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Abstract 

Samples of undoped BaTiO3, BT were prepared by three mixed oxide routes; hand 

mixing, HM using a pestle and mortar, ball milling, BM using Y2O3-stabilised 

zirconia balls and planetary ball milling, PBM using tungsten carbide balls.  

The electrical properties of slow cooled (SC) and quenched (Q) BT material for HM, 

BM and PBM samples were studied by impedance spectroscopy, IS after heat 

treatments in air at different temperatures. IS measurements with application of 

applied voltage and in atmospheres of different oxygen partial pressure were used to 

determine the conduction mechanism.  

The application of bias voltage was used during IS measurements to separate 

Schottky barrier interfacial impedances from sample impedances. In general, two 

types of Schottky barrier can be detected: (i) barriers at electrode-sample interfaces 

due to Fermi level mismatch and (ii) barriers between grains associated with partial 

oxidation of sample surfaces. In-Ga electrodes were considered to yield ohmic 

contacts and associated with partial oxidation that also produced the positive 

temperature coefficient of resistance, PTCR effect. 

A methodology has been developed to understand the effect of an applied voltage 

and changing oxygen partial pressure on electrical properties and possible 

explanations. 

Rare earth dopants can occupy either Ba or Ti sites or a mixture of Ba and Ti sites 

depending on their size. This requires charge compensation mechanisms which can 

be ionic or electronic. The ionic mechanism can involve either cation or oxygen 

vacancies. A survey has been carried out of the charge compensation mechanism for 

different rare earth ions (Gd, Dy, Ho, Y, Er and Yb). It was found that Y3+ 

preferentially occupied the Ti4+ site with charge compensation by oxygen vacancies 

and therefore, Y behaved as an acceptor with solid solubility limit of  15%. Y3+ can 

also simultaneously occupy both Ba and Ti sites with a solubility limit of  7.5%, 

but exclusive occupancy of Ba sites is limited to  1.5%.  

A partial phase diagram BaO-TiO2-Y2O3 can been presented showing the different 

solid solutions and the polymorphism of doped BaTiO3. 
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Several parameters affected the electrical properties of pure and doped BT ceramics: 

the charge compensation mechanism, whether ionic or electronic; the sample 

preparation methods; the cooling rate at the end of sample heat treatment because 

many samples lost a small amount of oxygen at high temperature and showed n-type 

semiconductivity. A common observation was that many slow cooled samples 

showed weak p-type behaviour attributed to uptake of oxygen on cooling. The holes 

may be associated with either underbonded oxide (O
-
) ions or unavoidable impurities 

such as Fe3+.   

Leaky dielectric properties were observed for extrinsic n-type region whereas, 

normal dielectric properties were observed for extrinsic p-type region. 

The electrical properties of BaTi1-xYxO3-x/2 samples fired and cooled in air were 

ferroelectric insulators at x ≤ 0.05 and relaxor ferroelectrics at higher x with no 

evidence of semiconductivity in any of the samples, whether they were cooled 

slowly or quenched from high temperatures (1200-1600 C).  

The possible occurrence of a resistivity minimum in rare earth doped BT was 

investigated. Three possible mechanisms for semiconductivity were considered for 

generating Ti3+ ions: direct donor doping, oxygen loss at high temperatures and a 

more complex double doping mechanism involving Y3+ and Ti3+ ions to charge-

balance the oxygen vacancies. 

No semiconductivity and resistivity minimum were observed for Yb-BT for all three 

joins and Er-BT. Semiconductivity was observed for other RE dopants and the total 

resistivity passed through a minimum at 0.1% RE substitution then increased 

generally for > 1% Y, Ho, Dy and Gd substitution on all three joins. 
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Chapter 1: Literature Review 

1.1 Introduction 

Ferroelectric ceramics are considered as one of the major classes of functional 

materials [1] due to their ability to show spontaneous electric polarization below a 

certain temperature known as the Curie temperature (TC) [2]. Since the discovery of 

the ferroelectric property in Rochelle Salt [3] in 1921 and the later discovery of 

ferroelecticity in polycrystalline barium titanate, BaTiO3, huge efforts have been 

exerted by scientists in order to study and utilise this phenomenon. As a result, 

whole new technological applications have emerged. Major applications of 

ferroelectric materials can  be seen in high dielectric constant capacitors such as 

multilayer ceramic capacitors (MLCCs), piezoelectrics, transducers, electronic and 

communication filters and biomedical sensors [3-6]. 

BaTiO3 (BT) is one of the most important and interesting ferroelectric materials that 

is used in various technical applications [7, 8]. The reason for such importance is due 

to its high relative permittivity (dielectric constant) that increases with temperature 

and reaches its maximum value at TC (130 °C) and then decreases with increasing 

temperature according to the Curie-Weiss law [9]. At TC, the crystal structure 

transforms from tetragonal to cubic [10]. When BT is doped with a rare earth metal 

(such as La3+,Y3+,or Nd3+), n-type semiconducting material is often obtained. With 

such doped materials, large increases in the specific resistivity are found as the 

temperature increases above TC. This behaviour is known as the Positive 

Temperature Coefficient of Resistivity (PTCR) [11]. 

On the other hand, when BT, in its dielectric form, is doped with ions such as Sr+2 or 

Pb+2 to occupy the Ba-site, or doped with ions such as Hf+4 or Sn+4 to occupy the 

Ti+4-site, changes in lattice constants, electrical properties, microscopic properties 

and TC position take place due to differences in the ionic radii [12]. Additionally, if 

semiconducting BT structure is doped with the aforementioned ions (amongst 

others), changes in the PTCR properties are expected to occur [13]. The PTCR 

phenomenon, which has been explained by the Heywang and Jonker model [14], can 

be attributed to the existence of a potential barrier (θo) at the grain boundary (gb) as 
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a result of the interface acceptor states. The potential barrier height is inversely 

proportional to the relative permittivity [15, 16].   

The first section of this chapter discusses basic theory and concepts related to 

ferroelectrics. In the second section, a literature review on BT and rare earth RE 

doped-BT is given. 

1.2 Dielectrics  

Materials which do not allow passage of electric current are knows as dielectrics. A 

dielectric material is characterised by its dielectric constant, which arises from the 

polarisation induced by an applied electric field.  The macroscopic polarisation is a 

combination of polarisations at the microscopic levels. A dielectric material can have 

more than one of the following microscopic polarizations.  

1. Electronic polarisation: This type of polarisation arises when the symmetric 

distribution of electrons is disturbed by the application of an external electric 

field. 

2. Ionic polarisation: The polarisation which arises due to the relative motion of 

ions with respect to each other as the external electric field is applied. 

3. Orientational polarisation: This type of polarisation exists in materials with 

permanent dipole moments. Application of an electric field can orient these 

dipoles in a specific direction, which gives rise to a net polarisation known as 

orientational polarisation. 

4. Spontaneous polarisation: This type of polarisation exists in ferroelectric 

materials and is associated with off-centre ion displacements leading to 

dipole creation.  

5. Interfacial polarisation: This type of polarisation arises due separation of 

mobile charges under application of an electric field. 

Based on the type of polarisation, dielectric materials can be classified into non-polar 

and polar dielectrics, dipolar dielectrics and ferroelectrics. Non-polar materials 

possess only electronic polarisation, polar materials can have both electronic and 

ionic polarisations, while dipolar materials possess electronic, ionic and orientational 

polarisation.  
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On the basis of symmetry, dielectrics can be classified into 32 point groups. 

Amongst the 32 groups, 21 are noncentrosymmetric, 20 of which show 

piezoelectricity. Amongst the 20 piezoelectric groups, 10 groups have spontaneous 

polarisation known as pyroelectrics. A sub-group of pyroelectrics is ferroelectrics 

which is defined as the materials having switchable polarisation with applied electric 

fields. Ferroelectric materials can be subdivided into four major groups: Tungsten 

Bronze, Oxygen Octahedral, Pyrochlore and layer structure. Oxygen octahedral 

(perovskite) is by far the most important structure in terms of applications and is 

discussed in the coming section. A schematic of dielectric classification based on 

symmetry is shown in Figure 1-1, [17].  

 

Figure 1-1: A classification scheme for the crystallographic symmetry groups. Graph 

also shows the classification position of BaTiO3.  

1.3 Perovskite Structure (ABX3) 

The perovskite structure was discovered in 1839 by Gustav Rose, a Russian 

mineralogist. He discovered the mineral calcium titanate CaTiO3, named after the 

Russian Mineralogist, C. L. A. Von Perovski. It has been observed that CaTiO3 is 

obtained as orthorhombic crystals [18].  The most general formula is ABX3, where A 

and B are metallic cations and X is a non-metallic anion. In most cases, the non 

metallic anion is oxygen forming the ABO3 structure, which is relevant to this study. 
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The perovskite structure is flexible and can be exploited to alter its structural details 

and physical properties [19, 20]. Perovskites have different structural variants, such 

as tetragonal, orthorhombic, rhombohedral, monoclinic and triclinic, but the cubic 

form is the ideal, undistorted structure [21].  The structure of perovskite is shown in 

Figure 1-2(a) and is described by a cubic unit cell. (A) represents large cations such 

as Na1+, K1+ Ca2+, Sr2+,Ba2+,Y3+ which are surrounded by twelve anions in cubo-

octahedral coordination in the centre of the unit cell, (b). (B) represents small cations 

such as Ga3+,In3+,Ti4+,Nb5+,Mn4+,Sn4+,Zr4+ which are surrounded by six anions in 

octahedral coordination, located at the corners of the unit cell, (c). (X) represents 

non-metallic anions such as O-2, F-1 and Cl-1 which are coordinated by two B-site 

cations and four A-site cations. The most common atoms in position X are oxygen, 

but they can be any member of the halogen family [22]. 

 

 

Figure 1-2: (a) Simple perovskite structure (b) Unit cell for cubo-octahedral 

polyhedron structure, AX12 (c) Perovskite projection depicting 8 X anion octahedra 

enclosing the A-site cation [20]. 

c 

b 

a 

(a) (b) 

(c) 



- 5 - 

 

The tolerance factor ―t‖ given in equation 1-1 is used to describe deviations from 

ideal perovskite structures.   

   
     

√          
   (1-1) 

In the ideal case, t = 1; however the atomic radii seldom satisfy ideal conditions and 

generally t  1, which usually results in a deviation from cubic symmetry. The 

distortions may arise from ionic displacement, chemical ordering or tilting of 

octahedra and can have different symmetries such as tetragonal, rhombohedral etc.  

Perovskites are very heavily studied because of their diverse properties which can be 

easily tailored by altering structure and have therefore numerous technological 

applications.  

1.4 Ferroelectrics  

Ferroelectrics are defined as materials having spontaneous polarisation which can be 

switched by applied electric fields. The temperature at which these materials lose 

their spontaneous polarisation is the Curie temperature, TC beyond which, the 

material becomes paraelectric and obeys the Curie-Weiss law, equation 1-2: 

      
 

    
  (1-2) 

where    is relative permittivity, C is Curie constant and To is Curie-Weiss 

temperature.  

Rochelle salt (NaKC4H4O6.4H2O) is the first ferroelectric material,  discovered by 

Valasek in 1920. However, the instability in the ferroelectric properties of Rochelle 

salt do not make it suitable for industrial applications. In 1945, A Von Hippel 

discovered  barium titanate, BT, which  has become one of the most important 

materials in ferroelectric ceramics. Later, Gray investigated the role of domains 

within grains of BT in producing a behaviour similar to the behaviour of a single 

crystal [3], with piezoelectric and ferroelectric properties when these domains are 

influenced by an electric field. Huge interest in the phenomenon was triggered by 

discovery of ferroelecticity in polycrystalline BT. Since then, huge efforts have been 

exerted by scientists in order to study and utilise this phenomenon. As a result, 

whole new technological applications have emerged. Major applications of 
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ferroelectric materials can be seen in high dielectric constant capacitors such as 

multilayer ceramic capacitors (MLCCs), piezoelectric, transducers, electronic and 

communication filters and biomedical sensors. Ferroelectric materials have shown 

reversibility in their spontaneous polarization under an applied external electric field 

[3]. 

In BT, the tetragonal-cubic phase transition is first order. Therefore, several 

properties such as εr, lattice constant and the polarization show discontinuity at the 

transition temperature [23], Figure 1-3. The lattice parameters changes [24] are 

shown in (a). The spontaneous polarization (in the absence of an electric field) 

decreases to zero at C, (b). The relative permittivity changes clearly at the phase 

transitions. (c). Figure 1-4 shows the P-E loop where the domains align in the 

positive direction, with a rise in the field strength even when the polarization reaches 

a saturation value after applying a certain field. However, when removing the 

external field, some domains are no longer oriented, resulting in a decrease in 

polarization; some of the domains remain oriented and hence maintain a level of 

polarization known as remanent polarization. A hysteresis loop can be observed after 

applying a coercive field (Ec) [25-27]. At TC, the hysteresis loop disappears, and 

above it the phase is usually nonpolar [5, 28]. 

1.5 Barium Titanate (BaTiO3) 

BT was discovered  in the 1940s, and is the first famous ferroelectric ceramic material 

that has been studied in different forms such as thin and thick films, powder and bulk 

[25]. BT is known for its high permittivity and stable ferroelectric properties that 

allow it to be used in technological applications. It has a perovskite structure with 

Ba+2 on A-site and Ti+4 on B-site as shown in Figure 1-5. It can be seen that 8 Ba+2 

atoms on corners at (0 0 0), one Ti+4 atom is in the centre at (½, ½, ½) and  6 oxygen 

atoms are located at the centre of all faces at (0, ½, ½); (½, 0,½); (½, ½, 0) [25]. 
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Figure 1-3: Variations with temperature of (a) lattice parameters, (b) the spontaneous 

polarization Ps (c) relative permittivity [23]. 

 

 

 

 

 

 

 

Figure 1-4 Polarization versus the applied Electric Field (P-E) hysteresis loop 

parameters and strain (S-E) for a typical ferroelectric material [29]. 
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Figure 1-5: Crystal structure of the ferroelectric perovskite BaTiO3 (a) cubic 

structure (space group:Pm-3m ); (b) tetragonal structure (space group:P4mm) [30]. 

 

BT goes through a series of phase transitions from rhombohedral (below -90 °C) to 

orthorhombic (0° C and -90° C), tetragonal (130° C to 0° C) and cubic (above 130° 

C) [31, 32]. All symmetries lower than cubic are ferroelectric [5]. BT has t >1 and 

the coordination environment is optimised by off-centring the Ti4+ ion, which gives 

rise to spontaneous polarisation. All structures along with their spontaneous 

polarisation vectors are shown in Figure 1-6. 

At TC, the spontaneous polarisation falls to zero with a maximum value of 

permittivity. Below TC, BT is ferroelectric, non-centrosymmetric and polar. Above 

TC, BT is paraelectric, centrosymmetric and non-polar. The ferroelectric state in BT 

is a result of displacement of the Ti ion away from the position of centrosymmetry 

within the oxygen octahedra, Figure 1-7.  

 

  

Figure 1-6: Conventional unit cell of BT in polymorphs [33].   
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Figure 1-7: Crystal structure of BT, a) High temperature cubic phase and b) RT 

tetragonal phase with cation displacement. The green spheres are Ba, blue is Ti and 

red is O [34]. 

BT also forms a hexagonal structure at very high temperature (above 1460 °C), 

which is paraelectric in nature. A detailed BaO-TiO2 phase diagram along with 

structural phase transitions is given in Figure 1-8.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1-8: Representation of the phase relationships in the BaTiO3-TiO2 phase 

diagram [35]. 

1.5.1 Doped BaTiO3 

The effects of doping on the crystal structure, defect structure, and electrical 

properties of BT depend on the kinds of impurity, ionic radius, and valence state [36-
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41]. There are three types of cation site occupation possibility in doped BT: the Ba 

site, the Ti site, or both. On the basis of their charges, dopants are classified into two 

categories, isovalent and aliovalent. Large A2+ impurities occupy the Ba-site [42, 

43], small A4+ impurities occupy the Ti-site [44] and  A3+ or A5+ impurities occupy 

either the Ba or Ti-site depending on their size [45-51]. These additions play an 

important role in changing the properties of BT such as TC, εr, density, lattice 

parameters, grain size and conductivity.  

1.5.1.1 Isovalent doping 

Isovalent doping means replacement of a host ion by another ion of the same charge. 

In BT this corresponds to doping of A2+ impurities on Ba-site and A4+ impurities on 

the Ti-site.   

The usual effect of isovalent doping is that TC is lowered towards room temperature, 

while other phase transitions move towards higher temperature, Figure 1-9. All 

dopants decrease TC with the exception of Pb+2 which behaves in the opposite way. 

Partial isovalent substitution of Ti4+ by Sn4+ [52] and Zr4+ [53] or Ba2+ by Sr2+ [54], 

Ca2+ [55] and Pb2+ [56] shift TC to lower or higher temperatures. On substitution of 

isovalent ions for Ba, the rate of decrease/increase in the Curie temperature is 5 

C/mol% for Sr2+/Pb2+ respectively. Ca2+ did not show significant shift of TC. On 

substitution of isovalent ions for Ti the rate of decrease in TC is 5 C/mol% of Hf4+ 

and Zr4+ and 10 C/mol% of Sn4+ [57].  

The height and sharpness of the permittivity maximum peak are observed more 

clearly often with the low dopant concentrations whereas a diffuse phase transition 

accompanied by a broadened permittivity peak often occurs at high dopant 

concentrations, such as Sn4+ at ≥ 10 mol% [58] and Zr4+ at ≥ 15 mol% [59]. 
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Figure 1-9: Transition temperature vs. concentration of isovalent substitution in BT 

[42]. 

1.5.1.2 Aliovalent doping 

Aliovalent doping refers to the substitution of host ion with an ion of different 

charge. If the valence state of the dopant is greater than that of the host ion, it is 

known as a donor dopant. If the valence state of dopant is less than that of host ion, 

then it is known as an accepter dopant. e.g. A3+ and A+1 ion on A-site of BT are 

termed as donor and acceptor respectively.  

These two kinds of dopant are schematically presented for a cubic perovskite 

structure in Figure 1-10, which shows that the generation of vacancies in the lattice 

are generally required for aliovalent doping in order to maintain the charge neutrality 

with an ionic compensation mechanism. However, electronic compensation 

mechanisms are also possible. 

Aliovalent dopants such as RE3+ ions show significant effect on lowering of the 

ferroelectric phase transition temperature TC and may also change the character of 

the phase transition and temperature-dependence of the permittivity which may be 

associated with differences in ionic radii [12].  
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On substitution of aliovalent ions for Ba, the rate of decrease in TC is 25 C/mol% of 

La3+ [60] and Nd3+ [61]. Substitution of aliovalent ions for Ti ions shows that the rate 

of decrease in TC is 20 C/mol% of Ho3+ [62]. 

The character of the diffuse phase transition, accompanied by a broad permittivity 

peak and relaxor character was separated at high dopant concentration either on Ba-

site such as La3+ at ≥ 10 mol%  [60] or Ti-site such as Ho3+ at ≥ 7 mol% [62]. 

 

Figure 1-10: Perovskite structure: effect of aliovalent doping. Creation of A- or B-

site vacancies is a result of donor doping, whereas creation of oxygen vacancies is a 

result of acceptor doping. Red arrows represent the resulting electrical dipoles [29]. 

Examples of donor doping are rare-earths doped on the A-site or Nb5+ doped on the 

B-site. Donor doping with electronic charge compensation results in injection of 

extra electrons, and semiconducting behaviour. By contrast, ionic compensation 

results in insulating ceramics. Though there are no clearly defined conditions which 

favour the choice of compensation mechanism, electronic compensation appears to 

be dominant at low concentrations of dopant and ionic compensation to be dominant 

at higher concentrations.  

1.5.1.2.1 RE3+-doped BT 

Rare-earth (RE3+) ions at low dopant levels in solid state materials are often used for 

obtaining the commercial formulations of BT-based devices. Performance can be 

improved by doping RE3+, such as the reliability in capacitors operating under high 

voltages [63]. The role of ionic radius of RE3+ is obviously important to control the 

substitution mechanism and resulting properties [64]. Small ions occupy the six-

coordinated Ti-site whereas, large ions occupy the 12-coordinated Ba-site [65].  All 

RE3+ elements are larger than Ti4+ and smaller than Ba2+. Therefore, the 
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incorporation of RE into BT leads to the expansion the lattice on the B-site and 

shrinkage on the A-site [66]. 

The ionic radii of several rare earth elements are listed in Table 1-1, which are 

categorized into three groups [67, 68]. 

In order to discuss/review the literature and present the results of this thesis, RE 

doping is separated into three main groups, B-site doping (acceptor join), (A, B)-site 

double doping (self-compensation join) and A-site doping (donor join). These are 

referred to as RE-B, RE-AB and RE-A respectively. Compositions in the three 

groups are given in terms of variables x, y and v,z,ω which specify the fractional 

substitution of RE for B, AB and A with the following general formulae:   

BaTi1-xRExO3-x/2                             (RE-B)              (1-3) 

                        Ba1-yTi1-yRE2yO3                             (RE-AB)            (1-4) 

Ba1-vREvTiO3                                   (RE-A)              (1-5) 

Ba1-zYzTi1-z/4O3                                 (RE-A)              (1-6) 

                             Ba1-3ωY2ωTiO3                               (RE-A)              (1-7) 

In this thesis, solid solutions of Yb, Er, Y, Ho, Gd and Dy-doped BT on acceptor, 

self-compensation and donor joins are discussed which were prepared using a variety 

of methods and different conditions. Some results seem to contradict other results, 

depending on the reaction conditions.  A summary of reported solid solution limits in 

the literature is shown in Table 1-2. 

Table 1-1: Ionic radii of rare earth elements [68]. 

                                           Coordination number 

 6 12 

Light rare earth ions (large ionic radius) 

La3+ 1.032 1.360 

Ce3+ 1.01 1.340 

Nd3+ 0.983 1.270 
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Middle weight rare earth ion (intermediate ionic radius) 

Sm3+ 0.958 1.240 

Eu3+ 0.947 1.266 

Gd3+ 0.938 1.253 

Dy3+ 0.912 1.229 

Ho3+ 0.901 1.218 

Y3+ 0.90 1.234 

Er3+ 0.89 1.208 

Heavy rare earth ions (small ionic radius) 

Yb3+ 0.868 1.188 

Lu3+ 0.861 1.178 

Ba2+  1.61 

Ti4+ 0.605  

 

Table 1-2: The solid solubility of some RE3+ ions in the BaTiO3 perovskite structure. 

 Acceptor (RE-B) Self (RE-AB) Donor (RE-A) 

Yb 0.15*[57] y < 0.01*[57] v < 0.01*[57] 

Er x < 0.03
$
[69] or 

0.10*[70] 
y < 0.03

$
[69]  v < 0.01

$
[69, 70] 

Y x < 0.03ᵝ
$
 [71] or 

0.122*[72] or 

0.15
@

[36] 

y  0.01*[73] or 

0.03*[74] 

v < 0.015*[72] 

Ho x <0.03
$ 

[75]0.175*[76] or 

0.16
@

[36] 

0.03*[76] or y < 

0.03*[77] or 

0.044*[77] 

0.014*
@

[36, 76] 

Gd  0.0375*[57] 0.20*[57] 0.05*[57] 

Dy x < 0.03*
$
[78] or 

0.09*[79] or 

0.15
@

[36] 

y < 0.03*[77] 

 

0.025*[79] 

or < 0.03*
$
[78] or 

0.015
@

[36] 

* by XRD, ᵝ by SEM, @ by WDS (wavelength-dispersive spectroscopy), $ ζ, x at RE-B , y at 

RE-AB, v at RE-A 

Different factors are reported to affect the substitution site such as dopant content, 

sintering atmosphere and Ba/Ti molar ratio [80, 81]. 
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In donor doping, semiconductivity with a resistivity minimum and PTCR effect has 

been observed at low RE dopant levels (0.001-0.01) as indicated in Figure 1-23. 

Increasing RE3+ concentration > 0.01 leads to insulating behaviour [80]. The 

resistivity minimum was linked to an influence of grain size which is associated with 

either kinetic processes during heating and cooling [47] or switching of the 

substitution mechanism from electronic charge compensation to cation vacancy 

creation [65]. Cation vacancy creation may lead to the decrease of grain size and 

formation of an insulating layer of barium vacancies during cooling [82]. It was 

attributed also to segregation of dopants at grain boundaries [83]. 

Many theoretical reports were considered to study BT based on ab initio methods. 

Density Functional Theory (DFT) provides good structural and energetic agreement 

with the available experimental data [84]. 

For RE3+-doped BT, Lewis and Catlow provided a classical simulation model of 

possible defects in BT. This model was used to describe the perovskite crystal 

structure and lattice, with the suggestion that electron compensation mechanism of 

A-site donor doping is unfavourable because the reduction of the RE ion size as the 

self-compensation mechanism is more favourable. 

Another model was provided by Buscaglia et al. [85] which showed that the Ti 

vacancy compensation with A-site donor doping was energetically unfavourable. 

 

The BT perovskite structure was modelled recently by Freeman and Sinclair using a 

new set of interatomic potentials. Multiple parameters were used to fit the potential 

model over the range of experimental and ab initio data through lattice parameters 

and the cohesive energy of rutile TiO2, BT and BaO. Rare-earth doped-BT of five 

possible compensation mechanisms was investigated to study the energetics of the 

BT defect chemistry. Both simulations and experimental data confirmed that small 

rare-earth ions substitute only on the B-site; medium sized rare-earth ions substitute 

on both the A and B sites and large rare-earth ions substitute only on the A-site. The 

simulations for donor doping showed that electron compensation mechanism was 

energetically unfavourable, whereas, Ti vacancy mechanism was favourable [86]. 
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It was believed that the origin of semiconducting grains is direct donor doping for 

rare earth elements on the Ba-site [87]. Sinclair et al. reported that this is incorrect, 

depending on the calculations and some experimental data. The origin of the 

semiconductivity was indicated when oxygen anions are removed from the lattice 

which is associated with titanium vacancies formation and the arrangement of the 

rare-earth elements on the Ba-sites [87].  

The energetics of La-doped BT were observed for electronic and ionic compensation 

mechanisms with the creation of Ti3+ cations and Ti vacancies respectively. Ionic 

doping mechanism was favourable experimentally and simulations for all dopant 

levels of La-doping. The favourability of oxygen loss in the ionic doped mechanism 

compared to undoped BT was indicated by simulations of the local structure created 

around the defect site [87].  

In acceptor doping, insulator behaviour was observed at room temperature (RT). The 

first series of transition metals (Ni, Co, Fe, Cr) can be incorporated as acceptor 

dopants in BT as part of the procedure to fabricate multilayer ceramic capacitors 

(MLCCs). This can be used to produce cheaper metal electrodes (such as Ni) [80]. 

Both PTCR and MLCC BT ceramics usually are obtained with RE-doped BT to 

control conductivity and electrical degradation, respectively [66]. 

RE ions are well-known to display the valuable functions of stabilizing the 

temperature dependence of permittivity and lowering the dissipation factor for 

different kinds of dielectric ceramic [67, 88]. The dielectric performance of 

capacitors is affected by the amount and kind of RE ions. Many factors influence the 

substitutional chemistry such as: strain, ionic size, charge and charge distribution 

[66] but many authors mentioned that ionic size is the main factor [89].  

RE3+ occupation on Ba or Ti sites causes a charge mismatch in the lattice (an 

aliovalent dopant). These charges have to be compensated to maintain electrical 

neutrality [90].This doping may also lead to the abnormal grain growth and can form 

a shallow and deep traps at grain boundaries [91].  

Dopant site location was found to play a very important role in electrical properties 

of RE3+-doped BT [92]. Dopants can occupy both A- and B-sites simultaneously to 

various extents, showing amphoteric behaviour. They were proved to be effective in 
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improving the lifetime of certain formulations and heat treatments, showing 

insulating resistance improvement in Ni-electrode MLCCs [64, 66, 93].  

A full understanding of the factors leading to property improvement is still not clear 

[64, 94]. The Ba-site doping model proposes that rare earth elements act as donors 

where reliability can be improved as a result of the reduction of oxygen vacancy 

concentration [95] whereas, the Ti-site doping model proposes that rare earth 

elements act as acceptors and improved reliability attributed to reduction in bulk 

diffusivity of oxygen vacancies during interactions is between strain and electric 

field [96]. 

The lifetime of MLCCs is associated with substitution sites and charge compensation 

mechanisms. The larger rare-earth ions: La, Ce and Sm, predominantly substitute in 

A-sites, and act as donors with charge compensation via titanium vacancies. 

Intermediate ionic size (0.87 < r < 0.94 A) rare-earth ions (Y, Gd, Dy, Ho, Er) [97] 

dissolve in both A and B- sites. Excess Ba (Ba/Ti > 1) favours substitution at the B-

site whereas, excess Ti (Ba/Ti < 1) favours substitution at the A-site. The smaller 

rare-earth ions: Yb and Lu substitute in the B-site and act as acceptors with charge 

compensation via oxygen vacancies [98]. A core-shell structure may form with some 

RE ions [89]. 

Yb-doped BT: 

Yb3+ (0.87°A˚) is well-known to act as an acceptor at the Ti4+site where charge 

deficiency leads to formation of ionized oxygen vacancies (   
  ) [67, 99]. Yb 

can only be substituted on the Ti site [36, 92, 99, 100]. Secondary phases on the 

donor and self-compensation joins have been detected for all compositions at v,y ≥ 

0.01 [57].  

Yb2O3 is used to suppress capacitance degradation in response to a dc bias [36, 100]. 

The published research regarding the electrical properties of Yb-doped barium 

titanate are inconclusive [100].  

B-site doping of Yb may be represented as follows: 

                       
         

              (1-8) 
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The solubility limit appears to be > 3% Yb [100]. Yb-doped BT is p-type and 

becomes n-type with decreasing pO2, Figure 1-11 [101-103]. At low pO2, there was 

reduction with creation of oxygen vacancies and electrons as the main carriers 

whereas, at high pO2, there was oxidation reaction for the removal of oxygen 

vacancies and creation of holes [104]. p-type and n-type mechanisms are discussed 

later in section 1.6.1. 

On the acceptor join, Yb2Ti2O7 appears if the Yb content exceeds 3 mol% [105] but 

some researchers have claimed the solubility limit is 15 mol %. The tetragonality 

reduced with increasing Yb [100] and cubic BT-Yb was obtained up to x = 0.05. 

Hexagonal BaTiO3 was obtained for 0.05 ≤ x ≤ 0.15, Ba12Yb4.67Ti8O35 appears for x 

> 0.15 [57]. With increasing x, the unit cell volume increased dramatically. It 

increased slightly for the self-compensation and donor joins which might indicate 

limiting ranges of solid solution on these joins [57].  

 

 

 

 

 

 

 

Figure 1-11: ζ of BT and acceptor-doped BT vs. log pO2 at 1000 C [100]. 

Er-doped BT: 

Er-doped BT was studied on acceptor, self and donor joins. The resulting properties 

for samples at x,y,v  0.01 were significantly independent of the Ba/Ti molar ratio 

[70]. 

Semiconducting materials were observed at x,y,v  0.01 with resistivity 103–104 

cm and resistivity minimum was observed at x,y,v = 0.002. Lattice parameter 

slightly decreased until x,y,v = 0.0025 then increased. This behaviour was 
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interpreted to show that both cation sites incorporated Er with preferential 

substitution at Ba2+ sites at  0.01 [70]. 

At 0.02, the resulting properties for samples were significantly dependent on 

stoichiometry. For example, the pyrochlore Er2Ti2O7 phase was detected for Ba/Ti 

molar ratio < 1 and the material changed from a slight semiconducting behaviour at 

x,y,v = 0.02 to insulating at x,y,v = 0.08. The solid solution limit is at v  0.01 on the 

Ba-site. After achieving this level, extra Er dopants can incorporate on the Ti-site 

until [Er′Ba]  [Er•T i ]. Above this limit, the pyrochlore phase forms [70].  

For Ba/Ti molar ratio > 1, a single phase with insulating behaviour was observed at 

≥ 0.02. The solid solution limit for Er3+ substituted on the Ti-site is at x = 0.10 and is 

associated with creation of oxygen vacancy and decreasing tetragonality [106] until x 

= 0.08; as the cubic phase was observed at x ≥ 0.08; accompanied with unit cell 

expansion and grain size reduction (1m). A high concentration of oxygen 

vacancies was obtained at high x and at high temperature, the solid solution may be 

anionic conductors and potential ceramics for oxygen transport [70].  

For Ba/Ti molar ratio = 1, no full incorporation was observed and a secondary phase 

of pyrochlore phase was detected at y ≥ 0.01 [70].  

It was established that doping of Er3+ ions in low content with sintering at < 1400 °C 

for short times favoured substitution at the Ba site whereas, sintering at > 1400 °C 

with long times (until 100h) was necessary to obtain a homogeneous dopant 

distribution on the Ti-sites for high Er content [70]. Moreover, the substitution at low 

Er content was influenced by a slight variation of the Ba/Ti ratio from the nominal 

value and the existence of impurity in raw materials [70].  

The conductivity was studied with changing pO2 [69]. The incorporation of Er3+ into 

the Ti-site on the acceptor join, Figure 1-12 (a) showed that the conductivity 

minimum significantly shifted to lower pO2. No discernible difference was observed 

between BT and Er-doped BT on the self-compensation join (b). Acceptor- doped 

behaviour was observed for both cases (a) and (b). The solid solution limit on Ti-site 

was determined to be at x < 0.03, depending on conductivity data. As no clear 

change was shown for incorporation of Er into stoichiometric BT, it was assumed 

that Er substitutes both sites simultaneously. As the transition from electron- to 
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cation vacancy-compensation occurs usually above y =  0.005, the donor behaviour 

was not observed due to low solid solution limit on Ba-site, at v  < 0.01. 

 

Figure 1-12: ζ of BT and (a) ER-B (b) ER-AB vs. log pO2 at 1200 C [69]. 

The conductivity was studied also with changing pO2 for BT, acceptor (BE), self 

(BTE) and donor (TE) at 0.01, Figure 1-13 [106]. BE and BTE show similar 

behaviour. It was suggested that Er substitutes on Ba-site as donor dopant, whereas, 

the conductivity minimum of TE shifted to lower pO2 as Er substitutes on Ti-site as 

acceptor dopant. 

 

 

 

 

 

 

Figure 1-13: ζ of BT, acceptor (BE), self (BTE) and donor (TE) vs. log pO2 at 0.01 

at 1000 C [106]. 

Y-doped BT: 

Numerous studies of the conductivity of Y-doped BT have been reported. The 

conductivity of doping low level of Y3+ to Ti-excess BT ((Ba+Y)/Ti)= 1) [107] and 

Ba-excess BT (Ba/(Ti +Y)= 1) [108] is shown in Figure 1-14.  In both cases, the 
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preferential substitution site of Y3+ ions was Ba-site. The grain size was large at low 

concentrations   0.005 whereas, at ≥ 0.01 the grain size was small with uniform 

grain size distribution. The lattice parameters a and c decreased with increasing Y at 

 0.01, which indicates that Y prefers to substitute on the Ba-site [107, 108] whereas, 

they increased at ≥ 0.01 for Ba-excess with incorporation into Ti-site [108]. In both 

cases, at  0.01, donor-doped behaviour was observed whereas, at ≥ 0.01, it was 

acceptor-doped.  

 

Figure 1-14: ζ of (a) BaTiO3 + x(0.5Y2O3+TiO2) and (b) BaTiO3 + y(BaO + 

0.5Y2O3)  vs. log pO2 at 1100 C [107]. 

In contrast, other reports [71, 101] showed that the conductivity minimum of doping 

Y into Ti-site shifted to lower pO2 with increasing the oxygen vacancy concentration, 

showing acceptor-doped behaviour. It was suggested that the solid solution limit is  

0.03 since no change in conductivity was observed with increasing Y which is 

associated with general suppression of the entire curve, Figure 1-15. At 

concentrations > 0.02, SEM showed poor densification with a large amount of 

residual porosity [101]. 
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Figure 1-15: ζ of BT and acceptor doping of BT vs. log pO2 at 1200 C [71]. 

The equilibrium electrical conductivity was studied as well for self and donor joins, 

Figure 1-16 [101].  At the high oxygen activity region, the conductivity of 

(Ba1−vYv)TiO3+0.5v shows a power law dependence on pO2 with an exponent close to 

−1/4. Donor-doped behaviour was observed for stoichiometric BT doped with 0.01 

of Y whereas, acceptor-doped behaviour was observed for 0.02 indicated by the shift 

of conductivity minimum towards a lower pO2.  

 

Figure 1-16: ζ of (a) (Ba1−vYv)TiO3+0.5v and (b) (BaYy)(TiYy)O3 vs. log pO2 at 1300 

C [101]. 

The resistivity of Y-A for low concentrations for samples sintered at 1300-1350 C;   

passed through a minimum between 0.003 and 0.006, Figure 1-17 [109]. 

The effect of preparation method was studied for BT with 0.01 excess titania doped 

with Y3+ , Figure 1-18 [110]. Conventionally milled samples of barium carbonate, 

(a) 

(b) 
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(A) and an alkoxide-hydroxide route (B) were sintered at 1350 °C for 2h, SC. U-

shape curve was observed for both bulk and grain boundary, (a). Figure 1-18 (b) 

showed the influence of preparation method on bulk resistivity. Semiconducting 

materials were observed only between 0.001 and 0.004.  

 

Figure 17: Resistivity vs. Y-A containing (1) 0, (2) 0.004, (3) 0.002, (4) 0.01, and (5) 

0.05 mol % Fe2O3 [109]. 

 

 

Figure 1-18: Resistivity vs. Y-A for (a) the bulk and the grain boundary of a sample 

prepared by an alkoxide-hydroxide route, sintered at 1350 C, SC and (b) the bulk 

for samples prepared by conventional milling (A), an alkoxide-hydroxide route (B), 

and a sample containing silica [110]. 

(a) 
(b) 
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Y was added to commercial BaO-excess (Ba/Ti=1.013) BT powder, Figure 1-19 

[111]. The colour changed from bluish at 0.0015 to a darker hue at 0.0065. At > 

0.0065, insulating behaviour was observed with brown to buff colour. A rapid 

decrease in conductivity was seen for samples sintered at < 1450 °C at 0.0065. ζ of 

RT was in the range 10−2 to 10−4 (mm)−1 at < 0.005. Conductivity reduction was 

shown for samples sintered at 1450 °C but without showing the discontinuity 

compared to those sintered at < 1450 °C. The rapid decrease in semiconductivity was 

between 0.0050 and 0.0065. 

 

Figure 1-19: Conductivity vs. Y content for samples sintered at 1215–1450 °C [111]. 

 

Y-A samples of 0.001, 0.003, 0.005, 0.01 and 0.03 were sintered at 1350 C in 

different atmospheres. Grain resistance with increasing Y content increased for 

samples heated in O2 whereas, the increase stopped for samples heated in N2, Figure 

1-20 [82]. 
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Figure 1-20: Influence of Y content and heating atmosphere on resistance of Y-A 

samples for (a) grain boundary (gb) and (b) grain (g) [82]. 

Ho-doped BT: 

For Ho-B, the solid solution limit was 0.175 at 1550 °C [62]. Transformation from 

the hexagonal to the cubic phase at high concentrations can be explained by 

Ostwald’s rule of successive reaction [112].TC moved to lower temperatures by  20 

°C/at% Ho [62]. Insulation behaviour was observed for samples sintered at 1400-

1500 °C, SC. At high temperatures, both bulk and grain boundary components were 

observed. No systematic trend was observed for conductivity data with increasing 

Ho content whereas, εr was very Ho content-dependent showing a decrease in TC 

frequency-dependent relaxor behaviour at x ≥ 0.07. Semiconductivity was observed 

for samples sintered at 1350 °C in air or nitrogen for x = 0.001. A PTCR effect was 

observed for SC in air whereas, a weak one was shown with SC in nitrogen by a 

Schottky barrier effect [76].  

BT ceramics with low Ho contents show abnormal grain growth with average grain 

size 20-40 μm [113]. For Ho-AB, lattice parameter increased and showed that Ho 

dissolved in the B-site until y = 0.028 and then in the A-site with a decrease in lattice 

parameter up to 0.044.  The solubility limit was determined at  0.044 as secondary 

phases were observed [77]. 

Resistivity minimum behaviour was studied for Ho-B for SC and Q samples, Figure 

1-21 [114]. Resistivity generally did not show much dependence on cooling rate, 
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especially at x < 0.03. The resistivity minimum was observed over the range 0.001-

0.01. Both 0.001 and 0.01 showed resistivity values for RT and 300 °C that were 

similar, whereas others were too resistive at RT. It was assumed that one Ho3+ 

occupies a Ti4+ site which is accompanied by reduction of a second Ti4+ to Ti3+ for 

each oxygen vacancy. A different report for the same compositions showed the 

conductivity minimum for Ho-B shifted to lower pO2 as the incorporation Ho3+ for 

Ti-sites is increased to 0.03, Figure 1-22 [75].  

 

Figure 1-21: Resistivity vs. Ho content for Ho-B at 300 °C [114]. 

 

Figure 1-22: Equilibrium electrical conductivity of Ho-B at 1200 C [75]. 
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Gd-doped BT: 

The solubility limits of Gd-B, Gd-AB and Gd-A were reported to be  0.0375, 0.20 

and 0.05 respectively [57] and at 0.025 for Gd-A [115]. The hexagonal polymorph of 

BT was observed  for Gd-B, 0.06  x  0.125 [116]. An increase in unit cell volume 

was observed for Gd-B whereas, a decrease was observed for Gd-A, attributed to 

occupancy of Ti and Ba-sites respectively [57, 117]. For Gd-AB, unit cell volume 

was between Gd-B and Gd-A as self-compensation. Increasing Ba/Ti ratio resulted 

an increase in unit cell volume [57]. TC decreased depending on the substitution 

mechanism [57, 117, 118]. It decreased at  11, 5 and 8 C per mol% x,y and v for 

Gd-B, Gd-AB and Gd-A respectively.  

Leaky dielectric behaviour was observed for Gd-A samples sintered in air with high 

εr max at TC and high tan δ near RT. This was attributed to loss of oxygen, giving rise 

to semiconducting grains and insulating grain boundaries with generation of internal 

space polarisation between grains [57]. Non-leaky dielectric behaviour was observed 

for Gd-A sintered in O2 and Gd-B and Gd-AB sintered in air. εr max decreased 

dramatically with increasing x for Gd-B [57] and Gd-A [105]. Relaxor-type 

behaviour was shown over the range 0.10-0.20 for Gd-A [57]. 

