OperationCS::body
reference (line 8). Instead, an ExpressionInOCL meta-class is used by means of an OCL
shadow expression (lines 6–10), and the OperationCS::body reference is used for computing
the ExpressionInOCL::ownedBody reference (line 8). Finally, an additional Variable meta-class
is involved to produce the implicit self Variable model element owned by the ExpressionIn-
OCL one.

1 mappings {
2 create Operation from OperationCS {
3 name := name;
4 type := lookup(Class, resultType);
5 ownedParameters := params;
6 ownedBodyExpression := ExpressionInOCL {
7 language = ’OCL’,
8 ownedBody = body.trace,
9 ownedSelfVar = Variable {name = ’self’ , type = trace.owningClass }

10 };
11 }
12 }

LISTING 4.51: CS2AS definition of Operation

Concern 5: Mapping a CS meta-class to Many AS Meta-classes

Concern 5 is supported within CS2AS-TL mappings section, particularly by declaring a
mapping between a CS meta-class and the primary AS meta-class, and by declaring prop-
erty assignments to involve the additional meta-classes. On the assignment’s left hand side,
a reference of the primary AS meta-class is specified. On the right hand side, a more com-
plex OCL shadow expression is used to declare a pattern that involves the set of the required
meta-classes (and their corresponding properties).
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1 mappings {
2 create PropertyCallExp from NameExpCS
3 when isPropCallExpWithImplicitSource {
4 ownedSource := let referredVar = lookup(Variable, ’self’)
5 in VariableExp {
6 referredVariable = referredVar,
7 type = referredVar.type
8 };
9 referredProperty := lookupExported(Property,trace.ownedSource.type,expName);

10 type := trace . referredProperty?.type;
11 }
12 }

LISTING 4.52: CS2AS definition of PropartyCallExp (with implicit source)

Listing 4.52 shows the CS2AS declaration for the PropartyCallExp example (see Section 3.4.6).
Line 2 shows how the CS meta-class NameExpCS is mapped to the primary AS meta-class
PropartyCallExp. Lines 4–8 show the additional property assignment that involves the re-
quired VariableExp meta-class. In this case, on the assignment’s left hand side, the reference
ownedSource is used (line 4). On the right hand side, an OCL shadow expression (lines 5–8),
wrapped by an OCL let expression (lines 4–8), is used.

Concern 6: Multi-way Mappings from CS Meta-classes to AS Meta-classes

Concern 6 is supported within CS2AS-TL mappings section, in particular, by declaring sev-
eral multi-way mappings with the corresponding when clauses.

Listing 4.53 shows a partial solution for the multi-way mappings for NameExpCS. The
declarations required to produce OperationCallExp model elements have been omitted be-
cause they are similar to the ones required to produce PropertyCallExp model elements.

Firstly, in the helpers section (lines 1–12), two helper operations are declared. The aim
of the first helper consists of returning the container of the NameExpCS model element as
a CallExpCS model element, provided the container conformed to that type. The aim of
the second helper consists of checking whether a NameExpCS is contained by a CallExpCS
model element, via the CallExpCS::navName rather than CallExpCS::source. This would mean
that the NameExpCS model element is a navigation expression (i.e. it corresponds to a name
appearing after a navigation operator).

Secondly, in the disambiguation section (lines 13–23), three disambiguation rules are
declared. The three rules require that the NameExpCS model element does not contain a child
RoundedBracketCS (lines 16, 18 and 21). This condition excludes those NameExpCS model
elements used for denoting OperationCallExp model elements. Looking at the remaining
conditions involved, the three following situations can occur:

• If the previously explained NameExpCS::isNavExpOfACallExpCS() helper evaluates to
true (line 16), the NameExpCS model element corresponds to a PropertyCallExp model
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element with an explicit source expression.

• Otherwise, a name-based lookup is performed to seek a Variable model element using
the corresponding CS information (line 19). If a result is found, the NameExpCS model
element corresponds to a VariableExp model element.

• Otherwise, a name-based lookup is performed to seek a Property using the correspond-
ing CS information (line 22). If a result is found, the NameExpCS model element corre-
sponds to a PropertyCallExp model element with an implicit source expression.

As commented in previous subsection 4.2.7, the order in which these rules have been
declared matters. The isPropCallExpWithExplicitSource rule is defined first because it just
requires CS information. In contrast, the other two rules require to perform a name-based
lookup. Additionally, the isVariableExp and isPropCallExpWithImplicitSource rules are non-
exclusive. It may arise that the same name used in the name-based lookup corresponds to
both a defined Variable model element and a Property model element of the implicit source
object. In this particular case, disambiguating towards a VariableExp model element is the
priority.

Finally, in the mappings section (lines 24–50), multi-way mappings are declared to ad-
dress the scenario: firstly, a mapping to produce a VariableExp model element (lines 25–29)
whenever the isVariableExp disambiguation rule applies to the contextual NameExpCS model
element; secondly, a mapping to produce a PropertyCallExp model element (lines 30–35)
whenever the isPropCallExpWithExplicitSource disambiguation rule applies to the contextual
NameExpCS model element; thirdly, a mapping to produce a PropertyCallExp model element
(lines 36–45) whenever the isPropCallExpWithImplicitSource disambiguation rule applies to
the contextual NameExpCS model element. Finally, a fall-back mapping is defined in which
a VariableExp model element is created with no referred variable, and an OclVoid type.

Concern 7: Mapping AS Properties from non CS Meta-model Terms

Concern 7 is addressed by including additional property assignments to the mapping that
deals with the AS meta-class of interest.

Listing 4.53 contains several examples. For instance, lines 28, 34 and 44 show specific
assignments to compute the TypedElement::type property for the different AS meta-classes
involved in those mappings.

Concern 8: Name Resolution

The previous Section 4.2.5 introduced several mOCL examples to explain the whole syntax
that addresses the name resolution concern. This subsection summarises in Table 4.2 how
the different name resolution topics relate to the shown OCL examples.

4.2.9 Other CS2AS scenarios of mOCL

So far, most of the CS2AS scenarios that mOCL embodies have been exposed, regardless of
whether they were used for explaining the problem analysis or the CS2AS-TL syntax. This
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1 helpers {
2 NameExpCS {
3 parentAsCallExpCS() : CallExpCS :=
4 let container = self .oclContainer()
5 in if container.oclIsKindOf(CallExpCS)
6 then container.oclAsType(CallExpCS)
7 else null
8 endif;
9 isNavExpOfACallExpCS() : Boolean :=

10 let parentCallExpCS = parentAsCallExpCS()
11 in parentCallExpCS <> null and parentCallExpCS.navExp = self;
12 } }
13 disambiguation {
14 NameExpCS { −− Note: order of the disambiguation rules matters
15 isPropCallExpWithExplicitSource :=
16 roundedBrackets = null and isNavExpOfACallExpCS();
17 isVariableExp :=
18 roundedBrackets = null and not isNavExpOfACallExpCS()
19 and lookup(Variable, expName) <> null;
20 isPropCallExpWithImplicitSource :=
21 roundedBrackets = null and not isNavExpOfACallExpCS()
22 and lookup(Property, expName) <> null;
23 } }
24 mappings {
25 create VariableExp from NameExpCS
26 when isVariableExp {
27 referredVariable := lookup(Variable, expName);
28 type := trace . referredVariable?. type;
29 }
30 create PropertyCallExp from NameExpCS
31 when isPropCallExpWithExplicitSource {
32 ownedSource := parentAsCallExpCS()._source;
33 referredProperty := lookupExported(Property,trace.ownedSource.type,expName);
34 type := trace . referredProperty?.type;
35 }
36 create PropertyCallExp from NameExpCS
37 when isPropCallExpWithImplicitSource {
38 ownedSource := let referredVar = lookup(Variable, ’self’)
39 in VariableExp {
40 referredVariable = referredVar,
41 type = referredVar.type
42 };
43 referredProperty := lookupExported(Property,trace.ownedSource.type,expName);
44 type := trace . referredProperty?.type;
45 }
46 create VariableExp from NameExpCS
47 when fall_back {
48 referredVariable := null;
49 type := lookup(Class, ’OclVoid’);
50 } }

LISTING 4.53: Multi-way mappings definition for NameExpCS
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Name resolution topic Listings from Section 4.2.5
Targets Listing 4.11
Inputs Listing 4.17
Providers Listing 4.20
Consumers Listing 4.38
(Nested) Lookup scopes Listings 4.20 and 4.22
Name-based lookups Listing 4.38
Qualified name-based lookups Listings 4.15 and 4.17
Name-based external lookups Listings 4.32 and 4.38
Additional lookup criteria Listing 4.13
Looking up into external models Listing 4.34

TABLE 4.2: Name resolution topic and demonstrating listings

section shows the remaining scenarios, and how the CS2AS scenario is addressed by means
of CS2AS-TL. As a reminder, Appendix A and Appendix B respectively contain the mOCL
CS grammar and the AS meta-model.

Constraints

When introducing the running example, Section 3.2.2 stated that mOCL provides syntax to
declare invariants on Class model elements.

Listing 4.54 shows the mOCL CS2AS bridge that deals with the creation of Constraint
model elements.

From this CS2AS scenario, it can be seen that there is a misalignment between the CS
and AS. On the one hand, according to the mOCL CS (see Appendix A), there is a single
ConstraintsDefCS model element with the information related to the constrained Class. How-
ever, that ConstraintsDefCS model element may contain many InvariantCS model elements
comprising many invariant expressions. On the other hand, according to the mOCL AS, Root
model elements may contain many Constraint model elements via the Root::ownedConstraints
containment reference.

This misalignment is reflected in the CS2AS bridge. Firstly, an extra navigation of the
CS model is required for the Root::ownedConstraints property assignment (line 5). Secondly,
another CS model navigation is required for accessing the ConstraintsDefCS::typeRef from
the contextual InvariantCS model element (line 13) .

Let Expressions

Although let expressions have been discussed during previous subsections to illustrate some
name resolution scenarios, a complete exposition of how LetExp model elements are created
from the corresponding CS has not been shown. This kind of expression presents a chal-
lenging scenario because a single LetExpCS model element may comprise several variable
declarations and, according to the AS, many (nested) let expressions must be created as
variables are declared.

Listing 4.55 shows the mOCL CS2AS bridge that deals with the creation of LetExp model
elements. In this case, the scenario has been addressed by means of multi-way mappings.
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1 mappings {
2 create Root from RootCS {
3 ownedImports := imports;
4 ownedPackages := packages;
5 ownedConstraints := constraints.invariants;
6 }
7 create Constraint from InvariantCS {
8 ownedSpecification := ExpressionInOCL {
9 ownedBody = exp.trace,

10 ownedSelfVar = Variable { name = ’self’,
11 type = trace .constrainedElement }
12 };
13 constrainedElement := lookup(Class, self.ConstraintsDefCS.typeRef);
14 }
15 }

LISTING 4.54: CS2AS description of Constraint

Depending on the number of declared variables (lines 3–4), a different LetExp model element
will be created (lines 8–13 and 14–26). The simple scenario occurs when a single let variable
is declared. In that case, the as property LetExp::ownedIn is mapped from the cs property
LetExpCS::inExp (line 11). The complex scenario occurs when several let variables are de-
clared, because many (nested) LetExp model elements have to be created. In this case, the
property LetExp::ownedIn (line 17) is computed by assigning an accumulation of all the re-
quired (nested) LetExp model elements (lines 17–23). For that, an iterate expression is used,
so that starting from the last declared variable, in reverse order (line 17), a LetExp model
element (lines 19–23) is accumulated, so that it is added to the LetExp::ownendIn property of
the previous LetExp model element (line 21).

Literal Expressions

mOCL provides different kinds of literal expressions. The creation of CollectionLiteralExp
model elements was already explained in Section 4.2.6, when introducing multi-way map-
pings. However, mOCL contains additional literal expressions.

Listing 4.56 shows the mOCL CS2AS bridge that deals with the creation of BooleanLit-
eralExp, IntegerLiteralExp and NullLiteralExp model elements. Since they do not present new
challenges, no additional comments are added.

Loop expressions

When introducing the running example, Section 3.2.2 stated that mOCL provides syntax
to declare some loop expressions, in particular, iterate and collect expressions. Listing 4.57
shows how the CS2AS bridge for loop expressions is expressed with CS2AS-TL. With respect
to the mappings section, the different way of creating distinct model elements conforming
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1 disambiguation {
2 LetExpCS {
3 singleVarDecl := letVars−>size() = 1;
4 multipleVarDecls := letVars−>size() > 1;
5 }
6 }
7 mappings {
8 create LetExp from LetExpCS
9 when singleVarDecl {

10 ownedVariable := letVars−>at(1);
11 ownedIn := inExp;
12 type := inExp.trace.type;
13 }
14 create LetExp from LetExpCS
15 when multipleVarDecls {
16 ownedVariable := letVars−>first();
17 ownedIn := letVars−>excluding(letVars−>first())−>reverse()
18 −>iterate(x : LetVarCS; acc : OCLExpression = inExp.trace |
19 LetExp {
20 ownedVariable = x.trace,
21 ownedIn = acc,
22 type = acc.type
23 }) ;
24 type := inExp.trace.type;
25 }
26 }

LISTING 4.55: CS2AS description of LetExp

1 mappings {
2 create BooleanLiteralExp from BooleanLiteralExpCS {
3 booleanSymbol := boolSymbol;
4 type := lookup(Class, ’Boolean’);
5 }
6 create IntegerLiteralExp from IntegerLiteralExpCS {
7 integerSymbol := intSymbol;
8 type := lookup(Class, ’Integer’);
9 }

10 create NullLiteralExp from NullLiteralExpCS {
11 type := lookup(Class, ’OclVoid’);
12 }
13 }

LISTING 4.56: CS2AS description of mOCL literal expressions
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to the same AS meta-class is highlighted. The distinction resides in how a particular AS ref-
erence is computed (line 11). In this case, the two different outcomes are handled by an OCL
if expression. If no iterator variable is declared, an implicit one is created. With respect to
name resolution, both expressions create a new nested scope for their children (lines 22 and
26). In this way, the implicit iterator (variable) occludes any other implicit variable declared
in outer scopes (e.g. in another outer loop expression). For IterateExp, the contribution is
explicitly specified to apply to the child contained via the IterateExp::ownedBody reference
property. The rationale is that the accumulator (contained via IterateExp::ownedResult refer-
ence) has an init expression, which is not allowed to refer to the contributed targets.

1 mappings {
2 create IterateExp from IterateExpCS {
3 ownedIterator := itVar ;
4 ownedResult := accVar;
5 ownedBody := exp;
6 ownedSource := parentAsCallExpCS();
7 type := trace .ownedResult.type;
8 }
9 create IteratorExp from CollectExpCS {

10 name := ’collect’;
11 ownedIterator := if itVar = null
12 then Variable { name=’__implicit__’, type=lookup(Class,’

OclAny’) }
13 else itVar . trace
14 endif;
15 ownedBody := exp;
16 ownedSource := parentAsCallExpCS()._source;
17 type := lookup(Class,’Collection’);
18 }
19 }
20 name_resolution {
21 providers {
22 IteratorExp {
23 in current_scope
24 provides occluding ownedIterator;
25 }
26 IterateExp {
27 in current_scope
28 for ownedBody
29 provides occluding ownedIterator, ownedResult;
30 }
31 }
32 }

LISTING 4.57: CS2AS description of mOCL loop expressions
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Implicit Collects and Collection Conversions

When explaining how Concern 7 (multi-way mappings) is addressed by CS2AS-TL, an ex-
position that deals with the NameExpCS model elements was shown. However, this expo-
sition was incomplete. One missing part was the creation mappings for OperationCallExp.
The omission was justified by the fact that these mappings are rather similar to the ones
specified for PropertyCallExp. However, the other missing part addresses the mOCL charac-
teristic related to dealing with the navigation operators (see Section 3.2.2), particularly with
the creation of the additional implicit collect expression, and the operation call expression
that performs a collection conversion.

Listing 4.58 shows the specific helpers, disambiguation rules and creation mappings that
address these scenarios. A new helper is introduced (lines 4–5), which aims to determine
whether the type of the source of the navigation is of type collection or not. Two additional
disambiguation rules are introduced. Apart from the conditions that check if it is a naviga-
tion with an explicit source, these disambiguation rules perform additional checks:

• For operation call expressions (line 12), it is checked whether the operator is the ’-
>’ symbol and the source is not a collection. In that case, the creation of an implicit
collection conversion is required.

• For property call expressions (line 15), it is checked whether the operator is the ’.’
symbol and the source is a collection. In that case, the creation of an implicit collect is
required.

Looking at the mappings section (lines 17–45), the solutions for the two scenarios differ.
With respect to the creation of an operation call expression with the preceding implicit

collection conversion (line 18), the solution consists of creating an intermediate OperationCall-
Exp model element (lines 22–27) that refers to an asCollection Operation model element (lines
25–26). This new intermediate OperationCallExp model element is the new ownedSource (line
20) of the OperationCallExp model element created by the mapping. The original source ex-
pression is now the ownedSource (line 23) of the new intermediate OperationCallExp model
element.

With respect to the creation of a collect iterator expression comprising the property call
expression (line 33), the approach is different. The mapping creates an IteratorExp model
element rather than a PropertyCallExp one (line 33). The expected property call expression is
now the ownedBody (line 38) of the new iterator expression. The new ownedSource (line 39) of
the expected property call expression is a VariableExp model element (lines 39–40) that refers
to the ownedIterator (line 39) of the IteratorExp model element created by the mapping.

4.2.10 Sufficiency of mOCL

Once the CS2AS bridge2 of mOCL has been presented, this subsection aims to address ex-
ternal validity threats that may arise by using mOCL as a simplified version of OCL .

2 The whole CS2AS bridge definition for mOCL can be found in Appendix C.
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1 helpers {
2 NameExpCS {
3 −− other helpers omitted
4 isTheSourceACollection() : Boolean :=
5 parentAsCallExpCS()._source.trace.type = lookup(Class,’Collection’);
6 } }
7 disambiguation {
8 NameExpCS {
9 −− other disambiguation rules omitted

10 isOperationCallExpWithExplicitSourceAndImplicitCollection :=
11 roundedBrackets <> and isNavExpOfACallExpCS()
12 and opName = ’->’ and not isTheSourceACollection();
13 isPropCallExpWithExplicitSourceAndImplicitCollect :=
14 roundedBrackets = null and isNavExpOfACallExpCS()
15 and opName = ’.’ and isTheSourceACollection();
16 } }
17 mappings {
18 create OperationCallExp from NameExpCS
19 when isOperationCallExpWithExplicitSourceAndImplicitCollection {
20 ownedSource := let emptyArgs = OrderedSet{},
21 collType = lookup(Class, ’Collection’)
22 in OperationCallExp {
23 ownedSource = parentAsCallExpCS()._source.trace,
24 ownedArguments = emptyArgs,
25 referredOperation = lookupExported(Operation, collType,
26 ’asCollection’, emptyArgs),
27 type = collType };
28 ownedArguments := args;
29 referredOperation := lookupExported(Operation,trace.ownedSource.type,
30 expName,trace.ownedArguments);
31 type := trace . referredOperation.type;
32 }
33 create IteratorExp from NameExpCS
34 when isPropCallExpWithExplicitSourceAndImplicitCollect {
35 name := ’collect’;
36 ownedSource := parentAsCallExpCS()._source.trace;
37 ownedIterator := Variable { name=’self’, type=lookup(Class,’OclAny’) };
38 ownedBody := PropertyCallExp {
39 ownedSource = VariableExp{referredVariable=trace.ownedIterator,
40 type=trace.ownedIterator.type },
41 referredProperty = lookupExported(Property,
42 trace .ownedIterator.type,expName),
43 type = trace . referredProperty.type };
44 type := trace .ownedSource.type;
45 } }

LISTING 4.58: CS2AS description of mOCL loop expressions
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OCL specification splits its AS definition into two different packages: the types package
and the expressions package. In this subsection, a similar distinction is also made and both
are commented on below.

OCL Types

mOCL presents a reduced type system compared with OCL. In the former case, types are
represented with a simple meta-class Class with a name to identify the type. The more com-
plex OCL type system contrasts in two different areas: firstly, the logic of type conformance
(required to compute expression types) needs to address more complex scenarios. Secondly,
name resolution description is also more elaborate because type lookups involve more than
a simple name.

With respect to computing expression types in a more complex type system, creating
the logic to deal with additional cases is not a relevant challenge. OCL expressions provide
enough expressiveness, for instance, to compute complex type conformance rules as part of
CS2AS-TL helpers section. According to the OCL specification [39], Listing 4.59 shows how
some of these conformance rules could be defined with CS2AS-TL.

1 helpers {
2 SequenceType { −− conforms to OclAny and SequenceTypes with conformant element type
3 conformsTo(anotherType : Classifier) : Boolean :=
4 not anotherType.isOclAny() implies
5 anotherType.oclKindOf(SequenceType) and
6 self .elementType.conformsTo(anotherType.oclAsType(SequenceType).

elementType);
7 }
8 InvalidType { −− InvalidType conforms to all types
9 conformsTo(anotherType : Classifier) : Boolean :=

10 true ;
11 }
12 VoidType { −− VoidType conforms to all types , except InvalidType
13 conformsTo(anotherType : Classifier) : Boolean :=
14 not anotherType.isOclInvalid()
15 }
16 }

LISTING 4.59: CS2AS conformance rules for some OCL types

With respect to name-based lookups, the OCL built-in type system contains more com-
plex types in which simple name-based lookups are not enough. For instance, Tuples are not
identified by their name (which is simply Tuple), but by the parts that identify them. How-
ever, Section 4.2.5 explained how the lookup criteria can be augmented with new lookup
information, which could be used to address the name resolution concern for more complex
types. Listing 4.60 shows an example of name resolution definition to locate tuples.

Table 4.3 summarises the different CS2AS-TL features that are required to deal with each
OCL type.
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1 name_resolution {
2 inputs {
3 TupleType filtered_by tParts : OrderedSet(Property)
4 when ownedProperties−>size() = tParts−>size() and
5 ownedProperties−>
6 forAll(x | let tPart= tParts−>at(ownedProperties−>indexOf(x))
7 in x.name = tPart.name and x.type = tPart.type);
8 }
9 }

LISTING 4.60: Defining additional lookup criteria for Tuple types

OCL Type CS2AS-TL Features
AnyType Contextual Helper Operations

InvalidType Contextual Helper Operations
VoidType Contextual Helper Operations
ClassType Contextual Helper Operations
TupleType Contextual Helper Operations and Additional Lookup Criteria

CollectionType Contextual Helper Operations and Additional Lookup Criteria
OrderedType Contextual Helper Operations and Additional Lookup Criteria
SequenceType Contextual Helper Operations and Additional Lookup Criteria

OrderedSetType Contextual Helper Operations and Additional Lookup Criteria
BagType Contextual Helper Operations and Additional Lookup Criteria
SetType Contextual Helper Operations and Additional Lookup Criteria

MessageType Contextual Helper Operations and Additional Lookup Criteria

TABLE 4.3: CS2AS-TL features required to address OCL types

mOCL Expressions

mOCL presents a reduced number of expressions compared with OCL. The rationale is that,
from the point of view of bridging CS2AS, many of the OCL expressions do not present a
different challenge to the mOCL ones that have been addressed during this chapter.

Looking at the CS definition of OCL [39], varied syntax to express different kinds of ex-
pressions can be found. For instance, there are different operators to depict logic expressions
(e.g. and, or, xor and implies), arithmetic expressions (e.g. +, -, *, /) etc.

The main reason why this kind of expression can be omitted is that, from the point of
view of bridging CS2AS, they all present the same scenario: in essence, creating an operation
call expression with a source and arguments. Therefore, regardless of whether the operators
are binary (one argument) or unary (no arguments), all CS2AS-TL features presented to
address equality expressions can be used for other similar expressions that represent operation
call expressions. Listing 4.61 shows the excerpt for unary expressions (e.g. not expression).

1 mappings {
2 create OperationCallExp from UnaryExpCS {
3 ownedSource := left;
4 referredOperation := lookupExported(Operation, trace.ownedSource.type,
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5 opName, OrderedSet{});
6 }

LISTING 4.61: CS2AS bridge to create OperationCallExp from a unary
expression

With respect to the remaining expressions, such as IfExp or the different sorts of Literal-
Exp, there are no additional challenges to explain. Here, the already mentioned requisite of
computing the TypedElement::type cross-references for all the expressions is discussed. Con-
textual helpers can be used for creating the required logic. As Listing 4.62 shows, in the case
of an IfExp, it should be the common super type of both branch expressions.

1 helpers {
2 IfExp {
3 computeType() : Classifier :=
4 ownedThenExp.type.commonSupertype(ownedElseExp.type);
5 }
6 }
7 mappings {
8 create IfExp from IfExpCS {
9 ownedCondition := condition;

10 ownedThenExp := _then;
11 ownedElseExp := _else;
12 type := computeType();
13 }
14 }

LISTING 4.62: CS2AS bridge to create IfExp model elements

Table 4.4 summarises the different CS2AS-TL features that are required to deal with each
kind of OCL expression.

OCL Expression CS2AS-TL Features
PropertyCallExp Contextual helpers, multi-way mappings, exported name-based

lookups
OperationCallExp Contextual helpers, multi-way mappings, exported name-based

lookups
PrimitiveLiteralExp Contextual helpers, one-way mappings, name-based lookups
CollectionLiteralExp Contextual helpers, one-way mappings, name-based lookups

TupleLiteralExp Contextual helpers, one-way mappings, name-based lookups
VariableExp Contextual helpers, multi-way mappings, name-based lookups

IfExp Contextual helpers, one-way mappings
TypeExp Contextual helpers, one-way mappings, name-based lookups

IteratorExp Contextual helpers, multi-way mappings, selective targets provi-
sion

IterateExp Contextual helpers, multi-way mappings, selective targets provi-
sion

MessageExp Contextual helpers, multi-way mappings, name-based lookups
StateExp Contextual helpers, one-way mappings, name-based lookups

TABLE 4.4: CS2AS-TL features required to address OCL expressions
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4.2.11 Related Work Discussion

This subsection discusses how CS2AS-TL relates to previous work.

General Purpose M2M Transformations

The presented solution is based on domain-specific M2M transformation language. One
question that may arise is the benefits that this new language provides with respect to the
already existing general purpose M2M transformation languages. When evaluating the so-
lution in the next chapter, this topic is particularly discussed in Section 5.1.

DSTL Design

With respect to designing the DSTL, Sánchez-Cuadrado et al. [68] propose a systematic ap-
proach to construct domain-specific transformation languages. In this case, by means of the
DSL they propose, a language designer can declare new DSTLs for which a CS definition, an
AS definition, an IDE, and even some execution infrastructure are automatically generated.

Figure 4.14 shows, on the left hand side, a feature model describing the possible features
of DSTL, according to Sánchez-Cuadrado et al. [68]. On the right hand side of the figure,
a configuration model shows the specific features (in grey) that characterise our solution:
declarative rules Ê are specified on one element Ë type of the source CS meta-model, which
may define guards (disambiguation rules) Ì for multi-way mappings. The outcome of these
mappings may be several model elements (a pattern) Í, and the properties of the created
model elements may be initialised by means of OCL-based bindings Î.

Rule Type

Application
Condition

One 
Element

DeclarativeGuardPattern

Pattern

Imperative

One 
Element

Creation

BindingsFixed Fixed Fixed

Fixed Fixed Simple OCL

FixedFixed

1

2
3

4

5

FIGURE 4.14: Left: Feature model to characterise the rule types of a DSTL
(Figure 3 from [68]). Right: Configuration model that depicts the features

selected by CS2AS-TL

Although it is possible to classify CS2AS-TL by means of Sánchez-Cuadrado et al.’s fea-
ture model, there are some features that are not appropriately classified. For instance, there
is no concept of reference rule in the feature model, or room for the specific name resolution
section.
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Related DSTLs

Moving deeper into the specific domain of bridging the CS and AS of a CTML by means of
CS2AS-TL, there are several relevant works:

• Gra2Mol [42] defines a DSTL to bridge CS grammars and AS meta-models.

• Spoofax [46] defines a set of languages to create tools (parsers, editors) for textual lan-
guages. In particular, they define a language called NaBL to declare name resolution.

A qualitative study to evaluate these two works is presented in Chapter 5. The reader is
referred to Section 5.2 and Section 5.3 for more details.

4.3 Complete OCL-Based Internal DSTL

Having presented CS2AS-TL, the following sections explain how the CS2AS transforma-
tions are actually executed. In particular, the different compilation steps introduced during
the solution overview (see Figure 4.2) are explained. This section introduces the first com-
pilation step which is responsible for compiling instances of CS2AS-TL into instances of a
Complete OCL-based internal DSTL.

4.3.1 Overview

The first compilation step consists of generating a set of Complete OCL files that comprise
another declarative exposition of how outputs (AS models) are computed from inputs (CS
models). In this way, many of the higher level of abstraction constructs introduced by
CS2AS-TL are expanded into a pure OCL-based CS2AS bridge.

The rationale behind the existence of this compilation step is the following:

• In terms of prototype development, this Complete OCL-based internal DSTL was de-
veloped prior to CS2AS-TL. This internal DSTL was used to execute CS2AS trans-
formations by means of existing tooling (from the Eclipse OCL and QVTd projects),
whilst it helped to obtain the requirements for CS2AS-TL.

