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Abstract 

Lignocellulosic biomass, composed largely of plant cell walls, of economically 

important cereal crops is remarkably recalcitrant to digestion, both in second 

generation biofuel production and ruminant nutrition applications. Ferulic acid (FA) 

esterified to arabinoxylan (AX) forms oxidatively-linked dimers and oligomers which 

cross-link polysaccharide chains. FA is also a nucleation site for lignin formation. 

These cross-links are major inhibitors of enzymatic digestion, and therefore FA is a 

key target for improving the digestibility of grass cell walls. Also, para-coumaric acid 

(pCA) esterified to AX may be involved in the polymerisation of lignin. 

Despite the importance of cell wall-bound hydroxycinnamic acids, many of the genes 

and enzymes responsible for the esterification of pCA and FA to AX remain to be 

elucidated. The BAHD and glycosyltransferase (GT)61 gene families have previously 

been identified as likely to be involved in the process (Mitchell et al., 2007). Here, the 

role of candidate genes within the BAHD and GT61 families in pCA and FA 

esterification to AX is investigated in the model organism Brachypodium distachyon 

(Brachypodium).  

Jasmonic acid induced large increases in cell wall-esterified pCA, and moderate 

increases in FA and FA dimer in Brachypodium callus, accompanied by up-regulation 

of genes within the BAHD and GT61 families. Furthermore, transformation of 

Brachypodium with RNAi constructs designed to knock-down expression of 

paralogues BdGT61.9p1 and BdGT61.9p2 resulted in decreased cell wall-esterified 

FA. Overexpression of BdGT61.9p1 in Brachypodium resulted in a small increase in 

the 8-8-coupled FA dimer. These findings complemented the existing body of evidence 

for the involvement of genes within the BAHD and GT61 families in 

hydroxycinnamic acid esterification to AX. 
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 General Introduction 

1.1 The Poaceae and the commelinid monocots 

The Poaceae (also known as grasses, formerly named the Gramineae) are an 

extraordinarily successful family of plants which fall within the commelinids. The 

commelinids represent a clade within the monocots which diverged 90-120 million 

years ago and comprise orders Arecales (palms), Commelinales (spiderwort, water 

hyacinth), Zingiberales (gingers, banana) and Poales (grasses, rushes and 

bromeliads); the Poaceae are the largest family within the Poales order (APG IV, 

2016). 

The Poaceae evolved 55-70 million years ago and diverged from dicotyledonous plants 

and other commelinid monocots (Kellogg, 2001). The group collectively describes 

10,000 species in over 600 genera (Eckardt, 2004), and their success is evident in that 

grasslands cover 40% of the Earth’s terrestrial surface (excluding Antartica and 

Greenland), and are found on every continent (World Resources Institute, 2000). Out 

of these grasslands have emerged modern cereal crops; for example, 10,000 years ago 

saw the first cultivation of wheat, which aided the transition from a hunter-gatherer 

lifestyle to settled agriculture, a major cultural milestone (Shewry, 2009). Today, the 

grasses are hugely environmentally and economically important. They are 

consistently the leading crop species produced globally (tonnes per year), including 

sugarcane (1st), maize (2nd), rice (3rd), wheat (4th), barley (11th), and sorghum, millet 

and oats (FAO, 2013), and also include emerging bioenergy crops such as switchgrass 

and miscanthus (APG IV, 2016). Grasses represent a major portion of global human 

nutrition, most notably through direct human consumption (Shewry, 2009), but also 

indirectly through forages fed to ruminants, and have attracted attention in the 

biofuel industry as feedstocks for bioethanol production (Jung et al., 2012).  
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1.2 Second generation liquid biofuels 

Global warming due to greenhouse gas emissions is increasing at an alarming rate 

and current predictions are in the range of 2-4 °C warming by the year 2100. Thus, 

there is an international drive to limit the increase in global temperature to 2 °C, 

relative to pre-industrial levels. The transport sector is responsible for 23% of total 

CO2 emissions worldwide (IPCC, 2014), and there is therefore a demand for a 

carbon-neutral fuel to replace petroleum based fuels, such as bioethanol to replace 

petrol. First generation bioethanol is sourced from starch from the grain of cereal 

crops such as maize, or sucrose from crops such as sugarcane, and is currently 

blended with petroleum, by up to 25% in Brazil (Soccol et al., 2010). However, 

utilising both food crops and arable agricultural land for bioethanol production has 

led to a strain on the rising global demand for food, and has increased global food 

prices (Marriott et al., 2016).   

Second generation liquid biofuel technology was developed in response to a rising 

global demand for a carbon-neutral fuel from a non-food plant resource. In contrast to 

first generation fuels, second generation biofuels utilise lignocellulosic feedstocks 

from non-food agricultural by-products such as wheat, barley and rice straw, 

sugarcane bagasse, maize and sorghum stover, or dedicated bioenergy crops such as 

miscanthus or switchgrass. Such feedstocks are predominantly composed of cell wall 

material, comprising polysaccharides and lignin, which is enzymatically digested to 

release individual monosaccharides, and further fermented to produce bioethanol 

(Nigam and Singh, 2011). Many globally important crops such as sugarcane, maize, 

rice and wheat belong to the Poaceae family of commelinid monocots, which have 

distinct cell walls from dicots and other monocots. The cell walls of the Poaceae are 

remarkably recalcitrant to enzymatic digestion (Grabber, 2005). Thus, digestion of 

the long chain polysaccharides to produce usable sugars from the cell wall is 
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currently expensive and time consuming due to the complex interactions between 

polysaccharides and lignin (Jung et al., 2012, Grabber, 2005). Current pretreatments 

for digestion of cell wall polymers involve high pressures, high temperatures and 

toxic chemicals, which are costly and generate chemical wastes. Thus, second 

generation bioethanol is not currently suitable for commercial production (Kumar et 

al., 2009, Nigam and Singh, 2011). Increasing the digestibility of lignocellulosic 

biomass will have significant impact in this sector. 

1.3 Ruminant nutrition 

Ruminants, including important agricultural livestock such as cattle, goats and 

sheep, have a specialised multi-compartment gut able to digest plant cell wall 

polysaccharides and ferment the products of digestion into short-chain fatty acids. 

Grass cell walls make up the main portion of ruminant nutrition whose diet consists 

of forage grasses or hay, as ruminants are able to digest the polysaccharides of the 

cell wall with the aid of gut microorganisms (Jung et al., 2012). However, it has been 

found that up to one third of cell wall material is indigestible by the microorganisms 

(Wilson and Mertens, 1995). Increased cell wall digestibility may have beneficial 

effects on ruminant nutrition; for example, higher digestibility is positively correlated 

with increased milk production in cows (Jung et al., 2011). 

1.4 Cell walls 

Cell walls are a complex, often recalcitrant network of polymers, which create the 

‘plant skeleton’. The major function of cell walls has, in the past, been described as 

providing structural support. However, far from being a static structure whose 

function lies solely in structural support, the cell wall is now understood as a 

dynamic, changing extracellular matrix, which is key in responding to environmental 
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changes and providing developmental cues. The interaction between the polymers of 

the cell wall in different tissues and at different developmental stages is key to 

controlling cell expansion and cell shape, and protecting against pathogen attack. As 

the barrier between cells in plants, the wall is also important in cell signalling 

(Carpita and McCann, 2000). The basic components of the cell wall are cellulose, 

hemicellulose, pectin, protein and in some wall types, lignin (Bacic et al., 1988), and 

are bound together to create a structurally integral framework which creates a 

physical and chemical barrier to enzymatic attack and therefore to digestibility 

(Grabber, 2005). 

Cell wall composition varies between species, tissue and even on opposite sides of the 

same cell. Cell walls can be grouped into non-lignified primary cell walls and lignified 

secondary cell walls. Primary cell walls are deposited by expanding cells during cell 

growth, and lignified secondary cell walls are formed in some tissues such as the 

sclerenchyma or xylem, after cell expansion has ceased, to provide structural 

reinforcement (Carpita and McCann, 2000). Secondary cell walls contain more 

cellulose and hemicellulose, and less pectin and protein than primary walls, and 

primary cell walls are devoid of lignin (Bacic et al., 1988). Lignified tissues are major 

inhibitors of saccharification in bioethanol production (Grabber, 2005). 

The composition of the cell walls of the commelinid monocots is distinct from that of 

dicots, and therefore primary cell walls can be further grouped into Type I and 

Type II cell walls, depending on the major hemicellulose present. Type I primary cell 

walls of dicots and non-commelinid monocots comprise xyloglucan as the major 

hemicellulose, and little xylan, whereas the major hemicellulose of the type II 

primary cell walls of the commelinids is arabinoxylan (Scheller and Ulvskov, 2010). 
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1.5 Xylan structure 

Xylans are a structurally diverse group of cell wall polysaccharides, which seemingly 

evolved in the ancestor of land plants and modern Charophyte green algae (Popper et 

al., 2011, Mikkelsen et al., 2014). Xylans consist of a β-(1-4)-xylopyranose (Xyl) 

backbone, which is decorated by substitutions that vary between taxa and between 

tissues within the same plant. The xylan of commelinid monocot cell walls, including 

that of the grasses, is unique in structure with important features that distinguish it 

from the xylan of dicots and other monocots (Figure 1.1).  

Dicot xylan is prevalent in the secondary cell wall, where it comprises around 30% of 

the wall (Scheller and Ulvskov, 2010). The xylan of dicots is commonly named 

glucuronoxylan (GX) due to its main substitutions of α-(1-2)-glucuronic acid (GlcA) 

and α-(1-2)-4-O-methyl glucuronic acid (meGlcA), which decorate the polysaccharide 

backbone. Dicot xylan may also be decorated by (1-2)- or (1-3)-O-acetyl substitutions, 

and may have small amounts of α-(1-2)-arabinofuranose. The reducing end of dicot 

xylan contains a conserved tetrasaccharide: β-Xyl-(1,4)-β-Xyl-(1,3)-α-rhamnose (Rha)-

(1,2)-α-galacturonic acid (GalA)-(1,4)-Xyl (Scheller and Ulvskov, 2010). 

The xylan of the commelinid monocots, including the Poaceae, comprises 

approximately 40% of the cell walls of vegetative tissues (Scheller and Ulvskov, 2010) 

and can represent up to 70% of the cell walls of starchy endosperm of cereals, such as 

wheat and barley (Bacic and Stone, 1981). In contrast to dicots, the xylan of the 

commelinid monocots has many more numerous and varied substitutions which 

decorate the backbone. The major decoration of commelinid monocot xylan is 

α-(1-3)-arabinofuranose (Ara), and hence is named arabinoxylan (AX). Arabinose 

(Ara) substitutions on AX can also be α-(1-2)-linked to the xylan backbone, or may 

di-substitute xylose at the C-2 and C-3 position, as is common in starchy endosperm 
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of wheat (Bacic and Stone, 1981). A unique and important feature of the AX of the 

commelinids is that α-(1-3)-linked arabinose residues may be further substituted on 

the C-5 position by ferulic acid (FA) or para-coumaric acid (pCA; section 1.6). The 

AX of commelinids may also be substituted by α-(1-2)-GlcA and its 4-O-methyl 

derivative as in dicots, as is common in vegetative tissues, and may therefore also be 

referred to as (glucurono)arabinoxylan (GAX). Further, C-2- and C-3-linked acetyl 

groups may decorate the backbone (Scheller and Ulvskov, 2010, Fincher, 2009, York 

and O'Neill, 2008, Vogel, 2008, Burton and Fincher, 2012). In addition to these 

common substitutions, AX may also have other less abundant substitutions, such as 

2-O-β-Xyl-(5-O-feruloyl)-Ara (Wende and Fry, 1997), which may be further 

substituted on Xyl by (1-4)-galactopyranose (Gal) (Saulnier et al., 1995), and 

Ara-(1-2)-Ara-(1-3) (Verbruggen et al., 1998). 

The degree of substitution of xylan varies greatly between species and tissue. The 

(Me)GlcA:Xyl ratio of dicot GX is usually in the range of 1:4-1:16. This is in contrast 

to the highly branched (G)AX of the grasses, where the backbone, on average, has one 

substitution for every two backbone xylose residues, although regions of up to 6-9 

unoccupied xylose sugars may be present. The substitution rate of AX in the starchy 

endosperm is also very high, where the Ara:Xyl ratio is 1:2-1:5 (Ebringerova, 2006, 

Fincher, 2009). There is some evidence that xylan may have a repeating structure; in 

wheat, co-immunoprecipitation was used to isolate a xylan synthase complex which 

produced two distinct oligosaccharides when digested, suggesting a regular structure 

(Zeng et al., 2010). However, Bromley et al. (2013) described major (GlcA:Xyl 

ratio = 1:6-1:26) and minor (GlcA:Xyl ratio = 1:5-1:7) GX domains in Arabidopsis 

thaliana (Arabidopsis), which did not seem to have a regular structure.  

 Xylans provide structural support to the load-bearing cellulose microfibrils. The 

degree, and type, of xylan substitution is important in conferring its interaction with 
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cellulose and other wall components, as unbranched regions of xylan allow steric 

alignment with cellulose, allowing hydrogen bond formation between them 

(Ebringerova and Heinze, 2000, Burton and Fincher, 2012, Busse-Wicher et al., 

2016). Substitutions of xylans may also be important in protecting the polymer from 

being enzymatically degraded (Ebringerova and Heinze, 2000, Izydorczyk and 

Biliaderis, 1995, Van Craeyveld et al., 2009), particularly FA substitutions (section 

1.6.4). 

In recent years, some xylans have been discovered that contain unusual branching 

patterns. The highly branched heteroxylan of Plantago ovata (psyllium) and 

Arabidopsis thaliana (Arabidopsis) seed mucilage have attracted interest. Although 

this mucilage xylan contains the common β-(1-4)-Xyl backbone, both psyllium and 

Arabidopsis mucilage heteroxylan backbones are substituted by up to 45% (Voiniciuc 

et al., 2015, Van Craeyveld et al., 2009). Psyllium mucilage heteroxylan contains 

mono-, di- or tri-saccharide decorations comprised of Ara and Xyl, which occur 

frequently along the backbone (Fischer et al., 2004, Guo et al., 2008). Arabidopsis 

seed mucilage may contain Xyl substitutions along the backbone and few Glc or Ara 

substitutions (Voiniciuc et al., 2015). These unusual xylans may be useful in 

identifying xylan synthesis genes (Jensen et al., 2013), although they do not contain 

ferulic acid. 
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Figure 1.1  Schematic representation of xylan side chain variation in dicots and grasses. 
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1.6 Cell wall-bound hydroxycinnamic acids (HCAs) 

Cell wall-bound hydroxycinnamic acids (HCAs) are ferulic acid (FA), para-coumaric 

acid (pCA) and sinapic acid (SA). HCAs are synthesised in the phenylpropanoid 

pathway from cinnamic acid (Ralph, 2010, Buanafina, 2009), and are known to be 

incorporated into the cell wall through esterification to arabinoxylan, or coupling 

with lignin monomers (Ralph, 2010).  

1.6.1 Cell wall-bound ferulic acid (FA) 

Ferulic acid (FA) is an integral component of the cell walls of the commelinid 

monocots, including the grasses, and is an important factor in cell wall digestibility 

(section 1.6.4). It occurs as a component on side chains of AX, where it is ester 

linked at the C-5 position on (1-3)-Ara substitutions (Fincher, 2009, Scheller and 

Ulvskov, 2010, Buanafina, 2009). The feruloylation of AX is a highly specific, 

enzymatically controlled process, which occurs at the site of AX synthesis in the Golgi 

involving an FA-CoA precursor (Myton and Fry, 1994, Meyer et al., 1991), and may 

also occur at the cell wall involving an unknown FA precursor (Mastrangelo et al., 

2009). 

FA has long been recognised as an integral cell wall component of the grasses. Given 

its similarity to monolignols, FA was first thought to be solely associated with lignin 

in secondary cell walls (Brown, 1966), however was later shown to be esterified to an 

unknown polysaccharide in compounds isolated from cell wall material by both 

cellulase digestion and mild acidolysis (Hartley, 1972, Whitmore, 1974). Further, 

Harris and Hartley (1976) showed that FA was present in unlignified primary cell 

walls of many grass species using ultraviolet fluorescence microscopy. FA was first 

shown to be esterified to the O-5 position of Ara in grass cell walls by Smith and 

Hartley (1983), who isolated and characterised FA-Ara-Xyl using cellulase digestion 
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of the cell walls in many tissues of Poaceous species including straw, leaves, flour and 

bran of barley, Italian ryegrass and wheat. Carbohydrate esters of AX-esterified FA 

have since been identified in several species using mild acid or Driselase hydrolysis 

to release the compounds. Poaceous species in which AX-esterified FA has been 

identified in addition to wheat, barley and Italian ryegrass include maize, sugarcane, 

wild rice, blue fescue (Festuca arundinacea), the common grass Cynodon dactylon 

(Ishii, 1997) and bamboo (Ishii and Hiroi, 1990). Also, AX-esterified FA is found in 

other commelinid monocots, including pineapple (clade Poales, Smith and Harris, 

2001), banana (clade Zingiberales, de Ascensao and Dubery, 2003), and Chinese 

water chestnut (clade Poales, Parr et al., 1996). Ferulic acid is almost exclusively 

found esterified to AX in the Poaceae, however there is a lone report of a feruloylated 

xyloglucan compound isolated from bamboo (Ishii et al., 1990).  

Cell wall-bound ferulates are most abundant in the commelinid monocots, however 

they have also been found in some Caryophyllales dicot species, such as spinach (Fry, 

1982), sugar-beet (Colquhoun et al., 1994, Kroon and Williamson, 1996) and quinoa 

(Renard et al., 1999). In dicots, FA is linked to the arabinose (3-O-linked) and 

galactose (6-O-linked) residues of pectin, as opposed to the arabinose residues of AX 

as in grasses (Buanafina, 2009). Ferulic acid has also been found in very small 

quantities in the cell walls of tobacco (Merali et al., 2007), carrot (Parr et al., 1997), 

asparagus (Rodriguez-Arcos et al., 2004) and gymnosperms (Carnachan and Harris, 

2000), suggesting it may be present in all vascular plant cell walls in low amounts. 

1.6.2 Cell wall-bound ferulic acid (FA) dimers 

While most of the interactions between cell wall polysaccharides are mediated by 

hydrogen bonding, FA is of great importance in grass cell walls as it is uniquely able 

to covalently cross-link polysaccharides through the formation of oxidatively-linked 
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Figure 1.2  Schematic representation of known cell wall-bound HCAs associated with arabinoxylan and lignin. a) C5-linked ferulic acid 

(FA) on C3-linked arabinose side chains of arabinoxylan (AX); b) C5-linked para-coumaric acid (pCA) on C3-linked arabinose side chains 

of AX; c) FA 5-5 coupled dimer cross-linking two AX polysaccharide chains; d) FA cross-link to lignin; e) pCA esterified to lignin. 
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Figure 1.3  Mechanism of peroxidase- and H2O2-mediated dimerisation of FA into 

the five possible isomers found in plant cell walls. Figure obtained from Bunzel 

(2010). 

 

diferulate bridges (Figure 1.2). The first FA dimer to be identified was the 

5-5-coupled dimer in wheat seeds (Markwalder and Neukom, 1976), then thought to 

be the only product of diferulate coupling. Thus, prior to the discovery of the other 

diferulate isomers, the 5-5-coupled dimer was referred to simply as diferulate, and 

total FA dimers were largely underestimated by up to 20 times (Hatfield et al., 1999, 

Ralph et al., 1994). Eighteen years later, Ralph et al. (1994) identified a range of five 

dehydrodiferulate isomers (8-O-4, 8-5, 8-8, 5-5 and 4-O-5), which were possible to 

synthesise in vitro through H2O2 free-radical coupling mechanisms (Figure 1.3). 

Four of these dimers (8-O-4, 8-5, 8-8 and 5-5) were identified in planta in various 

grasses, such as corn, cocksfoot and switchgrass (Ralph et al., 1994), and the 

4-O-5-coupled dimer was later identified as present in small amounts in the cell walls 

of cereal crops such as corn and wheat (Bunzel et al., 2000). Evidence that FA dimers 

cross-link AX chains comes from the isolation and characterisation of Ara-FA-FA-Ara 

bridges (Ishii, 1991, Saulnier and Thibault, 1999, Allerdings et al., 2005). More 

recently, evidence for a variety of cell wall-bound FA dehydrotrimers and 

dehydrotetramers has been reported, which raises the possibility that multiple 

polysaccharide chains may be cross-linked by FA (Rouau et al., 2003, Bunzel et al., 

2006, Fry et al., 2000, Dobberstein and Bunzel, 2010a).  
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The formation of FA cross-links is not enzymatically controlled, but rather takes 

place through free radical coupling mediated by peroxidase oxidation reactions, 

which use H2O2 as a cofactor (Grabber et al., 1995, Burr and Fry, 2009, Wallace and 

Fry, 1995). Isolated maize primary cell walls containing endogenous peroxidases 

show increased FA dimerisation when treated with H2O2 (Grabber et al., 1995, Fry et 

al., 2000), in addition, younger cell suspension cultures showed extensive 

FA-coupling at the Golgi, which shifted to in muro coupling in older cultures (Fry et 

al., 2000). The type of dehydrodiferulate isomer that is formed in the cell wall is 

largely due the steric positioning of two or more FA monomers within the complex 

network of polysaccharides in the cell wall (Ralph et al., 2004).  

1.6.3 FA cross-link to lignin 

Another important feature of cell wall-bound FA in grasses is their integral 

interactions with lignin through ether or C-C bonds. In 1972, Hartley speculated that 

the interaction between the distinct lignin and the polysaccharide networks within 

the cell wall may be cross-linked by FA (Hartley, 1972). FA was later shown to be 

etherified to lignin in wheat straw (Scalbert et al., 1985), and Iiyama et al. (1990) 

found that some FA that was etherified to lignin was also esterified to AX, thereby 

demonstrating Hartley’s original hypothesis. Further, ferulate that has already 

dimerised can also cross-link to lignin (Grabber et al., 2000). Crucially, FA can also 

form covalent linkages with monolignols coniferyl alcohol and sinapyl alcohol through 

the same radical coupling reactions that occurs during FA dimer coupling (Figure 

1.3). This finding demonstrated that ferulate linked to AX does not just bind to 

lignin, but acts as a nucleation site for lignin polymerisation (Ralph et al., 1995, 

Jacquet et al., 1995, Grabber et al., 2002). 
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1.6.4 FA cross-linking in digestibility 

Cell wall-bound FA cross-linking, between two or more AX polysaccharides through 

dimer formation, and between AX and lignin in grass cell walls, is one of the main 

inhibitors of digestibility in applications such as second generation liquid biofuel 

production and ruminant nutrition (section 1.2, section 1.3; Grabber, 2005, 

Buanafina, 2009, de Oliveira et al., 2015). 

FA dimer formation is implicated in cessation of cell wall expansion and cell growth 

in plant development, and may therefore be a factor which controls the size and 

shape of cells (MacAdam and Grabber, 2002). In addition, FA dimers inhibit 

pathogen invasion, both by forming a physical barrier to pathogen invasion, and by 

limiting digestion of the cell wall by hydrolysing enzymes released by the pathogen 

(Bily et al., 2003, Grabber et al., 1998a).  

Cell wall digestibility is negatively correlated with both FA dimerisation and with 

lignin concentration (Grabber, 2005). In primary cell walls devoid of lignin, an 

increase in FA dimerisation stimulated by H2O2 resulted in a 30% decrease in cell 

wall sugars that were hydrolysed after 3 h digestion (Grabber et al., 1998a). Further, 

in an artificially lignified environment, reduced FA-lignin cross linking resulted in 

significantly increased digestibility (Grabber et al., 1998b). Thus, there has been 

keen interest in the reduction of FA in lignocellulosic biomass to improve the 

digestibility of cell walls (Dhugga, 2007). 

1.6.5 Cell wall-bound para-coumaric acid (pCA) 

pCA is also esterified to the O-5 position on α-(1-3)-Ara of AX, although to a lesser 

extent than FA (Mueller-Harvey and Hartley, 1986), however, the majority of cell 

wall-bound pCA is ester-linked to lignin (Bartley et al., 2013). pCA has not been 

shown to dimerise or cross-link in vivo (Hatfield et al., 1999), rather, pCA monolignol 



   

 

31 

   

ester conjugates are formed intracellularly by an enzyme in the BAHD acyl 

transferase family: p-coumaroyl CoA:monolignol transferase (PMT). The conjugates 

are then transported to the cell wall and incorporated into the growing lignin 

polymer (Petrik et al., 2014, Withers et al., 2012). The function of pCA in the plant 

cell wall remains largely unknown. There is growing evidence that pCA esterified to 

lignin is involved in the lignin polymerisation process, in which it readily forms free 

radicals, but preferentially transfers the unpaired electron to other more stable 

phenols, such as sinapyl alcohol. This hypothesis was first suggested by Takahama et 

al. (1996), and was later evidenced in vitro using peroxidases extracted from maize 

cell walls (Hatfield et al., 2008). However, the mechanism remains to be proven in 

planta. pCA esterified on arabinoxylan has an as yet unknown function. It has been 

suggested that total cell wall-bound hydroxycinnamates, including pCA, are involved 

in resistance against pathogens (Santiago et al., 2006, Santiago et al., 2008), 

however, at present there is little direct evidence supporting a role for pCA in 

defence. 

1.6.6 Cell wall-bound sinapic acid 

Sinapic acid has been isolated from cell wall fractions of cereals, such as wheat, 

maize, rice and barley, but does not appear to be universal in the grasses as it was 

not found in oat or millet (Bunzel et al., 2003). At present, the cell wall polymer to 

which sinapic acid is acylated is unknown. However, there is some evidence that it is 

associated with cell wall polysaccharides (Bunzel et al., 2002). Sinapic acid has been 

suggested to have an analogous function to FA in cross-linking components of grass 

cell walls, due to the existence of dehydrosinapic acid and sinapate-ferulate 

heterodimers in cereal grains (Bunzel et al., 2003). 
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1.7 Glucurono- and arabinoxylan synthesis 

AX synthesis is localised at the Golgi membrane, as is most non-cellulosic cell wall 

polysaccharide synthesis (Scheller and Ulvskov, 2010). Sugars activated with uridine 

diphosphate (UDP) are transferred to the growing polysaccharide chain by 

glycosyltransferases. AX is then transported to the cell wall, in vesicles, to be 

deposited. Glycosyltransferases (GTs) that have currently been identified in AX 

synthesis are in the families GT8, GT43, GT47, GT61 (Rennie and Scheller, 2014).  

1.7.1 Discovery of xylan synthesis genes 

The first plant cell wall synthesis enzymes to be identified were the cellulose 

synthase (CesA) enzymes (Pear et al., 1996). Since then, the genes and enzymes 

responsible for the synthesis of other cell wall polysaccharides have begun to be 

elucidated, including those responsible for xylan synthesis, although many more 

remain to be discovered. AX is synthesised at the Golgi and transported to the cell 

wall via vesicles and deposited, therefore xylan synthases are integral membrane 

proteins which are localised at the Golgi membrane (Rennie and Scheller, 2014). The 

Arabidopsis irregular xylem T-DNA insertion mutants have been influential in 

identifying xylan synthase genes (Brown et al., 2007), as have large scale 

comparative gene expression studies and co-expression studies (Pellny et al., 2012, 

Jensen et al., 2013, Mitchell et al., 2007, Molinari et al., 2013). Known glucurono- 

and arabino-xylan (GX and AX) synthase genes are summarised in Table 1.  

Mitchell et al. (2007) identified candidate genes for AX synthesis, using a novel 

comparative bioinformatics approach, based on the hypothesis that orthologous genes 

for AX synthesis were likely to be more highly expressed in grasses than in 

dicotyledonous species. Specific clades within the GT43, GT47, GT61 and Pfam 

PF02458 (now known as BAHD) families were the most likely to encode the enzymes 
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that synthesise AX and its side chains. Concurrent to this study, the first xylan 

synthesis genes were beginning to be elucidated in Arabidopsis mutants (Pena et al., 

2007, Brown et al., 2007), which confirmed the predictions of Mitchell et al. (2007).  

1.7.2 Synthesis of the β-(1-4)-xylan backbone 

The first β-(1-4)-Xyl backbone genes to be discovered were IRREGULAR XYLEM 

(IRX)9 (Pena et al., 2007, Brown et al., 2007, Lee et al., 2007a), IRX10 (Brown et al., 

2009, Wu et al., 2009) and IRX14 (Brown et al., 2007), the gene products of which 

belong to the glycosyltransferase (GT)43 and GT47 families of enzymes. These genes 

were identified in T-DNA insertion mutant lines characterised by a collapsed xylem 

and reduced cell wall xylose. As xylem tissue is composed mainly of GX rich 

secondary cell walls, these enzymes were predicted to be associated with GX 

synthesis. The mutant plants had decreased GX chain length and the proteins were 

shown to have β-(1-4)-Xyl transferase (XylT) activity in microsomal membranes 

(Brown et al., 2007, Brown et al., 2009). Recently, the in vivo XylT activity of IRX10 

from family GT47 was unambiguously confirmed using a bioluminescent assay 

(Urbanowicz et al., 2014) and heterologous expression in yeast (Jensen et al., 2014). 

