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ABSTRACT 

 

Nuts and bolts used in aero-engines are manufactured from heat-resistant super-alloys. 

These materials have a high CoF, and frequently seizure occurs. In order to prevent 

this, a silver coating is applied to the nut threads, providing a low friction boundary 

at the interface. Additionally, a radial crimp is applied to the nut, in order to provide 

a self-locking feature preventing vibration self-loosening.  

In this study, the CoF of the thread contact will be investigated both during initial joint 

assembly, and after thermal ageing. Additionally, a finite element model will be 

employed to investigate the contact mechanics as a consequence of the crimp. 

The low CoF observed during initial assembly was found to be a consequence of shear 

flow of the silver coating, with an approximate doubling of this value once the coating 

aged. Areas of silver removal were found to be coincident with areas of high contact 

pressure in the joint, attributable to the crimp feature. 

Additionally, new alternatives coating were tested in order to identify a replacement 

for the electroplated silver. Through a series of analyses, similarly done for the silver 

coating, from a list of 19 different thin films and paints, the list is reduced to three 

possible films, Chromium, Titanium and Nickel-Titanium. 

Finally, through the FEA approach, a new self-locking design was developed, with an 

axial deformation instead of the radial crimp typically used. Thereafter, few nuts were 

manufactured, tested and compared to the elliptical, demonstrating it is a promising 

design with respect to the contact pressure distribution and silver removal. 
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CHAPTER 1 

 INTRODUCTION 

 MOTIVATION  

Threaded fasteners play an important role in connecting parts that are subjected to 

static or dynamic loading. In addition they are reliable, and quickly assembled and 

disassembled. Aero-engine manufacturers use fasteners made from heat resistant 

super-alloys, as they must withstand temperatures above 1,000°C in the turbine 

section of an engine. These types of joints are widely used, with more than 15,000 

bolts throughout engine (Figure 1.1).    

 

Figure 1.1: Trent 900 (Pattinson & Reade 2012) 

In this study, Inconel 718 and Waspaloy fasteners are investigated, which are used in 

aero-engines over a range of temperatures from –50 to 760°C. They also operate in 

the presence of fuel contaminants, for example Sulphur and Chlorine, and are 

subjected to relatively high loads and vibration. When used in a like couple super-

alloys have high coefficients of friction, for example 0.8 for Inconel on Inconel (Fox 

& Liang 2010), and seizure frequently occurs. To prevent this, in such applications, 

silver coatings are normally applied to the nut threads, which reduces the coefficient 

FAN 

COMPRESSOR 
COMBUSTOR 

TURBINE 



INTRODUCTION 

2 

 

of friction (CoF) and acts as a barrier between the surfaces in contact, preventing 

galling and seizure. 

Generally, during engine build the joint must be disassembled and reassembled 

several times, whereas during repair and overhaul every fastener is changed. Prior to 

thermal cycling, silver coated fasteners can be re-used up to 5 times, fulfilling this 

requirement. Conversely un-coated nuts can be used only once. 

To prevent vibration loosening, a radial crimp is applied to the end of the nut, prior to 

the silver coating process. This type of locking method, known as a prevailing locking 

device, generates a resistance torque while screwing. The crimp pattern can be 

elliptical or triangular depending on the joint (Figure 1.2), both of which acting to 

localise the stresses in two or three small areas, thus providing a locking feature but 

at the same time increasing the risk of removing the silver from the nut threads.   

 

a)  

Figure 1.2: Crimp Patters: (a) Elliptical and (b) Triangular 

Recently however, a problem with silver has been identified in aero-engines, where 

silver transfer can occur from coated nuts to other parts of the engine. Silver transfer 

to titanium parts in the engine (such as turbine discs), combined with the high 

temperature and loads present can cause stress corrosion cracking which may induce 

component failure. This problem is accentuated when the exhaust gases enter the 

engine, for example when the aeroplane is in a queue on the runway, as they act as a 

further catalyst to this process. Stress corrosion cracking was explained in a recent 

study by Saunders et al. (Saunders et al. 2016), which analysed the characteristic ‘blue 

spot’ seen in titanium alloys, as shown in Figure 1.3, which can lead to the failure of 

the component. Overall, this problem has been found to add significantly to inspection 

and maintenance costs.  

b) 
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Figure 1.3: Stress Corrosion Cracking in Titanium Parts (Saunders et al. 2016) 

Until recently there has been a lack of knowledge with respect to how silver works as 

an anti-seizure coating (Robinson 2009; Zhu 2012), with a recent study seeking to 

investigate its functional properties. If the behaviour of the silver is known, such as 

the CoF over the re-uses or the ageing capabilities, it could be replaced with another 

coating material, reducing the issues concerning the stress corrosion and the 

maintenance cost. Furthermore, a Health and Safety issue has also been recently 

discovered in the electroplating process used to apply the silver coating onto the nut 

(Robinson 2009). On a separate note, the elliptical crimp typically used was found to 

be magnifying the silver removal problem, as it increased contact stresses, promoting 

the removal. Thus, in recent years new locking designs are being investigated, in order 

to distribute the stresses along the nut, whilst still providing an anti-loosening 

capability for aerospace applications. Ideally, a new locking geometry must generate 

the required prevailing torque and must be as simple as a standard nut, such as the 

current elliptical design. 

All of the above factors provide a motivation for this study, be it in the long term to 

replace silver, or in the short term to re-design the crimp feature to reduce silver 

removal. 

 PROJECT SCOPE 

The principal aim of this study is to investigate the mechanical behaviour of the silver 

coating both experimentally and through Finite Element Analysis (FEA). An original 

experimental test platform is developed to investigate the CoF of crimped fasteners 

during tightening. The CoF is one of the most important parameters for joint 

designers, as an under or overestimation of the clamping load can lead to a loosening 
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or a failure of the joint. The performance of the silver coating is investigated over 

multiple tightening cycles, and its durability assessed. Removal of silver in the joint, 

and the associated contact pressures required for this to occur are then further analysed 

through a FEA approach, as a novelty in this area.  

Following on from this, samples are aged at 760°C for 50 hours in order to be 

representative of aero-engine operating conditions. The CoF post-test is examined to 

identify the effects of temperature on the silver properties. Another key outcome will 

be to identify important material requirements for the coating, with the aim of 

determining an alternative coating to replace silver. Thus, a selection procedure is 

developed in order to test possible alternatives and compare them to the currently used 

silver film.  

A further objective of this study is to develop an innovative self-locking design, to 

reduce the silver removal from the threads and thus alleviate problems related to the 

transfer of material to nearby parts. This new design must be suitable for aero-engine 

applications, as simple as the current design, and be capable of surviving multiple re-

uses. Compared to the current elliptical design, a lower stress field is required, but 

which still provides the resistance torque and the anti-loosening capabilities.   

 LAYOUT OF THE THESIS 

In Chapter 2 an overview of the previous studies related to this work are summarised, 

such as those relating to the fastener mechanism and vibration loosening. FEA studies 

are also discussed and the various locking methods analysed. Finally, the silver 

coating literature and the issues specific to aerospace applications are presented. 

In Chapter 3 the mechanism by which silver functions as a low friction coating is 

analysed through a newly developed test platform. Firstly, the test rig and samples are 

described, along with the experimental tests, at room temperature and after a thermal 

cycle at 760ºC. The CoF in the threads is analysed, as well as the nano-hardness of 

the silver film pre and post ageing. Additional discussions consider the self-locking 

torque pattern and the speed dependency of the tightening process. 

In Chapter 4 a FEA approach is used to analyse the contact mechanism of the elliptical 

self-locking nut, focussing particularly on the contact pressure and the stresses during 

the whole tightening process. Firstly, the model and the dynamic simulation will be 

carefully explained and the material properties defined. A pin on disc test for the silver 

coating is performed to find the relationship between the CoF and the pressure, as to 
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provide an input to the FEA model. Additionally, the tribological mechanism of the 

silver is analysed and used, along with a discussion of the stripping of the silver, to 

define a pressure threshold to cause the silver to strip.  

In Chapter 5 multiple alternative coatings are tested, in order to find a suitable 

replacement for the silver coating typically applied on the threads of the nut. Different 

tests are performed and compared to silver at room temperature and after a thermal 

cycle. Additionally, a shortlist of optimum coatings are identified through use of nano-

hardness and pin on disc tests. 

In Chapter 6 a new self-locking design is introduced, using an axial deformation in 

the threads in the chimney of the nut to produce a resistant torque. Firstly, a FEA 

approach is used to analyse the stresses and the self-locking torque at different axial 

deformations. Afterwards, a CNC program is developed in order to machine the 

selected candidates. After machining, the nuts are tested in the platform and the results 

compared to the radially crimped nuts. 

Finally, in Chapter 8 the findings and the conclusions of the previous chapters are 

summarised.  
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CHAPTER 2 

 LITERATURE REVIEW 

 INTRODUCTION  

In this Chapter an overview of the previous studies related to this work are presented. 

Firstly, the tightening mechanism of the joint is examined, analysing the forces acting 

on the joint and the analytical relationship between the key parameters, such as torque, 

load and CoF. Vibration loosening studies performed over the past century are also 

summarised and the more recent technique of FEA explained as an ongoing 

developing method. Additionally, the different categories of locking devices are 

introduced followed by their related studies, aiming to analyse the anti-loosening 

capabilities. As the low friction silver coating is applied in the locking nuts analysed 

in the current work, the benefits and the issues related to the use of the coating in 

aerospace applications are presented, along with studies relating to the different self-

lubricant coatings used for high temperature applications. Finally the gaps in previous 

research are highlighted and the motivation of this thesis explained.  

 BOLTS 

 Overview 

When a bolt is rotated clockwise into a nut (assuming a right-hand screw thread), and 

torque is applied to tighten the joint, forces are generated into the three main 

components of the joint; the bolt or the male threaded part, the nut or the female 

threaded part and the clamped component, which is compressed in between the first 

two. Tightening of a bolted joint produces a compressive force in the clamped 

component, along with a tensile load in the bolt as shown in Figure 2.1. 
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Figure 2.1: Forces in the Bolted Joint 

As shown in Figure 2.1, reaction forces (N) due to the clamping load (F) and the thread 

half angle (β), are generated on the thread during tightening (Q), as the bolt becomes 

elongated. Due to the nature of the helix (with angle α), these reaction forces also 

generate a moment that tries to unscrew the joint, with thread friction providing a 

resisting force. From a geometrical perspective, a larger pitch (P), defined as the 

distance between adjacent threads, produces a higher moment. When a bolted joint is 

tightened, approximately 10% of the applied torque is used to clamp the components 

together. The rest is absorbed by friction under the bolt head and at the thread contacts. 

The under head friction is defined as the friction between the clamping plate and the 

bearing material of the bolt or the nut, depending on which member is being rotated. 

The thread friction is defined as the friction between the mating threads 

(Bickford 1998; Budynas & Nisbett 2010). 

 Analytical Relationships 

Bolted joints have been the subject of multiple studies, with the aim in many cases of 

formulating equations to predict the relationship between applied torque and 

generated pre-loads (Juvinall & Marshek 2006; Shoberg 2000; Budynas & 

Nisbett 2010). 

During tightening and un-tightening of a joint the total torque required is made up of 

different factors. The loading torque is the torque applied to induce a compressive 

load under the bolt head and creates a clamping load that tensions the bolt. The 

breakaway torque is the torque required to unscrew a locking device (if present) with 
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no clamping load on the fastener and is a parameter used to measure the performance 

of a self-locking device. Finally, the break-loose torque is the torque applied to start 

disassembling the loaded joint. 

 

Figure 2.2: Torques Diagram (adapted from Shoberg 2000) 

On a basic level, the torque required to tighten a joint can be approximated. For a 

given clamp force, F, nominal diameter, D, and the table-valued nut factor K, the 

torque is the result of the multiplication of these parameters. 

 

 𝑇 = 𝐾 𝐷 𝐹   (2.1) 

 

The adimensional nut factor depends on the mating materials and can be found in 

look-up tables (Shoberg 2000; Rolls Royce 2011; Budynas & Nisbett 2010)  

The loading torque can be broken down, and is the sum of four components (Figure 

2.2): the clamp or pitch torque, defined as the amount of torque that is used to stretch 

the bolt, the thread friction torque, describing the torque to overcome the friction in 

the engaged threads, the under head friction, defined as the torque required to 

overcome the friction in the bearing surface, and finally the self-locking torque, the 

torque necessary to screw a locking device. It should be noted that the self-locking 

torque is the same as break-away torque, and is frequently included as a component 

of the loading torque. 

 

 Ttot= Tpitch+ Tthreads+Tunder head+Tself-lock (2.2) 
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Provided the thread pitch and the other geometrical parameters are known, along with 

the coefficients of friction both on the threads and under the head, the total torque 

required to tighten a joint becomes: 

 

 Ttot=F (
P

2π
+

r1μ
1

cosβ
+r2μ

2
) +Tself-lock (2.3) 

Where    

 r1= [
Min major bolt dia+Max dia or nut dia

2
] ÷2   (2.4) 

   

 r2= [
Kmin+Emax

2
] ÷2   (2.5) 

 

where F is the clamping load, P is the thread pitch, β is the half thread angle (30), r1 

is the mean thread engagement radius, and r2 is the mean radius of the abutment face 

(Rolls Royce 2011). This equation, without the self-locking term, was published for 

the first time in J. Bickford’s ‘Introduction to the Design and Behavior of Bolted 

Joints’ in 1990, and attributed to N. Motosh (Motosh 1976). 

In practice, the equation used in many standards in the aero-space industry is an 

approximation of this equation, and is as follows: 

 

 Ttot= F (a+bµ)+Tself-lock (2.6) 

 

As shown, the self-locking torque is independent of load in both Equations 2.3 and 

2.6. In Equation 2.6, a and b are geometrical factors calculated for fasteners, and μ is 

the coefficient of friction, assumed to be approximately the same for both the threads 

and under the bolt head. However, if the coefficients of thread and under-head friction 

are known, Equation 2.3 can be used (Rolls Royce 2011). 

In order to calculate friction, torque and clamping load should be measured. Different 

methods are employed to calculate the load, such as load cells, ultrasound or 

measuring the elongation of the bolt. The torque is usually measured with resistant 

torque sensors, rotating torque sensors or torque wrenches (Fastenal: Industrial & 

Construction Supplies 2005). 
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 Experimental Studies on the Loosening of Bolted Joints  

The vibration loosening process by which bolts tend to unscrew has been studied for 

over a century, with Bickford (Bickford 1998), Eccles (Eccles 2010) and more 

recently Temitope (Temitope 2015) analysing all the studies done in this area. 

Researchers in this field have focused their work to identify the causes of loosening, 

considering factors such as axial and transverse dynamic loading, slip at the interface, 

bending moment and impact. In this section the most influential studies related to the 

aero-engine application will be presented.  

Joint loosening was known from the industrial revolution, in particular in the rail 

industry, with most of the effort made to improve the design, instead of analysing the 

process. For example, in the documented patent of Ibbotson and Talbot (Ibbotson & 

Talbot 1877), a new self-locking method was introduced, where the nut was forced 

into the bolt threads. Thus, they claimed to have improved the joint design by 

preventing loosening by vibrations. Another example was seen in the patent of 

Lawrence and White (Lawrence & White 1861), who invented a locking device which 

secured the nut to the clamped components, preventing rotation and loosening induced 

by the vibrations of the trains. 

Although the loosening of fasteners was known in the 19th century, the first study 

analysing the process was seen in 1945, when Goodier and Sweeney (Goodier & 

Sweeney 1945) investigated loosening due to clamping loading and axial vibration, 

through a fatigue test. They stated that the loosening was due to the dynamic clamping 

load, which radially contracts the bolt and dilates the nut, by a process termed the 

‘frictional ratchet’. They also identified the factors which influenced the loosening, 

such as bolt length, bolt diameter, pitch and thread tolerance of the joint. 

A few years later Sauer et al. (Sauer et al. 1950) performed similar fatigue tests 

applying axial dynamic loads, and discovered that loosening rate is large at the 

beginning, and decreases with the number of cycles. They also found that clean 

surfaces improve the locking capabilities, reducing the rate of loosening. Interestingly 

they also found that loosening rate decreased with the preload, increased with 

increasing dynamic force, and decreased in used nuts compared to unused.   

The theory of loosening due to dynamic transverse loading was first introduced by 

Junker (Junker 1969). He stated that the principal cause of the self-loosening failure 

is caused by vibration due to dynamic loads. He stated that when thread friction is 
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overcome, the loosening can occur, and when loosening starts, a smaller force can 

cause further loosening. This was explained considering an inclined plane, as shown 

in Figure 2.3a, where the nut is the block and bolt is the plane. The block remains in 

equilibrium until an external force is significant enough to overcome the friction. If 

transversal vibrations are applied and the inertial force is larger than the frictional 

force, the block slips down the plane.   

 

 

Figure 2.3: Junker Findings: (a) Block on incline plane and (b) Bolted joint 

subjected to dynamic shear load  

The same principle can be applied to the preloaded joint, as shown in Figure 2.3b. 

Junker affirmed that when shear forces are higher than the friction force in the 

transverse direction, the joint will be free in any direction. Hence, because of the helix, 

a torsional force provides a loosening moment, which can initiate the loosening and 

eventually the joint can completely turn loose. He also stated that the transverse 

vibration is the most severe condition for loosening.   

These studies were conducted using a newly developed machine, now popularly 

known as the ‘Junker Machine’, as presented in Figure 2.4. 

 

Figure 2.4: Junker Test Machine (Temitope 2015) 
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As shown in Figure 2.4, cyclic loading is applied by an electric motor to the preloaded 

test sample. This platform was used to investigate vibrational effects in the transverse 

direction, plotting the preload decay over a number of cycles. He also concluded that 

loosening is dependent on the amplitude of displacement, but is independent of 

frequency. This test platform is still widely used to measure the loosening resistance 

of locking fasteners, and is precisely detailed in a DIN standard (Deutsches Institut 

für Normung 2004). 

A few years later, Finkelston (Finkelston 1972) used the Junker test machine to 

investigate the effect of initial preload on the loosening process. He stated that a high 

preload increases the loosening resistance in the joint for a given vibrational scenario. 

He also found that fine threads perform better than coarse threads and that locking 

devices reduced the loosening rate. Furthermore he confirmed the Junker finding that 

transverse vibrations are the most severe cause of loosening. 

Latterly, Haviland (Haviland 1983) more specifically affirmed  that in order to avoid 

self-loosening of the joint, movement in any direction must be avoided, such as 

rotational, transverse and axial movements. 

The Junker theory was also explored considering the micro and macro movements 

during loosening, in particular in three sections of the bolted joints where frictional 

forces sustain the load, such as the interface between the clamped parts, the contact 

area in the threads, and the contact surface between the bolt head and the clamped 

components (Temitope 2015).    

Pai and Hess (Pai & Hess 2002b; Pai & Hess 2002a) in their study analysed the 

localised slips causing loosening of joints in both the bolt head and thread interfaces, 

further validating the results using a three-dimensional (3D) FEA model (further 

explained in Section 2.3). They stated that loosening happens when the resultant of 

the tangential forces in the threads overcomes the frictional force, thus causing slip.  
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Figure 2.5: Loosening Process (Pai & Hess 2002a) 

As shown in Figure 2.5, if the resultant reaction force R, opposed to the applied 

preload Fp is overcome in the tangential direction by a shear loading, then loosening 

starts. Furthermore, when the friction force is overcome, because of the helix of the 

threads, the preload generates a tangential force, which can turn loose the joint. The 

torsional torque applied during the tightening can also cause the loosening to start, as 

presented by Yamamoto and Kasei (Yamamoto & Kasei 1984).  

In fact, Yamamoto and Kasei stated the loosening is caused by a restoring of the 

tightening torsion, which leads to a movement in the threads, also aggravated by the 

bending moment generated by the transverse vibrations. They also confirmed that 

localised slips accumulate, as earlier presented (Chesson & Munse 1965; Groper & 

Hemmye 1983), which can completely turn loose the joint. Finally they also supported 

the findings of Junker, showing that loosening is dependent on the amplitude but not 

the frequency of vibration. 

The loosening of the joints was divided into non-rotational and rotational stages by 

some researchers. Jiang et al. (Jiang et al. 2003) defined the early stage as a non-

rotational stage, with the reduction of the clamping force without relative rotation 

between the nut and the bolt. Afterwards, the clamping force further reduces as the 

joint rotates, as explained by experimental and FEA by the same authors (Jiang et al. 

2004; Zhang et al. 2007). They stated that the cause of the early stage of loosening 

was due to localised cyclic plastic deformation, called ‘cyclic strain ratcheting’, which 

caused loss of preload as a redistribution of stresses occurs. As previously stated, they 
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also confirmed the importance of the transverse displacement amplitude during this 

stage.    

Additionally, Zhang et al. (Zhang et al. 2006) analysed the rotational stage of the 

loosening of joints subjected to transverse vibrations,  identifying the causes to be 

repeated micro-slips between the surfaces in contact, and the bending moment exerted 

on the joint. Similar results were previously obtained by Pai and Hess (Pai & 

Hess 2002a; Pai & Hess 2002b) and Groper and Hemmye (Groper & Hemmye 1983). 

Yamamoto and Kasei  (Yamamoto & Kasei 1984), as previously explained, analysed 

the rotational stage of the loosening, stating that it is caused by the restoring of the 

torsional moment at the thread contact during vibration. They also introduced a 

numerical model to determine the required transverse force to cause the ‘critical slip’ 

at the bearing interface. Furthermore, Kasei et al. (Kasei et al. 1988) and Kasei 

(Kasei 2007) also found that loosening usually starts with undetectably small slips, 

with small or even in absence of macroscopic sliding at the bearing interface. The 

loosening reduces the clamping load, thus facilitating further loosening. These studies 

were further investigated by Jiang et al. (Jiang et al. 2004) and Zhang et al. (Zhang 

et  al. 2006), finding that the Yamamoto and Kasei defined ‘critical slip’ for loosening 

to occur depends on the preload and the clamped length. They also stated that a washer 

and normal nuts have better anti-loosening performance than a flange nut. An 

additional analysis of a washer capability has been seen in the work of Marshall et al. 

(Marshall et al. 2011) in their test assessing the capabilities of different washers in 

distributing contact pressure. They showed that an improvement in the pressure 

distribution under transverse vibration loading can be achieved with the use of plain 

washers, spring washers and in particular Nordlock washers, compared to the case of 

a washer not being used. 

Izumi at al. (Izumi et al. 2005), analysed the tightening and the loosening processes 

of the bolted joints not only with experimental studies but also through a 3D FEA, as 

further explored in Section 2.2.4. Similarly to Pai and Hess, they found that the 

loosening process starts at the thread interface, due to transverse vibrations. 

Comparing their results with Yamamoto & Kasei, they found a smaller value of 

‘critical slip’ for the loosening to start. 

 Finite Element Studies  
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In order to further understand the different mechanisms behind the tightening and  

loosening of bolted joints, FEA techniques have been widely used, with Mackerle 

(Mackerle 2003) summarising the studies performed in this area from 1990 to 2002. 

However, due to the ongoing innovation of the technique, this area is in continuing 

development. As explained in his work, the FEA results are affected by different 

factors such as the element type used, the constitutive equations, the time step size, 

the kinematic description, etc. 

FEA studies have been employed to investigate multiple mechanisms, such as the 

stress concentration factor in the thread roots, the load and the pressure distribution 

along the threads during tightening, the self-loosening process caused by vibrations, 

the helical effects influencing joint behaviour, the fracture and crack propagation, 

along with the interaction between the clamped parts and the joint. 

FEA models can be classified into three categories, 3D non-threaded joints, 2D 

threaded models and 3D threaded models. As explained by Mackerle, the fasteners 

should be modelled in 3D, in order to take into account the helix of the threads, the 

sliding surfaces and the joint interactions. However, 3D threaded models are time 

consuming, in terms of modelling and solving, with 2D and 3D non-threaded models 

normally preferred, as a compromise between solving time and accuracy of the results. 

However, 3D non-threaded models do not take into account the threads and the load 

transfer into them, and are mainly focused on the pressure in the bearing surface and 

in the clamped parts (Kim et al. 2007; Yang et al. 2011; Nassar et al. 2010; Oskouei 

et al. 2009). Furthermore, 2D axisymmetric studies do not take into account the helical 

effect of the threads, and are generally focused on the load distribution along them 

(Chen et al. 2010; Liao et al. 2009; Fukuoka 2005; Maruyama 1973; Fukuoka et 

al. 1985; Dragoni 1994; Englund & Johnson 1997; Lehnhoff & Bunyard 2000; Tanaka 

& Yamada 1986). Therefore, the most influential 3D threaded models are analysed in 

this section, which are used principally to take into account the helical effects on the 

joint. 

Zadoks and Kokatam in their work  (Zadoks & Kokatam 1999; Zadoks & 

Kokatam 2001) were the first to use a realistic 3D model to study joint behaviour. 

They analysed the axial stiffness of the bolt during tightening, as a critical parameter 

of the loosening failure of joints, validating the previous experiments. In order to 

reduce the number of elements in the model, the joint was split in two different parts, 

as shown in as shown in Figure 2.6, using finer meshes in the areas of interest. They 
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compared the results with 2D FEA and analytical results, which showed good 

agreement.  

 

Figure 2.6: Zadoks and Kokatam FEA Model (Zadoks & Kokatam 2001) 

Pai & Hess (Pai & Hess 2002b) in their 3D FEA work analysed in detail the failure of 

the fasteners by vibration induced loosening due to dynamic shear loads. They 

identified the different loosening steps observed in the experiments, and they 

concluded that the loosening caused by localised slips, found to be critical in the joint 

design, can occur at lower shear forces than loosening by complete slip. 

 

 

 

Figure 2.7: Pai & Hess FEA Model  (Pai & Hess 2002b) 

Izumi et al. (Izumi et al. 2005) studied tightening and loosening behaviour  using FEA, 

and compared the results with experimental studies. It was found that the load 

distribution in the joints slightly differed. However as latterly highlighted by Yang 

(Yang et al. 2013), the mesh used, shown in  Figure 2.8, was not accurately refined. 

Izumi et al. also highlighted the capability of FEA to contribute to the selection of the 

appropriate self-locking device, and further compared their results with 2D results and 

those obtained by Yamamoto and  Kasei results (Yamamoto & Kasei 1984).  
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Figure 2.8: Izumi FEA Mesh (Izumi et al. 2005) 

Fukuoka (Fukuoka et al. 2006), after their 2D studies (Fukuoka et al. 1985; 

Fukuoka  2005), analysed the effects of the thread helix on the root stresses along a 

fastener through a 3D model. In this work, a parametric mesh of the joint was seen for 

the first time, as shown in Figure 2.9. It was demonstrated that the maximum stress 

occurs at half a thread pitch from the nut loaded surface, and which then gradually 

decreases towards the top face of the nut. They also found that the load distribution 

experienced in the 3D simulation varied from the axisymmetric 2D analysis 

simulation, due to helical effects. 

