
Isotropic magnetic shielding in the classification of aromaticities for low-lying

electronic states of benzene and cyclobutadiene with an additional investigation

into non-orthogonal Boys localization

Peter Hearnshaw

MSc by Research

University of York

Chemistry

December 2016



Abstract

Quantum chemical calculations are performed to analyse the isotropic shielding over a fine

grid through benzene and cyclobutadiene in various electronic states in order to analyse aro-

maticity. The use of both two-dimensional contour plots and three-dimensional isovalue plots

allows unambiguous classification of aromaticity and antiaromaticity. The S0 and S2 states

of benzene and the S1 and T1 states of cyclobutadiene are found to be aromatic whilst the S1

and T1 states of benzene and the S0 and S2 states of cyclobutadiene are found to be antiaro-

matic. This was found to be in agreement with previous predictions based on NICSs and

magnetic susceptibility exaltations, but the current method was able to provide a far clearer

distinction between the aromatic and antiaromatic states. Furthermore a study was per-

formed to investigate the possibility of a non-orthogonal Boys localization procedure. Taking

the molecular orbitals of water as an example, an algorithm was implemented which scanned

a vast number of transformation matrices in an attempt to minimize the Boys functional with

no constraint on orthogonality. It was found that the value of the Boys functional could be in-

creased by removal of the orthogonality constraint but that critical problems arose concerning

orbitals becoming linearly dependent. Methods of solving the self-convergence problem for

non-orthogonal localized orbitals are suggested including the use of an alternative localization

functional.

2



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Quantum chemical theory 9

1.1 The development of quantum chemistry . . . . . . . . . . . . . . . . . . . . . 9

1.2 Schrödinger Equation and the wave function . . . . . . . . . . . . . . . . . . . 9

1.3 The application of quantum mechanical methods to chemistry . . . . . . . . . 11

1.4 Born Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Variational principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Many-particle wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Indistinguishability of particles . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 Slater determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.10 Matrix elements of determinants . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.11 Hartree-Fock approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.12 Basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.13 Self-consistent field procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.14 Configurational interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.15 CASSCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Isotropic magnetic shielding in the classification of aromaticities for low-

lying electronic states of benzene and cyclobutadiene 26

2.1 Introduction and literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 The nature of aromaticity . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 The use of NMR for characterization of aromaticity . . . . . . . . . . 27

2.1.3 Nucleus independent chemical shift (NICS) and other magnetic tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.4 Dissected NICSs and other NICSs indices . . . . . . . . . . . . . . . . 30

2.1.5 Isotropic shielding plots . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.6 Atoms in molecules (AIM) . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.7 Aromaticity of the low-lying excited states of benzene and cyclobuta-

diene through magnetic evidence . . . . . . . . . . . . . . . . . . . . . 33

3



2.1.8 Aromaticity of the low-lying excited states of benzene and cyclobuta-

diene through non-magnetic evidence . . . . . . . . . . . . . . . . . . . 34

2.2 Theory of magnetic shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Computational procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Isotropic shielding plots applied to the benzene S0 and cyclobutadiene

S0 states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Isotropic shielding plots applied to the benzene S1 and T1 states . . . 40

2.4.3 Isotropic shielding plots applied to the benzene S2 state . . . . . . . . 41

2.4.4 Isotropic shielding plots applied to the cyclobutadiene S1 and T1 states 44

2.4.5 Isotropic shielding plots applied to the cyclobutadiene S2 state . . . . 45

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Exploring the possibility of non-orthogonal Boys localization 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Orthogonal Boys localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Non-orthogonal Boys localization . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Algorithm and computational procedure . . . . . . . . . . . . . . . . . . . . . 51

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Run 1 : Balanced range of parameter values . . . . . . . . . . . . . . . 53

3.5.2 Run 2 : Contracted range of parameter values . . . . . . . . . . . . . 53

3.5.3 Run 3 : Extended range of parameter values . . . . . . . . . . . . . . 54

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A Appendix A 57

B Appendix B 81

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4



List of Figures

1 Experimental bond lengths in naphthalene. Bond lengths obtained from Ref [1]. 26

2 Hypothetical reactions to calculate the resonance energy for benzene. Image

obtained from Ref [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Structure of [18]annulene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Correlation between NICs and ASEs for a variety of five-membered heterocy-

cles. Image obtained from Ref [3]. . . . . . . . . . . . . . . . . . . . . . . . . 28

5 How the Pople and Double-Loop models predict a local magnetic field induced

by ring currents. Image obtained from Ref [4] . . . . . . . . . . . . . . . . . . 36

6 In-plane contour plots of the isotropic shielding for various electronic states of

benzene. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Through-atom perpendicular contour plots of the isotropic shielding for various

electronic states of benzene. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Three-dimensional isovalue plots of the isotropic shielding for various electronic

states of benzene with isovalue ±16. [5] . . . . . . . . . . . . . . . . . . . . . . 40

9 In-plane contour plots of the isotropic shielding for various electronic states of

cyclobutadiene. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

10 Through-atom perpendicular contour plots of the isotropic shielding for various

electronic states of cyclobutadiene. [5] . . . . . . . . . . . . . . . . . . . . . . . 43

11 Three-dimensional isovalue plots of the isotropic shielding for various electronic

states of cyclobutadiene with isovalue ±16. [5] . . . . . . . . . . . . . . . . . . 44

5



List of Tables

1 Set of possible parameter values for each run of the program . . . . . . . . . 53

2 First matrix in program output for Run 3, see Appendix A . . . . . . . . . . 54

6



Acknowledgements

I would like to thank Dr Peter Karadakov for teaching in all matters related to quantum

chemistry along with support and guidance throughout the masters year. Dr Kate Horner for

support in how to implement the calculations. Josh Kirsopp for thought-provoking conversa-

tions in all manner of topics relating to science and maths. William Drysdale for discussions

about programming and the fundamentals of quantum mechanics. And the other members

of the Karadakov group, Muntadar and Make, for their company and support.

I also owe a great deal of thanks to Hannah Harris, Clare Hearnshaw and Jennifer Hearn-

shaw for encouragement and support. Lastly to the Department of Chemistry at the Univer-

sity of York who have given me what I needed to complete the research.

7



Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University. All

sources are acknowledged as References. A journal article has been published using work

produced in this thesis, see Ref [5].

8



1 Quantum chemical theory

1.1 The development of quantum chemistry

Quantum chemistry, the study of electronic structure of molecules, is one of the most

important and intriging problems to which quantum mechanics can be applied. The theory

of quantum mechanics describes the behaviour of particularly small objects and was developed

at the first half of the 20th century. It became clear that this new theory could be of great

importance to chemistry, so much so that leading physicist Paul Dirac famously said “the

fundamental laws necessary for the mathematical treatment of a large part of physics and the

whole of chemistry are thus completely known”. This application was refined by a variety

of scientists over the 20th century including the Hartree-Fock approximation, the utilization

of an iterative algorithm developed by Roothaan and Hall, and the use of basis sets formed

from Gaussian functions.

1.2 Schrödinger Equation and the wave function

Towards the start of the 20th century, physicists came to the intriguing conclusion that

position and momentum of atomic-sized particles could not be simultaneously measured, in

direct contrast with conventional understanding. This was initially attributed to deficiencies

in the experimental design although it was later postulated that this was a fundamental

feature independent of how the measurement occurred. Indeed additional quantities were

found to exhibit this incompatibility such as the z-component of angular momentum and

the other two components of angular momentum for a particle. Pairs of observables such as

these became known as incompatible observables. The extent of the certainty one can have of

incompatible observables is described by the Heisenberg uncertainty principle, Eq. (1) shows

this for position and momentum. This was a principle which is distinctly quantum and goes

against a fundamental feature of classical mechanics which is the ability for a particle to have

both a definite momentum (and hence velocity) and a definite position simultaneously.

∆x∆p ≤ ~
2

(1)

where ∆x is the uncertainty in one-dimensional position, ∆p is uncertainty in one-dimensional

momentum and ~ is Planck’s constant divided by 2π.

Newton’s laws rely upon a knowledge of the position and velocity of an object simultane-

ously at any time. From these, along with details of the forces on the object, it is possible

to predict the future trajectory. The application of Newton’s laws could not be applied to

quantum particles because it was found that quantum particles cannot have simultaneous

values for position and velocity. Aside from the inability to use Newton’s laws to explain
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time evolution, a perhaps more fundamental problem in the development of quantum me-

chanics was to develop a suitable description of the state of a particle. In classical mechanics

the state of a particle could be fully described by the values of two variables, position and

momentum. In quantum mechanics it was found that the use of a wavefunction was required,

a complex-valued function of the translational degrees of freedom of the particle, usually

chosen to be the three Cartesian coordinates. The classical mechanical particle description

requires a two-dimensional vector, whereas the quantum mechanical wavefunction can in

general only be described by an infinite-dimensional vector. The vector spaces where wave-

functions lie are known as Hilbert spaces and are a particular type of infinite-dimensional

complex inner-product vector space.

The time-dependent Schrödinger equation is the solution to the problem of time-evolution

of quantum particles, the quantum mechanical analogue of the classical Newton’s second law.

If the wavefunction of a particle is known at a specific time, the time-dependent Schrödinger

equation can return the wavefunction of the particle for all later times. For additional detail

consult Ref [6].

The theory of quantum mechanics attributes a mathematical operator to every physical

observable. Particularly important operators include the Hamiltonian, which is the operator

for energy, and the position and momentum operators. These operators are Hermitian and

have an infinite number of eigenstates, which belong in the same vector space as wavefunctions

of the particle in question. Indeed the particle has the potential to be described by any one

of these eigenstates as its wavefunction. If the particle was to be described by a particular

eigenstate then the observable corresponding to that operator would have a definite value.

This definite value would be the eigenvalue corresponding to that eigenstate. This is a

fundamental postulate of quantum mechanics. The quantum concept of discrete energy

levels is described by this postulate. A quantum system can only ever have values for energy

which are also eigenvalues for the Hamiltonian of that system. The problem of finding

the eigenvalues and eigenstates of an operator is known as the eigenvalue problem for that

operator.

In cases where the system is not described by an eigenstate for the observable we are

interested in, experimental measurement could result in any one of a number of possible

values, which occur with different probabilities. However, it is possible to produce a quan-

tum average, known as an expectation value, which is the probability-weighted average of

these possible values. For a system which has a definite value for a certain observable, the

expectation value would be equal to this definite value. For other states the expectation

value would in general not be equal to a possible value for this observable and therefore is
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not a value which can actually be attained through a single measurement of the individual

quantum system.

1.3 The application of quantum mechanical methods to chemistry

Quantum chemistry is the field concerned with the quantum mechanical description of

electrons in atoms and molecules. It predominantly involves finding the eigenvalues and

eigenstates of the Hamiltonian, based upon the observation that molecules tend to belong to

these eigenstates and that quantities of interest can be derived from them. Although beyond

the scope of this discussion, these eigenvalues and eigenstates can also be used to describe

the time evolution of any wavefunction the system can be described by. For an atom or

molecule the eigenstates of the Hamiltonian are none other than the electronic states familiar

to chemists.

A complete solution to the Hamiltonian eigenvalue problem would produce the wavefunc-

tions for all possible electronic states. It is well known to chemists that the energy gap from

ground state to excited states is usually large for atoms and molecules, therefore often the

ground state alone gives an adequate representation of the system. For this reason it is com-

mon to focus efforts on the eigenvalue problem for the lowest energy eigenstate, investigating

higher electronic states only when they are required. A convenient method to do this uses

the variational principle, described later.

Before attempts can be made to solve the eigenvalue problem for the Hamiltonian, other-

wise known as the time-independent Schrödinger equation, it is first necessary to formulate

a suitable Hamiltonian to describe the system, be it an atom or a molecule.

The general form of a Hamiltonian in one dimension is

(− ~2

2m

d2

dx2
+ V (x))ψ(x) = Eψ(x) (2)

where m is the mass of the particle and V (x) is the potential the particle is subject to.

Extending the problem to three-dimensions and replacing the potential with that derived

from Coulomb’s law for a single electron in the field of a single proton, fixed at the origin,

we obtain

(− ~2

2m
∇2 − e2

4πε0r
)ψ(x, y, z) = Eψ(x, y, z) (3)

where ∇ is the three-dimensional Laplacian differential operator, ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, e is

the charge of an electron, ε0 is the vacuum permittivity constant, r is the distance between

electron and nucleus.
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This is the Hamiltonian of the hydrogen atom problem which can be solved exactly and

produces the familiar 1s, 2s, 2p, . . . orbitals which dominate chemical understanding of struc-

ture and reactions. These familiar orbitals are solutions to a particularly simple one-electron

Hamiltonian and their use to describe chemical species other than one-electron atoms is only

ever approximate. To solve for the electronic structure of systems with greater than one

electron it is necessary to develop a Hamiltonian which includes a far greater number of

terms.

1.4 Born Oppenheimer approximation

The vast difference in mass between electrons and nuclei results in the positions of nuclei be-

ing largely independent of the instantaneous movement of electrons. The Born-Oppenheimer

approximation simplifies the full Hamiltonian such that nuclei are treated as fixed point

charges as opposed to quantum particles whose coordinates would be needed to be included

into the wavefunction. The Hamiltonian and the wavefunction solutions are therefore depen-

dent only on electronic coordinates as variables, with the nuclear positions being parameters

only.

Solutions produced with this approximation are in very good agreement with those pro-

duced with the use of a more accurate Hamiltonian. Only in very high accuracy work is this

approximation generally relinquished, indeed it is likely that relativistic effects would also

need to be included in such work.

(−~2
N∑
i=1

∇2
i

2mi
+
∑
i<j

e2

4πε0rij
−

N∑
i=1

M∑
A=1

ZAe
2

4πε0RAi
)ψ(r1, . . . , rN ) = Eψ(r1, . . . , rN ) (4)

where rij is the distance between electron i and electron j, ZA is the integer charge of

nucleus A and RAi is the distance from nucleus A to electron i. ri represents (xi, yi, zi), a

vector containing the spatial coordinates of electron i. This is a convenient notation which

can be used for many-electron wavefunctions and is frequently used in literature.

1.5 Variational principle

Despite the Born-Oppenheimer simplification the Schrödinger equation requires additional

techniques to allow it to be solved. A particularly useful method, called the variational

method, replaces an eigenvalue problem with that of optimization of a functional. A func-

tional being a function whose value depends on one or more functions as opposed to variables.

It can readily be implemented to approximate the lowest energy eigenfunction although can

also be used to approximate other energy eigenfunctions with slight modifications. [6]
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Theorem. The functional F = 〈ψ|H|ψ〉
〈ψ|ψ〉 for |ψ〉 ∈ H has lower bound E0. Furthermore the

wavefunctions |ψ〉 such that H|ψ〉 = E0|ψ〉 are exactly those which minimize the functional

to its lower bound. H is the Hilbert space for the system, a complex inner-product vector

space.

