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Abstract

Artificial Intelligence is quickly becoming an integral part of the modern world, employed

in almost every modern industry we interact with. Whether it be self-drive cars, integra-

tion with our web clients or the creation of actual intelligent companions such as Xiaoice1,

artificial intelligence is now an integrated and critical part of our daily existence.

The application of artificial intelligence to games has been explored for several decades,

with many agents now competing at a high level in strategic games which prove challenging

for human players (e.g. Go [127] and Chess [73]). With artificial intelligence now able to

produce strong opponents for many games, we are more concerned with the style of play of

artificial agents, rather than simply their strength.

Our work here focusses on the modification of artificial game opponents to create varied

playstyle in complex games. We explore several techniques of modifying Monte Carlo Tree

Search in an attempt to create different styles of play, thus changing the experience for

human opponents playing against them. We also explore improving artificial agent strength,

both by investigating parallelization of MCTS and by using Association Rule Mining to

predict opponent’s choices, thus improving our ability to play well against them.

1http://www.msxiaoice.com/

2



Contents

Abstract 2

List of Contents 3

List of Figures 9

Acknowledgements 13

Author’s Declaration 15

1 Introduction 16

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Can modification of MCTS create artificial agents that affect playstyle? 22

1.2.2 Can we create an artificial agent which displays modified behaviour

without compromising play strength? . . . . . . . . . . . . . . . . 23

1.2.3 Can the application of game knowledge improve rule artificial intel-

ligence techniques for modelling opponent knowledge? . . . . . . . 23

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Literature Review 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Games & Game terminology . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Game Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



CONTENTS

2.2.2 Formal Game Definition . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Combinatorial Games . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.4 Games of Imperfect Information . . . . . . . . . . . . . . . . . . . 28

2.2.5 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.6 Pure versus Mixed Strategies . . . . . . . . . . . . . . . . . . . . . 30

2.3 Basic AI techniques & Concepts . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Classic AI Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Move Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Monte Carlo Tree Search (MCTS) . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Multi-armed bandit . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.3 Upper Confidence Bound applied to Trees (UCT) . . . . . . . . . . 40

2.4.4 Flat Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.5 Counterfactual Regret (CFR) . . . . . . . . . . . . . . . . . . . . . 43

2.5 MCTS Enhancements & Variations . . . . . . . . . . . . . . . . . . . . . . 44

2.5.1 Perfect Information Monte Carlo (PIMC) . . . . . . . . . . . . . . 44

2.5.2 Transposition Tables . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.3 Progressive Strategies . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.4 Value Approximation Techniques . . . . . . . . . . . . . . . . . . 49

2.5.5 Information Set MCTS . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.6 Genetic Programming in MCTS . . . . . . . . . . . . . . . . . . . 51

2.5.7 Parallelization of MCTS . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Entertaining Play Experiences . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6.1 Making more human-like moves . . . . . . . . . . . . . . . . . . . 55

2.6.2 Entertaining Play . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6.3 Human-like play . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6.4 The importance of challenge to an entertaining experience . . . . . 58

2.7 Opponent Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.8 Data Mining Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4



CONTENTS

2.8.2 Association Rule Mining . . . . . . . . . . . . . . . . . . . . . . . 61

2.8.3 The a priori Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 61

2.8.4 Data Mining for Games . . . . . . . . . . . . . . . . . . . . . . . 62

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Game Domains and Experimentation Software 64

3.1 Game Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.1 Lords of War . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.2 Android: Netrunner . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Experimentation Hardware & Software . . . . . . . . . . . . . . . . . . . 67

3.2.1 MCTSTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.2 Move & Game State interface . . . . . . . . . . . . . . . . . . . . 68

3.2.3 Memory Management . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.4 Engine Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Parallelization of Information Set MCTS 73

4.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Root Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.2 Tree Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.3 Leaf Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.4 Iteration Budget Experimentation . . . . . . . . . . . . . . . . . . 78

4.1.5 Win Percentage Experimentation . . . . . . . . . . . . . . . . . . . 81

4.1.6 Experimentation Environment . . . . . . . . . . . . . . . . . . . . 82

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Iteration Budget Results . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Win Percentage Results . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5



CONTENTS

5 Modifying MCTS to Create Different Play Styles 92

5.1 Move Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Action Selection Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 State Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.2 Single Heuristic Experimentation . . . . . . . . . . . . . . . . . . 98

5.3.3 Multi-Heuristic Experimentation . . . . . . . . . . . . . . . . . . . 99

5.3.4 State-Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.5 Action Selection Mechanism . . . . . . . . . . . . . . . . . . . . . 100

5.3.6 Complexity Measurements . . . . . . . . . . . . . . . . . . . . . . 102

5.3.7 Online tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.1 Single Heuristic Results . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.2 Multi-heuristic Results . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.3 State Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.4 Max Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.5 Robust Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.6 Further action selection mechanisms . . . . . . . . . . . . . . . . . 113

5.4.7 Varying Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.8 Complexity Measure . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.9 Online tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.1 Heuristic Move Pruning . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.2 Action Selection Mechanisms . . . . . . . . . . . . . . . . . . . . 120

5.5.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Rule Association Mining for Opponent Modelling in Games 124

6.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.1 Netrunner Deck Data . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.2 Apriori Rule Generation . . . . . . . . . . . . . . . . . . . . . . . 126

6



CONTENTS

6.1.3 Apriori Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2.1 Default Apriori (a1) . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.2 Apriori with duplicates (a2) . . . . . . . . . . . . . . . . . . . . . 136

6.2.3 Apriori with Influence Priority (a3) . . . . . . . . . . . . . . . . . 136

6.2.4 Apriori with Influence Filtering (a4) . . . . . . . . . . . . . . . . . 137

6.2.5 Rule Generation including duplicate cards (a5) . . . . . . . . . . . 137

6.2.6 Prioritising by rulesize (a6) . . . . . . . . . . . . . . . . . . . . . . 137

6.2.7 Making confident predictions (a7) . . . . . . . . . . . . . . . . . . 138

6.2.8 Varied Size Observation Set . . . . . . . . . . . . . . . . . . . . . 138

6.2.9 Deck Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3 Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Conclusions & Further Work 144

7.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.1.1 Parallelization of Monte Carlo Tree Search and Information Set Monte

Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.1.2 Modification of Monte Carlo Tree Search using Heuristic Hard Prun-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.1.3 Modification of Monte Carlo Tree Search play style using Action

Selection Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1.4 Application of Data Mining Techniques to prediction of opponent

decks in card games . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Summary and General Observations . . . . . . . . . . . . . . . . . . . . . 150

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3.1 Parallelization of MCTS . . . . . . . . . . . . . . . . . . . . . . . 151

7.3.2 Heuristic Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.3.3 Action Selection Mechanisms . . . . . . . . . . . . . . . . . . . . 153

7.3.4 Rule Association Mining . . . . . . . . . . . . . . . . . . . . . . . 153

7



CONTENTS

Appendices 155

A Experimental Results 156

A.1 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B Generated Netrunner Decks 159

C Lord of War Rules 163

D NetRunner Rules 166

Bibliography 203

8



List of Figures

2.1 Example State Diagram for Formal Game Definition . . . . . . . . . . . . 28

2.2 Example Payoff matrix for the game of Prisoner’s Dilemma . . . . . . . . . 30

2.3 Overview of the typical MCTS process [29] . . . . . . . . . . . . . . . . . 36

2.4 UCB1 algorithm used in UCT (MCTS), highlighting the Exploitation & Ex-

ploration Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 State diagram displaying an example of Strategy Fusion [90] . . . . . . . . 45

2.6 State diagram displaying an example of Non-Locality [90] . . . . . . . . . 46

2.7 Overview diagrams for the most popular three parallelization methods . . . 52

2.8 Apriori Algorithm [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Bestial Raptor, an example card from the Lords of War game. . . . . . . . . 65

3.2 Class diagram showing the MCTS Tree class and associated sub-classes . . 68

3.3 Class diagram showing the IGameMove & IGameState abstract interface

classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Class diagram showing the Memory Management classes . . . . . . . . . . 70

3.5 Simple engine profiling test results, using the SimpleGrid game and varying

memory management techniques. Horizontal axis shows the size of the grid

used, vertical axis shows the game completion time. . . . . . . . . . . . . . 72

4.1 The Orc General card, an example card from the Lords of War game. . . . . 79

4.2 The initial state used in our experimentation (S1) with two Orc General cards

(see figure 4.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9



LIST OF FIGURES

4.3 Results of applying four different parallelization techniques to UCT operat-

ing upon state S1. Results are expressed in milliseconds used to complete a

decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Results of applying four different parallelization techniques to ISMCTS op-

erating upon state S1. Results are expressed in milliseconds used to complete

a decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Results of applying four different parallelization techniques to UCT operat-

ing upon state S1. Results are expressed in individual agent efficiency, where

1.0 represents optimal efficiency. . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Results of applying four different parallelization techniques to ISMCTS op-

erating upon state S1. Results are expressed in individual agent efficiency. . 87

4.7 Win Percentage when applying four different parallelization techniques to

a UCT agent. The opponent in each case was an unparallelized UCT agent

with the same iteration budget. . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Win Percentage when applying four different parallelization techniques to a

ISMCTS agent. The opponent in each case was an unparallelized ISMCTS

agent with the same iteration budget. . . . . . . . . . . . . . . . . . . . . . 89

5.1 Sample board heatmaps for use by heuristic pruning algorithms in the game

Lords of War . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Mean win% of single heuristic agents h1 - h5 playing against a standard

UCT agent with 10000 iterations at varying Hard Pruning Limits (HPL) . . 105

5.3 Mean win% of single heuristic agents h6 - h11 playing against a standard

UCT agent with 10000 iterations at varying Hard Pruning Limits (HPL) . . 106

5.4 Win% of multi-heuristic agents h4h1 - h4h11 playing against a standard UCT

agent at Hard Pruning Limit 15 . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Win% of single heuristic agents h1 - h11 playing against a standard UCT

agent applying State-extrapolation to heuristic agents . . . . . . . . . . . . 109

5.6 Mean win% of single heuristic agents h1R - h11R and multi-heuristic agent

h4h5R playing against a standard UCT agent and previous strongest candi-

date single heuristic agent (h4). . . . . . . . . . . . . . . . . . . . . . . . . 110

10



LIST OF FIGURES

5.7 Win percentage and Best Move percentage of UCT agents using MaxChild,

MaxRandn and MaxRouln against a standard UCT agent using RobustChild. 111

5.8 Win percentage and Best Move percentage of UCT agents using RobustChild,

RobustRandn and RobustRouln against a standard UCT agent using Ro-

bustChild. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.9 Win percentage and Best Move percentage of UCT agents using RobustRouln

and RobustRoul2n against a standard UCT agent using RobustChild. . . . . 113

5.10 Win percentage of UCT agents using RobustRouln against a standard UCT

agent using RobustChild when varying iteration budget available to the Ro-

bustRoul agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.11 Win percentage of UCT agents using RobustRoul2n against a standard UCT

agent using RobustChild when varying iteration budget available to the Ro-

bustRoul agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.12 Win percentage of UCT agents using RRand, RRoul and RRoul2 against a

standard UCT agent using RobustChild across all iteration budgets while

varying n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.13 Complexity Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.14 Win percentage of UCT agents using RobustRouln against a standard UCT

agent using RobustChild and the auto-tune modification. . . . . . . . . . . 118

5.15 Win percentage of UCT agents using RobustRoul2n against a standard UCT

agent using RobustChild and the auto-tune modification. . . . . . . . . . . 119

6.1 Percentage match accuracy of apriori prediction using agents a1 - a7 across

different values of minimum support. . . . . . . . . . . . . . . . . . . . . . 134

6.2 Percentage match accuracy of apriori prediction using agents a1 - a7 when

using different numbers of observed items. . . . . . . . . . . . . . . . . . . 139

6.3 Cumulative match accuracy of apriori prediction using agents a1 - a7 across

all experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.1 Results of four different parallelization techniques when applied to UCT.

Results are expressed in milliseconds taken to complete a single decision. . 156

11



LIST OF FIGURES

A.2 Results of four different parallelization techniques when applied to ISM-

CTS. Results are expressed in milliseconds taken to complete a single deci-

sion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3 Win Percentage when applying four different parallelization techniques to

a UCT agent. The opponent in each case was an unparallelized UCT agent

with the same iteration budget. . . . . . . . . . . . . . . . . . . . . . . . . 157

A.4 Win Percentage when applying four different parallelization techniques to a

ISMCTS agent. The opponent in each case was an unparallelized ISMCTS

agent with the same iteration budget. . . . . . . . . . . . . . . . . . . . . . 157

12



Acknowledgements

I would like to express my sincere gratitude to my academic supervisor Professor Peter I.

Cowling for his continuous support of my EngD study and related research, for his patience,

motivation, and immense knowledge.

My heartfelt thanks go to all those at Stainless Games for their funding of my research

and this opportunity to fulfil my long held desire to pursue a career in research and teaching.

I’d also like to thank the rest of my thesis committee: Dr Daniel Kudenko, Mr Nicholas

H. Slaven and Prof Pieter Spronck for their insightful comments and encouragement.

I thank all of those who have shared an office with me and directly or indirectly supported

my research, particularly Dr Edward Powley, Dr Daniel Whitehouse and Dr Sam Devlin.

The work displayed here was supported by EPSRC (http://www.epsrc.ac.uk/),

the LSCITS program at the University of York (http://lscits.cs.bris.ac.uk/)

and Stainless Games (http://www.stainlessgames.com).

I would also like to thank my family: my mother, my father and my sister for supporting me

emotionally throughout writing this thesis and in my life in general.

13



Dedication

For Elizabeth Mary Newsome Simmons

14



Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This work

has not previously been presented for an award at this, or any other, University. All sources

are acknowledged as References. The majority of the work is drawn from several papers

published at appropriate conferences. The work presented in this thesis was carried out as

part of a joint research project, where I contributed original ideas, actively participated in all

discussions and meetings, and co-authored both the research code and written publications.

15



Chapter 1

Introduction

This thesis focuses upon creating varying play experiences for human players using Artifi-

cial Intelligence techniques. I apply particular focus to the use of Monte Carlo Tree Search

(MCTS) algorithms along with various enhancements to attempt to create different styles

of play. I also use Association Rule Mining to enable agents to predict hidden information

which is only available to their opponents, with a view to enabling further behaviour which

makes use of this information in future research.

The term “MCTS” [36, 42, 82] describes a family of search algorithms which explore

a given decision space using guided stochastic sampling to determine the most promising

moves. It is most frequently applied to games, and was responsible for recent success in

Go [127]. The principle of MCTS is to use a large number of random playouts from the

game state to be analysed, and to backpropagate win% information from terminal states,

thus creating and updating statistic information on the decision space. The main difficulty

in selecting the path for simulation is maintaining a balance between the exploitation of

established powerful routes of play, and the potential to find new more powerful routes of

play through further exploration. Part of the reason MCTS is so attractive is that it can

operate completely aheuristically, requiring only a forward model of the game in question

16



CHAPTER 1. INTRODUCTION

and a starting game state in order to provide a decision. In this thesis, we use plain MCTS

as our default agent, and employ a variety of enhancements to modify agent behaviour.

Association Rule Mining [2] (also sometimes referred to as Association Rule Learning)

is a technique for determining relationships between variables in large sets of correlated

information. Successful application of association rule mining results in the discovery of a

set of strong rules which describe the data in the set of information, and can be used to make

reasonable predictions on other data from the same or similar systems. These techniques

are also often referred to as Market-Basket Analysis, due to their common application in the

determination of likely patterns of product purchases in supermarkets. In this thesis, we use

Association Rule Mining to model opponent pregame choices in a complex card game.

The work in this thesis provides insight into the application of artificial intelligence tech-

niques in creating adversarial gameplay agents which not only consider play strength, but

also variance of play style. We consider decision search and the determination of imper-

fect information which can be used to inform agents, and therefore increase their overall

effectiveness in both play strength and variance in playstyle.

Progressing towards an agent which considers agent playstyle of high importance par-

ticularly to the games industry [34], which currently struggles for adaptive agents for highly

complex games. Even recent successes in game AI, such as that in the popular game Alien

Isolation1, has had a variety of issues with undesirable behaviour, and required substantial

restrictions to operate as desired [56].

Our sponsors Stainless Games2 originally showed interest in this work as they desired

a more appropriate adversarial agent as part of the Duels of the Planeswalkers3 series of

games. The issues with the existing artificial intelligence system were twofold. Firstly, it

required heavy customisation with each release of the game in order to handle the new cards

1http://www.alienisolation.com/
2http://www.stainlessgames.com/
3http://magic.wizards.com/en/content/magic-duels
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and game rules added. Secondly, it often required manual restriction to behaviour to account

for it behaving in an undesirable manner towards human players. This undesirable behaviour

usually took the form of illogical moves when the artificial agent saw no possible route to

lose, or what seemed like intentional griefing of human adversaries. The initial objective of

our work was to provide Stainless Games with a generic-use C++ library that implemented

MCTS with appropriate configuration options, and could be deployed into their games.

In the first year of our work, it became clear that it would not be possible to work directly

on the Duels of the Planeswalkers game series due to commercial concerns which prevented

information sharing. As such, we expanded our targets to other games, with the hope to one

day return to work upon Duels of the Planeswalkers and apply our research there. Some of

our work here focusses on the parallelization of MCTS, which was originally an attractive

target due to the strict memory requirements of the Duels of the Planeswalkers games. When

it became clear that we would not be able to deploy our library as part of DotP, we decided

not to pursue that work any further, and instead focus on further modification of MCTS. As

part of our research, we have also provided a C++ library that implements MCTS, as was

the original agreement.

In this work, we successfully create an agent based upon existing MCTS technology

which demonstrates varied playstyle while maintaining play strength in a complex card

game. We also offer several techniques for modifying artificial agents which may be suc-

cessful in created varied playstyle in other games. We provide a general survey of paral-

lelization techniques for MCTS, and a specific new technique for application to ISMCTS.

Finally, we offer a selection of techniques for heuristic modification of data mining tech-

niques in application to the determination of imperfect information.
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1.1 Background

Artificial Intelligence is used in many different applications in modern life. While it is

most often associated with play in games, it is also applied in autonomous vehicles, search

engines, online agents (such as Siri [9] or Cortana [94]), image recognition and many other

systems. A central problem in artificial intelligence research is usually that of optimised

decision making, and by expansion of that goal, deduction, reasoning and problem solving.

There are also many other problems under study, including those relating to creativity (such

as story-writing [91] or music composition [95]), perception and interpretation of visual

data, and issues of social intelligence (such as Affective Computing [110], and Natural

language processing [40].)

A large number of modern artificial intelligence systems involve interaction with hu-

mans, and as such most artificial systems must be strongly constrained to ensure that they

behave in an acceptable manner, despite these constraints restricting functionality and flex-

ibility of the agents. This is especially true when the systems are security or safety critical.

A notable example is that of a Microsoft chatbot named Tay, which quickly took a dark

turn when allowed to interact with internet users in an unconstrained manner [107]. While

unconstrained Tay was certainly more flexible and able to discuss more topics and display a

wider range of opinions, interacting with Tay quickly became unappealing to the majority of

humans, and thus artificially constrained behaviour became necessary. It would have been

far preferable in this situation for Tay to be able to make the decision of what was appropri-

ate for its own audience, and thus be truly in control of learning and interacting on all topics

while being aware of what behaviour is unacceptable.

When applied to games, artificial intelligence is most frequently used to generate intel-

ligent behaviour in non-player characters, most often in an attempt to simulate human-like

behaviour. However, the focus is frequently upon strength of play, as most industry imple-
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mentations of AI exist as opposing agents in games to provide challenge for human players,

and to fail on this front would quickly invalidate the challenge presented by a game. It is

also common for games to offer agents under the control of a human player, who use AI

to optimise individual actions in a larger command given by the human user (e.g. Moving

units from one position to another in a Real-Time Strategy game requires the units to use

an algorithm to create a path between the two points.) The focus in this case will also be

very much on optimality rather than any other objective such as interesting or human-like

behaviour.

It is also important to note that while play strength is the most important single consid-

eration in game AI, current technology is insufficient to provide adequate play strength in

complex games. This can be seen in such strategy games as Starcraft 2, where the highest

difficulty agents are required to cheat in order to provide a significant opponents for the best

human players4. So while differing styles of play should become an objective, it is important

to not abandon play strength completely.

Since the conception of MCTS in 2006, it has had substantial effects upon the devel-

opment of artificial game playing agents in many fields such as strategic board games [88,

87, 64] and General Game Play [92]. In more recent years, it has been shown that the most

advanced agents created are able to outperform the world’s best human professional players

in particular games [127].

As AI techniques continue to improve, it is natural that there will be a stronger demand

for more human-like play from AI agents. This will partially be due to demand for AI to

make more human-like decisions, but also to provide a better environment for learning a

game, as well as a more user friendly experience. The standard at the moment in the games

industry is to provide a scripted tutorial for the first games, as the MCTS AI effectively

cannot be trusted to play both weak and logical moves at every opportunity.

4http://starcraft.wikia.com/wiki/AI_script

20



CHAPTER 1. INTRODUCTION

In 2009, Stainless Games released “Duels of the Planeswalkers” (DotP), a digital inter-

pretation of Magic: The Gathering designed to abstract away a lot of the complex rules and

play more like an arcade game. Since that time, Stainless have released several more games

in the Duels series, each with general improvements to the game, new content and (to some

degree) improved AI abilities. While the AI in the most recent game is a strong opponent,

it still struggles in certain circumstances, and is also makes moves which seem illogical to

human players. Producing a strong, entertaining AI that was easily adapted to new games in

the DotP series is a substantial objective for Stainless Games, representing many man-hours

of work saved.

When viewed from the commercial perspective, the objective of an AI is not necessarily

to beat the human player, but more to provide an interesting experience. This might include

beating the human player, but it should not be the primary objective. In fact in certain game

situations artificial agents may take actions that have no particular advantage over other

available actions, but have a direct negative effect on human enjoyment of the game, as no

consideration is given to such factors.

1.2 Research Questions

It would be of interest to create an AI that, while focusing on making strong decisions,

was also able to assess a potential decision for its novelty or creativity, and thus provide an

entertaining experience for the opponent, much like another human player might. A choice

as to whether to take this decision could then be made based not only on its optimality, but

modified by its novelty.

A relatively small amount of research has been performed in the area of the “fun” of a

given move, but I believe that this will become of more interest in the near future. As AI,
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human-computer interactions and psychology researchers work more closely together, accu-

rately simulating a human player is not necessarily the same as simulating a strong player,

and while the latter currently seems like a more desirable goal, I believe that simulating

a human will become more desirable as our ability to create artificial players advances.

Once creating a challenging artificial player is easy for any particular game, the majority

of games will have access to strong artificial agents that can routinely defeat the majority

of human players. Therefore, it is clear that advancement of play skill will become less

relevant from a commercial point of view, as conclusively beating high proportion of your

target market is unlikely to make your product more commercially attractive, but rather will

likely drive people away from your game. Instead, the focus must shift to making adaptive,

entertainment-focused agents which aim to optimise human experiences.

1.2.1 Can modification of MCTS create artificial agents that affect playstyle?

A core objective of our work is the creation of an artificial agent that has the primary objec-

tive of optimising the play experience for the human opponent. This objective will include

play strength as a sub-objective, primarily because an important factor in playing a game

against an opponent is that opponent’s play strength. In our work here, we use a measure-

ment corroborated by Schmidhuber’s compression theory, (also known as the Formal Theory

of Creativity, Fun and Intrinsic Motivation [120],) which shows that situations which are of

interest to us are those which are somewhat complex to understand, but not so complex that

they become incomprehensible. I will therefore attempt to modify agents so that they pro-

duce game states falling into a midrange of complexity for the game in question. In order to

do this, I will also develop complexity measures to determine the relative complexity of the

game states I examine.
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1.2.2 Can we create an artificial agent which displays modified be-

haviour without compromising play strength?

It would be of interest to modify a MCTS search algorithm so that instead of selecting the

optimal move by play strength at the end of the search, it selects a different move based on

specific configurable criteria. It would seem logical then to modify move selection towards

states within a midrange of complexity, and to observe the significance in play.

For this work, I will consider both the modification of the MCTS process itself by using

heuristic pruning, and also the Action Selection Mechanism to modify which move is finally

selected once the search process is complete, investigating playing strength for modified

versus unmodified MCTS.

1.2.3 Can the application of game knowledge improve rule artificial

intelligence techniques for modelling opponent knowledge?

Using a combination of Machine Learning and Heuristic Knowledge, we will attempt to

modify a well-established data mining technique to be applied to opponent deck prediction.

We will then apply these techniques to a large database of game data, and determine if these

modification have been successful in increasing the effectiveness of the techniques.

1.3 Publications

The following publications result from our work here.

• “Parallelization of Information Set Monte Carlo Tree Search” (2014 IEEE Congress

on Evolutionary Computation (CEC) [123])
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• “Heuristic Move Pruning in Monte Carlo Tree Search for the Strategic Card Game

Lords of War” (2014 Conference on Computational Intelligence and Games (CIG) [122])

• “An Experimental Study of Action Selection Mechanisms to Create an Entertain-

ing Opponent” (2015 IEEE Conference on Computational Intelligence and Games

(CIG) [124])

• “Using Association Rule Mining to Predict Opponent Deck Content in Android: Netrun-

ner” (2016 IEEE Conference on Computational Intelligence and Games (CIG) [121])

1.4 Thesis Overview

This thesis is split into seven chapters. Chapter 2 contains a literature review of the fields

relevant to the work contained in the remaining chapters, most principally MCTS. Chapter

3 introduces a series of games on which we have experimented, and also the software en-

vironment which we created to perform all experimentation. Chapter 4 describes our work

on parallelizing MCTS, and the effectiveness of the various parallelization techniques we

explored. Chapter 5 discusses our work in the modification of MCTS algorithms to simulate

different behaviour in artificial agents. Chapter 6 contains our work on the application of

data mining techniques to a specific opponent modelling problem. Finally, chapter 7 con-

tains a summary of all work performed here, and some discussion of future work that could

be performed from where this work leaves off.

Where possible, our contributions have been explicitly clarified.
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Literature Review

2.1 Introduction

The purpose of this chapter is to gather and unify information about various Artificial Intelli-

gence techniques which we will apply during research. The most central of these techniques

to this work in this thesis is Monte Carlo Tree Search (MCTS), and as such it has the great-

est focus in this chapter. We will also review the application of MCTS to games and game

playing, particularly to complex games which have so far defied other artificial intelligence

techniques. We will discuss Rule Association Mining in application to opponent modelling,

and also some literature relating to human interest and differing playstyle from artificial

opponents.

This chapter will first cover some basic AI techniques and concepts (section 2.3), then

provide a thorough review of current MCTS research (sections 2.4 & 2.5), before moving on

to discuss research into human play experience and entertainment (section 2.6), and finally

covering some background for the Data Mining Techniques which were used in my research

(section 2.8.)
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2.2 Games & Game terminology

The section will introduce some standard game terminology which will be used both in

academia and throughout this document.

2.2.1 Game Terminology

The following terminology is generally standard to game theory and artificial intelligence

research:

State:

The set of all information for a given position in a game. The game state of a game as it

is first created is often called the Initial State of a game. Other game states encompass all

positions reached in a finite number of moves (or actions) in a game. The Terminal States of

a game is the set of states where no further moves are possible.

Player:

An agent who makes moves which alter the game state. Depending on the game, players

may make moves in turn or simultaneously, but in most games they are the primary agent

that influences the transformation of one Game State into another.

Move:

An action taken by a player which (usually) alters the game state. Some games include

Pass Moves, which generally have little to no effect on the game state and signify the player

taking no action or passing. Some games also include Chance Moves, which represent
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actions which a player cannot accurately predict the result of taking, such as the result of

a card draw or die roll. It is usual to say that there is an artificial player that makes these

moves, sometimes referred to as the Environment Player.

Playout:

The entirety of a game’s course, from the initial state to any terminal state. To observe a

Playout, the game begins in the initial state, and then actions are taken according to some

playout policy until the game reaches a terminal state.

2.2.2 Formal Game Definition

A game is made of a set of possible states, S, which represent every possible configuration

that the game could reach during a Playout. The initial state of a game is defined as s0, with

other game states represented as {s1, s2 . . . si}, for a finite set of states. From any given

state, there exists a set of actions A, which allows transition to another state (in the case of

a terminal state, this set will be empty). The set of terminal states is defined as ST ⊆ S.

A state/action pair is denoted as (s, a), where a is an action that can legally be taken

from state s. Each item in this set can be used as part of a state-transition to a resultant

state T (s, a, s′). Due to the nature of these transitions, the whole system can be drawn as a

directed graph known as a state diagram (see figure 2.1).

2.2.3 Combinatorial Games

Combinatorial Games [4, 16] are classified by the following properties:

• Zero-sum: In the case of a two-player game, the rewards to all players sum to zero.

In the case of a one-player game this property is always considered to be true, as
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Figure 2.1: Example State Diagram for Formal Game Definition

the player can be viewed as competing against a game agent which will “lose” if the

player wins. Zero-player automata can also be considered combinatorial games, but

no games with greater than two players are combinatorial games.

• Perfect Information: The game state, all information about available moves from that

state are fully viewable to all players, and the complete knowledge of the game’s

history.

• Deterministic: The outcome of all available moves from the current state is visible to

all players, and is also completely predictable to all players.

• Sequential: Player actions are selected and applied sequentially, not simultaneously.

• Discrete: Player actions are applied discretely, not continuously.

Examples of Combinatorial Games include Nim, a strategy game in which two players

take turns removing objects from heaps [23], and Sylver Coinage a game in which players

name numbers, and the first player to name 1 loses [67].

2.2.4 Games of Imperfect Information

It is common for games to have game states in which the information is only partially view-

able to players as part of the course of the game. For example, in most card games, players
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have a hand of cards which opponents cannot view. This information may be viewable by

some players, or hidden from all players. A game that has any such information hidden from

one or more players is known as a game of Imperfect Information. The information may be-

come revealed later in the game, at game end, or never (such as a player’s hand in the game

of Poker [134].) When creating a playout for games of imperfect information, Information

Sets are often used [86]. An information set is a collection of all game states which could

be true for a given game state from the perspective of the root player (the player conducting

the playout). Use of information sets is discussed further in subsection 2.5.5.

2.2.5 Nash Equilibrium

A Nash Equilibrium is a solution for a game involving two or more players, which represents

a combination of player strategies such that no player can benefit by unilaterally switching

strategies [116]. Every finite game has at least one Nash equilibrium [97]. Nash equilibria

are used to analyse the behaviour of decision makers, by comparing their selected strategies

with the strategies of the calculated Nash equilibrium for that game.

A well-used example is that of the Nash Equilibrium in the game Prisoner’s Dilemma [104].

Prisoner’s Dilemma is a game in which two criminals are arrested for the same crime, and

each of them is placed in a separate cell with no way of communicating with the other. They

are then each asked to betray the other in exchange for a lowered sentence. If both betray,

then each of them will serve 2 years. If only one betrayers, that prisoner will be set free,

but his accomplice will serve 3 years. If neither betray, both of them serve only 1 year. The

rewards for each player are shown in figure 2.2.

Given the knowledge that best decision for the each individual player is to betray the

other, the Nash Equilibrium for this situation is that they should both choose to betray. The

Nash Equilibrium is particularly interesting for this situation, as it shows that while it would
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Figure 2.2: Example Payoff matrix for the game of Prisoner’s Dilemma

certainly be preferable overall to both choose to not betray each other, each prisoner could

then take advantage of the cooperation to improve their own individual circumstance by

betraying the other.

2.2.6 Pure versus Mixed Strategies

A Mixed Strategy is the combination of multiple strategies with an associated a vector of

probabilities, so that the strategies each have an associated probability of being chosen for

any given action. In contrast, a Pure Strategy is simply the use of a single strategy for 100%

of action choices [58].

The primary reason for using a mixed strategy is to create some level of unpredictability

in play. This can be important for ensuring that an opponent is not able to determine your

strategy by observing your action choices, however it should be noted that in some games,

a Nash Equilibrium can be represented by a mixed strategy.
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2.3 Basic AI techniques & Concepts

2.3.1 Classic AI Methods

2.3.1.1 Minimax Search

Minimax Search is a game tree search technique for use in combinatorial games. At each

state, Minimax attempts to minimise opponents maximum reward, while maximising the

player’s potential gain. It considers that in a given state, the maximising player will al-

ways choose the best action for themselves, and the minimizing player will always choose

the action that is worst for the maximising player. Traditionally minimax is only used to

search partial decision spaces, as searching the complete space in most games can take an

extremely large amount of time, and thus is not particularly useful for making good game

decisions. Minimax search is often a strong choice for combinatorial games, as if provided

with an unbounded budget, it will eventually locate the optimal strategy. Minimax search

with alpha-beta pruning (see subsection 2.3.2.1) has endured for decades as the algorithm

of choice [109] in positional board games such as Chess, Othello and Draughts, particularly

when applied with alpha-beta pruning (see section 2.3.2.1. However in cases where the

game tree is potentially very large and there is no reliable heuristic to aid the search, then

minimax is unsuitable [29].

2.3.1.2 Expectimax Search

Expectimax Search, (also known as Expectiminimax Search) is a implementation of mini-

max search that adds a component for dealing with chance nodes. At chances nodes, the

heuristic value of the node is equal to the probability-weighted sum of the heuristic values

of it’s children [68]. This allows evaluation of the “expected” value of the node. Expectimax
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is only suitable for use in games which contain chance nodes, or for games that can be mod-

elled in such a way [116]. Expectimax search performs well in games which contain rare or

bounded chance moves, but are otherwise completely deterministic, such as Backgammon.

2.3.2 Move Pruning

Move Pruning describes the process by which a number of branches of a game tree are

removed from consideration (hard pruning) or are de-prioritised from consideration, but may

be searched later (soft pruning). Move pruning has been shown to be a powerful approach

when applied with traditional minimax techniques [25], and has shown some strength when

applied with MCTS [100].

2.3.2.1 Alpha-beta Pruning

Alpha-beta Pruning [116] is an enhancement to minimax search which allows removal of

unpromising branches of the tree, while leaving at least one line of play that contains the

best move from the current state. which in turn reduces the number of nodes evaluated and

increases the search speed. Each state in the tree is evaluated using a heuristic, and α (the

minimum score that the maximising player can obtain) and β (the maximum score that the

minimising player can obtain) are evaluated. If at any point β becomes smaller than α, the

branch is “pruned”, as it cannot be a branch of optimal play, and need not be explored.

Minimax search with alpha-beta pruning has long been the algorithm of choice for playing

combinatorial games [109] such as Chess, Othello and Draughts.
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2.3.2.2 Progressive Unpruning

Progressive Unpruning softly prunes nodes from the game tree using heuristic knowledge,

but then progressively reintroduces them when the number of simulations reaches a certain

threshold (Progressive unpruning is discussed further in subsection 2.5.3).

2.4 Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) [36, 42, 82] is an adaptation of the standard tree search

methodologies seen in more traditional minimax/expectimax AI, but also includes random

sampling to increase the generality of the tree search and (in it’s basic form) remove the need

for heuristic knowledge (although such knowledge may still be exploited if available). By

taking random samples of the decision space and using the results to guide the construction

of a search tree, it is possible to locate optimal decisions for that decision space.

