
Computational Modeling of the

Phase Diagram of Magnetic

Skyrmions

Yifan Zhou

MSc by Research

University of York

Physics

December 2016



Abstract

Magnetic skyrmions are vortex-like spin structures that appear in magnetic

materials with Dzyaloshinskii-Moriya(DM) interactions and exchange interac-

tions. Their small size and inherent stability suggest the potential application

in magnetic memory systems. A well-defined phase diagram of skyrmions is

important for investigating their stability. This is a complicated task due to

the topological nature of magnetic skyrmions, whose phase transitions are not

obviously illustrated by general parameters such as total energy and magne-

tization. In this thesis, we have developed a methodology in determining the

phase diagram of the skyrmion lattice model by performing the atomistic spin

simulation. We investigate the spin states of the lattice in the magnetic fields

at zero temperature first, then apply finite temperatures in studying the phase

transition between the skyrmion state and other states. At 0 K we find five spin

states in varying magnetic fields. In the skyrmion state, the ratio between DM

interaction and exchange interaction, together with the magnetic anisotropy

affect the size and shape of skyrmions. At finite temperatures, the thermal

stability of the skyrmion lattice is shown by a contour plot of the skyrmion

number as a function of external field and temperature. The loss of lattice

symmetry with a growing temperature is demonstrated by the spin configura-

tions of the lattice in the real and reciprocal space. We then characterize the

phase transition of the skyrmion state by several specific parameters, such as

the specific heat capacity, the static magnetic susceptibility and the skyrmion

life time. The parameters show similar critical temperature of the skyrmion

state. Specifically, the skyrmion life time of the applied model follows the

Arrhenius law as a function of temperature. We also discuss the effect of the

femtosecond heat and magnetic pulse on the nucleation of the skyrmion state.
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Chapter 1

Introduction

The concept of Skyrmion originates from nuclear physics, initially proposed by

Tony Skyrme to describe mesons and baryons in nonlinear field theory[3]. The

mathematical definition of the skyrmion is now applied widely in condensed

matter physics, such as liquid crystal[4], Bose-Einstein condensation[5], and

especially in the area of magnetic materials[6]. The magnetic skyrmions exhibit

two types of topological spin structures: the Bloch type, which the spins rotate

in a plane perpendicular to radial directions from the center to the periphery,

and the Neel type, which the spins rotate along the radial directions, as is

shown in figure 1.1. Several theoretical predictions of the skyrmion structure

were proposed as one of the thermodynamically stable spin vortex states in

magnetic materials[7][8][9]. It was not until 2009, two decades after the initial

theoretical work, that the existence of such a spin structure was validated by a

set of experiments[10][11][12]. Skyrmions in ultra-thin film, which is the focus

of this thesis, was observed later experimentally by the spin polarized scanning

tunneling microscope (STM) of Fe on Ir(111)[13]. There are several attractive

characteristics that suggests the potential application of the skyrmion spin

structure: firstly, the size of the skyrmions can be reduced to a few nanometers,

leading to a higher density of the magnetic information storage. Secondly, the

skyrmions are topological solitons that cannot be bent into a uniform state,

which improves their stability against both external changes and inner defects.

Thirdly, the skyrmions can be displaced by the spin torque with very low

current density, thus saving energy of the information storage[14].
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Figure 1.1: Typical topological structures of the magnetic skyrmions: a, a

Bloch-type skyrmion; b, Neel-type skyrmion. Extract from [1]

Although there are several mechanisms which give rise to the skyrmion

structure[15], the breaking of the inversion symmetry at the interface, known

as the Dzyaloshinskii–Moriya interaction (DMI), is the mostly investigated

mechanism so far. Such lack of symmetry is mainly induced by the asso-

ciation between magnetic thin films and metals with strong spin-orbit (SO)

coupling[16], such as Pt, Ir, W, etc. The advantage of this type of skyrmion

is the possibility to tune the DMI by modifying the metal compounds or the

number of the layers, thus adjusting the size of the skyrmion and improving

their stability as well. It is recently reported that the interfacial DMI-based

skyrmions can be observed at room temperature[17], which promises the real-

world application of the skyrmion racetrack memory[18].

The numerical simulation of the skyrmions is also intensively investigated as

a good complement to the experimental research. The simulations of the

skyrmion system include the stabilization, nucleation and propagation of the

individual and lattice skyrmions. Numerically, skyrmions are found to be sta-

ble for a large range of DMI and exchange interaction[19], and can be nucleated

and moved by spin injection through spin transfer torques[20]. However, due

to the topological nature of the skyrmion state, it requires unconventional

parameters to achieve a well-defined phase diagram. From the previous stud-

ies, there are several existing methods and parameters defining the skyrmion

phase, while lacking a bottom-up analysis of the whole phase diagram.

The proposal of this work is to give a clear phase diagram of the skyrmion

state with the DMI-type lattice model, with the perpendicular magnetic field

and with temperature included as a thermal field using Langevin dynamics.

In particular, the research combines the spin configurations of the magnetic
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structures with the theoretical and phenomenological parameters, leading to a

more complete and insightful description of the skyrmion state.

The second chapter gives an overview of the general principles of the physics

of magnetism which facilitates further computational study of the magnetic

material. It presents the atomistic spin model of magnetism with a detailed

discussion of the spin Hamiltonian of the lattice with DMI. Further consid-

eration is given to the numerical methods of calculating the spin dynamics,

including the Landau-Lifshitz-Gilbert equation with Langevin dynamics and

the Monte Carlo method. The chapter ends with a discussion of the topologi-

cal and structural properties of magnetic skyrmions, with a summary of some

important properties of skyrmions.

In the third chapter, the magnetic skyrmions on the DMI type of lattice at

0 K with perpendicular magnetic field are investigated. An example of typ-

ical conditions to nucleate skyrmion state is given, with three major factors

included: the exchange interaction, the DMI and the perpendicular magnetic

field. In varying magnetic fields, the lattice forms different spin states, among

which the skyrmion state covers a wide range of magnetic field. In particular,

the spin states after removal of the magnetic field are calculated, showing that

the skyrmion lattice survives in zero field, as is experimentally illustrated[21].

In the second part of the chapter, the material parameters are systematically

modified. The size of the skyrmions is quantified in terms of the DMI and the

exchange interaction. The effect of magnetic anisotropy, on the other hand, is

qualitatively discussed.

The fourth chapter consists of a detailed investigation of the skyrmion state

at finite temperatures. In the first part of this chapter, a general equilibrium

phase diagram of the skyrmion over temperature and the perpendicular mag-

netic field is given, combined with an estimation of the topological energy

barrier of the skyrmions. The spin figures in real and reciprocal space are then

introduced, showing that the skyrmions undergo two different developments

with the growing temperature: the profile of the skyrmions is changed and the

hexagonal structure remains at low temperature, while the hexagonal structure

becomes distorted and disappears at high temperature. It is thus important to

16



quantify the phase diagram to define the region of the ordered skyrmion phase.

Inspired by the experiments, additional parameters are applied to study the

phase change, namely the static heat capacity and the specific magnetic sus-

ceptibility. In addition, the skyrmion life time is a well-defined parameter that

describes the thermal annihilation of the skyrmion lattice as an exponential

decay, or so-called Arrhenius law. The energy barrier of the skyrmion lattice

leads to an exponential relationship between the skyrmion life time and the

temperature. This chapter finishes up with a preliminary study on the fem-

tosecond creation of the skyrmion state.

Finally, chapter five summarizes the conclusion of the thesis and provides a

future outlook.
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Chapter 2

Theoretical Background

The research is comprised of computer simulations and theoretical analysis of

the magnetic DMI(Dzyaloshinskii-Moriya Interaction) type skyrmion systems.

The main program in use is the VAMPIRE[22], which is based on the atomistic

spin model of magnetism.

2.1 Atomistic spin model of magnetism

The basic property of the atomistic spin model is to localize unpaired electrons

to atomic sites, where each electron is assumed to possess a constant magneti-

zation length. The direction of an atomic magnetic moment is described by a

unit vector Sj[22], which is defined as µs/|µs|, where µs is the spin magnetic

moment. The Heisenberg model of exchange is applied, and all the possible

interactions between neighboring electron spins are considered as well.

In this section,the classical spin Hamiltonian will be introduced first, followed

by general matrix expression of interaction and detailed description of main

energy contributions.

2.1.1 Classical spin Hamiltonian

The energy of a group of spins is determined both by interactions with each

other and with external conditions. As the main part of the total energy,

the interactions among the spins originate from overlapping of wavefunction

between neighbouring atoms, known as the exchange interaction. Several ex-
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2.1. ATOMISTIC SPIN MODEL OF MAGNETISM

ternal factors also contribute to the energy of the spin system, such as Zeeman

energy from magnetic field, Dzyaloshinskii-Moriya interaction from spin-orbit

coupling, magnetic anisotropy from electrostatic crystal-field interaction and

so on. The spin Hamiltonian is a summary of all mentioned energy contribu-

tions. The typical form of the spin Hamiltonian is:

H = Eex + Eani + Eapp + EDMI + ... (2.1)

denoting terms of the exchange interaction, magnetic anisotropy, external mag-

netic fields, Dzyaloshinskii-Moriya interaction and other terms, e.g. dipole-

dipole interaction.