Proof. It is first noted that the functional is invariant to scaling by c ∈ C. Let

|ψ′〉 = c|ψ〉 (5)

so that by taking the adjoint of the equation

〈ψ′| = c∗〈ψ| (6)

hence
〈ψ′|H|ψ′〉
〈ψ′|ψ′〉

=
|c|2〈ψ|H|ψ〉
|c|2〈ψ|ψ〉

=
〈ψ|H|ψ〉
〈ψ|ψ〉

(7)

Thus the value of the functional is invariant to scaling of the wavefunction. Without loss of

generality it is then possible to restrict the domain to the subset of normalized wavefunctions,

{|ψ〉 ∈ H such that 〈ψ|ψ〉 = 1}.

Since H is a Hermitian operator, H† = H, and according to the spectral theorem there

exists an orthonormal basis of the Hilbert space consisting of eigenfunctions of that operator.

We use this theorem and show that any state |ψ〉 ∈ H can be expanded in terms of energy

eigenfunctions. Let Ei be the eigenvalue corresponding to basis state |ψi〉 then

|ψ〉 =

inf∑
i=0

ci|ψi〉 (8)

where ci is the expansion coefficient for |ψi〉.

〈ψ|H|ψ〉
〈ψ|ψ〉

= 〈ψ|H|ψ〉 due to normalization (9)

〈ψ|H|ψ〉 =
inf∑
i=0

inf∑
j=0

c∗i cj〈ψi|H|ψj〉

=

inf∑
i=0

inf∑
j=0

c∗i cjEj〈ψi|ψj〉

=
inf∑
j=0

c∗jcjEj due to the orthogonality of basis states (10)

≥
inf∑
j=0

c∗jcjE0

= E0

inf∑
j=0

c∗jcj

= E0 by normalization of |ψ〉 and use of Eq. (8)
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For the second part of the theorem it is first noted that if |ψ〉 is such that H|ψ〉 = E0|ψ〉 then

〈ψ|H|ψ〉 = E0〈ψ|ψ〉 = E0 (11)

Conversely if E0 = 〈ψ|H|ψ〉 then Eq. (10) is an equality implying that cj = 0 for all j 6= 0

and c0 = 1 therefore by Eq. (8), |ψ〉 = |ψ0〉 hence H|ψ〉 = E0|ψ〉. This completes the proof

of the latter statement of the theorem.

�

The importance of the first statement of the theorem is that if the functional F is mini-

mized, the value it is minimized to will be the exact energy of the ground state. Furthermore

the latter statement of the theorem ensures that whenever the functional is globally minimized

(minimized over the entire Hilbert space), the wavefunction which allows this minimization

will be the ground state wavefunction.

In practice this theorem is applied in an approximate way. It is not possible to minimize

over the entire Hilbert space and therefore a subspace of this is used. In which case an assump-

tion is made whereby the minimum functional value within this subspace is an approximation

to E0 and the corresponding wavefunction is an approximation to the exact ground state. It

is found that E0 can often be approximated well by a carefully chosen subspace involving

antisymmetrized products of orbitals expanded in terms of atomic orbital-type functions,

described in a later section on basis sets.

1.6 Many-particle wavefunctions

One-dimensional problems describe a single particle free to move in only one dimension,

for example the particle in a one-dimensional box. Problems of this sort admit wavefunction

solutions which are functions of one variable. Due to the simplicity of such problems they

can often be solved exactly, as is the case for the particle in a box. When the system is

extended to allow the particle movement within three-dimensional space, the wavefunction

then becomes a function of three spatial variables.

When attempting to formulate and solve systems containing a number of particles, par-

ticle interaction generally prohibits the possibility to solve the system by use of separate

wavefunctions for each particle. Many-particle wavefunctions must therefore be produced.

Omitting spin, each particle would require three spatial variables to describe the wavefunc-

tion. Thus a wavefunction containing two particles in three-dimensional space would be a

function of six variables, (x1, y1, z1, x2, y2, z2), the former three concerning particle one, the

latter three, particle two. It is clear that for systems such as moderately sized molecules the
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Hamiltonian and wavefunction solutions could be dependent on hundreds of variables. These

discussions hold strictly for particles of zero spin unlike electrons. The number of variables

the wavefunctions depends upon is increased by one per particle by including spin.

1.7 Indistinguishability of particles

Consider the Born interpretation of a wavefunction in one dimension: ρ(x) = |ψ(x)|2 where

ρ(x) is the probability density function, prenormalized to 1 over the real line assuming ψ(x)

is normalized. This equation gives the relative probability of finding the electron at position

x. The Born interpretation can be extended to many particles in three-dimensions in which

case we form a probability density function such as ρ(x1, y1, z1, x2, y2, z2) for two particles.

This gives us the relative probability of finding particle one at (x1, y1, z1) and particle two

simultaneously at (x2, y2, z2), but only if the particles are distinguishable. If the particles are

indistinguishable for example electrons within a molecule, the probability is only formal since

it is impossible to say tell which particle is particle one and which is particle two. Therefore

it is impossible to state conclusively that particle one is at (x1, y1, z1) and particle two is

at (x2, y2, z2), whereas it is possible to state that there are two particles, one of which is at

(x1, y1, z1), the other at (x2, y2, z2).

For a correct wavefunction to be obtained it is imperative that indistinguishability of elec-

trons is respected, therefore the following formal probabilities must be equal.

ρ(x1, y1, z1, x2, y2, z2) = ρ(x2, y2, z2, x1, y1, z1) (12)

Therefore implying

|ψ(x1, y1, z1, x2, y2, z2)|2 = |ψ(x2, y2, z2, x1, y1, z1)|2 (13)

⇐⇒

ψ(x1, y1, z1, x2, y2, z2) = eiθψ(x2, y2, z2, x1, y1, z1) (14)

where θ is any real number.

There is no mathematical reason which states which theta is to be used. Indeed complicated

senarios could be imagined in which particles change theta with time or when placed in fields,

without contradicting any other principle of quantum mechanics. All experiments so far

have concluded that only values of theta corresponding to sign retention and sign inversion

are observed and that particles of a certain type only ever exhibit one or other of these

two behaviours. Particles obeying retention of wavefunction upon a single transposition of

particles are known as bosons, particles for which the wavefunction undergoes a sign inversion
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upon transpositions are known as fermions and this class includes the electron. For this reason

wavefunction solutions to the Schrödinger equation must include sign inversion upon particle

transposition, a feature known as antisymmetry, if they are to represent a system of electrons.

A determinant is a convenient structure for forming antisymmetric wavefunctions and will

be investigated further in the chapter on Slater determinants.

1.8 Spin

Discovered by the Stern-Gerlach experiment, spin is a purely quantum mechanical phe-

nomenon which electrons and many other subatomic particles possess. It is an angular

momentum not accounted for by orbital angular momentum which is the classical analogue

of angular momentum caused by circular motion around a nucleus. The mechanics of spin

are presented in Ref [6]. In order to form a valid wavefunction describing the system of par-

ticles, the spin of each electron must be included. For each electron there exist two possible

spin states, described mathematically by two spin functions α(ω), and β(ω) where ω is the

so-called spin variable. These obey the following normalization and orthogonality constraints.∫
α(ω)∗α(ω)dω = 1 (15)

∫
α(ω)∗β(ω)dω = 0 (16)

∫
β(ω)∗β(ω)dω = 1 (17)

Each particle will therefore contribute four variables to the wavefunction; three spatial and

one spin.

Earlier it was shown that the three spatial variables could be recorded as a single variable

labelled ri for electron i. Similarly for a set of four variables the symbol xi is used. xi

therefore represents (xi, yi, zi, ωi) and (ri, ωi).

1.9 Slater determinants

Two related properties which many-electron wavefunctions must have are the indistin-

guishability of particles and the closely related antisymmetry principle. Both are conveniently

satisfied by determinants, known in this context as Slater determinants. Unlike their use in

elementary matrix algebra, these are now applied to functions rather than to numbers.

ψ(x1, . . . , xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) . . . χN (x1)

...
. . .

...

χ1(xN ) . . . χN (xN )

∣∣∣∣∣∣∣∣∣ (18)

where χ(xi) is a single-electron function known as a spin orbital, for electron i.

16



A transposition of electron coordinates is equivalent to a transposition of rows, leading to

the regeneration of the determinant but with a negative sign. This is demonstrated by a

three electron Slater determinant but extends to N -electron Slater determinants and shows

that these wavefunctions satisfy the antisymmetry principle.

1√
6

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) χ3(x1)

χ1(x2) χ2(x2) χ3(x2)

χ1(x3) χ2(x3) χ3(x3)

∣∣∣∣∣∣∣∣∣ = − 1√
6

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) χ3(x1)

χ1(x3) χ2(x3) χ3(x3)

χ1(x2) χ2(x2) χ3(x2)

∣∣∣∣∣∣∣∣∣
The formula for an N-electron Slater determinant is shown in Eq. (19).

ψ(x1, . . . , xN ) =
1√
N !

∑
σ∈SN

sgn(σ)[χ1(xσ(1)) . . . χN (xσ(N))] (19)

where SN is the symmetric group of order N containing N ! permutations denoted σ, and

sgn(σ) is the signature of the permutation.

It can be seen that the determinant is a sum of N ! products of single-electron functions.

Indistinguishability of particles can be seen from how each single-electron function is occu-

pied by each electron equally through the summation.

The use of Slater determinants reduces the problem of forming an N -electron wavefunc-

tion into one of forming appropriate single-electron functions, with no further concern over

indistinguishability nor antisymmetry. It is common to interpret these spin orbitals as each

containing an electron and this has led to the successful field of molecular orbital theory. How-

ever this is a simplification because higher level calculations require additional modifications

on the wavefunction. One such modification involves the inclusion of additional determinants

into a single sum, however the simple interpretation of a single-electron function per electron

must be replaced by the concept of fractional orbital occupations.

Usually we seek spin orbitals to be both normalized and orthogonal with respect to the

typical single-particle function space inner product

∫
χi(x)∗χj(x)dx = δij (20)

where δij is the Kronecker delta defined as

δij = 1 if i = j

δij = 0 if i 6= j.

Orthogonality of spin orbitals is not essential, but is usually imposed to make matrix el-

ements between determinants simpler and to retain the simple normalization constant 1√
N !
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multiplying the determinant. Expressions for matrix elements between determinants which

are not necessarily orthogonal are presented in Ref [7].

In forming Slater determinant wavefunctions it is usually assumed we have a set of K

spin orbitals, N of which are occupied χ1, χ2, . . . , χN and K − N of which are unoccupied

χN+1, χN+2, . . . , χK . Often the indicies of the occupied orbitals are denoted by the letters

a, b, c, . . . and unoccupied by the letters r, s, t, . . . .

Spatial orbitals are single-particle functions of three spatial coordinates only, therefore are

functions of ri as opposed to xi. A spatial orbital can be made into a spin orbital by multi-

plication of a spin function, of which there are only two possibilities for single electrons.

χ(x) = ψ(r)α(ω)

χ(x) = ψ(r)β(ω)

Most ground state wavefunctions for stable molecules are spin singlets and are represented

by the totally symmetric irreducible representation. Such wavefunctions are most readily

formed by a restricted closed shell assumption. The term restricted implies that wavefunc-

tions are built up through pairs of spin orbitals, each with the same spatial orbital but

with different spin functions. The molecular orbital interpretation states that each molecular

orbital (corresponding to spatial orbitals) can contain two electrons of differing spin. The

restricted assumption is largely accurate for most closed shell species. The chemical intuition

of electrons appearing as pairs is largely reproduced in the accuracy of the restricted as-

sumption. An unrestricted wavefunction is also built up using pairs of spin orbitals, however

the spatial functions corresponding to each spin within a spin orbitals pair are permitted to

differ to a small degree. The term closed shell means that no spin orbital appears without a

spin-paired counterpart, therefore no electrons are left unpaired.

1.10 Matrix elements of determinants

The exact ground state wavefunction has energy E0, however by the variational theorem

all approximate wavefunctions will have a higher energy. It is not possible to find the ground

state wavefunction exactly so approximations must be made. The use of single-determinantal

theory, wavefunctions composed of just one Slater determinant, is one such approximation.

Approximate wavefunctions are not eigenfunctions of the Hamiltonian, therefore such states

cannot strictly be said to have an unique well-defined energy. The problem is bypassed by

using the quantum average of the energy of a state, otherwise called the energy expectation

value, 〈ψ|H|ψ〉. From this point on, the distinction between energy and energy expectation

value is relaxed, referring to the latter by the term energy.
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The problem of approximating the ground state wavefunction becomes one of varying

parameters in the trial wavefunction in order to minimize the energy. If this minimizing

value is close to E0 it can be assumed that the corresponding wavefunction will be similar

to the exact ground state. Calculating the energy of a Slater determinant is one of a more

general set of problems of finding matrix elements between these determinants. The results

are known as the Slater-Condon rules and are presented below without proof (adapted from

Ref [8]).

|ψ〉 represents a normalized Slater determinant.

|ψra〉 represents a normalized Slater determinant which differs from the reference Slater de-

terminant, |ψ〉, by replacement of spin orbital χa of the occupied set with χr of the

unoccupied set.

|ψrsab〉 represents a normalized Slater determinant which differs from the reference Slater de-

terminant, |ψ〉, by replacement of spin orbitals χa and χb of the occupied set with χr

and χs of the unoccupied set.

〈ψ|ψra〉 = 0 assuming a 6= r

|r〉 is the Dirac notation representation of χr(x1)

|rs〉 is the Dirac notation representation of χr(x1)χs(x2)

h(i) = − ~2
2mi
∇2
i −

M∑
A=1

ZAe
2

4πε0RAi

g(i, j) = e2

4πε0rij

Assuming the one-electron operator is of the form O1 =
N∑
i=1

h(i) we have that

〈ψ|O1|ψ〉 =
N∑
i=1
〈i|h|i〉

〈ψ|O1|ψra〉 = 〈a|h|r〉

〈ψ|O1|ψrsab〉 = 0

Assuming the two-electron operator is of the form O2 =
N∑
i=1

N∑
j=i+1

g(i, j) we have that

〈ψ|O2|ψ〉 =
N∑
i=1

N∑
j=i+1

(〈ij|g|ij〉 − 〈ij|g|ji〉)

〈ψ|O2|ψra〉 =
N∑
i=1

(〈ai|g|ri〉 − 〈ai|g|ir〉)

〈ψ|O2|ψrsab〉 = 〈ab|g|rs〉 − 〈ab|g|sr〉
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The Hamiltonian is a sum of one and two electron operators.

H =
N∑
i=1

h(i) +
N∑
i=1

N∑
j=i+1

g(i, j) (21)

This leads to a formula, Eq.(23), for E, the expectation value of the Hamiltonian for the

Slater determinant wavefunction.

E = 〈ψ|H|ψ〉 = 〈ψ|
N∑
i=1

h(i) +
N∑
i=1

N∑
j=i+1

g(i, j)|ψ〉 (22)

=

N∑
i=1

〈i|h|i〉+

N∑
i=1

N∑
j=i+1

(〈ij|g|ij〉 − 〈ij|g|ji〉) (23)

When the many-electron wavefunction is formulated as a Slater determinant consisting of spin

functions the matrix elements between many-electron wavefunctions are reduced to matrix

elements of one and two-electron operators.

1.11 Hartree-Fock approach

In the previous sections, the problem of forming a suitable many-electron wavefunction

was reduced to one of finding a set of single-electron functions known as the spin orbitals.