The phase transition of Gd3+-doped BT ceramics was studied by Raman 

spectroscopy. The intensity of the Raman bands for Gd-A at 205 cm−1, 265 cm−1, 

and 304 cm−1 decreased with increasing Gd. The decrease in intensity was attributed 

to the decrease in tetragonality. As a result, an extra band was obtained at 833 cm-1. 

This extra band was observed with 0.01≤ z ≤ 0.35, which was accompanied by the 

secondary phase Gd2Ti2O7 [119]. 

Oxygen vacancies for Gd-B and Gd-AB at concentrations < 0.10 were created with 

similar bulk conductivity and activation energy. Oxygen vacancies were attributed to 

compensation of the acceptor doping for Gd-B and compensation of accidental 

acceptor impurities for Gd-AB. For Gd-AB at 0.10  y  0.20, oxygen vacancies 

were excluded as a result of extra slight substitution of Gd on A-site more than B-

site. Inhomogeneous materials with core-shell structure were observed at y < 0.10 

whereas, homogenous materials were observed at 0.10  y  0.20. The charge 

compensation mechanism was associated with Ti vacancy creation showing 

semiconducting bulk for Gd-A as a result of loss of oxygen [57]. 
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The relationship between resistivity and concentration of Gd ions incorporated into 

BT under different conditions is shown in Figure 1-23. A sharp minimum or 

reduction of resistivity was observed generally [120]. For samples sintered at 1300 to 

1400 C in air or in N2, electrical resistivity decreased with increasing Gd content 

and shows a minimum at a specific content. The semiconductivity was observed 

between 0.0005 and 0.003, but between 0.005 and 0.01 for samples sintered in N2 

and 0.001 and 0.006 for samples reheated in air [121]. For samples sintered at 1375 

C, semiconductivity was observed at 0.002 and insulating behaviour was shown at 

0.006 for SC samples. Similar behaviour was observed for samples sintered in N2 or 

quenched in air at 0.002 but the resistivity continues at the same level and 

independent of Gd concentrations until 0.01 [122]. Another study shows that a deep 

minimum was over the range from 0.0015 to 0.0025 [123]. 

 

Figure 1-23: Resistivity vs. Gd content for Gd-A at different conditions [120]. 

Dy-doped BT: 

The solubilities of Dy-B, Dy-AB and Dy-A were  0.15, 0.044 and 0.012 

respectively [36, 77]. Dy-doped BT may form a second phase, Ba12Dy4.67Ti8O35 for 

Dy-B and Dy2Ti2O7 for Dy-A [79]. 

The hexagonal phase of BT was stabilized by preferential substitution of Dy3+ at the 

Ti4+ lattice sites [36].  
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For Dy-B, TC decreased and tan δ moved to higher frequencies with increasing Dy 

content by -13.2 C/mol% which was associated with increase in unit cell volume 

and decrease in tetragonality (c/a ratio) [124]. The substitution of Ba+2 by smaller 

Dy+3 ions causes reduction of Ti4+ to Ti3+. Consequently, a sharp decrease in 

resistivity was observed, Figure 1-24. A high resistivity anomaly was observed at 

0.04 [125]. Inhibition of abnormal grain growth was observed at 0.0075 [125]. 

Equilibrium conductivities of Dy-B and Dy-A samples as functions of pO2 are 

shown in Figure 1-25. For Dy-B, the conductivity minimum shifted significantly, 

showing acceptor-doped behaviour, (a) which indicates that the solid solution limit 

was < 0.03.  

Switching of the compensating mechanism from electronic to ionic was observed at 

0.003 for Dy-A (b) in an oxidizing atmosphere, giving rise to insulating behaviour. 

At high oxygen activity, the equilibrium conductivity follows the -1/4 power pO2 

dependence. 

The effect of substitution of Dy at Ba site is shown in Figure 1-26 at RT. The 

resistivity minimum was observed at very small range of Dy contents. The resistivity 

increased significantly above 0.005 showing insulator behaviour attributed to inward 

diffusion of Ba vacancies from the grain surfaces [126] or cation vacancy 

compensation of donors which act as acceptors [127] as there is a switch in the 

doping mechanism from semiconducting to insulating behaviour with increasing 

doping level [87]. 
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Figure 1-24: Resistivity vs. Dy content for Dy-A sintered at 1275 °C [125]. 

  

 

Figure 1-25: Equilibrium electrical conductivity of  (a) Dy-B at 1200 C and (b) Dy-

A at 1300 C [78]. 

 

Figure 1-26: RT resistivity of Dy-A samples vs. Dy content for samples sintered at 

1320 C [78]. 

(a) 

(b) 
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Ln-doped BT: 

The substitution of BT materials by various Ln (rare-earth ions) produced 

semiconducting behaviour as the electrical resistivity decreased by several orders of 

magnitude, with increasing Ln content, Figure 1-27. The resistivity minimum was 

obtained at  0.002 for (a) [128] and 0.003 - 0.005 for (b) [129]. Y content showed 

the widest range of semiconductivity in both reports.  

 

 

Figure 1-27: RT Resistivity vs. Ln content for (a) Ba1-xLnxTiO3 [128] and (b) BaTiO3 

+ 1/2xLn2O3+ 2%TiO2 [129]. 

1.6 Effect of application of dc bias and pO2 on undoped BT and 

RE
3+

-doped BT 

Application of dc bias and changing the oxygen partial pressure in the atmosphere is 

a useful strategy to investigate the nature of grain and grain boundary impedances, to 

separate material-dependent impedances from those associated with Schottky 

barriers (SB) and to characterise p- and n-type conduction mechanisms. This is 

because application of dc bias and/or changing pO2 may show a general shift of 

impedance data to higher or lower resistances.  

1.6.1 pO2 effect 

With increasing pO2, oxygen molecules are absorbed at the sample surface and 

ionized by trapping electrons from the sample interior as follows: 

 

 
 O2 (g) →     

  + 6  +    
   +    

                 (1-9)       

(a) 

(b) 
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 O2 (g) +   

   →    
  + 2             (1-10)  

Electrons are clearly withdrawn from the sample. p-type conduction is indicated 

when the conductivity is increased as a result of an increase in pO2 which is 

associated with increasing hole concentration due to withdrawal of electrons. n-type 

conduction is indicated, when the conductivity is decreased with increasing pO2 

[130].  

The occurrence of p-type conductivity is associated with creation of holes. The 

source and location of the holes is usually attributed to the existence of unavoidable 

acceptor impurities such as Fe. However, it has been suggested recently that oxygen 

is the location of holes and O- ions are the source of p-type semiconductivity. O- ions 

are generated as a result of the sample uptaking of ionized oxygen and is associated 

with electron transformation from lattice oxide ions [131].  

As conductivity increases with decreasing pO2, n-type behaviour results. The 

variation of pO2 from N2 to O2 changes the conductivity and carrier concentration. 

The reaction of oxygen at the sample surface is as follows [132]: 

  
   → 

 

 
 O2 (g) + 2e′ +   

          (1-11) 

n-type semiconductivity behaviour can be observed as result of loss of oxygen from 

the sample as electrons are the carriers which are created by loss of oxygen [130]. 

The electrical properties of stoichiometric BT and nonstoichiometric-BT(as BaO-

deficient and TiO2-deficient BT), prepared by conventional solid state reaction and 

sol-gel method, sintered at 1400 C were studied in different pO2 [133]. 

Polycrystalline BT prepared by conventional solid-state method, sintered at 1350 C 

was also studied similarly [134]. Variation of pO2 showed that both 

nonstoichiometric-BT samples, Figure 1-28 [133], Figure 1-29 [135] are p-type.  
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Figure 1-28: Z* measured in different pO2 for (a) BaTi0.99O2.98 and (b) Ba0.99TiO2.99 

for solid-state reaction samples [133]. 

 

 

Figure 1-29: Z* data measured in different pO2 at 400 °C [135]. 

1.6.2 Dc bias effect 

The increase in resistance with a small dc bias indicates n-type behaviour and vice 

versa, p-type may be indicated with a decrease in resistance with dc bias. The 

increase in resistance for n-type is associated with reversible trapping of electrons 

with dc bias at surface states. Trapped electrons can be released by removing the bias 

[130]. Ionization of absorbed oxygen molecules at the sample surface with electron 

withdrawal from sample interiors may be observed when dc bias is applied [136].   
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The electrical properties of BT, doped BT and some other materials are modified by 

application of a small dc bias [130, 131, 133, 134, 136-146]. n-type behaviour was 

indicated for Mn-doped BT and donor-doped rutile [145] and is associated with a 

decrease in conductivity. p-type behaviour was indicated for acceptor-BT such as Zn 

[142], Mg [143], and Ca [139] and was associated with increase in conductivity. In 

general, the ceramic conductivity increased by  1–2 orders of magnitude under a 

small dc bias, which was recovered on removal of the bias. No effect was observed 

for an isovalent dopant such as Ba-site substitution by Ca [139] and other donor-

doped materials such as Nb5+ for Ti4+ and La3+ for Ba2+  [139]. 

The source of this effect for the composition Ba(Ti1-xMgx)O3-x is ascribed  to a two-

level electronic structure in a defect complex which includes Mg substituted on a Ti-

site as acceptor dopant, leading to ionization of underbonded oxide ions in the crystal 

structure with application of a dc bias.    ions are considered as holes on oxygen 

and the source of p-type conductivity. The holes may be mobile rather than electrons 

trapped at the surface and oxygen vacancies [143]. 

The electrical properties of stoichiometric BT and nonstoichiometric-BT(as BaO-

deficient and TiO2-deficient BT), prepared by conventional solid state reaction and 

sol-gel method, sintered at 1400 C were studied under a dc bias [133], Figure 1-30. 

No significant sensitivity to dc bias was observed for stoichiometric-BT whereas, dc 

bias decreased the resistance of nonstoichiometric-BT samples. For stoichiometric-

BT, R1 and R2 of sol–gel sample mostly unchanged with very little decrease for R2 

whereas, R1 and R2 of solid-state sample reduced slightly. 

Polycrystalline BT prepared by conventional solid-state method and sintered at 1350 

C was studied by dc bias [134], Figure 1-31. Both bulk and grain boundary showed 

significant reduction of resistance with application of dc bias.  

 

 

 

 

 



- 35 - 

 

 

 

 

Figure 1-30: IS data at 472 C for stoichiometric BT for sol–gel samples (a–c) (1) 

and solid-state reaction samples (d–f) (2), and at 485 and 477 C for BaTi0.99O2.98 for 

sol–gel samples (a–c) (3) and solid-state reaction samples (d–f) (4), with application 

and removing of 10 V [133]. 

 

Figure 1-31: (a) Z* data at 300 C for stoichiometric BT with different dc bias and 

(b) resistivity of Bulk, GB and DC as a function of dc bias [134]. 

1.6.3 Schottky barrier effect 

A Schottky barrier, SB, is a voltage barrier produced by charge transfer across a 

metal-semiconductor interface [140]. This phenomenon is used in various devices 

[147] such as: gas sensors, photovoltaics, photocatalysis and electronics [148]. The 

       1                             2                              3                            4 

(a) 

(b) 
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formation of Schottky barriers is also associated with inhomogeneous materials at 

insulating gb separated by semiconducting g and/or at sample surfaces between 

insulating outer and semiconducting inner surfaces [149-151]. 

The heterogeneity between grains and grain boundaries is useful for many applications. 

The formation of SB at grain-grain boundary interfaces is often associated with ceramics 

that show PTCR effect in which the SB acts as an extrinsic source of electrical 

impedance [152]. A schematic diagram of a Schottky barrier is shown in Figure 1-32. 

Double Schottky potential barrier formation at grain-grain interfaces leads to an increase 

in the resistance which is used in different electrically heterogeneous materials, such 

as varistors and PTCR thermistors [150]. The potential barrier for conducting electrons 

between adjacent grains is produced by bending of the conduction band across the grain 

boundary as a result of the occurrence of charge trapping between adjacent grains [153]. 

 

Figure 1-32: A schematic diagram of double Schottky barrier formation at a grain 

boundary [76]. 

The Schottky barrier height is associated with the distribution of charge carriers in 

the surface space charge region. This effect occurs usually between two materials as 

the result of the difference between their Fermi energies or when a charge is built-up 

on one side of the interface which induces a polarisation on the other side. Thus, a 

voltage-dependent resistance can be observed as result of the reduction of Schottky 

barrier height when dc bias was applied. This behaviour is useful for some 

applications such as: the operation of varistors (voltage dependent resistor (VDR)) 

and PTCR devices due to a rapid and reversible of the reduction in barrier height 

which can be observed on removal of the dc bias (in varistors) or changing 
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temperature through the paraelectric–ferroelectric transition temperature, TC in 

PTCR devices. The rapidly reversible behaviour supports some applications in 

current- and voltage-overload protection devices [152]. 

Two contributions may be associated with Schottky barrier impedances: 

1- Space charge separation generates the barrier height and dc bias can change its 

resistance as dc bias reduces the barrier height and its resistance. 

2- A depletion layer can be formed at the surface. This is accompanied by 

displacement of electrons from the sample surface to the electrode, leading to 

formation an electron-deficient depletion layer. Its resistivity is greater than that of 

the grain interior, Figure 1-33 [140].  

 

Figure 1-33: Depletion layer formation at the sample surface with dc bias [140]. 

Under application of a small dc bias voltage for insulating materials, linear bulk V–I 

behaviour is observed and dielectric breakdown is observed as well. The failure of 

dielectrics is a complex behaviour of very significant practical importance [152]. In 

materials that conduct electrically, random walk theory is a good model of the 

conductivity [154] when the mechanism of conduction involves hopping of electrons 

or ions. 

The V/I behaviour obeys Ohm’s Law because the movement of electrons from one 

atom to another or the movement of charged negative particles (ions) can not be 

forced by application of a small dc bias. 

 A net drift in a specific direction can be obtained by applying a small dc bias 

voltage to the random hopping motions of the conducting species. This is a useful 
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test to determine the conduction by electron or ion hopping which should be 

uninfluenced by small applied voltages. 

In contrast to bulk property measurements which obeys Ohm’s Law, nonlinear 

behaviour may be found as interfacial effects between sample and the electrodes, ie 

Schottky barriers effects. 

Nonlinear behaviour was observed for memristor effects [155] as result of a specific 

coupling of electronic and ionic transport charge through the interface for special 

state of TiO2/TiO2-δ interfaces [156]. There is electron injection into TiO2 which is 

associated with transition from an insulating Ti4+ to semiconducting Ti3+. The 

resulting conductivity modification, which is reversed by applying different amounts 

of reverse bias, provides unique applications in different types of memory storage 

devices. 

The V–I characteristic usually obeys Ohm’s law at small applied voltages for bulk 

homogeneous ceramics and non-appearance of a chemical potential gradient. Both 

structural and electronic changes such as promotion to higher energy levels usually 

are not influenced by the electric potential gradient. 

At high applied voltages, V-I characteristics are more complex and may be 

associated with different parameters such as concentration, nature of the electrode 

materials, voltage level, trap energy level, charge carrier mobility, hopping rate, 

sample thickness, etc [130, 134, 157-159]. 

The relationship I    , obeys Ohm’s law when a = 1 whereas a > 1 is associated 

with high applied voltages.  

The typical non-ohmic characteristics of barium titanate are interpreted by using 

different theories such as (i) Schottky barrier (SB) between metal electrode and 

semiconductor or between grains, (ii) Fowler-Nordheim (FN) tunneling, and (iii) 

space charge limited conduction (SCLC) with or without exponential trap 

distribution [160, 161]. 

SB usually form between the semiconducting sample-electrode interface. Mismatch 

of the valence (conduction) and Fermi levels of the electrode causes a SB for holes 

(electrons) [162]. The existence of this barrier can be avoided or reduced 

significantly by use of ohmic contact electrodes such as In-Ga.  
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At high field, the non-linearity in V-I behaviour of single crystals of BaTiO3, BT and 

SrTiO3 was attributed to hole injection from the Au anode. At low field, SrTiO3 did 

not show this behaviour [163-167]. Dielectric breakdown was observed as result of 

charge injection from electrodes into the material’s conduction band (CB) [143, 

168].  

It is considered that all the previous suggested models provide explanations about 

non-ohmic characteristic only at high fields, whereas at low fields, the non-linear 

regime is preceded by an ohmic linear region [134]. 

Under an applied dc bias voltage for stoichiometric, pure BT, the linear bulk V–I 

behaviour was observed whereas, nonlinear was observed for nonstoichiometric BT 

which could be BaO-deficient or TiO2-deficient [133].  

Impedance data of acceptor-doped BT showed two components; the voltage 

dependence of conductivity was detected in both g and gb and was insensitive to 

different types of electrodes, whereas impedance data of Ba(Ti1-xFex)O3-δ showed 

that the low frequency component was insensitive to different types of electrode but 

had the behaviour of a voltage-dependent Schottky barrier at low frequency; the 

effect of both pO2 and dc bias showed a charge carrier-rich, p-type layer to either 

side of the grain–grain contact [137]. 
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1.7 Motivation and aim of this study 

The aims of the project can be summarised as follows: 

1- To clarify the effect of both dc bias and pO2 on conductivity of BT obtained 

by different preparation routes, sintering temperatures and cooling rates; 

determination of the conduction mechanism(s), whether n- or p-type, and 

their dependence on sample preparation conditions. 

2- To study the effect of yttrium on the polymorphism of BaTiO3 and to 

determine the principal mechanisms for substitution of Y into the BaTiO3 

lattice.  

3- To measure the electrical properties of Y-doped BaTiO3 with particular 

emphasis on establishing the conditions under which either insulating 

behaviour or semiconductivity occurs, with determination of the conduction 

mechanism.  

4- To determine the conditions under which a resistivity minimum occurs with 

increasing Yb, Er, Y, Ho, Gd and Dy content for BT doped on acceptor, self-

compensation and donor joins at doping levels of x,y and v  0.01, with 

determination of the conduction mechanism. 

5- To investigate Schottky barrier effects and how the associated impedance 

depends on pO2 and dc bias. 
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2. Experimental Procedure  

2.1 Sample Preparation  

Three mixing methods were used for preparing the required compositions. 

2.1.1 Hand Mixing (HM) of Reagents  

Undoped BaTiO3 and rare-earth (RE) element-doped BaTiO3 powder were 

synthesized using solid state reaction. High purity oxides and/or carbonates [BaCO3, 

TiO2 and RE2O3 (Y2O3, Ho2O3, Gd2O3, Dy2O3, Er2O3 and Yb2O3)] were used as the 

reactants. After drying (Table 2-1), the required amounts of reactants were weighed 

(typical batch size, 10 g) using a top pan balance according to the stoichiometric 

formulae. The reactants were mixed in acetone and milled using a mortar and pestle 

for approximately 30 minutes to ensure uniform mixing. After drying, the powder 

was pressed into pellets uniaxially under 0.4 tonne in a 20 mm dia die made of 

stainless steel. The samples were reacted either on platinum foil on a bed of 

sacrificial powder (taken from the same material as the pellet) or directly on Pt foil 

and heated at 10 C/min and maintained for  12 hours at 1000 C in order to 

remove CO2 and start the reaction. 

The samples were crushed and repelleted by uniaxially pressing under 0.4 tonne. The 

pressing was applied using an 8mm diameter stainless steel die. Some pellets were 

then placed in a Cold Isostatic Press (CIP) to increase their density. Pelleted samples 

were placed on platinum foil on refractory brick and heated, at 1350-1550 C 

followed by either slow cool or rapid quench. The reaction required several days for 

some samples and grinding was carried out on a daily basis[1-3].  An amount of the 

same powder was spread out to act as a sacrificial powder between the pellets and 

the platinum foil. Figure 2-1 shows schematically the processing stages.  

2.1.2 Ball Milling (BM) Route  

Mixtures of reactant powders, (once they were dried and weighed) were ball-milled 

in a plastic jar with Y2O3-stabilised zirconia milling balls, as with the hand mixing 

method. The mixtures were wet-mixed in isopropanol using a horizontal ball milling 

machine for 24 hours. Then, the mixed slurries were oven-dried (at 100 C for 

around 12 h to remove the isopropanol), deagglomerated using a brush, and passed 

through a sieve. 
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The powders were pelleted uniaxially under 0.4 tonne in a 20 mm dia die, placed on 

sacrificial powder on foil Pt and heated at 1000 C for 12 hours (heating rate 10 

C/min). The calcined powders were then remilled for 24 hours and the oven-drying, 

deagglomeration and sieving procedures repeated. Finally, pellets were prepared as 

in section 2.1.1. 

 

Table 2-1 Details of raw materials. 

Reagent Supplier Purity / % Drying temperature / °C 

BaCO3 Aldrich 99.8 180 

TiO2 Aldrich 99.9 800 

Y2O3 Aldrich 99.99 800 

Ho2O3 Aldrich 99.9 800 

Gd2O3 Aldrich 99.99 800 

Dy2O3 Alfa Aesar 99.99 800 

Er2O3 Alfa Aesar 99.99 800 

Yb2O3 Aldrich 99.99 800 

    

2.1.3 Planetary Ball Milling (PBM) Route 

Mechanical milling (FRITSCH Planetary Mill PULVERISETTE 7 premium line) 

was used on powder samples (once they were dried and weighed). The mill had a 

grinding bowl with tungsten carbide balls; samples were wet mixed in isopropanol 

for 20 h with a rotation speed of 250 rpm. The mixed slurries were oven-dried (at 

150 C for  6 h to remove the isopropanol), deagglomerated with a brush, sieved 

and heated at 1000 C for 12 hours. The calcined powders were milled for 20 hours 

at 450 rpm, oven-dried, deagglomerated and sieved. Finally, pellets were prepared 

and fired as in section 2.1.1. 
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Figure 2-1 Schematic representation of the processing stages using   (a) 

hand-mixed reagents (b) horizontal ball milling route (c) planetary ball 

milling route. 
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2.2 Structural Characterisation  

2.2.1 X-Ray Powder Diffraction  

In order to investigate the crystallography, phase diagram, solution limit and 

completion of reaction, an X-ray Powder Diffraction (XRD) study was performed. 

Two Stoe diffractometers were used. A Stadi-P Image Plate, IP (Stoe and Cie 

GmbH, Darmstadt) was used for phase identification. An agate mortar and pestle 

was used to grind the sintered samples. A few milligrams were placed on acetate foil, 

covered with Elmer's white glue, and placed in a circular holder in the rotating stage 

of the diffractometer system. Data were acquired over the range 20 ≤ 2θ ≤ 100 C 

using monochromated Cu Kα radiation (λ = 1.5406 Å) and processed using 

WinXPOW software.  

A small linear position sensitive detector (PSD) was used to collect XRD data for 

lattice parameter determination. A Si external standard was used to calibrate the 

instrument. 

2.2.2 Density Measurement 

There are many factors which have an influence on the density, such as particle size 

distribution of the powder and the sintering temperature. The volume of the unit cell 

was calculated from the lattice parameters obtained from XRD data and then used to 

calculate the theoretical X-ray density. The sintered pellet density was calculated 

experimentally using a micrometre to measure the dimensions of the pellet (radius 

and thickness). The bulk density of sintered pellets was calculated by dividing its 

mass by volume.  

Experimental density = 
)( areathicknessvolumePellet

pelletofMass


 = 

tr

Grammes

2     
(g/cm3) (2-1) 

The theoretical x-ray density of each component can be determined using the 

formula: 

Theoretical x-ray density = 
cellunitofVolume

cellunitofMass
 =   

2410



ANV

ZmassFormula
              

                                  = 
cellV

ZFW 66.1

           

(g/cm3)                                        (2-2) 
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where: 

t: thickness of pellet (cm) 

r: radius (cm) 

FW: formula weight (g) 

Z: formula units per unit cell, Z = 6 for h-BT.  

Vcell: volume of the unit cell from XRD data (Å3) 

NA: Avogadro constant = 6.022141 x 1023 (mol-1) 

Pellet density as % of theoretical x-ray density: 
xrd

exp

D

 D 
 x 100        

2.2.3 Differential Scanning Calorimetry (DSC) 

Samples were analysed by DSC [4] using a Netzsch DSC404C (Selb, Germany) 

controlled by Netzsh Proteus software in order to observe the ferroelectric transition 

temperatures. DSC measurements were performed from room temperature to 200 C 

with heating at a rate 10 C/min in argon and then cooling from 200 C to room 

temperature at the same rate. The reversibility was checked by comparison between 

heating and cooling. The detection of phase transition temperatures with small 

enthalpy change requires a large sample mass. Enthalpy values were calculated from 

the area under the DSC transition peak using the instrument software [5, 6].  

2.2.4 Scanning Electron Microscopy (SEM) 

It is useful technique to determine the homogeneity and observe the texture, 

topography and surface features of materials and can show the distribution of 

elements throughout the material. SEM was carried out on final sintered products to 

determine microstructural properties such as the morphology and grain size distribution. 

SEM samples were initially prepared by grounding sintered pellets by 800, 1200 and 

2500 grit silicon carbide waterproof sand paper to remove the surface defects. Pellets 

were then polished with 6, 3 and 1 µm diamond polish pastes on synthetic polishing 

cloths. Acetone and Isopropanol were used to clean all pellets. Pellets then were 

heated to perform thermal etching for 1 hour at a temperature 90% of their sintering 

temperature which corresponded to temperatures  200 C below the sintering 
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temperature, resulting in preferred removal of material at grain boundaries. The 

etched samples were mounted on aluminium stubs using conductive silver paste 

(Agar Scientific Ltd., Stansted, UK). A ~50 nm conductive carbon layer was then 

sputtered onto the surface to facilitate Energy Dispersive Spectroscopy (EDS) and to 

avoid accumulation of charges on surface of sample under the electron beam. 

Determination of microstructure information was performed using a FEI Inspect F 

microscope operating at 5 kV at working distance of 10 mm with a Link analytical 

energy dispersive spectroscopy (EDS) X-ray detector (Link Analytical Ltd., UK) 

which was used for different samples to determine the chemical composition. LINK 

ISIS software was used to record and analyse the data. 

2.2.5 Raman Spectroscopy 

The Raman technique has become more versatile for studying different behaviours 

and is used to investigate oxide materials, specifically, to detect the subtle structural 

distortions in perovskites materials even when they are too subtle to be detected by 

diffraction techniques [7, 8]. Since the vibrational spectrum has a shorter 

characterization length scale than that required for diffraction experiments, therefore 

this technique is an excellent microprobe for the local structure details that may be 

important for the interpretation of the properties of ferroelectric materials [8-10]. 

Local structural deformations arise as result of the difference in ionic radii of host 

and dopant [11]. 

Raman spectroscopy was performed using a THMS600 stage (Linkam Scientific 

Instrument limited England) Spectrometer. Spectra were excited using a green 

LASER with wavelength of 514.5 nm and a power of 20 mW focused onto a ~2 μm 

spot size. A Renishaw InVia micro-Raman spectrometer was used to excite and 

record in back scattering geometry unpolarised Raman spectra. The range over 100-

1000 cm-1 were recorded to collect the data. A TMS94 temperature controller was 

used to control the temperature. The accuracy in the measurement of temperature 

was ±1 °C. 

2.3 Electrical Property Characterisation  

2.3.1 Sample Preparation  

Both the density and geometric factor of pellets were measured. Some pellets, 

sintered at different temperatures, were ground flat and parallel to remove surface 
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layers that might have been produced during sintering. Electrode paste (Pt) was 

brushed onto opposite surfaces of the pellets and heated to 900 C for  120 minutes. 

Either In/Ga (60:40 mole ratio) alloy electrode or Ag were rubbed on the quenched 

samples at room temperature. 

2.3.2 Polarisation-Electric Field Measurements  

P-E hysteresis loop is an important characteristic of ferroelectrics. Ferroelectric 

materials are characterised by the existence of a spontaneous polarisation PS which 

occurs below the critical temperature TC and the reorientation between two or more 

equivalent directions can be induced when a sufficiently large electric field is applied 

across opposite faces of the crystal [12]. For BT, Ti is displaced very slightly off its 

regular octahedral site; it displaces by ~ 6% of the Ti−O bond length from the centre 

of the octahedron towards an oxygen at one of the corners; Ba2+ as well is displaced 

slightly in the same direction. Because of the  resulting charge displacement of Ti 

atoms, the creation of a large dipole moment of the resulting structure and the 

spontaneous polarization is observed in this material which is a feature of 

ferroelectricity in BT [1]. Reorientation of the dipole can be observed by application 

of an external electric field. The ready reversibility of spontaneous electric 

polarization is responsible for the property of ferroelectricity and is accompanied by 

a hysteresis loop on thermal cycling [13]. A remanent polarisation (Pr) persists even 

after the applied field is removed and is the key factor for featuring ferroelectric 

property [1, 14]. 

The room temperature polarisation – electric field measurements were performed 

using an aix-ACCT TF2000FE- HV ferroelectric test unit (aix-ACCT Inc., Germany) 

linked to a computer. A Radiant RT66A high voltage interface (Albuquerque, New 

Mexico, USA) was used to connect the ferroelectric test system with a high voltage 

amplifier (4 kV maximum voltage, model 609E-6, Trek, Inc., Medina, New York, 

USA). For polarisation (P) vs. electric field (E), all samples were thinned to between 

~ 0.7 and 0.9 mm with Ag electrodes. Specimens were subjected to a cyclic electric 

field by applying a triangular waveform with frequency 1 Hz.  

An electric current was induced by application of an electric field. Integration of 

current with respect to time generated the electric charge, and enabled calculation of 

the polarisation in terms of surface charge density. For P-E data as a function of 
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temperature, sufficient time was given to samples to achieve thermal equilibrium 

within ± 0.2 °C. The sample holder was submersed fully in silicone oil during testing 

to increase the range of applied voltage without electric arcing and to prevent 

breakdown.  

2.3.3 Impedance Spectroscopy (IS)  

Samples for IS were placed in a conductivity jig inside a tube furnace as shown in 

Figure 2-2. Four impedance instruments were used variously during this project: HP-

4192A impedance analyser, frequency range 5 Hz -13 MHz; Agilent impedance 

analyzer (model Agilent E4980A, Agilent Technologies, Inc., USA) frequency range 

20 Hz - 2 MHz, applied AC voltage of amplitude 100 mV and DC voltage between 0 

and 10V; Solarton, SI 1260 impedance analyser, frequency range 0.01 Hz to 1 MHz, 

AC measuring voltage of 100 mV; A broadband dielectric spectrometer (Turnkey 

Concept 50, Novocontrol Technologies GmbH & Co. KG, Hundsangen, Germany), 

frequency range 1 Hz –10 MHz. Electrical properties were measured between -263 

C and 700 C in different atmospheres (O2, air and N2); sometimes a DC bias was 

applied. The data analysis used ZView software. 

 

 

 

 

 

 

 

Figure 2-2: Impedance setup, (1) furnace, (2) pellet, (3) conductivity jig. For 

different atmospheres, the jig has: (4) gas inlet and (5) gas outlet.  

2.3.3 .1 Basic electrical and impedance spectroscopy theory: 

Impedance Spectroscopy is an important tool and useful technique for many 

electroceramic materials [15-18] including dielectrics and ferroelectrics to 
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characterise the electrical properties, distinguish different regions of a ceramic, 

investigate intrinsic behaviour and determine the electrical microstructure [19]. The 

technique depends on measuring the in-phase and out-of-phase components of the 

current with applied voltage over a wide range of frequencies, typically  (10-2 to 107 

Hz) [16]. Variables such as cooling rate, temperature, DC bias and atmosphere can 

be controlled during is measurements. Impedance analysis is commonly-used to 

investigate electro-active regions, such as intra-granular (bulk) and inter-granular 

(grain boundary, electrode-sample interface) contributions.  

IS data can be analysed using four basic formalisms: complex impedance (Z*), 

complex permittivity (ε*), complex electric modulus (M*) and complex admittance 

(Y*), which are related to each other and can be calculated from these 

transformations [20-22]:  

                                                   ε * = (M*)-1                                                  (2-3) 

                                                  M* = jC0Z*                                                (2-4) 

                                                  Y* = (Z*)-1                                                    (2-5) 

                                                  Y* = jC0ε*                                                  (2-6) 

where (ε', M', Z', Y') and (ε'', M'', Z'', Y'') are real and imaginary components,  j = 

√   , C0 = ε0.A/l is the vacuum capacitance of the cell and electrodes with an air 

gap in place of the sample, ε0 is the permittivity of free space (8.854 x 10-14 F/cm), l 

is the thickness and A is the area. 

Determination of the most appropriate equivalent circuit to provide a good 

representation of the electrical properties of a sample is very important for analysis 

and interpretation of impedance data. Resistance, R and capacitance, C is used to 

represent electro-active regions which are connected in parallel for the most common 

equivalent circuit models [23]. The RC element is used to determine the impedance 

and electrical modulus. In most impedance results, the grain-core (bulk) component 

is characterised, ideally, by an equivalent RC circuit with a resistor in parallel, Fig 2-

3.  
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Figure 2-3: Equivalent circuit for an ideal parallel RC element.  

For this element, the equations for the different formalisms are: 

                                               Y* = 
 

 
 + jC = Y'+jY''                                  (2-7) 

                                             Z* = (Y*) -1 = (
 

 
 + jC)-1 = Z' - jZ''                     (2-8) 

Data can be presented in several ways, as complex planes, eg Z'' vs Z', or as 

spectroscopic plots, eg Z'' vs log (f), or as tan δ, eg ε''/ε' vs log (f). 

For this circuit, Figure 2-3, the Z'' vs log (f) spectroscopic plot gives a Debye peak 

with the general form:    Debye peak =   


       
                                      (2-9) 

where  is the relaxation time or time constant of the RC element given by: 

                                          = RC                                                           (2-10) 

The Debye peak is scaled according to the resistance, R since  

                                       Z'' = R 


     
                                          (2-11) 

The height of the peak         Z''max = R/2                                                        (2-12) 

The frequency of the peak max is given by  

                                                      max RC = 1                                               (2-13) 

   R                   

   C                    
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where (ωmax) is defined as the angular frequency at the maximum of a Debye peak:  

                                                    ωmax = 2                                                  (2-14)  

The M'' vs log (f) plot has a similar Debye peak, but is scaled according to the 

inverse of the capacitance, C   

                                               M'' = 
  

 
  



     
                                  (2-15) 

In this thesis, data are presented in several ways, as Z'' vs Z', as Z''/M'' vs log (f), as 

log C' vs log (f). 

For each of these, an ideal parallel RC element gives the diagrams shown in Fig 2-4 

and 2-5. 

 

 

 

 

  

 

 

  

Figure 2-4: Schematic Z* plot for electrically homogeneous materials and an ideal 

parallel RC element.  

One semicircle is observed in the Z* complex plane plot and a Debye peak in the 

spectroscopic plots of the imaginary components Z'' and M'' vs log (f). 
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Figure 2-5: Z'' and M'' spectroscopic plots versus log (f) for a parallel RC element. 

For an inhomogeneous material that typically contains grain (bulk) and grain 

boundary impedances, a more complex circuit consisting of two parallel RC 

elements in series is usually used, Figure 2-6. Two complex plane semicircles are 

obtained as shown in Figure 2-7 which indicate the presence of two electro-active-

regions. Realisation of the most appropriate equivalent circuit is essential [17, 24] 

and is directly related to the origin of impedance effects [25].  

 

 

 

 

 

 

 

Figure 2-6: Two parallel RC elements in series which represent the possible 

equivalent circuit for a typical elctroceramic. 

 
   Cb                  Cgb 

Z'' / cm 

 

Log f / Hz 

 

M''   

 

 

RC = 1 

 Z''max = R/2                                           

M''max = ε0/2C                                         

 

RC = 1 

 

   Rb                 Rgb 



- 67 - 

 

 

 

 

 

 

 

 

 

Figure 2-7: Schematic Z* plot for electrically inhomogeneous materials.   

Each component has a different relaxation time, η, given by η = RC, for an 

electrically heterogeneous material. The relaxation times are a characteristic intrinsic 

property and independent of sample geometry. For an inhomogeneous ceramic, the 

following is often true: Rgb >> Rb and Cgb >> Cb in which case gb > b and (max)gb < 

(max)g . 

Two arcs are seen in the impedance complex plane. The high frequency arc passes 

through the origin of the plot. The large arc at low frequency is usually related to the 

resistive grain boundary response, whereas the smaller arc at high frequency is 

usually related to the bulk response. Z* plots are useful to emphasise the most 

resistive components in the samples. In many cases, bulk data are difficult to obtain 

from Z* plots if Rgb >> Rg, because a single arc may be observed which is dominated 

by the grain boundary resistance. 

Values of resistance and capacitance can be extracted directly from impedance data. 

The resistance values can be calculated from intercepts of the real axis. The equation 

max RC=1 can be used to calculate capacitance values at the maximum value of 

imaginary impedance Z'' at the top of each semicircle in Z* plot. Z* plots are usually 

dominated by the grain boundary component with high resistance values while grain 

capacitance are much smaller than the grain boundary capacitance. Values of 

resistance and capacitance of the grain and grain boundary components can be 
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independently calculated from Debye peak in spectroscopic plots of Z'' and M'' 

against log (frequency) which occur at max RC = 1 for the different electroactive 

regions, Figure 2-8 and 2-9. The arc of the complex impedance Z* plane plot 

corresponds to the Debye peak for Z'' and M''. 

 

 

 

 

 

 

 

 

Figure 2-8: Z' and Z'' spectroscopic plots versus log (f) for two parallel RC elements. 

 

 

 

 

 

 

 

 

Figure 2-9: M' and M'' spectroscopic plots versus log (f) for two parallel RC 

elements. 
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                                              Cb = 
max

0

''2M


   Fcm-1                                       (2-16) 

Grain boundary resistance values Rgb can be calculated using R''max values with the 

following equation: 

                                         R = 2 * R''max                                              (2.17) 

Electric modulus and fixed frequency data can be used to calculate values of the 

relative permittivity (εr) using: 

                                   εr = 
0
bC

   = 
'

1

0M
  = 

max''*2

1

M
                                  (2-18) 

Figures 2-8 and 2-9 show frequency-independent regions which occur as plateaux. 

There is change in frequency with no change in Z' and M'. Figures 2-8 and 2-9 

illustrate that low frequencies and high frequencies relax out the grain boundary and 

the bulk responses respectively. Figure 2-10 provides similar behaviour for the 

frequency-dependant response of permittivity against log (f).   

 

 

 

 

 

 

 

  

 

Figure 2-10: ε' versus log (f) for two parallel RC elements. 
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Brickwork model of g and gb regions in a ceramic placed between metal 

electrodes: 

It is well-known that ceramics consist of grains, grain boundaries and pores, all of 

which can contribute to an electrical response [17]. The ―Brick layer model‖ (BLM) 

is a useful model to interpret intra-granular and inter-granular regions of a ceramic 

[16, 26, 27], with ideally, large cube-shaped grains and narrow grain boundaries as 

flat layers between grains, Figure 2-11. l1, l2 and l3 are the thickness of grain, grain 

boundary and surface layer respectively. The equivalent circuit is comprised of three 

parallel RC elements linked in series. The magnitude of the capacitance is classified 

in Table 2-2. Their values can be used to identify the regions responsible for IS data. 

The value of capacitance depends on thickness as given by: 

                                                       
  

   
 

   

  
                                                         (2-19) 

A thicker layer will have lower capacitance value. Table 2-2 shows that a grain 

boundary capacitance is higher than a bulk capacitance according to the brick layer 

model since l1 > l2. Therefore, it determines the relationship between capacitance and 

volume fraction, Cb < Cgb.  

The capacitance value of a grain boundary is expected to be much higher than that 

for the bulk since their thicknesses are typically 5-100 m for the bulk and << 1m 

for the grain boundary regions.  

Table 2-2: Capacitance values and their possible interpretation [16]. 

Capacitance (F) Phenomenon Responsible  

10
-12

 Bulk 

10
-11

 Minor, second phase 

10
-11 


 
10

-8
 Grain boundary 

10
-10 


 
10

-9
 Bulk ferroelectric 

10
-9 
 10

-7
 Surface layer 

10
-7 
 10

-5
 Sample electrode interface 

10
-4

 Electrochemical reactions 
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Figure 2-11: (a) The brick layer model of a polycrystalline material in a ceramic 

placed between metal electrodes, (b) magnification of grain and grain boundary 

without electrode, (c) The equivalent circuit for the brick layer model. 

Plots of Z* and/or Z'', M'' are used to determine the degree of non-ideality and / or 

the degree of inhomogeneity. Figure 2-12 shows depression angle which is used to 

calculate the non-ideality degree [28]. The angle of depression () should be zero for 

an ideal parallel RC element with frequency-independent R, C values. Increasing 

heterogeneity leads to an increase in . An ideal Debye peak for Z'' and M'' has Full 

Width Half Maximum (FWHM) of 1.14 decades [25, 29], whereas FWHM > 1.14 

decades may occur for inhomogeneous ceramics. Increasing separation of M′′, Z′′ 

peak maxima indicates an increase in inhomogeneity. Inhomogeneity such as, cation 

segregation or the presence of a second phase gives rise to broadened peaks.  
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Deviation from ideal behaviour is observed in the impedance response of most 

ceramics even though they are homogenous. Constant phase elements (CPE) are 

used to represent any non-ideality of the impedance response. 

 

 

 

 

  

 

 

 

 

2.3.3.2 Arrhenius plot: 

Arrhenius plots are used to represent the effect of temperature on conductivity: 

                                                   ζ = ζo e
(-EA/kbT)                                                                             (2-20) 

where: 

 ζ = conductivity 

ζo =  the pre-exponential factor 

EA = the activation energy  

kb = Boltzmann's constant 

T = temperature (K) 

An Arrhenius plot is presented as log conductivity against 1000/T(K). Conductivity 

values are obtained from intercepts on Z* plots or peak maxima in Z′′, M′′ plots. 

Z'' / cm 

 

 
 

 

 

Z' / cm 

Figure 2-12: The depression angle () is presented in Z* plot. 
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The gradient of slopes of Arrhenius plots can be used to find the activation energy.  