MCTS was first created in 2006, and has caused a great deal of further research and

experimentation since that time. At the time of this writing, over 2,500 “Monte Carlo Tree

Search” results are returned from Google Scholar search. It has been shown to be of novel

application to games [35], and has seen much success in the field of Go [65], which proves

challenging for more traditional AI techniques. More recently, an agent created by Google’s

DeepMind group used a combination of MCTS and Deep Neural Networks to become the

first artificial player to beat a World Champion Go player in an even match [127].

2.4.1 Multi-armed bandit

A base consideration in MCTS is that of the Multi-armed bandit problem, which is the sit-

uation whereby a gambler must choose between a number of “bandit” gambling machines,
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each which return rewards independently in an unknown random distribution. For example,

one bandit machine might return a high reward 10% of the time, a medium reward 50% of

the time, and a low reward for the remaining 40%. The ideal situation for the gambler is

to maximise their return over time, so to play machines with the highest expected return.

Given that the independent random distributions are unknown to the gambler, some time

must be spent exploring the available machines. This is an example of the Exploration ver-

sus Exploitation dilemma [11]. Ideally the user would like to keep exploiting a seemingly

rewarding bandit for as long as possible, hopefully scoring the highest result possible for

as long as possible. However, initially there is little information about the other bandit ma-

chines, and exploring those machines may result in a far superior reward being discovered.

The issue of wanting to play the best machine, but not being able to confidently determine

which is the best machine is known as the exploitation-exploration dilemma.

Regret is defined as the expected loss due to not playing the best bandit [29] (i.e. not

selecting the optimal decision). Regret is often used as a measure of the proximity to op-

timality of a decision (as the optimal decision would have a regret of 0). The problem is

expressed as trying to minimise the total regret of a user repeatedly playing these machines.

Regret is described as the loss due to not choosing to play the optimal bandit. As the under-

lying reward distribution of each bandit machine is hidden from the user, any reward must

be estimated based on the user’s experience of pulling that lever. Thus a policy can be used

to attempt to obtain the highest reward possible from plays of the machines, and therefore

to minimise player regret.

A policy which is designed to be applied to a multi-armed bandit problem is known as a

Bandit Algorithm. Such an algorithm will make a decision on which arm to pull given past

data from previous exploration of the available arms. These policies work by estimating

the upper confidence bound of each machine, which is described as the highest expected re-

ward from a given machine [29]. The upper confidence bound (UCB), proposed by Auer et
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al. [11], is called UCB1, and is critical to many further developments in MCTS. UCB1 pro-

vides uniform regret growth over multiple plays, without any heuristic knowledge regarding

the reward distributions. UCB1 is used as the bandit algorithm of choice throughout this

work (see subsection 2.4.3 for more on UCT).

Monte Carlo Methods use sampling and statistical methods in order to estimate the

strength of a given move. Abramson [1] showed that sampling actions in this manner might

be of use to approximate the value of a given move.

2.4.2 Monte Carlo Tree Search

The term Monte Carlo Tree Search [36, 42, 82] describes a group of tree search algorithms

first implemented in 2006. The basic principles involve building a game tree step-by-step,

gradually adding tree nodes, and running playouts from leaf states at each iteration to de-

termine the direction of further growth. (see figure 2.3) From these Playouts (also called

simulations), a reward signal is received from the terminal game state, and the information

is propagated upwards back through each parent node, modifying that parent node’s value

as it does so. The iterative growth of the tree is non-symmetrical, and controlled by a tree

policy (a bandit algorithm) which attempts to balance exploitation against exploration by

selecting potentially high reward nodes.

An extensive survey of Monte Carlo Tree Search and associated information was per-

formed in 2012 by Browne et al. [29].

The basic MCTS algorithm is made up of 4 steps, and works as follows (see figure 2.3):

• Selection: The algorithm moves down through the tree until it reaches a node which

has unexpanded children or a terminal node.

• Expansion: If the selected node has unexpanded child nodes, then one (or more) of

those nodes are added to the tree.
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Figure 2.3: Overview of the typical MCTS process [29]

• Simulation: A simulation is run from each of the new child nodes, normally to a

terminal state.

• Back-propagation: The simulation result is backed up through the parent nodes of the

selected node, updating statistics until it reaches the root node.

During this process, the algorithm makes use of two policies; a tree policy and a default

policy. These steps are shown in algorithm 1, with s0 representing the initial search state, v0

the root node, ti the current iteration, tmax the iteration budget, v1 the selected child, r1 the

rewards from the simulation conducted by the default policy, v1.s the state that is represented

by the node v1, and a is an action that leads to a specific node. The tree policy handles the

selection of nodes during the selection of the algorithm, and also expansion if not every child

of the selected node is being expanded. The default policy controls the algorithm’s action

selection during simulation. MCTS can be customised by specifying different algorithms

for the tree policy and default policy. In most vanilla implementations of MCTS, the tree

policy used is UCB1 (see subsection 2.4.3), and the default policy used is random node

selection. This configuration of MCTS is most often called UCT.

Once the budget for tree simulation has been fulfilled, the best child node of the root is

selected as the result of the best move. The two most common methods for selecting the

best child at this point are either to select the child with the highest reward, or to select the
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child with the most visits, but other options exist [29], and more are detailed in our work

here (see chapter 5.)

2.4.2.1 MCTS Strengths

There are three main strengths of MCTS:

• Aheuristic: MCTS techniques do not require domain knowledge in order to function.

• Any time: All values are always up to date following every iteration of the algorithm,

meaning that at any time in the process, the best move determined so far can be ob-

tained.

• Asymmetric: Builds an asymmetric tree, so avoids building areas of the tree that are

unpromising.

Aheuristic As vanilla MCTS uses no domain knowledge, it can in theory be introduced

in an unmodified state to a new game and make somewhat sensible moves. It is important

to note however that while heuristic knowledge is not required, it can greatly improve the

strength of a MCTS player. (see subsection 2.4.2.2). A UCT player is a very strong opponent

without heuristic knowledge in simple deterministic games such as Connect 4, Tic Tac Toe

(Noughts and Crosses), and Checkers (Draughts).

Any-Time MCTS can produce a decision at any time during its operation, and the deci-

sion will be representatively strong of the budget consumed by that time. Each MCTS run

produces a new “best” action, the MCTS process can be stopped at any point and the opti-

mal decision (for that budget) can be retrieved. There is also an associated advantage that all

nodes will have up-to-date internal values at every stage of the process, enabling analysis of
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the MCTS process and also access to data on areas of the decision tree that are not selected

for moving forward.

Asymmetric Tree growth in MCTS is asymmetric, as nodes are selected based on how

promising they appear based on collected statistics from the MCTS process. This results in

a smaller amount of budget being spent on areas of the decision space that are unpromising.

2.4.2.2 MCTS Weaknesses

There are four main weaknesses of MCTS:

• Agent Confusion: MCTS agents can become confused in complex “trap” states.

• Heuristic Agent Strength: MCTS may not behave as well as a heuristic agent specifi-

cally designed for the game in question.

• Lazy Play: MCTS can make poor moves if it determines that the current move is not

“required” to be strong.

• Playout Bias: Bias in simulation from the forward model can greatly reduce MCTS

performance.

Agent Confusion Browne et al. [28] demonstrated that MCTS agents can become con-

fused and lead into trap states in certain situations. This is largely due to the simulations

during the MCTS rollout being performed randomly, as it means that no consideration is

given to the opponent’s ability to move play away from certain states, and can direct tree

growth towards lines of play that would never occur against an actual opponent. This weak-

ness can be addressed by using a default policy that addresses this for the game in question,

however this both requires heuristic knowledge, and likely slows the MCTS process, as ad-
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ditional processing must occur during rollout (although heuristic knowledge can also reduce

the number of rollouts required for a good solution.)

A Trap State is a game state where most moves will lead onwards towards a win, however

opponent skill will drive the gameplay away from those wins and towards a nearly certain

loss. As such, the state may appear very favourable to initial MCTS analysis, and might

be chosen in error. Ramanujan et al. [108] suggest that MCTS/UCT is weaker than other

techniques for such games (particularly Chess).

Heuristic Agent Strength If a decision space has a very strong heuristic agent, it is likely

to be a stronger player than aheuristic MCTS [29]. This is due to the fact that heuristic

agents can usually quickly prune a decision tree without performing any type of search.

However heuristic agents are also very difficult to build for most complex games, and there

are many domains in which aheuristic MCTS outperforms even heuristic agents designed

specifically for those domains.

Lazy Play It has been shown that MCTS can be “lazy” in non-tight situations [7], which

is to say that they can make suboptimal choices when they are not immediately required

to make an optimal choice to receive a reward. This is a natural consequence of all search

algorithms, not just MCTS, which are not incentivised to reach a quick decision, as there

will be no consequence of including additional cyclic moves before the final desired state is

reached. As such, an agent may decide to embark upon a pointless cycle of moves which

have no lasting result on the game state, simply because it assigns no negative value to such

a pointless cycle.

Playout Bias As MCTS relies on a relatively weak reward signal generated by simula-

tion on the forward model, any bias in that forward simulation can greatly reduce agent

performance [64].
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2.4.3 Upper Confidence Bound applied to Trees (UCT)

Upper Confidence Bound applied to Trees (UCT) refers to the use of MCTS (as described

in subsection 2.4.2) with a random default policy, using the specific tree policy known as

UCB1.

2.4.3.1 The UCT Algorithm

UCB1 is a tree policy that treats the choice of a child node as a multi-armed bandit prob-

lem [82, 83], and selects the child node that has the most expected reward approximated by

Monte Carlo simulations.

2.4.3.2 The UCB1 Equation

The UCB1 equation is shown in 2.1. During tree policy operation, this equation is used to

evaluate each child node to determine which node the tree policy should select for expansion

and simulation. The terms used in the equation are: X̄i is the average reward from child node

i (the node currently being evaluated), C is the Exploration Parameter or Exploration Bias

(see subsection 2.4.3.4), n is the total number of visits to the parent node, and ni is the total

number of visits to the child node i.

UCB1 = X̄i + C

√
2 lnn

ni

(2.1)

The UCB1 equation provides a balance between exploration and exploitation by scaling

the number of visits to a given node against the rewards from that node’s children. The term

“Plain UCT” (or vanilla MCTS) is commonly used to describe using MCTS with the UCB1

algorithm and a default policy of random selection.

The two terms that make up the UCB1 equation are often referred to as the Exploitation
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Algorithm 1 UCT Process Summary
function UCT(s0)

v0 = new TreeNode(s0)
while ti < tmax do

v1 ← TREE POLICY(v0)
r1 ← DEFAULT POLICY(v1.s)
BACKUP(v1, r1)
return ROBUST CHILD(v0).a

function TREE POLICY(v)
while v has children do

if v fully expanded then
v ← BEST CHILD(v)

else
a← v.s.GetRandomUntriedAction
v′ = newTreeNode(v.s.makeMove(a))
return v′

return v

function DEFAULT POLICY(s)
while s is not leaf do

a← s.GetRandomAction
s← s.makeMove(a)
return s.GetReward

function BACKUP(v, r)
while v is not NULL do

v.n← v.n+ 1
v.q ← v.q + r
v ← v.parentNode

function ROBUST CHILD(v)

return arg max
v′∈v.childnodes

X̄i + C

√
2 lnn

ni
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Term and the Exploration Term. It’s obvious that the exploitation term (shown in 2.4) grows

larger as the average reward from a given child node increases (i.e. that node is shown to

be more rewarding on average, so it should be exploited), and thus exploitation of valuable

nodes is encouraged.

Figure 2.4: UCB1 algorithm used in UCT (MCTS), highlighting the Exploitation & Explo-
ration Terms

The exploration term decreases as the child node i is visited, but increases as other

sibling nodes are visited (i.e. other nodes with the same parent), encouraging exploration of

nodes that are sibling to the nodes most visited. The UCB1 algorithm has been applied with

much success in multiple other games such as Tron [101], Arimaa [85] and Go [87].

2.4.3.3 Optimality

With a large enough budget, UCT is optimal for any decision space. Kocsis and Szepesvári [82], [83]

showed that for games of perfect information, when provided with enough iterations, UCT

converges to the entire minimax tree. So as the iteration budget tends to infinity, the prob-

ability of selecting a suboptimal move tends to zero. This convergence, combined with the

“Any-Time” nature of UCT, already makes it a strong candidate for many environments. It

is worth noting that complete convergence is very slow, but any significant convergence has

a substantial effect on play strength.
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2.4.3.4 Exploration Parameter

The exploration parameter C can be altered to modify the bias towards exploration. As

the value of C approaches 0, then bias towards exploration decreases (as the value of the

exploration term with also approach 0). Kocsis and Szepesvári showed that a value of C =

1/
√

2 would satisfy Hoeffding’s inequality [72] while all rewards were with the range 0-

1 [83] and hence leads to an optimal decision choice in the limit.

2.4.4 Flat Monte Carlo

Flat Monte Carlo (also known as Pure Monte Carlo) describes any Monte Carlo approach

in which the moves of a given state are sampled uniformly rather than guided by a default

policy, and no tree building occurs. For example, if the root state had 10 different moves

available, a flat Monte Carlo approach would send 1/10th of the total simulations down each

of those branches, and not construct a tree [7]. Althöfer also describes a “basin” effect

seen in win rates when increasing number of simulations, which suggests that an increase in

simulations may actually yield a poorer result at very low numbers of simulations.[8].

2.4.5 Counterfactual Regret (CFR)

Counterfactual Regret (CFR) [80, 147] is an algorithm for calculating Nash equilibria in

two player, zero-sum games. It operates by running sample games using selected strategies

for each player, then calculating the regret of the players, and running another game with

a modification to each strategy that is expected to cause a decrease in regret against the

selected strategy of their opponent. If a sufficient number of iterations are performed, then

the player’s strategies approach equilibria.
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2.5 MCTS Enhancements & Variations

2.5.1 Perfect Information Monte Carlo (PIMC)

Perfect Information Monte Carlo (PIMC) (also known simply as Determinization) is a tech-

nique for handling games with imperfect information and/or stochasticity (non-determinism).

It operates by by sampling random instances of the equivalent deterministic game of perfect

information [143].

For example, a determinization of Magic: The Gathering [128, 146] would be an in-

stance of the game that reveals all player hands and all shuffled decks. Determinization

provides a manner in which to handle stochasticity/imperfect information in games using

AI techniques developed for deterministic games.

Ginsberg produced a PIMC agent for Bridge which was at the time the strongest AI

in the world for that game, and dominated the World Computer Bridge Championships in

1998 and 2000 [66]. PIMC approaches have also been used with outstanding success in

Scrabble [126].

Flat Monte Carlo would seem to be a strong contender for games where there is a plausi-

ble (if expensive) perfect information variant, and it is reasonable to assume that opponents

are playing with perfect information [66]

2.5.1.1 Weaknesses

While this determinization is a powerful tool, it has two main weaknesses (discussed below).

2.5.1.1.1 Strategy Fusion Determinization exhibits a weakness known as Strategy Fu-

sion. The term strategy fusion describes the set of errors caused when strategies that are

effective in different determinized versions of the same game state (or “worlds”) are com-
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bined in an attempt to work in the actual game state, but the actual game state is inconsistent

with the determinizations [90].

This type of error is illustrated in figure 2.5, where the upwards pointing triangles rep-

resent “our” moves, and the downwards pointing triangle represent opponent moves. The

squares represent terminal states that grant rewards as noted below, depending on whether

we are actually in world 1 or world 2. Starting at the top node, the correct strategy if we

exist in world 1 is to play towards action a, and the correct strategy if we exist in world

2 is to play towards action b. At the root node however, the expected value of the choices

between a, b & c all appear identical, so a move towards a & b may be erroneously selected,

leading to a negative reward.

Figure 2.5: State diagram displaying an example of Strategy Fusion [90]

2.5.1.1.2 Non-Locality Non-Locality describes the set of errors caused by information

to which an opponent has access but the player does not. An opponent with this information

advantage will steer away from some areas of the tree, but this is unknown to the player

from the current game state [90].

This type of error is illustrated in figure 2.6. The top node is a chance node of which
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Figure 2.6: State diagram displaying an example of Non-Locality [90]

the maximising player (represented by the upwards pointing triangle) knows the result. As

the minimising player (represented by the downwards pointing triangle) does not know the

result of the chance node, they cannot distinguish between the two worlds shown in the

dotted rectangle, and has no way to decide between them. In this case, the minimising

player would likely decide between these two worlds randomly.

This type of error is similar to the “Agent Confusion” error experienced by UCT in

general (see section 2.4.2.2), except that the misunderstood factor is not opponent’s skill to

play away from certain situations, but rather opponent knowledge of the actual game state.

2.5.1.2 Inference

Inference is the process of deriving logical conclusions about the actual nature of hidden

information from observing opponent actions. Whitehouse et al. [143] showed that Inference

could be used to reduce the effect of the weaknesses of determinization, specifically non-

locality, by eliminating certain determinizations from consideration in response to certain

opponent actions.

One method of incorporating inferences is to use Belief Distributions [141], probability

distributions which describe the likelihood of the actual game state existing in the associ-
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ated worlds. These probabilities are constructed from the history of observed agents moves.

Belief distributions have been frequently used in games such as Poker [115, 102], Scrab-

ble [111] and Skat [119, 32].

2.5.2 Transposition Tables

Previously visited positions in the game tree are sometimes identified by storing them in a

Transposition Table, in order to handle situations where the same state can be reached by

several different lines of play. This technique is used frequently in chess [27] and occasion-

ally in Go [26].

When transposition tables are used during tree building, the tree can instead be consid-

ered a directed acyclic graph (DAG), and thus can be reconstructed with multiple inbound

connections to the same node.

Childs et al. [39] identify four different variants for observing transpositions when using

UCT:

• Exclude detection of transpositions (i.e. use unaltered UCT).

• Share cumulative visitation and valuation statistics between identical states indepen-

dent of where they occur in the tree (UCT1).

• As UCT1, but use a refined value estimate for move selection of the parent (UCT2).

• As UCT2, but also use cumulative visitation and valuation statistics to evaluate the

parent node (UCT3).

Childs et al. [39] report that of the four variants, the UCT3 seemed the most promising

in artificial tree and Go experiments, followed by UCT2. However they also note that UCT3

is only applicable when time required for simulating games dominates the time required for

updating the statistics collected in the nodes.
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2.5.3 Progressive Strategies

Due to the exploratory nature of MCTS, initial iterations are often poorly guided, as insuf-

ficient information has been gathered to determine the strength of a line of play. On the

other hand, knowledge dependant agents tend to suffer from a weak global sense due to the

common approach of dissecting the global game state into smaller local problems. Tech-

niques that combine heuristic knowledge with Monte Carlo simulations have been shown

to somewhat address the weaknesses of each separate techniques, and have been shown to

work well in complex games such as Go [24].

Progressive Strategies initially use heuristic knowledge as a tree policy, then perform

a soft transition to using a non-heuristic tree policy [38]. Often the strength of a move

calculated based on the previous strength of a given move [99]. Two strategies suggested

by Bouzy [24] are to attempt running the MCTS simulated games using knowledge based

agent, or to allow a knowledge based agent to pre-process the moves available, and hand

the top candidates to MCTS for simulation. This is further expanded by Chaslot et al. [38],

who defines two progressive strategies for applying domain knowledge to an MCTS agent,

Progressive Bias and Progressive Unpruning.

Progressive Bias [38] uses an agent with domain knowledge as the tree policy for initial

searches, with the agent providing less influence as more games are played through. As the

agent loses influence, the non-heuristic tree policy takes dominance. Progressive Unprun-

ing [38] describes a process by which child nodes are added as normal to any node p in the

MCTS tree until the number of games np in a node equals a predefined threshold T . At

this point, a large number of child nodes are artificially pruned, and with each further game

that plays through p, these moves are slowly “unpruned” (made re-available for selection &

simulation), by an unpruning policy. A technique described by Chaslot et al. [38] in their

Go program MANGO, unprunes branches from a given node when a specific number of
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simulations has passed through that node. This ensures the initial simulations are guided,

but allows for additional exploration once certain playouts have been explored. Progressive

unpruning has been shown to be very effective, particularly when combined with Progres-

sive Bias. Progressive unpruning is very similar to a simultaneously proposed scheme called

Progressive Widening, proposed by Coulom [41].

Progressive History [99] is a combination of progressive bias and a History Heuris-

tic [145] used in enhancements such as RAVE (subsection 2.5.4.1). The history score of a

given move is calculated by determining the strength of that move in any position throughout

simulation. The history score is then combined with the UCT selection strategy, to estimate

a value for the move.

2.5.4 Value Approximation Techniques

2.5.4.1 All Moves As First (AMAF)

The All Moves As First (AMAF) heuristic [30] is a general optimisation technique which

looks at the value of each move independently of the game state into which the move is

played, basically asserting that good moves are almost always good, and bad moves are

almost always bad. It is important to note that this varies by game, and is normally a more

valid assertion for positional games which have immovable pieces, such as Go and Hex,

which is exactly where it has had most success [10, 64]. This technique was applied to

MCTS independently by Drake & Uurtamo [54] and Gelly & Silver [62].

Last-Good-Reply (LGR) is an enhancement that modifies the MCTS simulation policy.

During simulation, moves are chosen based on their suitability as a reply to the previous

move, based on the results of previous Playouts [13, 133, 53]. Specifically, moves are

assigned a value based on their effectiveness as a reply to the last move (or set of moves)
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made by an opponent, effectively considering the move’s strength as a reply rather than its

direct effect on the game state.

Move-Average Sampling Technique (MAST) [106, 21] and N-gram Average Sampling

Technique (NAST) [57, 106, 137, 133] are effectively extensions of the concept of LGR,

such that instead of recognising the value of a single move in reply to the previous one, it

recognises the value of a set of N moves, or of a move as a reply to the previous N-1 moves.

Normal operation of MCTS estimates the value of an action by averaging the value of

all lines of play in which the action is immediately selected. Rapid Action Value Estimation

(RAVE) is a modification of AMAF which instead averages the return of all lines of play in

which the action appears at any point prior to when it was actually played [62, 63]. In this

way in bears a strong similarity to MAST.

2.5.4.2 Hindsight Optimisation (HOP)

Hindsight Optimisation (HOP) is a technique which allows use of a deterministic planner

in a stochastic environment. HOP makes multiple calls to the deterministic planner using

different determinizations of the game, and combines the values of those calls to create an

estimate for the value of the stochastic action [20].

2.5.4.3 Macro-Actions

In cases where search algorithms are required to operate in continuous time, a common

technique is to use searches to create macro-actions which consist of a sequence of smaller

actions intended to bridge the gap before the next search can be completed. This technique

was employed by Powley et al. [105] to create an MCTS controller which could generate

sequences of actions and thus allow the controller to operate in a continuous environment.
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2.5.5 Information Set MCTS

Information Set MCTS (ISMCTS) [44, 106] is an enhancement to MCTS for making deci-

sions in games of imperfect information. ISMCTS eliminates strategy fusion (see subsection

2.5.1.1.1). An information set is a collection of game states that could be the true state of

the game from the perspective of the observing player at a particular point in the game. By

collecting many similar states into sets, the game tree is vastly simplified. For example,

in a card game where an opponent has a hidden hand of cards, the player’s information set

would be every game state which corresponds to all possible combinations of the opponent’s

hidden cards (note that depending on the game in question, these information sets may not

appear with uniform distribution.)

ISMCTS operates as vanilla UCT MCTS, uses determinized games during simulation,

but does not cheat. A random determinization is used for each simulation, effectively creat-

ing a search across a large number of possible combinations of hidden information. ISMCTS

is currently implemented in the successful commercial mobile game, Spades [142], and has

also seen much success in other similar games such as Dou Di Zhu and Lord of the Rings:

The Confrontation [44].

2.5.6 Genetic Programming in MCTS

A number of attempts have been made to evolve a good MCTS player using genetic pro-

gramming. EvoMCTS [17] is an enhancement to MCTS that uses genetic programming

techniques to enhance the level of play. It was originally proposed for Reversi, and has been

shown to outperform vanilla MCTS agents.

Alhejali & Lucas used genetic programming to evolve heuristics for playing Ms Pac-

Man [5], with some success, but encountered problems performing game runs in a reason-

able time and were forced to reduce the number of evaluations below the number recom-
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mended by genetic programming experts [144].

2.5.7 Parallelization of MCTS

As MCTS is a search technique, parallelizing MCTS can allow for an increase in overall

strength, as a wider and/or deeper search can be performed in a shorter time. Cazenave

et al. [33] suggest three different methods; Single-Run Parallelization, Multiple-Run Paral-

lelization and At-the-leaves Parallelization (see figure 2.7).

Figure 2.7: Overview diagrams for the most popular three parallelization methods

These have been provided more concise names by Chaslot et al. [37], who named Single-

Run Parallelization as Root Parallelization, reflecting the complete parallelization of the

MCTS from the root, and renaming At-the-leaves Parallelization as simply Leaf Paralleliza-

tion. Chaslot et al. [37] also provides another method named Tree Parallelization.
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2.5.7.1 Root Parallelization

Root Parallelization [33] (also known as slow tree parallelization or Single-Run Paralleliza-

tion) describes the process by which each system runs a separate MCTS from the same

game state, then the results are amalgamated by a master process. As each tree would have

a different random seed, different results will be generated in each tree.

There is also some consideration to be given to the method of data combination. Bourki

et al. [22] suggest an amalgamation policy which filters some outlying information. Ac-

cording to this policy, information is only included if it came from a node which received at

least 5% of the simulations which passed through its parent, thus removing nodes which are

not thoroughly explored. This technique proved effective in reducing the noise in the final

search.

2.5.7.2 Multiple-Run Parallelization

Multiple-Run Parallelization [33] is similar to Root Parallelization, except the amalgamated

tree is then sent back out to the slaves for further independent processing. This cycle can

repeat multiple times until a budget is reached.

2.5.7.3 Leaf Parallelization

In Leaf Parallelization [33], the main process is run on a master machine, but all simulations

are passed out to the other systems for processing.

2.5.7.4 Tree Parallelization

Tree Parallelization [37] (also known as fast tree parallelization) uses a shared tree to which

all threads read and write information. Mutexes are used to lock parts of the tree that are

53



CHAPTER 2. LITERATURE REVIEW

currently being operated upon. There are two styles of Tree Parallelization, one which locks

the entire tree with a mutex when any write operation is in progress, and another which

attempts to dynamically lock specific parts of the tree which are being written.

2.5.7.4.1 Virtual Loss During Tree Parallelization, in order to prevent different pro-

cesses selecting and exploring the same node, a Virtual Loss may be assigned to nodes

which are currently being processed by other threads, in order to make them appear less

valuable for selection. After the node processing has finished, these losses are removed.

Chaslot et al. attributes this concept to Coulom through a personal communication [37].

2.5.7.5 Strength of different parallelization techniques

Of the the established three parallelization processes described here, Cazenave et al. report

that Root Parallelization seems the most preferable [33], as the results are comparable to

Multiple-Run, but implementation is far simpler. Chaslot et al. [37] report from their exper-

imentation on Go that Leaf Parallelization seems a poor method, as using 16 agents results

in only a strength increase equivalent to that of serial MCTS with only 2-4 times as much

CPU time.

They acknowledged Root Parallelization as the stronger technique, but also stated that

Tree Parallelization with Virtual Loss performs as well on smaller Go boards. This is sup-

ported by Bourski et al. [22], however Mehat et al. [93] later contested this, stating that Tree

Parallelization showed improved results, and that the improvement is related to the ability

to keep all threads consistently busy.
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2.6 Entertaining Play Experiences

The games industry in 2013 was worth an estimated $93 billion USD and was predicted to

grow to $111 billion USD in 2015 [61]. This industry represents world interest in receiving

entertainment through interactive game play, and indicates the importance of entertainment

industries. A similar increase of interest in entertainment is occurring in research, as shown

by the founding of new research groups (DC Labs1) and PhD programs (IGGI2).

2.6.1 Making more human-like moves

There has been a limited amount of research into creating human-like players for a number

of games, and a number of competitions awarding a cash prize exist for success. These com-

petitions include a tournament evaluating the “naturalness” of moves in Go [77], a second

Go tournament which evaluates the “humanity” of moves [78], and a Super Mario Bros.

tournament evaluating the “human-like” natural of an players moves [125].

The original test of the “humanness” is the famous Turing test, which has been one of

the most disputed topics in artificial intelligence since its statement in 1950 [117, 140]. The

original proposal is that a artificial agent would pass the test if it could be mistaken for

a human after 5 minutes of conversing in natural language (the original specification stated

that a 70% success rate is sufficient to pass.) One of the notable weaknesses of the Turing test

however, is that some human behaviours and unintelligent, and some intelligent behaviour

is inhuman. This explains some of inhuman from strong AI players, and also leaves us in

the realisation that simulation of human play is likely significantly different from simulation

of strong play, and also significantly different from simulation of entertaining play (i.e. play

designed to entertain a human opponent.) There have been promising attempts at passing

1http://digitalcreativity.ac.uk/
2http://www.iggi.org.uk/
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the Turing test within specific gaming environments, however it is important to note that

these attempts are often using variations of the Turing test as they are normally directed at

gameplay rather than natural language [69].

Making human-like moves is a very challenging and complex concept, because defining

the human-like qualities of a move is very difficult [139]. There are currently no established

parameters to measure the human-like nature of a game move [59]. One key area in which

AI fails is in an attempt to be “believably weak”. A common route to making an AI weaker

is to reduce its time budget to make decisions, however this often has the side-effect that

it frequently misses selecting moves which would be obvious to even the weakest human

players. Effectively it fails to be believably weak, which makes it appear non-human. Rather

than simply reducing time budget to create a weaker AI, the budget should instead be used to

select a believably weak move. This further requires some categorisation of what qualifies

as a believably weak move, and how a search can be tuned to generate these moves.

2.6.2 Entertaining Play

In this context, “entertaining” refers to a combination of fun, creativity and interest in a

move. Simulating this experience in general has long been the subject of research [48].

Schmidhuber has defined a formal definition of creativity and fun [120]. Schmidhuber’s

theory is that the interest or fun associated with a given piece of information is related to

the compressibility of that information. If the information is very easy to compress, then it

appears simplistic and uninteresting, if it’s too complex, then it appears confusing and is dif-

ficult to understand or remember. Information that is in the correct range of compressibility

is both easy to remember (and possibly difficult to forget), and also challenging enough to

prove interesting.

In 2005, Sweetser et al. collected various heuristics into a system called The GameFlow
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Model in an attempt to better model the enjoyment a player experiences when playing a

game [135]. The model contains eight different elements, each of which provide a set of

criteria for classifying the effectiveness of a specific game. While useful in categorising and

clarifying the concepts that contribute towards play experiences, it is unclear whether any

direct benefit was obtained, as the work experienced difficulty in achieving practical results,

and was limited to providing guidelines for further work.

There is also research on using heuristics to evaluate the utility of a game design [51],

however it is worth noting that these techniques all apply to classifying the player experience

due to the game design, and not specifically the opponent play.

It is also worth considering whether an agent which maintains a constant 50% win

rate against a human player is operating as an entertaining agent. If we remove all other

concerns, the it could be seen as the agent providing a competent challenge which is well

matched to the human player. However, depending on the style of play or the human player’s

understanding of the agent’s actions, it could actually be seen to be antagonising the human

player. An agent which you can never truly improve against, and always maintain an even

win rate is possibly highly annoying over a long period of time, as the human player may

see no long term improvement in their record.

2.6.3 Human-like play

Complex play from artificial agents has lead to research into how they can be made to

appear more human in their play [59, 15], largely due to the assumption that human-like

play is desirable from an opponent. As discussed in section 2.6.1, we recognise a distinction

between human-like play and optimal play, as some non-optimal play is human-like. It

is likely that in specific scenarios we desire unintelligent play from our opponents most

notably tutorials or introductory levels, it seems unlikely that regular unintelligent play is
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desirable, but rather that we would like to experience play that meets our own expectations

of intelligence and human-like behaviour.

Ikeda & Viennot recently studied Go with intent to create a more human player [76].

They had an excellent approach to dissecting the game play, starting with building an oppo-

nent model to assess not only opponent strength, but also the opponent’s expectation from

the game (i.e. what that opponent would find entertaining). They also discuss playing Gen-

tle Moves when facing a less skilled opponent, which is a suboptimal move chosen to avoid

a devastating defeat of an opponent. Their Gentle play variant showed promising results

when compared against a simple reduction of thinking time. We can understand a clear link

between gentle moves and human-like behaviour by considering a benevolent teacher play-

ing against a student. The teacher may make gentle moves specifically to coach the student

through the initial stages of gameplay, and thus this experience, if recognised by the human

opponent, may appear human-like, however it is dangerous to assume such recognition, as

it may be mistaken instead for unintelligent play.

More recently, Devlin et al. demonstrated combining gameplay data with MCTS to

emulate human play [52]. The research focused on collected gameplay data from the top

rated Spades game in the Google Play store (AI Factory Spades3). Previous research had

shown that the adversarial agents in AI Factory Spades behaved substantially differently to

the human players [142, 43], and work be Devlin et al. has shown a successful technique

for biasing towards human-like behaviour.

2.6.4 The importance of challenge to an entertaining experience

Level of challenge is an important part of deriving enjoyment from a game, as players gener-

ally enjoy a level of resistance in gameplay that they can defeat before claiming victory [45].

3http://www.aifactory.co.uk/AIF_Games_Spades.htm
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While different players find different levels of challenge enjoyable due to different skill lev-

els and different tastes, it is fair to say that a complete lack of challenge or an unbeatable

challenge are undesirable scenarios for the majority of players [84, 75]. Achieving a bal-

ance when directly manipulating win rate can be challenging however, as the player can feel

like they are receiving a diminished play experience due to artificial constraints on win rates

forcing AI losses [49, 43].

2.7 Opponent Modelling

The term Opponent Modelling refers to the process of creating an agent which can simulate

opponent knowledge and decision-making. In recent years, this approach has become more

frequently adopted, as digital games are more capable of capturing massive amounts of

statistical play information from players. This easily-accessible wealth of information can

then be used to generate or train opponent models.

Opponent models are generally used to predict the action an opponent would take in a

specific game state. As such, the accuracy of an opponent model is of critical importance, as

regular incorrect predictions could have an a significant effect on an agent’s play strength.

The importance of opponent modelling is particular to each individual game, for exam-

ple opponent modelling is has high value in card games which use bluffing and manipula-

tion such a Poker, but has lesser effect upon deterministic perfect information games such

as Chess [19].

A lot of opponent models use statistical techniques to predict moves based upon a

player’s previous moves. A number of statistical models have been proposed which use

opponent play information to dynamically adapt and to take advantage of opposing agent

behaviour [18, 118].
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More recent contributions include a Bayesian model for opening prediction in the real-

time strategy Starcraft [136]. This agent predicted a specific opening based upon the op-

posing agent’s past behaviour, and played to counter that opening. Dereszynski et al [50]

used a similar model to learn high-level strategy in the same game, and demonstrated an

improvement in player strength and strategy selection.

2.8 Data Mining Techniques

Data Mining is a Machine Learning (and thus Artificial Intelligence) technique by which

knowledge is extracted from collected data [6]. Due to this, it is occasionally historically

referred to as Knowledge Discovery from Data (KDD). The main focus of research is to

create rules of patterns which exist in the data, and then use those rules to provide analysis

of the data, or to allow for prediction of future data from the same system.

2.8.1 Data Preparation

Before analysis on a specific data set can be performed, there is usually an amount of clean-

ing and preprocessing to be performed upon the data. This may be as simple as ensure the

data is received in the correct form, or a more complex process which involves replacing

missing values and/or excluding certain entries from analysis [79]. There are also occasion-

ally techniques applied to reduce the data in order to speed analysis. These techniques can

either function as a form of pre-analysis, or as an advanced form of Data Cleaning [81].