We now proceed to discuss how a suitable set of spin orbitals can be generated thus enabling

an approximate solution to be obtained.

The Hartree-Fock approach is a method to produce spin orbitals so that the energy of a

single Slater determinant is minimized. These spin orbitals are generated as eigenfunctions

of a single-electron operator known as the Fock operator. This operator is artificial insofar as

it does not represent any physical observable. The derivation of the Hartree-Fock equation

involves the use of the mathematical theory of functional analysis and is not presented here.

However the Fock operator is constructed so that its lowest N eigenfunctions can be used

in a single Slater determinant wavefunction which minimizes the energy. In the limit of an

exact solution to the Fock operator eigenvalue problem, the Slater determinant produced is

said to achieve the Hartree-Fock limit and represents the lowest energy which a single Slater

determinantal wavefunction can achieve. The Hartree-Fock equation is presented in Eq. (24).

f(x1)χa(x1) = εaχa(x1) (24)

where f(x) is the Fock operator and χa, an eigenfunction, is a spin orbital.

A significant problem with any single-determinantal wavefunction is the lack of full con-

sideration of electron correlation. Electron correlation is the phenomenon where the position
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and motion of each electron is affected by the position and motion of the other electrons

in the system. In particular although electrons of parallel spin are correlated, in so called

exchange correlation, there is a lack of correlation between antiparallel spins. This defect is

often minimal for qualitative descriptions of simple electronic states, but for moderate and

higher level work further correlation effects must be included beyond a Hartree-Fock wave-

function. These methods frequently use multiple determinants, for example configurational

interaction (CI) and complete active-space self-consistent field (CASSCF), both discussed

later.

1.12 Basis sets

The Hartree-Fock equation cannot be solved directly and is most commonly solved approx-

imately using a basis set. In quantum chemistry a basis set is a finite set of three-dimensional

spatial functions usually representing atomic orbitals. The span of a basis set consisting of

K-functions is a K-dimensional vector space within which the Hartree-Fock equations can

be solved using techniques of linear algebra. The solutions will be linear combinations of

the K basis functions, each of which being an approximation to successive eigenfunctions of

the Fock operator. A greater number of basis functions means that the equation is solved

over a larger vector space and the solutions can better approximate the exact Fock operator

eigenfunctions. A wiser choice of basis functions means that a better approximation to these

exact eigenfunctions can be produced from a smaller vector space.

It is found that the solutions to the Hartree-Fock equation closely resemble linear combi-

nations of atomic orbitals and for this reason the basis set chosen usually involves a series of

functions which closely resemble atomic orbitals. Atomic orbitals themselves behave as e−ar

as r → ∞, belonging to a class called Slater-type orbitals (STOs), Eq. (25) is an example

of a 1s STO. When solving for matrix elements between Slater determinants, STOs produce

two-electron integrals which are very difficult to solve. These orbitals are usually approx-

imated by short linear combinations of so-called Gaussian-type orbitals (GTOs) involving

different values of α, known as the orbital exponent. Gaussian-type orbitals have one and

two-electron integrals which can be solved analytically rather than necessarily through nu-

merical techniques, therefore these integrals are considerably less computationally expensive

to calculate.

φSTO1s (ζ, r −RA) = (
ζ3

π
)
1
2 exp(−ζ|r −RA|) (25)

where ζ is the Slater orbital exponent.

φGTO1s (α, r −RA) = (
2α

π
)
3
4 exp(−α|r −RA|2) (26)

where α is the Gaussian orbital exponent.
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There are many possible choices of basis sets but a common choice are known as Pople

basis sets. As an illustration the basis set denoted 6-31G* is described. Pople basis sets

are characterized by the capital letter G in the name of this basis set. This indicates that

the basis set involves linear combinations of Gaussian functions to approximate Slater-type

orbitals, rather than using the STOs directly. The hyphen indicates this is a split-valence

basis set, meaning that inner shell orbitals are represented by single basis functions, whereas

valence orbitals are represented by two or more slightly different basis functions. This reflects

the fact that inner shell orbitals change very little upon bonding, whereas valence orbitals

can change significantly, therefore the calculation permits greater variational flexibility to

the valence orbitals by including more of them into the basis set. The initial number in

the 6-31G* basis set indicates that the inner shell orbitals are each represented by one basis

function which is a linear combination of six Gaussian functions. The two numbers after the

hyphen indicate that each valence orbital is represented by two basis functions (a so-called

double zeta basis set), one of which is a linear combination of three Gaussian functions, the

other a single Gaussian function. Finally the asterisk after the letter G indicates the inclusion

of polarization functions, additional basis functions representing the next set of unoccupied

d-type orbitals on atoms beyond hydrogen. If a further asterisk is added, 6-31G**, additional

basis functions would be requested which represent p-type orbitals on hydrogen.

1.13 Self-consistent field procedure

The finite-dimensional vector space over which the equation will be solved is defined once a

basis set has been specified. The Hartree-Fock equation can then be solved using techniques

of linear algebra. A series of matrices must be defined before the matrix form of the Hartree-

Fock equation can be stated. This presentation closely follows Ref [8].

C is the coefficient matrix, a square matrix where each column represents the components of

the basis functions for each orbital. When the equation has been solved, C will have columns

being the eigenvectors of the Fock matrix. These will correspond to the linear combinations

of basis functions which make up the orbitals required for the Slater determinant.

F (C) is the Fock matrix which depends on the coefficient matrix C. The matrix is defined

through its matrix elements.

Fµλ = 〈φµ|f |φλ〉

where f is the Fock operator adapted to act on spatial, as opposed to spin orbitals.

S is known as the overlap matrix and reflects the fact that the basis functions are not

generally orthogonal. This is most immediately clear by noting that we have basis functions
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positioned, in general, on different nuclei around the molecules hence these functions are

expected to have non-zero overlap integrals which vary dependent on nuclear positions. The

matrix is defined through its matrix elements.

Sµλ = 〈φµ|φλ〉

ε is a diagonal matrix containing the eigenvalues of matrix F for each of the eigenvectors

within the coefficient matrix C.

The Hartree-Fock equation

f(x1)χa(x1) = εaχa(x1) (24)

can be transformed to act solely within a finite-dimensional vector space

F (C)C = SCε (27)

representing a set of linear equations known as the Roothaan equations. This is a generalized

eigenvalue problem for the Fock and overlap matrices. The term ‘generalized’ is used because

of the inclusion of the overlap matrix S.

The dependance of the Fock matrix on the coefficient matrix results in these equations

having to be solved iteratively. The correct Fock matrix requires knowledge of the final

coefficient matrix in order to define it, however until the problem has been solved it is not

possible to know this matrix. In practice a guess at the coefficient matrix is obtained in

order to form an approximate Fock matrix for which we can obtain a new, usually far better,

approximation to the coefficient matrix via solving the Roothaan equations. The procedure

is repeated until the Roothaan equations achieve self-consistency; the coefficient matrix used

in the formation of the Fock matrix differs negligibly from the coefficient matrix obtained via

the generalized eigenvalue problem for this Fock matrix.

1.14 Configurational interaction

As described earlier a significant drawback to the Hartree-Fock approach is the lack of

correlation between electrons with antiparallel spins, the inclusion of which can generally

produce wavefunctions of far greater accuracy. Methods which improve upon the Hartree-

Fock approach are known as post-Hartree-Fock methods. Configurational interaction (CI) is

one of the most conceptually simple post-Hartree-Fock methods.
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Configurational interaction is a many-determinantal theory which is applied once an ini-

tial Hartree-Fock wavefunction has been formed. The resulting wavefunction is a linear

combination of so-called configurations, single determinants or short linear combinations of

determinants known as spin-adapted configurations which have well-defined spin states. The

configurations themselves can be used in linear combinations and the coefficients optimized

in order to minimize the energy. In other words once a set of configurations are defined, their

span produces a finite-dimensional vector space over which we can optimize the energy. The

greater the number of configurations, the greater the dimension of this vector space and the

more variational flexibility is available for energy minimization.

Configurations are formed through so-called substituted determinants. A k-tuply substi-

tuted determinant involves a replacement of k occupied spin orbitals in the ground state

Hartree-Fock wavefunction with k unoccupied spin orbitals.

The notations for singly and doubly substituted determinants are presented below, based

on a reference Slater determinant |ψ〉.

|ψ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) . . . χa(x1) χb(x1) . . . χN (x1)

. . . . . . . . . . . . . . . . . .

χ1(xN ) . . . χa(xN ) χb(xN ) . . . χN (xN )

∣∣∣∣∣∣∣∣∣ (28)

|ψra〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) . . . χr(x1) χb(x1) . . . χN (x1)

. . . . . . . . . . . . . . . . . .

χ1(xN ) . . . χr(xN ) χb(xN ) . . . χN (xN )

∣∣∣∣∣∣∣∣∣ (29)

|ψrsab〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) . . . χr(x1) χs(x1) . . . χN (x1)

. . . . . . . . . . . . . . . . . .

χ1(xN ) . . . χr(xN ) χs(xN ) . . . χN (xN )

∣∣∣∣∣∣∣∣∣ (30)

A significant drawback to the use of configurational interaction in practical applications is

the lack of size consistency. Size consistency is a situation where, assuming the level of the CI

method is fixed (to what degree the determinants are substituted), different accuracies are

found for larger and smaller molecules. For example this manifests itself when the method

is applied to two non-interacting molecules separated by a vast distance where an energy

is produced which is not equal to the sum of those produced from each of the molecules

separately, at the same level of CI. All practical uses of configurational interaction suffer

severely from this problem.
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1.15 CASSCF

Complete active-space self-consistent field (CASSCF) is a post-Hartree-Fock method fre-

quently used to describe excited states as well as molecular complexes during bond formation

and cleavage. To apply the method one must specify a number of orbitals and a number of

electrons to be included in the active-space. These are typically the valence orbitals most

important in the chemistry of the structure. The notation for this is frequently written as

CASSCF[n,m] where n is the number of active-space electrons and m is the number of active-

space orbitals. As an example benzene would typically be applied through a CASSCF[6,6]

procedure where the six highest energy valence electrons would be placed within the three

highest energy bonding orbitals and the three lowest energy antibonding orbitals. Within the

active space the procedure considers all Slater determinants which can be formed from the

n electrons in the m orbitals in any order. An energy optimization is then performed using

either Slater determinants directly, or more commonly combining these into spin-adapted

configurations in the same manner as in configurational interaction. The advantage of us-

ing spin-adapted configurations is that those of the incorrect spin can be discarded before

performing the optimization, reducing computational cost.

The method belongs to a class known as multi-configurational self-consistent field (MCSCF)

where both the orbital coefficients and the configuration coefficients are varied simultaneously.

This is as opposed to both the Hartree-Fock method, where only the orbital coefficients are

variational parameters, and configurational interaction where only the configuration coeffi-

cients are varied. Details are presented in Ref [8].
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2 Isotropic magnetic shielding in the classification of aromatic-

ities for low-lying electronic states of benzene and cyclobu-

tadiene

2.1 Introduction and literature

2.1.1 The nature of aromaticity

The elusive concept of aromaticity is difficult to define, but is indicated by a wide range

of properties often leading to dramatic structural reorganization and chemical behaviour in

aromatic molecules in contrast to similar non-aromatic analogues. Despite having many indi-

cators, no one in particular is an ideal measure of aromaticity, and similarly antiaromaticity.

Reactivity criteria were the first used, indeed the unusual chemical behaviour of aromatic

compounds led scientists to discover the concept of aromaticity in the first place. Michael

Faraday was the first to characterize benzene, and noticed that despite the composition be-

ing one of an unsaturated hydrocarbon, its reactivity was very much unlike that typical for

unsaturated hydrocarbons.

Figure 1: Experimental

bond lengths in naphtha-

lene. Bond lengths ob-

tained from Ref [1].

Bond length equalization, and equivalently a heightening of

symmetry, is a common feature observed in the formation of

the large majority of aromatic compounds. This is most clearly

seen when comparing benzene with 1,3,5-hexatriene. Unfortu-

nately bond length equalization cannot be used as a criterion

for determining aromaticity due to the presence of aromatic

compounds which have very little bond equalization. This is

significant in asymmetric aromatic systems such as substituted

benzenes, which lose bond equalization with respect to benzene

itself, without necessarily becoming any less aromatic. Another example is naphthalene which

has large bond length variations but is still very much aromatic, see Figure 1.

The converse is also true because there exist non-aromatic molecules with bond equaliza-

tion. Borazine, for example, has bond equalization despite the electrons being predominantly

localized on the electronegative nitrogen atoms. Due to this weighting of the electron density

on certain atoms, a significant π-ring current cannot be sustained and hence the molecule is

only very weakly aromatic. [9]

For these reasons, energetic, rather than geometric, criteria are more commonly used to

characterize aromaticity. Examples are aromatic stabilization energies (ASEs) and resonance

energies (REs) which involve the calculation of the energy difference involved in hypothetical
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reactions designed to isolate the energy involved in moving from individual isolated π-systems

to ring π-systems. There are often many such hypothetical reactions available to calculate

the energy of aromaticity, even for simple examples such as benzene in Figure 2.

Figure 2: Hypothetical reactions to calculate the reso-

nance energy for benzene. Image obtained from Ref [2].

As this simple example indicates,

there can be a significant variation

in the energies calculated due to

the influence of other competing ef-

fects. Most significant are hyper-

conjugation and ring strain. Re-

action scheme 1 has hyperconjuga-

tion between the double bond and

adjacent C-H bonds which will artificially stabilize the reactants with respect to the products

leading to a lower reaction energy value. Efforts can be made to standardize the types of

reactions used to calculate ASEs and REs. The examples in Figure 2 are REs because they

consider the complete energy of delocalization from separate double bonds. ASEs already

start with conjugated systems, but consider the energy of forming a delocalized cycle out of

these.

2.1.2 The use of NMR for characterization of aromaticity

Figure 3: Structure of [18]annulene.

The use of NMR is the most popular experimental

technique to determine the aromaticity of a system. Pro-

tons on benzene produce a 1H NMR chemical shift of

7.3 ppm, in contrast to those bonded to the double bond

of cyclohexene which have a shift of 5.6 ppm. Further-

more the opposite effect is seen within aromatic rings

where a strong upfield shift is observed. Protons of

[18]annulene for example resonate at 9.3 ppm outside

the ring and -3.0 ppm within the ring. The 2.0 ppm in-

crease for protons outside the ring compared to benzene

can in-part be attributed to additional π-electrons. It is

also interesting to note that the effects of aromaticity on

protons inside the ring is far greater than that on those outside, as shown by the 3.7 ppm

downfield displacement for outer protons as compared to cyclohexene contrasted with the

8.6 ppm upfield displacement for inner protons again compared to cyclohexene.
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2.1.3 Nucleus independent chemical shift (NICS) and other magnetic techniques

NMR chemical shifts of various nuclei, both within and outside a ring system provide a

common method to evaluate aromaticity, however it is intriguing to ask what could be deduced

from magnetic shieldings at positions in space where the molecule does not hold NMR active

nuclei. The magnetic shielding and the perturbation of the magnetic field which corresponds

to it can be determined at any position in space around the molecule. The use of NMR being

merely an experimental method of sampling the value of the isotropic shielding value at the

positions of NMR active nuclei. The utility of NMR shifts for exploration of aromaticity

provides sufficient justification to investigate how shielding might behave throughout the

molecule, for instance at the centre of a delocalized ring.