2.3.4 Fixed frequency capacitance measurement: LCR (L= Inductance,           

C= Capacitance and R= Resistance) measurements 

Fixed frequency electrical property measurements were carried out in air as a 

function of temperature using a Hewlett Packard LCR meter Model 4284A. The two 

opposite flat surfaces of pellets with electrodes made from Pt paste, Ag paste and In-

Ga  alloy paste were attached to a conductivity jig and placed in a non-inductively 

wound tube furnace near the thermocouples. Data were read through a computer 

connected via a GP-IB interface card and analysed using software (HP 4284A LCR 

Meter). Capacitance and dielectric loss (tan) values were measured every 60 

seconds for a total of 300 scans for temperatures of 25-250 C using a furnace ramp 

rate of 1 oC/min, frequencies of 1 kHz, 10 kHz, 100 kHz, 250 kHz and 1 MHz and 

analysed using MS-Excel. The relative permittivity was calculated from: 

                                                  

 

                                                       εr =  
A

tC


0
                                                   (2-21) 

where, C = Capacitance (Farads – F), t = thickness of pellet without electrode     

(meters –m) ε0 = permittivity in vacuum (8.85419  10-12 Fm-1), and A = Area of flat 

surface of pellet (m2).  
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Chapter 3: Effect of dc bias and pO2 on the conductivity of 

undoped-BaTiO3 

3.1 Introduction  

Ferroelectric BaTiO3 is a dielectric material that is used widely in many varied 

ceramics applications in the electronics and electroceramic industries such as 

multilayer ceramic capacitors (MLCC), actuators, piezoelectric sensors, ferroelectric 

memories (FRAM), electro-optic devices, transducers, positive temperature 

coefficient of resistance (PTCR) thermistors and dielectric memories (DRAM) [1-7]. 

The properties of barium titanate depend on a number of compositional and 

processing parameters such as: dopant ions, application of a dc bias voltage during 

measurements, sample preparation techniques and the ceramic processing conditions, 

especially the temperature, rate of subsequent cooling, time, pressure and sintering 

atmosphere.  

A substantial number of powder synthesis methods have been used for the 

preparation of barium titanate. The most common is synthesis by conventional solid-

state reaction of mixed powders of BaCO3 and TiO2 at temperatures higher than 

1200 C [8].  

BaCO3 and TiO2 reagents have been mixed by various ways prior to heating. These 

include hand mixing HM, horizontal ball milling BM and planetary ball milling 

PBM. BaTiO3 powder produced by PBM possessed a much higher sinterability than 

those powders synthesized by HM and BM of reagents [9]. The sintering temperature 

of a ceramic using BM was 150 C higher than that using PBM [10]. BaTiO3 was 

obtained at 800 °C by PBM [11] whereas, HM required higher temperatures. The 

average particle size of PTCR powders prepared using PBM was much smaller than 

BM [12]. 

Planetary ball milling causes changes in the free energy, leading to the creation of 

new surfaces, changes in crystal lattice [13], reduction of the modest particle size 

and production of a stress field. These effects could alter the permittivity and the 

dielectric temperature dependence [9]. 

BaTiO3 undergoes a transition from a ferroelectric tetragonal polymorph to a 

paraelectric cubic polymorph upon heating above 130 °C (Curie temperature) at 

which ε′ passes through a maximum [14, 15] depending on the microstructure, 
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crystallinity, domain structure and defect structure [16-18]. The ferroelectricity in 

BaTiO3 arises from a displacement of the titanium ions away from the 

centrosymmetric position within the TiO6 octahedra [19] along the c-axis [20] 

because Ti ions are too small to occupy the centrosymmetric position. This result 

leads to spontaneous polarisation. Ti ions are displaced  0.1 Å from this central 

position. Ti ions undergo a displacement relative to the surrounding oxygens related 

to the hybridisation between Ti 3d and oxygen 2p states [21]. Therefore, a dipole 

moment of the unit cells is formed. Ferroelectric domains form as a result of 

cooperative dipole-dipole interaction [22]. Tetragonal BaTiO3-based ceramics 

possess a low tan δ and a high dielectric constant value due to asymmetry within the 

crystal structure. Therefore, BaTiO3 is a good dielectric material used for ceramic 

capacitors [23]. 

BaTiO3 with typical first order phase transition has a sharp peak in ε′ [24]. At the 

Curie temperature, dielectric polarization increases which in turn causes an increase 

in permittivity [15]. At the Curie point, the free energy is equal for the ferroelectric 

phase [25] and that of the paraelectric phase [26]. Below TC, the free energy of the 

tetragonal (ferroelectric) state is lower than that of the cubic (paraelectric) BaTiO3 

state. In the paraelectric state above TC, the Curie-Weiss temperature can be accessed 

experimentally from the Curie-Weiss law of permittivity to show that BaTiO3 obeys 

Curie–Weiss behaviour. 

BaTiO3 is an insulator at room temperature but the semiconducting behaviour that is 

commonly observed without direct donor doping or impurities is attributed to loss of 

oxygen from the crystal lattice [27] during firing at high temperatures,  ≥ 1350 °C in 

air or at low partial pressure of oxygen above  1200 C [28-38]. Oxygen loss occurs 

by the idealized reaction: 

                           2O2- → O2 + 4e-                             (3-1) 

                              Or                       
  → ½ O2 +   

  + 2e′               (3-2) 

The liberated electrons reduce Ti4+ to Ti3+ and give rise to leakage conductivity and 

device degradation [39]. This behaviour leads to n-type semiconducting materials 

with dark-coloured samples and general formula        
     

        .  
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Oxygen loss from stoichiometric BaTiO3 is too small to be detected clearly by 

thermogravimetry. Nevertheless, it can change the electrical properties from 

insulating to n-type semiconducting [40].   

Oxygen loss is associated with different factors such as temperature, atmosphere, 

pellet density, ceramic microstructure and rate of heating-cooling. Samples can be 

insulating or semiconducting depending on the amount and distribution of oxygen 

loss. Electrical inhomogeneity can be observed with different processing conditions. 

Heating samples in O2 helps to reduce the amount of oxygen loss [14]. 

Semiconductivity in BaTiO3 has been investigated by many authors. The origin of 

semiconductivity is varied and may involve impurities, direct donor doping and 

oxygen loss, all of which lead to electron injection into the crystal structure [2, 28]. 

A PTCR effect in BaTiO3 can be found under certain conditions. A modest PTCR 

phenomenon is observed in samples quenched from high temperatures [28]. The 

materials exhibit a core-shell structure [41]. 

The high dielectric constant of BaTiO3 depends on synthesis route (purity, density, 

grain size) [42], temperature, frequency, dopants [43], polarization of electrode and 

Schottky barrier development at the electrode-ceramic interface which is attributed 

to a non-ohmic electrode contact. Using different types of electrode can give 

different results. Non-ohmic electrode contacts leading to PTCR effect in BaTiO3 

can be obtained by using Au electrodes. In contrast, non-ohmic electrode contacts 

can be eliminated by applying In-Ga alloy electrodes which has a lower electron 

work function [44-46].  

It has recently been shown that the electrical properties of BT, doped BT and other 

titanate perovskites are modified by application of a small dc bias [35, 40, 47-59]. If 

the materials are in n-type, then the conductivity decreases with a dc bias but, by 

contrast, with p-type materials, the conductivity increases with a dc bias [55]. This 

effect has been seen with n-type Mn-doped BT and donor-doped rutile [58] and also 

in p-type BT doped with acceptors Zn [54], Mg [56] and Ca [50].  In general, the 

ceramic conductivity changes by one to two orders of magnitude on application of a 

small dc bias for temperatures above about 300 C. The changes are fully reversible 

on removing the bias and the time taken for the changes to occur varies from a few 
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hours at 300 C to a few minutes at 600 C.  For stoichiometric BT and BT doped 

with isovalent dopants such as Ca for Ba, there is little effect of dc bias on the 

conductivity [50]. 

Similar changes are seen in both the bulk and grain boundary impedances of ceramic 

samples and are not associated with sample-electrode interfacial effects such as 

voltage-dependent Schottky barriers. The effect is usually independent of the type of 

electrode that is used.  It is a low field effect and can be observed with voltages as 

low as 1 volt corresponding to a field gradient of 10 volts per cm and is an intrinsic 

property all of samples [48, 49]. 

The effect can be understood most easily by first considering the behaviour of n-type 

materials whose conductivity decreases on application of a dc bias. Similar changes 

are seen on varying the atmosphere surrounding the sample and in particular, the 

effect of increasing oxygen partial pressure is to decrease the conductivity as a 

consequence of the following changes at the sample surface: 

½ O2 + 2e-  →  O2-               (3-3) 

Thus, with increasing oxygen partial pressure, oxygen molecules absorb on the 

sample surface and ionise by picking up electrons from the sample surface and 

interior; as a consequence, conductivity decreases. 

For p-type materials, two processes are involved with the changes that occur on 

application of a bias voltage. First, electrons are trapped at the sample surface in a 

similar way to what happens with n-type materials. Second, electrons are created 

inside the sample and near the surface by ionisation of underbonded oxide ions. This 

creates singly-charged O
-
 ions which can be regarded as holes and are the source of 

the p-type conductivity and subsequent increase in p-type conductivity with a dc bias 

[49, 53, 54, 56]. 

Underbonded oxide ions are those which are surrounded by an insufficient amount of 

the positive charge that is necessary to stabilise the divalent oxide ion. In the gas 

phase, divalent oxide ions are unstable and spontaneously dissociate into monovalent 

oxide ions and electrons. In the solid state in most crystal structures, however, 

divalent oxide ions are stable because they are surrounded by an effective charge of 

2+.  In acceptor doped materials such as Mg-doped BT,  the oxide ions near to the 
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Mg dopant are underbonded and it is suggested that these are able to ionise readily 

on application of a small bias voltage [56]. 

It has been suggested that changes at sample surfaces are responsible for variation in 

conductivity both with changing oxygen partial pressure and with a small bias 

voltage. The surface equilibria involving oxygen consist of several stages, as shown 

below [58]: 

O2 (g) 
  
↔ O2 (ads) 

  
↔   

   
  
↔    

  /2   
  
↔  2    (surface) 

  
↔ 2    (bulk)          (3-4) 

Several of these stages involve electron transfer and therefore, will influence the 

electrical properties of the material. Before it was discovered that the properties of 

bulk materials could be changed by application of a small bias voltage, it was 

thought that bulk properties would be independent of a small voltage and therefore, 

any observed voltage-dependent changes would be attributable to interfacial 

phenomena such as Schottky barrier formation since a Schottky barrier is not a 

material barrier but is simply a voltage barrier. It now seems likely that the electrical 

properties of ceramic materials can be modified by reactions at sample surfaces 

which involve electron transfer processes.  Although many studies into the electrical 

properties of doped BT ceramics have been reported, to date there has been very 

little consideration of the effect of applied voltage on the properties. One objective of 

the studies reported in this thesis is to consider the effect of voltage on the electrical 

properties of rare earth doped BT. 
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3.2 Experimental Procedure  

BaTiO3 powders were mixed using three different methods: hand mixing of reagents, 

ball milling and planetary ball milling using BaCO3 (Aldrich 99.8 %) and TiO2 

(Aldrich 99.9 %). Samples were fired at different temperatures 1350-1450 °C in air 

for 12-24h. After heating, the samples were either left inside the furnace to cool to 

room temperature or withdrawn from the furnace and quenched in air. 

Phase analysis was carried out using XRD which was used also to calculate lattice 

parameters. Two Stoe diffractometers were used, a Stoe Stadi-P image plate detector 

for phase identification and a position sensitive detector for lattice parameter 

determination.  

DSC was used to study the transition from the tetragonal to cubic phase from room 

temperature to 200 °C, with heating at rate 10 C/min in argon. 

 The electrical properties of BaTiO3 ceramic pellets were investigated by IS. 

Powders were pressed uniaxially in a stainless steel die. Pressed pellets were placed 

on sacrificial powder of the same composition on platinum foil and sintered between 

1350-1450 C for 12h in air.  

Dielectric characteristics were measured with a Hewlett Packard LCR meter Model 

4284A with data recorded over several frequencies in the range 1 kHz to 1 MHz 

from room temperature to 200 C.  

IS measurements were carried out in air between room temperature and 700 C, over 

the frequency range 20 Hz - 2 MHz using electrodes fabricated from Pt paste, Ag 

paste and liquid In-Ga alloy using an Agilent (E4980A) impedance analyser with an 

ac measurement voltage of 0.1 V and dc voltage between 0 and 10V. Measurements 

were obtained in N2, air, and O2 atmospheres at 400 C across the frequency range 

0.01 Hz to 1 MHz using a Solartron, SI 1260 with an applied voltage of 100 mV. 
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3.3 Results 

3.3.1 XRD study of undoped BaTiO3 

The XRD patterns of undoped barium titanate prepared by hand mixing HM, ball 

milling BM and planetary ball milling PBM are shown in Figure 3-1. The patterns 

show well-defined peaks. The samples were phase-pure and fully indexed on a 

tetragonal unit cell with space group P4mm, Table 3-1 without secondary impurity 

phases. Lattice parameters are in good agreement with ICDD card # 5–626 [60] and 

are consistent with lattice parameters for BT reported elsewhere [61]. 

The theoretical density (DT) was determined from unit-cell contents and volume. 

The relative densities of all samples, calculated from pellet mass and dimensions 

were 83.1 – 91.3 % of the value expected for fully dense pellets, Table 3-1. The 

values of lattice parameters for HM, BM and PBM are similar. The value of density 

for HM decreased slightly compared to BM and PBM. The PBM has the highest 

density as a result of high energy ball milling and formation of fine particles [62] 

whereas, HM has the lowest density.  

3.3.2 Electrical and structural characteristics of undoped BaTiO3 

3.3.2.1 LCR results 

Permittivity data and tan δ are plotted against temperature for pellets of three samples 

which were heated as shown in Table 3-1. Data measured at 250 kHz are shown in 

Figure 3-2 (a) and (b). ε′ increases  to a maximum in the range ~ 1627- 8433, Figure 

3-2 (a) at the Curie temperature TC. The value of ε′max for PBM was highest. The 

value of BM permittivity is lower than reported in the literature which is attributed 

both to the smaller grain size [63] and low densification and high porosity [9]. A 

normal ferroelectric behaviour was observed and ε′ showed a sharp peak attributable 

to the tetragonal to cubic phase transition [64] with no apparent broadening of the 

ferroelectric transition [15]. Above TC, in the paraelectric state, the temperature 

dependence of the dielectric constant obeys the Curie-Weiss law, Figure 3-4. The 

Curie-Weiss behaviour did not show any considerable deviations. No samples 

showed any significant frequency dependence of permittivity as shown for HM in 

Figure 3-3 and therefore, the peak in ε′ could be used to extract TC. Permittivity data 

are plotted in Curie-Weiss form in Figure 3-4 and Cw values listed in Table 3-2. The 

difference between TC and To values is attributed to the first-order transition of 
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barium titanate which is described by Devonshire’s theory [65]. All samples showed 

non-leaky dielectric behaviour except HM which showed some conductivity with 

dielectric loss values ~ 0.035, Figure 3-2 (b) which is in good agreement with 

literature data [66, 67]. The general behaviour is similar for all samples exhibiting a 

peak in tan δ in which local maximum (peaks) were observed 120 C, in 

accordance with literature data. This result corresponds to the maximum permittivity 

value which occurred at the phase transition from the ferroelectric (tetragonal) to 

paraelectric (cubic) phase. Below the maximum value, tan δ for HM and PBM 

initially decrease and then increase with increasing temperature. The reduction in the 

value of dielectric loss is quite pronounced for PBM from 0.019 at room temperature 

to 0.01 at  100 C, while, a slight drop was observed for HM at low temperatures.   

3.3.2.2 Differential Scanning Calorimetry (DSC) 

DSC on HM and BM showed a sharp ferroelectric-paraelectric (FE-PE) phase 

transition, Figure 3-5. The value of Tmax at the phase transition temperature of BM is 

very similar to that obtained by LCR measurement. A slight difference for HM 

between DSC and LCR values was observed as a result of changes in sintering 

temperature and cooling rate.   

 

 

 

 

 

 

 

 

Figure 3-1: Room temperature XRD patterns of BaTiO3 for HM, BM and PBM 

samples sintered at 1350-1450 °C for 12h in air and either quenched or slow-cooled. 
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Table 3-1: Crystal structure, lattice parameters, c/a ratio, unit cell volume, measured 

density (Dm), theoretical density (DT) and relative density (Drel).  

 
Sample Unit cell a (Å) c (Å) c/a ratio 

(tetragonality) 

V (Å
3
) Dm DT (Drel) (% ) 

HM  

0531-12h , SC 

Pt electrodes 

Tetragonal 

(P4mm) 

3.994(1)  4.033(1)   1.0098 

 

64.34(2) 5.00 6.02 83.1 

BM  

1350-12h, Q 

In-Ga electrodes 

Tetragonal 

(P4mm) 

3.992(1)  4.032(1)  1.0100 

 

64.24(3) 5.32 6.03 88.3 

PBM  

1350-12h, Q 

Ag electrodes 

Tetragonal 

(P4mm) 

3.992(5) 4.031(5) 1.0098 

 

64.25(1) 5.44 6.03 90.3 

 

 

Figure 3-2: Fixed frequency measurements at 250 kHz of (a) relative permittivity (b) 

dielectric loss (tan δ) versus temperature.  

 

 

 

 

 

 

Figure 3-3: Temperature dependence of the relative permittivity for HM at fixed 

frequencies from 10 kHz – 1MHz. 
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Figure 3-4: Curie-Weiss plots of permittivity at 250 kHz. 

 

Table 3-2: Values of TC, To, TC-T0 and Cw.  

Sample TC (C) from ε′ TC (C) from DSC To (C) TC -To (C) Cw (10
5
 K) 

HM 117(1)  at 

 (1350-12h SC) 

133(1) at  

(1400-12h Q) 

103(2) 14(3) 0.782 

BM 122(1) 129(1)  99(2) 23(3)  0.377 

PBM 114(1)  102(3) 12(4) 1.240 

 

 

 

 

 

 

 

 

Figure 3-5: DSC trace of BaTiO3 for HM and BM sintered at 1400-12h Q in air. 
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3.3.2.3 Raman Spectroscopy Results 

Raman spectra were obtained at room temperature as shown in Figure 3-6. All data 

are consistent with previously reported results [68-71]. The sharp peak at ~ 305 cm-1 

is a feature of tetragonal barium titanate as a fingerprint of ferroelectric behaviour 

(long-range ordering of dipoles) [72], which is connected with the transverse E1 

(C4v) symmetry [17, 70, 73, 74]. The spectra of BaTiO3 ceramics show six peaks, 

specifically, narrow peaks at 170 and 305 cm-1, asymmetric broader bands (with full-

width at half-maximum (FWHM) of about 40–70 cm-1) with peaks at 263, 512, and 

718 cm-1, and a small peak at 470 cm-1 [75, 76]. The identities of these peaks 

demonstrate the existence of BaTiO3 indicating the absence of impurities [76, 77]. In 

the cubic phase, the peaks at 262, 514, and 717 cm-1 are much broader and more 

symmetrical. These peaks are associated with the effect of second-order or 

displacement disorder of the Ti atoms from the octahedral site centre [78, 79]. The 

band at 718 cm-1 is a highly broad, weak peak in the cubic phase and is usually a 

special characteristic of the tetragonal phase [71]. No modes were observed around 

800 cm-1.  At reciprocal wavelength range around 800 cm-1, the occurrence of an A1g 

octahedral breathing mode was observed which corresponds to a Raman inactive 

mode for simple perovskites, especially since the mode is symmetrical and does not 

give rise to a change in polarization [71, 80]. 

 

 

 

 

 

 

 

 

Figure 3-6: Room-temperature Raman spectra for BaTiO3. 

200 400 600 800 1000

 x = BT(hm)             

 x = BT(bm)     

 x = BT(pbm)       

        

 

 

In
te

n
s
it
y
/a

.u

Wave number / cm
-1



- 88 - 

 

3.3.2.4 SEM Results 

The ceramic microstructure of thermally etched surfaces determined by SEM is 

shown in Figure 3-7. No secondary phases on sample surfaces were observed, in 

either SEM backscattered images or EDS traces. The grain size is 100-200 , 5 and 

200 µm for HM, BM and PBM respectively which showed an exaggerated grain 

growth size for HM and PBM; similar result was observed in the literature [22] 

whereas, grain growth is inhibited for BM.  

Exaggerated grain growth is a recognized feature in barium titanate based ceramics 

[81] which is maybe attributed to high temperature sintering especially with long 

periods of sintering which give rise to materials with large grain sizes, e.g. > 50 m 

[19, 82-84] particularly in the presence of a small amount of Ti-rich phase [85].  

Exaggerated grain growth is associated with twinning induced by small but 

significant amounts of oxygen loss [86]. Several authors suggested that the existence 

of parallel (111) twin boundaries in grains of cubic BaTiO3 seems to be the 

prerequisite intrinsic condition for anisotropic grain growth [87-89]. 

The SEM micrographs indicated that the grain size and distribution are uniform. 

PBM has a lower porosity than other samples.   
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3.3.2.5 Impedance Spectroscopy Results 

A selection of results in this section are presented on BaTiO3 prepared by mixing in 

three ways, HM, BM and PBM, heated at different temperatures, either slow-cooled 

or quenched and with different electrodes. The three milling routes gave similar 

results and mainly those for HM are presented with a brief summary of BM and PBM 

results. The samples studied are listed in Table 3-3. Some samples were reheated 

under different conditions. Therefore, a new sample label was used for each step. 

 

 

 

Figure 3-7: SEM images and EDS traces of BaTiO3. 
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Table 3-3: Detailed conditions of samples prepared by hand mixing. 

Sample Heating temperature  Electrode type Cooling  

1 1350 °C for 12 h in air Pt Slow-cooled, 10 

°C/min 

2 1400 °C for 12 h in air Ag Slow-cooled, 10 

°C/min 

3 Sample (2) reheated sequentially at 

1350 for 4 h, 1300 °C for 4 h, 1200 °C 

for 4 h, in air 

Ag Slow-cooled, 10 

°C/min 

4 Sample (1) reheated in air at 1350 °C 

for 12 h 

Pt Air-quenched 

5 Sample (1) reheated in air at 1400 °C 

for 24 h 

In-Ga Air-quenched 

6 Sample (4) was polished and reheated 

in air at 1400 °C for 10 minutes 

In-Ga Air-quenched 

7 Sample (4) was polished and reheated 

in air at 1400 °C for 10 minutes 

Ag Air-quenched 

8 1380 °C for 30 minutes in air Pt Air-quenched 

9 1400 °C for 12h in air, reheated at 

1400 °C for 1h in air 

Pt Air-quenched 

10 1400 °C for 12h in air, reheated at 

1300 °C 

Ag Air-quenched 

11 1350 °C for 12h in air, reheated at 

1335 °C 

Ag Air-quenched 

12 Sample (3) was reheated at 1200 °C 

for 1 h, in air 

Ag Air-quenched 

13 1450 °C for 12 h, in air In-Ga Air-quenched 

 

3.3.2.5.1 Slow-cooled samples 

 (1) Typical impedance data  

Sample (1) slow cooled from 1350 °C was measured at different temperatures by IS 

with Pt electrodes on stepwise heating and cooling over the temperature range 25-

750 °C in air. A typical set of impedance data, Figure 3-8 showed it to be electrically 
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heterogeneous. The HM samples were insulating at room temperature. The 

impedance complex plane plot at 453 °C, Figure 3-8 (a), shows two arcs which can 

be modeled by the ideal equivalent circuit with two parallel RC elements in series. 

The grain boundary arc at low frequencies is much larger than the grain arc at high 

frequencies. The total resistance (R(t) = Rg+Rgb) was obtained from the real, Z' axis 

intercept at lower frequencies. Rg=R1 and Rgb=R2. Resistance and capacitance values 

were extracted from Z*. R(t) is ~ 2×105 Ωcm, where Rg=2.80×104 Ωcm, 

Rgb=1.72×105 Ωcm, Cg=2.85×10-11 Fcm-1 and Cgb=7.40×10-9 Fcm-1.  

Z" and M" spectroscopic plots, (b), show that the Z" plot contains two peaks, which 

correspond to the two semicircle arcs in the complex plane, but they are not well-

resolved and were dominated by the low frequency peak, whereas the M" plot shows 

a single peak at higher frequency, which corresponds to the higher frequency Z* 

semicircle arc. M" peaks represent the bulk component of the sample at the higher 

frequency with the lowest capacitance value. The fmax for Z" and M" peaks are 

separated by three orders of magnitude. This indicates an 

inhomogeneous microstructure. The Debye-like peaks in Z" and M" spectra and arc 

in Z* were seen at temperatures ≥ 375 °C. 

The Y′ data show two plateaus, (c). The low frequency plateau is equal to (RT)-1, 

whereas, the high frequency plateau is associated with both resistance and 

capacitance and does not simply correspond to   
   but corresponds to 

         

           
. 

Spectroscopic plots of capacitance, C' against frequency, (d), suggest the presence of 

two components that correspond to the bulk capacitance Cb at high frequency and an 

interfacial or grain boundary capacitance, Cgb at low frequency. The values of the 

bulk capacitance were around  (2 – 3) ×10-11 Fcm-1, whereas, the values of the low 

frequency interfacial or grain boundary capacitance were difficult to estimate since 

the plateau region was not well defined in the low frequency C' plots. In addition, the 

equation for the low frequency plateau is more complex than a simple capacitance. 

Figure 3-9 shows the change in the capacitance values of the bulk component at high 

frequency, (b), obtained using M" spectroscopic plots against log f at different 

temperatures. With increasing temperature, M"max becomes larger, (a), and therefore, 

Cb becomes smaller. This behaviour is well-known for ferroelectric materials in the 
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paraelectric region above TC [48] and is presented as a Curie-Weiss decay at higher 

temperatures, (b). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8: 453 °C IS data for sample (1) slow cooled from 1350 °C, (a) Z* plot, (b) 

-Z", M" plots, (c) Y' plot and (d) C' plot.  

 

 
 

 

 
 

 
 
 

 
 

Figure 3-9: (a) Spectroscopic plot of M" against log f at different temperatures,       

(b) Curie-Weiss plot of bulk permittivity.  
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From the impedance data, the conductivity of the high and low frequency 

components was extracted from Z* plots. The activation energy (EA) values were 

evaluated from the slope of the linear portion of the conductivity Arrhenius plots, 

Figure 3-10. Bulk conductivity has activation energy  0.85 eV. The sample is 

reasonably insulating with bulk conductivity ∼ 4.03×10−5 -1cm-1 at 453 C, 

whereas, the grain boundary conductivity has lower value ∼ 8.82×10−6 -1cm-1 but 

with higher activation energy, 1.33 eV. 

 

 

 

 

 

 

Figure 3-10: Arrhenius plots of conductivity against reciprocal temperature for the 

high and low frequency components.  

Both BM and PBM samples were sintered at 1400 °C for 12 h in air and 

characterised at different temperatures using an impedance analyser with Ag 

electrodes. IS measurements were then made on stepwise heating and cooling over 

the temperature range 25-650 °C in air.  

The conductivity data for the high and low frequency components at different 

temperatures are shown in Figure 3-11. IS data showed similar results to HM, Figure 

3-12 and therefore the conductivity results were not influenced by the milling 

procedure.  
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Figure 3-11: Arrhenius plots of total conductivity data against reciprocal temperature 

for (a) BM and (b) PBM. 

 

 

 

 

 

 

Figure 3-12: Arrhenius plots of bulk conductivity against reciprocal temperature for 

HM, BM and PBM. 

(2) Effect of oxygen partial pressure  

To study the response of BaTiO3 to pO2 at 400 °C, IS data were collected for sample 

(3) slow cooled from 1200 °C. The purpose of the step-wise and slow cooling for 

sample (3) compared with sample (2) slow cooled from 1400 °C was to eliminate as 

much as possible any oxygen deficiency caused by sintering at high temperature. 

Impedance data were collected at 400 °C in variable oxygen partial pressure by 

changing the atmosphere in the sequence Air → N2 → O2 → Air to check the 

reversibility of any changes to the initial values, as shown in Figure 3-13.  

The general shapes of the impedance plots are similar in the different atmospheres 

but the resistance values are highest in N2 and lowest in O2 with intermediate values 

in air. Results are summarised in Table 3-4. With increasing pO2, O2 molecules are 
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O2- ions. The reduction in resistance is a result of a p-type conduction mechanism 

and hole creation according to [49] [54]: 

                                  
    

 

 
     

                          (3-5) 

where    
     

  and    represent oxygen vacancies, oxygen ions in the lattice with 

neutral charge and positive electron holes, respectively. 

Only a small difference of resistance was observed between air and O2 because of 

the small difference in oxygen partial pressure between them.  

On reversing the different atmospheres after a constant resistance had been obtained, 

the change in Rg and Rgb was fully reversible but the times taken were temperature 

dependent. 

Table 3-4: Resistance and capacitance data at 400 °C in different atmospheres. 

 O2 Air N2 

                   Rg / Ωcm 4.50×10
4
 6.01×10

4
 3.80×10

5 

Rgb / Ωcm 2.29×10
6
   2.68×10

6
 5.13×10

6
 

Cg / Fcm
-1 

1.90×10
-11  

 1.82×10
-11

 1.80×10
-11 
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Figure 3-13: 400 °C IS data for sample (3) slow cooled from 1200 °C, (a) Z* plot, 

(b) C' plot, (c) -Z" plot and (d) M'' plot in different atmospheres. 

(3) Effect of sintering temperature  

Grain and grain boundary resistances decreased on sintering at 1400 °C, sample (2), 

compared to the sample sintered at 1350 °C sample (1), Figure 3-14 which may be 

attributed qualitatively to increased loss of oxygen at higher temperature. A 

quantitative assessment of the effect of sintering temperature is difficult, however, 

because (i) the rate of reoxidation during cooling has a major influence on the 

resulting conductivity and (ii) the sample microstructure may be different after 

sintering at 1350 and 1400 C and this may affect reoxidation rates. This result 

indicates that the processing conditions influence the electrical properties. Oxygen 

loss usually occurs increasingly at high temperatures while partial or complete 

reoxidation occurs at lower temperatures. This is studied in more detail later for 

samples quenched from different temperatures. 
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Figure 3-14: 400 °C, (a) Z* plot data and (b) C' plot for samples (1) slow cooled 

from 1350 °C and (2) slow cooled from 1400 °C. 

(4) Effect of application of a small dc bias voltage  

Sample (2) slow cooled from 1400 °C was characterised at 400 °C by IS with Ag 

electrodes.  

Typical Z* plots with a small dc bias voltage, in the range 0 to 10 V, which was 

applied across the pellet are shown in Figure 3-15(a). Rg and Rgb decrease with 

increasing dc bias which is fully reversible (returned to the original value on 

removing the bias) after a steady state had been reached, Figure 3-16 (a) and (b). Rgb 

decreases by  one order of magnitude between 0 and 10 V bias. The change in bulk 

is smaller than the change in grain boundary resistance. Results are summarised in 

Table 3-5. 

Table 3-5: Resistance data at 400 °C with different dc bias voltage. 

Resistance  0 V 10 V 

Rg / Ωcm 5.01×10
4
 4.82×10

4 

Rgb / Ωcm 1.15×10
6
 2.51×10

5
 

 

The C' spectrum in Figure 3-15(b) shows C2 is mostly unchanged, whereas C1 

increases by 10% with increasing dc bias and returns to its original state after 

removing the dc bias, Figure 3-17. 
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 Figure 3-15: 400 °C IS data for sample (2) slow cooled from 1400 °C, (a) Z* plot 

and (b) C' plot over the voltage range from 0 to 10 V, and then on removal of the dc 

bias.  

 

 

 

Figure 3-16: (a) R1, (b) Rt versus voltage (V) at 400 C. The red symbol shows the 

resistivity after removal of the dc bias. 

 

 

 

 

 

 

Figure 3-17: bulk permittivity (calculated from M''max) versus voltage (V) at 400 C. 
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The effect of bias was also studied for sample (3) slow cooled from 1200 °C. Similar 

behaviour and conclusions to that of sample (2) slow cooled from 1400 °C was 

observed but with larger resistance values (not shown). 

All slow-cooled samples (1, 2 and 3) show that the conduction mechanism is p-type 

which was observed by IS measurements in different atmospheres, and confirmed by 

application of the dc bias. 

Resistance data as a function of time for sample (3) at 300 C are shown in Figure 3-

18 on application of a 10V bias (a) and on subsequent removal of the bias (b). On 

application of the bias, the resistance gradually decreased and had reached a steady 

state after approx. 2h. On removing the bias, the resistance increased reversibly and 

had reached its initial value after approx. 35 mins.  

 

 

 

 

 

 

 

 

 

Figure 3-18: Bulk resistance as a function of time in air at 300 °C for sample (3) 

slow cooled from 1200 °C (a) on application of a 10V bias and (b) subsequent 

removal the bias.  
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capacitance values are extracted from Z*. R(t) is ~ 3.07×105 Ωcm, where 

Rg=5.09×103 Ωcm, Rgb=3.02×105 Ωcm, Cg=1.60×10-11 Fcm-1 and Cgb is around 

7.90×10-9 Fcm-1.  

Figure 3-19 (b), (c) and (d) show similar behaviour to the slow cooled sample which 

was shown in Figure 3-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-19: 400 °C IS data for sample (10) quenched from 1300 °C, (a) Z* plot, (b) 

-Z", M" plots, (c) Y' plot and (d) C' plot. 

(B) Effect of oxygen partial pressure  
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C' data, in Figure 3-20 (b) increase at low frequencies toward a third capacitance, C3 

with a value of  > 10-7 Fcm-1 which is attributed to the sample–electrode interface. C3 

corresponds to the small, low frequency, third arc seen in Z* plots. The values of the 

resistances are lowest in O2 (a). M'' spectra exhibit a single, high frequency peak, (c) 

which displaces to higher frequency with increasing pO2, consistent with a reduction 

in resistance R3 and p-type behaviour. 

The key conclusion is that both resistances R1 and R2 show p-type behaviour. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-20: 400 °C IS data for sample (10) quenched from 1300 °C, (a) Z* plot, (b) 

C' plot, and (c) M'' plot in different atmospheres. 
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Rb, Rgb and Rt  for sample (11) quenched from 1335 °C at 500 °C, measured in air 

and N2 are shown in Figure 3-21. The RT  is dominated by Rgb for both air and N2 

atmospheres. The ratio of Rb (N2/air) is  2.87:1 whereas Rgb (N2/air) is  2.05:1. 

This temperature shows that Rg is more sensitive than Rgb under different 

atmospheres. 

 

 

 

 

 

 

Figure 3-21: 500 °C Z* plot for sample (11) quenched from 1335 °C, measured in air 

and N2.  

 

Conductivity (ζb, ζgb and ζt) data for sample (11) quenched from 1335 °C which 

were extracted from Z* data in air and N2 are plotted against reciprocal temperature 

between 400 and 900 C in Arrhenius format, Figure 3-22 (a) and (b). Changing the 

atmosphere from N2 (pO2 10 Pa) to air (pO2 104 Pa) displays an increase in 

conductivity indicative of p-type behaviour with activation energies for ζb and ζgb of 

 0.65 and 1.23 eV. Bulk and grain boundary conductivity data (c) and (d) illustrate 

the change in ζb and ζgb with temperature in air and N2. The difference in ζb was half 

an order of magnitude (c), whereas ζgb did not show a big change in different 

atmospheres, (d). At 400 C, the bulk conductivity is greater than the grain boundary 

conductivity in with air or N2. Thus, the total conductivity was dominated by the 

grain boundary conductivity. 
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conductivity was dominated by the bulk conductivity. 
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The bulk and grain boundary conductivities are very processing-dependent and a 

crossover with different activation energies associated with microstructure was 

observed. At low temperatures, the equivalent circuit of bulk and grain boundary 

impedances is in series but when they crossover, they do not necessarily have this 

circuit. It may change to a parallel circuit. For different atmospheres, both bulk and 

grain boundary show the same effect with same activation energy and parallel plots.  

The difference is due to change in number of carriers. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-22: Arrhenius plots of ζb, ζgb and ζt in air for sample (11) quenched from 

1335 °C (a), and N2 (b), and of ζb in air and N2 (c) and ζgb in air and N2 (d). 
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whereas, ζgb did not illustrate a big change under air and N2 atmospheres with a 

small slope value as m = +10.8. A little pO2 dependence was observed as well for ζt  

as ζgb behaviour which is expected since that ζt  was dominated by ζgb m = +6.4. 

Figure 3-23 (b) shows the bulk conductivity between log (pO2/Pa) from 0.23 (N2) to 

4.32 (air) at temperatures from 400-700 C. These two values (0.23 and 4.32) are 

actually assumed from literature [90] and not certain since there is no purity was 

observed in furnace but only assumption.  

It was reported that at 700 C, there is switching from p-type to n-type behaviour at 

log    

   - 1 and the decrease of temperature gives rise to move the switching to the  

lower pO2 [90-92]. Therefore, no significant effect was observed for the bulk 

conductivity either with air or N2 at < 700 C by the broad conductivity minimum at 

pO2. The total conductivity shows a little dependence of pO2 as result of ζgb 

behaviour which has a large value and dominates the total conductivity with showing 

no sensitivity to pO2. 

 

 

 

 

 

Figure 3-23: Log ζ against log pO2 plots for ζb, ζgb and ζt in air and N2 at 600 C for 

sample (11) quenched from 1335 °C (a) and log ζb against log pO2 for temperatures 

400–700 C, (b) m=1/slope. 

(C) Effect of application of a small dc bias voltage  

Sample (10) quenched from 1300 °C shows that R1 and R2 decrease gradually and 

reversibly with increasing dc bias voltage from 0 to 10 V confirming enhanced p-

type conductivity, Figures 3-24 and 3-25.  
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The C' spectroscopic plot shows very little dependence on dc bias at low frequency, 

Figure 3-24, (c). The curves shift to higher frequency because the resistance 

decreased. A similar shift is seen in M'' plots, Figure 3-24, (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-24: 400 °C IS data for sample (10) quenched from 1300 °C, (a) Z* plot, (b) 

M'' plot and (c) C' plot over the voltage range from 0 to 10 V, and then on removal of 

the dc bias. 
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Figure 3-25: (a) R1, (b) R2 versus voltage (V) at 400 C. 

Figure 3-26 shows R1 data at 400 C as a function of time for sample (11) quenched 

from 1335 °C after application of a 10 V dc bias, and after subsequent removal of the 

dc bias.  

Application of dc bias led to a rapid decrease in resistance initially which then 

levelled off to an approximately constant value. On removing the dc bias, sample 

resistance increased until it reached its original value. The recovery was time-

dependent and appeared to occur in two stages with only a slight increase between 

54-100 minutes but a further rapid increase at longer times. The original value was 

finally regained after 205 minutes.  

 

 

 

 

 

 

 

Figure 3-26: Bulk resistance at 400 °C for sample (11) quenched from 1335 °C with 

10V bias and after removing the dc bias at different times in air. 
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(2) N-type conductivity or Schottky barrier samples 

(A) Typical impedance data 

For sample (5) quenched from 1400 °C, a broad asymmetric arc was observed, even 

at room temperature, in the Z* plot, Figure 3-27 (a), with total resistance ~ 4.35 

kcm. The C' plots, Figure 3-27 (b), showed high capacitance, incomplete plateaus 

at low frequency followed by a dispersion toward low capacitance at high frequency. 

The capacitance value of the low frequency component is  (1–5) ×10-8 Fcm-1. The 

capacitance value of the high frequency component could not be obtained due to 

insufficient data in the C' plot at high frequencies. Combined Z", M" plots showed 

two components; the Z" spectrum is dominated by a low frequency broad peak, with 

full width half maximum greater than expected for an ideal Debye peak, with an 

associated room temperature resistance ~ 2.64 kcm, Figure 3-27 (c). The M" 

spectrum shows only the low frequency onset of a peak as the peak maximum is off-

scale, Figure 3-27 (c).  

From these data, it is clear that the Z* data are dominated by the low frequency 

component with capacitance  (1–5) ×10-8 Fcm-1. The bulk resistance of the sample, 

R1, can not be measured since the bulk M" peak is off-scale (c) and a separate bulk 

arc in Z* at high frequency can not be resolved. However, R1 is small and the 

quenched samples are much more conductive than slow-cooled samples. The 

conductivity is attributed to oxygen loss at high temperature, giving BaTiO3-δ or 

         
      

      . The electrons liberated can jump between Ti3+ and Ti4+ ions 

[33]. 

Total conductivity (ζt) data are plotted against temperature in Figure 3-28. It shows 

the characteristic PTCR effect with a large resistance rise at the Curie temperature, 

Figure 3-29. 
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Figure 3-27: IS data for sample (5) quenched from 1400 °C, (a) Impedance complex 

plane plot, (b) C' plot, (c) Z'', M'' plots at different temperatures with In-Ga 

electrodes. 

 

 

 

 

 

 

Figure 3-28: Arrhenius plots of total conductivity against reciprocal temperature 

showing a PTCR effect at  120 C. 
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Figure 3-29: Total resistivity as function of temperature.  

(B) Effect of electrode material  

IS measurements were made using different electrodes, Figure 3-30 (a). For 

quenched samples (4-7), sample (4) (quenched from 1350 C with pre-attached Pt 

electrodes) showed two overlapping arcs with a high frequency intercept  500 cm 

at room temperature, (b). With In-Ga and Ag electrodes, a single broad arc is seen in 

Z* which may contain a high frequency arc, similar to that seen with Pt, but which is 

not resolved. Pt is much more resistive than In-Ga and Ag. 

C' data (e) show a clear, low frequency plateau with Pt, but with In-Ga and Ag lower 

frequency data would be required to see a (probable) low frequency plateau. The low 

frequency C' data exceed 10 nF. At higher frequencies, all those samples show a 

dispersion to lower C' values but insufficient data are available to see any high 

frequency plateau. 
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Figure 3-30: IS data for samples (4-7), (a), (b) Z* plot, (c) Z'' plot, (d) M'' plot and 

(e) C' plot at room temperature.  

In addition to the above which appear to be electrode material-dependent, Schottky 

barriers may also form at the sample-electrode interface associated with partial 

oxidation of the sample surface, similar to the Schottky barrier created at grain-grain 

contacts. 

 

 

 

 

 

Figure 3-31: Arrhenius plots of total conductivity data against reciprocal 

temperature.    
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Figure 3-32: Total resistivity as function of temperature.  

(C) Effect of oxygen partial pressure  

Impedance data for sample (7) quenched from 1400 °C were collected at 400 °C by 

changing the atmosphere in the sequence Air → N2 → O2 → Air. In Figure 3-33, (a) 

impedance, Z*, shows a single distorted semicircle, which indicates the existence of 

two electrical components as clearly shown by the corresponding Z''/M'' 

spectroscopic plots, Figure 3-33, (b).  

The values of the total resistance are lowest in N2. The total resistance decreases 

from  11.15×103 cm in O2 to 9.70×103 cm in N2.  