2.1.2 General matrix expression of interaction

There are several equivalent forms of spin interactions, among which matrix

form suit best with computational needs of the atomistic model. As the re-

sult of Heisenberg approach in quantum mechanics[23], the general interaction

between two spins Si and Sj can be written as:

STi JijSj (2.2)

where the full expression in three dimension x, y, z is

STi =
[
Six Siy Siz

]
,Jij =


Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 ,Sj =


Sjx

Sjy

Sjz

 (2.3)

in which Jij is a 3 × 3 matrix elements mainly dependent on the position of

spins and the lattice environment. The interaction matrix Jij contains both

diagonal part, which is the isotropic exchange interaction, and off-diagonal

part, in the case of this thesis is the Dzyaloshinskii-Moriya interaction. The

interactions will be discussed in detail in the following sections.

2.1.3 Exchange interaction

The dominant term in the spin Hamiltonian is the exchange energy, which

tends to align neighbouring spins in parallel or anti-parallel direction, giv-

ing rise to ferromagnetism or antiferromagnetism respectively. From quantum
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2.1. ATOMISTIC SPIN MODEL OF MAGNETISM

mechanics, the exchange energy is defined as the energy difference between

parallel and antiparallel spin-coupling, which is originated from the symme-

try of the electron wavefunction and the Pauli principle[24]. In practice, the

exchange energy could be calculated from DFT (Density Functional Theory)

approach theoretically[25], or determined by fitting to experiments if the DFT

calculations are not possible.

The Heisenberg exchange energy can be written as

Eex = −
∑
i 6=j

JijSi · Sj (2.4)

where Jij is the exchange constant between atomic site i and j, Si is a unit

vector signify the local spin moment and Sj is the neighbouring spin moment

direction. In the matrix expression, Jij is the isotropic diagonal part of Jij. A

positive Jij means parallel or ferromagnetic spin coupling whereas a negative

Jij means spins are antiparallel or antiferromagnetic. The positive Jij is the

concern of this thesis.

2.1.4 Magnetic anisotropy

The magnetic anisotropy brings in the preferred direction of atomic moment,

which determines some important features of magnetic material such as hys-

teresis and coercivity[26]. Several physics effects are related to magnetic

anisotropy, among which the main source is magnetocrystalline anisotropy.

This results from electrostatic crystal-field interaction and relativistic spin-

orbit coupling, and generates particular crystallographic axes preferred by spin

moments[27].

The simplest form of anisotropy is single-ion uniaxial type[22], where the mag-

netic moments prefer to align along a single axis, e, often called the easy axis.

The corresponding anisotropy energy is

Euni
ani = −ku

∑
i

(Si · e)2 (2.5)

which ku is the anisotropy energy per atom.

Cubic anisotropy is also a common type of magnetic anisotropy, which is gen-

erally smaller than uniaxial anisotropy. With three principal directions that
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2.1. ATOMISTIC SPIN MODEL OF MAGNETISM

energetically rank from easy to hard, the cubic anisotropy is described by

Ecubic
ani =

kc
2

∑
i

(S4
x + S4

y + S4
z ) (2.6)

where kc is the cubic anisotropy energy per atom, and Sx,Sy and Sz are the

x,y and z components of the spin moment S.

2.1.5 Applied field

The applied fields, denoted as Happ, are also involved in most studies of mag-

netic systems. The energy from applied fields is frequently called Zeeman

energy, which comes from the local moments induced by applied magnetic

fields. The applied field energy, or Zeeman energy is mainly given by

Eapp = −
∑
i

µsSi ·Happ. (2.7)

2.1.6 Dzyaloshinskii-Moriya interaction

The off-diagonal term of the interaction matrix is called Dzyaloshinskii-Moriya

interaction (DMI)[28][29]. The DMI is the major factor in creating skyrmion in

this thesis. The origin of DMI is the inversion-asymmetric lattice environment

and strong spin-orbit coupling.

There are several possible assemblies of magnetic thin films and metals with

large spin-orbit coupling that leads to observable effect of DM interaction,

including bilayers like Fe on Ir(111)[13] and Mn on W(110)[30], multilayers

like Fe/Ni/Cu(001)[31], Pt/Ir/Co/Pt[32] etc.

The energy of DMI is always written in a way of spin cross product:

EDMI = Dij · (Si × Sj) (2.8)

according to equation (2.8), the direction of such interaction exhibit a chiral

property. The simplest example, as is shown in figure 2.1, is two dimension

DMI in x− y plane:

E12
DMI = D12 · (S1 × S2) · y = D12 · (Sz1Sx2 − Sx1Sz2) · y,

E13
DMI = D13 · (S1 × S3) · (−x) = D13 · (Sz1S

y
3 − S

y
1S

z
3) · (−x)

(2.9)
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2.2. ATOMISTIC SPIN DYNAMICS

The equations (2.9) yield a matrix expression combining the DMI, together

with the diagonal isotropic exchange:

J12 =


Jxx 0 −Dxz

0 Jyy 0

Dzx 0 Jzz

 ,J13 =


Jxx 0 0

0 Jyy −Dyz

0 Dzy Jzz

 (2.10)

Note that for real materials the DMI always exists in three dimensions and

with different value[33].

Figure 2.1: Simplified form of two dimensional DM interaction within neigh-

boring atoms: atom 1 (orange circle) is interacting with four atoms (blue cir-

cles), of which directions are indicated by feint black arrows. Detailed equation

of DM interactions between spin 1 & 2, 1 & 3 are given.

2.2 Atomistic spin dynamics

The spin Hamiltonian reveals the total energy of the spin system, however

it cannot provide information about the time-dependent properties and the

thermal effects. In this section, general spin dynamics equations including

applied magnetic and thermal field are introduced.

2.2.1 Landau-Lifshitz-Gilbert equation

The basic form of time evolution of the spin moments in presence of an applied

magnetic field is given by[34]

dS(t)

dt
= −γ0[S(t)×H(t)], γ0 =

gµBµ0

h̄
(2.11)
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2.2. ATOMISTIC SPIN DYNAMICS

where g, µB and µ0 are the gyromagnetic ratio, Bohr magneton and vacuum

permeability. The equation (2.11) is based on the derivation from expectation

value of the spin according to the Schrodinger equation:

dS(t)

dt
=

1

ih̄
[S(t),H(t)]. (2.12)

A phenomenological damping term suggested by Gilbert[35] is added to de-

scribe the evolution of the magnetic spins to equilibrium with the field, which

leads to the saturation of ferromagnetic materials with increasing applied mag-

netic field[36]. As a result, the spin dynamic equation can be shown as

dS(t)

dt
= −γ0[S(t)×H(t)] + αγ0[S(t)× dS(t)

dt
], (2.13)

with the damping constant α illustrated by Kikuchi[37] that α = 1 gives the

highest switching speed of the ferromagnetic domains and in most cases α� 1.

After substituting equation (2.11) for S(t)
t

and suitable rescaling of t in equation

(2.13), the equation can be rewritten as

dS

dt
= [S ×H ] + α[S × [S ×H ], (2.14)

which is the basic form of Landau-Lifshitz-Gilbert equation. In the atomistic

model, the applied magnetic field H is substituted by the effective net magnetic

field H i
eff on each spin Si. The H i

eff is obtained from the derivative of the

total spin Hamilton

H i
eff = − 1

µs

∂H

∂Si
, (2.15)

where µs is the local spin moment. Considering all the factors above, the

atomistic Landau-Lifshitz-Gilbert equation is given by

dSi

dt
= [Si ×Hi

eff ] + αS × [Si ×H i
eff ]. (2.16)

2.2.2 Langevin dynamics

The fundamental form of LLG equation is valid only for zero temperature,

which excludes thermal effects. To describe the spins dynamics under a finite

temperature, Langevin dynamics can be taken into account. The analytic

approach of Langevin dynamics is developed by Brown[38]. The basic idea

23



2.2. ATOMISTIC SPIN DYNAMICS

of the approach is to introduce a thermal noise term H i
th into the effective

magnetic field

H i
eff = H i

th +− 1

µs

∂H

∂Si
, (2.17)

with the thermal field obeys

< H i
th >= 0, < Hi(t)Hj(t

′) >= δi,jδ(t− t′)2αkbTµs/γ, (2.18)

where i, j denote the sites of the spins on lattice, and <> denotes an aver-

age value over realizations of the thermal field. The heat fluctuations on each

spin are further assumed as independent random events with conditions in

equation(2.18)[38], thus yield H i
th represented by a Gaussian statistical dis-

tribution Γ(t). Notice that the correlation time of H i
th is much shorter than

the rotational-response time due to δ(t − t′) factor in equations(2.18)(white

noise[39]). At small time step the instant thermal field on each spin located in

site i is given by:

H i
th = Γ(t)

√
2αkBT∆t

γµs
(2.19)

where ∆t is the time integration step during the calculation. The thermal

equation (2.19) is implemented into LLG equation, so that spin dynamics

originated from both magnetic field and thermal field are considered in cal-

culation, resulting in a stochastic LLG equation due to the random nature of

thermal field.