• In terms of industrial partner interest, there was interest for this pure OCL-based lan-
guage, so that a CS2AS bridge can be completely modeled in an OMG specification
language. In this way, these CS2AS bridges can be added to the standardised specifi-
cations.

The Complete OCL-based DSTL is internal [31] and uses only facilities proposed for OCL
2.5 [11]. In essence, the DSTL constrains the use of the general purpose OCL language to
define a set of idioms that express CS2AS bridges.

The compiler has been developed with Xtend [84] and, from instances of CS2AS-TL,
it generates the corresponding Complete OCL documents in a source folder of the user
workspace. More precisely, the generation consists of four files:
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• A file with the OCL helper operations corresponding to the helpers section of CS2AS-
TL.

• A file with Boolean-valued OCL operations corresponding to the disambiguation rules
declared in the disambiguation section of CS2AS-TL.

• A file with a set of OCL lookup operations that encodes the lookup algorithms corre-
sponding to the name resolution section of CS2AS-TL.

• A file with a set of OCL operations that declare how AS model elements are computed
from CS model elements, corresponding to the mappings section of CS2AS-TL.

The following subsections introduce some details about how the Complete OCL docu-
ments are produced.

Exposing all the implementation details of the Complete OCL-based internal DSTL
would make this thesis unnecessarily long. The following subsections present some
specific examples of mOCL, whilst the entire exposition can be consulted in Ap-
pendix D. The reader is also referred to this published work [66].

4.3.2 Helpers

The helpers section is straightforwardly generated as a collection of operation definitions
declared in a Complete OCL file. Figure 4.15 shows an example of how two helpers are
translated. Since CS2AS-TL reuses OCL as the expressions language, the body of the helper
operations is translated as it is to the body of the OCL operation definitions.

4.3.3 Disambiguation Rules

The disambiguation section is translated to a new Complete OCL document as a collection
of Boolean-valued operation definitions, one per disambiguation rule. Figure 4.16 shows an
example where the disambiguation rules defined to disambiguate CollectionLiteralPartCS are
translated to the corresponding Complete OCL operation definitions.

4.3.4 Name resolution

The name resolution section is translated to a new Complete OCL document as a set of
operation definitions that resolve name-based lookups. These OCL operations encode the
different lookup algorithms explained in the previous Section 4.2. When compared to other
CS2AS-TL sections, this part of offers the higher level of abstraction constructs. Therefore,
the amount of OCL code corresponding to the name resolution section is substantial. List-
ing 4.63 shows a simple example that includes the name resolution declaration related to
variable lookups.

Listing 4.64 shows the corresponding Complete OCL operations that encode the name-
based lookups. The first four operations consist of a set of lookup operations. The first
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1 source cs : ’generated/MiniOCLCS
.ecore#/’

2 target as : ’/org.eclipse.qvtd.
doc.miniocl/model/MiniOCL.
ecore#/’

3 helpers {
4 Class {
5 commonSupertype(another : Class)

: Class :=
6 let allSupertypes = self−>

asOrderedSet()−>closure(
superClasses),

7 allOtherSupertypes = another−>
asOrderedSet()−>closure(
superClasses)

8 in allSupertypes−>intersection(
allOtherSupertypes)−>any(true);

9 conformsTo(another : Class) :
Boolean :=

10 self = another or
11 superClasses−>exists(conformsTo(

another));
12 }}

1 import cs : ’generated/MiniOCLCS
.ecore#/’

2 import as : ’/org.eclipse.qvtd.
doc.miniocl/model/MiniOCL.
ecore#/’

3 package as
4 context Class
5 def: commonSupertype(another:Class)

: Class =
6 let allSupertypes = self−>

asOrderedSet()−>closure(
superClasses),

7 allOtherSupertypes = another−>
asOrderedSet()−>closure(
superClasses)

8 in allSupertypes−>intersection(
allOtherSupertypes)−>any(true);

9 def: conformsTo(another : Class) :
Boolean =

10 self = another or
11 superClasses−>exists(conformsTo(

another))
12 endpackage

FIGURE 4.15: Left: Some helper definitions using the CS2AS-TL. Right: Cor-
responding OCL operation definitions

1 disambiguation {
2 CollectionLiteralPartCS {
3 withoutLastExpression :=
4 last = null;
5 withLastExpression :=
6 last <> null;
7 }
8 }

1 package cs
2 context CollectionLiteralPartCS
3 def : withoutLastExpression() : Boolean =
4 last = null
5 def : withLastExpression() : Boolean =
6 last <> null
7 endpackage

FIGURE 4.16: Left: Some disambiguation rules using CS2AS-TL. Right: Cor-
responding OCL operation definitions
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1 name_resolution {
2 targets {
3 NamedElement using name escaped_with ’_’;
4 Variable;
5 }
6 inputs {
7 PathElementCS using elementName;
8 }
9 providers {

10 LetExp {
11 for all excepting ownedVariable
12 provides occluding ownedVariable;
13 }
14 }
15 }

LISTING 4.63: Name resolution declaration corresponding to Variable
lookups

receives a String with the name of the variable to look up (lines 4–5). Since the name resolu-
tion section declares an additional input (lines 6–8 from Listing 4.63), another lookupVariable
method is generated that receives that type of input (lines 6–7). The third and fourth opera-
tions (lines 8–21) encode the lookup algorithm: the third operation (lines 8–15) receives the
String value of the variable to look up, and it invokes (line 10) the fourth one with an extra
argument that provides the current lookup environment3. This environment comprises all
the candidate Variable model elements contributed by their parent model elements. Note
that if no variable is found, and the variable name is escaped (using the ’_’ prefix), a new
lookup is performed using the variable name without the escape prefix (see line 12). The
fourth operation (lines 16–21) queries the passed lookup environment and selects the Vari-
able model elements that have the same name with the passed variable name (line 17). Note
that if no variable is found, and the passed lookup environment is a nested one, a lookup in
the parent environment is tried (line 19).

The three operations that follow comprise the default implementation of lookup envi-
ronment computations (lines 23–30). The first operation (lines 23–24) is always invoked to
compute the current environment of a particular AS model element (line 9). By default, the
operational behaviour simply consists of invoking the third operation (line 26) with the aim
of obtaining the current lookup environment propagated by its parent. This third operation
(lines 27–30) consists of obtaining the lookup environment computed by its parent model
element (line 30). In the case of a root model element (no parent), an empty environment is
created (line 29).

3 OCL specification [39] refers to Environments in its Clause 9. They are the actual implementation of the
current scopes explained in the previous subsection.
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According to the explained OCL operations, an empty lookup environment is propa-
gated from the root model element to the particular children that require it. For every con-
tribution to the current scope made by a particular AS model element, a new operation
is generated (lines 31–37). This last operation overloads the second one explained above
(line 25–26). In this way, the default operational behaviour is modified according to the
target contribution. Note that the child operation parameter can be used to drive different
contributions based on the child for which the lookup environment is propagated. In this
example (lines 31–37), for every child that is not the LetExp::ownedWariable, the propagated
environment is a new nested environment (from the one propagated by the LetExp parent),
including the Variable contained by the LetExp::ownedVariable reference. In the opposite case,
in which the child is contained via the LetExp::ownedVariable reference, the default behaviour
applies.

The whole name resolution declaration and the corresponding Complete OCL docu-
ment can be found in Appendix C and Appendix D respectively. It can be observed
that 65 lines of code of CS2AS-TL name resolution section correspond to 480 lines of
code of a Complete OCL file.

4.3.5 Mappings

Finally, a fourth Complete OCL document is generated, comprising the mappings definition
declared within the CS2AS-TL mappings section. The concept of mapping does not exist in
OCL. Therefore, the Complete OCL-based internal DSTL uses the following conventions to
express mapping declarations:

• A mapping consists of a parameter-less ast() operation definition. The context of the
operation definition corresponds to the input (source) type of the mapping, whereas
the operation result type corresponds to the output (target) type of the mapping.

• For creation mappings, the body of the ast() operation definition is a shadow expres-
sion4, which represents the type of element that is actually created by the mapping.
Every property assignment of the creation mapping is translated as a shadow part of
that shadow expression.

• For reference mappings, the body of the ast() operation definition is the expression
declared within the reference mapping.

• For multi-way mappings, all the mapping output results (corresponding to the same
input type) are "merged" within the same ast() operation definition, whereas the multi-
way execution is controlled by nested if expressions, one per multi-way mapping. Ev-
ery IfExp::ownedCondition comprises a call expression of the operation corresponding
to a disambiguation rule. The IfExp::ownedThen comprises the ShadowExp of the corre-
sponding output model element to create. Finally, the IfExp::ownedElse comprises the

4 Concept proposed for inclusion in OCL 2.5 [11]. It has been implemented in Eclipse OCL and OCLT [45].
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1 package as
2 context Element −− API for variable lookups
3 −− Operations for variable lookup
4 def : lookupVariable(vName : String) : Variable[?] =
5 _lookupUnqualifiedVariable(vName)
6 def : lookupVariable(aPathElementCS : cs::PathElementCS) : Variable[?] =
7 _lookupUnqualifiedVariable(aPathElementCS.elementName)
8 def : _lookupUnqualifiedVariable(vName : String) : Variable[?] =
9 let env = unqualified_env_Variable() in

10 let foundVariable = _lookupVariable(env, vName)
11 in if foundVariable−>isEmpty()
12 then if vName.isScaped() then _lookupVariable(env, vName.unscape())
13 else null endif
14 else foundVariable−>first()
15 endif
16 def : _lookupVariable(env : LookupEnvironment, vName : String):OrderedSet(

Variable) =
17 let foundVariable = env.namedElements−>selectByKind(Variable)−>select(name =

vName)
18 in if foundVariable−>isEmpty() and not (env.parentEnv = null)
19 then _lookupVariable(env.parentEnv, vName)
20 else foundVariable
21 endif
22 −− Operations for environment computation
23 def : unqualified_env_Variable() : LookupEnvironment[1] =
24 _unqualified_env_Variable(null)
25 def : _unqualified_env_Variable(child : OclElement) : LookupEnvironment[1] =
26 parentEnv_Variable()
27 def : parentEnv_Variable() : LookupEnvironment[1] =
28 let parent = oclContainer()
29 in if parent = null then LookupEnvironment {} −− Empty Environment
30 else parent._unqualified_env_Variable(self) endif −− The environment of my

parent
31 context LetExp −− LetExp contributes variables to the current scope
32 def : _unqualified_env_Variable(child : ocl :: OclElement) : LookupEnvironment[1] =
33 if not (ownedVariable−>includes(child))
34 then parentEnv_Variable().nestedEnv()
35 .addElements(ownedVariable)
36 else parentEnv_Variable()
37 endif

LISTING 4.64: OCL operation definitions corresponding to the name
resolution declaration from Listing 4.63
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next nested IfExp of the next multi-way mapping. The last IfExp::ownedElse comprises
the fall-back multi-mapping or invalid literal expression in case no one is defined. The
order in which the IfExp are nested is driven by the order in which the corresponding
disambiguation rules are declared. An explanatory example is shown below.

• Trace expressions are translated as ast() call expressions.

Listing 4.65 shows the ast() OCL operation that results from the two-way mapping de-
clared on CollectionLiteralPartCS (see Section 4.2.6). A parameter-less ast() operation defini-
tion (line 3) is declared on CollectionLiteralPartCS (line2). The result type of that operation is
a CollectionLiteralPart (line 3), which is the common super type of the AS model elements to
be created by the shadow expressions involved, i.e. CollectionItem (lines 5–8) and Collection-
Range (lines 10–14). Since the translation comes from multi-way mappings, the body of the
ast() operation definition consists of a set of nested if expressions. The condition of the first
if expression (line 4), invokes the boolean-value operation corresponding to the first dis-
ambiguation rule ’withoutLastExpression’ (see previous Figure 4.16). If the disambiguation
rule applies, a CollectionItem model element is created (lines 5–8), otherwise the next nested
if expression is considered. The condition of this second if expression (line 9), invokes the
boolean-value operation corresponding to the second disambiguation rule ’withLastExpres-
sion’. If the disambiguation rule applies, a CollectionRange model element is created (lines
10–14). If no disambiguation rule applies, there is an invalid situation. Note that this invalid
situation cannot ever happen because a CollectionLiteralPartCS has either a last expression or
none.

1 package cs
2 context CollectionLiteralPartCS
3 def : ast () : as :: CollectionLiteralPart =
4 if withoutLastExpression()
5 then as :: CollectionItem {
6 ownedItem = first.ast () ,
7 type = ast () .ownedItem.type
8 }
9 else if withLastExpression()

10 then as :: CollectionRange {
11 ownedFirst = first ,
12 ownedLast = last,
13 type = ast () .ownedFirst.type
14 }
15 else
16 invalid
17 endif endif
18 endpackage

LISTING 4.65: OCL operation definition corresponding to the multi-way
mappings whose source is CollectionLiteralPartCS
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4.3.6 Related Work Discussion

Although OCL (and variants) can be found as the expression language of several M2M trans-
formation languages (e.g. QVT [37], ETL [51] and ATL [44]), there is little related work that
proposes OCL on its own as an M2M transformation language. In this thesis, and in pub-
lished work [66], OCL is proposed as the host language of an internal DSTL.

Alternatively, recent work from Jouault et al. [45] proposes OCL as a functional model
transformation language called OCLT. Apart from shadow expressions, it relies on other
constructs such as pattern matching to enable the declaration of functional model transfor-
mations. In terms of execution, it relies on “a specific execution layer to enable traceability
and side effects on models“. Instead, the prototype developed for this thesis compiles to,
and reuses, existing M2M technologies.

4.4 Transformation Execution: QVTd

Previous sections explained CS2AS-TL, and showed how the corresponding Complete OCL
files (conforming to an internal DSTL) are produced. The last steps of the compilation pro-
cess (see Figure 4.2 from Section 4.1) consist of producing the final artefacts in charge of
executing CS2AS model transformations. The executable M2M transformation engine on
which the proposed prototype relies, belongs to the Eclipse QVTd [26] project. The follow-
ing subsections give an overview of the approach, and explain details of the compilation
process.

4.4.1 Overview

The prototype relies on the Eclipse QVTd project. This Eclipse project contains the imple-
mentation of the two declarative M2M transformation languages of the QVT specification:
QVTr and QVTc. The aim of reusing this third-party project is to execute M2M transforma-
tions in charge of producing AS models from CS ones. Whilst the proposed Complete OCL-
based internal DSTL is expressive enough to define declarative CS2AS transformations, a
pure OCL-based engine cannot execute them. The next step within the proposed approach
is compiling to M2M transformations. In particular, as part of the solution implementation,
the goal is producing executable QVT transformations in the context of the Eclipse QVTd
project.

The rationale behind choosing this particular technology is the following:

• The QVT family of languages includes OCL as the expression language. Therefore,
when translating expressions from the Complete OCL-based internal DSTL to any of
the QVT languages, no special considerations are required to translate the expressions.

• The M2M transformation languages corresponding to QVTd are declarative. Since the
OCL-based internal DSTL is also declarative, targeting a declarative M2M transforma-
tion language is very convenient, because the implementation does not have to switch
from a declarative transformation exposition to the required imperative execution.
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• The Eclipse QVTd project has a code generator capable of producing the Java class
responsible for transforming models. Recent works [78, 77] have started to demon-
strate the utility of this approach and, in particular, the significant gains in terms of
execution time.

• From a pragmatic perspective, the sponsor of this EngD project is interested in focus-
ing on this technology (to test it, improve it and benefit from it).

Figure 4.17 shows an overview of the compilation process. From the set of four Complete
OCL documents Ê corresponding to an instance of the CS2AS internal DSTL, only the one
corresponding to the mappings is translated to a QVT Minimal (QVTm) file Ë. This file
comprises a QVT M2M transformation containing a set of so called micro-mappings [77],
and it imports the other three Complete OCL documents that contain all the callable OCL
operation definitions (helpers, disambiguation rules and lookup operations). Finally, this
QVT transformation conforms the input to a code generator (belonging to the Eclipse QVTd
project) that produces that final Java class Ì in charge of transforming CS models into AS
models.

Java
M2M Tx

Helpers.ocl

Disambiguation.ocl

NameResolution
.ocl

CS2ASMappings
.qvtm

CS Model

AS Model
compiles to

input

output

Eclipse QVTd
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Complete OCL 
Internal DSTL

compiles to

imports
2 3

CS2ASMappings
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FIGURE 4.17: Compiling the set of Complete OCL files that declare a CS2AS
bridge into an executable M2M transformation in Java

4.4.2 QVTm compilation: Micro-Mappings

Explaining and clarifying the details of the Eclipse QVTd functionality go beyond the ob-
jectives of this thesis. That said, this subsection briefly introduces the concept of micro-
mapping, and gives an overview of how these micro-mappings are created from the Com-
plete OCL document that declares a CS2AS bridge.

The concept of QVT Minimal (QVTm) first appears in [76], where a transformation is
considered as minimal when features such as multi-directionality, mapping refinement and
composition, have been removed from the original (QVTc) transformation. More recently,
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the concept of primitive micro-mapping has been explained [77]: “A declarative transfor-
mation may therefore execute one commit action at a time, where a commit action either
creates a node or assigns an edge. The type of object created, or the value assigned by the
commit-action, is computed from zero or more objects or values that must be ready for use.
We therefore wrap up the commit-action inside a primitive Micro-Mapping to include the
input parameters, predicates and computations that influence the commit-action. A prim-
itive Micro-Mapping is therefore similar to the mapping or rule or relation of declarative
transformation languages, but is constrained to a single commit-action“.

In this case, as long as the input objects of a micro-mapping are ready, a single commit-
action permits the micro-mapping to be successfully executed from start to end. Then, it
is only a matter of a transformation scheduler adequately sequencing the invocation of the
micro-mappings. When sequencing these micro-mapping invocations, the scheduler stati-
cally ensures that the inputs of every micro-mapping are ready upon invocation. The sim-
pler and smaller the micro-mappings are, the easier to sequence the invocations without
suffering deadlocks between mappings (e.g. a mapping requires an input that another one
produces, and vice versa). Listing 4.66 shows an example of a micro-mapping where there
is a check (input) domain that declares an input object of type InputType (line 3). There is
an enforce (output) domain that realises an output object of type OutputType (line 6). The
micro-mapping additionally contains a property assignment so that the property aProp of
the output object is initialised with the value of the property anotherProp of the input object.

1 map input_2_output in myTransformation
2 {
3 check inputDomain(inputObj : InputType[1]
4 |) {}
5 enforce outputDomain() {
6 realize outpuObj : OutputType[1]
7 |}
8 where() {
9 outputObj.aProp := inputObj.anotherProp;

10 }
11 }

LISTING 4.66: Simple QVTm micro-mapping

In the prototype implementation, when generating the micro-mappings of a QVTm trans-
formation, two kinds of micro-mappings are produced:

• A creation micro-mapping. This receives an input model element, and creates an out-
put model element, as well as a trace link between them by updating the traceability
property of the input model element.

• An update micro-mapping. This receives an input model element but it does not create
an output model element. Instead, it updates a property from an output model ele-
ment. The corresponding output model element is accessed via the traceability prop-
erty of the input model element. Note that according to the micro-mapping definition,
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update micro-mappings cannot be executed until the corresponding creation micro-
mapping has been firstly executed. Otherwise, the output model element would not
have been created and the mapping execution would fail.

With these two different kinds of micro-mapping, the compilation process of produc-
ing QVTm transformations from the set of OCL operation definitions that declare CS2AS
bridges is as follows. The shadow expressions that are in the body of ast() operations pro-
duce the following micro-mappings:

• One creation micro-mapping, where the input type is the context of the OCL operation
definition and the output type is the type of the shadow expression. There is a single
property assignment to update the trace property that links the input model element
to the output one.

• One update micro-mapping per shadow part of the shadow expression, where the
input type is the context of the OCL operation definition. There is a single property
assignment to update a property of the output model element.

For instance, Figure 4.18 shows, on the left, a partial ast() operation definition corre-
sponding to the mapping that creates Class model elements from ClassCS model elements.
On the right, the corresponding two micro-mappings are shown. A creation mapping (lines
1–11) receives a ClassCS model element (line 3), and it realises a Class model element (line 6).
Additionally, the traceability property (called ast) of the ClassCS model element is assigned
to the created Class model element (line 9). An update mapping (lines 12–20) receives a
ClassCS model element (line 14). In this case, no additional model element is created. In-
stead, the Class model element corresponding to the input ClassCS model element is up-
dated (line 18). In particular, the value of the property name of the ClassCS model element is
assigned to the property name of the Class model element.

4.4.3 Related Work Discussion

The idea of compiling to existing languages to reuse execution engines is not new. With the
added value of working on transformation languages that are defined by meta-models [8],
this task is reduced to create another (high-order) M2M transformation [73]. In their ap-
proach for a systematic construction of DSTLs, Sánchez-Cuadrado et al. [68] also rely on a
similar approach. In this case, the target transformation language is a different one (Eclec-
tic [67]), but the goals are the same: reusing the existing engine and the tools around the
target transformation language.

4.5 Language Workbench Integration: Xtext

This section introduces additional work that identifies further benefits from having CS2AS-
TL to declare CS2AS bridges. In this case, from instances of CS2AS-TL, additional function-
ality could be generated to complement the default textual editor produced by Xtext. In
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1 context ClassCS
2 def : ast () : as :: Class =
3 as :: Class {
4 name = name,
5 −− Other shadow parts
6 }

1 map cClassCS_2_Class in MiniOCLCS2AS
2 {
3 check leftCS(lClassCS : cs :: ClassCS[1]
4 |) {}
5 enforce rightAS() {
6 realize rClass : as :: Class[1]
7 |}
8 where() {
9 lClassCS.ast := rClass;

10 }
11 }
12 map uClassCS_2_Class_name in MiniOCLCS2AS
13 {
14 check leftCS(lClassCS : cs :: ClassCS[1]
15 |) {}
16 enforce rightAS() {}
17 where() {
18 lClassCS.ast .oclAsType(as::Class).name :=

lClassCS.name;
19 }
20 }

FIGURE 4.18: Left: a partial ast() operation definition that declares a mapping
between ClassCS and Class. Right: the corresponding QVTm micro-mappings

particular, the following subsections show two integration features. The first one focuses
on providing an outline that shows the final AS model obtained from CS2AS transforma-
tions. The second one shows how the editor code completion assistant can be enhanced by
showing the available targets that are visible in a particular AS model element.

This section is not intended to formalise Xtext-based tooling creation, but to show
some hints of the benefits of language workbench independent DSLs to describe
CS2AS bridges. Showing how this kind of tooling can be created in the context of
a different language workbench is beyond the goal of this research project. Moreover,
technical details about the Xtext integration have been omitted.

4.5.1 AS Outline

One typical helper view of Eclipse-based IDEs is the outline view. This view is normally
linked to the active editor, and it shows information relevant to the file that is currently
edited. When editing textual modeling languages, the information that has been considered
to show in the outline is the structure of the underlying AS model. Every time that the
edited file comprises a valid syntactic instance of the language, the CS2AS transformation is
executed and the corresponding AS is shown in the outline, where each node corresponds to
an element of the AS model. Figure 4.19 shows a screen-shot of the enhanced editor feature.
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FIGURE 4.19: Left: Textual mOCL file. Right: corresponding AS model repre-
sentation of the outline

4.5.2 Name resolution based code completion

Another useful feature of modern IDEs is the code auto-completion/assistant5. By default,
Xtext provides some useful alternatives based on grammar definition (e.g. keywords and
punctuation symbols). However, when having additional specification artefacts, such as
CS2AS bridges, more options could be included. In particular, the name resolution de-
scribes the candidate targets that are contributed to a lookup environment, hence, all the
model elements that are visible within a particular scope. All these candidate targets can be
additionally included as part of the suggestions of a code completion assistant. Figure 4.20
shows a screen-shot where, after the extends keyword, the candidate target classes appear in
the code assistant.

FIGURE 4.20: Textual mOCL file on the left, and corresponding AS model
representation of the outline on the right

4.6 Limitations

To conclude the chapter, this section identifies limitations of the proposed solution. They are
categorised from two different points of view: the presented CS2AS-TL (main contribution
of this thesis) and the prototype implementation.

5 In Eclipse, it appears after pressing ctrl+space.
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4.6.1 CS2AS-TL

Given the kind of required M2M transformations – which only involve one input domain
(CS meta-model/s) and one output domain (AS meta-model/s) – and the expressive power
that OCL provides, CS2AS-TL offers sufficient means to address varied and complex CS2AS
scenarios. Even the constructs that provide a higher level of abstraction6, such as the name
resolution section, can be replaced by a set of reusable helper operations.

Beside the varied CS2AS scenarios presented over the course of this chapter, the evalua-
tion shows additional examples in Chapter 5 to demonstrate the suitability of the language.
However, there are a few limitations that have been identified and they are commented on
below:

• The main limitation of the approach is the following: the information that has to be
obtained in the AS model has to be computable from the information present in the
CS model. For instance, if the AS model required some attribute value to be initialised
with the date in which the model was created, the creation of such a model would
not be possible unless that information were present in the CS model. All compu-
tation capability is limited to working on CS information with the help of the addi-
tional operational behaviour that OCL provides. In other words, there is no extension
mechanism (i.e. black-box operations) to incorporate more computation facilities that
operate beyond the CS2AS-TL (i.e. OCL) capabilities.

• Reference mappings do not currently accept disambiguation rules. Hypothetically, a
CS2AS scenario may require that, depending on disambiguation rules, a CS model
element could either create new AS model elements or refer to them.

• Although language extension and composition is not explicitly addressed throughout
the thesis, working on a family of languages is supported and it has been tested with
small examples within the Eclipse QVTo project 7. Providing that a CS2AS bridge has
been declared for a base (extended) language, another CS2AS bridge could be sepa-
rately declared for the derived (extending) one. Declaring mappings on new or de-
rived CS meta-classes is straightforward, and the final mappings follow the mapping
inheritance rules [82] of the target QVTm transformation language. However, there is
a shortcoming in the current CS2AS-TL design due to the semantics of the disambigua-
tion rules section. The order in which these rules are declared for a base meta-class is
rigid, and it cannot be changed by a derived CS2AS bridge.

4.6.2 Prototype Implementation

The solution presented in this chapter has been prototyped using official Eclipse technolo-
gies. Although all the ideas behind the CS2AS-TL are technology agnostic, the actual proto-
type is not so. The following list enumerates the relevant limitations of the current prototype
implementation:

6 Therefore, they impose more restrictions on what needs to be expressed.
7 git://git.eclipse.org/gitroot/mmt/org.eclipse.qvto.git

git://git.eclipse.org/gitroot/mmt/org.eclipse.qvto.git
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• The main limitation is that it has been developed for and using a specific modeling
framework, Eclipse Modeling Framework (EMF). Therefore, the CTMLs that the cur-
rent prototype supports need to be developed using this technology. Other modeling
tools such as Epsilon [50] can work with varied forms of models and meta-models, but
this is not the case for the current prototype.

• The final M2M transformation is a Java class generated from a code generator hosted
by the Eclipse QVTd project. Reflective EMF is not supported by the generated trans-
formation, meaning that the Java classes corresponding to the source and target meta-
models need to have been generated as well.

• The type inference stated during the CS2AS-TL explanation is not actually imple-
mented. This means that for a neat compilation process from an instance of CS2AS-TL
to the final Java class transformation, the (otherwise unnecessary) long-form of the
presented syntax is required. For instance, every contribution requires specifying the
type of the target that is contributed to a lookup scope. This negatively impacts only on
CS2AS-TL when measuring the size of the artefacts required to declare a valid CS2AS
bridge (see the evaluation in Chapter 5).

• CS2AS-TL does not impose restrictions on the CS and AS meta-models that participate
in CS2AS bridges. However, there are limitations in the current implementation that
need to be taken into account when the transformations are executed. For instance,
a reference cannot be typed as EObject: the underlying scheduler – based on static
analysis – of the M2M transformation engine complains when the domain of the model
elements held via that reference cannot be determined.

• The current mappings section may support creating or referring to a collection of AS
model elements. However, the implementation only traces one AS model element
from one CS model element. Therefore, this kind of mapping would not actually be
executed. That said, the limitation could be worked around by means of helpers: a
helper wraps the creation of the required collection of AS model elements. In conse-
quence, operation call expressions to these helpers are used, rather than trace expres-
sions.

• The CS2AS-TL feature related to alias support is not currently implemented. Although
the CS2AS-TL syntax admits the specification of aliases, the first compilation step re-
sponsible for producing the Complete OCL file with the name resolution functionality
does not currently produce the required OCL code to support aliases.

• When integrating the generated transformation with the Xtext editor, the current pro-
totype does not have a good error reporting in the end-user editor, whenever a prob-
lem has occurred during the transformation execution. Some errors related to name
resolution are reported (e.g. if a target is not found). However, if the M2M transforma-
tion fails (e.g. a mistake was made in the CS2AS bridge), the end user does not have
appropriate feedback on what is going on.
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4.7 Summary

This chapter explained the proposed solution to address the different concerns introduced
in Chapter 3. The solution includes the main contribution of this thesis: a CS2AS-TL with
the aim of mapping concepts from source CS meta-models (that are automatically derived
from grammar definitions) to target AS meta-models. In consequence, instances of CS2AS-
TL constitute the CS2AS bridges required by CTMLs. Although the running example (i.e.
mOCL) has been presented using Xtext excerpts to present the CS of the varied CS2AS sce-
narios, CS2AS-TL is independent from the front-end (language workbench or parser tech-
nology). On the contrary, the prototype implementation relies on EMF and the Eclipse QVTd
project, and the AS needs to be defined by Ecore-based meta-models.