Analysis of a data set in Data Mining begins by determining the attributes of the data

which are of interest in determining rules. These are typically attributes that are of interest

for analysis and/or show a statistical trend in the data. Additional attributes may be included

in order to determine their significance in creating rules for the data.
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2.8.2 Association Rule Mining

Association Rule Mining is the determination of correlations between a set of items, and

then the subsequent creation of rules which describe the data [2]. It is also known as Market-

Basket Analysis, due to the common usage of determining which products a shopper may

purchase based on what is already in their shopping basket. A typical rule-mining algorithm

functions by generating rules that describe which items are likely to be included in a partially

observed set, given the items in the observable part of the set. Itemsets are drawn from

the data such that each itemset describes a correlation between items. Association rule

mining is employed in many application areas, including intrusion detection [89], web usage

mining [132] and bioinformatics [46].

2.8.3 The a priori Algorithm

A commonly used algorithm in association rule mining is Apriori [3]. Apriori first generates

all 1-itemsets that appear in the data at least a number of times equal to a predetermined sup-

port value, then passes this generation onward to create a second generation of 2-itemsets.

This process continues until an empty generation is found (that is a generation with no can-

didates that appear at least support times in the data.) Each generation member then creates

a single association rule of the form which describe the correlation recognised by that mem-

ber. Our rules take the form of S → c, where S is a multiset of antecedents, and c is the

consequent. The Apriori algorithm is shown in figure 2.8

There are many variations on the Apriori technique to generate rules [70], most notable

of these are a technique which attempts to identify the n-most interesting itemsets by charac-

teristic for rule generation rather than using a minimum support value [98, 60]. More recent

contributions use functional languages rather than support constraints [71, 74], generating

substructures within the available data in order to determine the likely most popular rules,
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Figure 2.8: Apriori Algorithm [3]

and thus speed the generation of all rules.

2.8.4 Data Mining for Games

Data Mining has found a number of applications in games, principally in application to

attempting to determine patterns in player behaviour, and in modification of AI agents in

response to such behaviour. In this area, dynamic game AI has been shown to be applicable

and somewhat affective in modifying game behaviour to match player expectations [130,

131].

2.8.4.1 Dynamic Difficulty Adjustment

The concept of Dynamic Difficultly Adjustment (DDA) in response to player behaviour has

become popular over the last decade [47]. Hunicke & Chapman created a Dynamic Diffi-

culty Adjustment system in order to provide online tuning of opponent difficulty in Valve’s

Half Life game engine [75].

More recently, Missura & Gartner created a complete system for implementing difficult

adjustment depending on player behaviour [96]. They categorised players into different
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types, determined a local difficulty modifier for each type of player, and then applied difficult

adjustments to subsequent games after determination of the type of player.

2.9 Summary

In this chapter, we have presented a survey of literature relevant to our work in this thesis.

Firstly we established all terminology relevant to discussing games as a scientific discipline,

then AI concepts with a specific focus upon MCTS. We then moved on to literature re-

lating to entertaining play experiences, and finally provided an overview of Data Mining

Techniques which are relevant to our work here.
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Game Domains and Experimentation
Software

3.1 Game Domains

The following Game Domains were selected for experimentation.

3.1.1 Lords of War

Lords Of War1 is a two-player strategic card game by publisher Black Box Games. A board

is used for card placement, and the relative positions of the cards on the board are the main

strategic interest. A player wins when they eliminate twenty of an opponent’s cards, or they

eliminate four of their opponent’s Command Cards. Command cards are significantly more

powerful than other cards, but placing them onto the board carries a risk that they may be

eliminated.

The game board is 7 × 6 squares each of which can hold a single card. Cards have be-

tween 0 and 8 attacks, each with a strength value, and a directionality towards an orthogonal

or diagonally adjacent square (see figure 3.1). Attacks from multiple cards can be combined

to eliminate an opponent’s card with a high defence value. Some cards also have ranged at-

1http://boardgamegeek.com/boardgame/135215/lords-of-war-orcs-versus-dwarves
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Figure 3.1: Bestial Raptor, an example card from the Lords of War game.

tacks which can eliminate (or contribute towards the elimination) of opponent’s cards which

are not adjacent. In regular play, cards can only be placed so as to attack enemy cards, how-

ever Support Cards also have additional placement rules allowing them to be placed next to

friendly cards instead of attacking enemy cards.

On each player’s turn, they are required to place exactly one card, then process combat to

identify and remove eliminated cards, then they have a choice of either drawing a new card

from their deck, or retreating a friendly unthreatened card from the board. The complete

rules of Lords of War appear in Appendix C.

A normal game rarely extends beyond 50 turns, as most moves (particularly strong

moves) result in a capture. Once an average human player has made 25 moves, they have

probably captured more than 20 cards, and thus the game would have completed. Of course

the games can end much sooner if command cards are placed carelessly or last much longer

if players play cautiously. Games with MCTS agents last on average between 30 and 60

turns, depending on the nature of the agent. Games using random moves vary wildly in
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length, but normally last between 50 and 120 turns. Our experience with Lords of War

has revealed that it commonly has a mid-game branching factor of 25-50, making move

selection challenging.

Lords of War was chosen for research as it represents a complex game in which players

can adopt a number of different strategies and play styles, which provides a wide range of

behaviour for us to analyse.

3.1.2 Android: Netrunner

Android: Netrunner is a two-player strategy card game published by Fantasy Flight Games2,

which includes elements of bluffing and deception. Netrunner is similar to other popu-

lar card games such as Magic:The Gathering, and is described as an LCG (Living Card

Game [55]).

During a standard match of Netrunner, opponents do not have access to the content of

their opponents deck. Access to such information would provide a substantial advantage

to a player, as they would both be able to predict their opponent’s likely strategy, and also

determine which strategies they are poorly defended against.

Due to the nature of the game, the content of an opponent’s deck is critical strategy

information, and a player who is able to accurately model their opponent’s deck is at a

substantial advantage. There are currently more than 600 cards released for Netrunner, so

accurately modelling a deck is a significant challenge. The combination of the wide number

of choices, plus the complex and specific rules for which cards may be included in decks

makes Netrunner deck construction a highly intricate process.

Netrunner has a well documented rules structure for deck building. Every Netrunner

deck has exactly one Identity card which defines some rules for that deck, most notably

2http://www.fantasyflightgames.com
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a Side, an amount of influence and a Faction. There are exactly 2 sides (named Runner

and Corp), and each card in Netrunner is associated with one side and cannot be included

in decks associated with the other side. Identities which are from the corp side must also

include a specific number of agenda points, which are provided corp cards (the specifics of

agenda points are not relevant to this work, other than to recognise that there is a required

number of agenda points for some decks to include, which presents an additional restriction

upon decks.) All non-identity cards also have a Faction and a Influence Cost, the latter of

which describes the amount of influence which must be paid to include the card in a deck

which contains an identity of a different faction. The complete rules of NetRunner appear

in Appendix D.

Netrunner was chosen as a target for research due to the large amounts of imperfect

information, and that bluffing and deception are integral to play, meaning that the content of

an opponent deck is of very high importance.

3.2 Experimentation Hardware & Software

The experimental MCTS engine and Lords of War game were implemented in C++ and all

experiments were run on a Intel(R) Xeon(R) CPU E5645, with two processes (2.40GHz &

2.39GHz), each with 6 cores & hyperthreading and 32GB of RAM.

Much of the practical progress up to this point has been directed towards the creation of

a MCTS engine. Due to the efficiency requirement of the experimentation engine, C++ was

selected as the language of choice. The following work has already been completed on the

C++ engine.
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3.2.1 MCTSTree

The central part of the MCTS engine is the representation of the MCTSTree, which is con-

tained within three classes; MCTS AI, MCTSTree and MCTSTreeNode. The class dia-

grams of these three classes are shown in figure 3.2.

Figure 3.2: Class diagram showing the MCTS Tree class and associated sub-classes

3.2.2 Move & Game State interface

The MCTS engine uses abstract interface classes to allow games to make use of it without

having access to the code. In order to use the engine, games must implement IGameState

and IGameMove. The class diagrams of these are shown in figure 3.3.
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Figure 3.3: Class diagram showing the IGameMove & IGameState abstract interface classes

3.2.3 Memory Management

Any MCTS model can potentially build very large game trees, so it was critical to im-

plement a strong memory management system, both for efficiency and for ensuring that

memory associated errors or crashes were prevented. There were also a number of compli-

cations associated with creating a memory management system for an object of an unknown

type, but that must subscribe to a specified interface. In the end, a total of three template

classes were created to deal with this issue. A fourth simpler template class was added for

managing objects which did not require subscription to a specified interface (most notably

the MCTSTreeNode class). The class diagrams of these are shown in figure 3.4.

3.2.4 Engine Profiling

Initial profiling of the engine was performed using a simple maze search game. The player’s

piece was placed in the top left corner of the grid (0,0) and the target in the bottom right.

Variable sized grids were tested, and the total time for the player’s piece to reach the target

was tracked. Each grid size was tested for 200 games. The graph in figure 3.5 shows the

game completion time before the memory management system was implemented (woMM),

after the memory management systems completion (wMM) and after second stage optimi-
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Figure 3.4: Class diagram showing the Memory Management classes

sation (wMM2).

We can see the substantial effects of the memory management system upon game com-

pletion time, particularly after second stage optimisation of the C++ code. The original

unoptimised system completed a 7x7 game in approximately 62 seconds, whereas our opti-

mised system completed the same game in approximately 5 seconds, representing a twelve-

fold increase in efficiency.
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3.3 Summary

In this section we have provided a summary of all games relevant to our work here, accom-

panied by references to their various rulebooks which allow the reader to further educate

themselves on those games. We also outline our work on a C++ MCTS engine, and the

architecture of the engine.
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Figure 3.5: Simple engine profiling test results, using the SimpleGrid game and varying
memory management techniques. Horizontal axis shows the size of the grid used, vertical
axis shows the game completion time.
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Chapter 4

Parallelization of Information Set MCTS

Whilst traditional computer software was written for serial computation, the vast majority

of modern computers, games consoles and even mobile devices have multi-core processors.

This means that parallel computing is an essential concept to getting the most that this hard-

ware can offer. As time is a critical factor, it follows that algorithms using multiple parallel

threads of execution are required to use these processors to their full potential. MCTS is

readily adapted to parallel execution, with several methods having been proposed [33]. The

three proposed methods described below were compared on MCTS (UCT) by Chaslot et

al. [37]. Our work here confirms the original result and expands that comparison to ISM-

CTS.

As the time assigned to an MCTS process increases, more MCTS iterations are per-

formed, and thus more information on the decision space is gathered, and this is likely to

have an improvement upon the search result. There are problems with providing a large

amount of processor time to an MCTS process, most notably memory limitations which

will become apparent with any reasonably complex game. There will also come a point in

the search where additional time results in diminishing returns (i.e. the final decision will

not be changed by these additional iterations), as no stronger options are identified by the

ongoing search.

MCTS has traditionally been applied to games of perfect information: that is, games
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where the full state is observable to all players at all times and moves are deterministic, non-

simultaneous and visible to all players. More recent work has applied MCTS to games of

imperfect information. Generally this means games with information asymmetry, i.e. games

where parts of the state are hidden and different parts are hidden from different players. The

class of imperfect information games also includes those with chance events, simultaneous

moves or partially observable moves. This chapter focusses on Information Set MCTS (ISM-

CTS) [143, 44]. ISMCTS works similarly to regular MCTS, but each simulated playout of

the game uses a different determinization (a state, sampled at random, which is consistent

with the observed game state and hence could conceivably be the actual state of the game).

More detail on ISMCTS appears in chapter 2.

Previous work on ISMCTS has focussed solely on the single-threaded version of the

algorithm. This chapter applies parallelization techniques for perfect information MCTS to

ISMCTS. Some parallelization techniques involve multiple threads searching the same tree,

in which case it is necessary to use synchronisation mechanisms such as locks/mutexes to

ensure multiple threads do not update the same part of the tree simultaneously. If threads

spend most of their time waiting for mutexes to be unlocked, the efficiency of the algo-

rithm is diminished. Games of imperfect information tend to have a larger branching factor

than games of perfect information, particularly at opponent nodes. Furthermore, the deter-

minizations in ISMCTS restrict each iteration to a different sub-tree of the overall search

tree, reducing the likelihood that two threads will attempt to take the same branch simulta-

neously. From this we suggest that threads in parallel ISMCTS will spend different amounts

of time waiting on mutexes than in the perfect information case, and the relative efficiency

of tree parallelization will be different. Our measure of efficiency is two-fold. Firstly, we

measure the amount of time taken by the complete MCTS process when assigned a specific

number of iterations to make a single decision. Individual agent efficiency is also measured

by determining the effectiveness of adding additional agents to the process.
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Our focus on parallelization was specified by our sponsor, Stainless Games. However

our focus changed as discussed in chapter 1, and this work became less of a priority outside

of our first year of work.

The work here focuses specifically on the efficiency of the parallelization techniques

(i.e. the number of iterations within a given time budget), which means that optimality of

decision is not fully explored here. This work was published in the paper “Parallelization of

Information Set Monte Carlo tree search” appearing at IEEE CEC 2014 [123].

4.1 Experimental Methodology

4.1.1 Root Parallelization

Root Parallelization [33] (also known as slow tree parallelization or Single-Run Paralleliza-

tion) describes the process by which each system runs a separate MCTS from the same game

state, then the results are amalgamated by a master process. As each system would have a

different random seed, different results should be generated. Effectively we are providing

more processor time to the MCTS process by increasing the number of trees which are used

for simulation. While some of this time will be consumed examining the same states, the

additional randomness hopefully causes a different pattern of exploration, and thus returns

useful information once the data is combined at the end of the search.

Root parallelization was implemented as shown in algorithm 2. A separate tree is built

by each agent, and then the node statistics of the first level nodes are combined to determine

the overall most visited node, and thus the decision to select. First three empty lists are

created to hold the trees, agents and threads. Then n agents are created and started, and the

algorithm waits until the threads are complete before collecting all the statistics from the
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searches and returning the best move from all of them.

Algorithm 2 Algorithm for operation of the Root Parallelization method
function DOROOTPARALLELIZATION(nAgents)

treeList = list < MCTS Tree > ()
agentList = list < MCTS Agent > ()
threadList = list < Thread > ()

for nAgents do
agentList← newAgent
treeList← newTree
newThread(newAgent.Run, newTree)
threadList← newThread

for threadList do
thread.Join()

statistics = list < MCTS Statistics > ()

for treeList do
statistics← tree.GetStats()

return statistics.GetBestMove()

4.1.2 Tree Parallelization

In Tree Parallelization a single shared tree is maintained, and each agent works to add nodes

to that tree and update statistics in the tree nodes. Mutex, future and lock guard are used

to ensure that thread safety is maintained (i.e. no two agents attempted to write to the same

memory at the same time, or read from memory that was being altered). This technique

effectively increases the amount of time used to search by allowing multiple agents to work

simultaneously upon the same tree, thus effectively multiplying the available time budget

by the number of agents operating, minus some time for negotiating lock statuses.

This process is shown in algorithm 3. First two empty lists are created to hold the agents

and threads. We do not need a list for trees, as we will only be maintaining one. Then n
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agents are created and started, and the algorithm waits until the threads are complete before

determining the best move from the single Tree.

Tree Parallelization often uses a technique known as Virtual Loss in order to discourage

selection of the same node by two different threads. While a node is locked, an additional

loss is reported any time it is considered, in order to make that node appear less valuable for

selection, and thus decrease the amount of time spent waiting for a node to unlock. We used

Virtual Loss in a separate set of experiments. Before we begin a simulation on a node, in

addition to locking its local mutex, we also add a loss to that node’s statistics to reduce the

chance of the node being selected by another thread.

Algorithm 3 Algorithm for operation of the Tree Parallelization method
function DOTREEPARALLELIZATION(nAgents)

agentList = list < MCTS Agent > ()
threadList = list < Thread > ()

for nAgents do
agentList← newAgent
threadList← newThread(newAgent.Run(tree))

for threadList do
thread.Join()

return tree.GetBestMove()

4.1.3 Leaf Parallelization

In Leaf Parallelization a single tree is maintained, a single “parent“ agent is used to operate

on that tree. Whenever a simulation run is required, the parent agent hands that simulation

to a “child” agent which then runs independently. Child agents are checked to see if they

are clear of an existing simulation before new child agents are created up to the limit by

the number of agents. Here we are effectively splitting the MCTS process into two, and

allowing parallelization of the Simulation phase only. This technique is likely to be effective
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only if the simulation phase of the game is long relative to the length of the decision tree, as

otherwise there is little point in attempting to share this phase between different agents, and

the limiting factor will be the central MCTS process.

Our Leaf parallelization is implemented as shown in algorithm 4. First we create an

empty list for agents, and initialise n agents to include in the list. We initialise and run the

primary agent, and wait until it completes before determining the best move from the single

Tree.

Algorithm 4 Algorithm for operation of the Leaf Parallelization method
function DOLEAFPARALLELIZATION(nAgents)

agentList = list < MCTS Agent > ()

for nAgents do
agentList← newAgent

primaryAgent.RunLeaf(agentList)
statistics = list < MCTS Statistics > ()

for treeList do
statistics← tree.GetStats()

return statistics.GetBestMove()

function RUNLEAF(nAgents)
agentList = list < MCTS Agent > ()
for nAgent do

agentList← newAgent

SimStartNode = RunWithoutSim(tree)
while currentAgent.IsBusy() do

currentAgent = GetNextAgent()

currentAgent.RunSim(SimStartNode)

4.1.4 Iteration Budget Experimentation

As we are interested in the speed of decision-making and not the optimality of the decision

that results, initial experiments dealt with single game moves instead of complete games.
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The state that was used for most experimentation is that of the game after the first two

“Issuing the challenge” moves described in the Lords of War rulebook (essentially an initial

setup for the game). Two cards are placed during the initial set up, both of which were the

Orc General card (see figure 4.1).

Figure 4.1: The Orc General card, an example card from the Lords of War game.

This position was selected for testing as it represents a consistent state which is regularly

arrived at, and is similar to other states regularly reached during game play. The initial set up

position is displayed in figure 4.2, and is referred to as S1 for the remainder of this chapter.

During experimentation, the player decks were stacked so they would draw identical

cards, and the order was maintained between tests, to ensure that all the examined decisions

were identical.

The following series of experiments were then performed, each repeated 1000 times on

Plain UCT and ISMCTS:

• Root Parallelization (between 1 and 8 threads, plus an additional set at 16 threads)

• Tree Parallelization (between 1 and 8 threads, plus an additional set at 16 threads)
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Figure 4.2: The initial state used in our experimentation (S1) with two Orc General cards
(see figure 4.1).

• Tree Parallelization with Virtual Loss (between 1 and 8 threads, plus an additional set

at 16 threads)

• Leaf Parallelization (between 1 and 8 threads, plus an additional set at 16 threads)

During these experiments, the Plain UCT was running on the perfect information game

(i.e. all hidden information was made visible), and the ISMCTS agent was playing the

imperfect information game (and as such was creating new determinizations as required for

its search process.) All experiments were run with 5000 MCTS iterations, as this value was

significant enough to ensure time differential between the parallelization techniques, but not

so high as to unnecessarily draw out the experimentation. In cases when parallelization was

used, the MCTS iterations were split across different agents, with each agent receiving a

static 5000/n iterations to perform (where n is the total number of agents.)

It should be noted that Root Parallelization with a single agent is identical in operation

to unparallelized MCTS, as only one tree is created and there is no mutex locking during

the process. Tree Parallelization with one agent was included to determine the effects of the
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mutex locking & unlocking on the decision speed, as this should be the only factor that is

different between the two processes.

4.1.5 Win Percentage Experimentation

Further experimentation was conducted to determine the effect of parallelization technique

on agent strength. For the purposes of these experiments, complete games were tested,

with each decision being restricted by processor time. Each type of parallelization was

played 1000 times with decision making time restricted to 500ms. It should be noted that

the time restriction was approximate, as due to hardware limits, it is difficult to enforce the

time restriction to exactly 500ms. In each case, when the timer had expired, a result was

requested from the agent, and the agent returned the result at the next possible opportunity.

All results were returned within 50ms of the time restriction.

The following series of experiments were then performed, each repeated 1000 times on

Plain UCT and ISMCTS:

• Root Parallelization (between 1 and 8 threads, plus an additional set at 16 threads)

• Tree Parallelization (between 1 and 8 threads, plus an additional set at 16 threads)

• Tree Parallelization with Virtual Loss (between 1 and 8 threads, plus an additional set

at 16 threads)

• Leaf Parallelization (between 1 and 8 threads, plus an additional set at 16 threads)

As before, Plain UCT was running on the perfect information games, and the ISMCTS

was playing against the imperfect information games and determinizing on each iteration.

81



CHAPTER 4. PARALLELIZATION OF INFORMATION SET MCTS

4.1.6 Experimentation Environment

The experimental MCTS engine and Lords of War game were implemented in C++ and all

experiments were run on a Intel(R) Xeon(R) CPU E5645, with two processes (2.40GHz &

2.39GHz), each with 6 cores & hyperthreading and 32GB of RAM.

A total of four different methods of parallelization were implemented (Root, Tree, Tree

with Virtual Loss and Leaf). When appropriate to the style of parallelization, C++ 11 support

for mutex1, future2 and lock guard3 was used to lock nodes that were being processed.

The only nodes that are locked are those selected for the Expansion step of the MCTS

process, and those which are being updated after a new simulation has been performed. At

all other points, no data should be written to the MCTS tree, and thus no nodes need be

locked.

4.2 Results

4.2.1 Iteration Budget Results

The mean average results of the state S1 experimentation are displayed in figures 4.3 and 4.4.

The values for variance of each of these averages are very small (< e−13), due to the high

number of repeats.

There is a negligible difference between using Tree and Tree with VL in both MCTS

and ISMCTS. As there is little overhead to adding or removing the virtual loss, then the

main difference in speed would be seen when a virtual loss fails to cause a different node to

be selected by the selection policy, as this means that a thread would contest a mutex. The

1http://en.cppreference.com/w/cpp/thread/mutex
2http://en.cppreference.com/w/cpp/thread/future
3http://en.cppreference.com/w/cpp/thread/lock_guard
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fact that the results for both are nearly identical suggests that the virtual loss makes little

difference to selection, and this is confirmed by additional testing which shows that virtual

loss is causing a selection difference less than 1% of the time. So either the selection choice

is very clear and a single loss is not affecting the choice, or that the choice is very unclear

as the statistics are similar in most nodes at a given level, and nodes are effectively being

chosen at random. Chaslot et al. [37] reported that Tree with Virtual Loss performs as well

as Root Parallelization on smaller boards in the game of Go, but this does not seem to be the

case with Lords of War.

Leaf parallelization is clearly a far slower technique than any other used here. Using

more than 3 agents does not result in a speed increase. From the results in figures 4.3 - 4.6,

we can see that the addition of agents numbered above 3 has almost no effect on the results:

the simulations assigned to earlier agents are already complete by the time a simulation

would be assigned to an agent numbered 3 or higher.

Tree Parallelization shows itself to be a competitive technique in terms of speed (fig-

ures 4.3 and 4.4), but still a lot slower than Root Parallelization in both MCTS and ISMCTS.

If we calculate the difference in speed between Tree and Root in MCTS, then the difference

in speed between Tree and Root in ISMCTS, it can be seen that the difference is compar-

atively lessened in ISMCTS, but that the speed decrease caused by ISMCTS is still more

significant.

As discussed earlier, we can see the effects of usingmutexes to lock nodes by comparing

the difference in performance between root and tree parallelization when using 1 agent,

however this only accounts for the actual cost of the locking procedure, not the expense

caused by causing any threads to wait. The average of this difference is very small, the

best estimate being less than 16ms (due to the resolution of the timer used). This indicates

that the time spent locking mutexes is very low, and almost all of the expense comes from

threads waiting to obtain lock on a mutex. We can see a similar difference between the
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Figure 4.3: Results of applying four different parallelization techniques to UCT operating
upon state S1. Results are expressed in milliseconds used to complete a decision.

ISMCTS runs of root and tree parallelization.

In order to see the relative effects of different parallelization techniques on UCT and

ISMCTS, we can compare the relative efficiency of individual agents within each technique

(see figures 4.5 and 4.6.) Efficiency is calculated as t1
n·tn , where tn is the decision time for n

agents. In particular, the efficiency for n = 1 is t1
1·t1 = 1.00. In an ideal scheme with 100%

efficiency, using n agents would result in an n-fold increase in speed: adding the second

agent would cause overall speed to double resulting in a decision time of t2 = t1
2

, and so on.

The results show that root parallelization spreads the load between agents most effectively,

with one exception of note - the 2nd agent in leaf parallelization on MCTS.
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Figure 4.4: Results of applying four different parallelization techniques to ISMCTS operat-
ing upon state S1. Results are expressed in milliseconds used to complete a decision.

4.2.2 Win Percentage Results

The results of the state S1 win percentage experimentation are displayed in figures 4.7

and 4.8. The general curve of the results shows that each iteration added is less effective

than the previous, and thus has a smaller effect on play strength for our fixed 5000 iterations.

As in the previous experiments, we can see that there is little difference in behaviour

between Tree with and without Virtual Loss. As mentioned previously, we can attribute this

to differences in the game of study, and also that a single temporary loss is unlikely to affect

overall decision making, as the difference is intended to have a minimal effect on algorithm

operation.

We can see that tree parallelization performs substantially better in these experiments,

which can be attributed to the fact that the focus of all agents is on a single search space,
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Figure 4.5: Results of applying four different parallelization techniques to UCT operating
upon state S1. Results are expressed in individual agent efficiency, where 1.0 represents
optimal efficiency.

unlike in Root parallelization where processor time may be wasted re-exploring decision

space already explored by other agents.

We can see that overall ISMCTS behaves more poorly than UCT in terms of efficiency,

however this is to be expected, as the UCT agents have access to perfect information of the

game state, and the ISMCTS agents include enhancements to cater for the lack of such in-

formation, so this direct comparison does not speak of their relative effective play strengths.

Leaf parallelization performs approximately equally to standard UCT, flattening out al-

most immediately after adding additional agents. This indicates that the simulation process

is not significantly expensive for this game, and thus parallelizing this process alone does

not have a significant effect on agent strength.

We also ran some brief experiments to track win percentage on the different paralleliza-
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Figure 4.6: Results of applying four different parallelization techniques to ISMCTS operat-
ing upon state S1. Results are expressed in individual agent efficiency.

tion types (see figures 4.7 and 4.8).

4.3 Summary & Discussion

It can be seen that in no combination of tested factors did ISMCTS outperform UCT in

terms of time to execute a fixed number of iterations. The results of this comparison are

not particularly unexpected however, as ISMCTS is a significantly more complex process

which caters to the use of imperfect information, and these overheads to its operation will

significantly reduce it’s operational speed when compared to that of Plain UCT. These en-

hancements take the form of determinizations of the game state which consume operational

budget, but add significantly to the play strength in games of incomplete information [44].
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Figure 4.7: Win Percentage when applying four different parallelization techniques to a
UCT agent. The opponent in each case was an unparallelized UCT agent with the same
iteration budget.

There does not appear to be a significant difference in the slow-down caused by tree par-

allelization between ISMCTS and UCT, which is contrary to what was originally expected.

This indicates that the slow-down is unlikely to be caused by threads awaiting locked re-

sources, but more likely by code associated with the locking and unlocking process. It

should also be noted that parallelization of a single process across n agents for a single unit

of time will always be less efficient than the same single process on a single agent running

for n units of time. However the idea of parallelization is use advanced processing power to

achieve more in a reduced amount of time.

One possible explanation is that due to the shape of the trees, the locking of initial nodes

is having a larger effect on an ISMCTS tree than a UCT tree. As mentioned previously, the

expansion step of the MCTS process locks the node to be expanded. The UCT tree will only
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Figure 4.8: Win Percentage when applying four different parallelization techniques to a
ISMCTS agent. The opponent in each case was an unparallelized ISMCTS agent with the
same iteration budget.

have a relatively small number of nodes at the first level (approximately 20-30), meaning

that once these nodes are expanded, other agents are cleared to continue through the root

node without locking. The ISMCTS tree will have a large number of nodes at the first level

(approximately 150), which will cause an initial delay as multiple agents compete to lock

the root node. This effect may continue on other promising nodes during the early stages of

the tree building process.

Of all approaches attempted, root parallelization across high numbers of agents was the

most time efficient approach (decision time 82ms using 16 UCT agents, 187ms using 16

ISMCTS agents), although the speed increase became mostly negligible when adding more

than 4-5 agents.

It’s also worth noting that tree parallelization is less effective when applied to ISMCTS
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(decision time 248ms using 16 agents) than when applied to UCT (decision time 84ms using

16 agents), which is somewhat surprising. Using tree parallelization in an environment

where agents are unlikely to be blocked should increase efficiency, but the relative decrease

in efficiency suggests that more blocking is occurring.

Adding virtual loss has almost no effect on the effectiveness of tree parallelization in

Lords of War. This may be due to the positioning of valuable states in the game tree -

if there are few positions of high value in a tree, then adding a virtual loss is unlikely to

dissuade from their further immediate exploration.

It is important to note that our work on parallelization only used a single game for study,

and thus the results may have been influenced by factors that are unique to the decision space

of this particularly game. Further work should investigate other games, if only to verify that

no game specific factors interfere with the results.

4.3.1 Contributions

Our contributions from this chapter are:

• A survey of the effects of parallelization upon ISMCTS.

• An insight into the effects of MCTS (Plain UCT) and ISMCTS parallelization upon

the complex card game Lords of War.

• A comparison of the effects of parallelization upon MCTS (Plain UCT) and ISMCTS.

Our contributions show that effective use of parallel processing will directly result in

a more effective use of MCTS and ISMCTS artificial agents, and provides insight into the

effects of adding processes on speed up and playing strength.

While the survey here is performed upon one target game, parallelization of MCTS

is useful in virtually any MCTS usage where enhanced performance would be an advan-
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tage. Given that MCTS is search technique, and a higher budget generally increases the

effectiveness of the search, a majority of MCTS implementations would stand to gain from

parallelization techniques.

We can expect parallelization techniques to be used frequently in industry implemen-

tations of MCTS. Whether it be for oppositional agents in games, where parallelization

could occur on available memory (or GPU) in the user’s system, or other industry search

and logistical applications, where entire server farms could be used upon a single search. It

would be important to be wary of the negative effects of parallelization, particularly in this

last example, where the application of more processing power might not have the desired

results. A good example of this is AlphaGo [127], created by Google DeepMind, which

makes extensive use of parallelization to take advantage of advanced hardware.
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Chapter 5

Modifying MCTS to Create Different
Play Styles

While MCTS is simple in operation, it results in complex and asymmetrical decision trees,

the form of which cannot easily be predicted before creation. Relatively minor modifications

of the MCTS process can lead to radical changes in the direction of tree growth, and also

the final decision. Two common methods of altering the MCTS process are Move Pruning

and modification of the Action Selection Mechanism. The work in this chapter is performed

on the game Lords of War, however the techniques are easily applicable to a wide range

of complex games, particularly (but not limited to) complex card games (e.g. Magic: The

Gathering, Netunner, Hearthstone) and positional board games.

The motivation for this work is the creation of artificial players with interesting, complex

behaviours, which include human heuristic knowledge and thus might include the collateral

bonus that they make more human-like moves.

This work was published in the papers “Heuristic Move Pruning in Monte Carlo Tree

Search for the Strategic Card Game Lords of War” appearing at IEEE CIG 2014 [122],

and “An Experimental Study of Action Selection Mechanisms to Create an Entertaining

Opponent” appearing at IEEE CIG 2015 [124].
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5.1 Move Pruning

Move Pruning is a technique which removes sections of a decision space in order to narrow

the space to be searched, and thus reduce the amount of time a search approach (such as

MCTS) needs to reach a stable decision. If poor sections of the tree are removed from con-

sideration, the following tree search should converge more quickly upon a strong solution.

Therefore the ideal Move Pruning technique is one that removes only unpromising sections

of the tree, removing then from consideration before the search begins. Some methods of

pruning also look to remove trap states [108], which are states that appear strong to a search

agent, but are actually guaranteed losses, or simply unpromising. In this work, we describe

pruning techniques as either Hard or Soft. Hard Pruning techniques are those which per-

manently remove sections of the tree from consideration, effectively blocking them from

ever being searched. Soft Pruning either temporarily removes sections of the tree or de-

prioritises them, making them less likely to be searched. In this chapter we use heuristic

hard pruning to reduce the branching factor of the search tree and demonstrate that this pro-

duces stronger play in Lords of War. We then combine heuristics to produce multi-heuristic

agents which are played-off against the single heuristic agents to determine their relative

playing strengths. Our best combined heuristic agent proves to be a competitive opponent

that exhibits a rather different play style.

We also investigate pruning using State-Extrapolation. For the initial heuristic pruning

tests, we prune moves based on a heuristic evaluation of the game state after the move is

made. When pruning a move using state-extrapolation, we move the game forward until

just before the next opponent decision, then determine the suitability of the move by the

heuristic evaluation of that state. This applies both in our chosen domain, Lords of War, and

in many other domains where a player move consists of a series of linked decisions before

the opponent has the opportunity to react (e.g. Magic the Gathering, Netrunner.) We show
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that this technique improves the strength of the search by allowing the heuristics to evaluate

a more representative game state. We then compare State-Extrapolation across a selection

of the strongest heuristics we have used, and examine its comparative effect on play strength

for those agents.

5.2 Action Selection Mechanisms

The term Action Selection Mechanism describes the process by which a move is chosen

from the root level of the MCTS tree once the search is completed. There has been limited

work on action selection mechanisms, likely due to the apparent relative effectiveness of the

mechanisms presented by Chaslot et al [38]. In this chapter we experiment with modification

of the action selection mechanism, while leaving the centre ISMCTS process intact, and

avoiding modification to the number of iterations used, in order to create AI agents based

on providing a tailored level of challenge and complexity (and hence, we would argue,

entertainment.)

5.3 Experimental Methodology

5.3.1 State Evaluation

We applied our own experience of Lords of War in the creation of several functions which

may be useful for examining a state. These functions (fj) are applied to a specific game

state Si such that fi : S → R, and are intended to form building blocks for construction of

heuristics which will be used to measure the fitness of a state (correlated to the probability

that the assessing player will win from that state). Each function is performed including

only cards of the active player unless the otherwise specified by the modifier opp, in which
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case the opponent’s cards are considered instead (e.g. f opp
j ). The set Bi is the set of all the

active player’s cards on the board in state Si (or the opponent’s cards if opp is used). The set

Hi, Ei and Di are similarly the sets of cards in the players hand, eliminated pile and deck

respectively. The following functions were used to simplify the expressions for the state

evaluation heuristics:

f1(Si) = |Bi|

f2(Si) = |Ei|

f3(Si) =
∑
b∈Bi

(b.DefenceV alue)

f4(Si) = |{b ∈ Bi|b.Threat() > 0}|

f5(Si) = |{g ∈ Ei|g.IsCommand()}|

To briefly explain these functions, f1(Si) counts all the active player’s cards, f2(Si) counts

all the active player’s dead cards, f3(Si) sums all defence values for all the active player’s

cards, f4(Si) counts all squares threatened by the active player’s cards, and f5(Si) counts all

the active player’s dead commander cards. Functions f6(Si) − f11(Si) use the heatmaps in

figure 5.1 to assign values to the active player’s cards based on their position, and then sums

those scores. The functions were then used to create the State Evaluation Functions listed

below. It is worthy of note that during early testing, our heuristics which considered card

attack strength were universally weak. This likely speaks of the importance of defensive play

in Lords of War. As such, no heuristics incorporating attack strength were taken forward to

further experimentation.
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5.3.1.1 Card Count (h1)

This heuristic was selected for testing partially because it was the simplest of the heuristics,

but also because it performed very well in initial testing. h1 assigns a weight of +1 for each

card on the board and a weight of -1 for each card in the graveyard, negating these weights

for opponent cards.

h1(Si) = (f1(Si)− f2(Si))− (f opp
1 (Si)− f opp

2 (Si))

5.3.1.2 Average Defence (h2)

This heuristic was selected for testing because it would appear that strong players often play

defensively in Lords of War, and this heuristic would hopefully mimic that style of play.