2.2.3 Time integration

It is necessary to solve the LLG equation (2.21) with stochastic thermal term(2.17)

within certain time step in order to simulate the time-evolving properties of

the spin system. The Heun method[39] is widely used for the numerical study

of the dynamics of magnetic materials. The predictor-corrector algorithm is

applied in the method in order to obtain results using larger time steps, which

presents sufficient accuracy and computational efficiency[22]. The first (pre-

dictor) step gives the new spin direction S
′
i under a given effective field H i

eff

by using a standard Euler integration step, given by:

S
′

i = Si + ∆S∆t (2.20)
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2.2. ATOMISTIC SPIN DYNAMICS

where the small change ∆S is

∆S = [Si ×H i
eff ] + αS × [Si ×H i

eff ]. (2.21)

The spin vector length should then be renormalized to the unit vector after

each step to insure the stability and convergence of the solution. Also, the

effective field needs to be recalculated for the second step due to the change in

the spin configuration. The second (corrector) step uses assignments from the

predicted spin direction S
′
i and re-evaluated effective field H i′

eff to calculate the

final spin position, thus completing the whole integration step. The corrector

equation is given by:

St+∆t
i = Si +

1

2
[∆S + ∆S

′
]∆t (2.22)

where the revised small change ∆S
′

is

∆S
′
= [S

′

i ×H i′

eff ] + αS
′ × [S

′

i ×H i′

eff ]. (2.23)

The predict-correct steps are applied on every spin with repeats many times

so that the time evolution is simulated.

To compare of the calculated result with analytical solution, a simplified ex-

ample is given in[22]. The analytical solution for time-depend evolution of a

single spin originally along x axis with applied magnetic field in z direction is

given by[2]:

Sx(t) = sech(
λγH

1 + λ2
t) · cos(

γH

1 + λ2
t)

Sy(t) = sech(
λγH

1 + λ2
t) · sin(

γH

1 + λ2
t)

Sx(t) = tanh(
λγH

1 + λ2
t)

(2.24)

The analytical and computational time evolution for the model with H = 10

T, ∆t = 1× 10−15 s, and λ = 0.1, 0.05 is shown in figure 2.2, which indicates

a good accordance.
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2.3. MONTE CARLO METHOD

Figure 2.2: The analytical solution is plotted in the lines, comparing with the

points for computational approach. Panel (b) and (d) illustrate the error traces

for two damping constants for (a) and (c). The error is in the magnitudes of

10−6, which shows good correspondence. Extract from [2].

2.3 Monte Carlo method

While spin dynamic methods generate good results over dynamic properties of

magnetic systems, those methods are not well-suited for determining the equi-

librium properties like the temperature-dependent magnetization. The Monte

Carlo methods, however, have the advantage over the dynamics methods in

evolving to equilibrium due to its statistical nature in finding energy-favored

state.

According to classic statistical mechanics, the probability of nth state in the

system can be written as

Pn = eEn/kBT/Z (2.25)

where Z is called the partition function calculated from all possible energy

values:

Z =
∑
E

eEn/kBT . (2.26)

The equilibrium properties can be obtained if Z is known, while it is almost im-

possible to obtain its exact value in most cases. As to find out the equilibrium
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2.4. MAGNETIC SKYRMIONS

properties of a system without calculating the partition function, the Monte

Carlo Metropolis algorithm[40] is applied as the calculation technique. In the

algorithm, the transition probability from randomly chosen state to another

is calculated instead of applying the partition function of a certain state. The

normalized transition probability of two different energy of the state, namely

E1 and E2, follows the Boltzmann distribution:

P1−2 = exp(−∆E

kBT
). (2.27)

Thus, the partition function (2.26) is omitted in the calculation steps.

The basic procession of the Metropolis algorithm works as following:

(1) Initialize a net spin state,

(2) Pick a random spin Si and randomly change the spin direction to S
′
i;

(3) Calculate the energy change ∆E = E(S
′
i)− E(Si);

(4) Calculate the probability P by (2.27), if P > 1, which means reduction in

energy by the change, then accept the motion;

(4) Generate a random number r in the range 0 < r < 1,

(5) Compare r with P , if P > r, accept the motion;

(6) Go to next site and process from (3) until covering complete the spins of

the system.

After the complete spins being considered, the properties of the system in its

lowest energy are determined. In addition, statistical average can be obtained

by looping the calculation procedure several times to rise the accuracy.

2.4 Magnetic skyrmions

2.4.1 Definition of skyrmions

Skyrmions are named after the particle physics theorist Tony Skyrme who de-

veloped a nonlinear field theory[3] to describe interacting mesons and baryons

in the topological perspective. Originally related to particle-like solutions,

skyrmions are now used to identify similar structures in varied contexts, e.g.,

quantum Hall systems[41][42] , Bose-Einstein condensation[43][44] and liquid

crystals[45].
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2.4. MAGNETIC SKYRMIONS

In general, skyrmions are vector fields with a spherical topology characterized

by topological charge, usually called the topological skyrmion number Nsk

Nskr =
1

4π

∫∫
dxdyn · (∂n

∂x
× ∂n

∂y
) (2.28)

as the surface integral of unit vector n over the plane denoted by x and y.

Therefore, when vector texture varies continuously in all directions, i.e. n

wraps around a unit sphere, the Nskr is equal to 1. In other word, a single

skyrmion contributes one to the topological skyrmion number, which means

skyrmions can be clearly counted in an ordered state. As a result, the topo-

logical skyrmion number can be applied to wherever skyrmion-like structures

emerge to analyze their topological properties. This concept remains valid

for magnetic skyrmions by calculating the skyrmion number over the discrete

lattice (Appendix A), which are the concern of this thesis.

2.4.2 Physical origins of magnetic skyrmions

In magnetic materials, the skyrmion state emerge as particle-like excitations

which lies between spiral state and ferromagnetic state. Any broken symme-

try of the lattice with chiral character could lead to skyrmion state. There are

several mechanisms giving rise to the magnetic skyrmion formation:

(1) Four-spin exchange, resulting in superposition of spin spirals in shaping

skyrmions[13],

(2) Dzyaloshinskii-Moriya interaction, giving rise to chiral interaction among

neighboring spins so that a skyrmion lattice nucleates under magnetic field,

(3) Dipole-dipole interaction, stabilizing large skyrmions with a diameter of

the order of µm[46],

(4) Frustrated exchange interactions, maintaining both skyrmions and anti-

skyrmions[47].

Among four mechanisms mentioned above, the Dzyaloshinskii-Moriya interac-

tion and the Dipole-Dipole interaction attract most research interests. The size

of skyrmions by Dipole-Dipole interaction is much larger (102) than skyrmions

by DMI. Due to the nature of our atomistic spin model, there will be exces-

sive CPU requirements for calculating quantity of a system with the length of
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2.4. MAGNETIC SKYRMIONS

micrometer or above. As a result, the DMI type skyrmion with the scale of

nanometer is focused in the computational research presented here.

2.4.3 Summary

In this chapter, the physics basis of a magnetic system is introduced, including

the Heisenberg Hamiltonian for total energy and LLG equation for dynamic

properties. The computational methods are described, including Heun method

for LLG equation time integration and Monte-Carlo method for the equilib-

rium properties. Additionally, the meaning of a skyrmion is explained, followed

by basic information about the magnetic skyrmions.

The next chapters will focus on the nucleation conditions and the phase dia-

gram of magnetic skyrmion lattice.
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Chapter 3

Existence Criteria for the

Skyrmion Phase at 0 K

This chapter focuses on nucleation of the skyrmion lattice in the magnetic thin

film. For the purpose of systematic study on the basic nucleation conditions,

the models in use are simplified in several ways. Firstly, the magnetic film is set

to be a monolayer so that the skyrmion lattice is confined into two-dimensions.

Secondly, the applied magnetic field is assumed to be perpendicular to the lat-

tice plane. Thirdly, the equilibrium temperature of the lattice is set to be 0K,

and the thermal effect will be studied in next chapter.

In this chapter, an example of the skyrmion lattice will be introduced first,

followed by controlled studies on various parameters. The material properties

will be set invariant first so as to investigate the effect of the magnetic field

on the lattice and the changes when the field is removed. Then the mate-

rial parameters such as the exchange energy, DM interaction and magnetic

anisotropy are modified to illustrate their influence on the spin configuration.