Closely related homologues of these genes were later identified; namely, IRX9-L, 

IRX10-L and IRX14-L (Keppler and Showalter, 2010, Wu et al., 2010, Wu et al., 

2009), which have functional redundancy to their equivalent homologue. Recently, 

IRX15 and IRX15-L have been identified as also having a role in xylan biosynthesis, 

although their exact function remains to be discovered (Jensen et al., 2011, Brown et 

al., 2011). The role of the functionally redundant homologous pairs of genes is 

unknown, although it has been suggested that each pair may be differentially 

expressed in the primary and secondary cell walls (Mortimer et al., 2015, Chiniquy et 

al., 2013).  
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1.7.3 Dicot GX side chain synthesis 

Genes FRA8/IRX7 (Brown et al., 2007, Zhong et al., 2005), IRX8 (Pena et al., 2007, 

Brown et al., 2007, Persson et al., 2007), PARVUS (Brown et al., 2007, Lee et al., 

2007b) and F8H (Lee et al., 2009) are implicated in the synthesis of the dicot-specific 

GX reducing end tetrasaccharide (section 1.5), which may be a “primer” involved in 

elongation of the polysaccharide chain.  

Recently, the proteins that synthesise the GlcA and 4-O-meGlcA side chain 

substitutions on GX were discovered in Arabidopsis mutants lacking these 

decorations on the backbone. The genes were named GlucUronic acid substitution of 

Xylan (GUX) (Mortimer et al., 2010). GUX1, 2, 3 and 4 have been shown to exhibit 

GlcAT activity onto xylooligomers in microsomal membranes and are differentially 

expressed in pith, xylem and interfascicular fiber (Lee et al., 2012, Rennie et al., 

2012). GUX1 and 2 have been shown to substitute GX in two distinct domains 

(Bromley et al., 2013, Busse-Wicher et al., 2016). In addition, Arabidopsis genes 

eskimo1/TBL29 (Urbanowicz et al., 2014, Yuan et al., 2013), TBL3 and TBL31 (Yuan 

et al., 2015) have been shown to catalyse the addition of O-acetyl groups to xylan in 

vitro.  

1.7.4 Arabinoxylan (AX) synthesis in the Poaceae  

AX synthesis of the grasses remains poorly understood despite their global economic 

and nutritional significance and the dominance of AX in grass cell walls. In wheat, 

Lovegrove et al. (2013) reported that RNAi suppression of the wheat irx9 and irx10 

orthologue, TaGT43_2 and TaGT47_2 resulted in a reduction in total AX, with 

decreased AX chain length, but increased arabinosyl substitution. Additionally, Zeng 

et al. (2010) showed AX synthase activity in wheat microsomes of a GT43-4 (IRX14 

orthologue), GT47-13 (IRX10 orthologue) and GT75-4 complex. In rice, Zhang et al. 
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(2014) reported that the orthologue of irx10, OsGT47A, rescued the phenotype of the 

Arabidopsis irx10/irx10-L double mutant, and Chiniquy et al. (2013) showed that 

rice genes OsIRX9, OsIRX9-L and OsIRX14, rescued the phenotypes of their 

equivalent orthologous mutants in Arabidopsis. These results suggest that the genes 

for β-(1-4)-Xyl backbone synthesis are conserved in the Poaceae. 

Additionally, the enzymes which catalyse the synthesis of some AX side chains in the 

grasses have recently been described. GT61 family genes XAT1 and XAT2 have been 

characterised as adding the α-(1-3)-Ara substitutions on AX in the grasses (Anders et 

al., 2012). In this study, RNAi knock down of TaXAT1 in wheat resulted in greatly 

decreased α-(1-3)-Ara substitution of AX. Furthermore, heterologous expression of 

wheat TaXAT2, and its rice homologues, OsXAT2 and OsXAT3, in Arabidopsis wild 

type and gux mutants (section 1.7.3) resulted in Ara decorations on (G)X, where 

these substitutions are usually absent. Furthermore, Chiniquy et al. (2012) described 

the reduction of Xyl on the grass-specific β-(1-2)-Xyl-(5-O-feruloyl)-α-(1-3)-Ara- 

substitution of AX in rice mutant xax1. Thus, the authors suggested that XAX1 was a 

xylosyl transferase, however, the mutants also showed significantly reduced cell wall-

bound FA and pCA, which suggests that XAX1 may be a feruloyl-arabinosyl or 

coumaroyl-arabinosyl transferase (section 1.8.2). Also, overexpression of BAHD acyl 

transferase family gene OsAT10 resulted in a large increase in AX-esterfied pCA and 

is therefore involved in pCA substitution on AX (Bartley et al., 2013). Despite these 

recent advances, many of the enzymes involved in addition of grass-specific side 

chains to AX remain to be discovered; in particular, the genes responsible for the 

addition of FA-Ara side chains to AX, which are important in cell wall digestibility 

(section 1.6.4), are still unknown.  
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1.7.5 Conservation of IRX genes 

The IRX genes have been shown to be functionally conserved in other species, such as 

poplar, cotton, willow, asparagus and plantago (Ratke et al., 2015, Wan et al., 2014, 

Zeng et al., 2016, Jensen et al., 2014). Interestingly, genes orthologous to IRX9-L, 

IRX10 and IRX14, responsible for synthesis of the β-(1-4)-Xyl backbone, are also 

conserved in mosses and spike mosses (Hornblad et al., 2013, Harholt et al., 2012) 

and orthologues of IRX10/IRX10-L, IRX7/FRA8 and IRX8 involved in synthesising 

the Xyl backbone, and the dicot-specific reducing end tetrasaccharide have been 

identified in the charophyte green algae (Mikkelsen et al., 2014), showing 

conservation throughout land plant evolution.  

1.7.6 The xylan synthase complex 

The concept of a xylan synthase complex was suggested as early as the irx genes were 

discovered (Brown et al., 2007). Later, Zeng et al. (2010) provided empirical evidence 

that TaGT43-4 (IRX14 orthologue), TaGT47-13, (IRX10 orthologue) and an 

uncharacterised putative Ara mutase (Arap to Araf) in the GT75 family, TaGT75-4 

co-immunoprecipitate. The interaction between IRX14 and IRX10 was expected, 

however the addition of GT75 to the Golgi localised complex was surprising, as the 

rice orthologue, UAM1 has previously been shown to catalyse Arap to Araf in the 

cytosol (Konishi et al., 2007). The purified complex had xylosyl transferase, 

arabinosyltransferase, and glucuronosyltransferase activities (Zeng et al., 2010). Site 

directed mutagenesis of the catalytic sites of IRX9, IRX9L, and IRX14 showed that 

the catalytic site was not essential for the function of the protein, and IRX14 function 

was dependant on substrate binding, but not on catalytic site activity in Arabidopsis 

(Ren et al., 2014). Jiang et al. (2016) provide evidence to support this as the IRX14 

wheat orthologue (TaGT43-4) was shown to have a role in anchoring the complex to 

organelle membranes. More recently, Zeng et al. (2016) reported that asparagus (non-  
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Locus Gene name Orthologue 
Gene 

family 
Species Activity Reference 

Dicots             

At2g37090 IRX9   GT43 

Arabidopsis 
xylosyl transferase, β-(1-4)-

Xyl backbone 

Brown et al. (2007), Pena et al. (2007), Lee et al. (2007a) Wu 

et al. (2010) 

At1g27600 IRX9-L   GT43 Wu et al. (2010), Mortimer et al. (2015) 

At1g27440 IRX10   GT47 
Brown et al. (2009), Wu et al. (2009), Jensen et al. (2014), 

Wu et al. (2010), Urbanowicz et al. (2014) 

At5g61840 IRX10-L   GT47 
Brown et al. (2009), Wu et al. (2009), wu et al. (2010), 

Mortimer et al. (2015) 

At4g36890 IRX14    GT43 
Brown et al. (2007) Keppler et al. (2010), Wu et al. (2010), 

Mortimer et al. (2015) 

At5g67230 IRX14-L   GT43 Keppler et al. (2010), Wu et al. (2010) 

At2g28110 IRX7/FRA8   GT47 

Arabidopsis 

 

dicot reducing end 

tetrasaccharide 

 

Brown et al. (2007), Zhong et al. (2005) 

At5g22940 F8H   GT47 Lee et al. (2009) 

At5g54690 IRX8   GT8 Brown et al. (2007), Pena et al. (2007), Persson et al. (2007) 

At1g19300 PARVUS   GT8 Brown et al. (2007), Lee et al. (2007b) 

At3g50220 IRX15    
DUF579 Arabidopsis unknown function 

Jensen et al. (2011), Brown et al. (2011) 

At5g67210 IRX15-L   Jensen et al. (2011), Brown et al. (2011) 

At3g18660 GUX1   GT8 

Arabidopsis 

 

glucuronic acid transferase, 

(me)GlcA substitution 

 

Mortimer et al. (2010), Lee et al. (2012), Rennie et al. (2012), 

Bromley et al. (2013), Mortimer et. al. (2015) 

At4g33330 GUX2   GT8 
Mortimer et al. (2010), Rennie et al. (2012), Bromley et al. 

(2013), Mortimer et al. (2015) 

At1g77130 GUX3   GT8 Mortimer et al. (2015) 

At1g54940 GUX4   GT9 Rennie et al. (2012) 

At3g10320 MUCI21   
GT61 

clade B 
Arabidopsis 

Xylan side chain synthesis, 

specific expression in 

Arabidopsis mucilage, 

unknown activity 

Voiniciuc et al. (2015) 

At3g55990 ESK1/TBL29   

DUF231 

 

Arabidopsis 

 

O-2 and O-3 acetylation 

subsitutions 
Yuan et al. (2013), Urbanowicz et al. (2014) 

At5g01360 TBL3   O-3 acetylation subsitutions Yuan et al. (2015) 

At1g73140 TBL31   O-3 acetylation subsitutions Yuan et al. (2015) 

Table 1.1  Known arabinoxylan (AX) synthesis genes in dicots and monocots. Asterisks represent two genes which may be involved in 

hydroxycinnamic acid addition to AX.  
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Locus Gene name Orthologue 
Gene 

family 
Species Activity Reference 

Commelinid monocots             

 TaGT43_2  Atirx9 GT43 wheat 

xylosyl transferase, 

β-(1-4)-Xyl backbone 

 

Lovegrove et al. (2013) 

 TaGT47_2  Atirx 10 GT47 wheat Lovegrove et al. (2013) 

LOC_Os07g49370 OsIRX9 Atirx9 GT43 rice Chiniquy et al. (2013) 

LOC_Os01g48440 OsIRX9-L  Atirx9-L GT43 rice Chiniquy et al. (2013) 

LOC_Os06g47340 OsIRX14 Atirx14 GT43 rice Chiniquy et al. (2013) 

Os0g0926600 OsGT47A Atirx10 GT47 rice  Zhang et al. (2014) 

  TaGT47-13 Atirx10 GT47 

wheat 
xylan synthase complex 

 
Zeng et al. (2010), Jiang et al. (2016)   TaGT43-4 Atirx14 GT43 

  TaGT75-4   GT75 

  XAT1    

GT61 

clade A 

 

wheat 
arabinosyl transferase 

activity, (1-3)-Ara 

substitutions 

 

Anders et al. (2012) 
  XAT2   wheat, rice 

LOC_Os02g22480 OsXAT2   rice 

LOC_Os03g37010 OsXAT3   rice 

LOC_Os02g22380 XAX1*   

GT61 

clade A 

 

rice 
xylosyl-arabinosyl 

transferase/ feruloyl-

arabinosyl transferase? 

Chiniquy et al. (2012) 

LOC_Os06g39390 OsAt10*   BAHD rice 
p-coumaroyl CoA 

transferase, pCA side chain 
Bartley et al., 2013 

LOC_Os03g40270 OsUAM1   GT75 
rice 

UDP-Arap to UDP-Araf 

mutase Konishi et al. (2007) 

 
LOC_Os07g41360  OsUAM3   GT75 

UDP-Arap to UDP-Araf 

mutase 
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commelinid monocot) genes AoIRX9, AoIRX10 and AoIRX14 interact to form a xylan 

synthase complex, which is localised at the Golgi membrane when heterologously 

expressed in Nicotiana benthamiana. The xylan synthase appears to be assembled at 

the endoplasmic reticulum, and transported to the Golgi (Jiang et al., 2016). GUX or 

GT61 enzymes, which are xylan side chain (me)GlcA and Ara transferases, have 

hitherto not been shown to be incorporated into the xylan synthase complex. 

1.8 FA synthesis genes 

Despite the recent advances in identification of AX synthesis genes of the grasses, the 

genes responsible for the addition of important FA-Ara side chains to AX are still 

unknown. Mitchell et al. (2007) predicted that genes in the GT61 and BAHD acyl 

transferase families would be involved in the process. In particular, genes in a clade 

within the BAHD Pfam family PF02458 were the most differentially expressed acyl 

transferases between monocots and dicots and are therefore strongly implicated in 

the feruloylation of AX. In addition, genes within the GT61 family were highly 

co-expressed with the BAHDs (Mitchell et al., 2007, Molinari et al., 2013) and are 

therefore likely to also be involved in the feruloylation of AX. 

1.8.1 BAHD acyl transferases in feruloylation 

The BAHD superfamily of acyltransferases is a large group containing the functional 

Pfam domain PF02458 and is localised to the cytoplasm (D'Auria, 2006). A clade 

within this family has been predicted to be involved in the addition of HCAs to AX by 

Mitchell et al. (2007), and hence was coined the “Mitchell clade” (Bartley et al., 2013). 

This clade showed differential expression between monocot and dicot species 

(Mitchell et al., 2007).  
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Two enzymes within the Mitchell clade have been functionally characterised. The 

first is a cytoplasmic p-coumaroyl monolignol transferase (PMT, Petrik et al., 2014, 

Withers et al., 2012). The second is a p-coumaroyl coenzyme A acyltransferase 

involved in the addition of pCA to AX (Bartley et al., 2013). 

The role of BAHDs in feruloylation remains elusive, however two BAHD genes have 

been shown to localise with a QTL for the feruloylation of AX in maize (Barriere et 

al., 2012). Also RNAi suppression of Bd2g43520 (BAHD5/BDAT1, Figure 1.4), which 

is highly expressed in leaves of Brachypodium distachyon (Brachypodium) 

throughout development (Molinari et al., 2013), resulted in decreased cell wall-bound 

FA in Brachypodium (Buanafina et al., 2016), however this effect was not replicated 

in rice (Piston et al., 2010). Piston et al. (2010) also tested the role of other BAHD 

genes within the Mitchell clade and found a modest 19% reduction in cell wall-bound 

FA in stem, supporting the role of the clade in feruloylation.



    

 

   41 

   

 

 

 

 

 

 

 

 

Figure 1.4  Phylogenetic tree of two clades within the BAHD family which are 

differentially expressed in monocot and dicot species and therefore are candidates for 

AX feruloylation. The tree shows rice, Brachypodium distachyon, and Arabidopsis 

genes within the clades. Genes are arbitrarily numbered. The figure highlights 

characterised genes OsPMT, BdPMT and OsAT10. Figure sourced from Molinari et 

al. (2013). 

BdPMT 
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1.8.2 Glycosyltransferase 61 family in feruloylation 

Glycosyltransferase (GT)61 family (Figure 1.5) enzymes are type II GTs; most of 

which contain a single transmembrane domain, and all of which contain an inverting 

catalytic domain of unknown function (PF04566). All GT61 enzymes are predicted to 

be localised at the Golgi, where AX is synthesised, and this has been evidenced for 

some GT61s (Anders et al., 2012, Chiniquy et al., 2012). The GT61 family can be 

divided into three clades (Figure 1.5; Anders et al., 2012).  

Some clade A enzymes TaXAT1, TaXAT2, OsXAT2 and OsXAT3 have been 

characterised as α-(1,3)-arabinosyl transferases (Anders et al., 2012). If the substrate 

for feruloylation is an activated form of FA-Ara, this suggests that the candidate for 

feruloylation of AX may be in the GT61 family. Additionally, a clade B Arabidopsis 

GT61 was shown to be involved in xylan synthesis in Arabidopsis mucilage; the 

biochemical activity of the enzyme remains uncharacterised, however the mutant 

GT61 had reduced Xyl decoration attached directly to the backbone in a unique 

mucilage xylan, and therefore may be a xylosyl transferase (Voiniciuc et al., 2015). 

Clade C is distantly related to Clades A and B; a representative from Clade C was 

shown to have β-(1,2)-XylT activity involved in protein glycosylation in Arabidopsis 

(Bencur et al., 2005).  

Additionally, Chiniquy et al. (2012) characterised the xax1 mutant. The authors 

proposed that XAX1 is a xylosyltransferase, which adds a xylose residue to an 

unferuloylated arabinose on arabinoxylan, which is subsequently feruloylated. 

However, feruloylation has been shown to occur at the Golgi (Myton and Fry, 1994). 

Also, the wheat orthologue of XAX1, TaGT61.9 is highly expressed in starchy 

endosperm in wheat, where the proposed linkage is not found. Additionally, the 



    

 

   43 

   

Figure 1.5  Phylogenetic tree of rice, wheat, Brachypodium and Arabidopsis GT61 

genes. Genes are arbitrarily numbered depending on sequence similarity. Only 

highly expressed wheat genes are included. 
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Brachypodium orthologues of XAX1, BdGT61.9p1 and BdGT61.9p2, are coexpressed 

with the candidate genes within the BAHD acyl-coA transferase family (Figure 1.4), 

suggesting involvement of these proteins in feruloylation (Molinari et al., 2013), and 

there is strong evidence that BAHD genes are responsible for addition of pCA to 

arabinose (Bartley et al., 2013). BAHD proteins are localised to the cytosol (confirmed 

by analysis of GFP fusion proteins for TaBAHD1, 2 and 3, Dr. Jackie Freeman, 

unpublished) where UDP-arabinofuranose is made before being transported to the 

Golgi (Konishi et al., 2007). These findings support the hypothesis that GT61.9 is a 

feruloyl-arabinosyl transferases that is responsible for the addition of feruloylated 

and/or coumaroylated Ara side chains to the Xyl backbone on AX. In this model, the 

loss of the Xyl linkage observed by Chiniquy et al. (2012) is explicable as the loss of 

the feruloylated Ara would in turn result in decreased available sites for the addition 

of (1-2)-linked Xyl residues. Thus, there are currently two competing models for the 

function of XAX1/GT61.9 (Figure 1.6). 
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Figure 1.6  Two models for the role of BAHD acyltransferases and glycosyltransferase (GT)61.9 enzymes in the synthesis of 

hydroxycinnamic acid (HCA) side chain synthesis of arabinoxylan (AX) in grasses. BAHD enzymes are postulated to catalyse 

HCA-coA to uridine diphosphate (UDP)-arabinose (Ara) in the cytoplasm. There are two competing theories for the function of 

GT61.9. Chiniquy et al. (2012) propose that GT61.9 is a xylosyl (Xyl) transferase which catalyses the addition of a unique Xyl side 

chain of AX, whereas the alternative model proposes GT61.9 is a feruloyl- and/or coumaroyl-arabinosyl transferase.   
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1.9 Brachypodium 

Historically, the dicotyledonous species Arabidopsis thaliana (Arabidopsis) has been 

the leading model organism for plants. However, the Arabidopsis genome is distantly 

related the Poaceae (Draper et al., 2001) and the difference between monocot and 

dicot cell walls renders Arabidopsis a poor model for grass cell wall research. 

Brachypodium distachyon (Brachypodium) is a small grass in the Poaceae family 

(subfamily Pooideae), and is closely related to the major cereal crops. Out of the ‘big 

3’ cereal crops, maize, rice and wheat (Shewry, 2009), Brachypodium is most closely 

related to wheat, deriving from a common ancestor approximately 35 million years 

ago (Girin et al., 2014), however it is still closely related to rice and maize (Opanowicz 

et al., 2008). There are around 30 inbred lines of Brachypodium, created from a 

collection of natural accessions collected by the USDA National Plant Germplasm 

System (Garvin et al., 2008), of which the most widely used is inbred line Bd21. 

Brachypodium has all the important characteristics of a good model organism, 

including a small genome of 272 Mb on 5 chromosomes, which has been fully 

sequenced from the inbred line Bd21 (International Brachypodium Initiative, 2010) 

and is available online (www.phytozome.net), and has an available microarray 

(Brkljacic et al., 2011). Brachypodium also has a short life cycle of 10-18 weeks, small 

growth height of 20 cm and simple growth requirements (Draper et al., 2001, 

Opanowicz et al., 2008, Vain, 2011). Furthermore, it is routinely transformable using 

an Agrobacterium-mediated method (Vogel and Hill, 2008). Additionally, there is a 

large number of available T-DNA insertion mutants for Brachypodium from the 

United States Department of Energy Joint Genome Institute (DOE JGI), which 

currently holds 23,649 lines (http://jgi.doe.gov/our-science/science-programs/plant-

genomics/brachypodium/brachypodium-t-dna-collection/), and two available 
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Targeting Induced Local Lesions in Genomes (TILLING) populations from INRA in 

Versailles and the Boyce Thompson Institute (Brkljacic et al., 2011). Unfortunately, 

no plants carrying deletion-of-function mutations in the BdGT61 genes of interest for 

AX synthesis are available. All things considered, Brachypodium provides an ideal 

model organism for the study of grasses and their unique cell walls, especially in 

transformation studies.       
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1.10 Project aims 

In summary, FA is an integral and important component of grass cell walls, which 

cross-links polysaccharide chains and is a nucleation site for lignin polymerisation. 

Further, FA is a key target for improving the digestibility of grass and cereal cell 

walls in second generation biofuel and ruminant nutrition applications. Despite its 

importance, the genes and enzymes responsible for the addition of FA and pCA to AX 

remain elusive, but candidate genes have been described in the BAHD and GT61 

families of enzymes (Mitchell et al., 2007). Rice knock-out mutants for a GT61 

enzyme (xax1, named GT61.9 here, resulted in decreased AX-esterified FA and pCA 

(Chiniquy et al., 2012), and therefore may be responsible for the addition of FA 

and/or pCA to AX, although the authors described GT61.9 as a xylosyl transferase. 

Brachypodium provides an ideal model organism for the grasses in order to study the 

genetics of the esterification of FA on AX. Identifying these genes could be exploited 

for improved cell wall digestibility.  

With this in mind, the aims of this project were to: 

1. Identify an environmental factor (mechanical stress or jasmonic acid) which 

induced increased cell wall-bound FA and/or pCA (Chapter 3 and 4). 

2. Identify changes in transcript levels of genes within the BAHD and GT61 

families that corresponded to increased FA and/or pCA (Chapter 4).  

3. Distinguish between two competing theories for the function of GT61.9 in FA 

and/or pCA esterification to AX, using overexpression and RNAi knock-down 

in Brachypodium (Chapter 5). 

4. Investigate the differential expression of two paralogues of GT61.9 in 

Brachypodium tissues (Chapter 5). 
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 General Materials and Methods 

2.1 Chemicals and reagents 

Chemicals and reagents were sourced from Sigma-Aldrich®, UK, unless otherwise 

stated. 

2.2 Plant growth and harvest 

Brachypodium distachyon, inbred line Bd21 (Brachypodium), was used in all 

experiments. Germination and growth of Brachypodium is described in the chapter 

specific methods. Material was harvested directly into liquid nitrogen and stored   

at -80 °C. 

2.3 Tissue preparation 

Tissue was ground to a fine powder in liquid nitrogen using a Spex SamplePrep 

Freezer/Mill®, or by hand in liquid nitrogen using a pestle and mortar. Ground plant 

material was freeze dried and stored at room temperature until use in subsequent 

analyses, unless otherwise stated.  

2.4 Alcohol insoluble residue (AIR) preparation 

AIR preparation method 1: Tissue (20-50 mg) was washed with 2 ml phenol, 

2 ml chloroform:methanol (2:1), and 1.5 ml ethanol. Samples were vortexed 

thoroughly, and centrifuged (>10,000 g, 20 min) to recover the pellet after each wash. 

The resulting pellet was air dried for 2 h.  

AIR preparation method 2: AIR was prepared using a method slightly modified from 

Goubet et al. (2009). Tissue (100 mg) was washed successively with 2 ml volumes of 

aqueous solutions of 100% (v/v) ethanol, chloroform:methanol (1:1), 65% (v/v) ethanol, 
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80% (v/v) ethanol and 100% (v/v) ethanol. Samples were vortexed, and centrifuged 

(2000 g, 20 min) during each wash, to recover the pellet. AIR was dried at 60 °C 

overnight.  

2.5 Destarching of alcohol insoluble residue 

Destarching method 1: Starch was removed from the AIR using a method slightly 

modified from Harholt et al. (2006). AIR prepared using ‘AIR preparation method 1’ 

(section 2.4) was suspended in 1.5 ml 10 mM potassium phosphate buffer, pH 6.5, 

1 mM CaCl, 0.05% (w/v) NaN3, preheated to 95 °C. After 30 s, 1 unit/ml α-amylase 

(Bacillus lichenformis, Sigma-Aldrich®) was added and samples were incubated at 

85 °C, for 15 min. The destarched AIR was collected by centrifugation (>10,000 g, 

20 min), and washed thrice with 1 ml ethanol. Samples were vortexed, and 

centrifuged at (>10,000 g, 10 min) during each wash, to recover the pellet. 

Destarched AIR was dried at 60 °C under vacuum. 

Destarching method 2: Destarching was performed using a method slightly modified 

from Englyst et al. (1994). AIR was prepared using ‘AIR preparation method 2’ 

(section 2.4). AIR (10 mg ± 0.20 mg) was suspended in 1 ml 0.1 M sodium acetate 

buffer, pH 5.2, with 1.25% (v/v) α-amylase (Bacillus lichenformis, Sigma-Aldrich®). 

Samples were incubated at 85 °C, for 1 h, with shaking. A volume of 5 µl pullulanase 

(Bacillus acidopullulyticus, Sigma-Aldrich®) was added, and samples were incubated 

at 50 °C, for 30 min, with shaking. Polysaccharides were precipitated in 1.3 ml cold 

ethanol for 1 h on ice, and pelleted by centrifugation (10,000 g, 4 °C, 10 min). The 

pelleted polysaccharides were washed with 1 ml 70% (v/v) aqueous ethanol thrice. 

Samples were vortexed, and centrifuged (16,000 g, 5 min), during each wash, to 

recover the pellet. Destarched AIR was dried at 40 °C under vacuum.  
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2.6 Matrix polysaccharides extraction and analysis 

Matrix polysaccharides were analysed as previously described by Jones et al. (2003). 

Tissue (5 mg) was treated with 0.5 ml 2 M trifluoroacetic acid (TFA), and oxygen was 

removed by flushing with argon. Samples were hydrolysed at 100 °C, for 4 h, with 

mixing at regular intervals. TFA was evaporated under vacuum. The resulting pellet 

was washed twice in 500 µl isopropanol, and dried under vacuum. The pellet was 

resuspended in 200 µl ELGA water and samples were centrifuged (>10,000 g, 5 min). 

The supernatant was analysed for reducing sugars by high performance anion-

exchange chromatography. Monosaccharides were separated on a Dionex CarboPac 

PA20 (3 x 150 mm), using H2O (solution A), 200 mM sodium hydroxide (solution B) 

and 0.1 M sodium hydroxide, 0.5 M sodium acetate (solution C) as the mobile phase, 

with the following gradient elution program: 0-5 min, linear gradient from 100% A to 

99% A, 1% B; 5-22 min, linear gradient to 47.5% A, 22.5% C, 30% D; 22-30.1 min, 

linear gradient to 100% B; 30.1-37 min, 99% A, 1% B; 37-39 min; 100% A. The flow 

rate was maintained at 0.5 ml min-1. Peaks were identified and quantified compared 

to runs of known standards. The pellet was used to determine crystalline cellulose 

content of the sample (section 2.7). 

2.7 Crystalline cellulose extraction and analysis 

Crystalline cellulose was analysed using a method modified from Viles and 

Silverman (1949). The pellet obtained from the matrix polysaccharides extraction 

(section 2.6) was washed in 1.5 ml water once, and in 1.5 ml acetone thrice. Samples 

were vortexed, and centrifuged (10,000 g, 5 min), during each wash. The resulting 

pellet was air dried at room temperature. Cellulose was hydrolysed in 

72% (w/v) aqueous sulphuric acid, at room temp, for 4 h, and then in 

3.2% (w/v) aqueous sulphuric acid, at 120 °C, for 4 h. Samples were centrifuged 
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(>10,000 g, 5 min), and 40 µl of the supernatant was diluted with 360 µl water. The 

sample was added to 800 µl sulphuric acid with 2 mg/ml anthrone reagent. The 

samples were heated at 80 °C for 30 min. Absorbance was read at 620 nm on a 96-

well optical plate (200 µl/ well). Glucose concentration was determined by comparison 

of absorbance to glucose standards.   

2.8 Lignin extraction and analysis 

Lignin was analysed using a method modified from Foster et al. (2010). Tissue (5 mg) 

was treated with 250 µl glacial acetic acid:acetyl bromide (3:1), at 50 °C, for 3 h, 

thrice mixed by vortex in the final hour. A volume of 1 ml 2 M NaOH and 

175 µl 0.5 M hydroxylamine was added and made up to 5 ml total volume with glacial 

acetic acid. The samples were diluted, 1 in 10, with glacial acetic acid, and A280 was 

measured. The percentage of acetyl bromide soluble lignin (ABSL) was determined 

using equation 1, with the coefficient = 17.75, pathlength = 1, and volume = 5 ml. 

Equation 1           ABSL (%) = (
ABS280

coefficient
× pathlength) x (

volume (ml) x 100%

biomass (g)
) 

2.9 Silica analysis 

Silica concentration was determined using X-ray fluorescence spectrometry as 

previously described by Reidinger et al. (2012). Ground, freeze-dried tissue was 

compressed into a dense pellet, under high pressure, using a manual hydraulic press. 

Silicon concentration was determined using a portable P-XRF instrument (Niton 

XL3t900 GOLDD Analyser, Thermo Scientific) using settings as previously described. 

Silica content (SiO2) was determined as a function of silicon (Si) molecular weight 

using equation 2. Samples were analysed in duplicate and averaged. 