Section 4.2 explained CS2AS-TL, which is split in four main sections to address differ-
ent concerns: helpers, disambiguation rules, name resolution and mappings. Sections 4.3
and 4.4 explained the compilation process to obtain executable M2M transformations. Sec-
tion 4.5 focused on some integration features that showed how instances of CS2AS-TL can
be used to complement the default Xtext-based editors. Finally, some limitations of the ap-
proach were presented in Section 4.6.
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Chapter 5

Evaluation

Chapter 4 introduced a solution to address the different concerns explained in Chapter 3.
This chapter focuses on evaluating the proposed solution from the following points of view.
First, the chapter begins with a comparison between CS2AS-TL and general purpose M2M
transformation languages. Second, a qualitative study is performed to compare the pre-
sented CS2AS-TL with two related works: Gra2Mol and Spoofax. Finally, a quantitative
study is shown. This study pursues two goals: demonstrating the suitability of the pro-
posed language to deal with different languages of varied nature (beyond OCL-like lan-
guages), and providing a quantitative comparison in terms of size of specification artefacts
and performance (execution time) of the solution’s implementation.

5.1 General Purpose M2M Transformation Languages

This section introduces a discussion about general purpose M2M transformation languages,
such as ETL [51], ATL [44], RubyTL [17] or QVT [38]. The rationale behind including this
discussion in the thesis is the following: the proposed solution is a domain specific M2M
transformation language and, therefore, it should provide some benefits when compared to
specifying equivalent M2M transformations written in a GPL.

The following subsections discuss the four technical sections of CS2AS-TL and, in partic-
ular, whether these technical sections provide any benefit when compared to using general
purpose M2M transformation languages.

5.1.1 Helpers Section

The helpers section defines helper operations on meta-classes. Apart from the differences in
the concrete syntax, general purpose M2M transformation languages provide similar mech-
anisms for defining contextual operations. In this case, CS2AS-TL does not provide any
significant benefit. Figure 5.1 shows side by side excerpts of a helper operation definition,
declared with CS2AS-TL (on the left) and ETL (on the right).

5.1.2 Mappings Section

The mappings section is designed to express how model elements of the output domain
are created from the model elements of the input domain. Mapping (or rule) definitions
are a key concept present in any M2M transformation language. Again, apart from the
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1 Class {
2 conformsTo(another : Class) : Boolean :=
3 self = another or
4 superClasses−>exists(conformsTo(

another));
5 }

1 operation as!Class conformsTo(
another : as!Class) : Boolean {

2 return self = another or
3 self .superClasses.exists(c | c.

conformsTo(another));
4 }

FIGURE 5.1: Two equivalent helper operations in CS2AS-TL (left) and ETL
(right)

differences in syntax, there are no apparent benefits when declaring mappings using CS2AS-
TL. Figure 5.2 shows side by side excerpts of a mapping definition, declared with CS2AS-TL
(on the left) and ATL (on the right).

1 create Package from PackageCS {
2 name := name;
3 ownedClasses := classes;
4 ownedPackages := packages;
5 }

1 rule PackageCS2Package {
2 from
3 s : cs!PackageCS
4 to
5 t : as!Package (
6 name <− s.name,
7 ownedClasses <− s.classes,
8 ownedPackages <− s.packages
9 )

10 }

FIGURE 5.2: Two equivalent mapping definitions in CS2AS-TL (left) and ATL
(right)

5.1.3 Disambiguation Section

The disambiguation section is designed to define the disambiguation rules (conditions) that
drive multi-way mappings execution. According to the proposed solution, only one map-
ping can be executed on a single model element, and the mapping guards are not mandated
to be exclusive. As such, the order in which the disambiguation rules are declared in the
section is important.

On the one hand, this disambiguation section does not comprise more than the mapping
guards that any general purpose M2M transformation language has. On the other hand, the
guards are declared all together, away from the mapping definition. In this way, the order
of mapping declarations is irrelevant, whereas the order in which disambiguation rules are
declared is not so. That said, there is no evidence that this section provides any apparent
benefits to the M2M transformation writer. Figure 5.3 shows side by side excerpts of some
multi-way mapping definitions and the corresponding disambiguation rules, declared with
CS2AS-TL (on the left) and RubyTL (on the right).
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1 mappings {
2 create CollectionItem from

CollectionLiteralPartCS
3 when withoutLastExpression {
4 ownedItem := first;
5 type := trace .ownedItem.type;
6 }
7 create CollectionRange from

CollectionLiteralPartCS
8 when withLastExpression {
9 ownedFirst := first ;

10 ownedLast := last;
11 type := trace .ownedFirst.type;
12 }
13 }
14 disambiguation {
15 CollectionLiteralPartCS {
16 withoutLastExpression := last =

null;
17 withLastExpression := last <>

null;
18 }
19 }

1 rule ’CollLitPartCS2CollItem’ do
2 from cs ::CollectionLiteralPartCS
3 to as :: CollectionItem
4 filter do |collPart|
5 collPart . last == null
6 end
7 mapping do |collPart, collItem|
8 collItem.ownedItem = collPart.first
9 collItem.type = collItem.ownedItem

.type
10 end
11 end
12 rule ’CollLitPartCS2CollRange’ do
13 from cs ::CollectionLiteralPartCS
14 to as :: CollectionRange
15 filter do |collPart|
16 collPart . last != null
17 end
18 mapping do |collPart, collRange|
19 collRange.ownedFirst = collPart.

first
20 collRange.ownedLast = collPart.last
21 collRange.type = collRange.

ownedFirst.type
22 end
23 end

FIGURE 5.3: Two equivalent mapping definitions in CS2AS-TL (left) and
RubyTL (right)
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5.1.4 Name Resolution Section

The name resolution section is designed to specify declaratively how name-resolution based
lookups are performed. The specific constructs that support these declarations raise the
level of abstraction compared to general purpose languages: in this case, by encoding some
lookup algorithms to locate named elements throughout the AS model. The name resolution
section provides a significant benefit compared to describing the equivalent name-based
lookup algorithms in a general purpose M2M transformation language. Listing 5.1 shows
an example of the name resolution description required to locate let expression variables,
so that they can be referred by any variable expression that is inside the let expression.
Listing 5.2 shows the corresponding description written in QVTo.

1 name_resolution {
2 targets {
3 NamedElement using name;
4 Variable;
5 }
6 inputs {
7 PathElementCS using elementName;
8 }
9 providers {

10 LetExp {
11 in current_scope
12 for all excepting ownedVariable
13 provides occluding ownedVariable;
14 }
15 }
16 }

LISTING 5.1: Example of name resolution described with CS2AS-TL

5.1.5 Conclusion

According to the proposed approach to declare complex CS2AS bridges, using a general
purpose M2M transformation language is a plausible alternative: models conforming to
an AS meta-model are obtained from models conforming to a CS meta-model. However,
although the differences in syntax are cosmetic rather than a real benefit of CS2AS-TL, the
domain-specific concern related to name resolution provides more adequate abstractions
that let language engineers declare the concern in a more concise manner. In consequence,
this feature provides a measurable benefit to CS2AS-TL when compared to general purpose
M2M transformation languages.



5.1. General Purpose M2M Transformation Languages 147

1 query LookupEnvironment::nestedEnv() : LookEnvironment {
2 return object LookupEnvironment {
3 parentEnv := self ;
4 }
5 }
6 query Element::unqualified_env_Variable() : LookupEnvironment {
7 return unqualified_env_Variable(null);
8 }
9 query Element::unqualified_env_Variable(in child : Element) : LookupEnvironment {

10 return parentEnv_Variable();
11 }
12 query Element::parentEnv_Variable() : LookupEnvironment {
13 var parent := oclContainer();
14 return if parent = null
15 then object LookupEnvironment { }
16 else parent.unqualified_env_Variable(self)
17 endif;
18 }
19 query Element::lookupVariable(in env : LookupEnvironment, in vName : String) :

OrderedSet(Variable) {
20 var foundVariable := env.namedElements−>selectByKind(Variable)−>select(name =

vName);
21 return if foundVariable−>isEmpty() and not (env.parentEnv = null)
22 then lookupVariable(env.parentEnv, vName)
23 else foundVariable
24 endif;
25 }
26 query Element::lookupUnqualifiedVariable(vName : String) : Variable {
27 var foundVariable := lookupVariable(unqualified_env_Variable(), vName);
28 return if foundVariable−>isEmpty()
29 then null
30 else foundVariable−>first()
31 endif;
32 }
33 query Element::lookupVariable(in vName : String) : Variable {
34 return lookupUnqualifiedVariable(vName);
35 }
36 query Element::lookupVariable(in aPathElementCS : PathElementCS) : Variable {
37 return lookupUnqualifiedVariable(aPathElementCS.elementName);
38 }
39 query LetExp::unqualified_env_Variable(in child : Element) : LookupEnvironment {
40 return if not (ownedVariable−>includes(child))
41 then parentEnv_Variable().nestedEnv()
42 .addElements(ownedVariable)
43 else parentEnv_Variable()
44 endif;
45 }

LISTING 5.2: QVTo query operations equivalent to those from Listing 5.1
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5.2 Qualitative Study: Gra2Mol

This section comprises the first qualitative study. It compares Gra2Mol with the proposed
solution. Gra2Mol was originally designed as a text-to-model tool for software modernisa-
tion. In this context, the goal is to create AS models conforming to a particular meta-model
(e.g. Knowledge Discovery Metamodel (KDM) [36] meta-model1), from textual inputs that
conform to the CS grammar of a language. Although the technology is tied to working
with ANTLR grammars, the target is an arbitrary AS meta-model. Because of this, the tool
provides a DSTL that deals with the concerns we have presented in this thesis.

When introducing the overall approach of the proposed solution (see Section 4.1.1), there
was a discussion about how it relates to Gra2Mol (see Section 4.1.3). Now, this qualitative
study focuses on DSTL features and capabilities.

5.2.1 Gra2Mol DSTL Introduction

A more detailed presentation of Gra2Mol can be found in Cánovas et al. [42]

This subsection is a brief introduction of the means that Gra2Mol offers to bridge the CS
and AS of CTMLs. These consist of a DSTL that allows language engineers to bridge CS
grammars to AS meta-models. In this case, the source CS grammars need to be specified in
ANTLR, and the target AS meta-models need to be specified in Ecore (EMF). To specify these
bridges, a set of declarative mapping rules are defined so that they map LHS non-terminals
to AS meta-classes. The language provides a structure-shy (like Xpath [15]) query language
to traverse the CST model. These queries are grouped within a sub-clause queries belonging
to the rule, and they can be used in the sub-clause mappings that also belongs to the same
rule. The sub-clause mappings contains a set of bindings for AS properties.

Listing 5.3 shows a Gra2Mol excerpt corresponding to the mOCL scenario that deals
with Package definitions (see Section 3.3.1 ). A rule called ’mapPackage’ (line 1) is declared
so that the LHS non-terminal PackageCS (line 2) is mapped to the meta-class Package (line
3). Then, two queries (lines 5–6) are declared using the mentioned query language. The ’/’
symbol is used for navigation, in this case, starting from the source of the rule (i.e. using the
pckg variable). The results of these queries are used in the mappings sub-clause to compute
the corresponding ownedPackages (line 8) and ownedClasses (line 9) properties of the target
meta-class. Finally, the attribute name is initialised with the value of the terminal ID.

In terms of conciseness, the key of the Gra2Mol DSTL consists of navigation opera-
tors, such as ’/’ and ’//’, which allow for the traversing of all directly and indirectly
contained model elements. This permits the navigation of CSTs, without specifying
every navigation step from parent to children. In consequence, these operators re-
move the need for lengthy expressions to access model elements that are not located
close to a particular CST node.

1 KDM is an OMG standard for analysing existing software artefacts.
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1 rule ’mapPackage’
2 from PackageCS pckg
3 to miniocl ::Package
4 queries
5 nestedPackages : /pckg/PackageCS;
6 classes : /pckg/ClassCS;
7 mappings
8 ownedPackages = nestedPackages;
9 ownedClasses = classes;

10 name = pckg.ID;
11 end_rule

LISTING 5.3: CS2AS definition for PackageCS using GraMol.

5.2.2 How Does Gra2Mol Address the Identified Concerns?

After the brief introduction to Gra2Mol DSTL, this subsection introduces how the differ-
ent concerns presented in Chapter3 are addressed by the tool. In this way, more Gra2Mol
features are introduced and its DSTL capabilities are shown.

Concern 1: Mapping an LHS non-terminal to a meta-class

Concern 1 is supported by Gra2Mol by means of rule definitions that declare an LHS non-
terminal as the source, and a meta-class as the target.

With respect to mappings that create AS model elements, normal rule definitions are
used. The previous Listing 5.3 showed an example where the lhs non-terminal PackageCS
(line 2) is mapped to the meta-class Package (line 3).

With respect to mappings that do not create AS model elements, but refer to other model
elements, Gra2Mol introduces special rules called skip rules. They receive this name because
element creation should be skipped. Listing 5.4 shows how the mOCL call expression exam-
ple (see Listing 4.43) is addressed by means of the Gra2Mol DSTL. In this case, the CallExpCS
non-terminal (line 2) is mapped to the CallExp meta-class (line 3). The skip keyword (line 7)
is used within the mappings sub-clause to declare which AS model element corresponds to
the rule source. In this case, the corresponding AS model element is computed from the
next query (line 7). This query retrieves the as model element corresponding to the directly
contained NavigationExpCS CST node (line 5).

Concern 2: Mapping an RHS non-terminal to a reference

Concern 2 is supported by Gra2Mol by means of the bindings (declared in the mappings
sub-clause) that assign the results of a query to a reference. Listing 5.3 showed an example
where two containment references – Package::ownedPackages (line 8) and Package::ownedClasses
(line 9) – are initialised from two query results. These results are the AS model elements cor-
responding to the RHS non-terminal PackageCS (line 5) and the RHS non-terminal ClassCS
(line 6) respectively.
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1 skip_rule ’mapCallExp’
2 from CallExpCS ce
3 to miniocl ::CallExp
4 queries
5 next : /ce/NavigationExpCS;
6 mappings
7 skip next;
8 end_rule

LISTING 5.4: CS2AS definition for CallExpCS using Gra2Mol

Concern 3: Mapping a terminal to an attribute

Concern 3 is supported by Gra2Mol by means of the bindings (declared in the mappings
sub-clause) that assign a specific terminal value to an attribute. Listing 5.3 showed an exam-
ple where a binding is defined for the NamedElement::name attribute (line 10). In this case,
the attribute is initialised with the value of the terminal ID that belongs to the rule source
(the PackageCS non-terminal).

Concern 4: Mapping an RHS non-terminal to a reference and additional meta-classes

Concern 4 is supported by Gra2Mol by means of new expressions that allow the instantiation
of AS model elements – as the RHS of a binding – and by allowing the initialisation of the
properties of these new AS model elements with an additional set of bindings. Listing 5.5
shows how the mOCL scenario that deals with operation definitions (see Section 3.4.5) is
addressed using Gra2Mol.

1 rule ’mapOperation’
2 from OperationCS op
3 to miniocl ::Operation
4 queries
5 parameters : /op/ParmeterDeclarationCS;
6 body : /op/ExpCS;
7 mappings
8 name = op.ID;
9 ownedParameters = parameters;

10 ownedBodyExpression = new miniocl::ExpressionInOCL;
11 ownedBodyExpression.ownedBody = body;
12 ownedBodyExpression.ownedSelfVar = new miniocl::Variable;
13 ownedBodyExpression.ownedSelfVar.name = ’self’;
14 ownedBodyExpression.ownedSelfVar.type = ext computeType();
15 end_rule

LISTING 5.5: CS2AS definition for OperationCS using Gra2Mol
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The usage of the ext keyword (line 14) is clarified when explaining how Gra2Mol
addresses Concern 7.

Concern 5: Mapping an LHS non-terminal to many meta-classes

Concern 5 is similarly supported by Gra2Mol by means of the already mentioned new ex-
pressions. Listing 5.6 shows how the mOCL scenario that deals with mOCL property call
expressions (see Section 3.4.6) is addressed using Gra2Mol.

1 rule ’mapPropCallExpWithImplicitSource’
2 from NameExpCS { −− Check if NameExpCS maps to a propety call with implicit source
3 } nExp
4 to PropertyCallExp
5 queries
6 refVar : ext lookup(miniocl::Variable, ’self’);
7 mappings
8 ownedSource = new miniocl::VariableExp;
9 ownedSource.referredVar = refVar;

10 ownedSource.type = refVar.type;
11 referredProperty = ext lookupExported(miniocl::Property,refVar,nExp.expName);
12 type = ext computeType();

LISTING 5.6: CS2AS definition for NameExpCS using Gra2Mol

The usage of the curly brackets that follow the rule source NameExpCS (line 2) is
clarified when explaining how Gra2Mol addresses Concern 6.

Concern 6: Multi-way mappings from LHS non-terminals to meta-classes

Concern 6 is supported by Gra2Mol by means of additional filters or guard conditions de-
clared on the rule source. These conditions, which may be expressed as query expressions,
are declared between curly brackets right after the name of the LHS non-terminal name.
Listing 5.7 shows how the mOCL scenario that deals with multi-way mappings (see Sec-
tion 3.4.7) is addressed using Gra2Mol.

Concern 7: Mapping properties from non-grammar terms

Concern 7 is supported by Gra2Mol by means of the bindings (declared in the mappings
sub-clause) that assign value/s to properties. Arbitrary expressions can be used on the
binding’s RHS to provide the final value/s that are assigned to the binding’s LHS property.
Although the set of expressions is very limited, Gra2Mol provides an extension mechanism
that allows the language designer to enhance CS2AS-TL, in this case, by introducing ex-
tension expressions that invoke custom behaviour in the form of parametrisable functions
(i.e. an external black-box). When the Gra2Mol transformation is executed, an extension ex-
pression corresponds to the invocation of an execute() method of a Java class responsible for
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1 rule ’mapPropCallExpWithImplicitSource’
2 from NameExpCS { −− Check if NameExpCS maps to a propety call with implicit source
3 } nExp
4 to PropertyCallExp
5 queries −− queries ommitted
6 mappings −− mappings omitted
7 end_rule
8 rule ’mapPropCallExpWithExplicitSource’
9 from NameExpCS { −− Check if NameExpCS maps to a propety call with explicit source

10 } nExp
11 to PropertyCallExp
12 queries −− queries ommitted
13 mappings −− mappings omitted
14 end_rule
15 rule ’mapVariableExp’
16 from NameExpCS { −− Check if NameExpCS maps to a variable expression
17 } nExp
18 to VariableExp
19 queries −− queries ommitted
20 mappings −− mappings omitted
21 end_rule

LISTING 5.7: Multi-way mapping definition for NameExpCS using
Gra2Mol

executing the required operational behaviour. These extension expressions consist of the key-
word ext, followed by the signature (name and arguments) that identifies the parametrisable
function to invoke.

More details about the extension mechanism can be found in Cánovas et al. [42]

Listing 5.5 shows an example in which the extension mechanism (line 14) is used for
computing the type of the created implicit self variable.

Concern 8: Name resolution

Concern 8 is not directly supported by Gra2Mol. In principle, any lookup activity is de-
scribed via query expressions that are performed on the CST. However, declaring more
complex scenarios to support nested scopes, qualified name lookups, lookups in external
models etc. require the use of the language extension mechanism.

5.2.3 Discussion

This subsection provides a comparative discussion between Gra2Mol and CS2AS-TL.
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Parsing Technology Dependency

Gra2Mol create bridges between CS grammars and AS meta-models. Although, concep-
tually, the DSTL simply maps grammar terms (e.g. terminals and non-terminals), the im-
plementation only works with ANTLR grammars. Therefore, the tool is dependent on a
particular parser technology.

CS2AS-TL creates bridges between CS and AS meta-models. Therefore, it is parser-
technology agnostic. It may be used with classic parser generators (e.g. ANTLR, LPG)
or modern language workbenches (Xtext, Spoofax). The main restriction of the approach is
that the output of the parser must be a model conforming to a meta-model (the CS one).

Modeling Technology Dependency

Both Gra2Mol and the presented prototype depend on the Eclipse Modeling Framework
(EMF). Although, conceptually, both approaches simply map meta-model terms (e.g. meta-
classes and properties), the corresponding implementations only work with Ecore meta-
models. Therefore, the tools are dependent on a particular modeling technology.

Language Nature

The DSTL of Gra2Mol and CS2AS-TL are declarative. The declarations consist of mappings
between CS and AS terms, and there is no imperative exposition of how the transforma-
tion is executed. On the one hand, CS2AS declarations tend to be concise. On the other
hand, declarative languages require well designed execution engines; otherwise, they may
negatively impact performance during the transformation execution.

A quantitative study about performance is presented in Section 5.5.

Query Language

Gra2Mol is based on a tailored structure-shy XPath-like query language, whereas CS2AS-TL
is based on the statically typed OCL.

On the one hand, the Gra2Mol query language is less verbose and more concise than
OCL; thus, Gra2Mol DSTL instances tend to be smaller. In particular, the difference is sig-
nificant when long OCL expressions are required to look up model elements that are not
located near the contextual element that performs the lookup. For instance, Cánovas et
al. [42] show an example that compares two equivalent expressions between the Gra2Mol
query language and OCL. Figure 5.4 shows both excerpts side by side.

However, long expressions that traverse models are not usually required with the pro-
posed solution. These long expressions are required to find model elements that are dis-
tantly located (somewhere else in the model). For instance, the example exposed by Cáno-
vas et al. [42] is used for looking up VariableDeclarations. This concern has been abstracted
away in CS2AS-TL by means of the declarative name resolution section: providers declare
which targets they contribute without knowing where the actual consumer is located in the
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1 /program//#varDeclaration

1 Locals(p : program) : Sequence(varDeclaration)
2 post result =
3 if (p.pgramBlock.block.declSection =

oclIsUndefined())
4 then Sequence {}
5 else p.programBlock.block.declSection−>
6 select (pd | ds.oclIsKindOf(

procFuncDeclaration))−>
7 collect (e | e.block.declSection)−>flatten()

−>
8 select (vd | ds.oclIsKindOf(varDeclaration))
9 endif

FIGURE 5.4: Two equivalent queries in Gra2Mol (left) and OCL (right) (Figure
6 from [42])

model. Likewise, consumers do not declare where the targets that they need are located.
They just provide the information required to match the targets (lookup criteria).

Listing 5.8 shows how that particular scenario is declared with CS2AS-TL. According
to the example, VariableDeclaration model elements are contained by Block model elements.
The latter (line 2) provides the former (line 4) for all its children in the current scope (line 3).

1 providers {
2 Block {
3 in current_scope
4 provides occluding subStatements−>selectByKind(VariableDeclaration);
5 }
6 }

LISTING 5.8: Name resolution declaration: Blocks contribute
VariableDeclarations to the current scope

A quantitative study about the size of artefacts is presented in Section 5.6.

On the other hand, built-in navigation operators of the Gra2Mol query language are
based on accessing a model element’s children. This means that, whenever the model el-
ements to access are not contained by a given CS element, the query has to declare deep
navigations from the root model element. This may lead to performance penalties. For
instance, in a case where a query involves access to the parent of the rule source, a deep
model traversal is not as fast as a simple oclContainer() call. This Gra2Mol shortcoming can
be mitigated by means of their language extension mechanism (further discussed).

Another difference to highlight is that the Gra2Mol query language is designed to work
strictly on CSTs. Navigating AS models (graphs) rather than CST ones (trees) may lead to
less expensive navigations to retrieve some particular AS information (e.g. querying the
type – a cross-reference – of a particular mOCL expression). More importantly, focusing
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on CS navigations prevents CS2AS transformations from working with external AS models
(e.g. a library model with no CS).

That said, many of the Gra2Mol query language shortcomings may be alleviated by
their powerful language extension mechanism, at the cost of having to produce the Java
implementation required to support any additional enhancement.

Name resolution

Name-based cross-references are declared in Gra2Mol as in any other model query. These
queries are described as direct searches that take into account where the target element is
located in the model. The required queries get significantly complicated when simulating
lookup scopes. In fact, they require the use of the language extension mechanism to solve
them.

In CS2AS-TL, there is a dedicated declarative name resolution description that isolates
this particular concern in its own section. Lookup scopes can be declared in the language
and there is no elaboration about how to find a particular target. Instead, the focus is on how
they are contributed to the lookup scopes. These contributions are usually easy to identify
because the general case is that a named element is contributed to the lookup scope by its
owner (e.g. properties and operations are contributed by the owning class. Classes are con-
tributed by the owning package. A let variable is contributed by the owning let expression
etc.). For abnormal cases, more complex OCL expressions can be used to configure the scope
contributions.

Disambiguation

CS disambiguation scenarios can be similarly described with Gra2Mol by means of rule
filtering expressions. These expressions are applied to different rules that work on the same
grammar term. The filtering expressions act as traditional M2M transformation mapping
guards.

Rule Inheritance

Gra2Mol provides a basic rule inheritance mechanism, so that specific rules that declare
queries and mappings can be reused by other rules. These are called mixin rules, and the
inheriting rules declare the name of the mixin rules they inherit. The only drawback of their
mechanism is that the source of the inheriting and the mixin rules need to be the same.
Listing 5.9 shows an example.

CS2AS-TL does not currently support rule inheritance. Despite offering a reusing mech-
anism by means of the helpers section, all the property assignment declarations have to be
currently specified. Chapter 6 introduces some future work related to this topic.
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1 rule ’myNormalRule’
2 from declSection dec
3 to Declaration
4 mixin myMixinRule
5 queries
6 ...
7 mappings
8 ...
9 end_rule

10

11 mixin_rule ’myMixinRule’
12 from declSection dec
13 queries
14 q1: /dec//#varDeclaration;
15 mappings
16 vars = q1;
17 end_rule

LISTING 5.9: Mixin
rule example (Fig. 11

from [42])

Language Extension Mechanism

Despite the limited amount of expressions that can be used in Gra2Mol declarations, the
language provides a flexible extension mechanism that cures this limitation. In essence, any
arbitrary computation or domain-specific navigation (e.g. to increase performance) can be
achieved by creating an extension to the language. The extension mechanism consists of the
ability to contribute a Java class that encapsulates the particular behaviour of the extension,
and specific syntax to bind the CS2AS declaration with the contributed Java class. Figure 5.5
shows an example of how to use the extension mechanism.

1 rule ’extensionExample’
2 from varDeclaration vd
3 to ValuedElement
4 queries
5 mappings
6 value = ext toUpperCase(

vd.VALUE);
7 end_value

1 public class UpperCaseExtension extends
MAppingExtension {

2 public ExtensionValueReturn execute() {
3 String value = (String) getParam(0);
4 return value.toUpperCase();
5 }
6 public String[] getKeywords() {
7 return new String[] { "toUpperCase" };
8 }
9 }

FIGURE 5.5: Extension mechanism in Gra2Mol (Fig. 16 from [42] )

CS2AS-TL does not currently provide any extension mechanism. As long as all the re-
quired information to produce AS models is in the CS model, the expressiveness of CS2AS-
TL (in particular OCL expressions) is sufficient. Otherwise, the particular CS2AS scenario
cannot be supported using the proposed solution.

Specification Generation

As stated in Section 1.2.1, one of the interests of the industrial partner is having the means
to model all these CS2AS concerns, so that parts of the OMG specification (e.g. Clause 9.3
from [39]) can be automatically generated rather than manually written and maintained.
CS2AS bridges – conforming to the CS2AS-TL meta-model – constitute these desired mod-
els, and further MDE techniques can be used to generate parts of the OMG specifications.
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Gra2Mol DSTL is also based on EMF. However, since different CS2AS scenarios need
to be addressed by means of its language extension mechanism (i.e. complementary Java
code is required), having CS2AS bridges written in Gra2Mol DSTL is less convenient for
generating parts of the language specification.

Gra2Mol DSTL is not an "OMG-like" language, which may limit its adoption by OMG
specification producers and maintainers.

5.3 Qualitative Study: Spoofax

The second qualitative study compares the proposed solution with Spoofax. Spoofax is a
language workbench for textual languages. Although it was not originally designed to work
on modeling languages, there is previous work [63] that demonstrates that this use case is
possible within Spoofax. However, the support to modeling languages is discontinued2.
This qualitative study shows how Spoofax can address the identified concerns explained in
Chapter 3 and contains a comparative discussion on Spoofax’s features and capabilities.

5.3.1 Spoofax Introduction

For a more detailed presentation of Spoofax, the reader is referred to its main
source [46], website [72] and the work related to modeling languages [63].

This subsection presents a brief introduction about how the CS and AS of CTMLs can be
bridged in Spoofax. This language workbench creates abstract syntax representations of a
textual input using its own AST representation. Therefore, specifying CS2AS bridges within
Spoofax does not involve a shift to the modelware technological space. However, the tool
provides additional facilities to produce models that conform to an AS meta-model.

In order to explain how the CS2AS specification is done within Spoofax, a very simple
example is introduced for convenience. The rationale of introducing this different exam-
ple is having a minimal (smaller and simpler than mOCL) but complete and self-contained
example which shows the Spoofax languages, the support to modeling languages and the
language editor. Figure 5.6 shows the CS (Spoofax-based) grammar of a simple Families lan-
guage (on the left) and the corresponding AS (Ecore-based) meta-model (on the right). From
the point of view of the CS, a family consists of an identifier to define its name, preceded
by the keyword family (line 8). Then, the name of the family mother and father is also de-
clared with an identifier, respectively preceded by the keywords mum and dad (lines 9–10).
Finally, an arbitrary number of children can be defined for the family (line 11). Each children
declaration consists of an identifier preceded by the keyword child (line 13).

