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Abstract 

Aerodynamic optimisation using gradient-based methods has found a wide range of academic 

applications in the last 30 years. This framework is also becoming more and more popular in the 

industrial world where, most of the time, unstructured grids are largely used. In this framework, 

apart from the need to solve the flow field, there is the need to quickly map the aerodynamic 

surface in terms of some aerodynamic figure of merits such as the drag coefficient, without 

being limited by the computational expense related to the grid size. This is a concrete industrial 

need which requires the efficient computation of the grid sensitivity. 

A novel method based on the DGM (Delaunay Graph Mapping) mesh movement is proposed to 

efficiently compute the grid sensitivity required in the discrete adjoint optimisation framework. 

The method makes use of a one-to-one explicit algebraic mapping between the volume mesh 

and the solid boundary nodes. This procedure results in a straightforward computation of the 

gradient without the need to invert a large, sparse and stiff matrix generally associated with 

implicit mesh movements such as the spring or LE (Linear Elastic) analogy. The method is 

verified using FDs (Finite Difference) and a thorough comparison in terms of CPU time, 

formulation against the LE-based mesh movement and adjoint gradient is presented. 

The DGM-based gradient chain allows to comfortably obtain the gradient with respect to each 

surface mesh point. Unfortunately, these gradients cannot be used directly because of their 

inherent poor smoothness feature. In order to address this issue one has to use a 

parameterisation technique which inevitably sacrifices the design space explorablity. To bridge 

the gap between the free-nodes and the parameterisation approaches, a novel formulation of the 

CST (Class Shape Transformation) was developed and termed l-CST (local-CST). The method 

is based on a simple trigonometric function which works as a cut-off filter on the BPs 

(Bernstein Polynomials) which are used to enforce a strong on-demand local control. The 

method is tested on an inverse geometric fitting and its effect on the resulting aerodynamic 

coefficients and the pressure distribution is also analysed. 

The DGM-based chain allows the efficient mapping of the entire surface while the l-CST allows 

the combination of excellent explorablity and surface smoothness. The former is tested within 

the non-consistent mesh movement and sensitivity framework because there are situations 
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where one method may be preferred over the other based on the grounds that mesh movement is 

a very different task than mesh sensitivity although strongly related to each other. The latter is 

instead tested against the free-nodes approach which offers a similar advantage in terms of 

discrete control without maintaining a 𝐶2 curve unless properly smoothed. 
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Chapter 1   Introduction 

1.1 Background 

Civil commercial aircraft have been flying for more than a century. Their shape evolved 

significantly since the first commercial aviation flight in 1914, and has since then inevitably 

settled on a design generally referred to as tube-and-wing configuration. More or less at the 

same time, aerodynamic numerical methods started to become available [1]. These activities can 

be roughly split into three areas, namely mesh generation, numerical schemes for CFD 

(Computational Fluid Dynamics) solutions and optimisation methods. In 1978, after the seminal 

paper by Hicks and Henne [2] another area of research started to emerge which focused on 

combining these three branches together. Since then, this subject has been known as 

aerodynamic optimisation. 

There are many types of aircraft made for different flow regimes. This work focuses primarily 

on the transonic regime where commercial civil aircraft typically operate. It is interesting to see 

how the aircraft history compares to the development history of CFD. Of particular interest is 

the ratio between wind tunnel and CFD tests where the latter is becoming more and more 

predominant. As can be seen from Fig. 1.1, each period of revolutionary design is then followed 

by a period of evolutionary design and vice versa. These terms both describe technology 

advances, but are not quite the same. In a few words, where the former concentrates on radical 

changes, such as the introduction of sweeping and turbofan, the latter focuses on making them 

perfect via minor improvements. In this two types of transitions CFD is becoming more and 

more important. 

In a broad sense, CFD and optimisation techniques together seek to facilitate the transition from 

revolutionary to evolutionary and vice versa. CFD is defined as the art of discretising the 

Navier-Stokes equations, converting them into a system of algebraic equations and solving them 

in order to obtain an approximated solution of real world phenomena. Therefore, it seeks to 

make a bridge between pure theory and wind tunnel experiments. On the other hand, 

optimisation is the art of finding through numerical methods, the best optimum. Thus, it seeks to 

make a bridge between the designer‟s intuition and the classical trade studies. However, as one 

tries to combine these two, new challenges arise as Drela [3] has underlined. 
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There are many optimisation branches and techniques currently being investigated. Of particular 

interest is the distinction between those that focus on finding the best solution and those that 

focus on finding the most robust solution. The latter inherently describes the real challenge of a 

truly useful aerodynamic optimisation. In fact, finding the best solution is already difficult from 

a practical and also numerical point of view, thus making the entire process robust creates a 

whole set of new problems. This thesis finds its place within the first type of classification 

because even before asking how the best and most robust optimum can be found, one has to 

have the capability to see what the design space has to offer without being limited by the size of 

the mesh. In other words, the designer has to see how the objective function (e.g. the drag 

coefficient) changes in response to a change made anywhere in the aerodynamic surface. One 

way to do this is to compute the gradient, however, it is recognised that other strategies such as 

gradient-free methods could be used. These two strategies are by definition different and their 

pros and cons need to be evaluated on a case-by-case basis. Nevertheless, some general 

comments can still be made. Gradient-based methods are generally preferred when a fast 

convergence of the chosen merit function is needed. These methods suffer from getting stuck in 

the closest local minimum and the gradient calculation is not always an easy step to perform. 

Thus, in situations where time is a restriction, fast convergence is an advantage. On the other 

hand, when the time is not a constraint and a wider design space exploration is necessary, 

gradient-free methods are instead preferred. 

There are many types of sensitivity available such as flow and structure sensitivity. Specifically, 

this work focuses on the sensitivity of integrated quantities such as the drag and lift coefficients. 

These should not be considered as a standalone part of the gradient-based chain, but as a part of 

a highly integrated system, something that was recognised since the 1980‟s where the so-called 

“Sobieski’s plea” [4] was made for methods able to provide a robust and interdisciplinary 

sensitivities. 

Sensitivity derivatives are one of the most important part of any gradient-based algorithm. 

There are many techniques to obtain them, ranging from not accurate to analytically accurate 

methods. This research area has seen many developments in the last 30 years. Among them, the 

adjoint method [5, 6] has been widely recognised as one of the most promising and reliable. 

Nevertheless, limitations were uncovered and some of them are addressed in the current work. 
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The adjoint method allows one to compute the gradient at a cost nearly independent from the 

𝑁𝐷𝑉  (number of DVs). This has naturally lead researchers to explore the pros and cons of using 

the maximum 𝑁𝐷𝑉  possible. This case is represented by the entire surface of a lifting body 

where 𝑁𝐷𝑉 = 𝑁𝑆𝑀  (number of surface mesh) which leads to a greatly improved exploration 

capability. Of course, as will be made clear in this work, maximum explorability does not 

equate maximum usability. Many techniques were developed to bridge this gap and they 

generally go under the umbrella name of parameterisation. Although these are very effective, 

they consistently lack in either intuitiveness or explorability. 

 

Figure 1.1  Revolutionary and evolutionary milestones for civil commercial aircraft. 

This is important because, as Fig. 1.1 shows, the current time period is characterised by a 

constant evolution where aircraft manufactures are trying to improve their products by 

exploiting even the smallest detail. To this end, it is felt that having access to the entire design 

space, i.e. explorablity, and more importantly how it varies, i.e. gradient, without incurring in 
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memory and computation time issues while being able to impose small tweaks, i.e. usability, is 

of fundamental importance.  

Having said that, the adjoint method is the most appropriate approach currently available. In this 

highly complex and integrated framework, Reuther et al. [7] highlighted five salient issues of 

concern: 

 Discrete versus continuous adjoint-based gradient 

 Choice of the optimisation procedure 

 Treatment (and influence) of the constraints 

 Level of coupling between CFD software and optimisation routine 

 Parameterisation of the shape 

This work investigates a method, based on the DGM mesh movement, to efficiently compute 

the grid sensitivity within the discrete adjoint approach applied to a lift-constrained optimisation 

problem coupled with a quasi-Newton search direction optimiser. 

1.2 Aims and Objectives 

The aims and objectives of this thesis were established based on the surveyed literature. For 

each research question there is one main focus accompanied by different specific research 

questions defined as the investigation was advancing. Gradient-based optimisation comprises of 

four main steps: mesh movement, gradient calculation, parameterisation and optimisation 

framework. The research questions addressed in this thesis can be assigned to each one of these 

four steps. 

The first is to find a low memory and low CPU (Central Processing Unit) time consuming mesh 

movement method. The DGM mesh movement [8] is chosen as the mean investigation tool and 

associated with this choice there are a series of specific research questions: 

 Assessment of the cost in terms of memory and CPU time 

 Assessment of the effect of the supporting box necessary to make the DGM more robust 

 Comparison against the LE mesh movement 
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The second step addresses the grid sensitivity, an issue peculiar to the discrete adjoint 

framework. The main aim is the development and verification of a newly proposed and efficient 

method which is able to comfortably handle the grid sensitivity computation. To this end, the 

following actions are investigated: 

 Differentiation of the DGM mesh movement 

 Verification of the DGM-based adjoint chain 

 Assessment of the DGM cost both in memory and CPU time 

 Comparison against the LE-based gradient 

 Assessment of the grid sensitivity differentiation extent 

 Assessment of the effect of the supporting box (i.e. a series of carefully selected volume 

mesh points) on the gradient. 

Even if a large design space becomes accessible (thanks to the DGM) this does not 

automatically mean it can be effectively used. In fact, the gradient and shape smoothness are 

two very important drawbacks when each surface point is used as a DV (Design Variable). 

Smoothing via Sobolev gradient [9, 10] is one of the technique used to solve this problem as an 

alternative to parameterisation. With this in mind, the novel l-CST parameterisation method 

[11] was developed. The following research questions are investigated: 

 Effect of the l-CST correction on each BP 

 Sensitivity analysis 

 Comparison against the CST method 

 Assessment of the method capabilities 

Finally, the last step is to test the DGM-based chain in a gradient-based optimisation loop. With 

this in mind, the following research questions were addressed: 

 Assessment of the influence of the supporting box in an optimisation loop 

 Comparison between different consistent (i.e. same mesh movement and grid 

sensitivity) approaches 

 Assessment of non-consistent (i.e. different) mesh movements  

 Assessment of non-consistent differentiated mesh movements 
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 Assessment of the l-CST parameterisation against the free-nodes approach 

 Assessment of the Sobolev smoothing operator applied either on the shape or on the 

gradient 

The connections between the above bullet points can be seen in a concise way in Fig. 1.2. 

1.3 Thesis Outline 

This thesis comprises of eight chapters which are briefly described here. 

Chapter 2 presents the literature review focused on the mesh sensitivity computation in the 

discrete adjoint framework. This offers an overview of all the methods known in the literature to 

address the linearisation of the mesh movement. For each one of them, the pros and cons are 

analysed. In here, the main research question is addressed in the details and the chosen 

investigation path is outlined. 

Chapter 3 gives an introduction on the governing equations and the solution methods used. The 

Navier-Stokes equations are introduced along with their averaging formulation, turbulence 

model, discretisation and numerical scheme used. The choices made are justified in relation to 

the flow regime investigated in the present work. 

Chapter 4 briefly addresses the volume mesh deformation techniques available. The main 

investigation tool, i.e. DGM-based mesh movement, is introduced along with a modification 

which improves its robustness. This is then compared against the LE mesh movement in order 

to assess its advantages and disadvantages. 

Chapter 5 is the core of this thesis. This chapter addresses the differentiation of the DGM and 

its use in the discrete adjoint sensitivity chain. Its derivation and verification against FDs is 

discussed and a comparison against the LE in terms of formulation and performance is also 

presented. Furthermore, a theoretical discussion is proposed which addresses, within the 

discrete adjoint approach, the evaluation of the grid sensitivity and its distribution in the 

computational domain. 
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Chapter 6 addresses the surface mesh deformation techniques used in the current work. Two 

techniques are discussed, namely the newly formulated l-CST and the FFD (Free-Form 

Deformation) [12]. The former introduces a modification of the original CST [11] which allows 

to add a strong on-demand local control without modifying the degree of the parameterised 

curve. On the other hand, the latter is used for the study of the non-consistent approaches as it 

can be easily applied to 3D geometries. In this framework, the reasons behind the lack of 

gradient smoothness are discussed and the solution offered by the Sobolev operator is also 

presented. 

Chapter 7 is where the general performances of the DGM-based sensitivity chain and l-CST 

are assessed by considering two types of optimisation studies. At first, the influence of the 

supporting box is studied in conjunction with the volumetric grid sensitivity extent 

differentiation. Subsequently, the questions of non-consistent mesh movements and grid 

sensitivities are addressed. To conclude, a series of optimisations in 2D, where the l-CST is 

tested against the free-nodes approach, are presented. In this case, the effect of smoothing 

directly either the gradient or the shape is investigated and the results compared against the l-

CST. 

Chapter 8 describes the conclusions and outlines the future works by providing a detailed 

research path for the future studies. 

 

Figure 1.2  Schematic view of the addressed research questions. 
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Chapter 2   Literature Review 

2.1 Introduction 

This literature review starts with a broad introduction of the gradient-based optimisation 

framework where the flow and grid sensitivity are introduced. 

The analysis first focuses on the flow-adjoint gradient computation where a discussion on the 

differences between the continuous and the discrete approach is presented. The reasons why the 

discrete approach has been preferred over the continuous approach are analysed. From here, a 

list of the issues related to the discrete adjoint framework along with some possible solutions is 

presented. This naturally leads to the discussion of the core of this work, namely grid sensitivity 

computation and its bottleneck. 

The second part focuses on the methods that lead to the current mesh adjoint method so as to 

present the research path followed in the literature, i.e. from FDs to the adjoint method. Each 

method is analysed along with its pros and cons. Here, what needs to be done is outlined and the 

reasons why this thesis‟s goal is worth further study are discussed. 

The chapter concludes with a summary of the most important findings. 

2.2 Gradient-based Optimisation Framework 

Before CFD and optimisation routines became available, aerodynamic design improvements 

were the result of painstaking cut-and-try solutions. These were based on the evaluation of the 

impact of a change in a single DV on the figure of merit while maintaining the other DVs 

constant. This routine is generally referred to as trade study. It is easy to see that the expense of 

performing this analysis scales linearly with the 𝑁𝐷𝑉 . It was just a matter of time to see the 

automation, i.e. aerodynamic optimisation, of this manual process. 

In the aerodynamic optimisation literature, one of the first classification that can be made is 

between direct and inverse methods as shown in Fig. 2.1. Direct design methods are used to 

solve the flow field which is then coupled to an optimiser which provides the DV updates. The 

final product of this process is an optimised pressure distribution. On the other hand, the inverse 
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design method encompasses all those strategies for which the aerodynamic shape is the output 

when an already optimised pressure is given as an input. 

For both design strategies there are two important steps. The first one is the flow solution for 

which many strategies have been published spanning from multigrid, pre-conditioning to 

variations of the Newton-type algorithm. The second one is the computation of the direction of 

improvement which can be obtained using either a gradient-free [13, 14], gradient-based 

algorithm or an hybridisation of the previous two [15, 16]. 

 

Figure 2.1  Initial classification of the available optimisation frameworks. 

The focus of this work is on the direct gradient-based optimisation framework. To do so, it is 

necessary to know how the system varies in response to a change in the DV. There are different 

terms in the literature to refer to this process as noted by Martins and Hwang [17]. For instance, 

terms like sensitivity analysis, sensitivity derivatives and design sensitivity are all common. 

However, in this work the term gradient is preferred as it describes the true nature of what is 

being computed, i.e. a vector of partial derivatives. 
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To justify the choice made in this thesis, several metrics, as listed in Tab. 2.1, need to be 

considered. It is constructive to build the comparison by making a parallel with the gradient-free 

algorithms. Exploration denotes the capability of the optimiser to avoid being trapped by the 

nearest optimum and gradient-free methods do it best, whereas exploitation denotes how 

quickly the nearest optimal point is found and gradient-based methods are known to 

successfully accomplish this task in a reasonable amount of time. The DV type refers to whether 

is discrete such engines‟ number, or continuous such as the increment of the shape parametric 

DVs. It is known that gradient-based algorithms are best suited for the latter, whereas gradient-

free methods perform best for the former. Discontinuity refers, as the name suggests, to the 

number of continuous derivatives and gradient-based algorithms, contrary to the gradient-free 

framework, require to maintain derivatives continuity. In terms of convergence criteria, there is 

a solid theory behind the criteria used to terminate a gradient-based algorithm, whereas non-

gradient based may show a series of iterations with no improvement at all, making difficult to 

establish when the process needs to be terminated. The cost is considered in relation to how 

quickly it scales with the 𝑁𝐷𝑉  and gradient-free methods seem to suffer more when compared to 

gradient-based methods. The development time is also important from an implementation stand 

point of view especially for industrial applications because, for instance, the development of the 

adjoint solver requires a considerable effort. Lastly, the problem of the choice of the initial 

condition is much more important for gradient-based than for gradient-free algorithms. This is 

because the former, if placed closed to a local minimum, will definitely converged to this local 

minimum, whereas for the latter this is likely not to happen thanks to their improved 

explorability features. For a further discussion of the respective merits of the two optimiser 

approaches the reader is referred to Pulliam et al. [18] and Zingg et al. [19]. 

Considering this thesis‟s goal which is to map a large continuously varying DVs, the choice of a 

gradient-based optimiser seems to be the most appropriate [20]. Firstly, although it is true that 

gradient-based algorithms show poor exploration capability, meaning they are susceptible of 

getting stuck in a local minimum, it is also true that gradient-free algorithms have a cost 

proportional to the 𝑁𝐷𝑉  with poor exploitation capability. Therefore, it is felt that the time 

required to provide a direction of improvement is a much bigger limitation than the risk of 

getting stuck in a local minimum. This means that, by employing a gradient-based algorithm, 

although it is not guaranteed that the global minimum will be found, at least an improvement in 

a reasonable amount of time can be achieved. 
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Table 2.1  Comparison between gradient-based and gradient-free approaches. 

Metrics Gradient-free Gradient-based 

Exploration Very good (global) Poor (local) 

Exploitation Slow Fast  

DV types (variation) Discrete (No. of engines etc. ) Continuous (parametric DVs) 

Discontinuity Easily treated Problematic 

Convergence criteria Difficult to choose Solid theory behind 

Computational cost 
Expensive in terms of function 

evaluations 

Expensive (FDs) 

Inexpensive (adjoint) 

Development time Not time consuming 
Not time consuming (FDs) 

Time consuming (adjoint) 

Initial conditions No much influence Very important 

2.3 Flow Sensitivity 

Derivatives analysis is a branch of aerodynamic optimisation that deals with the calculus of 

variations. In the specific, there are two basic and expensive steps, namely derivative of the state 

variable w.r.t. the DVs and derivative of the grid w.r.t. the geometric DVs. In this chapter the 

focus is on the first type of derivative for which a classification of the method employed to 

obtain them is depicted in Fig. 2.2, whereas the second type is described at length in Chap. 2.4.  

In 1978, Hicks and Henne [2], published in the Journal of Aircraft a paper titled “Wing Design 

by Numerical Optimization”. This is considered the first paper to describe a fully automated 

design optimisation loop. This article along with many others that followed based the search 

direction on derivatives computed using FDs. This technique has three main drawbacks: they 

are inaccurate, problem dependent and require an additional flow-call for each DV which makes 

the cost of the method linearly scalable with the 𝑁𝐷𝑉 . Furthermore, they need a parametric study 

to choose the appropriate step size. 

After Hicks and Henne [2] seminal paper, many other techniques were published. Methods such 

as complex-step, direct differentiation method, automatic (algorithm) differentiation and adjoint 
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(also known as variational or optimal control) all try to address a specific issue by their own. 

For each one of them the most important features are briefly summarised. However, most of the 

techniques listed here are then re-discussed for the computation of the grid sensitivity. 

Therefore, in order to avoid repetitions, the discussion is restricted to the direct and the adjoint 

method only. This comparison is appropriate because the direct approach provides the same 

sensitivity from an accuracy stand point of view but is delivered at a different cost. 

 

Figure 2.2  Classification of the known methods to compute the flow sensitivity. 

The direct approach is based on the direct differentiation of the equations. This technique is 

equivalent to the adjoint in that it yields identical results for the derivatives and was first 

investigated by Sobieszczanski-Sobieski [4]. As noted by Narayanan and Chattopadhyay [21], 

the direct differentiation is generally used in problems with a large 𝑁𝐼  (number of objective 

functions) and a small 𝑁𝐷𝑉  because the cost of solving the resulting linear system of equations 

is effectively proportional to the 𝑁𝐷𝑉 .  

The breakthrough came in 1988, when Jameson [6] published an article in the Journal of 

Scientific Computing titled “Aerodynamic Design via Control Theory”, where he explained, 

using the adjoint state, how to obtain the aerodynamic derivatives for transonic potential flow 

without incurring in issues related neither to the cost nor the accuracy of the gradient generally 

associated to the use of FDs. The article heavily drew from Lions [22] partial differential 

optimal control theory and Pironneau [5] who first applied it to fluid mechanics. Tab. 2.2 offers 
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a summary of the milestones related to the development of the adjoint method for aerodynamic 

optimisation. 

Table 2.2  Adjoint method development milestones. 

Year Author(s) Contributions 

1971 Lion [22] 
A theory for optimal control of systems of partial 

differential equations 

1973 Pironneau [5] First application applied to fluid mechanics  

1988 Jameson [6] First application applied to transonic potential flow  

1994 Jameson and Reuther [23] First application applied to the Euler equations 

1998 
Jameson, Pierce  

and Martinelli [24] 

First application applied to the Navier-Stokes 

equations 

The flow-adjoint method is based on simple differentiation chain rules. Although conceptually 

simple, efficient implementation of this technique requires an in-depth knowledge of the method 

itself. In order to understand, at least conceptually, what the main advantages of the adjoint 

technique are, let us consider the cost associated to the direct approach. The most 

computationally intensive step in both approaches is the solution of the respective resulting 

linear system. In the case of the direct method, as noted by Mader et al. [25], a linear system of 

𝑁𝐼 equations needs to be solved 𝑁𝐷𝑉  times, whereas using the adjoint method the same linear 

system needs to be solved only 𝑁𝐼 times. Thus, the choice between these two methods depends 

largely on how the 𝑁𝐷𝑉  compares to the 𝑁𝐼. Therefore, if 𝑁𝐷𝑉 ≫ 𝑁𝐼  the adjoint method is the 

preferred strategy, whereas if 𝑁𝐷𝑉 ≪ 𝑁𝐼  the direct method would be instead preferred. 

In order to justify the choice made for this work, it is necessary to recall the requirements: 

firstly, the maximum 𝑁𝐼 is equal to two (drag and lift coefficients), and secondly it is necessary 

to compute the derivative of these two objective functions w.r.t. the entire surface. It is evident 

that the 𝑁𝐷𝑉  is very large because the 𝑁𝐷𝑉 = 𝑁𝑆𝑀  (𝑁𝐷𝑉 ≫ 𝑁𝐼), therefore the adjoint is the most 

appropriate method for this work. However, it is recognised that when a parameterisation tool is 

used, the 𝑁𝐷𝑉  is lowered significantly. In this case, the benefits offered by the adjoint method 
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becomes relatively less appealing. Nevertheless, there is a another point in favour of the adjoint 

method even when the 𝑁𝐷𝑉  is reduced by employing a parameterisation tool, and this is its 

ability to provide accurate derivatives. 

The above discussion has briefly covered the main techniques used to compute the flow 

sensitivity. Having in mind the focus of this work, i.e. efficient computation of the grid 

sensitivity in the discrete adjoint framework, Chap. 2.3.1 focuses on the differences and 

similarities between the discrete and the continuous formulation in much more details. The 

analysis is appropriate because it helps to introduce why these two approaches differ in the way 

the grid sensitivity is treated. 

2.3.1 Discrete versus Continuous Adjoint Formulation 

From a mathematical point of view, the adjoint equations are derived based on the linear 

perturbation of the governing flow equations (PDEs (Partial Differential Equations)). However, 

these equations need to be discretised from a numerical point of view as well. This can be done 

according to two formulations which are generally referred to as the discrete and continuous 

adjoint approach. For the continuous approach the governing partial differential equations are 

first linearised then their adjoint is constructed, discretised and then solved. For the discrete 

approach, the process is inverted as depicted in Fig. 2.3. To assess which method is more 

appropriate for this work the analysis is based accordingly to the metrics listed in Tab. 2.3. 

In the case of large 3D simulations, the discrete approach requires a high memory to be 

available. What matters is the way the discrete flux Jacobian is stored because the discrete 

approach, to maintain consistency, requires the storage of the full flux-Jacobian [26]. 

One problem is the level of convergence that must be reached to obtain accurate derivatives, 

another is the condition such that the convergence is assured for the adjoint equation. In 

particular, it was shown by Giles et al. [27] that the dual-problem can have the same flow solver 

asymptotic convergence rate. Furthermore, Nadarajah and Jameson [28] established that the 

accuracy of the gradients obtained solving the adjoint system depends on the flow solution level 

of convergence only. 
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Figure 2.3  Discrete and continuous adjoint approach in their fundamental differences. 

In terms of gradient accuracy, the order to which the equations are linearised and discretised is 

important. The process does not commute in general and some differences are expected 

depending on the order in which the linearisation is performed. As reported in Fig. 2.3, the 

discrete adjoint computes the exact gradient of the inexact cost function, whereas the continuous 

approach computes the inexact gradient of the exact cost function [28, 29]. As a result, the 

discrete adjoint gradient is consistent with that computed using FDs independently from the 

mesh refinement. However, Nadarajah and Jameson [28] proved that for both Euler and Navier 

Stokes solutions, to the limit of a refined mesh, the derivatives computed by the two methods 

converge to the same value. This means that for the continuous approach the gradient accuracy 

is governed by the flow residual and the mesh refinement, whereas for the discrete approach is 

governed only by the flow residual. 

In both cases, the result is a system of 

discrete adjoint governing equations and the 

resulting gradient is an approximation of the 

exact gradient of the continuous problem.

Therefore, it computes the exact 

gradient of the inexact cost function

Therefore, it computes the inexact 

gradient of the exact cost function

There are two approaches to 

derive the adjoint gradient

Linearise

Adjoint

Discretise

Continuous approach
Discrete approach

The gradient of the continuous problem 

is derived directly from the governing 

equations. This is consistent with the 

actual (non-discretised) PDEs.

The gradient of the discretised governing 

equations is discretised, which means 

approximating the continuous gradient 

through numerical discretisation, (not a 

“late discretisation”). This is consistent 

with the discretisation of the original 

PDEs.

The adjoint equations are derived.

The adjoint governing equations are 

discretised. This is an approximation of 

the continuous gradient through 

numerical discretisation (“late 

discretisation”).

The governing equations are discretised. 

This is an approximation of the original 

PDEs.

The adjoint equations are derived.
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Lozano [30] noted that the continuous approach offers the choice to choose any discretisation 

scheme for the adjoint equations, whereas the discrete approach needs to keep numerical 

consistency w.r.t. the flow solver. For example, if a numerical scheme is used to compute the 

turbulence viscous terms in the flow solver, the flow Jacobian matrix should include these 

terms. This is translated in an advantage for the discrete approach from an implementation effort 

stand point of view, because the same flow solution numerical scheme can be used for the 

solution of the flow-adjoint equations. On the other hand, the continuous approach is not 

bounded to use the same numerical scheme. 

It is not always easy to find the corresponding adjoint problem. Meaning that neither objective 

nor boundary conditions are easily converted into the proper adjoint equivalent. This happens 

because in the continuous adjoint the objective function is appearing in the boundary conditions, 

which requires a new derivation for each target function. An example is represented by the 

necessary adjoint boundary condition along the shock wave, which is very difficult to 

implement. However, in practice this is never used and as noted by Giles and Pierce [31] this 

choice does not cause much problem. The discrete adjoint can treat arbitrary cost function 

without implementing any special treatment. 

The link with the physics is not always easy to make. To this regard, the continuous approach 

offers a better description of the physics for both the equations and the boundary conditions 

[20]. For example, the behaviour across shock and stagnation point can be more easily 

understood. Furthermore, regardless to the approach chosen, Giles and Pierce [20] noted that 

after the adjoint problem has been solved, the adjoint variables tell how a source term function 

influence the chosen function of interest. An application of this definition is offered by Jacques 

et al. [32] where the adjoint variables are shown to provide the sensitivity of the objective 

function w.r.t. a change in the residual. An example of this is also presented in Chap. 7.4.6. 

Having analysed the main metrics reported in Tab. 2.3, it is time to draw some conclusions. The 

chief reason why the discrete approach was chosen over the continuous approach can be 

justified by the fact that, the discrete approach delivers accurate derivatives regardless to the 

mesh refinement. 

The fact that the discrete adjoint provides the exact gradient of the inexact objective function is 

an important advantage, but it can also be regarded as a disadvantage because it requires the 
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computation of the grid sensitivity which is troublesome for large unstructured grids. This is the 

focus of the next chapter. 

Table 2.3  Comparison between discrete and continuous adjoint approaches. 

Metrics Discrete approach Continuous approach 

Memory  

requirement 

Demanding especially for 

large 3D cases 

Does not suffer in terms of memory 

when large 3D cases are used as 

long as the surface integral is used 

Convergence 
In both cases, the accuracy of the gradient depends only on the flow-

solution convergence 

Accuracy 

Governed only by the flow-

solution residual 

Computes the exact gradient 

of the inexact cost function 

Governed by the flow-solution 

residual and ultimately by the 

mesh refinement 

Computes the inexact gradient of 

the exact cost function 

Discretisation 

Not flexible because it needs 

to use exactly the same flow 

solver discretisation scheme 

More flexible because it does not 

need to use exactly the same flow 

solver discretisation scheme 

Boundary conditions 
Easier to obtain in a discrete 

fashion 

Not all the time is possible to 

obtain them 

Physical meaning Difficult to understand Easy to understand 

2.3.2 Discrete Adjoint Approach 

When state, costate and design space are all combined together, Ta‟asan [33] suggested that the 

solution of such a problem can be visualised as the intersection of three hyperplanes as shown in 

the Fig. 2.4. With this in mind, the adjoint solution is represented by all those points that lay at 

the intersection between the state and costate hyperplane. 

To derive the discrete adjoint formulation it is first necessary to discretise the governing 

equations followed by their linearisation. This second step can be done in two ways, by using 

the concept of Lagrangian multipliers or by direct differentiation of the objective function 

dependency. The Lagrangian approach (also known as costate) is generally used because the 
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problem is constrained (i.e. flow and mesh constraint). However, other applications, such as in 

error estimation, do not require the adoption of the Lagrangian variables because they are not 

constrained [34]. 

 

Figure 2.4  Representation of state, costate and design space. 

The objective function depends on the mesh,  𝑿  , DVs,  𝑫 , and flow variables,  𝑾 . The 

flow-field solution is obtained by solving a set of highly non-linear equations and, as a 

consequence, the objective function is typically nonlinear as it depends on the flow state vector. 

The scalar objective function serves as a measure of the fitness of the design process and is 

assumed to be continuously differentiable. This is an assumption often made but rarely verified. 

However, there are cases where this assumption is not valid (shocks are a valid examples). A 

smoothing procedure could be employed to deal with this issue, but most numerical methods 

always show a certain amount of dissipation which smears discontinuity over the neighbouring 

cells mitigating the non differentiability of the objective function. In this work, no smoothing is 

performed and as noted by Anderson and Venkatakrishnan [35], this is in line with the discrete 

approach where discontinuity is not directly taken into account. 

Consider the Lagrangian of the objective function (augmented objective function) w.r.t. the flow 

residual constraint,  𝑹 : 

Design

(DVs)

State

(flow solution)

Costate

(flow-adjoint solution)
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ℒ 𝑫,𝑾,𝑿,𝜦 = 𝐼 𝑫,𝑾,𝑿 +  𝜦𝐹 
𝑇{𝑹 𝑫,𝑾,𝑿 },     ∀  𝜦 , {𝑫} (2.1) 

where 𝐼 is the objective function and  𝜦𝐹  is the flow-adjoint vector. Since Eq. (2.1) is valid for 

all the DVs, the Lagrangian is identical to the objective function, i.e. ℒ = 𝐼 and, so for the 

derivatives, i.e.  𝑑ℒ/𝑑𝑫 =  𝑑𝐼/𝑑𝑫 . Differentiation of the Lagrangian w.r.t. the DVs via chain 

rule yields: 

 
𝑑𝐼

𝑑𝑫
 =  

𝜕𝐼

𝜕𝑾

𝑑𝑾

𝑑𝑫
+
𝜕𝐼

𝜕𝑿

𝑑𝑿

𝑑𝑫
+
𝜕𝐼

𝜕𝑫
 +  𝜦𝐹 

𝑇  
𝜕𝑹

𝜕𝑾

𝑑𝑾

𝑑𝑫
+
𝜕𝑹

𝜕𝑿

𝑑𝑿

𝑑𝑫
+
𝜕𝑹

𝜕𝑫
  (2.2) 

The notation for a total derivative, 𝑑, was used, to distinguish it from the partial derivative, 𝜕. 

As noted by Mader et al. [25] this is done because generally the objective function is a function 

of multiple independent DVs, some of which have an explicit dependence and do not need the 

convergence of the residual and others which have not an explicit dependence and therefore 

need the convergence of the residual, i.e. another flow solution. 

For a pure aerodynamic shape optimisation, where only the solid wall is updated, the DVs 

influence only the flow-field solution and objective function through the grid variations. As a 

consequence  𝜕𝐼/𝜕𝑫 =  𝟎   and  𝜕𝑹/𝜕𝑫 = [𝟎].  Therefore, rearranging Eq. (2.2) for the 

common terms yields: 

 
𝑑𝐼

𝑑𝑫
 =  

𝜕𝐼

𝜕𝑾
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑾
  
𝑑𝑾

𝑑𝑫
 +  

𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
  
𝑑𝑿

𝑑𝑫
  (2.3) 

By doing so, the two most important and expensive components are highlighted, namely the 

sensitivity of the state variables w.r.t. the DVs, i.e.  𝑑𝑾/𝑑𝑫 , and the sensitivity of the volume 

grid nodes w.r.t. the DVs, i.e.  𝑑𝑿/𝑑𝑫 . The first expensive term can be eliminated by solving 

the following linear system: 

 
𝜕𝑹

𝜕𝑾
 
𝑇

 𝜦𝐹 = − 
𝜕𝐼

𝜕𝑾
 
𝑇

 (2.4) 

Note that, although the original flow system is non-linear, the flow-adjoint system is linear. The 

flow-adjoint vector can be chosen such that it satisfies Eq. (2.4) and by doing so the matrix 

 𝑑𝑾/𝑑𝑫  no longer appears in the total derivative. To be more precise, what is being 
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eliminated is not the sensitivity, but the dependency of the cost from the 𝑁𝐷𝑉 . The final 

sensitivity is then expressed as: 

 
𝑑𝐼

𝑑𝑫
 =  

𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
  
𝑑𝑿

𝑑𝑫
  (2.5) 

In conclusion the flow-adjoint method allows one to efficiently compute the gradient when the 

𝑁𝐼 ≪ 𝑁𝐷𝑉  at a cost of a single linear system solution and a subsequent product, thus making the 

method nearly independent from the 𝑁𝐷𝑉 . This leads to Eq. (2.5), where the second expensive 

term, i.e. [𝑑𝑿/𝑑𝑫], needs to be addressed. This matter is discussed in Chap. 2.4.  

2.3.3 Solving the Flow Adjoint System 

The strategy implemented in the DLR TAU-Code to solve the adjoint linear system of equations 

is to re-use the same numerical scheme of the flow solver. In fact, the flow Jacobian can be 

taken as it is from the flow solver and reused for the adjoint system. By doing so, one fully 

exploits the fine tuning already available for the flow solver. 

In theory, Eq. (2.4) can be solved by direct inversion of the flow Jacobian. However, this 

requires it to be constructed exactly which results in a very large and sparse matrix, thus the cost 

associated with it can become prohibitive. The matrix is never inverted directly, instead an 

implicit marching method is used to drive the residual to zero. The flow Jacobian is a very large 

and sparse matrix because it involves an extended neighbouring stencil which is higher on 

unstructured grids. 

To maintain consistency the flow Jacobian needs to be exact. Therefore, the boundary 

conditions and all the laminar and turbulent contributions need to be taken into account. 

However, if all the elements of the Jacobian matrix are stored in memory, the computation time 

can be drastically reduced, but the memory requirement would be prohibitively large for 3D 

problems. One option is to store a reduced Jacobian where only the immediate neighbour 

information is considered. The remaining entries can then be computed on-the-fly each time the 

adjoint residual is required. In this way, the memory requirement can be remarkably reduced, 

however the computation cost is increased [36]. 
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Different techniques have been used to solve the resulting adjoint linear system of equations. 

Nielsen and Anderson [37] employed a GMRES (Generalised Minimal RESidual) solver, an 

approach favoured also by Hicken and Zingg [38], whereas Mavriplis [39] used an explicit 

multigrid method taken directly from the flow solver. Although the adjoint system is linear 

while the flow system is non-linear, Dwight et al. [40] noted that sometimes it is as hard as the 

flow system to solve. It was proven experimentally by Giles et al. [27] that, if the non-linear 

flow problem converges asymptotically, the same is guaranteed also for the flow-adjoint 

problem. However, as noted by Dwight et al. [40] this is rarely the case. To solve this issue they 

proposed a method based on the recursive projection method. 

The strategy used in this work is based on the restarted preconditioned ILU (Incomplete Lower 

Upper) GMRES algorithm developed by Saad and Schultz [41]. The method works by 

approximating the solution vector, constructed in a Krylov subspace using the minimal residual 

technique. As noted by Widhalm et al. [36], the Krylov loop helps to stabilise the linear adjoint 

solver especially when the non-linear flow solution is not fully converged. 

In general, the adjoint solution needs less convergence than the primal solution, generally 

estimated in two-to-three orders of magnitude. If the primal (flow) solution is not sufficiently 

converged, the flow-adjoint solution will likely not converge at all. However, having the flow 

adjoint solution converged is not an assurance that the flow solution is sufficiently converged. 

As a general guideline, it is good practice to start from relaxed convergence values (e.g. 

𝑅𝑓𝑙𝑜𝑤 = 10−5 and 𝑅𝑎𝑑𝑗𝑜𝑖𝑛𝑡 = 10−4) and decrease them until the gradient stops changing. As 

noted by Nadarajah and Jameson [28] and Kim et al. [42], this strategy is based on the 

knowledge that the adjoint gradient accuracy is sensitive to the convergence level of the flow 

solver only and insensitive to that of the flow-adjoint solver. The flow and flow adjoint 

convergence used in this work were set to 𝑅𝑓𝑙𝑜𝑤 = 10−8 and 𝑅𝑎𝑑𝑗𝑜𝑖𝑛𝑡 = 10−6 respectively. 