This heuristic measures the difference between player and opponent of the mean defence

value of cards on the board. In the case when a player has no cards on the board, we assume

a value of 0 for that player’s contribution to the value of h2.

h2(Si) = (f3(Si)/|Bi|)− (f opp
3 (Si)/|Bopp

i |)

5.3.1.3 Threatened Area (h3)

This heuristic counts the number of empty or opponent occupied squares on the board that

are directly threatened (under attack by adjacent card’s non-ranged attacks) by active player

cards. The same calculation is made for the opponent and subtracted from the total. This

heuristic was selected so as to consider the positional elements of the game.

h3(Si) = f4(Si)− f opp
4 (Si)

5.3.1.4 Simple Card Count with Dead Commander adjustment (h4)

This heuristic is similar to h1, except command cards in the dead pile count for two cards

instead of one. The adjustment to h1 is due to our own play experience and understanding
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of the importance of command cards to the game (as it is possible that an AI may be too

willing to lose its first 2-3 command cards in combat).

h4(Si) = (f1(Si)− f2(Si)− f5(Si))− (f opp
1 (Si) − f opp

2 (Si)− f opp
5 (Si))

5.3.1.5 Active Player Average Defence (h5)

This heuristic was a modification upon h2 to remove the subtraction of an opponent score

from the total. This was tested as a heuristic mainly because h2 seemed like such a strong

candidate, yet performed poorly in tests. In the situation where the value of |Bi| is 0, then

the value of h5(Si) is also evaluated as 0.

h5(Si) = (f3(Si)/|Bi|)

5.3.1.6 Basic Heat Maps (h6 − h11)

This set of heuristics is similar to h1, except each card is assigned a weight value which

depends on its placement location, then these values are summed to create the state score.

When the modifier “opp” is used, the heat maps are reflected about the horizontal axis to

account for the opponent playing from the opposite side of the table (this is only of signif-

icance to ma and mb). The maps for these heuristics are shown in figure 5.1. We would

expect these heuristics to be poor when used in isolation, but perhaps stronger when com-
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bined with another heuristic which measures strategic strength, such as h1 or h5.

f6(Si) =
∑
b∈Bi

ma(b)

f7(Si) =
∑
b∈Bi

mb(b)

f8(Si) =
∑
b∈Bi

mc(b)

f9(Si) =
∑
b∈Bi

md(b)

f10(Si) =
∑
b∈Bi

me(b)

f11(Si) =
∑
b∈Bi

mf (b)

5.3.2 Single Heuristic Experimentation

During pruning, we apply the appropriate heuristic (hi) to the state that results from the

move under examination. We then prune all except the top scoring moves. The number of

moves that each heuristic selects to exclude from pruning is referred to as the Hard Pruning

Limit (HPL).

During our experiments, values ranging from 1 to 30 were used for HPL. Each of the

heuristics were run against Plain UCT using 10000 iterations for the perfect information

variant of the Lords of War game. The following experiments were each repeated 500 times

in each case, where UCT is plain UCT, and UCT(hi[n]) is UCT using hi for hard pruning

with a HPL of n, (i = 1, 2, ...11) and the values of HPL tried were 1,2,5,10,15,20,25 and

30.
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Figure 5.1: Sample board heatmaps for use by heuristic pruning algorithms in the game
Lords of War

5.3.3 Multi-Heuristic Experimentation

In later tests, multiple heuristics were used in combination. An AI using multiple heuristics

would select moves up to the HPL from each heuristic in turn, then combine the obtained re-

sults, removing any duplicate entries. This results in a list of top moves containing between

HPL and (n × HPL), where n is the number of heuristics being used by the agent. The

average number of duplications that appeared in multi-heuristic experiments is discussed in

the results section.

Our strongest single heuristic (h4), was combined with each of the other heuristics in

an attempt to create a strong multi-heuristic agent. These new agents were then played

against the original h4 to determine their strength against our strongest single heuristic agent.

Results of this experiment are given in section 5.4.2.
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5.3.4 State-Extrapolation

In all previous experiments, we have pruned moves based on the score obtained from the

state following that move. In these State-Extrapolation experiments, we roll forward the

game state to some forward point in the game and prune based on the state at that point.

This has the effect of running through the combat step (when ranged attacks are assigned,

and dead cards are removed from the board), and thus should provide a better estimation of

the strength of the move.

There are multiple ways in which we can roll forward. The simplest way is to randomly

select moves until some point in the future, most logically the opponent’s next move. We can

also look to perform a search over the sub-tree from the remainder of the turn. In this study,

we experiment with randomly rolling the state forward until the opponent’s next move.

We expect State-Extrapolation to be a strong technique, as it should give a more accurate

representation of the actual game state. For example, rolling forward past the end of combat

step would allow us to observe clearly which cards will be removed, and thus the resulting

layout of the game board.

5.3.5 Action Selection Mechanism

Strength of play in Lords of War is closely tied to positional elements of card placement.

As such, the deployment move is the most strategically important move. The selection of

whether to remove a card from the battlefield or draw a new card is a comparatively simple

binary choice, as retreating a weak card is more often the correct choice, particularly if there

is an exposed high value card. The simplest choice is that of selecting a target for a ranged

attack. The target is normally obvious as the situation in which more than one destroyable

target is available is uncommon, and when there is an available target which can be destroyed

with a ranged attack, performing that ranged attack is almost always the stronger decision.

100



CHAPTER 5. MODIFYING MCTS TO CREATE DIFFERENT PLAY STYLES

If there is no such target that will be destroyed by a ranged attack, then not making a ranged

attack is the correct choice (as this allows the unit to melee attack instead, which may have

an effect.)

The selection mechanisms which we investigated are listed below. As mentioned in

Chapter 2, RobustChild is the standard applied in MCTS, selecting the move from the root

that has the highest visits (v) amongst its neighbours. MaxChild is also well established,

and selects the move that has the highest wins/visits (w/v). RobustRandn and MaxRandn

perform uniform selection across the top n moves by visit or value respectively. The value

n was provided as an input parameter (note that RobustRand1 is identical to RobustChild,

and MaxRand1 to MaxChild.) RobustRoulettek and MaxRoulettek perform fitness propor-

tionate selection (or roulette wheel selection) by visits or value respectively. An input pa-

rameter was supplied to RobustRoulettek and MaxRoulettek, each fitness value was raised

to the power k before making the selection (to increase the likelihood of selecting a fitter

move). RobustRoulettekn operate similarly to RobustRoulettek, except the roulette selection

was limited to the top n moves. In each case, the agent using the new selection mechanism

was assigned a budget of 10000 iterations. All opposing agents were using ISMCTS with

RobustChild selection mechanism and a budget of 10000 iterations, except where otherwise

noted.

RobustChild : argmax(vi)

MaxChild : argmax(wi/vi)

RobustRandn : Pi = 1
n

for i ε {a1, a2, ..., an}

MaxRandn : Pi = 1
n

for i ε {a1, a2, ..., an}

RobustRoulettek : Pi = (vi)
k/

∑
(vj)

k

MaxRoulettek : Pi = (
wj

vj
)k/

∑
((

wj

vj
)k)
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RobustRoulettekn : Pi = (vki )/(
n∑

j=1

(vkj ))

5.3.6 Complexity Measurements

To evaluate the selection mechanisms, we used five measures of complexity during experi-

mentation. These measures were proposed due to accumulated heuristic knowledge of the

Lords of War game, both our own and those of expert players and the game designers. The

set A is all available actions to the player in state S, and the set B is the set of all the active

player’s cards on the board in state S (and Bopp the opponent’s board cards).

Cx0 = |A|

Cx1 = |{b ∈ Bi|b.Threat() > 0}|

Cx2 =
∑
b∈Bi

(b.Threat())

Cx3 = |Bopp|

Cx4 = |B|+ |Bopp|

Cx0 is a simple count of the moves available to the agent at each decision state, Cx1 is a

count of all enemy or empty squares threatened by friendly cards, Cx2 is the sum of all

threat values directed at the squares in Cx1, Cx3 is the total number of opponent cards on

the board, and finally Cx4 is the total number of all cards on the board. All values for

complexity measure were normalized to lie in [0, 1] according to the observed limits for

those measures.

These measures were selected primarily because they represent a human expert’s inter-

pretation of what constitutes a complex and interesting board state. The most basic measure

(Cx0), states that a board with more available moves is more complex to the player selecting
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which move to take, which in most situations will be true. The measure Cx1 is a measure

of how much threat the active player is placing upon the board, which increases complex-

ity because there are more interactions to be considered between cards on the board. The

measure Cx2 states that the more threat an opponent directs towards your pieces, the more

complex the board state, as you must more carefully consider where to make your next

move without endangering both the card you place and your cards already upon the board.

The measure Cx3 states that complexity increases as the opponent places more cards on

the board, however this is a mixed measure, as this will both increase threat on surrounding

squares due to melee and ranged attacks (included in Cx2), and also directly block a single

square, potentially reducing the available moves of the opposing player if that square was

previously a valid move. Finally, the measure Cx4 just counts all cards on the board, as a

board with more cards has more interactions to consider, and also more squares affected by

threat. These complexity measures are not intended to completely encapsulate everything

that is complex about a game state, as that itself would be a challenging and project with

somewhat subjective targets, but rather to provide an insight into what players may consider

complex, and a guide for our heuristic pruning and action selection.

Our own experience of playing against agents of differing configuration has indicated

that the complexity measures do indeed reflect the likelyhood of an agent behaving unusu-

ally and creating unexpected game states. Generally speaking, agents with low complex-

ity measures made moves which directly achieved clear objectives, such as eliminating or

threatening opponent pieces, or securing existing positions. Agents with higher complexity

measures tended towards making somewhat unexpected moves, which tended towards being

weaker, but were occasionally very strong and difficult to counter. This seemed particularly

true with regard to Cx1, which we felt through personal observation was the strongest indi-

cation of complexity in play.

In addition, a short survey has conducted with human players using a deployed Windows
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Executable version of the Lords of War game. The users were asked to play a series of games

of Lords of War against an unknown AI opponent, and then answer questions relating to

how strong and complex the opponent’s play was. Unfortunately we received a very small

number of responses to this survey, and as such no meaningful conclusions could be drawn,

however those we did receive seemed to support our own personal experiences noted above.

5.3.7 Online tuning

We also investigated online tuning of parameter values in order to match the strength of the

agent to an opponent. The tuning method was to measure the MaxChild (wi/vi) value of the

selected move at each decision and then increase the configuration parameter if wi/vi > 0.5,

or decrease it otherwise (in the case of RobustRoulettekn, where there are two configuration

parameters, the value of n was modified by online tuning.) This should result in an agent

that becomes weaker when it selects moves that lead to a concentration of wins, and stronger

when it selected moves that lead to a concentration of losses. The value of n was limited

in the range [1-10], mostly to ensure that the value remained within a reasonable range for

computation. Results for online tuning are shown in figures 5.14 & 5.15.

5.4 Results

All experimentation was performed on the hardware and software specified in section 3.2.

5.4.1 Single Heuristic Results

The results for the initial heuristic tests are shown in figure 5.2 & 5.3.

A Hard Pruning Limit of below 5 seems poor for all heuristics tested, with all such agents

consistently losing to Plain UCT, and this was confirmed by testing HPL=4 and HPL=2. If a
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Figure 5.2: Mean win% of single heuristic agents h1 - h5 playing against a standard UCT
agent with 10000 iterations at varying Hard Pruning Limits (HPL)

heuristic was a poor indicator of move strength, we would expect to see a slow and gradual

increase in strength as the HPL rises, which should come to a halt at approximately 50%

win rate. This is due to a high HPL being equivalent to using no heuristic at all, as no moves

will be pruned by either method. We can see this behaviour in the agent using h3, and all

the heat map heuristics (see figure 5.3). This is consistent with our belief that the heat maps

in isolation would be poor pruning heuristics.

The strongest single heuristic results appear between a HPL of somewhere between 15

and 25, with the strongest individual result being h4 at a HPL of 15. h1 and h4 are very sim-

ilar heuristics. However as h4 performs better, we can see that including an adjustment for

command cards within the heuristic has increased its effectiveness. This could be considered

for future heuristics, and may increase their play strength.
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Figure 5.3: Mean win% of single heuristic agents h6 - h11 playing against a standard UCT
agent with 10000 iterations at varying Hard Pruning Limits (HPL)

The most effective heuristics seem to be h1 and h4, with h5 being a strong third. It is

surprising that h2 performed so poorly given that h5 performed so well. This is possibly due

to h2 being highly susceptible to strong play from an opponent, however we can establish

no reason why it would be more susceptible than h1 or h4. It is more likely that the state

with no cards on the board is stronger than the heuristic indicates (for example, having no

cards on the board while your opponent only has one is not as poor a position as h2 would

indicate, since it means that you have a target for attack where your opponent has none.)

When applied alone, the heatmap heuristics (h6 - h11) behave very poorly as we sus-

pected (see figure 5.3), likely due to their complete lack of consideration for any strategic

element other than position. The underlying MCTS agent will still ensure some level of

skilled play, but it is clearly outmatched by the non-pruned opponent. This is of little con-
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cern however, as these agents were not designed to function alone, but rather as part of a

multiheuristic.

Due to the poor results from heuristic h2, we also conducted an experiment with a

negated value of h2, but it was completely unsuccessful, winning 0 games in all tests. The

clear trends shown in the results for the improvement of the results with an increase in

HPL prompted further experimentation with higher pruning limits, so further experiments

were run increasing the pruning limit until the Win% exhibited a decrease. Results of this

experiment are given in section 5.4.1.

5.4.2 Multi-heuristic Results

The results of the experimentation with multi-heuristic agents are displayed in figure 5.4.
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Figure 5.4: Win% of multi-heuristic agents h4h1 - h4h11 playing against a standard UCT
agent at Hard Pruning Limit 15
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The combination of h4 with any of the heat map heuristics causes a strong improvement

in performance, and while only one clearly exceed the original performance of h4 against

plain UCT, they perform at about the same level. This is likely due to the moves being

selected by h4 being responsible for most of the strong decisions. When each of these agents

are played against h4, the agent h4h5 performs the best, suggesting that h5 is contributing

towards the success of h4. Of the multi-heuristic agents using heat maps, the agents using

h4h6, h4h7 and h4h10 show the best performance. This confirms our experience that playing

near the front or back of the board is strong, but suggests that playing in the centre of the

board is stronger than playing at the edges. This may indicate that controlling the centre of

the board is more important than the benefit of playing your cards against the edge in order

to protect their weaker sides. This difference in performance may also be due to human

players trying to place blank card sides (sides with no attack value) against the board edges,

whereas no such consideration is included in the agents.

5.4.3 State Extrapolation

We can see from comparison of the original agents versus those using state-extrapolation

that there is little difference in win% in most cases (see figure 5.5). However the difference

in two specific cases is significant, those of agents using h10 and h11, and for all but one

heuristic state extrapolation gives slightly stronger results.

Heuristics h10 and h11 use heat maps which are exact opposites of each other (see me

and mf in figure 5.1). Our experience of Lords of War is that the strength of a move can

be closely associated to proximity to a board edge. The difference in effect upon these two

heat maps and the other heat maps (h6 − h9) can likely be attributed to this difference.

Figure 5.6 shows us that using state extrapolation has strengthened the h4R agent (where

R denotes the use of state extrapolation), displaying a win rate of approximately 80% against
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Figure 5.5: Win% of single heuristic agents h1 - h11 playing against a standard UCT agent
applying State-extrapolation to heuristic agents

our previous strongest single heuristic agent (h4). It is also worth noting that h1R wins

approximately 50% of games against h4, meaning the application of state extrapolation to

h1 has improved performance to that of our previous strongest single heuristic agent.

In the following results, BestMove% represents the percentage of decisions in which

the selection mechanism chose the move with the highest value. All experiments were

performed across 200 games.

The amount of duplicate moves selected by the paired heuristics was also investigated.

For the majority of the combined heuristics, the value was in the range 6-10, meaning that

approximately half of the moves left unpruned were selected by both heuristics. Notable

exceptions were h4h2 and h4h3, which had average duplications of below 5, perhaps ex-

plaining somewhat their poor decision making since the branching factor is large in this

case.
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Figure 5.6: Mean win% of single heuristic agents h1R - h11R and multi-heuristic agent h4h5R
playing against a standard UCT agent and previous strongest candidate single heuristic agent
(h4).

5.4.4 Max Techniques

The results of experimentation using the Max value estimation (w
v

) during selection are

shown in figure 5.7. When using Max value estimation as a gauge of move strength, all

agents behave worse than those using Robust value estimation (v). The only configuration

that reaches close to 50% win rate is MaxRand6, although the confidence interval in this

result suggests that this could just be an anomaly.

MaxChild generally performed better when used in MaxRand rather than MaxRoulette,

indicating that the order of the top N moves determined by MaxChild is likely not strongly

related to play strength. This is supported by the sharp decline in play strength amongst the

MaxRoulette agents when the configuration parameter is increased, and also by the fact that

the indicated “best” move is selected with a higher frequency as this parameter decreases.
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Figure 5.7: Win percentage and Best Move percentage of UCT agents using MaxChild,
MaxRandn and MaxRouln against a standard UCT agent using RobustChild.

Due to poor performance, MaxChild was not considered in the later rounds of experi-

mentation.

5.4.5 Robust Techniques

The results of experimentation using the Robust value estimation during selection are shown

in figure 5.8. Robust (v) proved to be a much more indicative estimate of move strength,

with a number of candidates winning 50% or more games.

Agents using RobustRandn show approximately 50% win rate while n < 5, and we can

see that the agent in question is not always selecting the best move, which would cause non-

standard behaviour from this agent, and therefore potentially generate some interest. As the

value of n increases, we can see the rate at which the best move is selected decreases, as
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Figure 5.8: Win percentage and Best Move percentage of UCT agents using RobustChild,
RobustRandn and RobustRouln against a standard UCT agent using RobustChild.

we would expect due to more moves being available for selection. The decrease is not as

sharp as we might expect at higher values, and this is due to there are not always n moves

available for selection (this explains the deviance of BestMove% at n = 5 from the expected

20%).

RobustRoulettek shows an increased chance of best move selection as the value of n

increases, but this technique is shown to select the best move only 50% of the time at the

highest value of n, which may explain its poor behaviour. The win% follows the trend of

BestMove%, further collaborating that Robust is a good measure of move strength. Further

experimentation was performed to track improvement of win% with n, but it was found to

tend towards approximately 30% and then no further improvement was found with further

increase.
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5.4.6 Further action selection mechanisms

Based on the perceived strength of Robust value estimation and the Roulette selection mech-

anism, two further selection mechanisms were tested, RobustRouletten and RobustRoulette2n.

These results are shown in figure 5.9.
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Figure 5.9: Win percentage and Best Move percentage of UCT agents using RobustRouln
and RobustRoul2n against a standard UCT agent using RobustChild.

The results with RobustRouletten show a relatively stable win%, and a BestMove%

of between 40% and 65%, which could represent a moderately strong player that selects

non-traditional moves, and is potentially worthy of further exploration. The results using

RobustRoulette2n show a slight improvement upon 50% win against our unmodified agent,

which shows that the agent is potentially a formidable opponent which does not always

choose the same move as the standard ISMCTS player. It is also worth noting that despite

RobustRoulette22 has a higher BestMove% than RobustRoulette23, RobustRoulette23 actually
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performs slightly better. This is likely due to the ease of agents exploiting each other when

they are playing the “best move”, as these moves will be perfectly predicted by each agent’s

forward models. As such, a slightly lower BestMove% might actually result in a stronger

result versus an agent playing 100% “best moves”.

5.4.7 Varying Iterations

Two promising agents (RobustRouletten and RobustRoulette2n) were carried through to the

next stage of experimentation, in which the opposing agents were given a variety of differ-

ent iteration budgets. Throughout this experimentation, the budget of the modified agent

remained at 10000 iterations. The results for RobustRouletten and RobustRoulette2n are

shown in figures 5.10 & 5.11 respectively.)
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Figure 5.10: Win percentage of UCT agents using RobustRouln against a standard UCT
agent using RobustChild when varying iteration budget available to the RobustRoul agent.

114



CHAPTER 5. MODIFYING MCTS TO CREATE DIFFERENT PLAY STYLES

30%

40%

50%

60%

70%

80%

90%

100%

0 2500 5000 7500 10000

W
in

%

Opponent Iteration Budget

RRoul

RRoul

RRoul

RRoul

RRoul

2

2

2

2
2

2

3

4

5

6

Figure 5.11: Win percentage of UCT agents using RobustRoul2n against a standard UCT
agent using RobustChild when varying iteration budget available to the RobustRoul agent.

These results clearly indicate a critical minimum budget for agents operating in this

environment, as there is an observable drop off in win% before 500 iterations. The severity

of this decrease in performance also indicates the unsuitability of simply using agents with

reduced iteration budget as simpler opponents, as the play level behaves in a non-linear and

unpredictable way as the number of iterations varies. It can also be said however that there is

some smooth scaling exhibited by the gentle decrease in performance at the higher opponent

budgets.

We can see from the displayed data that the configuration options most able to maintain

a win rate of 50% are those using a low value of n, which suggests that staying within a

close range of the best move is still required for strong play.

By comparing the performance of these agents across all iterations, we create the graph

shown in figure 5.12. We can see from this graph that RobustRoulette2n with a value of 2 or 3
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appears to be a strong candidate for stabilizing play strength against opponent play strength.
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Figure 5.12: Win percentage of UCT agents using RRand, RRoul and RRoul2 against a
standard UCT agent using RobustChild across all iteration budgets while varying n.

5.4.8 Complexity Measure

The output from the complexity measures is displayed in figure 5.13. The outputs are nor-

malised using observed maximum values for play, and a sample of the behaviour of Ro-

bustChild and a Random agent are included for comparison. We hope to see complexity

measures which are in a midrange of the normalized values, which would indicate a mod-

erate level of complexity, where as very high levels could indicate confusingly complex be-

haviour from the agent. We can see the massive difference in complexity measure between

the RobustChild and Random agents, which speaks of their effectiveness in determining

ordered play, as the Random agent should in theory be the least ordered player and the Ro-
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Figure 5.13: Complexity Measurements

bustChild should be very ordered and effective. Our experimental results support this, show

that the random player displays relatively high values for all complexity measures when

compared to our optimal player. It is likely that an agent which intentional performs moves

to create complex board states would achieve even higher values of complexity on these

measures.

The first thing worth noting is that all of the complexity values generated by the action

of these two agents are significantly lower than the random agent and most are significantly

higher than the RobustChild agent, so it is clear that there is an inverse correlation between

win rate and our complexity measures. This is likely due to the fact that logical and effective

play in Lords of War is to eliminate opposing cards, and this will cause a reduction in board

state complexity. We can see this correlation particularly as the value of n increases in

RobustRouletten.
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The complexity measures for RobustRoulette2n were all quite low with the notable ex-

ception of Cx0 and (to some degree) Cx4. Complexity measures Cx1 - Cx4 are closely tied

to the number of player cards placed on the board, whereas Cx0 is more associated with

cards in hands. This suggests that this agent is in some way protecting played cards, most

likely by boxing them into corners or against other friendly cards. Our own experience of

playing against the agent certainly demonstrates this behaviour, however a further study of

agent behaviour interpretation would strengthen this assertion.

5.4.9 Online tuning

Results for online tuning are shown in figures 5.14 & 5.15.
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Figure 5.14: Win percentage of UCT agents using RobustRouln against a standard UCT
agent using RobustChild and the auto-tune modification.

The application of online tuning to the agents has created a slight curve in the results
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Figure 5.15: Win percentage of UCT agents using RobustRoul2n against a standard UCT
agent using RobustChild and the auto-tune modification.

with a crest at roughly 5000 opponent iterations. This curve is also evident in the results of

RobustRoulette2n, but it is less obvious. The tuning also appears to have had an averaging

effect on all results, notably improving the lowest result by 4%, but also negatively affecting

the more promising results.

5.5 Summary & Discussion

5.5.1 Heuristic Move Pruning

In this chapter, we experimented with heuristics in two general categories; heuristics that

drew statistics from the cards in the game, and heuristics that used heat maps to prioritise

card placement in specific positions. The idea is to make best use of limited CPU time by
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focussing the search process on promising moves, and therefore maximise play strength.

Overall the first category proved the most effective, particularly the simplest heuristics that

merely totalled number of cards. The heat map heuristics were generally ineffective, how-

ever they did show the largest relative improvement from state-extrapolation, likely due to

the additional evaluation step providing some much needed additional guidance after the

heatmaps poor influence.

While state-extrapolation did have an effect upon playing strength in some cases, it

was only effective in improving agent strength in certain cases, most notably when using

heatmap heuristics h10 & h11. This is possibly due to the fact that placing cards around

the edges and/or the centre is strategically important (as our own experience would sug-

gest), however the strategic impact is not always immediately apparent from the game state

halfway through a player’s move decisions. As discussed earlier, the heat maps alone were

not expected to create strong agents, and the application of state extrapolation to h10 & h11

may have revealed that placing around the edges or centre is a strong move, and thus that

these two maps are actually superior to the other heat maps.

5.5.2 Action Selection Mechanisms

The use of RobustRoulette selection mechanisms has a significant effect on the play strength

of the ISMCTS agents. This is likely due to the approach of averaging across multiple pos-

sible states, which in the case of traditional selection mechanisms would cause a preference

for more likely possible states, and potential ignorance of less likely states. Using a roulette

technique here allows simulation of a mixed strategy approach to the statistical informa-

tion presented by ISMCTS. Future work could be focussed on further exploration of these

techniques to ISMCTS, and also the features of the game of study which could indicate

appropriate configurations for such selection.
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In terms of creating an agent that was a more entertaining opponent, we created multiple

configurations that are worthy of future study, both playing a good game against our unmod-

ified ISMCTS agent and generating some interesting complexity features. The most notable

of these appears to be a RobustRoulette2n, which showed comparable play strength with

the RobustChild agent, and generated good complexity (with the exception of the instance

of RobustRoulette22 mentioned above.) Further research should also likely include a study

of human entertainment when playing against the agents, so as to determine actual human

entertainment, and also examine further our metrics for complexity and their effectiveness.

It is also worth noting that agents which had fewer than 500 iterations available to them

started to perform both extremely poorly, indicating the flaw in iteration budget scaling that

we proposed originally. These agents also demonstrated behaviour closer to the stronger

agents rather than the random agent, meaning their behaviour was also relatively simple

(and therefore not of interest). A far more gentle decline was provided by the agents with

the maximum available budget, but with various configuration options we displayed. In

this way, we believe that a well configured agent would likely create a more appropriate

opponent for a game requiring multiple difficulty settings.

The effect of online tuning appears to have been beneficial in scaling the modified agents

against opposing ISMCTS agents using differing iteration budget. This suggests that this

technique may be preferable to simply reducing iteration budget when balancing player

strength with an opponent.

5.5.3 Contributions

Our primary contribution from our work in this chapter is the demonstration that modifi-

cation of action selection mechanism and the application of heuristic pruning can create a

variety of agents which display differences in play style according to our metrics for com-
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plexity, yet maintain roughly the same win rate against a specific opponent. This highlights

that agent behaviour in such games has many more dimensions than simple win percentage.

To further clarify, there already exist cases of heuristic pruning and action selection mech-

anisms, and our work here expands those considerably, but does not suppose to invent the

concepts themselves.

While the heuristics created are specific to the game Lords of War, then application of the

development of these heuristics, the manner in which they are applied (using a hard pruning

limit), and also the application of roll-forward (see section 5.3.4) and multi-heuristics are all

transferable to other domains. The heuristics will be different, but the same techniques can

be applied.

As with our previous work on parallelization, the techniques explored here could be

useful in a wide variety of MCTS applications where enhanced performance (both in terms

of playing strength and varied behaviour) would be an advantage. Pruning is a technique

for reducing decision space, and thus accelerating the search process. As such, it would

likely be applicable to similar domains as parallelization, assuming that appropriate pruning

heuristics could be found for the domain in question.

Action Selection Mechanisms could be employed in any environment in which a vari-

ety of effective decision making is required. For example, in the games industry, a MCTS

process with a modified action selection mechanism could create varied play in oppositional

agents. This work is also important to the games industry (and of our industry partner, Stain-

less Games), as it demonstrates a simple technique for modifying an artificial agent to create

different behaviour. This could be used in a game to simply create a variety of opponents

that played in different manners, and demonstrated different strengths and weaknesses while

maintaining a similar overall playing strength.

As industrial game AI advances, we can expect action selection mechanisms and heuris-

tic pruning to be used frequently in industry implementations of MCTS. The advantages
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these techniques provide in terms of easy modification of play style are too valuable to be

disregarded.

I also see great potential in using the information generated by the MCTS process itself

during the decision process (e.g. determining whether a specific decision is easy or hard

based on the number of available choices that qualify for selection.)
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Chapter 6

Rule Association Mining for Opponent
Modelling in Games

A variety of games often include incomplete or hidden information as a form of challenge to

the players, indeed games such as poker would be somewhat more trivial if such an element

was excluded. Card games in which players bring decks of their own construction to play

are now relatively common-place, and are represented both in physical card gaming (e.g.

Magic: The Gathering1), and in digital gaming (e.g. Blizzard Entertainment’s Hearthstone2).

In such games, knowledge of the content of an opponent’s deck represents a potentially

powerful strategic advantage which can be exploited to significant advantage. This is true

of competition outside of the game domain also, as being able to adequately predict the

strategy of a potential competitor will likely give significant advantage.

In this chapter we consider a deck of cards to be a multiset consisting of a known number

of cards, each of which has a type identifier. We then use a variety of rule-mining techniques

applied with heuristic knowledge to attempt to predict the content of the deck after observing

a specific number of cards chosen at random. It is important to note also that our game of

choice is sufficiently complex, such that constructing a deck in the manner a human might

is substantially more difficult than prediction using any method we have attempted here.

Human players generally construct decks by identifying a central idea for the deck, then

1http://magic.wizards.com/
2http://us.battle.net/hearthstone/en/
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fitting cards into the deck that either support that concept or appeal to the constructing

player in some other way. While our techniques here produce similar results, there is no

such central idea for each deck. Each deck is simply constructed from the association rules

without a guiding deck concept.

It is important to note that the ability to model an opponent’s actions exposes more

information to an adversarial agent, and thus allows such an agent to become a stronger

opponent. This applies to both traditional strength of play, and also to an agent which is

trying to entertain a human player, as more information on the actual game state allows more

informed choices, and thus more ability to make moves which affect human entertainment.

This research could also be applied outside the realm of games, to any similar, highly

complex, partially observable system with specific rules which govern the system construc-

tion. Optimising association rule mining to these complex requirements is clearly of interest

as a general advancement of research in this area. The techniques here could easily be con-

verted for use in other fields which have similar complex requirements on sets or multisets,

simply by applying heuristic knowledge to data mining and rule generation processes as

performed here.

This work was published in the paper “Using Association Rule Mining to Predict Oppo-

nent Deck Content in Android: Netrunner” appearing at IEEE CIG 2016 [121].

6.1 Experimental Methodology

6.1.1 Netrunner Deck Data

Experimentation data consisted of 6000 community made decklists posted on a popular

Netrunner community website3 that allows users to collect and compare decklists. Some

3http://netrunnerdb.com
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filtering based on popularity was performed.

Algorithm 5 GetPredictedDeck(...) for a1
1: function GETPREDICTEDDECK(Dobs, R, C, n)
2:
3: ##Initialise all cards with rule support
4: InitCardRuleCounts(Dobs, C, R)
5:
6: ##Sort cards desc by rule support
7: sort(C, rulecount, 0)
8:
9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:
12: ##For each card
13: for all c ∈ C do
14:
15: ##Take the required number of cards
16: k = min{n− |Dpred|, c.MaxCount}
17:
18: ##Add them to the predicted deck, if possible
19: Dpred.AppendMultiple(c,k)

6.1.2 Apriori Rule Generation

Rules were mined from data using the Apriori method detailed in Agrawal & Srikant [3],

with modifications as detailed in sections below. This process generates a large number

of rules, which describe the relationship between items in the analysed set. These rules are

made up of one or more antecedent items, and one consequent item. The antecedent items is

a multiset of items which must be found in any observed set in order for the rule to become

active. The consequent item is the item which results from rule activation, and thus the item

which will be added to the predicted set. Our rules take the form of S → c, where S is a

multiset of antecedents, and c is the consequent.

Each rule also has a support [12] value, which states how many occurrences of the

complete set of antecedents and the consequent appear in the training data, and is useful
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to describe the magnitude of the effect of the rule. Support is calculated by the formula

supp(X → Y ) = |(X ∪ Y )|/|N | [138], where (X → Y ) represents a rule, and N repre-

sents the total size of the data set. Each rule also has a confidence value, which measures the

reliability of the rule. Confidence is calculated by the formula confidence(X → Y ) = supp(X ∪ Y )/supp(X).

The primary piece of evidence used to model an opponent’s deck will be the identity

card, as it is always visible, and also provides the constraints for deck construction in the

form of faction, side and influence. As other cards are revealed through play, these can be

added to the deck with complete confidence. It is usual to have observed a small number

of opponent cards during the first turn of play (we estimate 1-4 is usual), and as such we

vary the number of observed cards we randomly select to determine the effectiveness of our

technique upon different sized sets of cards.

After rules were generated from the data, the set of 6000 decklists were tested using

30 fold cross-validation, with each individual prediction being made based upon a set of

randomly selected cards from the decks. As these cards could potentially be duplicates, for

each test a minimum of two unique cards are observed.

6.1.3 Apriori Prediction

As discussed above, we employed several difference algorithms for rule generation. Our

results are displayed in terms of match accuracy, which is calculated by determining the

percentage of the original decklist which exists with in the predicted deck. As the deck size

is fixed, this results in an match accuracy of 0-100%, where a 100% describes the situation

in which the predicted deck exactly matches the original deck, and 0% describes a predicted

deck with no instance of any card in common with the original deck.
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6.1.3.1 Standard Apriori Prediction (a1)

The standard Apriori method of prediction is shown in algorithm 5, where Dobs represents

the observed known cards, n represents the size of the observed deck, Dpred represents the

predicted deck, R represents the set of all generated rules, and C represents the set of all

Netrunner cards. In the first step of the algorithm we set the rule counts of each card to 0,

then we run through all rules and determine if they are active for the set of cards we have

observed (Dobs). We then set Dpred to contain Dobs, as our prediction will always include

the cards we have observed, and this makes further operations easier. We sort all cards by

their rulecount attribute, and then move through them in descending order of c.rulecount

until we find sufficient cards to fill the remainder of Dpred.