Equation 2           Si (%) × 2.14 = SiO2(%)   
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2.10 Saccharification 

Saccharification was performed by Rachael Hallam, York University, as described by 

Gomez et al. (2011), using a specialised automated platform. To summarise, 4 mg 

sample was pre-treated with 350 µl water at 90 °C for 30 min, rinsed with 25 mM 

sodium acetate buffer five times, and hydrolysed at 50 °C for 8 h with 250 µl 

Celluclast (Novozyme):water (1:4). The hydrolysate was treated with 1 M NaOH and 

a solution containing 0.43 mg/ml MBTH and 0.14 mg/ml DTT in 25 mM sodium 

acetate buffer. Reducing sugars were determined by measuring A620 after addition of 

an oxidising reagent (0.2% (w/v) NH4Fe(SO4)2, 0.2% (w/v) sulfamic acid, 

0.1% (v/v) HCl), and by comparison to the absorbance of known standards. 

2.11 Cell wall-bound phenolic acid extraction 

Cell wall-esterified phenolic acids were extracted using a method slightly modified 

from Li et al. (2008). Exactly 10 mg ± 0.20 mg tissue was washed with 

1 ml 80% (v/v) aqueous ethanol. The samples were vortexed, sonicated for 10 min, 

heated at 80 °C for 15 min and centrifuged (5000 g, 15 min) to recover the pellet. The 

wash was carried out thrice, without heating on the second and third washes. A 

volume of 20 µl 3,5-dichloro-4-hydroxybenzoic acid (15 mg/ml) internal standard was 

added and samples were hydrolysed with 800 µl 2 M NaOH for 16-18 h in the dark. 

The samples were centrifuged (5000 g, 15 min) and the supernatant was acidified to a 

pH below 2 with 220 µl 12 M HCl (Fisher Scientific). Phenolic acids were extracted 

into 800 µl ethyl acetate (Fisher Scientific) thrice; on each extraction the upper phase 

was collected after centrifugation (16,000 g, 5 min) and pooled, before being dried 

under vacuum. The extracted phenolic acids were stored at either -20 °C or 4 °C 

before separation and quantification by High Performance Liquid Chromatography 

(HPLC, section 2.12). 
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2.12 High performance liquid chromatography (HPLC) 

All chemicals used were of HPLC quality where available. Phenolic acids were 

resuspended in 1 ml 50% (v/v) aqueous methanol (Fisher Scientific), 2% (v/v) aqueous 

acetic acid (Fisher Scientific) for plant material, and 100 µl 2% (v/v) aqueous acetic 

acid for callus material, for analysis by HPLC. 

Phenolic acids were quantified using a Shimadzu Prominence high-performance 

liquid chromatograph with a photo-diode array detector. Phenolic acids were 

separated on a Kinetex Phenyl-Hexyl reverse phase UPLC column 

(150 x 4.6 mm, 5 µm), maintained at 30 °C, using acetonitrile (Fisher Scientific) 

(solution A) and 2% aqueous acetic acid (Solution B) as the mobile phase, with the 

following gradient elution program: 0-12 min, linear gradient from 100% B to 30% B; 

12-14 min, isocratic 30% B; 14-14.1 min, linear gradient from 30% B to 100% B; 

14.1-18 min, isocratic 100% B followed by 2 min post-run at 100% B. The flow rate 

was maintained at 2 ml min-1. The injection volume was 20 µl. Quantitation was by 

integration of peak areas of absorbance at 280 nm relative to internal standard peak 

area. Peaks were identified by retention times of pure standards and by published 

absorbance spectra (Waldron et al., 1996, Dobberstein and Bunzel, 2010b). Ferulic 

acid (FA) and para-coumaric acid (pCA) concentration was calculated by reference to 

calibrations generated using known amounts of commercial standards 

(Sigma-Aldrich®). Amounts of cis- and trans-FA were summed to give total 

monomeric FA. Diferulic acid (diFA) concentrations were calculated using relative 

response factors (RRFs, relative to FA) generated by using known amounts of pure 

diFA (8-8-, 8-5-, 5-5-, 8-O-4- and 8-5 benzofuran- (8-5 BF)-coupled) provided by John 

Ralph and Fachuang Lu (Great Lakes Bioenergy Institute, University of Wisconsin, 

Madison, USA). diFA8-O-4 and diFA8-5 BF are reported together where peaks failed 

to fully separate on the chromatograph. 
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2.13 Standard cloning procedure 

Plasmids were digested using Promega enzymes and buffers, following the 

manufacturer’s instructions. The digestion products were separated on 1% agarose 

(Fisher Scientific) TAE gels (4.84 g/l Trizma® base, 1.14 ml/l glacial acetic acid, 

2 ml/l 0.5 M EDTA, pH 8.0), containing ethidium bromide (0.5 µg/ml) to allow 

visualisation on a UV transilluminator (GelDoc-It®2 Imager, Ultra-Violet Products 

Ltd, Cambridge). Bands of DNA were extracted from the gel using the Wizard® SV 

Gel and PCR Clean-Up System (Promega), following the manufacturer’s instructions. 

Ligation was performed using T4 DNA Ligase (NEB), following the manufacturer’s 

instructions. The ligation product was transformed into competent Escherichia coli 

DH5α (homemade) or JM109 (Promega) cells and plated onto 2xYT agar (Fisher 

Scientific) with selection (300 µg/ml streptomycin and 100 µg/ml spectinomycin), and 

incubated at 37 °C. Individual colonies were picked and cultured in 2xYT agar broth 

with selection, at 37 °C with shaking. Plasmids were extracted from cells using the 

GeneJET Plasmid Miniprep Kit (Thermo Scientific), following the manufacturer’s 

instructions. Sequencing by Eurofins sequencing service (Eurofins Genomics, 

Germany) confirmed the plasmid sequence. 

2.14 Agrobacterium transformation 

Agrobacterium tumefaciens, genotype AGL1 (Agrobacterium) was transformed with 

the construct of interest using electroporation. Two µl of 30 ng/µl plasmid was added 

to 50 µl AGL1 Agrobacterium. Electroporation was applied at 2.5 kV, 400 Ω and 

25 µF, and the transformed cells were immediately mixed with 1 ml ice-cold SOC 

media and subsequently incubated at 28 °C for 2 h. The Agrobacterium culture was 

plated onto LB media (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 

1.5% (w/v) BactoTM Agar (Fisher Scientific)), containing 300 µg/ml streptomycin, 
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100 µg/ml spectinomycin, 25 µg/ml rifampicin (Melford), and 100 µg/ml carbenicillin 

(Melford). Plates were incubated at 28 °C. Transformed Agrobacterium was either 

stored at -80 °C in glycerol stocks, or directly plated onto MG/L media (5 g/l tryptone 

(Oxoid Ltd), 2.5 g/l yeast extract (Oxoid Ltd), 5 g/l NaCl, 5 g/l mannitol (Acros 

Organics), 0.1 g/l MgSO4, 0.25 g/l K2HPO4 (Fisher Scientific), 

1.2 g/l glutamic acid, 1.5% (w/v) BactoTM Agar (Fisher Scientific), pH 7.2) for 

Brachypodium transformation.  

2.15 Callus generation 

Callus was generated as described by Vogel and Hill (2008). Brachypodium was 

grown in the glasshouse at 20/20 °C day/night temperature, with a 16/8 h light/dark 

cycle provided by natural light, with supplementary lighting. Plants were vernalised 

1 week after sowing, for 3 weeks at 6 °C, 8/16 h light/dark cycle. Immature seeds 

were harvested from 2-3 month old plants and the lemma was removed. Seeds were 

surface sterilised in 10% household bleach for 5 min, and washed with sterile water 

thrice. Immature embryos were removed from sterilised seeds by dissection, and were 

transferred to callus induction media (CIM; 4.43 g/l LS salts (Duchefa Biochemie), 

30 g/l sucrose (Fisher Scientific), 0.6 mg/l CuSO4, 2.5 mg/ml 2,4-D, 

0.2% (w/v) PhytagelTM, pH 5.8). The embryos were incubated at 28 °C in the dark to 

generate callus, which was subcultured every 2-3 weeks to generate a sufficient 

quantity. 

2.16 Brachypodium transformation 

Brachypodium callus was transformed as described by Vogel and Hill (2008), using 

an Agrobacterium mediated method. Agrobacterium was suspended in a liquid CIM 

suspension (CIM as per section 2.15, without PhytagelTM gelling agent, with 
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200 µM acetosyringone and 10 µl/ml 10% Synperonic PE/F68), to an OD600 of 0.6. 

Brachypodium calli (50 pieces per 20 ml suspension) were added and were               

co-cultivated with the Agrobacterium for 5 min. Co-cultivated calli were placed onto a 

7 cm Whatman filter paper disc, and dried in the dark at 22 °C for 3 d. Callus pieces 

were transferred to CIM plates with 150 mg/l Timentin and 60 mg/l hygromycin 

selection, and incubated in the dark at 28 °C for one week, and then on fresh media 

for 2 weeks. Healthy callus was transferred to regeneration media (4.43 g/l LS salts, 

30 g/l maltose (Melford), 0.2% (w/v) PhytagelTM, pH 5.8), with 0.2 mg/l Kinetin 

(Duchefa Biochemie), 150 mg/l timentin and 60 mg/l hygromycin selection. Shoots 

were generated at 22 °C, 16/8 h light/dark cycle, and then transferred to pots 

containing MS media (4.42 g/l MS salts plus vitamins, 30 g/l sucrose, 

0.2% (w/v) PhytagelTM, pH 5.7) until plants were large enough to transfer to soil. 

2.17 DNA isolation 

Plant tissue was harvested, frozen at -80 °C, freeze-dried, and ground to a powder 

using a Spex Sampleprep 2010 Geno/Grinder®. The ground material was extracted 

into 500 µl DNA extraction buffer (100 mM Tris-HCl, pH 7.0, 250 mM NaCl, 

25 mM EDTA, 0.5% SDS), and centrifuged (16,000 g, 5 min). A volume of 350 µl 

isopropanol was added to an equal volume of the supernatant and mixed. Samples 

were centrifuged (16,000 g, 5 min) and the supernatant was discarded. A volume of 

900 µl 70% (v/v) aqueous ethanol was added to the pellet and samples were incubated 

at room temperature for 1 h with shaking, and centrifuged (16,000 g, 5 min) and the 

supernatant was discarded. The DNA pellet was dried under vacuum, and gently 

resuspended in 40 µl nuclease-free water by incubating at room temperature for 1 h, 

with shaking. DNA concentration was determined on a NanoDrop 1000 

Spectrophotometer (Thermo Scientific). 
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2.18 Quantitative PCR (qPCR) to determine zygosity 

Genomic DNA was extracted as described in section 2.17. Quantitative PCR (qPCR) 

was carried out on a Roche LightCycler® 96 System, in a 96-well plate. Reaction 

mixtures contained 4 µl FastStart Essential DNA Green Master (Roche), 3 µl primer 

mix (400 nM F primer, 400 nM R primer) and 1 µl DNA per well (1-500 ng/µl). 

Primers were: F 5’GTGCAGGTCGATCTTAGCAGG and  

R 5’AGTCCTCTTCAGAAATGAGCTTTTG (for amplification of overexpression 

constructs Ubi::GT61.9p1-Myc and IRX5::GT61.9p1-Myc), and F 

5’CGCAAGACAATGACCGCTATG and R 5’CCAATCCGACGCCTCCTTATA (for 

amplification of the housekeeping gene ubiquitin). Cycling conditions were 95 °C for 

10 min, 40 x (95 °C for 20 s, 60 °C for 15 s, 72 °C for 15 s). As a quality control 

measure, a melting curve was created using an increasing temperature gradient 

(95 °C for 5 s, 70 °C increasing to 95 °C, 40 °C for 30 s). Two technical replicates per 

sample were averaged. Amplification of the overexpression construct fragment was 

standardised to amplification of the housekeeping gene fragment using equation 3 

(where Cq = quantitation cycle). Homozygous plants were determined as those with 

double the zygosity value of heterozygous plants. 

 

Equation 3           Zygosity value =
2

−gene of interest (Cq)

2
− housekeeping gene (Cq)

 

2.19 RNA isolation 

Pine Tree RNA Isolation Method:  RNA was extracted as described by (Chang et al., 

1993). Tissue (10-50 mg) was suspended in 500 µl-1 ml RNA extraction buffer 

(2% (w/v) hexadecyltrimethylammonium bromide (CTAB), 

2% (w/v) polyvinylpyrrolidinone K 30 (PVP), 100 mM Tris-HCl (pH 8.0), 
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25 mM EDTA, 2 M NaCl, 0.5 g/l spermidine, 2% (v/v) β-mercaptoethanol), warmed to 

65 °C. Extraction was carried out twice with an equal volume of chloroform:isoamyl 

alcohol. The aqueous phase was recovered following centrifugation (16,000 g, 15 min) 

after each extraction. RNA was precipitated by the addition of 10/32 of the volume 

8 M LiCl and incubated on ice, overnight. Samples were centrifuged (20,000 g, 4 °C, 

30 min) to pellet the precipitated RNA. The pellet was resuspended in 

500 µl SSTE buffer (1 M LiCl, 0.5% SDS, 10 mM Tris-HCl (pH 8.0), 

1 mM EDTA (pH 8.0), warmed to 65 °C), by incubation at room temperature for 

30 min, with shaking. An equal volume of chloroform:isoamyl alcohol was added and 

the aqueous phase was recovered after mixing by vortexing and centrifugation 

(20,000 g, 4 °C, 30 min). Two volumes of ethanol were added, and samples were 

incubated at 80 °C for 30 min, and at 20 °C for 1-24 h. The samples were centrifuged 

(20,000 g, 4 °C, 20 min) and the resulting pellet was dried under vacuum. RNA was 

resuspended in nuclease free water. 

TRIzol RNA isolation method: Tissue was prepared as described in section 2.3, 

without freeze-drying, and stored at -80 °C. Around 10-50 mg fresh tissue was 

suspended in 1 ml TRI Reagent® and then centrifuged (12,000 g, 4 °C, 10 min). The 

supernatant was added to 200 µl chloroform, and incubated at room temperature for 

2-3 min. The samples were centrifuged (10,000 g, 4 °C, 15 min). To the upper phase, 

½ volume of isopropanol, and an equal volume of 0.8 M aqueous sodium citrate, 1.2 M 

aqueous NaCl was added. The samples were incubated at room temperature for 

10 min, and centrifuged (10,000 g, 4 °C, 10 min). The pelleted RNA was washed with 

1 ml 75% (v/v) aqueous ethanol (vortexed, centrifuged 10,000 g, 4 °C, 10 min), and 

evaporated to dryness under vacuum. RNA was resuspended in nuclease free water. 

RNA concentration was determined on a NanoDrop 1000 Spectrophotometer (Thermo 

Scientific). 
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2.20 Western blotting 

Protein was extracted from samples flash-frozen in liquid nitrogen and ground by 

hand, or freeze-dried and ground in a Spex SamplePrep 2010 Geno/Grinder®. 

Samples were suspended in an aqueous solution containing NuPAGE® LDS Sample 

Buffer (4x) and NuPAGE® reducing agent (10x) (Life Technologies), diluted to 1x from 

stock. Samples were vortexed and heated at 70 °C for 10 min, cooled on ice and 

centrifuged (16,000 g, 5 min). A volume of 5 µl (stem samples) or 20 µl (leaf samples) 

of the supernatant was run on SDS-PAGE gels (NuPAGETM NovexTM 4-12% Bis-Tris 

Protein Gel) using 1 x NuPAGE® MOPS SDS running buffer (Life Technologies) at 

50-60 V for 30 min, and then at 200 V for 60 min.  

To visualise proteins, the gels were fixed in an aqueous solution containing 

10% (v/v) acetic acid, 10% (v/v) methanol for 15 min, stained in 80% (v/v) aqueous 

Brilliant Blue G according to manufacturers instructions, and destained with 

distilled water.  

To Western blot the protein gel, the Life Technologies iBlot system was used, 

following the manufacturer’s instructions. The resulting nitrocellulose blot was 

blocked in Tris Tween Buffered Saline (TTBS; 5 mM Trizma®.HCl, 28 mM NaCl, 

pH 7.5, 0.05% TWEEN® 20) containing 5% milk protein (Marvel Original), at 4 °C, 

overnight. The blot was incubated first with mouse monoclonal anti-c-Myc antibody 

(Life Technologies), at 4 °C overnight, and then with goat anti-mouse IgG secondary 

antibody, Alexa Fluor® 488 conjugate (Thermo Fisher Scientific), at room 

temperature, for 2 h. Antibodies were diluted to 0.2 µl/ml (primary antibody) and 

0.12 µl/ml (secondary antibody) in TTBS with 1% (w/v) Bovine Serum Albumin (BSA) 

before use. Blots were washed in TTBS between each incubation. Immunoreactivity 

was visualised using 5 ml Pierce® ECL Western Blotting Substrate (Thermo 
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Scientific) and exposure to Amersham HyperfilmTM ECL (GE Healthcare Life 

Sciences). 

2.21 Microscopy 

Green fluorescent protein (GFP) was visualised using a Zeiss 780 LSM confocal 

microscope. GFP was excited under a 488 nm laser, and detected at 499-556 nm. 
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 The Effect of Mechanical Stress on Cell Wall 

Composition in Brachypodium distachyon 

3.1 Introduction 

Environmental mechanical stresses to plants are in the form of wind, rain, hail or 

disturbance by animals, humans or machinery, and often result in dramatic yield loss 

(Biddington, 1986, Mitchell, 1996, Jaffe and Forbes, 1993, Braam, 2005). Mechanical 

stress has become increasingly relevant in urban plant growth and in agriculture 

where invasive practices are used (Mitchell, 1996). The effect of mechanical stress, 

which may be seismomorphogenic (stress by shaking; Mitchell et al., 1975) or 

thigmomorphogenic (stress by touch or wind; Jaffe, 1973), on plant morphology is 

well characterised as a dramatic reduction of internode length and leaf elongation, 

accompanied by an increase in stem diameter (Biddington, 1986, Mitchell, 1996). 

These morphological changes are thought to be adaptive, and improve tolerance to 

abiotic and biotic stresses (Braam, 2005, Chehab et al., 2012).  

The signalling mechanisms involved in the mechanical stress response involve an 

initial and rapid influx of cytosolic calcium (Jones and Mitchell, 1989, Knight et al., 

1992), calcium-activated calmodulin (calcium binding signalling molecule) 

upregulation (Braam and Davis, 1990), and generation of reactive oxygen species 

(ROS; Yahraus et al., 1995). Downstream, the signalling hormone ethylene has long 

been associated with the mechanical stress response, although it only accounts for 

increased radial growth of the stem, and not the decrease in internode elongation 

that is typically observed in the mechanical stress response (Biro and Jaffe, 1984). 

Auxin and ABA have also been implicated in the mechanical stress pathway (Erner 

and Jaffe, 1982), and more recently jasmonic acid (JA) has been shown to be required 
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in the mechanical stress response (Chehab et al., 2012). Interactions between 

hormones and downstream signalling remain to be elucidated.  

Cell wall polysaccharides are affected by mechanical stress in differing plant families. 

Woody plants develop specialised secondary cell walls termed ‘reaction wood’ in 

response to bending due to gravitational forces or wind. Reaction wood manifests in 

angiosperms such as Populus sp. as an alternative cell wall layer, the ‘G-layer’, which 

has increased crystalline cellulose, and decreased matrix polysaccharides and lignin 

on the upper side of the branch, termed tension wood (Andersson-Gunneras et al., 

2006). In gymnosperms, reaction wood manifests as increased lignin on the underside 

of the branch (Yamashita et al., 2007), the purpose of which is to upright a tilted 

stem. In cactus, specialised cell walls are reported to form at joints, in response to 

bending stress, which are thicker and have more lignin (Kahn-Jetter et al., 2000).  

There is limited knowledge of the effect of mechanical stress on the cell wall of 

herbaceous plants, although Verhertbruggen et al. (2013) reported that pectic 

arabinan side chains may increase in response to mechanical stress in Arabidopsis. 

Additionally, Lee et al. (2005) report that only 22 cell wall modifying genes are 

upregulated in response to mechanical perturbation in Arabidopsis, including 

cellulose synthase, pectin esterases, arabinogalactan protein and expansin and 

extensin proteins. Reports on the direct effect of mechanical stress in the Poaceae are 

scarce.  

Hydroxycinnamic acids ferulic- and para-coumaric acid (FA and pCA), which are 

ester-linked to arabinoxylan (AX) in grass cell walls, are of interest in abiotic 

stresses. Cell wall-bound FA may dimerise to form covalently bonded AX bridges, or 

may form ether or C-C bridges which links AX to lignin. These cross-links function in 

strengthening or hardening of certain tissues, and in the cessation of cell expansion. 

The function of AX-linked pCA remains poorly understood, but has been implicated 
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in plant defence (Santiago et al., 2008, Chapter 1.6.5). There is some evidence that 

wall-bound FA may be inducible in response to some abiotic stresses, such as salt 

stress (Uddin et al., 2014), and drought stress (Vuletic et al., 2014), however, the 

effect of mechanical stress on FA and pCA in grass cell walls is unknown. FA 

mediated cross-links are formed by peroxidase-mediated chemical reactions which 

generate ROS such as H2O2 (Hatfield et al., 1999). It is therefore possible that the 

ROS burst caused by mechanical stress and other abiotic stresses induces increased 

cell wall-bound FA dimerisation and cross-links to lignin.  

Lodging in cereals reduces grain yield and is caused by mechanical stresses such as 

wind and rain (Berry et al., 2004). Therefore, physiological changes induced by 

mechanical stress, such as reduced growth and increased stem diameter are likely to 

be traits associated with increased lodging resistance. Additionally, genetic traits 

associated with differences in lodging resistance include lignin (Flint-Garcia et al., 

2003) and cellulose (Kashiwagi et al., 2016). FA cross-linking has been shown to be a 

trait associated with lodging resistance, as shown in barley (Travis et al., 1996). 

Arabinoxylan may also be involved in stem strength, as xylan synthesis mutants 

have been shown to have greatly reduced stem strength which is approximately 40% 

of that of wild type (Chiniquy et al., 2013). Additionally, increased arabinose 

substitutions on AX, possibly caused by increased transcript levels OsXAT2 and 3 

genes, are negatively correlated with lodging in rice mutants, which may be due to 

the interaction between AX and cellulose (Li et al., 2015).  

An increased understanding of environmental factors which affect feruloylation and 

other features of grass cell walls, and how they affect key traits such as recalcitrance 

and lodging resistance, will be influential in breeding new elite cultivars. Further, an 

easily applied environmental treatment which induces changes in feruloylation could 
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be exploited to study the associated changes in transcripts and proteins, to 

investigate mechanisms controlling this key trait.   

Due to the current limited knowledge of the effect of mechanical stress on the plant 

cell wall, and the speculated role of FA in the stress response, the aims of the 

experiments in this chapter were to investigate the effect of thigmormphogenic 

mechanical stress on biochemical changes in the cell wall composition of 

Brachypodium, and to determine whether mechanical stress induced increases in 

AX-linked HCAs.
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3.2 Chapter 3 specific methods 

3.2.1 Plant growth  

Brachypodium was grown in the glasshouse at 25/20 °C, 16/8 h light/dark cycle with 

supplementary lighting, after 2 weeks of vernalisation at 6 °C, 8/16 h light/dark cycle.  

3.2.2 Mechanical stress 

At the time specified in Table 3.1, plants were moved to a mechanical stress 

treatment with a moving metal bar that brushed the plants at 1 brush/min, at a 

speed of 0.1 m/s, or to a control treatment without brushing (Figure 3.1, mechanical 

stress device designed and constructed at Rothamsted Research, UK). Upon 

completion of the stress period (Table 3.1), leaf and stem material was harvested as 

described in Chapter 2.2 and plant material for analysis was prepared as described 

in Chapter 2.3. 

3.2.3  Overview of mechanical stress experiments 

The pilot study was performed to analyse the cell wall-bound phenolic acid 

composition of Brachypodium after 4 weeks mechanical stress. In this experiment, 

four biological replicates of ten plants each were analysed for phenolic acids (three 

technical replicates), silica (no technical replication) and saccharification (four 

technical replicates) as described in Chapter 2.11-2.12, 2.9 and Chapter 2.10 

(Table 3.1). Mechanically stressed plants were compared to controls of four biological 

replicates of ten plants each, which were grown alongside the mechanically stressed 

plants but without brushing (Figure 3.1, Table 3.1).  

Experiment two (exp. 2) was performed to analyse total cell-wall composition of 

mechanically stressed Brachypodium. During experiment two, two biological 
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replicates of ten plants per treatment were randomly assigned in a statistical design. 

These plants were harvested after 1 week of stress and labelled ‘young tissue’. Cell 

wall-bound phenolic acids were analysed in duplicate as described in Chapter 2.11 

and Chapter 2.12 in young tissue. The remaining plants were grown for 22 or 23 d, 

with continuous stress except for an unintentional 5 d stress-free period from days 8-

12 (inclusive). Stem heights and internode number of 60 plants per treatment were 

measured and averaged. Two biological replicates (trays) of 30 plants were analysed 

for cell wall components lignin, cellulose and matrix polysaccharides in triplicate and 

averaged, as described in Chapter 2.8, Chapter 2.7 and Chapter 2.6 respectively, 

and for silica as described in Chapter 2.9. During exp. 2, tillers were removed from 

plants every 3-4 d to create uniform, comparable plants (Table 3.1). Mechanically 

stressed plants were compared to an equal number of untreated control plants, which 

were grown alongside the mechanically stressed plants but without brushing 

(Figure 3.1, Table 3.1).  
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Figure 3.1. Experimental design of mechanical stress treatment of Brachypodium 

distachyon. Plants were divided into A) a control treatment group, or B) a mechanical 

stress treatment group with a moving metal bar to administer stress treatment. 

A 

B 
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Table 3.1  Summary of experiments on the effect of mechanical stress on 

Brachypodium distachyon cell walls (MS = mechanical stress). 

 

Experiment 

name 

Start of 

treatment 

(plant age, d) 

Biological 

Replication 

Days of 

mechanical 

stress 

Tillers 

removed Analyses 

Exp. 1 

(Pilot) 
41 

MS: 4 reps 

of 10 

plants 

28 

No 

Phenolic acids, 

silica, 

saccharification Controls: 4 

reps of 10 

plants 

0 

Exp. 2 

young plants 
35 

MS: 2 reps 

of 10 

plants 

7 

Yes Phenolic acids 

Controls: 2 

reps of 10 

plants 
0 

Exp. 2 

developed 

plants 

35 

MS: 2 reps 

of 30 

plants 

Rep 1: 22 

Rep 2: 23 

stress-free 

period 

days 8-12 

(inclusive) 
Yes 

Stem height, 

lignin, cellulose, 

matrix 

polysaccharides, 

silica, 

saccharification 
Controls: 2 

reps of 30 

plants 
0 
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3.2.4 Statistics  

Outlying values were discounted as per Grubbs’ outliers test. Student’s t-test 

(two-tailed distribution, assuming equal variance), was applied to the pilot 

experiment and stem height measurements data using Microsoft Excel 2010. 

Analysis of variance (ANOVA) was applied to the data from exp. 2, taking account of 

the 2 d of measurement as blocks and the number of technical replicate observations 

per sample, and testing the main effects and interaction between two factors: 

treatment and tissue (F-tests). Means in relevant statistically significant 

(p < 0.05, F-test) terms from the ANOVA are interpreted using the standard error of 

the difference (SED) between means on the residual degrees of freedom (df), invoking 

a least significant difference (LSD) at the 5% level of significance. Where mean 

figures are presented in the text as a main effect of treatment, the figure presented is 

the average of values across the two tissues measured: leaf and stem. Assistance with 

statistical analyses was provided by Stephen Powers, Rothamsted Research.



   

71 

     

3.3 Results 

3.3.1 Plant growth 

Brachypodium plants were mechanically stressed for 3-4 weeks using a moving metal 

bar. Plants that were stressed exhibited stunted growth compared to the control 

treatment. After 3 weeks of mechanical stress (exp. 2, developed plants, Table 3.1) 

the stem height of mechanically stressed plants was 28% lower than controls, 

reduced from 12.8 cm in control samples to 9.2 cm in mechanically stressed plants. 

The number of internodes remained constant between mechanically stressed plants 

and the controls (Figure 3.2). 

 

 

 

Figure 3.2  The effect of 3 weeks of mechanical stress on stem length (± SE) and 

internode number in Brachypodium distachyon. 

Control Mechancially stressed

Stem length (cm, mean) 12.8 (± 0.07) 9.2 (± 0.06)

Internode no. (mode) 6 6
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3.3.2 Cell wall-bound phenolic acids 

Cell wall-bound pCA, FA monomer and FA dimers were measured in 10 week old 

Brachypodium leaf and stem after 4 weeks of mechanical stress treatment and 

compared to a non-stressed control group (exp. 1, Table 3.1). There was no 

significant difference in cell wall-bound pCA or FA monomer in Brachypodium leaf or 

stem after 4 weeks of mechanical stress, compared to the non-stressed controls. 

However, cell wall-bound FA dimers in mechanically stressed leaf tissue were 28% 

greater than controls (p < 0.044, F-test for interaction between factors treatment and 

tissue: means = 1.00 (control leaf), 1.25 (stress leaf); SED 0.038 on 24 df, (Figure 

3.3). 