2.3.4 Issues and Solutions 

Dwight and Brezillon [26] identified three main difficulties associated with the discrete adjoint 

method, namely differentiation of the flow solver, memory requirement for the flow Jacobian 

and computation of the grid sensitivity for large meshes. 
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The discrete approach requires the discretisation of the flow solver before the linearisation is 

performed. This does not involve only the flow solver but boundaries, turbulence model and 

many other parts of the chain must be linearised accordingly. Failure to do so, would result into 

inaccuracies in the computation of the resulting derivatives. One solution would be to use hand 

differentiation which is not difficult by itself, but time consuming and prone to errors. An 

example of the complexity of the differentiation process is presented by Zymaris [29] where the 

discretisation of the SA turbulence model was manually derived. A solution to this problem is 

AD (Automatic Differentiation), but its direct use, brings other problem such as the memory 

overhead while used in reverse mode. To this regard, an interesting solution was proposed by 

Mader et al. [25] where they used AD just for some of the most difficult partial derivatives. The 

second problem is related to the memory requirement needed to store the discrete flow Jacobian. 

Unfortunately, this is acceptable for 2D simulations only as the requirement for 3D simulations 

is not practical. Dwight and Brezillon [26] offer a comparison of the memory requirement 

needed. 

In the literature, there are two widely used approximations to tackle the aforementioned 

drawbacks, namely first-order accurate discretisation and constant eddy-viscosity assumption. 

The goal of the first-order accurate discretisation is to reduce the memory by reducing the 

spatial stencil discretisation, hence the extension of the information stored to a fraction of the 

immediate neighbouring nodes. This significantly reduces the sparsity of the Jacobian for 

unstructured mesh and secondly reduces the stiffness of the non-linear system. A reduction of 

50% in memory requirement can be achieved [26]. 

While solving a turbulent flow using time averaging, the mean-flow equations are coupled with 

the turbulence model. Consequently a rigorous analysis should consider them both as a state 

variables. However, most of the time, the adjoint equations take into consideration only the 

variation in the mean flow quantities and keep the variation in the turbulent (eddy) viscosity 

constant. This is done because an accurate linearisation of the turbulence model can be difficult 

as it exhibits complex dependency on both the flow variables and the distance from the wall. If 

the variation of the eddy viscosity turbulence model is considered frozen [24, 43], a reduction in 

the development time effort is obtained. Kim et al. [44] offered a comparison between constant 

and non constant eddy viscosity at transonic speed. The study concluded that the gradients are 
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very different as compared to the ones obtained by FDs and not all of them have the correct 

sign. It should be appreciated that the sign is of paramount importance if a direction of 

improvement must be provided. Another comparison for incompressible flow is offered by 

Zymaris et al. [29]. 

Lastly, the third problem is related to the CPU time and memory requirements associated with 

the computation of the grid sensitivity. This is strictly related to the mesh movement adopted 

and is the focus of the following literature review. 

2.4 Mesh Sensitivity 

2.4.1 Importance of Mesh Sensitivity 

An adjoint-based aerodynamic optimisation involves the linearisation of the entire chain. By 

doing so, and assuming the shape is parameterised, three types of sensitivities are needed, 

namely flow, grid and shape sensitivity. The flow sensitivity derivation was extensively 

described in Chap. 2.3.2, whereas in this section the focus is on the mesh sensitivity. The cost 

associated with this computation can become very expensive, especially for large unstructured 

meshes. 

It is interesting to see what are the reasons that lead to this conclusion with the support of Fig. 

2.5. The link between the interior volume meshes, surface meshes and the geometric DVs can 

be expressed as: 

 𝑿 =  𝑿  𝑺 𝑫    (2.6) 

Direct differentiation w.r.t. the geometric DVs provides the complete grid sensitivity 

expression: 

 
𝜕𝑿

𝜕𝑫
 =  

𝜕𝑿

𝜕𝑺

𝜕𝑺

𝜕𝑫
  (2.7) 

The first RHS term is termed volumetric mesh sensitivity and this matrix has dimensions 

 𝑁𝑉𝑀 ×𝑁𝑆𝑀  . It is related to the mesh movement or to the grid generator used depending on the 
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strategy chosen to update the mesh. The second RHS term is a smaller matrix with dimensions 

 𝑁𝑆𝑀 × 𝑁𝐷𝑉   and represents the surface mesh sensitivity, i.e. how the surface change w.r.t. a 

change in the geometric DVs. The analytical availability of this derivative depends on the 

choice of the shape parameterisation which is generally easily differentiated. 

There is one special case, namely  𝑫 =  𝑺  where the [𝜕𝑺/𝜕𝑫] reduces to the identity matrix 

and no longer plays a role. This is the case where it is desired to visualise the gradient of the 

objective function w.r.t. the entire lifting surface, i.e. {𝑑𝐼/𝑑𝑺}. Examples of such an application 

can be found in Palacios et al. [45] for supersonic flow regime using the continuous adjoint 

approach and Hinchliffe and Qin [46] for transonic flow regime using the discrete adjoint 

approach. 

The discrete and continuous approach differ also from the way the Jacobian [𝜕𝑿/𝜕𝑺] is treated. 

The continuous approach can be formulated (the so-called reduced gradient) in such a way that 

the need to evaluate the volumetric mesh sensitivity is eliminated [30]. The original version of 

the continuous approach [9] was based on the evaluation of the volumetric mesh sensitivity for 

structured grids which did not pose an issue in terms of CPU time and memory. However, 

unstructured grids feature a 𝑁𝑉𝑀 ,𝑆𝑀  which is one or even two orders greater than structured 

grids. Following these difficulties, Weinerfelt and Enoksson [47] formulated a surface integral 

version of the continuous approach which was also derived independently by Jameson and Kim 

[9]. This formulation avoids the direct computation of the volumetric term and provides the 

gradient based on surface information only. 

On the other hand, while working with the discrete approach the volumetric mesh term cannot 

be eliminated, and the approach shares the same issues in terms of CPU and memory, when 

unstructured large grids are used. To address this issue the approaches used to compute the 

linearised mesh movement need to be analysed. There are two possibilities, namely construct a 

mesh adjoint for any implicit (iterative) mesh movement or use any explicit (non iterative) mesh 

movement such as the DGM. The former strategy was proposed by Nielsen and Park [37] (see 

Chap. 2.5.6) which allows to decouple the cost of computing the volumetric mesh sensitivity 

from the 𝑁𝐷𝑉 . This approach is similar in its concept to what was done for the flow sensitivity. 

The latter option is investigated in the present work and a detailed analysis is presented in Chap. 

5.3. 



25 

 

The differences registered in the way the grid sensitivity is treated, was the chief reason why 

Anderson and Venkatakrishnan [35] proposed an hybrid approach between the discrete and the 

continuous approach. This strategy dictates the calculation of the flow-adjoint vector with the 

continuous approach, which is then plug into the final discrete adjoint formulation in order to 

account for the effect induced by the grid sensitivity. 

 

Figure 2.5  Discrete versus continuous adjoint approach on the grid sensitivity computation. 

2.4.2 Extent of Mesh Sensitivity 

It was highlighted why in Eq. (2.7) the volumetric mesh sensitivity is an expensive part of the 

chain. If the mesh is structured, analytical methods are available and the 𝑁𝑉𝑀  does not represent 

a problem. However, if no analytical mesh movement is known, an iterative method must be 

employed and the procedure quickly becomes very expensive as the 𝑁𝑉𝑀  grows. This has 

encouraged researchers to study a way to reduce the expense associated to the computation of 

the volumetric mesh sensitivity. 
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It can be highlighted that away from the wall, the internal volume mesh nodes experience a 

different change as compared to those close to the solid wall. Therefore, it seems reasonable to 

neglect the information stored in the internal volume mesh nodes far away from the wall. In 

fact, Nielsen and Anderson [48] proved that it is possible to reduce the differentiation of the 

volume mesh domain significantly. This is translated in a substantial saving while evaluation 

Eq. (2.7). 

2.4.3 Simplification Regarding Flow and Grid Sensitivity 

There are two major simplifications that applies to Eq. (2.5). They consist in dropping either the 

flow sensitivity, i.e.  𝜦𝐹 
𝑇[𝜕𝑹/𝜕𝑿] or the grid sensitivity, i.e.  𝑑𝑿/𝑑𝑫 . 

The first approximation was proposed by Mohammadi [49] who suggested that there are 

particular cases where the grid sensitivity dominates. In this case, there is no need to construct 

the flow adjoint as the term for which the adjoint is sought is deleted as part of the 

simplification. This could be particularly useful when the objective function is an integral of a 

boundary quantity (e.g. drag and lift coefficients), and the DVs control only the solid wall 

shape. This approximation is based on the observation that the dominant part in the gradient is 

the derivative w.r.t. the geometry and not to the flow variables when a small change in the 

geometry causes very slight variations in the flow variables. The computation cost could be 

drastically reduced because the flow derivatives are not required. Subsequently, Kim et al. [50] 

compared this approximation with a full (flow and grid sensitivity) gradient for the design of 

supersonic high-lift devices. They concluded that for the case under analysis, this hypothesis 

gave reasonable results at the leading edge, but performed poorly at the trailing edge. A similar 

study was recently repeated by Wang et al. [51]. Their analysis confirmed the results reported 

by Kim et al. [50], i.e. the volume mesh sensitivity should not be neglected otherwise a large 

deviation in the gradient will be registered. 

On the other hand, there are particular cases where the grid sensitivity can be ignored. This was 

dictated by the need to save computation time and memory while evaluating the grid sensitivity. 

In fact, as Kim et al. [50, 52] explained, the cost of solving the differentiated mesh movement is 

as much expensive as the mesh movement itself. Interestingly, this simplification works well 
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both at the leading and trailing edges. Compared to the case where the flow sensitivity was 

neglected, it seems that this simplification is more robust.  

Another important point to mention is that both Mohammadi [49] and Kim et al. [50, 52] 

employed an Euler solver which, although carefully corrected for the boundary layer thickness, 

is not as accurate as a full Navier-Stokes solution. In fact, Anderson and Bonhaus [53] proved 

that for a full Navier-Stokes solution, if the grid sensitivity is not included, large deviations and 

incorrect signs in the gradients should be expected. 

2.5 Existing Methods to Compute Mesh Sensitivity 

There are many methods known in the literature to compute grid sensitivity. Fig. 2.6 offers a 

brief and concise classification. This is based on the fundamental difference between mesh 

regeneration and deformation which will be also discussed in the details in Chap. 4.3. 

 

Figure 2.6  Classification of the methods to compute the mesh sensitivity. 
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2.5.1 Finite Step Differences 

One of the first method used to evaluate the grid sensitivity was FD. The method has always 

been used to approximate the value of differentials either because no solution is known or 

because differentiation is so tedious that an approximation is considered qualitatively enough. 

There are a series of issues with this approach. Accuracy is the main drawback of the method 

especially for non linear problems such as those of aerodynamic nature. Cost is also something 

that should not be underestimated. For instance, considering the case where the grid sensitivity 

needs to be computed, the number of operations that need to be performed is 𝑁𝐷𝑉 ×𝑚, where m 

is the number of step size tested which is unknown a priori and is specific for each DV. It is 

obvious that the cost quickly becomes unmanageable. 

In conclusion, most of the time the choice of this approach is motivated also by the cost of the 

mesh movement. If the volume mesh deformation is not expensive the cost of the FDs is not 

impeding, but becomes unpractical for more costly mesh movements such as the LE or spring 

analogy. In fact, Martins et al. [54] and Nemec and Zingg [55] used FDs thanks to the fact that 

their algebraic mesh movement was not expensive to use. Furthermore, both references 

employed structured grids for which the 𝑁𝑉𝑀  and the memory requirement is considerably low 

as compared to unstructured grids. Earlier examples can also be found in Hicks et al. [56] and 

Hicks and Vanderplaats [57]. 

2.5.2 Complex Step Differences 

The method was originally investigated by Lyness and Moler [58], and Squire and Trapp [59], 

but was made popular in the aerodynamic optimisation community by Martins et al. [60]. This 

method is primarily used to avoid the additional time spent on the parametric study and the 

accuracy issue associated with FDs. This approach, by constructing a complex rather than a 

finite variable, avoids the cancellation error associated with FDs because the method is 

effectively insensitive to the choice of the step size. An arbitrarily small step can be used 

without incurring in the subtractive cancellation error associated to FDs. In fact, this allows one 

to use a much smaller step which is able to capture even the slightest deviation in the function 



29 

 

being evaluated. Additionally, it requires only one function evaluation and not two compared to 

the second order FDs. 

On the downside, the method assumes that the mesh movement code can handle complex step 

which roughly doubles the memory requirements [61]. More importantly, the cost of computing 

the gradient remains proportional to the 𝑁𝐷𝑉 . Therefore as the per the case where FDs were 

used, the cost is effectively bounded by the 𝑁𝐷𝑉 . 

Sturdza [62] applied this method to an optimisation of a supersonic aircraft, Newman et al. [63] 

used the method for the aero-structural design of a wing and Anderson et al. [64] used it for a 

transonic flow application. The complex-step method is often used as a verification tool to 

check the gradient accuracy as used by Martins et al. [65] who pioneered the method for MDO 

(Multidisciplinary Design Optimisation) applications. 

2.5.3 Explicit versus Implicit Methods 

In Chap. 2.3.2, it was discussed how the total final sensitivity can be expressed as: 

 
𝑑𝐼

𝑑𝑫
 =  

𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
  
𝑑𝑿

𝑑𝑫
  (2.8) 

In Chap. 2.4.1, it has been discussed how to split the second RHS, leading to:  

 
𝑑𝐼

𝑑𝑫
 =  

𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
  
𝜕𝑿

𝜕𝑺
  
𝜕𝑺

𝜕𝑫
  (2.9) 

If  𝑫 = {𝑺}, Eq. (2.9) reduces to: 

 
𝑑𝐼

𝑑𝑺
 =  

𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
  
𝜕𝑿

𝜕𝑺
  (2.10) 

where the bottom line is that, within the discrete adjoint the evaluation of the large Jacobian 

represented by the second RHS in Eq. (2.10) needs to be addressed. From the surveyed 

literature, it has emerged the necessity to make a distinction between those methods which 

provide this Jacobian directly, i.e. explicit methods, and those that cannot, i.e. implicit methods. 
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To be more precise, the term explicit is used to refer to the availability of the volume mesh 

update (and therefore also of the Jacobian  𝜕𝑿/𝜕𝑺 ) without having to solve through an iterative 

procedure a linear system of equations. If an iterative procedure is required to solve the resulting 

system of equations, the method is then referred to as implicit. 

Most of the time, analytical mesh movements are easier to formulate for structured meshes and 

their applications have been largely confined to this type of mesh in the literature. In fact, the 

way the mesh node information is stored effectively follows the grid lines. This simple method 

cannot be used directly for unstructured meshes where this ordered structure does not exist. This 

should not exclude the existence of analytical methods also for unstructured meshes. In fact, for 

unstructured grids, the link between the spatial location of each node and its indices is no longer 

ordered and therefore more difficult to retrieve. Examples of the differentiation of explicit 

methods are given by Burgreen et al. [66] and Le Moigne and Qin [67] where they both 

differentiated manually the arch length algebraic mesh movement. Another example has been 

published by Fillola et al. [68] where the differentiation of a mesh movement based on the 

integral length was applied to a spoiler deflection for a large wing-body configuration. 

On the other hand, examples of the differentiation of implicit methods can be found in 

Mavriplis [69] for the spring analogy mesh movement and Nielsen and Park [37] for the LE 

mesh movement. For all these methods the Jacobian [𝜕𝑿/𝜕𝑺]  is not available explicitly, 

meaning that an iteration procedure is required to compute its entries. Nielsen and Anderson 

[70] proved that, if the LE is used, a simple mesh movement can cost as much as 30% of the 

primal solution. In a subsequent paper, Nielsen and Park [37] showed that the differentiated 

version has a convergence similar to the mesh movement. Therefore, even the differentiated 

version is expected to take up to 30% of the flow solution for each DV. 

2.5.4 Automatic Differentiation 

AD refers to the automation of the hand derivation process. Method such as ADIFOR 

(Automatic DIFferentiation for FOrtran) [71, 72] and TAPENADE provide analytical results. 

One of the most common use of this method is to compute time-consuming hand-derivable 

partial derivatives. This greatly improves the development time especially for the adjoint code. 

One example of this application is the so-called ADjoint approach introduced by Mader et al. 
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[25] where the authors suggested to use AD only for some difficult-to-derive derivatives. When 

AD is used in the forward mode, to obtain the derivative w.r.t. the DVs a single evaluation is 

needed. However, when AD is used in reverse mode, a single evaluation is needed for each 

objective function, making it effectively independent from the 𝑁𝐷𝑉 . This last advantage is offset 

by the large memory requirement needed because the intermediate values of each DV have to be 

stored on memory. 

Example of such a procedure are offered by Newman et al. [73] where AD was applied to a 

chain based on the spring analogy mesh movement, Newman and Taylor [74] where AD was 

applied to a mesh adaptation technique for an unstructured Euler flow solver code and Bischof 

et al. [75] where AD was applied to an algebraic mesh movement. 

2.5.5 Differentiation of the Mesh Generation Routine 

Although it has been emphasised that differentiating the mesh generation tool is somehow tricky 

and lengthy, there are cases where this has been nevertheless implemented for structured grids. 

The advantage is that accurate sensitivities can be obtained while reducing the chance to break 

the mesh and obtaining the best mesh quality possible. On the down side, all the time a mesh is 

regenerated, consistency in the discretisation error is no longer guaranteed because the 

connectivity is most likely going to be different (see also Chap. 4.3). 

Sadrehaghighi et al. [76] and Korivi et al. [77] differentiated an algebraic grid generator, 

whereas Pagaldipti and Chattopadhyay [78] performed the same kind of differentiation by using 

an elliptic and hyperbolic grid generator. Another example is offered by Bischof et al. [75] 

where the authors used ADIFOR AD to differentiate a multi-block, three-dimension structured 

grid generator. 

2.5.6 Mesh Adjoint 

The motivation behind the article of Nielsen and Park [37] was “to eliminate”, meaning provide 

the sensitivity without incurring in a cost proportional to the 𝑁𝐷𝑉  by constructing a second 

adjoint linear system termed mesh adjoint. Having this in mind, two Lagrangian multipliers are 
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constructed here, one for the non-linear flow residual and one for the linear mesh movement 

residual,  𝑻 𝑿,𝑫  : 

ℒ 𝑫,𝑾,𝑿,𝜦𝐹 ,𝜦𝐺 = 𝐼 𝑫,𝑾,𝑿 +  𝜦𝐹 
𝑇 𝑹 𝑫,𝑾,𝑿  +  𝜦𝐺 

𝑇 𝑻 𝑿,𝑫   (2.11) 

where  𝜦𝐺  is the mesh adjoint vector. The differentiation of Eq. (2.11) follows exactly that 

reported in Chap. 2.3.2 with the only difference represented by the differentiation of the mesh 

movement w.r.t. the DVs which takes the following form: 
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  (2.12) 

It follows that, under the assumption of pure geometric changes, the linearisation w.r.t. the DVs 

yields: 
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  (2.13) 

The flow-adjoint linear system of equations is constructed and solved as reported in Chaps. 

2.3.2 and 2.3.3 respectively. Very much like what it was done for the flow derivatives, to 

eliminate the cost associated to the grid sensitivity derivative, i.e. [𝑑𝑿/𝑑𝑫], the following mesh 

adjoint linear system of equations needs to be addressed: 

 
𝜕𝑻

𝜕𝑿
 
𝑇

 𝜦𝐺 = − 
𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
 
𝑇

 (2.14) 

which needs to be solved for the mesh adjoint vector. At this point, it is necessary to analyse the 

mesh movement technique because Eq. (2.14) effectively requires the linearisation of the mesh 

movement w.r.t. the volume mesh nodes. There are several methods used to update the mesh. 

For instance, Nielsen and Park [37] used the LE, whereas Mavriplis [69] used the spring 

analogy. A further detailed derivation is given for the LE in Chap. 5.5. 

It has been discussed that the flow adjoint effectively decouples the cost of the gradient expense 

from the 𝑁𝐷𝑉  at the cost of solving an additional system of linear equations. However, the larger 

the 𝑁𝑉𝑀 , the more expensive the linear system solution becomes. Similarly, although the mesh 

adjoint method effectively makes the expense associated with the evaluation of the grid 
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sensitivity independent from the (geometric) 𝑁𝐷𝑉 , it does it at the cost of solving an additional 

linear system of equations that could be as hard to converge as the flow adjoint. 

2.5.7 Integrated Geometry and Mesh Movement Approach 

In the literature, there is also another less known method where both the surface and volume 

mesh nodes are updated using the same method. The advantage of this approach is the 

availability of an integrated fully consistent surface and volume mesh deformation. 

There are two important applications of this approach. The first one is based on the RBF method 

and was proposed by Morris et al. [79], whereas the other is based on the B-splines method and 

was proposed by Hicken and Zingg [38]. The gradient computation of the surface w.r.t. the 

DVs, i.e. [𝜕𝑺/𝜕𝑫], can be easily obtained. However, the sensitivity w.r.t. the volume mesh was 

computed using FDs by Morris et al. [79] whereas Hicken and Zingg [38] opted for the more 

accurate mesh adjoint approach. 

To be more precise, these two approaches seems to be very similar to the FFD proposed by 

Sederberg and Parry [12]. Indeed, they share the similarity of considering both surface and 

volume mesh points as a cloud of independent points. However, where the original FFD 

performs no inverse fitting on the original geometry thanks to its local parametric coordinates 

transformation (see Chap. 6.3) the B-spline and RBF require to retrofit the original surface. This 

discussion is covered again in Chap. 7.4 from a consistency point of view. 

2.6 Summary 

The literature review discussed in this chapter introduced the reasons why a gradient-based 

optimisation framework was preferred over other search direction methods. The pros and cons 

were analysed and it was explained how the advantages outweighed the disadvantages for the 

test cases investigated in this work. 

The advantages of the adjoint method for the computation of the flow sensitivity were 

described. Within this framework, the discrete version was chosen over the continuous method 

on the grounds that the gradients accuracy depends only on the flow solution and not on the 
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mesh refinement level. However, by doing so, care must be exercised while computing the grid 

sensitivity. For this last one, the methods available were surveyed and a summary of this 

analysis is offered in Tab. 2.4 to help the reader understand the sometimes subtle differences. 

It was highlighted how important is to consider how the cost scales with the mesh size. In this 

regard, the last known method published to address the computation of the grid sensitivity is the 

mesh adjoint proposed by Nielsen and Park [37]. Its formulation, advantages and its current 

bottleneck were identified in the solution of a large and stiff linear system of equations. This 

served as an introduction and justification for the new method presented in the current work 

which is based on the DGM mesh movement. 

Table 2.4  Pros and cons of the methods known to evaluate the grid sensitivity. 

Methods Pros Cons 

Finite step 

differences 
Easy implementation 

Prones to cancellation and round-off error 

Cost scales linearly with the 𝑁𝐷𝑉  

Poor accuracy and consistency 

Complex step 

differences 
No cancellation error 

Assumes the code can handle complex 

variable 

The cost is proportional to the 𝑁𝐷𝑉  

Analytical 

No convergence issue 

Low memory and CPU 

requirements 

The pre-processing cost is proportional to 

the 𝑁𝐷𝑉  

Automatic 

differentiation 

Easy to implement 

Largely automatic 

Increase in memory when used in reverse 

mode 

Mesh generation 

routine 

Large deformation can be 

enforced 

Good quality mesh is 

maintained 

Limited to simple differentiable routine 

Generally limited to structured mesh 

Non-consistent gradient 

Mesh adjoint Independent from the 𝑁𝐷𝑉  Needs the solution of a large linear system 
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Chapter 3   Governing Equations and Numerical Methods 

3.1 Introduction 

In this chapter different types of governing equations are briefly surveyed. This is then followed 

by a detailed description of the appropriate set of equations used to describe the transonic flow 

regime studied in this work. 

The chapter is divided in two sections. The first part explains why the Navier-Stokes equations 

are preferred over other systems of equations, such as the Euler equations. The time and density 

averaging of the Navier-Stokes equations are introduced, along with the turbulence model 

needed to close the equations. The second part focuses on the actual spatial, temporal 

discretisation methods and the acceleration techniques used. A discussion of why certain 

algorithms are chosen is provided. 

The chapter concludes with a summary of the most important points. 

3.2 Transonic Flight 

The transonic regime referrers to that local (note that not always local coincide with the free-

stream condition) velocities window which can be split into three distinct domains, namely 

subsonic, sonic and supersonic domain. Thus, a Mach number generally considered in the range 

from 0.6 to 1.2. In 2D, the region where the local sonic speed is met is a line, whereas in 3D is a 

surface. This separates the subsonic from the supersonic region.  

Commercial civil aircraft fly close to the transonic regime because the Mach number times the 

lift over drag ratio, (𝑀 ∙ 𝐿/𝐷), which is one of the metric used to approximate the aircraft 

cruising efficiency, stays constant up to a certain value of the Mach number. Therefore, it pays 

off cruising close to the upper limit of this range which is the transonic regime [1]. As the 

aircraft operates at the transonic regime the wings experience local sonic flows and shocks are 

likely to appear. The shock is nothing more than the way the flow is recompressed after it has 

locally exceed the local sonic speed. 



36 

 

The question now becomes how to properly model the physics peculiar of the transonic flow. 

There are different set of equations used in CFD. These were all derived from the full Navier-

Stokes set of equations under specific hypothesis and are intrinsically limited in their 

applications. There are many hypotheses that can be used, such as dropping viscosity or/and 

vorticity etc.... Their original goal was to find a way to reduce the solution time, however the 

downside was a reduction in the applicability spectrum. In order to give a flavour of the many 

approximations available and justify why the Navier-Stokes equations were chosen, only the 

most common set of equations are depicted in Fig. 3.1 (adapted after [1]). 

Shocks interact with the boundary layer right where modelling viscous phenomena is important. 

This becomes more and more important if only small changes (tweaks) are sought from an 

already optimised geometry. From here, it is clear that viscosity, vorticity and change in density 

are all important factors and for these reasons the Navier-Stokes equations are deemed 

appropriate to model the transonic flow physics. 

 

Figure 3.1  Navier-Stokes equations and some possible simplifications. 
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3.3 Navier-Stokes Equations 

The compressible Navier-Stokes equations are a coupled nonlinear mixed (hyperbolic, parabolic 

and elliptic) PDEs governing the unsteady compressible viscous flow. These represent the 

conservation of mass, momentum and energy. The vast majority of today CFD codes express 

the Navier-Stokes PDEs in integral form: 

𝜕

𝜕𝑡
  𝑾 

Ω

𝑑𝑉 +  𝐐 ∙ 𝐧 𝑑𝑆 = 0
Γ

 (3.1) 

where Ω is the computation volume, 𝛤 is its boundary,  𝑸  is the flux tensor, 𝒏 is the boundary 

normal pointing vector, 𝑑𝑉  and 𝑑𝑆 are the discretised volume and surface respectively. The 

time derivative can be ignored if a steady-state solution is considered. This is always the case 

for all the simulations presented in this work. The state variables vector is defined as: 

 𝑾 =  𝜌,𝜌𝑢,𝜌𝑣,𝜌𝑤,𝜌𝐸 𝑇 (3.2) 

where 𝑢 , 𝑣 , 𝑤  are the velocity components along the Cartesian 𝑥 , 𝑦 ,  𝑧  directions, 𝜌  is the 

density and 𝐸 is the total energy. To facilitate the numerical solution of the equations, the flux 

tensor, is decomposed along the three Cartesian coordinates: 

 𝐐 =  𝑭𝑖 + 𝑭𝑣 ∙ 𝒊+  𝑮𝑖 + 𝑮𝑣 ∙ 𝒋+  𝑯𝑖 +𝑯𝑣 ∙ 𝒌 (3.3) 

where 𝒊, 𝒋,𝒌 represent the unit vectors along 𝑥, 𝑦, 𝑧. 𝑭𝑖 , 𝑮𝑖 , 𝑯𝑖  and 𝑭𝑣, 𝑮𝑣, 𝑯𝑣 are the inviscid 

and viscous flux vectors along 𝑥, 𝑦, 𝑧 defined respectively as: 
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 𝑯𝑖 =
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𝐻 is the enthalpy, 𝑝 the pressure, 𝜅 is the thermal conductivity coefficient, 𝑇 is the temperature 

and lastly 𝜏𝑖𝑗  are the viscous stresses defined as: 

𝜏𝑥𝑥 = 2𝜇
𝜕𝑢

𝜕𝑥
+ 𝜆  

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
  

(3.5) 
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𝜏𝑥𝑦 = 𝜇  
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
  

𝜏𝑥𝑧 = 𝜇  
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
  

𝜏𝑦𝑧 = 𝜇  
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
  

where 𝜆 is the second coefficient of viscosity which can be computed accordingly to the Stokes‟ 

hypothesis: 

𝜆 = −
2

3
𝜇 (3.6) 

where 𝜇 is the dynamic viscosity computed as a function of the Sutherland‟s law: 

𝜇 = 𝜇0  
𝑇

𝑇0
 

3/2 𝑇0 + 𝑆

𝑇 + 𝑆
  (3.7) 

where, for air, constants 𝜇0, 𝑇0, 𝑆 (Sutherland‟s temperature constant) take the following values: 

1.7894 × 10−5 [𝑘𝑔/(𝑚 ∙ 𝑠)] , 288.15 [𝐾] , 110.4 [𝐾] . The thermal conductivity allows to 

compute the heat fluxes as: 
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𝑞𝑥 = −𝜅
𝜕𝑇

𝜕𝑥
  

(3.8) 𝑞𝑦 = −𝜅
𝜕𝑇

𝜕𝑦
 

𝑞𝑧 = −𝜅
𝜕𝑇

𝜕𝑧
 

where the thermal conductivity coefficient is defined as: 

𝜅 = 𝜇
 𝑐𝑝

𝑃𝑟
 (3.9) 

where  𝑐𝑝  and 𝑃𝑟 are the specific heat at constant pressure and the Prandtl‟s number with value 

equal to 1,006.43 [𝐽/(𝑘𝑔 ∙ 𝐾)] and 0.72 respectively. Finally, the total enthalpy is defined as: 

𝐻 = 𝐸 +
𝑝

𝜌
  (3.10) 

where the relation between pressure and density is established by the ideal gas equation: 

𝑝 =  𝜌𝑅𝑇 (3.11) 

where 𝑅 is the air gas constant taking value equal to 287.05 [𝐽/(𝑘𝑔 ∙ 𝐾)]. 

3.4 Navier-Stokes Equations Averaging 

If the discretised Navier-Stokes equations were to be solved by numerical brute force, a 

technique known as DNS (Direct Numerical Solution), the entire range of both spatial and time 

turbulence scales would be resolved. To do so, the volume mesh used to discretise the domain, 

would be very dense and a very small time step would be necessary to properly capture small 

scale turbulence fluctuations. According to Tennekes and Lumley [80], such a computation (in 

terms of floating point operations) is equal to the total number of discrete mesh points times the 

time step used. This can be shown to be proportional to the third power of the Reynolds number. 

Based on that, Parviz and Kim [81] estimated that a DNS simulation for a commercial aircraft 

employing a teraflop computer will take something in the range of thousands of years. 
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To lower such a high demanding computation power, the volume mesh density and the time 

step must be reduced. This can be done adopting (relative) less expensive methods, such as 

RANS (Reynolds-Averaged Navier-Stokes) or LES (Large Eddy Simulation). The idea behind 

these techniques is not to resolve the entire turbulence scales, but instead to model them as 

briefly shown in Tab. 3.1.  

Table 3.1  Comparison between DNS, LES and RANS. 

Method 
Modelling of 

turbulent scales 

Mesh 

resolution 

Computation 

time 
Applications 

𝑁𝑆𝑀  𝑁𝑉𝑀  
Time 

steps 

Total 

operations 

DNS 

Resolves all the 

scales hence no 

modelling 
1016 1017 108 1025 

Small scale turbulence 

structures 

LES 

Models sub-grid 

scales but 

resolves large 

scales 

109 1012 108 1020 

Large separation such as 

vortex shedding from the 

nacelles 

RANS 

Models all the 

small and big 

scales 
106 107 104 1011 

Steady-state attached or 

mildly separated flows 

This chapter concentrates on the RANS method for reasons that can be reduced to the specific 

flight condition (transonic flow) being simulated and the available amount of time. The 

Reynolds‟ method consists in averaging in time. Given a time and space dependent quantity, 𝜙, 

its value is defined as: 

𝜑 = 𝜑 + 𝜑′  (3.12) 

where 𝜑′  is the fluctuating part and the Reynolds time averaged is defined as: 

𝜑 =
1

∆𝑡
 𝜑 𝑑𝑡
∆𝑡

 
(3.13) 
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However, to properly consider compressibility effects, the flow variables are instead Favre-

averaged as: 

𝜑 = 𝜑 + 𝜑′′  (3.14) 

where, 𝜑  is the mean part whereas 𝜑′′  is the fluctuating part. The former is the defined as: 

𝜑 =
1

𝜌 ∆𝑡
 𝜌𝜑 𝑑𝑡
∆𝑡

 
(3.15) 

where 𝜌  is the Reynolds-averaged density. By doing so the equations are then termed FANS 

(Favre Averaged Navier-Stokes). Therefore, the following holds: 

𝑢 = 𝑢 + 𝑢′′ 

(3.16) 

𝑣 = 𝑣 + 𝑣′′ 

𝑤 = 𝑤 + 𝑤′′ 

𝑝 = 𝑝 + 𝑝′ 

𝜌 = 𝜌 + 𝜌′ 

𝑇 = 𝑇 + 𝑇′′ 

This process saves computation time as compared to a full-scale DNS analysis, but there is a 

loss of fidelity in terms of captured physics. In fact, the approximation can be assumed to be 

valid and accurate only for attached or mildly detached flow where the flow streamlines 

curvature is generally small. The substitution of the newly defined state variables in Eq. (3.16) 

back in Eq. (3.1) creates two new unknowns. The first is generally referred to as the turbulent 

Reynolds stresses: 

𝜏 𝑖𝑗 = −𝜌𝑢𝑖
′′ 𝑢𝑗

′′          (3.17) 

where subscript 𝑖, 𝑗 correspond to the three Cartesian directions 𝑥,𝑦, 𝑧. On the other hand, the 

second newly created quantity is the turbulent heat fluxes: 

𝑞𝑖 = −𝑐𝑝𝜌𝑢𝑖
′′ 𝑇 ′′          (3.18) 

The newly created turbulent Reynolds stresses and the turbulent heat fluxes, coming from the 

time averaging describe the momentum transfer due to the turbulent flow. Since the turbulent 
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Reynolds stresses are symmetric, i.e. 𝑢𝑖
′′ 𝑢𝑗

′′       = 𝑢𝑗
′′ 𝑢𝑖

′′       , the tensor is symmetric and considering a 

three dimensional flow it effectively consists of six unknown variables. This obviously creates 

more unknown than equations, a problem known as closure. To solve this problem, Boussinesq 

(1877) proposed the approximation that the Reynolds stresses are linearly related to the trace-

less mean strain rate where the proportionality factor is called eddy (turbulent) viscosity, 𝜇𝑡 . 

Thus, in formula: 

𝜌𝑢𝑖
′′ 𝑢𝑗

′′         = 𝜇𝑡  
𝜕𝑢 𝑖
𝜕𝑥𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑗
𝜕𝑢 𝑘
𝜕𝑥𝑘

 −
2

3
𝛿𝑖𝑗 𝜌 𝑘 (3.19) 

where 𝛿𝑖𝑗  is the Kronecker‟s delta and 𝑘 is the turbulent kinetic energy. In the SA approach 

(Spalart-Allmaras) [82] the last term is ignored. The turbulent viscosity is consider an isotropic 

scalar quantity, but there are cases where this assumption is seriously violated, therefore the 

term approximation is appropriate. As a consequence, large deviations should be expected every 

time one of the following conditions is present: flows with sudden change of the mean strain 

rate, significant streamline curvature, rotation, stratification, secondary flows and boundary 

layer separation or reattachment. 

3.5 Spalart-Allmaras Turbulence Model 

To close the system resulting from the averaging a turbulence model needs to be adopted. The 

turbulence model selected for this work is the SA [82] one-equation model. This turbulence 

model, like all the others, allows the computation of the mean flow variables without calculating 

the full time-dependent flow field. Before proceeding to describe the turbulence model, it is 

important to justify why the SA turbulence model was chosen. 

The choice was dictated by three factors: available time, difficulty related to the linearisation 

process and the resulting flow-Jacobian conditioning. The available computation power is a 

constraint when it come to the choice of the turbulence model. For this time-averaged solution 

the SA model represent a reasonable compromise. The time consuming differentiation process 

can be facilitated by using AD, but the memory overhead while used in reverse mode may 

represent an issue. Even in this case, although the differentiation of more complex turbulence 

models such as the Chien 𝑘 − 𝜔  [83], Wilcox 𝑘 − 𝜔  [84] or Menter SST (Shear Stress 
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Transport) [85] is facilitated, one needs to realise that this is not enough to make them good 

candidates for a gradient-based optimisation loop. In fact, the most important reason why such a 

relative simple turbulence model was chosen, i.e. SA, lays on the resulting well-conditioned 

flow Jacobian, something difficult to achieve for more complex turbulence models. In fact, 

Widhalm et al. [36] noted that the poor conditioning of the resulting adjoint linear system of 

equations (see Chap. 2.3.2) resulting from using other more complex turbulence models, can be 

so severe, especially for 3D cases, to require the adoption of the frozen turbulence assumption 

which reduces the accuracy of the resulting gradients. In conclusion the SA turbulence offered 

the best option available to the author in terms of accuracy, consistency and stability. 

Regardless to the particulars of each turbulence model, it is possible to write all the turbulence 

models for compressible flows in a simple form as follows: 

𝐷(𝜌 𝜑)

𝐷𝑡
=
𝜕(𝜌 𝜑)

𝜕𝑡
+
𝜕(𝜌 𝑢𝑖𝜑)

𝜕𝑥𝑖
= 𝑆𝑃 − 𝑆𝐷 + 𝐺𝐷 (3.20) 

where 𝐷/𝐷𝑡  is the material derivative, 𝜑  is the transported quantity, 𝐺𝐷  is the Gradient 

Diffusion term, whereas 𝑆𝑃 and 𝑆𝐷 are the Production and Destruction Source term respectively. 