6.1.3.2 Modifying for duplicate cards (a2)

A notable error performed by a1 is number of duplicates which appear in the predicted

decklists. As Netrunner decks can include up to three copies of each card4, we attempt

a technique that allows us to predict the number of copies of each item in the predicted

multiset. Without this modification, the a1 simply adds the maximum number of each item

until it cannot add more, resulting in three copies of each card in the predicted deck.

In order to modify this behaviour, we make a separate calculation using the rule meta-

data to determine the number of duplicates included in the original data. We then use this

information to include copies in the prediction. This algorithm is very similar to algorithm 5

except that after a card is selected, the rule metadata is averaged to determine the number of

duplicates to be included.

Therefore each run of GetPrediction a2(Dobs) adds 1-3 cards to Dobs, and bans the

included card from further selection. This technique may appear arbitrary, but in the case of

4A few cards have specific rules which break this allow more copies or restrict the number of duplicates,
but the vast majority may only appear in sets of 1-3
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Algorithm 6 GetPredictedDeck(...) for a2
1: function GETPREDICTEDDECK(Dobs, R, C, n)
2:
3: ##Initialise all cards with rule support
4: InitCardRuleCounts(Dobs, C, R)
5:
6: ##Sort cards desc by rule support
7: sort(C, rulecount, 0)
8:
9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:
12: ##For each card
13: for all c ∈ C do
14:
15: ##Take the required number of cards
16: k = min{n− |Dpred|, c.Cardinality}
17:
18: ##Add them to the predicted deck, if possible
19: Dpred.AppendMultiple(c,k)

duplication in a specific decklist, the nature of the individual card is far more relevant than

any patterns between the card and other cards in that deck. For example, some cards are so

strong and usable in any deck that they almost always appear in sets of 3, whereas others

frequently appear alone due to the narrow field of use or difficulty to fit into a deck.

6.1.3.3 Prioritising by Influence (a3)

A review of the all data used here shows that 84% of decks in our dataset used all of their

influence, 92% used all except 1 point, and 95% used all but 2. Considering that our data

likely contains a large number of casual decks, which likely accounts for those not using

all of the influence, this is indicative of how important the concern of influence during deck

construction.

In order to prioritise influence spends, we change the method of deck prediction so

that we first attempt to make predictions which would spend all available influence (both
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influence and non-influence cards still undergo the duplicate procedure mentioned in sec-

tion 6.1.3.2 above.) This new method is not shown in algorithm, as the only change is a

sorting C so that all of the rules with a resultant card that will cost influence appear first,

and this is restated later in algorithm 8. Notation is as before, however in the set C is sorted

not only by rulecount, but also by a boolean that represents whether including any given

card in Dpred would cost influence. This means that the first predictions made by a3 will

cost influence, and then when all the influence is spent, only cards that do not cost influence

will be added.

6.1.3.4 Using influence during Rule Generation (a4)

Here, we separate item sequences that were generated from influence spend and non-influence

spend. This allows us to separate the item sets into two groups, one which represents cards

which players have spent influence on, and one which represents card sequences that were

used “in-faction”. We can then generate specific rules for influence and non-influence spend.

In the case that we had insufficient data, the prediction reverted to using all generated rules.

This method is shown in algorithm 7. Notation is as before, however in addition Rinf rep-

resents rules originally generated from influence sets, and Rnoinf represents rules which are

generated from non-influence sets only. This algorithm is very similar to algorithm 6 except

that GetPrediction a4 uses only rules generated from influence selections when selecting

an card that costs influence, and only rules generated from non-influence selections when

selecting a card that does not cost influence.

6.1.3.5 Rule Generation including duplicate cards (a5)

We also attempted to remove the calculation for duplicate cards by allowing the rules to

be constructed from duplicate items, and thus we should be able to predict those duplicates

with more relevancy to the observed deck, rather than the general attributes of the cards.
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Algorithm 7 GetPredictedDeck(...) for a4
1: function GETPREDICTEDDECK(Dobs, Rinf , Rnoinf , C, n)
2:
3: ##Initialise all cards with rule support (inf)
4: InitCardRuleCounts(Dobs, C, Rinf )
5:
6: ##Sort cards desc by rule support
7: sort(C, rulecount, 0)
8:
9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:
12: ##Spend influence first
13: for all c ∈ C do
14:
15: ##Take the required number of cards
16: k = min{b(maxinf − inf(Dpred))/c.infc, c.Cardinality}

17:
18: ##Add them to the predicted deck, if possible
19: Dpred.AppendMultiple(c,k)
20:
21: ##Initialise all cards with rule support (no inf)
22: InitCardRuleCounts(Dobs, C, Rnoinf )
23:
24: ##Then fill the deck with non-influence cards
25: for all c ∈ C do
26:
27: ##Take the required number of cards
28: k = min{n− |Dpred|, c.Cardinality}
29:
30: ##Add them to the predicted deck, if possible
31: Dpred.AppendMultiple(c,k)
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This algorithm is identical to algorithm a4, except that duplicates are calculated based on

the number of copies of each card seen in the generated rules rather than our cardinality

data. When a rule is determined to be active, instead of checking rule metadata to determine

the number of cards to add to the predicted deck, we instead determine the total number of

the consequent item that already exist within the predicted deck, and if the required number

specified by the rule already exist, we take no action. If the required number is not yet in the

deck, we add a single consequent item. For example, if the rule {A,B,C} → B becomes

active, we check to see if 2 or more B are included in the predicted deck. If so, we add

nothing. If not, we add a single B.

6.1.3.6 Prioritising by rulesize (a6)

This modification attempts to give priority to rules which contain more items, as these rules

will be less rarely active due to their specificity. However, when these rules are active

for an observed card set, they will likely tell us more about the content of the deck than

smaller rules. This algorithm is identical to a4, except that the rules are sorted by descending

rule size, and then a4 is performed using the set of rules which are the largest size, then

descending through the rules until we have completed the deck.

6.1.3.7 Making confident predictions (a7)

This modification is identical to a6, however when we predict a card, we add it to the ob-

served card set and check all rules again. So any card we predict to appear in the deck, we

assume we are correct for the purposes of further predictions. This final version is shown in

algorithm 8.

132



CHAPTER 6. RULE ASSOCIATION MINING FOR OPPONENT MODELLING IN GAMES

Algorithm 8 GetPredictedDeck(...) for a7
1: function GETPREDICTEDDECK(Dobs, Rinf , Rnoinf , C, n)
2: Dpred ← Dobs

3: for all r ∈ Rinf do
4:
5: ##Initialise all cards with inf rule support
6: InitCardRuleCounts(Dpred, C, Rinf )
7:
8: ##Sort cards desc by rule support
9: sort(C, rulecount, 0)

10:
11: ##Spend influence first
12: for all c ∈ C do
13:
14: ##Take the required number of cards
15: k = min{b(maxinf − inf(Dpred))/c.infc, c.Cardinality}

16:
17: ##Add them to the predicted deck, if possible
18: Dpred.AppendMultiple(c,k)
19: for all r ∈ Rnoinf do
20:
21: ##Initialise all cards with non-inf rule support
22: InitCardRuleCounts(Dpred, C, Rnoninf )
23:
24: ##Sort cards desc by rule support
25: sort(C, rulecount, 0)
26:
27: ##Fill out deck with non-influence
28: for all c ∈ C do
29:
30: ##Take the required number of cards
31: k = min{n− |Dpred|, c.Cardinality}
32:
33: ##Add them to the predicted deck, if possible
34: Dpred.AppendMultiple(c,k)
35: return Dpred
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Figure 6.1: Percentage match accuracy of apriori prediction using agents a1 - a7 across
different values of minimum support.

6.2 Results

Prediction results are shown in figure 6.1. Use of the mentioned techniques to generate deck

predictions is generally successful, completing decks with an match accuracy of up to 59%

from viewing only 5 cards (roughly 8-10% of the actual deck). However there are some

general trends which can be observed. Firstly, as each card (or set of cards) is added to

the deck sequentially, we do not take into account new patterns which may emerge between

originally observed cards and cards more recently added. This means that all predictions

are based on the original set of observed cards, whereas we would likely have a different

effect on prediction if we considered predicted cards to be part of the observed set when

making further predictions. We suggest that some of the difference in prediction may be
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a tendency to form into familiar deck archetypes, as predicted cards would likely support

larger patterns already recognised as frequently played decks. This is somewhat consistent

with human deck construction however, as players often use existing archetypes to construct

decks.

In order to provide a control for experimentation, random selection was tested (a0).

Generated decks were still required to observe deck construction rules, but other than that

cards were selected randomly from the set of available cards. All predictions using a0 had

an match accuracy in the range 0% - 6%, and due to this low match accuracy, results are not

shown below.

We also attempted to test prediction across a range of different numbers of observed

cards. In each of these cases, the identity card was always observed, then an additional

number of cards were added. This means in the case of the number of observed cards being

zero, only the identity card was observed. In all previous experiments the size of the set has

been five, which represents what a player might expect from two complete turns of play. We

tested prediction with sets of up to ten viewed cards. We also tested prediction with a set of

zero observed cards, which represents the game before play has begun.

6.2.1 Default Apriori (a1)

Default Apriori allows for predictions of up to 48% match accuracy, and while this is some-

what effective, it can be improved upon significantly by the later algorithms which incorpo-

rate heuristic knowledge. Different values of minimum support were used to determine the

optimum value, which lies close to 15. All of these tests were run on a dataset of size 200

(30-fold cross-validation on a total set of size 6000), so larger values of minimum support

will likely cause smaller detail of the dataset to be lost during rule generation. Examination

of the decks generated with a1 also reveals that almost every card is included in triplets,
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further speaking of the necessity of a modification to address the number of duplicates in-

cluded.

6.2.2 Apriori with duplicates (a2)

The modification to consider inclusion of duplicates in the predicted deck results in a sig-

nificant increase in match accuracy. The most significant value of minimum support now

appears between 10-15, both options resulting in a prediction accuracy of 53%, an increase

in accuracy of 5%. This increase in match accuracy is certainly related to more accurate pre-

dictions on sets of duplicate cards, as due to the nature of the game, certain cards are more

often played in sets of 2 or 3, and certain cards are almost always played without duplicates.

This modification largely makes the effect that there are no longer automatic inclusions of

cards in groups of 3, however it can still be further improved with respect to heuristic data.

6.2.3 Apriori with Influence Priority (a3)

While prioritising the inclusion of cards which cost influence has a positive effect, the effect

is marginal, increasing match accuracy by less than ∼2% at the optimal value of minimum

support 10. It is surprising that the effect is so marginal, but upon examining further it

is apparent that most (92%) of decks predicted with a1 and a2 already include the maxi-

mum permitted influence for those decks, so the modification is perhaps not as important to

prediction as originally proposed.

Examinations of the individual card selections shows that the influence spends are some-

what inappropriate however, and are somewhat to blame for the inaccuracies of this predic-

tion algorithm.
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6.2.4 Apriori with Influence Filtering (a4)

There are several interesting effects in these results. Firstly, the highest match accuracy has

risen to 57%, an increase of ∼4%. Secondly, the optimal value of minimum support has

changed to a higher value of 20.

A review of the cards selected by influence spends reveals that they are much more

appropriate to the acknowledged deck archetypes, presumably due to the specific use of

rules generated entirely from influence spend patterns.

We also start to observe some occasional single-card influence inclusions which are well

established in the appropriate archetypes.

6.2.5 Rule Generation including duplicate cards (a5)

We can see from the results for a5 that attempting to determine the number of duplicate

cards in a deck from generated rules appears to be less effective than using our data on the

normal set count of that card. This is believable, as the number of duplicate cards included

is likely to be much more dependent on the nature of the card than on the nature of the deck

itself. As our information relates to patterns between cards, we do not necessarily have a

good understanding of the nature of the card itself.

It is worth noting however that for some values of minimum support, a5 is approximately

as effective as a3 and a2, meaning that it is still an effective technique, and alternative meth-

ods to predict duplicate cards in the deck could be investigated.

6.2.6 Prioritising by rulesize (a6)

Giving priority to larger rules has also had a positive effect on match accuracy. We can

see this effect particularly when minimum support is 20. We attribute this effect to larger

rules being more rarely satisfied unless they are highly informative about the configuration
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of decks. As such, activated large rules should be given priority over activated smaller rules.

6.2.7 Making confident predictions (a7)

By adding all predictions to our observed set, we are assuming that all our predictions are

correct, and biasing future predictions by this information. This has a positive effect on

match accuracy at higher values of minimum support, however it has almost no effect at

values of 15 and below. This could be explained by some subtly of rules that are activated

with a support of 15 or less, however in this case we would expect the match accuracy to be

positively affected also, and yet we see that this is not the case.

The extension of our observed set also has another less obvious effect on prediction,

which is that it allows activation of rules with larger item sequences, as more items appear

in the observed set. This means as Dobs expands, we may observe decks activating larger

rules, and effectively falling into archetypes.

6.2.8 Varied Size Observation Set

The results for predictions made with varied observation sets are shown in figure 6.2.

We can see that the overall change in match accuracy across the total range of tested

values is approximately 20%, which while a large change, might be less than we expect

from such a change in source data. This illustrates the importance of the identity card which

is always viewed, it speaks deeply of the construction of the deck, mostly because the iden-

tity card is always active during play, and a substantial portion of the cards included will

have some synergy with that identity. This also speaks of the nature of deck construction

in Netrunner, which largely consists of modifications to existing archetypes, likely due to

smaller synergies between groups of cards. It is also worth noting that at almost all val-

ues of observed set size and minimum support, our algorithms which incorporate heuristic
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Figure 6.2: Percentage match accuracy of apriori prediction using agents a1 - a7 when using
different numbers of observed items.

information perform significantly better than default apriori.

We see an understandable increase in match accuracy as we increase the size of the

observed set, as there are both fewer cards to predict, and also more information is available

on the set content. Rules with a higher number of antecedents are also activated, which

likely provides more accurate information on the set content.

We can also observe that a few of our own techniques (a3&a4) perform very poorly

when the observed set is very small or empty. As a3 and a4 both focus on influence inclu-

sions, this is likely due to a lack of corroborating information from other observed cards to

distinguish correct influence selections. As such, the initial influence selections are almost

unguided, and as these cards are selected from a much larger set of available cards than

regular selections, the picks are more likely to be incorrect without guidance.
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There is also an interesting plateau in match accuracy around set size 3-6 with algorithm

a5. This is likely due to the estimation for duplicate cards struggling on smaller set size. As

the cards in the observed section of the deck are selected randomly during each test, it is

possible that duplicate cards are selected, and as such less information is exposed in certain

cases. This might cause a decrease in accuracy when only a small number of unique cards

are observed. This calculation is not included in any other algorithm, as it was not effective

in increasing accuracy overall, possibly due to this complication.

The results across all experiments grouped by algorithm are shown in figure 6.3.

Figure 6.3: Cumulative match accuracy of apriori prediction using agents a1 - a7 across all
experiments.

We can more clearly see a general rise in match accuracy here, with the exception of the

a5 algorithm for reasons mentioned above. This is to be expected, as each algorithm follow-

ing a1 includes specific heuristic improvements which are targeted to improve efficiency in
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this specific domain.

Algorithm a5 shows that our introduction of rule-based cardinality estimations have been

unsuccessful in improving prediction efficiency, although this is something we would defi-

nitely want to address in future. The current cardinality estimations are unlikely to predict

decks with 100% accuracy, for example it will always fail to predict decks that include a

unusually small number of a card almost always seen in sets of 3.

6.2.9 Deck Creation

As a final experiment, we attempted to create a selection of novel decklists by providing a

small set of cards and allowing the algorithms above to generate the decks. In each case, a

single Identity card was provided, along with three other cards in the correct faction which

are commonly played in tournament play. The generated decks were then shown to a group

of experienced players, who were asked to criticise the decklists. All of the generated decks

are listed in Appendix B.

In each case, the experienced players were content that the decks were reasonable for

play in a casual or semi-competitive environment, but may struggle in a highly competitive

tournament environment. They agreed that there were no completely inappropriate inclu-

sions, however there were a few questionable choices, and in some cases it appeared that

some card combinations had been left unfinished in the decks. When asked to provide mod-

ifications to the decks to improve their quality, the players each suggest 1-3 card exchanges,

stating that those changes would likely make the decks worthy of play in a more competitive

tournament.
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6.3 Summary & Discussion

Our attempts to adequately predict the number of duplicate cards within a deck have been

some what effective, but there is still work to be done here, as our best prediction is based on

our heuristic knowledge of the specific card, rather than knowledge of the card in context.

Successfully adding contextual heuristic knowledge into this process will surely lead to

more accurate prediction.

Given that experienced players found our decks to be at least worthy of consideration

for play in a tournament, there is definite potential in taking this technology forward, and

potentially creating tools for the Netrunner community to generate and validate their decks.

With a little adaptation, this can also be taken into other similar games.

As discussed earlier in this chapter, knowledge of the content of an opponent’s deck

represents a potentially powerful strategic knowledge which can be exploited to significant

advantage. As such, we would expect an agent which can successfully predict the content

of an opponent’s deck to be significantly stronger than an agent which was unable to do so.

It is also worth noting however, that a misprediction could cause a significant reduction in

agent strength.

6.3.1 Contributions

Our principle research contribution from our work on Rule Association Mining is a substan-

tial improvement in deck prediction from the default apriori algorithm. It can be seen that

our modifications to the Apriori technique provide a significant improvement to prediction

of decks in Netrunner, showing a maximum improvement of ∼13% between the default

apriori algorithm (a1) and our optimal modified algorithm (a7).

We have shown that the apriori algorithm is applicable to NetRunner, Living Card

Games, and also any card game that contains constructable decks. As discussed previ-
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ously, the ability to predict opponent decks can be a powerful strategic advantage, but this

can also be leveraged in other ways. An oppositional agent that attempts to predict the hu-

man player’s deck rather than “cheating” and looking is likely to feel more fair (and more

interesting) to the human player, assuming this is correctly measured. This contribution

goes further than merely deck prediction, as these techniques can also be used as a form of

deckbuilding aide, to help new players build decks and guide them as to what might be sen-

sible inclusions in their first decks. Given that deck building is a challenging task for human

players, any help provided by an machine learning agent would likely provide significant

learning for new players and assistance for experienced players in the process of building a

deck.

Similar principles could also be used in other computer games such as MOBAs (Multi-

player Online Battle Arena) and RTS (Real-time Strategy) games. Both these archetypes of

games use highly customisable and configurable Build Orders which dictate the sequence in

which actions should be taken for optimal performance. Determining build order could be

viewed as a similar process to building a deck, and addressed in a similar manner.
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Conclusions & Further Work

In this thesis, we have investigated the application of specific artificial intelligence tech-

niques to creating differing playstyle in games. Our principle body of work has been the

modification of MCTS in order to affect play style, and thus create entertaining or interest-

ing differences in play between a modified agent and a unmodified agent. In order to do so,

we have considered a variety of techniques including heuristic pruning and the modification

of the action selection mechanism. This work is motivated in large part by the needs of

the commercial games industry and particularly those of my sponsoring company, Stainless

Games. Commercial games need entertaining AI opponents, not merely strong ones, and

this is an area ripe for research, with little work done to date.

Our work in heuristic pruning and action selection mechanisms (see chapter 5) showed

that we could create different behaviour in an artificial agent without diminishing play

strength. If our approximation of entertainment through complexity holds, then we have

also shown that we can make agent play more entertaining to humans through these modifi-

cations, which has real implications for game AI.

We have also explored the application of data mining techniques to the prediction of

hidden information in complex card games, an AI agent with more information can operate
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more efficiently, and thus can make better, more interesting decisions (whether the metric

for those decisions be play strength or complexity of play.)

Below we present and summarise our research contribution, and consider their general-

isation. Then we outline a plan for future work based on some of the topics explored in our

work here. It is not our plan to execute all these plans, but we leave them here as a indi-

cation to others who may want to continue this work. Work already under way is some of

that detailed in section 7.3.4, as the application of our techniques to other games has already

provided interesting results.

7.1 Research Contributions

7.1.1 Parallelization of Monte Carlo Tree Search and Information Set

Monte Carlo Tree Search

In section 4.3, we present our contribution towards the parallelization of Monte Carlo Tree

Search (MCTS) and Information Set Monte Carlo Tree Search (ISMCTS). This work was

published at the 2014 IEEE Congress on Evolutionary Computation (CEC) [123]. It is of

significance to the research community, as at the time of writing it is the only work surveying

the effect of parallelization techniques upon ISMCTS. It also provides a complete survey of

commonly used parallelization techniques for MCTS.

Given the increase in the number of processors in modern hardware, parallelization is

of growing importance, and research into the operation and effectiveness of artificial in-

telligence techniques on such hardware is therefore also important. Our work shows that

effective use of parallel processing will directly result in a more effective MCTS and ISM-

CTS artificial agents, and measures the effect of adding processes on speed up and playing

strength.
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This research is particularly of importance to the games industry, (and in particular our

partner, Stainless Games) as in the past AI has been assigned a low priority in game de-

velopment, and thus the access to additional resources provided by advanced parallelization

techniques will in the future allow more effective artificial agents to be implemented.

A significant weakness of our current work here is that it does not sufficiently investigate

play strength of the resultant agents, only focusing on decision time. While we did some

cursory experiments on play strength, more thorough investigation is required.

There are several potential forward directions for this work. The most obvious addition

would be an investigation of the differences in play style and play strength of both UCT and

ISMCTS agents across all four parallelization techniques. While we extensively explored

the efficiency of the agents in UCT/ISMSTC, there is more room to explore the effect of

parallelization upon the behaviour of other flavours of MCTS, especially those that reuse

information between iterations and hence may be more difficult to parallelize [141].

Another promising avenue would be to explore the parallelization across the GPU, which

has become a more available target for non-graphical processing over the last few years.

There is some research into this field already [14, 113, 114], and following up on this work

in combination with our work here would be valuable.

7.1.2 Modification of Monte Carlo Tree Search using Heuristic Hard

Pruning

In section 5.5.1, we present our contribution towards applying Heuristic Hard Pruning to

the modification of Monte Carlo Tree Search agents. This work was published at the 2014

Conference on Computational Intelligence and Games (CIG) [122]. This work is of signif-

icance to the research community because it demonstrates the effect that Heuristic Pruning

has upon the strength and style of play from an artificial agent. This establishes that prun-
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ing techniques can be used to improve playing strength, and offers a number of avenues of

research going forward.

This work is also of significance to the games industry (and of our industry partner,

Stainless Games), as heuristic pruning is used to optimise artificial intelligence agents, and

our work both explores these techniques on a new domain, and also highlights that the

pruning may have unforeseen consequences upon the style of play.

Our work here explores hard heuristic pruning in Lords of War, but given more time,

we could have further explored the usability of the heatmap heuristics that are based on

the geography of the playing board, and which showed some promise in combination with

other heuristics. It is likely that this style of heuristic has a strong effect on positional board

games, and further investigation would likely prove valuable [31]. It would also be possible

to determine heatmaps from human versus human play data and thus have more advanced in-

terpretations of the board than those we use in our work here. Similarly, further research into

Lords of War play would likely yield more interesting and effective non-heatmap heuristics

which could be used to advance our research.

While our target here has been a specific card game, this work is generally applicable to

any card game or positional board game with a similar branching factor. This work can also

be applied to any MCTS decision making process which would benefit from the addition of

heuristic information.

7.1.3 Modification of Monte Carlo Tree Search play style using Action

Selection Mechanisms

In section 5.5.2, we present our contribution on Modification of Monte Carlo Tree Search

play style using Action Selection Mechanisms. This work was published at the 2015 IEEE

Conference on Computational Intelligence and Games (CIG) [124]. This work is significant
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to the research community because it demonstrates the effect of modifying the standard

MCTS action selection mechanism, and through doing so creates a variety of agents which

have very different play styles, but maintain roughly the same win rate against a specific

opponent. This highlights that agent behaviour in such games has many more dimensions

than a simple win percentage.

This work is very important to the games industry (and of our industry partner, Stainless

Games), as it demonstrates a simple method to modify an artificial agent to create different

behaviour. This could be used in a game to simply create a variety of opponents that played

in different manners, and demonstrated different strengths and weaknesses while maintain-

ing a similar strength.

Our target in this case was the Lords of War game, but this work can very easily be

used in any game or process which is using MCTS, as none of the technology uses heuristic

information specifically designed for Lords of War. Effectively we were just using Lords of

War as a demonstration of a aheuristic modification to MCTS, which is applicable in any

domain where MCTS would be applicable, and a variation in style of decision-making is

relevant.

Further work in this area would continue the exploration of the differences in play be-

tween the modified agents. Our complexity measures were a good initial indicator of dif-

ference in play style, but there is more to be examined in the specific effects of the action

mechanisms upon play style. Given that our complexity measures were primarily measures

of randomness in play rather than measures of a specific style of play, further research could

determine the actual patterns encouraged by each action selection method, and whether there

is a specific character which can be encouraged through use of each. It is also worth noting

that further exploration into the effectiveness of our complexity measures might result in

advanced measures which allow incorporation of user preference and experience, allowing

tailored play experiences and learned behaviours that are liked or disliked across a range of
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players.

7.1.4 Application of Data Mining Techniques to prediction of opponent

decks in card games

In section 6.3, we present contribution on the Application of Data Mining Techniques to

prediction of opponent decks in card games. This work was published at the 2016 IEEE

Conference on Computational Intelligence and Games (CIG) [121]. This work is significant

to the research community because it applies the well established data mining technique a

priori to a new domain for which it is well suited. We then modify the default a priori using

heuristic information specific to the domain in question and show significantly better rates

of deck and card prediction.

Over the last decade, there has been a substantial increase in the number of card games

which have been adapted to the digital environment. Many of these games now have large

player bases which create huge amounts of data on their play. The techniques presented

in our work provide a variety of opportunities both for these players and for the industries

which cater to these players. While we have used the a priori algorithm to predict deck

content, it can also be used to generate new deck designs, and likely to predict upcoming

trends in the data which correspond to new set releases and rotating cycles of cards, and

hence assist in the design and make up of new card sets.

The work here holds a variety of potential applications, the most obvious of which would

be a software project which provides players with access to the knowledge generated from

the game community’s play. For example, a Netrunner player would be very interested in

both accessing the crowd knowledge on what cards their opponent is likely playing, and also

on receiving crowd knowledge advising cards to include in their latest deck.

There is a massive potential for expansion in this work, as if an engine for interpreting
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card text (or a game forward model) became available, then this work could be used to de-

termine likely patterns of play for unprinted cards, and therefore as an aide to the publishing

companies when they are considering new cards. Of course this requires some heuristic

knowledge, but the techniques that made the prediction could remain aheuristic, relying

upon the card interpretation engine to provide heuristic data on the individual cards.

7.2 Summary and General Observations

Our work here combines a variety of techniques which modify or improve artificial agents

with the aim to improve human experience when playing digital games. We have worked in

several different areas, all of which are described and summarised below.

Our work on Action Selection Mechanisms represents the culmination of our research

upon creating an agent which has varied play, and yet is still competitive. The development

of more entertaining, varied and possibly human-like artificial intelligence is of critical im-

portance to the games industry. As mentioned previously, the continued improvement of AI

techniques will cause a stronger demand for more human-like play from AI agents. This is

somewhat due to demand for AI to make more human-like decisions, but also to provide a

better environment for game learning and a more friendly interface. The objective of any AI

in a commercial game should be to provide a challenging, entertaining experience, which

may include defeating the player, but should not be confined to that sole objective. Our work

here has shown that there are multiple configurations of AI agent that behave differently but

maintain roughly the same win rate, which would be of significant interest to any industrial

game producer.

Our work on Association Rule Mining represents an exciting new application of tech-

nology to a new domain provided by an widening market in online gaming. While our

research here is confined to a single game domain, collective card games (CCGs) are rising
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in popularity following the success of games such as Hearthstone1, and all of our work on

this topic is applicable across different card games assuming that specific heuristic modifi-

cations can be found for each. This work could also represent new areas of interest for our

industrial sponsor, Stainless Games, as deck generation and prediction technology could

potentially find a home in Stainless Games’ Duels of the Planeswalkers series of games,

providing crowd-sourced knowledge on deck construction. It is also important to recognise

that these techniques could be applied by Stainless themselves (or the publisher, Wizards of

the Coast,) to determine the popularity of specific cards, decks, or archetypes.

Further work related to this paper includes the recent winner of the best paper award at

the IEEE Artificial Intelligence and Interactive Digital Entertainment 2016 conference, on

which we are co-authors [52].

7.3 Future Work

7.3.1 Parallelization of MCTS

There are a number of interesting potential areas for future research in parallelization of

MCTS. During the parallelization experimentation, the MCTS iterations were split evenly

and statically assigned to the working threads. If a thread had finished early, it simply ended

and did no further work. If iterations could be assigned dynamically as threads became

available, then the process could be more efficient, and this is likely to have differing effects

on each type of parallelization, and various approaches to dealing with collision between

threads could be tried.

The branching factor of the game (or state) under examination may be relevant to the

effectiveness of tree parallelization, as a higher branching factor should result in less thread

1http://us.battle.net/hearthstone/en/
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waiting time. Experimenting with games or states with different branching factors would be

interesting follow up work.

Future work on parallelization should also consider playing strength directly, in addition

to the number of iterations performed in a given time.

7.3.2 Heuristic Pruning

It would be of interest to look at other methods of performing state extrapolation, more

specifically other methods of searching the sub-tree that is traversed before the state is anal-

ysed. In other games where this sub-tree is not as simple, more advanced techniques may

be appropriate to ensure reasonable decisions are being made.

We would expect heuristics which considered availability of squares, specifically those

around the edges of the board, would be good candidates for creating a strong agent for

Lords of War and similar games, and it would be of interest to explore such heuristics in

future work. The possibility of evolving heat maps rather than designing them by hand

would also be of interest [112].

It would be of interest to investigate the manner in which moves are selected by heuris-

tics, particularly in multi-heuristic agents. Perhaps a move could be prioritised if it was

selected by multiple heuristics, or perhaps moves that are only selected by a single heuris-

tic could be soft-pruned until later stages of the search. Also, examining the total num-

ber of moves returned by multi-heuristic agents (and the difference from the maximum of

n×HPL) could be interesting.

The application of progressive techniques to heuristic agents in Lords of War would also

be of interest, as it is entirely possible that the success of certain agents is being limited

by regular exclusion of promising moves, which would be otherwise reintroduced at a later

point in the search by a progressive technique.
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7.3.3 Action Selection Mechanisms

For continuation of the Action Selection Mechanisms work, the most obvious extension is

the creation of new online tuning methods, which would likely be interesting, as only one

method of tuning was used during our work here. Also the method in which tuning was

determined (wi/vi > 0.5) could be modified to create different conditions for tuning. A

modified tuning method would allow for more careful and specific adjustment, and thus

potentially create an agent that more readily adapted to opponent behaviour.

Further action selection mechanisms could also be created, particularly those that have

multiple configuration parameters, which could then lead to an interesting multi-objective

optimisation problem in combination with online tuning. An interesting suggestion for fu-

ture work would appear to be modification of RobustRoulettekn, as the variations of this

selection mechanism attempted here showed it to be promising. It is possible that the tun-

ing of n and k values are specific to each game domain, and may require some fine tuning

depending on the domain. Possible avenues forward included employing a mixed strategy

across multiple action selection mechanisms, or the creation of a meta-heuristic which se-

lects action selection mechanisms online.

7.3.4 Rule Association Mining

There are several other opportunities for future work which could be explored. For example,

the technique used to separate rules in a4 (Apriori with Influence Filtering) could also be

applied to identity cards, using only rules generated for each identity to select either the

entire deck, or the influence-spend portion of the deck. However this would require a large

amount of data, as certain identities are unpopular and may appear only rarely within our

current data set, so there would be fewer useful rules generated for these identities. It may

also be worth looking at generation by Faction, which might yield more interesting results.
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Also, as our observed cards were randomly selected, they may not adequately represent the

real order cards are observed during a game (as it is more common to play certain cards

earlier than others.) Biasing generation of the observed set of card may provide a more

realistic scenario.

We can also look to applying these techniques to other domains, specifically games such

as Hearthstone and Magic the Gathering. Magic the Gathering has a much larger set of

active cards, and less stringent deck construction rules, so while this would represent a more

challenging target, there is also a much larger amount of data available due to the larger

player community and history of the game. Hearthstone likely represents a point of medium

complexity, as the card pool is between the other two games mentioned here (approximately

450), and the deck construction rules are more restrictive than Magic: The Gathering, and

thus provide more guidance.

A further avenue of research which could be pursue is that of pattern matching within

the decks, in order to draw out common patterns which occur within multiple decks, and

then using that information to further bias the prediction. We have already begun this work

on Netrunner and Magic the Gathering, and have some interesting preliminary results which

we expect to publish in the near future.
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Appendix A

Experimental Results

A.1 Chapter 4

nAgents 1 2 3 4 5 6 7 8 16
Root 505.74 253.47 191.71 154.77 135.94 113.21 104.41 91.74 82.14
Tree 514.09 299.13 207.51 163.61 133.19 109.64 105.74 98.05 84.11

Tree (VL) 511.58 297.60 198.75 152.99 131.45 110.64 105.86 98.42 92.73
Leaf 1226.18 676.75 615.35 618.23 630.62 619.71 626.06 634.27 627.83

Figure A.1: Results of four different parallelization techniques when applied to UCT. Re-
sults are expressed in milliseconds taken to complete a single decision.

nAgents 1 2 3 4 5 6 7 8 16
Root 1061.07 533.23 376.74 341.36 273.27 259.20 220.66 194.92 187.23
Tree 1057.69 768.74 528.83 432.33 348.83 291.88 282.98 259.58 248.13

Tree (VL) 1056.35 751.91 531.36 444.21 344.75 295.64 283.22 264.05 246.13
Leaf 1885.77 1087.50 981.75 1019.97 975.29 987.03 1049.48 1005.02 970.34

Figure A.2: Results of four different parallelization techniques when applied to ISMCTS.
Results are expressed in milliseconds taken to complete a single decision.
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nAgents 1 2 3 4 5 6 7 8 16
Root 50.2% 54.6% 56.2% 57.8% 59.2% 60.8% 61.2% 62.4% 65.3%
Tree 49.1% 58.2% 62.8% 65.3% 66.8% 68.0% 69.2% 71.9% 72.1%

Tree (VL) 48.8% 57.6% 61.7% 66.0% 64.3% 67.5% 70.7% 72.4% 73.2%
Leaf 47.2% 49.7% 50.6% 51.7% 50.9% 52.1% 52.9% 53.4% 52.8%

Figure A.3: Win Percentage when applying four different parallelization techniques to a
UCT agent. The opponent in each case was an unparallelized UCT agent with the same
iteration budget.

nAgents 1 2 3 4 5 6 7 8 16
Root 50.3% 52.9% 55.4% 56.4% 60.1% 61.0% 62.7% 63.7% 66.2%
Tree 47.1% 58.4% 61.9% 64.7% 66.2% 66.3% 67.9% 70.6% 71.8%

Tree (VL) 46.8% 56.2% 60.4% 63.9% 65.7% 66.7% 68.3% 72.1% 74.3%
Leaf 45.6% 48.2% 49.7% 51.3% 52.4% 52.7% 52.4% 53.1% 52.9%

Figure A.4: Win Percentage when applying four different parallelization techniques to a
ISMCTS agent. The opponent in each case was an unparallelized ISMCTS agent with the
same iteration budget.