Schleyer and coworkers introduced the use of nucleus independent chemical shifts (NICSs)

in 1996 as a computational aromaticity probe. [3] These are defined as the negative of calcu-

lated absolute isotropic shielding values, −σiso(r), where the isotropic shielding is defined as

one-third the trace of the shielding tensor.

σiso(r) =
1

3
(σxx + σyy + σzz) (31)

The NICS value tends to zero as the position where it is evaluated tends to infinite distance

from the molecule. This means that all values can be given relative to zero and no reference

molecule is required, nor any reaction schemes such as those needed for the evaluation of

ASEs and REs.

Figure 4: Correlation between NICs

and ASEs for a variety of five-

membered heterocycles. Image ob-

tained from Ref [3].

Originally the NICS value for a given ring was de-

termined at the non-weighted mean of positions of

heavy atoms of the ring. With this definition, now

frequently referred to as NICS(0), a strong positive

correlation was determined against ASEs for a va-

riety of five membered cycles with π-systems, see

Figure 4.

Within a small number of years after the tech-

nique was introduced, it had found applications in

the determination of aromaticity in a wide range of

interesting molecules. These included rings containing mixtures of double and triple bonds [10],

closo-boranes [11] and heteroaromatic bowl-shaped molecules [12].
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The use of the NICSs technique is not limited to the NICS(0) index and it was found that

other NICSs indices were better at describing relative aromaticity of molecules, as described

in the following section.

Concerns have been frequently raised over the lack of experimental evidence supporting

off-nuclear shieldings and whether any quantity derived solely through theory has any place

in the discussion of molecular properties and characteristics. There are two possible coun-

terarguments which can be used to justify the use of off-nuclear shieldings. One argument is

that the isotropic shielding can be used to calculate the chemical shift at NMR active nuclei,

hence for these particular positions the isotropic shielding can indeed be compared with ex-

perimental values. If the calculation produced these chemical shifts to high accuracy, this is

strong justification, although by no means a proof, that the isotropic shielding at off-nuclear

positions will be accurate too if there was a method to experimentally determine these. The

other argument is that in some cases direct measurement of the isotropic shielding is possible.

Experiments have been devised which allow the determination of shielding at positions of

interest other than on the positions of nuclei of the molecule. Although these have limited

scope as routine methods for aromaticity characterization, they help to confirm the use of

theoretical off-nuclear shieldings. A disadvantage of such a technique is that the inclusion

of additional molecular species into the original molecule will perturb its wavefunction and

hence will affect all derived quantities, including magnetic shieldings.

Li+ ions frequently bind to the faces of delocalized ring systems. 7Li NMR can then be used

to determine the extent of the ring current and hence the aromaticity of the ring. [2] In most

lithium-containing compounds, lithium is present as an ion, hence its NMR shift changes very

little with different chemical situations. The exception is when bound to delocalized rings

since the changes in shielding are now due to ring currents as opposed to purely via chemical

bonding. Cyclopentadienyl lithium (LiCp) has a 7Li shift of -8.60 ppm, whose upfield shift

reflects the aromaticity of the cyclopentadienyl anion. [13]

Saunders and coworkers showed how atoms and small molecules could be experimentally

inserted into fullerenes. [14] The NMR shifts could then be measured and compared with the

relevant NICS values as a method to experimentally verify the NICSs technique. Bühl and

Hirsch analysed NICS and NMR results for 3He placed at the centre of various fullerenes and

found good agreement. [15] Although Li+ is a cation and therefore likely to strongly modify the

electronic structure of the original molecule, a helium atom will also perturb the wavefunction

of the original molecule, although to a lesser degree. This is because, despite being chemically

inert it still introduces additional electrons into the system.
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Before the NICS technique, magnetic susceptibility exaltations (χ) were frequently used

to measure aromaticity. They are based on the difference in the magnetic susceptibility

of the molecule and that of the sum of its atoms. In non-aromatic molecules it is usually

quite accurate to sum contributions from each atom to find the value for the molecule as a

whole. By considering the difference between the molecular magnetic susceptibility and the

assembled magnetic susceptibility produces the magnetic susceptibility exaltation. Significant

diatropic (negative) exaltations are an indication of aromaticity, likewise paratropic (positive)

exaltations indicate antiaromaticity.

The magnetic susceptibility exaltation produces a value for the entire molecule unlike

the NICS technique which produces values for every ring individually. It is useful to be

able to analyse separate rings within a molecule. It also reflects the understanding that

aromaticity is not a molecular property rather a property of rings within the molecule. A

further noteworthy difference between the two techniques is that NICS values change only

moderately with increases in ring size unlike exaltations which have an area2 dependance.

2.1.4 Dissected NICSs and other NICSs indices

Schleyer and coworkers introduced the first NICS index, [3] later known as NICS(0), in 1996

but shortly after recommended the use of NICSs indices calculated at a position with some

displacement perpendicular to the ring. [16] One such index which has become popular is the

NICS(1) index, defined as σ(r)iso at 1 Å above the centre of the ring. The reason for this

recommendation was because NICS(1) has a greater contribution from the π-ring current

effects and less from local influences on the magnetic shielding.

Pursuing this idea further, Schleyer and coworkers investigated the use of dissected NICS

in an attempt to decompose NICS values into π, σ and CH contributions using a localization

procedure. [4] Localized molecular orbitals (LMOs) were produced from the canonical molec-

ular orbitals using a localization procedure which permitted reliable π − σ separation. The

NICS value was then partitioned into contributions from all LMOs and the sum of contri-

butions from all π-LMOs lead to a CC(π) value, those from C-C σ-LMOs led to a CC(σ)

value and those from C-H σ LMOs lead to a CH value. To remove influence from local effects

not important in aromaticity determination, the CC(π) values could be compared for various

rings.

On going from NICS(0) to NICS(1) it was found that the CC(σ) and CH values reduced

greatly whereas the CC(π) remained fairly large. This indicates that NICS(1) includes a

greater proportion of CC(π) than NICS(0) hence supporting the recommendation of the use

of NICS(1) if a detailed dissected NICS procedure is not within the scope of a given compu-
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tational study. Despite the utility of NICS(1), the decision to evaluate NICS at precisely 1 Å

above the ring is fairly arbitrary and better comparisons between differently sized rings could

be achieved through modifying the distance used dependent on the ring area, for example.

A more natural alternative presents itself with certain molecules, such as benzene, where

the NICS value reaches a maximum in magnitude as the distance is traversed up the z-axis.

Comparing these maximum values for different rings could be more successful than fixing a

distance of 1 Å and doing all comparisons with respect to this.

A significant problem with the dissected NICS technique arises when it is applied to non-

planar molecules. A vital feature of the localization procedure used is that it must successfully

produce π − σ separation and a popular choice is the Pipek-Mezey procedure. [17] Without

π − σ separation it is unclear whether an orbital contribution to the NICS value should

contribute to CC(π), CC(σ) or CH. For this reason the commonly used Boys localization

procedure [18] cannot be applied for dissected NICS. Unfortunately π − σ separation of the

Pipek-Mezey procedure can only reliably be produced when the ring is strictly planar.

NICS values are usually concerned with the isotropic shielding which is the trace of the

shielding tensor. However since delocalized π-systems are comprised of pz orbitals it is

frequently considered that the zz-component of the shielding tensor is the component of

greatest importance in aromaticity evaluation. This index is denoted NICSzz and is frequently

calculated either at the ring centre or 1 Å above. In a study of correlations between a

variety of NICS indices and ASEs of five-membered rings, NICS(0)πzz was found to have the

strongest correlation. [19] However NICS(1)zz was also found to have a strong correlation and

was recommended as a more readily computable alternative.

2.1.5 Isotropic shielding plots

Wolinski performed ab initio calculations to produce plots of magnetic shielding along axes

through molecules by placing a neutron at regular positions along the axes. [20] The magnetic

shielding values were calculated for the neutron, hence probing the magnetic shielding field

at positions other than at the nuclei of the molecule in question. The work built on that

by Johnson and Bovey who calculated NMR shifts at nuclei using a free electron model,

but also hinted at the potential importance of off-nuclear magnetic shielding constants. [21]

Indeed a significant amount of detail was observed including features which could not have

been deduced by experiment alone. The positions of nuclei with non-zero nuclear magnetic

spin being the only positions where it is currently possible to evaluate the magnetic shielding

experimentally. Wolinski suggested that this was too restrictive and suggested off-nuclear

shieldings could be of great use chemically. The work was limited to atoms and small linear

molecules and determination of the isotropic shielding was done only along linear axes.
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Kleinpeter and coworkers analysed the anisotropic effect in various functional groups such

as double bonds and carbonyls through plots of the isotropic shielding. [22] The use of the

anisotropic effect is important in conformational analysis where protons can be identified as

being close to other functional groups, hence suitable conformations for the molecule can

be predicted. They were able to categorize functional groups based on the intensity of the

anisotropic effect and identify trends. Furthermore, from an analysis on the anisotropic effect

on C-C bonds, it was found that the difference in chemical shift between equatorial and axial

protons of cyclohexane was not predominantly due to the C-C anisotropy. [23]

Later Kleinpeter and coworkers formalized the procedure of calculating isotropic shielding

at grid points throughout molecules to produce so-called iso-chemical shielding surfaces (IC-

SSs). [24] These were initially used to visually distinguish between aromatic and antiaromatic

molecules. ICSSs were applied to many such relevant molecules including arenes, mono-

substituted benzenes, ferrocene and annulenes. Forming such plots allowed comparison of

the isotropic shielding values at all positions within a plane or cuboid, rather than just at po-

sitions frequently chosen to evaluate NICS. This allowed aromaticity to be determined by the

characteristic shapes and patterns formed by these shielding values for aromatic and antiaro-

matic rings. They found that the 1H NMR shifts calculated through their magnetic shielding

data were largely in good agreement with experimental values therefore strengthening the

validity of their ICSSs.

Karadakov and Horner also published contour and three-dimensional plots of isotropic

shieldings sampled at various positions in order to evaluate aromaticity and antiaromaticity

of molecules. [25] However, these plots used magnetic shielding sampled using a finer grid,

0.05 Å against 0.5 Å, making obvious the subtler details not seen in the ICSS plots. Their work

on benzene and cyclobutadiene presented striking differences in magnetic shielding between

these molecules (explained in detail later). [25] The technique was successfully employed to

study the relative aromaticities of furan, pyrrole and thiophene where it reproduced the

well-established order of aromaticity by careful study of how the isotropic shielding differs

around the molecule. [26] Previous results through NICS alone, albeit at a smaller basis set of

6-31+G*, produced the wrong ordering of aromaticity for these molecules. [3]

In a recent paper the isotropic shielding plots were compared to the electron density plots

for butadiene and showed significantly more detail. [27] Similar but non-identical bonds, such

as C-H bonds in butadiene, could be readily distinguished which was not found to be the

case with the electron density plots. In the electron density plots, bonds were represented

by a drop in electron density between atoms whereas in the magnetic shielding plots bonds

32



could be seen as entities in themselves, being represented by tangible increases in magnetic

shielding.

2.1.6 Atoms in molecules (AIM)

Bader developed the theory of Atoms in Molecules (AIM) in order to investigate molecular

structure and reactivity by viewing the electron density as a scalar field thereby allowing

manipulations frequently used in vector calculus and topology. [28] The theory was developed

because attempts to interpret the electron charge density directly are difficult, especially due

to the extreme values of charge density at the nuclei. The indirect method developed by

Bader involves using the charge density as the potential for a gradient vector field. Bonds

are defined via so called bond paths which connect nuclei and represent a path followed by

gradient vectors where, at every point along this path, the electron density is a maximum in

the plane perpendicular to the path. An atom in AIM is defined as a nucleus along with a

so called basin, a subset of space surrounded by a surface for which there is zero flux of the

gradient vector field.

The approach indicates that a gradient vector field formed from a scalar field can often

indicate subtle details about the scalar field which are not immediately obvious. The isotropic

shielding, being itself a scalar field, could also be analyzed in this way to further interpret

the contour and three-dimensional plots obtained via quantum chemical calculations.

2.1.7 Aromaticity of the low-lying excited states of benzene and cyclobutadiene

through magnetic evidence

Usings a variety of NICS indices, magnetic susceptibilities and carbon and proton shieldings

Karadakov analysed the S0, T1 and S1 states of benzene and the S0, T1, S1 and S2 states of

square and rectangular cyclobutadiene in order to deduce their aromaticities. [29] In this paper

CASSCF was used to include nondynamic correlation, a term for the electron correlation

which is deficient in a single determinant wavefunction due to the electronic state not being

well approximated by a single determinant. The following NICS indices were used: NICS(0),

NICS(1), NICS(0)zz and NICS(1)zz. No dissected NICS indices were used due to the lack, at

the time of publication, of codes being available for dissected NICS using the CASSCF-GIAO

technique.

The excited states of benzene appeared to have clearly categorizable aromaticities from

NICS(0) data. The T1 and S1 states had NICS(0) values of 39.63 ppm and 45.81 ppm

respectably, contrasting with the value of -8.17 ppm for the S0 state. This suggests that the

T1 and S1 states are antiaromatic, in contrast to the well known aromaticity of the S0 state.

Furthermore Karadakov went on to suggest that due to the relative magnitudes, the S1 state
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is a little more antiaromatic than the T1 state. Similar conclusions can be drawn from the

magnetic susceptibilities which were found to be -59.33 ppm cm3 mol−1 for the S0 state, with

-6.16 and 2.43 for the T1 and S1 respectively, using the same units. The small magnitude of

the magnetic susceptibilites for these latter two states suggest they antiaromatic. No data

were published in this paper on the S2 state of benzene.

The S2 state of square cyclobutadiene produced a NICS(0) values of 22.10 ppm, and in

comparison to the S0 state, having a value of 36.41 ppm, it was concluded by Karadakov

that the S2 state was also antiaromatic but less so than the ground state. The T1 and S1

states of square cyclobutadiene produced the values -3.74 ppm and 3.44 ppm respectively

hence are more troublesome to categorized as aromatic or antiaromatic. However it was

argued that since both values are closer to the NICS(0) value for S0 benzene than that of

S0 square cyclobutadiene, these two states are probably aromatic. The S1 state being a rare

example of a state with a positive NICS(0) value despite being most probably aromatic. In

a similar line of reasoning to the T1 and S1 states of benzene, it was predicted that the S1

state of cyclobutadiene is likely to be less aromatic than the T1 state. This prediction is

also supported by magnetic susceptibility data. The T1 state has a value of -32.16 ppm

cm3 mol−1 which is more negative than that of the S1 state at -28.78 ppm cm3 mol−1. The

similarity of the states T1 and S1, seen in both benzene and cyclobutadiene, is a phenomenon

also observed in cycloocta-1,3,5,7-tetraene (COT) where it was also found that these states

have the opposite aromaticity to the ground state. [30]

Kataoka calculated magnetic susceptibilities for all singlet and triplet excited states of

benzene up to S3 and T3.
[31] It was concluded that the S1 state, due to a large paramagnetism

(a large negative magnetic susceptibility) is antiaromatic, as is the T1 state. However the S2

state is strongly diamagnetic and therefore is predicted to be aromatic. These results are very

similar to those found by Karadakov, see above. Furthermore it is interesting to compare

the values produced by the S1 and T1 states to attempt to predict relative aromaticity. The

magnetic susceptibility value, as a unitless ratio of that for ground state benzene, for the

S1 state is -4.79 and that for T1 is -2.00 potentially indicating that the S1 state is more

antiaromatic than the T1 state.