 

Figure 2.9: Fukuoka FEA Model (Fukuoka et al. 2006) 

Yang et al. (Yang et al. 2013) in their study used a 3D parametric mesh to analyse the 

contact pressure at the interface for fine and coarse threaded fasteners, considering the 

helical effects. Accurate hexahedral elements were employed, as shown in Figure 

2.10, to analyse the tightening mechanism and the effects of the clearance between 

the mating threads. They found that a better clamping load distribution can be 

achieved with a slight release after tightening and they also highlighted the advantages 

of using 3D simulations to take into account the helical effects in the tightening 

mechanism. 
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Figure 2.10: Yang FEA Model  (Yang et al. 2013)  

 The Role of Friction in Loosening 

As seen in Section 2.2.2, both through analytical and FEA studies present the torque 

required to tighten the joint is a function of the CoF. Whilst low friction is required to 

maximise the ratio of the clamping load to applied torque, high static friction helps to 

maintain and support the end load by preventing loosening. In the aero-engine 

industry, a particular challenge exists, as due to the temperatures experienced, heat 

resistant super-alloys are typically used. In a like on like couple these materials have 

high CoF, as therefore is not feasible to simply apply a higher torque to achieve a 

given clamping load and overcome the high friction. Additionally, high friction 

fasteners can also cause to further issues, such as damage to threads due to seizure and 

galling, which may lead to the failure of the joint.  

Galling, often referred to as a cold-welding process, is surface damage due to adhesive 

wear and material transfer between sliding solids at high pressures (Fastenal: 

Industrial & Construction Supplies 2005). In threaded fasteners, damage typically 

occurs on the tapped threads of the nut, as the bolt threads are usually rolled, resulting 

in a rougher surface. Generally in aero-engines, due to limited access, seized fasteners 

may damage neighbouring critical components. Therefore aero-engine manufacturers 

found a compromise, applying a low friction coating to the nut preventing assembly 

damage, and a locking feature to avoid loosening. 

As further explained in Section 2.3, among the different locking methods, elliptical 

deformed nuts are currently used in aero-engines in order to generate a resistant torque 

in the deformed threads. This is explained further in the following chapters of this 

study. 
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 SELF-LOCKING METHODS  

In order to prevent self-loosening of joints, design precautions are usually required 

(Bickford 1998; Kulak et al. 1987) such as  

-   increasing the friction forces between the bearing surfaces of the joints, 

-   reducing the hole clearance to reduce misalignments, 

-   increasing the preload,  

- increasing the ratio between length and diameter to compensate for eventual 

misalignment,  

-   reorientation to have clamping loading instead of transverse loading. 

Despite the above however, loosening can still occur and locking devices are often 

employed to prevent it. In an aero-engine, working space is limited and the 

environment is aggressive, therefore more complex locking devices are not suitable. 

Typically, crimped nuts are used, which are easy to assemble and disassemble, are as 

small as a normal nut, and if the preload is lost complete backing off is still prevented. 

 

In this Section an overview of the categories of locking methods available and a 

critical view with respect to the aerospace applications are given. 

 

 Fastener Locking Methods 

In order to counteract joint loosening, a variety of self-locking devices have been 

developed and investigated in the literature. Hess (Hess 1998) in a chapter of 

‘Handbook of Bolts and Bolted Joints’ classified the locking methods in four groups 

(Figure 2.11):  

I. Free spinning preload independent locking methods. Similar to standard nuts, 

but with an external locking feature, which acts only when tightening is 

complete, and is independent from the clamping load, e.g. jam nuts and lock 

wire. One of the benefits is the prevention of loosening even without clamping 

load. However they are not cost, time and weight effective for aero-

applications. 

II. Free spinning preload dependent locking methods. Similar to the previous 

category, they are free to rotate until clamping starts. At this point an 

additional locking feature acts to prevent loosening, such as lock washers 
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which deflect with the load, and spring nuts. However, because locking 

functionality depends on clamping load, if the joint is not sufficiently 

tightened complete loosening can easily occur.  

III. Prevailing torque locking methods. Generally, an additional torque, the 

prevailing torque, is required to overcome the resistance imposed by an 

additional material or thread deformation feature, during tightening, e.g. 

elliptical nuts, as used in this work. However, the locking properties can 

decrease with re-uses of the joints. Additionally, complete loosening has been 

found to still occur occasionally with this method. 

IV. Adhesive locking methods: In this category of locking fasteners, adhesive 

fluids are applied to the threads, locking them in position. However, lubricants 

and contaminants can affect thread adhesion, thus degrading the performance 

of the bond. Additionally, being a more permanent solution, lower strength 

adhesives can be used if required to permit multiple disassemblies, which can 

cause partial loosening. 

I - Free Spinning Preload Independent 

  

II - Free Spinning Preload Dependent   

III - Prevailing Torque  IV – Adhesive  

 

 

Figure 2.11: Self- Locking Joints (adapted from Temitope 2015)  

 Testing of Locking Features  

Innumerable studies have been done in this subject, analysing the various types of 

locking methods, and highlighting their associated strengths and weaknesses. In this 

section different studies related to aero-engine applications are summarised. 

The Junker Test Machine (Figure 2.4), as previously described in Section 2.2.3, or 

similar, are widely used to assess the anti-loosening performance of self-locking 
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devices, Junker’s theory having been widely accepted. One of the most significant 

Junker’s conclusions was that self-loosening of a joint can be prevented by using a 

self-locking feature alone, and this has been tested in various studies. Among the 

various studies related to the Junker theory and the loosening process, as previously 

introduced, Finkelston (Finkelston 1972) performed a comparison between free 

spinning and prevailing devices. He found that prevailing devices reduce the rate of 

loosening, and prevent complete loosening when transverse vibrations are applied. 

Meanwhile, Pearce (Pearce 1973) tested a broad range of locking fasteners using a 

Junker machine and introduced a shock movement through use of an air hammer. 

Comparing different types of washers, he concluded that helical spring washers 

improved anti-loosening capabilities, when compared to a plain washer. 

Furthermore, the experimental studies of Barrett  (Barrett 1990) stated that jam nuts 

and double nuts are too unpredictable for aerospace applications. In fact, the torque 

required to tighten each nut is not well understood, similarly the load distribution at 

the clamped interface is also variable. Another implication of the use of jam nuts and 

double nuts is the increase of the joint weight, which becomes particularly problematic 

when thousands of bolts are utilised in an aircraft engine (Juvinall & Marshek 2006; 

Budynas & Nisbett 2010). 

Different platforms to investigate and assess the anti-loosening capabilities of locking 

devices were later introduced, such as two new platforms developed by Sase at al. 

(Sase et al. 1996; Sase et al. 1998): the ‘Displacement-based loosening device’ and 

the ‘Acceleration-based loosening device’. In their work, they stated that these two 

platforms were easier to adjust in amplitude and frequency compared to the Junker 

machine. As shown by Figure 2.12, they concluded that serrated flange nuts, edged 

spring nuts, metal inserted nuts, and cover rings had poor anti-loosening capabilities 

compare to conventional nuts, while nylon inserted nuts performed slightly better. The 

best performing locking devices in their experiments were found to be double nuts 

and eccentric nuts, which significantly reduced the loosening rate, albeit under limited 

conditions. 
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Figure 2.12: Sase et al. Results (Sase et al. 1996) 

In 2009, different external locking methods were analysed using a Junker test machine 

by Cheatham et al.(Cheatham et al. 2009), who investigated locking devices on 

fine ¼” (6.35 mm) threaded fasteners, such as standard free-running Heli-Coil inserts 

with high vacuum grease, and standard free-running Heli-Coil inserts with Loctite 

thread-locker. Analysing the load versus the number of cycles they showed that 

standard free-running Heli-Coil inserts with Loctite thread-locker have the best anti-

loosening performance compared to the other two. 

Further analysing adhesive locking methods, as highlighted by Martinez et al. 

(Martínez et al. 2011) and Petrova and Lukina (Petrova & Lukina 2008), adhesives 

used as a thread-locker are very sensitive to temperature changes and are not reliable 

if subjected to multiple assemblies. Similarly, Kumar (Kumar 2014), investigated the 

anti-loosening capabilities of Nylock nuts, which use a nylon collar to increase the 

CoF in the threads. However, this type of locking feature is only applicable to 

applications with an operating temperature lower than the melting point of the nylon 

(150ºC) (Smith 1990). 

Different prevailing nuts were investigated in a recent study by Eccles et al. (Eccles 

et al. 2010) using a modified version of the Junker machine. In order to analyse the 

loosening in the locking devices, they introduced clamping loading from 0 to 5 kN 

intermittently to the transverse vibration. In their experiments they found that 

prevailing joints can completely detach if the clamping loading exceeded the residual 

preload. This conclusion regarding clamping loading was in contrast to previous 

studies, which stated that prevailing fasteners cannot completely detach. They also 

developed an analytical model to identify how the loosening of the joint might be 
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prevented, which included the tensile load, the prevailing torque and the pitch of the 

screw. They found that free spinning nuts can completely turn loose with only 

transverse vibration and that the majority of self-locking devices can tolerate some 

degree of loosening under transverse loading. 

Interestingly, in the work of Panja and Das (Panja & Das 2013), in which they 

analysed the locking properties of different self-locking devices including washers, 

they found that washers did not significantly prevent loosening as is widely believed. 

Additionally, they concluded that spring washers and inside or outside serrated 

washers performed only marginally better as anti-loosening devices.  

As highlighted in this review, multiple test platforms are used to evaluate the locking 

capabilities, with the Junker test being the most widely used. Additionally, due to 

obvious safety concerns, aerospace manufacturers often employ other test methods in 

order to achieve a documented standard, such as the SAE standard test (SAE 

International 2014). Therefore, for applications in harsh environments, such as those 

found in the aerospace industry, fasteners with a mechanical locking feature are 

frequently used. However, because of the aforementioned issues, a physically 

deformed nut is generally preferred in the aero-engine industry, which provides a 

loosening-resistance effect and is easily assembled and disassembled. As previously 

stated, in this study, locking nuts which have a silver coating applied into the threads 

and in the bearing face to prevent seizure and reduce friction are explored, as will be 

introduced in the next section (Section 2.4). 

 SILVER COATINGS 

 Introduction 

In aero-engine applications, as discussed, the bolts must withstand temperatures 

exceeding 1,000°C, manufactures use fasteners made from heat resistant super-alloys, 

such as Inconel and Waspaloy. However, when used in a like couple, seizure is likely 

to occur as there is a very high CoF. Indeed, in the work of Fox & Liang (Fox & 

Liang 2010), Inconel was found to have a CoF varying between 0.6 and 0.8. To limit 

this, a coating barrier is normally applied in the surfaces in contact, as examined in 

this work, where silver is applied in the threads and in the bearing surface of the nuts. 

Silver plating is prohibitively expensive for most fastener applications, with the 

aerospace industry being a notable exception. 
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 Silver as a Low Friction Coating 

The applied silver coating serves both as a corrosion inhibitor and a dry lubricant, 

reducing galling of the threads in high temperature environments. Additionally, it has 

a good high-temperature performance due to the plated layer’s high melting point of 

962°C (Pauleau 1996), and it can be successfully used as a solid lubricant up to a 

maximum temperature of 650°C. In aero-engine applications the silver coating is 

electro-plated onto the threads with a thickness of 6 μm, resulting in low coefficients 

of thread friction of the order of 0.10-0.15 (Robinson 2009). The limited variation in 

the CoF is important when predicting the torque required to achieve a given end load.  

It is thought that silver provides low friction between hard surfaces during relative 

motion due to its low shear strength, which allows it to plastically deform thus 

providing solid lubrication, however limited investigations have been performed 

(Pattinson & Reade 2012). Silver belongs to a family of soft coatings, and can easily 

shear to reduce friction. Yang et al (Yang et al. 2003), further investigated the 

tribological behaviour of the silver, finding three wear regimes: mild, moderate and 

severe wear, where the CoF induced by the coating was found to gradually increase 

as it sustained increased levels of damage, as shown in Figure 2.13. 

 

Figure 2.13: CoF of Silver Films against the Contact pressure (adapted fromYang et 

al. 2003) 

Furthermore, El Sherbini et al (El-Sherbiny & Salem 1986) analysed different coating 

methods, and found ion-plating to be the most effective for tribological applications. 

At present, however, ion plating is found to be cost disadvantageous, and 

electroplating is the preferable compromise between cost and capability.  

Marechal et al (Marechal, Pauleau, et al. 1994; Marechal, Quesnel, et al. 1994) have 

examined the tribological properties of the silver coating at different thicknesses (from 

0.4 to 20 µm) at room temperature and at 500°C (Figure 2.14). They found a lower 

value of CoF when the coatings are less than 5 µm, as the substrate instead of the 
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coating supports the load. Above 5 µm, the friction increases along with the thickness, 

as the soft coating starts to support the load, increasing the contact area. Because of 

the softening of the silver coating above ~l50°C, they found a reduction of friction 

with temperature for very thin coatings (less than 3 µm), and an increase for thicker 

coatings, compared to the room temperature results, as with softening, the load is 

supported by a larger contact area.  

 

Figure 2.14: CoF at Room Temperature and at 500ºC for Different Silver Coating 

Thickness (Marechal, Pauleau, et al. 1994) 

Additionally in tests at elevated temperature the study also found no significant 

difference between tests in air and nitrogen atmospheres, further highlighting the 

oxidation resistance of silver coatings.  

At this moment no experimental works have been performed to assess the mechanical 

properties of the silver coating after thermal ageing, to understand the coating 

conditions of the aero-engine fasteners during engine maintenance. In fact, during 

joint disassembly, post cooling at room temperature, seizure is frequently seen and in 

combination with the limited working space, it can lead to catastrophic failure of 

nearby components. 

 Issues Surrounding the Use of Silver 

As highlighted in the introduction, silver migration may occur with degradation of the 

coating and, if the silver comes into contact with titanium parts, stress corrosion 

cracking can occur. In order to try and limit this problem, silver coated joints are only 

used in applications where the service temperature does not exceed 300°C. However, 

at high loads and in combination with contaminants present in the aero-engine 
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environment, migration is accelerated. Silver coatings have also be found to vary in 

thickness, with undistributed thicknesses of 20 μm reported (Robinson 2009), which 

is likely to be ploughed off and entrained into the engine. 

Additionally, silver plating is also being phased out with the introduction of European 

Union Reach legislation, which has highlighted the health, safety and environment 

issues associated with the cyanide baths used as part of the plating process 

(Robinson 2009). 

These are all requirements that any future replacement coating for silver would have 

to meet. At present no satisfactory alternatives have been found, which is in part due 

to a lack of understanding with respect to silver behaviour and functionality. Its low 

plating cost (approximately £0.30 per nut), in conjunction with a low CoF, mean it is 

still used in aero-engines, although inspection intervals are now increased. Any 

alternative coating would also have to meet the stated six times re-use criteria 

(Robinson 2009). 

Finally, most studies performed to date have been limited to ball on flat tests, and have 

not investigated the behaviour of silver coatings in bolted joints, despite this type of 

coating being widely used in the aerospace industry in conjunction with a crimp 

feature, therefore a significant knowledge gap exists. 

 Low Friction Coatings for High Temperature  

An ongoing research area for coatings is investigating low friction and wear resistance 

at high temperature for aerospace and machining purposes, where temperatures can 

reach 1,000 ºC. In this section the most significant research in this area is summarised. 

Typically, based on the temperature requirement, these types of coating are used in 

combination with super-alloys. For example, in a recent study, Houghton 

(Houghton 2015) investigated different solid lubricants for Inconel alloys, with the 

aim of reducing the wear rate. He stated that in the selection of a suitable coating, not 

only the lubricating properties are taken into account, but also the ability to support 

load, the thermal properties, the cost and the ability to improve the tribological 

properties of the materials in contact. In his work, Nitrides and DLC (Diamond-Like-

Carbon) coatings were investigated. Nitride coatings improve the surface hardness of 

a wide range of alloys, but also the wear resistance, due to the formation of a protective 

oxide layer. Nitride based coatings, such as Titanium Aluminium Nitride, Zirconium 

Nitride, Hafnium Nitride and Boron Nitride are widely used in the cutting tools 



LITERATURE REVIEW 

27 

 

industry. DLC coatings are a category of hard coatings known for their high load 

capacity and resistance to abrasive and adhesive wear. Different types of DLC 

coatings are available on the market, with exact formulae kept secret by each 

manufacturer, generally however, degradation at high temperature occurs.  

More widely, a review of research done up to 1982 was done by Sliney (Sliney 1982), 

summarising the different solid lubricant coatings for high temperature applications 

(journal bearings in particular), where the use of other lubricants is restricted. In fact, 

above 300 ºC most oils and greases are not stable and solid lubricants are generally 

applied. 

MoS2 (molybdenum disulphide) and WS2 (Tungsten disulphide) are commonly used 

due to their low shear strength. These coatings showed good lubrication properties up 

to 350-400 ºC or slightly higher for short durations. Similarly, graphite, which must 

adsorb vapours to develop good lubricating properties, rapidly oxides at high 

temperature, and additives such as Cadmium Oxide (CdO) can be applied to improve 

the properties.  

Other coatings are used for high temperature bearings, such as Graphite Fluorides, 

Polyimide coatings, and hard coatings such as alumina, silica and silicates, which 

showed good wear resistance but high friction. Thus, soft oxides are normally added, 

such as lead monoxide, to reduce the CoF, especially at high temperature where their 

shear strengths are reduced.  

Bi et al. (Bi et al. 2013) in their overview of high temperature self-lubricating 

materials, highlighted the intention to develop synergetic lubrication materials, 

combining low and high temperature lubricants. Fluorides and molybdates appeared 

to be promising high temperature wear resistant solid lubricants, while Zirconia 

ceramics were potential candidates especially at high temperature, but the high CoF 

was not acceptable for engineering applications. Thus, additive such as graphite, 

MoS2, BaF2, CaF2, Ag, Ag2O, Cu2O, BaCrO4, BASO4, SrSO4, CaSiO3 are applied as 

effective solid lubricants. Similarly, Alumina, with its good chemical stability and low 

price, showed high friction and poor wear resistance at high temperature, and for this 

reason, better performance are achieved adding Ag and fluorides as solid lubricants. 

The NASA Lewis Research Center successfully developed the heat resistance 

coatings, such as PS100, PS200, PS300 and PS400 series of plasma sprayed coatings. 

PS100 was a nickel-glass-solid lubricant, PS200 a hard nickel-cobalt-bonded chrome 

carbide matrix with the addition of solid lubricant such as Ag and BaF2/CaF2. PS300 
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replaced the harder chrome carbide of PS200 with chrome oxide, and more recently 

the issues related with the previous coatings were solved in the PS400 series. 

An additional successful heat resistance coating is Ni-hBN, in which the non-

wettability and the poor sinterability of the hexagonal Boron Nitride (hBN) is 

improved by the use of the Nickel matrix. Despite the fact that its properties are 

strongly dependent on temperature, it is used as a self-lubricating wear resistant 

coating up to 800 ºC. 

An emerging class of coatings is adaptive tribological coating, which are a new 

developing method of ‘smart’ materials, such as VN/Ag, which adjusts their chemical 

structure as a function of the environment and temperature they are subjected to, 

improving their lubricating abilities. In fact, while silver provides good lubrication at 

low temperature, the Ag3VO4 phase reduces the friction at high temperature due to its 

layered atomic structure. 

Likewise NiAl alloys, which show poor ductility at room temperature and low 

strength and creep resistance at high temperature, can be improved with the addition 

of soft oxides in order to reduce the friction and the wear rate at high temperature, due 

to the softening oxide and a low shear strength. A Ni3Al matrix containing Ag, Mo 

and BaF2/CaF2 in a multi-layer structure also improves the stress concentration 

between the coating and the substrate and reduces the porosity in the interface 

increasing the adhesion to the substrate. In fact, multilayer structures are normally 

used to reduce the stress concentration and improve the bonding strength. It is believed 

that no universal lubricant can operate at a wide range of temperatures, with a 

synergetic lubrication mixing two or more lubricants being a promising alternative. 

A recent review by Voevodin (Voevodin et al. 2014) presented a series of hard 

coatings for high temperature applications, particularly for dry machining. As 

commonly known, hard coatings have high coefficients of friction, thus soft additives 

are applied, such as silver and gold. In fact, these soft metals are reliable solid 

lubricants due to their low shear strength over a range of temperatures, from below 

ambient to their melting points. Being sensitive to the thickness, they work best on a 

hard supporting substrate and in thin films (up to 1 micron). In fact, when a thick film 

is applied, part of the load is carried by the soft coating, generating a significant 

‘ploughing force’ and increasing the frictional force. At high temperature soft coatings 

were found to exhibit a low wear resistance and are easily damaged due to their 

softening. Thus, nanocomposite coatings were developed, which include the solid 
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lubrication of the noble metals while maintaining wear resistance of a hard matrix, 

such as binary yttrium stabilized zirconia and the gold or silver nanocomposite coating 

materials. 

In order to progress this class of coating and address some of the issues in their 

application, the thermal management of the mechanical contact is being promoted. 

The aim is to reduce heat spikes and redistribute the thermal load of the sliding 

components, in order to prevent the deterioration of the base materials, which can be 

achieved using multilayer coatings, such as TiN/CrAlN.  

In conclusion, most of the studies reviewed above aimed to reduce friction at high 

temperature, while scarce research was done to analyse the frictional properties after 

a thermal cycle. In fact, a key focus of this thesis is the examination of the lubricating 

properties of the silver coating and the possible alternatives post-ageing. Cost and 

chemical affinity were not taken into account in this review, although are significant 

in the coating selection. For this reasons up until recently silver was found to provide 

a good compromise between friction, cost and chemical stability in the aero-engine 

environment. 

 Summary: Application of Crimped Nuts & Silver Coatings in Aero-

Engine Fasteners 

High contact loads due to the elliptical crimp and high temperatures result in high 

shear stresses and differential thermal expansion between the fastener and the coating. 

These conditions create the risk of coating breakdown and wear particle formation, 

leading to an increasing probability of seizure or damage to the threads. Adhesion of 

the coating to the substrate (nut) plays an essential role in avoiding failure, and has 

been one of the key drivers behind the choice of silver, as opposed to other low shear 

strength materials (Pattinson & Reade 2012). In this application silver has been found 

to have sufficient adhesion to the nut threads during tightening and un-tightening of 

the fastener assembly, protecting the mating threads with a physical boundary, thus in 

most cases avoiding galling (Robinson 2009). Previously, silver’s ability to withstand 

temperatures in the range between –50 and 760 °C was also critical, though as 

discussed this has now been found to be limited. Engine fluid, engine oil, fuels, high 

humidity and fuel contaminants such as Sulphur and Chlorine are present in the engine 

and can penetrate into the nut through the unloaded thread flank. In fact, the current 

design specification of thread tolerance allows a coating thickness of 5-13μm, with 
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the penetrants having been identified as a key issue with respect to the silver migration 

(Zhu 2012). Additionally, in most cases fasteners are made from nickel-based alloys, 

Waspaloy and Inconel 718, and corrosion resistant steels A286 and FV535, and silver 

has been found to not activate any failure mechanisms with respect to these alloys. 

Indeed, up until recently it was thought to be inert with respect to all of the engine 

materials it contacted, such as titanium, carbon steel, aluminium, and magnesium 

(Robinson 2009). 

In conclusion, at this moment there is a lack of knowledge concerning the elliptical 

crimped locking device in combination with the soft silver coating applied in the 

threads which were found to cause the failure of the joints in the aero-engine. For 

these reasons, the tightening process of the coated crimped nuts will be analysed in 

this work. Additionally the lubricating properties of the silver coating after a thermal 

cycle are not well understood, and will therefore provide a key objective for this thesis. 

Alternative coatings and locking design are also investigated, in order to reduce the 

issues seen with the current method, with the aim of minimising the contact stresses 

experienced. 
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CHAPTER 3 

 FRICTION OF SILVER COATED 

FASTENERS 

 INTRODUCTION 

As discussed in Chapter 2, mechanical components in aero-engines operate over a 

temperature range from –50 to 760 °C. As a consequence, the fasteners used to join 

components together are manufactured from heat resistant super-alloys, which can 

generate high coefficients of friction, causing seizure. To prevent this, a silver coating 

is normally applied on the fasteners. Additionally, in order to avoid vibration 

loosening, a radial crimp is added to the end of the nut providing a self-locking feature. 

Unfortunately, this also has the effect of localizing the contact stresses in two small 

areas, increasing the risk of removing the silver coating from the nut threads and 

triggering seizure. Whilst seizure of the joints is undesirable, as discussed transfer of 

removed silver from the nuts to other parts of the engine is also a significant issue. In 

particular, silver can combine with corrosive species in the presence of moisture and 

attack Nickel and Titanium alloys leading to an increased inspection requirement. 

Multiple researchers have been working on developing fasteners over the past century 

(as described in Chapter 2), with a similar approach being followed by Nassar et al 

(Nassar et al. 2007; Nassar et al. 2005; Nassar & Zaki 2009; Nassar & Yang 2007; 

Nassar & Yang 2007). As described in Section 2.3, they investigated various anti-

loosening methods, in addition to different tightening speeds and different coatings. 

However, the performance of the silver coating, being used mainly in aerospace, is 

not fully understood, in particular when used in conjunction with a self-locking 

feature. 

In this chapter the mechanical behaviour of the silver coating has been investigated 

experimentally on a bespoke test platform, developed to investigate the CoF of 

crimped fasteners during tightening up to a maximum load of 11.6 kN. The 
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performance of the silver coating is investigated over a period of 6 re-uses, and its 

durability assessed. Following on from this, samples were aged at 760 °C for 50 hours, 

and the CoF post-test analysed. 