3.1 Example of skyrmion lattice

An Example of the ideal skyrmion lattice is illustrated in this section. The

basic requirements of nucleating a skyrmion lattice include the ferromagnetic

exchange interaction and the DM interaction , with adequate perpendicular

magnetic field.
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3.1. EXAMPLE OF SKYRMION LATTICE

The parameters of this model and the simulation procedure are set as follows.

The exchange interaction and the DM interaction are equally set as 1 meV,

allowing the size of a single skyrmion to be around 2 nm. In that case the

critical magnetic field for the skyrmion state is 3.2 T. The two-dimensional

monolayer consists of the simple cubic lattice with the lattice constant 2.715

Å. The geometry of the system is square with 32 lattice site each side (8.688

nm). The procedure of the nucleation follows linear field-cooling with constant

magnetic field applied, as is shown in figure 3.1.

Figure 3.1: The thermal field-cooling in red line starts from 20K, cooling to

0K in 2ns. The constant magnetic field of 3.2 T is shown as the blue line.

The system can be considered fully relaxed in 10 ns in 0 K,followed by 2

ns cooling. This procedure forms ground state of the lattice at 0 K with 3.2

T magnetic field. The snapshot of the system, which gives clear vision of the

spin configuration, is shown in figure 3.2.
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Figure 3.2: The spins are represented by colored arrows, where the color scale

linearly depends on their value in z-component, with blue for -1 and red for

+1. The skyrmion structure is clearly shown in the whole lattice with an

hexagonal structure.

The given example shows a perfect skyrmion lattice with controlled condi-

tions for the simplified model outlined earlier, including the exchange interac-

tion, the DM interaction and the magnetic field with field-cooling. The effect

of those parameters will be studied quantitatively in the following sections.

3.2 Constant material parameters

In this section, the parameters of the material will be kept constant, as follows:

1) the exchange constant J= 1 meV,

2) DM interaction D= 1 meV,

3) the atomic spin moment µs= 2.7 µB,

4) the damping α= 0.05,

5) lattice constant a= 2.715 Å,

6) size 32× 32

Although the DM interaction is always less than the exchange interaction in

real materials, the ratio of D and J merely influence on the critical magnetic

field and the size of skyrmion in our model (discussed in detail in section 3.3.1).
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In order to improve the efficiency of the simulations with small skyrmions, the

ratio here is kept to be 1 initially. Noting that the anisotropy is not considered

in this section.

3.2.1 Spin states with varied magnetic field

The effect of different magnetic fields on spin states will be discussed first. The

cooling procedure is the same as shown in figure 3.1. The applied magnetic

field is varied from 0 T to 6 T with a step of 0.2 T. The states of the system

are identified by three parameters, as is shown in figure 3.3 : the total energy,

the skyrmion number and the magnetization.

The total energy indicates the stability of the states, specifically more stable

in lower energy. The skyrmion number shows how many skyrmion-like spin

structures exist in the lattice. The magnetization of the system rises almost

linearly with the magnetic field, indicating the material behaves with constant

susceptibility similar to a paramagnet[24]:

M = χmH, (3.1)

where χm is called magnetic susceptibility. As is expected, the magnetization

saturates for large magnetic field, 5.4 T in this case. The total energy and the

skyrmion number of the system shows different trends in several ranges with

magnetic field, arising from the evolution of the spin states. The skyrmion

number, for example, remains zero from 0 T to 0.6 T, thus no skyrmions are

nucleated. Then in the range of 0.8 T to 1.4 T the structure consists of a

mixture of spiral states with sporadic skyrmions. In the range 1.6 T to 4.2

T, the skyrmion number fluctuates between 10 and 13, illustrating a well-

nucleated skyrmion lattice. A decrease of skyrmion number in the range 4.4

T to 5.4 T indicates the system entering into ferromagnetic states however

with some surviving skyrmions. Finally the skyrmion number returns back to

zero as the system becomes totally ferromagnetic. The variation of the energy

shows similar trends to the skyrmion number. Those states are specified by

the states (a)-(e) in the figure, while the classification of these five ranges will

be shown clearly by their spin figures in the ensuing paragraphs.
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Figure 3.3: The total energy, skyrmion number and magnetization of each

spin states, divided as a-e in the figure.

(a) Spiral State. (b) Spiral-Skyrmion

State.

(c) Skyrmion State.

(d) Skyrmion-Ferromag-

netic State.

(e) Ferromagnetic State.

Figure 3.4: (a)-(e): five spin states under varied range of perpendicular mag-

netic field. Top-right part in each figure is the spin state in the momentum

space.
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In order to illustrate the long-range order, the spin states are transferred

in to the momentum space by applying Fourier transform (FT) to the spins in

the real space:

Sk =
∑
j

sjexp(ik · j), (3.2)

Sk indicates the vector of the spin in the momentum space and sj in the real

space, while k and j indicate the position of the spin in momentum space

and real space respectively. In the case of two-dimensions square lattice, the

coordinate in momentum space is k = 2π
j

.

Spiral state : 0 T - 0.6 T

The ground state of the system with relatively low and no magnetic field is

called the spiral state due to its spin configuration. The DMI and exchange

interaction together shapes the stripe in absence of magnetic and thermal

field[48]. The strip period of the spiral state is 2.1 nm.The FT diagram in

indicates the stripes has a transitional symmetry along diagonal direction.

Spiral-skyrmion state : 0.8 T - 1.4 T

With increasing magnetic field, some spins begin reversing from spirals point-

ing oppositely to the magnetic field, thus breaking the spiral state and nu-

cleating skyrmions locally. The state of mixed spin configurations is called

spiral-skyrmion state. The FT diagram indicates the broken transitional sym-

metry of the system in this state.

Skyrmion state : 1.6 T - 4.2 T

The skyrmion spin state nucleates after all the stripes anti-aligned to the mag-

netic field transform to the skyrmions in certain range of magnetic field. In a

given skyrmion, spins are pointing in the direction of the magnetic field away

from the skyrmion center, while pointing reversely at the core. The diameter of

one skyrmion is approximately the same as the stripe period, which is 2.1 nm.

The main character of the skyrmion distribution on the lattice is the hexagonal

pattern in the FT diagram, which means a six-fold rotational symmetry of the

lattice.
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Skyrmion-ferromagnetic state : 4.4 T - 5.4 T

As the magnetic field increases further, the skyrmions begin to vanish as the

central spins reverse into the field direction. The existing skyrmions shrink in

size and become randomly distributed on the lattice. As is shown in the FT

diagram, the rotational symmetry of the skyrmion phase is broken.

Ferromagnetic state : 5.6 T - 6 T

The magnetization of the system is saturated when the magnetic field is large

enough, thus turning the spin system into the ferromagnetic state with all

spins pointing to the direction of the magnetic field. The system possesses the

same transitional symmetry with a 2-dimension ferromagnetic square lattice.

The above-mentioned five states are the spin states under certain ranges of

magnetic field at zero temperature. Among those states, the skyrmion state is

the main concern of this thesis.

3.2.2 Spin states without magnetic field

The stability of spin states obtained under constant field is tested after removal

of the magnetic field. The cooling procedure in figure 3.1 is kept the same,

while the magnetic field is switched off after cooling down to 0 K, as in the

figure 3.5. The spin states are thus created initially, prior to the removal of

the magnetic field. In order to examine the properties of spin states at 0 T,

their energy, skyrmion number and spin configuration are compared with the

constant field case.
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Figure 3.5: The thermal field-cooling in red line still starts from 20 K, cooling

to 0K in 2 ns. The constant magnetic field is cutoff once field-cooling finished,

as the blue line in 3.0 T.

Figure 3.6: The comparison shows roughly the same skyrmion number

with and without magnetic field, indicating the topological stability of the

skyrmions. The total energy become higher in skyrmion states without mag-

netic field, while ferromagnetic state without the magnetic field is extremely

unstable.
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Figure 3.7: In the b: Spiral-Skyrmion State, some of the skyrmions still

survive, while some vanish to form part of a stripe.

Figure 3.8: In the c: Skyrmion State, the skyrmions collectively enlarge

without the magnetic field.

Figure 3.9: In the d: Skyrmion-Ferromagnetic State, the spin configure

become a mixture of mainly stripes with a randomly distributed skyrmion.

When the magnetic field vanishes, the spin system tends to turn back to
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the spiral state due to the DM interaction. From the spin states b,c and d

this trend is obviously observed as more stripes appearing and the skyrmions

expanding. It is obvious that the stripes arise without the magnetic field

since the spiral state is the ground state of zero temperature and no magnetic

field. The enlargement of the skyrmions is also due to the trend in forming

stripes. Meanwhile, the skyrmion structure is still preserved with expanding,

so that their topological number remains almost the same, as is shown in

Fig.3.6. The stability originates from the topological protection[14] that gives

rise to an energy barrier between the skyrmions and other spin states with

skyrmion number Nskr 6=1. The skyrmions are stable against a certain range

of external changes, specifically the disappearance of magnetic field in this

case. The ferromagnetic state, on the other hand, retains its structure under

the removal of the magnetic field. This invariance is due to the nature of the

DM interaction. The DM interactions between the spins in this thesis are in-

plane, as shown in figure 2.1. Given all the spins point vertically to the plane,

nothing but Sz exist, and the in-plane DM interactions in x and y direction

vanishes. This case, however, is a ideal unstable system not found in the real

world because the temperature will never reach absolute zero and freezing the

spin perfectly in z direction. Once small fluctuation due to thermal effect

appears, the x and y components of the spin arise simultaneously, so that the

DM interactions revive to affect the spin state.