2.1.8 Aromaticity of the low-lying excited states of benzene and cyclobutadiene

through non-magnetic evidence

The use of well-established rules can provide strong indications that certain electronic states

are likely to be aromatic or antiaromatic. Hückels rules are applied to ground states only and

confirm the well known aromaticity of S0 benzene and antiaromaticity of S0 cyclobutadiene.
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This is due to benzene having 4n+2 π-electrons, where n=1, and cyclobutadiene having 4n

π-electrons, again where n=1.

Baird’s rules can be applied in a similar manner to the lowest triplet state, and are de-

fined as being the reversal of Hückels rules. [32] Therefore they indicate that the T1 state of

cyclobutadiene is aromatic due to the presence of 4n π-electrons, and that the T1 state of

benzene is antiaromatic due to the presence of 4n+2 π-electrons. This latter prediction is

supported by experimental evidence where the T1 state of benzene is shown to be unstable

in the D6h geometry with respect to a structure having D2h symmetry. [33]

Soncini and Fowler introduced a set of rules based on ring current analyses which can be

seen to build upon those introduced by Baird. [34] The rules state that annulenes with 4n+2 π-

electrons in their lowest energy states with even total spin, and the annulenes of 4π-electrons

in their lowest energy states of odd total spin will be aromatic. For the states of relevance to

this text, these rules would indicate that the S0 (S=0, hence even total spin) state of benzene

would be aromatic, which is well known, and that the T1 (S=1, hence odd total spin) state of

cyclobutadiene would be aromatic too, which is already indicated by Bairds rules. However

for analyses of electronic states of higher spin for these molecules the rules could produce

interesting predictions, for instance that the lowest quintet state (S=2, even total spin) of

benzene is also expected to be aromatic.

Fratev performed ab initio calculations on various excited states of cyclobutadiene, in-

cluding all those analysed in this work. [35] Geometry optimizations found a D2h geometry

for the S0 state, as expected, but found square D4h geometries for all S1, S2 and T1 states.

Although the use of bond length equalization as a measure of aromaticity is considered unreli-

able, Fratev uses this as a primary criterion for aromaticity and therefore goes on to conclude

that all these three low-lying excited states are not only less antiaromatic than the ground

state, but suggests that they should most probably be aromatic.

2.2 Theory of magnetic shielding

When a circular wire is subjected to a magnetic field, current flows around the ring in

order to create an induced magnetic field which opposes the external one, in a principle

known as Lenz’s law. A similar concept can be used to explain the production of an induced

field by molecular rings with delocalized π-electrons. One indication that the molecular case

is different from the macroscopic case is the peculiar behaviour that rings in the ground

state containing 4π-electrons, hence antiaromatic, form paratropic currents which support

the external field, whereas those containing 4n+2 π-electrons form diatropic currents which

oppose the external field.
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The paramagnetic currents are stronger than diamagnetic currents due to the dependence

on their strengths on the HOMO-LUMO gap. Small HOMO-LUMO gaps are a well known

feature of antiaromaticity, indeed these are smaller than those of aromatic molecules. [36] This

is seen in practise where the NICS(0) values for antiaromatic molecules are generally much

greater in magnitude than those of aromatic molecules.

Figure 5: How the Pople and Double-Loop

models predict a local magnetic field induced

by ring currents. Image obtained from Ref [4]

In aromatic molecules the ring current

produces a diamagnetic induced magnetic

field which opposes the external field within

the ring, but supports it outside. This is

called the Pople model [37] and is illustrated

in Figure 5. The additional magnetic field

experienced by protons outside the ring leads

to a downfield shift since the nuclei recieve

the vector sum of the external and induced

magnetic fields. For protons within the ring

the induced field opposes the external one

leading to an upfield shift for these nuclei.

The Pople model was improved upon by assuming that there were two rings of electrons, one

above and one below the plane of the molecule, known as the double-loop model. [21;38] This

was a refinement on the Pople model which improved its quantitative use. From analysis of

π molecular orbitals it is immediately clear that electron density due to π-electrons is highest

not in the plane, where the contribution is in fact zero, but above and below the plane. It

was later suggested on the basis of NICSπ values, that this model was inaccurate and that

analyses produced no evidence for the presence of ring currents. [39]

2.3 Computational procedure

All calculations presented in this work used the CASSCF-GIAO method available in Dalton

2016.0 [40] utilizing the MCSCF-GIAO methodology. [41;42]

CASSCF was chosen to include nondynamic correlation which was demonstrated to be

important in determining accurate NICS values for antiaromatic states such as cyclobutadi-

ene. [29] In contrast it was found that inclusion of electron correlation was far less significant

in analysing the ground state aromaticity of benzene. Choosing a “6 in 6” CASSCF for ben-

zene and a “4 in 4” CASSCF for cyclobutadiene allows the calculations to be done at a very

similar qualitatively correct level of theory for both structures. The molecular geometries

used in this paper are identical to those used in Ref [29].
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Ghost atoms are structures, like atoms, which can be placed throughout a molecule within

quantum chemistry software. They don’t affect the wavefunction but can be used to probe

quantities derived from the wavefunction at their locations. These were placed at all positions

where the shielding tensors were to be calculated. These were placed in grids with a regular

0.05 Å spacing in both the two-dimensional contour plots and the three-dimensional isosurface

plots. The square regions in the molecular plane was chosen to be 7 Å x 7 Å for benzene

and 5 Å x 5 Å for cyclobutadiene with the perpendicular axis being 5 Å long for all three-

dimensional plots for both molecules. The symmetry of the systems meant that only a portion

of the space through a molecule needed to have isotropic shielding values calculated. Take

a contour plot of benzene through the molecular plane as an example. Only one of the four

quadrants needs to have isotropic shielding calculated as, by symmetry, the others will be

identical. Therefore a region of 3.5 Å x 3.5 Å must be analysed and at a spacing of 0.05 Å

this produced 712 ghost atoms. The values for this portion could then be reflected to the

other four regions using a custom built FORTRAN program.

From work on the relative aromaticities of thiophene, pyrrole and furan, Karadakov and

Horner concluded that the calculation of NICS benefited greatly by use of an extended basis

set. [26] This was consided more important that the inclusion of dynamical electron correlation

as introduced by the use of MP2 rather than HF. They came to this conclusion in part because

the original NICS analysis of these molecules by Schleyer and coworkers [3] using HF-GIAO/6-

31+G* failed to account for the well-established order of aromaticity whereas the use of the

HF-GIAO/6-311++G(d,p) was able to reproduce this order. The use of MP2 rather than

HF produced little improvement.

2.4 Results

2.4.1 Isotropic shielding plots applied to the benzene S0 and cyclobutadiene S0

states

Benzene S0 and cyclobutadiene S0 isotropic shielding data were originally produced and

analysed by Karadakov and Horner in the CASSCF[6,6]/6-311++G(d,p) method and ba-

sis set producing contour plots and three-dimensional plots. [25] In the present work, using

CASSCF[6,6]/6-311++G(2d,2p), plots were generated which were almost indistinguishable

to those of this previous paper, therefore the same interpretation can be applied and is sum-

marized as follows. The three-dimensional isovalue plots and two-dimensional contour plots

produced in this work can be found in Figures 6 to 11.

Stark differences were observed in the overall appearence of the isotropic magentic shield-

ing plots for the benzene S0 and cyclobutadiene S0, commonly seen as archetypal aromatic
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and antiaromatic states respectively. Benzene S0 was found to have a smooth torus-shaped

shielding region passing through all carbon atoms in the ring, with additional protrusions

of shielding reaching out towards the hydrogen atoms. Cyclobutadiene S0, however, showed

a large dumbell shaped region of deshielding through the centre of the ring, extending out

perpendicular to the ring. Shielding regions were still observed encompassing the C-H bonds

and the central regions of the C-C bonds, however these are punctured by the dumbell region

which extends towards the deshielded regions around the carbon atoms.

The centre of the benzene S0 ring was found to be only slightly positive, whereas the

centre of the cyclobutadiene S0 ring was strongly negative. This is due to the dumbell shape

region of antiaromatic systems leading to far greater deshielding compared to the extent

of shielding observed in aromatic systems, since there is no analogue of the dumbell shape

for aromatic systems. Because antiaromaticity weakens the C-C bonds of the ring it was

found that shielding regions between adjacent carbons were smaller in volume and reached

lower maxima in cyclobutadiene S0. It was also found that these regions have their maxima

displaced towards the outside of the ring. The shielded regions around C-H bonds of the two

states also highlight differences. These external bonds have weaker shielding in benzene S0

than in cyclobutadiene S0 indicating that the C-H bonds in the former might be weaker than

the latter.

Characteristic features of the isotropic shielding plots for benzene S0 and cyclobutadiene

S0, as archetypal aromatic and antiaromatic states respectively, can be used to deduce aro-

maticity and antiaromaticity in the other low-lying electronic states for these two molecules,

and it is with this objective that the following results are presented and discussed.

38



Figure 6: In-plane contour plots of the isotropic shielding for various electronic states of benzene. [5]

Figure 7: Through-atom perpendicular contour plots of the isotropic shielding for various electronic

states of benzene. [5]
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Figure 8: Three-dimensional isovalue plots of the isotropic shielding for various electronic states of

benzene with isovalue ±16. [5]

2.4.2 Isotropic shielding plots applied to the benzene S1 and T1 states

The S1 and T1 states of benzene show a strong resemblence with antiaromatic cyclobu-

tadiene S0 having characteristic dumbell-shaped regions of deshielding present. The three-

dimensional plots indicate how all three states have the vast majority of the ring region en-

compassed by deshielding with spurs connecting this region to the deshielding regions around

each carbon. Furthermore a band of shielding can be seen to surround the ring encompassing

the C-H bonds. Under the isovalue of ±16 in the three-dimensional plots both S1 and T1

states of benzene have very similar-looking shielding regions whereas this isovalue is too high

to allow a continuous band to appear in the plot for S0 cyclobutadiene.

Characteristic of antiaromatic states, the in-plane contour plots for the S1 and T1 states

show lop-sided C-C bond shielded regions, whose maxima are displaced towards the outside

of the ring. The maxima observed are 22.69 ppm for the S1 state, 25.33 ppm for the T1 state

and these contrast to 24.38 ppm for S0 cyclobutadiene. Also noticable from these plots is the

extent of deshielding at the centre, reaching values which are far greater in magnitude, albeit
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of opposite sign, than those at the centre of aromatic states such as benzene. At the centre

NICS(0) values of 45.81 ppm and 39.63 ppm are reached for the S1 and T1 states respectively.

At first sight the T1 state plots appear very similar to those of S1. Both are clearly

antiaromatic, however analysis indicates that the S1 state is marginally more antiaromatic

than the T1 state. From the three-dimensional plots it can be seen that the deshielding

dumbell is greater in the S1 state than in the T1 state. The in-plane plots exhibit a greater

number of contour lines showing a greater build-up of deshielding at the centre of the ring

for the S1 state, which is further indicated by the NICS(0) values. The maximum C-C bond

shielding of 25.33 ppm in the T1 state compared to that of 22.69 ppm for the S1 state indicates

a lower level of antiaromaticity because there is less destabilization of the bonding framework.

The ordering of the antiaromaticities of these two states is in agreement with both the NICS

and magnetic susceptibility analyses reported in a previous section.

2.4.3 Isotropic shielding plots applied to the benzene S2 state

The S2 state shows a large region of shielding through the molecule, with the absence of

the deshielded dumbell characteristic of antiaromaticity. However the three-dimensional plots

indicate that this region is very different in appearance from that of the S0 state, being more

dome-shaped rather than a torus going through the carbons atoms of the ring. It is however

observed that when the isovalue for this plot is raised to over ±40 ppm the torus shape is

observed. In this plot the central shielding region does not connect to the regions for each

C-H bond, unlike the three-dimensional S0 plot.

The in-plane contour plot shows that the shielding region reaches a minimum in magni-

tude at the centre of the ring, unlike the antiaromatic states which reach their maxima of

deshielding at the centre point. However the NICS(0) value of -39.08 ppm is still large in

magnitude. It is usually observed that the NICS(0) values for aromatic states are negative

and small in magnitude, but those of antiaromatic states are positive and large in magni-

tude. This state is unusual for having a NICS(0) value whose magnitude is large enough for

it to be comparable to that of antiaromatic states, despite being negative hence indicating

aromaticity. A further indication of aromaticity from the in-plane contour plot is offered by

the C-C bond shielding regions which are not triangular-shaped as they are in antiaromatic

states. Nor are the maxima of these regions displaced towards the exterior of the ring, in

fact they are markedly displaced inwards unlike any other electronic state analysed in this

text. Furthermore these shielding regions reach a value of 59.74 ppm, far greater than that

for benzene S0 of 45.07 ppm.
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The perpendicular contour plot shows just how much more shielding the S2 state has than

the S0. However the main features are still present and further confirm this state as aromatic.

These include the presence of small regions of especially strong shielding above and below

each carbon tilted towards the centre. These can be seen to be especially strong for the S2

state compared to S0 benzene.
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Figure 9: In-plane contour plots of the isotropic shielding for various electronic states of cyclobutadi-

ene. [5]

Figure 10: Through-atom perpendicular contour plots of the isotropic shielding for various electronic

states of cyclobutadiene. [5]
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Figure 11: Three-dimensional isovalue plots of the isotropic shielding for various electronic states of

cyclobutadiene with isovalue ±16. [5]

2.4.4 Isotropic shielding plots applied to the cyclobutadiene S1 and T1 states

The S1 and T1 states of cyclobutadiene appear very similar to the S0 state of benzene, all

of which feature a torus-shaped region of shielding encompassing the atoms of the ring. At

the ring-centre of these states the isotropic shielding goes down to a value of low magnitude,

in direct contrast with the large values present in antiaromatic states. In both the S1 and

T1 states of cyclobutadiene and the S0 state of benzene, the deshielding regions around each

carbon are still observed and present themselves as punctures in the torus-shaped shielding

regions. It can be seen from the three-dimensional plots that this puncturing is greatest in the

S1 state followed by the T1 state of cyclobutadiene and least in the S0 state of benzene. From

the in-plane plots it can be seen that the C-C shielded regions are all roughly rectangular

however marginally more lop-sided than the S0 state of benzene. From these C-C regions

it can also be seen that the maxima of the S1 and T1 states are displaced away from the

midpoints between carbons, towards the exterior of the ring. The maxima of the shielding

regions in S0 benzene, in contrast, are directly at the midpoints between carbons. This feature

44



could be a result of the C-C bonds in cyclobutadiene being marginally more bent due to the

tight bond angles.

An interesting feature of the S1 state is that its NICS(0) value is positive, with a value of

3.44 ppm, despite the general appearance of the isotropic shielding being one of aromaticity.