 EXPERIMENTAL SET-UP 

 Test Rig Development  

To investigate thread friction and the behaviour of silver coatings a new test rig was 

developed. The aim was to measure the clamping load, torque and the tightening 

angle, as a function of time. Through this approach it was possible to calculate the 

CoF on the threads, a key parameter in understanding the screw mechanism. In this 

section the development of the test rig is described. 

a)     b)     

Figure 3.1: (a) Test Rig and (b) Joint Close-Up 

The CAD image of the manufactured test platform is shown in Figure 3.1. As shown 

in the figure, the motor turns the nut into the bolt, compressing a load cell used to 

measure the clamp force. The bolt is fixed in a torque sensor, which in turn measures 

the reaction torque. With this test arrangement it is also possible to rotate the bolt with 

the nut fixed, by swapping their position. The overall capability of the test platform 

was designed based on the Rolls- Royce standard for the fasteners under investigation 

(Rolls Royce 2011). The load cell is donut shaped, and has the form of a thick washer 

with a ¼” (6.35 mm) diameter hole in the middle. It is a LTH350 compressive load 

cell manufactured by Futek, with a peak measurement value of 22 kN, and was 

calibrated from 0 to 20 kN, with an error of 0.5 %. The torque sensor is a reaction 

sensor (TFF350 by Futek), with a maximum measurement capability of 56 N·m, with 

an error of 0.4 % and was calibrated within the range 0 to 25 N·m. The torque sensor 

has not been calibrated for its maximum torque as the error depends on the calibrated 
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range; thus an error of 0.1 N·m is achieved instead of 0.2 N·m over the reduced range. 

This type of sensor works in both the clockwise and anti-clockwise directions. Both 

the load cell and the torque sensor are connected to a computer via USB. 

The motor and gearbox shown in Figure 3.1 are used to drive the nut. The motor is a 

Baldor BSM63N-375AA unit, with a power of 375 W, and has an integrated position 

encoder. It is capable of delivering a 2 N·m rated torque with a peak output of 8 N·m, 

and has a rated speed of 4,000 rpm and a maximum speed of 10,000 rpm. Included in 

the experimental set-up is a 50:1 reduction gearbox, meaning the maximum output is 

90 N·m (due to the mechanical loss) at 200 rpm.  

The motor is mounted rigidly to the rig base plate, and a flexible coupling is utilised 

between the gearbox output shaft and the socket for the nut. A rotary encoder 

measures the rotation of the output shaft in combination with clamping load and 

torque measurements. On the opposite side, the torque sensor is mounted on linear 

guide rails so that the bolt is unconstrained and free to move in two dimensions. 

A steel washer is also included in the set-up, to ensure load is applied on the correct 

face of the load cell, and also accommodates a thrust needle bearing used to reduce 

under head friction during a given test. Finally, two different adapters for the flexible 

coupling and torque sensor (each with 3/8” (9.52mm) square drives) were 

manufactured, allowing a range of fasteners to be tested. All components are mounted 

on a 12 mm thick steel table, which is fixed in the floor to prevent unwanted 

movement. 

 

Figure 3.2: Test Rig 
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The motor speed along with the acquisition of positional, load and torque data is 

controlled via a LabVIEW program (version 2012). Figure 3.3 shows the user 

interface, while in APPENDIX A an overview of the developed program is provided. 

 

Figure 3.3: LabVIEW Interface 

Motor speed is set pre-test, with an end load or torque target also specified. When the 

end load or torque limit is reached, the motor stops running and after a short dwell the 

process is reversed and the joint is un-tightened. As shown in Figure 3.3, the front 

panel of the program graphs and displays the measurements in real-time during a test. 

Torque, time, load and shaft position are continuously recorded in a text file, allowing 

the CoF in the threads to be calculated throughout the tightening process. The 

maximum acquisition speed is 1,000 values per second, but a sample rate of 

100 values per second was found to be satisfactory, since the maximum speed used in 

the test was 3 rpm, thus providing 2,000 values per rotation. 

 Materials and Equipment 

AS48824 bolts and AS49211F nuts were tested in this study. The AS48824 bolts are 

¼” (6.35) diameter, 38 mm long with a 20 mm threaded section containing 28 threads 

per inch UNJF (Unified National Fine thread J series), and have a 5/16” (7.94 mm) 

12 point head. UNJF threads differ from the more common UNF variant by the root 

radius of the male thread, being larger in order to improve the tensile performance of 

the fasteners and to reduce the stress concentration factor  as defined in the Standard 

MIL-S-8879C (Military Specification 1991). Additionally, the requirement for high 

strength is achieved with 3A and 3B classes of fit. The bolts are manufactured from 

Waspaloy, an age-hardenable, nickel-based super-alloy, with high strength properties 

up to 1,000 °C. Furthermore Waspaloy has good corrosion and oxidation resistance, 
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and has a Yield Strength of 910 MPa and an Ultimate Tensile Strength of 1335 MPa 

at room temperature. This combination of properties makes it ideal for extreme 

environments, such as those found in aero-engines.  

AS42911F coated and crimped nuts were used in conjunction with the bolt. The nuts 

had 28 UNF threads per inch (TPI), were approximately 10 mm long (therefore 

containing 11 threads), and had a 3/8” (9.525 mm) 12 point outer form. Similarly to 

the bolt, the material used for the substrate was Waspaloy. The applied crimp was 

elliptical, and was produced by the clamping arrangement shown in Figure 3.4, where 

the nut chimney was compressed until a displacement of 0.35 mm was achieved.  

 

Figure 3.4: Crimping Vice 

The silver coating was previously applied by electroplating by Rolls-Royce, resulting 

in a coating 5-13 μm in thickness on the threads. The clearance required for the coating 

was taken into account, during the manufacturing process. 

Mobil Jet Oil II (ExxonMobil 2015), a high performance synthetic gas turbine 

lubricant, was applied to the bolts prior to testing. All tests were carried out as per the 

Rolls- Royce Design Standard JDS 829_03 (Rolls Royce 2011) where the end load 

used to clamp a 0.2500” (6.35 mm) joint is 11.6 kN. Prior to lubricant application 

acetone was used to decontaminate the specimens. An image of the test samples is 

shown in Figure 3.5. 

a)        b)  

Figure 3.5: (a) Mobil Jet Oil II and (b) Joint Sample 
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 Experimental Procedure 

In this section the experimental procedures for the needle bearing calibration and for 

both the room temperature (‘cold use’) and thermally aged tests are explained. 

3.2.3.1 Bearing Calibration Test 

Whilst the under head friction can be assumed to be minimal due to the use of the 

needle thrust bearing, as a consequence of its low CoF compared to that of the threads, 

it is more accurate if the torque dissipated in the bearing is subtracted. Therefore an 

additional experiment was performed to determine its value. The needle thrust 

bearings (AXK0821TN by SKF) have inner and outer diameters of 8 and 21 mm 

respectively, and are 2 mm thick. The cage consists of two hardened washers, with a 

single bearing capable of supporting a maximum clamping load of 20 kN.  

 

Figure 3.6: Bearing Calibration Test 

Figure 3.6 illustrates the calibration test setup used to calculate the bearing torque. As 

shown in the figure, the bearing is placed between the nut and the washer, and by 

tightening six M6 screws a variety of loading forces representative of the main test 

rig were reproduced. In this set-up, a bar with a fixed disc is rotated by the motor, with 

a second identical bearing used on the other side of the disc. The measured torque is 

that required to avoid the rotation of the two plates, and is the sum of the friction 

torque of both bearings. The load was measured through the donut load cell, with the 

torque sensor used to measure the bearing torque. A similar LabVIEW program to 

that presented for the main test platform was used to record the test data. 
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3.2.3.2 Cold Use 

As highlighted, during engine assembly joints are typically assembled and 

reassembled multiple times, with 6 re-uses being a common target. Thus, 6 cycles 

were performed on an as new joint, with an end load of 11.6 kN targeted. Mobil Jet 

Oil II was applied to the bolt and a thrust bearing used to isolate the thread torque as 

previously described. The joints were assembled at rotational speeds of 3 rpm during 

wind on and wind off, and at 0.5 rpm during the final tightening and untightening, in 

order to achieve a satisfactory accuracy with respect to the targeted clamping load. 

Torque and clamping load were recorded, enabling the CoF to be calculated for each 

cycle. The test procedure is summarised in Figure 3.7. 

 

Figure 3.7: Flowchart of the Cold Test Procedure 

3.2.3.3 Ageing Test 

During engine operation, the joints must operate at high temperatures, up to 760 °C, 

which can cause the coating to deteriorate. Thus, assembled joints were thermally 

aged at 760 °C for 50 hours, and their ability to prevent seizure investigated at room 

temperature post-cooling. Whilst in the practical application, a significant level of 

vibration accompanies engine operation, this has not been considered in this case. The 

aim of this study is to consider a worst case seizure event, and in the case of vibrations 

these are likely to reduce the level of seizure experienced, and have thus not been 

included in the study. In order to prepare these samples for ageing, the torque required 

to reach the end load was first evaluated using the load cell, and the joint then re-

assembled to the same torque with a Waspaloy spacer replacing the load cell (Figure 

3.8). The Waspaloy spacer had similar dimensions to the load cell, and was used since 

the load cell could not withstand the ageing process. Mobil Jet Oil II was once again 

used as a lubricant.  

The specimens were then placed in the oven, which gradually reached 760 °C as per 

Rolls-Royce Standard (Rolls Royce 2011). After 50 hours at constant temperature, the 

specimens were left in the oven switched off to slowly cool down till room 

temperature, and then disassembled on the test rig. The torque profile was once again 



FRICTION OF SILVER COATED FASTENERS 

38 

 

measured. As the load cell was not in place, the CoF in the threads was calculated 

using the torque as the joint began to unscrew, i.e. where the joint load was known. In 

order to estimate the CoF in the threads, the equations previously defined in 

Section 2.2.2 were used, assuming the end load of 11.6 kN remained during the 

thermal cycle. As in the cold test, the surface torque must be subtracted from the total 

torque. Thus, the spacer plate was rotated with respect to the joint, to estimate the 

surface torque, which was then subtracted. Once disassembled, the joints were re-

tested using the load cell, as described previously, in order to fully characterise the 

CoF in the threads using Equation 2.3, with the overall test procedure summarised in 

Figure 3.9. 

 

(a)       (b)     

Figure 3.8: Thermal Ageing Test Assembly a) Schematic and b) Real Joint Tested 

 

 

Figure 3.9: Flowchart of the Thermal Test Procedure 
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 RESULTS 

 Bearing Calibration Test Result 

The torque required to overcome the bearing friction was calculated. Five tests for a 

series of applied loads were performed using Mobil Jet Oil II as the bearing lubricant, 

with the torque and the load during clamping measured each time. Figure 3.10 shows 

the results of the test. As shown, a linear relationship was observed between bearing 

torque and load, where the line of best fit was characterised by Equation 3.1. 

 

Figure 3.10: Bearing Test Results 

 

 Torque=0.168*F-0.0223 (3.1) 

 

The torque shown in the figure is half of the torque measured, as two bearings were 

used at the same time. The equation has been subsequently used to subtract the bearing 

torque from the total torque measured during tightening experiments using the main 

test rig, as further explained in Section 3.3.2.  

 Calculation of Coefficient of Friction 

From a given data file, torque and load are extracted as a function of the angular 

position as shown in Figure 3.11.  
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Figure 3.11: Torque and Load during Screwing 

The example data set in Figure 3.11 shows the torque and clamping load recorded 

during the tightening as a function of the position of the bolt with respect to the nut. 

As shown, the horizontal axis is plotted in terms of the number of complete threads 

out of the nut. This value is determined by counting the number of threads that are 

observed out when the end load is reached, and provides a frame of reference for the 

test.  

As previously stated, in this work elliptical self-locking nuts are used, which produce 

a resistive torque whilst engaging, as per the prevailing torque locking methods 

described Section 2.3. In practise, the self-locking feature is achieved by deforming 

the chimney and will be further investigated in Sections 3.4.1 and 4.7.1  

As shown in Figure 3.11, at the start of the test the bolt threads engage with the 

crimped nut threads, producing the locking torque. The locking torque is almost 

constant until axial force is developed, with a sinusoidal pattern evident. As the 

fastener begins to clamp the load cell (point A), torque and load rapidly increase 

before reaching the 11.6 kN set point (point B). Figure 3.12 shows the load plotted as 

a function of torque, where a higher torque is measured during the first tightening with 

values becoming approximately constant with re-use. It was also found that torque 

values were lower during the un-tightening phase.  
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Figure 3.12: Torque vs Load for 6 re-uses 

When the clamping load is zero, the measured torque is due to self-locking only, and 

results from the resistance due to the crimp in the nut chimney. At the end of the load 

cycle, when the pre-set end load is reached, the motor stops and the torque reduces. 

The motor stops after 50 milliseconds and the end load is usually surpassed by 

approximately 0.1-0.2 kN.  

As previously defined in Section 2.2.2, the total torque required to tighten the joint is 

the sum of four factors, the pitch torque, the bearing torque, the threads torque and the 

self-locking torque. In order to calculate CoF in the threads, the threads torque should 

be isolated and the other factors subtracted. The pitch torque, required to stretch the 

bolt, is calculated as: 

 𝑇𝑝𝑖𝑡𝑐ℎ =
𝑃

2𝜋
 𝐹 (3.2) 

Thus, subtracting the bearing torque, defined in Section 3.3.1, and the self-locking 

torque, the CoF in the threads has then been calculated as: 

 𝜇 =
𝑐𝑜𝑠𝛽

𝑟1
 
𝑇𝑡ℎ𝑟𝑒𝑎𝑑

𝐹
 (3.3) 

Assuming the self-locking torque is constant, with the average value taken over the 

final revolution of the nut prior to compressing the load cell and generating clamping 

load, the CoF can be calculated and plotted against position, load and torque (an 

example is shown in Figure 3.13). 
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Figure 3.13: CoF in the threads 

As shown in Figure 3.13, the CoF changes as the joint is loaded, which may indeed 

be the case, but the calculation procedure may also contributing to such observed 

trends. In fact, the self-locking torque has been assumed constant, and this is clearly 

not the case based on the observed sinusoidal pattern in the torque data as the crimp 

is engaged. Thus, it was assumed that the self-locking torque continues with its 

sinusoidal pattern, even when the clamping load is developed, as shown in Figure 

3.14. 

 

Figure 3.14: Self-Locking Torque Assumption 

Figure 3.15 shows the resulting CoF in the threads calculated by subtracting the 

assumed self-locking torque and using Equation 3.3. 
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Figure 3.15: CoF in the Threads 

As shown in Figure 3.15, the CoF in the threads shows less scatter compared to Figure 

3.13, in particular at the beginning of the clamping. However, the friction value at the 

end load remains constant, in the range of 0.125-0.13. This refined calculation method 

was thus used in the rest of this work.  

 Cold Use 

During the cold test the torque, the load and the angular position were acquired 

continuously during the 6 cycles. 

 

Figure 3.16: Self-Locking Torque over Re-uses 

As shown in Figure 3.16, the torque can be plotted against the angular rotation, 

showing a sinusoidal pattern of the self-locking torque over the whole test, with the 

first cycle being slightly higher than the following cycles, and will be further 

investigated in the following sections. 
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Upon post-processing, using the approach and the equations previously described, the 

CoF in the threads was isolated and plotted for all six re-uses, along with the clamping 

load (Figure 3.17). 

 

Figure 3.17: CoF for Cold Re-Uses 

As shown in Figure 3.17, the thread friction over the cycle was found to range between 

0.1-0.14, and shows a gradual increase with clamping load. Furthermore, the friction 

during the first tightening was found to be slightly higher with respect to the following 

cycles. These two behaviours of the silver coated crimped nut will be further 

investigated in the following sections of this work. 

 

Figure 3.18: CoF for Cold Re-Uses, 5 Tests 

Figure 3.18 shows the average CoF in the threads for 5 test specimens (6 cycles each), 

whilst also taking into account the minimum and maximum friction recorded at 1 kN 
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clamping load increments. As shown in the figure, the CoF results show some scatter 

at low load, which is attributable to the accuracy of the sensors at low values. Also, 

the self-locking torque was estimated as previously described and, at a low clamping 

load, makes up a significant part of the total torque (Equation 2.3). As highlighted in 

Figure 3.18, the scatter decreased with increasing clamping load, with a range of 

0.11- 0.13 measured at peak load. 

 Ageing Test 

Five silver coated joints were tested at 760 ºC for 50 hours and unscrewed after 

cooling at room temperature to evaluate the break torque, thus simulating the 

untightening process during engine maintenance. The results are summarised in Table 

3.1. 

Pre Thermal Ageing Post Thermal Ageing 

CoF 
Tightening 

Torque 

Untightening 

Torque 

CoF 

Un-tightening 

(estimated) 

Untightening 

Torque 

Spacer 

Torque 

CoF 

Re-

tightening 

0.118 16 N·m 12.7 N·m 0.4 33.8 ± 5 N·m 11 N·m 0.24 

Table 3.1: Ageing Test Results 

In the first columns, Table 3.1 shows the torque measured for the joint prior to the 

thermal ageing process. As discussed this value was used to determine the torque 

necessary to achieve the required end load with the spacer plate as opposed to the load 

cell in place. Figure 3.19 shows the torque profile of the joint both pre- and post-

ageing. As shown in the figure, the torque required to turn the joint is significantly 

higher post-thermal ageing. This result, along with the torque attributable to rotation 

of the spacer, was used to estimate the thread friction (Table 3.1). As shown in the 

Table, the thread friction has increased significantly as a consequence of the thermal 

cycle, and has more than doubled in value. 
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Figure 3.19: Torque during Thermal Ageing Test 

As discussed, Figure 3.19 shows respectively the torque required to tighten the joint 

on the spacer, the torque required to rotate the spacer after ageing, and the torque 

required to unscrew the joint. The red curve shows the tightening torque, evaluated 

using the load cell, and used to re-assemble the joint with the spacer replacing the load 

sensor. The blue curve shows the torque required to rotate the spacer after the ageing 

process. When the spacer rotates relative to the joint, both bearing surfaces slide. 

However, in reality during the periodic engine maintenance, during the unscrewing 

process only one of the two surfaces slides, either the bolt or the nut side, and therefore 

in order to estimate the CoF in the threads only, the total torque was halved. A peak 

torque was calculated at the beginning of the test, attributable to breaking the seizure 

that occurred with ageing, further highlighted by the washer-joint interfaces shown in 

Figure 3.20a.  

Finally, the black curve of Figure 3.19 shows the untightening torque post-ageing, 

indicating a higher torque than pre-ageing. During the test, silver removal and transfer 

to the mating threads and the spacer was also observed, as shown in Figure 3.20b, 

with silver clearly evident on the bolt threads. As highlighted by this discussion, the 

CoF in the threads measured directly from the un-screwing process is an estimation, 

not taking into account the seizure of the seating face, and accurately tested by re-

tightening.  
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Figure 3.20: a) Typical Washer-Joint Interface, b) Silver Transfer Post-Ageing 

As stated, multiple joints were tested using the previously described procedure, in 

order to detect any scatter in the results. In Figure 3.21 five tests were plotted.  

 

Figure 3.21: Ageing Test Results 

As shown in Figure 3.21, the torque required to directly unscrew the joints after the 

thermal cycle was higher than the cold tightening torque in any test, with torque values 

between 28.5 N·m and 39 N·m (Table 3.2). This variance in the results was thought 

to be caused by varying degrees of joint seizure, as illustrated in Figure 3.20. 

Table 3.2: Ageing Test Results: Repeats 

In order to further characterise the aged joints, once disassembled the joints were re-

tested using the load cell. Figure 3.22 shows the torque and load curve for the aged 

joint compared to that for the cold test, further highlighting the increase in torque 

required to rotate the joint after the thermal cycle. Additionally, Figure 3.23 shows 

the CoF in the threads as a function of joint load, where a similar increase in value 
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with respect to load is once again evident, however, with a significantly higher overall 

value in the aged case as compared to the room temperature case, though less than 

determined from the aforementioned initial calculation (0.24 vs. 0.4 for re-assembly 

vs. un-screwing respectively (Table 3.1)). 

 

Figure 3.22: Pre- and Post-Heat Treatment Load vs Torque Curve  

 

 

Figure 3.23: Pre- and Post-Heat Treatment CoF Curve 

 DISCUSSION 

The self-locking torque was found to vary over the six repeats, and also follows a 

sinusoidal pattern as previously presented in Figure 3.16. 
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The self-locking torque during the first tightening process is higher than all other 

repeats, but where the same sinusoidal pattern is observed throughout. The reasons 

for this behaviour were thought to be the silver removal from the nut threads and the 

deformation of the elliptical nut chimney as further discussed in this section.  

In this section the tightening speed will be also investigated, in order to assess the 

speed influence in the CoF during the screwing. Additionally the hardness of the 

coating will be analysed in both condition, pre and post ageing in order to assess the 

temperature effect to the silver coating, as a possible cause of the friction behaviour.   

 Locking Torque Variation & Silver Removal 

The stripping process was analysed through an engagement test. Five different joints 

were assembled at different engagement lengths, with the number of bolt threads 

protruding from the chimney varying from zero to four, with no clamping load 

applied. Thereafter, the joints were cut using an EDM technique, and the silver 

removal assessed. 

 

Figure 3.24: Engagement Test 

As shown in Figure 3.24, the silver starts to strip from the first wind-on, particularly 

in the crimped section of the nut, and deteriorates further during continued winding. 

Obviously, this process is accelerated when the load is applied and with multiple 

tightening cycles. This change may effect friction in two ways. Firstly, removal of 

silver promotes a like on like couple increasing friction. However, silver removal 

increases clearance reducing contact and the locking torque. While sufficient silver is 

present globally and mobile with the nut, the latter effect is likely to dominate. 

Additionally, the external diameters of the elliptical section of the nut were measured 

during the 6 cycle test, as shown in Table 3.3. 
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 Min dia [mm] MAX DIA [mm] 

Before 1st screwing 8.48 8.74 

Clamped 1st 8.60 8.70 

Before 2nd 8.55 8.72 

Clamped 2nd 8.60 8.70 

Before 3rd 8.55 8.73 

Clamped 3rd 8.59 8.71 

Before 4th 8.54 8.73 

Table 3.3: External Diameter during the Test 

As shown in Table 3.3, diametral change in the nut is observed from the first cycle. 

The minimum diameter in particular, in the first cycle deforms, and then does so 

elastically during the following cycles. Thus, the crimp section changes, along with 

the silver being partially removed, as seen in Figure 3.24, are thought to have caused 

the self-locking torque to reduce during the cycles. An additional analysis of the 

contact between the mating threads is therefore necessary to fully understand this 

effect and will be presented in Chapter 4, where the contact mechanics will be further 

analysed using the FEA. 

 Self-Locking Torque Pattern 

As discussed, it has been observed that for the elliptically crimped nuts, the locking 

torque recorded has a sinusoidal pattern as the fastener is assembled (Figure 3.11 and 

Figure 3.16). As the bolt thread is continuous in form, it is unclear why this occurs, 

therefore a series of measurements were performed on the thread using the apparatus 

shown in Figure 3.25. As shown in the figure, a threaded upper plate (0.25” UNF) 

rests on the bolt, connected to a digital indicator with an accuracy of 1 μm. The plate 

is free to move, and can be used to measure changes in the bolt diameter as it is rotated. 
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Figure 3.25: Diameter Test Device 

Five bolts were tested, with each showing almost the same result, approximately        

40-50 μm between the minimum and the maximum diameter recorded, with peaks of 

60 μm. This difference is permitted within the tolerance of the bolt, and likely due to 

the process through which the threads are rolled. However, as schematically 

demonstrated by Figure 3.26, as the oval bolt interacts with the crimped section of the 

nut, high forces will be generated twice per revolution, resulting in the observed self-

locking torque variation and the sinusoidal pattern. 

 

Figure 3.26: Oval Bolt and Crimp Interaction 

 Speed Dependency 

The speed used during the experimental test previously described was set at 3 rpm 

during wind on and wind off, and at 0.5 rpm during the final tightening and 

untightening. This speed was chosen in order to more accurately reach the required 

clamping load, and avoid any damage to the test rig, particularly to the load cell. In 

reality however, during engine assemblies wind-on speeds could reach 100 rpm (Rolls 

Royce 2015). Thus, further analysis is required in order to investigate the effect of the 
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tightening speed and the applicability of the test performed. As stated by ‘Standard 

RRES90027’, wind-on and tightening speeds for self-locking nuts are lower than 

those used for standard nuts, where speeds as low as 20 rpm may be required and must 

be specified in the assembly instruction. Thus, joints were tested at different speeds, 

up to 32 rpm. The same joint was tightened at 0.5 rpm, in order to accurately reach 

the required clamping load, and untightened at different speed, doubling it every two 

un-tightenings. After each speed increase, a tightening cycle at 0.5 rpm was 

performed, in order to observe any friction change, due to potential damage of the 

silver coating.  Thus, the speeds tested were 0.5, 1, 2, 4, 8, 16, 32 rpm, and the 

recorded torque and load have been plotted in Figure 3.27. 

 

Figure 3.27: Speed Dependency Test: Torque against Load  

As shown in Figure 3.27, during the tightenings, at 0.5 rpm, no difference was 

observed, proving once again the high repeatability and interestingly the limited 

impact of silver removal. However, during the un-tightenings at different speeds, a 

torque increase was noticed. In order to further analyse the data, the CoF was plotted 

against the clamping force (Figure 3.28). 
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Figure 3.28: Speed Dependency Test: CoF against Load  

As shown in Figure 3.28, a significant increase in the CoF was found, particularly in 

the first two speed increases (1 and 2 rpm). In order to numerically evaluate the 

increase in CoF as a function of the untightening speed, the friction during 

untightening was normalised using the datum CoF calculated at end load during the 

preceding 0.5 rpm tightening, as plotted in Figure 3.29. 

 

Figure 3.29: Increase of CoF against Untightening Speed  

As shown in Figure 3.29, the CoF rapidly increases until 8 rpm, after which a more 

gentle increase is observed. The same test was done with and without the thrust 

bearing between the bearing surfaces, showing similar increases in the CoF in the 

threads and the bearing friction. The increase of CoF was expected, as seen in the 

literature. In fact, Arnell et al (Arnell & Soliman 1978) found an increase in CoF along 

9 9.5 10 10.5 11 11.5 12
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Load [kN]

C
o

F
 [

a
d

]

 

 

0.5rpm

1rpm

2rpm

4rpm

8rpm

16rpm

32rpm

0.51 2 4 8 16 32
0

5

10

15

20

25

Speed [rpm]


 /

 
 0

.5
 [

%
] 



FRICTION OF SILVER COATED FASTENERS 

54 

 

with the sliding speed using different soft coatings such as silver, indium and lead, at 

different thicknesses. Furthermore, Zou (Zou et al. 2007), analysed the CoF in the 

threads in the presence of solid lubricants, showing a speed dependency until 5 rpm 

in fine thread fasteners, in a range of speed between 1 and 100 rpm. Yang (Yang et 

al. 2003), in sliding tests from 20 to 1,000 mm/s, found an increase in CoF with sliding 

speed, as the formation of the transfer layer acting as a solid lubricant is affected by 

the speed, as well as the contact pressure, as will be seen in Chapter 4. 