3.3 Varied material parameters

The spin states at 0 K with certain material parameters have been studied

in the previous section. The material parameters will be systematically mod-

ified in this section. The effect of changing critical DM interaction D and

the exchange interaction J in absence of the anisotropy will be discussed first,

including their influence on the skyrmion size and the magnetic field for nu-

cleating the skyrmion state. Then the role of anisotropy is generally described

with fixed D and J . The lattice constant and the size of the system in this sec-

tion remain the same as in last section, and the studies focus on the skyrmion
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state.

3.3.1 DM interaction and exchange interaction

The exchange interaction J and the DM interaction D are the building blocks

of the skyrmion. To turn the spin state into the skyrmion state, the external

magnetic field B need to be adjusted to different D and J . The relationship

between B with D and J of the skyrmion state for certain lattice obeys an

empirical equation [49]:

µBB = cD2/J, (3.3)

where µB is the Bohr magneton, and c is the constant determined by inherent

properties of lattice such as lattice constant, lattice crystallography, etc. The

c in the paper[49] ranges from 0.23 to 0.78, while in the system of this thesis

c ≈ 0.2. On the other side, the size of one skyrmion can be defined by the

diameter in pitch length of the lattice p[50].

D/J = tan(2π/p). (3.4)

The equation 3.3 with c = 0.2 is tested by two cases:

i) fix D = 1 while J = 1, 2, 3, 4 and 5 (meV),

ii) fix D = 1 while J = 1, 2, 3, 4 and 5 (meV).

The magnetic field B is calculated accordingly by (3.3), and the skyrmion

diameter as pitch length is counted on the spin figures and compared with the

equation (3.4).

Figure 3.10: The DM interaction D is fixed to be 1 meV, and the exchange

interaction J ranges from 1 meV to 5 meV. The magnetic field B shown above

is calculated from (3.3) with c = 0.2. The solid line on the spin figures demon-

strates the pitch length of the skyrmion diameter.
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Figure 3.11: The exchange interaction J is fixed to be 1 meV, and the DM

interaction D ranges from 1 meV to 5 meV. The magnetic field B is calculated

from (3.3) with c = 0.2. The solid line on the spin figures demonstrates the

pitch length of the skyrmion diameter.
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Figure 3.12: The theoretical size curve (red line) 3.4 and the counted size (blue

point) are plotted together. p is the pitch length of the skyrmion diameter.

The two values show a good accordance.

The magnetic field B is derived from equation (3.3) with c = 0.2, which

fits well with the skyrmion state, as is shown in the spin configures in 3.10

and 3.11. Thus the ratio D2 over J decides the required external field for

the skyrmion phase. The diameter of the skyrmion, as measured in the spin

figures, show good accordance with the theoretical derivation in figure 3.12.
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3.3.2 Magnetic anisotropy

The connection between magnetic anisotropy and the properties of the skyrmion

covers a large range of investigations[51][52]. The study here concentrates on

the existence range of the skyrmion in varied anisotropy, both easy-axis and

easy-plane, with fixed exchange interaction J = 1 meV and DM interaction

D = 1 meV. The anisotropy ranges from -2.0 (easy axis) to 2.0 (easy plane) in

step of 0.1, with the constant magnetic field sweep from 0 T to 10 T in step of

0.25 T. The creation procedure is the same as figure 3.1, and the size of lattice

is kept at 32× 32. The skyrmion number of the material is calculated in each

step.

Figure 3.13: The contour plot consists by the skyrmion number as a function

of the anisotropy and the magnetic field. The solid line indicates the skyrmion

number of 6, which is nearly the half of the maximum number. Spin figures of

three vertices of this triangle-like range are chosen to illustrate the magnetic

configurations in the next figure, as shown by black dots in the plot: 1.(-1,1);

2.(1,1); 3.(1,9.5).
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(1) (-1,1) (2) (1,1) (3) (1,9.5)

Figure 3.14: (1): with 1 meV easy axis anisotropy and 1 T perpendicular mag-

netic field, the skyrmions shrink significantly and disperse on the lattice, simi-

lar to the skyrmion-ferromagnetic state. (2): with 1 meV easy plane anisotropy

and 1 T perpendicular magnetic field, the skyrmions enlarge in the shape of

square. (3): with 1 meV easy plane anisotropy and 9.5 T perpendicular mag-

netic field, the ordered skyrmions still exist on lattice in large field.

Half of the maximum skyrmion number on lattice is set as the boundary

of the general skyrmion state with other states. As shown in the figure, easy-

plane anisotropy helps stabilizing the skyrmion in a larger range of external

field because the the in-plane energy contribution serves to enhance the in-

plane DM interaction, while the easy-axis anisotropy reduces the existence

range due to the out-of-plane energy contribution that enhances the effect of

the out-of-plane magnetic field. The shape of the skyrmion is modified by the

anisotropy combining with different magnetic field.

3.4 Summary

In this chapter, the properties of the skyrmion lattice, especially in the skyrmion

state are studied at 0 K. The relationship between magnetic field and spin

states are demonstrated, and the stable spin states without magnetic field are

illustrated. The material parameters, the exchange interaction J , the DM in-

teraction D and the anisotropy A are studied separately to show their influence

on the skyrmion state.

In the next chapter, the thermal effect will be studied in detail for the skyrmion

state.
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Chapter 4

Thermal Phase Diagram of the

Skyrmion Lattice

The thermal stability of the topological spin state in the two-dimensional lat-

tice is a complicated theoretical problem. The common parameters, such as

the magnetization and the total energy, vary continuously with temperature

(figure 4.1) and do not define the phase boundaries. In this chapter, a quan-

titative description of the thermal skyrmion phase diagram is obtained by the

study of the spin figures of the skyrmion state, combined with several deriva-

tive parameters from the simulations.

The general phase diagram of the skyrmion lattice with perpendicular mag-

netic field and temperature will first be developed as a general basis of further

discussion. The perpendicular magnetic field of 3.2 T is maintained in the fol-

lowing sections, which leads to a perfect hexagonal skyrmion lattice at 0 K as

the ground state. Temperature is varied in order to obtain the thermal stabil-

ity of the skyrmions. Several parameters are introduced to define the thermal

stability of the skyrmion state, including the static magnetic susceptibility, the

specific heat capacity and the skyrmion life time. Finally, the phase diagram

of the skyrmion state is calculated numerically.

The material parameters are set as the same in Section 3.2.
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4.1. EQUILIBRIUM PHASE DIAGRAM

(a) Total Energy (b) Magnetization

Figure 4.1: The total energy and magnetization with temperature: each point

is calculated as the average value over several nanoseconds in thermal equilib-

rium. The two parameters change continuously with increasing temperature.

4.1 Equilibrium phase diagram

The general phase diagram of the lattice is an equilibrium contour plot of the

skyrmion numberNskr over perpendicular magnetic field B and temperature T .

For each data point of the plot, the lattice is fully relaxed after an equilibrium

time of 10 ns with a given magnetic field and temperature, and the skyrmion

number is calculated from each point. The magnetic field ranges from 0 T to

6 T with a step of 0.1 T, and the temperature 0 K to 15 K with step of 0.25

K. The plot is thus made up by 60× 60 data points.

At 0 K, the phase diagram is a plot of the results in the previous chapter and

shows that the skyrmion state emerges in the perpendicular magnetic field in

the range 1.6 T to 4.2 T. A skyrmion number Nskr ≥ 6 indicates the boundary

of the skyrmion state, both for zero and non-zero temperature. The thermal

stability of the skyrmion state also varies with the magnetic field, and the

maximum temperature for stability of the skyrmion state is around 6 K in

around 3 T magnetic field.
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4.1. EQUILIBRIUM PHASE DIAGRAM

Figure 4.2: The contour diagram is consisted by the skyrmion number over

temperature and perpendicular magnetic field. The color bar on the right

side shows the magnitude of the skyrmion number. The solid line indicates a

skyrmion number of 6, which is half of the maximum skyrmion number of the

lattice.

4.1.1 Topological energy barrier

The topological energy barrier of the skyrmion structure is the most interesting

property of the skyrmions. In the case of the lattice under the magnetic field

at non-zero temperature, the two fields exert different effects on the skyrmion

lattice. The magnetic field tends to create and maintain the skyrmion struc-

ture, while the thermal field damages the ordered spin state. Therefore, if

the skyrmion lattice is to be stable when the thermal field is higher than the

magnetic field, an energy barrier EB must be introduced to stabilize the topo-
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logical structure.