The compressible GD term reads as: 

𝐺𝐷 =  
𝜕

𝜕𝑥𝑖
 
𝜇𝑒𝑓𝑓

𝜍

𝜕𝜑

𝜕𝑥𝑖
   (3.21) 

where the sum of the laminar (or molecular) and turbulent (eddy) viscosity is generally referred 

to as effective viscosity, therefore 𝜇𝑒𝑓𝑓 = 𝜇𝑙 + 𝜇𝑡 . The SA one-equation turbulence model 

solves a convective-diffusive problem describing a transport equation for the eddy (i.e. 

turbulent) viscosity. For this turbulence model the 𝑆𝑃, 𝑆𝐷 and GD terms are defined as: 

𝐺𝐷 =  
𝜕

𝜕𝑥𝑖
 
𝜇𝑙 + 𝜇 

𝜍

𝜕𝜈 

𝜕𝑥𝑖
 + 𝜌

𝑐𝑏2

𝜍
 
𝜕𝜈 

𝜕𝑥𝑖
 

2

  (3.22) 

𝑆𝑃 = 𝜌𝑐𝑏1𝑆 𝜈  (3.23) 

𝑆𝐷 = 𝜌𝑐𝑤1𝑓𝑤  
𝜈

𝑑

 
 

2

 
(3.24) 
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where 𝜈  is the modified kinematic viscosity and d is the distance from the wall which is an 

important factor because when differentiated this is what causes the largest difference between 

frozen and non frozen assumption results as shown by Zymaris et al. [29]. The eddy (turbulent) 

viscosity is then defined as: 

𝜇𝑡 = 𝜌𝜈𝑡  (3.25) 

where the turbulent kinematic viscosity, 𝜈𝑡 , is obtained as: 

𝜈𝑡 = 𝑓𝑣1𝜈 , 𝑓𝑣1 =
χ3

𝜒3 + 𝑐𝑣1
3 , 𝜒 =

𝜈 

𝜈𝑙
 (3.26) 

After Eq. (3.20) is solved for 𝜈 , the eddy viscosity is computed as in Eq. (3.25). The definition 

of the 𝑆𝑃 and 𝑆𝐷 terms vary accordingly to the model (SA [82], SA-Edwards [86], SA-Strain-

Adaptive Linear [87]). In the SA model, the scalar velocity gradient uses an augmented 

definition of vorticity: 

𝑆 = 𝑆 +
𝑣 

𝑘2𝑑2
𝑓𝑣2 (3.27) 

where: 

𝑆 =
1

2
 
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
  (3.28) 

𝑓𝑣2 = 1−
χ

1 + χ𝑓𝑣1
 (3.29) 

The destruction term is defined through the wall-blockage function defined as: 

𝑓𝑤 = 𝑔  
1 + 𝑐𝑤3

6

𝑔6 + 𝑐𝑤3
6  

1/6

 (3.30) 

with the following limiter function: 

𝑔 = 𝑟 + 𝑐𝑤2  𝑟
6 −

𝑣 

𝑆 𝜅2𝑑2
  𝑟 =

𝜈 

𝑆 𝜅2𝑑2
 (3.31) 
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where 𝑑 is the distance from the wall and the rest of the empirical constants are defined as 

follows: 

𝜅 = 0.41, 𝑐𝑏1 = 0.1355, 𝑐𝑏2 = 0.622, 𝑐𝑤1 =
𝑐𝑏1

𝜅2
+

(1 + 𝑐𝑏2)

𝜍
, 

(3.32) 

𝑐𝑤2 = 0.3, 𝑐𝑤3 = 2, 𝑐𝑣1 = 7.1, 𝜍 = 2/3 

The version implemented in the DLR TAU-Code does not use wall functions (thus the 

dimensionless wall distance parameter 𝑦+ should be around 1), and is marched in time to a 

steady-state solution using the same implicit-step scheme used for the flow solver (see Chap. 

3.6). 

In a subsequent article Spalart and Rumsey [88] explained how to take care of numerical 

instabilities due to the negative value of the turbulent viscosity and in particular of constant 𝑓𝑣2. 

Alternatively, the formulation proposed by Edwards and Chandra [86] is a good workaround.  

From the series of DPWs (Drag Prediction Workshops) [89] it was established the strong 

dependency of the aerodynamic coefficients from the choice of the turbulence model. This is 

because the transonic aerodynamic flow-field is characterised by stagnation points, regions of 

significantly strong adverse and proverse (favourable) pressure gradients, and regions of laminar 

or turbulent attached/detached flows. What matters is the inherent inconsistency of any 

turbulent model to predict the points listed above. Of course, RANS, LES, hybrid RANS-LES 

and DNS simulation would most definitely improve the above-mentioned points prediction, but 

at much higher cost and the linearisation of this method would make the implementation even 

more challenging. 

3.6 Flow Solution Methods 

Real world phenomena, described by the continuous Navier-Stokes PDEs, have two peculiar 

features: they are continuous, hence they do not admit discontinuity and secondly they are so 

complex that an analytical solution is rarely available. The only technique available is to 

discretise the equations and apply an iterative algorithm to solve the resulting system. An 

approximation is sought hoping that it will be close to the continuous problem. 
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From here, CFD is the art of replacing the above-mentioned integral equations with their 

discretised algebraic form. By doing so, the continuous domain, where the flow variables are 

defined everywhere in the domain, is turned into a discretised form where each finite (mesh) 

node in the domain is now an approximation of the continuous neighbouring field. The spatial 

discretisation can be performed using FDM (Finite Difference Method), FEM (Finite Element 

Method) or FVM (Finite Volume Method), whereas the time discretisation can be performed 

either by using and explicit or implicit schemes. 

To avoid a mere description of the DLR TAU-Code [90] flow solver and of the plethora of 

methods available in the literature, the following chapters describe only the options used in this 

work. 

3.6.1 Spatial Discretisation 

It was mentioned that the continuous physical domain must be discretised. The most used 

technique is the FVM method for reasons that can be briefly reduced to formulation simplicity, 

mesh type independency and easy implementation. The spatial discretisation is done directly on 

the original primary grid, thus no coordinates transformation is needed. The FVM is based on 

the direct discretisation of the NS equations so that the conservation of mass, momentum and 

energy are also maintained by this spatial discretisation scheme. Furthermore, the Rankine-

Hugoniot relations, at solution discontinuities (such as a shockwaves), are satisfied. This is a 

desirable feature especially for transonic flows. 

There are two versions of the FVM, namely cell-centred (flow variables stored at the centre of 

the mesh) and cell-vertex (flow variables stored at the vertices of the mesh). The choice between 

the two is dictated by the type of mesh used, discretisation error, boundary treatment and time-

dependent flow. The one implemented in the DLR TAU-Code flow solver is the cell-vertex 

FVM which divides the computational domain into smaller elements (referred to as control 

volumes) where the flow variables are stored at the dual mesh (i.e. secondary cell) vertices (see 

Fig. 3.2). 

For each finite volume dual cell associated to any vertex, 𝑖, the discrete version of Eq. (3.1) 

takes the following form: 
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Ω𝑖
𝜕𝑊𝑖

𝜕𝑡
+ 𝑅𝑖 𝑊𝑖 = 0 (3.33) 

where 𝑊𝑖  is assumed to be constant inside the dual-cell domain (blue polygon in Fig. 3.2) and 

the flux terms are dominant in the same dual-cell domain. Eq. (3.33) states that, for each control 

volume in the computational domain, the rate of change of the state variables must be equal to 

the fluxes at the boundaries. The residual associated to each state variable 𝑊𝑖 , associated to its 

dual volume cell, is then computed as the sum of the viscous and inviscid fluxes on each 

boundary: 

𝑅𝑖 𝑊𝑖 =   𝑄𝑖𝑗
𝑖 − 𝑄𝑖𝑗

𝑣  𝑆𝑖𝑗

𝑁𝑓−1

𝑖=0

 (3.34) 

where 𝑁𝑓  is the number of dual-cell control volume faces. 

 

Figure 3.2  Primary and secondary grid for the cell-vertex FVM. 
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3.6.2 Temporal Discretisation 

All the problems presented here are assumed to be at a steady state. However, while solving the 

FANS system of equations, the solution is marched in time. There are essentially two options to 

march, namely via explicit or implicit methods. The difference between the two, in a nutshell, is 

that implicit methods allow to use a much larger time step size which in turn accelerates the 

convergence to a steady state solution, but require much more memory, whereas explicit 

methods require a smaller step size while using less memory. For time-averaged solutions 

involving large cases, implicit methods are widely used, however the memory consumption may 

become a problem. For this reason, another class of methods which lays between explicit and 

implicit strategies was recently proposed. One of these is the preconditioned LU-SGS, (Lower-

Upper Symmetric-Gauss-Seidel) [40, 91], implemented in the DLR TAU-Code which is the one 

used in this work. 

Strictly speaking preconditioning was developed for low-Mach number flows, however since 

most of the compressible flow codes require to solve a solution domain of mix compressible and 

incompressible flows, these have found wide applications also in high-speed aerodynamics. The 

reason why preconditioning is used lays on the large disparity between convected information 

travelling at the fluid speed and the local speed of sound. This is also reflected in the 

conditioning of the matrix (i.e. ratio between the largest and the smallest eigenvalue). By doing 

so, the eigenvalues are effectively changed, i.e. equalised, which is reflected in an acceleration 

to convergence [92]. 

The LU-SGS first starts decomposing the matrix 𝐴 representing the discretised equations into a 

lower, 𝐿, and upper, 𝑈, part such that 𝐴 = 𝐿 + 𝑈. The most important feature of this scheme is 

that there is no need to store explicitly the upper and lower matrices with an evident saving in 

memory. Then, the Gauss-Seidel algorithm is used to solve the resulting system. 

3.6.3 Flux Discretisation 

The other major obstacle is the evaluation of the convective and diffusive fluxes at the right and 

left side of each dual cell generated by the FV discretisation. The solution is known only at the 

cell vertices, therefore it is necessary to have a scheme capable to estimate their values at each 
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FV element interface. Fluxes can be discretised either using a central or upwind scheme. For all 

the computations presented in this thesis, the fluxes are discretised using a central method with 

scalar dissipation. 

The scheme used in this thesis is the JST (Jameson-Schmidt-Turkel) [93] scheme. Let us 

consider a dual cell volume where it is desired to compute the convective flux between node 𝑖 

and 𝑗  as depicted in Fig. 3.2. This can be expressed by the sum of the convective terms 

subtracted by the dissipative terms which are necessary for stability reason. This may be written 

as: 

𝑄𝑖,𝑗
𝑖 =

1

2
 𝑄𝑖

𝑖 + 𝑄𝑗
𝑖 ∙ 𝑛𝑖𝑗 −

1

2
𝐷𝑖𝑗
𝑖  (3.35) 

The first RHS contains the convective fluxes, whereas the second RHS contains the dissipation 

terms. This last is needed, as noted by Jameson [94], in order to avoid oscillation at the shock 

region and to damp high frequency oscillations in general, something that a second order 

scheme cannot achieve. This helps the residual to reach a steady-state. There are two methods to 

compute the dissipation term: scalar or matrix artificial dissipation, where the former is the one 

used in this work. On the other hand, viscous (diffusive) fluxes contrary to convective (inviscid) 

fluxes do not suffer from stability problem and for this reason, artificial dissipation is not added.  

3.6.4 Construction of the Gradient 

It is known that first order accurate solutions are too diffusive and lead to excessive growth of 

shear layers while solving a viscous flow field and this is the main reason why a second or 

higher accurate methods are used. To do so, it is necessary to compute the left and right state of 

the flow variable which is done via gradient reconstruction. This is by definition an 

interpolation of the flow variables inside each control volume. The gradient is then used to 

construct the viscous fluxes and for the turbulence sources as discussed in Chaps. 3.6.3 and 3.5 

respectively.  

There are generally two widely techniques used, namely the Green-Gauss and the least squares 

method [53]. The first one is preferred over the second because the least squares gradient 

reconstruction can be quite inaccurate for highly stretch cell such those used in viscous 
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computation. For each control volume Ω𝑖 , the Green-Gauss theorem allows to express a volume 

integral into a surface integral: 

 ∇𝑊𝑖

Ω𝑖

𝑑Ω𝑖 =  𝑊𝑖
𝜕Ω𝐼

𝑑𝑆𝑖  (3.36) 

This is then discretised on the control volume constructed using the FVM: 

∇𝑊𝑖 =  
1

2Ω𝑖
  𝑊𝑖 −𝑊𝑗  𝑛𝑖𝑗

𝑁𝑓−1

𝑖=0

 (3.37) 

3.6.5 Thin Shear Layer Approximation 

For external bodies, attached or mildly separated high Reynolds number flow, it is possible to 

talk of a thin boundary layer. The TSL (Thin Shear Layer) approximation was first introduced 

by Steger stated [95] in order to save computational time by considering only the viscous 

stresses normal to the wall and neglecting the others because are small in comparison.  

However, the main reason why this approximation was used was not to reduce the 

computational time, but to maintain consistency w.r.t. the flow-adjoint linearisation which was 

performed considering the TSL approximation. 

3.6.6 Multigrid 

There are many methods to accelerate the flow solution convergence. Two of the most used are 

by far preconditioning and multigrid [96, 97]. These two strategies do not mutually exclude 

each other. In this work, a LU-SGS with a LU preconditioning is employed along with a 

multigrid strategy. In particular, there exist two kinds of multigrid strategy, namely geometric 

and algebraic. 

The geometric multigrid strategy achieves low frequency error damping by working directly on 

the grids, whereas the algebraic multigrid does it by reducing the size of the implicit operator. 

Therefore, the former is governed essentially by the grid, whereas the latter is governed by the 
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physics. The geometric multigrid is the strategy chosen for all the simulations presented in this 

work because it is known to perform better for non-linear problems and it has the advantages of 

being independent from the equations being solved. 

The geometric multigrid strategy consists essentially of three steps: restriction, prolongation and 

smoothing step. The first one describes the action to transfer information from finer to coarser 

grid, whereas the vice versa is true for the second step. The third one describes the action of 

damping the small residual oscillations which are the primary target of the multigrid strategy. 

This is needed because, the low frequency residual errors are hardly damped by the flow solver. 

These low frequency oscillations can be well resolved on a coarser mesh because the 

wavelength, as compared to the grid space, is smaller. From here, the necessity to transfer back 

and forth the solution between different grids. 

3.7 Summary 

It was shown how the governing equations and the solution methods were chosen in relation to 

the type of flow-field being solved, i.e. transonic flow. This consists of a mix of subsonic and 

supersonic regions which is challenging to solve due to the presence of shocks and the disparity 

between different local Mach numbers. Shocks, in particular, are considered important because 

of their interaction with the boundary layer where modelling viscous phenomena using the 

Navier-Stokes set of equations is of paramount importance. 

In this chapter the flow governing equations were introduced along with their spatial and 

temporal discretisation techniques were briefly discussed. It was discussed how the multigrid 

strategy helps accelerate the convergence and how the disparity between different local Mach 

numbers requires to use a preconditioning technique. 

The one-equation SA turbulence model was described and the choice was justified based on a 

compromise between computational time, differentiation difficulty and flow Jacobian 

conditioning. 
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Chapter 4   Volume Mesh Deformations 

4.1 Introduction 

In Chap. 2, it was highlighted how the discrete adjoint framework cannot avoid the 

differentiation of the mesh movement. In order to do so, it is first necessary to choose a volume 

mesh deformation technique which is the focus of this chapter. 

To address this research question, a discussion is first provided to explain why mesh movement 

is used instead of mesh regeneration. This is then followed by a brief review of the existing 

mesh movement methods where the pros and cons of each method are briefly analysed. 

Subsequently, the DGM is introduced and a reasoning why it was chosen as the main 

investigation tool is given. The DGM [8] uses an explicit mapping technique, and as the name 

suggests, it is based on the Delaunay map. The original method and a modification are also 

discussed. 

In order to highlight the advantages of the DGM, another implicit mesh movements, namely LE 

is presented. The comparison is performed in order to highlight both computation time and 

memory saving offered by the DGM. 

The chapter concludes with a summary of the most important findings. 

4.2 Structured versus Unstructured Mesh 

There are two types of meshes available: structured and unstructured. All the other types are an 

hybridisation of these two. A mesh is called structured when each volume cell has the same 

number of neighbouring nodes and the connectivity can be retrieved using a two or three 

ordered indices. On the other hand, if any of the two above mentioned requirements are not 

satisfied the mesh is then defined unstructured. 

The chief reason why researchers are putting a lot of effort to make unstructured mesh codes is 

that, as noted by Newman et al. [98] triangles (2D) and tetrahedra (3D) are the simplest 

geometric elements known to posses area and volume respectively, capable of resolving an 

irregular shape. Since triangles and tetrahedra can be generated automatically in a fairly easy 
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way, this explains the reason why structured grids lag behind in terms of flexibility and 

automation. However, this makes the 𝑁𝑆𝑀  and 𝑁𝑉𝑀  for unstructured grids much larger when 

compared to structured grids. This is briefly shown in Tab. 4.1 for the W1 wing [99] depicted in 

Fig. 4.1. 

 

Figure 4.1  Comparison between two mesh types for the W1 wing. 

Although unstructured solver are encumbered with additional expense both in memory and 

computing time, this has to be balanced with the capability to provide a solution for complex 

geometries [96, 89]. Referring to Tab. 4.1, it is clear that even for a very simple wing, structured 

and unstructured mesh register differences of one order of magnitude in terms of both 𝑁𝑆𝑀  and 

𝑁𝑉𝑀 . These, as discussed in Chap. 2.4.1, ultimately decide the size of the Jacobian [𝜕𝑿/𝜕𝑺]. 

𝐶𝑝  

Structured mesh Unstructured mesh
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Furthermore, the great disparity both in the 𝑁𝑆𝑀  and 𝑁𝑉𝑀  is also reflected in the scatter of the 

coefficient of drag data (see Tab. 4.1) computed at Mach number equal to 0.76 and fixed lift 

coefficient of 0.5. 

Table 4.1  Comparison between structured and unstructured mesh. 

Geometry Mesh type 𝑁𝑉𝑀  (Mil) 𝑁𝑆𝑀  (Mil) 𝐶𝐷 

W1 

Unstructured 3.71 0.31 0.0065278 

Structured 0.61 0.023 0.0060443 

4.3 Mesh Deformation versus Mesh Regeneration 

In aerodynamic optimisation an improvement of the aerodynamic surface is generally sought. 

At each iteration, there is first a change in the surface mesh generally governed by the 

parameterisation tool, followed by a change in the volume mesh which can be done either by 

regeneration or deformation. The discussion presented in this chapter concentrates on the 

second option for which there are many methods available as briefly depicted in Fig. 4.2. To 

justify this choice, different metrics such as order of magnitude of the deformations, 

consistency, differentiability, and computation time need to be analysed one by one. 

Generally, if the mesh deformation strategy does not significantly impact the flow features and 

aerodynamic coefficients accuracy, mesh re-generation is not the favoured option. This is 

corroborated by the trend seen in many aerodynamic optimisation applications published in the 

literature, such as in Nielsen and Park [37], Mader et al. [25] and Mavriplis [39]. In fact, mesh 

deformation is still computationally much cheaper when compared to mesh re-generation. This 

is very important for small and repetitive changes commonly found in a gradient-based 

optimisation exercises. However, it is also recognised that for larger deformations, where the 

change in the near-wall orthogonality is significantly affected, mesh generation would become 

the preferred option. 
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Maintaining the same grid connectivity is of paramount importance to maintain consistency 

between each design optimisation iteration [100, 101]. On the other hand, mesh regeneration, 

especially for unstructured grids, changes the point discretisation which in turn inevitably leads 

to different truncation errors. On the other hand, for structured mesh regeneration methods, such 

as those based on TFI (Trans Finite Interpolation), the connectivity is not necessarily changed. 

In fact, if the TFI parameters stay constant, the grid topology is not changed and consistency is 

therefore maintained. 

Resorting to unstructured grid re-generation adds considerable complexity from the linearisation 

point of view [102, 103]. In fact, the regeneration process contains many routines that are either 

non differentiable or too complex to differentiate. Although restricted to structured grids only, 

some examples of mesh routines differentiation have been published in the literature, as 

discussed in Chap. 2.5.5. 

Lastly, unstructured and structured mesh generations are relatively more time consuming and 

require considerable manual adjustments when compared to mesh movements. Aerodynamic 

optimisation requires repetitive small adjustments of the lifting surface, thus employing a fast 

mesh movement that is able to retain the mesh connectivity is of vital importance. 

4.4 Volume Mesh Deformation Methods 

In order to introduce the DGM, a classification of the mesh movements is first proposed as 

depicted in Fig. 4.2. There are many models available and wide disparities in robustness and 

efficiency exist. From the surveyed literature review, it has emerged that there are many ways to 

classify different mesh movement techniques. The classification presented here is such that 

there are cases where a single approach may belong to more than one category. Volume mesh 

updates can be classified in three main groups: 

1. Classification based on the concept 

2. Classification based on the raw data 

3. Classification based on the type of equations 
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The classification based on the concept the mesh movements emulate comprises of physical 

analogy and elliptic smoothing methods and are based on the connectivity. One of the most 

difficult aspect of these methods is that the resulting equations need to be discretised and the 

resulting system of equations is not easily solved. 

The second type of classification describes on what the methods really work on, meaning if they 

work directly on a point-based structure (i.e. cloud of points) where only the Cartesian 

coordinates are necessary or if they are based on the edge connectivity. Examples of the latter 

are spring [104], LE [105] analogy, elliptic smoothing [106] and quaternion [101]. Connectivity 

becomes very important for unstructured mesh movement methods since the ratio between the 

number of edges over the volume mesh nodes can vary significantly. Examples of point-based 

scheme are RBF [107], DGM [8] and IDW [108]. One of the advantage of points-based 

methods is that they can be easily parallelised, whereas for those based on the connectivity the 

parallelisation is more involved due to the index order, pre-conditioning and multigrid strategy 

adopted as noted by Mavriplis and Yang [109]. 

 

Figure 4.2  Volume mesh deformation methods classification. 

Finally, the third one reflects how the equations are casted from a mathematical point of view, 

meaning whether the volume mesh node updates are explicitly or implicitly defined. In other 

words (see also Chap. 2.5.3), explicit methods are defined as those where the volume mesh node 

updates are provided without having to rely on an iterative procedure, otherwise are defined as 

implicit methods. This factor is the one that ultimately determines the cost of the method in 

Volume mesh update

Mesh regeneration Mesh deformation

Classification based 

on the concept

Classification based 
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Classification based 
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Explicit ImplicitEdge-based Point-basedPhysical analogy Elliptic smoothing
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terms of memory or CPU time requirements. In fact, explicit methods require much less 

computation power because they avoid the solution of a large and (generally) stiff linear system 

of equations. On the down side, they are not very robust when it comes to large deformation. 

Another point is the ability of implicit methods, contrary to explicit methods, to locally adapt 

the mesh without affecting the entire volume mesh. 

Mesh movement based on the elliptic equations was extensively used in the past and an example 

can be found in Helenbrook [106]. The most used elliptic equation is the Laplacian, which 

unfortunately is able to produce only small deformation although a modification was proposed 

by Lohner and Yang [110] to improve its robustness. Blom [111] compared this method against 

the spring analogy and concluded that the latter seems to be more robust. 

A much more sophisticated mesh movement was proposed by Samareh [101] based on the 

quaternion algebra. The method is still based on mesh connectivity, but offers a superb mesh 

orthogonality for both small and large deformations. 

TFI [112] can also be used as an algebraic explicit mesh movement and has found many 

applications for structured meshes. It is based on the linear interpolation of the boundaries and 

internal nodes along each structured mesh lines. Its biggest advantage is its speed, whereas its 

disadvantage is that mesh orthogonality is not guaranteed. 

Batina [104] developed a method where the connectivity of the volume mesh nodes is modelled 

through a series of springs representing the stiffness of the mesh. This was then improved by 

Farhat et al. [113] who added a torsional stiffness to the formulation. Subsequently, the method 

was further improved by Murayama et al. [114] by adding a correction based on the relation 

between the springs and the angles between the facets. In terms of relative performance Nambu 

et al. [102] compared it against the LE and Liu et al. [8] against the DGM. 

Witteveen and Hestre [108] proposed another algebraic explicit method based on the IDW 

(Inverse Distance Weighting) interpolation. The method was tested against the RBF where it 

was shown to have a large saving in computation cost and a comparable deformed mesh quality. 

On the down side, like for all the explicit algebraic methods, the constant parameters used need 

to be chosen and are subjected to fine tuning for best performance. Another downside is that the 

method scales linearly with the mesh dimension and as the mesh is increased the method 
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becomes expensive, but still less expensive than RBF. A reduction in the cost was achieved with 

a modified formulation proposed by Luke et al. [115]. 

Hybrid methods are defined as those that combine two different strategies together. One 

example of this blending was proposed by Lefrançois [116] where the LE was coupled with a 

fast interpolation procedure that improves the computation time. Something very similar was 

done by Kenway et al. [117] where the authors addressed the high computation cost of LE by 

coupling the method with an algebraic method. Another example is proposed by Wang et al. 

[118] where the authors addressed the DGM orthogonality issue by combining it with the RBF 

method.  

4.5 Mesh Movement Based on the Delaunay Graph Method 

(DGM) 

This chapter describes the most important features of the DGM [8]. The method is first 

introduced by describing the principle it is based upon followed by a step-by-step description of 

how it works. Furthermore, a modification that addresses some of the DGM robustness issues is 

described. 

4.5.1 The Delaunay Map 

To introduce how the Delaunay triangulation in 2D and tetrahedralisation in 3D are computed, it 

is first necessary to justify why the Delaunay method was chosen as the main investigation tool. 

Decomposing surface and volume objects into smaller polygons, a process known as object 

discretisation, has always been the focus of graphic computational geometry. For instance, a 

surface can be approximated by decomposing it into smaller and simpler planar polygons. This 

can be done by inserting new points or by creating the map using the given cloud of points. The 

latter is the option discussed here. 

The simplest known map is a triangulation in 2D and a tetrahedralisation in 3D. The discussion 

is restricted to these two options. There are many methods available in the literature. Žalik and 

Lamot [119] suggested that these can be broadly classified into three groups (see Fig. 4.3, 

adapted from Ref. [119]): algorithms based on the diagonal insertion, on the Steiner points 
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insertion and on the Delaunay criterion. It is not the intention of the author to give a full account 

of these methods, rather to give an impression of the different available strategies. However, 

some important points need to be pointed out. The main differences between these three 

methods lay on the number of points considered and on the algorithm used. A first general 

comparison is depicted in Fig. 4.3. 

In order to justify why the Delaunay map was chosen as the main investigation tool, these 

techniques are compared against the number of elements generated and the quality of the 

resulting map as reported in Tab. 4.2. Furthermore, a comparison of the differences between 

these three strategies in terms of shared and non shared segments is depicted in Fig. 4.4. 

Algorithms based on the diagonal insertion are those that, as the name suggests, given a set of 

points, the map, i.e. triangulation, is made by the recuserviley insertion of diagonals. Since its 

implementation does not have any routine put in place to check the quality of the elements, it is 

expected to provide a poor discretisation quality [119]. 

Algorithms based on Steiner points are those where additional elements are added to support a 

good quality element index. They are execpted to perform better than those based on either 

diagonal insertion or Delaunay criterion in terms of generated elements quality. However, the 

final number of points is greater than the original cloud of points [119]. 

The Delaunay criterion states that the circum-circle (-sphere) for each triangle (tetrahedron) 

should not include other points except those constructing the element. By using the empty circle 

criterion, the best map possible for the given initial points distribution can be obtained [119]. 

Before embarking in a detailed derivation of the DGM mesh movement, it is the author‟s 

opinion that it would be beneficial to anticipate some of its requirements. Firstly, the given 

cloud of points must be part of the map, or in other words no extra points should be added and 

secondly a good quality of the triangulation/tetrahedralisation should be attained. These two 

requirements express the need to have the best possible elements quality withouth adding any 

points other than those provided. Therefore, these requirements are not far from those 

mentioned for a pure cloud of points discretisation. In fact, the initial points are indeed the 

domain boundary points of interest and that the quality of the elements is important in terms of 

maximum allowed mesh movement and mesh sensitivity requirements.  
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Figure 4.3  Conceptual representation of different triangulation strategies. 

 

 

Table 4.2  Comparison between the geometry discretisation features and the DGM-based mesh 

movement requirements. 

Methods 

Geometry  

discretisation features 

Mesh movement 

requirements 

No. of  

points 

Element  

quality 

No. of 

points 

Element 

quality 

Diagonal insertion 

(see Figs. 4.3 (a) 

and 4.4 (a, c)) Equal to the original 

cloud of points 

Generally not good Fulfilled Not fulfilled 

Delaunay 

(see Figs. 4.3 (b) 

and 4.4 (b, c)) 

The best if no extra 

points are added 
Fulfilled Fulfilled 

Steiner point 

(see Figs. 4.3 (c) 

and 4.4 (c, d)) 

Greater than the 

original cloud of 

points 

Very good 
Not 

fulfilled 
Fulfilled 

  

Original point Steiner point

Diagonal insertion

(a)

Delaunay 

(b)

Steiner

(c)

Generic segment connecting 

two vertices 
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Figure 4.4  Visualisation of the differences between the Diagonal insertion, the Delaunay and 

the Steiner triangulation. 
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It is then concluded that the Delaunay method offers the best option available as briefly shown 

in Tab. 4.2. The implementation used in this work is based on the method published by Barber 

et al. [120] and implemented in the Qhull library.  

The Delaunay‟s principle is also used in various mesh generation techniques, but this topic is 

out of scope and the reader is referred to Mavriplis [121] for an exhaustive review on this 

matter. 

4.5.2 Mapping the Mesh via Delaunay Mapping 

The computational domain is generally made up by solid, symmetry and farfield boundary 

nodes. The choice of which boundary types to include in the Delaunay map is defined a priori 

and influences the resulting deformed mesh. A few requirements must be respected in this 

process. Firstly, all the points at the solid boundaries are effectively Delaunay tetrahedron 

vertices because it is desired to have the sensitivity w.r.t. the entire solid wall, a concept that 

will be made clearer in Chap. 5.3. Secondly, at least one Delaunay tetrahedron vertex is 

generally chosen to be a farfield node with the exclusion of those laying on the symmetry plane. 

If the points at the symmetry plane are included, they would then become Dirichlet‟s boundary 

conditions. This is not recommended because the symmetry plane points behave effectively as 

the other volume mesh points and as such, depending on the surface mesh deformations, they 

need to be displaced accordingly. This would not be possible if they are treated as a Dirichlet‟s 

boundary conditions. Furthermore, additional points can be added in between as shown in Fig. 

4.5 where the ultimate goal is to reduce the skewness of the Delaunay elements. 

As it was discussed in Chap. 4.5.1, the Delaunay criterion allows to state that there exists a 

subdivision of a given cloud of points (solid wall, farfield and additional extra points) that 

maximises the smallest angle. Let us assume that the Delaunay map has been computed, since 

each mesh point is inside one of the Delaunay tetrahedra, a one-to-one map between boundaries 

and volume (internal) mesh nodes is constructed. To this regards, in Fig. 4.5 (close up views on 

the right) the area within the solid wall is effectively triangulated, but these Delaunay elements 

are not considered because no volume mesh point is present there.  
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Figure 4.5  Two different strategies to build the Delaunay map. 
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Referring to Fig. 4.6, points 𝐷1,2,3,4 are the Delaunay tetrahedron vertices. Point 𝐷4 is assumed 

to be a farfield boundary mesh node, whereas the others are surface mesh nodes. Point 𝑃, is an 

arbitrary volume mesh node placed inside the Delaunay tetrahedron, whereas point 𝑃′ is its new 

spatial position after a deformation at the wall has taken place. This is shown displacing point 

𝐷2, depicted in Fig. 4.6 (a), and maintaining fixed points 𝐷1,3,4. Point 𝐷2 in its new position, i.e. 

𝐷2
′ , can be seen in Fig. 4.6 (c) and in Fig. 4.7 where the Delaunay element is overlapped on the 

actual mesh. 

The volume ratio coefficients are computed after Liu et al. [8] as: 

𝑒𝑖 =
𝑣𝑖
𝑉

 , 𝑓𝑜𝑟 𝑖 = 1,2,3,4 (4.1) 

where 𝑣𝑖  are the sub-volumes depicted in light orange colour in Fig. 4.6 (b) and 𝑉  is the 

Delaunay element volume depicted in light blue colour in the same figure. Therefore, by 

geometric construction it holds: 

 𝑒𝑖

4

𝑖=1

=  
𝑣𝑖
𝑉

=
𝑣1

𝑉
+
𝑣2

𝑉
+
𝑣3

𝑉
+
𝑣4

𝑉
= 1

4

𝑖=1

 (4.2) 

The spatial position of each mesh point is then defined as: 

𝑥𝑝 =  𝑒𝑖𝑥𝐷𝑖

4

𝑖=1

 

(4.3) 𝑦𝑝 =  𝑒𝑖𝑦𝐷𝑖

4

𝑖=1

 

𝑧𝑝 =  𝑒𝑖𝑧𝐷𝑖

4

𝑖=1

 

where 𝑥𝐷𝑖 , 𝑦𝐷𝑖 , 𝑧𝐷𝑖  are chosen to be at the computational domain boundary and are part of the 

Delaunay graph. After a deformation has taken place, the new point Cartesian coordinates are 

computed using the constant volume ratio coefficients, 𝑒𝑖 . Therefore, the new spatial 

coordinates can be found as: 
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𝑥𝑝
′ =  𝑒𝑖𝑥𝐷𝑖

′

4

𝑖=1

 

(4.4) 𝑦𝑝
′ =  𝑒𝑖𝑦𝐷𝑖

′

4

𝑖=1

 

𝑧𝑝
′ =  𝑒𝑖𝑧𝐷𝑖

′

4

𝑖=1

 

In an optimisation loop, the 𝑥𝐷𝑖
′ , 𝑦𝐷𝑖

′ , 𝑧𝐷𝑖
′  updates are provided by the surface parameterisation 

tool chosen, and since the volume coefficient ratios stay constant it is possible to find the new 

volume mesh spatial coordinates 𝑥𝑝
′ , 𝑦𝑝

′ , 𝑧𝑝
′  without performing any additional calculation. 

Using the matrix and vector notation this can be written as: 

 𝑿 = [𝑬] 𝑩  (4.5) 

where matrix [𝑬]  has dimensions equal to [𝑁𝑉𝑀 × 𝑁𝑆𝑀 ]  containing all the volume ratio 

coefficients and  𝑩  is the vector containing the Delaunay boundary vertices. This generally 

comprises of different elements such as  𝑩 =  𝑩𝑓𝑓 ,𝑩𝑠𝑤   where  𝑩𝑠𝑤   represents the Delaunay 

vertices that coincide with the solid wall mesh nodes, therefore  𝑩𝑠𝑤  ≡ {𝑺} , and  𝑩𝑓𝑓   

represents the Delaunay vertices that coincide with the farfield mesh nodes. 

To summarise, the following pseudo-code is provided to guide the construction of matrix [𝑬]: 

1. Read-in the surface boundaries 

2. Perform the Delaunay mapping as described in Chap. 4.5.1 

3. Store on memory to which Delaunay element each volume mesh belongs to 

4. For each internal volume node, 𝑋𝑖 ∈ {𝑿} with 1 ≤ 𝑖 ≤ 𝑁𝑉𝑀 : 

4.1 Retrieve the link between Delaunay element and volume mesh found at point 3 

4.2 Construct the four sub-volumes by connecting  𝑋𝑖  with the Delaunay element 

vertices found at point 4.1 

4.3 Compute volume and sub-volumes associated to 𝑋𝑖   

4.4 Compute the four sub-volume ratios as per Eq. (4.1) using the values computed at 

point 4.3 



66 

 

4.5 Store for each 𝑋𝑖  the four coefficients computed at point 4.4 

4.6 Repeat the steps from 4.1 to 4.5 till 𝑖 = 𝑁𝑉𝑀  

While executing the pseudo-code presented above there is one important point that needs to be 

addressed in more details. At step No. 2, the Delaunay map is performed on the provided cloud 

of points which means that a triangulation is effectively performed also inside the aerofoil as 

clearly shown in Fig. 4.5. However, this map is not directly used by the DGM method. In fact, 

at step No. 3, no volume mesh points are inside any of the Delaunay element triangulating the 

inner part of the aerofoil. 

One of the disadvantages of this method is its inability to control the mesh orthogonality at the 

wall which is due to the initial Delaunay elements quality. By adding some auxiliary boundary 

points, Xiao et al. [122] improved the initial Delaunay map and the orthogonality at the wall. 

In terms of applications, the method was applied by McDaniel and Morton [123] to the 

movement of a control surface and by Durrani et al. [124] to a flapping wing. The method was 

compared by Liu et al. [8] against the spring analogy and by Sun et al. [125] against the 

barycentric coordinates. Finally, the method was applied by Li et al. [126] for a complex aircraft 

optimisation using a non–gradient optimisation framework. 
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Figure 4.6  Construction of a Delaunay element (a) along with its sub-volumes (b) and a deformation of the Delaunay map (c). 
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Figure 4.7  Construction of a Delaunay element overlapped to the computational mesh. 
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4.5.3 Construction of the Supporting Box 

There are two main challenges in the implementation of the DGM-based mesh movement, 

namely the distribution and the quality of the Delaunay map which have an impact on the 

quality of the deformed mesh elements. These requirements may seem to be the same, but there 

are cases where even a Delaunay map with a good quality index does not provide the 

appropriate distribution of the Delaunay vertices from a grid sensitivity stand point of view. 

These issues are addressed and a solution discussed. 

The Delaunay map based on the Qhull library works very well for simple geometries, such as 

any symmetric profile, but when it comes to complex aero shapes the 

triangulation/tetrahedralisation can be challenging and in some cases can reduce the amount of 

feasible deformations. An example of such a situation is depicted in Fig. 4.8 (left) where it is 

evident that the quality of the Delaunay map is not optimal close to the trailing edge. In order to 

improve the quality of some highly skewed Delaunay elements care should be taken to ensure 

that the map is performed only between the surface and the volume mesh nodes and not solely 

from wall-to-wall. 

The novel idea proposed in this work is to construct a supporting box which is made from a 

series of extra points that closely follow the shape. By doing so Eq. (4.5) will not be changed in 

its fundamental formulation, however the Delaunay boundaries are augmented by the addition 

of the supporting box‟s points. Thus, {𝑩} =  𝑩𝑓𝑓 ,𝑩𝑠𝑤 ,𝑩𝑠𝑏  , where  𝑩𝑠𝑏   contains the 

Delaunay vertices that coincide with the supporting box nodes. The supporting box points are 

treated like the far field points in that they are maintained fixed. This is true for all the test cases 

presented in this work. In order to make a distinction between the two formulations, whenever, 

the supporting box is used, the DGM will be referred to as mDGM where the m stands for 

modified. The effect, in terms of deformed volume mesh nodes (i.e. a reduced subset), can be 

seen in Figs. 4.5 and 4.17. This improves the quality of the Delaunay map as shown in Fig. 4.8 

(right) and avoids the surface-to-surface map which in turn solves the distribution issue. 

There are three requirements that must be considered in this process. The first requires the 

placement of the supporting box at a distance that allows a reasonable amount of deformations. 

The second requires consideration of all the volume mesh nodes where the gradient {𝑑𝐼/𝑑𝑿} is 

not null as described in more details in Chap. 5.7.4. Thirdly, if the supporting box is placed too 
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far away from the wall, this method no longer works because the corrected area/volume will be 

seen as convex hull again and therefore would be triangulated/tetrahedralised. 

There are mainly four options available to construct or select the supporting box points, namely 

manual construction, using the normal to project each surface mesh point outward and selection 

of some suitable volume nodes for structured and unstructured mesh. 