 Nano-Hardness Test 

As previously shown in Section 3.3.4, during the ageing process the frictional 

behaviour of silver changes, with an increase recorded. To further analyse the effect 

of ageing on the properties of the coating, a Hysitron Triboscope TS70, capable of a 

maximum load of 10 mN and maximum roughness of 3.5 µm, was used to measure 

the hardness both pre- and post-ageing. The measurements were taken on the flat 

bearing surface of the nut, as the geometry of the threads was found to be impractical. 

The pre-aged samples were polished with a 0.25 micron diamond suspension for 

2 minutes before the first test, with a resulting roughness of 500-800 N·m (Figure 

3.30a), and a coating thickness of 5.5-7 µm. With a Berkovic indenter (Fischer-

Cripps 2011), a 10 cycle partial loading and unloading test was undertaken, with a 

maximum load of 10 N. Three locations on the sample were analysed, using a 3 by 3 

matrix in a 50 µm square scan area. The same measurements and test were undertaken 

on the aged samples. While the thickness of the coating was found to be almost the 

same, the roughness was higher at 3-4 µm (Figure 3.30b).  

 

Figure 3.30: Comparison between pre-aged (a) and post-aged (b) silver coating 

The hardness of the coated nut pre and post-ageing, automatically measured by the 

instrument from the partial unloading curve, was plotted and compared (Figure 3.31). 
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Figure 3.31: Silver hardness pre- and post-ageing 

As shown in Figure 3.31 the hardness of the pre-aged sample is between 1.4 and 

2.3 GPa, while the hardness of the post aged sample is lower, from 0.5 to 1.2 GPa. 

This result clearly indicates that the ageing process anneals the silver, leaving it 

susceptible to removal at lower contact pressures. In order to further explore this 

effect, split nuts were compared from the cold re-use test (Figure 3.32a) and in the 

aged condition post-unscrewing (Figure 3.32b). As shown in the Figures, a significant 

amount of silver was removed post-ageing, as evidenced by the dark appearance in 

many places of the threads. As a consequence of the severe damage to the silver 

coating, an increase in the CoF is expected, as the contact becomes chemically similar 

to a like on like couple. Similar behaviour has also been explored by Roberts et al. 

(Roberts et al. 1997), where softening and annealing of silver were considered in pin 

on disc tests. Additionally in tests at elevated temperature, the study also found no 

significant difference between tests in air and nitrogen atmospheres. This further 

highlights the oxidation resistance of silver coatings, and supports the authors’ 

hypothesis that the observed effect was annealing related. 
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Figure 3.32: Sectioned silver nut (a) after cold use test and (b) after post-ageing 

test. 

 SUMMARY 

The analysis of the silver coating behaviour in aerospace fasteners can be summarised 

as follows: 

 The CoF in the threads in a silver coated joint was analysed during tightening, 

highlighting a dependency on the clamping load. However, the coefficient of 

fiction was found to be consistent, which is fundamental in order to estimate 

the torque required to reach the end load. Additionally, an overall low CoF of 

0.125 was observed at room temperature. 

 The silver coated joints were investigated after a thermal cycle at 760 ºC, as 

typical of engine operating conditions. The thermal ageing was found to effect 

the silver coating properties, leading to a significant increase in the CoF from 

0.125 to 0.24 and a significant silver removal and transfer to the nearby parts. 

 The nano-hardness test showed annealing of the silver coating with thermal 

ageing, resulting in easier removal of the silver coating. Therefore, the 

resulting contact between the bolt and nut threads becomes similar to a like on 

like couple, producing a rise in CoF. 

 The tests developed within this chapter have enabled full investigation of 

silver coating properties within the context of this application. Thus, the test 

presented, such as the cold test, the thermal test and the nano-hardness test, 

can be used to investigate different coatings. In fact, in Chapter 5 different 

coatings will be analysed using the presented methods, in order to identify a 

replacement for the silver coating. 
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 The CoF was analysed at different speeds, showing a significant rise with 

speed increase, in line with previous studies. Thus, a strict assembly procedure 

should be carried out during engine assembly, using a specific speed, as 

identified when evaluating the tightening torque required to reach the peak 

load. 
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CHAPTER 4 

 FINITE ELEMENT MODELLING 

 INTRODUCTION 

In Chapter 3, the silver coated nuts were tested using a newly developed platform, 

analysing the frictional properties at room temperature and after a thermal cycle. The 

tightening process for a bolted joint is generally analysed by measuring torque and 

clamping force directly, and calculating contact pressure and thread friction 

afterwards. These calculations rely on many assumptions and approximations, and for 

a given load yield a single value of CoF, assumed to apply uniformly at all contact 

sites.  

In fact, previous work (Yang et al. 2003), has shown that silver has pressure dependent 

frictional properties, and it is widely known (Juvinall & Marshek 2006), that the 

pressure in a joint is not constant, varying throughout the tightening process, and also 

within the joint along the threads in contact. Additionally, this effect is further 

accentuated when a crimp is used, as clearly seen in Section 3.4, where the silver 

removal shows a non-uniform pressure distribution. Thus in this chapter, the crimped 

joint geometry along with the complete tightening process is dynamically modelled 

using FEA techniques. The joint is modelled in 3D using the FEA solver Simulia 

Abaqus 6.13, with pre and post-processing through Altair Hyperworks (Altair 2013b) 

(including Hypermesh and Hyperview), application of the crimp feature to the nut, 

the initial wind-on of the crimped nut, along with the subsequent tightening cycle are 

investigated, using the materials and frictional properties of the joint parts in order to 

fully represent the process.  

The aim of this work is to investigate the contact of the mating threads, in the presence 

of a self-locking feature and a thin silver coating. Through this approach the contact 

pressure at the threads during both the wind on and during clamping, along with the 

overall CoF developed at these contacts can be investigated. Additionally, the FEA 

model will be a useful tool to investigate new self-locking joint designs in order to 

reduce the local contact pressures and decreasing the coating damage.  
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 MODELLING APPROACH 

Bolted joints have been widely investigated over the past century as previously 

described in Chapter 2, using both experimental and FEA approaches. Mackerle 

(Mackerle 2003) in his bibliography summarised the previous studies regarding the 

analysis of bolted joints through 2D and 3D FEA approaches. In this case a 3D study 

was undertaken in order to consider the effect of the helix and the asymmetric crimp 

in the nut chimney on the thread contacts. This analysis will yield local contact 

pressures in the screwing process, something that it is not possible to accurately 

determine from the experimental tests previously performed.  

As previously explained in Section 2.2.4, studies involving 2D axisymmetric models 

and a non-threaded 3D model have previously been undertaken in order to analyse the 

mechanical behaviour of fasteners. Static models were preferred in these cases in 

order to analyse stresses and elongation along the joint, as dynamic analyses have 

significantly longer solution times. Fukuoka et al. (Fukuoka et al. 2006) analysed the 

effects of the thread helix on the root stresses along a fastener, demonstrating that the 

maximum stress occurs at half a thread pitch from the surface loaded by the nut, 

gradually decreasing towards the top face of the nut. Additionally, Yang et al. (Yang 

et al. 2013) showed the load distribution along the threads, as well as the stresses and 

the deformation along multiple joints for fine and coarse fasteners. In particular, this 

study highlighted the advantages of using a 3D geometry when considering the effect 

of helix dimensions.  

The approaches undertaken in the highlighted studies, do not enable the complex 

interaction between the bolt and the self-locking nut to be fully investigated during 

the tightening process. Therefore in this study a full 3D dynamic FEA model was 

created, inclusive of the self-locking feature. The tightening of the joint is then 

simulated over eight revolutions, with interface friction included as a contact pressure 

dependent property. As in the previous studies, Simulia Abaqus was chosen as the 

FEA solver. This package is commercially available, and offers high precision when 

solving contact problems. However, as in all modelling approaches limitations exist. 

In this case, the thickness of the silver coating is five microns and has not been 

included in the model, as interactions between this layer and the substrate were too 

complex to include, particularly when considering the potential for material transfer. 

However, the frictional behaviour of this layer was still included in the model through 
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consideration of the CoF. Silver coatings are of low hardness and shear yield strength. 

In particular their friction response was identified to transition from asperity friction 

at low loads, through to bulk shearing as load is increased (Holmberg & 

Matthews 2009). Therefore, the CoF of the coating as a function of contact pressure 

has been studied using a pin on disc test, and the resulting relationship used as an input 

in the FEA model. Similarly, whilst the parts were accurately drawn with respect to 

their specified geometry (The Society of British Aerospace Companies Ltd 2004), the 

surfaces are assumed to be perfectly round and smooth. Therefore the issue of bolt 

roundness previously investigated in Section 3.4.2, and the surface roughness have 

not been considered in the analysis. Additionally, thermal effects as a result of high 

tightening speed, and their potential impact on the frictional properties of silver have 

not been considered here, as experiments have previously been performed at low 

speed. Finally, fillets and chamfers in both the nut and bolt modelled were simplified 

to reduce the solving time.  

 PIN ON DISC TEST 

Due to the absence of previous studies regarding the CoF for thin silver coatings on 

Waspaloy as a function of contact pressure, a pin on disc test machine (Figure 4.1) 

was used to characterise this relationship. 

a)         b)  

Figure 4.1: a) The Pin on Disc Machine and b) Simplification of the Test Feature 

 Test Procedure 

Known also as a ball on flat test, a disc rotates while a ball is normally loaded against 

it. Five mild steel discs, 70 mm in diameter and 6.5 mm thick, were silver coated by 

the same method and to the same thickness as the nuts, resulting in a coating thickness 

of approximately 6 μm. Balls, a ¼” (6.35 mm) in diameter, made from Inconel 625 

(an alloy with analogous mechanical properties to Waspaloy) were used as the pin. 
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The Poisson’s ratio of the coating was estimated to be annealed silver, 0.37, and the 

Young Modulus of the disc was found through a nano-indentation test that gave an 

average value of 99.5 GPa. The Inconel used had a Young‘s Modulus of 205.8 GPa 

and Poisson’s ratio of 0.312 (provided by the manufacturer), as summarized in Table 

4.1. 

Part Material 
Young’s Mod. 

[MPa] 

Poisson’s 

Modulus 

Disc Steel (silver coated) 99,500 0.37 

Pin Inconel 625 205,800 0.312 

Table 4.1 Material Properties 

The machine was set-up to measure the tangential force, changing the applied normal 

force step by step. The speed was pre-programmed, and the machine recorded force, 

speed and CoF as a function of time, and stored it as a text file. Using different load 

cells, the CoF was examined on a pressure range from 40 to 1,500 MPa. Three load 

cells of measurement limits of 0.5 N, 50 N and 200 N respectively were used. For 

each load case, the disc rotates for two revolutions at the same contact radius. In this 

way, the CoF is recorded both for a first loading as well as on a used track, simulating 

the second re-use of the joint. Afterward the ball was moved 0.5 mm radially outward 

to unused material, and the normal load increased. The linear speed was maintained 

as a constant during the whole test at 10 mm/min, similar to the relative speed 

observed in the screwing process. The entire test was executed in lubricated 

conditions, applying Mobil Jet Oil II, to represent the oil typically used in the 

aerospace application and in the tightening experiment. 

 

Figure 4.2: Different Tracks in the Disc Sample. 
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A Hertzian contact analysis was performed to estimate the contact pressure, 𝑝𝑚𝑎𝑥 , 

for the contact between the ball and flat (infinite radius), with elastic contact 

conditions assumed (Williams & Dwyer-Joyce 2000): 
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where a is the radius of the contact area, E and ν are respectively the Young modulus 

and the Poisson’s ratio of the ball (E1 and ν1) and the disc (E2 and ν2), and F is the 

normal force applied. The CoF was measured at different pressures, from 20 MPa to 

1,500 MPa, in order to fully characterise this relationship. The load required was 

calculated using the previously defined equations for every pressure step of 10 MPa, 

from 20 to 250 MPa, or 25 MPa, from 250 to 1,500 MPa. Additionally, the contact 

width is measured through a digital microscope, in order to identify any potential 

difference from the Hertzian estimation to the actual pressure. 

 Results 

The measured CoF, calculated as the tangential force divided by the normal force, has 

been plotted against the Hertzian pressure.  

 

Figure 4.3: CoF against Hertzian Pressure  

In order to further investigate the result, the contact width was measured using an 

optical microscope, showing a divergence from the elastic theory presented. 
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Figure 4.4: Area of Contact at 101N (a), 91N (b), 82N (c).  

The measured radius of contact, obtained as half of the contact width, shown in Figure 

4.4, was compared with the Hertzian theory, plotting the applied load against the 

radius of contact. 

 

Figure 4.5: Comparison between the Measured Radius of Contact and the Hertz 

Theory 

As indicated in Figure 4.5, the measured radius is considerably bigger than the 

estimated one, implying the contact pressure to be smaller. Thus, at high pressure, 

with a soft coating of 6 μm, the assumption of elastic behaviour was found to be 

inaccurate. This behaviour has been already analysed in the literature, such as Kogut 

et al (Kogut & Etsion 2002), who analysed the elastic-plastic contact of a sphere on a 

flat surface and E.D. Reedy (Reedy 2006), who investigated the contact on a thin 

coating, demonstrating that the contact changes with the square root of the normal 

load, instead of the power law relationship (two thirds) in the Hertzian theory. Hence, 
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as the area and the load applied are known, in line with the Hertzian theory, the contact 

pressure was estimated as the load divided by the area. Finally, the CoF has been 

plotted against the estimated pressure (Figure 4.6). 

   

Figure 4.6: CoF against the Actual Contact Pressure. 

The graph in Figure 4.6 shows the dependence of the CoF on the contact pressure, 

showing an initial decrease in friction with pressure, followed by a gradual increase. 

The result from the pin on disc test was also similar to that observed by Yang et al. 

(Yang et al. 2003), which analysed the tribological behaviour of the silver coating in 

a pin on disc test in a pressure range of 100-1,000 MPa, highlighting the wear and 

friction dependency on pressure. 

The variation in CoF with respect to the pressure can be explained by considering the 

silver behaviour in the contact. In fact, the above experiment has shown the 

tribological behaviour of the coating, highlighting three different situations. At the 

beginning, an initial adhesion was found as the silver is intact, followed by shearing 

when the silver is bright, and progressive damage when silver is removed, as shown 

in Figure 4.7. Furthermore, it was noted that silver gives the lowest frictional 

resistance when shearing. 
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a)  b)  c)   

Figure 4.7: Silver Mechanism a) 450 MPa, b) 635 MPa c) 875 MPa  

Additionally, the CoF obtained in the first revolution and in the second revolution 

have been compared, and plotted along with the contact pressure (Figure 4.8). 

 

Figure 4.8: CoF versus Contact Pressure, as Result of the Pin on Disc Test. 

As shown in Figure 4.8, the second re-use at low pressure showed an analogous CoF 

with respect of the first. However, at pressures above 700 MPa, the CoF in the second 

revolution is higher than the first revolution, due to damage of the coating. 

Additionally, the spike experienced at 800-1,000 MPa was due to the Inconel ball 

being overused and slightly damaged, while at 1,000 MPa a new ball was used. As 

highlighted in previous studies (Holmberg & Matthews 2009), this behaviour is 

typical of soft thin coatings, which are susceptible to high levels of deformation, 

leading to the substrate properties affecting the CoF. 

 

Extrusion 

Unused Material 
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 FEA MODEL DEVELOPMENT 

 Geometric Model 

The parts were drawn with the 3D software Solidworks 2012 using the appropriate 

joint dimensions, with simplifications applied to the geometry by deleting fillet radii 

and chamfers, as these were deemed to be inconsequential with respect to the model, 

as detailed previously.  

The assembly is made of three components: the bolt (AS48824), the nut (AS49211F) 

and the load cell. The ¼” (6.35 mm) diameter bolt and nut are 10 and 35 mm long 

respectively, with a UNJF thread shape. To facilitate the solver, the 12-point bolt head 

was simplified as detailed in the previous section, while in the case of the nut all 

dimensions were considered. The steel load cell used to measure the clamping force 

in the joint (Section 3.2.1) has also been modelled, and has the form of a thick washer 

with a ¼” (6.35 mm) diameter hole in the middle and an outer diameter of 37 mm 

(LTH350 compressive sensor manufactured by FUTEK). Furthermore, the washer 

used in the experiments, also made from steel, was not modelled in the FEA, but its 

thickness taken into account into the load cell. Figure 4.9 shows a diagram of the 

completed model.  

 

Figure 4.9: The Main Parts of the FEA Model. 

 Elements, Boundary Conditions and Mesh Generation 

Altair Hypermesh 11 (Altair 2013a) was used as a FEA pre-processor, to make and 

handle the mesh, and also to apply load, boundary conditions and material properties. 

3DS Abaqus 6.12 was used as the solver, importing the Hypermesh output file and 

generating a resulting file that can be read by Altair Hyperview, used for post-

processing.  



 FINITE ELEMENT MODELLING 

 

67 

 

A refinement procedure was also performed to locally re-mesh the areas of interest. 

One of the key parameter of the analysis is the contact pressure in the threads surface, 

thus the contact between a slice of the nut and a slice of the bolt was analysed at 

different element sizes as shown in Figure 4.11, where the nut section is pushed 

against the bolt section, applying a radial displacement.  

 

Figure 4.10: Mesh Refinement Model 

 

a)

84 nodes 50 elements 

23 seconds 

b)

140 nodes 60 elems  

29 seconds 

c)

 

470 nodes 170 eles 

73 seconds 

d)

528 nodes 350 elems 

161 seconds 

e)

 

960 nodes 700 elems  

277 seconds 

f)

 

14.1k nodes 12k elems 

4,700 seconds  

Figure 4.11: Mesh Refinement Procedure 
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As shown in Figure 4.11, the contact pressures for a portion of the joint threads were 

compared using different mesh sizes. The mesh used in this work, shown in Figure 

4.11d was found to be an acceptable compromise between the pressure distribution 

and the solving time, being one week necessary using this method (30 weeks in the 

case of the example f). The volumes surrounding the areas in contact, were meshed 

using first order brick elements (hexa). These elements offer increased accuracy, 

while the rest of the model is maintained with larger elements such as tetra and 

pyramid elements, to improve the solution efficiency. Bolt, nut and load cell have 56k, 

30k, 1.5k nodes and 158k, 75.5k, 1.2k elements respectively giving a total of 

87,500 elements and 235,000 nodes for the completed model.  

 

Figure 4.12: The Final Mesh. 

Rigid elements, known as ‘spiders’, were used to apply boundary conditions. These 

elements allow displacements and rotations to be applied to the nodes the spider is 

connected to. For example, these elements were used to connect the external nodes of 

the nut to a centre node where the rotary displacement is applied. Six contact surfaces 

are included in the model in total, and were defined as CONTACT PAIR’s, using the 

Surface-to-Surface interaction function, reflecting proper contact between the bodies 

(ABAQUS 2013). In the contact between the threads on the nut and bolt, the nut 

surface was defined as SLAVE and the mating bolt surface as MASTER, in the 

master/slave rules, as the nut has a slightly finer mesh (ABAQUS 2013). The 

interaction used for this contact pair is hard pressure-overclosure, with a non-linear 

penalty also applied, allowing a small penetration between the surfaces in order to 

help the solving convergence. Furthermore, the bolt and the nut were positioned really 

close to each other, with a gap of 0.9 µm, and an adjustment of 1 µm was used to help 

the contact at the beginning of the simulation. The CoF at a given pressure between 
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contacting pairs is defined using the friction data from the pin on disc test (Figure 

4.8), and was uploaded as a look-up table in the solver. Finally, the bearing surfaces 

of the bolt and nut, which are in contact with the load cell, were defined as frictionless, 

zeroing the torque to overcome the friction in the bearing surfaces. This assumption 

is acceptable when compared to the experimental study, as a bearing is used for these 

contacts, and bearing friction removed from test results during post-processing. 

 Material Properties & Assumptions 

The bolt and the nut are made from Waspaloy, an age hardening austenitic nickel-

based super-alloy, while the load cell material is Stainless Steel 17-4. As the load cell 

behaves elastically, the material specifications are only density (7,780 kg/m3), 

Poisson’s ratio (0.27) and Young Modulus (197 GPa). As both bolt and nut undergo 

plastic deformation, Waspaloy was defined using the density (8,200 kg/m3), the 

Poisson‘s ratio (0.29), the Young Modulus (231 GPa) along with the true stress true 

strain plastic curve, as presented in  Figure 4.13 (ASM International 2002), and 

defined as isotropic hardening.  

 

Figure 4.13 : Inconel 718(ASM International 2002). 

Abaqus 6.13 Standard/Explicit was used as a solver, defining the analysis as dynamic, 

quasi-static, with effects due to temperature and speed not considered. The thermal 

effects have not been considered, as the screwing speed is relatively slow, meaning a 

significant temperature increase will not occur at the rubbing surfaces 

(ABAQUS 2013). Therefore, the increase in FEA solver time associated with the 
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inclusion of these parameters is not deemed worthwhile. The material properties used 

are summarised in Table 4.2. 

Part Material 
Density 

[kg/m3] 

Young’s 

Mod. [MPa] 

Poisson’s 

Modulus 

Plastic 

behaviour 

Load Cell Waspaloy 7,780 197,000 0.27 Yes 

Bolt /Nut Stainless 17-4 8,200 213,000 0.29 No 

Table 4.2 Material Properties 

 Load Case & Solutions 

The analysis has three main steps: crimping, screwing and the final tightening of the 

joint. The first step involves applying the crimp, to re-produce the 0.35 mm squashing 

of the nut chimney, using displacement control instead of load. Practically, this is 

performed using a vice equipped with a micrometer (Section 3.2.2), while in the 

simulation a displacement of 0.175 mm was applied to 10 nodes in two opposite sides 

of the nut chimney. The bolt and the load cell do not take part in the first step, and 

they were suppressed.  

 

Figure 4.14 : The Boundary Conditions in the Crimping Step. 

The second step is the screwing of the bolt through the crimped nut, in order to re-

produce the wind on for eight revolutions prior to the application of the clamping 

force. In this step, the nut rotates on its axis for 50.3 radians, applying a rotational 

displacement to the spider attached, while the bolt head is fully constrained. Similarly, 

the load cell is free only in the axial direction. The resistance torque extrapolated from 

the centre node is the self-locking torque. As this step is generally solved in about 

4,000 increments, in order to reduce the size of the output file and the writing time, 
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the output file is written at 5% intervals throughout this step, around every third 

revolution. Additionally, a restart file is required every 50 increments to avoid data 

loss.  

 

Figure 4.15: The Boundary Conditions during the Screwing and Tightening Steps. 

The last step is the final tightening, where the bolt is tightened to the standard end 

load of 11.6 kN. The load cell and bolt are constrained as in the previous step, while 

the nut rotates only 2 radians. The output file is written every 1% of this step, every 

0.02 radians (around 1.14º), as additional data points are needed at the post-processing 

stage. The clamping load was extrapolated summing the nodal force in the bearing 

surfaces for either the nut, the bolt or the load cell surfaces. 

  

Figure 4.16: Final Output Clamping the Load Cell. 

 VALIDATION 

The FEA has been validated using the experiment results (Figure 4.17), as the 

boundary conditions and geometries are the same. The torque required to tighten the 

Clockwise 

Rotation 
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nut, the sum of the torque required to overcome the friction in the threads and the 

torque required to stretch the bolt, has been plotted along with the clamping load. The 

torque required to overcome the friction on the bearing surfaces has not been 

considered, because the interaction between the bearing surfaces was defined as 

frictionless in the FEA, and during the experiments the bearing torque was measured 

using the needle roller thrust bearing and subtracted (Section 3.2.3.1). In the model, 

the resistance torque was obtained from either the centre node of the rigid elements 

on the bolt or the centre node of the nut, while the clamping load was obtained by 

summing the nodal forces in the bearing surfaces.  

  

Figure 4.17: FEA and Experimental Results Compared: Load versus Torque. 

Figure 4.17 compares the FEA result with a typical experimental result, showing 

similar curves. As shown, a significant variation occurs at the beginning of the plot, 

up to 3 kN, and is caused by a lack of accurate friction data from the pin on disc at the 

lowest contact pressures. In fact, a large number of nodes in the wind on process have 

a small contact pressure, where the pin on disc test is not able to achieve accurate 

results in this regime, due to the measurement accuracy of the load cell used. This 

point will be further explored in the following sections. 

Furthermore, the surface roughness has been assumed negligible and is likely to have 

an increased effect on friction and therefore torque at this low load. However, overall 

the model appears satisfactory to investigate the contact conditions. 

 RESULTS 

During the entire simulation stresses, pressure and deformation were recorded and 

analysed through Hyperview, the Altair postprocessor (Altair 2013b). In the first step 
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the nut chimney was squashed and ovalised. The displacement and the stresses have 

been graphically plotted (Figure 4.18a and Figure 4.18b). Von Mises stresses are 

shown when investigating the different components and load conditions, as they are 

an appropriate descriptor for an elastic-plastic stress state and are analogous to 

distortion energy. 

 

Figure 4.18: Von Mises Stresses (a) and Displacement (b) in the Nut after the First 

Step 

Figure 4.18a and Figure 4.18b show the Von Mises stresses and the displacement at 

the end of the crimping step, showing the symmetric deformation of the nut, with a 

maximum displacement of 0.175 mm and a stress of 913 MPa in the nut chimney. 

During the second step the nut rotates into the constrained bolt. At the end of this step, 

the bearing surface of the nut is in the proximity of the load cell. At this point the 

clamping load is zero, as the joint has not yet clamped the load cell, and the resulting 

torque depends on the thread friction and is a consequence of the self-locking feature. 

 

Figure 4.19: Nut Position at the Start and at the End of the Step with respect of the 

Engagement. 
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Figure 4.19 shows the position of the nut at the beginning and the end of this step. 

Obviously during the wind-on step, the bolt threads engage the crimp, which is 

plastically deformed. 

 

Figure 4.20: Von Mises Stresses in the Bolt (a) and in the Nut (b). 

Figure 4.20 shows the maximum Von Mises stresses during the screwing step in the 

bolt (Figure 4.20a) and in the nut (Figure 4.20b), with a slightly higher stresses in the 

nut compared to the bolt, with maximum stresses of 850 and 800 MPa respectively 

for the two components. Furthermore, the stresses in the nut are concentrated in the 

crimp section, while the first threads are totally unstressed. The contact between the 

thread surfaces was analysed using the variable CPRESS, defined as the contact 

pressure at every node of the interface surfaces.  

 

Figure 4.21: Contact Pressure along the Nut 
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As shown in Figure 4.21, contact only occurs during the wind on-step in the nut 

chimney, i.e. the crimped section. It is also interesting to note, that even at this early 

stage of the tightening process, that high contact pressures above 1 GPa were 

recorded.  