One could estimate this intrinsic energy barrier EB by applying thermal field

on the skyrmion state in zero field, which has been discussed in section 3.2.2. In

this case, the energy barrier serves as an unique factor to protect the skyrmion

structure. For a simple estimate, it can be assumed that the skyrmion energy

barrier will not change in different temperatures. Therefore, by scanning the

equilibrium skyrmion number of the lattice as a function of temperature, the

critical temperature of skyrmion annihilation can be found, and the estimated

energy barrier is equivalent to the thermal energy at this critical temperature.

As is shown in Fig. 4.3, the critical temperature of the skyrmion annihila-

tion is around 1 K. We estimate the zero field energy barrier from the critical

temperature Tcrit as follows:

Eb0 = kBTcrit, (4.1)

where kB is the Boltzmann constant.

Given that Tcrit = 1 K, the energy barrier can be estimated as 10−1 eV from

equation (4.1) for the whole lattice.

Then the value of Eb in the magnetic field can be applied in estimating the

critical temperature with 3.2 T magnetic field for the skyrmion spin state:

Eb(H) = Eb0 + Em, (4.2)

The energy of the magnetic field can be expressed as Em = µBH, so that the

estimated temperature for phase transition in 3.2 T is around 6 K, which is

consistent with the general phase diagram.
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Figure 4.3: The skyrmion number of the skyrmion lattice without magnetic

field: the skyrmion number here is calculated at thermal equilibrium at each

temperature. The skyrmion structure stabilizes below 0.8 K, and experiences

a transitional phase in range of 0.9 K to 1.3 K. The topological structure is

totally broken at 1.4 K and above.

Based on the contour plot and an estimated value, the critical temperature

for skyrmion annihilation lies at 6 K. In following sections, the skyrmion state

in 3.2 T will be studied under varying temperatures and the estimated critical

temperature 6 K will be further examined.

4.2 Analysis of spin figures

In order to examine the phase transition of the skyrmion lattice, the spin

figures in real and momentum space at different temperatures are studied first,

giving insight into the lattice behavior in the thermal field. The deformation

of the skyrmions in low temperature and the interaction in higher temperature

are then shown in order to illustrate their behavior in different temperature

regions.
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4.2.1 Spin figures in real and momentum space

In order to examine the phase transition of the skyrmion lattice, the spin figures

in real and momentum space at different temperatures are studied first, giving

an insight into the lattice behavior in the thermal field.

Figure 4.4: The real-space spin figures and Fourier intensity at 1-8 K. The

central peak (k = 0) is the largest value in the momentum space. The Fourier

points are scaled with gray level, i.e white as zero and black represents the

largest value. Left column from top: T= 1 K, 2 K, 3 K and 4 K; right column

from top: T= 5 K, 6 K, 7 K and 8 K.

In Fig.4.4, example spin states in thermal equilibrium at different tem-

peratures are shown with the Fourier diagram, between T = 1 K and 8 K.

The lattice symmetry in momentum space remains obvious below about 5 K,

while at 6 K the symmetry is compromised with peaks beginning to merge
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together, which is indicated by the skyrmions interacting with each other in

the real-space spin figure. At a temperature higher than 6 K, the peaks join

into a circle, indicating the total loss of six-fold symmetry while a dominant

spin-correlation length still exists.

4.2.2 Skyrmion deformation and interaction

Here we consider the dynamics of the skyrmion structure at non-zero tempera-

ture including shape deformation and interaction of the skyrmions in different

temperatures. To do this, the time evolution of the skyrmion structures has

been monitored. Figure 4.5 shows snapshots of the skyrmion states at 1 ns

and 2 ns at different temperatures in thermal equilibrium. At low temperature

below 6 K in our case, the deformation of the skyrmion is the dominant effect

of the thermal field, while at a temperature higher than 6 K, the skyrmions

begin to interact and thus breaking the lattice symmetry.

At 4 K, the skyrmions change shape randomly, while not interacting with

neighbors. Two skyrmions are chosen for example, which are enclosed in the

solid rectangles. The sizes of these skyrmions are different, indicating different

type of deformation. Skyrmion on the top shrinks with time, and skyrmion on

the bottom remains the same size.

At 6 K, the skyrmions begin to interact with each other, as is shown in the top

rectangle, while in the bottom rectangle there still exists individual skyrmion

in thermal equilibrium. The disappearance of the skyrmion state occurs when

the skyrmions begin to interact.

At 8 K, almost all the skyrmions are deformed and interacting with each other

at same time, forming some random spin structure, as is shown in the cho-

sen rectangular area. The skyrmion lattice at this temperature transits into a

spin-disordered state.
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(a) 4 K: 1 ns (b) 4 K: 2 ns

(c) 6 K: 1 ns (d) 6 K: 2 ns

(e) 8 K: 1 ns (f) 8 K: 2 ns

Figure 4.5: At 4 K, 6 K and 8K, two spin figures are chosen, with 1 ns time

interval.

4.3 Parameters for the phase diagram

Normal parameters such as total energy E, magnetization M and the skyrmion

number N change continuously with increasing temperature, as is shown in fig-

ure 4.1. In order to find the temperature-driven phase transition, two quanti-

ties named the specific heat capacity[53] and static magnetic susceptibility[54]

are calculated under thermal equilibrium at each temperature. The two pa-

rameters of all five spin states will be shown, while the skyrmion state is the
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main concern here.

4.3.1 Specific heat capacity

The specific heat capacity describes the variance of energy in the thermal

equilibrium, as the equation:

Cv =
< E2 > − < E >2

NT 2
. (4.3)

Figure 4.6: The specific heat capacity in the skyrmion state. In this state,

the heat capacity shows a peak at around 6 K.

In this form, the specific heat capacity actually characterizes the thermal

stability of the lattice in the skyrmion state, with varying temperature. Within

T < 6 K region, the specific heat capacity fluctuates in a certain range. The

curve features a peak at around 6 K, then decreases with increasing tempera-

ture. The breaking of the ordered skyrmion structure leads to the peak of the

specific heat capacity, at a critical temperature of around 6 K.

4.3.2 Static Magnetic Susceptibility

The static magnetic susceptibility is another feature commonly used in experiments[54][55],

indicating the phase transition of the spin states in the thermal field. The
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magnetization M in equation (4.4) is an average over the whole lattice, and

its statistical average is calculated in thermal equilibrium.

χ =
< M2 > − < M >2

NT
. (4.4)

Figure 4.7: The static magnetic susceptibility in the skyrmion state. In this

state, the susceptibility shows a phase change at around 6 K.

The static magnetic susceptibility clearly shows a phase change of the

skyrmion state at around 6 K, with the value fluctuating from 0-6 K. The

fluctuation ends at around 6 K, which is consistent with the peak point in the

specific heat capacity, then decreases smoothly with increasing temperature.

4.4 Skyrmion life time

The life time of the skyrmion at a finite temperature is an important index in

the theoretical study of its stability. The skyrmion life time tskr is defined as

the time period of one skyrmion annihilating in the lattice, thus reducing Nskr

from 1 to 0. The procedure of calculating tskr initiates with field cooling to

form skyrmion lattice in 0 K in the critical perpendicular magnetic field 3.2 T,

followed by an instant applied temperature after which the time dependence of
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the skyrmion number is calculated.. An example of 6 K thermal field is shown

in figure 4.8.

Figure 4.8: The process starts with the field cooling by 2 ns, followed by 3 ns

equilibrium time in 0 K. A constant temperature of 6 K is applied at 5 ns. A

constant perpendicular magnetic field of 3.2 T exists in the whole procedure.

4.4.1 Simple model of the skymion time decay

Several assumptions should be mentioned in the calculation of skyrmion life

time due to its definition.

1. The skyrmion is supposed not to be reversed by temperature, so that the

skyrmion number of a single skyrmion Nskr 6= −1 at any temperature.

Specifically, the thermal field results in the skyrmion deformation and

destruction, reducing Nskr to zero if temperature is high enough. This

is tenable because the skyrmion lattice is nucleated within the stripes

opposite to the perpendicular magnetic field, hence the orientation of

the skyrmion depends on the direction of applied field in the case of this

thesis. This assumption ensures the validity of counting the skyrmion

number in revealing the skyrmion annihilation at certain temperature.
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2. The annihilation is supposed to coexist with the creation of the skyrmion,

which means the annihilation of the skyrmion is a dynamic procedure and

will eventually reach a certain equilibrium skyrmion number. In other

words, there is a balance between the annihilation and the creation of the

skyrmion lattice. As the lattice always tends to minimize the energy, and

the skyrmion state is the ground state in case of the calculation of the

life time, the skyrmions are supposed to be nucleated while the existing

hexagonal skyrmion lattice is being destroyed by the thermal field.