Figure 5.7 shows an example of the introduced modeling language. On the left hand side,
the family SBB is defined with a mum, a dad and two children. On the right hand side, we
can visualise the internal tree-based representation of the parsed textual input. In this case,

2The last Spoofax version in which you can produce EMF-based models is 1.5.0
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1 module Families
2 imports
3 Common
4 context−free start−symbols
5 Start
6 context−free syntax
7 Start .FamilyCS = <
8 family <ID> {
9 mum <ID>

10 dad <ID>
11 <ChildrenCS∗>
12 } >
13 ChildrenCS.ChildrenCS = <child <ID> >

Family

name : EString
children : EString
mother : EString
father : EString

FIGURE 5.6: Left: CS grammar definition of a simple Families language.
Right: the corresponding AS meta-model

.

the syntax tree node (also known as term) FamilyCS consists of four subterms: three String
values corresponding to the grammar terminal ID, and a list – between square brackets – of
ChildrenCS tree nodes. Each ChildrenCS term comprises another String value.

FIGURE 5.7: Textual instance of the Families language and the corresponding
internal AST representation

.

This internal tree-based representation needs to be further transformed into a model that
conforms to the AS meta-model that was shown in Figure 5.6. This means that a mapping
between the concepts of the CS grammar and the concepts of the AS meta-model has to be
declared. To achieve this in Spoofax, two different tasks need to be performed. Firstly, a
Stratego/XT [75] transformation is required to refine the obtained syntax trees so that there
is an 1-to-1 mapping between the syntax tree and the final AS model. The name of the
syntax tree nodes (terms) after the transformation needs to coincide with the name of the
target AS meta-classes. Secondly, a modification of the AS meta-model is required. The
problem is that Spoofax tree-form representations do not include names that relate a term
with the (children) subterms. Therefore, in order to specify how the different subterms of a
term are mapped to a specific property of a meta-class, some EAnnotations are added to the
target meta-model. In this way, every meta-class specifies how its properties are mapped
from a specific subterm position (or index).
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To clarify these two tasks, Figure 5.8 shows the required specification artefacts for the
Families example. On the left hand side, a Stratego-based definition declares the CS2AS
bridge3. The relevant part consists of two CS2AS rules (lines 10–15). The first rewrites the
FamilyCS term (line 12) to a new one called Family (line 13). The second rule is required for
removing the ChildrenCS term from the syntax tree. The reason is that in the Family meta-
model, there is no intermediate Child meta-class. Instead, the children names are held as
String values in Family model elements. Therefore, every ChildrenCS term is rewritten as the
String-valued name that it holds. On the right hand side of Figure 5.8, the modified Family
meta-model is shown with additional EAnnotations. Firstly, an EAnnotation on the EPackage
specifies that Family is the meta-class of the root AS model elements. Secondly, for the Family
meta-class, the corresponding EAnnotation declares the mapping derived from syntax tree
subterm positions (0, 1, 2 and 3) to each meta-class property (name, mother, father, children).

1 module cs2as
2

3 signature
4 constructors
5 Family : ID ∗ ID ∗ ID ∗ LIST(ID) −>

Family
6

7 imports
8 include/Families
9

10 rules
11 CS2AS:
12 FamilyCS(name, mum, dad, children)
13 −> Family(name, mum, dad, children)
14 CS2AS:
15 ChildrenCS(name) −> name

FIGURE 5.8: Left: CS grammar definition of a simple Families language.
Right: the corresponding AS meta-model

To conclude how this Family example is supported via Spoofax, Figure 5.9 shows the AS
model (on the right) corresponding to a textual instance of the Family language (on the left).

5.3.2 How Does Spoofax Address the Identified Concerns?

Following the introduction to Spoofax, this subsection explains how the different concerns
explained in Chapter 3 are addressed by the tool.

3 Note that the CS2AS bridge is specified in the treeware technological space.
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FIGURE 5.9: Left: instance of the Family textual modeling language. Right:
the corresponding AS model, including the properties of the SBB family

The CS2AS bridge is performed within Spoofax by bridging the grammarware and
treeware technological spaces. Therefore, the concepts of meta-class and attribute do
not exist in Spoofax. The following sub-subsections show, by means of examples,
how the different CS2AS scenarios can be addressed by Spoofax.

Concern 1: Mapping an LHS non-terminal to a meta-class

Concern 1 is supported by Spoofax by means of its Stratego-based rule definitions that de-
clare – on the left hand side – the constructor corresponding to the LHS non-terminal and –
on the right hand side – the new constructor corresponding to the meta-class.

1 signature
2 constructors
3 Package : ID ∗ List (Package) ∗ List (Class) ∗ −> Package
4

5 rules
6 CS2AS:
7 PackageCS(name, subPackages, classes) −>
8 Package(name, subPackages, classes)

LISTING 5.10: CS2AS definition for PackageCS using Spoofax

Concern 2: Mapping an RHS non-terminal to a reference

Concern 2 is supported by Spoofax by adding annotations to the meta-model. A grammar
RHS non-terminal corresponds to a subterm of the term corresponding to a grammar LHS
terminal. The practical solution consists of specifying, in the form of meta-model annota-
tions, a mapping from the position (or index) of the subterm to the name of the correspond-
ing AS reference. Figure 5.10 shows an example, in which the references ownedPackages and



5.3. Qualitative Study: Spoofax 161

ownedClasses are mapped from the subterm indexes 1 and 2. Note that in Listing 5.10, a Pack-
age term (line 3) consists of an ID (for the name), a list of Package subterms (for the owned
packages) and a list of Class subterms (for the owned classes).

FIGURE 5.10: Mapping the position/index of a subterm (corresponding to an
RHS non-terminal) to the name of a reference

The indexes of subterms within a term start on 0.

Concern 3: Mapping a terminal to an attribute

Concern 3 is supported by Spoofax by adding annotations to the meta-model. In Figure 5.10,
the attribute name is mapped from the subterm index 0. Note that the attribute name belongs
to an abstract super meta-class (NamedElement). However, the mapping needs to be specified
in the specific meta-class because the index of the subterm is not necessarily the same for
every meta-class that requires a mapping for its attributes.

Concern 4: Mapping an RHS non-terminal to a reference and additional meta-classes

Concern 4 is supported by Spoofax by means of Stratego rule definitions that can include
additional constructor invocations. These constructors must have the same name as the
additional meta-classes. Listing 5.11 shows an example, in which some arguments of the
constructors are new constructor invocations, such as ExpressionInOCL (line 9) and Variable
(line 10).

1 signature
2 constructors
3 Operation : ID ∗ List (Parameter) ∗ ExpressionInOCL ∗ Type −> Operation
4 ExpressionInOCL : OCLExpression ∗ Variable −> ExpressionInOCL
5 Variable : ID ∗ Type −> Variable
6 rules
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7 CS2AS :
8 OperationCS(name, parameters, resultType, body) −>
9 Operation(name, parameters, ExpressionInOCL(body,

10 Variable (’ self ’, computeContext())), computeType(resultType))
LISTING 5.11: CS2AS definition for OperationBody using Spoofax

Concern 5: Mapping an LHS non-terminal to many meta-classes

Similarly, Concern 5 is supported by Spoofax by means of Stratego rule definitions. List-
ing 5.12 shows how the scenario is addressed. In this case, when the NameExpCS term (line
7) is rewritten into a PropertyCallExp term, an additional VariableExp subterm is created.

1 signature
2 constructors
3 PropertyCallExp : OCLExpression ∗ Property −> PropertyCallExp
4 VariableExp : Variable −> VariableExp
5 rules
6 CS2AS:
7 NameExpCS(name, _ ) −>
8 PropertyCallExp(VariableExp(lookupVariable(’self’)), lookupProperty(name)))
9 where // Check if NameExpCS maps to a propety call with implicit source

LISTING 5.12: CS2AS definition for NameExpCS using Spoofax

Note that the where keyword (line 9) is related to the multi-way mappings concern
explained in the following sub-subsection.

Concern 6: Multi-way mappings from LHS non-terminals to meta-classes

Concern 6 is supported by Spoofax by means of conditional rewrite rules, so that the term
rewrite occurs as long as a condition holds. This condition follows the rule definition, along
with a preceding where keyword. Listing 5.13 shows how the mOCL scenario that deals with
multi-way mappings (see Section 3.4.7) can be addressed using Spoofax.

Concern 7: Mapping properties from non-grammar terms

Concern 7 is supported within Spoofax by using the Stratego language. When defining the
constructors of every term, additional subterms can be declared to hold the value of addi-
tional properties. As occurs with Concerns 2 and 3, these additional subterms are mapped
to the corresponding AS property by means of the EAnnotation mechanism described before.

Concern 8: Name resolution

With respect to name resolution, Spoofax provides its own language, called Names Binding
Language (NaBL) [53], to specify declaratively how name resolution is performed through-
out its internal AST representation. Instances of this NaBL language are further transformed
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1 signature
2 constructors
3 // Constructors ommmitted
4 rules
5 CS2AS:
6 NameExpCS(name, _) −>
7 PropertyCallExp ( /∗ constructor call ommitted ∗/ )
8 where // Check if NameExpCS maps to a propety call with implicit source
9 CS2AS:

10 NameExpCS(name, _) −>
11 PropertyCallExp ( /∗ constructor call ommitted ∗/ )
12 where // Check if NameExpCS maps to a propety call with explicit source
13 CS2AS:
14 NameExpCS(name, _) −>
15 VariableExp ( /∗ constructor call ommitted ∗/ )
16 where // Check if NameExpCS maps to a variable expression

LISTING 5.13: CS2AS definition for NameExpCS using Spoofax

into Stratego transformations, which are responsible for relating the syntax tree terms of the
transformed ASTs. The language is based on the concept of site definition (a term that can be
referred by other terms) and site references (a term that can refer to other terms). Advanced
name resolution concepts, such as scopes, imports etc. are supported by NaBL. Listing 5.14
shows the site definition of mOCL Variables when using the NaBL language.

1 namespaces variable
2 rules
3 Variable(varName, _, _):
4 defines variable varName

LISTING 5.14: Using NaBL to declare a site definition for mOCL Variables

Most of the name resolution concerns introduced in Section 3.5 are supported by
NaBL. The following subsection discusses the particular features that are not sup-
ported.

5.3.3 Discussion

Previous subsections introduced Spoofax, including a brief description about how it deals
with the concerns identified in Chapter 3. This subsection compares Spoofax and the pro-
posed solution.

Parsing Technology Dependency

Spoofax is tied to its own parsing technology. It uses a Java library called JSGLR [23] that
interprets the parse tables that are generated from its Syntax Definition Formalism (SDF) [47]
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grammars. On the contrary, as explained during the qualitative study above, CS2AS-TL is
not dependent on a particular parsing technology.

Modeling Technology Dependency

Spoofax presents a practical solution to support textual modeling languages. The solution
is tied to the Eclipse Modeling Framework (EMF). Therefore, Spoofax – like CS2AS-TL – is
dependent on a particular modeling technology.

Language Nature

The Spoofax languages that are required to support complex textual languages (i.e. SDF,
Stratego and NaBL) are declarative.

Query Language

Spoofax does not provide a query language per se. On the one hand, when declaring Strat-
ego rules, the left hand side (that declares the type of term on which the rule applies) man-
dates to declare as many named variables as the subterms the particular term contains.
These named variables can be used to access (navigate towards) each immediate subterm.
On the other hand, for more complex navigations, the end user could declare additional
reusable rules that act as query operations. Listing 5.15 shows an example.

1 signature
2 constructors
3 Variable : ID ∗ Type −> Variable
4 rules
5 getVariableType:
6 Variable(name, type) −> type

LISTING 5.15: Declaring Stratego rules to create navigation/query
operations

Name resolution

With respect to name resolution, Spoofax provides a specific DSL to declare name resolution.
Its DSL capabilities let Spoofax address most of the concerns explained in Section 3.5. This
discussion focuses on the limitations found within Spoofax:

• The main difference with respect to Spoofax is that name resolution is performed in
two different technical spaces. On the one hand, Spoofax name resolution operates in
the treeware technological space, where the syntax trees are obtained from the parser.
When performing name resolution, some syntax tree terms are rewritten to create ad-
ditional subterms that resolve to another term located somewhere else in the syntax
tree. In this way, all the information that is looked up needs to be in the syntax tree
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obtained from the parser. On the other hand, the approach proposed in this thesis op-
erates in the modelware technological space. In particular, name resolution is performed
on the AS models that are created during the CS2AS model transformation execution.
This characteristic supports name resolution on AS models that do not even require
to have been realised during a CS2AS transformation, as occurs with external models
(see below).

• When working on textual modeling languages, the main concern that cannot be sup-
ported by Spoofax is lookup on external models (see Section 3.5.8). This concern is
critical when supporting languages such as OCL because some AS model elements
corresponding to expressions must refer to external models. For instance, PropertyCall-
Exp model elements must refer to Property model elements that are normally located in
an external model. The issue originates in the Spoofax approach, where the CS2AS gap
is entirely bridged in the treeware technological space. This approach leaves the model-
ware shift to the very end, where name resolution has already taken place. Therefore,
performing name resolution on external AS models is not supported.

Disambiguation

With respect to CS disambiguation, Stratego/XT [75] supports the so-called conditional
rewrite rules that declaratively allow the disambiguation of ambiguous CS terms. In this
way, these ambiguous terms are rewritten as the appropriate AS term.

Type resolution

One of the additions that Spoofax provides – and CS2AS-TL does not offer – is a DSL to
declare type resolution. For those textual languages that offer a type system (such as OCL),
Spoofax allows to specify declaratively the type of any term that requires a type declaration
(e.g. expressions).

In CS2AS-TL, a type system can be declared, but it requires to be fully defined by means
of OCL expressions. When discussing future work, Section 6.1 provides additional com-
ments about this feature.

Specification Generation

Spoofax languages are not models 4 per se. However, they provide their own code genera-
tion techniques (e.g. using Stratego/XT), which could be used to produce parts of the OMG
specification from the CS2AS descriptions.

Spoofax languages are not OMG-like languages. This fact may stall the adoption of
Spoofax languages by OMG specification producers and maintainers.

4 As the thesis scope presented, there is no underlying meta-model.
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5.4 Quantitative Study: Introduction

The previous sections evaluated existing work in terms of their capabilities and how they
address the different concerns explained in Chapter 3. This section focuses on a quantitative
study that consists of evaluating the proposed solution in terms of measurable characteris-
tics.

5.4.1 Goals

In order to evaluate quantitatively the contributions of this thesis, the following studies are
presented with two goals in mind:

• Firstly, in the context of this research, to provide evidence of the generalisability of
the proposed solution. In other words, to demonstrate that the presented solution can
address varied CS2AS scenarios beyond the running example (mOCL).

• Secondly, by means of the empirical research method, to compare quantitatively the
proposed solution’s implementation to related work.

5.4.2 Metrics

This subsection presents the different metrics that are used for the quantitative study, in-
cluding why they have been chosen and the instrumentation required to obtain the corre-
sponding measurements.

Performance of the Implementation

The first metric to be used during the evaluation is performance, in terms of execution time,
and in particular, the number of milliseconds that the implementation needs for obtaining
AS models from CS models. Note that CS2AS-TL is agnostic of parsing technology. There-
fore, any performance related to parsing activity has been deliberately excluded from the
evaluation.

The instrumentation consists of using a Java system library to obtain a time stamp before
the CS2AS transformation starts, and the time stamp right after the transformations ends.

Size of DSTL instances

The main contribution of this thesis is a CS2AS-TL to express bridges between the CS and
the AS of textual modeling languages. When conducting a comparative study, an objec-
tive metric to evaluate CS2AS-TL consists of measuring the size of the instances of CS2AS
bridges. There are different ways to measure this, including the size of the file and, taking
into account that CS2AS-TL is textual, the number of Lines of Code (LoC) [64]. However,
these metrics are subject to the length of identifiers, formatting style etc. Because of this, the
main metric of interest is based on the number of words of CS2AS-TL instances, excluding
those belonging to comments. The rationale for this is the following:
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• Keywords and identifiers are the usual constructs that the end user has to write.

• Concerns about the length of identifiers to obtain better results are removed.

When showing the obtained results of the experiments related to the size of CS2AS-
TL instances, measurements of the file size, the number of LoC and number of words are
included. However, only the number of words is considered when performing hypothesis
testing.

To measure the number of words, specific instrumentation5 has been created. In this
case, it consists of a Java class that processes input files and returns the number of compris-
ing words (excluding comments).

Why these metrics?

This sub-subsection introduces the rationale behind using the proposed metrics.
With respect to the implementation performance, the main reason for choosing this met-

ric is the fact that they provide an objective criterion according to which the evaluation is
performed in an automated and agile way. Additionally, although there are other ways to
evaluate implementation performance, such as memory footprint, execution time has been
prioritised because the tools that are created in this context are designed to run in IDEs.
Therefore, the time response (how much time the user has to wait to obtain the AS after
textual editing happens) is a priority over how much memory is consumed by the IDE.

With respect to the size of CS2AS-TL instances, the same rationale applies. Doing ex-
periments in an automated and efficient way is important because the solution is designed
to deal with CTMLs in a broad sense, and the prototype has been subject to continuous
improvement. This makes user-oriented experiments impractical: although there are other
ways to evaluate the CS2AS-TL – such as usability and readability – this kind of evaluation
requires designing and running expensive experiments with end users (not viable within
the time frame set for this project. This concern is discussed in Section 6.1).

5.4.3 Subjects

Previous subsections focused on a qualitative study to compare relevant work: Gra2Mol
and Spoofax. In the quantitative study, CS2AS-TL is one of the subjects of study. The other
subject of study is Gra2Mol, whereas Spoofax has been discarded. The rationale behind this
decision is the following:

• Although Spoofax is proven to give support to modeling languages, CS2AS bridges
are addressed entirely in the treeware technological space. This prevents Spoofax from
giving support to complex modeling languages such as mOCL because some language
requirements cannot be fulfilled (e.g. external models cannot be referred by the target
AS models).

5 https://github.com/adolfosbh/cs2as/tree/master/uk.ac.york.cs.cs2as.metrics

https://github.com/adolfosbh/cs2as/tree/master/uk.ac.york.cs.cs2as.metrics
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• The technical solution to shift from syntax trees to AS models does not compare the
solutions fairly. For instance, whereas the tool developed can systematically measure
the size of artefacts specified within Spoofax, this is not the case when taking into
account the meta-model modified with the additional EAnnotations.

• Similarly, implementation performance cannot be fairly compared. Its modelware layer,
which enacts the transformation syntax trees into AS models, invokes the Spoofax
APIs to obtain the syntax trees. This process includes the file parse stage, which is not
part of the evaluation.

Including Spoofax in the quantitative study of the thesis evaluation gives rise to dif-
ferent concerns (e.g. threats to experimental validity) that may compromise the study
results and conclusions. Therefore, it has been deliberately excluded from this chap-
ter. However, Appendix E replicates one of the experiments with Spoofax, including
some quantitative data.

With respect to Gra2Mol, the examples from the official Github repository6 have been
considered for conducting the experiments. The rationale relies on reusing existing exam-
ples that have been addressed by the tool’s creator, who is the authoritative person knowing
the pros and cons of the tool and how to address the particular examples better. In this
way, some threats to the experiment’s validity are mitigated. Additionally, there are vari-
ous language examples in the repository (from simple languages to complex ones) to check
whether CS2AS-TL transformations are producing the same outcomes as those of Gra2Mol.

5.4.4 Hypotheses

Once the metrics of the evaluation have been introduced, the hypotheses that are used for
validating the contribution of the proposed solution are presented. Given X, the proposed
solution explained in this thesis, and Y, an alternative solution for comparison purposes, the
following hypotheses are formulated.

Hypothesis A.

1. Null hypothesis (HA0): the execution time required to obtain AS models from CS ones
using the implementation of approach X is the same as the execution time required by
the implementation of approach Y.

2. Alternative hypothesis (HA1): the execution time required to obtain AS models from
CS ones using the implementation of approach X is different to the execution time
required by the implementation of approach Y.

6 https://github.com/jlcanovas/gra2mol
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Hypothesis B.

1. Null hypothesis (HB0): the size of the artefact/s to describe a CS2AS bridge of a
textual modeling language using approach X is the same as the size of the artefacts
required by approach Y.

2. Alternative hypothesis (HB1): the size of the artefact/s to describe a CS2AS bridge of
a textual modeling language using approach X is different to the size of the artefacts
required by approach Y.

5.4.5 Methodology

This subsection presents the methodology that drives this quantitative study. Given the
varied nature of the presented hypotheses, two different approaches are taken to conduct
the corresponding experiments.

CS2AS transformations execution with different models

When executing CS2AS model transformations for a textual modeling language, textual in-
puts are processed. In order to reject the null hypothesis A (HA0), it is necessary to perform
the execution with different instances of the textual modeling language under study. More-
over, a representative sample of models for an experiment involves models with different
size and topology. In order to provide this variety in input files, a tailored parametrisable
generator has been developed for this purpose (see Section 5.5.1).

The experiment to test hypothesis A consists of the following:

1. Executing Gra2Mol and the prototype implementation with a variety of input files
conforming to the textual modeling language.

2. Ensuring that the output AS models obtained from the proposed prototype are the
same output models obtained from Gra2Mol.

3. Measuring the execution time (see Section 5.4.2) incurred by the M2M transformations.

4. With the collected data, performing the corresponding statistical test to evaluate hy-
pothesis A.

CS2AS bridges for different textual modeling languages

When creating CS2AS bridges for a textual modeling language, a CS2AS bridge (i.e. a
CS2AS-TL instance) needs to be created. In order to reject the null hypothesis B (HB0),
different instances of CS2AS-TL are required. Therefore, varied textual modeling examples
are necessary to perform the evaluation. In addition, testing CS2AS-TL with different tex-
tual modeling languages shows whether the current set of features of CS2AS-TL is sufficient
to declare CS2AS bridges for these languages.

The experiment to test hypothesis B consists of the following:
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• For a textual modeling language, replicate the CS2AS bridge described with Gra2Mol,
by using CS2AS-TL.

• Count the number of words (see Section 5.4.2) of both CS2AS bridges.

• Repeat the method for all the textual modeling language examples involved in the
experiment.

• With the collected data, perform the corresponding statistical test to evaluate hypoth-
esis B.

Experiment Reproducibility

One of the concerns that arise when doing empirical research is experiment reproducibility.
Researchers should facilitate as far as possible access to the experiment environment that
was used to conduct a set of experiments. In this way, other researchers can check and
confirm the obtained conclusions, and even enhance the research with new experiments
conducted within the same environment.

In order to ease reproducibility, an experiment environment has been set up in the SHARE
[74] platform7. The reader just needs to log in the platform and request access to the pre-
pared virtual machine8. When access is granted, the user will remotely connect to the virtual
machine and access the system using Ubuntu as the user name and reverse as the password.
Additional information (README) about how to repeat the experiments can be found in
the user desktop.

Hypotheses Testing

In order to support the null hypotheses rejection with an accepted statistical significance
(p-vale <= 0.1), statistical tests are performed as part of the experiments. In this case, the
Wilcoxon (non-parametric) test is selected. Regardless of whether the statistical test is meant
to reject the null hypothesis A or B, the following rationale applies:

• Selection of a non-parametric test, because there is no assumption about the normal
distribution of data.

• The collected data is paired. In other words, for every subject in the sample we collect
one data value for each tool (paired values).

• Differences between the (ordinal) data values for the selected metrics (milliseconds
and number of words) can be ranked.

7 http://share20.eu
8 http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=

Ubuntu12LTS_CS2AS-DSTL---Experiments.vdi

http://share20.eu
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_CS2AS-DSTL---Experiments.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_CS2AS-DSTL---Experiments.vdi
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5.4.6 Threats to Experiment Validity

When conducting empirical research, the different threats that can risk the validity of exper-
iments and conclusions must be taken into account [83]. This subsection lists the different
identified threats and the corresponding mitigation actions.

Representative Sample

The main threat that this quantitative study presents is related to the sample on which the
experiments are conducted, and in particular, how representative the set of examples chosen
to run the experiments is. Given the kind of studies that are conducted, the following is
taken into account:

• Size of Artefacts. When measuring the size of artefacts, it is important to have a
representative sample from the wide set of possible textual modeling languages.

• Performance. When measuring performance, it is important to have a representative
sample from the wide set of possible textual inputs that conform to a particular textual
modeling language.

Taking a representative sample of textual modeling languages is a hard task. It is not
clear which are the characteristics of such representativeness. A random CTMLs generator
is not sensible, as the example must be well known and easy to explain. In order to mit-
igate this issue, the decision to select examples already implemented by related work (i.e.
Gra2Mol) was taken. This removes any suspicion of choosing a language example that is
suitable for the proposed solution but cannot be implemented by the related work.

Likewise, taking a representative sample of textual inputs is also difficult. It is not clear
which are the characteristics of this representativeness. A random textual inputs generator
may be sensible, but it must be ensured that textual inputs are valid for the particular lan-
guage. In order to mitigate this issue, a tailored textual inputs generator has been built for
one of the examples, so that the textual inputs vary in size and topology.

Equivalent CS2AS bridges

When conducting the experiments, it is important that key artefacts such as CS2AS bridges
are equivalent. This must hold even when there are mappings (or rules) in these CS2AS
specification artefacts that are not executed during the transformation execution. In order to
mitigate this threat, the following actions have been adopted:

• Create the instances of CS2AS-TL as a replica of the Gra2Mol instances. This repli-
cation implies, for instance, that if any mapping declaration or property computation
exists in a CS2AS bridge expressed with Gra2Mol DSTL, an equivalent declaration
must exist in the CS2AS bridge expressed with CS2AS-TL.

• Ensure that the output models are equivalent after the corresponding CS2AS transfor-
mation executions.
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Same Experiment Environments

When conducting the experiment related to measuring performance, it is important to set
up a common environment in which both prototypes are executed. The same environment
should also ideally be accessible by third parties, so that the experiments can be replicated.
With respect to this concern, the actions that have been taken are the following:

• The experiments are run in the same physical machine and same operating system.

• Since they run on Java Virtual Machine, the same amount of physical memory is pro-
vided.

For details about the environment, see the experiment design from Section 5.5.1.

5.5 Quantitative Study: Hypothesis A

This section shows the quantitative study performed to test hypothesis A. The study con-
sists of obtaining quantitative data when executing CS2AS transformations on two different
examples, and performing statistical tests with all the data. First, Section 5.5.1 focuses on
a detailed example where all the specification artefacts, as well as a scalability analysis, are
shown. Second, Section 5.5.2 focuses on another example which is not explained in detail
but, instead, the relevant CS2AS scenarios are discussed. Finally, Section 5.5.3 presents the
statistical tests performed with all the collected data.

5.5.1 Detailed Experiment: 101 Companies Example

This subsection introduces the first experiment. The example is called 101 companies and
it is the only one explained in detail throughout the evaluation. This example is located
in the Gra2Mol repository and complies to the 101companies project [22]. The 101 companies
example is simple enough to be explained in detail, requires cross-reference resolution, and
permits models of varied size and topology.

Example Introduction

Figure 5.11 shows the CS and AS definition of the textual modeling language, as defined in
the Gra2Mol repository. On the left hand side, the CS is defined by means of an (ANTLR-
based) grammar. On the right hand side, the diagram shows the AS (Ecore-based) meta-
model of the language. The running example of the 101companies project [22] describes an
imaginary Human Resource Management System. The proposed textual modeling language is
conceived to deal with the information required by this kind of systems and it is explained
as follows: a company has a name and is divided into departments. Each department can
be split into sub-departments. Each department must have a manager and, optionally, other
employees. Employees have a name, address and salary. In this particular 101companies
example, every employee may have another employee as a mentor.
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1 company:
2 ’company’ STRING ’{’
3 department∗
4 ’}’ EOF ;
5 department :
6 ’department’ STRING ’{’
7 department_manager
8 department_employees
9 department∗

10 ’}’ ;
11 department_manager :
12 ’manager’ employee ;
13 department_employees :
14 (’employee’ employee)∗ ;
15 employee :
16 STRING ’{’
17 ’address’ STRING
18 ’salary’ FLOAT
19 (’mentor’ STRING)?
20 ’}’ ;

Company

name : EString

Department

name : EString

Employee

name : EString
address : EString
salary : EDouble = 0.0

[0..*] depts

[1..1] manager

[0..*] subdepts

[0..*] employees

[0..1] mentor

FIGURE 5.11: 101 Companies Example [22]. On the left, the CS (ANTLR-
based) grammar of the language. On the right, the AS (Ecore-based) meta-

model

In supporting this example with the proposed solution, the CS definition is specified
by means of an analogous Xtext grammar. From this grammar specification, the CS meta-
model can be automatically generated. Figure 5.12 shows the Xtext grammar definition on
the left, and the corresponding CS meta-model on the right. Examining this generated CS
meta-model and the final AS one, shown in Figure 5.11, the existing gap between the CS and
AS in this particular example can be seen.

CS2AS Bridge

Once the example has been introduced, this subsection shows the specification of the CS2AS
bridges defined with both tools.

Reminder. Instances of the Gra2Mol DSTL relate CS grammar terms to AS meta-
model terms. Instances of CS2AS-TL relate CS meta-model terms to AS meta-model
terms.