The first method available is to manually place the supporting box points where they are most 

needed. A process which is time consuming for complex shapes and can be done only a 

posteriori after a first triangulation/tetrahedralisation is performed, and the critical areas are 

indentified. An example is offered in Fig. 4.5. 

The second option is to use the normal to the wall to project each surface mesh point outward. 

Although the procedure can be easily automated, there are two drawbacks with this technique. 

The first one is when sharp edges are considered, such as at the trailing edge where the normal 

is always ill-defined. The second issue is when complex cases are considered such as wing-to-

fuselage intersections where the points, constructed using the normal to the fuselage, go over 

the points constructed using the normal to the wing. In this case, a complicated routine to 

collapse the points should be used. For these reasons, this technique is limited to simple 2D 

cases as depicted in Fig. 4.8. 

The third and fourth options are to carefully select some suitable points from the mesh. Two 

techniques are presented here. The first one, depicted in Figs. 4.9 and 4.10, makes use of the 

buffer layer featured by hybrid meshes, whereas the second one, depicted in Fig. 4.11, applies 

only to structured meshes where one can “walk” away from the wall and obtain the supporting 

box at any distance. Regardless to the mesh types, the selected points follow the solid boundary 

shape offering a sort of “second skin”. Some examples are depicted in Figs. 4.12, 4.13 and 4.14 

for different type of meshes. 

Tab. 4.3 reports how the 𝑁𝑆𝐵  (number of supporting box points) compares with the 𝑁𝑆𝑀 . The 

construction of the supporting box by manually placing extra points in strategically important 

areas is the only technique for which the 𝑁𝑆𝐵 ≠ 𝑁𝑆𝑀 . It is clear that an optimum distribution is 

obtained when there is a one-to-one match, hence the 𝑁𝑆𝐵 = 𝑁𝑆𝑀 . 
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Table 4.3  Comparison of the methods available to construct the supporting box. 

Method Mesh type Pros Cons 

Selection of the 

some suitable 

volume mesh 

points 

Hybrid 

Can handle complex 

3D shapes 

𝑁𝑆𝐵 = 𝑁𝑆𝑀  

Cannot control the distance 

from the wall unless 

regenerating the mesh 

Structured 

Can control the 

distance from the wall 

without regenerating 

the mesh 

𝑁𝑆𝐵 = 𝑁𝑆𝑀  

Cannot handle complex 3D 

shapes unless by carefully 

selecting the shared points 

between different mesh blocks 

Manual 

construction 

Hybrid and 

structured 

Easy to implement 

𝑁𝑆𝐵 ≠ 𝑁𝑆𝑀  

Difficult to implement for 

complex cases 

Using the wall 

normal 
𝑁𝑆𝐵 = 𝑁𝑆𝑀  

Cannot handle complex 3D 

shapes due to the definition of 

the surface normal at sharp 

edges 
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Figure 4.8  Triangulation of a the RAE 5243 profile without (left) and with the supporting box (right). 
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Figure 4.9  Representation of the procedure to select the supporting box nodes for a tri-dominant hybrid mesh. 
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Figure 4.10  Representation of the procedure to select the supporting box nodes for a quad-dominant hybrid mesh. 
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Figure 4.11  Representation of the procedure to select the supporting box nodes for a fully structured mesh. 
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Figure 4.12  Isometric view of the supporting box for a tri-dominant hybrid mesh. 
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Figure 4.13  Isometric view of the supporting box for a quad-dominant hybrid mesh. 
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Figure 4.14  Isometric view of the supporting box for a fully structured mesh. 
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4.6 Mesh Movement Based on Linear Elasticity 

One of the best known and widely used method to move the mesh is the LE analogy. This 

method emulates the elastic body using an edge-based structure where the volume mesh update 

is defined implicitly. In the LE mesh movement, the discretised computational domain obeys 

the LE equation which states that the divergence of the stress sensor, 𝝈, must be equal to the 

external applied forces, 𝑭: 

∇ ∙ 𝝈 = 𝑭      on Ω (4.6) 

where on the boundaries the general displacement vector is defined as  𝑼 (= {𝐒}) effectively 

imposing a Dirichlet‟s boundary condition. Therefore, the external force is not required. The 

relation between the stress tensor and the strain tensor, 𝜺, is as follows: 

𝝈 = 𝜆𝑇𝑟 𝜺 𝑰+ 2𝜇𝜺 (4.7) 

where 𝑇𝑟 is the trace, 𝑰 the identity tensor, whereas 𝜆 and 𝜇 are the Lamé constants defined 

respectively as: 

𝜆 =
𝜈𝐸

 1 + 𝜈 + (1− 2𝜈)
 (4.8) 

𝜇 =
𝐸

2 1 + 𝜈 
 (4.9) 

where the Young‟s modulus 𝐸 and the Poisson‟s ratio 𝜈 generally take values equal to 𝐸 > 0 

and −1 < 𝜈 < 0.5 respectively. In order to maintain the near wall mesh orthogonality as intact 

as possible, the elements close to the wall are stiffened in order to allow only a rigid body 

motion, whereas larger elements, which are placed away from the wall, are allowed to 

accommodate a greater part of the deformation. This is done by enforcing a different value of 𝐸 

over the computational domain. Stein et al. [105] proposed to use an elasticity modulus 

inversely proportional to each cell volume, Yang and Mavriplis [109] proposed to use a value 

inversely proportional to the distance from the wall, Stein et al. [105] corrected it with a 

stiffness proportional to the mesh deformation in an incremental fashion, and finally Yang and 

Mavriplis [127] used a distribution optimised via an adjoint technique. Another remarkable 

modification was proposed by Dwight [128] for large deformations, where the author used the 
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Lagrangian strain tensor instead of the commonly used liner kinematic law. This modification 

resulted in a more robust mesh movement which allows one to impose much larger mesh 

deformations well beyond the point where mesh regeneration become necessary. The one 

implemented in the DLR TAU-Code is based on an elasticity modulus inversely proportional to 

each cell volume. 

Although the strain tensor can be related non-linearly to the gradient of the displacement vector, 

the version implemented in this work uses the linear version. This can be expressed as: 

𝜺 =
1

2
 ∇𝑼+  𝛻𝑼 𝑇  (4.10) 

Furthermore, stress and strain tensors can be written in compact form as: 

 𝝈 =  𝑲 {𝜺} 
(4.11) 

 𝜺 =  𝑨 {𝑼} (4.12) 

where  𝑲  is the elasticity matrix and  𝑨  is the kinematic matrix. Stress, strain and 

displacement vectors can be explicitly written as: 

 𝝈 =
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  (4.13) 

where 𝜍11,22,33 and 𝜍12,23,31 are the normal and shear stress components respectively. On the 

other hand, 𝜀11,22,33 and 𝜀12,23,31 are the respective strains. Furthermore, the displacement at the 

wall is traditionally given the name  𝑼 , but to comply with the nomenclature used in this work, 

it follows that  𝑼 =  𝑺 . Thus: 
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(4.15) 

Eqs. (4.11) and (4.12) are then combined together to yield: 

 𝑲  𝑿 =  𝑺  (4.16) 

It is clear that the volume mesh coordinates are defined implicitly. In fact, the elasticity matrix 

needs to be inverted. Eq. (4.16) is then cast in FEM form and discretised using a Galerkin 

method. The FEM shape function is considered to be linear on the grid elements because it is 

assumed that the discretisation of the computational domain is also appropriate to resolve the 

LE equations. Alternatively, one can use the FVM as shown by Biedron and Thomas [129]. The 

resulting linear system of equations is then solved using a restarted ILU preconditioned GMRES 

strategy. 

Its main advantage is the wide range of applications and robustness that comes at a price of high 

computation cost. This last one is particular evident all the time the method is augmented with a 

stiffening procedure. Widhalm et al. [36] noted that the resulting stiffness matrix is sparse and 

stiff. It is sparse because for unstructured mesh the connectivity is not ordered and can reach 

high values. On the other hand, it is stiff because the viscous cells have a high-aspect ratio. This 

problem is generally addressed by breaking the full displacement to small subsequent steps, but 

this eventually increases the computation time. Barrala et al. [130] compared the method against 

the IDW and concluded that, although for several test cases the two methods were comparable, 

for thin viscous grids the LE appears to be better. 

4.7 DGM-based Mesh Movement Performances Assessment 

The assessment of the DGM-based mesh movement performance is done on four levels. The 

first one compares the DGM against the LE in terms of memory and CPU time, the second one 
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studies how the cost associated with the DGM scales with the 𝑁𝑉𝑀 , the third analyses the 

supporting box influence and finally the last one studies how the deformed grids differ when 

different mesh movement strategies are used.  

In order to justify why the DGM was chosen as the main investigation tool a brief comparison 

against the LE is reported in Tab. 4.4. The LE was chosen because it has been widely 

recognised to be one of the most robust method available [109] and in addition, like the DGM, 

is able to provide the gradient of the objective function w.r.t. the entire surface mesh in its 

differentiated form as explained in Chap. 5.5. 

As will be made clearer in Chap. 5.2, one of the goals of this work was to find an efficient 

differentiated mesh movement. To do so, the available mesh movements were surveyed and the 

DGM was chosen because it is based on an algebraic explicit method. This allows the method to 

be used without worrying either about the mesh type or the CPU time cost associated with the 

mesh size. These two features have implications both in the mesh movement and in the 

differentiated mesh movement. On the downside, it is however recognised that LE takes much 

better care of the near-wall orthogonality. 

Table 4.4  Comparison between DGM and LE. 

Method Pros Cons 

DGM 

Closed form formulation 

Low CPU time and memory consumption 

Ideal for repetitive movement 

Provides the gradient of the objective 

function w.r.t. the surface mesh when 

differentiated 

Can be easily parallelised 

Non physical 

Pre-processing time is not negligible 

Mesh orthogonality is not preserved 

Global mesh movement (not local) 

LE 

Based on a physical analogy 

Provides good mesh quality 

Provides the gradient of the objective 

function w.r.t. the surface mesh when 

differentiated 

Local mesh movement (not global) 

Large system of equations 

Stiff system of equations 

Not easy to parallelise 
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4.7.1 Memory and CPU Time Comparisons 

Whenever two different methods are compared, it is very important to make an unbiased 

judgment by making the comparison as equal as possible. This is not a trivial task because the 

mDGM and LE deliver the deformed mesh in different steps and as such have different 

requirements. It is however recognised that a common ground must be found. 

The methods are compared according to two metrics: RAM (Random Access Memory), shortly 

referred to as memory and CPU time for two different geometries depicted in Fig. 4.15. These 

are assessed on a single Intel Xeon 2.67GHz processor with 70.8Gb of RAM running on a 

Linux machine cluster.  

The reason why the CPU time was considered in place of the wall-clock time, is because the 

latter is the sum of CPU, I/O (Input/Output) and communication delay time, which are not 

directly related to the methods being tested. Thus, the CPU offers a fair comparison of the real 

cost of the two methods. Of course, if one wants to improve the waiting time from the user point 

of view, a parallel implementation can be employed in order to achieve a better wall-clock time. 

One step where the mDGM and LE differ is the pre-processing of the mesh, or in other words, 

the computation of matrix  𝑬  and [𝑲] respectively. In order to make a fair comparison it is 

necessary to break the cost between mesh pre-processing and mesh movement. Two geometries 

(see Fig. 4.15) were chosen and from the data reported in Tab. 4.5 three conclusions can be 

reached regarding the pre-processing CPU time and memory required to deform the mesh. 

In terms of CPU time required to pre-process the meshes reported in Tab. 4.5, it is obvious that 

the mDGM requires more time than LE. This extra CPU time required by the mDGM can be 

explained by the fact that the method needs the construction of matrix [𝑬] which (see Chap. 

4.5.2) consists of three different steps: computation of the Delaunay graph, location of the 

volume mesh nodes and computation of the relative volume coefficients. As reported in Tab. 

4.5, for the ONERA M6 wing, this amounts to 598s where 4s of which are needed to compute 

the Delaunay map and the rest accounts for the other two necessary steps. On the other hand, the 

LE consists of just building matrix [𝑲] which roughly takes only 121s, and represents a notable 

saving in CPU time as compared to the mDGM. A similar trend is also registered for the DLR 

F6 wing for the two mesh movements tested. 
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On the other hand, the situation is reversed when the mesh movement CPU time is a analysed. It 

is obvious that LE requires much more CPU time than the mDGM. For the DLR F6 wing, the 

mDGM requires only 85s as compared to 2,376s required by the LE which equates to an 

improvement of two orders of magnitude. The same conclusion can be made while assessing the 

mesh movement memory requirement. In fact, there is again a saving as large as two orders of 

magnitude when using the mDGM over the LE. 

The data reported in Tab. 4.5 are in line with what has been reported in the literature [123]. In 

fact, explicit algebraic methods require much more pre-processing than implicit methods. This 

is the price one has to pay for the reduction in CPU time offered.  

The results presented in terms of pre-processing performance, could lead some readers to 

wrongly conclude that the mDGM is not that faster than the LE. To understand the reason, the 

following argument is given. In Chap. 7.4.7, it will be discussed how important is in an 

optimisation loop to use mesh deformation instead of mesh regeneration. If it is so, matrix [𝑲] 

for the LE and matrix [𝑬] for the mDGM do not need to be recomputed at each iteration. If 

these two matrices stay constant, apart from the initial pre-processing advantages of the LE over 

the mDGM, what really makes the difference is the CPU time required to effectively deform the 

mesh at each iteration. If there are more than one iteration, it is obvious that, having a fast mesh 

deformation outweighs the disadvantage registered in the initial pre-processing CPU time.  

In the argument discussed above it was mentioned the necessity to look at the broader picture, 

i.e. the cost in an optimisation loop. However, as a matter of fact, the CPU time needed to solve 

the differentiated mesh movement plays a big role and for this reason needs to be considered as 

well. This matter is discussed again in Chaps. 5.8.2 and 7.4.7. 
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Figure 4.15  Overview of the ONERA M6 (left) and DLR F6 wing (right) mesh. 

 

Table 4.5  CPU time and memory comparison between mDGM and LE. 

Method Geometry 
𝑁𝑉𝑀  

(Mil) 

Memory (Gb) for the 

mesh movement 

CPU time (s) 

Mesh pre-

processing 

Mesh 

movement 

mDGM 
M6 wing 1.6 0.23 598 50 

F6 wing 2.7 0.38 974 85 

LE 
M6 wing 1.6 14 121 1,807 

F6 wing 2.7 22 213 2,376 
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4.7.2 Performance Scaling with Mesh Size 

This section studies how the mDGM computation expense scales with the 𝑁𝑉𝑀 . To this end, the 

DLR F6 wing-body with the FX2B bump fairing [131] available in three different mesh sizes as 

depicted in Fig. 4.16, is chosen for the analysis. From the results reported in Tab. 4.6, the 

conclusion is that, every time the mesh size is increased by a given delta value, the variation in 

memory, mesh pre-processing and deformation CPU time do not show the same increase. 

To be more precise, the CPU time needed to pre-process the mesh shows an increase greater 

than those reported for the mesh size, but both CPU time needed to deform the mesh and 

memory show an increase lower than the increase in the 𝑁𝑉𝑀 . These data confirm the large 

advantage in terms of CPU time to deform the mesh over the less advantageous mesh pre-

processing CPU time. 

Table 4.6  mDGM CPU time and memory requirements for different mesh sizes. 

𝑁𝑉𝑀  

(Mil) 
∆% 

Memory (Gb) 

for the mesh 

movement 
∆% 

CPU time (s) 

Mesh  

pre-

processing 

∆% 
Mesh 

movement 
∆% 

2.9 Datum 0.347 Datum 1,035 Datum 96 Datum 

6.1 +110.34 0.515 +48.41 2,249 +117.29 188 +95.83 

10.0 +244.82 0.804 +131.70 4,083 +294.49 318 +231.25 
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Figure 4.16  Close-up view of the DLR F6 wing-body for different mesh sizes. 
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4.7.3 Influence of the Supporting Box 

In order to assess the impact of the supporting box in terms of CPU time while pre-processing 

the mesh, Tabs. 4.7 and 4.8 compare both oDGM (as in original) and mDGM performances on 

the DLR F6 wing body with the FX2B bump fairing configuration [131]. To do so, the time 

needed to pre-process the mesh is split into Delaunay mapping and volume ratio coefficients 

computation. 

Four comments can be made on the data reported in Tabs. 4.7 and 4.8. The first one is on the 

increase in boundary points to be mapped, the second is on the CPU time to find the supporting 

box points, the third and fourth are on the CPU time required to compute the actual Delaunay 

map and the volume ratio coefficients respectively. 

The idea of the supporting box is to create an offset copy of the surface mesh nodes at a given 

distance from the wall. Since the farfield points are generally one order of magnitude lower in 

number compared to the 𝑁𝑆𝑀 , the increase of points fed to the Delaunay 

triangulation/tetrahedralisation algorithm strongly depends on the 𝑁𝑆𝑀 . This is also corroborated 

by the fact that, if the buffer layer technique is used as described in Chap. 4.5.3, the 𝑁𝑆𝑀 = 𝑁𝑆𝐵 . 

As a result, the increase in the boundary points is generally between 80% and 90% w.r.t. the 

original boundaries. 

However, the increase in CPU time to compute both the Delaunay map and the volume ratio 

coefficients is not comparable with the increase in 𝑁𝑉𝑀 . In fact, for the Delaunay map, the 

maximum registered increase was for the fine mesh at a value of 20.75% compared to an 

increase in tetrahedralised points of 88.98%. The same conclusion can also be applied for the 

CPU time required to compute the volume ratio coefficients, where the increase is far less than 

the increase in boundary points. 
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Table 4.7  Increase in the Delaunay boundary points for the mDGM. 

Mesh  

movement 
𝑁𝑉𝑀  (Mil) 

Boundaries 

Solid wall + 

 farfield points 
Supporting box points ∆% 

oDGM 

2.9 59,865+15,484 

N
o

n
e 

D
at

u
m

 

6.1 111,852+18,084 

10 166,299+20,585 

mDGM 

2.9 59,865+15,484 59,865 +79.45 

6.1 111,852+18,084 111,852 +86.08 

10 166,299+ 20,585 166,299 +88.98 

 

 

Table 4.8  DGM CPU time scaling with the supporting box. 

Mesh 

movement 

𝑁𝑉𝑀  

(Mil) 

CPU time (s) 

Supporting 

box points 

Delaunay 

map 
∆% 

Computation of the 

volume ratio 

coefficients 

∆% 

oDGM 

2.9 

N
o
n
e 

26 

D
at

u
m

 1,035 
D

at
u
m

 

6.1 44 2,249 

10 53 4,083 

mDGM 

2.9 57 29 +11.53 1,048 +1.25 

6.1 111 48 +9.09 2,348 +4.40 

10 178 64 +20.75 5,094 +24.76 
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4.7.4 Mesh Deformations Comparison 

The last point to cover is the influence of the supporting box on the deformed mesh. This is 

done by comparing the two versions of the DGM against the LE. In order to give an idea of how 

different these methods are, Fig. 4.17 depicts various deformed meshes for an arbitrary surface 

mesh update. 

While using the oDGM, it can be clearly seen that the deformed volume mesh closely follows 

the Delaunay map embedded in the computational domain (constructed using all the solid wall 

and the farfield points). On the other hand, whenever the mDGM is used, the Delaunay map is 

performed from the wall to the supporting box and then from this last one to the farfield. 

However, when the surface mesh is updated, the volume ratios that govern the volume mesh 

deformation have an influence that spans only within the area from the solid wall up to the 

supporting box as clearly depicted conceptually in Fig. 4.5. The advantage is that, for small 

deformations, the quality of the deformed mesh is improved because the skewness of the 

Delaunay elements (see Fig. 4.8) are reduced to the minimum possible thanks to the mirrored 

one-to-one map between the surface mesh and the supporting box points. However, if the 

supporting box nodes are not allowed to move, for some large deformations the boundary layer 

mesh quality could deteriorate because the deformation is not spread on the entire volume mesh. 

Although, this was not investigated in this thesis, a possible solution to this would be to allow 

the supporting box nodes to move. In this case, one would have to decide the relationship 

governing the displacement between the surface mesh and the supporting box nodes. 

For what regards the LE, it is interesting to see how the area affected is much bigger compared 

to the DGM-deformed mesh. This can be explained by fact that the DGM is by definition based 

on an anisotropic operator, whereas the LE is based on an isotropic operator. 

Furthermore, it is important to make another important point about this comparison. The way 

the supporting box modifies the deformed mesh is, to some extent, equal to the process of 

changing the mesh element stiffness in the LE. In fact, all the time the original stiffness is 

modified, the direct result is a modification of the process of distributing the deformation over 

the computational domain. By doing so, although with different laws, the LE is effectively 

imposing the same computational domain subdivision between deformed and non-deformed 

mesh depicted in Fig. 4.5. 
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In order to investigate more the quality of the deformed grids shown in Fig. 4.17, two widely 

used unstructured grid metrics are used, namely the mean mesh quality and the dihedral angle. 

For instance, for a 3D tetrahedron mesh element, the mean mesh quality is defined as: 

𝑞𝑖 = 12 ∙ 𝑠𝑖𝑔𝑛  𝑉𝑖 ∙
  3𝑉𝑖 

23

 𝑙𝑖𝑗
26

𝑗=1

 (4.17) 

where 𝑉𝑖  is the grid element cell and 𝑙𝑖𝑗  is the length of the edge connecting two tetrahedron 

vertices. The general guideline is to have a value of 𝑞𝑖  as close as possible to the unity value. On 

the other hand, the more intuitive dihedral angle is defined as: 

𝜃𝑖 = 𝑚𝑖𝑛𝑗 (Φ𝑖𝑗 , 180°−Φ𝑖𝑗 ) (4.18) 

where Φ𝑖𝑗  is the angle formed by two tetrahedron edges. The general guideline for this metric is 

to avoid values lower than five. Based on these two definitions, Tab. 4.9 lists the values 

obtained from the three deformations shown in Fig. 4.17.  

Table 4.9  Mesh quality metrics. 

Mesh movement 

Mean mesh quality Dihedral angle 

𝑞𝑖  𝑞𝑖
𝑚𝑖𝑛  𝑞𝑖

𝑚𝑎𝑥  𝜃𝑖
𝑤𝑜𝑟𝑠𝑡  No. 𝜃𝑖 < 5° 

Baseline 0.797843 0.0158565 0.999173 2.07613 25 

oDGM 0.797843 0.0158565 0.999173 0.52355 41 

mDGM 0.797843 0.0158565 0.999173 1.83613 28 

LE 0.797843 0.0158565 0.999173 0.52355 41 

The original mesh has a fairly good mean mesh quality of ~0.79 with only 25 out of 2.5 Mil. 

elements (note that for an unstructured mesh the No. of elements is different from the 𝑁𝑉𝑀 ) with 

a dihedral angle lower than 5 degrees.   
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Figure 4.17  Comparison of different mesh movement methods. 
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From the data reported in Tab. 4.9, the mean mesh quality index does not seem to capture any 

relevant deviation for the deformations shown in Fig. 4.17. This is probably due to the more 

general, i.e. mean, feature this parameter describes. On the other hand, the dihedral angle seems 

to be more sensitive to the small changes investigated here. 

It seems that by using the mDGM, which makes use of the supporting box, the quality of the 

deformed mesh is greatly improved as compared to the case where the oDGM is used. This 

results in a worst dihedral angle for the mDGM of just 1.83613 compared to the 0.52355 

registered for the oDGM. The same trend is also registered for the number of elements featuring 

a dihedral angle lower than 5 degrees. In fact, while using the oDGM, 41 elements have a 

dihedral angle lower than 5 degrees which is quite high if compared to the 28 elements featured 

by the mDGM deformed mesh. 

Interestingly, when the LE is compared against the oDGM, both metrics registered the same 

values. This can be explained by the fact that, the small deformations considered in these test 

cases are not enough to trigger a change. On the other hand, when the LE is compared against 

the mDGM, the latter is able to better preserve the quality of the mesh. However, it is expected 

that for larger deformations a non negligible deviation would be present. 

4.8 Summary 

In this chapter, the reasons why mesh deformation was chosen in place of mesh regeneration 

were given. These were indentified to be the need to maintain consistency and the lower 

computation time offered by mesh movements when compared to mesh regeneration strategies. 

On this matter, a brief review of the existing mesh movement methods was discussed along with 

a discussion of the relative advantages and disadvantages of each method. 

One method was duly described, namely the DGM which was chosen as the main investigation 

tool because it provides the updated volume mesh explicitly without the need to solve a large 

system of equations as per the case where the LE is used. The DGM formulation was described 

in all its most important aspects along with one important modification. This addresses the 

quality of the initial Delaunay elements and distribution by constructing a supporting box. This 

has an impact on both the volume mesh update and the grid sensitivity. 
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In order to have a method to compare the DGM against, another mesh movement, namely LE 

was chosen. This can be considered representative of one of the best current implicit iterative 

strategies available. The comparison was performed both in terms of CPU time and memory 

requirements on different mesh refinement levels, where it was highlighted the advantages 

offered by the DGM. The reason for this was indentified in the different mathematical 

formulation of the methods being compared. In fact, where the DGM maps explicitly 

boundaries and volume mesh nodes, the LE provides the same map implicitly, meaning that an 

iterative procedure needs to be used to find the equilibrium satisfying the mesh movement 

governing equations. 
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Chapter 5   Mesh Sensitivity Based on the Delaunay 

Graph Method 

5.1 Introduction 

The flow adjoint successfully decouples the cost of obtaining the sensitivity of the flow 

variables w.r.t. the DVs from the 𝑁𝐷𝑉  (assuming that the DVs have an effect on the flow field). 

In contrast to the continuous approach (surface integral), the discrete approach requires the 

evaluation of the sensitivity of the volume mesh w.r.t. those DVs that control the aerodynamic 

shape. This part of the sensitivity chain, i.e. grid sensitivity, becomes more computationally 

expensive as the mesh grows in size and if an iterative mesh movement is considered. As 

Nielsen and Park [37] noted, this has hindered previous optimisations involving large meshes. 

This is especially true for unstructured grids. 

As was mentioned in the literature review presented in Chap. 2, the current state-of-the-art 

method known to address the grid sensitivity computation is the mesh adjoint technique. 

Nielsen and Park [37] proposed solving an extra adjoint equation, i.e. mesh adjoint, to obtain the 

grid sensitivities. By doing so, instead of performing a series of repeated mesh deformations 

equal to the 𝑁𝐷𝑉 , a single mesh adjoint solution yields the grid sensitivity at a cost independent 

from the 𝑁𝐷𝑉 . However, the cost in both CPU time and memory involved in this approach needs 

to be further investigated as explained in Chap. 2.4.1. 

In this chapter, the focus is on the differentiated mesh movement which is an important step 

closely related to the mesh movement strategy. Explicit algebraic methods offer the advantage 

of being less CPU and memory demanding because they avoid the need to solve a large and stiff 

linear systems. It is also explained how their differentiation offers the same advantages. 

Having said that, this chapter describes the differentiation of an algebraic mesh movement 

method, i.e. DGM, along with the verification of the resulting gradient. As a second step, the 

DGM-based gradient is then compared against the LE-based gradient and a reasoning for the 

discrepancies is offered, Furthermore, these two methods are then compared in terms of CPU 

time and memory requirements where the advantages of the DGM over the LE-based gradient 

are highlighted. 
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The chapter concludes with a summary of the most important findings. 

5.2 Importance of Analytical Approaches for Unstructured 

Meshes 

In Chap. 2 the Jacobian [𝜕𝑿/𝜕𝑺] was introduced along with a discussion of its importance 

within the discrete adjoint framework, especially for unstructured grids. The computation of this 

term can be very memory and CPU time consuming, and this has encouraged researchers to find 

an alternative formulation either in the form of mesh movement hybridisation or algebraic mesh 

movements. Therefore, the computational feasibility of the grid sensitivity calculation in the 

discrete adjoint approach hinges on the development of a method featuring both low memory 

and low CPU time. 

If the strategy employed to compute the grid sensitivity establishes the computation of the grid 

sensitivity of all the DVs at the same time, the memory is then proportional to the 𝑁𝐷𝑉  and 𝑁𝑉𝑀 . 

Since 𝑁𝑉𝑀 ≫ 𝑁𝐷𝑉 , the grid size is of much more concern than the 𝑁𝐷𝑉 . On the other hand, if 

the strategy is such that for each DV, the grid sensitivity is computed and saved, the memory 

requirement is reduced and the cost becomes effectively no longer proportional to the 𝑁𝐷𝑉 , but 

the CPU time is increased. This last strategy, does not address either the CPU time or the 

memory issue. In fact, even if the grid sensitivity is computed for each DV, the cost of 

computing Jacobian [𝜕𝑿/𝜕𝑺] still scales with the 𝑁𝑉𝑀 . Sending to the disk, requires bringing it 

to the memory sooner or later. A schematic view of these two strategies is presented in Fig. 5.1. 

The justification to further investigate this matter lays on the fact that the mesh adjoint approach 

does not address the cost of inverting a very large and sparse matrix. Although this is a direct 

consequence of the mesh movement, it is also true that, all the time the mesh adjoint approach is 

used, it is in relation to an implicit iterative mesh movement. Furthermore, no comparison w.r.t. 

an explicit mesh movement method in terms or resulting gradients, CPU time and memory 

requirements has been studied so far. This chapter aims to provide an insight to these research 

questions. 
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Figure 5.1  Two different strategies to tackle unstructured grid sensitivity. 

5.3 DGM-based Gradient Chain 

A method based on the DGM mesh movement is proposed to efficiently compute the mesh 

sensitivity in the discrete adjoint approach. The method is based on a one-to-one explicit 

algebraic map built between the volume and solid wall mesh nodes. The chain allows a 

straightforward computation of the mesh sensitivity without the need to invert a large and sparse 

matrix generally associated with any implicit mesh movement, such as the spring or LE 

analogy. This substantially improves the efficiency in terms of CPU time and memory 

requirements. 

If an explicit mesh movement is used, there are two methods to derive the chain. The first one is 

based on the construction of the Lagrangian for the mesh movement constraint, whereas the 

second is based directly on the linearisation of the DGM explicit mesh movement. Both 

methods are described because each one of them highlights a different feature of the method. In 
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fact, the former allows one to make an easy and elegant comparison against the LE, whereas the 

latter shows a way to obtain the volumetric grid sensitivity directly from the available analytical 

map. 

5.3.1 First Method to Derive the Chain 

The mesh adjoint method was duly introduced in the literature review (see Chap. 2.5.6) in its 

fundamental aspects, but the differentiation of the mesh movement was not there discussed. 

Here, the equations are briefly re-introduced in order to allow an easy-to-follow derivation 

along with the full differentiation of the mesh movement constraint. Two Lagrangian multipliers 

are constructed, one for the flow and the other for the mesh constraint: 

ℒ 𝑫,𝑾,𝑿,𝜦𝐹 ,𝜦𝐺,𝐷𝐺𝑀 = 𝐼 𝑫,𝑾,𝑿 +  𝜦𝐹 
𝑇 𝑹 𝑫,𝑾,𝑿  +  𝜦𝐺,𝐷𝐺𝑀  

𝑇
{𝑻 𝑿,𝑫 } (5.1) 

Differentiating the augmented cost function w.r.t. the DVs vector yields: 

 
𝑑𝐼

𝑑𝑫
 =  

𝜕𝐼

𝜕𝑾

𝑑𝑾

𝑑𝑫
+
𝜕𝐼

𝜕𝑿

𝑑𝑿

𝑑𝑫
+
𝜕𝐼

𝜕𝑫
 +  𝜦𝐹 

𝑇  
𝜕𝑹

𝜕𝑾

𝑑𝑾

𝑑𝑫
+
𝜕𝑹

𝜕𝑿

𝑑𝑿

𝑑𝑫
+
𝜕𝑹

𝜕𝑫
 

+  𝜦𝐺,𝐷𝐺𝑀  
𝑇
 
𝜕𝑻

𝜕𝑿

𝑑𝑿

𝑑𝑫
+
𝜕𝑻

𝜕𝑫
  

(5.2) 

Under the assumption of pure geometric changes, Eq. (5.2) becomes: 

 
𝑑𝐼

𝑑𝑫
 =  

𝜕𝐼

𝜕𝑾
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑾
  
𝑑𝑾

𝑑𝑫
 +  

𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
+ 𝜦𝐺,𝐷𝐺𝑀

𝑇
𝜕𝑻

𝜕𝑿
  
𝑑𝑿

𝑑𝑫
 +  𝜦𝐺,𝐷𝐺𝑀  

𝑇
 
𝜕𝑻

𝜕𝑫
  (5.3) 

There are two important terms in Eq. (5.3), namely sensitivity of the state variables w.r.t. the 

DVs, and the sensitivity of volume mesh points w.r.t. the DVs. The first expensive term can be 

eliminated constructing the canonical flow-adjoint system (see Eq. (2.4). After solving the flow-

adjoint system, the flow-adjoint vector is used to form the final total sensitivity: 

 
𝑑𝐼

𝑑𝑫
 =  

𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
+ 𝜦𝐺,𝐷𝐺𝑀

𝑇
𝜕𝑻

𝜕𝑿
  
𝑑𝑿

𝑑𝑫
 +  𝜦𝐺,𝐷𝐺𝑀  

𝑇
 
𝜕𝑻

𝜕𝑫
  (5.4) 

The matrix  𝑑𝑿/𝑑𝑫  of dimensions  𝑁𝑉𝑀 × 𝑁𝐷𝑉   comes from the differentiation of the mesh 

movement and represents the sensitivity of the volume mesh w.r.t. the DVs. This total 

derivative consists of two different components, namely volumetric and surface grid sensitivity. 
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The most expensive in terms of memory and CPU time is the former, i.e. Jacobian [𝜕𝑿/𝜕𝑺]. It 

is obvious that for large unstructured grids this can become an issue. To address this issue it is 

necessary to analyse the DGM mesh movement and differentiate it. The mesh movement 

residual associated with it read as (from Eq. (4.5)): 

 𝑻 𝑿,𝑫  𝐷𝐺𝑀 =  𝑿 −  𝑬  𝑩  =  𝟎  (5.5) 

Differentiating w.r.t. the {𝑫} yields: 

 
𝜕𝑿

𝜕𝑫
 =  𝑬  

𝜕𝑺

𝜕𝑫
  (5.6) 

where [𝜕𝑩𝑓𝑓 ,𝑠𝑏/𝜕𝑫] = [𝟎]  and [𝜕𝑩𝑠𝑤/𝜕𝑫] = [𝜕𝑺/𝜕𝑫]  because  𝑫  is the DV vector that 

controls the parameterised shape which coincides with the solid wall surface mesh nodes only. 

In fact, both far field and supporting box mesh nodes are not allowed to move. Considering the 

differentiated general mesh movement in Eq. (2.12), the following relations hold: 

 
𝜕𝑻

𝜕𝑿
 
𝐷𝐺𝑀

= [𝑰] (5.7) 

 
𝜕𝑻

𝜕𝑫
 
𝐷𝐺𝑀

= − 𝑬
𝜕𝑺

𝜕𝑫
  (5.8) 

where matrix [𝑰] is the identity matrix. Substituting both Eqs. (5.7, 5.8) back in Eq. (5.4), the 

final total sensitivity reads: 

 
𝑑𝐼

𝑑𝑫
 =  

𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
+ 𝜦𝐺,𝐷𝐺𝑀

𝑇   
𝑑𝑿

𝑑𝑫
 −  𝜦𝐺,𝐷𝐺𝑀  

𝑇
 𝑬
𝜕𝑺

𝜕𝑫
  (5.9) 

It is straightforward to see that the cost associated with the evaluation of the sensitivity of the 

volume mesh nodes w.r.t. the DVs can be eliminated by setting: 

 𝜦𝐺,𝐷𝐺𝑀  
𝑇

= − 
𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
  (5.10) 

Substituting Eq. (5.10) back in Eq. (5.9) yields: 

 
𝑑𝐼

𝑑𝑫
 
𝐷𝐺𝑀

= − 𝜦𝐺,𝐷𝐺𝑀  
𝑇
 𝑬  

𝜕𝑺

𝜕𝑫
  (5.11) 
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where matrix [𝑬] is exactly the same matrix used for the mesh movement presented in Chap. 

4.5.2. Therefore, it is possible to use an important part of the chain employed in the mesh 

movement also for the evaluation of the mesh sensitivity with no additional computation. For 

the particular case where each surface mesh point is considered as a DV, i.e.  𝑫 =  𝑺 , Eq. 

(5.11) reduces to: 

 
𝑑𝐼

𝑑𝑺
 
𝐷𝐺𝑀

= − 𝜦𝐺,𝐷𝐺𝑀  
𝑇

[𝑬] (5.12) 

Under this assumption, the sensitivity is equal to a simple inexpensive product. Precisely, Eq. 

(5.12) prescribes for each surface mesh point the magnitude and direction to decrease or 

increase the objective function being analysed. This allows one to map a design space that 

scales with the 𝑁𝑆𝑀  knowing that the cost does not scale with the 𝑁𝑆𝑀(= 𝑁𝐷𝑉). Examples of 

how this map can be useful to visualise the most sensitive areas can be found in Palacios et al. 

[45] for supersonic flow regimes using the continuous adjoint and Hinchliffe and Qin [46] for 

transonic flow regimes using the discrete approach. 

5.3.2 Second Method to Derive the Chain 

There exists a second way to derive the final gradient. This method is based directly on the 

explicit mesh movement differentiation, and contrary to the method described in Chap. 5.3.1, is 

not based on the mesh adjoint vector. This is possible because the differentiated Jacobian 

[𝜕𝑿/𝜕𝑺] is available explicitly. Consider the gradient expressed as: 

 
𝑑𝐼

𝑑𝑫
 =  

𝑑𝐼

𝑑𝑿
  
𝜕𝑿

𝜕𝑺
  
𝜕𝑺

𝜕𝑫
  (5.13) 

If  𝑫 = {𝑺}: 

 
𝑑𝐼

𝑑𝑺
 =  

𝑑𝐼

𝑑𝑿
  
𝜕𝑿

𝜕𝑺
  (5.14) 

where it can be proven differentiating Eq. (2.1) w.r.t. the volume mesh that: 

 
𝑑𝐼

𝑑𝑿
 =  

𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
  (5.15) 
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Direct differentiation of the volume mesh dependency  𝑿 =  𝑿(𝑺 𝑫 )  w.r.t. the geometric 

DVs yields: 

 
𝜕𝑿

𝜕𝑫
 =  

𝜕𝑿

𝜕𝑺

𝜕𝑺

𝜕𝑫
  (5.16) 

Differentiating the DGM mesh movement as expressed in Eq. (4.5) w.r.t. the DVs yields: 

 
𝜕𝑿

𝜕𝑫
 = [𝑬]  

𝜕𝑺

𝜕𝑫
   (5.17) 

Comparing Eq. (5.17) with Eq. (5.16) leads to: 

[𝑬] ≡  
𝜕𝑿

𝜕𝑺
  (5.18) 

and comparing Eq. (5.14) with Eq. (5.12) leads to Eq. (5.10). Substituting Eq. (5.18) back in Eq. 