 

 

 

 

 

 

 

Figure 3-33: 400 °C IS data for sample (7) quenched from 1400 °C, (a) Z* plot, (b) 

Z'', M'' plots in different atmospheres. 
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Impedance data for sample (8) quenched from 1380 °C were collected at 400 °C by 

changing the atmosphere in the sequence O2 → Air → N2 → O2 → Air. The total 

resistance decreased from  1.21×106 cm in O2 to 9.01×105 cm in N2, Figure 3-

34 (a) but sample (8) has lower conductivity than sample (7). Figure 3-34 (b) shows 

that the low frequency capacitance is higher than the low frequency capacitance of 

SC sample, Figure 3-14 (b). 

 

 

 

 

 

 

Figure 3-34: 400 °C IS data for sample (8) quenched from 1380 °C, (a) Z* plot and 

(b) C' plot in different atmospheres. 

(D) Effect of application of a small dc bias voltage  

Impedance measurements for sample (7) quenched from 1400 °C illustrated a change 

in resistance values with application of a dc bias voltage, Figure 3-35 (a). 

Conductivity increased gradually  5 times with increasing dc bias voltage from 0 to 

10 V. The conductivity increase was reversible on removing the bias, Figure 3-35 

and 36.  

 

 

 

 

 

 

 
0 2 4 6 8 10

0

2

4

6

8

10

 

 

-Z
'' 

/ 
k


c
m

Z' / kcm

 0 V

 1 V

 2 V

 3 V

 5 V

 7 V

 10 V

 0 V 

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

 O
2

 Air

 N
2

 O
2

 Air

 

 

 

-Z
'' 

/ 
k


c
m

Z' / kcm

(a)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-11

10
-10

10
-9

10
-8

10
-7

 Air

 O
2

 Air

 N
2

 O
2

 Air

 

 

 

C
' /

 F
c
m

-1

Frequency / Hz

(b)



- 113 - 

 

 Figure 3-35: 400 °C IS data for sample (7) quenched from 1400 °C, (a) Z* plot, (b) 

Z'', M'' plots over the voltage range from 0 to 10 V, and then on removal of the dc 

bias. 

 

 

 

 

 

Figure 3-36: Rt versus voltage (V) at 400 C. 

The effects of dc bias on samples (7) and (8) were also similar, Figure 3-37 (a).  

 

 

 

 

 

 

 

Figure 3-37: 400 °C IS data for sample (8) quenched from 1380 °C, (a) Z* plot and 

(b) C' plot over the voltage range from 0 to 10 V, and then on removal of the dc bias. 

Sample (13) quenched from 1450 °C shows that bulk resistance increased gradually 

and reversibly with increasing dc bias voltage from 0 to 10 V confirming enhanced 

n-type conductivity, Figures 3-38.  

In order to determine whether impedance data were time-dependent on application / 

removal of a dc bias, results are shown in Figure 3-39 for sample (9) quenched from 

1400 °C. On application of a 10 V bias, the resistance decreased and gradually 

recovered its original value 240 minutes after removing the bias. 
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Figure 3-38: Z* plot at 50K for sample (13) quenched from 1450 °C before applying 

and after removing a dc bias of 10V with In-Ga electrodes. 

 

 

 

 

 

 

Figure 3-39: Bulk resistance at 300 °C for sample (9) quenched from 1400 °C before 

applying and after removing a dc bias of 10V at different times in air. 
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3.4 Discussion  

The three different milling processes used to investigate the effect of various 

preparation routes on undoped BT ceramics are pestle and mortar, roller ball milling 

and planetary ball milling. XRD indicated that all the samples were tetragonal single 

phase. All the observed peaks could be indexed on P4mm space group for all three 

sets of samples. The relative densities of all samples, calculated from pellet mass and 

dimensions were in the range 83.1 – 91.3 % of the value expected for fully dense 

pellets. The lattice parameters were in good agreement with the values found in the 

literature. SEM images of the etched surface for HM and PBM routes show an 

exaggerated grain growth which is very common behaviour in barium titanate 

ceramics during conventional sintering in a muffle furnace at high temperatures, i.e. 

≥ 1350°C and/or for long sintering periods [19, 93, 94]. This behaviour may be 

associated with twinning which is caused by losing a small amount of oxygen [81, 

86]; sample BM did not show an exaggerated grain growth. A notable porosity was 

observed for HM especially at some triple junctions between the grains.  

Raman spectroscopy was performed at room temperature for HM, BM and PBM 

ceramics. It shows clearly all the features reported for single crystals of BaTiO3 in 

the literature [76, 77]. 

Electrical properties of the HM, BM and PBM samples were measured by LCR and 

impedance spectroscopy. LCR data show that the maximum values of the 

permittivity for different synthesis routes were in the range ~ 1627- 8433 at the Curie 

temperature. The permittivity exhibits a sharp increase of the dielectric constant at 

the ferroelectric-paraelectric transition. 

There was a clear difference in ε′max values which may perhaps be attributed to the 

different ceramic density obtained. The value of ε′max for PBM was highest which 

may be associated with its higher density. The value of BM permittivity is lower than 

reported in the literature which is attributed either to the smaller grain size [63] or 

low densification and high porosity [9].The ε′max values for this project are in good 

agreement with other literature data [10, 15, 63, 66, 75, 95-99]. 
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IS was performed to establish the electrical properties of the grain and grain 

boundary regions of ceramics measured under varying conditions, i.e. sintering 

temperature, dc bias, atmosphere, and time. IS data were studied for two kinds of 

sample: (i) slow-cooled and (ii) quenched. For both, the effect of application of a 

small dc bias and varying pO2 were studied. The results can be interpreted using the 

following schemes, Figure 3-40: 

 

 

Figure 3-40: Schematic mechanisms for bulk/grain boundary and Schottky Barrier 

(SB) impedances. 
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In addition, the following features of R and C values help in the interpretation of 

impedance data: 

 The magnitude of capacitance values is a good indicator to distinguish 

between SB and bulk/grain boundary impedances.  

 If the resistance shows a PTCR effect, it is probably associated with a 

Schottky barrier impedance. 

 If Rb/Rgb is small then any additional large resistance may be associated with 

a Schottky barrier. 

 If the resistance depends on electrode material, then it is probably associated 

with a Schottky barrier impedance at the sample-electrode interface. 

Using these guidelines, the interpretation of the results reported here is as follows: 

Slow-cooled samples: 

The behaviour of slow cooled (SC) BaTiO3 was as expected, insulating at room 

temperature with resistivity > 10 Mcm; samples were electrically inhomogeneous 

and all showed a similar response. Two arcs were apparent in the impedance 

complex plane plots at temperatures ≥ 400 C; at lower temperatures, the resistance 

was too large to measure. In most cases, the data were analysed using a simplified 

equivalent circuit consisting of two parallel resistor-capacitor (RC) elements placed 

in series, RbCb , (or R1C1) representing the grains and RgbCgb , (or R2C2)  representing 

the grain boundary regions. For SC samples, the grain boundary arc was usually 

much larger than that of the bulk arc. 

The conductivity data of the three different milling routes for slow cooled samples 

showed no significant differences. This confirms that the conductivity results were 

not influenced by the milling procedure. The bulk EA was in the range  0.75-0.93 

eV, which is significantly less than half the band gap of BT,  3.0 eV, which would 

give rise to an expected intrinsic activation energy of  1.5 eV. Intergap states must 

exist, therefore, and could be associated with oxygen loss or the incorporation of 

accidental aliovalent impurities such as Al and Fe from the reagent-grade TiO2 raw 

material [91, 92].  
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The p-type conduction can be obtained as result of unintended frozen-in metal 

vacancies which can arise by heating samples at high temperature with impurities as 

small levels of contamination, such as Fe3+ or different impurities which usually 

exist with TiO2 or different reagents of valence < +4 on the Ti-sites [100-103]. These 

impurities can act as acceptor dopants and create oxygen vacancies for charge 

compensation which may be partially responsible as a source of p-type conduction 

[104].  

Oxygen vacancies are the origin of p-type conduction as they reduce oxygen loss 

during high temperature processing [105]. 

Grain boundary conductivity data have activation energies, EA  1.09 - 1.33 eV. 

Conductivity data show linear Arrhenius plots with ζ1 > ζ2 at lower temperature but 

at high temperatures  ≥ 650 C, ζ1  ζ2. This observation is in good agreement with 

literature data [49, 90, 106].  

IS data showed that both R1 and R2 decrease with dc bias and therefore both showed 

p-type conductivity behaviour. Similar decrease in R with dc bias has been reported 

for numerous examples of acceptor-doped (Ba, Sr, Ca)TiO3 [35, 47, 55]. There are 

several possible sources of holes. Frist is acceptor impurities such as Fe3+. Second is 

oxygen uptake from the atmosphere which receive electrons from lattice O2- ions to 

form O- ions [40]. 

The changes in R1 and R2 with dc bias were time-dependent and were reversible on 

removing the bias. Thermally-activated diffusion processes may be involved in 

controlling the rates as well as the ionisation / reformation of underbonded O
-
 ions.  

The dc bias results are in good agreement with those of the literature which was very 

recently also observed by Cann [47]. They found that both R1 and R2 decreased on 

application of a small bias and could not be associated with interfacial phenomena 

such as variation in Schottky barrier height. 

There is a partial disagreement over the results obtained here and those for the bulk 

material response reported by West et al. [49, 56].They observed only a small bias 

dependence for stoichiometric BaTiO3 but a more significant bias dependence for 

nonstoichiometric BaTiO3, both BaO-deficient and TiO2-deficient. The resistance of 

both bulk and grain boundary components was independent of applied voltage for 

stoichiometric BaTiO3 [49] and dependent on bias for nonstoichiometric BaTiO3, 
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showing time dependent, non-ohmic, low-field characteristics at temperatures >  

200 C. 

Only a small dc bias effect was observed as well with isovalent dopants with partial 

replacement of Ba on the A sites by Ca. This may be because isovalent dopants do 

not give rise to departures from local electroneutrality [50].       

Although the results reported in this chapter were on nominally stoichiometric  

BaTiO3 , there are various ways in which nonstoichiometric BT can be formed such 

as contamination by the milling media and stoichiometry variations during 

calcination, associated with Ba loss. Barium loss could occur due to reaction with the 

platinum containers. Quenched samples from elevated temperatures are often 

affected by a slight oxygen nonstoichiometry, while slow-cooled samples show that 

gradients of oxygen concentration might lead to core–shell structures [49]. Oxygen-

deficient samples could be obtained at high-temperatures depending on pellet density 

and atmosphere.  

P-type behaviour may appear due to the presence of impurities or dopants that may 

have been introduced, deliberately or inadvertently, into the sample. 

Nonstoichiometric BT could be regarded as acceptor-doped in which the dopants are 

zero-valent cation vacancies (titanium or barium vacancies) which require some 

adjacent oxygen vacancies to achieve charge balance as shown by the following 

defect reactions:  

                 
      

        
      

             (3-6) 

                                or 

                 
       

      
      

                 (3-7) 

The change in conductivity with dc bias of the grain boundary component was much 

higher than that of the bulk: Rgb with dc bias was  21.8% of the original value 

without dc bias whereas for Rb it was  96.2%. This behaviour is qualitatively 

similar to that observed by West et al. [49] for their solid state sample. A small 

decrease for R1 was observed whereas, R2 reduced much more than R1 with dc bias. 

In contrast, their sol–gel sample showed very little bias-dependence: R1 was mostly 

unchanged and R2 showed a much smaller decrease compared to the solid state 

sample. 



- 120 - 

 

A qualitatively similar reduction in resistance of both bulk and grain boundary 

regions occurs on increasing the oxygen partial pressure in the surrounding 

atmosphere, which shows that conduction is p-type, consistent with literature data 

obtained by Sinclair et al. and Cann et al. [49, 90, 104, 106, 107]. 

 

The resistance decrease is reversible on reducing the oxygen partial pressure. BaTiO3 

picks up oxygen at the surface by the nominal mechanism: 

 

 
 O2 (g) →     

  + 6  +    
   +    

              (3-8) 

Or if acceptor-type impurities are present as: 

 

 
 O2 (g) +   

   →    
  + 2                                 (3-9) 

Increasing pO2 is associated with more O2 molecules absorbed at the surface. The 

molecules ionise by trapping electrons. Electrons are withdrawn from the sample to 

form the O2- ions and holes are therefore created. In the literature, the source of the 

holes is usually taken to be impurities such as Fe3+ which ionise to Fe4+ but more 

recently, it has been suggested that underbonded O2- ions may ionise [108]. The 

number of mobile positive hole carriers was increased as a result on removal of 

electrons. 

This behaviour is the reverse of the expected behaviour for barium titanate where 

oxygen removal gives rise to electron injection into the Ti 3d orbitals, n-type 

conduction and a reduction in resistance.  

Capacitance data show a bulk capacitance value of 20 pFcm-1 which is a typical 

value of BaTiO3 at temperature > Tc with relatively high permittivity, εr of  226. A 

poorly-resolved second capacitance of 9 nFcm-1 was observed at low frequency 

which was 20–30 times the value of the high frequency capacitance and is attributed 

to a grain boundary capacitance. The difference in magnitudes of Cg and Cgb are 

typical of poorly-sintered ceramics. Neither C1 nor C2 showed much change with 

either dc bias and pO2. Data for C2 were obtained only at high temperatures and 

therefore, it is not known whether C2 is ferroelectric or nonferroelectric.  

The effect of sintering temperature was also studied. The increase of sintering 

temperature increased the conductivity of grain and grain boundary, probably as a 
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result of extra loss of oxygen at higher temperature. Reoxidation rates are sensitive 

to cooling conditions however and can change the conductivity dramatically.  

In summary, SC BT is insulating with p-type behaviour that could be associated with 

a slight departure from a Ba:Ti ratio of 1:1, caused by possible Ba loss during 

sintering. The holes may be associated with underbonded oxide ions or unavoidable 

impurities such as Fe3+. 

Quenched samples: 

Many samples made by HM, BM and PBM were completely insulating at RT for 

both SC and Q. Some Q samples however showed a much higher ζ with lower 

density, as a consequence of loss of oxygen at high temperatures which was 

preserved during quenching. The loss increases with quench temperature. Electrons 

are liberated and enter the crystal lattice by occupying the 3d orbitals on Ti. The high 

conductivity is associated with partial occupancy of Ti 3d orbitals. Secondly, the low 

frequency C' data indicate a plateau that is approximately 10 times greater in Q 

samples, > 10 nF, compared with  5 nF for SC samples. The main impedance of Q 

samples may therefore contain a Schottky barrier impedance. In particular, the low 

frequency impedance arc and the low frequency C' plateau may be attributable to a 

Schottky barrier with values denoted as R3 and C3.  

For some Q samples, a Schottky barrier impedance was observed and the Schottky 

barrier height was rather different for In-Ga, Ag and Pt electrodes and the associated 

resistance R3 was largest with Pt. The C3 value represents the thickness of the 

depletion layer associated with the Schottky barrier, which is greatest for In-Ga and 

Ag whereas the barrier height R3 is greatest for Pt. 

Total conductivity (ζt) data for samples quenched from 1400 C with In-Ga and Ag 

electrodes show a PTCR effect on heating through the Curie temperature. This also 

is an indication that the resistance responsible is associated with an interfacial 

voltage barrier such as a Schottky barrier.   

The Schottky barrier is a voltage barrier accompanied by charge transfer across an 

interface [51]. Schottky barriers may form either at grain boundaries or at the sample-

electrode contacts. Firstly, they may form at grain boundaries as a result of partial 

oxidation (during cooling/annealing) of reduced samples [109]. An Internal Barrier 
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Layer Capacitor (IBLC) effect is a result of this oxidation. The barrier layers act as 

an extrinsic source of impedance [45, 110-112].The potential barrier is produced at the 

grain boundary by electron trapping at surface acceptor states which are associated with 

either second phases or interfacial states. When the reduced sample undergoes partial 

oxidation, oxygen molecules pick up electrons and dissociate. The surface becomes 

negatively charged creating a capacitor with a positively-charged depletion layer at 

the grain surface. Thus, partial oxidation is required to form Schottky barriers of this 

nature at grain boundaries.  

Secondly, Schottky barriers may form at the semiconducting sample surface and 

metal electrode interface, which is associated with the energy mismatch between 

the Fermi levels of the sample and electrode metal, ie the difference between the 

metal electrode work function and semiconductor electron affinity [109, 113-116], 

leading to spill-over of charge carriers between sample and electrode; one side 

becomes negative and the other side becomes positive. Generation of a depletion 

layer then occurs at the sample surface leading to a voltage barrier, or Schottky 

barrier [51]. Many factors can change the sample-electrode effect such as: the work 

function, nature of the metal electrode and the existence of interface states at the 

sample surface [109, 117, 118].  

The bulk conductivity was too high to measure or to be separated from the total 

conductivity for the sample sintered at 1400 C and instead, Z* plots gave only the 

total resistance. This appeared to be dominated by the Schottky barrier whereas, the 

sample sintered at 1350 C and lower showed two components. For quenched 

samples, the M'' spectrum was dominated by a high frequency incline with fmax > 

107 Hz as the peak maximum representing the sample bulk/grain boundary is off-

scale and the maxima occurs outside the measured frequency range.  

In-Ga electrodes are a well-known electrode material to provide an ohmic contact 

[46, 119]. It has been suggested that using In-Ga as contact is a useful way to avoid 

Schottky barrier formation at the electrode-sample interface [46]. The similar results 

with all three electrodes may show that a grain boundary-related Schottky barrier is 

dominant at low frequency, especially since In-Ga electrodes are considered to yield 

ohmic contacts (negligible electrode resistance) when used in samples with 
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semiconducting BaTiO3 that does not form a Schottky barrier at the ceramic-

electrode interface [46]. 

A sample-electrode Schottky barrier effect was apparently not observed as no 

difference was observed useing different types of electrodes such as In-Ga and Ag. 

Since this result is not associated with an interface, as is commonly observed with a 

Schottky barrier at a sample-electrode contact, it is sample-related and probably 

related to oxidation of sample surfaces, either at the pellet outer surface or internal 

grain boundaries. 

There may be two kinds of gb: with/without a SB. 

The low frequency capacitance C' is different for SC and Q samples. For SC, 1350 

C at room temperature, C1=1.02×10-10 Fcm-1 and C2=1.33×10-10 Fcm-1 ; for Q, 1350, 

C1=3.11 ×10-10 Fcm-1 and C2=2.5 ×10-8 Fcm-1. The C value of the low frequency 

component for the Q sample is much higher than for SC which shows that the region 

responsible is a much thinner effect and is therefore attributed to a Schottky barrier, 

C3. 

The application of dc bias is standard practice during impedance measurements 

which usually provides a good way to separate Schottky barrier-type effects from 

material-related sample impedances. The application of different atmospheres (air, 

oxygen and nitrogen) was also studied to clarify dc bias results especially since the 

change in resistance with atmosphere for some samples can be interpreted in two 

ways. For the Q sample, RT  appears to demonstrate predominantly n-type behaviour 

but, the Schottky barrier height may also be sensitive to pO2, depending on the 

mechanism of Schottky barrier formation. The conductivity increase with decreasing 

oxygen partial pressure is probably due to low level of oxygen loss, accompanied by 

partial reduction of Ti4+ to Ti3+ ions [6] according to the defect model by the 

following idealized reduction reaction, which is displaced to the right hand side in 

low pO2 [91, 100]: 

        
       

        
 

 
             (3-2) 

There was a clear difference in behaviour between dc bias and pO2 results for the 

sample quenched from 1380 and a slow-cooled sample. For the Q sample, Rt 

decreased with increasing dc bias whereas it decreased in a reducing atmosphere. By 
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contrast, the resistance of SC samples decreased with increasing dc bias but 

increased in a reducing atmosphere. Therefore, further investigation was carried out 

on different samples to try and clarify these differences in behaviour.  

The main reason for the differences appears to depend on whether the main 

impedance component is a Schottky barrier or is a true sample resistance. From 

previous work on doped BT [54, 56], n-type materials show a decrease in 

conductivity with either increasing pO2 or dc bias; p-type materials show the 

opposite effect with an increase in conductivity with either increasing pO2 or dc bias; 

intrinsic materials appear to show little or no effect. For Schottky barriers, the barrier 

height and therefore the resistance decreases with dc bias; the effect of pO2 on 

Schottky barriers is less clear and depends on whether O2 adsorption/desorption 

affects the barrier height. This in turn, depends on whether the Schottky barrier is 

caused by a Fermi level mismatch at the electrode-sample interface, or partial 

oxidation at grain-grain interfaces. 

 

It was important to quench samples from different temperatures to compare their 

results with that of the sample quenched from 1380 °C. This investigation confirmed 

that there were different conduction behaviours between samples quenched from  ≥ 

1380 °C and   1380 °C. Early results had shown that Q temperature has a big 

effect. The sample quenched from 1400 °C showed a high conductivity and apparent 

n-type behaviour. After that, quenching from lower temperature (1380 °C), still gave 

n-type behaviour but with lower conductivity. P-type conductivity was observed for 

samples quenched from  < 1380 °C. 

The distinction between n-type, p-type and the Schottky barrier effects can be 

observed with different quench temperature. There are two possibilities: 

1- SC samples and Q samples from  < 1380 C clearly show p-type behaviour 

whereas, n-type behaviour was observed for some Q samples from  ≥ 1380 

C whereas, was p-type for others.  For example, Figure 3-41 shows the 

conductivity and activation energy of samples quenched from 1200 and 1400 

C. The conduction mechanism is different. Quenching from 1400 C shows 

much higher conductivity, lower activation energy and therefore n-type 
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behaviour. P-type behaviour was observed for sample quenched from 1200 

C.   

2- Some Q samples from  ≥ 1380 C are dominated by Schottky barrier 

because the obtained behaviour is expected for Schottky barrier at grain 

boundary. Schottky barrier will decrease with bias. If the Schottky barrier is 

at grain boundary, this is a slow process because a Schottky barrier at grain 

boundary forms only when oxidation occurs, whereas with no oxidation, the 

Fermi level is the same and there is no Schottky barrier. With oxidation, 

oxide ions are trapped and the depletion layer gives rise to the Schottky 

barrier. Schottky barrier at sample surface could be observed with partial 

oxidation which is different from the Schottky barrier of metal contacts. 

 

 

 

 

 

 

Figure 3-41: Arrhenius plots of Rt for samples (5) quenched from 1400 °C and (12) 

quenched from 1200 °C. 

For p-type conduction, the enhanced conductivity is controlled by the    ions 

especially with immobilisation of the ionised electrons at sample surfaces which is 

associated with changing the equilibria between various oxygen species. Therefore, 

the driving force for ionisation of underbonded oxide ions was provided by the dc 

bias.  Dynamic equilibrium in the following sequence of successive steps may 

potentially occur especially at oxide surfaces, involving absorbed oxygen [35, 52, 

53, 55, 58, 59]: 
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Several stages are involved in the equilibria shown in (3-10). Each of stages 2, 3, and 

4 involves electron transfer. These steps may lead to change in the conductivity. The 

existence of partially reduced oxygen species was observed at sample surface, such 

as the superoxide ion   
  [120]. 

Step 1 shows the adsorption of oxygen molecules at the sample surface. This could 

cause electron traps; the superoxide ion   
  can form as result of picking up electron 

from the sample, step 2. The peroxide ions,   
  can be formed as result of picking up 

a second electron by the superoxide ions, step 3. The peroxide ions,   
   might cause 

dissociation to form   , step 4. The     ions can be formed, step 5 as result of step 

4 which may be associated with some stability at sample surface in an under-bonded 

environment or picking up additional electrons.  

It is well-known that at high temperatures, the change in equilibrium conditions such 

as reducing pO2 leads to change from p-type to n-type for pure and doped BaTiO3 

[121, 122]. 

The change of the conduction type from p-type to n-type or the appearance of 

Schottky barrier effect was observed for some samples above 1380 °C which is 

influenced by oxygen loss. Dc bias data show that the resistance decreased with 

increasing the voltage which is probably as result of Schottky barrier effect. No clear 

oxygen deficiency was observed at temperatures below 1380 °C. O2 molecules are 

adsorbed onto the sample surface with creation of O
-
 species that are considered to 

be the principal source of holes. The adsorbed oxygen is observed either with slow 

cooled samples or on annealing samples at lower temperatures. An increased 

conductivity was observed with a decrease in annealing temperature and is attributed 

to an increase in hole concentration; this increase is less than for samples of BT that 

were acceptor-doped BT that were on the Ti site [49, 50, 53-56] as result of 

increasing the high concentration of underbonded oxide ions.  

The conductivity data were studied either below or above TC. Conductivity data 

show two linear Arrhenius plots either side of TC as result of PTCR effect and their 

temperature dependences are clearly different. 

Conductivity (ζb , ζgb and ζt) data for a sample quenched from 1300 C were also 

studied for in air and N2, showing p-type conduction since air conductivity was 

larger than N2 conductivity which is consistent with the literature data [90, 103].  
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ζb data were influenced by the atmosphere, showing that conductivity in air is larger 

than in N2 by  half order of magnitude where ζgb data are significantly insensitive to 

changing the atmosphere. 

The bulk and grain boundary conductivity changed with temperature. At 400 C, ζg 

> ζgb either with air or N2. ζgb  ζb at  750 C in air and  700 C in N2 . At 900 C, 

ζgb > ζg either with air or N2. 
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3.5 Conclusions 

The electrical properties of undoped-BT for all routes are strongly dependent on the 

sintering temperature, cooling rate, dc bias and atmosphere (pO2). 

All slow cooled samples are electrically inhomogeneous by presenting two 

components corresponding to the bulk and grain boundary regions. 

Different milling routes showed similar conductivity data. No effect of milling on 

conductivity was observed. 

Many Q samples made by HM, BM and PBM were completely insulating at RT but 

conductive material was observed with some quenched sample which is associated 

with loss a small amount of oxygen with lower density. 

Oxygen-deficient sample quenched from 1380 C shows n-type behaviour or 

Schottky barrier effect with increasing the conductivity and a decrease in activation 

energy whereas, p-type was observed for sample quenched from below 1380 C and 

sometimes from above 1380 C or slow cooled as samples show a decrease in 

resistance with increasing dc bias voltage and an increase in resistance with 

decreasing pO2. The decrease in conductivity with decreasing pO2 is consistent with 

p-type conduction mechanism. 
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Chapter 4: Phase assemblages, polymorphism and solid 

solutions of Y-doped BaTiO3 

4.1 Introduction  

In most applications, BaTiO3 is rarely used in its pure form [1]. The electrical 

properties can be modified by adding a small amount of dopants. The perovskite 

structure of BaTiO3 has received a wide range of substitution. Rare-earth elements 

have received much attention, since the conductivity and electrical degradation in 

operating devices can be controlled, in particular, by those cations [2-7].  

Doping is useful to tailor different properties of the material to particular 

applications [8, 9]. 

The properties of barium titanate doped with rare-earth ions depend on the site of 

substitution, Ba/Ti ratio, dopant solid solubility limit and charge compensation 

mechanism. When BT is doped with a rare earth metal (such as La3+,Y3+or Nd3+), n-

type semiconductivity is often obtained. With such doped materials large increases in 

the specific resistivity are found as the temperature increases above TC. This 

behaviour is known as the Positive Temperature Coefficient of Resistivity (PTCR) 

[10]. The PTCR phenomenon, which has been explained by the Heywang and Jonker 

model [11, 12], can be attributed to the existence of a potential barrier (θo) at the 

grain boundary as a result of electron trapping at interface acceptor states [13, 14]. 

The solid solution limit of a dopant ion in the BaTiO3 lattice is basically dependent 

on its possible incorporation at either Ba or/and Ti sites, the (Ba/Ti) ratio and the 

possible charge compensation mechanism(s) [15]. 

Rare-earth metals possess the ability to reduce the temperature dependence of the 

relative dielectric constant as well as the propensity to decrease the dissipation factor 

of dielectric ceramics [16-18]. Trivalent rare earth cations have moderate atomic 

radii between those of Ba2+ (1.61 Å, 12 coordination) and Ti4+ (0.61 Å, 6 

coordination) ions. Whether rare earth cations occupy Ba- and/or Ti-sites depends on 

the ionic radii of the dopants. 

This chapter aims to investigate the crystal chemistry and electrical properties of Y-

doped BaTiO3 to determine the possibility of formation of an extensive range(s) of 
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solid solution and the polymorphism of Y-doped BaTiO3. Two solid solution joins: 

(Y-B) ie titanium site substitution accompanied by oxygen vacancies and (Y-AB) 

self-compensation are studied in detail and the resulting electrical properties 

measured with particular emphasis on establishing the conditions under which 

semiconductivity occurs and whether a resistivity minimum occurs with increasing 

Y content.  

4.1.1 Effect of yttrium (Y) as a dopant in barium titanate  

Yttrium is a rare earth element that has a cation of intermediate-size [18-20]. Yttrium 

oxide is an effective additive for improving the insulation resistance of BaTiO3-

based dielectric materials used in manufacturing multilayer ceramic capacitors 

(MLCC) with Ni electrodes [21-24]. The Y3+ dopant leads to enhanced temperature 

stability of BT dielectric [25] and inhibits grain growth and prevents exaggerated 

grain growth in PTCR ceramics, when the Y3+ species concentration is above a 

certain threshold level [26]. Y plays a critical role in shifting the Curie temperature 

of BT. The Y3+concentration changes the lattice parameters [4, 27]. The reduction of 

sinterability of BT was observed by adding Y because Y2O3 has a high melting point 

(2,425 °C) [28, 29].The general sintering temperatures were in the range  1250-

1300 C even when some other oxide additives are added [24, 30]. 

When using a rare-earth element as a dopant, small rare-earth ions tend to occupy the 

B-site while large rare-earth ions occupy the A-site [18, 31-33]. Rare-earth elements 

of  intermediate size, such as Y3+ can occupy both sites with variable partitioning for 

each site [18, 34] . For a long time it has been believed that Y can only occupy Ba or 

Ti sites at low concentrations  < 3 at.% even with excess BaO or TiO2 [35, 36]. 

Randall et al mention that Y is amphoteric and is able to occupy both A and B sites 

but the higher solid solubility is on the Ba site [37]. 

Y is reported to dope BaTiO3 on either A or B sites and therefore act as donor or 

acceptor [27, 38]. It is reported to act as a donor in the presence of excess TiO2 

because an excess of the host cations (Ti4+) causes substitution of Y3+ for Ba2+. Y 

can act as an acceptor by substituting into the B site when excess BaO is present. In 

this case, the ionised oxygen vacancy that is created compensates for the reduced 

charge from Y3+ [20, 39]. The substitution process depends on the Ba:Ti ratio and 

the solubility of dopants [19, 34, 38, 40, 41]. Processing conditions such as sintering 
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atmosphere and oxygen pressure are believed to influence the substitution 

mechanisms  [20]. 

For Y3+ the coordination number in Y2O3 is 7 whereas the coordination number of Y 

cations in the fluorite structure (such as the case of Y2O3 with oxygen vacancies) is 

equal to 8. Since the coordination preference of Y is more similar to that of Ti than 

to Ba, Y prefers to occupy the Ti-site when BaTiO3 is sintered at low temperature 

[28].    

In Table 4-1, the ionic radii of Ba,Ti and Y are indicated [35]. The radii of rare-earth 

elements in 12-coordination were estimated by extrapolation using the relationship 

between ionic radius and coordination number [18].  

 

Table 4-1: Effective ionic radii of Ba2+, Ti4+ and Y3+ [32, 35]. 

 

Ion 

Ionic radius (Å) 
 

6 coordination 12 coordination 

Ba
2+

  1.610 

Ti
4+

 0.605  

Y
3+ 0.900 1.234 

 

There is an adjustment of cation or oxygen numbers to preserve the charge balance, 

which is known as an ionic mechanism while with an electronic mechanism, preserving 

electroneutrality is associated with adding electrons to the crystal lattice or removing 

electrons from the crystal lattice.  

The method of incorporating Y into BaTiO3 is believed to significantly determine its 

electrical properties [42]. In the case of Y2O3 incorporation with different 

compensation methods [41], Lewis and Catlow [43] have shown that electron 

compensation for Ba site occupancy is more favourable since the diffusion of Ba 

occurs slowly. In the case of Ti site occupancy, the compensation of oxygen vacancy 

is dominant. In some instances, self-compensation might occur since both sites are 

occupied [39].  

The existence of charge imbalance, due to the differences in valence, is compensated 

via several mechanisms [38]. In the Kröger-Vink notation, and when Ba2+ is 

substituted, three mechanisms might arise,  demonstrated by (eq’ns 4-1 – 4-3) [22, 

41].      
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On the other hand, when Ti4+ is substituted, the two mechanisms that might occur are 

as shown in Eq4 and Eq5.   

           
 

 
           

       
     

            (4-4) 

                
     

        
           

                     (4-5) 

It is also possible that all of these mechanisms (demonstrated by eq’ns 4-1 – 4-5) 

occur simultaneously. However, depending on conditions such as overall 

composition, temperature and partial pressure of oxygen, one of the mentioned 

mechanisms will dominate [38, 44]. The dominance of a certain mechanism will 

usually determine the electrical properties of the doped material. 

Self-compensation does not need any charge compensation mechanism as follows: 

                  
     

            
            (4-6) 

The process of substituting Y at the Ba sites (where Y behaves as a donor dopant, 

equation 4-1, when Y concentration is less than 0.5 at .%) can be used to modify and 

tailor the PTC effect in the BaTiO3 semiconductor [41, 45]. The reduction from Ti4+ 

to Ti3+ occurs because the positive charge obtained from Ba substitution 

compensates for the charge difference between Ba2+ and Y3+, resulting in the 

production of n-type semiconducting behaviour. Alternatively, compensation can 

result from the cation vacancies [34, 39, 43]. 

The site of incorporation of Y3+ dopants into BaTiO3 and the mechanism of charge 

compensation has been the subject of many studies, but there remains a lack of 

agreement regarding the final phase assemblage, dielectric properties and 

polymorphic phase transition region, especially with contradictory results in the 

literature. Therefore, further investigations are required to study the effect of various 

processing conditions to achieve better understanding of the correlation of the phase 

diagram results, charge compensation mechanisms and electrical properties. 

 



- 144 - 

 

4.2 Experimental Procedure  

Yttrium-doped BaTO3 powder was synthesized using the solid state method with 

three sample mixing methods: HM, BM and PBM and with compositions located on 

the acceptor (A), donor (D) and self-compensation (SC) joins. BaCO3, TiO2 and 

Y2O3 were used as reactants. Compositions were heated at 1350-1550 °C in air for 

several days with daily regrinding. Samples were finally heated at various 

temperatures and for different times and either slow-cooled (SC) or quenched (Q) to 

room temperature. 

The ternary phase diagram of the yttrium-doped BaTO3 solid solutions limit has 

been investigated by XRD, and lattice parameters determined.  

Electrical properties were studied using LCR meter and IS. This chapter represents 

results for doping levels ≥ 1 %. 
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4.3 Results 

4.3.1 Crystal structure and phase diagram study of Y-doped BaTiO3  

All feasible doping mechanisms involving electronic and ionic compensation in Y-

doped BaTiO3 are listed in Table 4-2 and their location is marked on the ternary phase 

diagram, Figure 4-1, which is a ternary section of the quaternary system Ba-Ti-Y-O. 

The measurements presented here are based on three ideal mechanisms. The results 

are divided into three types of doping; acceptor, self-compensation and donor doping 

as doping mechanism (3), (1) and (2), respectively. 

Table 4-2: Five plausible categories of mechanisms for Y-doped BaTiO3. 

 

 Doping 

mechanism 

Structural 

consequences 

Formula End-member 

(real or 

hypothetical) 

 

1 

Stoichiometric 

double doping, 
   

 +    
  

Retain ABO3 

stoichiometry 

 

Ba1-yTi1-yY2yO3 

 

Y2O3 

 

2 

Donor doping, 

electronic 

compensation with 

Ti
3+

 

Retain ABO3 

stoichiometry 

 

Ba1-vYvTiO3 

 

YTiO3 

3 Acceptor,    
  Oxygen vacancies, 

   
   

BaTi1-xYxO3-x/2 BaYO2.5 

4,5 Donor doping,    
  Cation vacancies 

(      
  or    

  ) 

Ba1-zYzTi1-z/4O3 or 

Ba1-3ωY2ωTiO3 

YTi3/4O3 or 

Y2/3TiO3 

 

 

 

 

 

 

 

Figure 4-1: Schematic ternary phase diagram showing possible compensation 

mechanisms for Y-doped BaTiO3. 
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1. Self-compensation mechanism, Ba1-yTi1-yY2yO3 

Self-compensation occurs when trivalent dopants substitute on both Ba2+ and Ti4+ 

sites in the same amounts (Y-AB). It prevails when Ba/Ti=1. No other charge 

compensation mechanism is required even with existence of a difference in the 

valence between Y3+ and both Ba2+ and Ti4+. Their effective charge will not affect 

the electroneutrality condition and the material remains stoichiometric as ABO3. 

XRD results are shown for y = 0.01, 0.025, 0.05, 0.075, 0.10, 0.125, 0.15, 0.20 and 

0.25 in Figure 4-2, no phases other than tetragonal and cubic BT were detected for y 

≤ 0.075. The diffraction patterns for y < 0.05 were fully indexed on the P4mm space 

group and were consistent with the tetragonal polymorph of BT. Peaks for y = 0.01, 

and 0.025 showed splitting. At y = 0.05 a transformation from tetragonal to (pseudo) 

cubic symmetry was observed and the peak splitting disappeared. 0.05  y  0.075 

were single phase and cubic with space group Pm3m. For y > 0.075, a second phase 

was observed. Y2Ti2O7 was identified at y = 0.10. Another phase Ba3Ti2YO8.5 was 

observed at higher y.  

From the measured XRD patterns, the calculated lattice parameters and c/a ratios as 

a function of y are shown in Figure 4-3 (a). The (c/a) ratio decreases and the unit cell 

volume increases with y, Figure 4-3 (b, c). 

By comparing the various results, it is concluded that the solid solution limit on the 

(SC) join is at y = 0.075.   

 

 

 

 

 

 

 

Figure 4-2: X-ray diffraction patterns for compositions  Ba1-yTi1-yY2yO3 sintered at 

different temperatures in air. 
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Figure 4-3: Variation of (a) lattice parameters, (b) tetragonality and (c) unit cell 

volume as a function of y. 

2. Donor doping mechanism, Ba1-vTiYvO3 

In this mechanism, Y ions occupy the Ba site (Y-A) together with electronic 

compensation. Y3+ behaves as a donor when Ba/Ti < 1.  

XRD data for v= 0.01, 0.015, 0.02 and 0.10 are shown in Figure 4-4. No secondary 

phase was found over the range 0 < v < 0.015. Formation of secondary phases of 

(Ba6Ti17O40) and (Y2Ti2O7) was observed at higher v. It therefore appears that the 

solid solution limit on the (D) join is at v = 0.015.  

The lattice parameters, the tetragonality and unit cell volume are plotted as a 

function of Y content in Figure 4-5. Both a-axis and c-axis increase with increasing 

Y, and the tetragonality slightly increases from 1.00976 to 1.01103. Figure 4-5 (c) 

illustrates that the unit cell volume increased with increasing Y content (v). 
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 Figure 4-4: X-ray diffraction patterns for compositions Ba1-vTiYvO3 sintered in air. 

 

 

 

 

 

 

 

 

 

 

Figure 4-5: Variation of (a) lattice parameters, (b) tetragonality and (c) unit cell 

volume as a function of nominal yttrium content (v) in Ba1-vYvTiO3 samples. 
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3. Acceptor doping mechanism, BaTi1-xYxO3-x/2 

In this mechanism, the acceptor doping is compensated by oxygen vacancies as a 

result of Y ions occupying the Ti site (Y-B). Y3+ behaves as an acceptor when Ba/Ti 

> 1.  

The aims of the present section have been to resolve the discrepancies between 

different reported results since different solid solution limits and phases are reported. 

The transition between cubic and hexagonal polymorphs was investigated by 

studying samples in isothermal steps on both heating and cooling cycles followed by 

slow cooling to room temperature. Initial experiments were performed to establish 

essential conditions to produce complete chemical reaction and an equilibrium state. 

The behaviour was studied by two ways in which samples were in contact with 

platinum or placed on sacrificial powder. 

The main XRD results for pellets in contact with platinum are listed and summarized 

in Table 4-3. 

Table 4-3: Summary of the main X-ray results for compositions BaTi1-xYxO3-x/2, 

where x = 0.02 (BTY02), 0.05 (BTY05) and 0.10 (BTY10) prepared for the pellet in 

contact with platinum. 

Composition Temperature Time XRD results 

 

 

 

BTY02 

1250 12 hours Tetragonal/cubic 

1300 1 day Tetragonal/cubic 

1400 1 day Tetragonal/cubic 

1500 1 day Mixture T/C+H 

1525 2 hours Mixture T/C+H 

1550 2 hours Mixture T/C+H 

15251400  (reversible) 1 day Tetragonal/cubic 

 

 

BTY05 

1400 5 days Tetragonal/cubic 

1500 1 day Tetragonal/cubic 

1525 2 hours Mixture T/C+H 

1550 2 hours Mixture T/C+H 

 

 

BTY10 

1300 2.5 days Tetragonal/cubic 

1500 1 day Hexagonal 

13001550 2 hours Tetragonal/cubic 

15501300  (reversible) 2.5 day Tetragonal/cubic 

 

Results for samples heated at 1450–1550 C in contact with platinum, showed that 

equilibrium usually was reached only very slowly and with difficulties. Initial XRD 

results are shown for x = 0.02, 0.05 and 0.10 in Figure 4-6. It can be seen that the 
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temperature of the cubic-hexagonal transition appears to increase with Y content. For 

x = 0.10, transformation from hexagonal to the cubic polymorph was obtained from 

1500 to1400 C with heating times of 2.5 days. Full reversibility was obtained for x 

= 0.02, which transformed from tetragonal to a mixture of phases at 1500 C and 

then converted back to tetragonal at 1400 C.  

 

Figure 4-6: XRD diagram of BaTi1-xYxO3-x/2, measured at room temperature for 

samples sintered at different temperatures for pellets in contact with platinum for 

HM samples. t/c= tetragonal/cubic and h= hexagonal. 

The representative XRD results for pellets placed on sacrificial powder in platinum 

containers x = 0.02, 0.03, 0.05, 0.07, 0.09, 0.10, 0.12 and 0.15 are summarized in 

Table 4-4.  

The polymorphic changes obtained at different compositions were found to be not 

fully reversible on heat/cool cycles and therefore appear not to represent 

thermodynamic equilibrium. 

Table 4-4: Summary of significant X-ray results for pellets placed on sacrificial 

powder on Pt foil.   