Figure 5.13 shows excerpts of the CS2AS bridges side by side. There are numerous sim-
ilarities between the CS2AS descriptions, whereas the main differences are in the model
queries. For instance, all the properties of the created AS meta-classes are initialised in
Gra2Mol with a reference to a model query declared in the queries clause. In CS2AS-TL,
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1 company :
2 ’company’ name=STRING ’{’
3 deparment+=department∗
4 ’}’;
5 department :
6 ’department’ name=STRING ’{’
7 department_manager=

department_manager
8 department_employees=

department_employees
9 deparment+= department∗

10 ’}’;
11 department_manager :
12 ’manager’ employee=employee;
13 department_employees :
14 {department_employees}
15 (’employee’ employee+=employee)∗
16 ;
17 employee :
18 name=STRING ’{’
19 ’address’ address=STRING
20 ’salary’ salary=FLOAT
21 (’mentor’ mentor=STRING)?
22 ’}’;

company

name : EString

department

name : EString

department_managerdepartment_employees

employee

name : EString
address : EString
salary : EDouble = 0.0
mentor : EString

[0..*] deparment

[0..1] department_manager[0..1] department_employees

[0..*] deparment

[0..1] employee[0..*] employee

FIGURE 5.12: Equivalent Xtext grammar and corresponding CS meta-model
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all these properties are initialised with the specific OCL expression that provides the result
values for the properties.

Additionally, the CS2AS-TL isolates the name resolution concern in its own section. For
instance, according to the Gra2Mol example (see line 27), an employee might be mentored by
any other employee in the company. Therefore, in the name resolution section of the CS2AS-
TL instance, it is declared (lines 25–30) that companies contribute to the current scope of all
the employees spread across all departments – including subdepartments – of the company.

1 rule ’mapCompany’
2 from company c
3 to Company
4 queries
5 dElem : /c//#department;
6 mappings
7 name = removeQuotes c.STRING;
8 depts = dElem;
9 end_rule

10 rule ’mapDepartment’
11 from department d
12 to Department
13 queries
14 mElem : /d/department_manager/#

employee;
15 eElem : /d/department_employees/#

employee;
16 dElem : /d/#department;
17 mappings
18 name = removeQuotes d.STRING;
19 manager = mElem;
20 employees = eElem;
21 subdepts = dElem;
22 end_rule
23 rule ’mapEmployee’
24 from employee e
25 to Employee
26 queries
27 mElem : //#employee{STRING[0].eq(e

.STRING[2])};
28 mappings
29 name = removeQuotes e.STRING[0];
30 address = removeQuotes e.STRING[1];
31 salary = e.FLOAT;
32 mentor = mElem;
33 end_rule

1 source ’./gen/Companies.ecore#/’
2 target ’Company.ecore#/’
3 mappings {
4 create Company from company {
5 name := name;
6 depts := department.trace;
7 }
8 create Department from department {
9 name := name;

10 manager := department_manager.
employee.trace;

11 employees := department_employees.
employee.trace;

12 subdepts := deparment.trace;
13 }
14 create Employee from employee {
15 name := name;
16 address := address;
17 salary := salary ;
18 mentor := lookup(Employee, mentor);
19 }}
20 name_resolution {
21 targets {
22 Employee using name;
23 }
24 providers {
25 Company {
26 in current_scope
27 provides depts−>closure(subdepts)
28 −>collect(employees
29 −>including(manager));
30 }}}

FIGURE 5.13: CS2AS specification in Gra2Mol (left) and CS2AS-TL (right)
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Experiment Design

After introducing the example and how the CS2AS bridge is expressed using both tools, this
subsection describes how the experiment is conducted. The goal of the experiment is testing
hypothesis A.

With the aim of mitigating validity threats, a pseudo-random inputs generator for this
particular experiment has been developed. The goal is to provide a set of varied inputs
for the experiment, so that the obtained AS models are different in size and topology. The
generator can be configured by the following parameters:

Nd : Number of (top level) departments in the company.
Ns : Number of subdepartments per department/subdepartment.
Ne : Number of employees per department/subdepartment.
Ds : Depth level of (sub)departments.
Attribute values are pseudo-randomly generated, whereas every employee is randomly

mentored by another employee with a 0.5 probability. The inputs used in the experiment
are characterised in Table 5.1. The samples vary from small inputs to big ones, and expected
outputs vary from deep models to flat ones.

Size (bytes) No of Elements Nd Ns Ne Ds

M1 1,238 22 3 0 3 1
M2 6,105 97 3 3 4 2
M3 149,951 701 1 1 3 100
M4 42,805 708 1 100 3 2
M5 223,848 3061 4 4 5 4
M6 1,018,254 11901 10 4 10 4
M7 9,794,276 109341 10 5 10 5

TABLE 5.1: 101 Companies example: models characterisation

The experiment consists of using both technologies to run the corresponding CS2AS
transformations with each sample’s input, and measuring the time required to perform
the transformations. One of the features of the contributed CS2AS-TL is that it is parsing-
technology agnostic. Therefore, the measurements do not include parsing time. In addition,
any time on loading/storing models is not included either. In consequence, the required
time stamps are taken just before the M2M transformation starts and right after it finishes.

With respect to the environment of the experiment in which the presented results were
obtained, the following information is provided:

• It has been run in a desktop computer with the following characteristics:

Architecture: x64 (64-bits)

CPU: Inter(R) Core(TM) i7-3770 CPU @ 3.40 Ghz

RAM: 8 GB

OS: Windows 10

• The JVM is configured to use the default heap (2 GB).
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• To warm up the JVM prior to taking measurements, the CS2AS transformation is run
3000 times with M2.

• Garbage collection is forced prior to the transformation executions.

Experiment Results

All collected data from the experiments can be found in Appendix F.

This section presents the collected data, along with some observations and discussions. Fig-
ure 5.14 summarises the performance results.

FIGURE 5.14: Experiment results: execution time

Gra2Mol took less time compared to our prototype when executing M1 (the smallest
one). As discussed further in the following scalability analysis, this reflects a start up cost
which is greater in the proposed prototype. However, as soon as this setup time is negligi-
ble with respect to the model-size dependent time, it can be observed that Gra2Mol is over
ten times slower than the prototype – in this particular example. There is an observed peak
in performance when Gra2Mol deals with M3 (701 model elements). This is unexpected,
especially compared with M4 (708 model elements), which has a similar number of model
elements. If we look at the model parameters’ characterisation from Table 5.1, we identify
two main differences: M3 is a deep model, whereas M4 is a wide one. Despite the similar
number of model elements, M3 is bigger in terms of size (149,951 vs 42,805 bytes). This is
explained by the logic used by the model generator to assign names to model elements: the
deeper the named element is inside the model, the longer the string for the corresponding
name. These topology differences between M3 and M4 make us conclude that model topol-
ogy impacts on Gra2Mol performance – according to this particular example. In the case of
the developed prototype, the difference in execution time is negligible.
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Scalability Analysis

Aiming at a better interpretation of scalability, a new experiment is run with 25 models gen-
erated by the model generator. In this case, the independent variables are Nd, Ns and Ds

(values set to 2), with Ne as the dependent variable. The dependent variable’s value is grad-
ually incremented to generate models whose amount of model elements varies between 10

and 106. The different values of Ne are conveniently calculated to obtain quasi-equidistant
points in a log-scaled x-axis. Table 5.2 shows the values for certain involved models. With
respect to the environment setup, we decreased the amount of the JVM memory heap9, so
that the scalability trends can be observed without having to wait unnecessarily for long
executions with the largest models (i.e. the experiment tries to exhaust the memory).

Size (bytes) Elements Nd Ns Ne Ds

M1 1,320 31 2 2 1 2
M2 3,003 49 2 2 4 2
M3 6,219 79 2 2 9 2
... ... ... ... ... ... ...

M21 13,773,378 128473 2 2 21408 2
M22 20,852,400 193663 2 2 32273 2
M23 31,524,191 291931 2 2 48651 2
M24 47,602,981 440071 2 2 73341 2
M25 72,039,789 663379 2 2 110559 2

TABLE 5.2: New experiment models characterisation

Figure 5.15 shows the results that were obtained after running this new experiment.
Overall, the prototype is still over ten times faster than Gra2Mol in this particular example.
Likewise, the line slopes verify that the developed prototype and Gra2Mol do not present
a linear performance. Additionally, we observe that the experiment involving the devel-
oped prototype consumed less memory, because model M23 was successfully transformed
before an out-of-memory exception was obtained with model M24, whereas the experiment
involving Gra2Mol got an out-of-memory exception with model M23.

All the data corresponding to this scalability analysis can be found in Table F.2 (Ap-
pendix F).

In order to address the scalability issue, the experiment was repeated with a modified
transformation scenario; the computation of theEmployee::mentor property from the Gra2Mol
and CS2AS-TL instances (from Figure 5.13, lines 32 and 18 respectively) was removed. Ad-
ditionally, the model query required to compute that property (line 27) was also removed
from the Gra2Mol transformation.

Figure 5.16 shows the results that were obtained after running the new experiment. With
respect to the proposed prototype the following is highlighted: in this particular experiment,
the execution time remains constant overall when dealing with M1 −M13 models (roughly
7 milliseconds with models containing up to 4819 model elements). This shows that in

9 Half of the amount for a default JVM heap size.
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FIGURE 5.15: Scalability: execution times for 25 models

the developed prototype there is some required constant execution time that is model-size
independent; that time is significantly greater than the model-size dependent time required
for those specific models. With the subsequent models (from M14 to M20), we can observe
how the execution time increases along with model size. The important point is that the
line slope observed shows that the increment is linear. With model M21, an out-of-memory
exception was thrown.

Looking at the results obtained for Gra2Mol, the model-size independent constant time
is lower than the one required by the proposed prototype. However, once the model size in-
crement starts to impact the execution time (from M4), the line slope confirms that Gra2Mol
performance is not linear with this simpler scenario.

With respect to the non-linear performance when the Employee::mentor property is com-
puted, published work [65] has identified a need for an operation results caching mecha-
nism to improve performance. The current prototype has improved the incorporation of
this mechanism. Although performance results in big models have improved by a factor
of two compared to the results obtained in the published paper, performance is still non-
linear. Figure 5.17 shows in the same graph the results of running the scalability experi-
ment (including the computation of the Employee::mentor property) with the three solutions:
Gra2Mol, the prototype without operation results caches, and the prototype with operation
results caches.

The conclusions that can be drawn from this scalability analysis is that further research
can be done to improve the results. Some possible explanations about the current non-linear
performance follow:

• The transformation engine execution has room for improvement in terms of perfor-
mance (e.g. when working on collections).
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FIGURE 5.16: Scalability: performance when Employee::mentor is not com-
puted

FIGURE 5.17: Scalability: performance when caching operation results
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• The name-based lookup algorithms are non-linear in terms of performance (e.g. this
scenario involved a closure).

5.5.2 Another Experiment: Delphi2ASTM Example

This subsection introduces the second experiment. The example is called Delphi2ASTM and
it is proposed by Gra2Mol as a complex example, in which the textual files conforming to the
CS of the Delphi language are transformed to AS models conforming to the Abstract Syntax
Tree Metamodel (ASTM) [35]. The goal of this experiment is to obtain additional quantita-
tive data, with a different language example, in order to test hypothesis A (see Section 5.5.3).
Due to the size of this example, this experiment is not explained in as much detail as the 101
Companies example.

The rationale for choosing this particular example is the following:

• It is one of the complex examples that can be found in the Gra2Mol repository. It
requires creation and reference mappings, name resolution and disambiguation rules.

• It exposes some of the pros and cons (see Section 4.6) of CS2AS-TL.

Example Introduction

The Delphi2ASTM example targets the creation of AS models conforming to the ASTM from
Delphi textual files. This meta-model is proposed by the OMG Architecture Driven Modern-
ization (ADM) task force to provide a low-level software modeling language independent
from any particular programming language. In this way, the source code of different pro-
gramming languages can be translated into the same model representation.

On the one hand, due to the size of the example, no details about the CS grammars, AS
meta-models or the entire CS2AS descriptions are provided. All the relevant artefacts are
publicly available for both Gra2Mol10 and CS2AS-TL 11-based solutions. Table 5.3 shows the
references to the different specification artefacts for the example.

Solution Artefact path
Gra2Mol
CS Definition /ASTMExtraction/files/src/delphi.g
AS Definition /ASTMExtraction/files/meta-models/astm.ecore
CS2AS Definition /ASTMExtraction/files/src/delphi2astm.g2m
CS2AS-TL
CS Definition /src/org/xtext/example/delphi/Delphi.xtext
AS Definition /model/astm.ecore
CS2AS Definition /model/Delphi.cs2as

TABLE 5.3: Delphi2ASTM example: specification artefacts

10 https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.
examples.Delphi2Model

11 https://github.com/adolfosbh/cs2as/tree/master/org.xtext.example.delphi

https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.examples.Delphi2Model
https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.examples.Delphi2Model
https://github.com/adolfosbh/cs2as/tree/master/org.xtext.example.delphi


182 Chapter 5. Evaluation

On the other hand, due to the discussion that certain CS2AS scenarios have provoked,
the forthcoming subsections show how these specific CS2AS scenarios are addressed by
both solutions.

Whilst the previous experiment did not require changing the CS2AS bridge defined
in Gra2Mol, this was not the case for this experiment. All details of the changes
made to accommodate the specification artefacts are explained in the forthcoming
subsections.

CS2AS Bridge: Missing Rules/Mappings

When replicating the experiment with the proposed solution, the first problem that came up
was the following: the CS2AS bridge of the Delphi2ASTM example defined in the Gra2Mol
repository was incomplete. On the one hand, having a partial CS2AS bridge is not critical 12.
On the other hand, the proposed prototype has encountered different problems due to this
incompleteness, and in particular with the absence of many rules (or mappings) definitions
in the original Gra2Mol transformation.

The problems that arise due to these missing rules (or mappings) can be categorised into
the following:

• The RHS of Gra2Mol bindings usually require model elements to be returned from
another rule. However, not all corresponding rules were defined. In Gra2Mol, when
bindings are executed and there is no corresponding rule, nothing is returned. In
CS2AS-TL, the problem arises during the compilation process. The Complete OCL
documents will contain compilation errors, because the particular OCL expression
(equivalent to the RHS of a Gra2Mol binding) will invoke an ast() operation which
has not been defined (because of the missing mapping declaration). For instance, Fig-
ure 5.18 shows an excerpt of the Gra2Mol transformation in which a binding (line 11)
involves a query (line 5) that requires a mapping for usesClause terms. However, in
the original Gra2Mol transformation there was no mapping rule to transform these us-
esClause terms. The Gra2Mol engine can tolerate this incomplete transformation, but
the developed prototype produces invalid Complete OCL documents that prevent the
compilation process from finishing successfully.

• Some missing rules were supposed to create model elements designed to contain other
model elements – created by existing rules. These missing rules produced different
output models when using both tools. In the case of the developed prototype, all
the models created by existing rules ended up as root model elements (their expected
containers were not created due to the missing rules). One example of this situation is
shown in Listing 5.16. In this case, a skip rule is declared for a simpleExpression. This
rule skips to a term in case no addOp exists. However, in the Gra2Mol transformation,
there is no rule to handle the case in which an addOp does exist. This missing rule,

12 From the point of view of experiment validity, having incomplete CS2AS definitions is not important, as
long as the corresponding CS2AS-TL instance is equivalent.
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1 rule ’mapInterfaceSection’
2 from interfaceSection is
3 to astm::sastm::

DelphiInterfaceSection
4 queries
5 uElem : /is/#usesClause;
6 cElem : /is/interfaceDecl/#

constSection;
7 tElem : /is/interfaceDecl/#

typeSection;
8 vElem : /is/interfaceDecl/#

varSection;
9 eElem : /is/interfaceDecl/#

exportedHeading;
10 mappings
11 uses = uElem;
12 fragments = cElem;
13 fragments = tElem;
14 fragments = vElem;
15 fragments = eElem;
16 end_rule

FIGURE 5.18: Left: Gra2Mol rule definition that specifies a binding that re-
quires a missing rule. Right: the corresponding Complete OCL code with

compilation errors
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when the addOp does exist, results in the following: no proper container is created to
accommodate the left and right (sub)expressions of the additive expression. For the
CS2AS transformation of the developed prototype, all these (sub)expressions ended
up as root model elements.

1 skip_rule ’skipAddOp’
2 from simpleExpression se
3 to astm::gastm::Expression
4 queries
5 existsAddOp : /se/#addOp[0];
6 nextNode : /se/#term;
7 mappings
8 if (existsAddOp.hasResults) then
9 skip existsAddOp;

10 else
11 skip nextNode;
12 end_if
13 end_rule

LISTING 5.16: A Gra2Mol rule that skips to its (sub)term when there
is no addOp

These missing mappings needed to be addressed: either they prevented the CS2AS
transformation from being compiled by the prototype, or the transformation execution pro-
duced different output models (when comparing the outputs from the Gra2Mol transfor-
mation execution). In order to address these problems, two different kinds of actions were
taken:

• Provided that many of the missing rules did not even need to be executed for the
input examples, the action was to remove the bindings that required the results of the
missing rules. For instance, in the left hand side listing from Figure 5.18, lines 5 and
11 were removed.

• All missing mappings that were required to have equivalent output models were
added to the Gra2Mol transformation. For instance, Listing 5.17 shows a new map-
ping that was added.

When resolving this problem related to the missing mappings, the following discussion
about the pros and cons of the tools can be made. Although the CS2AS transformation could
not be executed by the developed prototype in the first instance, the statically typed OCL
has helped to detect some deficiencies in the transformation defined by Gra2Mol. Addition-
ally, having orphan model elements in the output models was an indication that there were
additional missing rules in the transformation. Therefore, working on the CS2AS transfor-
mation using the developed prototype has helped to identify these missing mappings.
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1 rule ’AddOp’
2 from simpleExpression{addOp[0].exists} se
3 to astm::gastm::BinaryExpression
4 queries
5 lTerm : /se/#term[0];
6 rTerm : /se/#term[1];
7 mappings
8 leftOperand = lTerm;
9 operator = new astm::gastm::Add;

10 rightOperand = rTerm;
11 end_rule

LISTING 5.17: A Gra2Mol rule that creates a BinaryExpression

CS2AS Bridge: No information in CS

As stated in Section 4.6.1, one limitation of the proposed approach is that all the information
that is needed by the AS model must be present in the CS model. Listing 5.18 shows this
limitation. In this case, there are AS model elements designed to keep information about the
source file (lines 8–10), for instance, the path of the parsed file. The internal CST models have
been specifically designed not only to keep language information defined by the ANTLR
grammar, but also to include additional information such as the source file path. Since this
kind of information is not captured by the CS meta-model automatically generated by Xtext,
it cannot be passed to the AS models via a CS2AS definition.

1 rule ’mapFileFromUnit’
2 from file//unit f
3 to astm::sastm::DelphiUnit
4 queries
5 −− queries ommitted
6 mappings
7 −− other mappings ommitted
8 locationInfo = new astm::gastm::SourceLocation;
9 locationInfo . inSourceFile = new astm::gastm::SourceFile;

10 locationInfo . inSourceFile.pathName = f.path;
11 end_rule

LISTING 5.18: A Gra2Mol rule which uses the path of the parsed file

In order to keep equivalent CS2AS transformations, the decision was taken to remove
the Gra2Mol binding in which this source file path is assigned to a SourceFile model element
(line 10).

CS2AS Bridge: Refactoring CS grammar

The last problem to discuss is related to a refactoring of the CS grammar defined by the
Gra2Mol example. CS2AS-TL is parsing agnostic, but it needs a CS meta-model. Although



186 Chapter 5. Evaluation

there is no identified limitation with respect to the structure of the CS meta-model, Sec-
tion 4.6.2 explained that the developed prototype imposes a limitation due to the chosen
M2M transformation engine. This limitation prohibits CS meta-models that use references
pointing to generic model elements (i.e. EObject in terms of EMF).

When using Xtext to generate the CS meta-model, a situation arises in which this kind of
forbidden meta-models are generated. Listing 5.19 shows an excerpt of the ANTLR gram-
mar defined by the Gra2Mol example. The problem appears when there is an alternative of
non-terminals within a syntactic rule, in this case, simpleStatement and structStmt.

1 statement
2 : ( labelId ’:’)? (simpleStatement | structStmt)
3 ;

LISTING 5.19: An ANTLR syntactic rule to declare statements

In this situation, Xtext cannot infer a common supertype from the two non-terminals
and, therefore, the corresponding reference to hold the model element is typed as a generic
EObject. To solve this situation, a refactoring of the Xtext grammar was performed, so there
is a new non-terminal that defines the alternative. Listing 5.20 shows the refactored syntactic
rule.

1 statement
2 : ( labelId=labelId ’:’)? statement=unlabelledStatement
3 ;
4 unlabelledStatement
5 : simpleStatement | structStmt
6 ;

LISTING 5.20: The refactored syntactic rule to declare statements using
Xtext

Experiment Design

This subsection introduces how the experiment was conducted. As with the previous ex-
periment, it consists of executing the corresponding CS2AS transformation that consumes
input CS models and produces the expected AS models.

In this case, a set of Delphi files that already existed in the Gra2Mol repository were
chosen as the experiment sample. Table 5.4 shows a characterisation of the sample files,
including the size of the input file in bytes and the corresponding lines of code.

Experiment Results

This section presents the collected data, along with some observations and discussions. Fig-
ure 5.19 summarises the performance results.

From the obtained results, it can be observed that for small models there is no significant
difference in the obtained results; however, as soon as the size of the input files grows, the
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Size (bytes) Lines of Code
M1 1,304 58
M2 1,858 81
M3 7,246 263
M4 66,048 2,238
M5 241,188 8,118
M6 708,228 23,798

TABLE 5.4: Delphi2ASTM example: models characterisation

FIGURE 5.19: Delphi2ASTM experiment results: execution time

differences are much larger. For the largest input file, the Gra2Mol implementation is 2,215
times slower than the developed prototype.

5.5.3 Testing Hypothesis A

To conclude this first quantitative study, hypothesis A is formally tested. Recall that the null
hypothesis (HA0) we want to reject states that “the execution time required to obtain AS
models from CS ones using the implementation of the proposed approach is the same as the
execution time required by the implementation of the Gra2Mol approach“.

Since the experiments have been conducted with different language examples, the hy-
pothesis is tested with the data of each language individually.

101 Companies Example

According to the data shown in Table F.1 and Table F.213, and by performing the Wilcoxon
statistical test, the null hypothesis (HA0) can be rejected with a p-value = 0.000005549.

13 For the developed prototype, the data used corresponds to a better solution based on cached operation
results.
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Since there are too many data points to be shown in one table, the reader is referred
to Appendix F in which all the data is shown.

According to this example and the obtained data, the statistical test concludes that the
execution time of CS2AS transformations for the developed prototype is lower than the exe-
cution time of CS2AS transformations for Gra2Mol. The rationale is based on the following
statements:

• The statistical test concludes that the execution times are significantly different.

• In 26 out of 29 samples, the developed prototype was faster (this was not the case in 3
small models).

Delphi2ASTM Companies Example

According to the data shown in Table 5.5, and by performing the Wilcoxon statistical test,
the null hypothesis (HA0) can be rejected with a p-value = 0.03125.

Gra2Mol 17 43 187 20,400 287,633 245048783
CS2AS-TL 16 31 63 98 355 1106

p-value=0.03125

TABLE 5.5: Wilcoxon statistical tests for HA0 (Delphi Example). Paired data
corresponds to the execution time obtained from the experiment

According to this example and the obtained data, the statistical test concludes that the
execution time of CS2AS transformations for the developed prototype is lower than the exe-
cution time of CS2AS transformations for Gra2Mol. The rationale is based on the following
statements:

• The statistical test concludes that the execution times are significantly different.

• In 6 out of 6 samples, the developed prototype was faster.

5.6 Quantitative Study: Hypothesis B

This section shows the quantitative study performed to test hypothesis B. The study consists
of obtaining quantitative data about the size of artefacts (see Section 5.4.2) and performing
a statistical test with all the collected data. In addition to the two examples already pre-
sented, the study comprises three new examples. Firstly, Section 5.6.1 introduces the three
additional examples. Then, Section 5.6.2 shows the results obtained when measuring the
size of the CS2AS bridges. Finally, Section 5.6.3 presents the statistical test performed with
the collected data.
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5.6.1 Examples Introduction

This subsection introduces the new language examples for which CS2AS bridges are defined
using Gra2Mol and CS2AS-TL. As with the Delphi2ASTM example, no details about the
different artefacts are given. Instead, pointers to the public locations where the artefacts can
be checked are provided.

Example: DDL2ASTM

The third language example is called DDL2ASTM. Data Description Language (DDL) is a
textual language designed to describe database schemas for relational database manage-
ment systems. As with the Delphi2ASTM example, the goal is to produce AS models con-
forming to the ASTM. In this case, the textual inputs are DDL files.

The experiment consisted of replicating the Gra2Mol14 transformation using CS2AS-
TL15. Table 5.6 shows the references to the different specification artefacts for the example.

Solution Artefact path
Gra2Mol
CS Definition /ASTMextraction/src/DDL.g
AS Definition /metamodels/astm.ecore
CS2AS Definition /ASTMextraction/src/extractASTMFromDDL.g2m
CS2AS-TL
CS Definition /src/org/xtext/example/plsql/DDL.xtext
AS Definition /model/astm.ecore
CS2AS Definition /model/plsql.cs2as

TABLE 5.6: DDL2ASTM example: specification artefacts

Example: iMacros

The fourth language example is called iMacros 16. Internet Macros (iMac) provides a textual
language designed to automate tasks on the web, for instance, data extraction. In this case,
the Gra2Mol example provides a specific iMacros AS meta-model.

The experiment consisted of replicating the Gra2Mol17 transformation using CS2AS-
TL18. Table 5.7 shows the references to the different specification artefacts for the example.

Example: ABNF2Ecore

The fifth language example is called ABNF2Ecore. The Augmented Backus Naur Form
(ABNF) is used in OMG specifications – such as the ASTM – to define meta-models tex-
tually. In this example, the target AS meta-model is the Ecore (EMF) meta-model. The goal

14 https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.
examples.PLSQL2ASTMModel

15 https://github.com/adolfosbh/cs2as/tree/master/org.xtext.example.plsql
16 http://imacros.net/
17 https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.

examples.macros
18 https://github.com/adolfosbh/cs2as/tree/master/org.xtext.example.macros

https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.examples.PLSQL2ASTMModel
https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.examples.PLSQL2ASTMModel
https://github.com/adolfosbh/cs2as/tree/master/org.xtext.example.plsql
http://imacros.net/
https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.examples.macros
https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.examples.macros
https://github.com/adolfosbh/cs2as/tree/master/org.xtext.example.macros
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Solution Artefact path
Gra2Mol
CS Definition /files/src/iMacros.g
AS Definition /files/metamodels/iMacros.ecore
CS2AS Definition /files/src/transformation.g2m
CS2AS-TL
CS Definition /src/org/xtext/example/macros/Macros.xtext
AS Definition /model/iMacros.ecore
CS2AS Definition /model/imacros.cs2as

TABLE 5.7: iMacros example: specification artefacts

in this Gra2Mol example is creating Ecore meta-models from the corresponding textual in-
puts.

As with previous examples, the experiment consisted of replicating the Gra2Mol19 trans-
formation using CS2AS-TL20. Table 5.7 shows the references to the different specification
artefacts for the example.

Solution Artefact path
Gra2Mol
CS Definition /files/src/ABNF.g
AS Definition /files/metamodels/Ecore.ecore
CS2AS Definition /files/src/extractABNF.g2m
CS2AS-TL
CS Definition /src/org/xtext/example/abnf/ABNF.xtext
AS Definition /model/Ecore.ecore
CS2AS Definition /model/ABNF.cs2as

TABLE 5.8: ABNF2Ecore example: specification artefacts

5.6.2 Obtained Results

Once the Gra2Mol examples have been replicated using CS2AS-TL, the corresponding CS2AS
bridges can be measured. Table 5.9 shows the obtained measurements. It can be observed
that for all the examples there is a decrement in the number of words (up to 40% in some
cases), the number of LoC and the size of the file.

Although the number of words is the measure of interest, it can be observed that for all
examples and all measures, the size of the CS2AS specification artefacts using CS2AS-TL
decreases compared to the measurements obtained for the Gra2Mol DSTL.

5.6.3 Testing Hypothesis B

To conclude this second quantitative study, hypothesis B is formally tested. Recall that the
null hypothesis (HB0) we want to reject states that “the size of the artefact/s to describe a

19 https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.
examples.ABNF2MModel

20 https://github.com/adolfosbh/cs2as/tree/master/org.xtext.example.abnf

https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.examples.ABNF2MModel
https://github.com/adolfosbh/gra2mol/tree/master/examples/Grammar2Model.examples.ABNF2MModel
https://github.com/adolfosbh/cs2as/tree/master/org.xtext.example.abnf
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Gra2Mol CS2AS-TL
Example Words LoC Bytes Words LoC Bytes Words Decrement
101 Companies 83 35 757 73 33 738 10 (-21.04%)
Delphi2ASTM 1151 565 13,414 704 289 7,898 443 (-38.49%)
DDL2ASTM 376 150 5,071 224 86 2,411 152 (-40.42%)
iMacros 47 28 420 32 15 306 15 (-31.91%)
ABNF 541 225 6,086 353 151 4212 188 (-34.75%)

TABLE 5.9: Measurements of size of specification artefacts

CS2AS bridge of a textual modeling language using the proposed approach is the same as
the size of the artefacts required by the Gra2Mol approach“. According to the data shown
in Table 5.10, and by performing the Wilcoxon statistical test, the null hypothesis (HB0) can
be rejected with a p-value = 0.0625.