(5.13), it is clear that the same final gradient (i.e. Eq. (5.11)) expression is recovered. Therefore, 

it was proven how, if an explicit algebraic mesh movement capable of providing explicitly the 

Jacobian [𝜕𝑿/𝜕𝑺] is used, the second Lagrangian associated to the mesh constraint does not 

need to be constructed. 

The reason of these two different derivations was to facilitate the mathematical comparison 

against the LE for which the construction of the mesh adjoint is not a choice. 

5.4 Verification 

The DGM-based gradient was verified for the 2D RAE 5243 [132] aerofoil and for the 3D 

ONERA M6 [133] wing for two cases: verification w.r.t. each surface point against FDs, and 

verification based on the analytical manual linearisation of the drag, lift, and longitudinal 

moment coefficient w.r.t. the AoA (Angle of Attack). Complex step differences could have been 

used, but this was not an option available for the version of the DLR TAU code used by the 

author. 

At this point, it is important to highlight the difference between verification and validation. 

They are both used in the literature to check if the results are correct. Verification is the 
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procedure to check if the equation is solved correctly, whereas validation is the procedure used 

to check if the correct equation is being solved. For the former, a simple comparison against a 

small variation obtained via FD is used, whereas for the latter a comparison against wind tunnel 

data is required. For this work, verification was the only option available. 

A couple of fundamental important observations can be made on the use of FD gradients in 

relation to the grid size. Anderson and Venkatakrishnan [35] proved that for the continuous 

adjoint approach, if insufficient grid resolution is used, gradients may not agree with those 

obtained using FDs. On the other hand, if the discrete adjoint is used, the gradients agree with 

the FDs regardless to the mesh resolution. However, Hou et al. [134] noted that, when verifying 

the chain using a thick mesh close to the wall, FD gradients are overly sensitive to both step size 

and flow solver convergence. For this reason, Anderson and Bonhaus [135] suggested a coarse 

wall grid be used in order to avoid the need to deform the mesh and therefore reduce the 

sensitivity from the step size and flow solver convergence.  

In conclusion the adjoint gradients, by definition should agree with those obtained with FDs, as 

long as the chain is discretely adjoined (i.e. no frozen turbulent viscosity) and the step size is 

carefully chosen. 

5.4.1 Test Cases 

The canonical conditions for the NLF (Natural Laminar Flow) RAE 5243 aerofoil [132] 

prescribe a freestream Mach number of 0.68 at constant lift coefficient of 0.82. Fig. 5.2 depicts 

the close-wall mesh (top), pressure contours (centre) and the 𝑦+ (bottom). The mesh consists of 

95,972 volume mesh nodes and the Reynolds number is 19 Mil. based on the Reynolds chord 

length equal to 1. The canonical conditions for the ONERA M6 wing [133] prescribe a 

freestream Mach number of 0.83 at constant lift coefficient of 0.2788. Fig. 5.3 depicts the close-

wall mesh (top), pressure contours (centre) and the 𝑦+ (bottom). The mesh consists of roughly 

1.6 Mil. volume mesh nodes and the Reynolds number is 11.72 Mil. based on the Reynolds 

chord length equal to 0.64607. All the hybrid meshes were generated using the unstructured 

quad-dominant software SOLAR [136].    
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Figure 5.2  Close-up view of the mesh at the solid wall (top), pressure contours (centre) and y-

plus (bottom) for the RAE 5243. 
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Figure 5.3  Unstructured surface mesh (top), pressure contours (centre) and y-plus (bottom) for 

the ONERA M6 wing. 
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𝑦+ 
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5.4.2 Verification Against each Surface Mesh Point 

The DLR TAU built-in tool VOLGRAD short for “VOLume approach for GRADient 

calculation” was used as the main FD verification tool. Consider the total sensitivity written as: 

 
𝑑𝐼

𝑑𝑫
 =  

𝜕𝐼

𝜕𝑫
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑫
    (5.19) 

VOLGRAD evaluates the discrete version of Eq. (5.19) which reduces to a simple sum of scalar 

differences. For sake of simplicity, let us consider the forward FD formulation: 

𝑑𝐼

𝑑𝐷
≈
∆𝐼

𝜀
 =

(𝐼𝑀 − 𝐼0) + 𝜦𝐹
𝑇(𝑅𝑀 − 𝑅0)

𝜀
  

(5.20) 

where subscript „0‟ and „M‟ denote the initial and modified (following a small deformation) 

value. ∆𝐼  is the variation in the cost function due to the chosen perturbation 𝜀, whereas 𝐼𝑀 and 

𝑅𝑀  are computed on the perturbed grid generated by the DGM mesh movement, where 𝑅𝑀  is 

obtained interpolating the residual on the modified mesh. 𝐼0  and 𝑅0  come from the flow 

solution, computed on the original (not modified) mesh. Eq. (5.20) involves two evaluations of 

the residual vector for each DV and not two flow solutions. The verification process tries to 

estimate the error expressed as: 

 
𝑑𝐼

𝑑𝑫
 
𝐷𝐺𝑀

−  
𝑑𝐼

𝑑𝑫
 
𝐹𝐷𝑠

≡ 𝐸𝑟𝑟𝑜𝑟 (5.21) 

If the step size is too small, FDs are susceptible to round-off error, whereas on the other hand a 

step size too big results in too large truncation errors. For this reason a parametric study is 

needed to find a range of steps where the resulting sensitivities do not change. The step size 

used for the verification was 10−6 and the sensitivities do not change in the range between 10−7 

and 10−5. 

For the RAE 5243 2D case, all the points belonging to the upper surface (see Fig. 5.4) were 

finite differenced. However, the ONERA M6 wing has roughly 30,000 upper surface mesh 

nodes, thus only one spanwise station was selected consisting of roughly 100 surface mesh 

nodes as shown in Fig. 5.5 (top right). This gives a good overview of the sensitivity with 

minimal computation cost. 
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Referring to Figs. 5.4 and 5.5 (top right), the results obtained using FDs are first shown using 

red coloured vectors overlapped onto the black ones to provide an easy-to-follow spatial view. 

This is then followed by a point-to-point comparison (see Figs. 5.4 and 5.5 (left)) where the 

error is plotted along the z-coordinate. The gradient at each surface mesh compares very well 

away from the leading and trailing edge where the error increases, but the error at the leading 

edge seems to be less severe than that registered at the trailing edge. There are four reasons for 

the registered discrepancies: 

 Inadequate FD step size 

 Inaccuracy in the surface normal computation 

 Interpolation error in the flow residual 

 Flow-adjoint solver not fully discretely adjoined 

In theory, each surface point requires its own parametric study which is known to be very 

sensitive when the mesh elements are very close to each other (close to the wall) as noted by 

Anderson and Bonhaus [135]. Secondly, the normal is ill-defined at sharp edges. Thirdly, the 

interpolation error on the residual computed by VOLGRAD, is expected to be greater where the 

solution is not optimal and this generally happens close to strong gradients. Lastly, the solver 

may not be fully adjoined. This possibility, which is not so rare, can ultimately lead to some 

discrepancies as noted by Anderson and Venkatakrishnan [35]. 

To conclude, the four points mentioned above, when considered applied at the trailing edge, 

make the FD method difficult to use and this explains the large error in that area.  
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Figure 5.4  Comparison between the DGM and FD gradients for the RAE 5243. 
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Figure 5.5  Comparison between the DGM and FD gradients for the ONERA M6 wing. 
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5.4.3 Verification Against a Small Change in the Angle of Attack 

Another type of verification is represented by the comparison against a small change in the 

AoA. In the DLR TAU-Code the sensitivity of the drag and lift coefficients w.r.t. the AoA is 

obtained as: 

 
𝑑𝐼

𝑑𝛼
 
𝑇𝐴𝑈

=  
𝜕𝐼

𝜕𝛼
 +  𝜦𝐹 

𝑇  
𝜕𝑹

𝜕𝛼
  (5.22) 

where first and second RHS terms are differentiated manually and no simplification are made. 

Therefore no FDs are used in the computation of Eq. (5.22). From Eq. (5.11), adapting the 

equation to the problem at hand, the DGM-based chain yields: 

 
𝑑𝐼

𝑑𝛼
 
𝐷𝐺𝑀

= − 𝜦𝐺,𝐷𝐺𝑀  
𝑇

[𝑬]  
𝜕𝑺

𝜕𝛼
  (5.23) 

This can be decomposed in its Cartesian components (where for the 2D verification case the y-

contribution is null): 

 
𝑑𝐼

𝑑𝛼
 
𝐷𝐺𝑀

= − 𝜦𝐺,𝐷𝐺𝑀
𝑇 𝑬 

𝑥
 
𝜕𝑺

𝜕𝛼
 
𝑥
−  𝜦𝐺,𝐷𝐺𝑀

𝑇 𝑬 
𝑦
 
𝜕𝑺

𝜕𝛼
 
𝑦
−  𝜦𝐺,𝐷𝐺𝑀

𝑇 𝑬 
𝑧
 
𝜕𝑺

𝜕𝛼
 
𝑧
 (5.24) 

The partial derivatives  𝜕𝑺/𝜕𝛼 𝑥 ,𝑦 ,𝑧   are known after a rotation of the solid wall about the 

pitching moment reference point. It is clear that, the verification against a small change in the 

AoA represents a more difficult test as all the solid surface mesh points, including those noisy 

values at the trailing edge as depicted in Figs. 5.4 and 5.5, are now taken into account 

simultaneously. 

The goal of this verification is to quantify the following error: 

 
𝑑𝐼

𝑑𝛼
 
𝐷𝐺𝑀

−  
𝑑𝐼

𝑑𝛼
 
𝑇𝐴𝑈

≡ 𝐸𝑟𝑟𝑜𝑟 (5.25) 

The results are reported in Tab. 5.1, illustrating a high degree of accuracy. 
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Table 5.1  Results for the verification against a small change in the AoA. 

Case  
𝑑𝐶𝑑 ,𝐷

𝑑𝛼
 
𝐷𝐺𝑀

  
𝑑𝐶𝑑 ,𝐷

𝑑𝛼
 
𝑇𝐴𝑈

 Error [%] 

RAE 5243 0.005563 0.005567 -0.0719 

ONERA M6 0.0073782 0.0073784 -0.00271 

Case  
𝑑𝐶𝑙,𝐿
𝑑𝛼

 
𝐷𝐺𝑀

  
𝑑𝐶𝑙,𝐿
𝑑𝛼

 
𝑇𝐴𝑈

 Error [%] 

RAE 5243 0.133995 0.133864 +0.0977 

ONERA M6 0.0914981 0.0913225 +0.192 

Case  
𝑑𝐶𝑚𝑦 ,𝑀𝑌

𝑑𝛼
 
𝐷𝐺𝑀

  
𝑑𝐶𝑚𝑦 ,𝑀𝑌

𝑑𝛼
 
𝑇𝐴𝑈

 Error [%] 

RAE 5243 0.001247 0.001254 -0.558 

ONERA M6 0.001416 0.001424 -0.562 

5.5 Gradient Chain Based on the Linear Elasticity 

Considering Eq. (4.16), the mesh movement residual associated with the LE is defined as: 

 𝑻 𝑿,𝑫  𝐿𝐸 = [𝑲] 𝑿 −  𝑺  =  𝟎  (5.26) 

Differentiating w.r.t. the DVs vector yields: 

 𝑲  
𝜕𝑿

𝜕𝑫
 =  

𝜕𝑺

𝜕𝑫
   (5.27) 

Considering the differentiated general mesh movement in Eq. (2.12) the following relations 

hold: 

 
𝜕𝑻

𝜕𝑿
 
𝐿𝐸

=  𝑲  (5.28) 

 
𝜕𝑻

𝜕𝑫
 
𝐿𝐸

=  
𝜕𝑺

𝜕𝑫
  (5.29) 
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As noted by Nielsen and Park [37], the cost associated to the solution of Eq. (5.27) is 

comparable to the cost of a single mesh movement. Substituting Eqs. (5.28) and (5.29) back in 

Eq. (5.4), the final total sensitivity reads as: 

 
𝑑𝐼

𝑑𝑫
 
𝐿𝐸

=  
𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
+ 𝜦𝐺 ,𝐿𝐸

𝑇 𝑲  
𝑑𝑿

𝑑𝑫
 +  𝜦𝐺,𝐿𝐸 

𝑇
 
𝜕𝑺

𝜕𝑫
  (5.30) 

The expensive term, i.e.  𝑑𝑿/𝑑𝑫 , can be eliminated constructing a second mesh adjoint linear 

system of equations as suggested by Nielsen and Park [37]: 

 𝑲 𝑇{𝜦𝐺,𝐿𝐸} = − 
𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
 
𝑇

 (5.31) 

This system is most of the time large and very stiff to invert. This is because the viscous meshes 

present a very high aspect ratio making the system poorly conditioned (see also Chap. 4.6). The 

system is then solved using a restarted preconditioned ILU GMRES algorithm. The 

convergence of Eq. (5.31) is the same as the mesh deformation in Eq. (4.16) because the 

eigenvalues of matrix [𝑲] are not changed by the transpose operator. Once the mesh adjoint 

vector is obtained, the final gradient reads: 

 
𝑑𝐼

𝑑𝑫
 
𝐿𝐸

= − 𝜦𝐺,𝐿𝐸 
𝑇
 
𝜕𝑺

𝜕𝑫
  (5.32) 

For the particular case where  𝑫 =  𝑺 , Eq. (5.32) reduces to: 

 
𝑑𝐼

𝑑𝑺
 
𝐿𝐸

= − 𝜦𝐺,𝐿𝐸 
𝑇
 (5.33) 

Tab. 5.2 helps highlight the differences between the LE and DGM-based gradient. The most 

striking difference between the two methods is that, where the LE needs to solve a linear system 

of equations the DGM needs to perform only a dot product. This conclusion can then be 

extended to any implicit or explicit mesh movement. 
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Table 5.2  Comparison between the LE and DGM-based gradient formulation. 

Assumptions 
Mesh  

movements 

Required 

iterative 

computations 

Gradient 

Only geometric 

changes but 

 𝑫 ≠  𝑺  

DGM: 

 𝑿 =  𝑬  𝑩  

Primal and dual 

solution only 
 
𝑑𝐼

𝑑𝑫
 
𝐷𝐺𝑀

= − 𝜦𝐺,𝐷𝐺𝑀  
𝑇
 𝑬  

𝜕𝑺

𝜕𝑫
  

LE: 

 𝑲  𝑿 =  𝑺  

Primal, dual and 

mesh adjoint 

solution 
 
𝑑𝐼

𝑑𝑫
 
𝐿𝐸

= − 𝜦𝐺,𝐿𝐸 
𝑇
 
𝜕𝑺

𝜕𝑫
  

Only geometric 

changes and 

 𝑫 =  𝑺  

DGM: 

 𝑿 =  𝑬  𝑩  

Primal and dual 

solution only 
 
𝑑𝐼

𝑑𝑺
 
𝐷𝐺𝑀

= − 𝜦𝐺,𝐷𝐺𝑀  
𝑇

[𝑬] 

LE: 

 𝑲  𝑿 =  𝑺  

Primal, dual and 

mesh adjoint 

solution 
 
𝑑𝐼

𝑑𝑺
 
𝐿𝐸

= − 𝜦𝐺,𝐿𝐸 
𝑇
 

5.6 Effect of the Supporting Box 

As discussed in Chap. 4.5.3, the necessity to have a relatively low skewed Delaunay elements is 

not only related to the mesh movement, but also to another reason related to the way the 

gradient is computed. In fact, when it comes to complex aero shape geometries, the 

triangulation/tetrahedralisation can be challenging, meaning the resulting map is not optimal. If 

it is so, there two main consequences. Firstly, a reduced quality of the deformed mesh is 

obtained, and secondly, the map established by DGM-based Jacobian [𝜕𝑿/𝜕𝑺](=  𝑬 ) is no 

longer respected. 

To understand the importance of the second observation, a distinction is made between quality 

and distribution of the Delaunay elements. The quality of the Delaunay elements can be judged 

by using metrics such as mean quality and the dihedral angle as already discussed in Chap. 

4.7.4. On the other hand, more importantly than the Delaunay quality elements is to have a 

correct Delaunay distribution. In other words, the Delaunay elements must map only the surface 

and volume mesh points which means that at least one vertex, both for a triangle or a 

tetrahedron must not be a solid wall surface mesh node. The distinction is important because 

there are cases where, a Delaunay element quality is considered good, but its distribution is not 
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correct. To be more precise, the issue comes when the map is made from surface-to-surface. In 

fact, matrix [𝑬] represents the sensitivity of the volume mesh w.r.t. the surface, i.e. Jacobian 

[𝜕𝑿/𝜕𝑺]. Therefore, having all the Delaunay element vertices on the solid wall is not correct. 

This surface-to-surface map happens because the QHull library [120] works based on the 

Delaunay criterion and there is nothing wrong from a mathematical point of view if such as map 

is constructed. As an example, Fig. 5.6 (left) depicts one of this case for the DLR F6 wing. A 

quick solution to this issue is, as mentioned in Chap. 4.5.3, to introduce a supporting box, 

depicted in Fig. 4.9 (centre). This, as depicted in Fig. 5.6 (right), avoids the surface-to-surface 

map issue. 

 

Figure 5.6  Effect of the supporting box on the gradient for the DLR F6 wing. 

  

 
𝑑𝐶𝐷
𝑑𝑺𝑧

 
𝑠𝑏

  
𝑑𝐶𝐷
𝑑𝑺𝑧
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5.7 Analysis of the Chain 

Before starting this discussion, a distinction has to be made between accuracy and consistency 

or in other words, how well the flow field is resolved and how rigorous the sensitivity analysis 

is respectively. The first point is generally concerned on how well the solution agrees with the 

physics and the validation (as opposed to verification) process is the only option available to 

check (i.e. validate) it. However, this is very difficult to perform as it requires expensive wind 

tunnel test campaigns. The second point refers to the mathematical rigour of the chain 

derivation. In other words, is the chain fully differentiated? For instance, one can even start with 

a turbulence model which is not best suited for the flow field, but consistently derive the chain 

(e.g. no frozen turbulence model assumption). In this case, the chain is consistent although the 

results will not be accurate. 

Fig. 5.7 helps understand these differences and where the academic effort was concentrated in 

the last 30 years (dashed square in Fig. 5.7). As can be seen, the past and current effort has so 

far focused on the differentiation of low fidelity turbulence models which, although not 

extremely accurate, are currently the only viable options. Examples of differentiated algebraic 

method can be found in Hou et al. [134], whereas examples where a field equation for the eddy 

viscosity is used can be found in Anderson and Bonhaus [135] for the one-equation, in Kim et 

al. [137] for the two-equations and in Khayatzadeh and Nadarajah [138] for the four-equations. 

Differentiating a turbulence model is a tedious task and for this reason many studies were 

published using the frozen turbulence assumption. 

In this work, the fully differentiated SA one-equation turbulence model [82, 88] is used. This 

places the following analysis in the consistent but not accurate framework as depicted in Fig. 

5.7. The choice was dictated by three factors, namely available computation power where one is 

forced to rely on a time-averaged solution, difficulty related to the differentiation of more 

complex turbulence modelling and more importantly the conditioning of the flow-adjoint 

Jacobian.  

In this section the underlying physics behind the three main steps necessary to compute the 

gradient are described. The analysis is structured as follows: 

1) Flow-adjoint solution focused on the meaning of the flow-adjoint vector 
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2) Sensitivity of the objective function w.r.t. the volume mesh, i.e.  𝑑𝐼/𝑑𝑿 , focused on its 

distribution over the entire computational domain 

3) Gradient  𝑑𝐼/𝑑𝑺  and how is influenced by both  𝑑𝐼/𝑑𝑿  and [𝜕𝑿/𝜕𝑺] 

 

 

Figure 5.7  Conceptual comparison between computation time, accuracy, difficulty, consistency 

and feasibility of the adjoint chain. 

5.7.1 Flow-adjoint Solution 

The flow-adjoint solution delivers the flow-adjoint vector which has the same dimensions of the 

flow variables vector and can be re-written as (using a one-equation turbulence model): 

 𝜦 =  𝛬1 ,𝛬2 ,𝛬3,𝛬4 ,𝛬5 ,𝛬6 
𝑇 (5.34) 

Note that, if the frozen turbulence assumption is used, the adjoint value associated to the 

turbulence model, i.e. 𝛬6, expresses the sensitivity w.r.t. the laminar viscosity, only because the 

turbulent viscosity is considered constant. 
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The adjoint vector has found various applications in the literature. Apart from being widely used 

in sensitivity analysis, there are applications in error estimation and mesh quality refinement. 

These last two are closely related as the error estimated via the adjoint vector is then used to 

drive the mesh refinement (re-meshing) or adaptation of the discretised domain. Valid examples 

of these applications can be found in Giles and Suli [139] for inviscid cases and Venditti and 

Darmofal [140] for viscous cases. 

The adjoint vector gives the sensitivity of the objective function w.r.t. the residual, i.e. level of 

convergence in the primal solution [32]: 

 𝜦𝐹 =  
𝜕𝐼

𝜕𝑹
  (5.35) 

This can be obtained multiplying the RHS and LHS of Eq. (2.4) by matrix [𝜕𝑾/𝜕𝑹]. Therefore, 

the adjoint vector can be helpful to establish the solution error in evaluating the objective 

function. This is, most of the time, due to poor mesh resolution, thus it has found many 

applications in mesh-refinement solution techniques [32]. Based on Eq. (5.35), Fig. 5.8 plots 

exactly this vector which maps where and to which flow variable the error in evaluating the drag 

(the same thing holds for any other objective function) should be appointed to. Fig. 5.8 shows 

poor mesh resolution on colours tending to red or blue, whereas colours tending to green show 

sufficiently resolved mesh. It is no surprise that, regions that need to be refined are those that 

experience a high pressure gradient such as close to the wall and the shock. Furthermore, what it 

is interesting is that this map highlights areas that are not intuitive, such as that located forward 

the leading edge. 

For instance, let us consider a positive change in the x-momentum residual, the effect of this 

change on the drag coefficient (objective function) is represented by the respective adjoint 

variable and its contour is depicted in Fig. 5.8 (top). This means that the drag increases where 

the adjoint variable is also positive (colours tending to red), whereas drag decreases where the 

adjoint variable is negative (colours tending to blue). Therefore, these plots highlight the areas 

that need to be a-posteriori mesh-refined in order to get a solution no longer dependent from the 

flow residual or in other words, a mesh-converged solution [141, 34]. This shows one type of a-

posteriori mesh refinement. However, there are many other methods such as a priori knowledge 

and a posteriori pressure-gradient mesh refinement as discussed in Harris and Qin [142].   
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Figure 5.8  Cut-views in the ONERA M6 computational domain of two flow-adjoint variables. 

  

 𝜦𝐹,2 =  
𝜕𝐶𝐷
𝜕𝑹2

  → 𝑥 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 

𝑉∞  

𝑉∞  

 𝜦𝐹,4 =  
𝜕𝐶𝐷
𝜕𝑹4

  → 𝑧 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 
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5.7.2 Sensitivity of the Objective Function w.r.t. the Volume Mesh 

The sensitivity of the objective function w.r.t. the volume mesh includes both a pressure 

(subscript 𝑝), and a viscous component (subscript 𝑣): 

 
𝑑𝐼

𝑑𝑿
 =  

𝜕𝐼

𝜕𝑿
+ 𝜦𝐹

𝑇
𝜕𝑹

𝜕𝑿
 =  

𝜕

𝜕𝑿
(𝐼𝑝 + 𝐼𝑣) + 𝜦𝐹

𝑇
𝜕

𝜕𝑿
(𝑹𝑝 + 𝑹𝑣)  (5.36) 

To better understand the non trivial physical meaning of these terms, each partial derivative is 

analysed separately. The first RHS term expresses the variation of the target function due to the 

variation of the surface (line in 2D) of integration at constant pressure and skin friction 

coefficient [32]. The second RHS term expresses the variation of the target function due to the 

variation of the pressure and skin friction coefficient, both induced by a variation of the 

geometry [32]. 

The next step is to analyse its distribution over the computational domain. This is important 

because it allows one to represent graphically where and if there is any cancelling effect while 

performing the product expressed in Eq. (5.14). Widhalm et al. [36] noted that the gradient 

 𝑑𝐼/𝑑𝑺  is influenced mainly by values of  𝑑𝐼/𝑑𝑿  at the surface for the inviscid (Euler 

solution) cases and by values of  𝑑𝐼/𝑑𝑿  at the very first (close to the wall) mesh layers for 

viscous (Navier-Stokes solution) cases. Therefore, it is interesting to see to what extent vector 

 𝑑𝐼/𝑑𝑿 , if only its surface values are considered, i.e.  𝑑𝐼/𝑑𝑿 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 , depicted in Fig. 5.9 

(left), compares to vector  𝑑𝐼/𝑑𝑺  depicted in Fig. 5.9 (right). As it can be seen, some 

similarities such as the lambda shock boundaries can be distinguished, but the final gradient is 

fairly different. This is particularly true in the area enclosed within the lambda shock 

boundaries. 

Furthermore, Widhalm et al. [36] investigated also the effect of both viscous and pressure terms 

on the gradient  𝑑𝐼/𝑑𝑿 . They conclude that for the subsonic flow regime the gradient  𝑑𝐼/𝑑𝑺  

is mainly influenced by the viscous part of Eq. (5.36), whereas for the transonic flow regime the 

gradient  𝑑𝐼/𝑑𝑺  is mainly influenced by the pressure part of Eq. (5.36).  

To further investigate this, the spatial position of all volume mesh nodes that carry a value 

greater than two pre-determined small thresholds are depicted in Fig. 5.10 (to help visualise 
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them, the quantities are depicted within different y/c bounds). As can be seen, points that carry 

non-negligible values are not in large number and are mostly located very close to the wall. 

 

Figure 5.9  Comparison between the values at the wall for two different types of gradient. 
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Figure 5.10  Extent of the information stored in the gradient for values greater than two thresholds.  
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5.7.3 Sensitivity of the Objective Function w.r.t. the Surface Mesh 

The objective function is defined through a surface (line in 2D) integral and is computed 

accordingly to NFA (Near-Field Approach) where both the pressure, 𝐶𝐷,𝑝 , and the viscous 

component, 𝐶𝐷,𝑣, are taken into account: 

𝐶𝐷,𝑁𝐹𝐴 = 𝐶𝐷,𝑝 + 𝐶𝐷,𝑣 (5.37) 

As a consequence, any change in the objective function comes from a mix of pressure and shear 

stress contributions. It is then reasonable to ask if the resulting gradient map, i.e.  𝑑𝐼/𝑑𝑺 , 

reflects the pressure and the skin friction coefficient trend, although, as described in Chap. 5.7.2, 

at transonic speed the influence of the pressure component is larger than the viscous one. The 

link between the two is not trivial as it may seem, and as it is shown later, it may lead to target 

non-intuitive areas as successfully done by Hinchliffe and Qin [46]. 

Having said that, it is important to highlight why a common trend is being investigated. This 

stems from the common practice in aerodynamic shape optimisation to justify the high 

sensitivity at the shock, leading and trailing edge by comparing them to the pressure and skin 

friction coefficient plots. In fact, referring to Figs. 5.11 and 5.12 (point values are read directly 

from the unstructured surface mesh from the sections sampled as depicted in Fig. 5.21 (left), 

thus this explains the gap between the sampled points), it can be clearly seen that there are some 

similarities between these two coefficients and the gradient at the leading, trailing edge and 

shock area. However, a rapid change in the sensitivity map is not always reflected in a rapid 

change in the pressure or in the skin friction plot. This is evident in the forward wing area 

between the two (lambda footprint) shocks. 

This brings the question whether this may be the result of some numerical by-product or not. 

Hinchliffe and Qin [46], showed through a numerical optimisation, how areas not highlighted 

by the pressure or the skin friction plot can be exploited by the optimiser proving that the target 

area is indeed not a numerical artefact. This is the proof that in certain case, the surface map can 

highlight some non intuitive areas where an improvement can be made.  
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Figure 5.11  2D gradients comparison at different stations. 
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Figure 5.12  Pressure and skin friction coefficients at different stations. 
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5.7.4 Observation on the Product 

There are two quantities involved in the product reported in Eq. (5.14). The first is the gradient 

of the objective function w.r.t. the volume mesh nodes, whereas the second is the Jacobian of 

the volume mesh w.r.t. the surface mesh nodes. The former, contrary to the latter, is the only 

one which carries physical information represented by the objective function. The goal of this 

sub-chapter is to check that the volumetric mesh sensitivity, i.e. [𝜕𝑿/𝜕𝑺] is not taking null 

values when the value of {𝑑𝐼/𝑑𝑿} are not null. 

To study the distribution over the entire computational domain of these two factors, it is 

necessary to find a common metric for the comparison. One is a vector, whereas the other is a 

matrix, but they can be both visualised on the volume mesh. However, working on the entire 

mesh is difficult because plotting its characteristic everywhere in the domain is not practical. 

One possible solution is to select a small area at the surface and then consider all the points in 

the volume mesh that lays on a small neighbourhood along its normal. Since the mesh is 

unstructured, it is not possible to select a single mesh line running from the solid wall to the far-

field, thus a small neighbourhood at the wall (as shown in Fig. 5.13) needs to be selected in 

order to make sure that the points within a small neighbourhood (around the normal) cover the 

entire domain. 

 

Figure 5.13  Isometric view of the selected point along an imaginary line normal to the wall. 
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This means it is possible to describe their distributions along an imaginary line drawn normal 

from the wall to the farfield. From here, the definition of n.d.r. (normal decay rate). There are 

many possible distributions, however, for the sake of simplicity, a preliminary isotropic and 

exponential decay rate along the normal to the wall was assumed. By doing so, three possible 

scenarios can be distinguished: 

 Scenario No. 1 is depicted in Fig. 5.14 (top). It shows the case where the decay rate of 

the matrix [𝜕𝑿/𝜕𝑺] is greater than that of the gradient {𝑑𝐼/𝑑𝑿}. In this case, when the 

former reaches values close to zero much earlier than the latter, the influence of the 

gradient {𝑑𝐼/𝑑𝑿} is nullified earlier than its decay rate would impose. 

 Scenario No. 2 is depicted in Fig. 5.14 (bottom). It shows the case where the decay rate 

of the matrix [𝜕𝑿/𝜕𝑺] is smaller than that of the gradient {𝑑𝐼/𝑑𝑿}. In this case, when 

the latter reaches values close to zero much faster than the former, the influence of the 

matrix [𝜕𝑿/𝜕𝑺] is nullified earlier than its decay rate would impose. 

 Scenario No. 3 is when [𝜕𝑿/𝜕𝑺] and {𝑑𝐼/𝑑𝑿} have the same decay rate and therefore 

no cancelling effect is present. 

The first two cases describe the possibility of one of the factors offsetting the information 

carried by the other. It is obvious that, the first is the worst case scenario as the non-physical 

quantity, i.e. matrix [𝜕𝑿/𝜕𝑺], is cutting off the physical information carried by {𝑑𝐼/𝑑𝑿}. In 

order to numerically investigate this, the ONERA M6 wing described in Chap. 5.4 is 

considered. Referring to Fig. 5.15, a semi-log scale was used in order to highlight the relative 

importance of quantities that have their values distributed over different orders of magnitude. 

Fig. 5.15 clearly shows that, regardless to the mesh movement used, the n.d.r. of the Jacobians 

decays at a rate which is much smaller than the n.d.r. registered for the gradient {𝑑𝐼/𝑑𝑿}. 
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Figure 5.14  Two likely possible scenarios while analysing the n.d.r. of the information carried 

by the metric terms. 
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This places the ONERA M6 in scenario No. 2 where the physical information is not actually 

nullified by the non-physical grid sensitivity. It is the author‟s opinion that this is always the 

case because it is preferable to distribute the deformations as evenly as possible over the entire 

mesh in order to reduce the risk of mesh element cross over. In fact, having a slow decay rate of 

the Jacobian [𝜕𝑿/𝜕𝑺] is an indication of the capability to spread the deformations away from 

the wall. 

This study served two purposes. Firstly, it was established that a mesh movement that is too stiff 

may become a problem in its differentiated form because it could cut-off physical information, 

and secondly that the differentiated mesh movement does not need to include the entire 

computational domain because extending the differentiation to the mesh nodes away from the 

wall does not contribute to the gradient since the physical information (that has a greater n.d.r.) 

is already taking null values. 

 

Figure 5.15  Comparison between different distributions on the computational domain. 
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5.8 Gradient Chain Performance Assessment 

The assessment of the performance is done on three levels. The first one compares the gradient 

obtained using the mDGM and the LE-based chain, the second compares the CPU time and the 

memory requirements to deliver the gradient against the LE, and the third studies how the 

mDGM-based gradient chain requirements scale with the mesh size. 

5.8.1 Gradients Comparison 

This section compares two gradients which describe the variation of the same objective function 

w.r.t. a movement of the surface mesh nodes. However, these gradients are effectively 

computed using two different differentiated mesh movements. It is desired to investigate 

whether they are equal or different. Should they be different, it is desired to establish how much 

and where the deviations occur. 

Two geometries are chosen: the first geometry is the ONERA M6 [133] (see Fig. 5.3), whereas 

the second one is the DLR F6 wing [143] at flow conditions of Mach number of 0.8 and 

constant lift coefficient of 0.6 solved on a quad-dominant mesh consisting of roughly 2.7 Mil. 

volume mesh nodes. Fig. 5.16 shows the surface mesh (top), the pressure coefficient (centre) 

and the 𝑦+ (bottom). For these geometries, the gradients of three objective functions, drag, lift 

and longitudinal moment coefficient w.r.t. the surface are shown in Figs. 5.17-5.20 using a 

series of contour plots. Although, these are very effective in showing the general trend, they are 

not ideal to show the small differences in the gradients because of the interpolation procedure 

they are based upon. For this reason, in order to visualise even the smallest differences, a series 

of spanwise cuts are sampled as shown in Fig. 5.21 and the resulting 2D vectors are shown in 

Figs. 5.22 and 5.23. 

For both geometries the series of contour plots shown in Figs. 5.17-5.20 associated to each 

target function do not show any particular deviation that can be captured by the naked eye. 

However, the 2D vectors depicted in Figs. 5.22 and 5.23 (the scale is different for each sub-

graph in order to make all the trends visible and the scale on the z-axis is true to the profile 

coordinates only), confirm that the trend is indeed equally described by the two methods, but 

large deviations are registered at the trailing edge area and where the gradients change sign. 
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Figure 5.16  Unstructured surface mesh (top), pressure contours (centre) and y-plus contours for 

the DLR F6 wing. 
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Figure 5.17  Upper gradient comparison for the ONERA M6 wing. 
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Figure 5.18  Lower gradient comparison for the ONERA M6 wing. 
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Figure 5.19  Upper gradient comparison for the DLR F6 wing. 
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Figure 5.20  Lower gradient comparison for the DLR F6 wing. 
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Figure 5.21  Selected points for the 2D gradient vectors comparison. 

This following discussion tries to explain why, although two different mesh movements are 

used, the general gradients trend is surprisingly not too different. The proposed argument 

follows the flowchart depicted in Fig. 5.24. Firstly, the Jacobian [𝜕𝑺/𝜕𝑫] is not considered 

because it does not depend on the mesh movement. Secondly, gradient {𝑑𝐼/𝑑𝑿} is the only part 

of the chain that carries physical information which depends on the flow adjoint and the flow 

solution. Having said that, this gradient is the same regardless to the chosen mesh movement. 

As a consequence, the first thing that could be considered for the deviations in the gradient is 

the fact that LE elastic matrix needs to be inverted, whereas the DGM provides the Jacobian 

[𝜕𝑿/𝜕𝑺] directly. Therefore, the DGM-based Jacobian could be taken as an example to match, 

but this is conceptually wrong because the two methods are mathematically different and thus 

they are not expected to deliver the same Jacobian. The next step is to actually study both 

Jacobian matrices  𝜕𝑿/𝜕𝑺 𝐿𝐸,𝑚𝐷𝐺𝑀 . It is desired to study if they are different, to what degree 

and where in particular. As can be seen from Fig. 5.15, the distribution of these two Jacobians is 

very similar close to the wall where gradient {𝑑𝐼/𝑑𝑿} is different from zero. However, just 

before this vector reaches values tending to zero, the two Jacobian distributions start to diverge. 

Since the area where the two Jacobians are equal covers most of the area where gradient 

{𝑑𝐼/𝑑𝑿} is different from zero, but differs in a small relative region, this explains why they are 

largely equal but still different in some details. 
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Figure 5.22  Point-to-point gradient comparison for the ONERA M6 wing. 
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Figure 5.23  Point-to-point gradient comparison for the DLR F6 wing. 
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Figure 5.24  Scheme of the analysis used for the gradients comparison. 

A similar study was published also by Wang et al. [51] where the authors investigated the 

influence of different mesh movements such as RBF, spring and LE analogy on the resulting 

gradient. Their study concentrated directly on the sensitivity w.r.t. the parametric design 

variables, i.e. {𝑑𝐼/𝑑𝑫} , whereas in the present work, the attention was on {𝑑𝐼/𝑑𝑺} . 

Nevertheless, the study published by Wang et al. [51] confirms the conclusion made above. In 

other words, even though the mesh movements are different, their grid sensitivities lead to the 

same value of the gradient. 

5.8.2 CPU Time and Memory Comparisons 

In this chapter the differentiated mesh movement performances of two methods, namely LE and 

mDGM are discussed. This is assessed by monitoring the CPU time and the memory 

requirements, while computing the gradient expressed as in {𝑑𝐼/𝑑𝑺}. The initial discussion 

presented in Chap. 4.7.1 on how the comparison was built still holds here. 
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Near the wall {𝑑𝐼/𝑑𝑿} is close to its maximum values and at the same 

time both Jacobian matrices are also close to their maximum values. 

Away from the wall {𝑑𝐼/𝑑𝑿} is tending to zero and at the same time 

both Jacobian n.d.r. start to diverge. 
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It was already mentioned that the LE and mDGM are different in their formulation and finding a 

common ground where they can be both fairly tested is not easy. These two methods compute 

the {𝑑𝐼/𝑑𝑺} map in different steps. When using the mDGM, matrix [𝑬] and vector {𝑑𝐼/𝑑𝑿} are 

first computed separately and then multiplied together. Therefore, the CPU time reported in 

Tab. 5.3 is the sum of the time required to perform these two operations. On the other hand, 

although the LE makes use of vector {𝑑𝐼/𝑑𝑿}, this is not saved on disk, but its entries are 

computed recursively as the system of equations (see Eq. (5.31)) is solved iteratively. 

From the results reported in Tab. 5.3, three conclusions can be made regarding the memory, 

CPU time and disparity registered in these values for different objective functions. 

Table 5.3  CPU time and memory requirements comparison between the differentiated mDGM 

and LE. 