During the tightening step the nut rotates into the bolt, clamping the load cell in 

between the two bodies. The clamping load, measured at the interface between the 

bearing surfaces has been plotted along with the resistance torque. 

Figure 4.22: The Resistance Torque along with the Clamping Load. 

The curve in Figure 4.22, as previously shown in the validation section (Section 4.5), 

indicates the gradual increase of the resistance torque, as measured at the bolt head, 

during the final tightening. Furthermore, Von Mises stresses in the parts are also 

plotted when the end load is achieved. 

 

Figure 4.23: Von Mises Stresses in the Nut during the Tightening Step 
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Figure 4.24: Von Mises Stresses in the Bolt during the Tightening Step 

As shown in Figure 4.23 and Figure 4.24, maximum values in the stress distribution 

of the nut and bolt at end load, are similar to each other in the crimped section, and 

have approximate values of 990 MPa in both components. Additionally, a non-

uniform pressure distribution were identified, due to the geometrical modelling. In 

fact, both the bolt and the nut were modelled as polygons, interacting with each other. 

However, the crimp effect in the contact pressure is observable. 

 

Figure 4.25: Stresses in the Axial Direction at Different Clamping Load: 1 kN, 3 kN, 

11.6 kN 

The stresses in the axial direction were analysed to map the distribution of the stresses 

due to the clamping load in the nut, and plotted using the same scale. As shown in 

Figure 4.25, the load is entirely taken by the crimped section until 3 kN, when the first 

threads start to be loaded. At the end load of 11.6 kN, the pressure is mainly in the 

first five revolutions, while in the crimp section the stresses are reduced. However, 
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the stresses in the crimp are still present, proving that part of the load is taken up by 

the crimp. 

 DISCUSSION 

The model can be also used to investigate some of the features observed in testing the 

silver coated nuts in Chapter 3. In Section 3.4 the drop in self-locking torque with re-

use was described, and it has been suggested that it is caused by either the deformation 

of the crimp and/or loss of the coating. In this section, these effects will be considered 

using the FEA model, by monitoring the diameter of the crimp section during the 

tightening process, and modifying the thread shape to simulate a loss in coating 

thickness. Similarly, in Section 3.4.1, several nuts were sectioned and the silver 

removal was investigated for different wind-on stages. These results will be compared 

to the FEA model with aim of identifying the contact pressure at which stripping 

occurs. Additionally, as shown in Section 3.3, the CoF was found to change during 

the tightening process. This result provided the initial motivation for the FEA study, 

and the accuracy of the calculated CoF will be considered. 

 Locking Torque Reduction with Re-uses 

During the experimental stage of the investigation, it was observed that the self-

locking torque reduced with re-use, with a significant difference recorded between the 

first and the second usage of the nut as seen in Figure 3.16. 

The reasons for this behaviour were suggested to be either plastic deformation of the 

crimped section or removal of the coating. The effect of both of these factors will now 

be examined using the FEA model result. The external diameter was found to change 

in the experiment during the screwing process. Thus, in the FEA model, the external 

diameters, minimum and maximum, were monitored during the entire analysis of the 

tightening process. Additionally this analysis has included the removal of the nut to 

see if the deformation is recovered. In this case, instead of unscrewing the whole nut, 

for convenience the bolt was removed from the analysis, to enable the nut to elastically 

recover. This approach has allowed maximum and the minimum diameter of the crimp 

section to be plotted over the entire analysis (Figure 4.26). 
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Figure 4.26: Diameter Changes during the Analysis 

As shown in Figure 4.26 the chimney section is circular at the beginning of the 

analysis, reaching the maximum ovalisation at the end of the first step, when the crimp 

has been applied. During the first part of the screwing, the crimp is strongly deformed 

as it interacts with the bolt threads. After the first bolt thread engages the crimp, the 

diameter stays approximately constant, until the tightening step, when the nut is 

elastically deformed due to the clamping interactions. Removing the bolt, the crimp 

section relaxes, showing that the deformation is a sum of both plastic and elastic 

deformations.  

To simulate the second re-use of the joint, the nut has been unscrewed one revolution, 

ensuring a zero clamping force, and re-tightened to the end load of 11.6 kN, with the 

second use pin on disc friction values applied. Pressure, stresses and torque were 

analysed, showing a similar result to the first tightening, with the crimp diameter also 

showing a similar trend, with an elastic deformation during the second use and in line 

with the experimental results. This indicates that the plastic component of the crimp 

deformation is not significant, and that plastic deformation is unlikely to account for 

the observed experimental reduction in locking torque. In addition, the slightly higher 

CoF in the second re-use does not increase the overall torque, as the percentage of 

nodes that experience high pressure is not significant.  

Secondly, the nut threads were modified to simulate the thickness of the coating being 

removed (5-6 μm), leading to an increased thread clearance. This was achieved, 

through the pre-processor Hypermesh, where the nodes in the internal threads were 

moved 5 microns along their normal axis, reducing both the minimum and maximum 

internal diameter, whilst keeping the 60º angle between the flanks. With these 
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changes, the entire analysis was repeated and stresses, torque and pressure were 

evaluated as in the previous model. 

 

Figure 4.27: Tightening Curve in the Coated and Un-coated Nut. 

Figure 4.27 show the torque-load profile with the silver coating thickness removed 

against the 5 microns coating in place. The curve with the coating removed was found 

lower, similar to the behaviour seen in the second cycle in the experimental results in 

Section 3.3.3. 

Pressure, stresses and elongation were analysed, although a significant difference 

from the presented results has not been found. Based on the analysis undertaken, it is 

therefore suggested that loss of coating at the contact patch is likely to account for the 

drop in locking torque observed with re-use. This is particularly likely, as stripping of 

the coating (as discussed in the next section) was observed in most cases. 

 Contact Pressure Investigation 

From the .odb file, the output file from the solver Abaqus, the variable CPRESS was 

used to evaluate the distribution of the pressure along the nut. The variable indicates 

the contact pressure at each node of the two contact surfaces. In this case the pressure 

data has been plotted as a distribution. 
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Figure 4.28: CPRESS Distribution along the Nut at 0 and 11.6 kN. 

Figure 4.28 shows the distribution of the contact along the nut, highlighting the high 

contact pressure in the crimp, both before and after the end-load is reached. As seen 

in Section 4.6, not only the first threads take the load, but also the crimped section. 

Furthermore the number of nodes in contact has been plotted during the clamping. 

 

Figure 4.29: Number of Nodes in Contact during the Clamping 

Figure 4.29 represents the number of the nodes in contact, mainly constant until 3 kN 

and linearly increasing with the clamping load. As the pressure in every node is not 

the same, the overall average is ineffective; thus the percentage of nodes with contact 

pressure below a series of threshold values have been plotted along with the clamping 

force. 
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Figure 4.30: Percentage of Nodes in Contact for Different Pressures 

Figure 4.30 shows this distribution, and highlights the percentage of nodes with a 

contact pressure lower than 10, 100, 160, and 1,500 MPa, indicating that 96% of the 

nodes have a pressure lower than 1,500 MPa, and that 50% have a value lower than 

160 MPa. It can also be observed that at 3 kN a dip occurs in all of the distributions. 

This is caused by the gradual engagement of the first thread. Up until this point the 

load is sustained by only the crimped section (as shown in Figure 4.20 and Figure 

4.25), increasing the average pressure. As discussed for the pin on disc test, as a low 

normal load is required and surface roughness effects become significant, 

measurements taken for values of contact pressure lower than 50 MPa are subject to 

error. The load cell used was also unable to measure loads below an equivalent contact 

pressure of 10 MPa for the samples tested. Thus, the 30% of the nodes with pressures 

lower than 50 MPa are poorly defined, while for the 10% of nodes with a contact 

pressure lower than 10 MPa, the CoF was roughly assumed equal to the value at 

50 MPa. As highlighted, these nodes are a significant proportion of the distribution, 

and may be a source of error in the model. 

 High Pressure Regions & Stripping Of Silver Coating 

During the experimental tests, the silver coating was found to be removed from the 

substrate, especially in the crimped sections. Using different joints, nuts were split at 

different axial engagements, in order to highlight the progressive stripping process, as 

previously seen in Section 3.4.1. In the FEA model the contact pressure was analysed 

at the same engagements, developing a comparison between the silver conditions and 
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the pressure distribution. The half nuts in Figure 4.31 were split when the first bolt 

thread is one, two and three revolutions out of the nut chimney respectively. 

 

 

Figure 4.31: Silver Removed along the Screwing Process: Experiment and FEA 

Results. 

As demonstrated in the Figure 4.31 the FEA result matches the experimental results 

well, with the silver removed in regions of high contact pressure in the crimped 

section. This result also suggests that a contact pressure of approximately 750 MPa 

will lead to stripping of the coating, when combined with relative motion. As seen in 

the pin on disc test, Section 4.3, at this pressure value, the silver coating starts to 

damage, but still provides low friction. Similar results were found in the literature by 

Yang et al. (Yang et al. 2003), analysing the silver coating wear and CoF at different 

pressures, where it was found that initial coating failure did not accompany a high 

friction, as the layer of silver removed acts as a solid lubricant. 

 Coefficient of Friction 

As examined in Section 3.3, the CoF was observed to change in the experiment during 

the tightening process. However, it is still unclear as to how accurate the equation 

used to calculate this value is. As previously discussed, Equation 3.3 is used in the 

n=1 n=2 n=3 
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experiment to calculate the CoF in the joint. As indicated, the CoF in the threads μ1 is 

a function of the measured thread torque and joint load at a given point in the 

tightening sequence. The thread torque is calculated as the total torque minus the 

torque required to stretch the bolt and the self-locking torque. This value is then 

divided by the clamping load and a geometrical factor. However, this equation 

assumes the CoF is the same throughout the joint, and does not account for the 

pressure dependent behaviour of the silver coating. It can also not be considered to be 

an average CoF in this case, as the relationship between CoF and contact pressure is 

non-linear. This statement is highlighted by the FEA model (Figure 4.32), where the 

average CoF is calculated on a nodal basis and is plotted against load (a true average), 

along with the value calculated by Equation 3.3 using the thread torque and joint load. 

As shown, as a consequence of the relationship between friction and contact pressure, 

the calculated value significantly deviates from the true average, and can only be 

considered an indication of broad joint friction, with a particularly mis-leading result 

at low load. However, as previously highlighted, the CoF measured in the pin on disc 

test has shown scatter at low pressure (Section 4.3.2), which means that inaccuracies 

are also present in the FEA model. Finally, the different methods analysed to calculate 

the CoF converge to a single value at the end load, which is practical used in order to 

estimate the load at a given torque. 

 

Figure 4.32: CoF during the Clamping. 
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 SUMMARY 

In this chapter the tightening process of the silver coated joint was analysed using the 

dynamic FEA model, and summarised as follow: 

 The tightening process was analysed by the FEA method considering the self-

locking feature and the variable CoF of the thin coating, showing a good match 

with the experimental result. Thus, future design and development of new 

coatings and self-locking features to replace the silver coated elliptical nut can 

be analysed using the FEA model and the pin on disc test. 

 The stress distribution was analysed throughout the different steps of the 

crimping, the screwing on and the final tightening, identifying the 

concentration of the stresses along the crimped area of the nut, higher than the 

yield strength of the material.    

 The relaxation of the locking torque was investigated in detail, and the factor 

behind the observed relaxation in self-locking torque with re-use investigated. 

Following this study, the removal of silver was identified as the most likely 

factor. In fact, a reduction of the torque profile was found if the thin coating 

was not modelled. The removal and the compression under loading of silver 

effects the clearance of the joint. 

 The stripping of silver seen during the experiment, especially in the crimped 

zone, was compared to the contact pressure distribution in the FEA model, 

where pressure peaks were found to be coincident with silver removal. A 

threshold contact pressure of 750 MPa was identified.  

 The equations previously used during the experiments were investigated using 

the FEA model, highlighting the weakness in the calculation, indicating that a 

true average CoF is not calculated. However, the different methods analysed 

converge at the end load to a single value, which is of primary importance as 

it is used to estimate the torque at end load during engine assembly. 
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CHAPTER 5 

 ALTERNATIVE COATINGS 

 INTRODUCTION 

In the previous chapters, the silver coated nuts were tested and analysed. However, as 

previously explained in Section 2.4.3 some issues were associated with the use of this 

coating, such as stress corrosion cracking in nearby parts due to silver transfer. 

Additionally, the method used to apply the coatings, electroplating, is being phased 

out due to the introduction of new legislation, which has highlighted the health and 

safety issues associated with the cyanide baths used as part of the process 

(Robinson 2009).  

In this work different alternative coatings were tested, following selection by 

Pattinson & Pallett in their internal report (Pattinson & Pallett 2015). In the selection, 

the requirements for the new coatings were various, for instance, the capability to 

withstand to the aero engine environment, such as the temperature range from -50 to 

760º C. Furthermore, the silver replacement requires chemical stability in the presence 

of fuel contaminants, such as Sulphur and Chlorine, hydraulic fluid, fuels and 

lubricants. In addition to the capability to be applied to the internal threads and to the 

seating face of the nut, the replacement requires the resistivity to salt fog and high 

humidity, and must not cause stress corrosion cracking of nearby components. 

Furthermore, the new coating must be compliant with the Aerospace Standard 

JDS252.01 (incompatible materials), the Standard JDS002.01 (materials and 

processes to be avoided), and approved by REACh (Registration, Evaluation, 

Authorisation & restriction of Chemicals) (Pattinson & Pallett 2015). 

As discussed above, the process typically used to apply the silver coating, 

electroplating, has been dismissed due to a lack of suitable materials that would fulfil 

the Health and Safety requirements. Thus, two other coating methods were found 

capable of depositing the coating onto the internal threads of the nut: lubricant doped 

paints and PVD (Plasma Vacuum Deposition).The lubricant sprayed paints offer the 

lowest cost option compared to PVD in terms of required equipment. These silicon 

resin modified dry film lubricants are generally used in high temperature applications, 
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and are suitable for steel, aluminium, magnesium and titanium alloys. Used on 

fasteners, they give an exceptionally good rubbing wear resistance (Indestructible,  

Specialist Coatings Manifacture 2016). However, there is a recognised risk of 

reduction in load carrying capability and stress resistance, which could affect the 

property consistency of the paints. 

PVD technology is also being considered for deposition of coatings, as it offers a 

higher degree of accuracy and repeatability compared to paints. However, there is a 

perceived higher cost associated with this technology (Pattinson & Pallett 2015). 

In the selection, in addition to mono-layer coatings, similar to the current silver, dual 

and multi-layer alternatives were also investigated. As discussed by Holmberg and 

Matthews (Holmberg & Matthews 2009) dual and multi-layer coatings (Figure 5.1) 

are frequently used for tribological applications for their benefits. In fact, these types 

of coatings may enhance the adhesion of the coating to the substrate, improve the wear 

and corrosion protection, and reduce stress concentrations and crack propagation.  

a)        b)  

Figure 5.1: Structure of Multi-layer Coating (a), and Dual-layer Coatings (b) 

Pattinson and Lloyd, in their internal report entirely analysed the periodic table of 

elements in order to find materials which can sustain aero-engine temperatures. 

Afterwards, they investigated affiliation with Chlorides which may induce stress 

corrosion cracking in nearby components, and the related Health and Safety issues. 

After a literature review of the remaining materials, different coating companies were 

asked to provide solutions for this application, fulfilling the described requirements. 

Thus, they provide different possible silver replacements, such as mono and multi-

layer thin films and paints. However, as these materials are not on the market at 

present, full information was not available.  

The alternatives selected and tested in this work are summarised in Table 5.1. 

 

 

 

Substrate Substrate 
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Table 5.1: Coatings and Paints 

As the alternatives outlined in Table 5.1 are possible replacements of the silver 

coating, similar investigations are needed to approve and compare them to the 

electroplated silver. 

The aim of this work is to identify the suitable alternatives to the silver coating 

typically used. The consistency, the frictional properties and the related mechanisms 

will be investigated using the procedure developed for the silver coating in the 

previous chapters. 

 SELECTION PROCEDURE 

In order to reduce the number of alternatives presented in Table 5.1, a selection 

procedure was created. Different steps, such as testing and characterisation are 

 THIN FILMS Structure   PAINTS Structure 

1 Pure Nickel (Ni) Mono-layer  1 RB9-126 
Silicone 

Resin 

2 Pure Chromium (Cr) Mono-layer  2 RB9-127 
Silicone 

Resin 

3 Pure Titanium (Ti) Mono-layer  3 RB9-131 
Phenolic 

Resin 

4 Pure Platinum (Pt) Mono-layer  4 RB9-138A 
Inorganic 

Silicate 

5 
Chromium-Nitride 

(Cr-N) Dual-layer  5 RB9-138B Inorganic 

Silicate 

6 
Titanium-Nitride   

(Ti-N) 
Dual-layer  6 SI-233 

Yttrium 

Oxide 

7 
Nickel-Platinum    

(Ni-Ti) 
Dual-layer  7 SI-234 

Boron 

Nitride 

8 
Chromium-Nitride 

(Cr-N m) 
Multi-layer  8 SI-238 Mica 

9 
Titanium-Nitride   

(Ti-N m) 
Multi-layer  9 SI-239 Talc 

10 
Nickel-Titanium    

(Ni-Ti) 
Multi-layer   
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required in order to fully examine the thin films and coatings. Similarly to the test 

performed with the silver nuts in Chapter 3, the alternatives were tested at room 

temperature and after a thermal cycle. Additionally, as the silver coating was 

characterised through a nano-hardness test, the alternatives were also analysed in the 

same way. As the analyses are time consuming, the tests are performed in ascending 

order, from the room temperature test, the heat treatment test, followed by the nano-

hardness, as shown in Figure 5.2. The aim of this procedure is to eliminate at every 

step the alternatives which fail to fulfil the requirements of the test so as to only 

undertake further characterisation of credible coatings. 

 

 

 

 

 

 

Figure 5.2: Selection Procedure 

In the test at room temperature, the consistency of the result along with the value of 

CoF are investigated. In the test after the thermal cycle, the ability to withstand the 

high temperature without failure is analysed. In the nano-hardness test the roughness 

and the hardness of the coatings are examined before and after a thermal cycle in order 

to find and explain any observed differences in behaviour pre and post thermal cycle. 

 TESTING 

 Room Temperature Test 

5.3.1.1 Test Procedure 

Two nuts of each sample have been tested following the standard procedure 

performed with the silver coated nuts previously outlined in Section 3.2.3.2. The joints 

were tightened six times, with an end load of 11.6 kN reached in each case, as in Rolls- 
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Royce Design Standard JDS 829_03 (Rolls Royce 2011). As previously detailed, the 

aerospace lubricant Mobil Jet Oil II was applied to the bolt prior to assembling, and a 

thrust bearing was used to isolate the thread torque as described in Section 3.2.3.1. All 

the nuts have been crimped in the chimney section to provide a self-locking feature, 

deforming the diameter by 0.35 mm using a vice (Section 3.2.2). At rotating speeds 

of 0.5 rpm and 3 rpm, winding-on and clamping respectively, the torque along with 

the load were recorded, enabling the CoF to be calculated for the different joints 

during post-processing. Repeatability of both measured torque and CoF in the threads 

are the key parameters investigated.   

5.3.1.2 Results 

The torque at the end load and the CoF are analysed for all the 19 alternatives from 

Table 5.1.  

 

Figure 5.3: Torque at the End Load: Coatings 

Figure 5.3 shows the torque at 11.6 kN for the first and sixth re-use, in addition to the 

average torque in order to highlight the consistency during re-uses, for the thin metal 

coatings, along with the silver coating results obtained in Section 3.3.3. The figure 

highlights a great deal of consistency for the Cr, Ti, Pt, Ni-Pt and Ni-Ti coatings over 

the six re-uses in each test. Furthermore, when comparing to the silver plated joint the 

consistent coatings showed slightly higher torque, from 15 N·m for Chromium to 

11 N·m for Nickel-Platinum. Additionally, no differences were noticed between the 

dual-layer and the multi-layer configurations in the Ti-N and Cr-N coatings, with the 

torque at end load found inconsistent in all cases during the 6 cycles. Furthermore, the 

pure Nickel mono-layer was found inconsistent over the cycles, in contrast with the 
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same material in combination with Platinum and Titanium, which showed better 

results. In the figure, the torque required to reach the end load also takes into account 

the self-locking torque, which generally decreased over the cycles, as shown in Figure 

5.4.  

 

Figure 5.4: Self-Locking Torque: Coatings 

As shown in Figure 5.4, the self-locking torque varied during the cycles, thus 

increasing the variance of the total torque required. However, as shown in most cases 

the variation in total torque is greater than the variation seen in locking torque, 

meaning it is attributable to changes in the coating. Thus, the CoF in the threads 

(measured by subtracting the self-locking torque) is also analysed. The CoF in the 

threads has been plotted, once again for the first and last re-uses, as well as the average 

during the six re-uses, and with the silver results also included for comparison (Figure 

5.5).  

 

Figure 5.5: CoF: Coatings 
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As shown in Figure 5.5, the CoF in the threads for Cr, Ti, Pt, Ni-Pt and Ni-Ti were 

found to be consistent, and similarly stable throughout all six re-uses. However, these 

coatings experienced higher friction compared to electroplated silver (0.125), such as 

0.22 for Chromium, 0.20 for Titanium, 0.15 for Platinum, 0.16 for Nickel-Platinum, 

and 0.20 for Nickel-Titanium. 

Coatings containing Nitride (Cr-N, Cr-N multi, Ti-N and Ti-N multi) were found 

ineffective, with high scatter in values, ranging, for instance, from 0.2-0.32 for 

Chromium-Nitride or 0.2-0.35 for Titanium-Nitride. Pure Nickel was identified as 

inconsistent in contrast with Platinum and Titanium, where better performance was 

observed. The CoF in the threads experienced with the Platinum and Titanium, mono 

layer or linked with Nickel, were found to be the most consistent with re-uses, 

similarly to the silver plated samples. 

Furthermore, as further explained in Section 5.4.1, the hardness of the metal coatings 

and the CoF were found to be strongly related, similarly to the silver coating analysed 

in Section 3.4.4, and in accordance with previous studies (Holmberg & 

Matthews 2009). In fact, soft coatings tend to be easier to slide, while hard coatings 

are more wear resistant. 

A similar analysis was undertaken for the paints, with the torque at end load plotted 

for all the alternatives, and compared to the silver results (Figure 5.6). 

 

Figure 5.6: Torque at the End Load: Paints 

Figure 5.6 shows the torque at end load for the paints, along with the silver coating, 

and highlights a marked consistency in the SI-234, SI-238 and SI-239 paints over the 

six re-uses. Compared to the plated silver, these paints experienced higher torque, 
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particularly SI-238, which has a torque 80% bigger than silver (10 N·m vs 18 N·m), 

while SI-234 experienced a torque of about 10-12 N·m and SI-239 of about 14 N·m, 

which are closer to the silver results. All the RB9 paints and SI-233 experienced a 

significantly higher torque during the first cycle, attributable to the reduction in self-

locking torque during the initial cycles as shown in Figure 5.7, and to the high friction 

generated by the excessive thickness of the paints, as further explained later.  

 

Figure 5.7: Self-Locking Torque: Paints 

As shown in Figure 5.7 a higher self-locking torque in the first cycle was experienced 

in almost all the paints, with the RB9-138B being the highest at 15 N·m, which 

significantly damaged the threads. 

Furthermore, similarly to the alternative metal coatings, the CoF in the threads was 

plotted, and compared to the silver results (Figure 5.8). 
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Figure 5.8: CoF: Paints 

As shown in Figure 5.8, analysing the CoF in the threads for the paints, RB9-126, 

RB9-138A, SI-234, SI-238 and SI-239 were found to be fairly consistent over the six 

re-uses with a limited scatter. Similarly to the thin PVD films, the CoF was generally 

higher than silver, such as 0.13-0.16 for RB9-126, 0.11-0.18 for RB9-138A, 0.14-0.20 

for SI-234, and 0.16-0.20 for SI-239. In particular SI-238 experienced the highest CoF 

in the threads with 0.32-0.33. Additionally, the CoF was found to be higher during the 

first cycle for almost all the alternatives, attributable to the excessive thickness of the 

paints which reduces the clearance of the fastener and increases the frictional forces 

in the contact.  

As previously stated, the limited scatter in the CoF is important when predicting the 

specific torque required to achieved a given end load, preventing overestimation and 

underestimation of the clamping load which may lead respectively to the failure or the 

loosening of the joint. 

In order to analyse the coating condition after the test, the nuts were sectioned and 

optically examined, as shown in Figure 5.9. 
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Figure 5.9: Coating and Paint Conditions After Test. 

In Figure 5.9 clear examples of the coating conditions during the test are presented, 

highlighting that in most cases the alternatives had a similar colour to the substrate, 

with the exception of RB-131 and Ti-N. The metal coatings and the SI paints 

experienced slight removal, while the RB paints were found to be significantly 

deformed and removed from the substrate (Figure 5.10), likely due to their excessive 

thickness. 
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Figure 5.10: Close Up of the Thread Damage 

As previously stated, the aims of this test were to analyse the consistency in the 

frictional properties of the alternative coatings, and assess the damage occurring to 

the coatings during the test. The consistency in the CoF is one of the key parameters 

which prevents failure or loosening of the bolted joint, by reducing risk of over-

tightening or under-tightening respectively. For this reason, Cr-N (dual and multi-

layers), Ni, and Ti-N (dual and multi-layers) were found inappropriate during the six 

cycles test and were therefore not taken into account in the next examinations. 

Additionally, the coating conditions were assessed to detect any removal of the 

coating, as it acts as a barrier between the thread surfaces. In fact, the RB paints, which 

were significantly damaged during the tests, were identified as unsuitable to replace 

silver and similarly not taken into account in the next experiments.  

Successful Removed 

THIN FILMS PAINTS 
THIN FILMS 

(Inconsistent results) 

PAINTS 

(excessive 

thickness) 

Pure Chromium SI-233 Pure Nickel RB9-126 

Pure Titanium SI-234 Chromium-Nitride (dual) RB9-127 

Pure Platinum SI-238 Titanium-Nitride RB9-131 

Nickel-Platinum SI-239 Chromium-Nitride (multi) RB9-138A 

Nickel-Titanium  Titanium-Nitride (multi) RB9-138B 

Table 5.2: Room Temperature Test Summary: Coatings and Paints 

Coating Removed 
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As shown in Table 5.2, the successful and unsuccessful alternatives are summarised, 

and the successful coatings will be analysed in the next experiment. 