Gra2Mol 83 1157 376 47 541
CS2AS-TL 73 537 224 32 353

p-value=0.0625

TABLE 5.10: Wilcoxon statistical tests for HB0. Paired data corresponds to the
size of artefacts obtained from the experiment

According to these examples and the obtained data, the statistical test lets us conclude
that the size of CS2AS-TL instances is lower than the size of the Gra2Mol DSTL instances
when describing CS2AS bridges. The rationale is based on the following statements:

• The statistical test concludes that the sizes of CS2AS-TL instances are significantly dif-
ferent.

• In 5 out of 5 samples, the size of CS2AS-TL instances are lower.

5.7 Summary

This chapter presented the evaluation and obtained results of this thesis. Firstly, Section 5.1
introduced a comparative discussion between CS2AS-TL and general purpose M2M trans-
formation languages. This discussion highlighted the benefits of CS2AS-TL when there is a
need for looking up named elements throughout the AS models.

Section 5.2 and Section 5.3 presented two qualitative studies focused on comparing the
proposed approach and related work: Gra2Mol and Spoofax. With respect to the former,
Gra2Mol provides a useful language extension mechanism: many limitations of its short
domain specific language can be worked around by plugging in custom functionality writ-
ten in Java. Conversely, not having useful declarative constructs, such as those provided by
the name resolution section of CS2AS-TL, underline the need for using this less convenient
external language mechanism. With respect to the latter, Spoofax provides a specific set of
languages to work on complex textual languages. However, its support for work on model-
ing languages is limited, and its specification artefacts cannot address certain requirements,
such as making the AS models refer to external models.
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The remainder of the chapter focused on evaluating this thesis’ contribution with quan-
titative studies. Several examples were introduced with a different degree of detail, and the
collected data was used to test statistically whether: a) Gra2Mol and CS2AS-TL had the same
performance results (in terms of execution time); b) the amount of specification artefacts re-
quired to declare CS2AS bridges was the same within Gra2Mol and CS2AS-TL. According
to the experiments and hypothesis tests, the benefits and contributions of CS2AS-TL were
demonstrated.
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Chapter 6

Future Work & Conclusions

This chapter describes future work and concludes the thesis. Section 6.1 discusses future
work from two different points of view: CS2AS-TL to declare CS2AS bridges (the main
contribution of this thesis) and the current prototype. Section 6.2 presents the conclusions
of this thesis.

6.1 Future work

The work presented in this thesis indicates the need for further research and development.
This section focuses on future work from two different perspectives: firstly, in terms of
CS2AS-TL design and capabilities, and secondly, in terms of the development of the current
prototype, which supports all the work presented in this thesis.

6.1.1 CS2AS-TL Improvements

CS2AS-TL Extension Mechanism

Gra2Mol avoids supporting a rich set of expressions and domain-specific constructs thanks
to its flexible language extension mechanism. In this way, any limitation that the language
has can be worked around via this black-boxing mechanism.

On the one hand, in this kind of specification language (to define CS2AS bridges), it is
not ideal to have some "undefined" declarations that are separately fulfilled (implemented)
in some lower-level programming language.

On the other hand, such a feature may be welcomed by pragmatic users in a particular
CS2AS scenario. For instance, they may need some information in the AS model that is not
present in the CS one, and they may prefer to provide this information during this CS2AS
step rather than in a separate AS model post-processing step. The provision of a black-
boxing mechanism to hook in custom functionality is a feature to consider in the future.

Type Resolution

One of CS2AS-TL capabilities consists of a declarative name resolution section (Section
4.2.5). It allows the end user to avoid dealing with name-based lookup algorithms to com-
pute cross-references between AS model elements. CS2AS-TL could be similarly enhanced
with a type resolution section. Such a section would alleviate the need for the end user to
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deal with type-based lookup algorithms that compute cross-references between AS model
elements. Spoofax [72] already provides a DSL to declare type resolution, called Type Spec-
ification Language. Bettini [4] also presents another DSL, called XSemantics, to declare type
system definitions separate from Xtext grammars. The goal of XSemantics is different to the
one pursued in this research: it targets the generation of additional tools that validate the
textual instances, rather than integrating the computed types as part of the AS models.

Disambiguation Rules Inheritance

Section 4.6.1 mentioned a limitation of the disambiguation section when working on a fam-
ily of languages. Provided that there existed a set of disambiguation rules A, B and C for a
base CS meta-class X, and a new derived CS meta-class Y of a derived (extending) language
required an additional CS disambiguation rule D, CS2AS-TL forces you to (re-)declare all
four A, B, C and D rules for the new derived CS meta-class Y. As a hypothetical require-
ment, the additional rule D may need to have a higher precedence than, for instance, rules
B and C. Although during this research no real CS2AS scenario related to this need has been
found, the syntax to deal with disambiguation rules could be enhanced to add an inheri-
tance mechanism, including order roll-out (priority) modification.

Bi-directional CS2AS Bridges

One of the features that has not been considered is bi-directional CS2AS transformations.
This activity is important to support advanced features, such as AS model refactoring, so
that whenever the AS model is modified (e.g. in a further M2M transformation), the corre-
sponding changes can be reflected back to the original textual input. Currently, to support
this reverse AS2CS transformation with the current CS2AS-TL, a new instance in the op-
posite direction would need to be fully declared. However, this solution is far from ideal.
Further study on bi-directional model transformations would be required.

6.1.2 Prototype Improvements

In addition to further research on the CS2AS-TL design, future work on the developed proto-
type can accrue a variety of benefits. Some topics focus on improving the internal function-
ality of the developed prototype (e.g. compilation process). Other topics focus on improve-
ments for the end-user tools (e.g. better error reporting or a debugger) for the CS2AS-TL.

Compiling to QVT Relations

A compilation of instances of CS2AS-TL currently targets QVTm, a low-level M2M trans-
formation language hosted in the Eclipse QVTd project. Additionally, a set of Complete
OCL documents is produced as an intermediate compilation step. In this way, when speci-
fying the CS2AS bridges for the OCL and QVT languages, the corresponding sets of Com-
plete OCL documents can be incorporated into the respective OMG specification, so that the
CS2AS bridge can be formalised [66].
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Part of the proposed future work consists of compiling to QVT Relations (QVTr) rather
than QVTm. Recent work [77] shows that QVTr transformations can be efficiently executed
within the Eclipse Modeling Framework (EMF). Since QVTr can be a bi-directional M2M
transformation language, compiling to QVTr proves to be a sensible step when consider-
ing the support for bi-directional execution. Additionally, since QVTr belongs to an OMG
specification, these QVTr-based transformations could be a new way of specifying and for-
malising CS2AS bridges within any OMG specification.

Improved Error Reporting

One of the drawbacks of the current prototype is that the error reporting is poor, in the
sense that the end user is not precisely informed about what is the cause of any problem
that has occurred, either during the compilation process or during execution of the Java
transformation. For future work, the following improvements are proposed:

• At compilation time, there are currently error reports within the generated Complete
OCL documents. These reports come in the form of warning and error markers that
are provided by the Eclipse OCL tooling. Since OCL is a statically typed language, dif-
ferent kinds of problems (e.g. a missing mapping) can be notified before executing any
transformation. A further improvement consists of implementing a similar approach
so that this type of markers appears in the Xtex-based editor of the CS2AS-TL.

• At execution time, additional work on the reused M2M transformation engine is re-
quired, so that intelligible errors are propagated to the final end-user tools (e.g. the
editor that is editing the textual file).

Debugger

Currently, there is no debugger that works on instances of the CS2AS-TL. This is partly
caused by the choice of the solution back-end. There is a need for a tracing mechanism
between the generated Java transformation back to the original edited file to debug. This
mechanism is not currently supported by the Java code generator hosted in the Eclipse
QVTd project. Besides, having different compilation steps between the original textual file
(the CS2AS-TL instance) and the final executable one (the code-generated Java transforma-
tion) makes the creation of a debugger even harder. According to the Eclipse QVTd project1,
there are plans for a debugger for QVTr and QVTc. Since the compilation and execution of
these languages rely on the same multiple compilation steps approach, the debugger imple-
mented in Eclipse QVTd may be easy to adopt by the current prototype implementation.

Incremental Execution

Part of the prototype evaluation focused on the execution time required to obtain AS mod-
els from textual input files; the larger the file is, the greater the execution time. Taking into

1 https://bugs.eclipse.org/bugs/show_bug.cgi?id=487075

https://bugs.eclipse.org/bugs/show_bug.cgi?id=487075
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account that the underlying transformation may be executed along with some editing fa-
cilities (i.e. textual editor), high execution times may produce a negative impact to the end
user when working on large input files. In this context, although it is important to have an
efficient CS2AS transformation that produces the entire AS model, incremental transforma-
tions are needed to improve user experience. This way, after the user makes a small change
to the input file (delta), an equally small part of the output AS model should be modified in
a short amount of time.

From the point of view of the proposed approach, exploiting M2M incremental trans-
formations is a matter of targeting the appropriate M2M transformation technology that
supports them. Although the current target M2M transformation engine does not prop-
erly execute incrementally yet, there are plans (and ongoing work) to support incremental
execution2.

For a complete incremental execution solution, it is also necessary to have an incre-
mental front-end (i.e. the parser). Xtext does not currently support incremental pars-
ing. However, recall that the proposed solution is independent of parser technology.

Xtext Integration

This thesis has presented work aimed at integrating tools that complement those generated
by default by Xtext. However, there is still room for improvement in these integration activ-
ities:

• Although the Eclipse outline view shows the expected AS model, traceability back to
the text is not implemented. Therefore, clicking on the outline view elements does not
allow navigating throughout the textual file.

• Cross-references take place in the AS rather than in the CS model. Additional source
code would be required for having proper hyper-linking across the textual editor.

• The generated lookup infrastructure (i.e. Java source code) that provides the set of
candidates during name resolution can be reused by the generated editor (e.g. con-
tent assistant). Actually, for the mOCL example, the generated editor currently reuses
such infrastructure (see Section 4.5.2). However, there is a manually written invoca-
tion of the lookup infrastructure to make the enhanced content assistant appear in the
expected places of the editor. These manual invocations could also be auto-generated.

Bootstrapping CS2AS-TL

One of the pending improvements of the prototype is the creation of the CS2AS bridge of
CS2AS-TL itself. Since the language extends and reuses the Eclipse OCL, and the CS2AS
bridges have not been implemented in the project yet, the CS2AS bridge of CS2AS-TL is not
currently implemented.

2 https://bugs.eclipse.org/bugs/show_bug.cgi?id=500962

https://bugs.eclipse.org/bugs/show_bug.cgi?id=500962
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6.1.3 Further Research

To conclude the exposition of future work, this subsection introduces additional further
research that can be derived from this thesis.

Additional Experiments

Although the results obtained throughout the experiments were positive for the CS2AS-
TL, the prototype could be used with more examples (both languages and input models)
to provide additional evidence, reduce further experiment validity threats and, therefore,
strengthen the obtained conclusions.

Additionally, other kinds of experiments can be conducted. In particular, experiments
related to the usability of the tool when compared to related work or even to a whole so-
lution written in a traditional programming language (e.g. Java). Prior to performing any
user-oriented experiment, the maturity of the developed tools is required, including some
important additions, such as better error reporting and debugging (see Section 6.1.2).

CS2AS Bridges for Graphical Languages

Although the target of this research project is complex textual modeling languages, there
are still open questions related to whether the CS2AS-TL could be used on languages with
a different CS, for instance, graphical languages. In this type of languages, the concrete
syntax is based on graphical elements rather than text. Although there is no current work to
provide the required evidence, it seems that CS2AS-TL could be used for describing CS2AS
bridges for complex graphical modeling languages. This would only be possible as long as
the graphical language CS was defined by meta-models.

Can Some CS2AS-TL Features be Adopted by General Purpose M2M Transformation
Languages?

The main contribution of this thesis has been presented as a domain-specific transformation
language. The rationale is that some features are inherent to bridging the gap between the
CS and AS of a language (the specific domain). However, it may be argued that some fea-
tures are not domain-specific and the ideas behind these features can be adopted by general
purpose M2M transformation languages. In particular, the following two research lines are
proposed:

• Disambiguation section. When compared to general purpose M2M transformation
languages, the idea of separating disambiguation rules from mapping definitions and
keep them in their own section with their own semantics is novel. However, these dis-
ambiguation rules align with the well-known concept of mapping/rule guard in M2M
transformations. Different research questions arise: can the same ideas be adopted by
existing M2M transformation languages? Otherwise, why does this particular domain
make them useful to CS2AS-TL, but not at all to general purpose M2M transformation
languages?
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• Name resolution section. When compared to general purpose M2M transformation
languages, Section 5.1 showed that the name resolution section provides significant
benefits to the end user. However, the section conceptually comprises a more gen-
eral operational behaviour for setting up cross-references by means of named element
lookups. Different research questions arise: can only a name (String typed value) be
used to perform these lookups? Is the scope propagation mechanism enough for the
general case? Is there any other flexible but concise way to provide additional lookup
mechanisms?

6.2 Conclusions

This thesis targets the problem of bridging the gap between the CS and AS of CTMLs. Al-
though existing approaches suggest that these bridges can be accomplished merely by defin-
ing specification artefacts, such as grammars and meta-models (that shift from grammarware
to modelware), the thesis showed that there are certain languages (e.g. specification-based
languages, such as OCL and QVT) for which either these bridges cannot be specified or the
artefacts required to express them can be improved in different ways.

Supported by the research engineering method, this doctoral thesis proposed a new ap-
proach for providing support for CTMLs in order to overcome the limitations of related
work. Partly driven by this EngD project scope (Section 1.3) and partly driven by the con-
venience of the technology when working on textual modeling languages (Section 2.3.5),
Xtext is reused as part of the solution. However, Xtext grammars cannot address several
CS2AS scenarios (Section 3.6) and, therefore, the new approach is divided into two steps
(Section 4.1.1):

• Xtext is reused to achieve the grammarware-to-modelware technological space shift. In
this way, a CS meta-model is automatically derived from any Xtext grammar, and the
generated parser is responsible for producing CS models from textual inputs.

• Following the Gra2Mol approach, the solution provides an external DSTL to declare
CS2AS bridges for CTMLs. However, this CS2AS-TL focuses on CS meta-models as
the transformation source, rather than ANTLR grammars. This CS2AS-TL constitutes
the main contribution of this thesis.

The proposed approach can address various CS2AS scenarios; for instance, in mOCL
(Section 4.2.8) it was proven that CS2AS-TL can provide CS2AS bridges for a number of
textual modeling languages (Sections 5.5 and 5.6).

Compared to related work, the following conclusions are stated. Firstly, taking into ac-
count the context (Section 1.1), motivation (Section 1.2) and scope (Section 1.3) of this re-
search project, Figure 6.1 shows a high-level comparison of the relevant alternatives that
support CTMLs:

• Xtext is an appropriate technology to use when producing tooling for textual mod-
eling languages. However, it is not the most appropriate when working on complex
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languages: when the gap between the CS and AS is significant, Xtext specification
artefacts (i.e. grammars) cannot directly support them.

• Spoofax is an appropriate technology to use when producing tooling for complex tex-
tual languages. However, it is not the most appropriate when working on modeling
languages: several CS2AS scenarios are not supported.

• Gra2Mol is an appropriate technology to use when creating parsers for complex tex-
tual modeling languages. However, it is not the most appropriate when producing ad-
ditional tooling such as editors: they are not supported. Besides, since several CS2AS
scenarios require the use of their language extension mechanism (Java black-boxing),
this solution is not suited to generate specification parts automatically.

• Xtext, complemented by CS2AS-TL, is a more appropriate solution to work on CTMLs.
Since AS meta-models, CS grammars and CS2AS bridges are models (e.g. there is an
underlying meta-model), MDE technologies can be used largely to generate end-user
tools and parts of the specification automatically.

Xtext Gra2Mol Spoofax Xtext +
DSTL

Auto-Tooling Parser + 
Editor

Parser Only Parser + 
Editor

Parser + 
Editor

Modeling 
Languages

Good Good Limited Good

Complex
Languages

Limited Good Good Good

Specification
Generation
Suitability

Limited for
Complex

Languages

Limited by 
Extension 

Mechanism

Good Good

Positive Negative

FIGURE 6.1: High-level Comparison of alternatives to support CTMLs

Figure 6.2 shows the relevant differences between the DSTLs of Gra2Mol3 and the pro-
posed solution. These differences are obtained from the qualitative (Section 5.2) and quan-
titative (Sections 5.5 and 5.6) studies:

3 When comparing CS2AS-TL with other solutions, Gra2Mol is state-of-the-art with respect to bridging tex-
tual CS and AS meta-models.
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• CS2AS-TL is independent of parsing technology, whereas Gra2Mol only works on
ANTLR grammars. That said, with the proposed solution, it is mandatory that the
chosen parser produces models conforming to a CS meta-model.

• Although the syntax of Gra2Mol is limited, its language extension mechanism can
address various CS2AS scenarios, by invoking Java code. CS2AS-TL does not support
this feature, which is a limitation when the information that the AS model requires is
not present in (or computed from) the CS model.

• As shown in Section 5.5, the proposed solution improves Gra2Mol up to 40% when
measuring the size of artefacts required to solve CS2AS scenarios.

• As shown in Section 5.6, the current prototype is up to 2215 faster than Gra2Mol when
measuring the execution time of CS2AS transformations.

Gra2Mol DSTL CS2AS DSTL

Parsing Technology
Dependency

Yes
(ANTLR)

No

Language Extension 
Mechanism

Yes
(via Java)

No

Transformations 
Execution

up to 2215 times 
Slower

up to 2215 times
Faster

Size of Artefacts up to 40% 
Larger

up to 40% 
Smaller

Positive Negative

FIGURE 6.2: Comparison between the DSTLs of Gra2Mol and the proposed
solution

To conclude, the following subsections discuss the research questions that were pro-
posed in the introduction (see Section 1.4.2).

6.2.1 Industrial Perspective

From the point of view of the industrial partner, the following research questions are dis-
cussed:

Can a new alternative solution decrease the amount of hand-written code required to
support CTMLs within Xtext?

The alternative solution consists of the proposed DSTL to define the CS2AS bridges
needed for supporting CTMLs. The automatically generated Java classes producing AS
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models from CS models render Xtext-based tooling capable of supporting CTMLs. Given
the declarative nature of the language and domain-specific constructs (e.g. the name res-
olution section), the amount of required hand-written artefacts is decreased. For instance,
for the 101 Companies example4, the CS2AS bridge5 consists of 34 lines of code, whereas the
corresponding generated Java class6 consists of 1114 lines of Java code.

If so, can this alternative solution also be used for automatically producing parts of
OMG specifications?

The OMG OCL specification describes how the CS should be mapped to the AS (see
clause 9.3 from [39]). The alternative solution consists of a new DSTL to declare CS2AS
bridges. These bridges constitute a model that conforms to its underlying meta-model and,
therefore, MDE techniques can be used to generate the CS2AS mappings declared in OMG
specifications. For instance, the set of Complete OCL operations generated from instances
of CS2AS-TL (see Section 4.3) could be used to define these CS2AS bridges in an OMG-like
language.

6.2.2 Academic Perspective

From an academic point of view, the following research questions are discussed:
Do existing approaches address all the identified concerns that are required to support

CTMLs?
Depending on the particular existing approach, the discussion varies:

• Xtext is used on textual modeling languages, but its specification artefacts (i.e. gram-
mars) cannot address more complex CS2AS scenarios (e.g. multi-way CS2AS map-
pings).

• Spoofax is used on complex textual languages, but some CS2AS scenarios that arise
from working on modeling languages cannot be addressed (e.g. AS models may refer
to external models).

• Gra2Mol is used on complex textual modeling languages, but Gra2Mol needs its lan-
guage extension mechanism (additional Java code) to support some CS2AS scenarios.

Can a new approach improve the performance (in terms of execution time) of existing
approaches to produce AS models from textual files of CTMLs?

Yes, according to the quantitative study performed in this thesis (see Section 5.5), the
new proposed approach performs better than Gra2Mol.

Can a new approach reduce the size of specification artefacts required by existing ap-
proaches to bridge the gap between the CS and AS of CTMLs?

Yes, according to the quantitative study performed in this thesis (see Section 5.6), the
new proposed approach requires fewer manually written artefacts than Gra2Mol.

4 https://github.com/adolfosbh/cs2as
5 /org.xtext.example.companies/model/companies.cs2as
6 /org.xtext.example.companies/src-gen/org/xtext/example/mydsl/_companies_qvtp_

qvtcas/companies_qvtp_qvtcas.java

https://github.com/adolfosbh/cs2as
/org.xtext.example.companies/model/companies.cs2as
/org.xtext.example.companies/src-gen/org/xtext/example/mydsl/_companies_qvtp_qvtcas/companies_qvtp_qvtcas.java
/org.xtext.example.companies/src-gen/org/xtext/example/mydsl/_companies_qvtp_qvtcas/companies_qvtp_qvtcas.java
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Appendix A

Mini-OCL CS grammar

1 grammar org.eclipse.qvtd.doc.MiniOCLCS with org.eclipse.xtext.common.Terminals
2 generate minioclcs "http://www.eclipse.org/qvtd/doc/MiniOCLCS"
3

4 RootCS:
5 imports+=ImportCS∗
6 (packages+=PackageCS
7 | contraints+=ConstraintsDefCS)∗
8 ;
9 ImportCS:

10 ’import’ (alias=ID ’:’)? uri=STRING ’;’
11 PackageCS:
12 ’package’ name=ID ’{’
13 ( packages+=PackageCS
14 | classes+=ClassCS)∗
15 ’}’
16 ;
17 ClassCS:
18 ’class’ name=ID (’extends’ extends=PathNameCS)? ’{’
19 ( properties+=PropertyCS
20 | operations+=OperationCS )∗
21 ’}’
22 ;
23 PropertyCS:
24 ’prop’
25 name=ID ’:’ typeRef=PathNameCS
26 ( multiplicity=MultiplicityCS)? ’;’
27 ;
28 MultiplicityCS:
29 ’[’
30 (opt?=’?’ | mult?=’*’ | (lowerInt=INT ’..’ (upperInt=INT | upperMult?=’*’))

)
31 ’]’
32 ;
33 OperationCS:
34 ’op’ name=ID
35 ’(’ (params+=ParameterCS (’,’params+=ParameterCS)∗)? ’)’
36 ’:’ resultRef=PathNameCS
37 ’=’ body=ExpCS
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38 ’;’
39 ;
40 ParameterCS:
41 name=ID ’:’ typeRef=PathNameCS
42 ;
43 ConstraintsDefCS:
44 ’context’ typeRef=PathNameCS ’{’
45 (invariants+=InvariantCS)∗
46 ’}’
47 ;
48 InvariantCS:
49 ’inv’ ’:’ exp=ExpCS ’;’
50 ;
51 // Expressions
52 ExpCS:
53 EqualityExpCS
54 ;
55 EqualityExpCS:
56 CallExpCS ({EqualityExpCS.left=current} opName=(’=’ | ’<>’) right=CallExpCS)∗
57 ;
58 CallExpCS:
59 PrimaryExpCS ({CallExpCS.source=current} opName=(’.’ | ’->’) navExp=

NavigationExpCS)∗
60 ;
61 PrimaryExpCS:
62 SelfExpCS | NameExpCS | LiteralExpCS | LetExpCS
63 ;
64 SelfExpCS:
65 {SelfExpCS} ’self’
66 ;
67 NavigationExpCS:
68 LoopExpCS | NameExpCS
69 ;
70 LoopExpCS:
71 CollectExpCS | IterateExpCS
72 ;
73 CollectExpCS:
74 ’collect’ ’(’ (itVar=IteratorVarCS ’|’)? exp=ExpCS’)’
75 ;
76 IteratorVarCS:
77 itName=ID (’:’ itType=PathNameCS)?
78 ;
79 IterateExpCS:
80 ’iterate’ ’(’ itVar=IteratorVarCS ’;’ accVar=AccVarCS ’|’ exp=ExpCS ’)’
81 ;
82 AccVarCS:
83 accName=ID (’:’ accType=PathNameCS)? ’=’ accInitExp=ExpCS
84 ;
85 NameExpCS:
86 expName=PathNameCS
87 (roundedBrackets=RoundedBracketClauseCS)?
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88 ;
89 RoundedBracketClauseCS:
90 {RoundedBracketClauseCS}
91 ’(’
92 (args+=ExpCS (’,’args+=ExpCS)∗ )?
93 ’)’
94 ;
95 LiteralExpCS:
96 IntLiteralExpCS | BooleanLiteralExpCS | NullLiteralExpCS |

CollectionLiteralExpCS
97 ;
98 IntLiteralExpCS :
99 intSymbol=INT

100 ;
101 BooleanLiteralExpCS:
102 {BooleanExpCS}
103 (boolSymbol?=’true’
104 | ’false’)
105 ;
106 NullLiteralExpCS:
107 {NullLiteralExpCS}
108 ’null’
109 ;
110 enum CollectionKindCS:
111 Collection=’Collection’
112 ;
113 CollectionLiteralExpCS:
114 kind=CollectionKindCS ’{’
115 (parts+=CollectionLiteralPartCS)∗
116 ’}’
117 ;
118 CollectionLiteralPartCS:
119 first =ExpCS
120 (’..’ last=ExpCS)?
121 ;
122 LetExpCS:
123 ’let’ letVars+=LetVarCS (’,’ letVars+=LetVarCS)∗
124 ’in’ inExp=ExpCS
125 ;
126 LetVarCS:
127 name=ID (’:’ typeRef=PathNameCS)? ’=’ initExp=ExpCS
128 ;
129 PathNameCS :
130 pathElements+=PathElementCS
131 (’::’pathElements+=PathElementCS)∗
132 ;
133 PathElementCS:
134 elementName=ID
135 ;

LISTING A.1: Mini-OCL CS grammar
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Mini-OCL AS meta-model
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Appendix C

CS2AS bridge for Mini-OCL

1 source cs : ’generated/MiniOCLCS.ecore#/’
2 target as : ’/resource/org.eclipse.qvtd.doc.miniocl/model/MiniOCL.

ecore#/’
3

4 helpers {
5 as :: Class {
6 commonSupertype(another : Class) : Class :=
7 let allSupertypes = self−>asOrderedSet()−>closure(superClasses),
8 allOtherSupertypes = another−>asOrderedSet()−>closure(superClasses)
9 in allSupertypes−>intersection(allOtherSupertypes)−>any(true);

10 conformsTo(another : Class) : Boolean :=
11 self = another or superClasses−>exists(conformsTo(another));
12 }
13 cs :: NavigationExpCS {
14 parentAsCallExpCS() : CallExpCS :=
15 let container = self .oclContainer()
16 in if container.oclIsKindOf(CallExpCS)
17 then container.oclAsType(CallExpCS)
18 else null
19 endif;
20 }
21 cs :: NameExpCS {
22 isNavExpOfACallExpCS() : Boolean :=
23 let parentCallExpCS = parentAsCallExpCS()
24 in parentCallExpCS <> null and parentCallExpCS.navExp = self;
25 }
26 cs :: PropertyCS {
27 computeLowerBound() : Integer :=
28 if multiplicity = null then 0
29 else if multiplicity .opt then 0
30 else if multiplicity .mult then 0
31 else if multiplicity .mandatory <> 0 then multiplicity.mandatory
32 else multiplicity . lowerInt
33 endif endif endif
34 endif;
35 computeUpperBound() : Integer :=
36 if multiplicity = null then 1
37 else if multiplicity .opt then 1



212 Appendix C. CS2AS bridge for Mini-OCL

38 else if multiplicity .mult then −1
39 else if multiplicity .mandatory <> 0 then multiplicity.mandatory
40 else if multiplicity .upperMult then −1
41 else multiplicity .upperInt
42 endif endif endif endif
43 endif;
44 }
45 }
46 disambiguation {
47 CollectionLiteralPartCS {
48 withoutLastExpression := last = null;
49 withLastExpression := last <> null;
50 }
51 NameExpCS { −− Note: order of the disambiguation rules matters
52 isOpCallExpWithExplicitSource :=
53 roundedBrackets <> null and isNavExpOfACallExpCS();
54 isOpCallExpWithImplicitSource :=
55 roundedBrackets <> null and not isNavExpOfACallExpCS();
56 isPropCallExpWithExplicitSource :=
57 roundedBrackets = null and isNavExpOfACallExpCS();
58 isVariableExp :=
59 roundedBrackets = null and not isNavExpOfACallExpCS()
60 and lookup(Variable, expName.pathElements−>first()) <> null;
61 isPropCallExpWithImplicitSource :=
62 roundedBrackets = null and not isNavExpOfACallExpCS()
63 and lookup(Property, expName) <> null;
64 }
65 LetExpCS {
66 singleVarDecl := letVars−>size() = 1;
67 multipleVarDecls := letVars−>size() > 1;
68 }
69 }
70 mappings {
71 create Root from RootCS {
72 ownedImports := imports.trace;
73 ownedPackages := packages.trace;
74 ownedConstraints := constraints.invariants.trace ;
75 }
76 create Import from ImportCS {
77 alias := if alias = null then null else alias endif;
78 uri := uri ;
79 }
80 create Constraint from InvariantCS {
81 ownedSpecification := as ::ExpressionInOCL {
82 language = ’OCL’,
83 ownedBody = exp.trace,
84 ownedSelfVar = as :: Variable { name = ’self’,
85 type = trace .constrainedElement }
86 };
87 constrainedElement := lookup(Class, self.ConstraintsDefCS.typeRef);
88 }
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89 create Package from PackageCS {
90 name := name;
91 ownedPackages := packages.trace;
92 ownedClasses := classes . trace ;
93 }
94 create Class from ClassCS {
95 name := name;
96 ownedProperties := properties.trace;
97 ownedOperations := operations.trace;
98 superClasses := if _extends −>notEmpty()
99 then _extends−>collect(x | lookup(Class,x))