A.2 Chapter 5

Table A.1: Number of wins (out of 1000) of single heuristic agents h1 - h11 playing against
a standard UCT agent with 10000 iterations at varying Hard Pruning Limits (y-axis)

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

1 60 0 24 116 62 0 0 0 0 0 0
2 220 0 78 248 158 8 22 6 12 32 28
5 580 0 188 608 500 38 38 40 34 0 0
10 776 0 356 826 776 138 144 170 170 68 112
15 868 2 478 900 814 308 258 296 288 142 166
20 854 0 476 886 836 256 318 286 336 290 334
25 800 0 586 832 836 396 410 354 342 442 278
30 794 8 560 790 828 380 388 420 404 500 416
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Table A.2: Number of wins (out of 1000) of multi heuristic agents h4h1 - h4h11 playing
against two different opponents.

h4h1 h4h2 h4h3 h4h5 h4h6 h4h7 h4h8 h4h9 h4h10 h4h11

vs h4 559 117 288 644 526 534 455 475 536 441
vs Plain UCT 863 546 747 875 842 801 897 882 855 892

Table A.3: Number of wins (out of 1000) of multi heuristic rollforward agents h4h1R -
h4h11R playing against two different opponents.

h1R h2R h3R h4R h5R h6R h7R h8R h9R h10R h11R h4h5R
vs H4 514 0 111 835 0 67 42 54 76 35 66 524
vs Plain UCT 831 3 493 920 79 337 291 284 303 281 274 842

Table A.4: Number of wins (out of 1000) of multi heuristic rollforward agents h4h1R -
h4h11R and multi-heuristic non-rollforward agents.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

Rollforward 831 3 493 920 837 337 291 284 303 281 274
No Rollforward 868 2 478 900 814 308 258 296 288 142 166
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Generated Netrunner Decks

Below are a list of example decks generated by providing an Identity card, and 3 other cards

that are commonly used in the faction of the identity.

Listing B.1: Noise: Hacker Extrordinaire
Noise: Hacker Extraordinaire

2 x Aesop‘s Pawnshop ••

3 x Cache •

1 x Crypsis

3 x Cyberfeeder

3 x Daily Casts

2 x Darwin

2 x Datasucker

3 x Deja Vu

2 x Djinn

2 x Grimoire

1 x Hades Shard •

2 x Hivemind

2 x Imp

2 x Incubator

3 x I‘ve Had Worse

2 x Medium

2 x Parasite

2 x Progenitor

3 x Sure Gamble

3 x Virus Breeding Ground
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Cards: 45, Influence Spent: 8/15

Listing B.2: The Foundry: Refining the Process
The Foundry: Refining the Process

3 x Accelerated Beta Test

2 x Adonis Campaign

2 x Architect

2 x Eli 1.0

3 x Galahad •

2 x Gila Hands Arcology

3 x Hedge Fund

3 x Jackson Howard •

3 x Lancelot •

3 x Merlin •

3 x NAPD Contract

3 x NEXT Bronze

3 x NEXT Silver

3 x Project Vitruvius

2 x Self-destruct

3 x The Twins •

2 x Viktor 2.0

Cards: 45, Influence Spent: 15/15, Agenda Points: 20/[20-21]

Listing B.3: Quetzal: Free Spirit
Quetzal: Free Spirit

2 x Account Siphon • • ••

2 x D4v1d

1 x Daily Casts

2 x Datasucker

3 x Day Job

3 x Deja Vu

3 x Dirty Laundry

2 x e3 Feedback Implants ••

1 x Femme Fatale •

1 x Hades Shard •

3 x Inject

3 x I‘ve Had Worse

2 x Kati Jones

2 x Knifed

2 x Medium

1 x Mimic

2 x Parasite
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3 x Prepaid VoicePAD

2 x Same Old Thing

2 x Scrubbed

3 x Sure Gamble

Cards: 45, Influence Spent: 14/15

Listing B.4: Leela Patel: Trained Pragmatist
Leela Patel: Trained Pragmatist

2 x Account Siphon

2 x Cerberus "Rex" H2

2 x Corroder ••

2 x Daily Casts

3 x Dirty Laundry

2 x Emergency Shutdown

2 x Faerie

1 x Femme Fatale

2 x Inside Job

2 x Kati Jones

2 x Legwork

3 x Logos

3 x Lucky Find ••

1 x Mimic •

1 x Passport

2 x Plascrete Carapace

2 x R&D Interface ••

2 x Same Old Thing

2 x Security Testing

1 x Sneakdoor Beta

3 x Special Order

3 x Sure Gamble

Cards: 45{45}, Influence Spent: 15{15}/15

Listing B.5: Blue Sun: Powering the Future
Blue Sun: Powering the Future

2 {1} x Adonis Campaign ••

2 {0} x Archer ••

2 {2} x Caduceus

1 {0} x Crisium Grid

2 {2} x Curtain Wall

2 {0} x Enigma

2 {0} x Hadrian‘s Wall
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3 {3} x Hedge Fund

2 {3} x Hive

3 {0} x Hostile Takeover

3 {2} x Ice Wall

3 {3} x Jackson Howard •

1 {3} x NAPD Contract

1 {0} x Orion

3 {3} x Oversight AI

3 {1} x Priority Requisition

3 {3} x Project Atlas

3 {3} x Restructure

3 {3} x Scorched Earth

2 {1} x SEA Source ••

1 {1} x Taurus

2 {2} x Tollbooth ••

Cards: 45, Influence Spent: 15/15, Agenda Points: 20/[20-21]
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Appendix C

Lord of War Rules

Below are the Lords of War Rules, taken from the website of the publisher, Black Box

Games 1.

1https://boardgamegeek.com/boardgamepublisher/24619/
black-box-games-publishing
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Appendix D

NetRunner Rules

Below are the NetRunner Core Rules, taken from the website of the publisher, Fantasy Flight

Games 1.

1https://images-cdn.fantasyflightgames.com/ffg_content/
android-netrunner/support/android-netrunner-core-rules.pdf

166



1



2

Over the course of 18 hours, the runners hit Jinteki, Haas-Bioroid, 
and Weyland Consortium with DOS attacks, datatheft, and a 
truly vulgar piece of cyber-vandalism. These attacks cost each 
megacorp millions upon millions of credits. NBN put together 
a holo-report inside half an hour. Thirty minutes after the third 
megacorp node went dark, Lily Lockwell was standing in front 
of the Beanstalk gravely lecturing on the evils of unregulated 
networks and the rise of cybercrime worldwide. Five minutes 
later, the runners had struck again; now Lockwell was reading 
out the Anarch’s Manifesto. They hadn’t bothered to make her lips 
synch with the new audio track. One in three feeds got a special 
bonus: Lockwell’s head grafted onto a sense-star’s scantily-clad 
body. 

The talking heads said it was a legion of organized 
cybercriminals, Tri-Maf activity, Martian terrorists. They were 
wrong. It was three people–a g-mod from Heinlein, a cyborg New 
Angelino, and a baseline woman from BosWash–who knew one 
another by reputation only. But the heads were right about one 
thing: it was the start of a cyber war, one that neither side could 
afford to lose. 

Introduction
Welcome to Android: Netrunner. It is the future. Humanity has 
spread itself across the solar system with varying degrees of 
success. The Moon and Mars are colonized. A plan to terraform 
the Red Planet is well underway, hindered only by a civil war 
that has broken out and locked down many of its habitation 
domes. On Earth, a massive space elevator has been built 
near the equator in the sprawling megapolis of New Angeles, 
stretching up into low orbit. It is the hub of trade in the solar 
system, and most people refer to it as the “Beanstalk.” 

Computers have continued to advance along with discoveries 
in the field of neurobiology. This has led to brain-mapping, a 
method by which a human mind can be stored electronically 
in sophisticated mind-machine interface devices. The physical 
mouse and keyboard are archaic relics; gestural interfaces and 
virt displays are commonplace. Elite users “jack in,” plugging 
the computer directly into their brains.

Enormous megacorporations, called corps by most, influence 
every facet of daily life: food, threedee, music, career choices. 
Jinteki and Haas-Bioroid redefine life itself, making clones and 
bioroids with braintaped, artificially-intelligent minds. The 
Weyland Consortium owns a piece of everything that goes up 
or down the Beanstalk, and everything goes up or down the 
Beanstalk. And NBN shapes what you think and dream, with 
the most extensive media network ever conceived on Earth 
under their control. 

Everyone relies on the network, the all-seeing, all-hearing grid 
that surrounds Earth and reaches out into the solar system 
beyond. More data flows through the network every second 
than was ever expressed in the first five thousand years of 
written language. It is a surveillance network, a financial 
system, a library–it is the backbone of modern civilization. And 
it is also the only weakness the corps have. 

The network is forever evolving and moving, impossible 
to completely pinpoint or lock down. Rogue operators– 
computer specialists with the hardware, software, and raw 
talent to challenge the system–use the sprawl of the net to 
their advantage. Some want to expose the rot that lies at the 
heart of the system, and to awaken the teeming billions to the 
hypocrisy of their corporate masters. Others just want to earn a 
profit, or express themselves in the ultimate medium. Whatever 
their motivation, the actions of these individuals intersect in a 
common cause: that of digital independence. They are runners.

The Living Card Game
Android: Netrunner is a two-player game that can be 
played using only the contents of this box, known 
as the core set. However, Android: Netrunner is also 
a Living Card Game (LCG®) that evolves over time 
with regularly released expansions. Each expansion 
offers players many additional cards that add variety, 
new customization options, and rich themes to the 
game. Unlike most collectible card games, all LCG 
expansions have a fixed distribution–there is no 
randomization to their contents.

TM

TM
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Game Overview
Android: Netrunner is a card game for two players set in the 
dystopian future of the Android universe. One player assumes 
the role of a Runner, a rogue hacker armed with bleeding-edge 
gear and software, while the other player controls a powerful 
Corporation that will stop at nothing to achieve its goals.

In Android: Netrunner, players alternate taking turns, beginning 
with the Corporation. During the Corporation’s turn, he has 
three clicks to spend. The Corporation can spend his clicks to 
perform a variety of actions, including gaining credits, drawing 
cards, installing cards, and advancing agendas. The Corporation 
must carefully divide his efforts between defensive actions, such 
as protecting his servers from the Runner, and offensive actions, 
such as tracing the Runner or advancing agendas. 

The Runner has four clicks to spend during his turn. The 
Runner can also spend his clicks to perform a variety of actions, 
including gaining credits, drawing cards, installing cards, and 
making runs. During a run, the Runner attempts to hack into 
the Corporation’s servers in an effort to hinder the Corporation 
and steal his agendas. The Runner has several different targets 
to choose from when initiating a run; choosing where and 
when to run is a key part of an effective Runner strategy.

Object of the Game
The objective for both players is to score seven agenda points. 
The Corporation scores agenda points by advancing agendas; 
the Runner scores agenda points by stealing agendas from 
the Corporation. Agendas are cards that only appear in the 
Corporation’s deck.

The Corporation also wins if the Runner is flatlined (see 
“Damage” on page 20) and the Runner wins if the Corporation 
must draw a card from his empty draw deck.

An agenda card 
worth 2 agenda 
points.

Corporate Factions
In Android: Netrunner there are four different Corporate 
factions to choose from. Corporate factions are important for 
deckbuilding (see “Deckbuilding” on page 24) and each 
Corporate faction has certain cards affiliated with it. These 
factions are:

Runner Factions
In Android: Netrunner there are three different Runner factions 
to choose from. Factions are important for deckbuilding and 
each Runner faction has certain cards affiliated with it. These 
factions are:

Neutral Cards
Some Corporation and Runner cards have no faction affiliation. 
These cards are called neutral cards and can be used in any 
deck of the corresponding side.

Haas-Bioroid

Jinteki

NBN

Weyland Consortium

Anarch

Criminal

ShaperAGENDA:

AstroScript Pilot Program

Ill
us

. M
at

th
ew
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ei

lin
ge

rInitiative

Place 1 agenda counter on AstroScript 
Pilot Program when you score it.
Hosted agenda counter: Place 
1 advancement token on a card that can be 
advanced.

81© 2012 Wizards of the Coast LLC.  © FFG
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The Android: Netrunner core set includes the following 
components:

Corporation Cards (134)
• 28 Haas-Bioroid Cards

• 28 Jinteki Cards

• 28 Weyland Consortium Cards

• 28 NBN Cards

• 22 Neutral Corporation Cards

Runner Cards (114)
• 33 Anarch Cards

• 33 Criminal Cards

• 33 Shaper Cards

• 15 Neutral Runner Cards	

Reference Cards (2)
These cards show the actions a player 
can perform during his turn. 

Click Tracker Tokens (2) 
& Cards (2)
Together these are used to track how 
many clicks a player has left to spend 
during his turn. The reference card 
with four spaces is the Runner’s. 
The reference card with three is the 
Corporation’s. 

One-Credit \\  
Advancement Token (51)
One side of this token represents one credit. Credits 
are the basic currency of Android: Netrunner. 

The other side of this token is an advancement token. 
The Corporation uses advancement tokens to track 
the advancement of his installed cards.

Five-Credit Token (8)
This token represents five credits. 

Brain Damage Token (6)
This token represents one brain damage. The 
Runner can get brain damage through various card 
effects.

Bad Publicity \\  
Tag Token (12)
One side of this token represents one point of bad 
publicity. The Corporation can get bad publicity 
through various card effects. 

The other side of this token represents one tag. 
The Runner can get tags through various card 
effects. 

Generic Tokens (23)
One side of this token is purple, and the other side 
is red. Players use these tokens to track counters on 
cards as necessary. The most common counters are 
agenda counters, power counters, and virus counters.

Component Overview

AGENDA:

Posted Bounty

Ill
us

. M
au
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io

 H
er

re
ra

Security

When you score Posted Bounty, you may 

forfeit it to give the Runner 1 tag and take 

1 bad publicity.

“Some two-cred newsy picks it up, even better. The 

scum could be in the alleys of Guayaquil or the slums 

of BosWash. Not to mention off-planet.”

95
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Neural EMP
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OPERATION: Gray Ops
Play only if the Runner made a run during his or her last turn.
Do 1 net damage.
The trick isn’t hitting the person you were aiming at. It’s hitting only the person you were aiming at. 

© 2012 Wizards of the Coast LLC.  © FFG 72

2

]: Avoid receiving 1 tag.

“I get the feeling that this is the wrong place, 

Frank.”
“What makes you say that, D?”

“The curlers.”

RESOURCE: Connection

Decoy

Illus. Mauricio Hererra

© 2012 Wizards of the Coast LLC.  © FFG
32
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Wyrm

3<: Break ice subroutine on a piece of ice with 0 or less strength.
1<: Ice has –1 strength.
1<: +1 strength.
Fire and ichor...
 

PROGRAM: Icebreaker - AI

Illus. Sandara Tang

© 2012 Wizards of the Coast LLC.  © FFG 13
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[: Draw 1 card from your 
stack.

[: Gain 1<.

[: Install a program, piece of 
hardware, or resource.

[: Play an event.

[, 2<: Remove 1 tag.

[: Make a run.

Runner Actions
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[: Draw 1 card from R&D.[: Gain 1<.
[: Install an agenda, asset,  upgrade or piece of ice.[: Play an operation.

[, 1<: Advance a card.[, [, [: Purge virus    counters.
[, 2<: Trash1resource if the Runner is tagged.

Corp Actions
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Bad publicity
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Setup
To prepare a game of Android: Netrunner, carefully follow the 
steps below. 

1.	 Choose Sides: The players decide who will play as the 
Runner and who will play as the Corporation. Then, each 
player places his identity card faceup in his play area and 
takes a corresponding deck. 
 
Note: New players should use the Shaper and Jinteki starter 
decks for their first game.

2.	 Create Token Bank: Gather the credits, advancement, brain 
damage, tag, bad publicity, and generic tokens into piles. 
Keep these piles within reach of both players.

3.	 Collect Starting Credits: Each player takes five credits from 
the bank.

4.	 Shuffle Decks: Each player shuffles his deck. After shuffling, 
each player offers his deck to his opponent for further 
shuffling.

5.	 Draw Starting Hands: Each player draws five cards from 
the top of his deck to form his starting hand. After drawing 
starting hands, the Corporation may choose to take a 
mulligan by shuffling his hand back into his deck and 
then drawing a new starting hand. After the Corporation 
decides whether to mulligan, the Runner decides whether to 
mulligan as well. If a player takes a mulligan, he must keep 
his second hand as his starting hand. When the players are 
satisfied with their starting hands, each player places his deck 
facedown in his play area.

Important Vocabulary 
Players should become familiar with the following terms before 
reading the rest of the rules. Refer to the “Glossary” on page 30 
to look up other terms as needed.

Active: An active card’s abilities affect the game and can be 
triggered.

Inactive: An inactive card’s abilities do not affect the game 
and cannot be triggered.

Install: This is the game term for playing a card onto the 
table. 

Credit: This is the basic unit of wealth, represented by <.
Click: This is the basic unit of work, represented by [.
Rez: This is the act of flipping a facedown card faceup. The 
Corporation installs his cards facedown and must rez them in 
order to use them. 

Starter Decks
The game can be enjoyed straight out of the box by 
building starter decks to play with. 

To make a starter deck, take all the cards of a single 
Corporate or Runner faction and shuffle in all of the 
neutral cards for the chosen side. Starter decks are 
quick to build and are legal for tournament play.

Below are the card numbers for the Corporate 
factions, Runner factions, and Neutral cards that 
appear in the core set:

Corporation:

Haas-Bioroid Cards #54-66

Jinteki Cards #67-79

NBN Cards #80-92

Weyland	 Cards #93-105

Neutral Cards #106-113

Runner:

Anarch Cards #1-16

Criminal Cards #17-32

Shaper Cards #33-48

Neutral Cards #49-53

This symbol identifies cards 
included in the core set. 
Every card in the core set 
has this symbol next to its 
card number.

These boxes represent the 
quantity of a card in the 
core set and appear to the 
left of the core set symbol.

The Golden Rule
If the text of a card directly conflicts with the rules 
in this book, the card text takes precedence. 



6

Runner Play Area
In addition to his credit pool, identity card, score area, and click 
tracker, the Runner’s play area includes his grip, his stack, his 
heap, and his rig.

Grip
This is the Runner’s hand of cards. The Runner begins the game 
with a maximum hand size of five cards. Cards in the grip are 
inactive. 

Stack 
This is the Runner’s draw deck. The stack is kept facedown 
within reach of the Runner. Cards in the stack are inactive.

Heap
This is the Runner’s trash pile. The heap is kept adjacent to the 
Runner’s identity card. This is where Runner cards are placed 
when they are trashed or discarded. Cards in the heap are 
faceup and inactive. Both the Runner and Corporation may 
look through the heap at any time, but must maintain the order 
of its cards.

Rig
This is where the Runner installs his cards. The rig is separated 
into three rows: one for programs, one for hardware, and one 
for resources. Cards in the rig are active.

Corporation Play Area
In addition to his credit pool, identity card, score area, and click 
tracker, the Corporation’s play area includes his servers and 
his ice.  There are two types of servers: central servers and 
remote servers. 

Central Servers
The Corporation has three central servers: Headquarters, 
Research and Development, and Archives. Each central 
server also has a root.

Headquarters (HQ)- This is the Corporation’s hand of 
cards. Cards in HQ are inactive. The Corporation begins the 
game with a maximum hand size of five cards. The Corporation 
identity card represents HQ for the purposes of card 
installation.

Research and Development (R&D)-
This is the Corporation’s draw deck. R&D is kept facedown 
within reach of the Corporation. Cards in R&D are inactive.

Archives- This is the Corporation’s trash pile. Archives is 
kept adjacent to R&D. This is where Corporation cards are 
placed when they are trashed or discarded. Cards in 
Archives are inactive.

Some cards enter Archives faceup, and some cards enter 
Archives facedown. Facedown cards in Archives should be 
oriented horizontally so that the Runner can easily see them. 
Both the Corporation and Runner may look through the 
faceup cards stored in Archives at any time, and do not need to 
maintain the order of its cards while doing so. The Corporation 
can also look at the facedown cards in Archives at any time; the 
Runner cannot.

Root- This is the area of a central server where upgrades 
for the server are installed. When an upgrade is installed in the 
root, it should be placed below the server. If a root has no cards 
installed in it, it is considered to be empty.

Remote Servers
The Corporation has no remote servers at the beginning of the 
game. The Corporation creates remote servers by installing 
cards. Cards in remote servers are active if rezzed and inactive 
if unrezzed.

There is no limit to the number of remote servers the 
Corporation can have at any given time.

Ice
The Corporation installs ice to protect his servers. Installed ice 
is always dedicated to a particular server and placed in front 
of that server. Ice can protect an empty server. Ice is active if 
rezzed and inactive if unrezzed.

Play Areas
In Android: Netrunner, the play areas for the Corporation and 
the Runner differ significantly from one another. However, both 
players have a credit pool, identity card, score area, and click 
tracker.

Credit Pool
Each player has a credit pool where he keeps the credit tokens 
he has available to spend. Spent credits are returned to the 
token bank.

Identity Card
Each player has an identity card that is placed faceup in his play 
area. The identity card does not count toward his maximum 
hand or deck size, and is always active during the game.

Score Area
Each player has a score area that holds his scored or stolen 
agendas. Agendas in a score area add their agenda points to a 
player’s score. 

Click Tracker
Each player has a click tracker that he uses to track the number 
of clicks left that he has to spend on his turn. This is a game aid 
only and its use is optional.
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Corporation Identity Card
Identity cards indicate which identity the Corporation has 
assumed. 

The Corporation identity card defines the Corporation’s faction 
and describes the identity’s special ability. It also provides a 
minimum deck size that must be observed when deckbuilding 
(8) and the amount of influence available for spending on out-
of-faction cards (9). See “Deckbuilding” on page 24 for more 
information.

Note: The Corporation’s identity card also represents his 
HQ for the purposes of card installation: ice protecting HQ 
is installed in front of the Corporation’s identity card, and 
upgrades installed in the root of HQ are installed behind the 
Corporation’s identity card.

Agendas
Agendas are valuable pieces of the Corporation’s data, and 
are the only cards in  that are worth 
agenda points.

The Corporation installs agendas in remote servers. Agendas 
are the only cards in the game worth agenda points (11). 
Agendas have an advancement requirement (10) that must be 
met before the Corporation can score them (see “Advancing a 
Card” on page 14).

Agendas cannot be rezzed and are only active while in a score 
area. There can be only one agenda or one asset installed in a 
remote server at a time.

Operations
Operations represent singular occurrences and are always 
trashed after being played.

The Corporation pays credits equal to the play cost (1) of an 
operation to play it. When played, an operation’s abilities as 
listed in its text box (4) are resolved. Then, the operation is 
immediately trashed. Operations are never installed.

There are six types of Corporation cards: identities, operations, 
agendas, ice, upgrades, and assets. All cards except the identity 
card are shuffled into the Corporation’s deck at the beginning 
of the game. Corporation cards are installed facedown, and are 
inactive unless rezzed (see “Rezzed and Unrezzed Cards” on 
page 12).

Corporation Cards

AGENDA:

AstroScript Pilot Program

Ill
us

. M
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th
ew
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lin
ge

rInitiative

Place 1 agenda counter on AstroScript 
Pilot Program when you score it.
Hosted agenda counter: Place 
1 advancement token on a card that can be 
advanced.

81© 2012 Wizards of the Coast LLC.  © FFG
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Jinteki
Personal Evolution

Megacorp

Whenever an agenda is scored or stolen, 
do 1 net damage.
When You Need the Human Touch.
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Beanstalk Royalties
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OPERATION: Transaction

Gain 3<.
The New Angeles Space Elevator, better known as the 
Beanstalk, is the single greatest triumph of human 
engineering and ingenuity in history. The Beanstalk 
makes Earth orbit accessible to everyone…for a small 
fee. 
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Upgrades
Upgrades are improvements to a server that provide the 
Corporation with a wide variety of benefits and bonuses. 

The Corporation installs upgrades in remote servers or the 
roots of central servers. Upgrades are the only card type that 
can be installed in the root of a central server. An upgrade is 
not active until it is rezzed by paying credits equal to its rez cost 
(12).

There is no limit to the number of upgrades that can be 
installed in a server. When the Runner accesses an upgrade, he 
can trash it by paying credits equal to its trash cost (13).

Ice
Ice defends the Corporation’s servers against intrusions by 
the Runner. 

The Corporation installs ice in front of any server. Ice is not 
active until it is rezzed by paying credits equal to its rez cost 
(12).

A piece of ice has one or more subroutines (|) in its text 
box (4) that the Runner must break during a run or suffer their 
effects (see “Ice” on page 16) if the ice is rezzed.

Assets
Assets provide the Corporation with resources and 
connections that help him advance and score his agendas. 

The Corporation installs assets in remote servers. An asset is 
not active until it is rezzed by paying credits equal to its rez cost 
(12).

Some assets can also be advanced, giving them the appearance 
of agendas and potentially misleading the Runner. When the 
Runner accesses an asset, he can trash it by paying credits equal 
to its trash cost (13).

There can be only one agenda or one asset installed in a remote 
server at a time.

Ghost Branch

Ghost Branch can be advanced. 
When the Runner accesses Ghost Branch, 
you may give the Runner 1 tag for each 
advancement token on Ghost Branch.

Illus. Gong Studios

ASSET: Ambush - Facility

© 2012 Wizards of the Coast LLC.  © FFG 87
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0

◆ Akitaro Watanabe

Illus. Mike Nesbitt

UPGRADE: Sysop - Unorthodox

The rez cost of ice protecting this server is 
lowered by 2. 
Just don’t ask how he does it. 

© 2012 Wizards of the Coast LLC.  © FFG 79
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ICE: Barrier

Ice W
all can be advanced and has 

+1 strength for each advancem
ent 

token on it.
|

 End the run.
“I asked for ice as im

penetrable as a w
all. I 

can’t decide if som
eone dow

n in R&
D

 has a 
w

arped sense of hum
or or just a very literal 

m
ind.” -Liz Cam

pbell, V
P Project Security

Illus. Matthew Zeilinger
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Runner Cards
There are five types of Runner cards: identities, hardware, 
resources, programs, and events. All cards except the identity 
card are shuffled into the Runner’s deck at the beginning of the 
game. Runner cards are always active while installed.

Runner Identity Card
Identity cards indicate which identity the Runner has 
assumed. 

The Runner identity card defines the Runner’s faction and 
describes the identity’s special ability. It also provides a 
minimum deck size that must be observed when constructing a 
deck (6), and the amount of influence available for spending on 
out-of-faction cards (7). See “Deckbuilding” on page 24 for 
more information.

Hardware
Hardware is the array of physical tools at the Runner’s 
disposal. 

The Runner installs hardware in his rig by paying an install cost 
(9). 

There is no limit to the amount of hardware the Runner can 
install in his rig.

◆ Desperado

HARDWARE: Console

Illus. Outland Entertainment LLC

+@
Gain 1< whenever you make a successful 
run. 
Limit 1 console per player.

© 2012 Wizards of the Coast LLC.  © FFG 24
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Resources
Resources are a wide variety of connections, assets, and skills 
that aid the Runner.

The Runner installs resources in his rig by paying an install cost 
(9). 

There is no limit to the number of resources the Runner can 
install in his rig.

When the Runner is tagged (see “Tags” on page 20), 
resources may be trashed by the Corporation. 

IDENTITY:

Noise 
Hacker Extraordinaire

Whenever you install a virus program, 
the Corp trashes the top card of 
R&D. 
“Watch this. It’ll be funny.”

G-mod

0
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Place 12< from the bank on Armitage 
Codebusting when it is installed. When 
there are no credits left on Armitage 
Codebusting, trash it.
[: Take 2< from Armitage 
Codebusting.
Drudge work, but it pays the bills.

RESOURCE: Job

Armitage Codebusting

Illus. Mauricio Herrera
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Events
Events represent singular occurrences and are always trashed 
after being played.

The Runner pays credits equal to the play cost (13) of an event 
to play it. When played, an event’s abilities as listed in its text 
box are resolved. Then, the event is immediately trashed. Events 
are never installed.

Programs
Programs are digital tools at the Runner’s disposal, primarily 
used as a means of intrusion. 

The Runner installs programs in his rig by paying an install cost 
(9). 

Programs are the only card type that have a memory cost (11). 
The memory cost of his installed programs can never exceed his 
current memory limit (see “Programs” on page 15).  

The Runner uses a program subtype called an icebreaker (4) 
to break ice subroutines during runs (see “Icebreakers” on page 
16). An icebreaker’s strength (12) must be equal to or greater 
than the ice it is interacting with. 

Modded

Install a program or a piece of hardware, 
lowering the install cost by 3.
There’s no replacement for a home-grown program. 
Fed on late nights, oaty bars, and single-minded 
determination. Cheaper, too.

EVENT: Mod

Illus. Ralph Beisner
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Corroder

1<: Break barrier subroutine.
1<: +1 strength.
“If at first you don’t succeed, boost its strength and try 
again.” -g00ru

PROGRAM: Icebreaker - Fracter

Illus. Mike Nesbitt

© 2012 Wizards of the Coast LLC.  © FFG
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Paid Abilities
Some card abilities have trigger costs that a player 
must pay before the effect of the ability can be 
resolved. These abilities are called paid abilities. A 
card’s trigger cost is always listed in its text box before 
the effect, following the format “cost: effect.” 

The most common costs are spending clicks ([), 
spending credits (<), trashing the card (]), and 
spending hosted counters. Some effects feature a 
combination of costs.

Example: The Runner card Datasucker has the text 
“Hosted virus counter: Rezzed piece of ice currently 
being encountered has –1 strength until the end of 
the encounter.” The Runner must spend 1 of the virus 
counters on Datasucker (returning it to the token bank) 
in order to trigger this ability, after which the strength 
of the chosen ice is lowered by 1.

If the player cannot pay the full cost of an ability, he 
cannot trigger it.

Unique Cards
Some cards have a unique symbol (◆) in front of 
their title. There can be only one unique card of the 
same title active at a time. If a card with a unique 
title becomes active, any other card that shares its 
title is immediately trashed. This trashing cannot be 
prevented.
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Playing the Game
In Android: Netrunner, the Corporation and the Runner 
alternate taking turns. Android: Netrunner is unusual in that the 
Runner and the Corporation are governed by different rules. 
Players should familiarize themselves with the rules for both 
sides.

The Corporation always takes the first turn of the game.

Turn Overview
Each player, during his turn, takes actions by spending clicks. 
A player can only spend his clicks during his own Action phase, 
and he must spend all of his clicks in each Action phase. The 
Corporation begins his turn with three clicks ([ [ [) and 
the Runner begins his turn with four clicks ( [ [ [ [). 

Corporation’s Turn
The Corporation’s turn consists of three phases, which he 
performs in the following order:

1.	 Draw Phase: The Corporation draws one card from R&D.

2.	 Action Phase: The Corporation has [ [ [ with which to 
perform actions.

3.	 Discard Phase: The Corporation discards down to his 
maximum hand size, if necessary.

1. Draw Phase
The Corporation draws the top card of R&D. This does not cost 
the Corporation any clicks. 

Note: If the Corporation’s R&D is empty when he attempts to 
draw a card, the Runner immediately wins the game.

2. Action Phase
In his Action phase, the Corporation takes actions by spending 
[ [ [. He can only take actions during his Action phase, and 
he must spend all three of his clicks during his Action phase. 

The Corporation can perform any of the following actions as 
many times as he likes, and in any combination, provided he 
can pay for them. These are listed in the format of “cost: effect.” 

•	 [: Draw one card from R&D.

•	 [: Gain 1< (one credit).

•	 [: Install an agenda, asset, upgrade, or piece of ice.

•	 [: Play an operation.

•	 [, 1<: Advance a card.

•	 [, 2<: Trash a resource in the Runner’s rig if the Runner  
is tagged.

•	 [ [ [: Purge virus counters.

•	 Trigger a [ ability on an active card (cost varies).

Whenever the Corporation spends clicks on one of these 
actions, he is considered to be taking an action and cannot take 
another action until the current action fully resolves. 

When the Corporation has spent all of his clicks, his Action 
phase ends and his Discard phase begins.

•	 Agendas, assets, and upgrades are always installed in a 
vertical orientation. 

•	 Ice is always installed in a horizontal orientation.

Aggressive Secretary

Aggressive Secretary can be advanced. 
If you pay 2< when the Runner accesses 
Aggressive Secretary, trash 1 program for 
each advancement token on Aggressive 
Secretary.

Illus. Julian Totino Tedesco

ASSET: Ambush

© 2012 Wizards of the Coast LLC.  © FFG 57
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Rezzed and Unrezzed Cards
The Corporation’s installed cards have two play states: 
rezzed, which means that the card is faceup and 
active, and unrezzed, which means that the card 
is facedown and inactive. The Corporation can look 
at his unrezzed cards at any time. To rez an installed 
card, the Corporation pays its rez cost and turns the 
card faceup. 

Note: Rezzing a card does not cost the Corporation a 
click. 

To organize this hidden information for both players, 
it is important that the Corporation observes the 
following rules for card orientation: 

Installed Asset (rezzed)

Installed Ice (unrezzed)
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Drawing One Card
For [, the Corporation draws the top card of R&D and adds it 
to HQ.

Gaining One Credit
For [, the Corporation takes 1< from the bank and adds it to 
his credit pool.

Installing Cards
For [, the Corporation installs a single agenda, asset, upgrade, 
or piece of ice from HQ, placing it facedown on the table. 

Note: When an asset or upgrade is installed, the Corporation 
can pay its rez cost to rez it at almost any time (see the “Timing 
Structures” on pages 32-33). Ice can only be rezzed when the 
Runner approaches it during a run (see “Approaching Ice” on 
page 17).

When installing a card in a server, the Corporation can first 
trash any cards already installed in that server. Trashed cards go 
to Archives faceup if they are rezzed, and facedown if they are 
unrezzed. 

If the Corporation chooses to create a remote server when 
installing a card, he installs the card by placing it facedown in 
a discrete location in his play area. Agendas, assets, upgrades, 
and ice can all be used to create a new remote server. If the 
Corporation creates a remote server by installing ice, the server 
exists, but is considered to be empty. An empty server can still 
be run against by the Runner.

Note: Installed cards cannot be rearranged or mixed-up by 
either player except through card effects. 

The following entries describe the installation restrictions and 
associated costs of each card type:

Agendas– An agenda can only be installed in a remote 
server. After an agenda is installed, the Corporation can 
advance and ultimately score it (see “Advancing a Card” on page 
14).

Note: A remote server can have only one agenda or asset 
installed in it at a time.

If the Corporation wants to install an agenda in a remote server 
that has an asset or an agenda already installed in it, he can 
install the card but must trash the existing card first as part 
of the install action. The Corporation does not have to trash 
upgrades in order to install an agenda or an asset.

Assets– An asset can only be installed in a remote server. 

If the Corporation wants to install an agenda in a remote server 
that has an asset or an agenda already installed in it, he can 
install the card but must trash the existing card first as part of 
the install action. 

Upgrades– An upgrade can be installed in any server. When 
an upgrade is installed in a central server, it is installed in the 
central server’s root. 

Unlike an agenda or asset, there is no limit to the number of 
upgrades the Corporation can install in any server, central or 
remote. 

Note: The Corporation can only have one upgrade with the 
region subtype installed per server or server root, as listed in 
the text box of these cards.

Ice– Ice can be installed in front of any server in order to 
protect that server. After a piece of ice is installed in front of 
a server, it is dedicated to that server and cannot be moved or 
rearranged. 