3. The skyrmion number in the life time is calculated among the skyrmion

lattice as an average, instead of tracking the single skyrmion. It is hard

to follow the skyrmion one by one because there is a randomness of the

skyrmions behavior in the thermal field (figure 4.5).

4. In equation (4.6) no account is taken of shape changes in the skyrmions.

This seems reasonable since the topological stability of the Skyrmions

means that Nskr will not depend strongly on the skyrmion shape. This

is evident in figure 3.6 where the skyrmion lattices with and without

magnetic field have similar Nskr. However, this assumption breaks down

at low temperature where the deformation of the skyrmions is the main

consequence of the thermal field.

4.4.2 Calculation of the life time

Under the above-mentioned prerequisites, the time evolution of the skyrmion

in a certain temperature is defined as:

dNskr

dt
=

1

tcr
−Nskr

1

tskr
. (4.5)

where tskyr is the skyrmion life time, tcr is the creation time so that 1
tcr

is the

creation rate of the skyrmion and 1
tskyr

is the annihilation rate. The underlying

meaning of the equation is fairly clear: the rate of change of the skyrmion

number dNskr

dt
equals to the creation rate 1

tcr
minus the rate of decrease of the

existing net skyrmions Nskr
1
tskr

.

In order to fit the real data from the simulation, the Nskr in the equation is
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represented as a function of real time t:

Nskr = c · e−
t

tskr +
tskr
tcr

. (4.6)

c is an integration constant, which equals to Nskr − tskr
tcr

when t = 0.

(1) 1K: 9.16 (2) 2K: 4.67 (3) 3K: 3.13

(4) 4K: 2.34 (5) 5K: 1.86 (6) 6K: 1.53

(7) 7K: 1.30 (8) 8K: 1.12 (9) 9K: 0.98

(10) 10K: 0.87 (11) 11K: 0.77 (12) 12K: 0.70

Figure 4.9: (1)-(12): the fitting of real-time data of the skyrmion number with

time to (4.6) at different temperatures from 1 K to 12 K. the red line is the

real skyrmion number calculated from the lattice at each time step of 5 ps, and

the blue line is the fitting curve by (4.6). The number indicated showing the

fitting life time of the skyrmions at each temperature in the unit of 5∗10−12 s.

In order to fit the real-time simulations with equation (4.6), the data gath-
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ering begins at the imposition of the step change of temperature, and lasts for

100 ps with 5 ps time step, which are long enough to cover the decay process

to equilibrium at a given temperature. As shown in the contour plot and the

parameters in Fig. 4.6 and Fig. 4.7, for the thermal phase transition the criti-

cal temperature is identified around 6 K, so the life time is calculated from 1 K

to 12 K. From figure 4.9, the simulation data fits well with equation (4.6), as

the real-time average skyrmion numbers are comparable with the theoretical

skyrmion numbers under thermal equilibrium states. This further validates

the assumption 2 that the skyrmions are of coexisting creation/annihilation

processes of the skyrmions, yielding finite skyrmion numbers in thermal equi-

librium theoretically. Note that in first few picosecond at low temperature

(≤ 5), the fitting does not work well. This is due to assumption 2 that the de-

formation of the skyrmions is precluded in equation (4.5), which is the leading

consequence of applying a step of temperature impulse at low temperature.

4.4.3 The Arrhenius Law

The skyrmion number on lattice shows the exponential decay in thermal field,

yielding different skyrmion life time tskr at each temperature. When the

skyrmion structure undergoes a phase transition at a temperature higher than

the critical point, the skyrmion life time follows a exponential rule at high

temperature, which is called Arrhenius law:

tskr = t0e
∆E
kBT . (4.7)

The equation (4.7) of the Arrhenius law describes the relationship between life

time of the system and temperature. Note that for two temperature regions

divided by the critical temperature, this empirical law are fitted with different

∆E. Since the system at a temperature lower than 6 K mainly undergoes a

shape changing of the skyrmions instead of a phase transition, as is shown

in section 4.2, the ∆E in this temperature region reflects the energy barrier,

showing a different fitting slope from a higher temperature where the energy

barrier is surmounted, thus turning into the diffusive spin state. In this case,

the deviation point of the skyrmion life time at certain temperature from this
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equation can be applied to denote the critical temperature of the phase transi-

tion (figure 4.10). In order to illustrate this relationship better by calculation

results, the skyrmion life time is converted into logarithm scale:

lntskr = t
′

0

∆E

kBT
. (4.8)

In (4.8), the logarithm skyrmion life time has a linear relationship with 1
T

.

Figure 4.10: The logarithm skyrmion life time in each temperature with the

error bar from the fitting in figure 4.9. The temperatures from left to right

decrease from 12 K to 5 K, thus the reciprocal 1/T increases. The logarithm

life time is fitted linearly from 12 K to 6 K, while gradually deviates from the

fitting curve from 6 K to 5 K, indicating a transition from purely diffusive

behavior to a topologically protected state.

The skyrmion lattice, as is mentioned, are expected to behave differently

in two regions of temperature due to the topological protection. The critical

temperature can thus be found by fitting the life time to equation (4.8). In

the region of 12 K down to 6 K, the life time data fit linearly in the equation

(4.8) where the skyrmion topological structure is destroyed, while from 6 K

the logarithm skyrmion life time digressed from the fitting line, indicating a

different energy barrier from higher temperature in the Arrhenius Law.
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PULSE

4.5 Creation of the skyrmion state by fem-

tosecond pulse

So far in this thesis, the skyrmion state are nucleated by cooling down the

lattice in certain magnetic field, while evidence shows that the shift from the

spiral ground state to the skyrmion state can be achieved by ultrafast laser

pulse[56]. The effect of the picosecond pulse on the skyrmion lattice are inves-

tigated computationally by the previous researches[57], while the femtosecond

properties are yet to be studied. The main concern of this section is to give a

preliminary study illustrating the effects of the femtosecond pulse. The fem-

tosecond pulse has two effects. The first is a rapid increase in the conduction

electron temperature which can give rise to demagnetization and the second

is the possible presence of a large magnetic field associated with the inverse

Faraday effect[58].The temperature pulse is applied first, followed by adding a

simultaneous magnetic pulse.

Figure 4.11: The origin spiral state for the simulations in this section.

4.5.1 Effect of femtosecond heat pulse

The effect of femtosecond heat pulse is studied first, since the thermal effect

is the major consequence of the laser pulse. The heat pulse is expected to

turn the spiral state to the skyrmion state under certain external conditions,

as the previous experimental study shows. Similar to the experimental study,
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the heat pulse is set to be 100 fs. The simulations start with the spiral state

(figure 4.11), with a given constant temperature and a constant magnetic field.

The background temperature is set to be 1 K, which triggers the phase tran-

sition together with the pulse; a 3 T magnetic field is maintained so that the

skyrmions could survive if nucleated. Three conditions are compared here:

constant 1 K, 100 K heat pulse and 300 K heat pulse, as is shown in figure

4.12.

(a) Constant 1 K (b) Constant 1 K

(c) 100 K Pulse (d) 100 K Pulse

(e) 300 K Pulse (f) 300 K Pulse

Figure 4.12: The conditions and the consequent spin figures for the heat pulse:

the left column is the conditions of each simulation, and the right column shows

the spin figures under each condition.
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It is obvious that a sufficient intensity of the ultrafast thermal pulse leads to

a phase transition from the spiral state to the skyrmion state, while a minimum

thermal energy is required, 300 K in this case.

4.5.2 Additional magnetic pulse

The femtosecond thermal pulse is proved to be effective in promoting the phase

transition in a constant field, while in reality there could be an equivalent mag-

netic field coexisting with the heat pulse during a femtosecond laser pulse, due

to the inverse Faraday effect. Although this type of magnetic field is largely

invoked by the experimental study, its origin and magnitude remains contro-

versial in theory. In this part, the magnetic field is set to be a simultaneous

magnetic pulse with the heat pulse, and its effect is judged by the after-pulse

spin figure in 10 T and 30 T with a heat pulse of 100 K.

(a) 10 T Pulse (b) 10T Pulse

(c) 30 T Pulse (d) 30 T Pulse

Figure 4.13: The conditions and the consequent spin figures for the heat pulse

and the magnetic pulse: the left column is the conditions of each simulation,

and the right column shows the spin figures under each condition.
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From figure 4.13, the 10 T magnetic pulse change the spin configurations,

but is not strong enough for a transition to the skyrmion state. The 30 T

magnetic pulse, on the other hand, gives rise to the phase transition, which is

the same as a 300 K heat pulse without magnetic field. In another words, the

existence of the equivalent magnetic field could help to decrease the required

intensity of the heat pulse, or the intensity of the laser in the real experiment.