Composition Temperature Time XRD results 

  BTY(0.0001) 1350 12 hours Tetragonal 

  BTY(0.0003) 1350(q) 12 hours Tetragonal 

  BTY(0.0005) 1350(q) 12 hours Tetragonal 
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BTY(0.001) 1350 12 hours Tetragonal 

BTY(0.01) 1450 24 hours Tetragonal 

 

 

BTY02 

 

 

 

1200(q) 24 hours Tetragonal/cubic 

1250(q) 24 hours Tetragonal/cubic 

1300 24 hours Tetragonal/cubic 

1350(q) 24 hours Tetragonal/cubic 

1400 2 days Tetragonal/cubic 

1400(q) 12 hours  Tetragonal/cubic 

1400(q) 24 hours  Tetragonal/cubic 

1450 12 hours Tetragonal/cubic 

1450(q) 24 hours Tetragonal/cubic 

1500 12 hours Mixture T/C+H 

1525 12 hours Mixture T/C+H 

1550 12 hours Mixture T/C+H 

1550 88 hours Mixture T/C+H 

1550 100 hours Mixture T/C+H 

BTY03 (PBM) 1400(q) 15 hours Tetragonal/cubic 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

BTY05 

1200(q) 24 hours Mixture T/C+H 

1250(q) 24 hours Mixture T/C+H 

1250(q) 100 hours Tetragonal/cubic 

1300 24 hours Mixture T/C+H 

1350 12 hours Mixture T/C+H 

1350(q) 24 hours Mixture T/C+H 

1350(q) 24 hours Tetragonal/cubic 

1400 4 days Mixture T/C+H 

1400 12 hours Mixture T/C+H 

1400(q) 24 hours Mixture T/C+H 

1400(q) 24 hours Tetragonal/cubic 

1450 12 hours Mixture T/C+H 

1450 24 hours Mixture T/C+H 

1450 1 hour Mixture T/C+H 

1450(q) 24 hours Mixture T/C+H 

1450(q) 24 hours Tetragonal/cubic 

1500 12 hours Hexagonal 

1500 12 hours Mixture T/C+H 

1500(q) 24 hours Mixture T/C+H 

1525 12 hours Mixture T/C+H 

1550 12 hours Tetragonal/cubic 

1550 100 hours Mixture T/C+H 

BTY05+2%TiO2 1500 12 hours Pseudo cubic 

BTY05+2%SiO2 1500 24 hours Tetragonal 

BTY05+2%SiO2 1500 2.5 days Tetragonal 

BTY07 (PBM) 1400(q) 15 hours Tetragonal/cubic 

 

BTY09 (BM) 

1350(q) 12 hours Mixture T/C+H 

1515 12 hours Mixture T/C+H 

1550 12 hours Mixture T/C+H 

1550 43 hours Mixture T/C+H 

1550 100h Cubic 

    

 

 

 

1200(q) 24 hours Mixture T/C+H 

1250(q) 24 hours Mixture T/C+H 

1250(q) 100 hours Mixture T/C+H 

1300 24 hours Mixture T/C+H 
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BTY10 

1350 12 hours Mixture T/C+H 

1350(q) 24 hours Mixture T/C+H 

1400 12 hours Mixture T/C+H 

1400(q) 24 hours Mixture T/C+H 

1450 1 hour Mixture T/C+H 

1450 12 hours Mixture T/C+H 

1450 24 hours Mixture T/C+H 

1450(q) 24 hours Mixture T/C+H 

1500 12 hours Mixture T/C+H 

1500 1 day Hexagonal 

1500(q) 24 hours Mixture T/C+H 

1525 12 hours Mixture T/C+H 

1550 12 hours Mixture T/C+H 

1550 88 hours Mixture T/C+H 

1550 100 hours Mixture T/C+H 

BTY10 + 2%TiO2  (BM) 1500 12 hours Cubic 

BTY10 + 2%BaCO3  (BM) 1500 12 hours Hexagonal 

 

 

 

 

BTY12 

1350 12 hours Mixture T/C+H 

1400 12 hours Mixture T/C+H 

1400 48 hours Mixture T/C+H 

1450 12 hours Mixture T/C+H 

1450 24 hours Mixture T/C+H 

1500 12 hours Hexagonal 

1525 12 hours Mixture T/C+H 

1550 12 hours Mixture T/C+H 

1550 88 hours Mixture T/C+H 

 

 

 

 

BTY15 

1350 12 hours Mixture H+BT2/3Y1/3 

1400 12 hours Mixture H+BT2/3Y1/3 

1400 48 hours Mixture T/C+H 

1450 12 hours Mixture H+BT2/3Y1/3 

1450 24 hours Hexagonal 

1500 12 hours Mixture H+BT2/3Y1/3 

1525 12 hours Mixture T/C+H 

1550 12 hours Mixture T/C+H 

1550 88 hours Mixture T/C+H 

BT2/3Y1/3 = BaTi2/3Y1/3O2.833  (Hexagonal phase) 

The cubic to hexagonal phase transition region was considered by exposing the 

samples to heat treatments in the range 1400–1550 C followed by different cooling 

rates: SC at 10 °C/min or Q. The transition was sluggish either with SC or Q. This 

indicates that the cooling rate after heat treatment and its effect on the phase purity is 

not essential. Figure 4-7 shows the XRD diagram for the pellet placed on sacrificial 

powder on Pt foil. The temperature of the cubic-hexagonal transition is not observed 

clearly with changing Y content. A two-phase, cubic+ hexagonal region opens up 

with increasing Y content. The hexagonal phase is observed initially at x=0.05 but it 

is destabilized and the transition from cubic to hexagonal region occurs with 

increasing temperatures at increasing Y content. 



- 153 - 

 

 

Figure 4-7: XRD diagram of BaTi1-xYxO3-x/2, measured at room temperature for 

samples sintered at different temperatures for the pellet placed on sacrificial powder 

on platinum foil.    

Figure 4-8 shows the XRD patterns for samples sintered at different temperatures in 

air. The cubic region covered the composition range 0.05  x  0.10. The region for x 

< 0.05 gave the tetragonal phase. The hexagonal polymorph was observed at 0.05  x 

 0.15. At x > 0.15, a small amount of secondary phase Ba3Ti2YO8.5 was observed. 

This confirms that solubility of Y on the Ti-site is  15 mol %. 

 

 

 

 

 

 

 

 

Figure 4-8: X-ray diffraction patterns at different temperatures in air. 
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Polymorphism and phase transition temperature of Y-Doped BaTiO3 on Ti site 

It is notable that at high Y concentrations, the hexagonal phase of BT was the first 

product of reaction. There were difficulties to obtain a pure phase, which needed 

long periods of time to convert the sample to cubic phase. The formation of 

metastable phases occurred probably at the initial stage of reaction. Prolonged heating 

was needed to obtain the complete transformation. Most compositions gave a mixture 

of phases: mainly tetragonal-cubic mixed with hexagonal phase.  Determination of the 

thermodynamic status of the hexagonal/cubic polymorphs was difficult.  

Figure 4-9 shows the XRD pattern of x = 0.10; the hexagonal polymorph of BaTiO3 

was obtained at 1300 C after 60 hours and transformed to cubic polymorph after 

120 hours.   

Figure 4-10 shows a new hexagonal phase with space group P63/mmc which was 

observed at BaTi0.666Y0.334O2.833. The unit cell parameters at room temperature are a 

= 5.9292(7) Å and c = 29.531(3) Å in good agreement with the literature [46, 47]. It 

is supposed that the following chemical reaction occurred [48]: 

BaTiO3 + Ba2TiO4 + Y2O3 → YBa3Ti2O8.5       

 

 

 

 

 

 

 

 

Figure 4-9: X-ray diffraction patterns for the composition  BaTi0.90Y0.10O2.95 sintered 

at 1300 and 1500 C for 12-120h in air. 
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Figure 4-10: X-ray diffraction patterns for the composition  BaTi0.666Y0.334O2.833 

sintered at 1500 C for 12h in air. 

The values of the a and c parameters and unit cell volume as a function of x are 

presented in Figure 4-11, (a). (a) increases almost linearly with increasing (x). The 

changes in (a) as a function of the Y concentration were greater than the changes in 

(c). The tetragonal polymorph progressively transforms to cubic at  x = 0.05. Figure 

4-11, (b) shows the tetragonality (the ratio of c/a) of a tetragonal phase in decreased 

with increasing Y3+ dopant. The unit cell volume increased almost linearly with x, 

Figure 4-11, (c) suggesting that the Y3+ ions substituted for Ti4+ ions in the barium 

titanate lattice because Ti4+ is smaller than the ionic size of Y3+ [38, 49, 50]. In 

conclusion, the solid solution limit in the A join is at x = 0.15(2). 
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Figure 4-11: Variation of (a) lattice parameters, (b) tetragonality and (c) unit cell 

volume as a function of x. 

Influence of excess titania, silica or barium carbonate 

SiO2 and TiO2 excess (1–2 mol%) are well-known additives to enhance densification 

during sintering, as a result of  liquid phase formation and lowering of the sintering 

temperature [9, 51, 52]. It is also expected that a liquid phase may form for samples 

in contact with Pt. 2% TiO2 was added to the composition, BaTi0.95Y0.05O2.975 + 2% 

TiO2, to obtain a liquid phase at high temperature. A pseudo-cubic phase was 

obtained at 1500 °C for 12 hours, Figure 4-12. However, an excess of TiO2 changes 

the compensation mechanism from an oxygen vacancy mechanism (BaTi1-xYxO3-x/2) 

to a self-compensation mechanism (Ba1-xTi1-xY2xO3). 

An alternative method to create a liquid phase is by addition of SiO2. In papers [36, 

41, 53] an agate jar was used which may have caused contamination from balls and 

media. Therefore, 2% SiO2 was added to give the formula BaTi0.95Y0.05O2.975 + 2% 

SiO2, and fired at 1500 °C for 60 hours. A pure tetragonal phase was obtained with 

no secondary phases, Figure 4-12. 

2% TiO2 was added to give BaTi0.90Y0.10O2.95 + 2% TiO2 and 2% BaCO3 to give 

BaTi0.90Y0.10O2.95 + 2% BaCO3. Both samples were fired at 1500 °C for 12 hours. A 

pure cubic phase and hexagonal phase, respectively were obtained with no secondary 

phases, Figure 4-13. 
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Figure 4-12: X-ray diffraction patterns for the mechanism  BaTi0.95Y0.05O2.975 + 2% 

TiO2 and BaTi0.95Y0.05O2.975 + 2% SiO2 sintered at 1500 C in air. 

 

 

 

 

 

 

 

Figure 4-13: X-ray diffraction patterns for the mechanism  BaTi0.90Y0.10O2.95 + 2% 

TiO2 and BaTi0.90Y0.10O2.95 + 2% BaCO3 sintered at 1500 C for 12h in air. 

4.3.2 Electrical and structural characteristics  

4.3.2.1 LCR results 

The temperature dependence of ε′ for pellets of Y-B, Y-AB and Y-A measured at 

250 kHz are shown in Figures 4-14 (a), 4-15 (a) and 4-16 (a). All samples showed 

non-leaky dielectric behaviour. The permittivity showed a sharp peak at TC for all 

(Y-A) samples and for low dopant concentrations at x,y < 0.03 for (Y-B) and (Y-AB) 

samples. The permittivity maximum for x = 0.03 was  2400 for (Y-B) and 8600 for 

y = 0.025 for (Y-AB), and decreased substantially with increasing x, y either with 

(Y-B) or (Y-AB) whereas, a slight increase was observed for (Y-A). Figures 4-14 
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(b), 4-15 (b) show generally a decrease in the dielectric loss with increasing x, y 

whereas, Figure 4-16 (b) shows a slight increase with increasing v. Permittivity data 

are plotted in Curie-Weiss form in Figures 4-14 (c), 4-15 (c) and 4-16 (c). Cw values 

are listed in Tables 4-5, 4-6 and 4-7. All samples in the range 0  x  0.03, illustrated 

Curie–Weiss behaviour with small deviations at high concentrations. The result of 

fitting a set of data shows that the gradient exhibits the dependence on the Y-dopant 

concentration. High dopant concentrations show that the maximum permittivity has a 

broad peak that shifts towards lower temperature with increasing x. Perhaps it is the 

result of the coalescence of the individual phase transitions. At temperatures close to 

TC, the data showed significant deviation from Curie–Weiss behaviour which show a 

deviation from the Curie–Weiss law below  113 and 105 C for x = 0.03 and 0.05 

for (Y-B), Figure 4-14 (c) and  129.7 and 100.3 C for y = 0.05 and 0.075 for (Y-

AB), Figure 4-15 (c). For x = (0.03, 0.05) for (Y-B) and y = (0.05) for (Y-AB), 

typical characteristics of relaxor ferroelectric behaviour were observed with a 

permittivity maximum that is strongly dependent on frequency, Figures 4-17 (a), (c) 

and (e). Tan δ data were also shown in (b), (d) and (f). Figures 4-18 (a), (b) and (c) 

show the frequency dependence of the relative permittivity over a wide frequency 

range. The temperature maximum values of the permittivity for (Y-B), (Y-AB) and 

(Y-A) were equal for all frequencies. The permittivity maximum values were 

frequency-independent for (Y-B) and (Y-A), whereas, (Y-AB) composition was 

dependent on the frequency. Increasing frequency lead to decreasing permittivity 

maximum values but the temperature of the maximum permittivity was frequency-

independent, which is different from the result obtained with ferroelectric relaxors 

where both the permittivity and its maximum temperature are frequency-dependent. 
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Figure 4-14: Fixed frequency measurements at 250 kHz of (a) relative permittivity, 

(b) dielectric loss (tan δ) versus temperature and (c) Curie-Weiss plots for BaTi1-

xYxO3-x/2 samples. 

  

 

 

 

 

 

 

 

 

 

 

Figure 4-15: Fixed frequency measurements at 250 kHz of (a) relative permittivity, 

(b) dielectric loss (tan δ) versus temperature and (c) Curie-Weiss plots for Ba1-yTi1-

yY2yO3 samples. 
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Figure 4-16: Fixed frequency measurements at 250 kHz of (a) relative permittivity, 

(b) dielectric loss (tan δ) versus temperature and (c) Curie-Weiss plots for Ba1-

vYvTiO3 samples. 

Table 4-5: Values of TC, To, TC-To and Cw for (Y-B) compositions. 

Sample TC (C)  To (C) TC -To (C) Cw (10
5
 K) 

0 114(1) 102(3) 12(4) 1.240 

0.03 106.1 68.8 37.3 1.039 

0.05 48.5 61.0 -12.5 0.253 

0.09 - -39.9 - 0.828 
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Table 4-6: Values of TC, To, TC-To and Cw for (Y-AB) compositions. 

Sample TC (C)  To (C) TC -To (C) Cw (10
5
 K) 

0.01 122.3 101.9 20.4 2.452 

0.25 119.1 99.5 19.6 1.902 

0.05 69.9 85.6 -15.7 1.454 

0.075 - 9.6 - 1.457 

 

Table 4-7: Values of TC, To, TC-To and Cw for (Y-A) compositions. 

Sample TC (C)  To (C) TC -To (C) Cw (10
5
 K) 

0 114(1) 102(3) 12(4) 1.240 

0.01 106.3 94.6 11.7 1.248 

0.015 124.8 102.75 22.05 0.949 
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Figure 4-17: Temperature and frequency dependence of permittivity and tan δ in 

composition (a,b) x = 0.03 for (Y-B), (c,d) x = 0.05 for (Y-B) and (e,f) y = 0.05 for 

(Y-AB). 

 

 

 

 

 

 

 

 

Figure 4-18: Temperature and frequency dependence of permittivity for x,y and v = 

0.01 in composition of (a) (Y-B), (b) (Y-AB) and (Y-A). 
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4.3.2.2 Hysteresis Loop Results  

Generally, hysteresis loop shapes depict the quality and nature of specimens studied. 

To examine the development of the ferroelectric domains in the pellets, a 

comparison of electrical polarisation (P) vs. electric field (E) hysteresis loops for x = 

0 to 0.07 were carried out at room temperature using a maximum E of 40 kV cm-1 . 

The results for pellets of Y-B, Y-AB and Y-A are shown in Figure 4-19 (a-h). The 

remanent polarisation, Pr, coercive field, EC , saturation polarisation, PS values 

derived from the hysteresis loops under an electrical field of 20 kV/cm are listed in 

Tables 4-8, 4-9 and 4-10 which are close to the data reported in the literature of 

undoped BT [54-60]. Clear hysteresis loops were observed for 0  x  0.05 and the 

shape of the hysteresis loop depends on Y3+ content. In general, if an increase of x 

value is followed by a decrease of both PS and Pr, it may be associated with 

increasing substitution of the large Y in the Ti site. This behaviour gives rise to 

reduction in tetragonality of the TiO6 octahedra. Thus, they lose their polarity and 

subsequent formation of a polar domain structure. Table 4-8 shows that EC increased 

with increasing x up to  5.00 kV cm-1 for x = 0.05, three times that of x = 0, but then 

decreased slightly to  3.98 kV cm-1 for x = 0.07. A similar behaviour was observed, 

Table 4-9 where EC increased to 3.70 for y = 0.025 then decreased to 0.47 for y = 

0.075. For x = 0.07, a very narrow hysteresis loop was observed. The hysteresis loop 

was lost upon the addition of Y from x = 0.10 onwards (not shown).  

This trend is similar to the results reported in [61] for BaTiO3 with Ho concentration 

between 0 ≤ x ≤ 0.07, showing ferroelectric behaviour. 
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Figure 4-19: P–E loops at room temperature for (a) undoped BaTiO3, for BaTi1-

xYxO3-x/2 : (b) x=0.01, (c) x=0.05, (d) x=0.07, for Ba1-yTi1-yY2yO3 : (e) y=0.025, (f) 

y=0.05, (g) y=0.075 and for Ba1-vTiYvO3 : (h) v=0.015 ceramics. 
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Table 4-8: PS, Pr and EC for BaTi1-xYxO3-x/2. 

Compositions PS (μC/cm
2
) Pr (μC/cm

2
) EC (kV/cm) 

0 19.56 9.42 1.68 

0.01 16.35 9.81 2.79 

0.05 12.14 5.74 5.00 

0.07 2.29 0.83 3.98 

 

Table 4-9: PS, Pr and EC for Ba1-yTi1-yY2yO3.     

Compositions PS (μC/cm
2
) Pr (μC/cm

2
) EC (kV/cm) 

0 19.56 9.42 1.68 

0.025 15.49 7.38 3.70 

0.05 8.00 2.07 2.79 

0.075 4.32 0.36 0.47 

 

 

Table 4-10: PS, Pr and EC for Ba1-vTiYvO3.  

Compositions PS (μC/cm
2
) Pr (μC/cm

2
) EC (kV/cm) 

0 19.56 9.42 1.68 

0.015 9.40 5.98 4.90 

 

4.3.2.3 Raman Spectroscopy Results  

Raman spectra obtained for pellets of Y-B, Y-AB and Y-A at room temperature are 

shown in Figure 4-20.  

Firstly, The spectra of undoped BT display six obviously noticeable characteristics 

with intense Raman lines at 170 and 305 cm-1, broad bands peaking at 262, 514, and 

717 cm-1 (which are often attributed to second-order effects), and a small but distinct 

peak at 470 cm-1, in agreement with literature values [62-68]. These peaks confirm 

that no detectable impurity phase was observed as all the peaks correspond to the 

Raman spectra of undoped BaTiO3. The addition of Y3+ has a dramatic impact on the 

observed modes. The synchronous effect of Y3+ for Ti substitution on the crystal 

structure of a perovskite, BT gives rise to an additional peak centred at high wave 
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number  819 cm-1 which is the most important feature [69], accompanied by their 

frequency shifts. The vibrations resulting from the oxygen shift and also correlated 

with the existence of oxygen vacancies cause the high frequency mode at  800 cm-

1[70]. The presence of one or more B-site species becomes Raman active which is 

indicated by the A1g octahedral breathing mode at  800 cm-1.The relative intensity 

of this mode is associated with substitution of ions on the B-site [62]. 

The continuous and significant increase of intensity was observed with increasing 

Y3+ concentration, suggesting it is a mode associated with Y3+. Other clear changes 

were found in the region of 100-340 cm-1 with increasing Y3+ concentration. Some 

new modes appear, others disappear, some start to broaden and frequency shifting 

was observed for others. For instance, at x = 0.10, the vanishing of the peak at 305 

cm-1 eventually was shown. The resonance dip at 170 cm-1 was also affected by small 

amounts of Y3+. A broad band peaking at 717 cm-1
, associated with mixed longitudinal 

mode with A1 (C4v) and E1 (C4v) symmetry [71, 72], was obtained with increasing Y3+ 

concentration. These are attributed to the decreasing tetragonality of BT with increasing 

Y3+ concentration. The three bands at 170, 262 and 305 cm-1, reduce in intensity with 

increasing Y3+ concentration, resulting in a broad and practically structureless band 

extending from 174 to 342 cm-1 for x ≥ 0.12. For x  ≥ 0.07, Raman spectra of the 

cubic polymorph are typified by two asymmetric broad bands at 262 cm-1 
and 514 cm-1 

in good agreement with those reported in the literature [72]. 

Secondly, Figure 4-20 (b) and (c) show similar behaviour for the same 

concentrations. 
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Figure 4-20: Room-temperature Raman spectra for (a) Y-B (0 ≤ x ≤ 0.15) (b) Y-AB 

(0 ≤ y ≤ 0.075) and (c) Y-A (0 ≤ v ≤ 0.015).   

4.3.2.4 SEM Results 

SEM micrographs of the ceramic microstructures and EDS analysis of the micro-

composition of polished and thermally etched sections for (a-e) Y-B (0.02 ≤ x ≤ 

0.175), (f-h) Y-AB (0.025 ≤ y ≤ 0.125) and (i) Y-A (v = 0.015) are shown in Figure 

4-21. There is a clear reduction in average grain size of the ceramics doped with Y3+. 

This indicates that Y3+ substitution leads to suppression of grain growth. The 

microstructures consisted of small grains, as compared with that in undoped BT with 

average grain size  1–10 m. A non-uniform grain size distribution was observed 

clearly for high Y content such as x = 0.175, showing needle-shaped grains.  

Pellet densities were obtained by dividing the geometrical density calculated from 

pellet mass and dimensions by the values for fully dense pellets, calculated from the 

unit-cell dimensions and contents. The densities of samples were 82 – 96 %. Some 

samples seem to be quite porous due to low relative densities. 

EDS analysis of samples doped with low concentrations such as x = 0.02, 0.025 and 

0.015 did not show any Y-rich regions, indicating a uniform incorporation of 

dopants within the samples. The appearance of Y-rich regions between grains was 

observed with increasing dopant content. 
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Figure 4-21: SEM images and EDS traces for (a-e) Y-B (0.02 ≤ x ≤ 0.175), (f-h) Y-

AB (0.025 ≤ y ≤ 0.125) and (i) Y-A (v = 0.015).   

4.3.2.5 IS Results 

(A) Y-B samples: 

(1) Typical impedance data  

Impedance measurements were made, as a function of temperature, for samples in 

the range 0.02 < x < 0.15. Samples with 0 < x < 0.07 were all electrically 

heterogeneous and both bulk and grain boundary regions were insulating whereas 

samples with 0.09  x  0.15 were mostly homogenous and dominated by the 

insulating bulk component. Typical IS data of samples x = 0.02 and 0.10 are given in 

Figures 4-22 to 4-25. All samples were highly insulating at room temperature. IS 

data for all samples could only be collected at temperatures > 300 C, as the samples 

were too resistive at lower temperatures with resistance > 10 Mcm but showed 

modest levels of semiconductivity at high temperatures. 

 Complex impedance plane (Z*) plots are given for x = 0.02 at 300 C, Figure 4-22 

(a). They show that the sample contained one distorted semicircle, corresponding to 

the contribution of bulk and grain boundary resistances which together, dominate the 

total resistance. IS data are represented, ideally, by a series combination of two 

parallel RC elements. The total resistance, RT , was determined to be  1400 kcm. 

Rb and Rgb were not determined because the high frequency arc was not resolved but 

can be seen clearly and may be estimated from the fmax value of the high frequency 

M′′ peak. The Z′′/M′′ against log f plots showed a single peak in Z′′ spectra at low 

(a) x=0.07 

(i) v=0.015 
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frequency and another single peak in M′′ spectra at high frequency, Figure 4-22 (b). 

The M′′ peak represents the smallest capacitance in the sample and highlights the 

bulk response with Cb =  1.90  10-11 Fcm-1 and Rb =  55.53 kcm at 300 C.  

A Y′ spectroscopic plot, Figure 4-22 (c), shows two plateaus; a frequency 

independent plateau attributed to the dc conductivity, R-1, at lower frequency and 

another plateau at high frequency.  

The same data presented as spectroscopic plots of capacitance, C′, Figure 4-22 (d), 

show a high frequency plateau which is attributed to the sample bulk, C1. Its value is 

 1.90  10-11 Fcm-1. A low frequency shallow dispersion region in capacitance is 

observed with much higher associated capacitance.  

Figure 4-23 shows conductivity Arrhenius plots of the total, bulk and grain boundary 

conductivities. All obey the Arrhenius law. ζT  was obtained from the low-frequency 

intersects of Z*. The overall impedance response was dominated by the lower-

frequency component because it has much higher resistance than the high-frequency 

one. ζT  and ζgb fall onto two sets of parallel lines with similar activation energy,  

0.84 and 0.87eV, respectively, whereas the bulk, ζb, data show curved Arrhenius 

behaviour with lower activation energy  0.59 eV. 
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Figure 4-22: 300 °C IS data for x = 0.02, slow cooled from 1400 °C, (a) Z* plot, (b) -

Z", M" plots, (c) Y' plot and (d) C' plot. 

 

 

 

 

 

 

Figure 4-23: Arrhenius plots of the total, bulk and grain boundary conductivity data 

against reciprocal temperature for x = 0.02, slow cooled from 1400 °C. 

The impedance response is shown for x = 0.10 in Figure 4-24. Above 200 C the 

sample revealed a simple response with a single, essentially undistorted semi-

circular arc in the complex impedance plot, Z*. RT  at 401 C is 1.09  105 cm; CT  

3.66 pFcm-1 which indicate bulk response with ε′  42. Single Debye peaks in the Z′′ 

and M′′ plots were at the same frequency, Figure 4-24 (b) which emphasizes the 

electrical homogeneity of the sample. The Y′ spectroscopic plot shows a low 

frequency independent plateau with a slight dispersion at higher frequencies, Figure 

4-24 (c). This probably indicates the inclusion of a bulk CPE. That would also be 

responsible for the low frequency dispersion in C′. Capacitance (C′) spectroscopic 

plots, Figure 4-24 (d), exhibited a frequency/temperature-independent plateau at high 

frequencies ∼ 5.00 × 10-12 Fcm-1, attributed to the sample bulk component. A 
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dispersion of capacitance was observed at a lower frequency which increased 

slightly with increasing temperature. An Arrhenius plot of ζT , Figure 4-25, is linear 

with activation energy ∼ 0.72 eV.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-24: IS data for x = 0.10, slow cooled from 1500 °C, (a) Z* plot, (b) -Z", M" 

plots, (c) Y' plot and (d) C' plot. 

 

 

 

 

 

Figure 4-25: Arrhenius plots of the conductivity; data were extracted from Z*, Z′′ 

and M′′ against reciprocal temperature for x = 0.10, slow cooled from 1500 °C. 
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Conductivity Arrhenius plots and activation energies over the range of x = 0.02   0.15 

are shown in Figure 4-26 and Table 4-11. EA values are between 0.73 and 1.1 eV. EA 

and ζ did not exhibit any apparent systematic trend with x.  

Table 4-11: Heating temperature, electrode type, cooling rate and EA for bulk, grain 

boundary and the total conductivity. 

x Heating 

temperature 

Electrode 

type 

Cooling rate EA (M") 

(eV) 

EA (Z") 

(eV) 

EA (Z*) 

(eV) 

0.02 

Tetragonal 

1450 °C for 24 

h in air 

Pt Slow-cooled, 

10 °C/min 

0.59 0.87 0.84 

0.03 

PBM 

Tetragonal 

1450 °C for  

24 h in air 

Ag Air-quenched 0.69 0.96 0.93 

0.05 

Cubic 

1450 °C for  

24 h 

Pt Slow-cooled, 

10 °C/min 

1.06 1.06 0.92 

0.09 

BM 

Cubic 

1550 °C for 

100 h in air 

Pt Slow-cooled, 

10 °C/min 

0.89 0.91 0.9 

0.10 

Hexagonal 

1500 °C for 

 24 h in air 

Pt Slow-cooled, 

10 °C/min 

0.71 0.72 0.73 

0.12 

Hexagonal 

1500 °C for  

24 h in air 

Pt Slow-cooled, 

10 °C/min 

1.08 1.12 1.1 

0.15 

Hexagonal 

1450 °C for  

24 h in air 

Pt Slow-cooled, 

10 °C/min 

0.96 1.02 1.01 

 

 

 

 

 

 

 

Figure 4-26: Arrhenius plot of bulk (a) and grain boundary (b) for Y-B samples. 
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Samples were insulating at room temperature even after quenching in air. For 

example for x = 0.05, no significant difference was observed between SC and Q 

sample, Figure 4-27 and Q sample is still p-type and did not change to n-type. 

Different samples Q from 1400 C with different electrodes show an insulating 

behaviour and no evidence of semiconductivity, Figure 4-28. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-27: RT, IS data for x = 0.05, slow cooled and quenched from 1400 °C, (a) 

Z* plot, (b) -Z", M" plots, (c) C' plot. 

  

 

 

 

 

0 2000 4000 6000 8000 10000 12000 14000
0

2000

4000

6000

8000

10000

12000

14000

 SC

 Q

 

 

 

-Z
'' 

/ 
k


c
m

Z' / kcm

(a)

10
1

10
2

10
3

10
4

10
5

10
6

0

2000

4000

6000

8000

10000

12000

14000

 

 SC

 Q

 SC

 Q

Frequency / Hz

-Z
'' 

/ 


c
m

(b)

0.00

0.02

0.04

0.06

0.08

0.10

 M
'' 

/ 
1

0
-4

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-11

10
-10

10
-9

10
-8

 SC

 Q

 

 

 

C
' /

 F
c
m

-1

Frequency / Hz

(c)

0 10000 20000 30000 40000 50000
0

10000

20000

30000

40000

50000

 0.03-Au

 0.03-Ag

 0.05-In-Ga

 0.07-Ag

 

 

-Z
'' 

/ 


c
m

Z' / cm

(a)

10
1

10
2

10
3

10
4

10
5

10
6

  

 

Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 0.03-Au

 0.03-Ag

 0.05-In-Ga

 0.07-Ag

(b)

 M
''(

1
0

-4
)



- 176 - 

 

 

 

 

 

 

Figure 4-28: RT, IS data for different compositions, quenched from 1400 °C, (a) Z* 

plot, (b) -Z", M" plots, (c) C' plot. 

(2) Effect of oxygen partial pressure  

Z* data for x = 0.05 measured in O2, air and N2 are shown in Figure 4-29. The 

resistance increased from  3.76×104 cm in O2 to 8.49×105 cm in N2 indicative of 

p-type conductivity, Figure 4-29 (a). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-29: 400 °C IS data for x = 0.05, slow cooled from 1500 °C, (a) Z* plot, (b) 

C' plot and (c) M'' plot in different atmospheres. 
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(3) Effect of application of a small dc bias voltage  

IS was also studied with application of a small dc bias to the sample. Results are 

shown for x = 0.05 in Figure 4-30.  RT  decreases gradually with time; eg  43.23 

kcm after 1 min, decreasing to  12.05 kcm after 210 min. Figure 4-30 (c) shows 

that the capacitance values increase with increasing time. The recovery of RT  after 

removal of the dc bias is shown in Figure 4-30 (d). A steady state was reached after 

 2700 min. The decrease in R with dc bias can be attributed to p-type conduction 

and gives a similar result to the effect of varying pO2. 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 4-30: (a) Z* plot (b) M'' plot and (c) C' plot at 400 C before and after a 

voltage of 10 V was applied at different measuring times (d) Total resistance at 400 

°C with 10V bias and after removing the dc bias at different times in air. 
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(B) Y-AB samples: 

(1) Typical impedance data  

Impedance data for Y-AB samples (0.025 < y < 0.075) were studied. Generally, all 

samples were insulating and heterogeneous, containing two components that can be 

seen in the Z* plot as two semicircular arcs at high and low frequency which can be 

assigned to an equivalent circuit composed of two parallel RC elements. 

Semiconductivity was only observed for the quenched samples whereas, slow cooled 

samples exhibited much higher resistances.  

Z* plots, Figure 4-31 (a), and combined Z"/M" spectroscopic plots, Figure 4-31 (b), 

show two components with similar activation energy since their relative resistances 

in Z* plots did not show significant change with temperature. The largest peaks in 

M" and Z" plots are located at high frequency. The bulk capacitance has the smaller 

value  2.32 × 10-11 F cm-1 at 550 °C whereas, 7.01 × 10-10 F cm-1 was obtained for 

the low frequency component. Figure 4-31 (b) shows that two different electrical 

regions can be distinguished similarly from Z"/M" spectroscopic plots, suggesting 

that they also belong to bulk and grain boundary components. The capacitance of the 

high frequency plateau (c) decreases with increasing temperature (not shown).  

Arrhenius plots are shown in Figure 4-32. The conductivities are identical with same 

activation energy values with lower conductivity values of the total. 
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Figure 4-31: 550 °C IS data for y = 0.075, slow cooled from 1550 °C, (a) Z* plot, (b) 

-Z", M" plots and (c) C' plot. 

 

 

 

 

 

 

Figure 4-32: Arrhenius plots of the total, bulk and grain boundary conductivity data 

against reciprocal temperature for y = 0.075, slow cooled from 1550 °C. 
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in liquid N2. Partial re-oxidation can occur. A pellet of composition y = 0.025 was 

heated at 1500 C for 12 hours in air followed by SC in air. IS data are shown in 

Figure 4-33. The pellet was off-white and insulating. Although the room temperature 

Z* plot showed there was no apparent semiconducting component at high frequency 

and the sample had a total resistance >107 cm, Figure 4-33 (a), the M′′ spectra 

showed an incline at high frequency attributed to a more conducting bulk response, 

Figure 4-33 (b). The Z′′ plot was dominated by a low frequency incline with an 

associated resistivity >1 Mcm. 
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Figure 4-33: Room-temperature (a) Z* and (b) Z′′, M′′ spectroscopic plots for 

y = 0.025 heated at 1500 °C in air, SC, with Pt electrodes. 

This sample was then reheated in air at 1500 C for 12 hours and air-quenched which 

changed its colour from off-white to dark grey. Room temperature Z* plot showed a 

single arc with RT   7.43 × 105 cm, Figure 4-34 (a). M′′ plots show two 

components; a single broad peak which overlapped with the Z peak′′ and a high 

frequency incline, Figure 4-34 (b), towards another larger peak at > 106 Hz. It is 

proposed that this latter peak corresponds to the semiconducting interior of 

individual grains, with resistivity < 100 kcm.  

 

 

 

 

 

 

 

Figure 4-34: Room-temperature (a) Z* and (b) Z′′, M′′ spectroscopic plots for 

y = 0.025 quenched from 1500 °C in air with In-Ga electrodes. 
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behaviour (not shown) to that in Figure 4-34.  The M′′ incline at high frequency 

showed broad Debye-like peak maxima for both samples only at low temperatures  

 -148 C as shown in Figure 4-35 for the sample with Ag electrodes. The fmax in 

M"1 showed a slight shift to low frequency by  2 times with increasing 

temperature, whereas the peak M"2 shifted to higher frequency by  5 times, Figure 

4-35.  

Capacitance data extracted from M′′1 and M′′2 are plotted against temperature in 

Figure 4-36. At low temperatures, C1 and C2 can be obtained below -150 °C. C1 and 

C2 are shown and have similar values. With increasing temperature, M1 has a broad 

maximum at  -23 °C. Capacitance data extracted from M′′1 display permittivity 

maxima, characteristic of bulk BT. The maxima in Figure 4-36 therefore correspond 

to the transitions; the tetragonal-orthorhombic (2 °C) and cubic-tetragonal (125 °C). 

The capacitance scale is not accurate due to existence of errors associated with 

extracting the capacitance data from M′′ peaks, in which the peaks are broadened and 

depressed. 

Arrhenius plots show different possible conduction mechanisms, depending on different 

temperature ranges, Figure 4-37. Both Figures 4-36 and 4-37 show phase transitions at 

different temperatures. 

The sample with Ag electrodes was studied at higher temperatures and showed a 

PTCR effect as clearly presented in Figure 4-38. 

 

 

 

 

 

 

Figure 4-35: Combined modulus, M′′, spectroscopic plots for sample with Ag 

electrodes at selected temperatures. 
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Figure 4-36: Capacitance data (extracted from M′′) against temperatures, for sample 

with Ag electrodes.  

 

 

 

 

 

 

 

Figure 4-37: Arrhenius plots of the bulk conductivity data (extracted from M′′1) 

against reciprocal temperature.  

 

 

 

 

 

 

 

Figure 4-38: Total resistivity as function of temperature. 
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Further heat treatment was performed on this sample which was reheated to 1500 C 

for 12 hours and cooled rapidly in liquid nitrogen. Figure 4-39 is similar to Figure 4-

34 but a higher conductivity value was observed with RT   65 kcm, Figure 4-39 

(a). Figure 4-39 (b) shows a more homogeneous sample but with one peak at 

intermediate frequency and an incline at high frequency which is evidence for a more 

conductive grain core that can’t be quantified, as shown by the increase in M′′ data at > 

1 MHz. Capacitance value extracted from the peak in M′′ is  264 pFcm-1. 

 

 

 

 

 

 

 

Figure 4-39: Room-temperature (a) Z* and (b) Z′′, M′′ spectroscopic plots for 

y = 0.025 quenched from 1500 °C in liquid nitrogen. 

Conductivity data over the composition range y = 0.025   0.075 are shown in Figure 

4-40. EA values are shown in Table 4-12. The conductivity data exhibit a small 

systematic trend with y, the conductivity of the high frequency component decreases 

whereas, a very slight decrease was observed for low frequency component. 

Table 4-12: Heating temperature, electrode type, cooling rate and EA for bulk, grain 

boundary and the total conductivity. 

y Heating 

temperature 

Electrode 

type 

Cooling rate EA (b) 

(eV) 
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Tetragonal 

1500 °C for 12 

h in air 

Pt Slow-cooled, 
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h in air 

Ag Liquid N2-
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0.075 

Cubic 

1550 °C for 12 

h in air 

Pt Slow-cooled, 

10 °C/min 

1.19 1.18 1.20 

 

 

 

 

 

 

Figure 4-40: Arrhenius plots of conductivity against reciprocal temperature for the 

high (a) and low (b) frequency components for Y-AB samples. 

(3) Effect of oxygen partial pressure  

Z* plots for y = 0.05 SC from 1500 C and measured in O2, air and N2 are shown in 

Figure 4-41. On changing the atmosphere to N2 at 400 °C, the conductivity 

decreased, Figure 4-41 (a), appearing to be p-type. Impedance Z* complex plane 

plots, (a), showed two poorly resolved arcs. Figure 4-41 (b) shows that the high 

frequency capacitance plateau illustrates similar capacitance values   2.51 ×10-11 

Fcm-1. The high frequency peak in M" showed a slight shift to low frequency in N2, 

Figure 4-41 (c). The M′′ incline at high frequency was observed for O2, air and N2. 
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Figure 4-41: 400 °C IS data for y = 0.05, slow cooled from 1550 °C, (a) Z* plot, (b) 

C' plot and (c) M'' plot in different atmospheres. 

Since the Arrhenius plot showed that the Q sample (y = 0.025) was n-type, the 

conduction mechanism was studied in different pO2, Figure 4-42. 

 

 

 

 

 

 

Figure 4-42: RT, Z* plot for y = 0.025 quenched from 1500 °C in liquid nitrogen, 

measured in air, O2 and N2. 

 

Conductivity (ζb, ζgb and ζt) data for y = 0.025 quenched from 1500 °C in liquid 

nitrogen were extracted from M′′, Z′′ and Z* data respectively for N2 atmosphere are 

plotted against reciprocal temperature between RT and 200 C in Arrhenius format, 

Figure 4-43 (a) which are included for comparison. Similar behaviour was observed 

for air and O2 atmospheres (not shown). Bulk and grain boundary conductivity data 

are compared in Figure 4-43 (b) and (c) to illustrate the change in ζb and ζgb with 

temperature in different atmospheres. The change in atmospheres shows a slight 
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increase in ζgb since N2 was higher at any presented temperature, Figure 4-43 (c), 

whereas ζb did not show a big change under different atmospheres, Figure 4-43 (b).  

All Arrhenius format and temperature dependence of resistivity show clearly PTCR 

behaviour which is presented in Figure 4-44. Similar bulk resistivity data were 

observed for all atmospheres, Figure 4-44 (a) whereas, grain boundary resistivity 

data show a weaker PTCR behaviour. Lower conductivity was shown in a nitrogen 

atmosphere compared to oxygen and air which show similar conductivity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-43: Arrhenius plots of ζb, ζgb and ζt in N2 for y = 0.025 quenched from 

1500 °C in liquid nitrogen (a), and of ζb (b) and ζgb (c) in air, N2 and O2.  
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Figure 4-44: Resistivity of bulk (a) and grain boundary (b) as function of 

temperature in air, N2 and O2 for y = 0.025 quenched from 1500 °C in liquid 

nitrogen. 

(4) Effect of application of a small dc bias voltage  

The effect of applying a small dc bias is shown for y = 0.05, SC in Figure 4-45. RT  

decreases gradually with time and reached a steady-state value after 237 min (a) 

which confirms that conduction is p-type. Figure 4-45 (c) shows that the high 

frequency capacitance plateau was unaffected by the dc bias and had a value  2.00 

×10-11 Fcm-1 whereas, the low frequency capacitance dispersion was affected with dc 

bias and shifted to higher capacitance. This increase was time-dependent. RT 

returned to its original value after removing dc bias after  1820 min, Figure 4-46.  
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Figure 4-45: (a) Z* plot (b) M'' plot and (c) C' plot at 400 C before and after a 

voltage of 10 V was applied at different measuring times. 

 

 

 

 

 

 

Figure 4-46: Total resistance at 400 °C with 10V bias and after removing the dc bias 

at different times in air. 

(C) Y-A sample: 

(1) Typical impedance data 

Impedance data for Y-A sample of v = 0.015, 1350 C, air, SC was highly insulating 

at room temperature with R > 108 cm. At high temperatures, two overlapping arcs 

are present in Z* plots, Figure 4-47 (a), which correspond to the two Debye peaks in 

the -Z″/M′′ spectroscopic plots, Figure 4-47 (b) at 425 C. Spectroscopic plots of C′, 

Figure 4-47 (c), also reveal the existence of two plateaux: one at higher frequency 

with C′ ∼ 3.76 × 10-11 Fcm−1 and one at lower frequency with C′ ∼ 2.51 × 10-9 Fcm-

1.  