When the Corporation installs a piece of ice, he must install 
it in the outermost position in front of the server and pay 
an install cost equal to the number of pieces of ice already 
protecting that server. The outermost position is the position 
farthest from the server, in front of any other pieces of ice that 
are protecting the server. 

When installing ice, the Corporation can first trash any ice 
protecting that server in order to reduce the install cost. Then, 
he installs the new piece of ice in the outermost position in 
front of the server.

 

Install 
Example
This remote server 
has a rezzed asset 
installed in it, 
protected by two 
pieces of ice. If 
the Corporation 
wants to install 
a third piece of 
ice to protect this 
server, he will have 
to pay 2< (one for 
each piece of ice 
already installed) 
and place it in 
front of Ice Wall 
in the outermost 
position. The 
Corporation can 
trash one or both 
pieces of ice before 
installing to lower 
this cost.

Ic
e W

all

ICE: Barrier

Ice W
all can be advanced and has 

+1 strength for each advancem
ent 

token on it.
|

 End the run.
“I asked for ice as im

penetrable as a w
all. I 

can’t decide if som
eone dow

n in R&
D

 has a 
w

arped sense of hum
or or just a very literal 

m
ind.” -Liz Cam

pbell, V
P Project Security

Illus. Matthew Zeilinger
© 2012 Wizards of the Coast LLC.  © FFG 103

11

Security Subcontract

[, trash a rezzed piece of ice: Gain 4<.
“Feed the Feds our scraps, and they’ll come back 
begging for more.” 

-Richard Polasco, VP of Cyber-Security

Illus. Henning Ludvigsen

ASSET: Transaction

© 2012 Wizards of the Coast LLC.  © FFG 96
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Playing Operations
For [, the Corporation plays an operation from his hand by 
paying its play cost. He then places it faceup in his play area, 
immediately resolves the effects of the operation, and trashes it.

Advancing a Card
For [ and 1<, the Corporation adds one advancement token 
to an installed card. Agendas can always be advanced while 
installed. Cards other than agendas can only be advanced if 
their text box allows it. There is no limit to the number of times 
a card can be advanced. 

Note: If a card’s text box says that the card can be advanced, the 
card can be advanced even when the card is unrezzed.

Scoring Agendas– When the number of advancement 
tokens on an agenda is equal to or higher than its advancement 
requirement, the agenda is fully advanced and the 
Corporation can score it. The only times the Corporation can 
score an agenda is right before his turn begins, or after he 
completes an action. 

To score an agenda, the Corporation turns it faceup and 
places it in his score area, resolving any conditional abilities 
on the agenda that use the language “When you score.” The 
Corporation cannot score an agenda until it is fully advanced. 
Scoring an agenda does not cost a click and is not an action.

While an agenda is in the Corporation’s score area, it is active 
and adds its agenda points to his score.

Delayed Scoring– An agenda sometimes has an ability 
that rewards advancement beyond the agenda’s advancement 
requirement, or an ability that encourages the Corporation to 
delay scoring the agenda. The Corporation is not required to 
score an agenda immediately upon satisfying its advancement 
requirement. He may instead advance it more, or wait for a 
more opportune time to score it. 

Trashing a Runner’s Resource
If the Runner is tagged, the Corporation can spend [ and 2< 
to choose one of the Runner’s resources and trash it (see “Tags” 
on page 20).

Purging Virus Counters 
For [ [ [, the Corporation removes all virus counters 
hosted (see “Hosting” on page 22) on cards, returning them 
to the token bank.

Triggering [ Abilities
Some cards have abilities with trigger costs that require the 
Corporation to spend one or more clicks. These abilities list the 
[ icon in their trigger cost, and the Corporation can trigger 
these abilities only during his Action phase. 

3. Discard Phase
The Corporation begins the game with a maximum hand size 
of five cards, but card effects can increase or decrease this limit. 
If the cards in HQ exceed the Corporation’s current maximum 
hand size at the beginning of the Discard phase, he must 
discard down to his maximum hand size. 

If the Corporation must discard more than one card from HQ, 
he chooses and discards cards from HQ one at a time until he is 
no longer above his current maximum hand size. 

Cards discarded from HQ are always sent to Archives 
facedown, regardless of whether they have been previously 
accessed by the Runner.

After the Corporation completes his Discard phase, the Runner 
begins his turn.

Advancing Assets
Some assets can be advanced. Advancing assets gives 
them the appearance of being agendas. This can be 
useful in bluffing the Runner into making runs which 
are not beneficial to him. 

Trashing and Discarding
A discarded card is not considered to have been 
trashed, and vice versa. Cards that prevent a card 
from being trashed cannot prevent a card from being 
discarded.
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Runner’s Turn
The Runner’s turn is divided into two phases, which he 
performs in the following order:

1.	 Action Phase: The Runner has [ [ [ [ with which to 
perform actions.

2.	 Discard Phase: The Runner discards down to his maximum 
hand size, if necessary.

1. Action Phase
In his Action phase, the Runner takes actions by  
spending [ [ [ [. He can only take actions during his 
Action phase, and he must spend all four of his clicks during his 
Action phase. 

The Runner can perform any of the following actions as many 
times as he likes, and in any combination, provided he can pay 
for them. These are listed in the format of “cost: effect.”  

•	 [: Draw one card from the stack.

•	 [: Gain 1<.

•	 [: Install a program, resource, or piece of hardware.

•	 [: Play an event.

•	 [, 2<: Remove one tag.

•	 [: Make a run.

•	 Trigger a [ ability on an active card (cost varies).

Whenever the Runner spends clicks on one of these actions, he 
is considered to be taking an action and cannot take another 
action until the current action fully resolves. 

When the Runner has spent all of his clicks, his Action phase 
ends and his Discard phase begins.

Drawing One Card
For [, the Runner draws the top card from his stack and adds 
it to his grip.

Gaining One Credit
For [, the Runner takes 1< from the bank and adds it to his 
credit pool.

Installing Cards
For [, the Runner installs a single program, resource, or piece 
of hardware faceup in his rig. An installed Runner card is active 
and does not have to be rezzed like a Corporation card.

Note: The Runner’s cards are always installed faceup and in a 
vertical orientation.

Programs– To install a program, the Runner pays the 
program’s install cost and places it in his program row. Each 
program also has a memory cost. The Runner cannot have 
programs installed that have a combined memory cost greater 

than his available memory units (MU). The Runner begins 
the game with four MU, though certain card effects can increase 
or decrease this value.

If the MU costs of the Runner’s installed programs ever exceed 
his available MU, he must trash his installed programs until he 
is no longer exceeding his available MU. 

The Runner can choose to trash any number of his installed 
programs at the beginning of an install program action.

Resources– To install a resource, the Runner pays the 
resource’s install cost and places it in his resource row.

There is no limit to the number of resources a Runner can have 
installed.

Hardware– To install a piece of hardware, the Runner pays 
the hardware’s install cost and places it in his hardware row.

There is no limit to the amount of hardware a Runner can have 
installed. 

Note: The Runner can only have one piece of hardware with the 
console subtype installed at a time, as listed in the text box of 
these cards.

Playing Events
For [, the Runner plays an event from his hand by paying its 
play cost. He then places it faceup in his play area, immediately 
resolves the effects of the event, and trashes it.

Removing Tags
For [ and 2<, the Runner removes one of his tags.

Making a Run
For [, the Runner initiates a run against the Corporation (see 
“Runs” on page 16) in order to steal the Corporation’s agendas 
and trash his cards.

Triggering [ Abilities
Some cards have abilities with trigger costs that require the 
Runner to spend one or more clicks. These abilities list the 
[ icon in their trigger cost, and the Runner can trigger these 
abilities only during his Action phase. 

2. Discard Phase
The Runner begins the game with a maximum hand size of five 
cards, but card effects can increase or decrease this limit (see 
“Brain Damage” on page 20). If the cards in the Runner’s grip 
exceed his current maximum hand size at the beginning of the 
Discard phase, he must discard down to his maximum hand 
size.

If the Runner must discard more than one card from his grip, 
he chooses and discards cards from his grip one at a time until 
he is no longer above his current maximum hand size. 

After the Runner completes his Discard phase, the Corporation 
begins his turn.
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Runs
Runs are the heart of Android: Netrunner, and provide 
opportunities for the Runner to steal the Corporation’s agendas 
and trash his cards. In a run, the Runner attacks one of the 
Corporation’s servers in an attempt to access cards, using his 
installed programs to help him pass the Corporation’s ice.

Because most runs pit the Runner’s installed icebreaker 
programs against the Corporation’s installed ice, it is vital that 
both players understand the functions and subtypes of the 
Corporation’s ice and the Runner’s icebreakers.

Ice
Ice is defensive software the Corporation installs in front of 
his servers to protect his valuable data. There are four main 
subtypes that can appear on a piece of ice: sentry, barrier, 
code gate, and trap. Ice also has separate abilities called 
subroutines.

Subroutines
Subroutines are abilities of a piece of ice marked by the | 
symbol. If the Runner encounters a piece of rezzed ice and does 
not or cannot break its subroutines, the unbroken subroutines 
trigger and resolve one by one.

In addition to preventing the Runner’s access to the 
Corporation’s servers by ending his run, subroutines can 
pose other hazards if allowed to trigger, such as damaging the 
Runner or initiating trace attempts (see “Traces and Tags” on 
page 20).

 

Icebreakers
Icebreakers are programs with the icebreaker subtype that 
the Runner can use to overcome ice encountered during a run. 
Each icebreaker has a strength, an install cost, and one or more 
subtypes that reflect which kind of ice subroutine it is designed 
to break. 

The Runner uses icebreakers to interact with and break 
subroutines on ice. An icebreaker can only interact with ice that 
has equal or lower strength than the icebreaker. 

In addition to this strength requirement, many icebreaker 
abilities can only be used to break subroutines on particular 
subtypes of ice. For example, an icebreaker that has the ability 
“1<: Break barrier subroutine” can only use this ability to break 
subroutines on a piece of ice with the barrier subtype. It does 
not matter if the ice has additional subtypes, provided it has any 
subtypes referred to by the icebreaker’s ability. If an ability does 
not restrict itself to a subtype (i.e., “Break ice subroutine”), it 
can be used against any piece of ice.

 

Increasing an Icebreaker’s Strength
Many icebreakers allow the Runner to temporarily increase the 
icebreaker’s strength by spending credits. This helps the Runner 
deal with stronger pieces of ice, provided he has enough credits 
to spend. This strength increase lasts only while the current 
piece of ice is being encountered, unless otherwise noted 
by card abilities. After an encounter with a piece of ice, the 
icebreaker’s strength returns to the value shown on its card. This 
applies to any other strength modifiers given by icebreakers as 
well.

A piece 
of ice
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An icebreaker

Corroder

1<: Break barrier subroutine.
1<: +1 strength.
“If at first you don’t succeed, boost its strength and try 
again.” -g00ru

PROGRAM: Icebreaker - Fracter

Illus. Mike Nesbitt
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Phases of a Run
Runs typically transpire in three phases. Not every run will 
include all of these phases. Players are encouraged to use the 
following text in combination with the “Timing Structure of 
a Run” diagram on page 33 in order to fully understand the 
intricacies of runs.

1. Initiation Phase

2. Confrontation Phase

3. Access Phase

1. Initiation Phase
To initiate a run, the Runner declares the server that he 
is attacking. The Runner can only initiate a run against a 
single server per run action.

After the Runner declares the server he is attacking, he 
gains 1< to spend during the run for each point of bad 
publicity the Corporation has. Then, both players check to 
see if there is ice protecting the attacked server. 

If there is ice protecting the server, the run proceeds to the 
Confrontation phase. 

If there is no ice protecting the server, the run proceeds to 
the Access phase. 

2. Confrontation Phase
The Confrontation phase consists of approaching a 
piece of ice and then potentially encountering that 
ice. A Runner approaches each piece of ice protecting the 
server one at a time, starting with the outermost piece. The 
Runner must pass each piece of ice in order to approach 
the next piece of ice protecting the server, continuing until 
all pieces of ice have been passed or until the run ends. 
If the Runner passes all pieces of ice protecting the attacked 
server, the run proceeds to the Access phase. 

Approaching Ice 
When the Runner approaches a piece of ice, he must first decide 
whether he wishes to continue the run or jack out. If he 
decides to jack out, he ends his run and the run is considered 
unsuccessful. The Runner cannot jack out while approaching 
the first piece of ice during a run. 

If the Runner decides to continue instead of jacking out, the 
Corporation has the opportunity to rez the approached piece of 
ice and any other non-ice cards. 

Note: The Corporation can only rez ice when it is approached.

If the approached piece of ice is rezzed after the Corporation 
has the opportunity to rez cards, then the Runner encounters it.

If after rezzing cards the approached piece of ice is not rezzed, 
then the Runner passes it. He then continues the run by 
either approaching the next piece of ice protecting the server 
or proceeding to the Access phase if there is no more ice to 
approach.

Bad Publicity
Some cards and events in 
Android: Netrunner give the 
Corporation bad publicity. For 
each point of bad publicity 

the Corporation has, the Runner gains 1< at the 
beginning of each run. The Runner may spend these 
credits during his run as if they were in his credit 
pool, but any unspent bad publicity credits return to 
the bank at the end of the run. Bad publicity always 
generates revenue for the Runner at the beginning of 
a run, even when the Runner makes multiple runs in 
a single turn.
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Zaibatsu Loyalty

If the Runner is about to expose a card, 
you may rez Zaibatsu Loyalty. 
1< or ]: Prevent 1 card from being 
exposed.

Illus. Mike Nesbitt

ASSET
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Encountering Ice 
When the Runner encounters a piece of ice, he has the 
opportunity to break any subroutines on that piece of ice. After 
the Runner finishes breaking any subroutines that he wishes 
to break, each unbroken subroutine on that ice triggers in the 
order as listed on the card. If a subroutine ends the run, then 
the run ends immediately and no further subroutines on that 
piece of ice trigger.

Breaking Subroutines– To break a subroutine, the 
Runner uses abilities on his installed icebreakers. The Runner 
can break the subroutines on the encountered ice in any order 
he chooses. There is no limit to the number of installed cards 
a Runner can use to interact with the encountered ice, but he 
generally only needs one icebreaker. Remember that before 
an icebreaker can interact with a piece of ice, the icebreaker’s 
strength must be equal to or higher than the encountered ice’s 
strength.

Note: Breaking all subroutines on a piece of ice does not mean 
the ice is trashed. A passed piece of ice remains installed and is 
approached during every subsequent run against the server it 
protects.

After the Runner breaks all of the ice’s subroutines and/or any 
effects from unbroken subroutines resolve without ending the 
run, he has passed that piece of ice. He then continues the run 
by either approaching the next piece of ice protecting the server 
or proceeding to the Access phase if there is no more ice to 
approach.

3. Access Phase
After the Runner has passed all of the ice protecting the 
attacked server, he has one final opportunity to jack out. If he 
chooses to continue, the Corporation has one final opportunity 
to rez cards. After rezzing cards, the run is considered to be 
successful and the Runner accesses the Corporation’s cards 
by looking at them. The type of server attacked determines the 
degree and method of access, and the Runner must access cards 
according to the following rules:

•	 R&D: The Runner accesses the top card of R&D, and any 
upgrades in its root. Unless the Runner scores, trashes, or is 
forced by a card’s text to reveal the card, he does not show 
cards accessed from R&D to the Corporation.

•	 HQ: The Runner accesses one random card from HQ and any 
upgrades in its root. Any cards the Runner does not score or 
trash return to HQ. 

•	 Archives: The Runner accesses all cards in Archives and any 
upgrades in its root. The Runner turns all cards faceup when 
accessing them, and does not need to keep them in order. The 
Runner steals all agendas in Archives and cannot trash cards 
that are already in Archives. After accessing Archives, all 
cards in Archives return to Archives faceup.

•	 Remote Server: The Runner accesses all cards in the server.

Note: Installed ice is not in a server and is never accessed.

Stealing Agendas
If the Runner accesses an agenda, he steals it and places it 
faceup in his score area, resolving any conditional abilities on 
the agenda that use the language “When you steal.”  While an 
agenda is in the Runner’s score area, it adds its agenda points 
to his score. The Runner cannot decline to steal agendas he 
accesses. 

Trashing Cards
If the Runner accesses a card with a trash cost, he may pay 
credits equal to its trash cost in order to trash it to Archives 
faceup. 

Accessing Multiple Cards
When accessing multiple cards, the Runner accesses them one 
at a time in any order he likes. For example, the Runner may 
access a card from HQ, then an upgrade installed in the root of 
HQ, and then another card from HQ, if he has the ability to 
do so.

When accessing multiple cards from R&D, the Runner must 
draw them in order from the top of the deck, and must return 
any cards not scored or trashed in reverse order, so as to 
preserve their positions in R&D. 

The Runner must fully resolve his access to a card (steal it, pay 
to trash it, etc.) before accessing the next card. If the Runner 
scores an agenda that gives him seven or more points, he 
immediately wins the game, even if he would otherwise access 
more cards.

Concluding the Run 
After the Runner has accessed all required cards, he returns 
any cards not stolen or trashed to their original play states. For 
example, an unrezzed card in a remote server returns facedown 
to that server, and a card accessed from HQ returns to HQ.

After a Runner finishes accessing cards, the run ends. The 
Runner returns any unspent bad publicity credits to the token 
bank, and the Runner resumes his Action phase.
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Run Example
Spending his last click, Bart the Runner initiates a run 
against Olivia’s remote server. Bart has a Gordian Blade, 
Crypsis, Sacrificial Construct, and The Toolbox installed. 
He has 5<. The remote server has two unrezzed cards in it 
and three pieces of ice protecting it, one rezzed. One of the 
cards has an advancement counter on it. Olivia has 7<.

Since the first piece of ice protecting the attacked server 
is rezzed, Bart must encounter it. The Gordian Blade 
is already at strength 2, and Bart spends 1< from The 
Toolbox to break Enigma’s second subroutine, “End the 
run,” and declares he is finished breaking subroutines (1). 
The first subroutine, “The Runner loses [, if able” resolves, 
but Bart has no clicks to lose.  

Since the ice was passed, Bart approaches the next piece 
of ice protecting the server and can either continue the 
run or jack out. He still has 5< in his credit pool and 1< 
on The Toolbox, and decides to continue. Olivia has the 
opportunity to rez cards, but declines to do so. Bart then 
passes that piece of ice and approaches the innermost piece 
of ice protecting the server.

Bart once again chooses to continue the run, feeling 
confident with his credits and his programs in play. 
Olivia, with 7<, again has the opportunity to rez cards. 
She decides to rez the upgrade installed in the server by 
spending 1<, and flips over Akitaro Watanabe (2). This 
leaves her with only 6<. Her third piece of ice is a Wall of 
Thorns. While normally this ice would be too expensive 
for her to rez, Akitaro Watanabe lowers the rez cost of ice 
protecting that server by 2. She rezzes the piece of ice by 
paying 6<, leaving her with no credits (3). 

Bart encounters Wall of Thorns, spending 1< from The 
Toolbox and 4< from his pool to boost the strength of 
Crypsis to 5 (4). With only 1< left he cannot break both 
subroutines on the Wall of Thorns. He breaks the “End the 
run” subroutine by spending 1< (5), and then must either 
remove 1 hosted virus counter from Crypsis or trash it. 
Since there are no virus counters on Crypsis, Bart decides 
to use his Sacrificial Construct and triggers its prevent 
effect, trashing it instead of Crypsis (6). 

The first subroutine on Wall of Thorns then triggers and 
resolves, doing 2 net damage. Bart must trash two random 
cards from his grip. He does so, leaving him with a single 
card.

Now that Bart has passed every piece of ice protecting the 
server, he has one last opportunity to jack out. He once 
again decides to continue the run. Olivia can now rez 
cards. Since the unrezzed card in the server is an agenda, 
she declines.

The run is then considered to be successful and Bart gets 
to access cards. The Runner chooses the order in which 
cards are accessed in, and Bart chooses the unrezzed card 
first. He flips over the agenda, steals it, and adds it to his 
score area (7), and then takes 1 net damage from Jinteki’s 
identity card ability. This trashes the last card from his 
grip. He then accesses the upgrade, but since he cannot pay 
the trash cost, Akitaro Watanabe remains installed. The 
run then ends.

Gordian Blade

1<: Break code gate subroutine.
1<: +1 strength for the remainder of this 
run.
It can slice through the thickest knots of data. 

    

PROGRAM:Icebreaker - Decoder

Illus. Mike Nesbitt
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◆The Toolbox
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2> 
Use these credits to pay for using 
icebreakers.
Limit 1 console per player.

HARDWARE:Console

Illus. Michael Hamlett
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]: Prevent an installed program or an 
installed piece of hardware from being 
trashed.
The life expectancy of a jacked construct is about 
that of a mayfly. In other words, short.

RESOURCE:Remote

Sacrificial Construct

Illus. Matthew Zeilinger
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Crypsis

1<: Break ice subroutine.
1<: +1 strength.
[: Place 1 virus counter on Crypsis.
When an encounter with a piece of ice 
in which you used Crypsis to break a 
subroutine ends, remove 1 hosted virus 

counter or trash Crypsis.

PROGRAM:Icebreaker - AI - Virus

Illus. Mauricio Herrera
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◆ Akitaro Watanabe

Illus. Mike Nesbitt

UPGRADE: Sysop - Unorthodox

The rez cost of ice protecting this server is 
lowered by 2. 
Just don’t ask how he does it. 
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Traces and Tags
Though the Corporation spends much of the game repelling 
the Runner’s intrusions, traces and tags give the Corporation 
opportunities to attack the Runner.

Traces
Some card abilities initiate a trace on the Runner. Traces are 
marked by the language “TraceX” on a card, with X equaling 
the base trace strength of the trace. Traces pit the Corporation’s 
trace strength against the Runner’s link strength, both of which 
are increased by spending credits.

The Corporation acts first during a trace, openly spending any 
number of credits to increase his trace strength by one 
point for each credit he spends. There is no limit to the number 
of credits the Corporation can spend on the trace.

After the Corporation spends his credits, the Runner has 
the opportunity to openly spend credits to increase his link 
strength. The Runner’s base link strength is equal to the 
number of links (~) he has in play. The Runner increases his 
link strength by one point for each credit he spends. There is 
no limit to the number of credits the Runner can spend on the 
trace.

After the Runner finishes increasing his link strength, it is 
compared to the Corporation’s trace strength. If the trace 
strength exceeds the link strength, the trace is successful and 
any “If successful” effects associated with the trace are resolved. 
If the link strength is equal to or greater than the trace strength, 
then the trace is unsuccessful, and any “If unsuccessful” effects 
associated with the trace are resolved. 

Tags
Certain card effects result in a tag 
being placed on the Runner. As long 
as the Runner has at least one tag, he 
is considered to be tagged. While the 

Runner is tagged, the Corporation may, as an action, spend 
[ and 2< to trash one of the Runner’s resources. Certain card 
effects can also trigger off of the Runner being tagged, and it 
is usually dangerous for the Runner to remain tagged for very 
long.

While tagged, the Runner may, as an action, spend [ and 2< 
to remove the tag, returning it to the token bank. The Runner 
can repeat this action as many times he likes, provided he has 
the clicks and credits to pay its cost, and as long as he has a tag 
to remove.	

Damage
Many cards and ice subroutines inflict damage on the Runner. 
The Runner can receive the following three types of damage:

•	 Meat damage: The Runner randomly trashes one card from 
his grip for each point of meat damage done to him.

•	 Net damage: The Runner randomly trashes one card from 
his grip for each point of net damage done to him.

•	 Brain damage: The Runner randomly trashes one card 
from his grip for each point of brain damage done to him, 
and his maximum hand size is permanently reduced by one 
card. The Runner takes a brain damage token to track this.

Note: The only differences between net and meat damage are 
the cards that inflict and prevent them.

When the Runner trashes multiple cards for damage, the cards 
are placed in his heap in the order they were randomly trashed. 

If the Runner takes more damage than the number of cards in 
his grip, or if he has a maximum hand size of less than zero at 
the end of his turn, then he is flatlined and the Corporation 
wins the game. 

Winning the Game
If at any time a player has seven agenda points in his score area, 
he immediately wins the game.

If R&D contains no cards and the Corporation attempts to draw 
a card, the Runner immediately wins the game.

If the Runner is flatlined (see “Damage” above), the 
Corporation wins the game. 

 

Trace Example 
A Runner encounters Data Raven, and is unable to 
break the trace subroutine. The Runner’s identity card 
is Kate “Mac” McCaffrey (link of 1) and he has one 
copy of Access to Globalsec (link of 1) in his rig, for 
a base link strength of 2. The Data Raven has a base 
trace strength of 3, and the Corporation decides to 
spend 2<, increasing the Data Raven’s trace strength 
to 5. This means that the Runner would need to spend 
3< in order to make the trace unsuccessful. The 
Runner has 7< in his pool and decides to spend 3<, 
matching the Corporation’s trace strength. Because 
the trace was unsuccessful, no power counter is 
placed on Data Raven.
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Conditional abilities- In order for a conditional ability 
to trigger, a trigger condition must be met. A conditional 
ability can only be resolved once per trigger condition. Trigger 
conditions commonly use the terms “When” or “Whenever” in 
their card text. An example of a conditional ability is the card 
PAD Campaign, which reads, “Gain 1< when your turn begins.”

If a conditional ability uses the word “may” in its description, 
it is an optional conditional ability. The decision to trigger the 
ability belongs to the player who controls the card, provided 
the ability’s trigger condition is met. If a conditional ability 
does not use the word “may” in its description, it is a required 
conditional ability. It must be triggered when its trigger 
condition is met, although the exact time of resolution may 
vary (see “Simultaneous Effects” on page 22).

Note: Ice subroutines are required conditional abilities that can 
be broken, in which case they do not resolve.

Other Terms and Concepts	
There are several other terms and concepts that players should 
know when resolving abilities.

Timing Priority
Whenever there is an opportunity to trigger paid abilities, rez 
cards and/or score agendas (usually at the beginning of a turn 
and after each action), the player who is currently taking his 
turn gets the first opportunity to act. He can trigger as many 
abilities, rez as many cards, and/or score as many agendas as 
he wishes in the order of his choosing. When he is finished, the 
other player gets the opportunity to act. When that player is 
finished, the first player gets the opportunity to act once again.

After both players have had at least one opportunity to act and 
a player declines to act, then the players cannot trigger more 
abilities, rez more cards, or score more agendas until the next 
opportunity to do so.

For more information on the intricacies of triggering card 
abilities, rezzing cards, and scoring agendas, consult the timing 
diagrams on pages 32-33. 

Prevent or Avoid
Some card abilities use the words “prevent” or “avoid.” Prevent 
or avoid effects are the only effects which can disrupt another 
effect. A prevent or avoid effect states what it is preventing 
or avoiding, and an effect that is prevented or avoided is not 
resolved. Prevent or avoid effects can be triggered whenever the 
effect they are preventing or avoiding is resolving.

Self-referential Language
Unless otherwise noted, a card with text that refers to its own 
card title only refers to itself and does not refer to other copies 
of cards with that title. 

Negative Effects
If an effect prohibits a player from doing something, usually by 
using the word “cannot,” it always takes precedence over other 
effects unless another effect explicitly overrides it.

Additional Rules
The following sections describe additional important rules and 
information not addressed in the previous sections.

Card Abilities
There are two different types of card abilities in Android: 
Netrunner: constant abilities and triggered abilities. 
The following information explains how these abilities function 
in the game.  

Constant Abilities
Constant abilities continually affect the game as long as the card 
they appear on is active and any other specified conditions are 
met. They are not triggered and do not have costs associated 
with them. An example of a constant ability is the card 
Experiential Data, which reads, “All ice protecting this server 
has +1 strength.”

Triggered Abilities
In order to use a triggered ability a prerequisite must be met. 
This prerequisite is either a trigger cost that must be paid 
(paid ability) or a trigger condition that must be met 
(conditional ability). Once an ability is triggered, its effect 
is resolved immediately and can only be stopped by prevent 
or avoid effects. Players must follow all restrictions on the 
cards when triggering abilities. 

Paid abilities- In order to trigger a paid ability, a trigger 
cost must be paid. The most common trigger costs are spending 
clicks, credits, or hosted counters, and trashing cards. A 
card’s trigger cost is always listed in its text box before the 
effect, following the format “cost: effect.” A paid ability can be 
triggered an unlimited number of times as long as the cost is 
paid and any restrictions specified by the effect are observed. 
Paid abilities can be triggered at the beginning of each turn, 
before and after each player action, and at certain points during 
a run, unless the ability requires a click, in which case it must be 
triggered as an action. An example of a paid ability is the card 
Magnum Opus, which reads, “[: Gain 2<.”
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Trashing
When trashing a card as part of a trigger cost for its own paid 
ability (]), the effect on that card will resolve even though the 
card is no longer active. 

Expose
Some effects expose one or more cards. Generally, only 
unrezzed installed cards can be exposed, unless an ability 
specifies otherwise. An exposed card is revealed to all players, 
and then returned to its previous state. If multiple cards are 
exposed by one effect, they are considered to be exposed 
simultaneously. 

Simultaneous Effects
When one or more abilities have the same timing trigger or 
can be triggered at the same time, each player chooses the 
order his own abilities trigger. A player can trigger an optional 
conditional ability before a required conditional ability if they 
both have the same trigger condition. 

If players ever want to perform simultaneous effects at the same 
time, the player whose turn it is resolves all of his effects first.	

Hosting
Some cards can only be installed on other cards; others allow 
cards to be installed on them. A card that has other cards 
installed on it is called the “host card,” while the card installed 
on it is called the “hosted card.” Hosted cards can leave play 
without affecting their host.

Cards can also host counters and tokens. Hosted counters or 
tokens can be spent, or leave play, without affecting their host. 
If a trigger cost requires one or more hosted counters, those 
counters must be spent (returned to the token bank) from the 
card that the ability appears on.

If a host leaves play, then all cards and counters hosted also 
leave play. This cannot be prevented.

Forfeiting Agendas 
Some card abilities require the Corporation or Runner to forfeit 
an agenda. When a player forfeits an agenda, he selects any 
agenda in his score area and permanently removes it from the 
game (it does not go to Archives or the heap). He no longer 
scores points for the forfeited agenda.

Symbols
The following symbols appear on cards: 

<: This symbol stands for credit. It always appears with a 
numeral, such as 1<, which means “one credit,” or 3<, which 
means “three credits.”

[: This symbol stands for a single click. Multiple clicks are 
represented by multiple symbols, such as [ [, which means 
“two clicks.”

>: This symbol stands for recurring credit. It always 
appears with a numeral, such as 1>, which means “one 
recurring credit,” or 3>, which means “three recurring credits.” 
Any recurring credits a player spends are replaced on their host 
card at the beginning of that player’s turn. A player can only 
spend these credits as instructed by their host card. 

~: This symbol stands for Link. It is always used with a 
quantity, such as +1~, which means “plus 1 link.”

@: This symbol stands for memory unit. It always appears 
with a quantity, such as + # which means “plus 2 memory 
units.”

|: This symbol stands for subroutine and only appears on 
ice. Each symbol marks a single subroutine on a piece of ice.

]: This symbol stands for trash. It is used as a self-
referential trigger cost in a card text, such as “]: Draw 2 cards,” 
which means “trash this card to draw 2 cards.” 

Simultaneous Effect Example
The Runner has Aesop’s Pawnshop and Wyldside 
installed and both have the same trigger condition of 
“When your turn begins.” The Runner begins his turn 
and can choose to trigger the optional conditional 
ability on Aesop’s Pawnshop first, gaining 3< by 
trashing Wyldside. This stops Wyldside’s required 
conditional ability from triggering, keeping the 
Runner from losing [. 
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Deckbuilding
In a Living Card Game, players can customize their decks by 
adding and removing cards, creating a unique play experience.

Why deckbuild?
Deckbuilding is a great way to experience the game in a 
completely new way. Instead of adapting to the game, you 
can force the game to adapt to you. Deckbuilding opens up 
new strategies, new experiences, and ultimately can lead to 
more exciting games where you feel more invested. When you 
deckbuild, you do not just participate in the game; you actively 
shape how the game is played.

When first building a deck, it is usually a good idea to modify 
one of the starter decks rather than start from scratch. After 
playing Android: Netrunner a few times with different decks, 
you should have a general idea of what the various cards do. 
Pick your favorite faction, and then modify that faction’s starter 
deck by switching out some cards for cards from other factions. 
In most cases you will want to build a deck at the minimum 
deck size, as it makes your deck more efficient. Don’t worry 
about building the perfect deck–enjoy the process and try out 
cards that are appealing to you and seem fun to play with. 

When building a deck from scratch, it is generally helpful to 
sort your cards by faction. Once you have sorted the factions, 
choose one and separate those cards by card type. You will 
want to make sure you have a good mix of card types in your 
deck. Adding cards from a second core set greatly increases the 
number of options you will have. 

One thing to consider when building a deck in Android: 
Netrunner is how to spend your influence. It is a good idea to 
use as much of it as possible, since there are many powerful 
cards in other factions. If you aren’t sure what to add, look 
for broadly applicable cards like icebreakers or ice. For the 
Corporation, a surprise rez of an out-of-faction ice can be an 
important turning point in the game!

Another thing the Corporation should consider is how much 
ice you have in your deck. You will want to make sure you put 
in enough to stop the Runner. We recommend building about 
17-20 pieces of ice into a 45-49 card deck. Also make sure you 
have enough ways to generate credits quicker than the regular 
“[ for 1<” action. Having a strong economy will give you 
plenty of credits to spend and put a lot of pressure on your 
opponent.

Once you’ve built your deck, it is time to play some games! 
This is where you will begin to understand whether or not your 
deck is working. Do you have enough resources? Is your ice 
too expensive? Are you drawing your icebreakers fast enough? 
Figure out what the weak points of your deck are, and try 
switching out some cards. Looking through your cards again, 
you may even have another idea for a different deck!

Restrictions 
When building a deck for organized play, players must observe 
the following restrictions:

•	 A deck must be associated with a single identity card, 
and cannot contain fewer cards than the minimum deck 
size value listed on the chosen identity card. There is 
no maximum deck size, but the deck must be able to be 
sufficiently randomized in a short period of time. Identity 
cards, reference cards, and click tracker cards are never 
counted as part of a deck and do not count against the 
minimum deck size.

•	 A deck cannot have more than three copies of a single card 
(by title) in it.

•	 A deck associated with a Runner identity can never contain 
Corporation cards, and vice versa.

•	 A deck cannot contain out-of-faction cards with a total 
influence value that exceeds the influence limit listed on 
the chosen identity card (see “Influence” below). Cards that 
match the faction of the identity card do not count against 
this limit. 

•	 A Corporation deck must have a specific number of agenda 
points in it based on the size of the deck, as follows:  
	 - 40 to 44 cards requires 18 or 19 agenda points. 
  	   (Note: Identities in this set have a 45 card minimum) 
	 - 45 to 49 cards requires 20 or 21 agenda points. 
	 - 50 to 54 cards requires 22 or 23 agenda points.  
For decks larger than this, add 2 additional agenda points to 
the 54 card deck requirements each time the number of cards 
in the deck reaches a multiple of 5 (55, 60, 65, etc.).   
For example, a 66 card deck requires 6 additional agenda 
points (2 at 55, 2 at 60, and 2 at 65 cards). This gives a final 
requirement of either 28 or 29 agenda points.