Since mature tissue in the 10 week old plants evaluated may already be 

coumaroylated and feruloylated to the maximum extent, particularly in stem tissue, 

the effect of mechanical stress on phenolic acids was also measured in young 

Brachypodium leaf and stem tissue (6 weeks old, exp. 2 young plants, Table 3.1) 

after 1 week of mechanical stress treatment. In this experiment, there was no 

significant difference in cell wall-bound pCA or FA dimers between mechanically 

stressed Brachypodium and the controls. However, there was a main statistically 

significant effect of mechanical stress on cell wall-bound FA monomer, which was 

7.7% and 8.6% greater than the controls in mechanically stressed stem and leaf 

respectively (p = 0.001, F-test for main effect of treatment in stem and leaf tissue: 

means = 2.22 (control), 2.40 (stress); SED 0.037 on 11 df). In young Brachypodium 

leaves, FA dimer also increased by 16%, although this was not statistically 

significant (Figure 3.4). Finally, there was a small 5% increase in pCA in leaf (not 

statistically significant). 
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Figure 3.4  The effect of 1 week of mechanical stress on wall-bound hydroxycinnamic 

acids (HCAs): ferulic acid (FA), FA dimer and para-coumaric acid (pCA) in young 

Brachypodium distachyon stem and leaf tissue (± SE). FA dimers are the sum of 

diF8-8, diF8-5, diF8-5 benzofuran, diF5-5 and diF8-O-4. Analyses were performed on 

material from ‘exp. 2 young plants’ (Table 3.1). Asterisks represent significant 

difference (p < 0.05, F-test) between control and treatment for main effect of 

treatment. 

Figure 3.3 The effect of 4 weeks of mechanical stress on relative wall-bound ferulic 

acid (FA) and para-coumaric acid (pCA) (± SE) in Brachypodium distachyon tissues. 

FA dimers are the sum of diF8-8, diF8-5, diF8-5 benzofuran, diF5-5 and diF8-O-4. 

Analyses were performed on material from ‘exp. 1’ (Table 3.1). Asterisk represents 

significant difference (p < 0.05, LSD) between control and treatment. 

 

* 

* 

* 
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3.3.3 Cell wall monosaccharides and lignin 

A comprehensive analysis of cell wall components was performed on 8 week old 

mechanically stressed Brachypodium compared to a non-stressed control group 

(exp. 2, developed plants, Table 3.1, Figure 3.5). Glucose in the cellulose cell wall 

fraction, neutral sugars in the hemicellulose cell wall fraction, lignin and silica were 

measured, and the majority of mechanical stress-induced changes in the cell wall 

were found in leaf tissue.  

There was a significant interaction between treatment and tissue for xylose 

(p = 0.015, F-test), arabinose (p = 0.006, F-test), galactose (p = 0.012, F-test), and 

mannose (p = 0.011, F-test). Cell wall sugars that were statistically significantly 

greater (p < 0.05, LSD) in mechanically stressed leaves than the control group were 

xylose (29%), arabinose (43%), galactose (27%) and mannose (46%). Glucose in the 

cellulose fraction of mechanically stressed leaves was also 31% greater than the 

controls, although this was not statistically significant. Notably, mannose in 

mechanically stressed stem was 21% less than control (p < 0.05, LSD, Figure 3.5). 

Acetyl-bromide lignin was also slightly greater in both stem and leaf by 5% and 3.5% 

respectively, although this was not quite statistically significant at 5% (p = 0.06, 

F-test, main effect of treatment, Figure 3.6).  

3.3.4 Silica 

Silica was measured in Brachypodium leaf and stem in the pilot study (exp. 1, 4 

weeks of mechanical stress), and in exp. 2 (3 weeks of mechanical stress, Table 3.1). 

In both experiments, silica in mechanically stressed tissue was significantly greater 

than the non-stressed controls in stem and leaf. In exp. 1, silica was approximately 

30% greater in mechanically stressed samples than in controls, in both leaf and stem 

tissues (p < 0.001, F-test for main effect of treatment: means = 1.64 (control),
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Figure 3.5  The effect of 3 weeks of mechanical stress on monosaccharide concentrations (± SE) in Brachypodium distachyon tissues. 

Analysis was performed on material from ‘experiment 2 developed plants’ (Table 3.1). Asterisks represent statistically significant 

difference (p < 0.05, LSD) between treatment and control groups.
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Figure 3.6  The effect of 3 weeks mechanical stress on lignin content 

(± SE) in Brachypodium distachyon tissues. Analysis was performed 

on material from ‘experiment 2 developed plants’ (Table 3.1). 
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Figure 3.7  The effect of 4 weeks (experiment 1) or 3 weeks 

(experiment 2) mechanical stress on silica content (± SE) in 

Brachypodium distachyon stem and leaf. Analyses were performed on 

material from pilot experiment (exp. 1) or experiment 2 developed 

plants (exp. 2, Table 3.1). Asterisks represent statistically significant 

difference between treatment and control groups for main effect of 

treatment (exp. 1, p < 0.05, F-test) or interaction effect (exp. 2, p < 0.05, 

LSD) between treatment and tissue. 
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2.10 (stress); SED 0.097 on 25 df). Similarly, in exp. 2, there was an interaction effect 

between treatment and tissue for silica (p < 0.001, F-test), where silica was 16% 

greater than controls in mechanically stressed stem, and 67% greater than controls 

in mechanically stressed leaves (p < 0.05, LSD, Figure 3.7).  

3.3.5 Digestibility  

Saccharification analysis was performed on Brachypodium stem and leaf material 

from exp. 1 (4 weeks of mechanical stress) and exp. 2 (3 weeks of mechanical stress, 

Table 3.1), respectively. There was a significant main effect of treatment in exp. 1, 

where 14% and 3% less sugars were released from mechanically stressed leaf and 

stem tissue, respectively, than from the control samples (p = 0.002, F-test for main 

effect of treatment: means = 76.96 (control), 71.15 (stress); SED 1.821 on 50 df). In 

exp. 2, there was a trend towards greater recalcitrance to digestion in mechanically 

stressed samples than in the control samples, however, this was not statistically 

significant (p = 0.091, F test for main effect of treatment). In exp. 2, 12-14% fewer 

sugars were released from mechanically stressed stem and leaf tissue than the 

controls (Figure 3.8).
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Figure 3.8  The effect of 4 weeks (exp. 1) or 3 weeks (exp. 2) mechanical 

stress on saccharification potential (± SE) in Brachypodium distachyon 
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represents statistically significant difference (p < 0.05, F-test) for the 
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3.4 Discussion 

3.4.1 Stem length 

Mechanically stressed Brachypodium exhibited a dwarfed phenotype, characterised 

by a 28% reduction in stem length compared to the non-stressed controls, whilst 

retaining an equal number of internodes as the control group (Figure 3.2). This is a 

well-documented result in many species, including grasses (Biddington, 1986, 

Mitchell, 1996), and is in accordance with the findings of Jaffe (1973), who reported 

that grass species rye, barley and maize have reduced biomass of 28-42% after 11 d of 

thigmomorphogenic perturbation. This mechanical stress-induced dwarfed phenotype 

was suggested by Suge (1978), and later confirmed by Lange and Lange (2015), to be 

related to the growth hormone gibberellin, and was caused by induced gibberellin 

catabolism. In Arabidopsis, this phenotype was rescued by exogenous gibberellin 

application (Lange and Lange, 2015). The mechanical stress applied here may 

replicate harsh wind or rain, trampling, or invasive farming practices. The effect of 

mechanical stress is often overlooked as it usually occurs simultaneously with other 

abiotic stresses; these results show the extent to which mechanical stress, in the 

absence of other abiotic stresses, affects plant growth. Despite the dramatic 

morphological changes induced by mechanical stress, the effect on the grass cell wall 

is poorly understood.  

3.4.2 Cell wall-bound FA and FA dimers  

A 4-week period of mechanical stress did not affect cell wall-bound FA monomer or 

FA dimer in stem tissue of 10 week old Brachypodium (Figure 3.3). This result was 

somewhat surprising given the putative role of FA dimerisation in cessation of cell 

growth and increased stem strength (Buanafina, 2009). Further, FA monomer and 
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dimer are reported to increase as a result of other abiotic stresses, such as salt stress 

in maize (Uddin et al., 2014). After 4 weeks of mechanical stress, any increases in cell 

wall-bound FA in stem tissue may be undetectable as cell walls may already be 

feruloylated to the maximum extent, and therefore, stems of 6 week old 

Brachypodium after 1 week of mechanical stress were analysed; here, monomeric FA 

increased by 8% (Figure 3.4). These results are consistent with Uddin et al. (2014), 

who report that the effect of salt stress on FA was larger in elongating tissue in 

maize.  

In Brachypodium leaf, monomeric and dimeric FA increased by 9% and 13% 

respectively after 1 week of mechanical stress (Figure 3.4), and FA dimers increased 

by 28% after 4 weeks of mechanical stress (Figure 3.3). Cell wall FA cross-links via 

dimerisation, or C-C or ether bonds to lignin, are formed by a peroxidase-mediated 

oxidative chemical reaction; the increases in FA dimer seen here are therefore 

consistent with ROS release into the cell wall induced by mechanical stress, which 

has been shown previously (Yahraus et al., 1995). Plant modifications in response to 

mechanical stress are thought to be largely adaptive, as plants conditioned to 

mechanical stresses are able to withstand further mechanical stress (Braam, 2005), 

and are able to resist biotic stresses (Chehab et al., 2012). Cell wall-bound FA dimers 

act as a physical barrier, which strengthens the cell wall and decreases enzymatic 

digestion (Buanafina, 2009). The increases in cell wall-bound FA shown here may 

therefore be a physical defence to withstand further abiotic stress, or to prepare the 

plant for biotic attack by pathogens, insect herbivores, or ruminant grazing. 

Additionally, FA is a nucleation site for lignin polymerisation (Ralph et al., 1995) in 

the cell wall, suggesting FA may have a role in increasing the lignin content of the 

cell wall as a defence mechanism. Finally, it is also possible that FA cross-linking 

may be involved in the cessation of cell expansion, contributing to the dwarfed 
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phenotype of mechanically stressed plants, possibly as a mechanism to resist further 

stresses or lodging (Figure 3.2). 

3.4.3 Lignin 

Acetyl-bromide lignin was found to marginally increase in leaf and stem in response 

to 3 weeks mechanical stress, by 3.5% and 5% respectively (Figure 3.6); although, 

the effect was not quite statistically significant. The majority of pCA is associated 

with lignin in secondary cell walls of Brachypodium (Petrik et al., 2014), and 

therefore the increased lignin was consistent with the 5% increase in pCA in young 

Brachypodium leaves. It was also surprising to note that leaf and stem material were 

found to have equal amounts of lignin in the range of 19-20% of biomass (Figure 

3.6), whereas it has previously been reported that expanding Brachypodium leaves 

contain 5.3% lignin of alcohol insoluble residue (AIR), and that sheath and stem 

contain 11% and 12% lignin of AIR respectively (Rancour et al., 2012). Here, labelled 

stem material is a ‘stem-enriched’ fraction containing sheath and stem. Although the 

acetyl-bromide method was used to measure lignin in both studies, here, lignin was 

measured as a percentage of dry weight as opposed to as a percentage of AIR. 

Proteins are known to interfere with absorbance spectra and therefore this may 

explain the disparity in measured lignin here compared to previous studies. In any 

case, marginal increases in lignin seen here in mechanically stressed Brachypodium 

cell walls are inconclusive. 

3.4.4 Cell wall monosaccharides 

The majority of the effects of 3 weeks mechanical stress on monosaccharides in 

Brachypodium cell walls were observed in leaf tissue. Similar increases were found in 

glucose in the cellulose fraction (31%), xylose (29%), and galactose (27%) in leaf as a 

result of mechanical stress, and larger increases in arabinose (43%) and mannose 
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(46%) were found. Monosaccharides in stem tissues were mostly not affected (Figure 

3.5). Although the increase in glucose (cellulose fraction) was not statistically 

significant, this may have been due to the low biological replication; this could be 

clarified in further experiments with increased biological replication.  

AX is the most abundant hemicellulose in grass cell walls, typically constituting 

20-40% of wall mass (Scheller and Ulvskov, 2010). Therefore, increases in xylose and 

arabinose and xylose were assumed to be increases in AX in response to mechanical 

stress. Similarly, increases in galactose and mannose suggest an increase in 

galactomannan polysaccharides in response to mechanical stress. Increased glucose 

in the cellulose fraction is in accordance with Lee et al. (2005), who report that 

cellulose synthase genes are upregulated in response to touch in the dicotyledonous 

model organism Arabidopsis. As cell wall components are reported as a percentage of 

dry weight, an overall expansion of the cell wall cannot be ruled out as a cause of the 

increases of cell wall monosaccharides. However, it is also possible that increases in 

cellulose, AX and galactomannan are advantageous adaptations to mechanical stress. 

As arabinose increased to a greater extent than xylose (14% greater increase in 

arabinose than xylose), this may indicate increased decoration of AX by arabinose in 

mechanically stressed leaves. Increased arabinose side chains on AX have previously 

been reported to be associated with decreased crystalline cellulose through hydrogen 

bonding between AX arabinose side chains and cellulose, and thereby increase 

resistance to lodging in rice (Li et al., 2015). Similarly, mannose increased to a 

greater extent than galactose (19% greater increase in mannose than galactose) and 

therefore may indicate increased decoration of galactomannan. Interestingly, salt 

stress was also found to induce increased arabinose and galactose in maize (Uddin et 

al., 2014), suggesting a role of AX and galactomannan in the stress response in 

grasses. In dicots, increased arabinan side chains on pectin have previously been 
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reported to be induced in response to mechanical stress (Verhertbruggen et al., 2013), 

which may have a similar function as the increases in hemicelluloses seen here in 

grasses. The authors also reported that mutations in ARAD1 and ARAD2 (GT47 

family) arabinan synthase genes partially rescued the decreased internode elongation 

phenotype of Arabidopsis, suggesting that increased arabinan is important in 

mechanical stress-induced morphological changes in dicots. Speculatively, the 

changes seen in leaves here may be a mechanism of increasing tissue flexibility 

through interactions between hemicellulose and cellulose components, as a 

mechanism to withstand further stresses. 

3.4.5 Silica 

In this study, silica (SiO2) increased in stem and leaf of Brachypodium, in both exp. 1 

and 2, after 4 weeks and 3 weeks of mechanical stress respectively, ranging from 

16-67% greater silica than the controls (Figure 3.7). Silica is taken up from the soil 

and deposited on the epidermis of tissues throughout the plant as a hydrated, 

amorphous polymer (Ma, 2004), and may interact directly with cell wall polymers 

(Guerriero et al., 2016). This is the first report of a direct effect of thigmomorphogenic 

mechanical stress on silica in grasses, however, increased silica due to the 

mechanical stress of flowing water has been shown previously in aquatic 

macrophytes (Schoelynck et al., 2015), and silica in grasses has previously been 

reported to be inducible by the biotic stresses of herbivore grazing (Massey et al., 

2007). Wall-bound silica has previously been shown to confer increased strength and 

support, and may have a role in abiotic stress resistance and protection against 

lodging due to increased stiffness (Ma and Yamaji, 2006). These results therefore 

support a role of silica as an adaptive defence mechanism against further stresses in 

response to mechanical stress.  
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3.4.6 Digestibility 

Saccharification is a measure of the propensity of material to release sugars from the 

cell wall by a specific method. Here, mechanically stressed Brachypodium leaf and 

stem exhibited lower saccharification potential than the controls in two experiments, 

ranging from 3-14% less sugars released (Figure 3.8). The decrease in released 

sugars reflects a change in the composition of the cell walls, although it is unclear 

whether this was due to the small increase in lignin or the increase in cellulose and 

hemicelluloses, and the physical interactions of these polysaccharides. It is also 

possible that increased silica physically inhibited saccharification by physical 

inhibition of enzymes binding to the polysaccharide substrate. The effect of 

environmental mechanical stresses such as wind and rain, and anthropogenic factors 

such as invasive farming practices, on the saccharification potential of grasses is 

relevant in applications such as second generation liquid biofuel production.  

3.4.7 Conclusion 

This study investigated the response in Brachypodium cell walls and changes in 

plant morphology when treated with continual mechanical stress throughout early 

and vegetative growth. An extensive investigation into the effect of mechanical stress 

on grass cell walls is presented, which, prior to this study, was largely unknown. 

Tissue- and growth stage-dependant increases are reported in cellulose, 

arabinoxylan, galactomannan and silica. Cell wall-bound FA and FA dimers are 

shown to increase in young tissues and in leaf. 

These novel cell wall adaptations in Brachypodium appear to be species and tissue 

specific. While some studies report plants that have cell walls with higher crystalline 

cellulose, with low amounts of lignin are well adapted to mechanical stress, as in 

tension wood (Andersson-Gunneras et al., 2006), other reports suggest that plants 
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develop high levels of lignin as an adaption to mechanical stress (Yamashita et al., 

2007, Kahn-Jetter et al., 2000). In the dicotyledonous model Arabidopsis, cellulose 

synthase has been shown to be upregulated in response to touch, as well as cell wall 

hydroylases and extensins and expansins (Lee et al., 2005).  

The cell wall acts as the first physical barrier to withstand stresses, and therefore the 

mechanically induced changes in the cell walls of Brachypodium presented in this 

study speculatively may act as a strengthening defence mechanism against further 

mechanical stress. Interactions between cellulose and hemicelluloses, and increased 

arabinose substitutions of AX may be important in increasing cell wall flexibility. 

Further, plants sensing touch may be important in the plant defence against biotic 

attack or herbivores. These findings contribute to an increased understanding of 

factors affecting saccharification and selecting for these cell wall factors may be of 

interest in breeding for lodging resistance.  

The effect of mechanical stress on cell wall-bound FA in these experiments was small, 

and was well within the range of values of unstressed plants at a later developmental 

stage. Mechanical stress as an environmental treatment is therefore not suitable as a 

means of investigation into the genetic control of cell wall-bound ferulate.
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 Methyl-Jasmonate Induces Increased 

Wall-Bound Ferulic Acid and p-Coumaric Acid and 

Expression of BAHD and GT61 Family Arabinoxylan 

Synthesising Genes in Brachypodium distachyon 

Callus 

4.1 Introduction 

Jasmonic acid (JA) is a lipid derived phytohormone and signalling molecule involved 

in plant development, including inducing viable pollen production, leaf senescence, 

tuber formation, tendril coiling and fruit ripening, and inhibiting root growth and 

photosynthesis at certain developmental stages. Furthermore, JA is induced in biotic 

and abiotic stress responses, including wounding by herbivores, and in response to 

pathogen or insect elicitors. JA orchestrates a complex signalling cascade, involving 

cross-talk with other hormones such as ethylene, abscisic acid and salicylic acid, 

which activates transcription factors controlling defence genes, such as protease 

inhibitors, terpenoids, phytoalexins, flavonoid and sesquiterpenoid biosynthesis 

enzymes and antifungal proteins (Creelman and Mullet, 1995, Avanci et al., 2010, 

Wasternack and Hause, 2013).  

The effects of JA signalling are often studied by the exogenous application of 

methyl-JA (meJA), which is cleaved by meJA-esterase to JA in planta (Wu et al., 

2008). Activation of JA responsive genes requires conversion of JA to its bioactive 

isoleucine conjugate (JA-Ile). JA-Ile binds to the Skp1-Cullin-F-box (SCF)COI1 E3 

ubiquitin ligase complex, triggering the degradation of JAZ transcriptional repressor 

proteins, which normally repress MYC2 transcription factor activity in the nucleus. 

Activated MYC2 controls the expression of JA-responsive genes (Thines et al., 2007, 
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Chini et al., 2007, Lee et al., 2013). JA-responsive genes are extensive in number and 

function. Some studies have reported the effects of exogenously applied meJA on 

global transcription in both dicots and monocots. Pauwels et al. (2008) reported that 

6 h meJA treatment induced differential expression of 495 genes in cell suspension 

cultures of the dicotyledonous model organism Arabidopsis. Other studies have 

reported the effect of meJA on global transcription in the Poaceae. Yang et al. (2015) 

reported that meJA induced up- and down- regulation (≥ 2-fold change) of 1,216 and 

1,530 genes respectively in maize. Further, Salzman et al. (2005) reported that meJA 

induced upregulated and downregulated expression (> 1.5 fold) of 2980 and 1842 

genes respectively in Sorghum. Additionally, public expression database RiceXPro 

provides useful information on global transcription changes in rice after treatment 

with various hormones, including JA (Sato et al., 2013).  

Relatively few studies have reported changes to the cell wall as a direct result of JA. 

A well-documented effect of JA is increased cell wall class III peroxidases, which 

generate reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). ROS result 

in increased phenolic cross-linking within the cell wall. In the Poaceae, this includes 

increased lignification and increased ferulic acid (FA) dimerisation, creating a 

physical barrier to pathogen invasion and leading to increased pathogen resistance 

(Almagro et al., 2009). Increased expression of cell wall genes in response to 

exogenously applied JA, such as cellulose synthases, have been reported in global 

gene expression studies (Salzman et al., 2005), however, the resulting biochemical 

changes in the cell wall have not, to my knowledge, been quantified. 

The distinct cell walls of the commelinid monocots, including the Poaceae, comprise 

arabinoxylan (AX) as the major non-cellulosic component. The AX of grasses differs in 

structure from dicot xylan in that a large amount of arabinofuranose residues 

decorate the xylopyranose backbone at the C-2 and C-3 positions. C-3 linked 
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arabinofuranose residues can be esterified on the O-5 position by hydroxycinnamic 

acids (HCAs): FA or para-coumaric acid (pCA). AX-esterified FA forms 

covalently-linked dimers, which increase cell wall recalcitrance to enzymatic 

digestion (Hatfield et al., 1999), and are a nucleation site for lignin formation (Ralph 

et al., 1995), whereas AX-esterified pCA residues have an unknown function 

(Chapter 1.6.5). There have been few studies on the effect of JA on the levels of 

these grass-specific features of cell walls. Indirect evidence for a possible relationship 

was found in a study of cellulose-deficient cell walls of maize cell suspension cultures 

that revealed an increase in AX branching, FA monomer, FA dimer, and pCA; these 

increases were correlated with an increase in JA pathway signalling genes (Melida et 

al., 2015). However, whether the effect on the cell wall was due to increased JA 

remains unclear. Additionally, Lee et al. (1997) reported an apparent increase in cell 

wall-bound FA and pCA in barley as a direct response to JA, although, the effect was 

inconsistent, so evidence for this effect remains scarce.  

Despite the importance of FA and pCA in the plant cell wall, the mechanism by 

which these phenolic acids become ester-linked to AX remains unclear. Very few of 

the genes involved have been characterised, although genes within the BAHD and 

GT61 gene families have been predicted by Mitchell et al. (2007) to be involved in the 

process (Chapter 1.8). One gene that has been identified is OsAT10 in the BAHD 

gene family, which has been shown to be required for pCA ester-linked to AX in rice 

(Bartley et al., 2013). Evidence from public expression database RiceXPro shows that 

JA induces increased expression in many of the genes in the BAHD and GT61 

candidate families in rice seedlings (Sato et al., 2013, Appendix A). Thus, we 

hypothesised that JA may induce increased esterification of FA and pCA on AX and 

therefore may provide a system in which to study associated changes in gene 

expression of BAHD and GT61 genes.  
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The aim of the experiments in this chapter were to study the effect of JA on the cell 

walls of the Poaceae using the model organism Brachypodium distachyon. Changes 

in cell wall polysaccharides and lignin were measured, together with associated 

changes in FA and pCA, and are discussed in relation to global- and candidate-gene 

expression changes. 
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4.2 Chapter 4 specific methods 

4.2.1 Brachypodium hydroponics 

Brachypodium seeds were surface sterilised with 10% household bleach for 5 min, 

and rinsed four times with sterile water. Sterilised seeds were germinated 

asceptically on blue roll in the dark overnight at 4 °C, and subsequently incubated at 

room temperature for 5 d, and were kept moist with sterile water. Seedlings were 

then stored at 4 °C for 2 d to halt growth, and from 8 d were grown hydroponically 

with aeration in G7 Magenta vessels, in nutrient solution comprised of 1.5 

mM Ca(NO3)2, 5 mM KNO3, 2 mM NaNO3, 1 mM MgSO4, 1 mM KH2PO4, 

25 µM FeEDTA, 160 nM CuCl2, 9.2 µM H3BO3, 3.6 µM MnCl2, 16 nM Na2MoO4, 

5 µM KCl, and 8 µM ZnCl2, at pH 5.8, with 0.5 g MES hydrate per litre to stabilise 

pH. The nutrient solution was replaced with fresh solution every 2 d. Plants were 

grown in a controlled-environment growth room at 25/20 °C day/night temperature, 

with a 16-h-light/8-h-dark cycle, 150 µmol m-2 s-1 light intensity, 60 % humidity, and 

380 ppm CO2. At 18 d, the nutrient solution was replaced with a nutrient solution 

containing 100 µM (±)-jasmonic acid, 0.02% DMSO, or without jasmonic acid for the 

mock control group. Three biological replicates of two pots, with four plants per pot, 

were harvested into liquid nitrogen after 24 h or 48 h treatment and ground in a 

pestle and mortar in liquid nitrogen, and freeze dried. Phenolic acids were analysed 

as described in Chapter 2.11. Two technical replicate samples of shoot material were 

analysed, but only one technical replicate of root material. 

4.2.2 Callus generation and growth  

Brachypodium callus was generated on CIM, as described in Chapter 2.15. 
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4.2.3 Preparation of methyl-jasmonate stock solutions  

Stock solutions of 1 mM, 5 mM, 10 mM, 50 mM and 100 mM methyl jasmonate 

(meJA) in ethanol, were prepared. The mock control solution was ethanol.  

4.2.4 Brachypodium callus experiments 

Callus Experiment 1: Brachypodium calli were subcultured onto plates of CIM 

containing increasing concentrations of methyl jasmonate: 1 µM, 5 µM, 10 µM, 

50 µM, 100 µM meJA and a mock control. Nine calli per plate (plate = one biological 

replicate) and 3 biological replicates per treatment were analysed and averaged. 

Callus material was analysed for phenolic acid composition, as described in Chapter 

2.11, on a dry weight basis. 

Callus Experiment 2: Brachypodium calli were subcultured onto plates of CIM 

containing increasing concentrations of methyl jasmonate as in experiment 1. Sixteen 

calli per plate (plate = one biological replicate) and four biological replicates per 

treatment were analysed and averaged for phenolic acid composition on a dry weight 

basis, as in experiment 1. For all other analyses, three biological replicates per 

treatment were prepared using ‘AIR preparation method 1’ (Chapter 2.4) and 

‘destarching method 1’ (Chapter 2.5). Matrix monosaccharides (Chapter 2.6) and 

cellulose (Chapter 2.7) were analysed as previously described. 

Callus Experiment 3: Brachypodium calli were transferred onto plates of CIM 

containing 50 µM meJA, or a mock control solution. Samples were taken at 24 h, 

48 h, 4 d and 8 d. Four biological replicates were harvested per treatment at each 

timepoint. Each biological replicate consisted of three plates (each containing 36 calli) 

that were pooled. Material was prepared using AIR preparation method ‘AIR 

preparation method 2’ (Chapter 2.4) and ‘destarching method 2’ (Chapter 2.5), and 

was analysed for phenolic acid composition (Chapter 2.11), lignin (Chapter 2.8), 
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matrix monosaccharides (section 2.6), and cellulose (Chapter 2.7) as previously 

described. RNA was extracted using the TRIzol RNA isolation method (Chapter 

2.12).  

4.2.5 Mild acid hydrolysis 

AIR was prepared by washing Brachypodium callus tissue with 1 ml 80% (v/v) 

aqueous ethanol. The samples were vortexed, sonicated for 10 min, heated at 80 °C 

for 15 min and centrifuged (5000 g, 15 min) to recover the pellet. The wash was 

washed twice more, without heating on the second and third washes. The pellet was 

then washed in 1 ml CHCl3:MeOH (1:1) (vortexed, centrifuged 10,000 g, 10 min), and 

dried under vacuum at 40 °C. Starch was then removed following destarching method 

2 (chapter 2.5), except polysaccharides were precipitated for 30 min. The dry pellet 

was incubated in 0.05 M trifluoroacetic acid (TFA) (0.6 ml) at 100 °C for 4 h, with 

shaking. Samples were centrifuged (10,000 g, 10 min). A volume of 500 µl 

supernatant was dried under vacuum at 40 °C. The pellet was washed thrice with 

1 ml water (vortex, centrifuge 16,000 g, 5 min), and dried under vacuum at 40 °C. 

Internal standard was added and phenolic acids were released by alkaline hydrolysis, 

then extracted, as described in Chapter 2.11.  

4.2.6 Statistics 

The GenStat (17th edition, VSN International Ltd, Hemel Hempstead, UK) statistical 

package was used for analysis. Assistance with statistical analyses was provided by 

Stephen Powers, Rothamsted Research. 

Analysis of Variance (ANOVA) was applied to the data to test the main effects and 

interactions between the factors of JA treatment and time (hydroponics experiment 

and callus exp. 3), or to test the effect of concentration and whether there was 
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evidence of a linear and non-linear dose response (callus exp. 1 and 2), using F-tests. 

Appropriate means and standard error of the difference (SED) values on the residual 

degrees of freedom (df) from the ANOVA were output and compared using the least 

significant difference (LSD) at the 5% level of significance. Where mean values are 

presented in the text to illustrate the main effect of jasmonic acid over time, the 

figure presented is the average of the sampled time points. A natural log 

transformation was used for phenolic data in ‘callus experiment 2’ to account for 

heterogeneity of variance.  

4.2.7 RNA sequencing  

RNA sequencing (RNA-seq) was carried out by Steve Hanley, Rothamsted Research, 

on an Ion ProtonTM System. Libraries were made using the Ion Total RNA-Seq Kit v2, 

templates were prepared using the Ion PITM Template OT2 200 Kit V2 and were 

sequenced using the Ion PITM Sequencing 200 Kit v2 with an Ion PITM Chip Kit v2. 

All sequencing equipment and reagents were from Thermo Fisher Scientific and used 

following the manufacturer’s instructions.  