 Ageing Tests 

5.3.2.1 Test Procedure 

The coatings and paints which satisfied the requirements in the previous test at room 

temperature were analysed after a thermal cycle, as previously performed for the silver 

coating in Section 3.2.3.3. As previously described in the selection procedure 

(Section 5.2), the requirements for the selection were the consistency in the CoF and 

the damage assessed after the test. So that, the severe damaged RB paints were 

removed, along with the inconsistent thin coatings, such as Cr-N, Ni and Ti-N. The 

remaining alternatives are shown in Table 5.2. 

Assembled joints were thermally aged at 760º C for 50 hours, as this represents the 

service temperature, and their ability to prevent seizure investigated at room 

temperature post-cooling. In the preliminary step, the nuts were crimped in the 

chimney section and the torque required to reach the end load was first evaluated using 

the load cell. Afterwards, the joints were re-assembled to the same torque with a 

Waspaloy spacer replacing the load cell. The spacer had similar dimensions to the 

load cell, and was used because the load cell could not be subjected to the ageing 

process. Mobil Jet Oil II was once again used as a lubricant. After cooling down to 

room temperature, the joints were unscrewed on the test rig, and the torque profile 

measured for each. 

Afterwards, in order to compare the CoF in the pre- and post-ageing conditions, the 

joints were re-tightened using the thrust bearing and the load cell, and applying the 

lubricant beforehand, as previously performed with the silver coating (Section 3.2.3.3 

and Section 3.3.4), as shown in Figure 5.11. 

 

Figure 5.11: Heat Treatment Test 
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The aim of this test is to assess the ability of the alternatives to withstand the thermal 

cycle without failure, and to analyse the CoF after ageing and compare them to the 

silver plated joints.  

5.3.2.2 Results 

Three samples for each alternative has been tested, and results are shown in Table 5.3, 

and compared to the silver coating result obtained in Section 3.3.4. 

COATING 

Pre-ageing Post-ageing 

Successful 

Test? 

Tightening 

Torque 

[ N·m] 

Untightening 

torque  

[N·m] 

CoF 

(avg) 

Break 

Torque 

[N·m] 

CoF 

(avg) 

Silver 16 12.7 0.120 33.8 ± 5 0.231 YES 

Pure Chromium 20 18.5 0.207 30 ± 3.5 0.504 YES 

Pure Titanium 21.2 17.7 0.201 30 ± 5 0.538 YES 

Pure Platinum 19  15.2 0.162 42 ± 11 0.388 YES 

Nickel- Platinum 16.8  14.3 0.159 36 ± 8.5 0.424 YES 

Nickel- Titanium 26.1 22 0.194 56 ± 1 0.317 YES 

PAINT       

SI-233 21.6 17.5 0.166 27.5 ±1.5 0.244 YES 

SI-234 20 16.6 0.159 32.7 ±0.5 0.386 YES 

SI-238 25 20.6 0.211 31.5 ±3.8 0.211 YES 

SI-239 20.8 17.1 0.19 38 ± 2 0.228 YES 

Table 5.3: Heat Treatment Test: Results  

Table 5.3 shows the results of the Heat Treatment test for the alternative coatings and 

paints. The ‘Tightening Torque’ and ‘Untightening Torque’ columns are obtained at 

room temperature before the thermal cycle, when the load cell is used to accurately 

reach the end load required. The ‘CoF’ columns (pre-ageing) shows the average CoF 

in the threads calculated at room temperature, which was obtained in the previous 

section (Section 5.3.1). The ‘Break Torque’ column shows the torque required to 

unscrew the joint after cooling down to room temperature.  
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The break torque highlighted a significant increase from the untightening torque pre-

ageing and a significant scatter in values. The increase, such as from 17.7 N·m to 

30 N·m for Titanium, from 15 N·m to 42 N·m for Platinum, from 22 N·m to 56 N·m 

for Nickel-Titanium, or from 17 N·m to 38 N·m for SI-239 was caused by an increase 

of CoF in the threads (examined below) along with the seizure experience in the 

bearing surfaces, which can also depend on the chemical affinity between the mating 

parts, as widely discussed in the literature (Kuznet︠ s︡ov & Freitag 1966). Additionally, 

the significant standard deviation in the break torque values, such as 8.5 N·m in the 

Nickel-Platinum and 11 N·m in the Platinum was also attributed to the unpredictable 

seizure between the mating bearing surfaces. In fact, after unscrewing, clear signs of 

seizure were apparent on the seating faces of the joint, in the spacer and in the washers, 

as shown in Figure 5.12.  

 

Figure 5.12: Seizure in the bearing Surfaces  

The last column in Table 5.3 shows the CoF in the threads measured after the thermal 

cycle, using the load cell and the thrust bearing. As highlighted in the table, the CoF 

for all the coatings and the majority of the paints tested experienced a significant 

increase, with the paint SI-238 being the exception. As shown in the table, most of 

them doubled in value, such as Chromium from 0.207 to 0.504, Titanium from 0.201 

to 0.538, Platinum from 0.162 to 0.388, Nickel-Platinum from 0.159 to 0.424, and SI-

234 from 0.159 to 0.386, similarly to the silver coating  (from 0.120 to 0.231) 

previously tested in Section 3.3.4. On the other hand, three other alternatives 

experienced a lesser increase, such as Nickel-Titanium from 0.194 to 0.317, SI-233 

from 0.166 to 0.244, and SI-239 from 0.190 to 0.228. Finally, as previously stated the 

paint SI-238 is the only alternative which experienced a reduction in the CoF, from 

0.323 to 0.211.  

Analysing the break torque and the CoF values, it was noted that seizure played the 

most important role. In fact, a clear example was seen for SI-238, where a reduction 

of the CoF did not cause a reduction of the break torque. Thus, this large increase of 



 ALTERNATIVE COATINGS 

 

99 

 

torque, from 20.6 N·m pre-ageing to a 31.5 ± 3.8 N·m post ageing, was attributed to 

the seizure in the bearing surfaces. Generally however, the increase of the CoF in the 

threads experienced after ageing plays an important role in the increase of the break 

torque. In fact, as presented multiple times in this work, the tightening and 

untightening torque is a function of the CoF, as the torque increase with the increase 

of thread friction.  

As previously stated in Chapter 2, a high CoF in the threads can lead to the failure of 

the joint. Thus a further analysis will be presented in Section 5.5.1, introducing a 

friction limit at which the joint may fail, and compare this value to the thread friction 

seen in this test. 

The samples were once again visually examined using filtered lights, with the nuts 

again split in two after the test in order to analyse the thread condition. Unfortunately, 

in contrast with the bright silver previously analysed (Section 3.3.4), all the 

alternatives were found to be similar in colour to the substrate (Figure 5.13), and 

accurate examination was therefore difficult. However, a slight damage of the coating 

in the threads was observed.  

 

    

Figure 5.13: Coating Condition after the Heat Treatment Test (Nickel- Titanium) 

 CHARACTERASATION 

 Nano-Hardness Test 

5.4.1.1 Test Procedure 

In the previous test, all the coatings and the paints successfully passed the thermal 

cycle test, with none of them experiencing any seizure, despite a significant change in 

CoF. For this reason, they were further investigated using the nano-hardness test. 

As previously described, the ageing process effected the frictional properties of the 

coatings and paints. In order to further analyse the ageing consequences to the coatings 

and paints, the hardness pre and post-ageing was measured through the nano-

indentation machine described in Section 3.4.4. Similarly, the coating roughness was 
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analysed pre and post thermal cycle, to further investigate the ageing effects. The 

alternative coatings were once again compared to the currently used silver coating, in 

order to find the similarities and differences. As previously described, the hardness 

was measured on the flat bearing surface, as measurement of the threads was 

impracticable. The metal coated nuts were polished with 0.25 microns diamond 

suspension for two minutes and cleaned with acetone, while the paints were tested at 

original condition as either polishing or acetone cleaning would entirely remove the 

thin layer. In order to test the post-ageing condition, the coatings and paints were 

thermally treated at 760ºC for 50 hours and re-tested after cooling, as explained 

multiple times in this work (such as in Section 3.2.3.3 and in Section 5.3.2).   

5.4.1.2 Results 

The roughness and the hardness of the coatings and paints were measured pre- and 

post-thermal cycle, and compared to the silver coating results obtained in 

Section 3.4.4, as summarised in Table 5.4. 

THINFILM 
Roughness Ra[µm] Hardness [GPa] 

Pre-Ageing Post-Ageing Pre-Ageing Post-Ageing 

Silver 0.5-0.8 3.0-4.0 1.5-2.3 0.4-1.2 

Pure Chromium 1.5-2.0 2.5 2.7-9.1 0.9-6.3 

Pure Titanium 1.0-2.0 2.0-3.0 3.1-6.3 0.3-4.5 

Pure Platinum 1.0 2.5 0.9-5.9 0.2-4.3 

Nickel-Platinum 

(dual-layer) 

1.5-2.0 2.0-3.0 1.4-6.0 1.4-6.6 

Nickel-Titanium 

(multi-layer) 

1.5-2.0 2.5-3.0 0.1-9.0 0.6-9.0 

PAINT     

SI-233 2.5-3.0 3.0-3.5 0.13-0.9 0.05-1.3 

SI-234 2.5 --- 0.015-0.6 --- 

SI-238 2.5 3.0 0.18-0.5 0.013-0.3 

SI-239 2.5-3.0 3.0-3.5 0.013-0.53 0.023-0.50 

Table 5.4: Roughness and Hardness Pre and Post- Ageing 
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In the table, the previously tested silver coating was added, in order to easily compare 

to the alternatives. As shown in Table 5.4, the roughness significantly increased in all 

coatings and paints, as much as 1 µm to 2.5 µm for Platinum and 2.5 µm to 3.5 µm 

for SI-233, showing that the ageing process had effects on the alternatives, as was the 

case for the silver coating. For the case of mono-layer coatings, Chromium, Titanium 

and Platinum experienced a softening during the thermal cycle (Figure 5.14a), 

similarly to the silver coating (Section 3.4.4), leading to an increase in the CoF, as 

further discussed in Section 5.5.2. Alternatively, the dual-layer Nickel-Platinum and 

the multi-layer Nickel-Titanium, due to the mix of materials with different hardnesses, 

did not show a clear pattern, as shown in Figure 5.14b.  

Additionally, the thin paints exhibited a very low hardness pre and post ageing, as low 

as 0.015 GPa. Interestingly, SI-234 was easily removed from the substrate, even with 

a delicate finger touch. The other three paints showed a slight decrease in hardness, 

as shown in Figure 5.14c. 

(a) (b)  

(c)  

Figure 5.14: a) Pure Ti (Mono-layer) b) Nickel-Platinum (Multi-layer) c) SI-239 

(Paint)  

Figure 5.14 shows the three different trends experienced during the hardness test, with 

the coating hardness pre and post thermal ageing plotted against indentation depth, 

for Pure Titanium (a), Nickel-Platinum (b) and SI-239 (c). A further discussion of the 

underlying mechanisms observed here as well as a summary of these results will be 

presented in Section 5.5.2, where the successful alternatives are compared to the silver 

coating. Additionally, in APPENDIX B, the hardness test performed on the other 

coatings will be presented. 
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At this stage, a cost analysis was performed in order to determine the suitability of 

these materials in a future large scale production. Firstly, raw Platinum was found to 

be ten times more expensive than silver and thus, pure Platinum and Nickel-Platinum 

thin films were considered unsuitable for engine applications and not investigated 

further. Additionally, all the SI paints were found to be cost prohibitive for this 

application at this stage, and removed from the list. Furthermore, the paint SI-234 was 

also excluded as the nano-hardness test showed a poor behaviour of the paint as a 

consequence of the thermal cycle, being easily removed post cooling. Thus, the 

successful coatings after this analysis were established, as summarised in Table 5.5. 

COATINGS 

Pure Chromium 

Pure Titanium 

Nickel-Titanium 

Table 5.5: Remaining Alternatives 

The remaining pure Chromium, pure Titanium and Nickel-Titanium were found to 

successfully pass the tests of this study, and in order to assess which of them is the 

most suitable coating for aero-engine applications, further analysis will be undertaken, 

such as vibration testing, as further explained in Section 9.1. 

 DISCUSSION  

In this section the limit of the CoF in the threads will be investigated in order to find 

how close the alternatives are from causing failure. Even the unsuccessful coatings 

are considered in this analysis in order to present an overview of all the alternatives. 

Additionally, the successful coatings are compared to the silver coating and their 

capabilities summarised. Finally, the limitations of this analysis are discussed along 

with future improvements.  

 Thread Friction Limits  

The CoF in the threads in the alternatives after the thermal cycle in Section 5.3.2.2 

was found to be higher than at room temperature, and significantly higher than the 

silver coating. As previously stated, a high CoF can lead to an increase of thread 

torque, and a subsequent failure of the joint. In this discussion all the coatings tested 
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in the heat treatment test are analysed in order to provide an overview of the variability 

in the coatings, although most of them were eliminated in the subsequent tests. The 

aim of this discussion is to draw a CoF in the threads limit at which the joint may 

undergo failure, and establish how each of the coatings stand compared to this. 

5.5.1.1 Bolt Torsional Test 

In order to define a limit of CoF in the threads to avoid the thread deformation, the 

Waspaloy bolt normally used in this work was tested with a pure torsional test until 

failure. Using the test rig previously described in Section 3.2, the ¼” (6.35 mm) bolt 

was rotated while two nut halves were clamped together in order to avoid any thread 

rotation (as shown in  Figure 5.15), and the torque measured.  

 

Figure 5.15: Torsional Test Rig 

The test was done at room temperature, with bolts tested pre and post thermal cycle, 

once again at 760ºC for 50 hours. During post-processing, the resistance torque was 

plotted along with the angle of rotation, as shown in Figure 5.16. 
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Figure 5.16: Torsional Test Result 

As shown in Figure 5.16, the bolts start to plastically deform at 23 N·m, and fail at 

32 N·m. It was found that the elongation reduced with the ageing cycle, as also seen 

in the literature (ASM International 2002). Additionally, the torsional test was 

validated using the Von Mises theory for a tension and torsion stress scenario 

(Equation (5.1) (Juvinall & Marshek 2006; Budynas & Nisbett 2010). 

 

 

As shown in the equation, for a purely torsional stress field (σx =0), the maximum 

shear stress is 0.577 σy, where Yield Strength (Sy) is 910 MPa for Waspaloy bolt 

(ASM International 2002). In case of failure, the Ultimate Strength is 1330 MPa, 

which gives a maximum shear stress of 780 MPa. Assuming the bolt as a bar, the shear 

stress due to the torsion was calculated using Equation (5.2, where T is the torque, Jp 

is the polar moment of inertia and d is the diameter (Juvinall & Marshek 2006; 

Budynas & Nisbett 2010). 

 

 

Using Equation (5.2, the maximum shear stress which the bolt can sustain breaking, 

calculated using the torque to break (32 N·m) and the mean radius (5.8 mm), is 783 

MPa, in line with the maximum shear of the material previously calculated (780 MPa). 
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 𝜎𝑥
2 + 3𝜏2 = 𝑆𝑦

2 (5.1) 

 𝜏𝑡𝑜𝑟𝑠 =  
𝑇 𝑟

𝐽𝑝
=  

16 𝑇

𝜋 𝑑3
 (5.2) 
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5.5.1.2 Joint Stress Analysis 

The total torque required to tighten a bolt into a nut is the sum of four values as 

previously described in Section 2.1, which act differently on the bolt (Figure 5.17).  

 

Figure 5.17: Force Diagram in the Bolt 

The pitch torque, responsible for the axial tension on the bolt, is acting across the 

entire bolt shank, and the axial stress is calculated as: 

 

 𝜎𝑥 =
𝐹

𝐴𝑟𝑒𝑎𝑠𝑒𝑐𝑡
 (5.3) 

 

As shown in Equation (5.3, the axial stress is dependent on the clamping load and the 

cross sectional area, with the maximum value in the threads section, where the area is 

smaller.  

The surface torque, the torque to overcome the friction in the bearing surface, is acting 

on the bolt head or on the nut depending on which part rotates. The torsional stress 

due to the surface torque is calculated using Equation (5.2, with the radius r being the 

bolt head diameter. As noted, the surface torque necessary to break the joint is higher 

than the thread torque, as the two act in different sections of the joint.  

Two failure modes were identified in the broken joints; high CoF in the threads 

(Figure 5.18a), and high surface torque or severe seizure in the bearing surfaces 

(Figure 5.18b). 

a)      b)  

Figure 5.18: Failure of Bolt: a) Torsion in the Threads b) Surface Torque  

Tthreads + Tself-lock 

Tsurface 
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In Figure 5.18a, a deformed thread caused high CoF in the threads causing the joint 

to fail in the threaded section. On the other hand, Figure 5.18b shows a failure due to 

the surface torque, in particular a severe seizure between the spacer and the bolt head 

was seen in the preliminary test, when washers were not used in the assembly. A 

further schematic of the joints is presented in Figure 5.19 to summarise the failure 

modes.  

 

Figure 5.19: Schematic of the Failure Modes: a) Threads Friction and b) Bearing 

Seizure 

As shown in Figure 5.19a, the high friction in the threads generates a resistance torque 

in the bolt, which leads to a failure of the bolt in the weakest section, at the start of the 

threaded part. On the other hand, in Figure 5.19b, the high friction in the bearing face 

generated high stresses which led to the failure of the joint in the torque application 

point, in the weakest component of the assembly, the bolt. 

5.5.1.3 Alternative Coatings Analysis 

During the bolt torsion test, the axial tension was not applied, thus in the thread 

friction limit analysis, the pitch torque was not taken into account. The resulting 

friction limit equation is a function of the clamping load, the resistance torque of the 

bolt, the self-locking torque and a geometrical factor as summarised in Equation (5.4. 

 

 𝜇𝑙𝑖𝑚𝑖𝑡 =
𝑇𝑙𝑖𝑚𝑖𝑡 − 𝑇𝑠𝑒𝑙𝑓−𝑙𝑜𝑐𝑘

𝐹 ·  (𝑟1 𝑐𝑜𝑠𝛽)
 (5.4) 

 

In Equation (5.4, F is the clamping load (varying from zero to11.6 kN), β and r1 are 

geometrical factors from Rolls- Royce Design Standard JDS 829_03 (Rolls 

Royce 2011), 30º and 2.823 mm respectively. Tlimit is the Yield or the Failure torque 

experienced in the torsion test, which is in the range of 22 to 25 N·m for the Yield and 

a) b) 

Input Torque Input Torque 

Failure 

Failure 



 ALTERNATIVE COATINGS 

 

107 

 

28 to 32 N·m for the failure of the bolt. Finally, Tself-lock was assumed in the range of 

0.5 to 3 N·m, as typical values experienced in the experiments. 

The Yield and the Failure areas were plotted along with the clamping load, with the 

values of coefficient of thread friction of the coatings and the paints experienced after 

the thermal cycle (Figure 5.20). The upper and the lower bounds of the failure and 

yield area were obtained using the minimum and maximum values of the self-locking 

torque and the failure or yield torque obtained in the torsional test. 

 

Figure 5.20: CoF Limits 

As shown in Figure 5.20, none of the alternatives were in the failure zone, while the 

pure Chromium and pure Titanium were considerably close to the Yield zone. 

However, as noted in the graph, the Yield curve is dependent on the clamping load 

and the above mentioned films intersect the curve only at the end load. At 

approximately 10.5 kN, all the coatings are below the Yield curve. In reality, during 

the untightening, this clamping load is achieved in a fraction of a second.  

Additionally, comparing the results with the silver plating, all the alternatives, apart 

from the paints SI-233, SI-238 and SI-239, increase the risk of yielding and failure in 

the joint.  

Finally, as seen in Section 5.3.2.2, the CoF in the threads for the majority of the 

alternatives was found to be higher after the thermal cycle compared to the room 

temperature test. Thus, this analysis mainly aimed to analyse the friction post-ageing 

conditions, as the friction at room temperature was significantly below the Yield 

curves, as shown in Figure 5.21, and therefore did not pose a significant risk of failure 

in any case. 
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Figure 5.21: Friction Limits: Pre-Ageing 

 Comparison with the Silver Coating  

The three successful coatings, pure chromium, pure titanium and Nickel-Titanium, 

were further analysed and compared to the currently used silver coating. Thus, the 

CoF, the hardness and the roughness pre and post thermal treatment were summarised 

in Table 5.6. 

COATING 
CoF       

Pre-ageing 

CoF      

Post-ageing 

Hardness 

Pre-ageing 

[GPa] 

Hardness 

Post-ageing  

[GPa] 

Roughness 

Behaviour  

with Ageing 

Silver 0.12 0.23 1.9 0.8 Increase 

Pure 

Chromium 
0.21 0.50 5.9 3.6 Increase 

Pure 

Titanium 
0.20 0.54 4.7 2.4 Increase 

Nickel -

Titanium 
0.19 0.32 4.6 4.8 Increase 

Table 5.6: Alternatives Summary 

As shown in Table 5.6, similarly to the silver coating, the pure metal coatings (Pure 

Chromium and the Pure Titanium) experienced a softening behaviour during the heat 

treatment, increasing the roughness and doubling the CoF. As previously stated in 

Chapter 3 for the silver, the softening of the coating causes the coating to be removed 
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from the threads during the screwing, and the CoF to increase, due to a like on like 

couple being formed. 

Furthermore, the Nickel-Titanium multi-layer coating, as investigated by Liu & Duh 

(Liu & Duh 2008) in their work comparing different percentages of the two materials 

in thin films at high temperatures, showed an increase in hardness with the 

temperature up until 823ºK (550ºC), where the softening started, due to grain growth.  

Thus, the softening of the coatings after the heat treatment at 760 ºC was found to be 

the cause of the increase of CoF in the threads. 

 SUMMARY 

Different coating alternatives were examined in order to replace the silver coating in 

aerospace fasteners, and summarised as follows: 

 The 19 alternatives identified at the beginning of the work were reduced 

through a selection procedure to three which were pure chromium, pure 

Titanium and Nickel-Titanium, which successfully passed the test and the 

aerospace requirement. The unsuccessful alternatives have shown an 

inconsistency in the test result or were found unfeasible in terms of cost.  

 The three successful alternatives, similarly to the silver coating analysed in 

Chapter 3, were found to be affected by the heat treatment. In fact, the increase 

of friction was found to be driven by the softening of the coatings, as 

highlighted by the nano-hardness test performed before and after the heat 

treatment. 

 Analysing the importance of the joint failure due to the CoF in the threads, it 

was found that a low level of yield might be reached in the case of the thin 

films of Chromium and Titanium. However, the joints in aerospace 

applications are re-used exclusively during engine assembly. In fact, after a 

thermal cycle, the joints are replaced, such as during engine maintenance. 

 In this work a selection procedure has been drawn, in order to understand the 

alternatives. However, more test samples are needed to validate the results 

obtained as in this study only few test repeats were performed due to shortage 

of samples. Furthermore, new materials and in particular alloys using the 

successful coatings can be investigated. 

 From the coating selection, the cost of the coating materials was found to be 

the most important factor. In fact multiple alternatives, such as Platinum films 
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and SI paints, were removed from the list even if they successfully passed the 

tests. However, as cost and coating technologies are in continuous evolution, 

a future recovery is not unreasonable. 
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CHAPTER 6 

 ALTERNATIVE LOCKING DESIGN 

 INTRODUCTION  

In Chapter 4 a FEA approach was developed to analyse the tightening process of silver 

coated joints, in order to examine the stresses and the contact pressure along the 

elliptical self-locking nut. The gradual decay in the locking torque of the coated joints 

over multiple reuses was attributed to plastic deformation in the threads and a severe 

removal of the silver coating caused by high contact pressure in the crimped section. 

Thus, in this chapter a new self-locking design will be investigated in order to solve 

these problems. 

As seen in the literature, and previously described in Section 2.3, numerous self-

locking features are available on the market, with most of them designed to deform 

elastically to prevent loosening. For example, the widely used elastic Nylock nuts use 

a nylon collar inside the standard nuts, which can deform elastically. It was found that 

the collar increases the CoF between the nut and the bolt threads, inducing an anti-

loosening effect, as confirmed by the work of Kumar et al (Kumar 2014). However, 

the material of the collar can sustain a maximum temperature of 121 ºC, rendering 

them infeasible for high temperature applications. Furthermore, in the work of Zhang 

et al (Zhang et al. 2000) a FEA approach was used to develop a new locking design, 

which utilized shape memory alloys. These alloys deform elastically and prevent 

vibrational loosening. Despite the fact that the maximum operating temperature for 

aerospace applications is not mentioned in the study, the FEA approach was found to 

be promising. Additionally, a successful example of elastic locking design is shown 

in the work of Miyata et al (Miyata et al. 1991) which developed a new self-locking 

feature  using a ‘skirt-like’ hollow flange for hexagonal nuts in order to effectively 

reduce loosening under vibrations. The FEA approach discussed in this work shares 

similarities with the work of Izumi et al (Izumi et al. 2005) which aimed to verify and 

expand conventional fastener theories. In their work they affirm that FEA can be 

successfully used to identify and analyse new self-locking features, and also suggest 
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that anti loosening systems can be obtained by modifying the fastener’s design, 

supporting the findings of Junker (Junker 1969). 

In the elliptical self-locking feature currently used in the aerospace industry and 

analysed in Chapter 4, the crimped area includes high contact stresses, localised in the 

small segment of the diameter. The scope of the work presented in this chapter is to 

develop a new locking design in order to distribute the contact stresses along the entire 

diameter. However, it should be simple, reliable and similar to the current design, 

suitable for harsh environments and light in weight. The aim is to explore whether a 

similar locking torque can be achieved by alternative manipulation of the threads, 

whilst still providing the self-locking torque required. Thus, the new design should 

operate within a lower stress field, with the silver coating less likely to be stripped off. 

Furthermore, the lower stress might allow alternative coatings to be used, which are 

currently not applicable at the current contact stresses. Finally, elastic deformation 

will also be an advantage with regard to multiple reuses for high temperature 

applications.  

 DESIGN & SIMULATION  

 Design Concept  

In Chapter 4 the FEA approach was used to analyse the contact stresses in the elliptical 

self-locking nut, showing similar load and torque curves with respect to the 

experimental results. As previously described, the bolt, nut and load cell were 

modelled using the actual dimensions, with the nut screwing into the bolt for eight 

revolutions before clamping the load cell. In this chapter, instead of using a radially 

deformed nut, such as the elliptical shape typically utilised, an axial deformation in 

the nut is modelled, in order to distribute the contact pressure in the entire diameter of 

the threads.  
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Figure 6.1: Nut Threads Axial Displacement: Stretching  

As shown in Figure 6.1, a positive axial displacement stretches the nut, reducing the 

TPI, defined as ‘threads per inch’. The deformation causes a tight contact between the 

bolt and nut threads, resulting in a locking system. Once the joint is tightened, it 

elastically deforms to accommodate the load, as shown in Figure 6.2. 