Influence
A player may wish to include cards in his deck that do not 
match the faction of his identity card. He is restricted, however, 
by the influence limit on his identity card. The combined 
influence value of out-of-faction cards in his deck cannot 
exceed this limit. Each card’s influence value is represented by 
small blue orbs near the bottom of the card.

Neutral cards are not part of any faction, can be used in any 
deck of the side they are affiliated with, and generally have an 
influence value of zero. 

Note: Some cards do not have any influence value (this is 
different than a card that has an influence value of zero). These 
cards are identified by their lack of an influence box. A card 
without an influence value cannot be used with an identity card 
that has a different faction affiliation.

◆ Akitaro Watanabe

Illus. Mike Nesbitt

UPGRADE: Sysop - Unorthodox

The rez cost of ice protecting this server is 
lowered by 2. 
Just don’t ask how he does it. 
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Deckbuilding Example
Jenny has decided to build a Criminal deck by modifying 
the Criminal starter deck. She lays out all of the Criminal 
and Runner neutral cards, and knows that she currently 
has 47 cards and is spending 0 of Gabriel Santiago’s 15 
influence. 

Jenny really likes a lot of the Shaper cards, and so she 
decides to browse through those and pick out some to add 
to her deck. After browsing, she adds the following cards to 
her potential card pool:

•	 3x Diesel, 3x Gordian Blade, 1x The Toolbox, 2x The 
Maker’s Eye, 2x Akamatsu Mem Chip, 3x Tinkering, 2x 
Magnum Opus

These cards have a combined 
influence of 35, and she has only 
15 influence to spend. Looking at 
the Criminal cards, Jenny decides 
that she needs Gordian Blade 
the most, since it is a decoder, 
something her deck currently does 
not have. She puts in 2x Gordian 
Blade for six influence, figuring she 
doesn’t need 3x with Special Order 
in the Criminal deck.

After adding in Gordian Blade, Jenny does the math and 
finds that in order to install all of the programs she wants 
to install, she will need more memory. She decides to add 
in 2x Akamatsu Mem Chip and 1x The Toolbox. This takes 
her up to 10 influence. She has only five influence left to 
spend. 

Looking at her deck again, Jenny 
feels like she really wants more 
card draw. Since Diesel is only 
two influence, she could add 2x 
Diesel, which would put her at 
14 influence. Adding in 3x Diesel 
would be too much influence. 
Looking at the cards she has 
already spent influence on, Jenny 
notices that the Akamatsu Mem 
Chip is only worth one. She decides 
to drop one of the Akamatsu Mem 
Chips in order to add in 3x Diesel and reach 15 influence. 
She really wants to add in The Maker’s Eye, but decides 
to try the deck with just Diesel first. Having spent the 15 
influence, she has now added the following cards:

•	 2x Gordian Blade, 1x Akamatsu Mem Chip, 1x The 
Toolbox, 3x Diesel 

After maxing out her influence, Jenny counts up the 
current number of cards she has in her deck. She currently 
has 54 cards, and Gabriel Santiago has a minimum deck 
size of 45. She now wants to cut nine cards from the deck 
to reach the minimum deck size, as this makes the deck 
more efficient.

The first card Jenny decides to cut is 1x Desperado, since 
she wants to play with The Toolbox and a player can only 
ever have one console installed at a time. Next, Jenny 
decides to cut out 1x Data Dealer, since she doesn’t like 
forfeiting agendas.

Now the decisions get tougher. Since Jenny now has a 
decoder, she feels like 3x Crypsis is no longer necessary, 
but she doesn’t want to get rid of all of them. She decides 
to cut 2x Crypsis. Looking over her programs and 
icebreakers, she decides she is happy with them and sets 
them aside.

This leaves her with resources, hardware and events. 
Looking at her hardware, Jenny decides that she doesn’t 
need 2x Lemuria Codecracker with 3x Infiltration to 
expose cards. She considers dropping both Lemuria 
Codecrackers, but one of her friends she plays with does 
like to use ambush cards. She decides to keep one in the 
deck, just in case. Counting up the cards she has cut, she 
finds that she has cut five cards, putting her current deck 
size at 49. If she wants to get to 45, she must cut out four 
more cards!

Jenny then takes a look at her 
resource cards. She definitely 
wants to keep 3x Armitage 
Codebusting, but she is unsure 
about the 2x Crash Space and 
2x Decoy. These cards are great 
against Weyland and NBN, but 
not so good against Jinteki or 
Haas-Bioroid. She wants to cut 
them, but remembers the card 
Scorched Earth and decides to 
leave them in and cut 2x Access to 
Globalsec instead, since she feels 
like the Decoys will better protect her from tags.

This leaves events. She needs to cut two more cards, 
and looking at the events she decides Forged Activation 
Orders is the weakest of the bunch. She removes two of 
them and breathes a sigh of relief. She has removed the 
following cards:

•	 1x Desperado, 1x Data Dealer, 2x Crypsis, 1x Lemuria 
Codecracker, 2x Access to Globalsec, 2x Forged 
Activation Orders

She is now ready to play some games with her new deck!

Gordian Blade

1<: Break code gate subroutine.
1<: +1 strength for the remainder of this 
run.
It can slice through the thickest knots of data. 

    

PROGRAM: Icebreaker - Decoder

Illus. Mike Nesbitt
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+1~
He flicked the display population to high, and 
was surrounded by a circle of floating holos. The   
ping-back was strong, the clearance level blue-one. 
Now to find the perfect place for a relay...
 

RESOURCE: Link

Access to Globalsec

Illus. Mike Nesbitt
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1

Diesel

Draw 3 cards.
Diesel gives you flames. 

EVENT

Illus. Tim Durning

© 2012 Wizards of the Coast LLC.  © FFG 34

0

Gordian Blade

Diesel

Access to 
Globalsec
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Haas-Bioroid
“Effective. Reliable. Humane.”  

With headquarters in New Angeles and 
major branch offices in Chicago, Cologne, 
Heinlein, Johannesburg, and Sydney, 
Haas-Bioroid is the world leader in 
cybernetics and artificial intelligence. The 
most iconic and recognizable products 
made by Haas-Bioroid are the bioroids 
themselves, androids built with cybernetic 
technology and with artificially-intelligent 
minds designed around sophisticated 
imaging of human brains.

Bioroids are a new technology but have 
already changed humanity forever. As 
android labor becomes cheaper and 
more widely available, ordinary humans, 

mostly in the lower class, find themselves 
unemployed and replaced by a bioroid 
or clone. Although bioroids are less 
controversial than the humanlike clones, 
they attract a good deal of vitriol, hatred, 
and even violence. 

The “labor solutions” market is controlled 
by Haas-Bioroid and their chief 
competitor, Jinteki. Both corporations 
have become enormously wealthy 
through their joint monopoly. Haas-
Bioroid holds the patent on bioroids and 
most of the necessary technology for 
developing a proper artificial intelligence. 
They aggressively protect their patents 
and their market position through any 
legal means available–and, if certain 
alarmist watchdog organizations and 
fringe elements are to be believed, any 
illegal means available as well. 

In addition to the creation of artificially-
intelligent bioroids, Haas-Bioroid has 
been experimenting with specialized 
bioroids dedicated to network security 
and other tasks that are traditionally 

the role of software agents 
(so-called “weak” AI). Bioroids tasked 
for purely network usage have a proven 
ability to interact with the brains of 
users employing a neural interface, with 
occasionally lethal results. There are also 
some indications that these bioroids are 
less “well-adjusted” than others who 
possess a body and may interact with 
human beings in a more traditional 
manner. Haas-Bioroid denies any 
allegations that their software-purposed 
bioroids are unstable or have ever been 
implicated in the brain damage of human 
users. 

Haas-Bioroid prides itself on quality 
craftsmanship and superior design. In 
addition to bioroids, Haas-Bioroid and its 
subsidiaries produce commercial-grade 
and medical cybernetics, prosthetics, 
industrial robots and machinery, mind-
machine interface devices, and consumer 
electronics. 	

Jinteki
“When you need the human touch.”

The traditionally conservative Jinteki 
corporation is now being led by an 
aggressive new chairman of the board, 
Chairman Hiro, through a series of 
upheavals and transitions. Alongside 
rapid developments in the field of cloning 
and biotechnology in the last decade, the 
corporation has relocated its headquarters 
from Tokyo, Japan to New Angeles, 
acquired or built laboratories on Mars, 
and shifted its recruitment policies to 
diversify its research and sales forces. 
Branch offices have also been granted 
more autonomy and localized marketing 
has increased sales of consumer-model 

clones (though most clone sales are still 
business-to-business). 

This upheaval mirrors unrest in society 
at large in the past decades, and the 
cause is the same: androids. Jinteki owns 
the patent on the process that creates 
humanlike clones, biological androids 
tailor-made by the “genegineers” of 
Jinteki. As this controversial technology 
becomes cheaper and more robust, 
more and more humans find themselves 
replaced in the workforce by cheaper 
android labor. While some Jinteki 
corporation products (such as the 
vacuum-tolerant “turtleback” clones 
sometimes seen in Heinlein or on the 
Beanstalk) bear only a faint resemblance 
to human beings, others are virtually 
indistinguishable, marked only by 
barcode tattoos on the backs of their 
necks. 

Jinteki markets its clones as more 
personable and person-like than the 
robotic bioroids built by their chief 
competitor. Clones are inherently 

adaptable and intuitive, just like a real 
person, and are able to establish empathy 
with real humans more easily than 
other androids. They excel in service 
industry positions, although heavy-labor 
and industrial-process clones are also 
readily available. Rumors exist of clone 
projects that explore the potential of 
human psionic ability, but such claims 
are dismissed by serious scientists. Jinteki 
has performed extensive research on the 
human brain and mind-machine interface 
technologies, but this is because so-called 
“braintaping” technology is essential to 
their production process. 

The new, sleeker, more modern Jinteki 
prides itself on adaptability, aesthetics, 
and a connection to the natural world. 
Jinteki is proud of its heritage as a 
Japanese corporation and embraces 
a traditional aesthetic as part of its 
corporate identity. In addition to clones, 
Jinteki and its subsidiaries specialize 
in biotechnology, cloned organs, 
pharmacology, agriculture, and medical 
equipment. 
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NBN
“Someone is always watching.” 

The largest media conglomerate in the 
world is NBN, which at various times 
in the company’s history has stood for 
Network Broadcast News, Net Broadcast 
Network, and Near-Earth Broadcast 
Network. Now simply known as NBN, 
the corporation is headquartered right 
on Broadcast Square in New Angeles 
after relocating from SanSan in the early 
30s. NBN also has offices and broadcast 
equipment along the entire length of the 
New Angeles Space Elevator, particularly 
at Midway Station and the terminal space 
station known as the Castle. 

NBN owns or operates five of the ten top-
rated content streams worldwide. From 

music to threedee, news broadcasting 
to sitcoms, classic movies to interactive 
sensies, NBN does it all. NBN produces 
or licenses more content every day than 
a human being could consume in a 
year and boasts sophisticated secretary 
software agents to aid the consumer in 
locating the highest-quality content that 
best matches his user profile. 

NBN’s revenue streams are as complex 
as the web of network and broadcast 
infrastructure it owns. Its broad array of 
content and sophisticated, user-friendly 
delivery systems have garnered NBN 
an enormous number of subscribers at 
various membership levels in a variety of 
media markets. By collecting and collating 
viewership information and habits, NBN 
is also the world’s leading media and 
marketing research firm, with zettabytes 
of information on such subjects as the 
buying habits of thirty-year-old college-
educated single mothers. NBN can sell 
this data to other corporations, and also 
provide precision-targeted advertising to 
that same subscriber list. NBN-produced 
advertising uses psychographic profiling 

and the latest neuroscience 
and braintaping techniques to promote 
message penetration and brand retention.

The market dominance of NBN 
means that in most markets even non-
subscribers must use NBN-owned 
infrastructure to access the network 
at all. As a result, a large percentage of 
data and media in all of human society 
passes through NBN. Privacy advocates 
worry that NBN has too much access and 
control over communications and media, 
and condemn NBN for its cooperation 
with repressive Mediterranean regimes. 
Some worry that NBN is using its wealth 
of data for purposes more nefarious than 
advertising, and that there is a reason 
why no antitrust laws were ever enforced 
against the corporation by U.S. or world 
governments. 

NBN is a model of corporate efficiency, 
agile and responsive to an ever-changing 
marketplace. It does more than simply 
read the market; it steers it. 

Weyland Consortium
“Moving Upwards” 

Aside from its dramatic and public 
association with the New Angeles 
Space Elevator, better known as “Jack’s 
Beanstalk” or simply “the Beanstalk” after 
designer Jack Weyland, the extent of the 
Weyland Consortium’s holdings is little 
known among the general population. 
This shadowy organization owns or 
invests in other corporations, leveraging 
the enormous assets granted them by 
the Beanstalk to buy and sell smaller 
megacorps at an alarming rate. 

For the past several decades, the Weyland 
Consortium’s obvious specialty has been 
construction, a legacy of its involvement 

in the Space Elevator project. Many 
of its subsidiaries are construction 
companies, often on a local level, or 
suppliers for construction companies. 
By some estimates, half the arcologies 
in New Angeles were built by a Weyland 
Consortium-controlled company, 
and cunning accounting and business 
practices ensure that even when the 
client companies fold, the Consortium 
somehow comes out ahead. 

Part of the secret of the Weyland 
Consortium’s success lies in its ability 
to secure government contracts and 
lobby for favorable legislation, especially 
in the United States and China. It is 
often a war profiteer, securing lucrative 
reconstruction bids in the Mediterranean, 
United Korea, and the Sub-Saharan 
League nations. In the wake of the Lunar 
War, Weyland snatched up almost 70% 
of the orbital reconstruction contracts 
on Earth and nearly all of the Heinlein 
contracts. Unfortunately for Weyland, its  
apparent magic with local governments 
does not appear to extend to the Martian 

separatists, who consider the 
Weyland Consortium a corporate 
extension of Earth’s hegemony. 

Still, Weyland remains confident that 
the bright future of the human race is in 
outer space. The Consortium is a major 
source of funding for space exploration 
and continues to acquire aerospace and 
orbital construction companies. Some 
suggest that the Weyland Consortium 
seeks a monopoly in outer space, that it 
wants to control all human habitation 
outside Earth’s atmosphere. Many of these 
alarmists are Martians who distrust the 
Weyland Consortium on principle. 

Given the Weyland Consortium’s 
proclivity for operating in war-torn 
regions, it should be no surprise the 
corporation is comfortable playing 
hardball. While little has been proven, 
some mysterious deaths are blamed 
on elements within the Consortium. 
Weyland favors a brute-force approach to 
most problems, using its vast resources to 
get their way.  
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Shapers
To others, Shapers seem like 
idealistic naifs. They’re not 
motivated by rage against the 
corporate injustice that is a daily fact of life for 
the underclass. They’re not in it for the money. 
Many never understand why Shapers do what 
they do, but it’s not actually very complicated. 
Shapers are motivated by curiosity and a 
certain amount of pride. A Shaper may 
orchestrate a data raid as underhanded and 
destructive as the most frothing Anarch, but 
his goals are different: the Shaper just wants to 
see if he can do it. Shapers are also tinkerers 
and builders, and they push their hardware 
and software beyond their limits. 

Criminals
Criminals are in it for 
themselves. All runners are 
technically criminals, at 
least if you ask the corps, but these runners 
embrace it. They make self-interest an art 
form and don’t care who gets hurt so long 
as they get ahead. Many Criminals engage 
in more traditional forms of crime as well, 
stealing data and money with equal gusto. 
Criminals are good at covering their tracks 
and employing a variety of dirty tricks to 
attack from an unexpected angle. 

Anarchs 
Anarchs have strong 
contempt for the corporate 
oligarchs, the whole corrupt 
system, and often for society in general. 
Whatever the exact target of their rage, 
their unifying characteristic is their anger. 
At their worst, Anarchs just want to watch 
the world burn. At their best, Anarchs are 
tireless champions for the downtrodden and 
oppressed. They’re very good at breaking 
things, spreading viruses, and trashing 
Corporation assets and programs.

Runners
Runners are a fractious and varied group. It’s nearly impossible 
to generalize about them, except to say that individuality is core 
to their identity. By definition they live outside the law, and as a 
consequence they mostly lead a solitary existence. They do not 
have overarching organizations or affiliations, or indeed much 
of anything that makes any one runner similar to another. They 
come from all walks of life, vary dramatically in skill sets, goals, 
and available resources, and don’t even have a dress code. 

Noise
Hacker Extraordinaire

“I guess I’m just the classic example of the man who had every advantage going 
tragically wrong.” Reilly grinned a cocksure, infuriating grin that made him 
look ten years younger on his already young-looking face. 

“You did,” said Brady, flicking through the file that hung in the air between 
them. “Ji Reilly. Says here you’re a g-mod from birth. Mommy and daddy must 
have loved you very much to tinker with your brain like that.” 

“Oh, sure,” said Reilly. “They loved me so much they planned everything out. 
You know I was born on Heinlein, but I went to school downstalk. Mommy and 
daddy lived on the moon, but there I was, living in an arcology in New Angeles. 
I could look out the window at night and wave at my mom and dad.” 

“Don’t sell me that line of bull.” 

“It’s all there in the file, Detective.” Reilly flicked one long-fingered hand at the 
shimmering virt display. “All planned out. Internship with Jinteki’s AI research 
division. Management position by 25. VP by 30.” 

“You were not a Jinteki VP.” 

“Oh, hell no, can you imagine?” He laughed, a short, sharp bark of a laugh. 
“That company would never survive me.” And then the grin again. “Still might 
not.” 

“So you had every goddamn advantage a boy could dream of,” sneered Brady. 
“And yet here you are.” Reilly shrugged, doing his best to look innocent. The 
cuffs spoiled both effects. “So why the life of crime, Reilly?” 

“Why the life of crime.” Reilly wrapped his mouth and lips around each word, 
tasting them, weighing the ideas contained within. “Why not?”

Brady sneered, dropping his PAD to the cold steel of the table. “I know why. 
You get plenty rich off these little capers.” 

“There’s what you know, and what you think you know, Detective. And there’s 
two things you should know before we go any further.” 

“Yeah?” 	

“The first thing is that arresting me over and over does not mean that I’m a 
criminal. Not until you can find a charge that’ll stick.”

“You’re no good, Reilly. The techs are going to find that stolen data on one of 
your datacores, somewhere. You won’t be a top-flight runner anymore; they’re 
gonna pull the cyberware out of your head and if you so much as touch a PAD 
they’ll break your fingers. You’ll just be Ji Reilly. Nobody.” 

“That’s the other thing, Detective.” He stood, resting his hands on the table. All 
the flippant gestures, all the mocking smiles were gone. His eyes blazed like 
foxfire. “My name is Noise.” 

Brady held his gaze until his PAD chirped. He frowned and glanced down at it. 
The device tracked his eye line and the virt display bloomed to life. Orders.

“So,” said Noise. “I guess I’ll be going now?” He offered his cuffs and grinned. 
Brady scowled. 



29

Gabriel Santiago
Consummate Professional

Gabriel was hungry. Nothing new. Grew up hungry. Grew up lean. Grew up 
mean on the streets of New Angeles. You don’t get much schooling on the 
streets but you do get an education. Gabriel grew up speaking three languages 
and cursing in three more. He learned how to spot a cop or a spydrone, how to 
palm a PAD from a ristie’s coat pocket, how to crack the case and burn out the 
auto-locator without scragging the valuable electronics inside. 

Being hungry gave him an edge. Had to want it more. Had to need it. Had to be 
willing to do what it took to get ahead. So, yeah. Gabriel was hungry. He liked 
it that way. Kept himself hungry. Cracking PADs turned into cracking code, 
turned into cracking networks. Could’ve gone straight, worked for HB or one of 
the small software startups that bloom and die like mushrooms on a corpse all 
through New Angeles. Gotten fat. Complacent. Lost the edge. 

“Better this way,” Gabriel said, hanging upside down outside the 124th floor of 
the Hu-Jintao arcology. A green light blinked on the small black box affixed to 
the window by his head, claiming the alarm was successfully disabled. Gabriel 
ignored it; it was linked to his cortical implant and he’d know if it needed his 
attention. He focused on carefully removing the cut glass from the window 
before him. Couldn’t drop it, couldn’t let the wind snatch it away. He used his 
good hand, his flesh-and-blood hand, for the operation. Deftly he tucked the 
circle of glass, about the size of his palm, into the front pocket on his vest. Then 
the laser probe had to be placed just so, with the beam striking the optical port 
on the sarariman’s desk inside, and then he was in to the network. 

He pulled a cable from the laser probe and socketed it into his wrist–his bad 
wrist, his metal wrist. An optical connection established, his implant came 
to life, flooding his mind with data. His sense of his body fell away; he wasn’t 
hanging upside down a mile above the street with the wind tearing at his 
clothes anymore. He was in a river of data, a bodiless phantasm, a ghost in the 
machine. 

But he was still hungry. 

Kate “Mac” McCaffrey
Digital Tinker

“I like to think of myself as an artist,” she said. Said. Out loud. With her vocal 
cords. Unplugged, perched on the edge of a stool so old it was made of wood. 
Her “desk” was a polywood flat laid over two sawhorses and strewn with 
humming, glowing electronic devices. One of these devices projected a virt 
display of a girl’s plastic doll face, fixed in a permanent plastic grin. The face 
spoke back from the small speaker at the base of the projector. 

“An artist of…pixels? Qubits? Bytes?” 

“Ideas,” said Mac. She gestured and a virt screen, a luminous panel showing 
bricks of raw code, floated up in front of her face. “The bits and bytes and qubits 
aren’t the data. It’s just how it’s written. Like a word isn’t just a collection of 
letters. There’s an idea behind it.” 

“So you use digital storage media as a means to express your ideas?” 

Mac ignored the question. Her own anonymizer program was probably showing 
her as an old film or sensie star; she couldn’t remember if she’d set it for Marilyn 
Monroe, Charlie Chaplin, or Miranda Rhapsody. The code was good. She rested 
her hand flat on an induction interface panel and let the device synch with the 
nanowiring implanted under her skin. “There’s great potential in the network, 
ways for us to communicate with each other, maybe new ways to structure our 
society. I just want to reach out and see what it can do.” 

“And what are you doing tonight?” 

“Reaching out.” She sent one final command and lifted her hand. “Are you 
listening?” 

“I’m listening,” said the doll. 

Mac turned on her stool, looking out the window at the New Angeles skyline. 
She grinned as her handiwork wrote itself across the sky. “Try looking out the 
window, Ms. Lockwell.” 

“Why do you think I’m–oh my god.” The mile-high Gila Heights arcology, all its 
lights flickering according to Mac’s design. They circled and streaked, bloomed 
and exploded in a pattern of light and dark. The cycle looped three times before 
someone at Gila Heights managed to return control and shut it down. “Did you 
just flash that to all of New Angeles?” came the voice from the projector.

“Maybe,” said Mac. “It would be easy. As easy as tracing you back to your office 
at Broadcast Square.” 

“You cracked the NBN firewall!? You can’t do that! This is why people think 
you’re reckless criminals. This is why–” Mac killed the feed. 

“Can’t do that,” she mused. She gestured and the virt displays clustered on her 
desk showed her a great big tower of data, the inaccessible NBN network, its 
spine running up the Beanstalk, its ports guarded by the best ice money could 
buy. The diagram spun slowly in front of her. Mac grinned and cracked open 
a new can of Diesel. “I wonder,” she said, and called up a new window full of 
code. 
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Glossary
Accessing: The act of a Runner looking 
at a Corporation card as part of a 
successful run, which he can then trash 
or steal.

Action:  What a player performs on his 
turn whenever he spends one or more 
clicks.

Active: A state in which a card’s effects 
and abilities are able to be used and affect 
the game.

Advancing: The act of putting one 
advancement token on a card that can 
be advanced. Agendas can always be 
advanced.

Advancement Requirement: The 
number of advancement tokens that must 
be on an agenda before the Corporation 
can score it.

Agenda: A Corporation card type that is 
installed in remote servers and is worth 
agenda points. 

Agenda Counter: A counter used to 
track various effects on agenda cards. 

Agenda Points: A value on agenda 
cards. This value is how many points an 
agenda is worth while it is in a score area.

Anarch: One of the three Runner 
factions available to a player in Android: 
Netrunner. 

Approach: The step of a run in which 
the Runner makes contact with a piece 
of ice and decides whether or not to 
continue the run.

Archives: The Corporation’s trash pile. 
A central server.

Asset: A Corporation card type which is 
installed in his remote servers and grants 
him various benefits.

Avoid effect: An effect that stops 
another effect from resolving.

Barrier: One of the four subtypes of ice 
which the Corporation can use to defend 
his servers.

 
 
 

Click ([): The basic unit of work in 
Android: Netrunner. Players spend their 
clicks to perform actions and trigger 
abilities.

Code gate: One of the four subtypes 
of ice that the Corporation can use to 
defend his servers.

Constant Ability: An ability that 
continually affects the game provided its 
card is active.

Corporation: One of the two sides 
available to the player in Android: 
Netrunner; the opponent of the Runner. 
Referred to as “the Corp” on card text.

Credit (<): The basic unit of wealth in 
Android: Netrunner.

Credit, Recurring (>): A credit 
that, when spent, returns to its host card 
at the start of that player’s next turn. A 
player can only spend recurring credits as 
instructed by their host. 

Credit bank: The supply of credits not 
yet in play.

Credit pool: The supply of credits 
currently available to a player for 
spending.

Criminal: One of the three Runner 
factions available to a player in Android: 
Netrunner. 

Damage, Brain: A unit of damage that 
requires the Runner to trash one card 
from his grip at random, and reduces his 
maximum hand size by one card.

Damage, Meat or Net: A unit of 
damage that requires the Runner to trash 
one card from his grip at random.

Derez: The act of flipping a rezzed card 
facedown, inactive.

Discard: The act by which a player 
moves a card to his trash pile at the 
end of his turn if he has exceeded his 
maximum hand size. 

Effect: The resolution of a card ability.

Event: A single-use card type that is 
played by the Runner during his turn and 
is trashed when its effects are resolved.

Expose: The act of revealing a card to 
all players. Only unrezzed installed cards 
can be exposed unless otherwise noted. 
An exposed card returns to its previous 
state after being exposed.

Flatline: A condition that results 
from the Runner being forced to trash 
more cards than he has in his grip, or 
from having a maximum hand size that 
is below zero at the end of his turn, and 
which causes the Runner to immediately 
lose the game.

Grip: The Runner’s hand of cards.

Hardware: A Runner card type which 
is installed in the Runner’s play area and 
grants him various abilities.

Haas-Bioroid: One of the four 
Corporation factions available to a player 
in Android: Netrunner. 
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Heap: The Runner’s trash pile.

Host: A card that is currently holding 
other cards or counters.

Headquarters (HQ): The 
Corporation’s hand of cards. A central 
sever.

Ice: A Corporation card type which 
protects his servers from the Runner.

Icebreaker: A program subtype which 
enables the Runner to break ice.

Inactive: A state in which a card’s 
effects and abilities are ignored.

Influence: A value that appears 
on certain cards which is used in 
deckbuilding. Influence restricts the 
number of out-of-faction cards in a deck.

Install: The act of placing an agenda, 
asset, ice, upgrade, hardware, program or 
resource card onto the table. The Runner 
installs cards in his rig, the Corporation 
in his servers.

Install cost: The cost which must be 
paid in order for a card to be installed.

Jack out: The process by which a 
Runner voluntarily ends his own run.

Jinteki: One of the four Corporation 
factions available to a player in Android: 
Netrunner. 

Link (~): A value that increases the 
Runner’s link strength during a trace.

Link strength: The Runner’s total 
strength during a trace; the sum of his 
links and the amount of credits the 
Runner spends on the trace.

Maximum Hand Size: The maximum 
number of cards a player can have in his 
hand during his discard phase.

Memory Unit (MU): A unit of space 
available to the Runner to install 
programs. The Runner begins the game 
with four memory units. 

Mulligan:  The act of drawing a new 
hand at the start of the game. Each player 
gets one mulligan per game.

NBN: One of the four Corporation 
factions available to a player in Android: 
Netrunner. 

Operation: A single-use card type that 
is played by the Corporation during his 
turn and is trashed when its effects are 
resolved.

Power Counter: A counter used to 
track various effects on cards. 

Program: A Runner card type that is 
installed and grants him various abilities.

Prevent effect: An effect that stops 
another effect from resolving.

Research and Development (R&D): 
The Corporation’s draw deck. A central 
server.

Resource: A Runner card type that is 
installed and grants the Runner various 
benefits.

Rez: The process by which the 
Corporation reveals his installed cards 
and allows them to take effect; once 
rezzed, a card is turned faceup. 

Rez cost: The credits that the 
Corporation must pay in order to rez a 
card.

Root: The portion of the central server 
where the Corporation installs upgrades.

Runner: One of the two sides available 
to the player in Android: Netrunner; the 
opponent of the Corporation.

Score (noun): The number of agenda 
points a player has on agendas in his 
score area.

Score (verb): The act of the 
Corporation turning an installed 
agenda faceup and adding it to his score 
area. An agenda must have at least as 
many advancement tokens on it as its 
advancement requirement to be scored.

Score Area: A place where each player 
places his scored or stolen agendas. 

Sentry: One of the four subtypes of ice 
which the Corporation uses to defend his 
servers.

Server, Central: A type of server 
which includes R&D, HQ, and Archives. 

Server, Remote: A server built by the 
Corporation. Assets and agendas can 
only be installed in remote servers.

Shaper: One of the three Runner 
factions available to a player in Android: 
Netrunner. 

Stack: The Runner’s draw deck. 

Steal: The act of the Runner adding an 
accessed agenda to his score area.

Strength: An attribute of programs 
and ice.

Subroutine (|): An ability of a piece 
of ice which interferes with the Runner if 
allowed to trigger during a run.

Subtype: A card descriptor. 

Tag: An effect that, when acquired by 
the Runner, can allow the Corporation to 
trash the Runner’s resources.

Tagged: A state which describes a 
Runner when he has one or more tags.

Trace: An attempt by the Corporation 
to tag or damage the Runner.

Trace Strength: The Corporation’s 
total strength during a trace; the sum 
of the base trace strength on the card 
initiating the trace and the amount of 
credits the Corporation spends on the 
trace.

Trap: One of the four subtypes of ice 
which the Corporation can use to defend 
his servers.

Trash: The act of moving a card to its 
owner’s trash pile.

Triggered Ability: An ability that has 
a prerequisite that must be met or paid 
before it is used.

Upgrade: A Corporation card type that 
is installed in any server and grants the 
Corporation various abilities. 

Virus Counter: A counter used to 
track various effects on virus cards.

Weyland Consortium: One of the 
four Corporation factions available to a 
player in Android: Netrunner. 
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1.	 Runner’s Action Phase

  

Turn begins (“When your turn begins” conditionals meet their trigger conditions)

Take actions

	 After each action:    

Phase ends after abilities are triggered following the last spent action

TIMING STRUCTURE OF TURNS

 = Paid abilities can be triggered  = Cards can be rezzed  = Agendas can be scored

1.	 Corporation’s Draw Phase

    

Turn begins  (“When your turn begins” conditionals meet their trigger conditions)

Draw one card

2.	 Corporation’s Action Phase

Take actions

	 After each action:      

Phase ends after abilities are triggered following the last spent action

3.	 Corporation’s Discard Phase

Discard down to maximum hand size

End of turn    

2.	 Runner’s Discard Phase

Discard down to maximum hand size

End of turn    
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6.	 The run ends.

TIMING STRUCTURE OF A RUN

 = Paid abilities can be triggered  = Cards can be rezzed

1.	 The Runner initiates a RUN and declares the ATTACKED SERVER.

• If the attacked server has one or more pieces of ice protecting it, go to [2]. If the attacked server does 
not have ice protecting it, go to [4].

2.	 The Runner APPROACHES the outermost piece of ice not already approached on the attacked server.      

...Either the Runner JACKS OUT: go to [5] (cannot jack out if this is the first ice approached this run) 

...Or the Runner continues the run: if the approached ice is REZZED, go to [3]; if the approached ice is 
UNREZZED, go to [2.1]. 

		  2.1     (only time the approached ice can be rezzed)

	 ...Either the Corporation REZZES the approached ice: go to [3] 

	 ...Or the Corporation does not rez the approached ice and the runner PASSES it: go to [2] if 	
	 there is another piece of ice protecting the server, go to [4] if there is not another piece of ice 	
	 protecting the server. 

3.	 The runner ENCOUNTERS a piece of ice.  

		  3.1.	 The Runner can break SUBROUTINES on the encountered ice.  

		  3.2.	 Resolve all subroutines not broken on the encountered ice.

	 ...Either the run ends: go to [5] 

	 ...Or the run continues: if there is another piece of ice installed protecting the server, go to [2]; if 	
		  there is not another piece of ice protecting the server, go to [4]. 

4.	 The Runner decides whether to continue the run. 

...Either the Runner JACKS OUT: go to [5] 

...Or the Runner continues the run: go to [4.1]. 

		  4.1.	   

		  4.2	 The run is considered to be SUCCESSFUL.

	 • Trigger any abilities resulting from successful run.

		  4.3.	 Access cards, then go to [6].

	 • If an AGENDA is accessed, the Runner STEALS it. If a card with a TRASH COST is accessed, 	
	 the Runner may pay its trash cost to TRASH it.

	 • All accessed cards not stolen or trashed are returned to the server in their previous states.

5.	 The run ends and is considered to be UNSUCCESSFUL.

• Trigger any abilities resulting from unsuccessful run.
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INITIATE RUN AGAINST SERVER

Is ice protecting the 
server?

Approach ice: 
Continue the run?

Is the ice rezzed?

Will the Corp rez it?

Continue the run?

Is there more 
ice protecting the 

server?

End Run

End Run

    Encounter ice: 
• Break subroutines. 

  	           • Unbroken subroutines trigger.

Access Cards:
• Rez cards.
• Run is successful.
• Access cards.
• End run.

YES

NO

Is there more ice protecting the server?
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Fabien Teytaud, Olivier Teytaud, Paul Vayssière, and Ziqin Yu. Scalability and Par-

allelization of Monte-Carlo Tree Search. In Proc. Int. Conf. Comput. and Games,

LNCS 6515, pages 48–58, Kanazawa, Japan, 2010.

[23] Charles L. Bouton. Nim, A Game with a Complete Mathematical Theory. The Annals

of Mathematics, 3:35–39, 1901.

[24] Bruno Bouzy. Associating domain-dependent knowledge and Monte Carlo ap-

proaches within a go program. Inform. Sci., 175(4):247–257, nov 2005.

[25] Bruno Bouzy. Move Pruning Techniques for Monte-Carlo Go. In Proc. Adv. Comput.

Games, LNCS 4250, pages 104–119, Taipei, Taiwan, 2005.

[26] Bruno Bouzy. Old-fashioned Computer Go vs Monte-Carlo Go (PPT). Technical

report, 2007.

205



LIST OF REFERENCES

[27] D. M. Breuker, Jos W. H. M. Uiterwijk, and H. Jaap van den Herik. Replacement

schemes for transposition tables. ICCA Journal, 17(4):183–193, 1994.

[28] Cameron Browne. A Problem Case for UCT. IEEE Transactions on Computational

Intelligence and AI in Games, 5(1):69–74, 2013.

[29] Cameron Browne, Edward J. Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,

and Simon Colton. A Survey of Monte Carlo Tree Search Methods. IEEE Trans.

Comp. Intell. AI Games, 4(1):1–43, 2012.
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