Differentiated  

mesh movement 
Geometry 

Objective  

function 

Memory  

(Gb) 

CPU  

time (s) 

mDGM 
M6 wing 𝐶𝐷,𝐿,𝑀𝑌  1.2 179 (=130+49) 

F6 wing 𝐶𝐷,𝐿,𝑀𝑌  2 337 (=255+82) 

LE 

M6 wing 

𝐶𝐷 

15 

695 

𝐶𝐿 1,031 

𝐶𝑀𝑌  839 

F6 wing 

𝐶𝐷 

27 

1,655 

𝐶𝐿 1,759 

𝐶𝑀𝑌  1,594 

In particular, the memory needed to solve the LE-based linear system of equations is one order 

of magnitude bigger than that requested by the mDGM. A similar trend is registered also in 

terms of CPU time. For instance, considering the DLR F6 wing case, the mDGM takes 2Gb of 

memory and 82s of CPU time to perform the product. Interestingly, the largest share of the total 

CPU time is not represented by the product itself, but by the computation of vector {𝑑𝐼/𝑑𝑿} 
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which takes 255s. The same map is delivered by the LE in about 1,669s (mean between the 

three objective functions) and 27Gb of memory. This makes the LE-based gradient approach 

4.95 times in terms of CPU time and 13.5 times in terms of memory more expensive than the 

mDGM. Similar conclusions can be made for the ONERA M6 wing. 

Three objective functions were tested, namely drag, lift and longitudinal moment coefficient. 

What is interesting to note is that both mDGM and LE require the same memory as the 

objective function is changed. On the other hand, the LE-based gradient shows CPU time values 

which depend on the choice of the objective function. Since the same solution algorithm is used, 

one explanation for the disparities in CPU times, is that the memory is proportional to the size 

of the system, i.e. proportional to 𝑁𝑉𝑀 × 𝑁𝑆𝑀  which is the same for all the objective functions, 

whereas the CPU time is proportional to the linear system stiffness (conditioning) which cannot 

be considered constant as one changes the objective function. 

5.8.3 Performance Scaling with the Mesh Size 

In order to make a final judgment on the method, it is interesting to see how the mDGM scales 

with the 𝑁𝑉𝑀 . To this end, the DLR F6 wing-body with the FX2B bump fairing geometry is 

chosen [131]. The supporting box used can be seen in Fig. 4.13 and was constructed selecting 

some suitable volume mesh points as described in Chap. 4.5.3. The final sensitivities can 

instead be seen in Fig. 5.25 and it was computed accordingly to Eq. (5.12). The flow solution 

was computed at Mach number of 0.75 and target lift coefficient of 0.5 with the flow settings 

described in Chap. 3.6. 

From the result reported in Tab. 5.4, it is evident that the increase on the mesh size is very 

similar to the increase in the memory required. In fact, considering the medium mesh, with a 

𝑁𝑉𝑀  equal to 6.1 Mil., the increase w.r.t. the coarse mesh is of 110.34% which is then reflected 

in an increase in memory of 109.52%. However, the same trend is not registered for the CPU 

time where for instance given a delta in the 𝑁𝑉𝑀  of +110.34% and +244.82% this is reflected in 

a variation of CPU time of +163.78% and +378.30% respectively.  
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Figure 5.25  Different types of gradients for the DLR F6 wing-body geometry. 
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Table 5.4  mDGM CPU time and memory requirements scaling with the mesh size. 

𝑁𝑉𝑀  (Mil) ∆% 
Memory  

(Gb) 
∆% 

Objective  

functions 

CPU  

time (s) 
∆% 

2.9 Datum 2.1 Datum 

𝐶𝐷,𝐿,𝑀𝑌  

544 Datum  

6.1 +110.34 4.4 +109.52 1,435 +163.78 

10 +244.82 7.4 +252.38 2,602 +378.30 

However, care should be exercised while commenting these data. The CPU time reported in 

Tab. 5.4 is the sum of the CPU time required to perform two steps, namely, computation of 

{𝑑𝐼/𝑑𝑿} and {𝑑𝐼/𝑑𝑿}[𝑬]. Since the computation of vector {𝑑𝐼/𝑑𝑿} does not depend on the 

mesh movement chosen, to truly understand the benefit provided by an algebraic method such 

as the mDGM one should consider only the CPU time require to perform the product. In this 

case, the CPU time is much lower. For the three grids tested in Tab. 5.4 given the total CPU 

time of 544s, 1,435s, 2,602s only 90s, 185s, 317s are actually needed to perform the product 

and the remaining time is actually used to compute {𝑑𝐼/𝑑𝑿}. 

5.9 Summary 

A method based on the DGM mesh movement was proposed to efficiently compute the grid 

sensitivity in the discrete adjoint framework. The method results in a one-to-one explicit 

algebraic mapping between the volume and solid wall mesh nodes. This allows a 

straightforward computation of the gradient without the need to invert a large and sparse matrix 

or in other words, to converge a linear system of equations generally associated with any 

implicit iterative mesh movement such as LE. 

Two strategies were presented to derive the DGM-based gradient chain. While using the 

augmented objective function approach, it was proven how the solution of the second linear 

mesh adjoint system of equations can be eliminated. The same result was shown to be possible 

even if the Lagrangian multiplier associated with the mesh movement constraint is not used. To 
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be more precise, this second option can be used only if the differentiated mesh movement 

provides [𝜕𝑿/𝜕𝑺] explicitly. 

The method was verified for the 2D RAE 5243 aerofoil and for the 3D ONERA M6 wing for 

two cases: sensitivity of the objective function w.r.t. each surface mesh point and the AoA 

compared against the FDs and linearised values respectively. 

The issue related to the DGM-based gradient was addressed and discussed. A solution was 

proposed which consists in the construction of a supporting box. This improves the quality of 

the Delaunay elements and in turn respects the surface-to-volume map established by Jacobian 

[𝜕𝑿/𝜕𝑺]. 

A comparison against the LE in terms of memory and CPU time requirements was also 

provided, where it was highlighted the advantages offered by the DGM. The saving in CPU 

time and memory requirements compared to the LE are significant and can be quantified in a 

saving of up to one order of magnitude. 
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Chapter 6   Surface Mesh Parameterisations 

6.1 Introduction 

In Chap. 5 it was discussed how, using the DGM, it is possible to efficiently map the variation 

of any objective function as a function of a movement of the surface. This approach, although 

very powerful, suffers from smoothness issues both in the shape updates and in the gradients. 

Another approach is to use a parameterisation technique to control the surface mesh nodes. In 

this case, given a sensible parameterisation, both the surface updates and the gradients are 

guaranteed to be smooth. 

The FFD is chosen to parameterise the 3D wing due to its simplicity and the capability to 

recover the original shape without the need to perform any geometric inverse fitting, which was 

one of the requirements of the study to be presented in Chap. 7.4. However, since the FFD is 

based on BP it offers poor local control unless the control box is constructed in a small localised 

area. 

In the literature, there are always been a dichotomy between the free-nodes and the parametric 

approach. The first allows the exploration of the entire design space, but suffers from poor 

deformation smoothness. On the other hand, the latter offers always a smoothed shape, but with 

a reduced design space exploration capability. Thus, it is natural to seek a formulation which 

allows the maximum space exploration while maintaining a smoothed shape, something that 

neither the discrete nor parametric approach is able to offer. 

To bridge the gap between shape smoothness and design space exploration, the CST was 

modified to address both requirements. The newly modified CST formulation, termed l-CST, as 

in “local” CST, is based on the corrected BPs which confers the CST parameterisation method a 

strong on-demand local control. Various possible applications are discussed along with the 

effect of the parameterisation on the resulting pressure distribution, aerodynamic coefficients 

and on an inverse geometric fitting. 

Within these two choices, namely parameterised surface and free-nodes approach, the 

smoothing issue is addressed from both the gradient and the shape point of views. 
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The chapter concludes with a summary of the most important findings. 

6.2 Survey of the Most Important Existing Methods 

Generally in aerodynamic optimisation where parameterisation is a fundamental part, curves 

and surfaces can be manipulated in many ways such as PDE, camber, NACA aerofoil, CPs 

(Control Points) or direct manipulation parameterisation. Samareh [144] provides an extensive 

review of some of these options. In this work, the discussion is restricted to the CPs and the 

direct manipulation methods because, as noted by Yamazaki et al. [145], these are the most 

common forms of parameterisation used in aerodynamic optimisation. 

The former is the classical method and probably the most implemented in aerodynamic 

optimisation exercises. CST, Bézier and B-Splines (Basis) parameterisation are all good 

examples of this category. The main drawback of this types of methods is the lack of 

intuitiveness. In other words, there is no direct or intuitive relationship between the 

displacement of the CPs and the corresponding surface deformation. As a consequence, the 

bounds of each CP are difficult to define as they are the result of tedious cut-and-try solutions. 

There are two solutions to this problem. The first option is to increase the number of CPs in 

such a way to redistribute more locally the deformation, or alternatively local control can be 

imposed directly to the curve. The latter is not easy as most parameterisation techniques do not 

have this property or, if they do, this is done to the expense of an increase of the formulation 

complexity. 

On the other hand, the direct manipulation method [146] maintains the CPs as a means to 

control the curve, but perturbations are made directly using the curve points as the location of 

the CPs are recomputed automatically each time. A method such as this gives a strong intuitive 

property to the system. However, if the number of CPs are too low, the method is generally 

under constrained and an infinite number of solutions is an inevitable consequence as there are 

infinite CP values that satisfy the user specified displacements [145]. 

How the parameterised curve is controlled is therefore very important as it determines some 

other features such as: parsimony (conciseness), intuitiveness, orthogonality, physical meaning 

and local/global control. Many methods were proposed and some of the most important are 
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briefly classified in Fig. 6.1. Each one of them has its own advantages and disadvantages in 

relation to the points presented above. The most used methods are by far the free-nodes 

approach, H-H (Hicks-Henne) bump, Bézier, B-splines, NURBS (Non-Uniform Rational Basis-

Spline), CST and FFD. For this last two, a dedicated discussion is provided for reasons that are 

made clear later on in this chapter. 

 

Figure 6.1  Classification of the parameterisation techniques. 

The free-nodes method (also known as discrete method) works directly on the surface mesh 

nodes making it one of the most intuitive. Jameson [6] and Campbell [147] noted that this 

method allows one to explore all the design point of the design space with strong local control, 

but the issues related to its smoothness and the large 𝑁𝐷𝑉  need to be addressed. Jameson and 

Kim [9] provided some examples and a method to address its inherent noisy trend. The method 

is based on the concept of Sobolev gradient for which a detailed discussion is offered in Chap. 

6.6. Of course, having access to the entire design space poses a question on the parsimony of the 

method in terms of the Hessian memory requirement, if a second order optimiser is used. 

Another interesting point to note is its inherent lack of intuitive parameters, such as leading 

radius, minimum thickness and so on. 

Surface mesh update

Free-nodes approach Parameterisation
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CST B-spline & NURBS FFDBézier H-H bumps
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The idea behind the H-H (Hicks-Henne) bump [2] is to add smooth deformations to the original 

shape through a weighted sum. H-H used a trigonometric bump function, but other options can 

be used such as Wagner, Legendre, BPs or even NACA functions. Khurana et al. [148] and Eyi 

and Lee [149] tested different combinations of the shape functions listed above in a geometric 

inverse fitting and inverse design exercise. They concluded that the H-H and Legendre functions 

offered the best performance in terms of flexibility and convergence speed. 

The Bézier curve is defined as the dot product between the BP blending functions and the CPs 

vector. The BPs are then defined as the dot product between a binomial and a polynomial term. 

This combination offers a smooth parameterised curve. One of the largest advantage, which is 

often overlooked, is the property of being able to parameterised the same curve using different 

degrees, i.e. degree elevation. On the downside, there is the issue that the order is directly linked 

with the 𝑁𝐶𝑃 . In fact, for the case where a high 𝑁𝐶𝑃  is necessary, numerically instability in form 

of curve oscillations is a notable issue of the method. Nevertheless, due to their simplicity, there 

are many applications available in the literature and an example can be found in Cosentino and 

Holst [150]. 

B-splines are very similar in their mathematical formulation to Bézier formulation. In fact, they 

also feature a dot product between a CPs vector and a series of blending functions. The main 

differences is that, contrary to Bézier parameterisation, the blending functions are non-zero only 

on a specific part of the curve [151] accordingly to the distribution enforced by the knot vector. 

If these are equally spaced, the B-splines are called uniform, otherwise are referred to as non-

uniform. A disadvantage of this implicit form is that circles and conics cannot be represented 

unless one used the concept of rational B-splines. If this last mentioned formulation is used 

along with the non-uniform knots one arrives to the so called NURBS definition. Both B-spline 

and NURBS have two very important and distinguishing features when compared to the Bézier 

curve method. Firstly, the degree of the curve is not determined by the 𝑁𝐶𝑃 , whereas a Bézier 

curve features a curve degree that depends to the 𝑁𝐶𝑃 . Secondly, the local control of the curve is 

possible unlike Bézier, where moving one CP affects the whole curve. Examples can be found 

in Sasaki and Obayashi [152] for a comparison between B-spline and Bézier curve, Lepine et al. 

[153] for application of the NURBS curves in inverse design and Bentamy et al. [154] for wing 

retrofitting. 
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Although NURBS feature a complex formulation, they have become the de-facto standard in 

nearly all the CAD (Computer Aided Drawing) softwares [144]. Speaking of CADs, the reasons 

of their widespread use and applications can be briefly reduced to the capability to deal with 

complex geometries, provide intuitive parameters, knowledge of the intersection lines and more 

importantly a common framework for different disciplines. This last feature is very important 

for MDO applications. On the downside, there are a series of issues, such as gaps for which a 

CAD repair routine needs to be used and the inherent flaw of not providing directly the 

sensitivity which is fundamental for any gradient-based optimiser [144]. To be more precise, the 

CAD sensitivities can be provided if the CAD engine is available to the end user. Since, most of 

the time, the CAD engine is a proprietary software, this capability is not readily available. 

Nevertheless, an alternative solution was proposed with the software called CAPRI 

(Computational Analysis PRogramming Interface) [155] which provides a flexible interface 

between the CAD-engine and its differentiation. Furthermore, other non-commercial CAD 

libraries can be used as suggested and tested by Nemec et al. [156]. 

Sobieczky [157] proposed an intuitive 2D method called PARSEC (PARAmetric SECtion). It is 

based on 11 geometric parameters, each one of them describing a specific feature of the 

aerofoil. These are the leading edge radius, upper and lower crest position and curvature along 

with trailing edge location and respective angles. Two polynomials are used, one for the upper 

and one for lower surface. Although the PARSEC built-in intuitive parameters are considered 

by some an advantage, there is also a subtle issue that must be highlighted. In aerodynamics 

there are many non-linearities and linking them to a physical aerofoil properties may not be a 

straightforward exercise. Examples of how the PARSEC method is used can be found in 

Fuhrmann [158] and Khurana [159]. 

Some of the features needed for this work could not be found in the methods surveyed so far. 

From here, the decision to restrict the attention to other two methods, CST and FFD. The CST 

provides a nice framework to build an on-demand local control. On the other hand, the FFD 

allows an easy set up for a 3D geometry with the advantage that it does not require to retrofit the 

original profile. This last capability is a very important requirement for the non-consistent mesh 

movement optimisation cases tested in Chap. 7.4. These two methods are duly described in the 

following sections. 
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6.3 Free-Form Deformation 

The FFD is a parameterisation technique popularised in the aerodynamic literature by Samareh 

[144], but was originally proposed by Sederberg and Parry [12]. Its main feature is that it 

parameterises the displacement rather than working directly on the surface or volume. Many 

modifications were proposed, such as the extended FFD [160] and the direct manipulated FFD 

[161]. The reader is referred to the valid literature review by Amoiralis and Nikolos [162] for a 

full account of the available different formulations. 

The FFD consists of creating a parallelepiped box-like lattice around the object which is then 

mapped using a linear combination of some basis functions and the parametric CPs vector. For 

instance, Sederberg and Parry [12] used the BPs, but other basis can be used such as NURBS 

[163]. 

To formulate the fundamental FFD expression, a local coordinates system is first created: 

 𝑷 =  𝑷𝑙 + 𝑢 𝑼 + 𝑣 𝑽 +𝑤{𝑾} (6.1) 

where  𝑷  contains the coordinates w.r.t. the object reference system, {𝑷𝑙}  contains the 

coordinates of the origin and  𝑼 ,  𝑽 , {𝑾}  are the local unit vectors (for instance  𝑼 =

{1,0,0}). The 𝑢, 𝑣,𝑤 local coordinates can then be found as: 

𝑢 =
 𝑽 ×  𝑾 ( 𝑷 − {𝑷𝑙})

{𝑽} ×  𝑾 ∙ {𝑼}
 

(6.2) 𝑣 =
 𝑼 ×  𝑾 ( 𝑷 − {𝑷𝑙})

{𝑼} ×  𝑾 ∙ {𝑼}
 

𝑤 =
 𝑼 ×  𝑽 ( 𝑷 − {𝑷𝑙})

{𝑼} ×  𝑽 ∙ {𝑼}
 

where symbol “∙” refers to the dot product, whereas symbol “×” refers to the cross product. By 

doing so, all the physical coordinates (𝑥,𝑦, 𝑧) are mapped into local parametric coordinates 

 𝑢, 𝑣,𝑤 ∈  0,1 ×  0,1 × [0,1] . The parameterised FFD coordinates are then elegantly 

expressed as a trivariate volume tensor-product: 
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 𝑺 𝑢, 𝑣,𝑤  =    𝐷𝑖,𝑗 ,𝑘   𝐵𝑃𝑖
𝑛 𝑢  𝐵𝑃𝑗

𝑚  𝑣  𝐵𝑃𝑘
𝑝

(𝑤)

𝑝

𝑘=0

𝑚

𝑗=0

𝑛

𝑖=0

 (6.3) 

where and 𝑛,𝑚,𝑝 are equal to the degree of the curve along the x, y, z directions and the 𝑁𝐶𝑃  are 

equal to 𝑛 + 1,𝑚 + 1,𝑝 + 1. Each BP is then defined as follows: 

𝐵𝑃𝑖
𝑛 𝑢 =  

𝑛
𝑖
  1− 𝑢 𝑛−𝑖𝑢𝑖 =

𝑛!

𝑖!  𝑛 − 𝑖 !
 1− 𝑢 𝑛−𝑖𝑢𝑖  

(6.4) 𝐵𝑃𝑗
𝑚  𝑣 =  

𝑚
𝑗   1− 𝑣 

𝑚−𝑗𝑣𝑗 =
𝑚!

𝑗!  𝑚 − 𝑗 !
 1 − 𝑣 𝑚−𝑗𝑣𝑗  

𝐵𝑃𝑘
𝑝 𝑤 =  

𝑝
𝑘
  1 −𝑤 𝑝−𝑘𝑤𝑘 =

𝑝!

𝑘!  𝑝 − 𝑘 !
 1−𝑤 𝑝−𝑘𝑤𝑘  

It is known that, the BP basis functions suffer from poor local control. However, for the purpose 

of this work (presented in Chap. 7.4), this choice is not of any concern. 

One of the most important feature of the FFD method is that all the points embedded in the 

control volume lattice (see Fig. 6.2) are parameterised and effectively treated as a cloud of 

points. Therefore, no information regarding connectivity and mesh type is required. Another 

noteworthy feature is that FFD, contrary to CST, B-splines and Bézier, does not need to perform 

any additional geometric inverse fitting. 

As explained in Chap. 2.4.1, the derivatives of the parameterised surface w.r.t. the parametric 

DVs are needed. Thus, taking the derivative of Eq. (6.3) w.r.t. {𝑫} yields: 

 
𝜕𝑺 𝑢, 𝑣,𝑤 

𝜕𝑫
 =     𝐵𝑃𝑖 𝑢   𝐵𝑃𝑗 (𝑣)  𝐵𝑃𝑘(𝑤)

𝑝

𝑘=0

𝑚

𝑗=0

𝑛

𝑖=0

 (6.5) 

There are different ways to construct the lattice box and it is acknowledged that different ways 

of constructing the control box would affect the minimum or better it would affect the way the 

parameterisation surfs the design space. On this matter, it is also important to highlight that, as 

noted by Samareh [164], the lattice CPs do not have a direct link to the geometry. Therefore, a 

change in one of the DV may deform the parameterised object in a non-intuitive way. 
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In terms of aerodynamic applications, the FFD method was widely used and tested against a 

different variety of other methods. For instance, Bloor et al. [165] compared the FFD against 

the PDE in a pure geometry modelling exercise, Amoiralis and Nikolos [162] against the FFD 

based on the B-splines in an inverse design exercise and Kenway et al. [117] used it for a MDO 

optimisation application. 

 

Figure 6.2  Example of a local deformation governed by the FFD. 

6.4 Class Shape Transformation 

The CST is a relatively new parameterisation technique introduced by Kulfan [11]. Its main 

advantage is that is able to impose directly some aerodynamic key geometric features by using a 

Class shape Function (CF). This means that aerofoil-like shapes can be obtained directly and 

then optimised for a specific use. These are leading edge radius and trailing edge thickness, 

whereas the other parameters are not intuitive. A solution, termed i-CST (intuitive), to this issue 

was proposed by Zhu and Qin [166]. The CST curve, 𝐶𝐶𝑆𝑇 , is defined as: 
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𝐶𝐶𝑆𝑇 𝑢 = 𝐶𝐹 𝑢 ∙   𝐴𝑖  𝐵𝑃𝑖
𝑛 𝑢 

𝑛

𝑖=0

 + 𝑢𝑇𝐸𝑢  (6.6) 

where 𝑛 is the degree of the curve, 𝑖 is the index and 𝑢 is the non-dimensional chord length 

position, i.e. 𝑥/𝑐 with 𝑐 being the chord, and 𝑢𝑇𝐸  is the trailing edge thickness correction (equal 

to zero when a sharp leading edge is considered). The degree of the curve is equal to the 𝑁𝐶𝑃  

(number of CPs) minus one (n= 𝑁𝐶𝑃 − 1), whereas the order is the same as per the 𝑁𝐶𝑃 . The 

CPs are also generally called coefficients defined as 𝐴 =  𝐴1,𝐴2 ,… .𝐴𝑁𝐶𝑃  . The BPs are 

defined as the dot product between a binomial and a polynomial term as follows: 

𝐵𝑃𝑖
𝑛 𝑢 =  

𝑛
𝑖
  1− 𝑢 𝑛−𝑖𝑢𝑖 =

𝑛!

𝑖!  𝑛 − 𝑖 !
 1− 𝑢 𝑛−𝑖𝑢𝑖  (6.7) 

They effectively work as a smooth basis blending function and there are as many BPs as CPs. If 

a higher order of accuracy is needed, one is left with no choice but to increase the 𝑁𝐶𝑃 . This is 

because each BP has a global influence on the shape of the curve. In fact, they are non-zero all 

along the aerofoil chord as can be seen in Fig. 6.3 (centre). The CST parameterisation makes 

use of the BPs and as such suffers from the same issues. The CF depends on two parameters, 

namely 𝑁1 and 𝑁2, and is defined as: 

𝐶𝐹𝑁2

𝑁1 𝑢 = 𝑢𝑁1 1− 𝑢 𝑁2  (6.8) 

where for aerofoil-likes shape, 𝑁1 and 𝑁2 take the value of 0.5 and 1 respectively, allowing to 

impose directly a round leading edge. The CF is not involved in the parameterisation process 

because is used to enforce a known aerodynamic shape. In fact, Ceze et al. [167] noted that it is 

the only source of non analyticity in the CST formulation. To this regard, an interesting solution 

was proposed by Marshall [168] where a solution to represent the CST in terms of exact Bézier 

curve (analytical) was suggested. On the other hand, the BPs are analytical functions and are 

solely responsible for the shape parameterisation because they work as a tuning functions on 

CF. Substituting Eq. (6.8) back in Eq. (6.6) yields: 

𝐶𝐶𝑆𝑇 𝑢 =  𝑢𝑁1 1− 𝑢 𝑁2 ∙   𝐴𝑖
𝑛!

𝑖!  𝑛 − 𝑖 !
𝑢𝑖 1− 𝑢 𝑛−𝑖

𝑛

𝑖=0

 + 𝑢𝑇𝐸𝑢     (6.9) 
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Two interesting points can be made here. Firstly, the resulting BPs have a consistent lower 

value as depicted in Fig. 6.3 (right). The second point is the reduced sensitivity w.r.t. the 

coefficients as depicted in Fig. 6.3 (centre) as compared to Fig. 6.3 (right). In both cases, this is 

happening because the CF is effectively a power basis. 

6.5 local-Class Shape Transformation 

A truly useful optimisation environment must be able to find subtle beneficial changes that are 

non intuitive when starting from a fairly good baseline design. Wu and Padula [169] noted that 

if an optimisation is set up to try to improve an already fine-tuned aerofoil with insufficient low-

resolution design space any improvement can be very difficult unless by luck. This is why a turn 

on/off locality feature is highly desiderable especially at the transonic regime where 

improvements take the shape of highly localised tweaks that aerodynamic parameterisation 

should be able to enforce [170, 171]. 

As far as it regards the local support, valid alternatives are represented by B-splines and 

NURBS which require the definition of a knot vector. If more knots are added, the B-spline 

acquires more and more local control. There are two shortcomings in this process. First adding 

more and more knots increases the possibility of spurious oscillation and secondly, will likely 

change the other knot positions something which is not recommended due to the 

unpredictability of the resulted parameterised curve. 

In the literature, to the best knowledge of the author there is only one application where the CST 

method was used in combination with the B-spline in an effort to give more local control to the 

curve. Straathof et al. [172] proposed to use the B-spline basis to locally modify the curve and 

their solution was named CSRT (Class-Shape-Refinement-Transformation). However, this is 

happening by increasing the 𝑁𝐶𝑃  due to the addition of a refinement function. 

This work proposes a modified version of the CST, termed l-CST, where l stands for local. The 

same 𝑁𝐶𝑃  are maintained in order not to increase the degree of the curve while conferring the 

curve a strong on-demand local control. If Bézier curves are used, the degree of accuracy is 

linked to the 𝑁𝐶𝑃  and this is why it is not trivial to find a low dimensional parameterisation 

featuring high accuracy. This is a long lasting problem related to the Bézier and CST 
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formulation based on the BPs where an increase in the 𝑁𝐶𝑃  is reflected by an increase in the 

curve‟s degree. 

The idea developed in this chapter has been inspired by the work of Punj et al. [173] where the 

authors introduced a cosine function that gives various degree of local control to each one of the 

rational Bézier CP. In the present work, a different correction function is proposed and 

extending it to the CST method based on the non-rational BPs. The l-CST parameterisation is 

defined as: 

𝐶𝑙−𝐶𝑆𝑇 𝑢 = 𝐶𝐹 𝑢 ∙   𝐴𝑖  𝐵𝑃𝑖
𝑛 𝑢 

𝑛

𝑖=0

 𝐿𝐹𝑖 𝑢  + 𝑢𝑇𝐸𝑢 (6.10) 

where the LF (Local Factor) function is defined as: 

𝐿𝐹𝑖 𝑢𝐶𝑃𝑖 , 𝑙𝑖 , 𝛿𝑖 = 𝛿𝑖 cos(∆𝑢𝑖) 
𝑙𝑖  (6.11) 

where ∆𝑢𝑖  is defined as the difference between the non-dimensionalised coordinate and the 

point along the chord where local control is needed, i.e. 𝑢𝐶𝑃𝑖 : 

∆𝑢𝑖 = 𝑢 − 𝑢𝐶𝑃𝑖  (6.12) 

There are as many 𝛿𝑖 , 𝑙𝑖  and 𝑢𝐶𝑃𝑖  as the 𝑁𝐶𝑃 . So, if it is desired to give strong local control to 

each one of the DV, the total number of extra variables is equal to 3 × 𝑁𝐶𝑃 . Alternatively, local 

control can also be applied to a single DV at the time which equates to an increase in the 𝑁𝐷𝑉  

equal to 3. These parameters establish where the LF modifies the curve and how strong the local 

control would be respectively. Substituting Eq. (6.11) back in Eq. (6.10), the following relation 

holds: 

𝐶𝑙−𝐶𝑆𝑇 𝑢 =  𝑢𝑁1 1 − 𝑢 𝑁2 ∙   𝐴𝑖
𝑛!

𝑖!  𝑛 − 𝑖 !
𝑢𝑖 1 − 𝑢 𝑛−𝑖

𝑛

𝑖=0

 𝛿𝑖 cos ∆𝑢  𝑙𝑖   + 𝑢𝑇𝐸𝑢 (6.13) 

If exponents 𝑙𝑖  take values greater than one they introduce more locality, whereas the vice-versa 

is true if they take values smaller than 1 with the exception of 0. Obviously when the exponents 

𝑙𝑖  take a value equal to zero and the 𝛿𝑖 = 1, the original CST parameterisation is recovered.  
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Figure 6.3  Plot of the influence of the LF control parameters. 
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This gives an on-demand added control to the curve leaving unchanged the original curve 

degree. Parameters 𝛿𝑖  tune the distance between the curve and the local modified curve crest. 

This is a feature that only rational polynomial (for instance NURBS) can offer. These four extra 

coefficients confer intuitiveness to the curve because one can specify the value of 𝑢𝐶𝑃𝑖  where a 

greater a priori local control is desired. 

As can been seen from Fig. 6.3 (centre) the LF is built in such a way to follow the 𝑢𝐶𝑃 

associated to its basis function considered. This gives the possibility to choose a specific area 

over the aerofoil and enforce a local perturbation while maintaining the global control features 

of the other CPs untouched. This is particularly important as this is an additional feature 

conferred to something that was generally thought to have only global control. This gives a 

reason to use the l-CST instead of either B-spline or NURBS. 

6.5.1 Comparison Between the l-CST and the H-H Bump 

At this point, it is important to highlight the differences between the l-CST and the H-H [2] 

bumps. This is necessary because the two formulations seem to be very similar and their 

fundamental difference is not trivial. The H-H parameterisation enforces a deformation on the 

baseline profile by linearly adding a series of basis functions. In formula: 

𝑦𝑢 ,𝑙 = 𝑦𝑢 ,𝑙
𝑏𝑎𝑠𝑖𝑠 +   𝑎𝑖𝑓𝑖

𝑛

𝑖=0

  (6.14) 

where 𝑦𝑢 ,𝑙
𝑏𝑎𝑠𝑖𝑠  are either the upper or the lower discrete surface coordinates of the original profile 

and 𝑓𝑖  are the bump functions. The most used bump function is the sinusoidal function defined 

as: 

𝑓𝑖(𝑢) = sin 𝜋𝑢

𝑙𝑜𝑔10 (0.5)
𝑙𝑜𝑔10 (𝑡1𝑖

) 

𝑡2𝑖

 (6.15) 

where 𝑡1𝑖  and 𝑡2𝑖  are two constants defined a-priori. The former defines the position along the 

chord of the maximum i-th bump peak, whereas the latter defines the width of the i-th bump. 

Thus, coefficients 𝑡1𝑖  and 𝑡2𝑖  enforce a change in the parameterised curve in a similar manner as 
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coefficients 𝑢𝐶𝑃𝑖 and 𝑙𝑖 . However, by comparing Eq. (6.10) and Eq. (6.14), it can be noticed that 

where the LF works directly on each BP basis using a product, the H-H bump adds to the 

baseline profile a series of different bumps. In conclusion, a very localised deformation can be 

obtained by both methods, but using two different strategies. 

6.5.2 Sensitivity Analysis 

The analytical sensitivities of both CST and l-CST parametric curves is uniquely defined and 

easy to get. Differentiation of Eqs. (6.6) and (6.10) w.r.t. the CPs leads respectively to: 

𝜕𝐶𝐶𝑆𝑇 𝑢 

𝜕𝐴
=
𝜕

𝜕𝐴
 𝐶𝐹(𝑢) ∙   𝐴𝑖  𝐵𝑃𝑖

𝑛

𝑛

𝑖=0

(𝑢) + 𝑢𝑇𝐸𝑢 = 𝐶𝐹(𝑢) ∙   𝐵𝑃𝑖
𝑛

𝑛

𝑖=0

(𝑢)  (6.16) 

𝜕𝐶𝑙−𝐶𝑆𝑇 𝑢 

𝜕𝐴
= 𝐶𝐹(𝑢) ∙   𝐵𝑃𝑖

𝑛 𝑢  𝐿𝐹𝑖(𝑢)

𝑛

𝑖=0

  (6.17) 

Interestingly, even if the control coefficients are changed the derivatives stay constant as they 

do not have any explicit dependency upon them. Physically these equations show the 

parameterised surface points affected if a change is made on each one of the CP. This is a 

valuable tool as it tells where to move the point and the magnitude of the movement if a 

predetermined perturbation is desired. 

The derivative of the CST curve w.r.t. its CPs is identical to its CF times the BP and this 

explains the reduced sensitivity as depicted in Fig. 6.3 (centre). Furthermore, from Fig. 6.3 

(centre and right) it is evident that the sensitivities show a global behaviour as expected. Finally, 

performing the same derivative also for the l-CST, the LF remains and this explains how it 

imposes the local control to the curve. 

The other type of sensitivity which is generally needed is the sensitivity of the curve w.r.t. the 

points along the chord, hence the slope and curvature of the parameterised curve. Also in this 

case, the derivatives w.r.t. 𝑢 can be obtained analytically as: 

𝜕𝐶𝐶𝑆𝑇 𝑢 

𝜕𝑢
=
𝜕

𝜕𝑢
 𝐶𝐹(𝑢) ∙   𝐴𝑖  𝐵𝑃𝑖

𝑛

𝑛

𝑖=0

(𝑢) + 𝑢𝑇𝐸𝑢  (6.18) 
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𝜕𝐶𝑙−𝐶𝑆𝑇 𝑢 

𝜕𝑢
=
𝜕

𝜕𝑢
 𝐶𝐹(𝑢) ∙   𝐴𝑖  𝐵𝑃𝑖

𝑛 𝑢  𝐿𝐹𝑖(𝑢)

𝑛

𝑖=0

 + 𝑢𝑇𝐸𝑢  (6.19) 

It is known that the derivatives of the BPs are continuous except at the extrema, whereas the 

CST and consequently also l-CST, have a singularity point only at the leading edge due to the 

square-root term needed to impose a round leading edge [11]. Eqs. (6.18) and (6.19) are 

derivatives which can be found in Farin [151]. For the sake of simplicity only the first and 

second derivative of the newly introduced LF is given here: 

𝜕 𝐿𝐹𝑖 

𝜕𝑢
= −𝛿𝑖  𝑙𝑖  sin 𝑢 − 𝑢𝐶𝑃𝑖  cos 𝑢 − 𝑢𝐶𝑃𝑖  

𝑙𝑖−1
 (6.20) 

𝜕2 𝐿𝐹𝑖 

𝜕𝑢2
= −𝛿𝑖  𝑙𝑖      𝑙𝑖 − 1  sin 𝑢 − 𝑢𝐶𝑃𝑖  

2
 cos 𝑢 − 𝑢𝐶𝑃𝑖  

𝑙𝑖−2
 

+   cos 𝑢 − 𝑢𝐶𝑃𝑖  
𝑙𝑖
   

(6.21) 

The first and second derivative as expressed in Eqs. (6.20) and (6.21) are depicted in Fig. 6.4. 

Since LF is a trigonometric function, it is infinitely times differentiable. 

To analyse the effect of the LF on both the BPs and the CST, let us consider a fifth degree 

(order 6) BP having 6 coefficients with 𝑢𝐶𝑃 located at midchord. The attention is on the third 

coefficient located at mid span for which it is easier to show how the LF works and how the 

other BPs are left unchanged. The influence is first shown on the BPs and secondly on the CF 

times BPs curve so to highlight the effect on each factor. 

The effect of a change in any exponent 𝑙𝑖  on the LF, BPs and the CF times BPs is depicted at the 

top of Fig. 6.3. As can be seen, an increase in the exponent forces the curve to take values closer 

to zero away from the position of 𝑢𝐶𝑃. The effect of this LF on the third BP is evident as it is 

taking the curve from having a control all over the chord length to a small localised region of 

the aerofoil. The same effect is seen also on the CF times BPs curve. 

For the sake of simplicity, an 𝑢𝐶𝑃 positioned at midchord was chosen, but as shown in Fig. 6.3 

(centre) different locations can be chosen while working always on the same third BP basis. The 

effect on the selected BP (Fig. 6.3 centre) and CST Fig. 6.3 (centre left) curve is as described 

before. 
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The next terms to analyse are 𝛿𝑖 . If these terms are equal to one neither the BPs nor the CF 

times BPs curves are affected by the LF. When these terms are different from one, it is clear that 

the effect is very similar to what rational BPs can do. In fact, these give the possibility to 

modify the distance between the curve and the local curve crest as depicted in Fig. 6.3 (bottom). 

 

 

Figure 6.4  LF function and its derivatives. 

6.5.3 Examples of Possible Applications 

In this section two examples are given to show the capability of the l-CST method. The first 

example compares the l-CST against the CST method for relatively large visible deformations. 

On the other hand, the second example shows how a quasi-discrete local control can be 

achieved. This is done to show that, although a parameterisation technique is used, a very strong 

local control (very much like that allowed by the free-nodes approach) can still be achieved. 

The first step that needs to be performed is a geometric fitting of the upper and lower profiles 

separately using a 11
th
 degree curve for both the CST and the l-CST parameterisations. As a 

second step only one coefficient is modified in both cases. An 11
th
 degree CST curve has 12 

coefficients (degree of the curve plus 1), however the number of free parameter used by the l-

CST (in Figs. 6.5-6.7) with local control given only to one coefficient is 12 + 3, where the three 

extra coefficients chosen for this case are 𝑙6, 𝛿6 and 𝑢𝐶𝑃6
. 
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Referring to Fig. 6.5, two deformations were imposed, one on the upper side and the other on 

the lower one where the following settings were used: Δ𝑎6 = 0.3, 11
th
 degree curve, 𝑢𝐶𝑃6

=

0.5, 𝑙6 = 200 and 𝛿6 = 1.001. As can be seen, the CST has an effect that spans more than a 

half chord, whereas the l-CST reduces the extent of the perturbation to a much smaller area. 

This can be seen in Fig. 6.5 (bottom) where the point-by-point differences w.r.t. the original 

fitted CST and l-CST curve are plotted. Two points can be made here, namely the CST and l-

CST curves at the perturbed x-location are different because 𝛿6 ≠ 1 and the difference between 

the two perturbations are greater at the peaks and where the curves recover the original shape. 

For the second example, Fig. 6.6 depicts how a quasi-discrete local control can be obtained 

where the following settings were used: Δ𝑎6 = 0.3, 11
th
 degree curve, 𝑢𝐶𝑃6

= 0.5, 𝑙6 = 2000 

and 𝛿6 = 1. To make this point clearer a test was performed to find what is the degree of the 

original CST curve that recovers the local control property provided by the l-CST. As can been 

seen from Fig. 6.7 (using the same settings as per Fig. 6.6), not even a CST curve featuring a 

41
st
 degree can recover the local-control capability offered by the l-CST using an 11

th
 degree. 

Also note that, as the BP degree is increased (a consequence of the increased 𝑁𝐶𝑃 ), the 

magnitude of the deformation is reduced, whereas the l-CST matches exactly that of the original 

11
th
 degree CST. 