10
2

10
3

10
4

10
5

10
6

10
-11

10
-10

10
-9

  0 V

 10V,  1 min

 10 V, 237 min

  

 

 

C
' /

 F
c
m

-1

Frequency / Hz

(c)

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 

 

 10V

  0V

R
e

s
is

ti
v
it
y
 /

 k


c
m

time / min



- 189 - 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4-47: 425 °C IS data for v = 0.015, slow cooled from 1350 °C, (a) Z* plot, (b) 

-Z", M" plots and (c) C' plot. 

Resistivity values are shown in conventional Arrhenius format in Figure 4-48. 

Conductivity data exhibit linear behaviour with an activation 1.49 eV for grain 

boundary conductivity but with a much reduced activation energy 0.78 eV for bulk 

conductivity. 
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Figure 4-48: Arrhenius plots of the bulk and grain boundary conductivity data 

against reciprocal temperature for v = 0.015, SC from 1350 °C. 

A different sample, SC in air from 1500 C was studied but still highly insulating at 

room temperature, showing slightly higher conductivity than the sample slow cooled 

in air from 1350 C (not shown). 

(2) Effect of cooling rate 

Impedance data for Y-A sample of v = 0.015, 1350 C, air, Q at RT with Ag and In-

Ga electrodes are shown in Figure 4-49 with electrode-dependent low frequency 

impedance response.  

Room temperature impedance data showed two overlapping arcs with a high 

frequency intercept. Two arcs were present with Ag electrodes with a high 

frequency, non-zero intercept on the real axis, Figure 4-49 (a) whereas, the Z* plots 

show an incomplete, single high frequency arc with similar resistance value 

estimated at a nonzero high frequency intercept for sample with In-Ga electrodes. 

When In–Ga electrodes were used, the low frequency arc disappeared. Figure 4-49 

(b) shows one Debye peak in the Z″ spectroscopic plots, associated with the large arc 

in Z* for sample with Ag electrodes whereas, the Z′′ incline at high frequency was 

observed for sample with In-Ga electrodes. Both electrodes show that the M′′ incline 

was dominated by the low R, low C response at high frequency, Figure 4-49 (b), 

indicating the existence of a semiconducting component and extra peak is clearly 

apparent at fmax  3-4 104 Hz for Ag sample. Spectroscopic plots of C′, Figure 4-49 

(c), also reveal the existence of three components: one at higher frequency, one at the 

intermediate frequency and one at lower frequency which is associated with 

electrode-sample interface. PTCR effect was observed for both electrodes with 

higher conductivity values for In-Ga electrodes as shown in Figure 4-50 and 51. 
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Figure 4-49: RT, IS data for v = 0.015, quenched from 1350 °C, (a) Z* plot, (b) -Z", 

M" plots and (c) C' plot. 

 

 

 

 

 

 

 

Figure 4-50: Total resistivity as function of temperature. 
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Figure 4-51: Arrhenius plots of the total conductivity data against reciprocal 

temperature. 

To carry out a more thorough investigation of the electrical properties, low 

temperature impedance data are shown in Figure 4-52. Two semicircular arcs are 

observed in Z* plots, Figure 4-52 (a). Resistance values of the non-zero high 

frequency arc were obtained from intercepts on the real, Z′ axis. These two arcs 

correspond to the two Debye peaks in the Z″ spectroscopic plots, 4-52 (b). The 

intermediate frequency shoulder peak in Z″ was not well-resolved. The high 

frequency incline in the M″ data was observed for all measured temperatures which 

is consistent with a semiconductive region, 4-52 (c). Capacitance, C′ data, did not 

attain a plateau at high frequencies, 4-52 (d) whereas, they are mostly frequency-

independent at low frequencies. 
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Figure 4-52: Low temperature, IS data for v = 0.015, quenched from 1350 °C, (a) Z* 

plot, (b,c) -Z", M" plots and (d) C' plot. 

Capacitance data were extracted from the high frequency arc in Z* and a plotted 

against temperature, Figure 4-53. Data illustrate characteristic capacitance maxima 

corresponding to the rhombohedral-orthorhombic (-110 °C) and the tetragonal-

orthorhombic (2 °C) transitions. Arrhenius plots show curved Arrhenius behaviour 

with different possible conduction mechanisms, depending on different temperature 

ranges, Figure 4-54. 

 

 

 

 

 

 

 

Figure 4-53: Capacitance data (extracted from the high frequency arc in Z*) against 

temperatures, for sample with Ag electrodes. 
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Figure 4-54: Arrhenius plots of conductivity data (extracted from Z*) against 

reciprocal temperature. 

(3) Effect of oxygen partial pressure  

IS measurements were made in different atmospheres at 350 C for slow cooled 

sample, Figure 4-55 and RT for quenched sample, Figure 4-56. Figure 4-55 shows 

that the sample resistance mostly remains unchanged with atmosphere for high 

frequency arc whereas, the low frequency arc changed with atmosphere. Figure 4-56 

shows that the low frequency arc with Ag electrodes disappeared with In–Ga 

electrodes, indicating it to be associated with an electrode effect. As the measuring 

atmosphere changed, the sample resistance mostly remains unchanged. 

 

 

 

 

 

 

 

 

Figure 4-55: 350 C, Z* plot for v = 0.015, slow cooled from 1350 °C in different 

atmospheres with Pt electrodes. 
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Figure 4-56: RT, Z* plot for v = 0.015, quenched from 1350 °C in different 

atmospheres with Ag and In-Ga electrodes. 

(4) Effect of application of a small dc bias voltage  

IS was studied with application of a small dc bias for a sample of composition v = 

0.015, which had been sintered in air at 1350 C for 12 h followed by slow cooling 

to room temperature and measured at 425 C. The results are shown in Figure 4-57.   

Z* and M′′ plots show that R1 was unchanged with dc bias Figure 4-57 (a) and (b) 

whereas, R2 was voltage/time-dependent, showing a gradual reduction of R2 with 

increasing dc bias. Figure 4-57 (c) shows that the capacitance values were 

unchanged with dc bias. The recovery of R2 after removal of the dc bias was 

observed (not shown). On removal of the dc bias, a steady state was reached within 

about  60 min.  
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Figure 4-57: (a) Z* plot (b) M'' plot, (c) Z'' plot and (d) C' plot at 425 C before and 

after a voltage of 10 V was applied at different measuring times with Ag electrodes. 

The effect of applying a small dc bias to the sample quenched from 1350 C is 

shown for v = 0.015 in Figure 4-(58-61) for two temperatures, -263 C and RT.  Z* 

plot shows that at -263 C, RT  decreases gradually with time and reached a steady-

state value after 100 and 325 min, Figure 4-58 (a) and 4-60 (a) respectively and low 

frequency arc disappeared. The Z" spectroscopic plots showed two peaks; the low 

frequency peak disappeared with dc bias and the initial M" low frequency shoulder 

peak decreased and the M′′ incline shifted towards higher frequency, Figure 4-58 

(b,c) and 4-60 (b,c). Figure 4-58 (d) and 4-60 (d) shows that the high and low 

frequency capacitance data were affected with dc bias. This increase was time-

dependent. RT returned to its original value after removing dc bias after  740 and 

150 min, Figure 4-58 and 4-61. 
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Figure 4-58: (a) Z* plot (b) M'' plot, (c) Z'' plot and (d) C' plot at -263 C before and 

after a voltage of 10 V was applied at different measuring times with Ag electrodes. 

 

 

 

 

 

 

Figure 4-59: Total resistance at -263 °C with 10V bias and after removing the dc bias 

at different times in air with Ag electrodes. 
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Figure 4-60: (a) Z* plot (b) M'' plot, (c) Z'' plot and (d) C' plot at RT before and after 

a voltage of 10 V was applied at different measuring times with Ag electrodes. 

 

 

 

 

 

 

Figure 4-61: Total resistance at RT with 10V bias and after removing the dc bias at 

different times in air with Ag electrodes. 

Similar effect was observed for the same sample but with In-Ga electrodes at -223 

C (not shown) as RT  decreases with dc bias. 
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4.4 Discussion   

Phase diagram study of Y-doped BaTiO3  

The composition triangle, BaO–TiO2–YO1.5 is shown in Figure 4-62, on which are 

superposed loci of the three composition series based on BaTiO3 with the three 

possible mechanisms: acceptor, self and donor for substituting Y for Ba and/or Ti. 

The phase assemblages, according to the ternary phase diagram compositions are 

listed in Table 4-13. A clear picture of the ternary phase diagram was accurately 

determined by investigating about 27 different compositions. 

Figure 4-63 shows an expanded ternary phase diagram for BaO–TiO2–YO1.5 system 

based on the presented results in previous sections. The solid solution compositions 

and the solid solution limits of the three composition mechanisms were determined. 

Main features of the diagram are as follows: 

First, an extensive range of tetragonal BT solid solutions forms between x = 0 to 

0.05; with increasing x and y, there is transformation usually to cubic BT polymorph 

for acceptor and self-compensation joins which has been reported in the literature for 

acceptor doping [36, 50]. Second, the cubic polymorph was obtained over the range 

x = 0.05 – 0.1 and y = 0.05 – 0.075 for acceptor and self-compensation joins 

respectively. Third, the hexagonal BT polymorph was obtained over the range x = 

0.05 – 0.15 for only acceptor join. Fourth, donor join shows tetragonal BT 

polymorph until v = 0.015. The solubility limit of Y in Ti-site was to found be at  x 

= 0.15 and a small amount of YBa3Ti2O8.5 as second phase was detected by XRD 

with increasing x. Smaller solid solution limit of Y in self-compensation join was 

obtained up to  y = 0.075 with precipitation of YBa3Ti2O8.5 or Y2Ti2O7 as secondary 

phase which is in a good agreement with literature for the minority phase [73]. Two 

phases that could be indexed as monoclinic Ba6Ti17O40 and cubic pyrochlore 

Y2Ti2O7 were identified above the Y solubility on the A-site join at  v = 0.015. 

These two phases were widely found in literature [20, 24, 50, 74-76]. The reaction 

with TiO2 could form the cubic pyrochlore Y2Ti2O7. 

An increase in heating temperature and prolonging the heating period did not show any 

pure phase at v > 0.015. 
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Figure 4-62: Composition triangle BaO–TiO2–YO1.5 showing mostly the 

compositions studied on acceptor, self and donor joins.  

 

Table 4-13: Phase assemblages of samples labelled in Figure 4-62, h: hexagonal 

YBa3Ti2O8.5, h-BT: hexagonal BaTiO3, c-BT: cubic BaTiO3 and t-BT: tetragonal 

BaTiO3. 

Symbol Formula Structure phase 

 50BaO 49TiO2 1YO1.5 = Ba Ti0.98 Y0.02 O2.99 t-BT 

 50BaO 47.5TiO2 2.5YO1.5 = Ba Ti0.95 Y0.05 O2.975 c-BT 

 50BaO 45TiO2 5YO1.5 = Ba Ti0.90 Y0.10 O2.95 c-BT or h-BT 

 50BaO 44TiO2 6YO1.5 = Ba Ti0.88Y0.12 O2.94 h-BT 

 50BaO 42.5TiO2 7.5YO1.5 = Ba Ti0.85Y0.15 O2.925 h-BT 

 50BaO 41.25TiO2 8.75YO1.5 = Ba Ti0.825Y0.175 O2.9125 h-BT + h 

 50BaO 33.3TiO2 16.7YO1.5 = BaTi0.666 Y0.334O2.833 h 

 45BaO 35TiO2 20YO1.5 = Ba0.9 Ti0.7 Y0.4 O2.9 c-BT + h 
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 48.75BaO 48.75TiO2 2.5YO1.5 = Ba0.975 Ti0.975 Y0.05 O3   t-BT 

 47.5BaO 47.5TiO2 5YO1.5 = Ba0.95 Ti0.95 Y0.10 O3 c-BT 

 46.25BaO 46.25TiO2 7.5YO1.5 = Ba0.925 Ti0.925 Y0.15 O3 c-BT 

 45BaO 45TiO2 10YO1.5 = Ba0.9 Ti0.9 Y0.2 O3 c-BT + Y2Ti2O7 

 43.75BaO 43.75TiO2 12.5YO1.5 = Ba0.875 Ti0.875 Y0.25 O3 c-BT + Y2Ti2O7 

 42.5BaO 42.5TiO2 15YO1.5 = Ba0.85 Ti0.85 Y0.3 O3 c-BT + h 

 40BaO 40TiO2 20YO1.5 = Ba0.8 Ti0.8 Y0.4 O3 c-BT + h 

 37.5BaO 37.5TiO2 25YO1.5 = Ba0.75 Ti0.75 Y0.5 O3 c-BT + h 

 35BaO 45TiO2 20YO1.5 = Ba0.7 Ti0.9 Y0.4 O3.1 c-BT + Y2Ti2O7 

 30BaO 50TiO2 20YO1.5 = Ba0.6 Ti Y0.4 O3.2 t-BT + Y2Ti2O7 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-63: Expanded solid solution area of composition triangle BaO–TiO2–YO1.5 

showing the single phase (blue symbol) and mixture phase (red symbol) 

on acceptor, self and donor joins. 

 

Preliminary studies had shown that the doping of BaTiO3 with Y in the B-site has a 

solid solubility limit at around 12.2 at.% at 1515 °C [50]. The crystal structure is 

tetragonal for (x < 0.059) and cubic for ( x ≥ 0.059) [36, 41, 53], but another study 

indicates that the solubility for    
  is close to or less than 3.0 mol% [40]. Ren et al. 

reported recently that the solubility limit of Ti-site is determined to be x = 0.02 [77]. 

Makovec et al. reported a different behaviour; the solubility of Ti-site is 15 mol. The 

cubic phase was mainly obtained when samples heating at 1400°C and hexagonal 

polymorph of BaTiO3 was exclusively obtained after heating at 1500°C [20]. The 
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high temperature hexagonal phase of BT appeared to be destabilised by replacing Ti 

with Y. Therefore, some literature did not obtain this hexagonal polymorph. The 

destabilisation occurred in this region where the transition from hexagonal to cubic 

phase was expected. The hexagonal phase was the first product of reaction. High 

temperatures and prolonged heating was required to transfer to cubic phase. It was 

mostly kinetically-stable with these conditions.  

Oxygen loss can change the phase from tetragonal to hexagonal BT which is 

commonly obtained in literature [78] which is associated with incorporation of Y3+ 

ions at Ti sites by this reaction: 

                                         
     

        
           

                  (4-7) 

Results on samples heated at 1420–1600 C to study the nature of the cubic-

hexagonal phase transition, indicated that the equilibrium state was reached only 

very slowly. Many days sometimes were required to achieve a single phase product. 

The formation of the thermodynamically-stable product can be observed as the final 

reaction which may be due to its reaction pathway proceeding through a sequence of 

stages which involve metastable phases under these reaction conditions as the 

synthesis is an extremely difficult and slow process. This is an example of Ostwald's 

rule of successive reactions. The sequence of reactions can be understood in terms of 

free-energy changes whereby each consecutive phase arrangement has a lower free-

energy than the previous one. The gradual reduction in entropy of the phase 

arrangement may be considered to be the key driving force for the manifestation of a 

sequence of stages whereby it would begin with high entropy caused by the 

disordered nature of the starting materials and finish with the low entropy of the final 

crystalline product [61, 79]. 

Experiments often yielded a number of different polymorphs or phases, alternating 

between the hexagonal and tetragonal-cubic phase at different temperatures, 

independently of whether the method applied involves quenching to room 

temperature or slowly cooling.  

Results in this chapter are in good agreement with some literature [41], indicating 

that the substitution of Y is more favourable at B-site rather than A-site which 

disagrees with the simulation study of Lewis and Catlow [34], the experimental 
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suggestions of Lee and Smyth [80], Xue et al. [35] and others [40, 77] as they 

suggested that Ti-site doping is less favourable, that Ba-site doping is considerably 

more favourable and either Ba or Ti can be substituted by only very small amounts 

of yttrium, generally < 1 at.%, or 3 at.% even with excess TiO2 or BaO [36]. 

It has been suggested that this investigation indicates that ionic radii are not the only 

factor for determination the favourable site-occupancy but there are others that can 

affect the substitution of Y in BT such as the polarizability, characteristics of 

electronic structure, and bonding character of Y3+ ions [41]. 

The results obtained in this study compared with other published results confirm that 

there is a divergence with those results which may be explained by several causes. 

One factor may be the influence of platinum foil during sintering, which led us to the 

usage of another technique to remove the influence of platinum foil by placing the 

samples on a small quantity of powder of the same composition as the pellet. This 

means that there is no direct contact between sample and Pt. Subsequently, this 

method was used. 

It is possible for the samples to lose Ba at high sintering temperatures. Therefore, 

addition of excess Ba to compensate for loss of Ba may be used to return the 

composition to the acceptor join. 

Graule et al. reported that the electronic properties and the microstructure were 

different between samples sintered with direct contact between the samples and Pt 

compared to those sintered without direct physical contact between the two [81].  

Some samples required high temperatures for complete reaction with longer heating 

period to obtain the final state.  

Lattice parameter values showed the tetragonality of Y-B and Y-AB samples 

decreased since a increases, but c decreases with x,y and the unit cell volume 

increased. The change in V was linear, reached a plateau and remained unchanged 

with further increase in x,y which suggested that the solid solution limit was 

achieved, in agreement with the appearance of a secondary phase. Similar behaviour 

was reported in the literature with Y-A samples which showed that a, c and V all 

increased with increasing v. This behaviour indicated that the Ba2+ was replaced by 

Y3+ which was smaller than Ba2+ [73, 77]. 
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TC is dependent on the substitution site and charge compensation mechanism. The 

substitution of Y at Ti sites shifted the Curie point (TC) to lower temperatures, which 

is expected from consideration of Goldschmidt’s tolerance factor, in agreement with 

literature [36, 77]. 

Ferroelectric domains and TC can be affected by formation of oxygen vacancy as a 

result of replacing Ti with Y. 

TC shifted to higher temperatures for Y-A samples, which is in good agreement with 

some literature [73, 77] but contrary to other studies which showed that TC shifts to 

lower temperature [82] and another study showed that no shifting was observed but 

only reduction of the high permittivity value with increasing v [76]. Shifting of TC to 

higher temperatures was attributed to formation of a core-shell structure and it was 

suggested that a misfit between the grain core and grain shell may lead to stresses 

and shift TC to higher temperatures [73, 83]. 

The high permittivity value of BT is associated with the displacement of Ti-atom 

from their its central octahedral position (TiO6), yielding a noncentrosymmetric 

tetragonal structure and spontaneous polarisation. A decrease in the peak values of 

permittivity with an increase in the level of doping was observed as result of the 

ferroelectricity loss, which lose their polar domain structure. 

The height and sharpness of the permittivity maximum peak which reduce at low 

dopant concentrations are attributed to onset of a diffusion phase transition 

accompanied by a broadened permittivity peak at high dopant concentrations at x ≥  

0.05 as result of the coalescence of the individual phase transitions. Similar behaviour 

was observed in some literature [36] but not in other literature [77]. The transition 

from normal-ferroelectric to ferroelectric relaxor was observed. A frequency-

dependent  relaxor character, occurred at high dopant concentrations at x, y ≥  0.05 

either on B-site or AB site whereas, this behaviour was not observed on the donor 

join which is attributed to the low solid solubility of Y at the Ba site. The origin of 

the relaxor phenomenon in Y-doped BaTiO3 is unclear but may a result of Y3+ 

doping, leading to increasing the degree of disorder and may not be associated with 

compositional fluctuations since normal ferroelectric behaviour with an 

inhomogeneous distribution of Y-dopant was observed at x < 0.05 and ferroelectric 
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relaxor behaviour with a homogenous distribution of the Y-dopant was observed at x 

≥ 0.05. This behaviour may also be associated with substitution of yttrium onto both 

Ba and Ti sites, with disruption of the cooperative linking between the 

ferroelectrically-active TiO6 octahedra, which was observed with La3+[67], Ho3+ [61] 

or Zr4+ [84] doped BT as for example the defects were produced in the form of non-

ferroelectric ZrO6 octahedra with Zr4+ or Ti vacancies with La3+. 

An excellent Curie–Weiss behaviour was observed for εr values at temperatures > TC. 

The Curie–Weiss temperature (T0) was obtained from linear extrapolation of the 

inverse εr, over the high temperature range (1/ εr) = 0. These results as well show that 

the ferroelectric-paraelectric phase transition around the Curie temperature continues to 

sub-ambient temperatures at high concentrations [85]. 

The tetragonality decreased with an increase in the level of doping, as evident in 

both hysteresis loop and Raman spectroscopy results which are consistent with the 

results obtained from lattice parameter and TC data. 

The average grain size of Y-B was greater than Y-A and Y-AB samples which is 

consistent with literature data [77]. The grain growth of materials is mostly based on 

diffusion during sintering [77]. Acceptor dopant, Y in place of Ti, is important for 

involving creation of oxygen vacancies where their mobility can accelerate the 

diffusion which gives rise to greater grain size in Y-B than Y-A and Y-AB. The EDS 

result of x = 0.05 and 0.10 in Y-B join fits with observations reported in literature 

[42]. Some samples showed an increase in porosity, which may be attributed to the 

amount of dopant added as yttria is refractory. The EDS result of x = 0.175 in Y-B 

join showed that the needle-shaped grains have a higher Ba content than the 

spherical ones. These grains are comparable to those obtained in pure Ba3Ti2YO8.5 

ceramics [48] and is evidence of the secondary phase that may be present in this 

sample. 

Decreasing grain size with an increasing Y content was observed, leading to 

distortion of the crystalline lattice [38] which is in good agreement with literature 

data [23, 40, 82, 86, 87]. Therefore, extra grain boundaries were apparent.   

Impedance spectroscopy was used to establish the electrical properties of grain and 

grain boundary regions of Y-B, Y-AB and Y-A ceramics, showing strong 
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dependence on the substitution mechanism and in certain cases the dopant 

concentrations, cation stoichiometry, cooling rate, oxygen partial pressure, dc bias 

and sintering temperature/time. For Y-B samples, IS showed that samples with 0.09 

 x   0.15 were electrically homogenous and showed an insulating bulk response 

that can be modelled on a single parallel RC element but inclusion of a CPE may be 

needed for accurate data fitting. 

Samples with 0 < x < 0.07 showed similar electrical conduction behaviour to 

undoped BT; samples were electrically inhomogeneous and consisted of insulating 

grains and grain boundaries with room temperature resistivity values > 106 cm with 

no evidence of semiconductivity in any of the samples studied whether they were 

cooled slowly or quenched from high temperatures (1200-1600 C). All can be 

modelled approximately using an electrical equivalent circuit with two parallel sets 

of Resistor-Capacitor (RC) elements connected in series, which represented the grain 

(bulk) and grain boundary response. Arrhenius plots of bulk and grain boundary 

conductivity data gave low activation energy values of the bulk component. There 

may be to reasons for this. It may be associated with loss of oxygen at elevated 

temperature, consistent with the literature [88], by the idealized reaction: 

                          O2- → ½ O2 + 2e-                          (4-8) 

Alternatively, oxygen vacancies which are the charge compensation mechanism as 

result of incorporation of Y3+ ions at Ti sites may act as acceptors where extra charge 

is compensated by ionized oxygen vacancies. This is associated with filling of the 

oxygen vacancies by absorption of oxygen, leaving holes as charge carriers, by the 

following equation: 

                           
    

 

 
     

                  (4-9) 

Most samples were highly insulating without a notable occurrence of oxygen loss in 

these samples because the oxygen vacancies were created by Y dopant.  

ζgb of BT is lower than ζgb of Y-doped BT whereas EA of BT is higher than EA of Y-

doped BT, which may shows that a fully-oxidised condition was observed for the 

grain boundary component. There were no apparent trends and systematic 
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concentration dependence in the ζ and EA data with increase of Y content for 

samples processed under similar conditions. 

The conduction mechanism in these samples was shown to be p-type by resistance 

measurements made in different atmospheres and dc bias for x = 0.05. The resistance 

increased reversibly with decreasing pO2 in the measuring atmosphere and, 

therefore, holes were the principal charge carriers. This result is in good agreement 

with literature [22, 27, 40] as the equilibrium electrical conductivity of Y-B ceramics 

was studied with x = 0.02, 0.03 and 0.05. All of them show p-type characteristic. 

The p-type conduction mechanism was also shown by a decrease in the resistance at 

400 C under the influence of a dc bias voltage of 10 V. The resistance decrease was 

independent of various kinds of electrode material but was shown by both bulk and 

grain boundary regions of the sample. On application of a dc bias, the resistance of 

the sample decreased, rapidly at first, before reaching a steady state. It increased 

again after removing the dc bias, and finally recovered the original state.    

Impedance data for Y-AB samples showed that the electrical properties differed 

significantly depending on whether the sample was cooled slowly or quenched from 

1500 C. A series of tests was performed for a sample of one composition, y = 0.025, 

which was subjected to a variation of cooling treatments. The bulk resistance 

decreased for the sample quenched in air compared to the slow cooled sample. 

Further decrease in resistance was obtained for the sample quenched in liquid 

nitrogen. The slow-cooled sample had lower conductivity and higher activation 

energy than the quenched sample. This was attributed to the partial re-oxidation on 

slow cooling of the ceramics. Electrons were the main charge carriers for the 

quenched samples and the conduction mechanism was n-type whereas, holes and p-

type was found for slow cooled samples. 

A different characteristic behaviour was observed for the samples quenched rapidly 

after heating at 1500 °C. M′′ spectra show two broad peaks, one was located at 

higher frequencies, which moved to lower frequencies with increasing temperature, 

and the other which moved to higher frequencies with increasing temperature. 

Resistance data of the low frequency M′′ peak showed a (PTCR) effect with an 

increase in resistance commencing at TC, which passed through a maximum at some 
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higher temperature before decreasing to give the thermally activated, negative 

temperature coefficient resistivity (NTCR) effect. No temperature-dependent data 

have been obtained for the higher frequency peak as the high frequency M′′ peak 

shifted to even higher frequency (above the upper frequency limit for the impedance 

analyser,  10 MHz), confirming that this component became more conductive. The 

observation of PTCR behaviour for the quenched sample is conventionally ascribed 

to a space-charge effect [89] at the grain surfaces. The electric field associated with 

the ferroelectric domains in regions below TC can reduce SB or the barrier height to 

conduction through the space charge layer [90]. Above TC, disappearance of 

domains was observed. A core-shell structure was observed as the semiconducting 

core was surrounded by the depletion layer [88]. 

The conduction mechanism was also studied at constant temperature, in which the 

atmosphere (O2, air and N2) was varied during measurement for a sample of 

composition y = 0.05, sintered in air at 1500 C for 12 h followed by slow cooling to 

room temperature.  

A similar behaviour was obtained in all three atmospheres for both components, but 

with different magnitude of the conductivity. The conductivities of both low and 

high frequency components increased as the measuring atmosphere changed from N2 

to air to O2. Absorption of oxygen at the sample surface can be observed with the 

increase in pO2 in the measuring atmosphere, according to this reaction:  

 

 
                      (4-10) 

Since, with increasing pO2, electrons are withdrawn from the sample as a direct 

consequence and the conductivities of the two components increase as a 

consequence, the conduction mechanism is p-type. The n-type conduction was 

observed for the quenched sample which was clearly shown by application different 

atmospheres. 

Further insight into the conduction mechanisms for the same sample was obtained, 

by application of different dc bias voltages over the range 0 V to 10 V during 

impedance measurements. Both components were very voltage-dependent and in 
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particular, the associated conductivity increased with increasing dc bias, showing p-

type behaviour.   

The IS results obtained from slow cooled, Y-A ceramics were substantially different 

to those obtained from quenched ceramics and were strongly dependent on the 

cooling rate. The slow cooled sample was insulating for v > 0.01, in agreement with 

literature as semiconducting behaviour was observed for donor-doped BT at 

relatively low doping levels (up to a concentration of around 0.1-0.6 at.%) whereas, 

with increasing donor contents, insulating behaviour was observed [35, 74, 76, 90-

93].  

Slow cooled sample showed that the high frequency component was unchanged with 

dc bias which is related to interfacial effect due to a mismatch in the Fermi level of 

the interface between both sides or as a result of the existence of space-charge 

phenomena accompanying by trappied of mobile carriers at the interface [94]. This 

effect is attributed to a grain boundary because the low frequency component was 

unchanged with different electrodes. The capacitance value of the low-frequency 

component was  2.73 ×10-09 Fcm-1 which may confirm that this effect is the 

Schottky barrier at the grain–grain interfaces.  

Y-A sample was very conductive at room temperature for the sample quenched from 

1350 C which is consistent with literature [82] as the sample avoided oxidation 

during cooling. The resistance was dependent strongly on the electrode material. A 

Schottky barrier at the electrode-sample interface was observed. The sample was 

dominated by low frequency arc with Ag electrodes but this effect disappeared with In-

Ga electrodes which gave rise to ohmic contact and reduced the effective Schottky 

barrier impedance. PTCR effect was observed for both electrodes but the sample with 

In-Ga electrodes showed a weak PTCR effect which is associated with the higher 

concentration of adsorbed oxygen acceptor states in the barrier region during cooling, as 

reoxidization occurred. 

Conductivity data for Ag sample were generally independent of pO2 in which the 

electrode-sample interface was not affected under different atmospheres whereas, strong 

reduction of resistance was observed with dc bias.  
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4.5 Conclusions 

Y3+ is an amphoteric dopant. The solid solubility limit of Y3+ in BT is dependent on 

the substitution mechanism. The solubility limits are determined as when Y3+ 

replaced Ti4+ in the BT lattice. The maximum solubility was 15 mol % when Y 

replaced Ti while when Y3+ replaced Ba2+ the maximum solubility was 1.5 mol %. 

When Y3+ replaced both Ba2+ and Ti4+, the maximum solubility was 7.5 mol %.  

Therefore, the substitution of Ti4+ seems to be favoured as Y3+ forms most extensive 

solid solutions when substituted at Ti-site with charge compensation by creation of 

oxygen vacancies. 

Doping Y3+ ions led to the expansion of cell volume, inhibition of the grain growth 

for the BT materials, reduction of the tetragonality, c/a ratio, of BaTiO3, shifting TC 

to lower temperatures for Y-B and Y-AB samples and to higher temperatures for Y-

A samples. 

The height and sharpness of the permittivity peak maximum were observed at low 

dopant concentrations whereas there was a diffusion phase transition accompanied 

by a broadened permittivity peak at high dopant concentrations at x,y ≥  0.05. 

A relaxor character, frequency-dependent occurred at high dopants concentrations at 

x,y ≥  0.05. 

Doping Y3+ at the B-site showed insulating behaviour even with quenching since its 

doping mechanism is dominated by oxide ion vacancy compensation. Doping Y3+ at 

the AB-site and A-site showed semiconductivity for quenched samples. 

IS results showed that Y-B samples with 0.09  x   0.15 were electrically 

homogenous and samples with 0 < x < 0.07 and Y-AB and Y-A samples were 

electrically inhomogeneous.  

A PTCR characteristic was obtained for a quenched sample for y = 0.025 at Y-AB and v 

= 0.015 at Y-A.   
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Chapter 5: Electrical properties of RE
3+

-doped BaTiO3 at 

low concentrations 

5.1 Introduction  

Modified BT ceramics with different RE3+ elements to tailor specific applications are 

widely used for multilayer capacitors (MLCCs) and PTC resistors since the 

conductivity and electrical degradation can be controlled by concentration levels. 

Many authors have previously reported the improvement of the ferroelectric 

properties of BT-based ceramics by doping with RE3+ elements. Gd3+, Dy3+, Ho3+, 

Y3+, and sometimes Er3+ are magic dopants. The RE3+ elements are indeed 

incorporated into the BaTiO3 lattice, and in a manner that depends on their ionic 

radius [1].  

It has been established in the literature that the resistivity minimum behaviour is 

obtained with small amounts of rare earth dopants such as Y, Ho, La, Nd, Sm and 

Gd at x values in the range ~ 0.1–1 at.% [2-5]. This was attributed to the switching in 

doping mechanism from electronic compensation to an ionic compensation 

mechanism. The resistance decreases at low concentrations with electronic 

compensation since the rare earth ions act as a donor dopant. At high concentrations, 

the resistance increases with an ionic compensation mechanism [3, 4, 6-9]. This 

transition from electronic to ionic compensation is accompanied by a rapid decrease 

of grain size [10]. This transition with increasing RE doping was attributed to the 

grain size reduction and the insulating layer of barium vacancy formed during 

cooling [11]. It was proposed that grain growth is inhibited by cation vacancies, 

leading to the transition into an insulator [12-14]. This behaviour was attributed as 

well to dopant segregation at grain boundaries which can change the grain boundary 

energy [15, 16]. 

Impedance spectroscopy is an important technique to investigate the resistivity 

minimum. As example for this transition, La-doped BT ceramics showed switching 

of the charge compensation mechanism from electronic to titanium vacancies. IS 

data showed that such ceramics were electrically inhomogeneous [3, 17]. It was 

reported that this behaviour is exclusively obtained with coarse-grained samples for 

La3+-doped BT quenched from ≥1350 C in air [3] whereas, it was observed for 
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Ho3+-doped-BT samples which were fired at 1400 °C in air and slow cooled [2]. This 

may be associated with a non-equilibrium state which is often observed at high 

temperatures. During high temperature processing, oxygen loss may occur causing 

electronic compensation associated with n-type semiconductivity. An increase in the 

resistance is observed in samples sintered at low temperatures or slow-cooled [3]. In 

contrast, it has been reported that the atmosphere and cooling rate did not affect the 

semiconductivity for samples studied at the resistivity minimum. Therefore, the 

resistivity minimum is not associated with loss of oxygen [2]. Semiconducting 

behaviour can be imparted to BT by RE doping at the Ba site [18-20]. 

The effect of RE on electrical resistivity of BT ceramics doped with Ln3+ (Dy, Ho, 

Er and Y over the range of x = 0.001 - 0.01 according to the formula of BaTiO3 + 

1/2yLn2O3 + 2%TiO2 was studied [21]. There were significant decreases in 

resistivity at v = 0.3% of La-doped BT. Dy, Ho, Er and Y showed wider range of 

semiconductivity and extra wide range was observed for Y. A single dopant Y of 

0.1–0.8 mol% was introduced in the Ba-site to decrease the resistivity [22]. The 

substitution of Dy, Ho, Er and Y was in the barium sublattice with electronic 

compensation at low concentrations and switched to titanium substitution at higher 

concentrations, showing a U-type curve. The highest resistivity which was associated 

with PTCR behaviour was obtained for Ho doping at x = 0.003. It was reported that 

the critical dopant concentration of the resistivity minimum for Dy-doped BT was  

0.4 mol%, slightly higher than 0.3 mol% for another report [23]. 

It was reported that donor type behaviour was observed for Ba/Ti < 1  and acceptor 

type behaviour for Ba/Ti > 1 for Er3+ [24] Y3+ [25] and Gd3+ [26]. Er3+ can substitute 

both Ba2+ site and Ti4+ site simultaneously, bringing about donor-acceptor self-

compensation [27]. 

This chapter concerns BaTiO3 doped with some rare earth elements (RE3+), 

specifically: Gd, Dy, Ho, Y, Er and Yb in order to study the electrical properties and 

determine the conditions under which a resistivity minimum occurs with increasing 

RE content for three joins with three possible charge compensation mechanisms. 

These are: (RE-A) barium site substitution and electronic compensation, (RE-B) 

titanium site substitution compensated by oxygen vacancies and (RE-AB) self-

compensation. 
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Specifically, the objective for this chapter was to study the possible occurrence of the 

resistivity minimum with dilute dopant content on three joins for samples quenched 

and slow cooled with six rare earths. There are three possible mechanisms for 

semiconductivity that will be considered for generating Ti3+ ions: 

1- Direct donor doping using dopants of higher valence than the substituted cation. 

RE acts as a direct donor dopant under the specific conditions with small 

concentrations of donor dopants according to the following equation: Ba2+ → RE3+ + 

e- and general formula Ba1-vREvevTiO3, ([Ba+RE]/[Ti]=1); this mechanism is 

expected on the donor join. 

2- Oxygen loss at high temperatures according to O2- → 1/2O2 + 2e-, as oxide ions in 

the lattice give up electrons to form oxygen gas. In principle, this mechanism occurs in 

pure BT and can be explained to some extent on the donor join, self-join and 

acceptor join. 

3- Dilute dopant contents as double acceptor doping of BT with two acceptors, Ho3+ 

and Ti3+ which was suggested in Ho case [2] and was used to explain the occurrence 

of the resistivity minimum on the acceptor join as a local charge balance mechanism 

can be provided by reduction of Ti4+ to Ti3+ . Oxygen vacancies which are created as 

result of acceptor doping mechanism can be compensated by this local charge 

balance mechanism. Ti4+ can be substituted by two ions for each oxygen vacancy 

with one Ho3+ and Ti3+. Creation of oxygen vacancy for acceptor mechanism and the 

occurrence of oxygen loss at high temperatures generate Ti3+ [2].   

 

Results will be divided to separate sample-electrode and Schottky barrier effects 

associated with bulk and for grain boundaries. In addition, there are two types of 

Schottky barrier which have already been discussed in chapter 3. This is associated 

with PTCR phenomena. 
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5.2 Experimental procedure   

RE (Gd, Dy, Ho, Y, Er and Yb )-doped BaTiO3 compositions prepared according to 

3 systems: BaTi1-xRExO3-x/2 acceptor doping join (RE-B), Ba1-yTi1-yRE2yO3 , self-

compensation doping join (RE-AB) and Ba1-vREvTiO3 donor doping join (RE-A) at 

several concentrations x,y and v = 0, 0.0001, 0.001 and 0.01 were prepared by 

conventional solid state reaction using an agate mortar and pestle as discussed in 

chapter 2. Furthers several additional concentrations were studied for Y doping at x, 

y and v = 0.0003, 0.0005, 0.003 and 0.002. Compositions were fired at 1350 °C for 

12 h in air with cooling rate 10 °C/min, reheated at 1350, 1400 and 1450 °C for 12-24 

h then quenched to room temperature by withdrawing them from the furnace and 

allowing to cool in air.  
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5.3 Results  

5.3.1 XRD Results 

The XRD patterns of concentrations x = 0, 0.0001, 0.001 and 0.01 for Y, Gd, Dy, 

Ho, Er and Yb-doped BT are not shown but XRD data demonstrated that all samples 

were tetragonal and phase-pure. 

5.3.2 Electrical properties of Yb-doped BT 

IS results indicated that all samples on three joins were electrically insulating and did 

not show any conductivity at room temperature even with rapid quenching in air. 

The temperature dependence of ε′ and tan δ for pellets of concentrations x,y and v = 

0, 0.0001, 0.001 and 0.01 which had been sintered and slow cooled from 1350 °C for 

12 h in air with Pt electrodes measured at 250 kHz are shown in Figure 5-1 (a-i) for 

acceptor (a-c), self-compensation (d-f) and donor (g-i) joins respectively. ε′ 

increases with increase in temperature to reach Curie temperature TC 

for all compositions, displaying a dielectric constant maximum in the range ~ 1660- 

6150, Figure 5-1 (a) for Yb-B, ~ 2900- 4800, Figure 5-1 (d)  for Yb-AB and ~ 4100- 

7100, Figure 5-1 (g) for Yb-A.  

For Yb-B, the value of the permittivity maximum for x = 0.0001 was higher than for 

other samples where ε′ showed a sharp peak especially at x = 0.0001. At x = 0.01 ε′ 

demonstrated a pronounced diffuse ferroelectric phase transition.  

For Yb-AB, the value of the permittivity maximum decreased with increasing x and 

then increased at y = 0.01. 

 For Yb-A, the value of the permittivity changed with increasing x content from v = 0 

to 0.0001, decreased at v = 0.001 then reached a maximum at v = 0.01. 

Generally, all samples showed that normal ferroelectric behaviour was observed. No 

compositions showed any significant frequency dependence of permittivity and 

dielectric loss (not shown). Permittivity data are plotted in Curie-Weiss form in 

Figure 5-1 (c,f,i). Cw data extracted from the Curie–Weiss plots are listed in Table 

5-1.  
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For Yb-B, with increasing x, the dielectric loss decreases. In addition, the 

composition of x = 0.01 had the smallest loss but showed an increase in dielectric 

loss above ~ 150 °C, Figure 5-1 (b).  

For Yb-AB and Yb-A, with increasing y and v, the dielectric loss decreases and then 

increases at y and v = 0.01, Figure 5-1 (e,h).  

All compositions showed a non-leaky dielectric behaviour except pure BaTiO3 

which was a leaky dielectric, showing some conductivity with dielectric loss values 

~ 0.035.  
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Figure 5-1: Fixed frequency measurements at 250 kHz of (a,d.g) relative permittivity 

(b,e,h), dielectric loss (tanδ) versus  temperature and Curie-Weiss plots (c,f,i) for Yb-

B,Yb-AB and Yb-A at several concentrations (x,y and v = 0, 0.0001, 0.001 and 0.01) 

sintered at 1350 °C for 12 h in air for samples with Pt electrodes. 

Table 5-1: Values of TC, To, TC-To and Cw. 

Composition for Yb-B Tc (C) To (C) Tc -To (C) Cw (10
5
 K) 

0 117 103 14 0.78 

0.0001 119 106 13  1.01 

0.001 119 103 16 0.93 

0.01 119 86 33 0.60 

Composition for Yb-AB TC (C) To (C) Tc -To (C) Cw (10
5
 K) 

0 117 103 14 0.78 

0.0001 119 103 16  0.57 

0.001 118 96 22 0.69 

0.01 115 101 14 0.85 

Composition for Yb-A TC (C) To (C) TC -To (C) Cw (10
5
 K) 

0 117 103 14 0.78 
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0.0001 121 105 16 0.95  

0.001 120 104 16 0.78 

0.01 113 99 14 1.05 

  

Samples of BaTi1-xYbxO3-x/2 at several concentrations x = 0, 0.0001, 0.001 and 0.01 

sintered at 1350 °C for 12 h in air were characterised at 450 °C using an impedance 

analyser with Pt electrodes which showed all to be electrically heterogeneous. All 

compositions were insulating at room temperature, whether fired at 1350 or 1450 °C. 