Sequencing reads were analysed using Galaxy software (Giardine et al., 2005). Reads 

were mapped to the Brachypodium distachyon v3.1 reference transcriptome from 

Phytozome 11.0 (Goodstein et al., 2012) with one representative splice variant per 

gene (file “Bdistachyon_314_v3.1.transcript_primaryTranscriptOnly.fa”). Comparison 

with an earlier reference Genebuild 2010-02-Brachy 1.2, showed that the transcript 

for candidate gene BdBAHD04, Bradi2g33980.1 was replaced by a transcript from 

the opposite strand, Bradi2g33977.1 in v3. However, the strand-specific Ion Torrent 

reads all mapped to the strand in the v1.2 gene model, hence the Bradi2g33977.1 

sequence was manually replaced with Bradi2g33980.1 in the reference, and this was 

used for all results reported here. Reads less than 30bp were removed using the 
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Trimmomatic tool, mapped to the reference transcriptome with BWA-MEM, and 

percentage mapped reads were obtained using Flagstat. Mapped reads were 

quantified using eXpress, and tables of effective counts and FPKM (fragments per 

kilobase of transcript per million mapped reads) were created using Merge eXpress.   

For global analysis: ANOVA was applied on effective counts, performed in RStudio 

using the EdgeR package, taking account of the 4 biological replicates per sample. 

This analysis tested for the main effects and interaction between the two factors 

treatment and time, at the p = < 0.05 significance level corrected for multiple testing 

using Benjamini-Hochberg false discovery rate, after filtering for genes with counts 

per million (cpm) >1 in 3 samples or more. Genes significantly affected by treatment 

were analysed using the Terra-BLASTN tool on a Dechypher platform. Significantly 

differentially expressed genes (DEGs) for the treatment ANOVA factor were 

annotated with Gene Ontology (GO) terms against the Gene Ontology Consortium 

database (Ashburner et al., 2000), and with Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways (Kanehisa et al., 2016), using Blast2GO software with 

default parameters (Conesa et al., 2005).  

For cell wall genes analysis: A count of 484 cell wall genes were identified and 

ANOVA was performed as above on only these genes to determine differentially 

expressed cell wall genes. 
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4.3 Results 

4.3.1 Brachypodium seedlings: hydroponics experiment 

There was no statistically significant effect of 100 µM (±)-JA on total cell wall-bound 

FA (monomer plus dimers) or pCA in 19 and 20 d old, hydroponically grown, 

Brachypodium seedling root or shoot tissue. Cell wall-bound FA monomer was 

approximately 2/3 of total wall-bound FA, and wall-bound FA dimers (diF8-8, diF8-5, 

diF8-5 benzofuran, diF5-5 and diF8-O-4) constituted 1/3 of total wall-bound FA, in 

roots and shoots. In shoot tissue, there was no change in the ratio of wall-bound FA 

monomer to wall-bound FA dimers, however, in root tissue, some moderate effects of 

JA were observed. In root, cell wall-bound FA monomer was 14% less than the 

control samples after 24 h JA treatment, and 7% less than the control samples after 

48 h treatment (p = 0.003, F-test for the main effect of JA over time: means = 

2.91 (+ JA), 3.27 (- JA); SED = 0.077 on 7 df; Figure 4.1). Cell wall-bound FA dimers 

were 18% greater than the control samples after 24 h JA treatment, and 13% greater 

than the control samples after 48 h (p = 0.037, F-test for the main effect of JA over 

time: means = 0.55 (+ JA), 0.47 (- JA); SED = 0.095 on 7 df; Figure 4.1). Notably, 

major dimers diF8-O-4 and diF8-5 benzofuran were 18% and 9% greater than the 

control respectively after 24  treatment, and 15% and 17% greater than the control 

respectively after 48 h JA treatment in root (diF8-O-4: p = 0.003, F-test for the main 

effect of JA over time: means = 0.55 (+ JA), 0.47 (- JA); SED = 0.017 on 7 df; diF8-5: 

p = 0.002, F-test for the main effect of JA over time: means = 0.43 (+ JA), 0.38 (- JA); 

SED = 0.103 on 7 df; Appendix B). Further, FA dimer diF5-5 was 40% greater than 

the control in root after 48 h JA treatment (p = 0.008, F-test for the main effect of JA 

over time: means = 0.36 (+ JA), 0.28 (- JA); SED = 0.200 on 7 df; Appendix B). 

Dimers diF8-8 and diF8-5 were not statistically different from the control.  
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Figure 4.1  The effect of 24 h or 48 h treatment with 100 µM (±)-jasmonic acid (JA) 

on para-coumaric acid (pCA) and ferulic acid (FA) monomer and dimer (± SE) in 

hydroponically grown Brachypodium distachyon seedling roots and shoots. FA 

dimers are the sum of diF8-8, diF8-5, diF8-5 benzofuran, diF5-5 and diF8-O-4. 

Asterisks represent statistically significant differences between control and (±)-JA 

treated samples for the main effect of treatment. 
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4.3.2 Brachypodium callus: JA concentration experiment  

The amount of cell wall-bound FA was assumed to be underestimated in lignified 

plant tissues, as AX-bound FA ether linked to lignin will not be released by the 

alkaline hydrolysis treatment used here, and there is currently no method of 

releasing FA cross-linked to lignin by C-C bonds. Additionally, lignin-linked pCA in 

Brachypodium plant tissues may have masked any effect on AX-linked pCA. For 

these reasons it was decided to repeat the experiments testing the effect of JA on cell 

wall-bound FA and pCA using callus tissue, in which the cell walls are dominated by 

primary cell walls with low lignin content (Rancour et al., 2012).  

4.3.3 Cell wall-bound pCA and FA  

Two repeated experiments (callus exp. 1 and exp. 2, section 4.2.4) were carried out 

to investigate the effect of increasing concentrations of meJA (1 µM – 100 µM) on 

Brachypodium callus cell walls.   

Cell wall-bound pCA was dramatically greater than the control samples in 

Brachypodium callus, when treated with 1 µM – 100 µM meJA for 17 d, having 

accounted for linear and non-linear trends in the response (p < 0.001, exp. 1 and 

exp. 2, F-tests). Cell wall-bound pCA was 8-fold (p < 0.05, LSD) greater than the 

control with 50 µM meJA treatment in exp. 1 (no significant difference with 1 µM, 

5 µM or 10 µM meJA treatment). However, cell wall-bound pCA was 3-fold greater 

(p < 0.05, LSD) than the control with 1 µM meJA treatment in experiment 2. At 

100 µM meJA, cell wall-bound pCA showed a dramatic 10-fold increase (p < 0.05, 

LSD) in experiment 1, and 5.5-fold increase (p < 0.05, LSD) in experiment 2 

compared to the control (Figure 4.2).  
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Additionally, cell wall-bound FA monomer was significantly greater after 

1 µM – 100 µM meJA treatment for 17 d, compared to the control, in Brachypodium 

callus (p = 0.004, exp.1; p = < 0.001, exp. 2, F-tests). There was evidence of a 

statistically significant linear (p = < 0.001, exp.1; p = < 0.022, exp.2, F-tests), and 

non-linear (p = < 0.034, exp.1; p = < 0.001, exp.2, F-tests) effect of increasing 

concentrations of meJA on cell wall-bound FA monomer. A dose of 1 µM meJA was 

sufficient to induce a statistically significant effect on cell wall-bound FA monomer 

(p < 0.05, LSD; exp. 1 and exp. 2), which was 19% and 32% greater than the control 

in experiment 1 and 2 respectively. At 100 µM meJA concentration, cell wall-bound 

FA monomer was 42% greater than the control in both exp. 1 and exp. 2 (p < 0.05, 

LSD; Figure 4.2). 

Total cell wall-bound FA dimers were significantly greater after 1 µM – 100 µM meJA 

treatment for 17 d, compared to the control (p < 0.001, exp.1 and exp. 2, F-tests). 

There was evidence of a statistically significant linear (p < 0.001, exp.1 and exp.2, 

F-tests), and non-linear (p = 0.002, exp. 2, F-test) effect of increasing concentrations 

of meJA on cell wall-bound total FA dimers. At 1 µM meJA treatment, wall-bound FA 

dimers were ~30% greater than the control in the two experiments (p < 0.05, LSD, 

exp.1 and exp. 2), and at 100 µM meJA treatment, wall-bound FA dimers were 76% 

and 350% greater than the control in exp. 1 and exp. 2 respectively (p < 0.05, LSD, 

exp. 1 and exp. 2; Figure 4.2). At 50 µM and 100 µM meJA, amounts of each of the 

five dimers that were measured were significantly greater than in the control 

samples (p < 0.05, LSD; Appendix C). No FA or pCA were detected in the media that 

the callus was grown on (data not shown).  
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Figure 4.2  The effect of 17 d treatment with increasing concentrations of methyl-jasmonate on para-

coumaric acid (pCA) and ferulic acid (FA) monomer and dimer (± SE) in Brachypodium distachyon 

callus, in two experiments (callus experiments 1 & 2). FA dimers are the sum of diF8-8, diF8-5, diF8-5 

benzofuran, diF5-5 and diF8-O-4. Asterisks represent statistically significant differences between 

control and methyl-jasmonate samples (p < 0.05, LSD). Dotted lines symbolise average value for controls
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4.3.4 Cell wall polysaccharides 

Cell wall sugars were analysed in callus exp. 2 (section 4.2.4), after 17 d treatment 

with 1 µM meJA – 100 µM meJA. Some cell wall sugars were greater than control 

samples with differing concentrations of meJA. A dose of 10 µM meJA induced a 

statistically significant (p < 0.05) increase in glucose (cellulose) and galactose 

compared to control samples, whereas 50 µM meJA was required to induce a 

statistically significant increase in xylose, and 100 µM meJA induce a statistically 

significant increase in arabinose compared to controls. At 100 µM meJA treatment, 

the concentration of xylose, arabinose, and galactose in the hemicellulose fraction 

were 63%, 76% and 140% greater than control samples respectively, as a proportion 

of AIR (p < 0.05, LSD). Likewise, glucose (cellulose) was double the amount of the 

control samples when treated with 100 µM meJA, as a proportion of AIR (p < 0.05, 

LSD). No statistically significant change was observed in glucose (hemicellulose), 

mannose, galacturonic acid or glucuronic acid when treated with meJA, although 

notably hemicellulose-associated glucose was consistently 20-30% lower than the 

control (Figure 4.3).  
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Figure 4.3  Monosaccharide concentrations ± SE in the hemicellulose fraction (xylose, arabinose, glucose, galactose, mannose, galacturonic acid, glucuronic acid) and 

glucose in the cellulose fraction of destarched alcohol insoluble residue (AIR) in Brachypodium distachyon callus after 17 d treatment with varying concentrations of 

methyl-jasmonate (1 µM, 5 µM, 10 µM, 50 µM and 100 µM, callus experiment 2). Asterisks represent statistically significant differences between control and meJA 

treatment (p < 0.05, LSD).

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180
C

o
n

tr
o

l

1
 µ

M

5
 µ

M

1
0

 µ
M

5
0

 µ
M

1
0

0
 µ

M

C
o

n
tr

o
l

1
 µ

M

5
 µ

M

1
0

 µ
M

5
0

 µ
M

1
0

0
 µ

M

C
o

n
tr

o
l

1
 µ

M

5
 µ

M

1
0

 µ
M

5
0

 µ
M

1
0

0
 µ

M

C
o

n
tr

o
l

1
 µ

M

5
 µ

M

1
0

 µ
M

5
0

 µ
M

1
0

0
 µ

M

C
o

n
tr

o
l

1
 µ

M

5
 µ

M

1
0

 µ
M

5
0

 µ
M

1
0

0
 µ

M

C
o

n
tr

o
l

1
 µ

M

5
 µ

M

1
0

 µ
M

5
0

 µ
M

1
0

0
 µ

M

C
o

n
tr

o
l

1
 µ

M

5
 µ

M

1
0

 µ
M

5
0

 µ
M

1
0

0
 µ

M

C
o

n
tr

o
l

1
 µ

M

5
 µ

M

1
0

 µ
M

5
0

 µ
M

1
0

0
 µ

M

Xylose Arabinose Glucose Galactose Mannose Galacturonic acid Glucuronic acid Glucose
(cellulose fraction)

M
o

n
o

sa
cc

h
ar

id
e 

co
n

ce
n

tr
at

io
n

 (
µ

g 
m

g 
d

es
ta

rc
h

ed
 A

IR
-1

)

* 

* 

* 

* 

* 

* 

* * 

* 



 

102 

  

4.3.5 Mild acid hydrolysis 

To determine the proportions of pCA ester to lignin and to AX in Brachypodium 

callus tissue, cell wall-bound pCA and FA were released by mild acid hydrolysis as 

previously described (Petrik et al., 2014, Bartley et al., 2013). The mild acid 

hydrolysis treatment preferentially hydrolyses the glyosidic Ara-Xyl bond, releasing 

AX side chains, including ester-linked HCAs, into the supernatant. HCAs 

cross-linked to lignin remain in the pellet. Application of mild acid hydrolysis to 

meJA treated callus and control samples showed that 93% of total pCA was 

found in the supernatant for both (Table 4.1), indicating that the majority of 

pCA was ester linked to AX in this tissue. As expected, around 90% of total 

measured FA was in the supernatant. FA does not occur ester-linked to lignin, 

however around 10% of total FA was found in the pellet, which suggests that 

incomplete hydrolysis took place. The remaining 7% of pCA in the pellet was 

therefore likely to be AX-linked, and it was concluded that it is most likely that there 

is no pCA ester-linked to lignin in Brachypodium callus tissue.    

Table 4.1  The mean percentage of hydroxycinnamic acids associated with the 

supernatant or pellet fraction of Brachypodium distachyon callus destarched AIR 

(alcohol insoluble residue) which was subjected to mild transfluoroacetic acid (TFA) 

(0.05 M) hydrolysis after 7 d treatment with methyl-jasmonate (meJA).  

Control meJA Control meJA

p CA (% of total) 93.0 93.0 7.0 7.0

FA monomer (% of total) 89.3 90.9 10.7 9.1

FA dimer (% of total) 88.6 93.0 11.4 7.0

Supernatant Pellet
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4.3.6 Brachypodium Callus 50 µM meJA time course experiment  

Having established the effects of JA on Brachypodium callus cell walls, it was 

decided to compare the timing of these effects with changes in the transcriptome. 

Calli were treated with 50 µM meJA and sampled at 24 h, 48 h, 4 d and 8 d (callus 

exp. 3, section 4.2.4). 

4.3.7 Cell wall composition 

To determine whether previously observed changes in cell wall-bound pCA and FA 

(Figure 4.2) were due simply to an increase in proportion of dry weight of the cell 

wall, AIR, destarched AIR, and total dry weight of callus were determined. The 

proportion of dry weight as AIR was approximately 40%, and as destarched AIR was 

approximately 20%, and was unaffected by meJA treatment (Table 4.2).  

Wall-bound pCA accumulated rapidly in Brachypodium callus when treated with 

50 µM meJA, showing a significant main effect of meJA treatment over time 

(p < 0.001, F-test: means = 0.18 (- JA), 0.33 (+ JA); SED = 0.022 on 23 df). pCA was 

50% greater than the control samples after 24 h, and continued to accumulate, 

increasing significantly to 2 fold greater than the control by day 8 of treatment 

(p < 0.05, LSD). Additionally, there was a significant main effect of meJA treatment 

control meJA control meJA

24 h 39.5 (± 0.8) 40.9 (± 0.6) 18.6 (± 0.8) 18.5 (± 3)

48 h 40.9 (± 0.5) 42.2 (± 0.7) 22.2 (± 0.7) 22.3 (± 0.6)

4 d 40.8 (± 0.7) 41.5 (± 0.5 20.5 (± 0.8) 21.3 (± 0.5)

8 d 40.3 (± 1.1) 41.4 (± 0.8) 20.6 (± 1.1) 21.5 (± 0.8)

AIR (% of dw) Destarched AIR (% of dw)

Table 4.2 The average proportion of the dry weight (± SE) of alcohol insoluble 

residue (AIR), and destarched AIR, in control and 50 µM meJA treated 

Brachypodium callus samples. Data obtained in callus exp. 3.  
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over time on cell wall-bound FA monomer in Brachypodium callus (p = 0.03, F-test: 

means = 4.31 (- JA), 4.63 (+ JA); SED = 0.133 on 23 df). Cell wall-bound FA monomer 

in samples treated with meJA remained 5-9% greater than the control over 1 - 8 d 

treatment. There was also a significant main effect of meJA for wall-bound FA 

dimers, which were 12% greater than the control after 8 d meJA treatment 

(p = 0.018, F-test: means = 2.01 (- JA), 2.31 (+ JA); SED = 0.118 on 23 df; Figure 

4.4). Individual dimers diF8-O-4 (p = 0.007, F-test), diF5-5 (p = 0.048, F-test) and 

diF8-5 (p = 0.023, F-test) showed a statistically significant main effect of meJA, 

whereas dimers diF8-5 benzofuran and diF8-8 remained unaffected (Appendix D).  

Glucose in the hemicellulose fraction was 10% lower than the control after 4 d 

50 µM meJA treatment and was 25% lower after 8 d treatment in Brachypodium 

callus (p = 0.016, F-test for the main effect of meJA,over time: means = 45.3 (+ JA) 

51.6 (- JA); SED = 2.44 on 24 df). There was no significant in change in hemicellulose 

associated xylose, arabinose, galactose, galacturonic acid, mannose or glucuronic 

acid, or in glucose extracted from the hemicellulose fraction after 8 d of treatment 

with 50 µM meJA. 

Lignin showed an interaction effect between treatment and time in Brachypodium 

callus treated with meJA for 1 – 8 d (p = 0.023, F-test). Lignin concentration in 

destarched AIR was 40% greater than in controls after 8 d 50 µM meJA treatment, 

increasing to 95 µg mg-1 at 8 d (p < 0.05, LSD), although notably lignin concentration 

in controls was highly variable, with a maximum lignin concentration of 98 µg mg-1 at 

4 d and varied by 30 µg mg-1 across the four time points measured (Figure 4.5).
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Figure 4.4  The effect of 1, 2, 4 and 8 d treatment with 50 µM methyl-jasmonate 

(meJA) on para-coumaric acid (pCA) and ferulic acid (FA) monomer and dimers (± SE) 

in Brachypodium distachyon callus cell walls (callus experiment 3). Analyses were of 

destarched alcohol insoluble residue (AIR). FA dimers are the sum of diF8-8, diF8-5, 

diF8-5 benzofuran, diF5-5 and diF8-O-4. 
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Figure 4.5  The effect of 50 µM methyl-jasmonate (meJA) on cell wall monosaccharides and lignin in Brachypodium distachyon callus destarched AIR (alcohol 

insoluble residue) after 1, 2, 4 and 8 d treatment (callus experiment 3). Glucose concentration in the cellulose fraction, lignin concentration after acetyl bromide 

treatment, and xylose, arabinose, glucose, galactose, galacturonic acid, mannose and glucuronic acid concentration in the hemicellulose fraction were measured. 

Error bars show ± SE. Asterisks represent statistically significant difference between treatment and control groups for main effect of treatment (p < 0.05, F-tests) 

or interaction effect between treatment and tissue (p < 0.05, LSD). 

* 

* * 
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4.3.8 RNA-seq transcriptome 

RNA-seq returned between 3.1 - 11.2 million reads per sample, averaging 6.8 million 

reads. On average 93% of total reads were mapped to the reference (6.4 million reads 

(± 0.23 SE); Figure 4.6). The MDS plot of variation between samples showed that 

meJA treatment had a large effect on the variation between samples, whereas time 

resolved the variation to a lesser extent (Figure 4.7). EdgeR revealed 4508 

differentially expressed genes (DEGs) for the ANOVA treatment factor, 1270 DEGs 

for the time factor, and 170 genes that showed an interaction effect between 

treatment and time (Appendix E). Within the DEGs for meJA treatment over time, 

3377 genes were upregulated and 1131 genes were downregulated. The major 

represented Gene Ontology (GO) terms associated with these DEGs were integral 

membrane components (cellular process), ATP binding (molecular function) and 

oxidation-reduction process (biological function), although represented GO terms 

varied greatly, as expected given the diverse roles of JA in planta. Cell wall 

associated cellular process and biological function GO terms were amongst the top 20 

represented terms (Figure 4.8). KEGG analysis predicts that enzymes in the 

phenylpropanoid pathway are differentially expressed with meJA treatment (Figure 

4.10).  

4.3.9 Cell wall genes 

Forty cell wall-synthesis genes were significantly upregulated in response to 

50 µM meJA including genes from families GT2, GT4R, GT8, GT31, GT61, GT64, 

GT65 and GT77, BAHD genes and lignin synthesis genes (Figure 4.9, Appendix F). 

Twenty-eight genes were significantly downregulated, including genes from families 

GT2, GT8, GT31, GT37, GT47, GT48 and GT77, and extensins and an expansin 

(Figure 4.9, Appendix G).  
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Candidate genes for pCA and FA esterification to AX in the BAHD and GT61 families 

increased significantly in Brachypodium callus when treated with 50 µM meJA. Six 

BAHD family genes, including two paralogues of BAHD2, and eight GT61 family 

genes showed increased gene expression. Of the GT61 upregulated genes, 6 genes 

were from clade A, and 2 genes were from clade B (Bradi2g61230 (GT61_6), 

Bradi2g26590 (GT61_14)). Bradi2g04980 (BAHD2p2) and Bradi2g01380 (GT61_21) 

showed the highest fold change in gene expression within their respective families, 

although overall gene expression was low, while Bradi2g05480 (BAHD 1) showed the 

highest expression of the candidate genes with an average FPKM of 129 across 4 time 

points in the control samples, compared to 172 in meJA treated callus. Bradi2g01480 

(GT61_5) also showed relatively high expression within the BAHD and GT61 

families, which had an average FPKM of 54 in the control samples and 65 in the 

meJA treated callus. (Table 4.3, Appendix H). The BAHD gene from the same 

Clade responsible for addition of pCA to lignin, BdPMT  (Petrik et al., 2014), was not 

expressed in control or meJA treated samples (data not shown).
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Figure 4.6  Mapped and unmapped reads in Brachypodium distachyon callus RNA sequencing analysis. Four replicates of 

+/- 50 µM meJA at 24 h, 48 h, 4 d or 8 d treatment were analysed. Reads were mapped using BWA-MEM tool and mapping 

statistics were generated using the Flagstat tool in Galaxy software (Giardine et al., 2005). 
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Figure 4.7  MDS plot showing clustering of RNA sequencing samples of Brachypodium distachyon treated with 50 µM 

meJA (JA) for 24 h (orange), 48 h (green), 4 d (purple) or 8 d (blue), compared to a mock control (MC). Four biological 

replicates were analysed (1-4). Plot was generated in R Studio by calculating leading log fold change (FC) from effective 

counts of reads, for genes with cpm > 1 in 3 or more samples. 
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Figure 4.8  List of top 20 represented Gene Ontology (GO) terms for each GO 

category (cellular process, molecular function and biological process) and no. of 

sequences associated, for DEGs with meJA treatment in Brachypodium 

distachyon callus treated with 50 µM meJA and sampled at 1, 2, 4 and 8 d.  
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Figure 4.9  Heat map of cell wall differentially expressed genes (DEGs) with 

meJA treatment. Log cpm fitted values generated by EdgeR were used to generate 

heat map. Brachypodium distachyon callus samples were treated with 

50 µM meJA (JA) or a mock control (MC) treatment for 24 h, 48 h, 4 d or 8 d.  
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Table 4.3  Changes in gene expression of statistically significant upregulated candidate genes for para-coumaric and ferulic acid 

esterification to arabinoxylan after 1, 2, 4 or 8 d treatment with 50 µM meJA compared to a mock control, in Brachypodium distachyon 

callus. Fold changes are based on FPKM values from an RNAseq experiment and p-values (ANOVA) are corrected for FDR Benjamini-

Hochberg. Candidate genes are arbitrarily numbered according to their rice orthologues, p = paralogue. Genes are ordered within families 

by average fold change over 4 time points.    

 

gene name family candidate

24 h fold 

change

48 h fold 

change

4 d fold 

change

8 d fold 

change p -value

24 h MC 24 h meJA 48 h MC 48 h meJA 4 d MC 4 d meJA 8 d MC 8 d meJA

Bradi2g04980 BAHD Clade BAHD2p2 0.3 2.0 774% 0.2 1.4 557% 0.4 1.2 300.2% 0.5 1.7 344.4% 2.26E-07

Bradi2g04990 BAHD Clade BAHD2p1 1.1 6.1 536% 1.0 5.8 591% 1.4 5.8 421.8% 2.1 5.8 275.1% 2.49E-11

Bradi2g33980 BAHD Clade BAHD4 21.4 37.7 176% 21.1 40.6 193% 20.0 40.3 201.4% 26.1 37.9 145.1% 2.51E-06

Bradi2g43510 BAHD Clade BAHD3p1 19.7 25.1 128% 17.8 27.6 155% 18.1 29.3 161.8% 21.7 24.7 113.9% 3.13E-04

Bradi2g05480 BAHD Clade BAHD1 146.9 172.8 118% 117.6 162.3 138% 103.2 179.7 174.1% 149.5 171.5 114.7% 3.63E-03

Bradi2g43520 BAHD Clade BAHD5 21.6 30.4 140% 21.4 29.5 138% 24.1 30.1 124.9% 25.1 30.2 120.3% 3.36E-04

Bradi2g01380 GT family 61 GT61_21 0.3 1.2 458% 0.2 1.0 565% 0.5 1.3 250.8% 0.2 1.1 459.3% 1.95E-04

Bradi1g34670 GT family 61 GT61_12 1.2 2.1 187% 0.9 2.1 241% 1.5 2.6 182.7% 1.5 2.0 133.1% 1.45E-04

Bradi4g27360 GT family 61 GT61_10 20.6 31.1 151% 17.3 34.6 200% 19.1 32.8 171.5% 23.6 36.3 154.1% 1.33E-06

Bradi2g01387 GT family 61 GT61_15 25.8 39.0 151% 22.3 45.9 205% 23.2 38.9 167.7% 28.8 39.7 138.0% 2.69E-05

Bradi2g61230 GT family 61 GT61_6 3.1 4.2 135% 3.2 5.1 162% 3.1 4.9 160.1% 4.0 6.8 171.4% 3.67E-04

Bradi2g26590 GT family 61 GT61_14 13.4 17.7 132% 11.5 18.9 164% 12.7 18.6 146.7% 12.1 16.2 134.0% 4.34E-07

Bradi1g19160 GT family 61 GT61_18 13.2 19.2 145% 14.7 22.1 150% 15.1 20.8 137.7% 18.6 19.2 103.5% 4.24E-03

Bradi2g01480 GT family 61 GT61_5 61.4 70.5 115% 46.7 64.1 137% 52.9 64.3 121.5% 56.1 60.2 107.2% 1.71E-03

transcript abundance 

(FPKM)

transcript abundance 
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transcript abundance 
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transcript abundance 
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Figure 4.10  Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes with 50 µM meJA treatment in 

Brachypodium distachyon callus, and schematic diagram of differentially expressed genes in the phenylpropanoid synthesis pathway, performed 

by Blast2Go software (Conesa et al., 2005). Coloured enzymes are differentially expressed between control and meJA treatments. Numbers 

represent enzymes in the KEGG database: www.genome.jp/kegg. Dark green (4.3.1.24) = phenylalanine ammonia-lyase; light green 

(1.14.13.11) = cinnamate 4-hydroxylase; yellow (4.3.1.25) = phenylalanine/tyrosine ammonia-lyase; dark blue (6.2.1.12) = 4-coumarate/ferulate 

CoA ligase; medium blue (1.1.1.195) = cinnamyl alcohol dehydrogenase; light blue (2.1.1.68) = caffeate O-methyltransferase; Dark red 

(1.2.1.44) = cinnamoyl/feruloyl-coenzyme A reductase; medium red (3.2.1.21) = beta-glucosidase; light red (1.11.1.7) = peroxidase.     

Pathway
No. of 

genes

No. of 

enzymes 

Biosynthesis of antibiotics 127 86

Starch and sucrose metabolism 72 27

Phenylpropanoid biosynthesis 67 9

Purine metabolism 58 22

Glutathione metabolism 44 10

Drug metabolism – cytochrome P450 36 4

Amino sugar and nucleotide sugar metabolism 33 18

Metabolism of xenobiotics by cytochrome P450 31 3

Glycolysis / Gluconeogenesis 31 16

Galactose metabolism 29 13

Pyrimidine metabolism 26 16

Pyruvate metabolism 25 16

Glycerolipid metabolism 25 10

Cysteine and methionine metabolism 23 21

Phenylalanine, tyrosine and tryptophan biosynthesis 23 21

Pentose and glucoronate interconversions 23 8

Alpha-linolenic acid metabolism 22 9

Oxidative phosphorylation 22 7

Glycine, serine and threonine metabolism 22 12

Alanine, aspartate and glutamate metabolism 21 10

Pentose phosphate pathway 20 12
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4.4 Discussion 

4.4.1 Cell wall-bound pCA and FA 

 Ferulic acid (FA) is esterified to arabinoxylan (AX) in cell walls of the Poaceae, and is 

able to dimerise, and therefore covalently cross-link AX polysaccharides (Hatfield et 

al., 1999). In this study, 100 µM (±)-jasmonic acid (JA) induced increased cell 

wall-bound FA dimers and induced decreased cell wall-bound FA monomer in 

Brachypodium seedling root tissue, while total FA remained stable (Figure 4.1). This 

may be attributable to free radical-generating class III peroxidases that are released 

into the cell wall downstream of jasmonic acid signalling. This has been evidenced 

directly in dock leaf (Moore et al., 2003), and as a response to insect herbivory in 

wheat (Shetty et al., 2003). Class III peroxidases in the cell wall create increased 

cross-linking through FA dimerisation, and increased lignin biosynthesis (Almagro et 

al., 2009). Indeed, in this study, an increase in lignin was found 8 d post 50 µM meJA 

treatment in Brachypodium callus (Figure 4.5).  