4.6 Summary

In this chapter, we discuss in detail the behavior of the skyrmion lattice at finite

temperature, and utilize varied tools to define the thermal phase diagram of

the lattice in the skyrmion state. We find the phase transition temperature is

at 6 K by analyzing several parameters such as specific heat capacity, static

susceptibility and the life time, together with spin configurations indicating the

melting of the lattice symmetry. The effect of the femtosecond pulse on the

skyrmion lattice is discussed, showing that the heat pulse is able to nucleate

the skyrmion state from the ground spiral state, and an additional magnetic

pulse could lower the intensity of the heat pulse for the skyrmion nucleation.
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Chapter 5

Conclusion

In this thesis we conduct detailed investigations on the phase diagram of the

skyrmion lattice with the DM interaction using the atomistic simulations. We

develop a model of the skyrmion lattice first. For computational efficiency, the

material parameters are set to be J = D = 1 meV, which yielding relatively

small skyrmions and low critical temperature. At 0 K with the perpendicu-

lar magnetic field, the magnetic field is varied, and five spin states are thus

created, including the skyrmion state. The skyrmion state is shown to exist

even without the magnetic field. The ratio between the exchange interaction

and the DM interaction influences the size of the skyrmion, and the in-plane

and out-of-plane anisotropy is another factor affecting the size and shape of

skyrmions.

Then, the skyrmion lattice is exposed to the thermal field in order to develop

a complete phase diagram of the skyrmion state. An equilibrium contour plot

of the skyrmion number of the skyrmion state over temperature and magnetic

field is shown. An estimated critical temperature from the topological energy

barrier is around 6 K, which corresponds to 0.51 meV in the unit of D2/J .

The spin figures in real and momentum space are studied, showing a melting

of the lattice symmetry at 6 K. Further parameters, including the specific heat

capacity and the static magnetic susceptibility reveal a phase transition occurs

at 6 K. The skyrmion life time indicates the phase transition of the skyrmion

state at 6 K and higher follows the Arrhenius law. Finally, a preliminary

study of the femtosecond pulse on the skyrmion lattice shows that the heat
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and magnetic pulse can be implemented as one alternative way to nucleate the

skyrmion state.

The methodology in this thesis is of broad applicability and can be applied

to other computational studies of the skyrmion phase diagram. we focus on a

bottom-up development of the phase diagram, from the ground state in 0 K

to the thermal stability of the skyrmion state. As discussed in chapter 4, the

phase transition of the skyrmion state can be judged from the spin configu-

rations of the lattice at different temperature, indicating a destruction of the

six-fold symmetry by the skyrmion interaction above the critical temperature.

The transition point can be further examined and quantified by introducing the

specific heat capacity, the static magnetic susceptibility and the skyrmion life

time mentioned in this thesis. While the material parameters of the skyrmion

lattice is not realistic in this thesis, the underlying physics is expected to be

the same with the simulations of real materials.

5.0.1 Future outlook

The present work can be continued by developing the phase diagram of the real-

world skyrmion systems. In this case, the simulation scale will be expanded

to several hundreds of nanometers due to a small ratio of DM interaction and

exchange interaction in real materials, yielding much larger skyrmions compar-

ing with the present thesis. The simulation may also be extended to including

several layers of materials with strong spin-orbit interaction, which is the case

of the current room-temperature skyrmions.

Another extension of this work is to include the spin transfer torque into the nu-

cleation and the dynamics of the skyrmion system. Specifically, the skyrmion

dynamics by spin-current is intensively studied so far, while the thermal effect

on the moving skyrmions is yet to be investigated. The challenging task will

be the simulation of the combination of the nucleation, phase diagram and

dynamics of the skyrmion at room temperature.

Last but not the least, the ultrafast optical control of the skyrmion lattice

can be further investigated. As the laser is simply considered as the heat

and magnetic pulse in this thesis, several detailed properties such as the two-
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temperature model and the effect of polarized light can be take into account.

To sum up, the research on skyrmions is one of the most attracting topics in

spintronics, and the findings in our thesis contributes to the computational

study on skyrmions.
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Appendix A

The skyrmion number on a

discrete lattice

In this thesis we have used a discrete approximation to calculation the skyrmion

number, based on the continuum expression in equation (A.1).

Nskr =
1

4π

∫∫
dxdyn · (∂n

∂x
× ∂n

∂y
). (A.1)

The first step is to make a clear definition of the variables. x and y are discrete

positive integers denoting the space coordinate of the two-dimension lattice,

while n is the three dimension spin vector denoted as ni. nj and nk. In

this case, one spin on the lattice is characterized by the spin direction and

its position on the lattice. For example, the i component of a spin in the

lattice position x = 1 and y = 2 can be expressed as n1,2
i . The constant 1

4π

is a normalization factor, which ensures a single skyrmion structure yielding

Nskr = 1.

The second step is to calculate the cross product of the partial derivatives in

equation (A.1). Since the skyrmion lattice in the thesis is set to be discrete,

the partial derivative of the spin vector n over the lattice coordinate x and y

can be written as:

∂n

∂x
= nx+1,y − nx,y;

∂n

∂y
= nx,y+1 − nx,y.

(A.2)
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Based on equation (A.2), the cross product of the partial derivatives is then

calculated, and written separately in three dimensions of the spin vector:

(
∂n

∂x
× ∂n

∂y
)i = (nx+1,y

j − nx,yj ) · (nx,y+1
k − nx,yk )− (nx+1,y

k − nx,yk ) · (nx,y+1
j − nx,yj );

(
∂n

∂x
× ∂n

∂y
)j = (nx+1,y

k − nx,yk ) · (nx,y+1
i − nx,yi )− (nx+1,y

i − nx,yi ) · (nx,y+1
k − nx,yk );

(
∂n

∂x
× ∂n

∂y
)k = (nx+1,y

i − nx,yi ) · (nx,y+1
j − nx,yj )− (nx+1,y

j − nx,yj ) · (nx,y+1
i − nx,yi ).

(A.3)

The final step is to calculate the skyrmion number in the discrete lattice model.

The discretization of equation (A.1) includes an alter from integral formula to

a sum formula. Thus Nskr can be calculated as a sum over three dimensions

of the spin vector:

Nskr,i = Nskr,i +Nskr,j +Nskr,k, (A.4)

In each dimension, the component of the Nskr can be expressed as a sum over

the whole lattice (suppose the lattice consists of m×m lattice points):

Nskr,i =
1

4π

m−1∑
x

m−1∑
y

nx,yi · [(n
x+1,y
j − nx,yj ) · (nx,y+1

k − nx,yk )−

(nx+1,y
k − nx,yk ) · (nx,y+1

j − nx,yj )]

Nskr,j =
1

4π

m−1∑
x

m−1∑
y

nx,yj · [(n
x+1,y
k − nx,yk ) · (nx,y+1

i − nx,yi )−

(nx+1,y
i − nx,yi ) · (nx,y+1

k − nx,yk )]

Nskr,k =
1

4π

m−1∑
x

m−1∑
y

nx,yk · [(n
x+1,y
i − nx,yi ) · (nx,y+1

j − nx,yj )−

(nx+1,y
j − nx,yj ) · (nx,y+1

i − nx,yi )].

(A.5)

The equation (A.4) and (A.5) are discrete expression of calculating Nskr.
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in thin magnetic films: new objects for magnetic storage technologies?

Journal of Physics D: Applied Physics, 44(39):392001, 2011.

[20] Albert Fert, Vincent Cros, and João Sampaio. Skyrmions on the track.

Nature nanotechnology, 8(3):152–156, 2013.

[21] Dhritiman Bhattacharya, Md Mamun Al-Rashid, and Jayasimha Atu-

lasimha. Voltage controlled core reversal of fixed magnetic skyrmions

without a magnetic field. arXiv preprint arXiv:1603.00927, 2016.

[22] R F L Evans, W J Fan, P Chureemart, T A Ostler, M O A Ellis, and R W

Chantrell. Atomistic spin model simulations of magnetic nanomaterials.

Journal of Physics: Condensed Matter, 26, 2014.

[23] Mohsen Razavy. Heisenberg’s quantum mechanics. World Scientific, 2011.

[24] David Jiles. Introduction to Magnetism and Magnetic Materials. CRC

Press, third edition edition, 2016.

[25] T L Mitran, Adela Nicolaev, G A Nemnes, L Ion, and S Antohe. Magnetic

behavior and clustering effects in mn-doped boron nitride sheets. Journal

of Physics: Condensed Matter, 24(32):326003, 2012.

[26] James P. Sethna, Karin Dahmen, Sivan Kartha, James A. Krumhansl,

Bruce W. Roberts, and Joel D. Shore. Hysteresis and hierarchies: Dy-

namics of disorder-driven first-order phase transformations. Phys. Rev.

Lett., 70:3347–3350, May 1993.

[27] Ralph Skomski. Simple Models of Magnetism. Oxford University Press,

2012.

[28] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of

antiferromagnetics. Journal of Physics and Chemistry of Solids, 4(4):241–

255, 1958.
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