The in-plane contour plot shows this slight deshielding indicated by a pale red region at the

centre of the molecule. Karadakov had previously assigned this state as aromatic due to

the NICS(0) value being far closer to that of benzene than cyclobutadiene, as discussed in

a previous section. The out-of-plane contour plots demonstrate no signs of a dumbell-shape

for this small deshielded region. Through these plots it can be seen how minor this feature

is compared to other features which unequivalently assign this state as aromatic.

Many features indicate the greater aromaticity of the T1 state. The out-of-plane contour

plots show that the shielding above and below the ring is greater for the T1 state and that

additional shielding is observed just above and below each carbon atom, tilted towards the

ring, for the T1 state. Larger maxima of 39.14 ppm for the C-C shielded regions is observed

for the T1 state in contrast to the value of 35.34 ppm for the equivalent maxima of the

S1 state. The higher NICS(0) value of 3.44 ppm of the S1 state compared to the value of

-3.74 ppm for the T1 state is another indication of weaker aromaticity. On the basis of these

features and the additional puncturing of the shielded region for the S1 state it is concluded

that there is a stronger aromaticity in the T1 state.

2.4.5 Isotropic shielding plots applied to the cyclobutadiene S2 state

The three-dimensional plots readily allow identification of the S2 state as antiaromatic due

to the immediate similarities with the S0 plot. The deshielding dumbell at the centre of the

ring is far weaker than that of the S0 state, such that at the isovalue of ±16 merging of

this region with those around each carbon is not observed. It can also be seen that the C-H

shielded regions present themselves as regions of smaller volume for the S2 state in comparison

with the S0 state.

The in-plane plots show that the centre point of the ring is a local maximum in the

magnitude of the deshielding reaching a NICS(0) value of 22.10 ppm in comparison with

the value of larger magnitude of 36.41 ppm for the S0 state. The C-C bonding regions also

indicate that the S2 state is of weaker antiaromaticity compared to the S0 state. Maxima

of these regions reach 27.97 ppm in the S2 state compared to 24.38 ppm for the S0 state,

indicating stronger C-C bonds. It is immediately clear that the deshielded regions around

each carbon are far greater deshielded for this state compared to the S0 state and indeed

any other state analysed in this text. This is an unusual feature because, for the features
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previously mentioned, the S2 state is considered less antiaromatic. Deshielded regions are

observed around all sp2 and sp carbons but no explanation for why this is has so far been

put forward.

Perpendicular contour plots show how the central region has the correct shape for antiaro-

matic states but of far lower magnitude than that of the S0 state. These plots also show how

the C-H shielded regions reach maxima of 27.30 ppm, far lower than the equivalent values

for other antiaromatic states: 34.62 ppm for S0 cyclobutadiene, 37.03 ppm and 37.18 ppm

for T1 and S1 benzene respectively. It is considered a feature of antiaromatic states to have

greater shielding around the C-H bonds than for aromatic states. However the S2 state has

a value which is lower and more comparable to the values observed in aromatic states. One

additional reason why this state could be considered unusual for antiaromatic states is that

ab initio calculations have concluded that this excited state has a D4h geometry, as mentioned

earlier.

2.5 Conclusion

The results of this computational study conclude the S0, S2 states of benzene and the S1, T1

states of cyclobutadiene are aromatic and the S1, T1 states of benzene and the S0, S2 states of

cyclobutadiene are antiaromatic. Several features were identified as markers for aromaticity

and antiaromaticity hence allowing unambiguous classification. Aromaticity was marked by

rectangular shielding regions for bonds within the ring, shielding positive and low magnitude

at the centre of the ring and weak shielding regions for external bonds. Antiaromaticity was

marked by weak lop-sided shielding regions for bonds within the ring, large dumbell-shaped

region of deshielding extending above and below the molecular plane and strong shielding

regions for external bonds.

Interestingly it was found that for both benzene and cyclobutadiene the first singlet excited

state and the first triplet state were remarkably similar. It was found that the characteristic

markers of aromaticity and antiaromaticity could build up sufficient evidence to state that in

benzene the S1 state was more antiaromatic than the T1 state and in cyclobutadiene the T1

state was more aromatic than the S1 state. Previous classification by Karadakov had already

reported this, but by noting several features in the plots of this research it was possible to

state this more conclusively. The plots for the second singlet excited state for both molecules

indicated that these had the same classification of aromatic or antiaromatic as the ground

state, but differed in intensity. The S2 state of benzene was considered more aromatic than

the ground state largely because of a far greater shielding at the ring centre. The S2 state

of cyclobutadiene was unusual for a number of reasons described above, not least for its very
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intense deshielded regions around each carbon. However enough evidence was present to

classify this state as less antiaromatic than the ground state.

The singlet state alternation of aromaticity and antiaromaticity seen in these two molecules

was also observed in cycloocta-1,3,5,7-tetraene (COT). [30] From this limited set of states for

these three molecules it can be suggested that this may also be a property of annulenes in

general or indeed other aromatic and antiaromatic molecules.
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3 Exploring the possibility of non-orthogonal Boys localiza-

tion

3.1 Introduction

Localized orbitals offer an alternative and equally valid electronic description to the use

of traditional molecular orbitals, known as the canonical orbitals, which are produced in

the Hartree-Fock method. Whereas canonical orbitals tend to be largely delocalized over

the molecule, localized orbitals are spatially contracted. Both types of orbital have been

helpful in reconciling quantum chemistry with traditional chemical concepts. For example

canonical orbitals can be used to describe the relative probabilities of atoms within an allyl

cation reacting with a nucleophile. An analysis of the low-lying LUMO shows that this or-

bital is composed primarily of orbitals on the carbons at either end of the molecule therefore

predicting that nucleophilic attack occurs predominantly at these positions. [43] However for

molecular systems without a great deal of electron delocalization, delocalized molecular or-

bitals can be difficult to interpret. For such systems localization offers an alternative which is

often more similar to conventional understanding of molecules. For instance localized orbitals

frequently resemble bonds and lone pairs. Furthermore since these orbitals depend predomi-

nantly on the local surroundings they can be used to describe the electronic structure of small

sections of large molecules which are too big to be subjected to full ab initio calculations.

Localization typically occurs after a Hartree-Fock procedure when the canonical orbitals are

known. Most localization procedures have associated functionals. Functionals are functions

which have other functions as their arguments. In this case a localization functional depends

on all the orbitals, which themselves are functions of position. By modifying the orbitals the

value of the functional can be changed. Localization procedures involve optimizing functionals

to maxima or minima by linear transformations of the canonical orbitals. In the case of the

Boys functional, described later, the functional measures the sum of the spatial extensions of

the orbitals hence is minimized to ensure localization.

Localization algorithms such as the Boys localization procedure include constraints to en-

sure orthogonality of resultant orbitals. This is used to ensure the orbitals remain linearly

independent and are unable to converge into one another. Another reason is that integrals

involving these orbitals are much simpler, for instance the matrix elements of Slater deter-

minants include far fewer terms if the orbitals are orthogonal. However the constraint of

orthogonality is not necessary to achieve a valid wavefunction and it is possible that the

removal of this constraint would allow orbitals to be even more localized. The use of valence-

bond theory has produced non-orthogonal orbitals which are considered largely localized and

demonstrate localized features of the electronic structure of molecules. [44] The approach taken
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in this text is to perform a traditional localization procedure, that of Boys localization, [18]

using canonical orbitals but to remove the orthogonality constraint.

3.2 Orthogonal Boys localization

The following procedure is an adapted version of that presented in Ref [17]. The Boys

procedure involves the minimization of the Boys functional, Eq. (32). [18]

B{φi} =
N∑
i=1

〈ii|(r1 − r2)
2|ii〉 (32)

where N is the number of occupied molecular orbitals, excluding core orbitals if these are

not to be involved in the localization.

The equations in this form are difficult to solve but the Boys functional can be rewritten

in terms of one-electron rather than two-electron integrals.

B{φi} = − 2

N
G{φi}+ 2Tr(r2)− 2

N
(Tr(r))2 (33)

G{φi} =

N∑
i=1

N∑
j=i+1

(〈j|r|j〉 − 〈i|r|i〉)2 (34)

where we shall call the functional G{φi} the Boys sub-functional.

Since the localization is a transformation from an orthonormal set (the canonical orbitals) to

another orthonormal set (the Boys orbitals), it is represented by a unitary transformation.

|j′〉 =
∑
i

Uij |i〉 (35)

where U is the transformation matrix whose columns are the linear combinations of the

canonical orbitals which make up the Boys localized orbitals.

It is a well-known result of linear algebra that the trace of any operator is preserved un-

der a similarity, which includes unitary, transformation. Therefore through optimization of

this functional the latter two terms of Eq. (33) will be constant. The problem then becomes

one of finding a unitary transformation which equivalently minimizes the Boys functional and

maximizes the double summation i.e. the Boys sub-functional.

The integral 〈j|r|j〉 is known as the orbital centroid for orbital φi. This is a three-dimensional
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vector considered to represent the centre of the orbital. The double summation can therefore

be seen as the sum of the squares of distances between centroids of all unique pairs of orbitals.

Since this summation is to be maximized, the problem is to find a set of orbitals such that

the centroids are separated as much as possible.

The problem can be solved by a 2x2 rotation algorithm first introduced by Edmiston and

Ruedenberg. [45;46] The procedure is to cycle through all unique pairs of orbitals at a time

and apply a 2x2 rotation with an angle which is to be determined.|φ′a〉
|φ′b〉

 =

 cos γ sin γ

− sin γ cos γ

|φa〉
|φb〉

 (36)

The sets {|φ′i〉} and {|φi〉} are identical with the sole exception of the above alterations to

orbitals φa and φb. It is possible to express the value of B{φ′i} in terms of B{φi} and thereby

deduce the value of γ which minimizes B{φ′i}. A replacement of {|φi〉} with {|φ′i〉} allows

the procedure to continue by selecting another pair of orbitals and performing a similar

minimizing rotation with these. Rotation matrices are necessarily unitary and a product of

unitary matrices is itself unitary. This implies that the transformation matrix, which is the

result of this succession of 2x2 rotations, will itself be unitary therefore the resulting localized

orbitals will be orthonormal.

A possible convergence criterion is to stop the algorithm when the minimizing values of γ for

all pairs are below a threshold value in magnitude. There is no guarantee that this procedure

of successive rotations will converge to a solution. In practice convergence is usually observed

although may require many hundred of such rotations.

3.3 Non-orthogonal Boys localization

The aim of this research was to minimize the Boys functional constrained only insofar

as the resultant orbitals remain normalized. In order to do this a test system was chosen

and all subsequent calculations performed with it. This was the RHF molecular orbitals

(MOs) of water, of which there are five. It is common in localization to keep core orbitals

frozen, therefore four MOs were relevant to the localization. A transformation matrix of four

canonical MOs to four localized MOs would be a 4x4 matrix, containing 16 parameters. If

we had the constraint of orthogonality we would require this transformation matrix to be

unitary. Instead we wish to ensure linear independence which is equivalent to ensuring the

transformation matrix is a member of the general linear group of order four, the group of

all 4x4 matrices with non-zero determinant. The equation describing the transformation is

given by Eq. (37).
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|j′〉 =
∑
i

Xij |i〉 (37)

where X is the transformation matrix, {|φ′i〉} is the set of localized orbitals and {|φi〉} is the

set of canonical orbitals.

Each of the four localized MOs must remain normalized, hence introducing four equality

constraints, Eq. (38), reducing the number of variational parameters to 12. The problem is

now one of unconstrained minimization of the Boys functional over these 12 parameters.

〈i′|i′〉 = 1 =
∑
j

∑
k

X∗jiXki〈j|k〉 for i = 1, . . . , 4 (38)

A significant problem with non-orthogonal localization is that no constraint is present to

prevent orbitals from converging into one another. The problem with this self-convergence

is that it would result in a Slater determinant wavefunction being identically zero because

two columns would be equal. It was theorized that since minimization of the Boys functional

inherently attempts to separate orbital centroids, it was possible that the unconstrained

minimization could lead to linearly independent localized orbitals. It was shown earlier that

the minimization of the Boys functional is equivalent to maximizing the Boys sub-functional,

G{φi}.

G{φi} =
N∑
i=1

N∑
j=i+1

(〈j|r|j〉 − 〈i|r|i〉)2 (34)

This functional is based on the sum of squares of distances between orbital centroids. In

maximizing this, the orbitals would naturally attempt to spread apart so as to increase

the distances between orbital centroids, and hence increase the sum of squares of distances.

Widely separated orbitals would not be subject to the problem appearing when orbitals

converge into one another and hence become linearly dependent.

3.4 Algorithm and computational procedure

Aside from common techniques of optimization which could yield solutions, such as Lan-

grange multipliers, derivative-based methods and quadratic programming, a method based on

systematic scanning of the parameter space was chosen. The reason for this was because it’s

the easiest method to implement and test. Although the computational cost of this method

scales poorly with system size this is not a problem because initially it is to be applied only

to small molecules as a means of testing the localization.
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It was believed that the solutions to the minimization of the Boys functional without

orthogonality constraints would appear similar in form to those produced by standard means.

Therefore the 4x4 transformation matrix was chosen to be written in the basis of the four

orthogonal Boys localized orbitals so that the minimizing transformation matrix was most

likely to be a small perturbation on the identity matrix.1 The identity matrix being the

transformation matrix which would reproduce the orthogonal Boys localized orbitals. In order

to put the four equality constraints into practice, intermediate normalization was used. The

diagonal elements were fixed at values of one, whilst all other matrix elements could be varied.

The choice of intermediate normalization rested on the assumption that the off-diagonal

elements would be small in magnitude. Before the Boys functional value could be calculated

from a given transformation matrix, it is necessary that the columns of the transformation

matrix must then be scaled, so as to ensure strict normalization of the resulting orbitals.

Having fixed the four diagonal matrix elements, the remaining 12 were parameters to be

varied. The procedure involved selecting a set of possible values for each parameter, examples

shown in Table 1 consisting of nine values per set. The program would form every possible

transformation matrix for all combinations of parameters and their possible values. For a set

of nine possible values, the number of such matrices was 912 = 2.82x1011. The programming

technique of recursion was utilized to efficiently scan through these matrices. The program

source code is available in Appendix B.

Each transfomation matrix would be formed, normalized, then the Boys functional value

calculated for the resulting localized orbitals. The program recorded ten transformation

matrices which attained the highest Boys sub-functional values. Even if many attained the

same Boys sub-functional value, all would be included.

Although the variational parameters had only fixed values for which they could attain the

value of, it was hoped that these were sufficient to scan the parameter space and predict what

sort of transformation matrix would solve the global optimization problem. A greater number

of possible values would increase the accuracy of the optimization but would also rapidly

increase the computational expense. Although the time taken for each run, consisting of nine

possible values, would depend on the computational resources available, these calculations

can be expected to take a number of days each.

1Note here the term basis is used as it is in linear algebra rather than the more applied meaning of the

term basis sets in quantum chemistry. The mathematical term is defined for a given vector space as a minimal

subset whose span reproduces the vector space.