There was no significant effect of 100 µM (±)-JA in cell wall-bound pCA, or total FA, 

in Brachypodium roots and shoots grown in hydroponics after 48 h (Figure 4.1). It is 

possible that insufficient cell wall synthesis occurred within the 48 h period studied, 

and therefore longer treatment with (±)-JA may have shown increased total HCAs. 

Indeed, resistance to infection has been shown to be acquired 2-3 d after wounding in 

Rumex spp. (Hatcher et al., 1994). Alternatively, FA and pCA cross-linked to lignin 

may be a complicating factor. Lignin typically comprises around 20% of 

Brachypodium plant cell walls (Figure 3.6), and ester-bonded FA residues on AX are 

a known nucleation site for lignin formation (Ralph et al., 1995). Cross-linking of FA 

residues to lignin via ether or C-C bonds may well have increased due to class III 
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peroxidase release into the cell wall. FA cross-linked to lignin by ether or C-C bonds 

would not be released by the alkaline-hydrolysis method used here, and therefore 

total FA may have been underestimated. Lignin also contains alkali-labile ester-

linked pCA, which is 4 times the amount of pCA residues on AX in Brachypodium 

tissues (Petrik et al., 2014). The undifferentiated cells of callus generally have very 

little secondary cell wall, with half the amount of lignin as plant tissues (Figure 4.5). 

Although Brachypodium callus cell walls contained some lignin, the bound pCA in 

callus cell walls was almost entirely ester-bonded to AX, as shown by mild acidolysis, 

and this was not altered by JA treatment (Table 4.1). The amounts of pCA, FA and 

FA dimers, lignin and neutral sugars found in Brachypodium callus in this study 

were similar to those found by Rancour et al. (2012). Therefore, callus provided a 

useful system to study the effect of jasmonic acid on wall-bound hydroxycinnamic 

acids (HCAs). 

Wall-bound pCA increased dramatically in methyl-jasmonate treated callus, 

increasing 5-10 fold after 17 d treatment with 100 µM meJA (Figure 4.2). Although 

wall-bound pCA was greater than the control samples (50%) after 24 h meJA 

treatment, and was two-fold greater after 8 d treatment (Figure 4.4), lignin was only 

40% greater than the control samples after 8 d meJA treatment (Figure 4.5). There 

was no evidence that AX was greater in meJA treated samples (Figure 4.5), hence, 

pCA increased per unit AX. Arabinoxylan p-coumaroylation was shown to be one of 

the first, and greatest, changes to the cell wall in response to meJA. The role of this 

linkage is unknown since it does not cross-link, although it has been hypothesised 

that pCA linked to lignin may promote lignin polymerisation (Boerjan et al., 2003, 

Hatfield et al., 2008), and it is possible that AX-linked pCA also has a role in lignin 

polymerisation. Alternatively, it could act as an inhibitor of AX digestion under biotic 

stress given the role of JA in the wounding response. 
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Total wall-bound FA was greater in meJA treated Brachypodium callus after 8 d 

treatment with 50 µM meJA than in control samples; notably FA dimers were 12% 

greater than the control (Figure 4.4). As meJA did not affect the amount of 

arabinose or xylose in the callus cell walls, this experiment indicates that total FA 

per unit AX increased in response to jasmonic acid signalling. However, results of a 

separate experiment where callus tissue was treated for 17 d with 100 µM meJA, and 

where AX was shown to increase, may not be consistent with this (Figure 4.2, 

Figure 4.3). Increased FA in response to meJA is not well documented, however the 

results of this study concur with Lee et al. (1997), who reported a 1-2 fold increase in 

wall-bound FA in JA-treated barley leaf segments after 48 h treatment. Increased 

wall-bound FA and FA dimers presumably fortifies the cell wall against insect or 

pathogen invasion due to its role in inhibition of digestion by cross-linking (Grabber 

et al., 1998a). 

4.4.2 Cell wall genes 

There was a large response to meJA in cell wall associated genes in the primary cell 

walls of Brachypodium callus, including upregulation of cellulose synthase genes 

(CesAs), GT43 and 47 families, and lignin genes (Appendix F), although some GT47 

family genes were downregulated in response to meJA treatment (Appendix G). β-

glucan synthesis cellulose synthase-like (CSL) genes were also downregulated 

(Appendix G). Consistent with this was decreased glucose in the hemicellulose 

fraction of meJA treated callus (Figure 4.5), suggesting a role for decreased β-glucan 

in response to JA. The distribution of GO terms that were assigned to differentially 

expressed genes showed that cell wall associated GO terms were among the top 

cellular processes that were affected by meJA. Furthermore, consistent with the 

increase in cell wall-bound pCA and FA (Figure 4.4), enzymes 
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within the phenylpropanoid pathway were differentially expressed with meJA 

treatment (Figure 4.10).  

4.4.3 BAHD and GT61 family genes 

Treatment with meJA for 24 h induced upregulation of BAHD1, 2p1, 2p2, 3p1, 4 and 

5 transcripts and GT61.5, 10, 12, 14, 15, 18 and 21 (clade A) and GT61 6 and 14 

(clade B) transcripts (Table 4.3). As cell wall-bound pCA and FA increased in the 

same time frame, the enzymes encoded by the upregulated BAHD and GT61 

transcripts are implicated in synthesising cell wall-bound HCAs in Brachypodium. 

Gene expression profiles of these genes were similar to the response of their rice 

orthologues from experiments in rice seedlings in response to JA, as documented in 

the RiceXPro database (Sato et al., 2013) (Appendix A, Appendix H), verifying that 

the callus system is representative of the system in planta.  

Mitchell et al. (2007) were the first to hypothesise that a clade within the BAHD 

acyltransferase family and two clades of the glycosyltransferase (GT)61 gene families 

were involved in arabinoxylan synthesis. Evidence that some BAHD genes are 

involved in the esterification of pCA to AX has since accumulated (Molinari et al., 

2013, Piston et al., 2010); the best evidence for this is that OsAT10 has been shown to 

esterify pCA to AX in rice (Bartley et al., 2013). The Brachypodium orthologue 

bdBAHD10 was not expressed in control or meJA treated callus in this study, 

although pCA esterified to AX increased dramatically, suggesting functional 

redundancy within the BAHD family.  

One gene within the same BAHD clade (BdPMT) has been shown to add pCA to 

lignin (Withers et al., 2012, Petrik et al., 2014). Cell wall-bound pCA in callus was 

found to be mostly or entirely linked to AX as opposed to lignin, as evidenced by mild 

acidolysis analysis (Table 4.1), and consistent with this was the absence of BAHD 
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acyltransferase BdPMT expression, which is responsible for all pCA linked to lignin 

in plant tissues (Petrik et al., 2014).  

BAHD2p1 and p2 genes showed the greatest upregulation in response to meJA in 

callus (Table 4.3), suggesting that these genes may be responsible for pCA linked to 

AX, whereas the other BAHDs which were upregulated to a lesser extent could be 

responsible for FA linked to AX, as FA increased to a lesser extent than pCA (Figure 

4.4). To support this hypothesis, BdBAHD5, which was upregulated here, has 

previously been implicated in feruloylation of AX (Piston et al., 2010, Buanafina et 

al., 2016).  

It has been shown that some GT61 clade A genes (XAT 1, 2 & 3) are arabinosyl 

transferases (Anders et al., 2012). As described in Chapter 1.8.2, it is hypothesised 

that XAX1 and the Brachypodium orthologue, BdGT61.9, are similarly 

feruloyl/coumaryl arabinosyl transferases. Neither GT61.9p1 nor GT61.9p2 showed 

significant change in gene expression when treated with meJA. However, the closely 

related GT61.10 showed an increase in gene expression after 24 h, rising to a 2-fold 

increase at 48 h (Table 4.3), and may be therefore functionally redundant with 

GT61.9p1/p2. AX-esterified FA is greater than AX-esterified pCA (Mueller-Harvey 

and Hartley, 1986); as BAHD1 and GT61.5 showed the highest relative expression of 

the BAHD and GT61 genes which were upregulated, these genes are also good 

candidates for involvement in FA esterification.Conclusion 

Treatment with meJA was found to increase arabinoxylan pCA and FA in the cell 

wall of Brachypodium callus, and increase FA cross-linking. It remains to be seen 

whether these increases contribute to greater cell wall recalcitrance and to acquired 

resistance to pests and pathogens. The expression of genes in the BAHD and GT61 

genes families increased in response to meJA in conjunction with increased pCA and 

FA, and therefore the experiments in this chapter have added to the existing 
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evidence that genes within these families are involved in feruloylation and 

coumaroylation on AX in grass cell walls. Candidate genes were also identified, such 

as BAHD2, for which there is strong evidence for involvement in pCA esterification to 

AX in the cell wall. 
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 Effects of Glycosyltransferase (GT)61.9 

Overexpression and RNAi on Cell Wall Composition, 

and an Investigation of the Expression Driven by 

Upstream Regions from the two GT61.9 Paralogues, in 

Brachypodium distachyon. 

5.1 Introduction 

The unique cell walls of the Poaceae (grasses) comprise arabinoxylan (AX) as the 

major hemicellulose. Ferulic acid (FA) cross-linking in grasses are major inhibitors of 

enzymatic digestion in second generation biofuel and ruminant nutrition 

applications. Elucidating the genes involved in the esterification of FA, and the very 

similar phenolic molecule para-coumaric acid (pCA), to AX is of great interest in 

increasing the digestibility of grass cell walls (Chapter 1.6.4).  

Despite the significance of FA in grass cell walls and the potential positive 

applications in biofuel production and ruminant nutrition, little is known about the 

mechanisms of FA and pCA esterification to AX, and very few of the genes involved 

have been identified. The BAHD acyl-coA transferase clade A (Figure 1.4) and the 

glycosyltransferase (GT) 61 family (Figure 1.5), have been predicted to be involved 

in the process by Mitchell et al. (2007), using a comparative bioinformatics approach. 

Subsequently, it was suggested that GT61 gene OsXAX1 was responsible for 

β-(1,2)-xylosyl transferase activity of α-(1,3)-arabinose residues on AX in rice 

(Chiniquy et al., 2012). This study also found a marked decrease in both cell 

wall-bound FA and pCA in xax1 knockout mutants of around half compared to wild 

type.  
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Other GT61 family genes, TaXAT1 and TaXAT2 in wheat and OsXAT2 and OsXAT3 

in rice encode α-(1,3) arabinosyl transferases which catalyse the addition of 

arabinofuranose onto β-(1,4) xylose backbone of AX (Anders et al., 2012). Also, the 

wheat orthologue of OsXAX1, named TaGT61.9 here, is highly expressed in starchy 

endosperm in wheat, where the feruloyl-AX β-1,2-xylosyl side chain is absent 

(Saulnier et al., 2007). Furthermore, OsGT61.9 is strongly coexpressed with members 

of the BAHD acyl-coA transferase clade A, which are implicated in adding ferulic acid 

to arabinose in the cytosol (Molinari et al., 2013, Mitchell et al., 2007). Given this 

evidence, an alternative hypothesis for GT61.9 function is that it encodes an enzyme 

with feruloyl-arabinosyl transferase and p-coumaryl arabinosyl transferase activities 

(Figure 1.6). 

A widely used model species for the study of grass cell walls is Brachypodium 

distachyon (Brachypodium), a more relevant model for the temperate grasses than 

rice, which has potential advantages for understanding the role of hydroxycinnamic 

acids (HCAs) on AX in determining digestibility of grass biomass. Orthologues of 

XAX1 in Brachypodium are the paralogous genes Bradi1g06560 and Bradi3g1137, 

named GT61.9p1 and p2 respectively here. The encoded proteins of GT61.9p1 and p2 

show 77% and 79% identity with OsXAX1 (Figure 5.1). GT61.9p1 has been shown by 

qRT-PCR data to be more highly expressed in stems and roots in Brachypodium, and 

GT61.9p2 more highly expressed in leaf (Mitchell lab, unpublished, Appendix I). 

However, little is known about the function and activity of the two GT61.9 

paralogues in Brachypodium.   

The aims of the experiments in this chapter were to investigate the function and 

control of expression of the two GT61.9 paralogues in Brachypodium using 

transformation approaches. In order to determine the role of GT61.9 genes in 

determining AX feruloylation and p-coumaroylation, constructs designed to  
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Figure 5.1  Protein alignment of Brachypodium distachyon paralogous genes Bradi1g06560 (GT61.9p1 here) and Bradi3g11337 

(GT61.9p2 here) with rice gene OsXAX1. The alignment was created using Geneious software. The single transmembrane domain and 

the PF04577 functional domain are highlighted
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overexpress and knock-down (RNA interference (RNAi)) the expression of two GT61.9 

paralogues were used to transform Brachypodium. It was anticipated that the 

knock-downs would replicate the result of xax1 with decreased cell wall-bound HCAs, 

and overexpression lines may show increased cell wall-bound HCAs. Transgenic lines 

with such effects could be studied further to discriminate between competing 

hypotheses of the role of GT61.9, and also investigate effects on important traits such 

as digestibility. In order to investigate whether the differences in gene expression 

between the GT61.9 paralogues observed from qRT-PCR in the Mitchell lab 

(unpublished, Appendix I) were attributable to their upstream promoter regions, 

GFP fusion transformants were analysed.  
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5.2 Chapter 5 specific methods 

5.2.1 Phylogenetic tree construction 

All protein sequences containing PFAM PF04577 domain, characteristic of the GT61 

family, were downloaded from the JGI Phytozome 11 database (www.phytozome.net, 

Goodstein et al., 2012) for Arabidopsis, Brachypodium and rice. Three sequences (two 

Arabidopsis and one rice) which were distantly related to the others were excluded as 

they were the only sequences that were not included in the CAZy (www.cazy.org, 

Coutinho et al., 2003) list of GT61 proteins. Wheat protein sequences are not all 

available, so are not included in Phytozome11; a comprehensive set of wheat GT61 

coding sequences compiled by Dr. Rowan Mitchell, Rothamsted Research from 

sequences cloned in the Cell Wall Group, IWGSC2 genomic sequences (Ensembl 

Plants, www.plants.ensembl.org, Hubbard et al., 2002) and wheat RNA-seq was used. 

To simplify the tree, only one homeologue from the three wheat sub-genomes was 

used, as these have >95% nucleotide sequence similarity. The set of GT61 protein 

sequences (8 Arabidopsis, 22 rice, 22 Brachypodium, 29 wheat) were aligned using 

MUSCLE (Edgar, 2004) in Geneious version 8 (Kearse et al., 2012), with default 

settings. The phylogenetic tree was generated using Phyml (Guindon and Gascuel, 

2003) using the Whelan and Goldman (2001) model; proportion of invariable sites 

and gamma distribution parameters were optimised in an initial run at 0.012 and 

0.893, respectively. These were then fixed at these values and topology and branch 

length were optimised in 100 bootstrap runs; the tree shown is the consensus tree 

with the number of bootstraps supporting branches shown. 
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5.2.2 Vector design of GT61.9p1 overexpression construct  

The Bradi1g06560 (GT61.9p1) coding region CDS was obtained from the JGI 

Phytozome 11 database (http://www.phytozome.net, Goodstein et al., 2012). Silent 

transversion mutations were introduced into the CDS at base 579:C→G, 1143: C→G 

and 1269: C→G, to disrupt restriction sites. The stop codon, TAG, was replaced with 

the c-Myc epitope tag (5’GAGCAAAAGCTCATTTCTGAAGAGGACTTG), and SpeI 

and SacI restriction sites were introduced at the 5’ and 3’ ends respectively (Figure 

5.2). This construct was ordered cloned into the pUC57 vector from Genscript®, USA. 

Two vectors were created for overexpression of GT61.9p1 driven by the maize 

ubiquitin promoter (pUbi::GT61.9p1-Myc) or the IRX5 promoter (pIRX5::GT61.9p1-

Myc). The maize ubiquitin promoter is well established. The IRX5 promoter was 

chosen as suitable for driving expression in tissues synthesising secondary cell walls, 

which constitute the majority of final biomass and are therefore most relevant for 

digestibility applications. The IRX5 promoter was identified by Dr. Rowan Mitchell 

as a 1,487 bp upstream region of Bradi3g28350, the orthologue of IRX5 in 

Arabidopsis, which encodes a secondary-cell wall specific cellulose synthase. This 

IRX5 promoter has been shown to drive strong expression in Brachypodium stems 

with a GUS reporter construct (Dr. Till Pellny, unpublished). The Bradi1g06560-Myc 

construct was inserted into the A224p6i-U-Gusi and A224p6i-IRX5-Gusi master 

Figure 5.2  A schematic diagram (not to scale) of the construct ordered from 

Genscript®, USA, to be used for overexpression of GT61.9p1 in Brachypodium 

distachyon. 
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vectors (shown in Figure 5.3), using standard cloning procedures (Chapter 2.13) 

and according to the following cloning strategy. Plasmid A224p6i-U-Gusi was 

digested with SpeI and SacI to remove the GUS coding region (CDS), and GT61.9p1 

CDS (SpeI and SacI-digested from pUC57 vector) was inserted into the plasmid using 

SpeI and SacI sticky ends to create pUbi::GT61.9p1-Myc (Figure 5.4). Similarly, 

master plasmid A224p6i-IRX5-Gusi was used to create pIRX5::GT61.9p1-Myc 

(Figure 5.5).  

5.2.3 Vector design of GT61.9p1 and p2 RNAi construct  

Two RNAi vectors were designed and constructed by Dr. Till Pellny, Rothamsted 

Research. Vectors were designed to simultaneously knock down the expression of 

GT61.9p1 (Bradi1g06560) and GT61.9p2 (Bradi3g11337) in Brachypodium. The 

RNAi cassettes were constructed with inverted repeats of a sequence with a 90bp 

stretch of homology between GT61.9p1 and p2, but only 14bp identity with closely 

related GT61.10, flanking the maize Adh2 intron (sequence shown in Appendix J), 

and were under the control of the ubiquitin promoter (pUbi::RNAi-GT61.9p1/p2) or 

the IRX5 promoter (pIRX5::RNAi-GT61.9p1/p2).  
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Figure 5.3  A diagram of the A224p6i-U-Gusi master vector used for transformation 

of Brachypodium distachyon. Features of the vector include the origins of replication 

for Agrobacterium AGL1 (pVS1), and Escherichia coli (ColE1), and the 

streptomycin/spectinomycin resistance gene (Sm/Sp CDS). Inside the border 

sequences (BL and BR), the cauliflower mosaic virus (CaMV) 35S promoter drives 

expression of the hygromycin resistance gene (hpt), mediated by the potato ST-LS1 

intron and terminated by the CaMV 35s terminator. The maize ubiquitin promoter 

(pUbi) drives expression of the GUS coding sequence (CDS), which was replaced with 

the CDS of GT61.9p1 in this study, and terminated by the nopaline synthase (NOS) 

terminator.   
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Figure 5.4  A schematic diagram of the cloning procedure used to create vector pUbi::GT61.9p1-Myc. 

Pink labels indicate the maize ubiquitin promoter, blue labels indicate the GUS coding region, and 

yellow labels represent the Brachypodium distachyon GT61.9p1 coding region. Light blue labels show 

restriction site sticky ends. 

Figure 5.5  A schematic diagram of the cloning procedure used to create vector pIRX5::GT61.9p1-Myc. 

Purple labels indicate the IRX5 secondary cell-wall specific promoter, blue labels indicate the GUS 

coding region, and yellow labels represent Brachypodium distachyon GT61.9p1 coding region. Light 

blue labels show restriction site sticky ends. 
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5.2.4 Brachypodium transformation 

Agrobacterium was transformed with overexpression constructs pUbi::GT61.9p1-Myc 

(section 5.2.2) and pIRX5::GT61.9p1-Myc, and RNAi constructs 

pUbi::RNAi-GT61.9p1/p2 and pIRX5::RNAi-GT61.9p1/p2 (section 5.2.3), as 

described in Chapter 2.14, and transgenic plants were generated as described in 

Chapter 2.16. Figure 5.6 depicts examples of the transformation procedure. T0 and 

T1 generations were grown in a glasshouse at 20/20 °C, 16/8 h light/dark cycle with 

supplementary lighting, with 2-4 weeks of vernalisation. T2 generation seeds were 

grown as described in section 5.2.6 for analysis of phenolic acids. 

5.2.5 Determination of zygosity 

Zygosity of T2 generation plants was determined as described in Chapter 2.18.  

 

Figure 5.6  Photographs of Brachypodium distachyon transformation procedure, 

showing (a) callus on regeneration media containing hygromycin selection, 

showing generation of shoots, and (b) root generation of putative transformants on 

MS media under selection. 
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5.2.6 Experimental design 

Five independent lines from the T2 generation were germinated and, when 20 days 

old, were grown in a statistically randomised paired block design, with positive 

transgenic plants paired with a null segregant. Four biological replicates were 

integrated into the block design. Plants were grown in a controlled environment 

cabinet at 24/20 °C, 20/4 h light/dark cycle, 65% humidity, 150 µmol m-2 s-1 

photosynthetic photon flux. Plants were harvested after 4 weeks directly into liquid 

nitrogen (Chapter 2.2). It was observed that plants from the pIRX5::GT61.9p1-Myc 

experiment showed signs of disease.  

5.2.7 Analyses of GT61.9 overexpression and RNAi lines  

Transformed Brachypodium lines (T2) generation were verified as expressing the 

transgene using Western blot as described in Chapter 2.20, and were analysed for 

cell wall-bound phenolics as described in Chapter 2.11 and 2.12. Wall-bound sugars 

were analysed as described in Chapter 2.6 and 2.7. 

5.2.8 Statistics 

Outlying values were discounted as per Grubbs’ outliers test. Analysis of variance 

(ANOVA) was applied to the data, taking account of the four biological replicates in 

the blocked experimental design, and testing the main effects of transgene (null or 

positive) and transgenic line using the F-test. Means in relevant statistically 

significant (p < 0.05, F-test) terms from the ANOVA were interpreted using the 

standard error of the difference (SED) between means on the residual degrees of 

freedom (df), invoking a least significant difference (LSD) at the 5% level of 

significance. Where mean values are presented in the text as a main effect of the 

transgene, the figure presented is the average across the lines that were analysed. 
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Line ‘2 hom’ (homozygous segregants of GT61.9 overexpression line 2) compared to its 

null segregant was analysed in an independent ANOVA as this line was grown in a 

separate tray to the other transgenic lines. Assistance with statistical analyses was 

provided by Stephen Powers, Rothamsted Research.  

5.2.9 GT61.9p1 and p2 promoter-GFP fusion experiment 

The promoter region of genes Bradi1g06560 (GT61.9p1) and Bradi3g11337 

(GT61.9p2) were assigned as 1500 bp upstream of the start codon of the gene and 

obtained from EnsemblPlants (http://plants.ensembl.org, Kersey et al., 2016). Two 

constructs were designed and ordered from Genscript®, USA, in vector pUC57. 

pUC57::GT61.9p1-GFP consisted of the promoter region of GT61.9p1, fused in frame 

to the nuclear targeted GFP gene (H2B-GFP), with KpnI and SpeI restriction sites at 

the 5’ and 3’ ends of the promoter region, and a SacI restriction site at the 3’ end of 

H2B-GFP. Base 272 was replaced (A-G) to avoid restriction sites. pUC57::GT61.9p2-

GFP consisted of the promoter region of GT61.9p2 with KpnI and SpeI restriction 

sites at the 5’ and 3’ ends respectively.  

Three vectors were constructed containing the H2B-GFP coding region driven by 

either the promoter regions of GT61.9p1, GT61.9p2, or the maize ubiquitin promoter 

as a positive control, using standard cloning procedures (Chapter 2.13), as follows. 

Plasmid A224p6i-U-Gusi was digested with KpnI and SacI to remove the ubiquitin 

promoter and GUS coding region, and KpnI and SacI-digested 

promGT61.9p1-H2B-GFP was ligated into the plasmid using KpnI and SacI sticky 

ends to create pGT61.9p1::H2B-GFP. This plasmid was digested with KpnI and SpeI 

to remove the promoter, and the GT61.9p2 promoter was inserted using KpnI and 

SpeI sticky ends, to create pGT61.9p2::H2B-GFP. The positive control plasmid 

Ubi::H2B-GFP was created by digesting plasmid A224p6i-U-Gusi with KpnI and SpeI  
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Figure 5.7  A schematic representation of the cloning procedure used to create 

vectors pGT61.9p1::GFP, pGT61.9p2::GFP, and pUbi::GFP. Pink labels indicate the 

maize ubiquitin promoter, green labels indicate the H2B-GFP coding region, blue 

labels indicate the GUS coding region, and yellow and orange labels indicate the 

Brachypodium distachyon GT61.9p1 and GT61.9p1 promoter regions (1500 bp 

upstream of the start codon) respectively. Light blue labels show restriction site 

sticky ends.
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to remove the maize ubiquitin promoter and inserting into plasmid 

pGT61.9p1::H2BGFP, digested with KpnI and SpeI (Figure 5.7). 

5.2.10 Analyses of GT61.9p1 and p2 promoter-GFP fusion 

Brachypodium was transformed with promoter fusion vectors pGT61.9p1::H2B-GFP,  

pGT61.9p1::H2B-GFP and Ubi::H2B-GFP as described in Chapter 2.14-2.16. For 

analysis of leaves, T1 or T2 generation transgenic Brachypodium lines were grown in 

the glasshouse at 25/20 °C, 16/8 h light/dark cycle with supplementary lighting, after 

2 weeks of vernalisation at 6 °C, 8/16 h light/dark cycle. For analysis of roots, 

Brachypodium seedlings were germinated on 0.5 x MS media (2.2 g/l (w/v) MS salts, 

0.05% (w/v) MES, 0.5% (w/v) PhytagelTM) and analysed when 4 days old. Green 

fluorescent protein (GFP) was visualised using a Zeiss 780 LSM confocal microscope 

as described in Chapter 2.21. At least two independent lines for each construct were 

analysed in 2.5 month old Brachypodium for leaf, or 4 day old seedlings for root. The 

root images were obtained with the assistance of the Rothamsted Research 

bioimaging department (Kirstie Halsey). 



      

135 

    

5.3 Results 

5.3.1 Phylogenetic tree of the GT61 family  

Reference sequences have been updated slightly since the phylogenetic tree of GT61 

proteins shown in Figure 1.5 was generated. Therefore, a new phylogenetic tree was 

generated to include all the species where there is direct evidence of function for a 

GT61 protein, namely rice, wheat, Arabidopsis and Brachypodium (Figure 5.8, 

Appendix K).  

5.3.2 Overexpression of GT61.9p1 in Brachypodium 

Brachypodium was successfully transformed with overexpression constructs 

pUBI::GT61.9p1-MYC and pIRX5::GT61.9p1-MYC. Eighteen (pUBI) and fourteen 

(pIRX5) independent transgenic lines were generated, from a pool of 300 calli each, 

giving a transformation efficiency of 6% and 4.7% respectively. All of these lines were 

shown to be PCR positive, as exampled in Figure 5.9, demonstrating successful 

selection on hygromycin. Four pUBI::GT61.9p1-MYC transgenic lines were assayed 

for the Myc antigen using Western blotting, for expected protein size 61 kDa and 

showed anti-c-Myc activity in stem and leaf (Figure 5.10), indicating expression of 

the transgene and its encoded protein in the assayed lines. Homozygous and 

heterozygous lines were identified by qPCR with genomic DNA as the template, as 

exampled in Appendix L. In contrast to the predictions from the hypothesis, there 

was no difference in cell wall-bound FA monomer, total FA dimers, or pCA between 

GT61.9 overexpression Brachypodium lines transformed with the 

pUBI::GT61.9p1-MYC construct, when compared to null segregants. The amounts of 

wall-bound FA monomer and dimers in leaf and stem remained constant across the 

transgenic lines measured. Total cell wall-bound FA (sum of monomer and dimers)
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Figure 5.8  Phylogenetic tree of GT61 family genes in wheat (red), rice (green) and 

Brachypodium distachyon (brown) and Arabiopsis thaliana (blue). Genes are 

numbered arbitrarily except characterised genes, which are named. Clades are as in 

Anders et al. (2012). For bootstrap values see Appendix K.   
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Figure 5.9  Gel electrophoresis image showing positive incorporation of the 

pUBI::GT61.9p1-Myc transgene into Brachypodium genomic DNA (gDNA). PCR was 

used to amplify a section of the transgene from template DNA extracted from leaves 

of primary transformants (T0). Lines 7, 11, 12, 13, 14, 17 and 18 are shown and are 

representative of 18 transgenic lines generated. Control templates wild type 

Brachypodium DNA, a plasmid positive control and a no DNA negative control are 

also shown. gDNA from line 14 was re-extracted at a later date and was positive for 

the transgene. 
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Figure 5.10  Western blot assay of transgenic Ubi::GT61.9-Myc overexpression 

Brachypodium lines. Expression of transgenic GT61.9-Myc is driven by the 

ubiquitin promoter (Ubi), and expression of Myc is visualised by detection of 

anti-c-Myc antibody activity. Transgenic lines 2, 4, 7 and 9 were analysed, which 

were either homozygous (hom) or hemizygous (hemi) for the transgene. Leaf or 

stem material collected from T2 generation plants was either freeze dried (FD) or 

harvested directly into liquid nitrogen (LN). Controls: negative (-ve) control is a 

null segregant of transgenic line 2. Positive (+ve) controls are protein samples 

from transgenic line 2 (+ve control) and from a BAHD3-Myc fusion (predicted 

size 46.8 kDA) wheat overexpression line (+ve control 2) that have previously 

been shown to bind to the anti-C-Myc antibody.   
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ranged from 3.8-4.2 µg mg-1, averaging 4 µg mg-1 of dry weight in leaf, and ranged 

from 5.3 – 5.6 µg mg-1, averaging 5.5 µg mg-1 of dry weight in stem. Cell wall-bound 

pCA ranged from 1.1 - 1.2 µg mg-1, averaging 1.5 µg mg-1 of dry weight in leaf, and 

from 2.8 – 3.4 µg mg-1, averaging 3.1 µg mg-1 of dry weight in stem. These results 

indicate the reliability of the collected data. The level of FA in the homozygous 

segregants was equal to that of heterozygous plants. These findings were consistent 

across stem and leaf tissues (Figure 5.11). Some small but statistically significant 

changes were observed in individual dimers in GT61.9p1 overexpression 

Brachypodium lines. In leaf, there was a significant main effect of the transgene 

across lines in diF8-8, which was 8% greater in GT61.9 overexpression lines than in 

the null segregants (p = 0.046, F-test: means = 0.2585 (+), 0.2389 (-); SED = 0.00936 

on 26 df), however, diF8-8 was not consistently less than the nulls in every line 

despite the fact that they all expressed the recombinant protein. In stem, diF5-5 was 

5% more than the null segregant control in GT61.9 overexpression line 5 (p < 0.05, 

LSD), but not in the other lines (Figure 5.12).     