100 else OrderedSet{}
101 endif;
102 }
103 create Operation from OperationCS {
104 name := name;
105 type := lookup(Class, resultRef) ;
106 ownedParameters := params.trace;
107 ownedBodyExpression := as::ExpressionInOCL {
108 language = ’OCL’,
109 ownedBody = body.trace,
110 ownedSelfVar = as::Variable {name = ’self’,
111 type = trace .owningClass }
112 };
113 }
114 create Variable from ParameterCS {
115 name := name;
116 type := lookup(Class,typeRef);
117 }
118 create Property from PropertyCS {
119 name := name;
120 lowerBound := computeLowerBound();
121 upperBound := computeUpperBound();
122 type := lookup(Class, typeRef);
123 }
124 −− Expressions
125 refer CallExp from CallExpCS :=
126 self .navExp.trace
127 ;
128 create OperationCallExp from EqualityExpCS {
129 ownedSource := left.trace ;
130 ownedArguments := right.trace;
131 referredOperation := lookupExported(Operation, trace.ownedSource.type,
132 opName, trace.ownedArguments);
133 type := lookup(Class, ’Boolean’);
134 }
135 create VariableExp from NameExpCS
136 when fall_back {
137 referredVariable := null;
138 type := lookup(Class, ’OclVoid’);
139 }
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140 create VariableExp from NameExpCS
141 when isVariableExp {
142 referredVariable := lookup(Variable, expName.pathElements−>first());
143 type := trace . referredVariable .type;
144 }
145 create PropertyCallExp from NameExpCS
146 when isPropCallExpWithExplicitSource {
147 ownedSource := parentAsCallExpCS()._source.trace;
148 referredProperty := lookupExported(Property,trace.ownedSource.type,expName);
149 type := trace . referredProperty?.type;
150 }
151 create PropertyCallExp from NameExpCS
152 when isPropCallExpWithImplicitSource {
153 ownedSource := let referredVar = lookup(Variable, ’self’)
154 in as :: VariableExp {
155 referredVariable = referredVar,
156 type = referredVar.type
157 };
158 referredProperty := lookupExported(Property,trace.ownedSource.type,expName);
159 type := trace . referredProperty?.type;
160 }
161 create OperationCallExp from NameExpCS
162 when isOpCallExpWithExplicitSource {
163 ownedSource := parentAsCallExpCS()._source.trace;
164 ownedArguments := roundedBrackets.args.trace;
165 referredOperation := lookupExported(Operation,trace.ownedSource.type,
166 expName, trace.ownedArguments);
167 type := trace . referredOperation?.type;
168 }
169 create OperationCallExp from NameExpCS
170 when isOpCallExpWithImplicitSource {
171 ownedSource := let referredVar = lookup(Variable, ’self’)
172 in as :: VariableExp {
173 referredVariable = referredVar,
174 type = referredVar.type
175 };
176 ownedArguments := roundedBrackets.args.trace;
177 referredOperation:= lookupExported(Operation,trace.ownedSource.type,
178 expName, trace.ownedArguments);
179 type := trace . referredOperation?.type;
180 }
181 create LetExp from LetExpCS
182 when singleVarDecl {
183 ownedVariable := letVars−>at(1).trace;
184 ownedIn := inExp.trace;
185 type := inExp.trace.type;
186 }
187 create LetExp from LetExpCS
188 when multipleVarDecls {
189 ownedVariable := letVars−>first(). trace ;
190 ownedIn := letVars−>excluding(letVars−>first())−>reverse()
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191 −>iterate(x:LetVarCS; acc: as :: OCLExpression=inExp.trace |
192 as :: LetExp {
193 ownedVariable = x.trace,
194 ownedIn = acc,
195 type = acc.type
196 }) ;
197 type := inExp.trace.type;
198 }
199 create Variable from LetVarCS {
200 name := name;
201 ownedInitExp := initExp.trace;
202 type := if typeRef <> null then lookup(Class,typeRef) else trace.ownedInitExp.

type endif;
203 }
204 create IterateExp from IterateExpCS {
205 ownedIterator := itVar . trace ;
206 ownedResult := accVar.trace;
207 ownedBody := exp.trace;
208 ownedSource := parentAsCallExpCS()._source.trace;
209 type := trace .ownedResult.type;
210 }
211 create IteratorExp from CollectExpCS {
212 iterator := ’collect’;
213 ownedIterator := if itVar = null
214 then as :: Variable { name=’self’, type=lookup(Class,’

OclAny’) }
215 else itVar . trace
216 endif;
217 ownedBody := exp.trace;
218 ownedSource := parentAsCallExpCS()._source.trace;
219 type := lookup(Class,’Collection’);
220 }
221 create Variable from IteratorVarCS {
222 name := itName;
223 type := if itType <> null then lookup(Class,itType) else lookup(Class,’OclAny

’) endif;
224 }
225 create Variable from AccVarCS {
226 name := accName;
227 ownedInitExp := accInitExp.trace;
228 type := if accType <> null then lookup(Class,accType) else trace.ownedInitExp.

type endif;
229 }
230 create CollectionLiteralExp from CollectionLiteralExpCS {
231 kind := kind;
232 ownedParts := parts.trace;
233 type := lookup(Class,’Collection’);
234 }
235 create CollectionItem from CollectionLiteralPartCS
236 when withoutLastExpression {
237 ownedItem := first. trace ;
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238 type := trace .ownedItem.type;
239 }
240 create CollectionRange from CollectionLiteralPartCS
241 when withLastExpression {
242 ownedFirst := first . trace ;
243 ownedLast := last.trace ;
244 type := trace .ownedFirst.type;
245 }
246 }
247 name_resolution {
248 targets {
249 NamedElement using name escaped_with ’_’;
250 Package qualifies Package using ownedPackages,
251 Class using ownedClasses;
252 Class qualifies Operation using ownedOperations,
253 Property using ownedProperties;
254 Operation filtered_by arguments : OrderedSet(OCLExpression)
255 when ownedParameters−>size() = arguments−>size() and
256 arguments−>forAll(x |
257 let argIdx = arguments−>indexOf(x)
258 in x.type.conformsTo(ownedParameters−>at(argIdx).type));
259 Property;
260 Variable;
261 }
262 inputs {
263 PathElementCS using elementName;
264 qualifier PathNameCS using pathElements;
265 }
266 providers {
267 Root {
268 in current_scope provides adding
269 Package using ownedPackages, exported ownedImports;
270 }
271 Import {
272 in exported_scope provides
273 Package using loaded Package from uri;
274 }
275 Package {
276 in current_scope provides occluding
277 Package using ownedPackages
278 Class using ownedClasses;
279 }
280 Class {
281 vars allSuperClasses = self−>closure(superClasses);
282 in current_scope provides occluding
283 Operation using ownedOperations occluding allSuperClasses.

ownedOperations
284 Property using ownedProperties occluding allSuperClasses.ownedProperties;
285 in exported_scope provides
286 Operation using ownedOperations occluding allSuperClasses.

ownedOperations
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287 Property using ownedProperties occluding allSuperClasses.ownedOperations
;

288 }
289 Operation {
290 in current_scope provides occluding
291 Variable using ownedParameters;
292 }
293 ExpressionInOCL {
294 in current_scope provides occluding
295 Variable using ownedSelfVar;
296 }
297 LetExp {
298 in current_scope
299 for all excepting ownedVariable provides occluding
300 Variable using ownedVariable;
301 }
302 IteratorExp {
303 in current_scope provides occluding
304 Variable using ownedIterator;
305 }
306 IterateExp {
307 in current_scope
308 for ownedBody provides occluding
309 Variable using ownedIterator, ownedResult;
310 }
311 }
312 }

LISTING C.1: CS2AS bridge for Mini-OCL
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Appendix D

Complete OCL documents of the
Mini-OCL CS2AS bridge

1 import cs : ’generated/MiniOCLCS.ecore#/’
2 import as : ’/resource/org.eclipse.qvtd.doc.miniocl/model/MiniOCL.

ecore#/’
3 package cs
4

5 context cs :: NavigationExpCS
6 def : parentAsCallExpCS() :CallExpCS =
7 let container = self .oclContainer()
8 in if container.oclIsKindOf(CallExpCS) then container.oclAsType(CallExpCS) else

null endif
9 context cs :: NameExpCS

10 def : isNavExpOfACallExpCS() :Boolean =
11 let parentCallExpCS = parentAsCallExpCS()
12 in parentCallExpCS <> null and parentCallExpCS.navExp = self
13

14 context cs :: PropertyCS
15 def : computeLowerBound() :Integer =
16 if multiplicity = null then 0
17 else if multiplicity .opt then 0
18 else if multiplicity .mult then 0
19 else if multiplicity .mandatory <> 0 then multiplicity.mandatory
20 else multiplicity . lowerInt endif endif endif endif
21 def : computeUpperBound() :Integer =
22 if multiplicity = null then 1
23 else if multiplicity .opt then 1
24 else if multiplicity .mult then −1
25 else if multiplicity .mandatory <> 0 then multiplicity.mandatory
26 else if multiplicity .upperMult then − 1
27 else multiplicity .upperInt endif endif endif endif endif
28 endpackage
29 package as
30

31 context as :: Class
32 def : commonSupertype(another : Class) :Class =
33 let allSupertypes = self−>asOrderedSet()−>closure(superClasses)
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34 , allOtherSupertypes = another−>asOrderedSet()−>closure(superClasses)
35 in allSupertypes−>intersection(allOtherSupertypes)−>any(true)
36 def : conformsTo(another : Class) :Boolean =
37 self = another or superClasses−>exists(conformsTo(another))
38

39 endpackage
LISTING D.1: MiniOCLHelpers.ocl

1 import cs : ’generated/MiniOCLCS.ecore#/’
2 import as : ’/resource/org.eclipse.qvtd.doc.miniocl/model/MiniOCL.

ecore#/’
3 import ’MiniOCLFullHelpers.ocl’
4 import ’MiniOCLFullLookup.ocl’
5 package cs
6

7 context CollectionLiteralPartCS
8 def : withoutLastExpression() : Boolean =
9 last = null

10 def : withLastExpression() : Boolean =
11 last <> null
12 context NameExpCS
13 def : isOpCallExpWithExplicitSource() : Boolean =
14 roundedBrackets <> null and isNavExpOfACallExpCS()
15 def : isOpCallExpWithImplicitSource() : Boolean =
16 roundedBrackets <> null and not isNavExpOfACallExpCS()
17 def : isPropCallExpWithExplicitSource() : Boolean =
18 roundedBrackets = null and isNavExpOfACallExpCS()
19 def : isVariableExp() : Boolean =
20 roundedBrackets = null and not isNavExpOfACallExpCS() and ast.lookupVariable(

expName.pathElements−>first()) <> null
21 def : isPropCallExpWithImplicitSource() : Boolean =
22 roundedBrackets = null and not isNavExpOfACallExpCS() and ast.lookupProperty(

expName) <> null
23 context LetExpCS
24 def : singleVarDecl() : Boolean =
25 letVars−>size() = 1
26 def : multipleVarDecls() : Boolean =
27 letVars−>size() > 1
28 endpackage

LISTING D.2: MiniOCLDisambiguation.ocl

1 import cs : ’generated/MiniOCLCS.ecore#/’
2 import as : ’/resource/org.eclipse.qvtd.doc.miniocl/model/MiniOCL.

ecore#/’
3 import ’/resource/org.eclipse.qvtd.doc.miniocl/model/Lookup.ecore

’
4 import ’MiniOCLFullHelpers.ocl’
5

6 package ocl
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7

8 −− Domain specific default functionality
9 context OclElement

10 def : unqualified_env_Class() : lookup::LookupEnvironment[1] =
11 _unqualified_env_Class(null)
12 def : unqualified_env_Package() : lookup::LookupEnvironment[1] =
13 _unqualified_env_Package(null)
14 def : unqualified_env_Operation() : lookup::LookupEnvironment[1] =
15 _unqualified_env_Operation(null)
16 def : unqualified_env_Variable() : lookup::LookupEnvironment[1] =
17 _unqualified_env_Variable(null)
18 def : unqualified_env_NamedElement() : lookup::LookupEnvironment[1] =
19 _unqualified_env_NamedElement(null)
20 def : unqualified_env_Property() : lookup::LookupEnvironment[1] =
21 _unqualified_env_Property(null)
22

23 def : _unqualified_env_Class(child : OclElement) : lookup::LookupEnvironment[1] =
24 parentEnv_Class()
25 def : _unqualified_env_Package(child : OclElement) : lookup::LookupEnvironment

[1] =
26 parentEnv_Package()
27 def : _unqualified_env_Operation(child : OclElement) : lookup::LookupEnvironment

[1] =
28 parentEnv_Operation()
29 def : _unqualified_env_Variable(child : OclElement) : lookup::LookupEnvironment

[1] =
30 parentEnv_Variable()
31 def : _unqualified_env_NamedElement(child : OclElement) : lookup::

LookupEnvironment[1] =
32 parentEnv_NamedElement()
33 def : _unqualified_env_Property(child : OclElement) : lookup::LookupEnvironment

[1] =
34 parentEnv_Property()
35

36 def : parentEnv_Class() : lookup::LookupEnvironment[1] =
37 let parent = oclContainer() in if parent = null then lookup::LookupEnvironment {

} else parent._unqualified_env_Class(self) endif
38 def : parentEnv_Package() : lookup::LookupEnvironment[1] =
39 let parent = oclContainer() in if parent = null then lookup::LookupEnvironment {

} else parent._unqualified_env_Package(self) endif
40 def : parentEnv_Operation() : lookup::LookupEnvironment[1] =
41 let parent = oclContainer() in if parent = null then lookup::LookupEnvironment {

} else parent._unqualified_env_Operation(self) endif
42 def : parentEnv_Variable() : lookup::LookupEnvironment[1] =
43 let parent = oclContainer() in if parent = null then lookup::LookupEnvironment {

} else parent._unqualified_env_Variable(self) endif
44 def : parentEnv_NamedElement() : lookup::LookupEnvironment[1] =
45 let parent = oclContainer() in if parent = null then lookup::LookupEnvironment {

} else parent._unqualified_env_NamedElement(self) endif
46 def : parentEnv_Property() : lookup::LookupEnvironment[1] =
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47 let parent = oclContainer() in if parent = null then lookup::LookupEnvironment {
} else parent._unqualified_env_Property(self) endif

48

49 def : _exported_env_Property(importer : OclElement) : lookup::LookupEnvironment
[1] =

50 lookup::LookupEnvironment { }
51 def : _exported_env_Package(importer : OclElement) : lookup::LookupEnvironment

[1] =
52 lookup::LookupEnvironment { }
53 def : _exported_env_Operation(importer : OclElement) : lookup::

LookupEnvironment[1] =
54 lookup::LookupEnvironment { }
55

56 def : _qualified_env_Class(qualifier : OclElement) : lookup::LookupEnvironment[1]
=

57 lookup::LookupEnvironment { }
58 def : _qualified_env_Package(qualifier : OclElement) : lookup::LookupEnvironment

[1] =
59 lookup::LookupEnvironment { }
60 def : _qualified_env_Operation(qualifier : OclElement) : lookup::

LookupEnvironment[1] =
61 lookup::LookupEnvironment { }
62 def : _qualified_env_Property(qualifier : OclElement) : lookup::LookupEnvironment

[1] =
63 lookup::LookupEnvironment { }
64 −− End of domain specific default functionality
65 endpackage
66

67 package lookup
68 −− Some common lookup functionality
69 context LookupEnvironment
70 def : nestedEnv() : LookupEnvironment[1] =
71 LookupEnvironment {
72 parentEnv = self
73 }
74 −− End of common lookup functionality
75 endpackage
76

77 package as
78 context Element
79 −− NamedElement unqualified lookup
80 def : _lookupNamedElement(env : lookup::LookupEnvironment, nName : String) :

OrderedSet(NamedElement) =
81 let foundNamedElement = env.namedElements−>selectByKind(NamedElement)

−>select(name = nName)
82 in if foundNamedElement−>isEmpty() and not (env.parentEnv = null)
83 then _lookupNamedElement(env.parentEnv, nName)
84 else foundNamedElement
85 endif
86 def : _lookupUnqualifiedNamedElement(nName : String) : NamedElement[?] =
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87 let foundNamedElement = _lookupNamedElement(
unqualified_env_NamedElement(), nName)

88 in if foundNamedElement−>isEmpty()
89 then null
90 else foundNamedElement−>first() −− LookupVisitor will report ambiguous result
91 endif
92

93 def : lookupNamedElement(nName : String) : NamedElement[?] =
94 _lookupUnqualifiedNamedElement(nName)
95 def : lookupNamedElement(aPathElementCS : cs::PathElementCS) : NamedElement

[?] =
96 _lookupUnqualifiedNamedElement(aPathElementCS.elementName)
97 −− End of NamedElement unqualified lookup
98

99 context Package
100

101 def : _lookupQualifiedPackage(pName : String) : Package[?] =
102 let foundPackage = _lookupPackage(_qualified_env_Package(), pName)
103 in if foundPackage−>isEmpty()
104 then null
105 else foundPackage−>first()
106 endif
107 def : _qualified_env_Package() : lookup::LookupEnvironment =
108 let env = lookup::LookupEnvironment{}
109 in env
110 .addElements(ownedPackages)
111 def : lookupQualifiedPackage(aPathElementCS : cs::PathElementCS) : Package[?] =
112 _lookupQualifiedPackage(aPathElementCS.elementName)
113

114 def : _lookupQualifiedClass(cName : String) : Class[?] =
115 let foundClass = _lookupClass(_qualified_env_Class(), cName)
116 in if foundClass−>isEmpty()
117 then null
118 else foundClass−>first()
119 endif
120 def : _qualified_env_Class() : lookup::LookupEnvironment =
121 let env = lookup::LookupEnvironment{}
122 in env
123 .addElements(ownedClasses)
124 def : lookupQualifiedClass(aPathElementCS : cs::PathElementCS) : Class[?] =
125 _lookupQualifiedClass(aPathElementCS.elementName)
126 context Element
127 −− Package unqualified lookup
128 def : _lookupPackage(env : lookup::LookupEnvironment, pName : String) :

OrderedSet(Package) =
129 let foundPackage = env.namedElements−>selectByKind(Package)−>select(name =

pName)
130 in if foundPackage−>isEmpty() and not (env.parentEnv = null)
131 then _lookupPackage(env.parentEnv, pName)
132 else foundPackage
133 endif
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134 def : _lookupUnqualifiedPackage(pName : String) : Package[?] =
135 let foundPackage = _lookupPackage(unqualified_env_Package(), pName)
136 in if foundPackage−>isEmpty()
137 then null
138 else foundPackage−>first() −− LookupVisitor will report ambiguous result
139 endif
140

141 def : lookupPackage(pName : String) : Package[?] =
142 _lookupUnqualifiedPackage(pName)
143 def : lookupPackage(aPathElementCS : cs::PathElementCS) : Package[?] =
144 _lookupUnqualifiedPackage(aPathElementCS.elementName)
145 −− End of Package unqualified lookup
146

147 −− Package qualified−name lookup
148 def : lookupPackage(aPathNameCS : cs::PathNameCS) : Package[?] =
149 lookupPackage(aPathNameCS .pathElements)
150

151 def : lookupPackage(segments : OrderedSet(cs::PathElementCS)) : Package[?] =
152 if segments−>size() = 1
153 then lookupPackage(segments−>first())
154 else let qualifierSegments = segments−>subOrderedSet(1,segments−>size()−1),
155 qualifier = lookupPackage(qualifierSegments)
156 in qualifier ?. lookupQualifiedPackage(segments−>last())
157 endif
158

159 context Class
160

161 def : _lookupQualifiedOperation(oName : String, arguments : OrderedSet(
OCLExpression)) : Operation[?] =

162 let foundOperation = _lookupOperation(_qualified_env_Operation(), oName,
arguments)

163 in if foundOperation−>isEmpty()
164 then null
165 else foundOperation−>first()
166 endif
167 def : _qualified_env_Operation() : lookup::LookupEnvironment =
168 let env = lookup::LookupEnvironment{}
169 in env
170 .addElements(ownedOperations)
171 def : lookupQualifiedOperation(aPathElementCS : cs::PathElementCS, arguments :

OrderedSet(OCLExpression)) : Operation[?] =
172 _lookupQualifiedOperation(aPathElementCS.elementName, arguments)
173

174 def : _lookupQualifiedProperty(pName : String) : Property[?] =
175 let foundProperty = _lookupProperty(_qualified_env_Property(), pName)
176 in if foundProperty−>isEmpty()
177 then null
178 else foundProperty−>first()
179 endif
180 def : _qualified_env_Property() : lookup::LookupEnvironment =
181 let env = lookup::LookupEnvironment{}



Appendix D. Complete OCL documents of the Mini-OCL CS2AS bridge 225

182 in env
183 .addElements(ownedProperties)
184 def : lookupQualifiedProperty(aPathElementCS : cs::PathElementCS) : Property[?] =
185 _lookupQualifiedProperty(aPathElementCS.elementName)
186 context Element
187 −− Class unqualified lookup
188 def : _lookupClass(env : lookup::LookupEnvironment, cName : String) : OrderedSet(

Class) =
189 let foundClass = env.namedElements−>selectByKind(Class)−>select(name =

cName)
190 in if foundClass−>isEmpty() and not (env.parentEnv = null)
191 then _lookupClass(env.parentEnv, cName)
192 else foundClass
193 endif
194 def : _lookupUnqualifiedClass(cName : String) : Class[?] =
195 let foundClass = _lookupClass(unqualified_env_Class(), cName)
196 in if foundClass−>isEmpty()
197 then null
198 else foundClass−>first() −− LookupVisitor will report ambiguous result
199 endif
200

201 def : lookupClass(cName : String) : Class[?] =
202 _lookupUnqualifiedClass(cName)
203 def : lookupClass(aPathElementCS : cs::PathElementCS) : Class[?] =
204 _lookupUnqualifiedClass(aPathElementCS.elementName)
205 −− End of Class unqualified lookup
206

207 −− Class qualified −name lookup
208 def : lookupClass(aPathNameCS : cs::PathNameCS) : Class[?] =
209 lookupClass(aPathNameCS .pathElements)
210

211 def : lookupClass(segments : OrderedSet(cs::PathElementCS)) : Class[?] =
212 if segments−>size() = 1
213 then lookupClass(segments−>first())
214 else let qualifierSegments = segments−>subOrderedSet(1,segments−>size()−1),
215 qualifier = lookupPackage(qualifierSegments)
216 in qualifier ?. lookupQualifiedClass(segments−>last())
217 endif
218

219 context Operation
220

221 def : _appliesFilter_Operation(arguments : OrderedSet(OCLExpression)) : Boolean =
222 ownedParameters−>size() = arguments−>size() and arguments−>forAll(x |
223 let argIdx = arguments−>indexOf(x)
224 in x.type.conformsTo(ownedParameters−>at(argIdx).type)
225 )
226 context Element
227 −− Operation unqualified lookup
228 def : _lookupOperation(env : lookup::LookupEnvironment, oName : String,

arguments : OrderedSet(OCLExpression)) : OrderedSet(Operation) =
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229 let foundOperation = env.namedElements−>selectByKind(Operation)−>select(
name = oName)

230 −>select(_appliesFilter_Operation(arguments))
231 in if foundOperation−>isEmpty() and not (env.parentEnv = null)
232 then _lookupOperation(env.parentEnv, oName, arguments)
233 else foundOperation
234 endif
235 def : _lookupUnqualifiedOperation(oName : String, arguments : OrderedSet(

OCLExpression)) : Operation[?] =
236 let foundOperation = _lookupOperation(unqualified_env_Operation(), oName,

arguments)
237 in if foundOperation−>isEmpty()
238 then null
239 else foundOperation−>first() −− LookupVisitor will report ambiguous result
240 endif
241

242 def : lookupOperation(oName : String, arguments : OrderedSet(OCLExpression)) :
Operation[?] =

243 _lookupUnqualifiedOperation(oName, arguments)
244 def : lookupOperation(aPathElementCS : cs::PathElementCS, arguments : OrderedSet

(OCLExpression)) : Operation[?] =
245 _lookupUnqualifiedOperation(aPathElementCS.elementName, arguments)
246 −− End of Operation unqualified lookup
247

248 −− Operation qualified−name lookup
249 def : lookupOperation(aPathNameCS : cs::PathNameCS, arguments : OrderedSet(

OCLExpression)) : Operation[?] =
250 lookupOperation(aPathNameCS .pathElements, arguments)
251

252 def : lookupOperation(segments : OrderedSet(cs::PathElementCS), arguments :
OrderedSet(OCLExpression)) : Operation[?] =

253 if segments−>size() = 1
254 then lookupOperation(segments−>first(), arguments)
255 else let qualifierSegments = segments−>subOrderedSet(1,segments−>size()−1),
256 qualifier = lookupClass(qualifierSegments)
257 in qualifier ?. lookupQualifiedOperation(segments−>last(), arguments)
258 endif
259 context Element
260 −− Property unqualified lookup
261 def : _lookupProperty(env : lookup::LookupEnvironment, pName : String) :

OrderedSet(Property) =
262 let foundProperty = env.namedElements−>selectByKind(Property)−>select(name

= pName)
263 in if foundProperty−>isEmpty() and not (env.parentEnv = null)
264 then _lookupProperty(env.parentEnv, pName)
265 else foundProperty
266 endif
267 def : _lookupUnqualifiedProperty(pName : String) : Property[?] =
268 let foundProperty = _lookupProperty(unqualified_env_Property(), pName)
269 in if foundProperty−>isEmpty()
270 then null
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271 else foundProperty−>first() −− LookupVisitor will report ambiguous result
272 endif
273

274 def : lookupProperty(pName : String) : Property[?] =
275 _lookupUnqualifiedProperty(pName)
276 def : lookupProperty(aPathElementCS : cs::PathElementCS) : Property[?] =
277 _lookupUnqualifiedProperty(aPathElementCS.elementName)
278 −− End of Property unqualified lookup
279

280 −− Property qualified −name lookup
281 def : lookupProperty(aPathNameCS : cs::PathNameCS) : Property[?] =
282 lookupProperty(aPathNameCS .pathElements)
283

284 def : lookupProperty(segments : OrderedSet(cs::PathElementCS)) : Property[?] =
285 if segments−>size() = 1
286 then lookupProperty(segments−>first())
287 else let qualifierSegments = segments−>subOrderedSet(1,segments−>size()−1),
288 qualifier = lookupClass(qualifierSegments)
289 in qualifier ?. lookupQualifiedProperty(segments−>last())
290 endif
291 context Element
292 −− Variable unqualified lookup
293 def : _lookupVariable(env : lookup::LookupEnvironment, vName : String) :

OrderedSet(Variable) =
294 let foundVariable = env.namedElements−>selectByKind(Variable)−>select(name =

vName)
295 in if foundVariable−>isEmpty() and not (env.parentEnv = null)
296 then _lookupVariable(env.parentEnv, vName)
297 else foundVariable
298 endif
299 def : _lookupUnqualifiedVariable(vName : String) : Variable[?] =
300 let foundVariable = _lookupVariable(unqualified_env_Variable(), vName)
301 in if foundVariable−>isEmpty()
302 then null
303 else foundVariable−>first() −− LookupVisitor will report ambiguous result
304 endif
305

306 def : lookupVariable(vName : String) : Variable[?] =
307 _lookupUnqualifiedVariable(vName)
308 def : lookupVariable(aPathElementCS : cs::PathElementCS) : Variable[?] =
309 _lookupUnqualifiedVariable(aPathElementCS.elementName)
310 −− End of Variable unqualified lookup
311

312 context Root
313 def : _unqualified_env_Package(child : ocl::OclElement) : lookup::

LookupEnvironment =
314 parentEnv_Package()
315 .addElements(ownedPackages)
316 .addElements(ownedImports._exported_env_Package(self).namedElements)
317

318 context Import
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319 def : _exported_env_Package(importer : ocl::OclElement) : lookup::
LookupEnvironment =

320 let env = lookup::LookupEnvironment {}
321 in env
322 .addElements(OrderedSet{/∗AutoGenCode Will Load The Package∗/})
323

324 def : _lookupExportedPackage(importer : ocl::OclElement, pName : String) : Package
[?] =

325 let foundPackage = _lookupPackage(_exported_env_Package(importer), pName)
326 in if foundPackage−>isEmpty()
327 then null
328 else foundPackage−>first()
329 endif
330 def : lookupExportedPackage(importer : ocl::OclElement, pName : String) : Package

[?] =
331 _lookupExportedPackage(importer, pName)
332 def : lookupExportedPackage(importer : ocl::OclElement, aPathElementCS : cs::