The axial displacement has been applied over one, two, three and four threads at the 

chimney of the nut. In fact, in this section the nut wall is thinner, which allows the 

deformation to occur in the nut and not in the bolt.  

 

Figure 6.2: Bolt and Nut in Contact 

One of the key requirements of the analysis is the self-locking torque, measured as the 

resistance torque prior to the clamping step. The ideal self-locking torque as specified 

in the Aerospace Standard nº128 (The Society of British Aerospace Companies 

Ltd 2006) should be approximately 2 N·m, so that an upper limit of 2.5 N·m and a 

lower limit of 1.5 N·m is applied. Additionally, as previously stated, it is preferable 
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to remain in the elastic range throughout the entire screwing process, in order to avoid 

any plastic deformation, allowing the joint to be re-used multiple times.  

 Modelling Approach 

As previously described in Section 4.4, Solidworks 2012 was used to design the joint 

while Hypermesh v.11 (Altair 2013a) was used as a pre-processor, where the ¼” 

(6.35 mm) joint along with the load cell were meshed with a total of 87,500 nodes and 

235,000 elements. The geometry was then imported into Matlab, and the coordinates 

of the nodes in the inner helix were identified. An axial displacement was applied to 

these nodes and all the nodes above, in order to maintain the thread angle of 60º 

(Figure 6.3). As the nut chimney is approximately 4 mm and the pitch is 

approximately 0.91 mm, the maximum number of threads moved is four, while the 

minimum investigated is one, the last revolution. 

 

Figure 6.3: Axial Displacement 

The steps defined in Chapter 4 are adopted again in this work, with the only exception 

being the crimping step. In fact, the elliptical deformation applied in the crimping step 

is not utilised in this work, as the axial deformation is previously applied during pre-

processing as described above. The analysis is essentially a two steps process. Firstly 

the nut screws into the bolt for eight revolutions, and secondly the nut clamps the load 

cell until the required end load is reached. As in  Chapter 4, the material used to define 

the bolt and the nut is Waspaloy, with an Yield strength of 897 MPa, obtained from 

the true strain true stress curve (ASM International 2002).  

One of the input parameters in the model is the friction behaviour of the surfaces in 

contact. As clearly defined in Section 4.3, the relationship between the contact 

pressure and the CoF in the threads was analysed through the pin on disc tests and is 

again utilised in this simulation. As previously described, the pin on disc testing was 

MOVED 

CONSTANT 

ANGLE 



 ALTERNATIVE LOCKING DESIGN 

 

115 

 

done using a silver coated disc and an Inconel pin in a range from 50 to 1,500 MPa, 

in the presence of lubricant. Finally, the thermal and tightening speed effects are not 

taken into account, with the aim of reducing the solving time, as the simulations 

already took 3-4 days each to solve in the University cluster.  

Afterwards, the results were analysed using Hyperview (Hyperworks) (Altair 2013b), 

and in particular the Von Mises stresses and the contact pressure in the threads were 

examined, along with the torque and load profile. 

 Results & Selection for Manufacture 

The approach explained in Section 6.2.1 was initially explored by Guy (Guy 2015), 

as a final year project. This project was linked to this PhD, and the student used the 

previously created model under supervision. The study ran over forty simulations, 

using the previously defined model and a macro to simply apply the displacement to 

the threads. From this several promising results were obtained, as shown in Figure 

6.4, which were further examined to higher accuracy in this work. The self-locking 

torque is plotted against axial displacement for a number of tests under a range of 

‘threads moved’ (Figure 6.4).  

 

Figure 6.4:Self-locking Torque for Different Candidates (Guy 2015) 

As shown in Figure 6.4, self-locking torque increases with the axial reduction 

(decreasing TPI), and with the number of threads moved. Thus, to achieve the same 

result moving less threads, a bigger displacement was required. In the Figure, a CNC 

machining limit was imposed, as a standard CNC milling machine allows an error of 
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10 µm over a linear displacement of 170 mm (Guy 2015). Thus, in a linear 

displacement of 3.9 mm (the length of the chimney), the smallest reduction that can 

be physically manufactured was 0.00654 mm, which had no effect in the final 

selection. A further limit was the stress value at which the silver starts to strip 

(750 MPa (Section 4.7.3)).  

Based on the work of Guy, four cases were identified and further explored with respect 

to the nature of the threads contact. 

In order to convert the linear displacement to the actual TPI value, Equation (6.1 was 

used. 

 

 
TPInew=

mm/inch

(
mm/inch
TPIold

+displ)
 

(6.1) 

 

where mm/inch is the conversion between millimeters and inches (25.4 mm/inch), the 

TPIold is the standard 28TPI (UNF ¼” (6.35 mm)) and displ is the axial displacement 

in mm. 

The selected candidates are summarised in Table 6.1. 

Candidate  TPInew 
Threads 

Moved 

Self-locking 

Torque 

1  27.65 TPI 4 1.5 N·m 

2  27.60 TPI 4 2.3 N·m 

3 27.5 TPI 3 1.9 N·m 

4  27.25 TPI 2 1.9 N·m 

Table 6.1: Variable Pitch Candidates 

In Table 6.1 the four candidates selected are summarised, including the self-locking 

torque experienced in the simulations.  Additionally, candidate 3 shown in Table 6.1 

is the combination of two models, which gave a thread deformation of 27.47 and 

27.52 TPI, which are rounded to 27.50 TPI. As previously anticipated, in order to 

achieve the required self-locking torque with fewer threads moved, a larger axial 
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displacement is necessary, as highlighted in Table 6.1. The stresses and the contact 

pressure at zero load and at the end load of 11.6 kN for the Candidate 1 are 

extrapolated and presented in Figure 6.5 and Figure 6.6. 

a) b)  

Figure 6.5: Stress along the Nut. a) At Zero Load b) At End Load  

(Candidate 1: 27.65 TPI) 

In Figure 6.5 the Von Mises stresses are shown at zero load (Figure 6.5a) and at the 

end load (Figure 6.5b), highlighting that the maximum stresses do not exceed the 

Yield strength (of 897 MPa). Furthermore, it is evident that the nut is subjected to a 

level of stress even at zero load, thought to be due to the interaction between the 

28 TPI bolt and the deformed nut threads, generating the resistance torque. 

Additionally, the stresses experienced were lower compared to the elliptical nut 

observed in Section 4.6, where a stress value of 990 MPa was identified. This 

comparison will be further analysed in Section 6.5.3. 

a) b)  

Figure 6.6: Contact Pressure along the Nut. a) At Zero Load b) At End Load  

(Candidate 1: 27.65 TPI) 

In Figure 6.6 the contact pressure field is shown at zero load (Figure 6.6a) and at end 

load (Figure 6.6b), highlighting that the contact pressure increases throughout the 
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tightening process. Additionally, a non-uniform pressure distribution was identified, 

due to the geometrical modelling and the contact algorithm utilised by the software 

(Kloosterman 2002). This effect was also seen and examined in Chapter 4, as both the 

bolt and the nut were modelled as polygons, interacting with each other with a limited 

impact to the results. 

Furthermore, in Chapter 4 a contact pressure of 750 MPa was identified as the cause 

of the stripping of the silver from the substrate. As shown in Figure 6.6b, the contact 

pressure never exceeds 600 MPa here, which will be further investigated in 

Section 6.5.3, where the elliptical crimp results will be compared to the axial 

deformation result. The alternative candidates defined in Table 6.1 showed similar 

results as summarised in Figure 6.7 and are presented in APPENDIX C.  

 

Figure 6.7: Average Contact Pressure at the End Load 

As shown in Figure 6.7, the four candidates experienced an average contact pressure 

lower than 750 MPa, the stress value at which the silver coating removal begins. The 

four candidates were found similar, due to the contact pressure being evenly 

distributed over a large area, with the small pitch difference playing a minor role.  

In order to further examine the elastic behaviour of the joint, the strain in the nut at 

the end load is analysed and plotted in Figure 6.8.    

Silver Stripping Stress 750 MPa 

510 MPa 510 MPa 545 MPa 530 MPa 
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Figure 6.8: Residual Strain at End Load 

As shown in Figure 6.8, the residual strain was found to be lower than the elastic limit 

of 0.2%, which means that an elastic behaviour is theoretically achieved. Thus, the 

joint can be re-assembled multiple times without inducing plastic deformation, and 

with the stresses distributed across the entire diameter instead of having peaks in a 

small portion of the crimped section, as shown in Section 4.6. 

 Further Analysis  

Two additional analyses were performed with the purpose of further investigating the 

manipulation of threads, such as the thread offset and the TPI increase (Figure 6.9).  

a) b)  

Figure 6.9: (a) Pitch Offset and (b) TPI Increase 

A pitch offset (Figure 6.9a) is a single axial displacement in one of the threads at the 

nut chimney. In practise, the TPI changes for a revolution and then goes back to 

normal. However, two problems were found to affirm that this option is not feasible. 

Firstly, compared to the ‘stretching’ method, a larger deformation is necessary in 

order to achieve the 2 N·m self-locking torque required (0.045 mm compared to 
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0.025 mm in the stretching), and since this displacement is applied to a single thread, 

it generates stresses which exceed the material yield limit. Secondly, considering 

future large scale production, the thread geometry may be difficult to machine, end in 

fact, at this moment a tool capable to precisely and quickly machine this design has 

not been identified.  

In the second scenario (Figure 6.9b) the principle is the same as the decrease of TPI 

previously discussed, applying an axial deformation in the last threads in order to 

achieve the self-locking torque required. Instead of ‘stretching’ the nut, a negative 

displacement is applied, thus ‘squashing’ it. However, high stresses are generated in 

the joint during screwing on, as high as 850 MPa compared to the 530 MPa in 

stretching (Figure 6.10). Thus, for this reason the TPI decrease has been preferred in 

this work. However, as explained in Section 7.3 a future evaluation is needed in order 

to fully evaluate the design. 

 

Figure 6.10: TPI Increase 

 MANUFACTURE 

Following the candidates identified by Guy (Guy 2015) and subsequently explored in 

Section 6.2.3, the test samples were manufactured. In this section the machining 

process is described, including development of the g-code program, followed by the 

CNC machining and finally the application of the silver coating. 

 



 ALTERNATIVE LOCKING DESIGN 

 

121 

 

 Manufacturing Process Development 

The four candidates (Table 6.1) that meet the requirements have been machined with 

a CNC vertical milling machine. The g-code files required by the machine, controlled 

by Siemens software (Siemens 840D ShopMill Control), have been written using the 

software Vero Edgecam 2015. Five different programs were developed in order to 

machine the external nut shape and the four different candidates.  

In the first program, the hexagonal shape was obtained from a ½” (12.7 mm) bar. The 

hex shape was designed using Solidworks 2012, and then imported into Edgecam.  

The nut dimensions were similar to the silver nuts previously tested (Section 3.2.2) 

with the only difference being the simplified hexagonal shape (9/16” (14.29 mm)) 

instead of the double hexagonal (12 points), due to the machining equipment. 

 

Figure 6.11: Hexagonal Shape Program 

In this program a 50 mm shoulder milling cutter with 90º inserts was used. Firstly, the 

top of the bar was machined flat. The second operation was roughing, in order to 

machine the external shape, consisting of a 3.5 mm high top circle, followed by the 

5 mm high hexagonal shape, and the 1.5 mm bottom circle. These were executed 

through seven passes, with a maximum cutting depth of 2 mm. The bottom circle was 

extended for 5 mm, in order to allow the nut to be latterly cut. The finishing operation 

was deemed necessary as the inserts at this point were found to be damaged. As such, 

the cutter was lifted from the work piece and the program paused, allowing the 

technician to change the inserts. Thereafter, a 0.2 mm finishing operation was 

performed, in order to achieve the right size and a suitable surface finish.  

Additional programs were developed to define the machining processes for the 

internal threads. The only differences between the four programs are the pitch size 
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and the number of the threads deformed. For this operation the nut, previously cut 

from the bar was positioned upside down, with the standard 28 TPI side facing up in 

order to check the thread size in situ. 

 

Figure 6.12: Threading Program 

Prior to commencing this second sequence of machining operations, the bottom of the 

nut was cleaned using the 50mm cutter previously used, in order to clean the surface 

and achieve the required thickness. A 5.5 mm drill was used to make the internal hole, 

using speeds and feeds from the tool manufacturer, as further detailed in Section 6.3.2. 

After drilling, the tool was lifted 200 mm in order to check the drill and the hole 

conditions. After this a single point threading tool was used, to perform the internal 

threads. The tool geometry was defined within the program and the machining of the 

two different helixes designed, one for the standard thread size and the other 

depending on the thread candidate (Table 6.1). From a starting diameter of 5.5 mm to 

the maximum internal diameter of 6.35 mm, both helixes were machined in 6 passes. 

The cutting pass along with the feed rate and the spindle speed were once again 

specified in the program, based on suggestions from the tool manufacturer.  

 Machining 

A 1060 HS VMC, 3-axis CNC vertical machine was used to machine the nuts, as 

presented in Figure 6.13. 
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Figure 6.13: CNC Machine 1060HS VMC 

The nuts were made from Inconel 718, as were the standard nuts tested in the previous 

chapters. Inconel 718 has similar properties to Waspaloy, the other nickel super-alloy 

adopted in this work, but is easier to machine. The external shape was manufactured 

using a 50 mm Walker shoulder mill, F4041, and WSM35S inserts (4 teeth and 4 

cutting edges per insert) (Figure 6.15a). As previously described, the inserts were as 

expected found to be deteriorated at the end of the roughing operation, and thus 

replaced for the finishing operation. Thereafter, the nuts were parted off and cleaned 

using a lathe, with the result shown in Figure 6.14.  

 

 

Figure 6.14: Finished Hexagonal Shape 

The second g-code program was used to drill and tap the nut, using a different program 

for each candidate (Table 6.1). A 5.5 mm CoroDrill Delta-C solid carbide drill 

(Sandvik Coromant R840-0550-30-A0A 1220, Figure 6.15b), was used to drill the 

nut. As this type of drill is self centering, a centre spot drill was not utilized. After 

cleaning the hole, the internal threads were manufactured using a grooving tool, 
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Supermini Type 105 from Horn Cutting Tools Ltd (Figure 6.15c). As previously 

stated, the cutting parameters were defined in the g-code program, following the tool 

manufacturers suggestions as summarised in Table 6.2. 

Tool Cutting Speeds 

Shoulder Mill 

Walker F4041 

Cutting speed= 35 m/min, 0.1 mm/rev/tooth.  

Spindle speed= 223 rpm  Feed rate= 90 mm/min. 

Drill 

Sandvik Coromant  

CoroDrill Delta-C 

Spindle speed= 1,160 rpm  

Plunge feed= 92.6 mm/min 

Single point threading tool 

Horn Cutting Tools 

Supermini Type 105  

Spindle speed= 2,000 rpm  

Feed rate= 32 mm/min. 

Table 6.2: Cutting Parameters 

The internal threads were initially machined in six passes, using two different spirals 

as previously explained. The standard threads were positioned facing up, in order 

check the internal fit. As the tool was found to be deflected by the workpiece, resulting 

in incorrect machining, further passes were performed upon checking the depth of the 

threads with a standard ¼” (6.35 mm) bolt. Up to five additional spring passes 

(0.025mm each) were required in order to reach the necessary fit. This fit variability 

was due to the poor machinability of the Inconel and the low stiffness of the threading 

tool, as further examined in Section 6.5.4.  

 

Figure 6.15: Cutting Tools: a) Walker shoulder mill F4041, b) Solid Carbide 

Drill 5.5 mm, c) Supermini Type 105 

During all the operations described above, the coolant (Castrol Hysol MB 50, 

concentration 7%) was used, in order to reduce the temperature of the workpiece and 

the cutting tools. A machining time of 90 minutes was required to manufacture each 

candidate. Finally, the nuts were cleaned to remove residual swarf and prepare for the 

coating to be applied.  
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 Coating 

12 nuts were machined in total, three for each different candidate (Table 6.1). The 

nuts were shipped to a coating company and were electroplated with silver. The silver 

coating had a thickness of 5 microns, in order to be comparable to the generally used 

nuts described in Chapter 3.  

 

Figure 6.16: Machined Coated Nut 

Figure 6.16 shows a machined nut after the silver coating was applied. Thus, the 

candidates were tested and compared to the elliptical nuts.  

 TESTING RUSULTS 

Three samples of each of the four candidate nuts (Table 6.1) were tested using the 

procedure explained in Section 3.2.3.2 and used extensively in this work. The nuts 

were tested at room temperature for six tightening cycles using Inconel bolts 

(AS48824, Section 3.2.2) as counterparts. Mobil Jet Oil II and the thrust bearing were 

once again applied, along with a rotating speed of 3 rpm during wind on/ off and 

0.5 rpm during the loading/ unloading. The end load reached during the test was 

11.6 kN (as per Rolls- Royce Design Standard JDS 829_03 (Rolls Royce 2011)) and 

torque, load and position were acquired at 200 Hz. Afterwards, the condition of the 

silver coating was analysed and the experimental results were compared with the FEA 

prediction.  

In the experimental test, three types of result were identified in the twelve nuts tested, 

as summarised in Table 6.3, with no immediate correlation between geometry and 

failure observed, as further detailed later in this section. 
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Candidate 
Condition 

SAMPLE 1 SAMPLE 2 SAMPLE 3 

1 (27.65 TPI) Successful (1A) Successful (1B) Failed (1C) 

2 (27.60 TPI) Successful (2A) Deformed (2B) Failed (2C) 

3 (27.50 TPI) Successful (3A) Successful (3B) Deformed (3C) 

4 (27.25 TPI) Successful (4A) Deformed (4B) Failed (4C) 

Table 6.3: Testing Results 

Firstly, three joints failed (1C, 2C, 4C), as the failure torque of 28-30 N·m (previously 

seen in Section 5.5.1) was reached during the first wind on (Figure 6.17).  

 

Figure 6.17: Failed Test: a) Broken Joint and b) the Torque Profile (Sample 2C) 

As shown by the example result from sample 2C, in Figure 6.17b, the torque linearly 

increased until 28 N·m, when a sudden drop indicated the failure of the joint (Figure 

6.17a). As further examined in the following sections, the high torque was generated 

by the tight fit of the machined threads. 

Three other joints (2B, 3C, 4B) experienced a high self-locking torque during the first 

wind on (up to 22 N·m), damaging the internal and external threads (Figure 6.18a). 

However, the joint did not fail as above and the self-locking torque eventually reduced 

in the subsequent cycles (Figure 6.18b).  

a)  b)  

Figure 6.18: Damaged Joint: a) Deformed Threads (Sample 4B) and b) the Torque 

Profile (Sample 4B) 
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As shown by the example result from sample 4B in Figure 6.18b, in the first cycle a 

wind on torque of 20 N·m was reached, and the final clamping was not performed, in 

order to avoid any further damage. In the second cycle, the self-locking torque 

dropped to 10 N·m and the final clamping was then completed. During the following 

cycles, the self-locking torque continued to reduce, eventually stabilising at 5 N·m in 

the sixth cycle. A further two cycles were performed in order to prove the elastic 

behaviour following the initial plastic deformation in the first cycles.  

 

Figure 6.19: Load versus Torque: Elastic Behaviour (Sample 4B) 

The remaining six joints (1A, 1B, 2A, 3A, 3B, 4A) successfully completed the six 

cycle test, and the torque profile and load-torque curve have been plotted in Figure 

6.20 and Figure 6.21.  

 

Figure 6.20:  Self-Locking Torque (Sample 3A) 

As shown by sample 3A given in Figure 6.20 as an example, the torque in the first 

cycle was found to be higher compared to the remaining cycles, where a highly 

repeatable torque was achieved. Additionally, the 2 N·m locking torque predicted by 
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the FEA was verified in the test, as further examined in Section 6.5.1. Furthermore, 

the self-locking torque gradually increased until a stabilization, in contrast with the 

sinusoidal pattern experienced with the elliptical nuts (Section 3.3). This aspect will 

be further detailed in Section 6.5.3, where the new design will be compared to the 

typical elliptical shaped nuts. 

 

Figure 6.21: Load versus Torque (Sample 3A) 

As further shown for the successful joints in Figure 6.21 and Table 6.4, the first cycle 

experienced a higher torque compared to the successive cycles, followed by high 

repeatability in the subsequent cycles, proving that elastic deformation was achieved, 

as shown in Table 6.4.  

Sample 

Tightening Torque at End Load[N·m] 

(Self-locking Torque [N·m]) 

1st 2nd 3rd 4th 5th 6th 

1A(27.65TPI) 
10.75 

(5.2) 

9.83 

(3.2) 

9.90 

(3.0) 

9.62 

(2.9) 

9.69 

(2.8) 

9.63 

(2.6) 

1B(27.65TPI) 
9.80 

(3.1) 

9.27 

(1.1) 

9.26 

(0.9) 

9.18 

(0.9) 

9.25 

(0.8) 

9.10 

(0.8) 

2A(27.60TPI) 
10.66 

(2.5) 

10.18 

(1.2) 

10.00 

(1.0) 

9.50 

(1.0) 

10.18 

(0.9) 

10.0 

(0.9) 

3A(27.50TPI) 
10.25 

(3.8) 

9.13 

(1.9) 

9.42 

(1.7) 

9.13 

(1.5) 

8.95 

(1.5) 

8.99 

(1.5) 

3B(27.50TPI) 
10.61 

(5.1) 

9.44 

(2.7) 

9.29 

(2.1) 

9.02 

(1.9) 

9.12 

(1.8) 

9.98 

(1.8) 

4A(27.25TPI) 
11.63 

(3.7) 

9.82 

(1.2) 

9.80 

(1.1) 

9.80 

(1.0) 

9.81 

(0.9) 

9.80 

(0.9) 

Table 6.4: Torque at End Load for the Successful Nuts 
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As previously highlighted, the three behaviours described could not be linked to a 

specific thread geometry, as the three failed joints are from different candidates. 

Similarly to the higher torque experienced in the first cycle, this variance was likely a 

product of the manufacturing process and will be further discussed in Section 6.5.4. 

After testing the nuts were cut with the EDM technique in two halves, and the silver 

coating conditions analysed, as performed previously in this work. 

a)  b)  

c)  d)  

Figure 6.22: Coating Conditions: a) Broken Joint (Sample 1C), b) Deformed Joint 

(Sample 2B), c) Removed Silver (Sample 4A), d) Intact Coating (Sample 3A) 

As shown by the examples 1C, 2B, 4A and 3A in Figure 6.22, four different conditions 

were identified in the nut analysis. An example of the failed joint is presented in Figure 

6.22a (sample 1C), showing a silver coating bright in colour. This was due to the high 

contact pressure in the deformed area, responsible for the failure. In Figure 6.22b 

(sample 2B) and Figure 6.22c (sample 4A) two examples of different levels of 

removal were seen, with the variance depending on the self-locking torque during the 

first cycle. In fact, the nuts presented in Figure 6.22b and Figure 6.22c reached 20 N·m 

and 5 N·m self-locking torque respectively during the first cycle. Finally, in Figure 

6.22d (sample 3A), an example of a successfully tested nut is presented, showing the 

silver coating almost intact despite withstanding all six cycles. The silver removal 

1C: Broken 2B: Deformed 

4A: Successful 

Removed Silver 
3A: Successful 
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process will be further analysed in Section 6.5.4, where the possible causes of these 

differences will be presented. 

 DISCUSSION   

In this Section the experimental results are compared to the FEA prediction in terms 

of the cycle profiles and pressure distribution. Additionally, the new design is 

compared to the elliptical shaped nut examined in the previous chapter. Finally, the 

last point of discussion considers the variability seen in the test results. 

 FEA & Experiment  

The results obtained from the experimental test (Section 6.4) were compared to the 

profile curves obtained from the FEA (Section 6.2). 

a)    b)  

    

Figure 6.23: FEA and Test Comparison: Torque Profile, a) Testing, b) FEA. 

As shown in Figure 6.23 the 2 N·m self-locking torque prediction in the FEA (also 

presented in Table 6.1) is close to all the successful test results, as seen for the 

samples 3B and 1A in Figure 6.23, where the silver coating was found undamaged. 

Additionally, the load-torque curve extrapolated from the FEA and experimental 

results were compared (Figure 6.24), indicating the expected behaviour. 
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Figure 6.24: FEA and Test Comparison: Load/ Torque Profile  

As seen in all the successfully tested nuts and using samples 2A and 3B in Figure 6.24 

as examples, the predicted results obtained from the FEA are fully verified by the 

experimental outcomes, with minor divergence due to the frictional properties used in 

FEA model. In fact, as previously explained in Section 4.7, the pin on disc test used 

to characterise the silver coating was found to be particularly inaccurate at low 

pressure (below 50 MPa). 

 Pressure Distribution  

The pressure distribution in the new design has been examined through the FEA 

model, and further validated by analysing the silver coating status after the test. Thus, 

the contact area and the contact pressure extrapolated from the FEA at the end load 

were plotted in Figure 6.25. 

a)  b)    

Figure 6.25: a) Contact Area, b) Contact Pressure at End Load (Candidate 3) 

In Figure 6.25a, the contact area at end load is presented. As shown, the threads in 

contact are the first and last four of the nut. In Figure 6.25b, the contact pressure in 

the nut is displayed. In Section 4.7.3 the contact pressure causing the silver coating to 

strip was identified as 750 MPa. In Figure 6.25b, the contact pressure exceeding 

750 MPa is red in colour. Thus, the contact pressure experienced in the nut during the 
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tightening is below the stripping limit, except in a few small areas. This behaviour of 

the new design was further confirmed by analysing the silver coating condition after 

the test (Figure 6.26). 

 

Figure 6.26: Silver Coating Condition (Sample 3A) 

As shown in Figure 6.26, in sample 3A for example, the silver was found to be 

generally intact, further validating that the contact pressure experienced during the 

cycles does not reach the stripping limit. Furthermore, the FEA was simulated 

exclusively for the first tightening, while the silver coating in the figure was analysed 

after six cycles, still showing intact conditions. 

 Elliptical vs Axial Locking Features  

The axially deformed nuts were compared to the generally used elliptical nut, in order 

to further analyse the new locking design. Firstly, the results from the six cycle test 

for the elliptical shape and an example of the new design were plotted (Figure 6.27, 

sample 3A). 

a)  b)  

Figure 6.27: Six Cycles Test: a) Elliptical Nut b) Axial Deformed Nut (Sample 3A)  

As shown in Figure 6.27, similar curve profiles were obtained with the two designs, 

showing a higher torque in the first cycle compared to the following cycles, and a 
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similar torque value at end load. Furthermore, both designs were found to be highly 

repeatable, as highlighted by the third and sixth cycle curves being almost identical.  