There were no statistically significant differences found between cell wall-bound 

sugars glucose (cellulose & hemicellulose fraction), xylose, arabinose, galactose, 

glucuronic acid, galacturonic acid, mannose and fucose for the main effect of the 

transgene across lines, with the exception of line ‘2’, in which glucose (cellulose) in 

the transgenic line was significantly less than in the controls (Figure 5.13).  

Another identical randomised block design experiment aimed to investigate phenolic 

content in Brachypodium transformed with overexpression of GT61.9p1 driven by 

secondary cell wall promoter pIRX5 (pIRX5::GT61.9p1-MYC) was carried out. This 

experiment was designed as an alternative to the pUBI::GT61.9p1-MYC experiment, 

to use in the possible event that ubiquitously expressing lines produced non-viable 

offspring. However, the plants acquired a disease phenotype during the experiment. 
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Therefore, phenolic content was not measured in these lines and, due to time 

constraints and given the generation and survival rate of lines which constitutively 

overexpressed GT61.9p1 (see above), the experiment was not repeated and phenolic 

data was not collected from these lines. 
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Figure 5.11  Ferulic acid (FA) monomer, total dimers and para-coumaric acid (± SE) in 

stem (top) and leaf (bottom) of five Brachypodium distachyon lines overexpressing 

GT61.9p1, driven by the maize ubiquitin promoter. Heterozygous lines (2, 4, 5, 7 and 

9), and a homozygous segregant of line ‘2’ (2 hom) are shown and transgenic plants 

(dark blue, dark green and dark yellow) are compared to null segregants (light blue, 

light green and light yellow). FA dimer includes diF8-8, diF8-5 and diF8-5 benzofuran, 

diF5-5 and diF8-O-4. 
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Figure 5.12  Ferulic acid dimers (± SE) in stem (top) and leaf (bottom) of five GT61.9p1 

overexpression lines, (expression driven by the maize ubiquitin promoter) in 

Brachypodium distachyon. Heterozygous lines (2, 4, 5, 7 and 9), and a homozygous 

segregant of line ‘2’ (2 hom) are shown and transgenic plants (dark blue, dark green 

and dark yellow, dark purple, dark red) are compared to null segregants (light blue, 

light green and light yellow, light purple, light red). Asterisks indicate significant 

differences between transgenic lines and null segregants. 

Null segregant 

Positive transgenic 

Null segregant 

Positive transgenic 

* 

* 



      

 

    

1
4
2
 

 

Figure 5.13  Monosaccharide concentrations of transgenic Brachypodium lines which overexpress (+) GT61.9p1 (Bradi1g06560) under constitutive expression of the 

maize ubiquitin promoter, compared to null segregants (-). Error bars show ± SE. Independent transgenic events are named transgenic lines 4, 5, 7, 9 (heterozygous) 

and line 2 hom (homozygous). The Asterisk indicates a significant difference between the transgenic line and null segregants
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5.3.3 RNAi knockdown of GT61.9p1 and p2 in Brachypodium 

RNAi lines designed to knock down the expression of GT61.9 paralogues p1 and p2 

were generated by Dr. Till Pellny, Rothamsted Research. Reduced expression was 

designed to be driven by the maize ubiquitin promoter (construct pUbi::RNAi-

GT61.9p1/p2) and the IRX5 secondary cell wall specific promoter (construct 

pIRX5::RNAi-GT61.9p1/p2), respectively. Five transgenic lines were analysed for 

phenolic content for each construct. RNAi lines were PCR positive for the transgene 

(data not shown).   

Potential knock-down of GT61.9 in Brachypodium, driven by the ubiquitin promoter, 

resulted in 4% less total FA (sum of monomer and dimers) in RNAi lines than the 

null controls in leaf tissue. Total FA decreased from 3.93 µg mg-1 in null segregants, 

to 3.78 µg mg-1 in positive pUbi::RNAi-GT61.9p1/p2 lines (p = 0.013, F-test for main 

effect of the transgene; SED 0.0568 on 27 df; Figure 5.14). Cell wall-bound FA 

dimers diF8-O-4 and diF8-5BF decreased by 6% (p = 0.005, F-test for main effect of 

transgenic type (-/+ transgene): grand means = 0.6589 (-), 0.6190 (+); SED = 0.01292 

on 27 df; Figure 5.15), which were measured together due to overlapping peaks on 

the HPLC chromatogram. In stem, there was no significant difference in total cell 

wall-bound FA (sum of monomer and dimers) between pUbi::RNAi-GT61.9p1/p2 

RNAi transgenics and null segregants, which ranged from 3 – 3.6 µg mg-1, averaging 

3.3 µg mg-1 of dry weight (Figure 5.14). These data are consistent with the amounts 

of total FA in GT61.9p1 overexpression lines (Figure 5.11).  

Potential knock-down of GT61.9 in Brachypodium, driven by the IRX5 promoter 

showed significant decreases in total cell wall-bound FA dimers across all lines, and 

in cell wall-bound FA monomer in two lines across leaf and stem tissue. In stem, 

RNAi knock down lines had 6% less total cell wall-bound FA dimers than the null 
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controls (p = 0.004, F-test for main effect of transgenic type (-/+ transgene): means = 

1.967 (-), 1.847 (+); SED = 0.0381 on 26 df, Figure 5.16). Individual FA dimers diF8-

O-4 and diF8-5BF (summed) decreased by 5% in RNAi knock down lines (p < 0.001, 

F-test for main effect of transgenic type (-/+ transgene): means = 0.9438 (-), 0.8964 

(+); SED = 0.1214 on 26 df)), and diF5-5 decreased by 4% in individual knock down 

lines in stem (p = 0.028, F test for main effect of transgenic type (-/+ transgene): 

means = 0.5326 (-), 0.5123 (+); SED = 0.00872 on 26 df; Figure 5.17). Cell wall-bound 

FA monomer was also lower in RNAi knock down line 9 (9% reduction) and in line 22 

(12% reduction), compared to null controls in stem (p < 0.05, LSD; Figure 5.16). In 

leaves of pIRX5::RNAi-GT61.9p1/p2 knock down lines, there was some evidence of a 

main effect of transgenic type (-/+ transgene) on cell wall-bound FA dimers, which 

were 5% less than in the null controls in total across all lines (p = 0.058, F-test; 

means = 1.605 (-), 1.530 (+); SED = 0.0379 on 27 df; Figure 5.16). A significant 5% 

decrease in individual dimers diF8-O-4 and diF8-5BF contributed to this (p = 0.047, 

F-test, ANOVA main effect of transgenic type (-/+ transgene), grand means 0.7828 (-), 

0.7463 (+), SED = 0.01754 on 27 df). Also, diF8-8 was 36% less in IRX5 RNAi knock 

down line 21 than in the controls in leaf (p < 0.05, LSD), but not in the other lines 

(Figure 5.17). Cell wall-bound FA monomer was also lower in RNAi knock down line 

22 (27% reduction), compared to null controls in leaf (p < 0.05, LSD, Figure 5.16). 

There was no significant difference in pCA between the positive pUbi::RNAi-

GT61.9p1/p2 transformants or the pIRX5::RNAi-GT61.9p1/p2 transformants and 

the null segregants. pCA ranged from 0.8 – 1.2 µg mg-1, averaging 1.02 µg mg-1 of dry 

weight in leaf, and from 3 – 3.6 µg mg-1, averaging 3.3 µg mg-1 of dry weight in stem 

across the transgenic lines (Figure 5.14, Figure 5.16). These data are consistent 

with the amounts of pCA in the overexpression lines (Figure 5.11). 
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Figure 5.14  Ferulic acid (FA) monomer and dimer (± SE) in stem (top) and leaf 

(bottom) of five Brachypodium RNAi lines transformed with a construct designed to 

knock down expression of GT61.9p1 and GT61.9p2 simultaneously, driven by the 

maize ubiquitin promoter. Independent homozygous lines 11, 16, 17, 30 and 33 were 

analysed and transgenic plants (dark blue, dark green, dark yellow) were compared 

to null segregants (light blue, light green, light yellow). FA dimer includes diF8-8, 

diF8-5 and diF8-5 benzofuran, diF5-5 and diF8-O-4.  
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Figure 5.15  Ferulic acid dimers (± SE) in stem (top) and leaf (bottom) of five 

Brachypodium RNAi lines transformed with a construct designed to knock down 

expression of GT61.9p1 and GT61.9p2 simultaneously, driven by the maize ubiquitin 

promoter. Independent homozygous lines 11, 16, 17, 30 and 33 were analysed and 

transgenic plants (dark blue, dark green, dark yellow, dark purple) were compared to 

null segregants (light blue, light green, light yellow, light purple). 
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Figure 5.16  Ferulic acid (FA) monomer and dimer in leaf (top) and stem (bottom) 

of five Brachypodium RNAi lines transformed with a construct designed to knock 

down expression of GT61.9p1 and GT61.9p2 simultaneously, driven by the IRX5 

promoter. Independent homozygous lines 11, 16, 17, 30 and 33 were analysed and 

transgenic plants (+) were compared to null segregants (-). FA dimer includes 

diF8-8, diF8-5 and diF8-5 benzofuran, diF5-5 and diF8-O-4. 
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Figure 5.17  Ferulic acid dimers (± SE) in stem (top) and leaf (bottom) of five 

Brachypodium RNAi lines transformed with a construct designed to knock down 

expression of GT61.9p1 and GT61.9p2 simultaneously, driven by the IRX5 promoter. 

Independent homozygous lines 11, 16, 17, 30 and 33 were analysed and transgenic 

plants (dark blue, dark green, dark yellow, dark purple) were compared to null 

segregants (light blue, light green, light yellow, light purple). 
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5.3.4 Expression patterns of GT61.9p1 and p2 in Brachypodium 

Differences in expression patterns of the promoter regions (1500 bp upstream) of 

GT61.9p1 and p2 were visualised with fusion to GFP in Brachypodium. GFP was 

visualised using confocal microscopy. GT61.9p2 was more highly expressed than 

GT61.9p1 in 2.5 month old Brachypodium leaves. Expression of the GT61.9p1 

promoter was mainly in the vascular bundles and in some guard cells surrounding 

stomata, and was less in the bulliform cells. Expression of the GT61.9p2 promoter 

was greater than that of GT61.9p1 in leaf, and was expressed in many leaf cells, 

including all guard cells (Figure 5.18). In Brachypodium root, the GT61.9p1 

promoter showed expression in the top (furthest from the tip) section of the root, 

where GFP fluorescence was observed mostly in the epidermal layer, but not in the 

cortex or stele, although it is possible that GFP expression may have been present 

but too weak to observe in the inner root tissues (Figure 5.19). Expression of the 

GT61.9p1 promoter ceased in the bottom (nearest the tip) one third to one quarter of 

the root (Figure 5.20, Figure 5.21). The GT61.9p2 promoter showed greater 

expression than GT61.9p1 in all root tissues. Expression of this promoter was 

observed along the full length of the root in most cells, including the epidermis, stele 

and cortex (Figure 5.19), some root hair cells (Figure 5.20), and the apical meristem 

and cap tissues at the root tip (Figure 5.21).  
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Figure 5.18  Visualisation of GFP in transgenic Brachypodium seedling (2.5 month 

old) leaves. Transgenes contain the promoter regions (1500 bp upstream of start 

codon) of GT61.9 paralogue 1 (p1, Bradi1g06560) or paralogue 2 (Bradi3g11337, p2) 

fused to nuclear targeted GFP. Arrows point to GFP in stomatal guard cells.  
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Figure 5.19  Confocal microscopy 

images of the middle section of the 

root. Differences in expression of 

the promoter regions (1500 bp 

upstream of start codon) of GT61.9 

paralogues p1 (top) and p2 (bottom) 

in Brachypodium root. Promoter 

regions are fused to GFP in 

transgenic Brachypodium, with a 

constitutively expressed positive 

control (Ubi::GFP). Arrows show 

expression of GFP in root hairs of 

pGT61.9p2::GFP. Images captured 

by Kirstie Halsey. 
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Figure 5.20  Confocal microscopy 

images of a section of the bottom 

(nearest the tip) quarter of the 

root. Differences in expression of 

the promoter regions (1500 bp 

upstream of start codon) of 

GT61.9 paralogues p1 (top) and 

p2 (bottom) in Brachypodium 

root. Promoter regions are fused 

to GFP in transgenic 

Brachypodium, with a 

constitutively expressed positive 

control (Ubi::GFP). Arrows show 

expression of GFP in root hairs. 

Images captured by Kirstie 

Halsey. 
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Figure 5.21  Confocal microscopy 

images of the root tip. Differences 

in expression of the promoter 

regions (1500 bp upstream of start 

codon) of GT61.9 paralogues p1 

(top) and p2 (bottom) in 

Brachypodium root. Promoter 

regions are fused to GFP in 

transgenic Brachypodium, with a 

constitutively expressed positive 

control (Ubi::GFP). Images 

captured by Kirstie Halsey. 
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5.4 Discussion 

Brachypodium was successfully transformed with overexpression, RNAi and 

promoter-GFP fusion constructs using the Vogel and Hill (2008) transformation 

method, as shown by Western blot, PCR and microscopy images (Figure 5.9, Figure 

5.10, Figure 5.18). Around 5% of calli generated viable transgenic plants, which was 

significantly under the 37% efficiency achieved by the original authors. This may 

have been dependent on a number of factors including the developmental stage of the 

immature embryos used to generate callus, and the environmental conditions for 

Agrobacterium infection of the callus (Vogel and Hill, 2008). 

The experiments in this chapter aimed to investigate the function of GT61.9 in 

α-(1,3)-arabinosyl-feruloyl transferase activity in AX synthesis in Brachypodium. 

Despite the successful generation of GT61.9 overexpression lines driven by the 

ubiquitin promoter (Figure 5.10), there was no effect on total wall-bound FA or pCA 

in these lines (Figure 5.11), although there was a small significant increase in the 

diF8-8 dimer in leaves (Figure 5.12). It was notable that there was little variation in 

FA between lines, showing the reliability of the data collected from the randomised 

block design (Figure 5.11). The GT61.9 overexpression lines that were driven by the 

IRX5 promoter acquired a diseased phenotype and therefore were not further 

analysed. On their own, these results provide inconclusive evidence to neither 

support nor disprove the hypothesis that GT61.9 is an α-(1,3)-arabinosyl-feruloyl 

transferase. All GT61 clade A and B proteins are predicted to be localised to the Golgi 

apparatus membrane; this has been shown for rice GT61 AX-synthesis proteins XAT 

and XAX1 (Anders et al., 2012, Chiniquy et al., 2012). One possible explanation is 

that GT61.9 has a limited number of specific binding sites at the Golgi membrane, 

and therefore excess protein may not have bound to the membrane. Secondly, it is 
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also possible that excess GT61.9 was recognised and degraded by the cell in a 

feedback mechanism. Transgenic Myc tagged protein may still have been detected by 

the Western blot as a mixture of transgenic and wild type protein may have been 

degraded and transgenic protein may have remained. Thirdly, the Myc tag may have 

interfered with GT61.9 enzymatic function at the active site or binding to the Golgi 

membrane, however this seems unlikely since C-terminal Myc tagged GT61 XAT 

proteins retained arabinosyl transferase activity (Anders et al., 2012). 

Several cellular locations may be involved in cell wall-bound FA synthesis, including 

the Golgi, the cytoplasm and the cell wall, and it is possible that it is also necessary 

to upregulate helper proteins or transporters in conjunction with GT61.9 to induce 

increased cell wall-bound FA. In addition, the cellular pathway to synthesise wall-

bound FA is complex, and, upstream of Golgi-bound GTs involves sugar synthesis 

pathways, which synthesise arabinose, and the phenylpropanoid pathway, which 

synthesises FA, among others. A likely explanation for lack of effect on cell wall-

bound FA is therefore that, as these upstream components were not also upregulated, 

GT61.9 protein was increased at the Golgi membrane, but lacked sufficient 

arabinosyl-feruloyl substrate. In particular, it may be necessary to overexpress the 

BAHD acyl-transferases, which have been suggested to catalyse FA esterification to 

Ara in the cytoplasm (Molinari et al., 2013), in parallel with GT61.9, to induce an 

effect on wall-bound FA or pCA. In fact, upregulation of a member (OsAT10) of this 

BAHD clade was sufficient to increase amounts of pCA esterified to AX in rice 

(Bartley et al., 2013), suggesting that this may be the limiting step in the process, at 

least in the case of pCA. Notably, there was also no effect of overexpression of GT61.9 

on wall-bound sugars, including Ara (Figure 5.13), despite the fact that GT61 XAT 

proteins are responsible for addition of Ara to AX (Anders et al., 2012). 
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All GT61.9p1 and p2 RNAi knockdown lines showed moderate 5-6% decreases in cell 

wall-bound FA dimer in either leaf or stem compared to the null segregant controls. 

Where GT61.9 suppression was driven by the ubiquitin promoter, individual FA 

dimers diF8-O-4 and diF8-5BF (summed due to overlapping peaks on HPLC 

chromatograph) were reduced in leaf (Figure 5.15). These individual dimers were 

also reduced in RNAi lines driven by the IRX5 promoter, in both stem and leaf. In 

stem, diF5-5 was also significantly reduced in the IRX5 promoter-driven RNAi lines 

(Figure 5.17). The IRX5 promoter is secondary cell wall specific, and therefore the 

reduction of FA in secondary cell wall-rich stem tissue using the IRX5 promoter, but 

not the ubiquitin promoter, may suggest that the reduction in FA is genuine. 

Further, the effects of GT61.9 suppression on total cell wall-bound dimer were 

consistent across the transgenic lines. However, the reductions in FA dimer were 

small, and given genuine RNAi suppression of GT61.9 genes, which was not 

measured, assumedly both monomer and dimer would be affected, as GT61.9 protein 

would be expected to add monomeric FA to AX. Cell wall-bound FA monomer was 

significantly reduced by 9-27% in RNAi line (IRX5 promoter) 9 in stem tissues, and in 

line 22 in stem and leaf tissues (Figure 5.16), which may be of interest to measure 

saccharification potential in these lines in future work.  Taken together with the 

small opposite effect in increasing the diF8-8 dimer induced by over-expression, these 

results do provide some evidence that GT61.9 may function in feruloylation of AX in 

grasses, however, the small magnitude of the effect makes it possible to interpret 

these as indirect consequences of altering gene expression.  

These results were somewhat surprising given the marked effect of around 60% and 

40% reduction of FA and pCA respectively in GT61.9 knockout mutants in rice 

(Chiniquy et al., 2012). One possible reason for this discrepancy is the difference in 

experimental method between knockdown and knockout approaches. Whereas 
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knockout mutants completely effectively remove activity, even the best RNAi knock 

downs often leave some enzymatic activity of around 20%. Therefore, remaining 

GT61.9 enzyme activity may have been sufficient to maintain cell wall-bound FA 

levels. A major drawback to testing this explanation is the lack of gene expression 

data for the GT61.9 knock down lines, which was not collected due to time 

constraints. Assuming that GT61.9 expression was successfully knocked down, it is 

further possible that, although rice and Brachypodium GT61.9 genes are genetic 

orthologues, they may not be functional orthologues, however this seems unlikely 

given their sequence similarity (Figure 5.1). This could be investigated by 

complementation of the xax1 rice mutant with the GT61.9 overexpression constructs 

developed here.  

Differences in expression patterns of the promoter regions were seen in leaf and root. 

Stem tissues were not analysed due to time constraints. The GT61.9p2 promoter 

showed higher expression in leaf tissues (2.5 months old) than the GT61.9p1 

promoter, as visualised in GFP fusion transformants (Figure 5.18). This is in 

agreement with qRT-PCR data shown in Appendix I (Dr. Till Pellny, unpublished). 

Both the GT61.9p2 and GT61.9p1 promoters were expressed in guard cells 

surrounding stomata. This may be required for FA reinforcement of the cell walls in 

guard cells, presuming that GT61.9 is involved in feruloylation. The GT61.9p2 

promoter also showed higher expression along the length of the root (4 days old) than 

GT61.9p1. The expression of the GT61.9p1 promoter ceased at the root tip, and was 

not expressed in root hairs (Figure 5.19, Figure 5.20, Figure 5.21). This is in 

contrast with the qRT-PCR data (Dr. Till Pellny, unpublished, Appendix I), where 

GT61.p1 expression is shown to be higher in root. However, root material was 

collected at 20 days after germination compared to 4 days after germination here, 

which may suggest that the two paralogues are differentially expressed at different 
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time points. These expression data provide further insight into the differential roles 

of GT61.9 paralogues in Brachypodium. Other groups have previously shown that the 

amount of FA at the base of the root is greater than at the root tip (Locher et al., 

1994), and the results presented here support this, where GT61.9p1 and GT61.9p2 

are both expressed at the base of the root. FA is thought to decrease cell wall 

extensibility (MacAdam and Grabber, 2002), and therefore may be less highly 

expressed in the expanding cells at the root tip than at the base of the root.  

In summary, the results from the overexpression and RNAi transgenic lines 

generated in this chapter provide some support for a role of two GT61.9 paralogues in 

feruloylation in Brachypodium but were inconclusive due to the small size of effects. 

In addition, GFP fusion Brachypodium transformants show differential expression in 

leaf and root consistent with divergent roles for the two paralogues. The activity of 

these genes remains to be determined in future work (Chapter 6.5) and the 

transgenic lines generated here provide a useful starting point.  
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 General Discussion  

6.1 Summary of results 

This thesis investigated the roles of the glycosyltransferase (GT) 61 family and the 

Mitchell clade within the BAHD acyl transferases in the feruloylation and 

coumaroylation of arabinoxylan (AX) in the grasses, with particular interest in 

GT61.9.  

A novel finding of this thesis was that cell wall-esterified para-coumaric acid (pCA) is 

dramatically induced in direct response to methyl-jasmonate (meJA) in the cell walls 

of Brachypodium callus. The results presented in Chapter 4 report a 5-10 fold 

increase in cell wall-esterified pCA and at least a 50% increase in total cell 

wall-esterified FA after 2.5 weeks treatment with meJA. The finding that meJA 

induced increased cell wall-esterified hydroxycinnamic acids (HCAs) in callus 

provided a system in which to investigate the genes responsible for their synthesis on 

side chains of arabinoxylan (AX). The meJA induced increase in HCAs was 

accompanied by increased transcripts of candidate genes in the Mitchell clade within 

the BAHD family, and GT61 family, in response to meJA. Good candidates for 

involvement in the synthesis of pCA side chains of AX were BAHD2p1 and p2 and 

GT61.21; further, candidates for the synthesis of FA side chains of AX were BAHD1, 

and GT61.5 and GT61.10. 

An enzyme within the GT61 family, GT61.9 (XAX1), has been characterised by 

previous authors as a xylosyl transferase (Chiniquy et al., 2012), however, other 

evidence suggests that GT61.9 may be a feruloyl-arabinosyl transferase 

(Chapter 1.8.2). In Chapter 5, Brachypodium was transformed with RNAi 

constructs designed to knock-down the expression of two GT61.9 paralogues, 

resulting in a modest 4-6% decrease in FA dimers, and a 9-12% decrease in FA 
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monomer in some lines. The decreased FA in knock-down lines may be an indication 

that GT61.9 functions in FA esterification to AX, however care must be taken in 

interpreting these results as gene expression was not quantified due to time 

constraints. As the effect on cell wall-bound FA in knock-down lines was small, and 

overexpression of GT61.9 did not result in increased FA monomer, nor significantly 

increased total dimer (although there was a small increase in leaf diF8-8), these 

results could not distinguish between two competing theories on the function of 

GT61.9. Further, the (1,2)-linked Xyl on AX side chains was not measured, and 

therefore the conclusions drawn by Chiniquy et al. (2012) could not be ruled out. 

It was hypothesised in Chapter 3 that mechanical stress may induce increased cell 

wall-bound FA due to the role of FA dimerisation in strengthening the cell wall 

(Chapter 1.6.4). There was some indication that mechanical stress induced tissue 

dependent increased cell wall-bound FA dimerisation in 10 week old Brachypodium, 

and also in younger plants to a greater extent. As these effects were small and 

inconsistent between tissues and developmental stages, this finding was not 

exploited further as a means of investigation into cell wall-bound FA synthesis genes. 

The large effects of mechanical stress on cellulose, AX and galactomannan in 

Brachypodium leaves, and in silica in leaves and stems, resulted in decreased cell 

wall digestibility. These findings contributed to an increased understanding of cell 

wall components which affect saccharification and may be of interest in second 

generation biofuel production or in lodging resistance applications.    

6.2 BAHDs and GT61s in FA and pCA esterification to arabinoxylan 

The BAHD and GT61 gene families have previously been implicated in the 

feruloylation of AX in grasses (Mitchell et al., 2007). Acyl transferases within the 

BAHD family of enzymes are hypothesised to catalyse the transfer of FA-CoA and 
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pCA-CoA to UDP-Araf (Figure 1.6). This reaction would most likely occur in the 

cytosol, as BAHD enzymes are localised here (D'Auria, 2006, Jackie Freeman, 

unpublished), as is the mutase which synthesises UDP-Araf (Konishi et al., 2007). 

BAHDs are likely to have high specificity for their substrate, as the enzymes from the 

Mitchell clade which have been characterised hitherto catalyse reactions involving 

pCA transfer, but not FA transfer (Bartley et al., 2013, Petrik et al., 2014, Withers et 

al., 2012). Furthermore, it is hypothesised that UDP-Ara-HCA is transported to the 

Golgi. At the Golgi, a GT61 enzyme may catalyse the addition of (1-3)-Ara-HCA side 

chains to the growing AX chain (Figure 1.6). There is a growing body of evidence to 

support this model for the feruloylation and coumaroylation of AX. GT61 enzymes are 

highly differently expressed in monocots and dicots (Mitchell et al., 2007). 

Additionally, GT61.9 rice knock outs have approximately 50% less FA and pCA 

(Chiniquy et al., 2012), and RNAi knock-down of some genes within the BAHD family 

have resulted in reduced cell wall FA (Piston et al., 2010). Further, some GT61s are 

arabinosyl transferases (Anders et al., 2012), and are likely to therefore also be 

feruloyl/coumaroyl-arabinosyl transferases. 

The results presented in Chapter 4 provide some support for this model. Transcripts 

of genes within both the BAHD Mitchell clade and the GT61 family increased in 

Brachypodium callus when treated with meJA. This evidence supports the finding 

that BAHD and GT61 genes are strongly coexpressed, which has previously been 

shown in the grasses, including in Brachypodium (Mitchell et al., 2007, Molinari et 

al., 2013). These findings are consistent with the hypothesis that these enzyme 

families function in the same molecular process. The most differentially expressed 

BAHD and GT61 genes within the Mitchell clade with meJA treatment in 

Brachypodium were BAHD2p1 and BAHD2p2 and GT61.21. This finding was 

correlated with a large increase in cell wall-esterified pCA in meJA treated callus. 
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Taken together, this evidence suggested that BAHD2p1 and p2 were the most likely 

candidates for the transfer of pCA-CoA to UDP-Ara in the cytosol, and GT61.21 was 

the most likely candidate for the transfer of (1-3)-linked Ara-pCA side chains to AX at 

the Golgi, in this experiment.  

AX-esterified FA is more abundant than AX-esterified pCA (Mueller-Harvey and 

Hartley, 1986); therefore, highly expressed genes within the candidate gene families 

are good candidates for the synthesis of FA. Out of the GT61 and Mitchell clade 

BAHD genes that were significantly differentially expressed with meJA treatment, 

GT61.5 and BAHD1 were the most highly expressed in both the control and meJA 

treated samples. As FA also increased in meJA treated samples, and in the context of 

other evidence in support of this model, this may suggest a role for BAHD1 in the 

transfer of FA-CoA to UDP-Ara-FA in the cytosol, and for GT61.5 in the transfer of 

(1-3)-linked-Ara-FA side chains to AX at the Golgi in Brachypodium callus. The 

results presented in Chapter 5 report a small decrease in cell wall-esterified FA in 

GT61.9 RNAi knock-down Brachypodium lines. This supports a role for GT61.9 in the 

transfer of (1-3)-linked-Ara-FA side chains to AX at the Golgi. It is also possible that 

GT61 enzymes are non-specific for FA-Ara or pCA-Ara, as xax1 (BdGT61.9 

orthologue) has decreased cell wall-bound FA and pCA (Chiniquy et al., 2012).  