52



Table 1: Set of possible parameter values for each run of the program

Run 1 -5.00 -1.00 -0.50 -0.25 0.00 0.25 0.50 1.00 5.00

Run 2 -0.70 -0.50 -0.30 -0.10 0.00 0.10 0.30 0.50 0.70

Run 3 -10.00 -5.00 -1.00 -0.50 0.00 0.50 1.00 5.00 10.00

3.5 Results

3.5.1 Run 1 : Balanced range of parameter values

A wide range of permitted values, over several runs, were chosen and their values presented

in Table 1. Run 1 was an initial application of the program, using parameter values of row

1 in this table, to scan both small and large values to determine the sort of matrix which

produces large values of the Boys sub-functional. Producing a value of 17.0620, the results

were considered very interesting on the account that the orthogonal Boys orbitals themselves

produced a value of 14.57. Hence we have shown that localized orbitals can be designed, which

aren’t constrained to be orthogonal, to produce a greater value for the Boys sub-functional

than the traditional orthogonal Boys orbitals. This equivalently means a lower minimum of

the Boys functional itself.

In total four matrices, from those possible in Run 1 attained this maximal value of the Boys

sub-functional. All of which contained a parameter holding the maximum value permitted,

which in this run was 5.0. This seemed contrary to the prediction that a maximum of the

Boys functional would produce a transformation matrix which was only a small perturbation

on the identity matrix. To investigate this further, two additional runs were performed.

The second run investigates small values of the parameters, up to a magnitude of 0.7. This

was chosen to investigate whether large values of the Boys sub-functional were possible for

localized orbitals which were only marginally perturbed from the orthogonal Boys orbitals.

The third run investigated the other extreme, and had a selection of permitted values which

reached 10.0 in magnitude. This was primarily to determine whether our initial prediction

that the non-orthogonal Boys localized orbitals would be similar in form to the orthogonal

Boys localized orbitals. If the largest Boys functional values were attained for matrices

containing parameters holding the values 10.0 or -10.0, this would strongly suggest that the

global solution to the non-orthogonal Boys localization problem could not be achieved by

a small modification on the orthogonal Boys localized orbitals. The optimal matrices and

associated Boys sub-functional values for all three runs are presented in Appendix A.

3.5.2 Run 2 : Contracted range of parameter values

Run 2, utilizing parameter values of row 2 in Table 1, produced a maximum Boys sub-

functional value of 15.8601. There was only one matrix which attained this value, although
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two which attained the similar value 15.8519. This maximizing matrix was surprising because

it contained only parameter values of magnitudes 0.0, 0.1 and 0.3, despite the larger values

of 0.5 and 0.7 being available. This is in contrast to Run 1 for which all matrices attaining

the maximum value contained the maximum parameter value of 5.0. The value 15.8601 is

therefore considered to be close to that of a local maximum, or saddle-point, which could

be found exactly via derivative based methods. This result must certainly not be a global

maximum due to the existence of a matrix producing the greater value of 17.0620 found in

Run 1.

3.5.3 Run 3 : Extended range of parameter values

Run 3, utilizing parameter values of row 3 in Table 1, produced a maximum Boys functional

value of 17.1854. A total of four matrices produced this value in the scan. This value is greater

than that of Run 1 suggesting that this uses a better set of parameter values to perform the

scan with. Interestingly this Boys functional value is attained with matrices all containing a

significant number of parameters with the value 10.0 or -10.0 in direct contradiction of the

prediction that the Boys functional would be maximized using a matrix being only a small

perturbation on the identity matrix.

3.6 Discussion

The results have indicated that achieving the largest Boys sub-functional value requires

the use of large parameters. This implies that the exact solutions, transformation matrix

or matrices which achieve a maximum of the Boys sub-functional, will produce a set of or-

bitals with some significant differences to the set produced by an orthogonal Boys procedure.

Interestingly there appears to be a local maximum or saddle-point similar in form to the

orthogonal Boys localized orbitals as revealed by Run 2, however the objective is to achieve

a global maximum therefore this feature will not be discussed further.

Table 2: First matrix in program output for Run 3, see Appendix A

1.00 0.00 0.00 0.00 0.00

0.00 1.00 -10.00 0.00 10.00

0.00 10.00 1.00 10.00 0.00

0.00 1.00 -1.00 1.00 1.00

0.00 1.00 -1.00 1.00 1.00

The first matrix which appears in the list of those attaining the highest value of the Boys

sub-function in Run 3 is presented in Table 2. The other matrices which attain this highest

value are very similar, differing predominantly in the arrangement of columns. In order to
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investigate what sort of transformation matrices and hence sets of orbitals are attaining the

highest values of the Boys sub-functional we analyse this matrix as an example. Firstly it

can be seen that this matrix is strictly linearly independent because for each column, no

linear combination of the remaining columns can produce that column. However the matrix

is weakly linearly independent because linear combinations of other columns can produce a

vector similar to the chosen column. In this matrix it can be seen that columns 3 and 5 are

almost the negative of one another. Likewise columns 2 and 4 are almost the same. It is

important to note that after normalization all components for each column will be scaled down

so all components of magnitude one will actually contribute a far smaller magnitude to that

orbital. It is interesting to see that the orbitals corresponding to columns 2 and 4 will appear

similar in form to the third orthogonal Boys orbital and that the orbitals corresponding to

columns 3 and 5 will appear similar in form to the second orthogonal Boys orbital. The use

of values of unity along the diagonal was designed to prevent orbitals from turning into one

another. However this only works if the permitted parameter values are small. As can be

seen in this example large parameter values permit a dwarfing of these fixed diagonal values

allowing them to become almost insignificant after normalization.

Although normalization has been accounted for in the algorithm, no attempt to encourage

linear independence has been implemented. Linear independence is assured by the use of or-

thogonality, however without orthogonality there can be no guarantee of linear independence.

It was thought possible that linear independence would occur naturally in the procedure due

to separation of orbitals which occurs through maximization of the Boys sub-functional (see

above for greater detail). With the above results it now appears that the natural separation

of the algorithm is not generally sufficient in ensuring complete linear independence.

The algorithm strongly appears to be converging towards a solution which would either

be linearly dependent or minutely linearly independent (which would be accompanied by

an overlap integral of pairs of orbitals approaching a value close to unity). This converged

solution would be achieved if the parameters were freely variable.

3.7 Conclusion

The results strongly suggest that there can be no generally-applicable non-orthogonal Boys

procedure which omits any sort of constraint on linear independence. It is possible that such

a procedure would successfully optimize to linearly independent orbitals for a system other

than the water molecule. The conclusion applied to the water molecule holds because the

domain over which the optimization is performed has been thoroughly scanned. Allowing

parameter values to reach greater magnitudes has allowed the Boys sub-functional to reach

greater maxima through a convergence of orbitals into one another.
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In order to produce non-orthogonal localized orbitals there are two possible modifications

which can be applied. Firstly the Boys functional could be retained and constraints which

ensure linear independence included in the optimization. Secondly the functional itself could

be altered, and optimization remain unconstrained with the exception of normalization.

On the problem of linear independence constraints, the application of such a constraint is

hindered by the fact that an arbitrarily small modification can turn a set of orbitals from

linearly dependent to independent. If indeed the true minimum of the Boys localization

problem is a set of linearly dependent orbitals, then a minute change in the coefficients can

lead this set to be linearly independent. However such a minute modification of the coefficients

will lead to orbitals which, for all practical purposes are the same, despite technically being

linearly independent, which is clearly an insufficient solution. Such a constraint can be

compared to a trivial problem of minimization of a function f(x) = x subject to the constraint

that x > 0. Due to the strict inequality constraint there is no solution to this problem but

we can get infinitesimally close by reducing x down to almost zero without ever reaching it.

A more promising solution is to change the functional which is used to produce the local-

ized orbitals. The functional could include a repulsion of centroids strong enough to ensure

that optimization of the functional can never produce mutually converging orbitals. This

would avoid the need for a constraint to ensure the orbitals don’t become linearly dependent.

Although a program like the one used in this text could indicate the rough form of the solu-

tion there are almost always quicker and more accurate optimization procedures which can

be used on a given functional. Newton-type optimization is one such example which would

allow simultanous optimization of all variational parameters, assuming the derivative can be

readily calculated with respect to each of these parameters.
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A Appendix A

Program output for Run 1

RANK 1

17.0620

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 5.00

0.00 0.00 1.00 5.00 0.00

0.00 0.00 0.25 1.00 0.50

0.00 0.25 0.00 0.50 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8655

-0.8655

-0.8882

0.8882

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.1251

-0.1251

-0.0530

0.0530

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.4889

0.4889

0.4877

0.4877

RANK 2

17.0620

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 5.00

0.00 0.00 1.00 5.00 0.00

0.00 0.25 0.00 1.00 0.50

0.00 0.00 0.25 0.50 1.00
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Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8655

-0.8655

-0.8882

0.8882

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.1251

0.1251

-0.0530

0.0530

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.4889

0.4889

0.4877

0.4877

RANK 3

17.0620

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 5.00 0.00

0.00 0.00 1.00 0.00 5.00

0.00 0.25 0.00 1.00 0.50

0.00 0.00 0.25 0.50 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8655

-0.8655

0.8882

-0.8882

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.1251

0.1251

-0.0530
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0.0530

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.4889

0.4889

0.4877

0.4877

RANK 4

17.0620

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 5.00 0.00

0.00 0.00 1.00 0.00 5.00

0.00 0.00 0.25 1.00 0.50

0.00 0.25 0.00 0.50 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8655

-0.8655

0.8882

-0.8882

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.1251

-0.1251

-0.0530

0.0530

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.4889

0.4889

0.4877

0.4877

RANK 5

17.0399

Matrix X

1.00 0.00 0.00 0.00 0.00
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0.00 1.00 0.00 0.00 5.00

0.00 0.00 1.00 5.00 0.00

0.00 0.00 0.25 1.00 0.50

0.00 0.25 0.00 0.25 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8655

-0.8655

-0.8821

0.8882

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.1251

-0.1251

-0.0765

0.0530

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.4889

0.4889

0.5007

0.4877

RANK 6

17.0399

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 5.00

0.00 0.00 1.00 5.00 0.00

0.00 0.00 0.25 1.00 0.25

0.00 0.25 0.00 0.50 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8655

-0.8655

-0.8882

0.8821

Matrix <i'|y|i'>/<i'|i'>
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-0.0000

0.1251

-0.1251

-0.0530

0.0765

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.4889

0.4889

0.4877

0.5007

RANK 7

17.0399

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 5.00 0.00

0.00 0.00 1.00 0.00 5.00

0.00 0.00 0.25 1.00 0.50

0.00 0.25 0.00 0.25 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8655

-0.8655

0.8821

-0.8882

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.1251

-0.1251

-0.0765

0.0530

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.4889

0.4889

0.5007

0.4877
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RANK 8

17.0399

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 5.00 0.00

0.00 0.00 1.00 0.00 5.00

0.00 0.00 0.25 1.00 0.25

0.00 0.25 0.00 0.50 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8655

-0.8655

0.8882

-0.8821

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.1251

-0.1251

-0.0530

0.0765

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.4889

0.4889

0.4877

0.5007

RANK 9

17.0399

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 5.00

0.00 0.00 1.00 5.00 0.00

0.00 0.25 0.00 1.00 0.50

0.00 0.00 0.25 0.25 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8655
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-0.8655

-0.8821

0.8882

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.1251

0.1251

-0.0765

0.0530

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.4889

0.4889

0.5007

0.4877

RANK 10

17.0399

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 5.00

0.00 0.00 1.00 5.00 0.00

0.00 0.25 0.00 1.00 0.25

0.00 0.00 0.25 0.50 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8655

-0.8655

-0.8882

0.8821

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.1251

0.1251

-0.0530

0.0765

Matrix <i'|z|i'>/<i'|i'>

-0.1236
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0.4889

0.4889

0.4877

0.5007
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Program output for Run 2

RANK 1

15.8601

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.10 0.10 0.10

0.00 0.10 1.00 0.10 0.10

0.00 0.10 0.10 1.00 0.30

0.00 0.10 0.10 0.30 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8670

-0.8670

0.0000

0.0000

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.0000

0.0000

-0.4583

0.4583

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5572

0.5572

-0.5546

-0.5546

RANK 2

15.8519

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.10 0.10 0.10

0.00 0.00 1.00 0.10 0.10

0.00 0.10 0.10 1.00 0.30

0.00 0.10 0.10 0.30 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000
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0.8889

-0.8670

0.0000

0.0000

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.0000

0.0000

-0.4583

0.4583

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5218

0.5572

-0.5546

-0.5546

RANK 3

15.8519

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.10 0.10

0.00 0.10 1.00 0.10 0.10

0.00 0.10 0.10 1.00 0.30

0.00 0.10 0.10 0.30 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8670

-0.8889

0.0000

0.0000

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.0000

0.0000

-0.4583

0.4583

Matrix <i'|z|i'>/<i'|i'>
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-0.1236

0.5572

0.5218

-0.5546

-0.5546

RANK 4

15.8482

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.10 0.10 0.10

0.00 0.10 1.00 0.10 0.10

0.00 0.10 0.10 1.00 0.30

0.00 0.10 0.00 0.30 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8670

-0.8527

0.0000

0.0000

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.0000

-0.0488

-0.4583

0.4583

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5572

0.5745

-0.5546

-0.5546

RANK 5

15.8482

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.10 0.10 0.10

0.00 0.10 1.00 0.10 0.10
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0.00 0.00 0.10 1.00 0.30

0.00 0.10 0.10 0.30 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8527

-0.8670

0.0000

0.0000

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0488

0.0000

-0.4583

0.4583

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5745

0.5572

-0.5546

-0.5546

RANK 6

15.8482

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.10 0.10 0.10

0.00 0.10 1.00 0.10 0.10

0.00 0.10 0.10 1.00 0.30

0.00 0.00 0.10 0.30 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8527

-0.8670

0.0000

0.0000

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.0488
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0.0000

-0.4583

0.4583

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5745

0.5572

-0.5546

-0.5546

RANK 7

15.8482

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.10 0.10 0.10

0.00 0.10 1.00 0.10 0.10

0.00 0.10 0.00 1.00 0.30

0.00 0.10 0.10 0.30 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8670

-0.8527

0.0000

0.0000

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.0000

0.0488

-0.4583

0.4583

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5572

0.5745

-0.5546

-0.5546

RANK 8

15.8422
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Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.10 0.10

0.00 0.00 1.00 0.10 0.10

0.00 0.10 0.10 1.00 0.30

0.00 0.10 0.10 0.30 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8889

-0.8889

0.0000

0.0000

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.0000

0.0000

-0.4583

0.4583

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5218

0.5218

-0.5546

-0.5546

RANK 9

15.8408

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.10 0.10 0.10

0.00 0.10 1.00 0.10 0.10

0.00 0.10 0.00 1.00 0.30

0.00 0.00 0.10 0.30 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8527

-0.8527

0.0000
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0.0000

Matrix <i'|y|i'>/<i'|i'>

-0.0000

-0.0488

0.0488

-0.4583

0.4583

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5745

0.5745

-0.5546

-0.5546

RANK 10

15.8408

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.10 0.10 0.10

0.00 0.10 1.00 0.10 0.10

0.00 0.00 0.10 1.00 0.30

0.00 0.10 0.00 0.30 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

0.8527

-0.8527

0.0000

0.0000

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0488

-0.0488

-0.4583

0.4583

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5745

0.5745
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-0.5546

-0.5546
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Program output for Run 3