PathElementCS) : Package[?] =
333 _lookupExportedPackage(importer, aPathElementCS.elementName)
334

335 context Element
336 −− Import exports Package
337 def : lookupPackageFrom(exporter : Import , iName : String) : Package[?] =
338 exporter.lookupExportedPackage(self, iName)
339 def : lookupPackageFrom(exporter : Import, aPathElementCS : cs::PathElementCS) :

Package[?] =
340 exporter.lookupExportedPackage(self, aPathElementCS)
341 def : lookupPackageFrom(exporter : Import, aPathNameCS : cs::PathNameCS) :

Package[?] =
342 lookupPackageFrom(exporter, aPathNameCS.pathElements)
343

344 def : lookupPackageFrom(exporter : Import, segments : OrderedSet(cs::
PathElementCS)) : Package[?] =

345 if segments−>size() = 1
346 then lookupPackageFrom(exporter, segments−>first())
347 else let qualifierSegments = segments−>subOrderedSet(1,segments−>size()−1),
348 qualifier = lookupPackage(qualifierSegments)
349 in qualifier ?. lookupQualifiedPackage(segments−>last())
350 endif
351 context Package
352 def : _unqualified_env_Package(child : ocl::OclElement) : lookup::

LookupEnvironment =
353 parentEnv_Package().nestedEnv()
354 .addElements(ownedPackages)
355

356 def : _unqualified_env_Class(child : ocl :: OclElement) : lookup::LookupEnvironment
=

357 parentEnv_Class().nestedEnv()
358 .addElements(ownedClasses)
359

360 context Class
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361 def : _unqualified_env_Operation(child : ocl::OclElement) : lookup::
LookupEnvironment =

362 let allSuperClasses = self−>closure(superClasses)
363 in
364 parentEnv_Operation().nestedEnv()
365 .addElements(allSuperClasses.ownedOperations)
366 .nestedEnv()
367 .addElements(ownedOperations)
368

369 def : _unqualified_env_Property(child : ocl :: OclElement) : lookup::
LookupEnvironment =

370 let allSuperClasses = self−>closure(superClasses)
371 in
372 parentEnv_Property().nestedEnv()
373 .addElements(allSuperClasses.ownedProperties)
374 .nestedEnv()
375 .addElements(ownedProperties)
376

377 def : _exported_env_Operation(importer : ocl::OclElement) : lookup::
LookupEnvironment =

378 let allSuperClasses = self−>closure(superClasses)
379 in
380 let env = lookup::LookupEnvironment {}
381 in env
382 .addElements(allSuperClasses.ownedOperations)
383 .nestedEnv()
384 .addElements(ownedOperations)
385

386 def : _exported_env_Property(importer : ocl::OclElement) : lookup::
LookupEnvironment =

387 let allSuperClasses = self−>closure(superClasses)
388 in
389 let env = lookup::LookupEnvironment {}
390 in env
391 .addElements(allSuperClasses.ownedOperations)
392 .nestedEnv()
393 .addElements(ownedProperties)
394

395 def : _lookupExportedOperation(importer : ocl::OclElement, oName : String,
arguments : OrderedSet(OCLExpression)) : Operation[?] =

396 let foundOperation = _lookupOperation(_exported_env_Operation(importer),
oName, arguments)

397 in if foundOperation−>isEmpty()
398 then null
399 else foundOperation−>first()
400 endif
401 def : lookupExportedOperation(importer : ocl::OclElement, oName : String,

arguments : OrderedSet(OCLExpression)) : Operation[?] =
402 _lookupExportedOperation(importer, oName, arguments)
403 def : lookupExportedOperation(importer : ocl::OclElement, aPathElementCS : cs::

PathElementCS, arguments : OrderedSet(OCLExpression)) : Operation[?] =
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404 _lookupExportedOperation(importer, aPathElementCS.elementName, arguments)
405

406 def : _lookupExportedProperty(importer : ocl::OclElement, pName : String) :
Property[?] =

407 let foundProperty = _lookupProperty(_exported_env_Property(importer), pName)
408 in if foundProperty−>isEmpty()
409 then null
410 else foundProperty−>first()
411 endif
412 def : lookupExportedProperty(importer : ocl::OclElement, pName : String) : Property

[?] =
413 _lookupExportedProperty(importer, pName)
414 def : lookupExportedProperty(importer : ocl::OclElement, aPathElementCS : cs::

PathElementCS) : Property[?] =
415 _lookupExportedProperty(importer, aPathElementCS.elementName)
416

417 context Element
418 −− Class exports Operation
419 def : lookupOperationFrom(exporter : Class , cName : String, arguments : OrderedSet

(OCLExpression)) : Operation[?] =
420 exporter.lookupExportedOperation(self, cName, arguments)
421 def : lookupOperationFrom(exporter : Class, aPathElementCS : cs::PathElementCS,

arguments : OrderedSet(OCLExpression)) : Operation[?] =
422 exporter.lookupExportedOperation(self, aPathElementCS, arguments)
423 def : lookupOperationFrom(exporter : Class, aPathNameCS : cs::PathNameCS,

arguments : OrderedSet(OCLExpression)) : Operation[?] =
424 lookupOperationFrom(exporter, aPathNameCS.pathElements, arguments)
425

426 def : lookupOperationFrom(exporter : Class, segments : OrderedSet(cs::
PathElementCS), arguments : OrderedSet(OCLExpression)) : Operation[?] =

427 if segments−>size() = 1
428 then lookupOperationFrom(exporter, segments−>first(), arguments)
429 else let qualifierSegments = segments−>subOrderedSet(1,segments−>size()−1),
430 qualifier = lookupClass(qualifierSegments)
431 in qualifier ?. lookupQualifiedOperation(segments−>last(), arguments)
432 endif
433 −− Class exports Property
434 def : lookupPropertyFrom(exporter : Class , cName : String) : Property[?] =
435 exporter.lookupExportedProperty(self, cName)
436 def : lookupPropertyFrom(exporter : Class, aPathElementCS : cs::PathElementCS) :

Property[?] =
437 exporter.lookupExportedProperty(self, aPathElementCS)
438 def : lookupPropertyFrom(exporter : Class, aPathNameCS : cs::PathNameCS) :

Property[?] =
439 lookupPropertyFrom(exporter, aPathNameCS.pathElements)
440

441 def : lookupPropertyFrom(exporter : Class, segments : OrderedSet(cs::PathElementCS
)) : Property[?] =

442 if segments−>size() = 1
443 then lookupPropertyFrom(exporter, segments−>first())
444 else let qualifierSegments = segments−>subOrderedSet(1,segments−>size()−1),
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445 qualifier = lookupClass(qualifierSegments)
446 in qualifier ?. lookupQualifiedProperty(segments−>last())
447 endif
448 context Operation
449 def : _unqualified_env_Variable(child : ocl :: OclElement) : lookup::

LookupEnvironment =
450 parentEnv_Variable().nestedEnv()
451 .addElements(ownedParameters)
452

453 context ExpressionInOCL
454 def : _unqualified_env_Variable(child : ocl :: OclElement) : lookup::

LookupEnvironment =
455 parentEnv_Variable().nestedEnv()
456 .addElements(ownedSelfVar)
457

458 context LetExp
459 def : _unqualified_env_Variable(child : ocl :: OclElement) : lookup::

LookupEnvironment =
460 if not (ownedVariable−>includes(child))
461 then parentEnv_Variable().nestedEnv()
462 .addElements(ownedVariable)
463 else parentEnv_Variable()
464 endif
465

466 context IteratorExp
467 def : _unqualified_env_Variable(child : ocl :: OclElement) : lookup::

LookupEnvironment =
468 parentEnv_Variable().nestedEnv()
469 .addElements(ownedIterator)
470

471 context IterateExp
472 def : _unqualified_env_Variable(child : ocl :: OclElement) : lookup::

LookupEnvironment =
473 if ownedBody−>includes(child)
474 then parentEnv_Variable().nestedEnv()
475 .addElements(ownedIterator)
476 .addElements(ownedResult)
477 else parentEnv_Variable()
478 endif
479

480 endpackage
LISTING D.3: MiniOCLNameResolution.ocl

1 import cs : ’generated/MiniOCLCS.ecore#/’
2 import as : ’/resource/org.eclipse.qvtd.doc.miniocl/model/MiniOCL.

ecore#/’
3 import ’MiniOCLFullHelpers.ocl’
4 import ’MiniOCLFullLookup.ocl’
5 import ’MiniOCLFullDisambiguation.ocl’
6
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7 package cs
8 context RootCS
9 def : ast () : as :: Root =

10 as :: Root {
11 ownedImports = imports.ast(),
12 ownedPackages = packages.ast(),
13 ownedConstraints = constraints.invariants.ast()
14 }
15 context ImportCS
16 def : ast () : as :: Import =
17 as :: Import {
18 alias = if alias = null then null else alias endif,
19 uri = uri
20 }
21 context InvariantCS
22 def : ast () : as :: Constraint =
23 as :: Constraint {
24 ownedSpecification = as::ExpressionInOCL {
25 language = ’OCL’ ,
26 ownedBody = exp.ast(),
27 ownedSelfVar = as::Variable {
28 name = ’self’ ,
29 type = ast () .constrainedElement
30 }
31 },
32 constrainedElement = ast().lookupClass(self.ConstraintsDefCS.typeRef)
33 }
34 context PackageCS
35 def : ast () : as :: Package =
36 as :: Package {
37 name = name,
38 ownedPackages = packages.ast(),
39 ownedClasses = classes.ast()
40 }
41 context ClassCS
42 def : ast () : as :: Class =
43 as :: Class {
44 name = name,
45 ownedProperties = properties.ast(),
46 ownedOperations = operations.ast(),
47 superClasses = if _extends−>notEmpty() then _extends−>collect(x | ast().

lookupClass(x)) else OrderedSet { } endif
48 }
49 context OperationCS
50 def : ast () : as :: Operation =
51 as :: Operation {
52 name = name,
53 type = ast () . lookupClass(resultRef),
54 ownedParameters = params.ast(),
55 ownedBodyExpression = as::ExpressionInOCL {
56 language = ’OCL’ ,
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57 ownedBody = _body.ast(),
58 ownedSelfVar = as::Variable {
59 name = ’self’ ,
60 type = ast () .owningClass
61 }
62 }
63 }
64 context ParameterCS
65 def : ast () : as :: Variable =
66 as :: Variable {
67 name = name,
68 type = ast () . lookupClass(typeRef)
69 }
70 context PropertyCS
71 def : ast () : as :: Property =
72 as :: Property {
73 name = name,
74 lowerBound = computeLowerBound(),
75 upperBound = computeUpperBound(),
76 type = ast () . lookupClass(typeRef)
77 }
78 context CallExpCS
79 def : ast () : as :: CallExp =
80 self .navExp.ast()
81 context ExpCS
82 def : ast () : as :: OCLExpression =
83 null −− to be overriden
84 context EqualityExpCS
85 def : ast () : as :: OperationCallExp =
86 as :: OperationCallExp {
87 ownedSource = left.ast() ,
88 ownedArguments = right.ast(),
89 referredOperation = ast() . lookupOperationFrom(ast().ownedSource.type,

opName, ast().ownedArguments),
90 type = ast () . lookupClass(’Boolean’ )
91 }
92 context NavigationExpCS
93 def : ast () : as :: CallExp =
94 null −− to be overriden
95 context NameExpCS
96 def : ast () : as :: OCLExpression =
97 if isOpCallExpWithExplicitSource()
98 then as :: OperationCallExp {
99 ownedSource = parentAsCallExpCS()._source.ast(),

100 ownedArguments = roundedBrackets.args.ast(),
101 referredOperation = ast() . lookupOperationFrom(ast().oclAsType(as::

OperationCallExp).ownedSource.type, expName, ast().oclAsType(as::
OperationCallExp).ownedArguments),

102 type = ast () .oclAsType(as::OperationCallExp).referredOperation ?. type
103 }
104 else
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105 if isOpCallExpWithImplicitSource()
106 then as :: OperationCallExp {
107 ownedSource = let referredVar = ast () . lookupVariable(’self’ )
108 in as :: VariableExp {
109 referredVariable = referredVar,
110 type = referredVar.type
111 }
112 ,
113 ownedArguments = roundedBrackets.args.ast(),
114 referredOperation = ast() . lookupOperationFrom(ast().oclAsType(as::

OperationCallExp).ownedSource.type, expName, ast().oclAsType(as::
OperationCallExp).ownedArguments),

115 type = ast () .oclAsType(as::OperationCallExp).referredOperation ?. type
116 }
117 else
118 if isPropCallExpWithExplicitSource()
119 then as :: PropertyCallExp {
120 ownedSource = parentAsCallExpCS()._source.ast(),
121 referredProperty = ast () . lookupPropertyFrom(ast().oclAsType(as::

PropertyCallExp).ownedSource.type, expName),
122 type = ast () .oclAsType(as::PropertyCallExp).referredProperty ?. type
123 }
124 else
125 if isVariableExp()
126 then as :: VariableExp {
127 referredVariable = ast () . lookupVariable(expName.pathElements−>first()

),
128 type = ast () .oclAsType(as::VariableExp).referredVariable.type
129 }
130 else
131 if isPropCallExpWithImplicitSource()
132 then as :: PropertyCallExp {
133 ownedSource = let referredVar = ast () . lookupVariable(’self’ )
134 in as :: VariableExp {
135 referredVariable = referredVar,
136 type = referredVar.type
137 }
138 ,
139 referredProperty = ast () . lookupPropertyFrom(ast().oclAsType(as::

PropertyCallExp).ownedSource.type, expName),
140 type = ast () .oclAsType(as::PropertyCallExp).referredProperty ?. type
141 }
142 else
143 as :: VariableExp {
144 referredVariable = null,
145 type = ast () . lookupClass(’OclVoid’ )
146 }
147 endif
148 endif
149 endif
150 endif
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151 endif
152 context LetExpCS
153 def : ast () : as :: LetExp =
154 if singleVarDecl()
155 then as :: LetExp {
156 ownedVariable = letVars−>at(1).ast(),
157 ownedIn = inExp.ast(),
158 type = inExp.ast() . type
159 }
160 else
161 if multipleVarDecls()
162 then as :: LetExp {
163 ownedVariable = letVars−>first().ast () ,
164 ownedIn = letVars−>excluding(letVars−>first())−>reverse()−>iterate(x :

LetVarCS ; acc : as :: OCLExpression = inExp.ast() |
165 as :: LetExp {
166 ownedVariable = x.ast(),
167 ownedIn = acc,
168 type = acc.type
169 }) ,
170 type = inExp.ast() . type
171 }
172 else
173 invalid
174 endif
175 endif
176 context LetVarCS
177 def : ast () : as :: Variable =
178 as :: Variable {
179 name = name,
180 ownedInitExp = initExp.ast(),
181 type = if typeRef <> null then ast() . lookupClass(typeRef) else ast() .

ownedInitExp.type endif
182 }
183 context IterateExpCS
184 def : ast () : as :: IterateExp =
185 as :: IterateExp {
186 ownedIterator = itVar.ast () ,
187 ownedResult = accVar.ast(),
188 ownedBody = exp.ast(),
189 ownedSource = parentAsCallExpCS()._source.ast(),
190 type = ast () .ownedResult.type
191 }
192 context CollectExpCS
193 def : ast () : as :: IteratorExp =
194 as :: IteratorExp {
195 iterator = ’collect’ ,
196 ownedIterator = if itVar = null then as :: Variable {
197 name = ’self’ ,
198 type = ast () . lookupClass(’OclAny’ )
199 } else itVar . ast () endif,



236 Appendix D. Complete OCL documents of the Mini-OCL CS2AS bridge

200 ownedBody = exp.ast(),
201 ownedSource = self.parentAsCallExpCS()._source.ast(),
202 type = ast () . lookupClass(’Collection’ )
203 }
204 context IteratorVarCS
205 def : ast () : as :: Variable =
206 as :: Variable {
207 name = itName,
208 type = if itType <> null then ast () . lookupClass(itType) else ast () . lookupClass(’

OclAny’ ) endif
209 }
210 context AccVarCS
211 def : ast () : as :: Variable =
212 as :: Variable {
213 name = accName,
214 ownedInitExp = accInitExp.ast(),
215 type = if accType <> null then ast() . lookupClass(accType) else ast() .

ownedInitExp.type endif
216 }
217 context CollectionLiteralExpCS
218 def : ast () : as :: CollectionLiteralExp =
219 as :: CollectionLiteralExp {
220 kind = kind,
221 ownedParts = parts.ast() ,
222 type = ast () . lookupClass(’Collection’ )
223 }
224 context CollectionLiteralPartCS
225 def : ast () : as :: CollectionLiteralPart =
226 if withoutLastExpression()
227 then as :: CollectionItem {
228 ownedItem = first.ast () ,
229 type = ast () .oclAsType(as::CollectionItem).ownedItem.type
230 }
231 else
232 if withLastExpression()
233 then as :: CollectionRange {
234 ownedFirst = first . ast () ,
235 ownedLast = last.ast() ,
236 type = ast () .oclAsType(as::CollectionRange).ownedFirst.type
237 }
238 else
239 invalid
240 endif
241 endif
242 endpackage

LISTING D.4: MiniOCLCS2AS.ocl
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Appendix E

Using Spoofax To Support The 101
Companies Example

The source code of the following example is publicly available in a GitHub repos-
itorya, in particular, within the org.spoofax.example.companies and org.spoofax.example.
companies.as projects.

a https://github.com/adolfosbh/cs2as

This appendix shows how one of the modeling language examples introduced in the
evaluation (see Chapter 5) is supported by Spoofax [46].

As with CS2AS-TL and Gra2Mol tools, the following subsections focus on the different
specification artefacts that are required to support this language example within Spoofax.
These specification artefacts (shown in the forthcoming sections) are:

• A grammar of the textual modeling language, using their SDF language.

• A name resolution definition, using their NaBL language.

• A treeware-based CS2AS definition, using their Stratego/XT language.

• The modified AS meta-model to exploit the EAnnotation-based mechanism that allows
Spoofax to do the treeware-to-modelware technological space shift.

The version of Spoofax that has been used is 1.5.0. There is a more recent version
(2.0.0) under development for which the support to modeling languages has been
discontinued (according to one of the project moderatorsa).

a https://www.linkedin.com/in/guidowachsmuth

E.1 Grammar Definition

Listing E.1 shows the example’s grammar definition. Note that some grammar rules have
been adequately modified (when compared to the original Gra2Mol grammar definition)
to avoid bloating CS2AS mappings that would have been used for renaming a syntax tree

https://github.com/adolfosbh/cs2as
https://www.linkedin.com/in/guidowachsmuth
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term (e.g. rename employee as Employee). Since the specification of an employee mentor
is optional (line 23), a Mentor specification has to be defined in its own grammar rule (lines
26–27).

1 Start .Company = <
2 company <STRING> {
3 <Dept∗>
4 }
5 >
6 Dept.Department = <
7 department <STRING> {
8 <DeptManager>
9 <DeptEmployee∗>

10 <Dept∗>
11 }
12 >
13 DeptManager.DeptManager = <
14 manager <Employee>
15 >
16 DeptEmployee.DeptEmployee = <
17 employee <Employee>
18 >
19 Employee.Employee = <
20 <STRING> {
21 address <STRING>
22 salary <FLOAT>
23 <Mentor?>
24 }
25 >
26 Mentor.Mentor = <
27 mentor <STRING>
28 >

LISTING E.1: 101 Companies example grammar definition using SDF

E.2 Name Resolution Definition

Listing E.2 shows the example’s name resolution definition. Note that Employee and Mentor
are different terms, the former being the referenced term and the latter the referrer one. The
name resolution is separately defined on them, and the further CS2AS Stratego definition
(next section) is responsible for mixing the two terms in just one. In this way, Employee terms
refer to other Employee terms.

1 module names
2 imports
3 include/CompaniesTest
4 namespaces
5 Employee
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6 binding rules
7 Employee(e,_,_,_) :
8 defines Employee e
9 Mentor(m):

10 refers to Employee m
LISTING E.2: Name resolution definition for the 101 Companies Example

E.3 CS2AS Definition

In the context of Spoofax, the goal of a CS2AS transformation is to create syntax trees that
can be directly transformed (1-to-1 mappings) into AS models. Given the CS grammar def-
inition (Listing E.1) and the AS meta-model (presented in Subsection 5.5.1, Figure 5.11), the
following two CS2AS scenarios need to be solved:

• According to the CS grammar, a Department term contains a DeptManager and a list of
DeptEmployee sub-terms (lines 8–9). These two sub-terms likewise contain an Employee
sub-term (lines 14 and 17). According to the AS meta-model, a Department contains
(via two different containment references) many Employees. To solve this misalignment
between the initial syntax trees and the target AS models, two rewrite rules are needed
to remove these intermediate DeptManager and DeptEmployee terms from the tree.

• According to the CS, an Employee term contains a Mentor sub-term (line 23). Accord-
ing to the AS, Employee model elements refer to their employee mentors, via the Em-
ployee::mentor cross-reference. To solve this misalignment between the initial syntax
trees and the target AS models, a rewrite rule is needed to remove the intermediate
Mentor terms from the tree.

Listing E.3 shows the example’s CS2AS definition written in Stratego. The listing shows
the required rewrite rules that were mentioned above:

• The first rewrite rule (lines 5–6) rewrites DeptManager terms as the first sub-term that
it comprises, i.e. an Employee sub-term.

• The second rewrite rule (lines 7–8) rewrites DeptEmployee terms as the first sub-term
that it comprises, i.e. an Employee sub-term.

• The third rewrite rule (lines 9–10) rewrites Mentor terms as the first sub-term that it
comprises, i.e. a reference to another Employee (this reference is computed via name
resolution).

1 module cs2as
2 imports
3 include/CompaniesTest
4 rules
5 CS2AS:
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6 DeptManager(manager) −> manager
7 CS2AS:
8 DeptEmployee(employee) −> employee
9 CS2AS:

10 Mentor(mentor) −> mentor
LISTING E.3: CS2AS definition for the 101 Companies Example

Note that this CS2AS transformation is performed in the treeware technological space.
The following section depicts the treeware-to-modelware technological space shift.

E.4 Treeware-to-Modelware Mapping Definition

Finally, Figure E.1 shows how the EAnnotations-based mechanism (explained in Subsec-
tion 5.3.1) is used to solve the treeware-to-modelware technological space shift.

E.5 Experiment Results

Although Spoofax has been removed from the quantitative study, this final section infor-
mally provides some overall data related to the metrics used in the quantitative study.

E.5.1 Size of artefacts

This subsection informally provides some information with hints about the size of the Spoofax
specification artefacts. The same tool developed for the quantitative study was used to mea-
sure the instances of the Spoofax languages required to declare a CS2AS bridge. With respect
to the modified AS meta-model, the following manual calculation has been conducted1:

• Two words per meta-class, particularly for the required EAnnotation’s source.

• Two "words" per EAnnotation’s detail entry.

Table E.1 shows the size of the specification artefacts for the 101 Companies example that
were required within Spoofax.

Number of words File bytes
Name Resolution in NaBL 23 267
CS2AS in Stratego 18 128
AS meta-model modifications 30 ?
Total 71 ?

TABLE E.1: Size (see Section 5.4.2) of the required artefacts specified within
Spoofax

1 No estimation has been attempted for the corresponding number of bytes of the involved Ecore file.
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FIGURE E.1: Mapping sub-term indexes to property names of the Company
meta-model, through the EAnnotations-based mechanism
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E.5.2 Implementation performance

This subsection informally provides some information with hints about Spoofax perfor-
mance. In this case, the Spoofax modelware source code has been modified2 in order to
measure the amount of time required to load an emf model from the corresponding textual
input.

The experiment environment and input files are the same as the ones that were used for
the quantitative study experiment (see Subsection 5.5.1). Table E.2 shows the same informa-
tion that characterises the experiment input models (see Subsection 5.5.1), with the addition
of a column containing the execution time required to perform the AS model production.

Size (bytes) Elements Nd Ns Ne Ds Execution time (ms)
M1 1,238 22 3 0 3 1 643
M2 6,105 97 3 3 4 2 1560
M3 149,951 701 1 1 3 100 4033
M4 42,805 708 1 100 3 2 3828
M5 223,848 3061 4 4 5 4 16407
M6 1,018,254 11901 10 4 10 4 44748
M7 9,794,276 109341 10 5 10 5 -

TABLE E.2: Execution time (ms) required by Spoofax implementation to pro-
duce the AS models.

The execution time for the last M7 model is not presented, because Spoofax failed to
produce the expected output AS model.

2 https://github.com/adolfosbh/spoofax-modelware

https://github.com/adolfosbh/spoofax-modelware
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Appendix F

Experiments Data

Size (bytes) Elements Gra2Mol (ms) CS2AS-TL (ms) Factor
M1 1,238 22 2 4 -2
M2 6,105 97 20 5 4
M3 149,951 701 1856 30 61.86
M4 42,805 708 396 36 11
M5 223,848 3061 9876 482 20.48
M6 1,018,254 11901 256346 10648 24.07
M7 9,794,276 109341 19710767 1560768 12.63

TABLE F.1: Hypothesis A: 101 Companies example (Experiment 1)
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Gra2Mol CS2AS-TL

Size (bytes) Elements Exec. Time (ms)
No cached operations

Exec. Time (ms)
Cached operations

Exec. Time (ms)
M1 1,320 31 3 7 4
M2 3,003 49 7 7 7
M3 6,219 79 27 9 9
M4 9,648 115 50 11 11
M5 16,309 181 83 18 15
M6 25,082 271 162 32 23
M7 39,539 409 372 52 27
M8 60,132 619 831 94 55
M9 93,307 931 1897 207 123
M10 141,758 1405 4301 425 222
M11 214,483 2119 10110 914 498
M12 326,499 3193 25941 2242 1219
M13 495,625 4819 65475 5308 2678
M14 751,672 7261 154293 11714 6267
M15 1,141,188 10945 349712 27656 14389
M16 1,728,189 16501 784860 61942 34202
M17 2,620,513 24877 1607842 165619 90753
M18 3,956,386 37501 3583335 421534 258086
M19 5,968,356 56533 9210046 1051139 637879
M20 9,083,583 85225 21296415 2681990 1408042
M21 13,773,378 128473 42248951 6451952 3419606
M22 20,852,400 193663 96065259 15794135 7653003
M23 31,524,191 291931 - 51963587 21170844
M24 47,602,981 440071 - - -
M25 72,039,789 663379 - - -

TABLE F.2: Hypothesis A: 101 Companies example (Experiment 2)

Size (bytes) Lines of Code Gra2Mol (ms) CS2AS-TL (ms) Factor
M1 1,304 58 17 16 1.06
M2 1,858 81 43 31 1.38
M3 7,246 263 187 63 2.96
M4 66,048 2,238 20400 98 108.16
M5 241,188 8,118 287633 355 810.23
M6 708,228 23,798 2450487 1106 2215.63

TABLE F.3: Hypothesis A: Delphi2ASTM example

Gra2Mol CS2AS-TL
Words LoC Bytes Words LoC Bytes

Lang1 83 35 757 73 33 738
Lang2 1151 565 13,414 704 289 7,898
Lang3 376 150 5,071 224 86 2,411
Lang4 47 28 420 32 15 306
Lang5 541 225 6,086 353 151 4212

TABLE F.4: Hypothesis B: Size of specification artefacts
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Glossary

ABNF Augmented Backus Naur Form.

ADM Architecture Driven Modernization.

ANTLR Another Tool for Language Recognition.

AS Abstract Syntax.

ASG Abstract Syntax Graph.

AST Abstract Syntax Tree.

ASTM Abstract Syntax Tree Metamodel.

ATL ATL Transformation Language.

BNF Backus Naur Form.

CIM Computation-Independent Model.

CS Concrete Syntax.

CS2AS Concrete Syntax to Abstract Syntax.

CS2AS-TL Concrete Syntax to Abstract Syntax Transformation Language.

CST Concrete Syntax Tree.

CTML Complex Textual Modeling Language.

DDL Data Description Language.

DSL Domain Specific Language.

DSTL Domain Specific Transformation Language.

EBNF Extended Backus Naur Form.

Eclipse A platform that provide IDEs for varied languages.

EMF Eclipse Modeling Framework.

EngD Engineering Doctorate.

ETL Epsilon Transformation Language.
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GPL General Purpose Language.

IDE Integrated Development Environment.

iMac Internet Macros.

JDT Java Development Tools.

KDM Knowledge Discovery Metamodel.

LHS Left Hand Side.

LoC Lines of Code.

LSCITS Large-Scale and Complex IT Systems.

LW Language Workbench.

M2M Model-to-Model.

M2T Model-to-Text.

MBE Model-Based Engineering.

MD* Model-Driven*.

MDA Model-Driven Architecture.

MDD Model-Driven Development.

MDE Model-Driven Engineering.

MDSD Model-Driven Software Development.

mOCL Mini OCL.

MOF Meta-Object Facility.

NaBL Names Binding Language.

OCL Object Constraint Language.

OMG Object Management Group.

OOP Object Oriented Programming.

PIM Platform Independent Model.

PSM Platform Specific Model.

QVT Query/View/Transformation.
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QVTc QVT Core.

QVTd QVT Declarative.

QVTm QVT Minimal.

QVTo QVT Operational Mappings.

QVTr QVT Relations.

RHS Right Hand Side.

SDF Syntax Definition Formalism.

SE Software Engineering.

T2M Text-to-Model.

UML Unified Modeling Language.

URI Uniform Resource Identifier.
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