Impedance complex plane plots, Z* are shown in Figure 5-2 (a). Two overlapping 

broad arcs are seen clearly at x = 0 and can be attributed to grain and grain boundary 

impedances. For BaTiO3, the grain boundary arc is much greater than the grain arc. The 

Z"/M" spectroscopic plots, (b), showed that the Z" spectrum was dominated by low 

frequencies and the M" spectrum was dominated by high frequencies. The fmax for Z" 

and M" peaks are separated by three orders of magnitude for x = 0 and 1 ¼ orders for 

x = 0.0001, 0.001, 0.01. This indicates an inhomogeneous microstructure. M" peaks 

are usually associated with the bulk response of a sample when these occur at higher 

frequency and are associated with the lowest capacitance in the equivalent circuit. A 

peak in Z" is associated with a large resistance, which may be a grain boundary 

response and is usually observed at lower frequency. If this component has a large 

capacitance, it is not easily visible in the M" plot. The Debye-like peaks in Z" and M" 

spectra and arc in Z* were seen at temperatures ≥ 400, 300, 300, 250 °C for the 

above compositions, respectively. For the same data, spectroscopic plots of 

capacitance, C' against frequency, (c), suggest the presence of two components that 

correspond to the bulk capacitance Cb at high frequency and the grain boundary 

capacitance, Cgb at low frequency, especially at x = 0. The values of the bulk 

capacitance were around  (2 – 3) ×10-11 Fcm-1, similar to the values extracted from 

Figure 5-2 (b).  

Previous samples of x = 0.0001, 0.001 and 0.01 were reheated at 1450 °C for 24 h in 

air then air-quenched to room temperature on a brass block. Samples of x = 0.001 

were reheated at 1350 °C for 30 min in air then liquid nitrogen-quenched to room 

temperature. IS results indicated that the samples were electrically insulating and did 

not show any conductivity at room temperature.  
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Figure 5-2: 450 °C IS data for BaTi1-xYbxO3-x/2 at several concentrations (x = 0, 

0.0001, 0.001 and 0.01), SC, sintered at 1350 °C for 12 h in air, (a) impedance 

complex plane plots, Z* (b,c) -Z", M" spectroscopic plots and (d) C' plots for 

different frequencies for samples with Pt electrodes. 

The conductivity data for the bulk b and grain boundary gb with activation energy 

EA values are presented in Arrhenius plots, Figure 5-3 (a-f). As is illustrated by the 

graph, ζb increases by ~ one order of magnitude on doping, Figure 5-3 (b). 
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Figure 5-3: Arrhenius plots of conductivity data for Yb-B (a,b),Yb-AB (c,d) and Yb-

A (e,f) at several concentrations (x = 0, 0.0001, 0.001 and 0.01), SC, sintered at 1350 

°C for 12 h in air against reciprocal temperature for samples with Pt electrodes. 

(a,c,e) grain boundary conductivity, (b,d,f) bulk conductivity. 

The effect of oxygen partial pressure and dc bias was studied for Yb-B,Yb-AB and 

Yb-A at x,y and v = 0.01. Similar behaviour was observed. For example for Yb-A, 

on changing the atmosphere to N2 at 450 °C, the conductivity decreased, Figure 5-4 

(a), appearing to be p-type. Figure 5-4 (b) shows that the high frequency capacitance 

plateau illustrates similar capacitance values   9.12 ×10-12 Fcm-1. Two peaks in M" 

were observed. Both of them showed a slight shift to low frequency in N2, (c). Z* 

plot with dc bias at 350 °C shows that RT  decreased gradually with time and reached 

a steady-state value after 25 min, Figure 5-5 (a). This confirms that the conduction 

mechanism is p-type. The initial M" peak shifted to higher frequency with increasing 

time, (b). Figure 5-5 (c) shows that the high frequency capacitance plateau was 

unaffected by the dc bias and had a value  3.45 ×10-11 Fcm-1. RT returned to its 

original value after removing dc bias after  300 min, (d). 
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Figure 5-4: 450 °C IS data for Yb-B, x = 0.01, Q from 1450 °C, (a) Z* plot, (b) C' 

plot and (c) M'' plot in different atmospheres. 
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Figure 5-5: 350 C IS data for Yb-B, x = 0.01, Q from 1450 °C, (a) Z* plot (b) M'' 

plot, (c) C' plot before and after a voltage of 10 V was applied at different measuring 

times and (d) Bulk resistance with 10V bias and after removing the dc bias at 

different times in air. 

In summary, Yb-B, Yb-AB and Yb-A samples were very resistive either with SC or 

Q and p-type behaviour was observed by pO2 and dc bias. 

5.3.3 Electrical properties of Er-doped BT 

The temperature dependence of ε′ and tan δ for pellets of concentrations x,y and v = 

0, 0.0001, 0.001 and 0.01 which had been sintered and Q from 1350 °C for 12 h in 

air with In-Ga electrodes measured at 250 kHz are shown in Figure 5-6 (a-i) for 

acceptor (a-c), self-compensation (d-f) and donor (g-i) joins, respectively.  

In the three joins, at TC, a clear maximum  in permittivity and dielectric loss was 

observed in the range ~ 1176- 6932, Figure 5-6 (a) for Er-B, ~ 205- 18406, Figure 

5-6 (d) for Er-AB and ~ 11437- 18870, Figure 5-6 (g) for Er-A. In general, the 

transition temperature increases slightly with increasing x, y and v. For Er-B, the 

magnitude and sharpness of the permittivity maximum decreased substantially with 

increasing Er content until x = 0.001 and then increased at x = 0.01, Figure 5-6 (a). 

For Er-AB, the value of the permittivity maximum for y = 0.001 was higher than for 

other samples. For Er-A, εmax has value for v = 0.001.  

Permittivity data are plotted in Curie-Weiss form in Figure 5-6 (c,f,i). Cw data 

extracted from the Curie–Weiss plots are listed in Table 5-2.  
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For Er-B and Er-AB, there was generally a significant decrease in the dielectric loss 

with Er doping, Figure 5-6 (b,e). A significant increase in the dielectric loss was 

observed at v = 0.01 for Er-A, Figure 5-6 (h).   
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Figure 5-6: Fixed frequency measurements at 250 kHz of (a,d.g) relative permittivity 

(b,e,h), dielectric loss (tanδ) versus  temperature and Curie-Weiss plots (c,f,i) for Er-

B, Er-AB and Er-A at several concentrations (x,y and v = 0, 0.0001, 0.001 and 0.01) 

sintered at 1350 °C for 12 h in air for samples with In-Ga electrodes. 

Table 5-2: Values of TC, To, TC-To and Cw. 

Composition for Er-B Tc (C) To (C) TC -To (C) Cw (10
5
 K) 

0 122 85 37 4.64 

0.0001 127 110 17 1.24 

0.001 120 95 25 0.28 

0.01 128 100 28 1.06 

Composition for Er-AB TC (C) To (C) TC -To (C) Cw (10
5
 K) 

0 122 85 37 4.64 

0.0001 129 108 21 1.36 

0.001 130 93 37 6.82 

0.01 125 52 73 0.15 
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Composition for Er-A TC (C) To (C) TC -To (C) Cw (10
5
 K) 

0 122 85 37 4.64 

0.0001 129 101 28 3.11 

0.001 127 63 64 7.88 

0.01 124 23 101 18.75 

  

5.3.3.1 IS results for Er-B 

Impedance measurements were made for SC and Q pellets in air at x = 0, 0.0001, 

0.001 and 0.01 with In-Ga electrodes. The data were too resistive to measure at room 

temperature except Q BT. For Q BT, x = 0, a small semicircular core appeared at 

high frequency in impedance, Z*, complex plane plot with resistance at RT of  500 

cm with another much greater semicircular at low frequency, Figure 5-7 (a). 

Combined Z′′/M′′ spectroscopic plots are given in (b). M′′ also displays evidence of a 

conductive core for BT but not for Er-B with x > 0. Y′ against frequency plot of Q 

BT shows two plateaux at lower and higher frequencies corresponding to the two 

semicircular in (a), whereas Er-B samples show no evidence of any frequency-

independent behaviour at any frequency (c). The spectroscopic plot of the real part of 

the capacitance, log C′ vs log f shows a frequency-independent plateau at higher 

frequencies with associated capacitances,  221, 324 and 135 pFcm-1 for x = 0.0001, 

0.001 and 0.01 respectively. These are attributed to the bulk capacitance of the 

samples with permittivity ~ 2000-4000. Data for Q BT (d) show two plateaux 

attributed to sample bulk (high frequency) and either a grain boundary or a Schottky 

barrier (low frequency).  
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Figure 5-7: RT IS data for Er-B at several concentrations (x = 0, 0.0001, 0.001 and 

0.01) Q from 1350 °C, (a) impedance complex plane plots, Z* (b) -Z", M" 

spectroscopic plots, (c) Y' plots and (d) C' plots for different frequencies for samples 

with In-Ga electrodes. 

Arrhenius plots are shown in Figure 5-8. The value of the conductivity was lower for 

x = 0.0001 and its activaton energy was highest. For these data, total resistance 

values were obtained from the low frequency intercepts on Z* plots and are 

attributed to sample bulk resistances. 

 

 

 

 

Figure 5-8: Arrhenius plots of (a) grain boundary and (b) bulk conductivity data for 

Er-B, SC, x = 0, 0.0001, 0.001 and 0.01, sintered at 1350 °C for 12 h in air with In-

Ga electrodes.  

IS measurements were made in different atmospheres for x = 0.01 with Ag 

electrodes. The sample was insulating below 350 °C. A clear sensitivity to pO2 was 

observed on changing from O2 to N2 at 350 °C, Figure 5-9 (a). Z* plots showed one  
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broad arc with a small tail at low frequencies and with no evidence of a much 

smaller, second semicircular arc at high frequencies,  compared with Q BT. The C' 

data showed a frequency-independent plateau at high frequencies, 40 pFcm-1. At low 

frequency, C′ increased to values ∼ 310-8 to 310-7 Fcm−1, depending on 

atmosphere, (b). The M′′ peak (c) shifted to lower frequencies with decreasing pO2. 

The conclusion from these results is that the bulk conductivity is p-type. 

Impedance data before and after applying 10V dc bias at 350 C are illustrated in 

Figure 5-10. RT decreased when a voltage of 10V was applied, (a). The M′′ peak 

shows a small shift to higher frequencies, (b). There is no noticeable effect on Cʹ 

data, (c). There was no evidence of any significant time dependence of Z* data on 

applying/removing the dc bias. The conclusion from the dc bias results is that the 

conduction is p-type, similar to the conclusion from the pO2 tests. Similar results 

were observed for both SC and Q samples. 
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Figure 5-9: 350 °C IS data for Er-B, x = 0.01, Q from 1350 °C, (a) Z* plot, (b) C' 

plot and (c) M'' plot in different atmospheres with Ag electrodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-10: 350 °C IS data for Er-B, x = 0.01, Q from 1350 °C, (a) Z* plot (b) M'' 

plot, (c) C' plot before and after a voltage of 10 V was applied at different measuring 

times in air with Ag electrodes. 

In summary, Er-B samples were very resistive either with SC or Q and p-type 

behaviour was observed by pO2 and dc bias. 

5.3.3.2 IS results for Er-AB 

Impedance measurements were made for SC and Q pellets in air at y = 0, 0.0001, 

0.001 and 0.01 with In-Ga electrodes. The data for Q samples were very conductive 

except for y = 0.01 which was resistive either with SC or Q although the Q sample 

was more conductive. Typical Z* plots showed a single rather distorted arc whose 

resistance increased dramatically between 21 and 225 C then decreased slightly, 

Figure 5-11 (a). Two peaks were clearly apparent in the Z′′/M′′ spectroscopic plots. 
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Largest resistance was associated with the low frequency component and low 

resistance was observed for the high frequency component, which is clearly obvious 

in the M′′ spectrum, (b). Thus, the high frequency incline in the M′′ data is consistent 

with a semiconductive bulk region. At all temperatures, the Y′ spectroscopic plot 

shows a low frequency plateau with a dispersion at higher frequencies, (c), whereas 

C' spectrum shows a dispersion at higher and a lower frequency plateau, (d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-11: RT IS data for Er-AB, y = 0.001, Q from 1350 °C, (a) impedance 

complex plane plots, Z* (b) -Z", M" spectroscopic plots, (c) Y' plots and (d) C' plots 

for different frequencies for samples with In-Ga electrodes. 

Figure 5-12 shows a modest PTCR effect for the total resistivity when samples pass 

through their Curie point. 
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Figure 5-12: Dc resistivity (ρ) as a function of temperature for Er-AB, y = 0.001, Q 

from 1350 °C.  

The sample of y = 0.001 was studied as well at low temperatures to characterise the 

bulk response. Z* plot was dominated by a single, large arc that could not be fully 

resolved at 10 and 25 K as the total resistance of the sample exceeded 100 MΩcm. At 50 

K, a single arc with RT  ~ 1.86  107 Ωcm is seen, Figure 5-13 (a). M′′ spectra show 

very broad, overlapping peaks, (b). Capacitance data extracted from the M′′ peak 

height values are 1.37  10-10 and 1.40  10-10 for 10 and 25 K respectively. The Y′ 

data show frequency-dependent conductivity with an approximately linear, power 

law dependence with the onset of a plateau at low frequency, (c). The C′ data show a 

dispersion tending towards a plateau at high frequency, (d). 
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Figure 5-13: IS data for Er-AB, y = 0.001 Q from 1350 °C, (a) impedance complex 

plane plots, Z* (b) -Z", M" spectroscopic plots, (c) Y' plots and (d) C' plots for 

different frequencies for samples with In-Ga electrodes. 

The sample of y = 0.01 was insulating at room temperature. Two components were 

observed at high temperatures. ζb and ζgb values are summarised in Arrhenius 

format. The activation energies associated with the bulk and grain boundary 

conductivity are  0.98 and 1.07 eV, respectively, Figure 5-14. 

 

 

 

 

 

Figure 5-14: Arrhenius plots of conductivity data for Er-AB, y = 0.01 Q from 1350 

°C against reciprocal temperature for samples with In-Ga electrodes.  

The effect of pO2 was studied for conductive (y = 0.001) and insulating (y = 0.01) 

samples. Sample y = 0.001 was not sensitive to pO2. Z* data were similar in Air, N2 

and O2 (not shown). For y = 0.01, RT  increased on changing from O2 to N2, Figure 5-

15 (a). C' showed a clear decrease at high frequency in N2 and Mmax increased and 

shifted to high frequency, (b,c). 
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RT  decreased significantly with a dc bias as shown in Z* at 550 °C. This reduction 

was time-dependent and a steady-state value was observed after 110 min, Figure 5-

16 (a) and indicates that the conduction mechanism is p-type. The M" peak shifted to 

higher frequency with increasing time, (b) and (c) shows that the high frequency 

capacitance plateau was mostly unaffected by the dc bias, with a value  9.49 pFcm-

1. The resistance decrease was fully reversible on removal of the dc bias after  1300 

min, (d). The sample of y = 0.001, Q also showed similar reduction of resistance 

with a dc bias, (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-15: 550 °C IS data for Er-AB, y = 0.01 Q from 1350 °C, (a) Z* plot, (b) C' 

plot and (c) M'' plot in different atmospheres with Ag electrodes. 
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Figure 5-16: 550 C IS data for Er-AB, y = 0.01, Q from 1350 °C, (a) Z* plot (b) M'' 

plot, (c) C' plot before and after a voltage of 10 V was applied at different measuring 

times and (d) Bulk resistance with 10V bias and after removing the dc bias at 

different times in air. 

In summary, Er-AB samples were conductive for Q samples and showed a SB effect 

except for y = 0.01 which was resistive either with SC or Q. P-type behaviour was 

observed by pO2 and dc bias for insulating sample, 0.01 whereas, conductive sample, 

0.001 was not sensitive to pO2 and the resistance decreased reversibly with dc bias. 

5.3.3.3 IS results for Er-A 

All Q samples were conductive. A PTCR effect was observed for the total resistance 

at v = 0.0001 and 0.001 (not shown). A clear difference between SC and Q sample 

was observed for v = 0.01, Figure 5-17 and 5-18. They are electrically 

inhomogeneous.  
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The SC sample was a dc insulator, with a RT resistance > 106 cm and Z* plots 

indicated there was a zero intersect on the real axis at high frequency, Figure 5-17 

(a). The Z′′ plot shows a low frequency incline. The M′′ data indicate two low 

resistance components at intermediate and high frequencies, with fmax values of  3  

103 Hz with 4.67  10-10 Fcm-1 and > 106 Hz which may be associated with 

semiconducting region, (b). The Y′ data show frequency-dependent values over all 

range either with low or high frequency regions and there is no evidence for such a 

dc plateau, (c). The C′ data show mostly a high frequency plateau representing the 

bulk response of the sample with a value  165 pFcm-1. A clear dispersion region 

was observed with decreasing frequency, (d).  

Q sample shows two components in the Z* plot, Figure 5-18 (a), as two well- 

defined semicircular arcs at low and high frequency. The high frequency arc 

resistance values were changed slightly  40-45 cm over the temperature range 

from RT-200 C, whereas a significant change was observed for the low frequency 

arc. The start of a high frequency peak at fmax > 105 Hz is seen in M′′ data, (b). The 

maximum is not shown which requires higher frequencies. This component is 

attributed to the bulk (grain interior) response. Z′′ peak changed significantly with an 

increase in temperature whereas M′′ peak did not show considerable change. The Y′ 

plots show two plateaux at high and low frequency separated by dispersion over a 

range of intermediate frequencies, (c). The C′ data are strongly frequency-dependent 

between  104-106 Hz as the C′ data increasingly show a dispersion to lower values 

with increasing frequency, (d). 
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Figure 5-17: IS data for Er-A, SC, v = 0.01, SC, sintered at 1350 °C, (a) impedance 

complex plane plots, Z* (b) -Z", M" spectroscopic plots, (c) Y' plots and (d) C' plots 

for different frequencies for samples with Ag electrodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-18: IS data for Er-A, v = 0.01, Q from 1350 °C, (a) impedance complex 

plane plots, Z* (b) -Z", M" spectroscopic plots, (c) Y' plots and (d) C' plots for 

different frequencies for samples with In-Ga electrodes. 
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IS data for the same sample with Ag electrodes are presented in Figure 5-19 at low 

temperatures. A significant change in the high frequency (bulk) response values with 

temperature was observed. IS data show two semicircles in Z* at low temperature 

(25-75 K). The resistance decreases with increasing temperature for both the bulk 

and grain boundary arcs, Figure 5-19 (a). The low frequency incline in the Z′ data 

with a shoulder on the high frequency side was observed at 25-50 K whereas, the 

complete peak was seen at ≥ 75 K. The height of the M′′ peak decreased and shifted 

towards higher frequencies with increasing temperature, (b) with C′25 =  8.65  10-

11, C′50 = 9.04  10-11 and C′50 = 4.67  10-10 Fcm-1. The power law dispersion in Y′ 

at higher frequencies, (c) and C′ at lower frequencies, (d) was observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-19: IS data for Er-A, v = 0.01, Q from 1350 °C, (a) impedance complex 

plane plots, Z* (b) -Z", M" spectroscopic plots, (c) Y' plots and (d) C' plots for 

different frequencies for samples with Ag electrodes. 
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Different atmospheres and electrode were applied for v = 0.01, Q. IS data with Ag 

and In-Ga electrodes in air, N2 and O2 gases are shown in Z* plot, Figure 5-20 (a). 

There is no change in the impedance data with different gases but a large 

semicircular arc at low frequency which was observed with Ag electrodes 

disappeared with In-Ga electrodes. Figure 5-20 (b) shows no considerable effect with 

changing pO2. The C′ spectroscopic plots show high capacitance, low frequency 

plateaus with C′ =  3-7  10-9 Fcm-1, followed by a dispersion toward low 

capacitance at high frequency, Figure 5-20 (c). The sample of v = 0.001, Q also was 

independent of pO2, (not shown). 

Impedance data for v = 0.01, Q with Ag electrodes, with 10 volt, show no change in 

the bulk, Figure 5-21 (a) and (b), whereas the low frequency component resistance 

decreased. This decrease was time-independent. The C′ data did not change at high 

frequency range and as well low frequency region except at < 102 Hz as a small 

decrease was observed, 5-21 (c). The sample of v = 0.001, Q also showed similar 

behaviour, (not shown). 

    

 

 

 

 

 

 

 

 

 

 

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 Air-Ag

 Air-In-Ga

 N
2
-Ag

 N
2
-In-Ga

 O
2
-Ag

 O
2
-In-Ga

 

 

-Z
'' 

/ 


c
m

Z' / cm

(a)

10
1

10
2

10
3

10
4

10
5

10
6

0

200

400

600

800

1000

 

 

Frequency / Hz

-Z
'' 

/ 


c
m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Air-Ag

 Air-In-Ga

 N
2
-Ag

 N
2
-In-Ga

 O
2
-Ag

 O
2
-In-Ga

(b)

 M
'' 

/ 
1

0
-4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-10

10
-9

10
-8

10
-7

10
-6

 Air-Ag

 Air-In-Ga

 N
2
-Ag

 N
2
-In-Ga

 O
2
-Ag

 O
2
-In-Ga

(c)

 

 

C
' /

 F
c
m

-1

Frequency / Hz



- 246 - 

 

Figure 5-20: RT, IS data for Er-A, v = 0.01, Q from 1350 °C, (a) Z* plot, (b) M'' plot 

and (c) C' plot in different atmospheres with Ag and In-Ga electrodes. 

 

    

 

 

 

 

 

 

 

 

 

 

 

Figure 5-21: RT, IS data for Er-A, v = 0.01, Q from 1350 °C, (a) Z* plot (b) C' plot, 

(c) M'' plot at 10 K before and after a voltage of 10 V was applied at different 

measuring times. 

In summary, Er-A samples were conductive for Q samples and showed a SB effect 

whereas, SC samples were insulating but not homogenous and probably a conductive 

core was shown. The high frequency resistance and capacitance of v = 0.01 and 

0.001 samples were insensitive to dc bias whereas, the low frequency component 

decreased reversibly with dc bias. Low frequency arc in Z* disappeared on replacing 

Ag with In–Ga electrodes. Application of different pO2 did not show any sensitivity 

to pO2. The resistivity minimum was not observed but there was a significant 

reduction of resistivity with the amount of Er dopant content.   
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5.3.4 Electrical properties of Y-doped BT 

The temperature dependence of ε′ and tan δ for pellets of concentrations x,y and v = 

0 - 0.01 which had been sintered and Q from 1350 °C for 12 h in air with In-Ga 

electrodes measured at 250 kHz are shown in Figure 5-22 (a-i) for acceptor (a-c), 

self-compensation (d-f) and donor (g-i) joins respectively.  

In the three joins, at TC, a clear maximum in permittivity and dielectric loss was 

observed in the range ~ 2101- 36141, Figure 5-22 (a) for Y-B, ~ 1641- 14215, Figure 

5-22 (d) for Y-AB and ~ 13385- 1622, Figure 5-22 (g) for Y-A. In general, the 

transition temperature of most samples did not show significant change with 

increasing x, y and v. For Y-B, the magnitude and sharpness of the permittivity 

maximum decreased substantially with increasing Y content except at x = 0.001 

which εmax was very high, Figure 5-22 (a). For Y-AB and Y-A, no systematic trend 

was observed and the value of the permittivity maximum for y = 0.01 was higher 

than for other samples whereas all doping samples were lower than pure BT for Y-A.  

Permittivity data are plotted in Curie-Weiss form in Figure 5-22 (c,f,i). Cw data 

extracted from the Curie–Weiss plots are listed in Table 5-3.  

There was a clear decrease in the dielectric loss with all Y doping, Figure 5-6 (b,e,h).  

 

 

 

 

 

 

0 50 100 150 200 250
0

5000

10000

15000

20000

25000

30000

35000

40000

(a) 

 

 

R
e

la
ti
v
e

 p
e

rm
it
ti
v
it
y
 (
 r

)

Temperature / TC

 x = 0   , T
C
=121.82  

 x = 0.0001, T
C
=   120.04

 x = 0.0003 , T
C
=    120.89

 x = 0.0005 , T
C
=   118.65 

 x = 0.001  , T
C
=   123.74 

 x = 0.003 , T
C
=      112.55

 x = 0.01   , T
C
=      129.42

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0 (b) 

 

 

 x = 0   

 x = 0.0001

 x = 0.0003 

 x = 0.0005  

 x = 0.001  

 x = 0.003 

 x = 0.01  

T
a

n
 

Temperature / TC

80 100 120 140 160 180 200 220
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

 x = 0   

 x = 0.0001

 x = 0.0003 

 x = 0.0005  

 x = 0.001  

 x = 0.003 

 x = 0.01  

 

 

(c) 

1
/

r

Temperature / TC

0 50 100 150 200 250
0

5000

10000

15000

(d) 

 

 

R
e

la
ti
v
e

 p
e

rm
it
ti
v
it
y
 (
 r

)

Temperature / TC

 y = 0   , T
C
=121.82  

 y = 0.0001, T
C
=   120.88 

 y = 0.0003 , T
C
=    122.20

 y = 0.0005 , T
C
=   122.64 

 y = 0.001  , T
C
=   119.94 

 y = 0.003 , T
C
=      124.22

 y = 0.01   , T
C
=      123.36



- 248 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-22: Fixed frequency measurements at 250 kHz of (a,d.g) relative 

permittivity (b,e,h), dielectric loss (tanδ) versus  temperature and Curie-Weiss plots 

(c,f,i) for Y-B, Y-AB and Y-A at several concentrations (x,y and v = 0, 0.0001, 0.001 

and 0.01) sintered at 1350 °C for 12 h in air for samples with In-Ga electrodes. 

Table 5-3: Values of TC, To, TC-To and Cw. 

Composition for Y-B Tc (C) To (C) TC -To (C) Cw (10
5
 K) 
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0.0001 120 104 16 1.86 

0.0003 121 101 20 1.07 

0.0005 119 99 20 0.94 

0.001 124 61 63 20.49 

0.003 113 102 11 1.41 

0.01 129 86 43 0.94 

Composition for Y-AB TC (C) To (C) TC -To (C) Cw (10
5
 K) 

0 122 85 37 4.64 

0.0001 121 105 16 1.25 

0.0003 122 105 17 1.14 

0.0005 123 106 17 1.09 

0.001 120 88 32 0.48 

0.003 124 24 100 9.10 

0.01 123 100 23 3.35 

Composition for Y-A TC (C) To (C) TC -To (C) Cw (10
5
 K) 

0 122 85 37 4.64 

0.0001 124 103 21 0.65 

0.0003 122 103 19 0.97 

0.0005 120 96 24 0.90 

0.001 123 86 37 0.71 

0.002 125 93 32 0.50 

0.01 108 95 13 1.24 

  

5.3.4.1 IS results for Y-B 

Sample 0.001 behaved differently to those with lower and higher Y contents. 

Impedance measurements were made for SC and Q pellets in air at x = 0, 0.0001, 

0.0003, 0.0005 and 0.01. The data for SC and Q samples were too resistive at RT 

without showing any evidence of a conductive core. Cʹ and Yʹ data showed a CPE.  

At high temperature, two components were observed. Two plateaux in Cʹ were seen, 

indicating gb and b. Bulk and grain boundary conductivity data for SC sample at x = 

0.0001 and 0.01 are plotted in Arrhenius format, Figure 5-23. Different pellet with 

same condition for x = 0.01 showed a poor semiconductive behaviour with RT  7.5 

 105 cm. This sample was reheated and Q from 1400 and 1500 C but was still too 

resistive to measure.  
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Figure 5-23: Arrhenius plot of conductivity data for Y-B at x = 0, 0.0001 and 0.01, 

SC, sintered at 1350 °C for 12 h in air against reciprocal temperatures for samples 

with Pt electrodes. 

The sample of x = 0.001 was studied to characterise its bulk response. Impedance 

measurements were made for SC and Q pellets in air with different electrodes. In Z*, 

a semicircular arc with resistance of  20 and 50 cm with another resistive 

component at low frequency was clearly seen for both SC and Q respectively at same 

conditions; 1350 °C for 12 h in air with Pt electrodes at RT whereas, two 

overlapping broad arcs are seen for sample Q from 1400 with In-Ga electrodes, 

Figure 5-24 (a). Combined Z′′/M′′ spectroscopic plots are given in (b). M′′ also 

displays evidence of a conductive core. The C′ data are strongly frequency-

dependent between  105-106 Hz as the C′ data increasingly show dispersion to 

lower values with increasing frequency. Data at low frequency show a general 

plateau attributed to a Schottky barrier effect, (c). 
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Figure 5-24: RT IS data for Y-B, SC and Q samples at x = 0.001, (a) impedance 

complex plane plots, Z* (b) -Z", M" spectroscopic plots and (c) C' plots for different 

frequencies.  

SC sample at higher temperatures shows three regions.  Broad semicircular arcs were 

seen in the Z* plot, Figure 5-25 (a). The M′′ data indicate two components; peaks 

between  104-106 Hz and the start of a high frequency peak at fmax > 106 Hz, (b). Z′′ 

peak decreased significantly and shifted to high frequency with an increase in 

temperature. The Y′ plots show a clear plateau at low frequency separated by 

dispersion over a range of intermediate frequencies, (c). The C′ data are strongly 

frequency-dependent and low frequency data show that SB is dominant, (d). At low 

frequency, Y′ increases with temperature but C′ decreases. Resistance decreases but 

the region becomes thicker. At intermediate frequency, Y′ data and C′ change less 

with temperature in the low frequency region.  

A modest PTCR effect for the total resistivity was observed for sample Q from 1400 

C with In-Ga electrodes (not shown). 
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Figure 5-25: IS data for Y-B, SC, x = 0.001, sintered at 1350 °C for 12 h in air, (a) 

impedance complex plane plots, Z* (b) -Z", M" spectroscopic plots, (c) Y' plots and 

(d) C' plots for different frequencies for samples with Pt electrodes. 

A sample prepared by PBM shows similar behaviour to HM sample: a conductive 

core was observed for x = 0.001, Q from 1350 C and 0.003, Q from 1400 C with 

R1  3000 and 250 cm (not shown) whereas, BM sample at x = 0.001 did not show 

any evidence of a conductive core even with Q from different temperatures in Z*. 

Figure 5-26 (a) shows that the data of Z* were too resistive to measure at room 

temperature. The Z′′ plot shows a low frequency incline. The M′′ data did not 

indicate the bulk response, (b). The admittance, Y′ data show no evidence of any dc 

conductivity either with low or high frequency regions, (c). C′ data show frequency-

independent plateaux at higher frequencies with associated capacitances,  64, 67 

and 21 pFcm-1 for sample Q from 1350, 1400 and 1450 C respectively. These are 

attributed to the bulk capacitance of the samples. 
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Figure 5-26: RT IS data for Y-B, BM, x = 0.001, (a) impedance complex plane plots, 

Z* (b) -Z", M" spectroscopic plots (c) Y' plots and (d) C' plots for different 

frequencies with In-Ga electrodes. 

Different atmospheres were applied for x = 0.01 with Ag electrodes. The sample start 

showed clear semicircular arcs at 350 °C. The data showed a decrease in 

conductivity with decreasing pO2 at 350 °C, Figure 5-27 (a). Z* plots showed one 

broad arc with a small tail at low frequencies. The C' data showed a frequency-

independent plateau at high frequencies, 51 pFcm-1, (b). The M′′ peak (c) shifted to 

lower frequencies with decreasing pO2. The conclusion from these results is that the 

bulk conductivity is p-type. The sample of x = 0.001, Q also was independent of pO2, 

(not shown). 

Effect of applying 10V dc bias at 350 C is shown in Figure 5-28. RT  decreased 

when a voltage of 10V was applied, (a). The M′′ broad peak shows that the peak 

height reduced and became two separate peaks, (b). All Cʹ data increased slightly 

after applying 10V dc bias, (c). There was a significant time dependence of Z* data 

on removing the dc bias. The conclusion from the dc bias results is that the 

conduction is p-type, similar to the conclusion from the pO2 tests. Similar results 

were observed for both SC and Q samples. The sample of x = 0.001, Q showed that, 

RT  decreased with dc bias (not shown). 
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Figure 5-27: 350 C IS data for Y-B, x = 0.01, Q from 1400 °C, (a) Z* plot, (b) M'' 

plot and (c) C' plot in different atmospheres with Ag electrodes. 
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Figure 5-28: 350 C IS data for Y-B, x = 0.01, Q from 1400 °C, (a) Z* plot (b) M'' 

plot, (c) C' plot before and after a voltage of 10 V was applied at different measuring 

times and (d) Total resistance with 10V bias and after removing the dc bias at 

different times in air with Ag electrodes. 

In summary, Y-B samples were resistive for both SC and Q samples at x = 0, 0.0001, 

0.0003, 0.0005 and 0.01 and no conductive core was observed. A conductive core for 

both SC and Q samples was observed for x = (0.001, HM) and (0.001 and 0.003 

PBM) and showed a SB effect whereas, 0.001, BM sample showed that RT  was too 

high to measure with little evidence of conductive core for sample Q only from 1450 

C. P-type behaviour was observed by pO2 and dc bias for insulating sample, 0.01 

whereas, conductive sample, 0.001 was not sensitive to pO2 and the resistance 

decreased reversibly with dc bias. 

5.3.4.2 IS results for Y-AB 

Too resistive data were observed either with SC or Q pellets in air at y = 0, 0.0001, 

0.0003, and 0.0005 at RT and showed a weak conductive core. The increase of 

temperature showed two components. Bulk and grain boundary conductivity data for 

SC sample at y = 0.0001 are plotted in Arrhenius format, Figure 5-29. ζb > ζgb by 

half order of magnitude at low temperatures,  250 C, therefore, ζ is dominated by 

ζgb. With increasing temperature, the difference between ζb and ζgb values reduced 

gradually.  
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Figure 5-29: Arrhenius plot of conductivity data for Y-AB, y = 0.0001, SC, sintered 

at 1350 °C for 12 h in air against reciprocal temperature for samples with Pt. 

electrodes 

A conductive core component at high frequency with resistance at RT of  200 and 

2000 cm in Z* were observed for SC and Q pellets respectively in air with Pt 

electrodes for y = 0.001. A semicircular arc was shown for sample Q from 1400 with 

In-Ga electrodes, Figure 5-30 (a). Generally, the C′ data showed lower values 

compared to the same composition on Y-B, (b).  

 

  

 

 

 

 

Figure 5-30: IS data for Y-AB, SC and Q, y = 0.001, (a) impedance complex plane 

plots, Z* and (b) C' plots for different frequencies. 

Sample Q from 1400 C with In-Ga electrodes showed a modest PTCR effect for the 

total resistivity (not shown). 
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1350 C with two overlapping arcs with RT  8.85  105 cm. Sample Q from 1400 

and 1450 C were too resistive to measure at room temperature, Figure 5-31 (a).  

The Z′′ / M′′ plots data for a sample Q from 1450 C, (b), show that the sample was 

too resistive to measure at RT as fmax of any Debye-type peaks in Z′′ and M′′ plots 

must occur below the lower measuring frequency limit of the instrumentation (<20 

Hz). The Z′′ plot of sample Q from 1400 C showed similar behaviour. The M′′ peak 

was clearly shown for sample Q from 1350 C, (b). The total conductivity could be 

measured only for sample Q from 1350 C at low frequency, (c). C′ data is 

frequency-independent for all Q temperatures at high frequency with Cb  65, 53 and 

47 pFcm-1 for sample Q from 1350, 1400 and 1450 C respectively, (d).  

     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-31: IS data for Y-AB, BM, Q sample at y = 0.001, (a) impedance complex 

plane plots, Z* (b) -Z", M" spectroscopic plots (c) Y' plots and (d) C' plots for 

different frequencies with In-Ga electrodes. 
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The effect of cooling rate for y = 0.01, sintered at 1400 C for 12 hours in air was 

studied. Results are shown for three different cooling rates in the following 

sequence: SC in air, Q in air and Q in liquid N2. The room temperature Z* plot 

showed there was an apparent semiconducting component at high frequency for SC 

and Q in air and the low frequency component was very resistive whereas, a 

semicircular arc was observed for sample Q into liquid nitrogen with RT  1.91  105 

cm, Figure 5-32 (a).  The M′′ spectra showed abroad peak between 103-105 Hz and 

another incline at > 106
, indicating the presence of a conductive component in this 

ceramic, (b). The Z′′ peak and low frequency plateau in Y′ was only shown for 

sample Q into liquid N2, (b) and (c). C′ data are typically associated with the bulk 

and grain boundary components, (d). 

 

 

 

 

 

 

 

 

 

 

 

    

Figure 5-32: RT IS data for Y-AB, y = 0.01, SC and Q form 1400 C, (a) impedance 

complex plane plots, Z* (b) -Z", M" spectroscopic plots (c) Y' plots and (d) C' plots 

for different frequencies with In-Ga electrodes. 
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For sample Q from 1400 C into liquid N2, IS data were obtained at low temperature. 

The total resistivity was too resistive to measure between 50-125K whereas it can be 

measured between 217-295K as a semicircular arc was observed, Figure 5-32 (a) and 

(b). The M′′ peaks represented the bulk response with Cb  56, 59 and 63 pFcm-1 for 

50, 75 and 100K respectively. The M′′ plot between 217-295K shows evidence for a 

more conductive grain core that can not be measured, which is clearly seen by the 

increase in M′′ data at > 106 Hz, (c) and (d). The total conductivity and low 

frequency peak can not be measured for 50-125K, (c,e). The Z′′ peak and low 

frequency plateau in Y′ was only shown for 217-295K, (d,f). Cb and Cgb data for 50-

125K were lower than 217-295K, (g,h). The ζb, ζgb and ζT  data were calculated from 

the M′′, Z′′ and Z* plots respectively, Figure 5-33. The activation energy for ζb, ζgb 

and ζT  is very low.  
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Figure 5-33: IS data for Y-AB, Q from 1400 C into liquid N2 for y = 0.01, (a,b) 

impedance complex plane plots, Z* (c,d) -Z", M" spectroscopic plots (e,f) Y' plots 

and (g,h) C' plots for different frequencies with In-Ga electrodes. 

 

 

 

 

 

 

Figure 5-34: Arrhenius plot of ζb, ζgb and ζT  data for Y-AB, y = 0.01, Q from 1400 

C into liquid N2 against reciprocal temperature for samples with In-Ga electrodes. 
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Q sample from 1500 C in air for y = 0.01 showed no apparent sensitivity was shown 

to the change of pO2 at RT.  RT  7  104 cm, Figure 5-35 (a). M′′ and C′ data were 

same for different atmospheres, (b,c).  The sample of y = 0.001, Q also was 

independent of pO2, (not shown). 

The effect of a dc bias of 10 V on the impedance response of Q sample from 1500 

C in air for y = 0.01 was studied at 50K, Figure 5-36. There are two components in 

Z*, attributed to the bulk and grain boundary. Rb was essentially unchanged as 

shown in high frequency region either in Z* or M′′ peaks, (a,b) whereas, Rgb showed 

a small decrease which is clearly seen in the total resistance in Z* and low frequency 

M′′ peaks. C′ data were unchanged either with low or high frequency regions, (c). On 

removal of the dc bias, Rgb increased and regained its original state with very little 

time-dependent  10 min, (not shown). The sample of y = 0.001, Q showed that, RT  

decreased with dc bias (not shown). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-35: RT, IS data for Y-AB, y = 0.01, Q form 1500 C, (a) Z* plot, (b) M'' 

plot and (c) C' plot in different atmospheres with Ag electrodes. 
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Figure 5-36: 50K IS data for Y-AB, y = 0.01, Q form 1500 C, (a) Z* plot (b) M'' 

plot and (c) C' plot at 50K before and after a voltage of 10 V was applied at different 

measuring times with Ag electrodes. 

In summary, Y-AB samples showed a weak conductive core for y = 0.0001, SC. SC 

and Q samples showed a clear conductive core component for x = 0.001 and showed 

a SB effect. Conductivity was affected by cooling rate. The difference between HM, 

PBM and BM was different to Y-B behaviour as the semicircular arc was seen for 

BM, 0.001, Q from 1350 C. No apparent sensitivity was shown to the change of pO2 

at RT for y = 0.01, Q from 1500 C. Dc bias showed that Rb at 50K was independent 

of dc bias whereas, Rgb showed a reversible decrease in grain boundary resistance. 

5.3.4.3 IS results for Y-A 

Pellets of v = 0, 0.0001, 0.0003, and 0.0005 were heated  at  different temperatures, 

1350, 1350, and 1400 °C for about 12 hours; this was followed by SC and air 

quenching. For v = 0.0001, a clear conductive core was seen for SC, Figure 5-37 
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(a,b) and weak one was shown for Q. The material was very resistive for v = 0.0003 

and 0.0005 and no data could be collected (not shown).  

 

 

 

 

 

 

Figure 5-37: IS data for Y-A, SC, sintered at 1350 C in air at v = 0.0001, (a) 

impedance complex plane plots, Z* and (b) -Z", M" spectroscopic plots for different 

frequencies with Pt electrodes. 

The effect of SC and Q with Pt electrodes on v = 0.001 was shown in Figure 5-38. 

The SC and Q, 1350 C samples show non-zero intercept at RT of  10 cm at high 

frequencies in impedance complex plane plots, which suggests that this sample is 

electrical inhomogeneous. There is good evidence for a conductive grain core of  

25 cm, whereas at low frequency the total sample was resistive, (a). Impedance 

patterns appear to be not resolved: overlapping of two semicircular arcs are 

presented for sample Q from 1400 C with In-Ga electrodes. A high frequency 

incline is observed in the M′′ which represents the bulk component, (b). A 

frequency-independent plateau at low frequency is followed by a cross-over region 

to a high frequency with dispersion for SC and Q from 1400 C samples whereas no 

plateau was seen for Q from 1350 C, (c). The C′ data show that a Schottky barrier is 

dominant at low frequency, following by a dispersion at high frequency (d). 
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Figure 5-38: RT IS data for Y-A, SC and Q sample at v = 0.001, (a) impedance 

complex plane plots, Z* (b) -Z", M" spectroscopic plots (c) Y' plots and (d) C' plots 

for different frequencies. 

For sample Q from 1350 and 1400 C in air, IS data were obtained at low 

temperature. The ζT  data were calculated from the low frequency plateau in Y′, 

Figure 5-39. Sample Q from 1350 was studied from 50 K to RT and sample Q from 

1400 was studied from RT to 200 C. Arrhenius plot exhibits three ferroelectric 

phase transitions from cubic to tetragonal  125 C and from tetragonal to 

orthorhombic at  2 C and from orthorhombic to rhombohedral at  98 C. 
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Figure 5-39: Arrhenius plot of ζT  data for Y-A at v = 0.001, Q from 1350 C and 

1400 C against reciprocal temperature. 

Sample of v = 0.002, HM showed a poor semiconductive behaviour with RT  1.75  

105 cm (not shown). 