6.3 Functional redundancy with the BAHD and GT61 families 

The β-(1-4)-linked AX backbone is synthesised by IRX9/IRX9-L, IRX10/IRX10-L and 

IRX14/IRX14-L and the respective pairs of genes are functionally redundant to each 

other (Chapter 1.7.2). It is therefore quite probable that there are also functionally 

redundant genes in AX side chain synthesis. In Chapter 5, there were small 

decreases in FA in Brachypodium transgenics designed to knock-down GT61.9; it is 

plausible that GT61.9 is a feruloyl-arabinosyl transferase and that an alternative 
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gene compensated for decreased GT61.9. A possible candidate for this may be the 

closely related GT61.10, which was upregulated in the primary cell walls of 

Brachypodium callus in response to meJA in Chapter 4. Also, OsAt10 has been 

shown to be responsible for pCA addition to AX in rice (Bartley et al., 2013). 

Assumedly, the Brachypodium orthologue BdBAHD10 has an equivalent function, 

although this has not been proven. BdBAHD2p1 and 2p2 were strongly implicated in 

the addition of pCA to AX in Chapter 4, and therefore BAHD10, BAHD2p1 and 2p2 

may have the same function. 

Mortimer et al. (2015) suggested that pairs of closely related arabinoxylan synthesis 

genes IRX9 and IRX9-L, IRX10 and IRX10-L, and IRX14 and IRX14-L are differently 

involved in primary and secondary cell wall synthesis using a callus system. GUX 

genes have also been shown to be differentially expressed in differing tissues within 

the stem (Lee et al., 2012). As the cell walls of callus tissue are mostly primary cell 

walls (Mortimer et al., 2015), it was hypothesised that BAHD and GT61 genes 

expressed in Brachypodium callus (Chapter 4) may be primary cell wall specific. 

However, some of the identified genes are also relatively highly expressed in other 

tissues such as root and stem (Appendix I, Molinari et al., 2013), and may therefore 

also be important in some secondary cell wall formation. The BAHD and GT61 gene 

families are relatively large and the roles of each of the candidate genes for cell 

wall-bound FA and pCA synthesis within these families in differing plant tissues 

remains to be elucidated.  

Given the importance of AX and FA in the plant cell wall, and considering that 

decreased xylan and FA result in severe morphological phenotypes (Brown et al., 

2007, Chiniquy et al., 2012), functional redundancy within xylan, and xylan side 

chain, synthesis genes may be an evolutionary mechanism for protection against loss 



      

164 

    

of AX or FA. It may be required to target multiple genes to reduce FA cross-linking in 

grass cell walls in second generation biofuel and ruminant nutrition applications.  

6.4 The difficulty in studying cell wall-bound FA and pCA  

A portion of FA is integrally incorporated into grass cell walls through 

oxidatively-coupled, covalently bonded, dimers; also, FA cross-links to lignin by ether 

or C-C linkages in grasses (Grabber et al., 2004). The FA that is esterified to AX can 

be released by saponification, however, releasing ether-bonded FA is more difficult, 

requiring oxidation with 4 M KOH at 170 °C (Lam et al., 1990). There is no known 

method of reliably extracting FA cross-linked by C-C bonds and Grabber et al. (1995) 

estimate that approximately 60% of FA cross-linked to lignin is via C-C bonds. Alkali 

extractable ferulates decline in older tissues and in secondary cell walls as ether and 

C-C bonding increases (Grabber et al., 2004); therefore, in Chapter 4, the cell walls 

of callus, which are dominated by primary cell walls, were used to avoid this. In 

addition, tri- and tetraferulates may form in grass cell walls, and there is evidence 

that these make a major contribution to the total FA (Fry et al., 2000). Tri- and 

tetraferulates are difficult to measure because of the theoretical quantity of isomers. 

Therefore, FA is largely underestimated in grass cell walls when measuring 

alkali-labile FA and FA dimers. In addition, the majority of pCA in grass cell walls is 

ester-linked to lignin and remains difficult to separate from AX-esterified pCA. In 

Brachypodium, lignin-esterified pCA is four times that of AX-esterified pCA (Petrik 

et al., 2014). This difficulty was also avoided in Chapter 4, using a callus system 

which has almost no pCA ester linked to lignin, nor is BdPMT expressed in this 

tissue, which is responsible for the esterification of pCA to monolignols (Petrik et al., 

2014, Withers et al., 2012). 
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6.5 Brachypodium as a model organism for the grasses 

The work carried out in this thesis used Brachypodium distachyon inbred line Bd21 

(Brachypodium) as a model organism for the grasses in order to study feruloylation in 

grass cell walls. Brachypodium proved to be a suitable model organism for this study. 

The short life cycle, short stature and ease of growth of the model organism were 

ideal for this project. In addition, the published diploid genome was advantageous in 

Chapter 4, where the newly published version 3 genome (Goodstein et al., 2012) was 

used as a reference in RNA sequencing analysis, and in Chapter 5, where it was 

used to obtain information on GT61.9 genes in order to design transformation 

constructs. In addition, Brachypodium has a published transformation protocol 

(Vogel and Hill, 2008), which was used in Chapter 5 to transform Brachypodium 

with overexpression and RNAi constructs. The primary cell walls of the 

Brachypodium callus generated using the Vogel and Hill (2008) transformation 

protocol also provided a useful system in order to study feruloylation and 

coumaroylation of cell walls in Chapter 4. In the future, the findings presented in 

this thesis in Brachypodium may be translatable to closely related, economically 

important crop species such as cereals, pasture grasses and bioenergy grasses.  

6.6 Further work 

The work presented in this thesis logically leads to a body of further work which 

should be undertaken in order to advance the knowledge described here. A limitation 

to drawing a conclusion in Chapter 5 for the function of GT61.9 in RNAi knock-down 

lines was the lack of data on expression levels of the gene due to time constraints. 

Therefore, quantitative-reverse transcription PCR (qRT-PCR) should be carried out 

to determine whether GT61.9 gene expression was knocked down and if so, whether 

this correlated with the decrease in FA. Also, to distinguish between two competing 
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theories for the function of GT61.9 as a (1-2)-linked xylosyl side chain transferase, or 

alternatively a feruloyl-arabinosyl transferase, the fine structure of AX should be 

examined. This could be performed by enzymatic fingerprinting and further 

quantification by Polysaccharide Analysis using Gel Electrophoresis (PACE) as in 

Goubet et al. (2002), or HPAEC as in Chiniquy et al. (2012).  

In Chapter 5, overexpression of GT61.9 in Brachypodium did not induce increased 

FA. One possible reason for this was limited UDP-Ara-FA substrate for GT61.9 

(Figure 1.6). As meJA was shown to induce increased FA in Brachypodium callus, 

and in enzymes in the phenylpropanoid pathway in Chapter 4, transforming 

Brachypodium callus with the GT61.9 overexpression construct (Figure 5.7) may 

provide increased substrate and therefore may result in increased cell wall-esterified 

FA, and provide increased understanding of the function of GT61.9. 

Additionally, it should be determined whether the increased pCA induced by meJA in 

Chapter 4 is esterified to arabinoxylan or to lignin. Although mild acid hydrolysis 

followed by saponification of esterified phenolic acids indicated that most of the pCA 

was esterified to lignin, this should be unambiguously determined using liquid 

chromatography-mass spectrometry (LC-MS). Although no significant changes in cell 

wall-bound pCA were observed in Brachypodium in response to mechanical stress in 

Chapter 3, or in GT61.9 transgenics in Chapter 5, it is possible that changes in 

pCA linked to AX occurred that were masked by the more abundant pCA esterified to 

lignin, so this technique could also be applied to these samples.  

Chapter 4 highlighted a range of candidate genes for the feruloylation and 

coumaroylation of AX in response to meJA in Brachypodium. These genes could be 

studied further by measuring FA and pCA in knock out mutants. The CRISPR/Cas9 

targeted genome editing approach has recently emerged as an effective method of 
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generating targeted mutations in plants (Jiang et al., 2013), which may be useful 

here.  

6.7 Concluding remarks  

In conclusion, the results presented in this thesis enhance the existing knowledge on 

the genes and enzymes which may be involved in feruloylation and coumaroylation of 

AX. Candidate genes were identified by environmental stress, meJA treatment and 

transformation approaches. The candidate genes identified here could be targeted in 

further study. These findings may, in the future, have implications in improving the 

digestibility of grass cell walls for second generation biofuel and/or ruminant 

nutrition applications. 
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Appendices 

Appendix A  The change in expression of genes within the GT61 and BAHD families in rice root and 

shoot when treated with 100 µM (±)-JA for 12 h (shoot) or 6 h (root). Absolute expression and fold change 

(expression in JA treated samples divided by expression in control samples) are shown. Data sourced 

from RiceXPro (Sato et al., 2013).  

MSU locus gene family Clade Gene name

Abs cy3 signal Fold Change Abs cy3 signal Fold Change

Os01g09010 BAHD Clade V non-PMT BAHD1 4 4 4 1.5

Os01g08380 BAHD Clade V non-PMT BAHD2 5 17 3 2

Os01g42870 BAHD Clade V non-PMT BAHD3 4 2 2 1.5

Os05g08640 BAHD Clade V non-PMT BAHD4 4 14 3 3

Os01g42880 BAHD Clade V non-PMT BAHD5 4 1.5 3 no change

Os06g39470 BAHD Clade V non-PMT BAHD8 3 2 2 1.5

Os01g18744 BAHD Clade V PMT BAHD6 4 no change 3 1.5

Os05g19910 BAHD Clade V PMT BAHD7 3 0.5 2 2

Os02g22650 GT family 61 A GT61_1 3 no change 2 1.5

Os02g22480 GT family 61 A GT61_2 1 no change 1 2

Os03g37010 GT family 61 A GT61_3 3 1.5 low expression 1

Os01g02940 GT family 61 A GT61_5 low expression 3 low expression 1.5

Os02g04250 GT family 61 A GT61_7 3 2 2 3

Os02g22190 GT family 61 A GT61_8 3 0.5 2 no change

Os02g22380 GT family 61 A GT61_9 4 2 3 1.5

Os06g27560 GT family 61 A GT61_10 4 2 3 2

Os06g28124 GT family 61 A GT61_11 2 4 1 5

Os06g49320 GT family 61 A GT61_12 3 no change 3 no change

Os10g35020 GT family 61 A GT61_13 3 0.5 3 1.5

Os01g02920 GT family 61 A GT61_15 1 0.5 1 1.5

Os01g02930 GT family 61 A GT61_16 low expression 0.5 low expression 2

Os06g49300 GT family 61 A GT61_17 low expression 0.5 low expression 2

Os04g12010 GT family 61 A GT61_19 low expression no change low expression 2

Os01g02910 GT family 61 A GT61_20 low expression 0.5 low expression no change

Os01g02900 GT family 61 A GT61_21 3 3.5 3 3

Os06g20570 GT family 61 A GT61_22 low expression 0.5 low expression 0.5

Os12g13640 GT family 61 A GT61_24 1 2.5 1 no change

Os07g46380 GT family 61 B GT61_4 low expression 2 low expression 1.5

Os01g72610 GT family 61 B GT61_6 3 8 2 3.5

Os05g32544 GT family 61 B GT61_14 3 0.2 3 2

Os01g31370 GT family 61 B GT61_18 low expression 12 low expression 3

Os11g36700 GT family 61 B GT61_23 3 4 2 3

Root Shoot
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Appendix B  The effect of 24 (±)-jasmonic acid (JA) on cell wall-bound ferulic acid 

dimers (± SE) in root (top) and shoot (bottom) of hydroponically grown Brachypodium 

distachyon. Asterisks represent statistically significant differences between control and 

(±)-JA treatment for main effect of treatment over time (p < 0.05, F-tests). 
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Appendix C  The effect of 17 d treatment with increasing concentrations of methyl-jasmonate on individual cell wall-bound ferulic acid 

(F) dimer isomers (± SE) in Brachypodium distachyon callus, in two experiments. Asterisks represent statistically significant difference 

between meJA treated and control samples (p < 0.05 LSD). 
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Appendix D  The effect of 1-8 d treatment with 50 µM methyl-jasmonate on individual cell wall-bound ferulic acid (F) dimer isomers (± 

SE) in Brachypodium distachyon callus (callus exp. 3). Asterisks represent statistically significant main effect of meJA treatment (p < 

0.05, F-tests). 
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Appendix E  Venn diagram showing counts of differentially expressed genes (DEGs) for ANOVA factors 

treatment (meJA), time (1-8 d) and the treatment.time interaction. Samples were treated with 

50 µM meJA or a mock control for 1, 2, 4 or 8 d.  
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Appendix F  Changes in gene expression of statistically significant upregulated cell wall synthesis genes after 1, 2, 4 or 8 d treatment with 

50 µM meJA compared to a mock control, in Brachypodium distachyon callus. Fold changes are based on FPKM values from an RNAseq experiment 

and p-values (ANOVA) are corrected for FDR Benjamini-Hochberg. Candidate genes are arbitrarily numbered according to their rice orthologues, 

p = paralogue. Genes are ordered within families by average fold change over 4 time points. 

gene name family candidate

24 h fold 

change

48 h fold 

change

4 d fold 

change

8 d fold 

change p -value

24 h MC 24 h meJA 48 h MC 48 h meJA 4 d MC 4 d meJA 8 d MC 8 d meJA

Bradi3g37300 4CL lignin 2 9 483% 1 6 615% 1 7 594% 2 6 332% 1.03E-08

Bradi2g04980 BAHD2p2 BAHD Clade 0 2 774% 0 1 557% 0 1 300% 0 2 344% 2.26E-07

Bradi2g04990 BAHD2p1 BAHD Clade 1 6 536% 1 6 591% 1 6 422% 2 6 275% 2.49E-11

Bradi2g01380 GT61_21 GT family 61 0 1 458% 0 1 565% 1 1 251% 0 1 459% 1.95E-04

Bradi2g58987 GT family 77 1 4 386% 1 2 268% 1 2 268% 0 2 337% 4.13E-05

Bradi1g15590 GT family 31 0 2 423% 1 2 233% 1 2 164% 1 2 164% 7.75E-05

Bradi2g23740 lignin 1 2 196% 1 2 268% 1 3 184% 1 2 195% 5.52E-05

Bradi1g76170 lignin 14 27 197% 16 40 244% 19 35 184% 22 41 191% 1.78E-06

Bradi1g34670 GT61_12 GT family 61 1 2 187% 1 2 241% 1 3 183% 1 2 133% 1.45E-04

Bradi2g55250 lignin 3 4 127% 3 6 249% 3 7 215% 3 4 134% 2.19E-03

Bradi2g33980 BAHD4 BAHD Clade 21 38 176% 21 41 193% 20 40 201% 26 38 145% 2.51E-06

Bradi4g04430 GT family 31 3 4 132% 3 4 166% 3 7 200% 4 8 184% 6.89E-04

Bradi4g27360 GT61_10 GT family 61 21 31 151% 17 35 200% 19 33 172% 24 36 154% 1.33E-06

Bradi2g01387 GT61_15 GT family 61 26 39 151% 22 46 205% 23 39 168% 29 40 138% 2.69E-05

Bradi1g76460 GT family 77 4 7 151% 5 8 173% 4 7 175% 5 7 153% 2.25E-04

Bradi1g35736 lignin 7 12 158% 9 12 132% 9 15 166% 10 18 188% 4.98E-06

Bradi2g61230 GT61_6 GT family 61 3 4 135% 3 5 162% 3 5 160% 4 7 171% 3.67E-04

Bradi3g16530 CoMT lignin 67 99 148% 60 110 184% 83 118 141% 94 118 125% 8.70E-05

Bradi3g06480 CAD lignin 180 254 141% 163 261 160% 184 275 149% 211 311 148% 2.05E-04

Bradi2g26590 Gt61_14 GT family 61 13 18 132% 12 19 164% 13 19 147% 12 16 134% 4.34E-07

Bradi1g01750 GT family 77 30 36 123% 24 38 160% 29 42 148% 28 41 145% 5.04E-05

Bradi1g64830 AtGATL7 GT family 8 15 16 108% 11 18 157% 11 21 179% 13 15 120% 2.21E-04

Bradi1g34550 GT family 64 5 7 140% 5 6 132% 5 7 121% 5 9 170% 1.38E-03

Bradi2g43510 BAHD3p1 BAHD Clade 20 25 128% 18 28 155% 18 29 162% 22 25 114% 3.13E-04

Bradi1g76260 EXPANSIN 33 45 134% 41 50 123% 27 41 154% 31 45 146% 6.17E-03

Bradi2g05480 BAHD1 BAHD Clade 147 173 118% 118 162 138% 103 180 174% 149 171 115% 3.63E-03

Bradi1g19160 GT61_18 GT family 61 13 19 145% 15 22 150% 15 21 138% 19 19 104% 4.24E-03

Bradi3g39420 CCoAOMT lignin 218 266 122% 189 274 145% 203 277 136% 203 268 132% 3.05E-04

Bradi3g05750 4CL lignin 20 24 121% 14 22 153% 17 24 141% 19 23 118% 3.67E-05

Bradi2g43520 BAHD5 BAHD Clade 22 30 140% 21 29 138% 24 30 125% 25 30 120% 3.36E-04

Bradi1g53207 OsCESA6 GT family 2 CESA 12 17 133% 12 17 143% 13 15 118% 14 17 121% 2.48E-05

Bradi2g34240 OsCESA1 GT family 2 CESA 72 99 137% 71 101 143% 94 102 109% 90 108 121% 1.51E-05

Bradi1g40997 GT65R 8 11 145% 9 12 134% 8 10 122% 9 9 105% 6.40E-03

Bradi2g04220 GT65R 11 16 144% 10 15 149% 13 13 102% 13 14 107% 1.30E-03

Bradi1g64950 GT family 34 35 41 116% 29 40 135% 31 42 137% 35 39 111% 4.09E-04

Bradi5g18377 GT65R 22 29 135% 25 32 130% 25 29 117% 24 27 113% 1.23E-03

Bradi2g37970 GT43_6 GT family 43 18 23 127% 14 22 152% 19 21 111% 20 21 104% 3.72E-04

Bradi5g24290 GT43_5 GT family 43 31 34 108% 25 35 140% 32 41 128% 36 41 114% 6.97E-03

Bradi2g01480 GT61_5 GT family 61 61 70 115% 47 64 137% 53 64 122% 56 60 107% 1.71E-03

Bradi2g43890 GT4R 9 10 113% 8 10 127% 8 9 105% 8 10 117% 9.52E-03

transcript abundance 

(FPKM)

transcript abundance 
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(FPKM)



        

 

     

1
7
4
 

gene name family candidate

24 h fold 

change

48 h fold 

change

4 d fold 

change

8 d fold 

change p -value

24 h MC 24 h meJA 48 h MC 48 h meJA 4 d MC 4 d meJA 8 d MC 8 d meJA

Bradi3g14860  GT family 31 19.7 15.8 80% 17.9 16.2 90% 18.8 15.1 80% 19.6 16.5 84% 7.88E-04

Bradi3g14370 GT family 31 3.6 3.1 87% 3.6 3.3 92% 4.0 3.0 75% 4.0 3.0 76% 6.13E-03

Bradi3g25658 OsCslA2 GT family 2 7.1 5.9 83% 8.4 6.5 77% 9.6 7.3 76% 8.8 6.7 77% 4.06E-03

Bradi4g33090 OsCslE6 GT family 2 8.3 5.7 69% 7.9 6.7 85% 8.9 5.4 61% 5.8 5.5 95% 9.73E-03

Bradi2g33090 GT family 31 7.0 6.0 86% 7.3 5.6 77% 7.7 4.9 64% 6.3 5.0 80% 2.23E-03

Bradi3g44420 GT47_16 GT family 47 36.1 31.1 86% 42.4 29.0 68% 48.6 31.2 64% 40.8 34.3 84% 5.31E-04

Bradi5g10130 OsCslH1 GT family 2 33.5 20.0 60% 33.6 24.8 74% 23.2 16.6 71% 21.4 16.4 77% 8.80E-03

Bradi1g54620 GT family 31 3.3 2.5 77% 3.3 2.4 72% 2.8 2.2 78% 3.4 1.7 51% 1.81E-03

Bradi1g75450 GT47_10 GT family 47 3.6 2.6 74% 3.4 2.5 74% 4.9 3.0 61% 3.9 2.6 67% 1.91E-03

Bradi1g35830 EXPANSIN 6.0 3.7 62% 4.3 3.6 83% 2.6 1.8 71% 3.4 1.8 55% 5.91E-03

Bradi3g47480 GT family 47 5.3 3.9 73% 4.6 3.3 73% 4.6 2.7 60% 4.6 2.5 55% 5.39E-03

Bradi2g40460 GT family 48 0.8 0.5 66% 0.7 0.5 67% 0.9 0.5 61% 0.7 0.4 51% 3.32E-04

Bradi1g07890 EXTENSIN 46.3 30.7 66% 42.8 23.8 56% 61.4 41.7 68% 73.5 31.3 43% 2.72E-03

Bradi1g64560 GT family 34 2.6 1.5 59% 1.6 1.0 61% 1.6 0.9 60% 1.4 0.7 51% 5.94E-03

Bradi5g18927 GT family 47 1.4 0.8 60% 1.5 0.7 47% 1.2 0.8 69% 1.0 0.6 54% 1.61E-03

Bradi1g07900 EXTENSIN 7.0 4.4 62% 5.2 4.3 83% 10.4 4.6 45% 10.5 3.6 35% 7.51E-04

Bradi2g48710 AtGAUT15 GT family 8 1.0 0.6 55% 0.8 0.3 38% 1.0 0.6 56% 1.2 0.7 57% 2.05E-03

Bradi1g46037 GT family 37 2.4 1.0 42% 1.7 1.1 67% 2.2 0.7 30% 1.2 0.8 64% 1.59E-03

Bradi1g29515 EXTENSIN 6.8 3.2 47% 4.4 2.7 61% 7.4 3.6 48% 6.4 2.4 38% 3.68E-04

Bradi4g30955 GT family 31 1.9 0.6 32% 1.4 0.5 37% 2.1 0.9 42% 1.4 0.8 56% 4.16E-03

Bradi2g58994 GT77_2 GT family 77 0.8 0.6 71% 1.2 0.6 49% 2.8 0.3 12% 2.6 0.9 34% 7.85E-06

Bradi1g46030 GT family 37 0.7 0.2 34% 0.6 0.3 59% 1.2 0.3 24% 1.0 0.04 4% 1.30E-03

Bradi2g51360  GT family 31 0.3 0.1 39% 0.5 0.1 18% 0.2 0.1 39% 0.3 0.02 7% 4.43E-03

Bradi1g34647 GT family 61 0.3 0.0 13% 0.2 0.1 60% 0.3 0.04 15% 0.2 0.02 13% 1.77E-03

Bradi3g22875 GT family 31 0.2 0.1 53% 0.4 0.1 13% 0.3 0.04 11% 0.4 0.1 16% 4.38E-03

Bradi4g32160 GT family 37 1.0 0.1 11% 0.9 0.1 8% 0.9 0.3 29% 0.6 0.1 23% 6.40E-05

Bradi2g59017 GT77_2 GT family 77 0.5 0.1 17% 0.4 0.04 9% 1.1 0.2 17% 1.1 0.2 15% 1.14E-03

Bradi3g21365 EXTENSIN 0.2 0.00 0.00% 0.00 0.00 0.3 0.00 0.00% 0.2 0.00 0.00% 4.36E-04

transcript abundance 

(FPKM)

transcript abundance 

(FPKM)

transcript abundance 

(FPKM)

transcript abundance 

(FPKM)

Appendix G  Changes in gene expression of statistically significant downregulated cell wall synthesis genes after 1, 2, 4 or 8 d treatment with 

50 µM meJA compared to a mock control, in Brachypodium distachyon callus. Fold changes are based on FPKM values from an RNAseq experiment 

and p-values (ANOVA) are corrected for FDR Benjamini-Hochberg. Candidate genes are arbitrarily numbered according to their rice orthologues, 

p = paralogue. Genes are ordered within families by average fold change over 4 time points. 
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Appendix H Comparison of the effect of jasmonic acid on gene expression profiles of selected genes in Brachypodium distachyon callus, rice shoot and root (left to 

right) when treated with 50 µM meJA for 24 h – 8 d (Brachypodium distachyon callus) or 100 µM (±)-JA for 0 h – 12 h (rice shoot) or for 0 h – 6 h (rice root). 

Orthologues in Brachypodium and rice are a) BAHD1: Bradi2g05480, Os01g09010; b) BAHD2: Bradi2g04980 (BAHD2p2), c) Os01g08380; GT61_21: 

Bradi2g01380, d) Os01g02900; GT61_10: Bradi4g27360, Os06g27560. Data obtained from RNA sequencing experiment in Chapter 4, or sourced from RiceXPro 

(Sato et al., 2013).  
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Appendix I  Gene expression data highlighting the differences in gene expression of Brachypodium 

distachyon paralogues GT61.9p1 (Bradi1g06560) and p2 (Bradi3g11337) in TPL, TPR and TPI 

(transition phase (20 days after germination) leaves, roots and internodes). Samples are as described in 

Molinari et al. (2013), Dr. Till Pellny, unpublished data. 
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Appendix J  RNAi sequence designed to simultaneously knock down the expression of GT61.9p1 and 

GT61.9p2 in Brachypodium distachyon. The RNAi sequence was used for transformation of 

Brachypodium distachyon in chapter 5. 
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Appendix K  Phylogenetic tree of GT61 family genes in wheat (red), rice (green) and 

Brachypodium distachyon (brown) and Arabiopsis thaliana (blue) showing bootstrap 

values. Genes are numbered arbitrarily except characterised genes, which are named. 
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Appendix L  An example of using qPCR to determine zygosity of T2 generation Brachypodium transformants, as 

described in Chapter 2.18. Plants analysed (a1 – f8) are descendants of one independent primary transformant (line 

2), and have 3 parent T1 plants (2-1: plants a1-b8, 2-2: plants c1-d8, and 2-3: plants e1-f8). Heterozygous plants are 

shown with a relative zygosity value of around 0.4, and homozygous plants with a relative zygosity value of around 0.8. 

Null plants have a relative zygosity value of 0. Parent plants 2-1 and 2-2 are therefore segregating heterozygotes and 

plant 2-3 is a homozygous parent.  
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Definitions 

4CL 4-coumarate:coenzyme A ligase 

ABSL acetyl bromide soluble lignin  

AIR alcohol insoluble residue 

ANOVA analysis of variance  

Ara arabinose  

Araf  arabinofuranose 

Arap arabinopyranose 

AX arabinoxylan  

BAHD 

benzylalcohol acetyltransferase, anthocyanin hydroxycinnamoyl 

transferase, anthranilate hydroxycinnamoyl/benzoyl transferase, 

deactylvindoline acetyltransferase 

BF benzofuran 

bp base pairs 

BSA bovine serum albumin  

CaMV cauliflower mosaic virus  

Cas CRISPR associated 

CAD cinnamyl alcohol dehydrogenase 

CDS coding sequence 

CesA cellulose synthase  

CIM callus initiation media 

CoA cinnamoyl CoA reductase 

CoMT caffeic acid O-methyl transferase 

cpm counts per million 

CRISPR  clustered regularly interspaced short palindromic repeats 

d days 

DEGs differentially expressed genes  

df degrees of freedom  

diF ferulic acid dimer 

DNA deoxyribonucleic acid 

DOE JGI United States Department of Energy Joint Genome Institute  

DTT dithiothreitol 

dw dry weight 

EDTA Ethylenediaminetetraacetic acid  
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FA ferulic acid  

FPKM  fragments per kilobase of transcript per million mapped reads 

g g force 

Gal galactose 

GalA galacturonic acid  

GAX (glucurono)arabinoxylan  

GFP green fluorescent protein  

GlcA glucuronic acid  

GO gene ontology 

GT glycosyltransferase 

GUX glucuronic acid substitution of xylan 

GX glucuronoxylan  

h hours 

HCA hydroxycinnamic acid 

hom homozygous 

HPLC high performance liquid chromatography  

hpt hygromycin resistance gene  

Ile isoleucine  

INRA Institut National de la Recherche Agronomique 

IRX irregular xylem  

JA jasmonic acid  

kDa kilodalton 

KEGG Kyoto encyclopedia of genes and genomes 

LC-MS liquid chromatography - mass spectrometry 

LSD least significant difference  

M  molar 

MBTH 3-Methyl-2-benzothiazolinone hydrazone  

MDS  multidimensional scaling 

meGlcA methyl glucuronic acid  

meJA methyl jasmonate 

MES  2-(N-morpholino)ethanesulfonic acid 

min minute 

mM millimolar 

MOPS  3-(N-morpholino)propanesulfonic acid 

MS Murashige and Skoog 
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NOS nopaline synthase  

PACE polysaccharide analysis using gel electrophoresis  

pCA para-coumaric acid  

PCR  polymerase chain reaction 

Pfam protein family 

PMT p-courmaroyl-CoA:monolignol transferase  

qRT quantitative-reverse transcription  

Rha rhamnose  

RNA ribonucleic acid 

RNAi ribonucleic acid interference 

RNA-seq ribonucleic acid sequencing 

ROS reactive oxygen species  

SCF Skp1-Cullin-F 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SE standard error of the mean 

SED standard error of the difference between two means  

Sm streptomycin 

Sp spectinomycin  

TAE  tris-acetate-EDTA 

T-DNA  transfer deoxyribonucleic acid 

TFA trifluoroacetic acid 

TILLING targeting induced local lesions in genomes 

TTBS tris tween buffered saline  

Ubi ubiquitin 

UDP uridine diphosphate 

UPLC  ultra performance liquid chromatography 

v/v volume/volume 

w/v weight/volume  

XAT xylan arabinosyl transferase 

XAX xylosyl arabinosyl substitution of xylan 

Xyl xylose 

XylT xylosyl transferase  

 

 Abbreviations included in the International System of Units are not listed 
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