Additionally, the areas of the threads in contact were also examined for the two 

designs using the FEA approach and plotted in Figure 6.28.  

 

a) b)  

Figure 6.28: Contact Area: a) Elliptical Nut, b) Axial Design (Candidate 3) 

As shown in Figure 6.28, in the new design (Figure 6.28b) the area in contact is larger 

compared to the elliptical design (Figure 6.28a), with obviously lower resulting 

pressure for the same clamping load, as previously described in Section 6.5.2. The 

pressure distribution was also investigated by analysing the condition of the silver 

coating after the six cycle test for the two designs, as shown in Figure 6.29. 

a)  b)  

Figure 6.29: Silver Conditions: a) Elliptical Nut b) Axial Design (Sample 3A) 

As shown in Figure 6.29, the new design presented a silver coating almost intact 

(Figure 6.29b), compared to the elliptical design (Figure 6.29a). In fact, the current 

design was found to have been significantly damaged, particularly in the chimney, 

where high contact pressures were known to have been induced (Section 4.7.2). With 

this analysis the more distributed contact pressure in the new design was further 

validated. 
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 Variability 

As previously anticipated, during the machining process (Section 6.3) the tendency of 

the threading tool to be deflected was observed. This issue was attributed to the nut 

material (Inconel 718) and, in fact, in a preliminary study using steel or aluminium as 

the nut material, this issue was not seen. In the experimental work, this problem was 

found to cause high contact pressure and the consequent removal of the silver coating 

(Figure 6.30), sometimes even resulting in complete failure of the joint. 

 

Figure 6.30: Thread Root in the Nut  

As shown in Figure 6.30 using samples 4A and 2B as examples, the silver coating was 

found to have been removed from the root of the threads in particular, highlighting an 

area of high contact pressure, attributable to the inaccuracy of the single point 

threading tool during the manufacturing process. The tool issue was further 

highlighted by the removal of silver from the undeformed threads (first eight threads), 

which should experience a lower pressure.  

However, this problem could be solved in two ways. Firstly, a more rigid tool is 

necessary in order to reduce the machining time and achieve the required geometry 

with a smaller number of passes. Additionally, in this work the thread fit was checked 

using a male counterpart, which was found to be inaccurate and non-repeatable. Thus, 

a quick and reliable measuring technique could be developed in order to check the 

thread dimensions, in particular the depth of the root and axial displacement.  

 SUMMARY 

In this chapter a new self-locking design was developed and the analysis is 

summarised as follows: 

 The axial deformation in the threads are promising for a future development 

of the new self-locking device. In fact, it was found that as little as two threads 

Sample 4A Sample 2B 

Silver 

removed 
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can actually produce the required locking torque. However, further tests and 

investigation are needed in order to fully describe the capabilities of this 

design. 

 The FEA analyses and the successive examination of the coating condition 

after the test have shown that fully elastic deformation occurs in the threads, 

increasing the chance to have a repeatable tightening cycle. This consistency 

is one of the key parameters for characterising the bolted parts, allowing the 

necessary torque for a datum load to be calculated.   

 During the test of the axial deformed nuts several joints failed to complete the 

six cycles, which was attributed to a machining issue. In fact, the single-point 

tool used to manufacture the threads was found to be unsuitable for cutting 

Inconel. However, a different tool, along with a measurement technique could 

improve the design. 

 The FEA was used as the initial approach to investigate the different design 

options. The results obtained from the experimental test showed good 

agreement with the FEA results, further validating the reliability of this 

approach in order to develop a new design of self-locking devices. As also 

seen in Chapter 4, the FEA is confirmed as an economical investigation tool 

for joint application. 

 In this work the new axial deformed design was compared to the elliptical nuts 

used in the rest of this thesis. Improvements were identified in the stripping 

mechanism and in the contact pressure distribution, confirming that the new 

design is promising. However, further analysis and test are needed in order to 

fully understand the new design behaviour.  
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CHAPTER 7 

 DISCUSSION  

 INTRODUCTION 

In the first half of this thesis, the tightening mechanism of the crimped nuts has been 

investigated, showing that common equations used to calculate the CoF have 

inaccuracies, and that the coefficient depends on the pressure. In this chapter the 

challenge of the calculation of the CoF in self-locking coated nuts is further discussed, 

along with the two approaches used to investigate the tightening mechanism, such as 

the FEA and the experimental study.  

Additionally, as seen in chapter 5 and 6, two different approaches were used to reduce 

the silver removal issue, such as a new locking feature and a silver coating 

replacement. In this chapter the two approaches are compared, and their limitations 

summarised. Finally, future directions and recommendations in the short and long 

term are discussed, considering the tests required in order to make a final decision 

with respect to the silver removal issue. 

 MEASURING FRICTION IN BOLTED JOINTS: EXPERIMENTAL 

& FINITE ELEMENT APPROACHES 

As introduced in Section 2.2.2, in the analytical calculations normally used in the 

aero-engine industry, an average CoF is used, calculated at an average contact 

pressure. However, in Chapter 3 and 4 the tightening mechanism was investigated 

through an experimental study and a FEA, finding an irregular pressure distribution 

along the threads, and identifying a localised high pressure in the crimped area. 

Additionally, the CoF of the silver coating was found to be speed and pressure 

dependent. Thus, this thesis highlighted the inaccuracy of the equations normally used 

in the aero-engine industry (Motosh 1976) to calculate the clamping load for a datum 

tightening torque. On the other hand, the FEA has matched the experimental 

tightening curve, using the pressure dependant friction curve from a simple pin on 

disc test, highlighting its applicability in the estimation of friction in joints made from 

or containing materials with pressure dependant properties. 
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However, in many respects this issue is likely to be a consequence of the nature of the 

coated crimped joints in this study. As highlighted, the behaviour of the silver coating 

is pressure and speed dependant, with the crimp further concentrating contact 

pressures. In a more typical joint, whilst the contact pressure will still vary between 

threads, the impact of this change in the absence of the coating/ crimp will be less 

pronounced. For example, for a steel on steel interface with light lubrication  

(Bickford 1998), the CoF is between 0.1 and 0.2 (depending on the surface conditions) 

and shows minimal variation with pressure and speed, meaning in this case the more 

general thread friction equation would be more accurate. 

Additionally, the differences between the analytical and the FEA methods to calculate 

the CoF in this study are not significant, converging at the end load to a value of 0.125, 

as discussed in Section 4.7.4. In many respects it is this value under high load that is 

the most important, because as shown, it is this value that is linked to failure 

(snapping) of the bolt. Furthermore, whilst the FEA does appear a good tool for 

estimating behaviour, some inaccuracies were found as a result of the pin on disc test 

not being accurate enough, due to the equipment used and the coating layer in the 

sample. 

As discussed, both experimental and FEA approaches were used in this study, 

highlighting the ability of the FEA to investigate the failure sites. In particular high 

spots of the contact pressure distribution was found, and can be particularly hard to 

identify in small joints, such as those investigated in this study. With the continuing 

development of the FEA codes with improved solving methods, in the future the 

analysis can include the thin layer of coating and the temperature effect can be 

investigated. 

Indeed, the FEA study undertaken has contributed to the literature of the fasteners 

analysis through this approach. In fact, the fully dynamic investigation of the 

tightening mechanism, which include a self-locking feature, and a pressure dependent 

CoF is considered the novelty of this thesis in the FEA literature. 

Whilst the benefits of the FEA study are clear, the experimental study remains 

fundamental to analyse the global behaviour of the joints, as it takes into account 

geometrical anomalies that in the FEA are not modelled. Also the repeatability of the 

joints should be assessed experimentally, in order to investigate the reliability of the 

fastener to be used in the aero-engine industry. 
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In conclusion, the FEA approach should be use as first step in the analysis and 

development of self-locking fasteners, and the experimental study to validate the 

results.  

 LIMITATIONS OF THE NEW LOCKING DESIGN & COATING 

REPLACEMENT 

In this study two different approaches have been investigated to minimise the removal 

of the silver from the crimped nuts, such as a coating replacement and a new self-

locking design. However, both approaches were found to have limitations and more 

analysis is needed in order to complete the studies. 

In the coating replacement study, the CoF in the threads was the key parameter to be 

examined. However, the surface torque was found to have an important effect in the 

test. In fact, in a preliminary test where washers were not used in the heat treatment 

test, the failure of the joints was experienced due to seizure in the seating face. Thus, 

more tests are needed in order to fully understand the influence of friction and seizure 

in the bearing surface. However, in the current platform the bearing friction is not 

measurable, thus a number of changes and new sensors can be implemented in order 

to measure and isolate this parameter.  

Additionally, a pin on disc experiment should be performed using the different coating 

alternatives at room temperature and after heat treatment, in order to better understand 

the tribological behaviour of the coatings. Thus, the relationship between the friction 

and contact pressure can also be used to simulate the tightening process using the FEA 

technique, similarly to the silver coating analysis performed in Section 4. 

Four different tests were performed on the alternative coatings in order to identify if 

there were any appropriate replacements for the silver. However, due to the shortage 

of testing samples, only a limited number of tests could be performed, and more 

repeats would be necessary in order to further validate the conclusions drawn. 

In the new locking design study, significant margins of improvement were seen with 

respect to the reduction of contact pressure in the threads and consequent silver 

removal. However, several limitations were found in this study and further 

investigation are needed. 

For example, in Section 6.2.4 the TPI increase analysis was explained and was 

excluded due to the higher stresses compared to the TPI decrease, generated during 

screwing. However, the contact distribution examination has latterly shown a more 
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uniform contact distribution when the joint is loaded, as shown by the comparison in 

Figure 7.1.  

 

a)   b)  

Figure 7.1: Contact Area: a) TPI Decrease and b) TPI Increase 

As shown in Figure 7.1, the area of the threads in contact when the end load is reached 

is significantly different for the two designs. In the TPI decrease analysis (Figure 

7.1a), the threads in contact are the first and the last four, with the three threads in the 

middle not in contact. However, the scenario seen for the TPI increase, with the first 

eight threads in contact (Figure 7.1b), is preferable as it is similar to the typical contact 

in the standard fasteners without the self-locking feature. Thus, further investigations 

should be undertaken in order to analyse this design, including FEA and experimental 

testing.    

As an initial trial of this thread cutting process, a single point cutting tool has been 

used. However, in a future mass production this method would not be feasible, and a 

quicker and easier method must be developed. A new tapping method could be 

achieved using two male thread taps, one with the standard 28 TPI thread, tapping 

from the bottom of the nut and the other one with the deformed TPI, tapping from the 

chimney. In fact, during the design process, the deformed threads were preferred in 

the end of the chimney rather than in the middle of the nut, in order to simplify future 

production. Furthermore, a small mating thread could be machined on top of the taps 

to avoid any mismatch, as shown in Figure 7.2. 

 

Contact 

No Contact 

Contact Check 
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Figure 7.2: Possible Quick Machining Device 

This option requires a bigger initial investment to develop the tools, but will ultimately 

reduce the machining time, which will be essential for a future industrial production.  

Additionally, in this thesis the ageing capabilities of the silver nuts and the alternative 

coatings were analysed in order to understand the ability to withstand the high 

temperature without any seizure occurring. The same test should therefore be 

performed for the new design. However, as previously explained, the contact stresses 

experienced with the new design are smaller, and the seizure is less likely to occur in 

any case. 

 FUTURE DIRECTIONS  

The two possible solutions investigated in this thesis can be classified as long term, 

as both approaches need further tests and validations, in order to be implemented in 

the aero-engine industry. However, due to the promising results of the small change 

in the locking design seen in Chapter 6, an improvement in the contact distribution 

can be investigated and achieved in order to minimise the silver removal in the short 

term. 

In Section 6.2.3 the FEA results of the new locking design showed a lower stress field 

compared to the currently used crimped nuts. From this, seizure and galling are less 

likely to occur and a new investigation eliminating the low friction coating should be 

performed. As the FEA analysis was found to be a reliable resource, new simple pin 

on flat tests should be used to define the pressure-friction dependency, using uncoated 

solution (lubricated only) or either different alternatives, such as another thin coating.  

However, in case of an uncoated solution, the CoF in the joint, would be as high as 

0.8 (Fox & Liang 2010), being a like on like couple as previously discussed in 



 DISCUSSION 

 

141 

 

Section 2.2.5. This effect would lead to the seizure of the joint (Robinson 2009), and 

would be likely experienced even with a new crimp design reducing the contact 

pressure. Additionally, the operating temperature will further promote seizure, as seen 

by the uncoated seating face. Hence, even if uncoated nuts are fine with cold re-uses, 

they are likely to fail after service. Thus, the most encouraging solution would be a 

change in the crimp design, which would prevent the in service coating removal, 

solving the issues related, as detailed in Section 2.4. Additionally, a protective thin 

coating would prevent the seizure and reduce the friction.  

Additionally, in this work 19 different coatings were tested based upon previous 

selection of the available technologies and materials. However, these coating methods 

are subject to continuing development, in terms of new technologies, new materials 

and related cost. In the coming years, new alternatives should therefore be available 

for this application, and in particular different alloys could be investigated, also using 

the combination of the three successful thin films, Chromium, Titanium and Nickel-

Titanium. 

In this work the anti-vibration capabilities of the new design were not tested. In order 

to prove the design or either the new coating, further investigations are needed, For 

example, the Junker test machine (Deutsches Institut für Normung 2004) as 

previously defined throughout this thesis is widely accepted to assess the locking 

properties of the fasteners, and will be further explained in Section 9.1. With these 

tests, the ability of the new design to prevent the self-loosening of the joint can be 

explored.  

Finally, in order to validate the alternative coatings, as previously discussed, the 

tribological behaviour should be fully understood, through pin on disc test at room 

temperature and after heat treatment, and the chemical performance with the aero-

engine materials investigated and documented in order to draw a final decision. 

Through this combination of tests a final long term decision point can be reached, and 

the approach of a modification of the crimp combined with a new coating rigorously 

explored and validated.   
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CHAPTER 8 

 CONCLUSIONS 

 INTRODUCTION 

In this thesis the tightening process of silver coated locking nuts was investigated in 

a novel way, using different approaches. An innovative test platform was developed 

to experimentally examine the nuts currently used in aero-engine applications, where 

the CoF in the threads was continuously monitored during the tightening process. 

Furthermore, the FEA approach was for the first time employed to analyse the contact 

between the threads, along with the pressure and the stresses due to the crimped 

section. Additionally, different alternatives were explored to investigate how the 

silver coating might be replaced or avoided entirely, through use of a variety of testing 

technique. Finally, an original design of self-locking nut was considered, utilising an 

axial deformation in the chimney of the nut, rather than the current radial crimp. In 

this section the conclusion of the areas investigated are discussed and summarised. 

 SILVER MECHANISM 

In Chapter 3 the silver coating was experimentally analysed, using a newly developed 

test platform. Coated joints were tested at room temperature and after a thermal cycle, 

and the frictional capabilities assessed. During the tightening, the CoF in the threads 

was found to be dependent on the clamping load, with a low value of approximately 

0.125 at end load of 11.6 kN. In the six cycle test, the friction was found to be 

consistent over the cycles, which is essential in the bolted joint design. 

Silver coated nuts were thermally aged at 760ºC, and the frictional properties assessed 

post cooling. Significant silver removal and transfer to nearby parts was observed 

during the test, with the CoF in the threads considerably increasing to 0.24. However, 

none of the tested joints experienced any failure. An additional test was also 

performed, to investigate the nano-hardness of the silver coating pre and post thermal 

cycle. A softening of the material was noticed, with the pre-aged hardness of 

1.9 ± 0.4 GPa dropping to 0.8 ±0.4 GPa after ageing. It is thought that annealing and 

the consequent removal of the silver, generate a like on like contact, causing an 

increase in the CoF. The relationship between the tightening speed and the CoF was 
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also investigated across a speed range of 0.5 rpm to 32 rpm. As seen in previous 

studies, the increase in tightening speed leads to an increase in the CoF. Thus, an 

assembly standard specifying the tightening speed is strongly recommended in order 

to estimate the torque required to reach the required load. 

The mechanism of the silver coating was fully understood using this approach, 

through the room temperature cycle, the thermal ageing and the nano-hardness test. 

For this reason, the same approach was used to investigate new silver alternatives, as 

performed in Chapter 5.  

Finally, a sinusoidal pattern in the self-locking torque during the wind-on and off was 

found. The cause was identified as arising due to the shape of the bolt being slightly 

oval, due to the process by which the threads are machined. Despite being within the 

tolerance of the bolt, the elliptical crimp interacts with the oval bolt, generating this 

unusual torque pattern.  

 FINITE ELEMENT INVESTIGATION 

In Chapter 4, a 3D dynamic FEA approach was adopted to analyse the contact 

mechanism in the elliptical crimped nut during the tightening, as it was found to be 

too complex to characterise using only the experimental data. The silver coating 

frictional properties were investigated using a pin on disc test, and implemented as an 

input to the model. A good agreement between the simulation and the experimental 

results was achieved, for example comparing the torque profiles. Thus, this approach 

can be employed to develop new self-locking methods, and analyse the performance 

of alternative coatings. 

The stress distribution was analysed during the whole simulation, and a concentrated 

stress was identified in the crimp section. As the stresses were higher than the yield 

strength of the Inconel, the threads plastically deformed. Additionally, by comparing 

the silver stripping in the nut and the contact pressure in the simulation, a contact 

pressure of approximately 750 MPa was identified as the cause of the removal of the 

silver, particularly in the crimped section of the nut.  

Furthermore, the reduction in torque experienced in the second tightening cycle was 

found to be caused by the increase of clearance in the joint, due to the removal and 

compression under load of the silver coating. The different equations used to calculate 

the CoF during the tightening were compared using FEA methods. With this method 

in fact, the friction can be calculated on a nodal basis, instead of using the total torque 
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and load. It was further highlighted that the CoF obtained in the experimental work 

did not show a true average, compared to the FEA results. However, the different 

methods converge to a single value at the end load, which is the most significant, 

despite the differences at low load due to the weaknesses of the calculation methods.   

The pin on disc test was used to provide an input to the FEA model for the CoF at 

various contact pressures. The relationship seen in the experimental test was also 

confirmed and the tribological mechanism of the silver investigated. Analysing the 

friction and the coating condition, three different contact behaviour phases were 

identified, such as the adhesion at low pressure, followed by a shearing of the silver 

and finally a progressive damage with an increase in friction. 

 ALTERNATIVE COATINGS 

In Chapter 5 a coating selection procedure was developed in order to investigate a 

replacement for the silver as a low coefficient coating in the threads for the elliptical 

self-locking nuts. Similar to the test performed with silver in Chapter 3, the alternative 

coatings were tested at room temperature and after heat treatment, assessing the CoF 

and the ageing behaviour. 

An initial selection of 19 metal coatings and paints were analysed, with pure 

Chromium, pure Titanium and multi-layer Nickel-Titanium found to fulfil the 

requirements. These three showed a consistent low CoF during re-uses at room 

temperature, such as 0.21 for the Chromium and 0.20 for the Titanium and 0.19 for 

the Nickel-Titanium. 

However, similarly to the silver analysed in Chapter 3, friction properties of the 

alternative coatings were found to be affected by the thermal ageing, at 760ºC for 50 

hours, increasing the thread friction post treatment, such as 0.50 for the Chromium, 

0.54 for the Titanium and 0.32 for the Nickel-Titanium. However, no seizure was 

experienced during the test, which is fundamental in the aero-engine industry.  

As the aim of this research was only to find a selection procedure of coatings, more 

repeats are needed to validate the results, along with different tests in order to assess 

the friction properties and the self-locking capabilities of the coatings, such as through 

the pin on disc test, previously done for the silver coating and the vibration test as 

further explained in Section 9.1. Additionally, further alloys can be employed in the 

analysis, such as manufacturing new coatings using the successful materials tested in 

this research. 
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Furthermore, investigating the limit torque to break the joints, a low level of thread 

yield was found to be likely to occur during the untightening, due to the high CoF 

after ageing, in the case of pure Chromium and pure Titanium. However, during the 

engine maintenance, after a thermal cycle, the joints are fully replaced. 

The cost of the raw materials and the technology used were found to have a significant 

effect in the coating selection. On the other hand, as the cost is continuing to reduce 

as coating processes improve, a future resume of the removed materials is not 

implausible. 

 ALTERNATIVE LOCKING DESIGN 

In Chapter 6 a new self-locking design, which is applied through an axial deformation 

at the chimney of the nut, was considered in order to replace the radially deformed 

nuts for aerospace applications, found to cause the high contact pressure in the 

crimped section. The new approach was firstly analysed with the FEA technique, and 

the best candidates machined through a CNC milling machine. Afterwards, the new 

designed nuts were tested and the results compared with the FEA results and the 

current radial design. 

The FEA was used to investigate the different solutions. As also seen in Chapter 4, 

the model shown similar results to the experiments, further confirming the capabilities 

of the FEA as an economical tool to investigate contact and stress problems. The 

elastic deformation was achieved in the new axial design, further validated by the 

experiments as multiple re-uses were performed. The CoF was found consistent 

during the test, a key parameter for the bolted joints designer, as the torque required 

to reach the end load is directly proportional. 

This study confirmed that the self-locking torque required for this application can be 

achieved with a tiny axial deformation in a small portion of the nut, which produces 

a resistant torque while screwing. However, more tests are needed to fully characterise 

the new design capabilities, such as the vibration test. For example, the transverse 

loading Junker test can be adopted to assess the anti-loosening capabilities. A further 

examination would be the heat treatment test, in order to analyse the capabilities in an 

engine environment. Additionally, during the experimental test, several joints failed 

the six cycle test, which can be solved in future. In fact, it is thought that a stiffer 

machining tool for cutting Inconel is required, along with a measuring technique to 

analyse the deformation and the depth in the threads. 
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Finally, the new axial design was compared to the typically used radially crimped nut, 

showing a reduction in the stripping process of the silver, further highlighting the 

lower pressure distribution in the threads. 
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CHAPTER 9 

 RECOMMENDATIONS FOR 

FURTHER WORK 

 VIBRATION TESTING 

In this work the self-locking torque was the only parameter used to establish the anti-

loosening capabilities of the bolted joints, and the anti-vibration capabilities were not 

taken into account. However, as a new locking method was identified as a possible 

replacement, a comparison with the current design with respect to the loosening 

capabilities was found to be necessary. As previously defined, among the currently 

available vibration test platforms, the Junker test machine (Junker 1969) is the most 

common used for a wide range of applications. Additional standard tests are also 

available for aerospace applications, such as the SAE standard (SAE 

International 2014), which similarly aims to evaluate the ability to prevent loosening 

by monitoring the reduction of the clamping load along with the vibration cycles. 

Comparing the two standards, a different type of loosening is considered. In fact in 

the Junker test, the loosening is caused by a pure transversal load, while in the SAE 

standard the loosening is caused by impact, as compared in Figure 9.1.  

a)  b)    

Figure 9.1: Junker Test (Eccles 2010) and SAE Vibration Test (SAE International 

2014) 

As shown in Figure 9.1a, in the Junker test the bolt clamps two plates, the bottom one 

is fully constrained to the base, while the top one is driven by a motor and an eccentric 

shaft, with the load cell clamped on between. On the other hand, in the SAE standard 

(Figure 9.1b) the bolt is tightened in a hollow cylinder, which is free to move in a slot. 

Interestingly, in the SAE test the relative displacement between the bolt head and the 

Direction of Vibration 
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nut is measured to indicate the untightening, while in the Junker test the clamping load 

is also monitored throughout the entire test. In fact, due to the shock loads in the SAE 

test, the load cell cannot withstand the impacts. A further difference between the two 

tests is the stiffness required in the Junker platform, due to the motor and the motor 

directly applying the transversal loads, while in the SAE test the speed is the most 

influential factor.  

Following these standards, a new platform is currently being developed following this 

thesis in the University of Sheffield, aiming to test the self-locking fasteners using 

both techniques. 

 

Figure 9.2: New Test Platform Being Developed in the University of Sheffield 

As shown in Figure 9.2, an electric motor (1) drives a lever arm (4) through an 

eccentric shaft (3). The lever arm is connected with a pin to a bar, which is connected 

to a linear slider (5), in order to only transmit horizontal load to the test specimen. 

Through another bar, the top plate (6) clamping the fastener (7) vibrates. The load cell 

is placed between the bolt and the bottom plate, which is fixed to the test rig table.  

A 7.5kW electric motor can rotate to a maximum speed of 1800 rpm, thus the test can 

be performed up to 30Hz. Additionally, the eccentric shaft can be easily changed in 

order to apply a different displacement. Simply changing the top plate and the joint 

sleeve, both the Junker and the SAE tests can be performed in the test rig.  

1 

3 

2 

7 

6 

5 



 RECOMMENDATIONS FOR FURTHER WORK 

 

149 

 

The aim of the test is to monitor the clamping load or the joint displacement with 

respect to the test cycles, in order to assess the locking torque of the silver coated nuts, 

and compare the results with the other locking designs. Additionally, a new locking 

design can be tested and improved and the influence of the initial preload in the self-

loosening process can be evaluated. 

 BEARING FACE FRICTION 

In Section 5 different coatings were analysed as potential replacements of the silver 

used in nuts for aero-engine applications. The seizure seen in the bearing surfaces 

during the experimental tests, particularly during the thermal cycle, showed the 

importance of investigating the contact and the coefficient of bearing friction in the 

joints. With the current platform configuration, a thrust bearing is used and the bearing 

torque subtracted during post-processing. However, the test rig can be updated to 

accommodate a further torque sensor, in order to measure the bearing torque 

continuously alongside the thread torque and clamping load. Thus, CoF in the threads 

and bearing friction can be plotted independently with respect to load, and the 

different coating alternatives compared. An ultimate objective of this analysis would 

be develop of a new coating method, using different coatings in the threads and in the 

bearing surface, depending on the contact behaviour. 
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APPENDIX B  Alternative Coating: Nano-Hardness 
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APPENDIX C Variable Pitch: FEA Results 

 

Candidate 2 (27.6 TPI for 4 threads) 

 

A) Von Mises Stresses at Zero Load B) Von Mises Stresses at End Load  

C) Contact Pressure at Zero Load  D) Contact Pressure at End Load  
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Candidate 3 (27.5 TPI for 3 threads) 

 

A) Von Mises Stresses at Zero Load

 

B) Von Mises Stresses at End Load 

 

C) Contact Pressure at Zero Load  D) Contact Pressure at End Load  

 

  



 APPENDICES 

 

163 

 

 

Candidate 4 (27.25 TPI for 2 threads) 

 

A) Von Mises Stresses at Zero Load B) Von Mises Stresses at End Load  

C) Contact Pressure at Zero Load  D) Contact Pressure at End Load  

 

 