PBM samples show a conductive core for y = 0.001, Q from 1350 C and 0.003, Q 

from 1400 C with R1  16700 and 250 cm respectively (not shown) whereas, BM 

sample at v = 0.001 showed a single arc, but somewhat distorted from the ideal 

semicircular shape for sample Q from 1350 and 1400 C with RT  1.26  105 and 

2.18  105 cm. For v = 0.001, sample Q from 1450 C were too resistive to 

measure at room temperature, Figure 5-40 (a). M″ spectra are dominated by low Cb 

effects, (b). The data indicate that both Z″/ M″ peaks were mostly overlapping as 

single peaks with some broadening and a small difference in peak maxima 

frequencies were observed with starting another high frequency component. The Y′ 

data show no evidence of any frequency-independent behaviour for sample Q from 

1450 C, whereas the total conductivity can be obtained from the low frequency 

plateau for sample Q from 1350 and 1400 C, (c). C′ data showed a frequency-

independent plateau at high frequencies for sample Q from 1350 and 1400 C, 

whereas a mostly frequency-independent plateau for low and high frequency regions 

was obtained for sample Q from 1450 C, (d). 
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Figure 5-40: RT IS data for Y-A, BM, Q, v = 0.001, (a) impedance complex plane 

plots, Z* (b) -Z", M" spectroscopic plots (c) Y' plots and (d) C' plots for different 

frequencies with In-Ga electrodes. 

For v = 0.01, samples of 1350 SC, 1350 Q and 1400 C Q in air are shown in Figure 

5-41. The samples of 1350 SC, 1350 Q are too resistive to measure, but the sample 

of 1350 Q shows a clear semiconducting grain core at higher frequency wit Rb  

5900 cm and Cb  847 pFcm-1 whereas the sample of 1400 Q has two semicircles, 

the small one is probably with a non-zero high frequency intercept with Rb  36 

cm and Rgb  325 cm and Cgb  0.98 nFcm-1. The larger semicircular at low 

frequency is dominated by Shottky barrier effect with RSB  806 cm and CSB  

0.16 nFcm-1, (a). 

M" plots, (b) show a marked variation in the shape of the plots. A single broad peak 

is seen for 1350 Q at high frequency whereas the peak can not be measured for 1400 

Q as its peak always occurs at fmax > 1 MHz. Little evidence of a conductive core 
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was seen for 1350 SC. Capacitance data (c) for 1350 Q and 1400 C Q, show that a 

high capacitance, low frequency plateau is observed followed by, a dispersion region 

with increasing frequency. The capacitance data for 1350 SC are mostly independent 

of frequency with a slight increase at low frequency. With increasing temperature, a 

PTCR effect with a dramatic resistance increase at TC was observed (not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-41: IS data for Y-A, SC and Q sample at v = 0.01, (a) impedance complex 

plane plots, Z* (b) -Z", M" spectroscopic plots and (c) C' plots for different 

frequencies. 

The surface oxygen exchange reaction of at v = 0.01, Q from 1250 C, measured at 

100 C is shown by noticeable and reversible changes in resistivity in different 
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pO2. Sensitivity to atmosphere was observed only for low frequency component, R2 

and C2 (a,c). For the high frequency component, no changes with changing 
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atmosphere were observed for R1, C1 and M′′ peak (a,b,c). The impedance sample of 

v = 0.001, Q also was independent of pO2, (not shown). 

Similar behaviour was observed with dc bias, Figure 5-43. R1, C1 and M′′ peak were 

unaffected by the dc bias (a,b,c) whereas, the low frequency component; R2 and C2 

(a,c) show a clear decrease. The decrease of the low frequency component is 

reversible on removal of the dc bias with very little time dependence after  20 min. 

The sample of v = 0.001, Q showed that, RT  decreased with dc bias (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-42: 100 C IS data for Y-A, Q from 1250 C, v = 0.01, (a) Z* plot, (b) M'' 

plot and (c) C' plot in different atmospheres with In-Ga electrodes. 
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Figure 5-43: 100 C IS data for Y-A, Q from 1250 C, v = 0.01, (a) Z* plot (b) M'' 

plot and (c) C' plot before and after a voltage of 10 V was applied at different 

measuring times with In-Ga electrodes. 

In summary, Y-A samples showed a conductive core was observed for both SC and 

Q samples for v = 0.0001. More conductive data were shown for v = 0.001 and 0.01. 

The difference between HM, PBM and BM was different to Y-B behaviour as the 

semicircular arc was seen for BM, 0.001, Q from 1350 and 1400 C. No apparent 

sensitivity was shown to the change of pO2 at RT for y = 0.01, Q from 1500 C. Dc 

bias showed that Rb at 50K was independent of dc bias whereas, Rgb showed a 

reversible decrease in grain boundary resistance. The bulk component for v = 0.01 at 

100 C was independent of both dc bias and pO2 whereas, the low frequency 

resistance decreased on application of a small dc bias voltage and was reversible on 

removal of the dc bias. 
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5.4 Discussion 

The electrical properties of RE3+ (Gd, Dy, Ho, Y, Er and Yb)-doped BaTiO3 

compositions prepared according to 3 doping mechanisms: (RE-B), (RE-AB) and 

(RE-A) at several concentrations x,y and v = 0, 0.0001, 0.001 and 0.01 were 

characterised using IS and LCR measurements. 

The XRD result indicates that all samples are tetragonal pure single phase and all 

observed reflections can be indexed.  

The temperature dependence of ε′ and tan δ was studied. Generally, all samples 

showed that a normal ferroelectric behaviour was observed and no systematic trend 

was observed with RE3+. Some samples were leaky dielectrics as shown by the very 

high permittivity maximum and high dielectric loss. 

IS data obviously clearly showed that the electrical properties of RE-doped BT are 

strongly dependent on pO2, dc bias, cooling rate, type of electrodes, sintering 

temperature and RE3+ concentration. In some cases, the method for mixing reagents 

by HM, PBM or BM was also a variable. 

For Yb-doped BT:  

IS results indicated that all samples on the three joins were electrically insulating and 

did not show any conductivity at room temperature even with rapid quenching in air. 

Yb3+ substituted mainly at the Ti-site with charge compensation via oxygen 

vacancies: 

                 
       

     
     

          (5-1) 

At high temperatures, most samples show bulk and grain boundary conductivities 

with Ea  0.6-0.9 eV and 1 eV.  

P-type behaviour was indicated for x,y and v = 0.01 by both pO2 and dc bias 

measurements at 400 C. No evidence of n-type behaviour for SC and Q samples at 

different temperatures was seen, even with rapid Q into liquid N2. P-type behaviour 

may be associated with O2 absorption on cooling. Effect of SC and air Q was 

studied.  

In some cases, C′ is lower for SC samples due to oxidation on cooling.  
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No resistivity minimum was observed for Yb-BT for all three joins, Figure 5-44. 

 

 

 

 

 

Figure 5-44: Total resistivity at RT in Yb-doped BT. 

For Er-doped BT:  

All samples are insulating on the Er-B join whether Q or SC especially at x = 0.01, 

as R  1010 cm was observed at RT for a Q sample. This shows that a very small 

amount of Er-B completely prevents O2 loss. This could be very relevant to avoiding 

loss in capacitor BTmaterials. dc bias and pO2 show that the conduction is p-type. 

Er-A data show that all Q samples were conductive whereas, SC samples were 

insulating but not homogenous and probably a conductive core was shown. This 

means that the semiconductivity of Q samples on the donor join is due to oxygen 

loss and not to direct donor doping. Q samples show a clear Schottky barrier (SB) 

with In-Ga or Ag electrodes with a sample resistance of  40 cm. Low temperature 

data show the high frequency C′ plateau at  40 pFcm-1 and a temperature-dependent 

Rb of 1.17  104 cm. There is also evidence at 75-175K of a second plateau in Y′ 

and an intermediate semicircle in Z* which could be Rgb. The RSB can also be 

measured over a wide temperature range below RT. Low temperature data show the 

bulk response over the range of 25-75K.  

The high frequency resistance and capacitance of v = 0.01 sample was insensitive to 

the application of a small dc bias. By contrast, the low frequency component 

changed with a dc bias. Rb << RSB and Rb is independent of dc bias.  

Application of different pO2 did not show any sensitivity to pO2. 
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Replacing Ag with In–Ga electrodes resulted in significant difference in the 

electrical properties. Low frequency arc in Z* disappeared with In-Ga electrodes as 

Ag with a high electron work function produced non-ohmic contacts whereas, In-Ga 

alloy gave ohmic contacts. This second semicircle is indicative of a Schottky barrier 

present at the electrode interface. 

On the self-compensation join, Er-AB, very conductive data were shown for Q 

samples except for y = 0.01 which was resistive either with SC or Q although the Q 

sample was more conductive. SB was observed for y =0.0001, Q sample with C′  3 

 108 Fcm-1 and a small PTCR effect with resistance increase of 3-4 times at 100-

125 C. Similar data for 0.001 with a conductive core clearly present in M′′ data. 

Low temperature data show the bulk response over the range of 10-50K. 

Both pO2 and dc bias was applied for two different Q samples; conductive sample 

which was dominated by SB for y = 0.001 and insulating sample for y = 0.01. 

Conductive sample of y = 0.001 was not sensitive to pO2. Z* data were similar in 

Air, N2 and O2 whereas p-type behaviour was observed for insulating sample of y = 

0.01. Both samples showed that the resistance decreased reversibly on application of 

a small dc bias which is associated with a SB effect and p-type behaviour. For SB at 

the sample–electrode interface, there is a decrease in the height of potential barrier in 

the forward bias direction with increasing the width of the depletion region [28]. 

No resistivity minimum was observed for Er-BT for all three joins, Figure 5-45. 

There is a clear reduction on Er-AB and Er-A joins but the solid solution limit is  

0.01. Therefore, any increase of resistivity at higher dopant content can not be 

observed. 

 

 

 

 

 

Figure 5-45: Total resistivity at RT in Er-doped BT. 
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For Y-doped BT:  

For Y-B, too resistive data and no conductive core was observed for SC and Q 

pellets in air at x = 0, 0.0001, 0.0003, 0.0005 and 0.01. For example, the x = 0.0001, 

1350 C, SC in air showed two components in Z* with very insulating total 

resistance value with Ea  1.17 eV at higher temperatures.  Two plateaux were seen 

in C′, indicating the bulk and grain boundary. A conductive core for both SC and Q 

samples was observed for x = 0.001, 1350 C. C′ plateau was observed at 50 nFcm-1 

which is probably associated with a SB effect whereas, two overlapping broad arcs 

were seen for sample Q from 1400 C. The sample still shows a SB, but it is much 

smaller, consistent with a more ohmic contact with In-Ga. RT  showed a maximum at 

175 C, which looks like a PTCR effect even though the R value is for the SB.  

The BM samples showed different behaviour. RT  was too high to measure with little 

evidence of conductive core. C′ data were much less. The PBM samples showed a 

conductive core with very high RT  values.  This behaviour was also observed for BM 

and PBM samples on Y-AB and Y-A joins. It is probably that the sample was more 

homogenous after BM as BM increased the homogeneity and removed local donor-

doped region. 

 Effect of Q was shown for x = 0.01 samples Q from different temperatures 1350, 

1400 and 1450 C. 1350 C , Q sample has higher ζT  as oxygen-deficient samples on 

B join pick up some O2 at lower temperature to become p-type. Dc bias data on 1350 

C sample showed p-type. Similar results with pO2 change were seen in two 

samples.  

For Y-AB, a weak conductive core was seen for y = 0.0001, 1350 C, SC. RT  was 

very high to measure. SC and Q samples showed a clear conductive core component 

for x = 0.001, 1350 C, SC and Q. These results were dominated by SB effect that 

depended on electrode: Pt, Au and In-Ga. Effect of cooling rate was clearly observed 

for y = 0.0001, 1400 C with SC in air, Q in air and Q into liquid N2. SC was 

insulating and RT  was too high to measure and showed conductive core. Q in air 

showed similar behaviour but with more conductive data whereas, Q into liquid N2 

showed a semicircular arc with RT  1.91  105 cm. Low temperature data were 
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collected for sample Q into liquid N2. The bulk component was clearly seen in the 

M′′ peaks with Cb  56, 59 and 63 pFcm-1 for 50, 75 and 100K respectively. 

Dc bias and pO2 were applied for Q sample from 1500 in air for y = 0.01. No 

apparent sensitivity was shown to the change of pO2 at RT which is probably 

associated with a SB effect. Therefore, dc bias was studied at low temperature to 

characterise the bulk response at 50K. Rb was independent of dc bias whereas, Rgb 

showed a reversible decrease in grain boundary resistance. 

For Y-A, a conductive core was observed for both SC and Q samples for v = 0.0001 

whereas, RT  can not be measured. More conductive data were shown for v = 0.001 

and 0.01. Similar to x and y =0.001 results as conductive core was observed for SC 

and Q with resistive RT  and semiconductive semicircular arc for 1400 C, Q. 

The oxygen exchange reaction at v = 0.01 at 100 C was indicated by dc bias and 

pO2. The bulk component was independent of both dc bias and pO2 whereas, the low 

frequency resistance decreased on application of a small dc bias voltage and was 

reversible on removal of the dc bias. 

The total resistivity passed through a minimum at 0.001 then increased at 0.01, 

Figure 5-46. 

 

 

 

 

 

 

Figure 5-46: Total resistivity at RT in Y-doped BT. 
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For Ho-B, Dy-B and Gd-B, a conductive semicircular arc with a SB effect was 

observed for 1350 C, Q samples, at x = 0.0001 and 0.001 with RT   1800 and 48 

cm for Ho-B, 650 and 180 cm for Dy-B, 25000 and 1200 cm for Gd-B at RT 

with PTCR effect whereas, 0.01 and PBM, 0.001 for Ho-B were very insulating 

without showing any conductive core for Ho-B, Dy-B. The PBM, 0.001 showed 

semicircular arc with RT   1800 cm for Gd-B. The 0.01 sample showed two 

components at high temperatures for the bulk and grain boundary with Ea of b and 

gb  0.79 and 0.91 for Ho-B, 0.75 and 1.05 for Dy-B, 0.77 and 0.91 eV for Gd-B. 

The 0.01 sample at 350 C for Ho-B and Gd-B and 300 C for Dy-B was p-type as 

indicated by dc bias and pO2. 

For Ho-AB and Dy-AB, similar behaviour to Ho-B was observed for all 

compositions with RT   33000 and 15 cm for Ho-AB and 440 and 160 cm for 

Dy-AB at RT for y = 0.0001 and 0.001 but PBM, 0.001 for Ho-AB showed a 

conductive core of  2500 cm. The 0.01 sample showed two components at high 

temperatures for the bulk and grain boundary with Ea of b and gb  1.09 and 1.03 eV 

for Ho-AB, 1.09 and 1.01 for Dy-AB. For Gd-AB, y = 0.0001, 0.001 PBM and 0.01 

were insulating with little conductive core. At higher temperatures, Ea of b and gb 

was  1.17 and 1.51 eV for 0.0001, 1.03 and 1.15 eV for 0.001. The Q sample 0.001, 

for Gd-AB showed conductive data for the bulk and grain boundary components at 

RT with Cb  4.01  10-10 Fcm-1 and Cgb  4.82  10-9 Fcm-1. A p-type behaviour was 

shown for 0.01 sample at 400 C for Ho-AB, 425 C for Dy-AB, 450 C for Gd-AB 

with dc bias and pO2.  

For Ho-A and Dy-A, a weak conductive core was seen for v =0.0001 at RT with Ea 

of b and gb  1.16 and 1.29 eV for Ho-A and total Ea 0.95 eV for Dy-A for higher 

temperatures. A conductive semicircular arc was shown for v = 0.001 and 0.01 with 

RT   3 and 9000 cm for Ho-A and  70 and 1350 cm for Dy-A at RT whereas, 

PBM, 0.001 sample for Ho-A showed a conductive core of  500 cm and an 

insulating low frequency component. The sample 0.01, SC showed a weak 

conductive core for Ho-A, Dy-A and Gd-A whereas, Q sample for Ho-A and Gd-A 

showed a conductive data for the bulk and grain boundary components at RT with Cb 

 2.5  10-10, 1.30  10-10 Fcm-1 and Cgb  3.5  10-9, 1.26  10-9 Fcm-1. A 
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semicircular arc was seen for Q samples of 0.0001, 0.001, 0.001 PBM, 0.01 with RT  

 5000, 47, 8440 and 5066 cm. SB were dominated for all samples except 0.01. Dc 

bias was studied for v = 0.01 at 25K. Bulk resistance was independent of dc bias and 

grain boundary showed p-type behaviour for Ho-A, Dy-A and Gd-A. All of them 

also were independent of pO2 and low frequency arc with Ag electrodes disappeared 

with In-Ga electrodes for Ho-A and Gd-A. 

Figure 5-(47-49) shows the resistivity vs composition dependencies for Ho-, Dy- and 

Gd-BT. A minimum of resistivity was seen at 0.001.  

 

 

 

 

 

 

Figure 5-47: Total resistivity at RT in Ho-doped BT. 

 

 

 

 

 

 

 

Figure 5-48: Total resistivity at RT in Dy-doped BT. 
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Figure 5-49: Total resistivity at RT in Gd-doped BT. 

Many data show that loss of oxygen occurred.  Inhomogeneous materials were 

produced showing sometimes a semiconducting grain core region with oxidation of 

resistive grain boundary and/or sample surface region.  

The electrons liberated due to oxygen loss are the source of semiconductivity with 

reduction of Ti4+ to Ti3+:  

O2- → 1/2O2 + 2e-                     (5-2) 

Ti4+ → e- + Ti3+                  (5-3) 

SC, annealing at lower temperatures or in O2, prevented loss of oxygen.  

Resistivity minimum behaviour can occur by loss of oxygen or direct doping. Most 

results indicate that the resistivity minimum is a result of oxygen loss. With 

increasing RE3+, the increase of resistivity is attributed to the immobility of cation 

vacancies [29] which is associated with reoxidation on cooling or switching of the 

compensating mechanism from electronic to ionic [30].  

The difference between Q and SC samples are consistent with literature of Y-doped 

BT [31] as only Q samples in air from 1350 C showed blue colour, indicating 

semiconductive behaviour whereas, SC ones are yellowish to brownish-buff with 

insulating behaviour. Another study [10] showed that the sample remained 

semiconducting due to Q from the sintering temperature which is associated with 

avoiding oxidation during cooling. 
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The resistivity minimum was observed for Y-doped BT which is in good agreement 

with literature [32] as U-shape curve of bulk and grain boundary was shown and 

semiconductive data were observed over the range of 0.001-0.004. Another report 

showed this reduction between 0.003-0.006 [33]. It was between 0.001-0.003 for 

Dy-A [34]. The range of 0.002-0.006 was studied for Y-A [35]. The 

semiconductivity was observed for all compositions but a minimum in resistivity 

was observed at Y concentration at v = 0.004. 

Generally, composition 0.001 showed semiconductive behaviour for many samples 

on different joins. This behaviour for the same composition was reported for some 

RE3+ elements. In contrast, the study of Y, Dy, Ho, Er and La doped BT showed that 

the sample was insulating for all elements at 0.001 and the semiconductivity and 

associated minimum RT resistivity were observed at a dopant concentration of 

around 0.003-0.005 [21], 0.002-0.005 [36] or 0.002-0.01 [37] for Y-AB with a shift 

from n-type to p-type semiconducting properties with increasing Y3+ content. 

It was reported [38] that both Er-AB and Y-AB were insulating but in contrast, 

another [27] report for that Er-B and Er-AB showed predominantly self-

compensating behaviour whereas, [25, 39] reported that Y-AB acts as donor-type 

behaviour at low Y contents especially at y = 0.001 and is insulating, similar to BT 

behaviour at higher Y contents which is in good agreement with Y-AB results in this 

study but Y-B shows acceptor behaviour. Their pO2 study show p-type behaviour for 

Y-B at x = 0.02 and n-type for Y-A [16] at v = 0.01 which are consistent with results 

obtained in this chapter.  

The conductivity of Y-B [40, 41] and Y-A [42] was studied. Semiconducting data 

with resistivity minimum were observed at low level of x and v   ≤ 0.01 with donor-

doped behaviour whereas acceptor-doped behaviour was observed at higher levels at 

 > 0.01. These results were consistent with those obtained in this chapter.    

The resistivity of Er-doped BT on three joins was presented in literature [43] for x,y 

and v = 0.01. ER-AB and ER-A behave as donor impurities whereas, ER-B was 

insulating. These results are in good agreement with the present results. No 

resistivity minimum was seen for Er-A. There was a reduction of resistivity at v = 
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0.001 and 0.01 but no results were obtained at higher concentrations due to the lower 

solid solution limit, < 0.01 [27]. 

Some studies [27] showed that Er-B did not show resistivity minimum and the 

conduction mechanism was p-type behaviour, in good agreement with this chapter 

results. 

It was reported [26] that Gd-A samples of 0 < v < 0.05 are electrically 

inhomogeneous, containing a high frequency semiconducting region and a low 

frequency insulating region. This behaviour was obtained here for same 

compositions.   

Gd-AB was studied [44] with different conditions.  Electrical resistivity exhibited a 

minimum at a specific content. The semiconductivity was observed only at Gd 

contents from y = 0.0005 to 0.003 which are close to the data presented here but 

another report [45] for three joins showed the resistivity minimum even on the 

acceptor join as the resistivity minimum was located at x  0.01 for most samples. 

The resistivity minimum was observed for Ho-B [2] for samples, heated  > 1400 °C. 

A new compensation mechanism was proposed for two Ti4+ as Ho3+ ion occupies 

first Ti4+ ion and second Ti4+ reduced to Ti3+
 for each oxygen vacancy. Samples of x 

= 0.001 and 0.01 showed similar bulk resistivity values for SC and Q. This result is 

partially consistent with the obtained results as the resistivity minimum was shown 

but with different resistivity values between SC and Q due to oxygen loss which 

accompanied partial reduction of Ti4+ to Ti3+. Similar to this difference between SC 

and Q was presented in literature [46, 47] for other reports for Gd-A.  

It was shown that Dy-B showed p-type behaviour for x = 0.01 which is consistent 

with literature [48] but they did not observe semiconducting data at low 

concentrations which is inconsistent with presented results here. For DY-A, the 

resistivity minimum which is associated with semiconductivity was shown at v = 

0.001, consistent with the presented results here. 

Resistivity minimum was not shown for Yb-doped BT which was not observed also 

in literature for Yb-B [49]. It is probably because that Yb3+ is relatively small and 

therefore substitutes mainly the B-site [24]. 



- 280 - 

 

5.5 Conclusions 

The semiconductivity with resistivity minimum was studied for RE3+ (Gd, Dy, Ho, 

Y, Er and Yb)-doped BaTiO3 at low concentrations. 

From the XRD analysis, all samples seem to be single phase and can be indexed as 

tetragonal structure. 

No semiconductivity was observed for Yb-B, Yb-AB, Yb-A and Er-B, even with 

rapid Q into liquid N2; samples showed p-type behaviour by dc bias and pO2. 

Er-A data show that all Q samples were conductive whereas, SC samples were 

insulating, showing a conductive core. Resistivity minimum could not be studied 

perhaps as a result of low solubility. 

Other joins and RE3+ showed semiconductivity with a resistivity minimum at 0.001. 

Most samples depended strongly on cooling rate. Loss of oxygen was generally 

dominant. 

SB behaviour was shown in some Q samples with PTCR characteristic using IS 

measurements under dc bias which characterised the electrode effect. The high 

frequency resistance and capacitance was insensitive to the application of a small dc 

bias. By contrast, the low frequency component changed with a dc bias. As expected, 

since Rb << RSB, Rb is independent of dc bias. Application of different pO2 did not 

show any sensitivity to pO2. 
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Chapter 6: Conclusions and Further Work 

6.1 Conclusions 

Generally, IS data of HM, BM and PBM samples were studied for two kinds of 

sample: (i) slow-cooled and (ii) quenched. The results were interpreted using the 

following schemes: 

For bulk/grain boundary impedances: 

1- n-type behaviour was shown by decreasing conductivity with increasing pO2 and 

increasing dc bias. 

2- For intrinsic conductivity there was no effect of pO2 or dc bias. 

3- p-type behaviour was shown by increasing conductivity with increasing pO2 and 

increasing dc bias. 

For Schottky Barrier (SB) impedances: 

Two types of Schottky barrier were observed: 

1- For metal-sample interfaces, there was no effect of pO2 and RSB decreased with 

increasing dc bias. 

2- For SB produced to partial oxidation of surface or grain boundary, RSB decreases 

with decreasing pO2 and decreases with increasing dc bias. 

6.1.1 Electrical properties of BT 

6.1.1.1 Electrical properties of SC BT 

SC BT samples were insulating and electrically inhomogeneous. The bulk and grain 

boundary impedance was observed apparent clearly at temperatures ≥ 400 C. 

The grain boundary resistance was usually higher than the bulk resistance at lower 

temperatures but also had higher activation energy. 

p-type conduction was generally observed by dc bias. The resistance changes with dc 

bias were time-dependent and reversible to their original value after removal of the 

dc bias.  
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The change in resistance of grain boundary was greater than the bulk resistance with 

dc bias.  

Increasing pO2 also showed that both bulk and grain boundary resistances decreased, 

indicating p-type behaviour. The resistance decrease is reversible on reducing pO2.  

In summary, SC BT is insulating with p-type behaviour. This may be associated with 

a slight departure from a Ba:Ti ratio of 1:1, caused by possible Ba loss during 

sintering. The holes may be associated with underbonded oxide ions or unavoidable 

impurities such as Fe3+. 

6.1.1.2 Electrical properties of Q BT 

Q samples made by HM, BM and PBM showed similar behaviour to SC samples, 

there were usually electrically insulating. Some Q samples however showed a much 

higher ζ with lower density, as a consequence of loss of oxygen at high temperatures 

which was preserved during quenching.  

For some Q samples, a Schottky barrier impedance was observed and the Schottky 

barrier height was rather different for In-Ga, Ag and Pt electrodes. 

Total conductivity (ζt) data for samples quenched from 1400 C with In-Ga and Ag 

electrodes show a PTCR effect on heating through TC.  

The similar results with all three electrodes may show that a grain boundary-related 

Schottky barrier may be dominant at low frequency, especially since In-Ga 

electrodes are considered to yield ohmic contacts when used on samples with 

semiconducting BaTiO3 that does not form a Schottky barrier at the ceramic-

electrode interface [1]. 

A sample-electrode Schottky barrier effect was apparently not observed as no 

difference was observed using different types of electrodes such as In-Ga and Ag. 

Since this result is not associated with an interface, as is commonly observed with a 

Schottky barrier at a sample-electrode contact, it is sample-related and probably 

related to oxidation of sample surfaces, either at the pellet outer surface or internal 

grain boundaries. 
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For the Q sample, RT  appears to demonstrate predominantly n-type behaviour but, 

the Schottky barrier height may also be sensitive to pO2, depending on the 

mechanism of Schottky barrier formation.  

There was a clear difference in behaviour between dc bias and pO2 results for the 

sample quenched from 1380 and a slow-cooled sample. For the Q sample, Rt 

decreased with increasing dc bias whereas it decreased in a reducing atmosphere. By 

contrast, the resistance of SC samples decreased with increasing dc bias but 

increased in a reducing atmosphere. n-type materials show a decrease in conductivity 

with either increasing pO2 or dc bias; p-type materials show the opposite effect with 

an increase in conductivity with either increasing pO2 or dc bias; intrinsic materials 

appear to show little or no effect. For Schottky barriers, the barrier height and 

therefore the resistance decreases with dc bias; the effect of pO2 on Schottky barriers 

is less clear and depends on whether O2 adsorption/desorption affects the barrier 

height.  

The sample quenched from 1400 °C showed a high conductivity and apparent n-type 

behaviour. On reheating and quenching from lower temperature (1380 °C), it still 

gave n-type behaviour but with lower conductivity. p-type conductivity was 

observed for samples quenched from  < 1380 °C. The oxygen loss that occurs 

increasingly at high temperature appears to be a change from p- to n-type behavior at 

1380 C. 

The change of the conduction type from p-type to n-type or the appearance of a 

Schottky barrier effect was observed for some samples above 1380 °C. Dc bias data 

show that the resistance decreased with increasing the voltage which is probably as 

result of Schottky barrier effect. In the p-type region, O2 molecules are adsorbed 

onto the sample surface with creation of O
-
 species that are considered to be the 

principal source of holes. The adsorbed oxygen is observed either with slow cooled 

samples or on annealing samples at lower temperatures. An increased conductivity 

was observed with a decrease in annealing temperature and is attributed to an 

increase in hole concentration; this increase is less than that observed for samples of 

BT that were acceptor-doped on the Ti site.  
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6.1.2 Phase diagram study and crystal chemistry of Y-doped BT 

The solubility limit of Y in Ti-site was to found be at  x = 0.15 and a small amount 

of YBa3Ti2O8.5 as second phase was detected by XRD with increasing x. Smaller 

solid solution limit of Y on self-compensation join was obtained up to  y = 0.075 

with precipitation of YBa3Ti2O8.5 or Y2Ti2O7 as secondary phase. Two phases that 

could be indexed as monoclinic Ba6Ti17O40 and cubic pyrochlore Y2Ti2O7 were 

identified above the Y solubility on the A-site join at  v = 0.015. Results therefore 

indicated that the substitution of Y is more favourable at the B-site rather than the A-

site.  

An extensive range of tetragonal BT solid solutions forms between x = 0 to 0.05; 

with increasing x and y, there is transformation usually to cubic BT polymorph for 

acceptor and self-compensation joins. The cubic polymorph was obtained over the 

range x = 0.05 – 0.1 and y = 0.05 – 0.075 for acceptor and self-compensation joins, 

respectively. The hexagonal BT polymorph was obtained over the range v = 0.05 – 

0.15 for the acceptor join only. The donor join shows a tetragonal BT polymorph 

until v = 0.015.  

The high temperature hexagonal phase of BT appeared to be destabilised by replacing Ti 

with Y. The destabilisation occurred in this region where the transition from hexagonal 

to cubic phase was expected. The hexagonal phase was the first product of reaction. 

High temperatures and prolonged heating was required to transfer to the cubic phase. It 

was mostly kinetically-stable with these conditions. Results on samples heated at 

1420–1600 C to study the nature of the cubic-hexagonal phase transition, indicated 

that the equilibrium state was reached only very slowly. Many days sometimes were 

required to achieve a single phase product. Experiments often yielded a number of 

different polymorphs or phases, alternating between the hexagonal and tetragonal-

cubic phase at different temperatures, independently of whether the method applied 

involves quenching to room temperature or slowly cooling.  

A frequency-dependent  relaxor character occurred at high dopant concentrations at 

x, y ≥  0.05 either on the B-site or AB sites whereas, this behaviour was not 

observed on the donor join. 
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A normal ferroelectric behaviour with an inhomogeneous distribution of Y-dopant 

was observed at x < 0.05 and BT as the permittivity exhibits a sharp increase of the 

dielectric constant at the ferroelectric-paraelectric transition whereas, ferroelectric 

relaxor behaviour with a homogenous distribution of the Y-dopant at was observed x 

≥ 0.05. Some low concentration samples were leaky dielectrics as shown by the very 

high permittivity maximum and high dielectric loss. Excellent Curie–Weiss 

behaviour was observed for εr values at temperatures > TC.  

6.1.3 Electrical properties of Y-doped BT at high concentrations 

For Y-B samples, IS showed that samples with 0.09  x   0.15 were electrically 

homogenous and showed an insulating bulk response. 

Samples with 0 < x < 0.07 showed similar electrical conduction behaviour to 

undoped BT; samples were electrically inhomogeneous with no evidence of 

semiconductivity in any of the samples studied whether they were cooled slowly or 

quenched from high temperatures (1200-1600 C).  

Most samples were highly insulating in these samples because the oxygen vacancies 

were created by Y dopant.  

ζgb of BT is lower than ζgb of Y-doped BT whereas EA of BT is higher than EA of Y-

doped BT, which may shows that a fully-oxidised condition was observed for the 

grain boundary component of BT. The conduction mechanism in these samples was 

shown to be p-type by measurements made in different atmospheres and dc bias.  

Impedance data for Y-AB samples showed that the electrical properties differed 

significantly depending on whether the sample was cooled slowly or quenched from 

1500 C. A series of tests was performed for a sample of one composition, y = 0.025, 

which was subjected to a variation of cooling treatments. The bulk resistance 

decreased for the sample quenched in air compared to the slow cooled sample. 

Further decrease in resistance was obtained for the sample quenched in liquid 

nitrogen. The slow-cooled sample had lower conductivity and higher activation 

energy than the quenched sample.  

Conductivity data showed, from the Arrhenius plots and pO2 dependence of 

composition y = 0.05, SC, sintered in air at 1500 C and y = 0.025, Q from 1500 C 
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into liquid nitrogen, that the conduction mechanism was p-type and n-type, 

respectively.  

The IS results obtained from slow cooled, Y-A ceramics were substantially different 

to those obtained from quenched ceramics and were strongly dependent on the 

cooling rate. The slow cooled sample was insulating for v > 0.01 and the high 

frequency component was unchanged with dc bias. 

Y-A sample was very conductive at room temperature for the sample quenched from 

1350 C. The resistance was dependent strongly on the electrode material. A 

Schottky barrier at the electrode-sample interface was observed. The impedance was 

dominated by low frequency arc with Ag electrodes but this effect disappeared with 

In-Ga electrodes which gave rise to ohmic contact and reduced the effective 

Schottky barrier impedance. PTCR effect was observed for both electrodes but the 

sample with In-Ga electrodes showed a weak PTCR effect. 

Conductivity data for Ag sample were generally independent of pO2 in which the 

electrode-sample interface was not affected under different atmospheres whereas, 

strong reduction of resistance was observed with dc bias.  

6.1.4 Electrical properties of RE-doped BT with low dopant concentrations 

Electrical properties of RE3+ (Gd, Dy, Ho, Y, Er and Yb)-doped BaTiO3 

compositions prepared according to 3 systems: (RE-B), (RE-AB) and (RE-A) at 

several concentrations x,y and v = 0, 0.0001, 0.001 and 0.01 were characterised. 

IS data exhibit clearly that the electrical properties are strongly dependent on pO2, dc 

bias, cooling rate, type of electrodes, sintering temperature and RE3+ concentration. 

For Yb-doped BT:  

IS results indicated that samples on all three joins were electrically insulating and did 

not show any conductivity at room temperature even with rapid Q into liquid N2. p-

type behaviour was indicated for x,y and v = 0.01 by both pO2 and dc bias.  

For Er-doped BT:  

All samples were insulating on Er-B join whether Q or SC especially at x = 0.01. Dc 

bias and pO2 showed that the conduction is p-type. 
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Er-A data show that all Q samples were conductive whereas, SC samples were 

insulating and probably a conductive core was shown which is supportive evidence 

for loss oxygen mechanism. Q samples show a clear Schottky barrier (SB) with In-

Ga or Ag electrodes.  The high frequency resistance and capacitance was insensitive 

to the application of a small dc bias. By contrast, the low frequency component 

changed with a dc bias.  Application of different pO2 did not show any sensitivity to 

pO2. Replacing Ag with In–Ga electrodes resulted in significant difference in the 

electrical properties. The low frequency arc in Z* disappeared with In-Ga electrodes. 

On the self-compensation join ER-AB, very conductive data were shown for Q 

samples except for y = 0.01 which was resistive either with SC or Q although the Q 

sample was more conductive. This result is supportive evidence for the oxygen loss 

mechanism for y < 0.01. SB was observed for y =0.0001, Q sample with a small 

PTCR effect. Similar data for 0.001 with a conductive core was clearly present in the 

M′′ data. Both pO2 and dc bias tests were used for two different Q samples; a 

conductive sample which was dominated by SB for y = 0.001 and an insulating 

sample for y = 0.01. The conductive sample of y = 0.001 was not sensitive to pO2. Z* 

data were similar in Air, N2 and O2 whereas p-type behaviour was observed for an 

insulating sample of y = 0.01. Both samples showed that the resistance decreased 

reversibly on application of a small dc bias which is associated with SB effect and p-

type behaviour.  

For Y-doped BT:  

For Y-B, too resistive data and no conductive core was observed for SC and Q 

pellets in air at x = 0, 0.0001, 0.0003, 0.0005 and 0.01. A conductive core for both 

SC and Q samples was observed for x = 0.001, 1350 C which is supportive evidence 

for direct donor doping mechanism. 

Effect of Q was shown for x = 0.01 samples Q from different temperatures 1350, 

1400 and 1450 C. 1350 C , Q sample has higher ζT . Dc bias data on 1350 C 

sample showed p-type. Similar results with pO2 change were seen in two samples.  

For Y-AB, a weak conductive core was seen for y = 0.0001, 1350 C, SC which is 

supportive evidence for the direct donor doping mechanism. RT  was too high to 

measure. SC and Q samples showed a clear conductive core component for x = 
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0.001, 1350 C, SC and Q. These results were dominated by an SB effect that 

depended on the electrode: Pt, Au and In-Ga. Effect of cooling rate was clearly 

observed for y = 0.0001, 1400 C with SC in air, Q in air and Q into liquid N2. SC 

was insulating and RT  was too high to measure but showed conductive core. Q in air 

showed similar behaviour but with more conductive data whereas, Q into liquid N2 

showed a semicircular arc.  

Dc bias and pO2 were applied to a Q sample from 1500 in air for y = 0, 0.01. No 

apparent sensitivity was shown to the change of pO2 at RT which is probably 

associated with the SB effect. Therefore, dc bias was studied at low temperature to 

characterise the bulk response at 50 K. Rb was independent of dc bias whereas, Rgb 

showed a reversible decrease in grain boundary resistance. 

For Y-A, a conductive core was observed for both SC and Q samples for v = 0.0001 

which is supportive evidence for direct donor doping mechanism whereas, RT  could 

not be measured. More conductive data were shown for v = 0.001 and 0.01. Similar 

to x and y = 0.001 results as conductive core was observed for SC and Q with 

resistive RT  and semiconductive semicircular arc for 1400 C, Q. 

The oxygen exchange reaction at v = 0.01 at 100 C was indicated by dc bias and 

pO2. The bulk component was independent of both dc bias and pO2 whereas, low 

frequency component showed that the low frequency resistance decreased on 

application of a small dc bias voltage and the resistance decrease is reversible on 

removal of the dc bias. 

For Ho-, Dy-, and Gd-doped BT: 

For Ho-B, Dy-B and Gd-B, a conductive semicircular arc with SB effect was 

observed for 1350 C, Q samples, at x = 0.0001 and 0.001 with PTCR effect 

whereas, 0.01 and PBM, 0.001 for Ho-B were very insulating without showing any 

conductive core for Ho-B, Dy-B.  

For Ho-AB and Dy-AB, similar behaviour to Ho-B was observed for all 

compositions but PBM, 0.001 for Ho-AB showed a conductive core. For Gd-AB, y = 

0.0001, 0.001 PBM and 0.01 were insulating with little conductive core. The Q 
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sample 0.001, for Gd-AB showed conductive data for the bulk and grain boundary 

components at RT.  

For Ho-A and Dy-A, a weak conductive core was seen for v =0.0001 at RT. A 

conductive semicircular arc was shown for v = 0.001 and 0.01 whereas, PBM, 0.001 

sample for Ho-A showed a conductive core and an insulating low frequency 

component. The sample 0.01, SC showed a weak conductive core for Ho-A, Dy-A 

and Gd-A whereas, Q sample for Ho-A and Gd-A showed a conductive data for the 

bulk and grain boundary components at RT. A semicircular arc was seen for Q 

samples of 0.0001, 0.001, 0.001 PBM, 0.01. SB were dominated for all samples 

except 0.01.  

6.1.5 Resistivity minimum of RE-doped BT  

No resistivity minimum was observed for Yb-BT and Er-BT for all three joins 

whereas, the total resistivity passed through a minimum at 0.001 then increased 

generally at ≥ 0.01 for Y-, Ho-, Dy- and Gd-BT on all three joins. Loss of oxygen 

seems the most dominant mechanism and responsible for resistivity minimum with 

little evidence of direct donor doping in some cases.   

6.1.6 Effect of preparation routes 

The bulk conductivity data of the three different milling routes, HM, BM, and PBM 

for undoped BT, slow cooled samples showed no significant differences but 

sometimes there is clear differences for example, Y-B samples showed that a 

conductive core for both SC and Q samples was observed for x = (0.001, HM) and 

(0.001 and 0.003 PBM) and showed a SB effect whereas, 0.001, BM sample showed 

that RT  was too high to measure with little evidence of conductive core for sample Q 

only from 1450 C. For Y-AB and Y-A samples, the difference between HM, PBM 

and BM was different to Y-B behaviour as the semicircular arc was seen for BM, 

0.001, Q from 1350 C for Y-AB and from 1350 C and 1400 C for Y-A .  

6.2 Further Work 

 Literature data reported that the difference between conventional solid state 

and sol-gel methods under small amount of dc bias was unknown. This 

phenomenon could not be explained entirely. Therefore, It is desirable to 

study the effect of dc bias on BT prepared by different methods. 
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 It is possible that samples lose Ba at high sintering temperatures. Therefore, 

addition of excess Ba to compensate for loss of Ba may be used to return the 

Y-doped compositions to the acceptor join which may require addition of 

excess Ba to some samples that are not single phase. 

 It was reported in the literature that the solubility limit of some RE3+ dopants 

is dependent on the atmosphere, such as N2. Thus, electrical properties in this 

case should be studied as electrical properties can be understood and 

controlled by application of different atmosphere.  

 The mechanism of the stabilization of the hexagonal phase for Y-doped 

requires investigation.  

 Since the need to include a CPE in data analysis was shown for many 

samples, a study of equivalent electrical circuit fitting is required to 

determine the electrical response of inhomogeneous materials and to extract 

resistance and capacitance values of low and high frequency components 

which could not be observed by normal IS experiments.  

 Further low concentration dopants between 0.001 and 0.01 such as 0.002, 

0.003, 0.004, 0.005, 0.006, 0.007, 0.008 and 0.009 for RE3+-doped BT on all 

three joins with different cooling rates and preparation methods are important 

to observe precisely the resistivity minimum. 

 The influence of oxygen content on electrical properties needs further 

investigation by annealing some conductive samples in different conditions 

as this behaviour needs to be properly and accurately identified.  

 To fully determine the optimum conditions to achieve complete reaction for 

BM/HM/PBM. i.e. determine the effect of T, t after milling. 
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