RANK 1

17.1854

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 -10.00 0.00 10.00

0.00 10.00 1.00 10.00 0.00

0.00 1.00 -1.00 1.00 1.00

0.00 1.00 -1.00 1.00 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

-0.8670

0.8770

-0.8889

0.8889

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0000

-0.0000

0.0000

-0.0000

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5572

0.4870

0.5218

0.5218

RANK 2

17.1854

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 -10.00 10.00 0.00

0.00 10.00 1.00 0.00 10.00

0.00 1.00 -1.00 1.00 1.00

0.00 1.00 -1.00 1.00 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000
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-0.8670

0.8770

0.8889

-0.8889

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0000

-0.0000

-0.0000

0.0000

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5572

0.4870

0.5218

0.5218

RANK 3

17.1854

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 10.00 0.00 10.00

0.00 -10.00 1.00 10.00 0.00

0.00 -1.00 1.00 1.00 1.00

0.00 -1.00 1.00 1.00 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

-0.8770

0.8670

-0.8889

0.8889

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0000

-0.0000

0.0000

-0.0000

Matrix <i'|z|i'>/<i'|i'>
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-0.1236

0.4870

0.5572

0.5218

0.5218

RANK 4

17.1854

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 10.00 10.00 0.00

0.00 -10.00 1.00 0.00 10.00

0.00 -1.00 1.00 1.00 1.00

0.00 -1.00 1.00 1.00 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

-0.8770

0.8670

0.8889

-0.8889

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0000

-0.0000

-0.0000

0.0000

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.4870

0.5572

0.5218

0.5218

RANK 5

17.1838

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 10.00 0.00 10.00

0.00 10.00 1.00 10.00 0.00
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0.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

-0.8670

0.8670

-0.8889

0.8889

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0000

-0.0000

0.0000

-0.0000

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5572

0.5572

0.5218

0.5218

RANK 6

17.1838

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 10.00 10.00 0.00

0.00 10.00 1.00 0.00 10.00

0.00 1.00 1.00 1.00 1.00

0.00 1.00 1.00 1.00 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

-0.8670

0.8670

0.8889

-0.8889

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0000
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-0.0000

-0.0000

0.0000

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5572

0.5572

0.5218

0.5218

RANK 7

17.1824

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 10.00 0.00 10.00

0.00 -1.00 1.00 10.00 0.50

0.00 -10.00 0.50 1.00 0.50

0.00 -10.00 0.50 1.00 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

-0.0512

0.8569

-0.8889

0.8766

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0000

-0.0000

0.0000

0.0247

Matrix <i'|z|i'>/<i'|i'>

-0.1236

-0.6933

0.5779

0.5218

0.5505

RANK 8

17.1824
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Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 10.00 10.00 0.00

0.00 -1.00 1.00 0.50 10.00

0.00 -10.00 0.50 1.00 1.00

0.00 -10.00 0.50 0.50 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

-0.0512

0.8569

0.8766

-0.8889

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0000

-0.0000

-0.0247

0.0000

Matrix <i'|z|i'>/<i'|i'>

-0.1236

-0.6933

0.5779

0.5505

0.5218

RANK 9

17.1824

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 -1.00 10.00 0.50

0.00 10.00 1.00 0.00 10.00

0.00 0.50 -10.00 1.00 0.50

0.00 0.50 -10.00 1.00 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

-0.8569

0.0512

0.8889
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-0.8766

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0000

0.0000

-0.0000

0.0247

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5779

-0.6933

0.5218

0.5505

RANK 10

17.1824

Matrix X

1.00 0.00 0.00 0.00 0.00

0.00 1.00 -1.00 0.50 10.00

0.00 10.00 1.00 10.00 0.00

0.00 0.50 -10.00 1.00 1.00

0.00 0.50 -10.00 0.50 1.00

Matrix <i'|x|i'>/<i'|i'>

0.0000

-0.8569

0.0512

-0.8766

0.8889

Matrix <i'|y|i'>/<i'|i'>

-0.0000

0.0000

0.0000

-0.0247

-0.0000

Matrix <i'|z|i'>/<i'|i'>

-0.1236

0.5779

-0.6933
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0.5505

0.5218
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B Appendix B

The following is the program used to scan through all possible 5x5 transformation matrices

for a set of chosen possible parameter values given that the first orbital is frozen, and there

are values of unity along the diagonal. The program begins by inputting all required data

including the orthogonal Boys orbital coefficients, overlap integrals for basis functions and

one-electron dipole integrals for basis functions. A recursive algorithm is then used as a

more flexible alternative to nested loops in order to allow every variational parameter to have

each of the chosen possible values in all combinations. The recursive subroutine is called

recursive scan d which contains a for-loop to go through all the possible parameter values.

Upon a modification of the value of one of the variational parameters, the columns are then

normalized and the subroutine update ro recalculates the one-electron dipole integrals and

hence centroids for the new orbitals. Afterwards the subroutine calc boys func then calculates

the value of the Boys sub-functional and compares it to the lowest value in the list of current

highest values to determine whether it belongs in this list. The list of highest values achieved

throughout the whole program, along with the transformation matrices and dipole integrals

associated, is presented after program completion. A series of text files which are numbered

from 0 to 9999 are produced in order to inform the user of the degree of completion of the

algorithm.

program transformation_scan_program

c------------------------------------------------------------

c Boys localization scanning program (PH, September 2016)

c------------------------------------------------------------

implicit none

character*256 percent_thru, results

logical :: fexist

real*8, dimension(500) :: c, s, x, y, z, so, xo, yo, zo

real*8, dimension(25) :: d

integer, dimension(12) :: cat, a

real*8, dimension(10,3) :: ro

integer, dimension(500) :: kw

real*8, dimension(3) :: diff

real*8 :: boys_func,

. diff_mag, norm2

integer :: i,k,j,n,m,l,p,norbs, nbas, nbb

real*8, dimension(9) :: para_values !dimension of this given by para

integer :: para
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type optimized_d

real*8 :: boys_func

real*8, dimension(25) :: d

real*8, dimension(10,3) :: ro

end type optimized_d

type(optimized_d), dimension(10) :: max_boys

!when changed, change the array dimension

!para_values=(/ -0.7,-0.5,-0.3,-0.1,0.0,0.1,0.3,0.5,0.7 /)

!para_values=(/ -5.0,-1.0,-0.5,-0.25,0.0,0.25,0.5,1.0,5.0 /)

!para_values=(/ -1.0,-0.5,-0.25,0.0,0.25,0.5,1.0 /)

para_values=(/ -10.0,-5.0,-1.0,-0.5,0.0,0.5,1.0,5.0,10.0 /)

para = 9

a =(/ 8,9,10, 12,14,15, 17,18,20, 22,23,24 /)

!The program inputs a file called 'gamess_boys.txt', this is a file with a personal

!standard format of GAMESS

!data produced in one of our programs for the orthogonal boys procedure.

!From the way this program reads

!this file, it is possible to deduce the format of this file.

!d is the 5x5 transformation matrix (from the Boys orbital basis)

!only the latter 4x4 section has any varied parameters

!diagonal elements of d are fixed at 1

!initialize the transformation matrix to be the identity matrix

do i=1,5

do j=1,5

if(i.eq.j)then

d((i-1)*5+j) = 1d0

else

d((i-1)*5+j) = 0d0

endif

enddo

enddo

write(*,
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.'(''Scan through possible transformation matrices''/

. ''--------------------------------------------------'')')

!Read in MO data

open(unit=106, file='gamess_boys.txt')

read(106,*) norbs, nbas

nbb = nbas*(nbas + 1)/2

read(106,*) (c(i), i=1,norbs*nbas)

read(106,*) (s(i), i=1,nbb)

read(106,*) (x(i), i=1,nbb)

read(106,*) (y(i), i=1,nbb)

read(106,*) (z(i), i=1,nbb)

close(106)

!Progress check produces files from 0.txt up to 9999.txt,

!representing program completion

percent_thru = '0.txt'

inquire(file = percent_thru, exist = fexist)

if(fexist)then

open(unit=107, file=percent_thru, status='old')

close(107,status='delete')

endif

open(unit=107, file=percent_thru, status='new')

kw(1) = 0

do i = 2, nbas

kw(i) = kw(i - 1) + i - 1

enddo

call tr1e(nbas, norbs, x, xo, c, kw)

call tr1e(nbas, norbs, y, yo, c, kw)

call tr1e(nbas, norbs, z, zo, c, kw)

!xo, yo, zo now contain the (dipole) matrix elements of x,y,z in the boys orbital basis

do l=1,10

max_boys(l)%boys_func = 5d0 - l*0.01d0

enddo

do l=1,12
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cat(l) = 1

!one value for each variational matrix element

!algorithm starts at 1 1 1 ... 1, ends in para para para ... para.

!cat gives the values from para_values which each matrix element will take

enddo

do k=1,12

d(a(k)) = para_values(cat(k))

enddo

do l=1,5

call update_ro(l) !get ro fully initialized ready to tweak individual

!elements throughout program

enddo

!begin algorithm

call recursive_scan_d(1)

!the algorithm has now finished

close(107,status='delete')

results = 'results.txt'

inquire(file = results, exist = fexist)

if(fexist)then

open(unit=107, file=results, status='old')

close(107,status='delete')

endif

open(unit=107, file=results, status='new')

do n=1,10

write(107,'(A,I2)') 'RANK ', n

write(107,'(F9.4)') max_boys(n)%boys_func

write(107,*) 'Matrix X'

do l = 1, 5

write(107,'(5F9.2)') (max_boys(n)%d((k-1)*5+l), k=1,5)

enddo

write(107,*) 'Matrix <i''|x|i''>/<i''|i''>'

do l = 1, 5

write(107,'(F9.4)') max_boys(n)%ro(l,1)

enddo
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write(107,*) 'Matrix <i''|y|i''>/<i''|i''>'

do l = 1, 5

write(107,'(F9.4)') max_boys(n)%ro(l,2)

enddo

write(107,*) 'Matrix <i''|z|i''>/<i''|i''>'

do l = 1, 5

write(107,'(F9.4)') max_boys(n)%ro(l,3)

enddo

enddo

close(107)

write(6,*) 'All Done'

contains

recursive subroutine recursive_scan_d(j) !j identifies the element being tweaked

integer j, i, points_thru

do i=1,para !one cycle for each member of para_values

if(j.lt.12)then

!if not at the deepest level, go deeper

call recursive_scan_d(j+1)

if(j.eq.5)then !PROGRESS CHECK : happens roughly every 5.4sec

!Give feedback on progress

close(107,status='delete')

points_thru = 0

do l=1,5

points_thru = points_thru + (cat(l)-1)*para**(5-l)

enddo

points_thru = Int(100*100*points_thru/para**5)

write(percent_thru,'(I5,A)')points_thru,'.txt'

!goes to 10,000

open(unit=107, file=percent_thru, status='new')

endif

endif

if(i.ne.para)then !the final increment won't have a chance to scan lower levels
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cat(j) = cat(j) + 1

d(a(j)) = para_values(cat(j)) !every time cat changes, update d

!now update only the diagonal element of ro which will be affected

call update_ro(Int((j-1)/3d0) + 2)

!this is the MO corresponding to j

!only check boys func if an increment has been made (at any level)

call calc_boys_func()

else

cat(j) = 1

d(a(j)) = para_values(cat(j)) !every time cat changes, update d

!now update only the diagonal element of ro which will be affected

call update_ro(Int((j-1)/3d0) + 2)

!this is the MO corresponding to j

endif

enddo

end subroutine

subroutine update_ro(k)

integer k, starter

ro(k,1) = 0d0

ro(k,2) = 0d0

ro(k,3) = 0d0

if(k.eq.1)then !a further efficiency enhancer

starter = 1

else

starter = 2

endif

do n=starter,norbs

do m=starter,norbs

if(n.le.m)then

ro(k,1)= ro(k,1) + d((k-1)*5+n)*d((k-1)*5+m)*xo((m-1)*m/2+n)

ro(k,2)= ro(k,2) + d((k-1)*5+n)*d((k-1)*5+m)*yo((m-1)*m/2+n)

ro(k,3)= ro(k,3) + d((k-1)*5+n)*d((k-1)*5+m)*zo((m-1)*m/2+n)

else

ro(k,1)= ro(k,1) + d((k-1)*5+n)*d((k-1)*5+m)*xo((n-1)*n/2+m)

ro(k,2)= ro(k,2) + d((k-1)*5+n)*d((k-1)*5+m)*yo((n-1)*n/2+m)

ro(k,3)= ro(k,3) + d((k-1)*5+n)*d((k-1)*5+m)*zo((n-1)*n/2+m)

86



endif

enddo

enddo

norm2 = 0d0

do n=1,norbs

!boys orbitals are orthogonal, hence norm is the sum of squares of column elements

norm2 = norm2 + d((k-1)*5+n)**2

enddo

ro(k,1) = ro(k,1)/norm2

ro(k,2) = ro(k,2)/norm2

ro(k,3) = ro(k,3)/norm2

!Therefore now ro(k,1) == <k'|x|k'>/<k'|k'>

end subroutine

subroutine calc_boys_func()

!ro(k) = <k'|r|k'>/<k'|k'>, now assimilate these

boys_func = 0d0

do n=1,norbs

do m=n+1,norbs

diff_mag = 0d0

do l=1,3

diff(l) = ro(n,l)-ro(m,l)

diff_mag = diff_mag + diff(l)**2

enddo

boys_func = boys_func + diff_mag

enddo

enddo

if(boys_func.gt.max_boys(10)%boys_func)then !entry 10 smallest

l=1

do while(l.le.10)

if(boys_func.gt.max_boys(l)%boys_func)then

if(l.lt.10)then

do n=10,l+1,-1

!max_boys_func(n) = max_boys_func(n-1)

max_boys(n) = max_boys(n-1)

enddo
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endif

max_boys(l)%boys_func = boys_func

max_boys(l)%d = d

max_boys(l)%ro = ro

l=999

endif

l = l+1

enddo

endif

end subroutine

end program transformation_scan_program

subroutine tr1e(nbas, norbs, a, ao, c, kw)

c---- Transforms a one-electron operator from AO (a) to MO (ao) basis.

c (PBK, April 2016)

c------------------------------------------------------------

implicit real*8 (a-h, o-z)

dimension kw(*), a(*), ao(*), c(*), v(nbas)

ij = 0

do 50 j = 1, norbs

jofs = (j - 1)*nbas

do 20 k = 1, nbas

vk = 0d0

kwk = kw(k)

do 11 l = 1, k

vk = vk + a(l + kwk)*c(jofs + l)

11 continue

do 12 l = k + 1, nbas

vk = vk + a(k + kw(l))*c(jofs + l)

12 continue

v(k) = vk

20 continue

do 40 i = 1, j
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ij = ij + 1

iofs = (i - 1)*nbas

aoij = 0d0

do 30 k = 1, nbas

30 aoij = aoij + c(iofs + k)*v(k)

ao(ij) = aoij

40 continue

50 continue

return

end

c----------------------------------------------------------------------
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