On this matter, Painchaud-Ouellet et al. [174] observed that adding more local control has the 

same effect of adding more CPs, which leads to modifications occurring at a much smaller 

scale. This can possibly lead to undesirable bumpy aerofoils and can be viewed as a potential 

problem for the l-CST formulation. However, there is a fundamental difference. While 

increasing the order of the CST curve increases the risk of obtaining localised bumps all over 

the profile, the addition of a strong local control affects only a specific area. While one is 

undesirable, the other is intentional. 
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Figure 6.5  Example of local deformations. 
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Figure 6.6  Example of almost discrete-like deformations. 
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Figure 6.7  Example of the effect of an increase in the curve degree. 
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6.5.4 Geometric Inverse Fitting 

The task of curve fitting is to find a smooth curve that fits the data points on the average. Fitting 

was chosen in place of interpolation because the risk of having high frequency oscillations 

increases when the interpolation process is tested against closely spaced points such as those at 

the leading edge. In fact, while interpolation stays true to the training points, fitting does not and 

the smoothing capability is stronger [171]. 

One of the most important features that a parameterisation should have while performing a 

geometric inverse fitting is the capability to increase the accuracy. This is generally done by 

increasing the number of CPs which allows one to refine the fitting, a feature commonly 

referred to as hierarchy of the parameterisation [170, 171]. This cannot always be done without 

impairing other good features such as stability in particular. In fact, the curve should have a 

simple form, e.g. a low-order polynomial, so as not to reproduce the noise [175]. Having said 

that, the goal of this exercise is to show how the l-CST allows an increase of the retrofitting 

accuracy without increasing the degree of the curve. 

The most commonly used method to measure the fitting error is the least-squares fit because 

squaring emphasises larger errors relative to smaller ones. Therefore, the 𝐿2 norm is used to 

measure how good the fit is: 

𝐿2 =    𝐶(𝑢𝑖)𝑜𝑟𝑖𝑔𝑖𝑛𝑖𝑎𝑙    − 𝐶𝑝𝑎𝑟𝑎 ,𝑓𝑖𝑡𝑡𝑒𝑑 (𝑢𝑖) 
2

𝑁𝑆𝑀

𝑖=1

 (6.22) 

where 𝐶𝑝𝑎𝑟𝑎 ,𝑓𝑖𝑡𝑡𝑒𝑑  designates either 𝐶𝑙−𝐶𝑆𝑇 ,𝑓𝑖𝑡𝑡𝑒𝑑  or 𝐶𝐶𝑆𝑇,𝑓𝑖𝑡𝑡𝑒𝑑 . The fitting is not generally done 

for the horizontal coordinates because the sensitivity is much lower when compared to the 

vertical direction as reported by Amoiralis and Nikolos [162]. However, it is known that this 

choice is not ideal at the leading edge where the behaviour is very similar to the local aerofoil 

tangent, hence going to infinite. 

The aerofoil is split in two parts, an upper and lower part and Eq. (6.10) is applied to each one 

of them. Three different 𝑁𝐶𝑃  equal to 4, 8, 12 corresponding to 3
rd

, 7
th
, 11

th
 BP degree curve 

were tested so as to facilitate the comparison between the CST and l-CST curves as the 𝑁𝐶𝑃  is 

increased. 



164 

 

As can been seen from Figs. 6.8 to 6.11, two types of fluctuations in the error plot can be clearly 

identified. Big scale fluctuations show where the aerofoil is stiff to fit and this type of error can 

be reduced by simply increasing the 𝑁𝐶𝑃  or using the newly proposed l-CST. On the other hand, 

small scale fluctuations are not due to fitting problems and the reason of these deviations needs 

to be investigated on the way the data were collected and passed over. One way to reduce this 

noise is to use analytically defined aerofoils (such as the 4, 6 digits NACA profiles). 

From the series of plots presented in Figs. 6.8-6.11, it is clear how the l-CST differs from the 

CST. As the BP degree is increased the advantages offered by the l-CST diminish because the 

CST can almost recover the fitting accuracy offered by the l-CST. This means that the l-CST 

allows to use a lower order BPs without the expense associated with the high order BPs. It is 

remarkable that the 7
th
 degree l-CST can offer, in some area of the aerofoil, the same accuracy 

of a 11
th
 order CST (see for instance Fig. 6.10). However, there are points where the l-CST does 

not perform as well as the CST, namely in Fig. 6.9 for the 7
th
 degree l-CST. This is not really an 

issue because it can be solved either by increasing the BP degree as shown in the same plot or 

by turning off the local control.  

An interesting thing to remark is how the BP basis functions for the CST and the l-CST method 

differ as depicted in Figs. 6.8-6.11 top right and left. In particular, a closer look reveals that 

some of the BP basis functions feature a reduced local factor making a clear example of the 

possibility that not always more local control leads to a better fitting.  

To investigate more this aspect, Tab. 6.1 tabulates the values of the NLR-7310 aerofoil local 

coefficients as the degree of the curve is increased. In Tab. 6.1, the first coefficients control the 

area close to the leading edge, whereas the last control the area close to the trailing edge. It is 

clear that, as the curve degree is increased, most of the exponent 𝑙𝑖  controlling the aerofoil 

trailing edge take null values. This means that these DVs do not need more local control as far 

as it regards the geometric fitting. This can be explained with the fact that, as one increases the 

degree, the control is distributed more evenly on the entire aerofoil reducing the need for more 

local support. However, the leading edge still remains a critical and difficult area to retrofit and 

this explains the higher value of the first coefficients 𝑙𝑖 . 

In Figs. 6.8-6.11, the degree of the curve was kept constant, which is good to avoid curve 

oscillations (stability), but the number of free parameters used by the l-CST is higher (double) 



165 

 

than the CST because coefficients 𝑙𝑖  were allowed to change. However, by looking at the results 

reported in Tab. 6.1, it is possible to see which area of the aerofoil requires more local control. 

Using this a-posteriori analysis, it is then possible to reduce the number of the l-CST free 

variables by turning off the local control where it is not needed. This is shown in Fig. 6.12 by 

comparing the 3
rd

 degree l-CST with the 7
th
 degree CST. These last two have now the same 

number of free-variables, i.e. eight. To be more precise where the l-CST has 4 𝐴𝑖  along with 4 

𝑙𝑖 , the CST has 8 𝐴𝑖 . As can be seen the 3
rd

 degree l-CST is able to provide a comparable level 

of fitting accuracy. 

Table 6.1  Optimised values of the exponent coefficients. 

DV 

3
rd

 degree l-CST curve 

exponent coefficients 

7
th

 degree l-CST curve 

exponent coefficients 

11
th

 degree l-CST curve 

exponent coefficients 

upper lower upper lower upper lower 

1 -9.921 -8.810 11.160 -17.578 2.820 186.732 

2 -14.304 -18.830 76.963 29.078 -37.290 102.483 

3 -8.621 -6.549 13.866 -26.866 4.443 -39.925 

4 0.0 0.0 0.0 0.0 0.0 0.0 

5 

There are 4 local 

coefficients for a 3
rd

 degree 

curve 

0.0 0.0 0.0 0.0 

6 0.0 0.0 0.0 0.0 

7 0.0 0.0 0.0 0.0 

8 0.0 0.0 0.0 0.0 

9 

There are 8 local 

coefficients for a 7
th
 degree 

curve 

0.0 0.0 

10 0.0 0.0 

11 0.0 0.0 

12 0.0 0.0 
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Figure 6.8  Geometric fitting for the SC20714 aerofoil. 
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Figure 6.9  Geometric fitting for the HSNLF213 aerofoil. 
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Figure 6.10  Geometric fitting for the S825 aerofoil. 
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Figure 6.11  Geometric fitting for the NLR7301 aerofoil. 
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Figure 6.12  Geometric fitting comparison for the NLR7301 aerofoil using the same number of free variables. 
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6.5.5. Importance of Geometric Fitting for the Aerodynamic Coefficients 

The RAE 5243 aerofoil [132] was chosen to study the impact of the l-CST retrofitted profile on 

the aerodynamic coefficients and the pressure distribution. The flow solution was computed at 

an AoA equal to zero and a Mach number equal to 0.68, using the DLR TAU-Code flow solver 

and the mesh described in Chaps. 3.6 and 5.4.1 respectively. 

It is known that the leading edge and the shock region are one of the areas where the flow 

experiences high gradient. In these regions, small geometric variations can have a large impact 

in both aerodynamic coefficients and pressure distribution. The trailing edge also experiences a 

high gradient, however since this is more a singularity point rather to be a continuously varying 

feature, is difficult to use for comparison purposes.  

It is evident that the l-CST outperforms the CST in terms of both pressure distribution and 

aerodynamic coefficients recovery shown respectively in Fig. 6.13 and Tab. 6.2. The 7
th
 degree 

CST curve tested misses significantly where the shock starts, whereas the 7
th
 degree l-CST is 

much more accurate in reproducing the same feature. The same conclusion can be also drawn by 

looking at the leading edge pressure distribution depicted in Fig. 6.14. In this last figure, in 

particular, is evident the oscillatory behaviour of the fitting due the BP basis used. This situation 

is particularly important in an optimisation loop, at the first iteration when the parameterisation 

is called to retrofit a surface mesh nodes created accordingly to the RANS requirements. These 

last, do not necessarily coincide with the geometric slope/curvature requirements and as a result 

there is very often a mismatch between the aerodynamic coefficients computed on the original 

non-parameterised profile and the retrofitted parameterised shape. 

Table 6.2  Aerodynamic coefficients comparison. 

Parameterisation 𝐶𝑑  ∆𝐶𝑑[%] 𝐶𝑙  ∆𝐶𝑙[%] 𝐶𝑚𝑦  ∆𝐶𝑚𝑦 [%] 

Original mesh 0.00872 Datum 0.38817 Datum -0.0918 Datum 

CST 7
th
 

(retrofitted mesh) 
0.00884 +1.376 0.38843 0.0669 -0.0921 -0.326 

l-CST 7
th
 

(retrofitted mesh) 
0.00874 +0.229 0.38806 0.0283 -0.0918 0 
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Figure 6.13  Coefficients of pressure comparison. 

 

Figure 6.14  Comparison of the coefficients of pressure error. 
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6.6 Smoothness Issues 

There are generally two broad general approaches available to control the surface mesh updates, 

namely parameterisation or free-nodes approach. Their major differences were discussed in 

Chap. 6.1, but here the discussion is focused on their smoothness properties. It is known that, 

whenever parameterisation is used, both shape and gradient are smooth (see also Fig. 6.15). On 

the other hand, whenever the free-nodes approach is used neither the shape nor the gradient is 

guaranteed to be smoothed. In this chapter, it is desired to investigate more this matter. 

 

Figure 6.15  Parameterisation versus free-nodes approach comparison from the point of view of 

shape and gradient smoothness. 

Referring to Fig. 6.15, whenever the free-nodes approach is chosen, one can either smooth the 

shape or the gradient as suggested by Jameson and Kim [9] and Mohammadi [10] respectively. 

Let us consider the first approach where the gradient is generally smoothed in 2D using the 

Sobolev approach [9] or in 3D using its extension termed Laplace-Beltrami operator [176]. By 

doing so, the gradient is effectively changed arbitrarily because one has to choose the smoothing 

factor beforehand. This, in turn, changes the gradient direction, but improves significantly the 

convergence. This guarantees within a certain limits a smoothed shape because the smoothing 

applied is a second order operator and the gain in the regularity w.r.t. the raw gradient is of two 

Smoothness

Parameterisation Free-nodes

Smooth shape Smooth gradient Non-smooth 

gradient

Raw gradient No need for smoothing

Non-smooth 

shape

Smooth the 

gradient

Smooth the 

shape  directly

Smooth the 

shape  indirectly
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orders. For this reason, the shape is smoothed indirectly because the modified gradient is fed to 

the optimiser which in turn provides the DV updates. 

On the other hand, whenever the shape is smoothed directly, the shape is regularised using the 

Sobolev operator starting directly from an unsmoothed geometric. In other words, the gradient 

is left unchanged and is fed directly to the optimiser which in turn provides the DV updates. 

The bottom line is that, if it is desired to have a final smoothed shape, there are three possible 

strategies: parameterisation or smoothing either the gradient or the shape. Since the first option 

provides by definition a smoothed shape and gradient at the same time, it is felt that the other 

two approaches should be investigated separately. 

6.6.1 Smoothing the Gradient 

The map provided by {𝑑𝐼/𝑑𝑺} is a valuable source of information as it maps the objective 

function against each surface mesh point. However, as depicted in Fig. 6.16, this map is 

extremely noisy. Therefore, it can be rarely used directly unless a smoothing procedure is used 

[177]. Wu and Padula [178] noted that the chief reason why one wants to use the maximum 

design space available is dictated by the knowledge that an optimisation may be badly affected 

by an insufficient 𝑁𝐷𝑉 . 

It is interesting to list the reasons why for the gradients of aerodynamic nature, when the DVs 

coincide with the surface mesh nodes, it is difficult to maintain an acceptable smoothness level. 

Without any loss of generality, poor smoothness level can be traced back to any of the following 

non-mutually excluding reasons: 

 Ill-conditioning of the problem, in form of a poorly conditioned Hessian matrix, may 

cast the framework in a way that leads to gradients that are not smoothed. 

 Protas et al. [179] noted that fluid dynamics is characterised by a great variety of length 

scales, a feature which is also reflected in the output. 

 Eppler et al. [180] noted that the ordinary gradient is a discretisation of Euclidean inner 

product and as such lacks of smoothness. Furthermore, Barger [181] concluded that for 
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aerodynamic derivatives (drag and lift for instance), a smoothed profile is generated 

only if the free-nodes approach is not used. 

 The surface mesh is used to discretise both the near-wall flow and the aerodynamic 

surface at the same time. In fact, the surface mesh is the result of the volume mesh 

which is done in accordance to the RANS requirements close to the wall. Unfortunately, 

the discretisation of the geometry may require a different kind of resolution, mainly 

driven by the local curvature, which is often overlooked in favour of a better near-wall 

resolution. Stuck and Rung [182] noted that this leads to situations where, the geometry 

is described by an exaggerate 𝑁𝑆𝑀 , making the characteristic geometric length very 

small which is then reflected to a fine-scale gradients. 

 

Figure 6.16  Comparison between the raw and the Sobolev (smoothed) gradient. 

One solution is to smooth the gradient, a procedure sometimes referred to as gradient 

preconditioning. One of the most used preconditioning is the Sobolev gradient (as it is known in 

the literature). The term Sobolev gradient was coined by Neuberger [183] and there exist many 
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applications not necessarily restricted to aerodynamics. This discussion focuses on problem of 

aerodynamic nature for which its biggest advocates were Jameson and Kim [9].  

It can be shown that a smooth gradient can be obtained using the following formulation: 

[𝑺]  
𝑑𝐼

𝑑𝑺
 
𝑆

=  
𝑑𝐼

𝑑𝑺
  (6.23) 

where the subscript 𝑆 stands for Sobolev and [𝑺] is the smoothing matrix defined as: 

[𝑺] =  1− 𝜀
𝜕2

𝜕𝑥2
  (6.24) 

where 𝜀 is the smoothing factor chosen arbitrarily a priori. Matrix  𝑺  is effectively a Laplace 

operator which can be estimated by second-order central second FDs as suggested by Kim et al. 

[184]. Therefore, considering a 2D case, each direction is smoothed separately as: 

 
𝑑𝐼

𝑑𝑆𝑥 ,𝑖
 
𝑠

− 𝜀  
𝑑𝐼

𝑑𝑆𝑥 ,𝑖−1
− 2

𝑑𝐼

𝑑𝑆𝑥 ,𝑖
+

𝑑𝐼

𝑑𝑆𝑥 ,𝑖+1
 
𝑠

=
𝑑𝐼

𝑑𝑆𝑥𝑖
,      1 ≤  𝑖 ≤ 𝑁𝑆𝑀  

(6.25) 

 
𝑑𝐼

𝑑𝑆𝑧,𝑖
 
𝑠

− 𝜀  
𝑑𝐼

𝑑𝑆𝑧𝑖−1

− 2
𝑑𝐼

𝑑𝑆𝑧,𝑖
+

𝑑𝐼

𝑑𝑆𝑧,𝑖+1
 
𝑠

=
𝑑𝐼

𝑑𝑆𝑧,𝑖
,      1 ≤  𝑖 ≤ 𝑁𝑆𝑀  

where  𝑑𝐼/𝑑𝑆𝑥 ,𝑧 ,𝑖 𝑠 = 0 at the end points. This can be organised into a matrix as: 

 𝑺 =

 
 
 
 
 
1 + 2𝜀 −𝜀 0 . 0
−𝜀 . .
0 . . .
. . . −𝜀
0 −𝜀 1 + 2𝜀 

 
 
 
 

 
(6.26) 

Which is a tri-diagonal smoothing matrix having dimension equal to [𝑁𝑆𝑀 × 𝑁𝑆𝑀 ] which needs 

to be inverted to get the value of the smoothed (Sobolev) gradient: 

 
𝑑𝐼

𝑑𝑺
 
𝑆

=  𝑺 −1  
𝑑𝐼

𝑑𝑺
  (6.27) 
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Let us considered the RAE 5243 [132] at the same flow conditions described in Chap. 5.4.1. 

Referring to Fig. 6.16, the elliptic operator smoothes the peaks and fills the valleys but leaves 

unchanged areas of the aerofoil where the gradient shows already a good degree of smoothness. 

Kim et al. [185] noted that, although the Sobolev approach successfully reduces the gradient 

amplitude, it can still produces peaky variations even for very large values of the smoothing 

factor. Furthermore, Wu et al. [186] noted that this solution does not guarantee that the same 

gradient direction is preserved (see Fig. 6.16) and proposed a modification of the Sobolev space 

capable of maintaining the same steepest descent direction. 

6.6.2 Smoothing the Shape 

The second order elliptic smoothing operator defined in Eq. (6.26) can also be applied to the 

shape as suggested by Mohammadi [10]. Considering only the upper z-component of a 2D 

profile, 𝑧𝑢𝑝𝑝𝑒𝑟 , the shape is smoothed as follows: 

 𝑺  𝑧𝑢𝑝𝑝𝑒𝑟  𝑆
=  𝑧𝑢𝑝𝑝𝑒𝑟   (6.28) 

The effect on the shape is shown in Fig. 6.17 for two arbitrary discrete shape updates where it is 

clear that the application of a smoothing matrix has an effect similar to what is shown in Fig. 

6.16.  

One interesting aspect is that the neighbouring points are also displaced and the smoothing, if 

applied to the entire shape, smoothes also the area where no modifications are enforced. Stück 

and Rung [182] suggested this last case is representative of situations where the initial surface 

discretisation is not smooth, a consequence of the fact that the surface discretisation follows the 

RANS requirements at the wall and not the curvature requirements of the shape. 
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Figure 6.17  Examples of shape smoothing for two arbitrary deformations. 

6.7 Summary 

In this chapter, two parameterisation methods were presented, namely the FFD and the l-CST. 

In this framework, the gradient and shape smoothness properties were addressed by comparing 

it against the free-nodes approach.  

It was discussed how the FFD, thanks to its local coordinates mapping, allows to retrofit the 

initial geometry without the need to perform any inverse fitting. A requirement of fundamental 

importance for the subsequent studies presented in Chap. 7.4 where different mesh movements 

are tested on the same test case. 

On the other hand, it was demonstrated how the l-CST method allows a strong on-demand local 

control capability. The key point is its ability to offer this feature without affecting the 

advantages generally associated to the CST method. The capabilities of the method was tested 

against a geometric fitting exercise for different aerofoils ranging from supercritical to wind 

turbine aerofoils. Therefore, it was demonstrated how the l-CST can deliver a better retrofitting 

using more (i.e. 2 × 𝑁𝐶𝑃) free parameters but still using the same curve degree. The impact on 
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the aerodynamic coefficients and resulting pressure coefficient was also analysed. From the 

results presented, it is clear that local control can be placed in an on-demand fashion along the 

profile controlling a few parameters. This is done by maintaining the same number of control 

coefficients and hence the same BP degree which is good for stability. 

Within the surveyed parameterisation techniques, the free-nodes approach was given particular 

attention. This introduces other issues in terms of smoothness both at the shape and gradient 

level. Two strategies were presented where the Sobolev smoothing was applied directly either to 

the gradient or the geometry. It was highlighted where the two approaches differ and what are 

the possible consequences 

 

.  
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Chapter 7   Aerofoil and Wing Shape Optimisation 

7.1 Introduction 

Two new techniques were covered from a theoretical point of view in Chaps. 5 and 6, namely 

the differentiation of the DGM mesh movement and the l-CST parameterisation. This chapter 

proceeds to evaluate their performances in an optimisation loop. 

It was discussed how, using the DGM, it is possible to obtain a considerable saving in memory 

and CPU time requirements. However, the introduction of a new method poses additional 

research questions that can be addressed only in an optimisation loop. The effect of the 

supporting box, grid sensitivity extent over the computational domain, consistent versus non-

consistent mesh movement are some of them. Furthermore, it is explained how the framework 

cast as a lift-constrained optimisation is also of fundamental importance. 

Sometimes, even if the gradient of a large design space is obtained efficiently, say using the 

DGM-based adjoint chain described in Chap. 5.3, this does not automatically means it can be 

effectively used. This is what happens when the free-nodes approach is used, in fact, gradient 

and shape smoothness are two important issues as described in Chap. 6.6. These are some of the 

reasons why parameterisation is necessary. 

Speaking of parameterisation, the l-CST was specifically developed to bridge the gap between 

maximum explorability for which the free-nodes approach excels, and update smoothness for 

which any indirect parameterisation method is an appropriate choice. To investigate its 

properties, the l-CST is tested against the free-nodes approach by parameterising a shock-

control bump with the l-CST in a localised area of the aerofoil. Furthermore, these two cases are 

also compared against the CST (based on the Bernstein polynomials) to show the consequence 

of having a poor local support. 

The chapter concludes with a summary of the most important findings. 
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7.2 Optimisation Problem 

The most general aerodynamic optimisation problem consists of determining the values of the 

DV vector such that the objective function, i.e. the drag coefficient (𝐶𝐷,𝑑  for a 3D and 2D case 

respectively), is minimised: 

𝐼 = 𝐶𝐷,𝑑  (7.1) 

subject to the equality constraint: 

𝐶𝐿,𝑙 = 𝐶𝐿,𝑙
𝑡𝑎𝑟𝑔𝑒𝑡

 (7.2) 

where 𝐶𝐿,𝑙
𝑡𝑎𝑟𝑔𝑒𝑡

 is the target lift constraint obtained by letting the AoA be controlled by the flow 

solver at each design iteration. Therefore, the objective function should be corrected 

consistently as [187]: 

𝐼∗ = 𝐼 −  

𝑑𝐼
𝑑𝛼
𝑑𝐶𝐿,𝑙

𝑑𝛼

 

𝐿,𝑙

 𝐶𝐿,𝑙 − 𝐶𝐿,𝑙
𝑡𝑎𝑟𝑔𝑒𝑡

  (7.3) 

where in a well-converged flow run the difference  𝐶𝐿,𝑙 − 𝐶𝐿,𝑙
𝑡𝑎𝑟𝑔𝑒𝑡

  will tend to a null value. 

Each DV is allowed to move between a lower, 𝐷𝑙 , and an upper limit, 𝐷𝑢 : 

𝐷𝑖
𝑙 ≤ 𝐷𝑖 ≤ 𝐷𝑖

𝑢 ,    𝑖 = 1,𝑁𝐷𝑉  (7.4) 

The scalar objective function serves as a measure of the fitness of the design process. Two 

important figures of interest, namely drag and lift coefficients are considered where the former 

is probably the most interesting for its profound effect on the airlines‟ budget.  

In general, the optimisation problem can be constrained or non-constrained, being the former 

representative of this aerodynamic shape design framework. The flow and mesh constraints 

were analysed while deriving the main gradient equation in Chaps. 2.3.2 and 5.3 respectively. 

Furthermore, the coefficient of lift is maintained fixed. This is considered as an explicit 

constraint which means that the gradient w.r.t. the objective function must be corrected to take 

into account the different AoA [187]: 
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𝑑𝐼∗

𝑑𝑫
 =  

𝑑𝐼

𝑑𝑫
 −  

𝑑𝐼
𝑑𝛼
𝑑𝐶𝐿
𝑑𝛼

   
𝑑𝐶𝐿
𝑑𝑫

  (7.5) 

This correction prevents the optimiser from reducing the drag by simply reducing the lift which 

eventually leads the optimiser to go toward a flat-plate like shape. 

This thesis focuses on the parametric DVs that control the shape which changes in a continuous 

manner. In all the subsequent simulations, the surface mesh nodes are updated in the y-direction 

(z-direction in 3D) only in order not to change the chord and more importantly to avoid mesh 

elements becoming entangled which is likely to happen if they are allowed to be moved along 

the x-direction (x and y in 3D) as well. Furthermore, there is also another reason, as noted by 

Amoiralis and Nikolos [162], the solver is much more sensitivity to a displacement in the 𝑦-

direction than in the 𝑥-direction. This is acceptable if only deformations away from both leading 

and trailing edges are considered. 

7.3 Search Direction 

It was mentioned that gradients are computed via the discrete adjoint approach. In Chap. 3, this 

choice was justified by the type and the 𝑁𝐷𝑉  being optimised. Computing the gradient is just a 

step toward the DV updates, in fact, other steps such as Jacobian or Hessian computations 

followed by a choice of the step to advance each DV are also very important. This is generally 

referred to as search direction and this chapter aims at giving a more thorough discussion on 

this matter. 

There are several search direction strategies available as briefly depicted in Fig. 7.2. These can 

be briefly classified based on the number of computed derivatives. Zero-order methods require 

only the evaluation of the function at a point in the design space. An examples of this is the 

Simplex method [188]. The second type is the so-called first-order method, because only the 

evaluation of the first derivatives is needed. Examples of such methods are the steepest descent 

method and its improved version called the conjugate gradient method [189]. The third type of 

strategy available is based on second derivatives and for this reason is called second-order 

method. Physically, the second derivative, i.e. Hessian matrix, represents the local objective 
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function level set curvature at a point in the design space. This can be evaluated directly 

(Newton algorithms) or by using an approximation (quasi-Newton algorithms). 

The same classification can be made from another point of view: constrained versus non-

constrained optimisation problem. First order methods such as the steepest descent are widely 

used for unconstrained problem. Its advantages are simplicity and the possibility to use partially 

converged flow and flow adjoint as long as the gradients are smoothed in the Sobolev space as 

suggested by Jameson and Kim [9]. It biggest drawback, unless the gradient is smoothed, is its 

slow convergence near the optimum and the fact that it is badly influenced if the DVs are not 

scaled properly. Examples can be found in Hicks and Henne [2] and Nadarajah and Jameson 

[28]. Newton methods can accelerate the convergence rate with the added advantage that the 

DVs do not need to be scaled, but at the cost of computing the Hessian matrix which may 

become impractical for large cases. On the down side, this requires a fully converged flow and 

flow-adjoint solution. Quasi-Newton methods can be used as an alternative to solve the memory 

issue, but they still require a fully converged flow and flow-adjoint solution which can be 

difficult to attain. 

 

Figure 7.1  Classification of the search algorithms for a gradient-based optimisation. 

Before giving an explanation as why the L-BFGS was chosen it is important to mention one 

important issue. One of the disadvantages of gradient-based search algorithms is that their cost 

of the function evaluation grows linearly [190] with the problem dimensionality. As the 𝑁𝐷𝑉  is 

increased, for instance by two fold, an increase in cost of the same magnitude is expected. The 

Search method

Zero order Second orderFirst order

Steepest 

descent method

Newton 

method

Quasi-Newton 

method

BFGS SL-SQPL-BFGS

Conjugate

gradient method 
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issue needs to be investigated in the availability of the Hessian and the related memory and time 

required to build such a matrix. 

Given the fact that, second order information is more accurate than first order information, the 

choice was reduced to two optimisers available in the NLopt library [191], namely SL-SQP 

(Sequential Least-Squares Quadratic Programming) [192] and L-BFGS (Limited-memory 

Broyden–Fletcher–Goldfarb–Shanno). Although, both SL-SQP and L-BFGS use the same 

update, the first is also capable of enforcing equality and inequality constraints. Considering 

that, the only constraint used in the present work was enforced explicitly on the gradient as 

reported in Eq. (7.5) the L-BFGS represented the best choice for the test cases studied in Chaps. 

7.4 and 7.5. 

7.3.2 The L-BFGS Algorithm 

Let us start by constructing a quadratic approximation, 𝑃, of the objective function around the 

DV at iteration 𝑘: 

𝑃 𝐷𝑘+1 = 𝐼 𝐷𝑘 + 𝛻𝐼 𝐷𝑘 𝑇 𝐷𝑘+1 − 𝐷𝑘 +
1

2
 𝐷𝑘+1 −𝐷𝑘 𝑇𝛻2𝐼(𝐷𝑘) 𝐷𝑘+1 −𝐷𝑘  (7.6) 

Let us assume that 𝛻2𝐼(𝐷𝑘) is positive definite, thus the minimum of this quadratic approximation 

can be found by setting the first derivative to zero, i.e. ∇𝑃 𝐷𝑘+1 = 0, which yields: 

𝐷𝑘+1 = 𝐷𝑘 −  𝛻2𝐼(𝐷𝑘) −1𝛻𝐼(𝐷𝑘) (7.7) 

The general DV update for a gradient-based algorithm is given as: 

𝐷𝑖
𝑘+1 = 𝐷𝑖

𝑘 + 𝛼𝑘𝑝𝑘  (7.8) 

where 𝛼𝑘  is the step size and 𝑝𝑘  is the descent direction. Now substituting Eq. (7.6) back to Eq. 

(7.7) and assuming 𝛼𝑘 = 1, the following holds: 

𝑝𝑘 = − 𝛻2𝐼(𝐷𝑘) −1𝛻𝐼(𝐷𝑘) (7.9) 
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These equations describe the standard line-search Newton method. The capability to compute and 

store the entire Hessian makes a clear distinction between Newton and quasi-Newton methods. 

The former compute the Hessian, whereas the latter approximates its entries.  

The direction of improvement used in this work is computed using the L-BFGS optimiser [193]. 

To explain how the L-BFGS works, it is better to explain how its parent BFGS works. Since 

computing the Hessian can be expensive, the BFGS [194] approximates its value by considering 

only first order derivatives: 

𝛻2𝐼 𝐷𝑘+1 ≈ 𝐵𝑘+1 (7.10) 

where 𝐵 is an approximation of the Hessian. At this point what is needed is the inverse of the 

approximated matrix: 

 𝐵𝑘+1   
−1

= 𝐻𝑘+1 (7.11) 

This eventually leads to the standard BFGS formula for the inverse of the approximated Hessian 

matrix: 

𝐻𝑘+1 =  𝑉𝑘 
𝑇
𝐻𝑘𝑉𝑘 + 𝜌𝑘𝑠𝑘 𝑠𝑘 

𝑇
 (7.12) 

where 

𝜌𝑘 =
1

 𝑦𝑘 𝑇𝑠𝑘
 

(7.13) 

𝑉𝑘 = 𝐼 − 𝜌𝑘𝑦𝑘 𝑠𝑘 
𝑇
 

This update requires a storage cost bounded by 𝒪(𝑁𝐷𝑉
2 ). Since the inversion of the Hessian 

approximation is dense, as the 𝑁𝐷𝑉  is increased the cost of storing this matrix becomes 

expensive. The idea behind the L-BFGS is to avoid the storage of the entire approximated 

Hessian by considering only some vectors that implicitly represent the full Hessian matrix. In 

formula: 
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𝐻𝑘+1 =  𝑉𝑘 …𝑉𝑘−𝑚  
𝑇
𝐻0(𝑉𝑘−𝑚 − 𝑉𝑘) 

(7.14) 

 + 𝜌𝑘−𝑚  𝑉𝑘 …𝑉𝑘−𝑚 +1 
𝑇
𝑠𝑘−𝑚  𝑠𝑘−𝑚  

𝑇
 𝑉𝑘−𝑚 +1 − 𝑉𝑘 

𝑇
 

 + 𝜌𝑘−𝑚  𝑉𝑘 …𝑉𝑘−𝑚 +2 
𝑇
𝑠𝑘−𝑚 +1 𝑠𝑘−𝑚  

𝑇
 𝑉𝑘−𝑚 +2 − 𝑉𝑘 

𝑇
 

 ⋮  

 + 𝜌𝑘𝑠𝑘 𝑠𝑘 
𝑇

 

where the vector length, 𝑚 , is computed as 𝑚 = 𝑚𝑖𝑛(𝑘,𝑚 − 1) where 𝑚 is provided by the 

user. An 𝑚 = 10 was used in the present work. The cost of this update is then bounded by 

𝒪(𝑁𝐷𝑉). The larger 𝑚 is, the larger the memory requirement but the faster the convergence rate. 

Examples of applications can be found in Elliot and Peraire [195] and Rumpfkeil and Zing 

[196]. 

7.4 3D Wing Optimisation 

7.4.1 Consistent versus Non-consistent Approaches 

A discrete adjoint aerodynamic shape optimisation involves the linearisation of the entire chain. 

By doing so, and assuming the shape is parameterised, three types of sensitivities are needed, 

namely flow, grid and shape sensitivities. In this framework, depending on the way the chain is 

constructed, there are four possible inconsistencies that may be highlighted. 

The choice of the continuous adjoint over the discrete adjoint approach introduces the first 

inconsistency (see Fig. 7.2), because there is a discrepancy between the adjoint-gradient and the 

discretised objective function. However, as noted by Anderson and Venkatakrishnan [35] this 

error disappears as one refines the mesh. On the other hand, if the discrete adjoint approach is 

chosen, the discretised gradient is consistent with the discretised objective function by 

definition. In this last case, particular attention needs to be paid [35] to the way the grid 

sensitivity is computed, whereas for the continuous approach there exists a way (surface 

integral) to avoid the computation of this term as briefly depicted in Fig. 7.2. 

Mesh sensitivity refers to both volumetric and surface mesh sensitivities as described in Chap. 

2.4.1. Volumetric sensitivity is related either to the mesh movement or to the grid generator 

used depending on the strategy chosen to deform the mesh. If the second strategy is used a 

second inconsistency in the computation of the gradient is introduced. In fact, mesh 
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regeneration changes the point discretisation, especially for unstructured meshers, which in turn 

inevitably leads to different discretisation error [100, 101]. 

 

Figure 7.2  Four possible inconsistencies in the discrete adjoint chain. 

The analytical availability of the sensitivity of the surface mesh w.r.t. the parametric DVs 

depends on the choice of the shape parameterisation which is generally easily differentiable. To 

this regards, there is another third subtle inconsistency (see Fig. 7.2). In fact, the first volume 

cell has some points on the surface which effectively define the shape and the other(s) in the 

volume domain which directly play an important role for the boundary layer resolution. For this 

cell, it is possible to use either a consistent strategy where both surface and volume meshes are 

updated by the same algorithm or not. There are two important applications published in the 

literature where an integrated fully-consistent surface-volume mesh deformation is used. The 

first one was proposed by Morris et al. [79] where they used the RBF method, whereas the other 

was proposed by Hicken and Zingg [38] where the authors used the B-splines method instead. 
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Historically, any mesh movement has been available before its linearisation. This has left open 

the question as to whether the non-consistent approach, thus introducing the fourth 

inconsistency, is indeed an option or it is something that must be avoided. This could lead to 

situations where one has to use either a different mesh movement or a different grid sensitivity 

strategies, for a series of reasons where robustness and/or memory issue are the most common. 

In this situation, the non consistent approach would offer more flexibility. 

This study investigates numerically the effects of using different non-consistent (grid) 

approaches in an optimisation loop and compares the result against the consistent approaches. 

This is interesting because, should any large difference be highlighted, this would mean that one 

cannot choose the non-consistent approach without incurring a deviation (in the objective 

function) w.r.t. the fully consistent approach. On the other hand, in absence of an appreciable 

difference, one would be allowed to choose based on efficiency or robustness grounds.  

Some of the most important applications found in the surveyed literature are reported in Tab. 

7.1. This shows a tendency to prefer a consistent approach over a non-consistent approach. 

These approaches were investigated as standalone cases, but a thorough comparison of what 

happens when different combinations are considered (see Fig. 7.2) has not been published yet. 

From Eq. (5.4), after solving the flow and if necessary also the mesh adjoint linear system of 

equations, the final sensitivity can be written in general form as: 

 
𝑑𝐼

𝑑𝑫
 =  𝜦𝐺 

𝑇  
𝜕𝑻

𝜕𝑫
  (7.15) 

From here it is understood that, in the discrete adjoint approach, the differentiation of the mesh 

movement residual is necessary. However, this can happen in a consistent or non-consistent 

manner w.r.t. the chosen mesh movement as depicted in Fig. 7.2. In order to provide some 

guidelines, the following research points are addressed: 

 Does the non-consistent approach lead to different optima? 

 Are the initial gradients and DV updates the same? 

 At which iteration substantial/slight deviations are registered? Do they stay constant or 

diverge? 
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 Are these deviations (if present) due to different mesh sensitivities or different mesh 

movements? 

 Which approach, between different mesh movements and grid sensitivities introduces 

the largest deviation? 

To answer these questions, each single step of the chain is analysed as follows: 

 Distribution over the computational domain of the gradient {𝑑𝐼/𝑑𝑿} 

 Effect of different mesh movements: LE and DGM 

 Effect of different grid sensitivities: [𝜕𝑿/𝜕𝑺]𝐿𝐸,𝐷𝐺𝑀   

 Product between {𝑑𝐼/𝑑𝑿} and [𝜕𝑿/𝜕𝑺] 

Each one of these points should not be considered as a standalone factor, but an integrated part 

of the optimisation chain. 

Table 7.1  Mesh movement and sensitivity approaches used in the literature. 

Authors Mesh movements Mesh sensitivity Consistency 

Zhu and Qin [197] 
RBF LE 

Non 

consistent Bobrowski et al. [198] 

Nemec and Zingg [69] 

Martins et al. [54] 
Algebraic method Algebraic method 

Consistent 

Jakobsson and  

Amoignon [199] 

RBF 

Laplace smoother 

RBF 

Laplace smoother 

Nielsen and Park [37] 

Nambu et al. [102] 
LE LE 

Mavriplis [200] 

Maute et al. [201] 
Spring analogy Spring analogy 

Burgreen and Baysal [202] 

Le Moigne and Qin [67] 
Algebraic method Algebraic method 

Truong et al. [100] 
LE 

Algebraic method 

LE  

Algebraic method 
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7.4.2 Setup of the Optimisation Framework 

The workflow used in all the following simulations is schematically described in Fig. 7.3. It 

consists of one flow solution, two adjoint solutions, one search direction and if necessary a 

mesh adjoint solution. This is repeated until convergence has been reached. There are two points 

in the framework depicted in Fig. 7.3 where the choice of maintaining consistency or not 

appears. The first one is when one has to choose which mesh movement between LE and DGM, 

whereas the second one is when one chooses which mesh movement to differentiate between 

DGM and LE.  

For each case reported in Tab. 7.2, there are a total of 10 DVs. Their spatial positions are 

depicted in Fig. 7.4 and were chosen in order to maintain the planform fixed. These are the FFD 

CPs which control the upper surface only and are allowed to move within ∓25% of its original 

value. This relative low 𝑁𝐷𝑉  was necessary in order to be able to concisely keep track of both 

DV updates and DV gradients. 

To investigate the effect of grid extent differentiation and consistent versus non-consistent 

approaches, a series of test cases on the same mesh (ONERA M6) were devised as briefly listed 

in Tab. 7.2. For each case comments are made on the convergence history, gradients (corrected 

for the change in AoA), DV updates and where possible a justification is provided. 

7.4.3. Grid Sensitivity Differentiation Extent 

The goal of this section is to investigate the effect of different grid differentiation extents in an 

optimisation loop. These are tested by employing a series of different supporting box heights as 

shown in Fig. 7.5. Five cases are tested, four of them use the supporting box placed at roughly 

30, 50, 100 and 150% of its original distance which roughly corresponds to the MAC (Mean 

Aerodynamic Chord), whereas one of them does not use the supporting box and the 

differentiation is performed over the entire volume domain. 

As can be seen from Figs. 7.6 and 7.7, the introduction of the supporting box causes a negligible 

difference in the final value of the optima up to a point where it starts to deviate significantly as 

shown for the case where supporting box was placed at 30% of the original height. This happens 

because, such a low supporting box height is cutting the physical information carried by 



191 

 

gradient {𝑑𝐼/𝑑𝑿} as described in Scenario No. 1 depicted in Fig. 5.14 (top). However, these 

differences (not considering the ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀 ,30%𝑠.𝑏 .  case) are not necessarily an 

error as they fall below the CFD accuracy threshold generally estimated in not less than half a 

DC (Drag Count, 10−4). This study proved that the driving quantity is the gradient {𝑑𝐼/𝑑𝑿} and 

that its non null values are effectively distributed very close to the wall. Furthermore, these 

results prove that a smaller subset of the entire Jacobian [𝜕𝑿/𝜕𝑺] can be effectively used. 

Table 7.2  List of test cases and addressed research questions. 

Chapter 
Research  

question 

Mesh 

movement 

type 

Grid  

sensitivity  
𝑁𝐷𝑉  Consistency 

7.4.3 
Grid sensitivity differentiation 

extent  

oDGM 

mDGM 

oDGM 

mDGM 
10 

Consistent 

7.4.4 Establish a reference value 
mDGM mDGM 

10 
LE LE 

7.4.5 

Quantify the error introduced by 

using the same mesh movement, 

but different grid sensitivities  

LE 
mDGM 

10 

Non 

consistent 

LE Consistent 

mDGM 

mDGM 

10 

Consistent 

LE 
Non 

consistent 

7.4.6 

Quantify the error introduced by 

using different mesh movements, 

but the same grid sensitivities 

LE 

LE 10 

Consistent 

mDGM 
Non 

consistent 

LE 
mDGM 10 

Non 

consistent 

mDGM Consistent 
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Figure 7.3  Workflow for the consistent versus non-consistent grid sensitivity test cases. 

 

Figure 7.4  FFD box constructed around the ONERA M6 wing. 
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Figure 7.5  Isometric view of different supporting box spatial positions for the ONERA M6 wing. 
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Figure 7.6  Convergence history comparison for different mesh size differentiations. 

 

 

Figure 7.7  Convergence history close up view on the second and last iterations. 
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7.4.4 Fully Consistent Approaches 

This section tries to establish two reference cases to compare the non-consistent approaches 

against. Referring to Figs. 7.8 and 7.9, the optimisations featuring a consistent approach (listed 

in Tab. 7.2) are started from the same initial mesh, and at iteration No. 2, a slight difference is 

registered which is then maintained till the end of the simulation. The comparisons of the 

original and optimised pressure coefficient along with a few sampled stations are depicted in 

Figs. 7.10 and 7.11 respectively. 

Interestingly, when the DV gradients (see Fig. 7.12) are analysed, they do not have the same 

starting values and the same paths to convergence. However, this is not reflected in deviations 

in the initial DV values depicted in Fig. 7.13, although there is a deviation in the paths to 

convergence. In this case, the differences are solely due to the different mathematical 

formulations of both mesh updates and mesh sensitivities. However, although some small 

differences are present in both gradients and DV updates, in the context of a lift-constrained 

optimisation, these do not lead to different optima. 

Jakobsson and Amoignon [199] compared two consistent approaches, namely RBF and Laplace 

smoothing mesh movement in a optimisation loop. They conclude that, the different minima are 

due to the different mesh movements, but no comments were made for either the gradients or on 

the DV updates. 

Furthermore, there is also another reason why different deformed grids are not introducing large 

deviations. In Eq. (5.36), the pressure and viscous components do not evenly contribute to the 

gradient and this depends on the flow regime. In fact, Widhalm et al. [36] established that for 

subsonic flow, the gradient is mainly influenced by the viscous component, whereas for 

transonic flow the gradient is mainly influenced by the pressure component. Subsequently, 

Truong et al. [100] investigated further this matter in relation to different mesh movements and 

established that, at subsonic flow regime, a change in the near-wall mesh orthogonality affects 

the subsonic case most where the viscous contribution is the largest. On the other hand, for the 

transonic regime, the pressure part, due to the presence of shocks, contributes most to the 

gradient and is less sensitive to a change in the deform mesh orthogonality index. 
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7.4.5 Effect of Non-consistent Mesh Sensitivities 

The goal of this section is to numerically investigate what happens when the same mesh 

movement is used in conjunction with different grid sensitivities. This is representative of 

situations where another linearised mesh update strategy, different from the one used to move 

the mesh, is either too memory or computationally expensive. 

Referring to Figs. 7.8 and 7.9, the optimisations are started from the same initial non-optimised 

geometry and at iteration No. 2, a slight difference is registered in terms of computed drag 

coefficient which is maintained up to the end of the optimisation. On the other hand, referring to 

Fig. 7.12, it is clear that, all the DV gradients start from different values although not all have 

the same quantitative deviations. These offsets are not maintained constant and for some DV 

gradients, a substantial change larger than the initial deviation is registered. However, these 

deviations are not reflected in the DV updates (see Fig. 7.13), instead both cases have the same 

DV starting values. Furthermore, a close look of the DVs‟ paths reveals that only for DVs No. 

5-7 there are noticeable deviations. It is therefore concluded that the small difference registered 

in the gradient are not large enough for the optimiser to compute different DV updates. 

The initial deviations in the gradients are initiated by the different grid sensitivities. As per the 

case presented in Chap. 7.4.4, these do not lead to large differences in the optima. The gradients 

computed using two different grid sensitivity strategies are therefore called direct factors, as 

depicted in Fig. 7.14, because they are the first in temporal order to introduce a change in the 

chain. From the third iteration onward, the other factors (updated DVs and deformed mesh) also 

become direct factors because all together are indeed introducing a small change in the chain. 

7.4.6 Effect of Non-consistent Mesh Movements 

The goal of this section is to numerically investigate what happens when the same differentiated 

mesh movement is used in conjunction with different mesh movements. This is representative 

of situations where another mesh movement, different from the one differentiated, is deemed 

either more robust or less computationally intensive. 

Referring to Figs. 7.8 and 7.9, as for the case described in Chap. 7.4.5, the optimisations are 

started from the same initial non optimised mesh, but at iteration No. 2, a very small difference 
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is registered in terms of computed drag coefficient which is maintained up to the end of the 

simulation. Referring to Figs. 7.12 and 7.13, it is clear that, in contrast to the cases reported in 

Chap. 7.4.5, all the DV gradients start from the same values, a consequence of using the same 

grid sensitivity strategy, and the DV updates show no deviations, which in turn is a consequence 

of having the same gradient update. Furthermore, all the DVs follow the same path to 

convergence with some minor deviations. 

The small differences registered at iteration No. 2 are due to the different mesh movements used 

that introduce a deviation in the near-wall mesh orthogonality even if the surface mesh update is 

the same at iteration No. 1. Nevertheless, this is not enough for the flow solver to predict a large 

difference in the value of the objective function. This is why, the deformed mesh becomes the 

direct factor as it is the first, in the time-line history, to initiate the small negligible deviations, 

whereas the gradients and updated DVs are indirect factor. As per the case described in Chap. 

7.4.5, from the third iteration onward they all become direct factors as depicted in Fig. 7.14 

Although these small differences do not lead to a large deviation in the final optima, an 

investigation was performed to prove the hypothesis that different near wall orthogonality 

indices are causing a different residual error (which is the reflected in a small deviation on the 

objective functions). The flow adjoint is an useful tool in this case as it provides the sensitivity 

of the objective function w.r.t. the residual [32] (see Eq. (5.35)). Only the first element 

(corresponding to the density residual) of the adjoint vector for the drag coefficient is depicted 

in Fig. 7.15. However, the same analysis also applies to the other five state variables and for the 

lift coefficient as well. By taking the difference of these two flow-adjoint vectors one visualises 

the deviation in computing the objective function due to the different residuals which in turn can 

be traced back to the different deformed mesh orthogonality indices: 

 𝜦𝐹 (∆𝑿𝐿𝐸 ,∆𝑿𝑚𝐷𝐺𝑀 )− 𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀 =  
𝜕𝐶𝐷
𝜕𝑹

 
∆𝑿𝐿𝐸  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀

 –  
𝜕𝐶𝐷
𝜕𝑹

 
∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀

  (7.16) 

As can be seen in Fig. 7.15 (bottom), this hypothesis is confirmed by the non-null value of the 

adjoint vector plotted accordingly to Eq. (7.16). The difference is two orders of magnitude 

lower which is a small change, but nevertheless not null.  
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In the discussion presented above, it was concluded that small differences in the mesh can 

actually be detected and studied by plotting each variable in the flow adjoint vector. Now, by 

listing in Tab. 7.3, the two mesh metrics introduced in Chap. 4.7.4, it is shown that there is 

indeed a small change also in the quality of the deformed mesh. However, this time the 

evaluation is not computed on the second iteration but on the last one in order to investigate 

how much the different mesh movement strategies have affected the grid quality. 

Table 7.3  Mesh quality metrics evaluated on the last iteration mesh. 

Strategy 
Mesh  

movement 

Mean mesh quality Dihedral angle 

𝑞𝑖  𝑞𝑖
𝑚𝑖𝑛  𝑞𝑖

𝑚𝑎𝑥  𝜃𝑖
𝑤𝑜𝑟𝑠𝑡  

No. 

𝜃𝑖 < 5° 

Baseline 0.797843 0.0158565 0.999173 2.07613 25 

∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  

mDGM 

0.80007 0.0218816 0.999173 2.07613 25 

∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  0.797812 0.0158565 0.999173 0.52355 41 

∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝐿𝐸  

LE 

0.797853 0.0158597 0.999173 0.523653 41 

∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝐿𝐸  0.797853 0.0158596 0.999173 0.523652 41 

Contrary to what was said regarding the mean quality mesh metric in Tab. 4.9 (Chap. 4.7.4), 

Tab. 7.3 shows a slight variation also in the mesh quality metrics. This can be explained with 

the fact that, the deformations being analysed here, contrary to those used in Tab. 4.9, concern 

the entire upper wing. 

The mean quality mesh stays almost constant with small variations in the range of 10−5 . This is 

probably due to the small variation in the minimum value registered as the maximum mean 

quality mesh stays constant for all the cases reported in Tab. 7.3. Interesting, for the 

∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  case, the mean quality mesh is slightly improved. This is a direct 

consequence of the higher value registered in the minimum mean quality mesh metric. 
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However, the change is not large and this value, as per the case reported in Tab. 4.9, does not 

highlight any interesting trend. 

On the other hand, as it was previously concluded in Chap. 4.7.4, the dihedral angle is a much 

better metric to study small changes in the deformed mesh. For all the cases reported in Tab. 

7.3, with the exception of the fully consistent ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  case, the worst dihedral 

angle dropped from ~2.07 to ~0.52. This is also reflected in an increase in the number of 

elements featuring a value lower than five which increased from 25 to 41. Furthermore, the fact 

that ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  approach features a better overall mesh quality indices can be 

explained by noticing that, for these small deformations, the adoption of the supporting box is 

more beneficial than the LE in maintaining the quality of the mesh to an acceptable level. 
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Figure 7.8  Convergence history comparison for the consistent and non-consistent cases. 

 

 

Figure 7.9  Convergence history close up view on the second and last iterations. 
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Figure 7.10  Pressure coefficient for the optimised (left) and original geometry (right). 

 

 

Figure 7.11  Pressure and skin friction coefficient sampled at different stations. 
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Figure 7.12  DV gradients (corrected for the change in the AoA) history comparison for the consistent and non-consistent cases. 
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Figure 7.13  DV updates history comparison for the consistent and non-consistent cases. 
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Figure 7.14  Scheme of the post-processing analysis for the consistent and non-consistent cases. 
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Figure 7.15  Representation of the first adjoint variable associated to the density for two 

approaches. 
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7.4.7 Total CPU Time Comparison 

In all the optimisations discussed so far, different combination of consistent and non consistent 

approaches were tested, everything else being the same. The CPU time performance is therefore 

assessed in relation to only these changes. 

As reported in Tab. 7.4, the CPU time cost of the first iteration is analysed separately from the 

others because this is where the mesh pre-processing is performed. As explained in Chap. 5.8.2, 

pre-processing refers to the computation of matrix [𝑬] and [𝑲] which is performed once only 

and not repeated afterwards (see Fig. 7.16). 

At the first iteration, the LE method offers the fastest pre-processing CPU time as compared to 

mDGM. However, this advantage is quickly offset by the net saving in CPU time offered by the 

mDGM while deforming the mesh and computing the gradient. In fact, at the end of the first 

iteration, the ∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝐿𝐸  approach requires a CPU time which is 3.63 times greater than 

the ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  approach. Something similar is registered also for the non-

consistent cases where, if the ∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  is used, this is translated in an increased of 

CPU time equal to 186.67%, whereas if the ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝐿𝐸  is used there is an increase of 

148.01% in CPU time over the ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  approach. 

From Tab. 7.4, it is evident that, after the first iteration, the advantage of the mDGM over the 

LE becomes more and more evident corroborating the conclusions made in Chaps. 4.7.1 and 

5.8.2. In fact, for each iteration after the first, there is an increase in CPU time for the 

∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝐿𝐸  approach of almost 8.65 times compared to the consistent ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/

𝜕𝑺 𝑚𝐷𝐺𝑀  approach. Something similar is registered also for the non consistent cases where if 

the ∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  is used, this is translated in an increase in CPU time equal to 430.63%, 

whereas if the ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝐿𝐸  is used the increase registered is of 335.29% over the  

∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  approach. This is entirely due to the advantage the mDGM offers while 

deforming the mesh or computing the grid sensitivity. 

In order to estimate the cumulative CPU time difference due to both the mesh movement and 

sensitivity, the CPU times required to build matrices [𝑬] and [𝑲] are not considered after the 

first iteration (see Fig. 7.16) and the estimate is done using the remaining CPU times registered 

at the first iteration only, which also explains the linear trend shown in Fig. 7.17. 
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Table 7.4  Total CPU time comparisons for different approaches. 

Iter. Strategy 

CPU time (s) 

Pre-processing 
Mesh 

movement  

Gradient 

computation 
Total 

F
ir

st
 i

te
ra

ti
o

n
 ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  598𝑚𝐷𝐺𝑀  

50𝑚𝐷𝐺𝑀  
358𝑚𝐷𝐺𝑀  1,006 

∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝐿𝐸 598𝑚𝐷𝐺𝑀 + 121𝐿𝐸  1,726𝐿𝐸 2,495 

∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝐿𝐸  121𝐿𝐸  
1,807𝐿𝐸  

1,726𝐿𝐸 3,654 

∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  598𝑚𝐷𝐺𝑀 + 121𝐿𝐸  358𝑚𝐷𝐺𝑀  2,884 

F
o
r 

ea
ch

 i
te

ra
ti

o
n
 

 a
ft

er
 t

h
e 

fi
rs

t ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  

Not computed 

50𝑚𝐷𝐺𝑀  
358𝑚𝐷𝐺𝑀  408 

∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝐿𝐸 1,726𝐿𝐸 1,776 

∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝐿𝐸  

1,807𝐿𝐸  

1,726𝐿𝐸 3,533 

∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  358𝑚𝐷𝐺𝑀  2,165 

 

 

Figure 7.16  Step-by-step procedure for mesh movements and sensitivities. 
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Figure 7.17  Cumulative CPU times comparison for different approaches. 

It is evident that, if only the consistent approaches are compared, the ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  

approach offers a net advantage. For a simulation of 15 iterations (see Fig. 7.17), the initial 

disadvantage registered in the pre-processing of the mesh is quickly overcome with a final 

additional CPU time of almost 13hrs over the ∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝐿𝐸  approach. For what regards the 

non-consistent cases, it is obvious that there is an advantage over the ∆𝑿𝐿𝐸 𝜕𝑿/𝜕𝑺 𝐿𝐸  

consistent approach and a disadvantage over the ∆𝑿𝑚𝐷𝐺𝑀  𝜕𝑿/𝜕𝑺 𝑚𝐷𝐺𝑀  consistent approach.  

In order to further understand the impact of the saving offered by the mDGM method, the cost 

of each step is compared against the overall CPU time of a full optimisation iteration. The 

results are reported in Figs. 7.18 and 7.19 for the LE and mDGM fully consistent cases 

respectively. To simplify the analysis, only the second iteration (representative of the others 

iterations except the first) is considered. Of course, it is recognised that negligible changes 

within the iterations are present. Since the comparison needs to consider the relative time 

between the steps, the total cost (computed as the sum of one flow solution, two flow-adjoint 

solutions, one mesh movement and two grid sensitivities) is considered as a reference value. For 

the case under analysis, a single flow-adjoint takes roughly 80% of the flow solution, whereas 

both LE-based mesh movement and sensitivity steps take separately roughly 30% of the same 

reference time. These values are in line with what was also reported by Nielsen and Park [37]. 
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Figure 7.18  Cumulative CPU time breakdown for the fully consistent LE-based chain. 

 

 

Figure 7.19  Cumulative CPU time breakdown for the fully consistent DGM-based chain. 
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In conclusion, it can be seen that both mesh movement and grid sensitivity steps represent 

together roughly the 27% of the total CPU time. The main goal of this work was to reduce this 

specific CPU expense by using the mDGM approach. In fact, Fig. 7.19 shows that the saving 

offered by the mDGM-based fully consistent chain is significant both in the mesh movement 

and sensitivity steps. The previous 18% of the total CPU time spent in computing the two grid 

sensitivities is greatly reduced down to just 1%, a saving of 17% w.r.t. the overall cost. On the 

other hand, the CPU time used for the mesh movement is reduced to a insignificant percentage, 

i.e. 0.5%, of the total CPU time. 

7.5 2D Aerofoil Optimisation 

7.5.1 local-CST versus Free-nodes Approach 

The purpose of this chapter is to investigate the potential benefits and feasibility of the l-CST 

within an optimisation exercise. To do so, it is shown how, using an adjoint-based optimisation 

framework, it is possible to map all the design space, parameterise the entire upper profile using 

the l-CST, but modify only a specific area. 

Based on the optimisation problem described in Chap. 7.2, the RAE 5243 aerofoil (see also 

Chap. 5.4.1) is chosen to minimise the coefficient of drag at constant lift coefficient of 0.82 and 

Mach number of 0.68. To demonstrate the l-CST (local) control capability, the entire upper 

surface is parameterised, but only a specific area of the aerofoil is given local control in order to 

obtain a shock bump. Since the goal is to enforce a strong local control with 𝐶2 continuity, the 

11
th
 degree l-CST is compared against the free-nodes approach used in conjunction with the 

Sobolev smoothing applied to either the gradient or the shape. 

Furthermore, in order to corroborate the advantage of having a strong local support, the three 

approaches discussed above are also compared against the 11
th
 degree CST approach. 

  



211 

 

7.5.2 Setup of the Optimisation Study 

A shock control bump works creating a ramp facing the incoming flow which creates a series of 

isentropic compression waves. Its effectiveness was proven by Fulker et al. [203] and the 

bump‟s height is one of the most important design parameters as noted by Wong et al. [204]. A 

control bump requires roughly one fifth of the chord, and the CST would need a higher than l-

CST degree curve to impose such a local deformation. As explained at length in Chap. 6.5.3, 

although the curve degree stays the same, two additional parameters are used to model the 

bump, i.e. 𝑢𝐶𝑃6
 and 𝑙6. However, their value is established a-priori and only coefficient 𝐴6 is 

allowed to change. Needless to say, parameters 𝑢𝐶𝑃6
 and 𝑙6  could in theory become free 

parameters if deemed necessary. 

Of course, it is recognised that, it is possible to only locally parameterise the profile or to use 

the H-H [2] bump function, but this would mean the loss of the CST advantages. The bump can 

be obtained using the l-CST by choosing the appropriate CP and its local exponent affecting the 

bump location and crest respectively as shown in Fig. 6.5. For the aerofoil under analysis this 

happens to be the 6
th
 CP (𝑁𝐶𝑃 = 12) at 𝑢𝐶𝑃6

= 0.55 with 𝑙6 = 400. On the other hand, the free-

nodes approach can possibility grow a bump within the same selected surface mesh nodes. This 

is a good example to show how the map provided by gradients {𝑑𝐶𝑑 ,𝑙/𝑑𝑺𝑢𝑝𝑝𝑒𝑟 }, as depicted in 

Fig. 5.4, can help to identify specific sensitive areas without worrying about the accuracy and 

cost of getting the gradient.  

The gradient based on the DGM and discussed at length in Chap. 5.3 is used in conjunction with 

the second-ordered quasi-Newton L-BFGS [193] optimiser. The coupling between the Sobolev 

and a quasi-Newton optimiser was also used by Özkaya and Gauger [205]. Based on Eq. (5.11), 

the gradient for the l-CST was computed as (for both objective functions 𝐼 = 𝐶𝑑 ,𝑙): 

 
𝑑𝐼

𝑑𝑫𝑙−𝐶𝑆𝑇
 = − 

𝑑𝐼

𝑑𝑿
  𝑬  

𝜕𝑺𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑠𝑒𝑑

𝜕𝑫
  (7.17) 

where {𝑫𝑙−𝐶𝑆𝑇}  is the DVs vector containing the 36 coefficients (12 𝐴𝑖 coefficient, 12 𝑙𝑖  

coefficients and 12 𝑢𝐶𝑃𝑖  coefficients), but the only free DV allowed to change is only 

coefficient 𝐴6. The values of 𝑢𝐶𝑃6
 and 𝑙6 are fixed a-priori. On the other hand, the gradient for 

the CST was computed as: 
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𝑑𝐼

𝑑𝑫𝐶𝑆𝑇
 = − 

𝑑𝐼

𝑑𝑿
  𝑬  

𝜕𝑺𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑠𝑒𝑑
𝜕𝑫

  (7.18) 

where {𝑫𝐶𝑆𝑇} is the DVs vector containing the 12 𝐴𝑖  coefficients, but only coefficient 𝐴6  is 

allowed to change. 

At each iteration an additional flow-adjoint solution w.r.t. the lift coefficient, 𝐶𝑙 , was computed 

in order to accurately compute (𝑑𝐶𝑑 ,𝑙/𝑑𝛼) , as explained in Chap. 7.2. The Jacobian 

[𝜕𝑺𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑠𝑒𝑑 /𝜕𝑫] was computed accordingly to Eq. (6.17). 

Whenever a parameterisation technique is used, a smooth-like bump (small or big) is expected, 

whereas the free-nodes approach is likely to generate a non-smooth deformation, unless some 

precautions are taken. The smooth Sobolev gradient, i.e. subscript 𝑆 , for the free-nodes 

approach was computed as: 

[𝑺]  
𝑑𝐼

𝑑𝑫𝑓𝑟𝑒𝑒 −𝑛𝑜𝑑𝑒𝑠
 
𝑆

= − 
𝑑𝐼

𝑑𝑿
  𝑬   (7.19) 

where [𝑺] is the smoothing matrix defined as in Eq. (6.26) and a value of 10 for the smoothing 

factor 𝜀. Furthermore, {𝑫𝑓𝑟𝑒𝑒 −𝑛𝑜𝑑𝑒𝑠 } is the DVs vector containing all the 180 upper surface 

mesh nodes, although only roughly 30 of them are allowed to move accordingly to the area 

highlighted by the red and yellow dots in Fig. 7.21. The gradient expressed in Eq. (7.19) is then 

corrected for a change in the AoA as shown in Eq. (7.5). Similarly, this second order elliptic 

smoothing can also be applied to the shape as suggested by Mohammadi [10] and its 

formulation is expressed in Eq. (6.28).  

In order to understand the fundamental difference of these two approaches, it is beneficial to 

look at the two optimisation loops as depicted in Fig. 7.20. When the Sobolev operator is first 

applied to the gradient, this is then subsequently fed to the optimiser. This last one receives a 

modified gradient (see Eq. (7.21)) and provides the DV updates based on this. On the other 

hand, these two steps are also performed when the shape is smoothed directly, but are applied in 

a different temporal order. In fact, as depicted in Fig. 7.20 (right), the raw gradient is first 

computed and then fed directly to the optimiser which in turn provides the DV updates. At this 

point the shape is updated and subsequently smoothed using the Sobolev operator. 
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Figure 7.20  Workflow comparison between gradient and shape smoothing. 

7.5.3 Results 

The l-CST and the free-nodes approaches compared in this section modify the same specific 

part of the geometry shown in Fig. 7.21 within the red and yellow dots. The initial and final 

shapes are depicted in Fig. 7.21 (top left), whereas the resulting pressure distributions are 

depicted in Fig. 7.21 (top right). The bumps obtained using the free-nodes technique seem to be 

quite similar, but significantly different from the one obtained using the l-CST. These 

differences are also reflected in the resulting pressure coefficient distributions where the slight 

changes in the coefficient of pressure outside the bump boundaries can be explained by the fact 

that the AoA is different from the initial value (a consequence of the lift-constrained solution). 
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In order to further investigate these differences, the slope and curvature of the upper profile are 

plotted in Fig. 7.21 (bottom left and right respectively). These two metrics show some 

fundamental differences between the optimised shapes obtained by the three methods. In fact, 

the l-CST provides a 𝐶2 continuous curve which is reflected in a much smoother bump than the 

cases where the free-nodes approach were used. The Sobolev smoothing has certainly improved 

both the slope and curvature profiles, but with some limitations. In fact, smoothing directly the 

shape seems to suffer more from high oscillation components than the strategy where the 

gradient was directly smoothed instead. The possibility to get a poor smoothness level while 

using the Sobolev operator was highlighted also by both Kim et al. [185] and Wu et al. [206]. 

Furthermore, another fundamental difference can be seen in the two frameworks compared in 

Fig. 7.20. In particular, whenever the gradient is smoothed directly, the Sobolev operator is 

applied just before the optimiser is called. On the other hand, when the shape is smoothed 

directly, the Sobolev operator is applied directly to the shape after the DVs were updated using 

the raw gradient. 

The three strategies managed to achieve a large drag reduction as shown in Fig. 7.22. Both free-

nodes approaches show a fairly similar convergence rate, however the case where the shape was 

smoothed directly shows some severe oscillations just before convergence was reached. On the 

other hand, the case where the gradient was smoothed and therefore the shape was smoothed 

indirectly, obtained an additional reduction of 4.51 DC. As noted by Wu et al. [186], whenever 

the Sobolev operator is used, the direction of improvement is effectively modified and there is 

no guarantee that the smoothed gradient or shape would lead to the same variation of the target 

function, although there is a gain in regularity in the shape update. On the other hand, the l-CST 

managed a reduction of 23.64 DC with far less iterations. This is an improvement of just 0.848 

DC compared to the best performing free-nodes approach, but with the advantage of a smooth 

𝐶2 optimised profile which is of paramount importance for transonic aerodynamics. 

Fundamental differences are also registered in terms of convergence rate. The free-nodes 

approaches show a rather slow convergence rate, whereas the l-CST convergence history shows 

a faster but not regular trend, meaning non monotonically decreasing. This can be explained 

with the fact that the targeted highly sensitive area induced the optimiser to overshoot at 

iterations No. 3, and 5, rapidly change direction and eventually settle down to a more regular 

path. 
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Overall the results can be explained using the concept of exploitation, i.e. convergence speed, 

and exploration, i.e. search of the design space. The l-CST surfs the design space using a 𝑁𝐷𝑉  

which is far smaller than the DVs (= 𝑁𝑆𝑀 ) used by the free-nodes approach. This is translated in 

a faster exploitation, but with an improved (thanks to the LF) exploration capability. On the 

contrary, the free-nodes approach is characterised by excellent space exploration (𝑁𝑆𝑀 = 𝑁𝐷𝑉 ), 

but with very poor exploitation, i.e. slow convergence. 

In conclusion, the fact that the free-nodes approach did not outperform the l-CST although 

possesses higher explorablity, can be justified by the fact that these extra degrees of freedom 

increase the possibility of getting stuck in a local minimum. 

To corroborate these results, the 11
th
 degree CST was also tested and compared with the other 

three strategies to see what is the effect of using only a global support parameterisation to model 

a shock control bump. A fundamental difference is that the CST 6
th
 CP affects an area greater 

than that indentified by the yellow and the red dots depicted in Fig. 7.21. This is because the 

CST based on the BPs is unable to provide local control.  

One of the first noticeable similarity with the l-CST is the CST irregular convergence history. 

This is very different from the almost monotone decreasing convergence history featured by the 

two free-nodes approaches tested. In fact, the CST shares the multiple overshooting of the 

objective function and the fewer than the free-nodes approaches iterations to convergence. The 

fact that the CST did not manage to perform as well as the other three methods tested, i.e. l-CST 

and free-nodes, can be explained with the fact that, for this test case, the highly sensitive shock 

area requires either a more global or a localised change in the geometry.  
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Figure 7.21  Initial and optimised shape, pressure distribution, slope and curvature. 
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Figure 7.22  Convergence histories comparison. 

7.6 Summary 

The consistent versus non-consistent approaches and the l-CST parameterisation method both 

based on the DGM adjoint chain were tested in an optimisation loop. The results were analysed 

and a discussion provided to explain the differences. 

It was shown how there is no need to differentiate the entire computational domain while 

evaluating the grid sensitivity. This has then laid down the foundations to study the non-

consistent mesh movement and differentiation approaches. It was shown that small differences 

in the gradients are initiated by employing different grid sensitivities. On the other hand, small 

differences in the deformed grids are initiated by different mesh movements. Furthermore, the 

small differences in the gradients were not large enough to trigger the optimiser to predict 

different DV updates and the differences in the deformed grids were not big enough to induce 

the flow solver to predict a different value of the objective function. It was therefore concluded 

that the non-consistent approaches can be indeed used.  

A highly flexible aerofoil parameterisation, termed l-CST, was tested in an optimisation loop 

against the free-nodes approach. The method was shown to provide enough local control to 

model a localised bump while maintaining a 𝐶2  continuous curve. The l-CST was able to 
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provide a better minimum as compared to both the free-nodes approaches tested because it 

provides a better mix between exploitation and exploration feature. Furthermore, it was shown 

that, within the test cases considered, smoothing the gradient seems to be better than smoothing 

the shape. 
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Chapter 8   Conclusions and Future Studies 

The main focus of this thesis was to investigate a new method, i.e. the differentiated version of 

the DGM, capable of reducing the memory and CPU time requirements of the grid sensitivity 

computation in the discrete adjoint framework. At the same time, a new formulation of the CST, 

termed l-CST, was proposed to bridge the gap between the free-nodes approach and the CST 

parameterisation technique. The link between these two techniques lays on the need to 

efficiently map a large design space while being able to target specific areas without increasing 

the order of the parameterised curve. 

The novel approaches introduced in this work were also studied in a series of optimisation 

exercises. First, the differentiation of the DGM was investigated within the consistent and non-

consistent discrete adjoint frameworks. Secondly, the l-CST was also investigated in an 

optimisation loop, but against the free-nodes approach. 

In this chapter what was achieved is summarised and what still needs to be done is outlined. 

8.1 Conclusions 

There are a series of conclusions that were reached in this thesis. These have implications 

distributed in four areas, namely mesh movement, mesh sensitivity, parameterisation and 

optimisation framework. These are summarised as follows: 

 It was highlighted that using a fast algebraic mesh movement method, namely the 

DGM, offers large advantages in terms of low memory and low CPU time consumption. 

This can be achieved thanks to the explicit availability of the surface-to-volume map. 

However, this needs to be balanced with the robustness issue related to the way the 

Delaunay map is constructed. To this regard a solution was discussed where it was 

shown that the introduction of the supporting box allows to obtain an improved 

Delaunay elements distribution. 

 An analysis of the advantages and possible issues that may arise while using the DGM-

based gradient chain in the discrete adjoint framework was proposed. The main 

conclusion is that, while using an explicit mesh movement, the mesh adjoint system 
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does not need to be solved because the volumetric grid sensitivity, i.e. Jacobian 

[𝜕𝑿/𝜕𝑺], is available explicitly, thus bringing a significant saving in the CPU time and 

memory as compared to any implicit mesh movement such as LE. The comparison 

against the LE-based gradient highlighted the close similarity in trend between the 

sensitivity maps. The reason why the general gradient trend of the map {𝑑𝐼/𝑑𝑺} is not 

so different even thought two different mesh movements are used needs to be 

investigated in the close to the wall distribution of the physical term, i.e. {𝑑𝐼/𝑑𝑿}. 

Furthermore, it was established that the volumetric mesh sensitivity, i.e. [𝜕𝑿/𝜕𝑺], must 

have a distribution in the computational domain such that it does not cut off the physical 

information carried by {𝑑𝐼/𝑑𝑿}. 

 A method based on the corrected BPs, termed l-CST, was used to confer the CST 

parameterisation method a strong on-demand local control. The method is based on a 

simple local trigonometric function which works as a cut-off filter on the BPs. The 

strong local control was obtained while maintaining the same curve degree. Effectively, 

this was achieved independently from the 𝑁𝐶𝑃 . The method was tested on an inverse 

geometric fitting exercise for a series of 2D aerofoils where it was demonstrated how a 

lower BP order could be used to guarantee the same and sometimes better fitting 

accuracy. 

 The DGM-based gradient chain was studied in an optimisation loop by considering two 

frameworks. The first employed a 3D geometry, the ONERA M6 wing, whereas the 

second employed a 2D aerofoil, the RAE 5243. The conclusions are summarised as 

follows: 

o In the first framework, the DGM-based gradient was studied in a series of 3D 

lift-constrained drag reduction optimisations by addressing the question of 

consistent versus non-consistent mesh movement and mesh sensitivity 

approaches. The study raised the question as to what happens when different 

non-consistent mesh approaches are used in the discrete adjoint optimisation 

framework. The different minima found in this work can be considered 

essentially the same. In particular, the initial small changes in the gradients 

(caused by non-consistent grid sensitivities) were not large enough to trigger 
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different DV updates (computed by the optimiser), whereas small changes in 

the first (deformed) grid updates (caused by non-consistent grid movements) 

were not enough to trigger a large difference in the objective function 

(computed by the flow solver). Based on the numerical results presented in this 

work and within the framework tested, non-consistent approaches can be used 

without incurring in a large deviation w.r.t. the consistent approach. 

o In the second framework, the l-CST was tested on a 2D lift-constrained drag 

reduction optimisation against the free-nodes method with the Sobolev 

smoothing operator applied to either the shape or the gradient. The l-CST was 

able to deliver a better minima w.r.t. the two free-nodes approaches in much 

less iterations to convergence. This is because the l-CST, like any other 

parameterisation method, has excellent exploitation feature with an improved 

exploration capability delivered by the LF. 

8.2 Suggestions for Future Work 

This chapter outlines some suggested future studies which are the result of a continuous 

refinement of the original research questions and are indeed provided in form of improved 

questions. The recommendations are given for mesh deformation, grid sensitivity, 

parameterisation and optimisation framework. These are summarised as follows: 

 This thesis describes how explicit and implicit mesh movements work. The former 

offers low memory and computation time requirements with relative poor robustness 

features, whereas for the latter the situation is reversed. From the experience gained in 

this work, two recommendations can be made. Firstly, while choosing a mesh 

movement, this needs to be done considering also the requirements imposed by its 

differentiated formulation. Secondly, to have a robust mesh deformation which features 

both low memory and computation time requirements, one needs to find an explicit 

formulation based on the area/volume of each single grid element. This is important 

because negative area/volume is the requirement that ultimately defines the robustness 

of any mesh movement method. 
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 In order to further corroborate the memory and time saving while moving the mesh and 

computing the gradient, a comparison against a parallel implementation can be done. In 

this case, although not addressed in this thesis, the DGM method can be easily 

parallelised as each step is independent from the other operations. On the other hand, 

the parallelisation of the LE method is less straightforward due to the presence of the 

preconditioner. 

 It was shown how, by using the supporting box, the quality of the {𝑑𝐼/𝑑𝑺} map was 

improved. However, this was done by maintaining the supporting box nodes fixed. 

Another strategy would be to let these nodes move in order to allow large deformations. 

This option requires to establish the link between the wall and the supporting box points 

which in turn makes also necessary to revisit the linearisation of the DGM method. 

 It was shown how a weak link can be made between gradient {𝑑𝐼/𝑑𝑺} and both 𝐶𝑝  and 

𝐶𝑓  plots. However, this simplified visual comparison does not apply to sensitive areas 

where neither pressure nor skin friction plot show a rapid change. It was established by 

Hinchliffe and Qin [46] that these areas are not a numerical artefact. However, a further 

investigation is needed to better understand the underlying physics. 

 The importance of having an on-demand local control for a 2D test case was 

demonstrated. Its natural extension would be a 3D application. 

 Following the optimisation studies, the following points require further investigation: 

o In a lift-constrained optimisation, the gradient w.r.t. the AoA could be 

computed using either finite differences or complex step by rotating the shape 

so as to properly account for the effect of different grid movements. 

o A non-constrained lift optimisation would bring further insight to understand 

the effect of the target lift constraint. 

o The gradient computed as {𝑑𝐼/𝑑𝑺} and not as {𝑑𝐼/𝑑𝑫}, and therefore with no 

parameterisation, would exclude any possible influence or gradient 

regularisation/smoothing imposed by the parameterisation technique. 
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o During the analysis of vector {𝑑𝐼/𝑑𝑿} , the need to analyse different flow 

regimes has emerged, namely subsonic and transonic, because this changes the 

pressure and viscous contribution of {𝑑𝐼/𝑑𝑿} on {𝑑𝐼/𝑑𝑫}. This is expected to 

play an important role at subsonic regime when different mesh movements are 

used. In fact, at subsonic speed the near wall mesh orthogonality plays a major 

role when compared to the transonic case. 

o The l-CST highlighted the differences resulting using the Sobolev operator 

applied directly to the gradient or the shape separately. A further investigation 

using the 3D extension of the Sobolev gradient for unstructured grids (i.e. the 

Laplace-Beltrami operator [176] would bring further insight into the difference 

between these two different approaches. 
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