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Abstract 

In aged muscle, from humans and mice, the ryanodine receptor (RyR1) is leaky, 

leading to increased levels of resting Ca2+ in the myoplasm. This is also a feature of 

skeletal muscle disorders caused by variants in RyR1 such as malignant hyperthermia 

(MH), central core disease (CCD), exertional heat illness (EHI) and late-onset axial 

myopathy (LOAM). Elevated Ca2+ is damaging to mitochondria, leading to production 

of reactive oxygen and nitrogen species associated with MH susceptibility to 

inhalational anaesthetics. Mice with Ryr1 variants show premature muscle ageing and 

highlight the cycle of inefficient calcium handling and oxidative damage to 

mitochondria that impairs skeletal muscle energetics. Caenorhabditis elegans models 

of MH CCD EHI and LOAM variants, both homozygous and heterozygous forms, 

showed increased sensitivity to halothane. Altered caffeine sensitivity was evident in 

MH and CCD models, and at very high concentrations in EHI models. Strains with 

RyR1 variants exhibit age-related accelerated myosin disorganisation. Whole genome 

Affymetrix arrays revealed genes and pathways correlated with skeletal muscle ageing 

and MH. Of additional genes of interest investigated UNC13, CASQ1, ORAI1, MCU 

and MICU1 showed altered expression with age. Array data from blood has been used 

to identify a signature for MH susceptibility. There is loss of mitochondrial membrane 

integrity and alteration in mitochondrial number in MH. New apparatus, capable of 

quantifying heat produced during muscle contraction, has enabled calculation of 

skeletal muscle efficiency. Preliminary data indicates that there was loss of skeletal 

muscle efficiency in aged muscle from wild type mice. This work provides new 

information on the role of RYR1 variants in skeletal muscle ageing and the importance 

of calcium handling in muscle energetics.  
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1 General Introduction 

 

It is estimated that by 2050 there will be over 1.5 billion people in the world over the 

age of 65, almost 1 billion more than in 2010 (United Nations, 2012). In the UK, 

between 1974 and 2014 the number of adults aged 75-84 years increased by 43% 

(Office for National Statistics, 2015). This increase in the size of our ageing population 

stimulates the need to better understand the underlying mechanisms of the ageing 

process so that in future we may better serve the needs of this population and provide 

the means to offset the physical and economic consequences of ageing.  

 

Skeletal muscle comprises almost half of the human body mass and is vital for 

movement (Tyrovolas et al., 2016). Sarcopenia, or skeletal muscle ageing, is a key 

component of the ageing process in humans. Deterioration of skeletal muscle has a 

considerable impact on human health and maintenance of skeletal muscle strength is 

considered of key importance for healthy ageing (McLeod et al., 2016). Loss of 

mobility in particular is cited as one of the primary determinants of needing nursing 

home care in the US (Lang et al., 2010). According to an estimate by the UK 

Department of Health the average cost of providing health services to people aged 85 

and over is 3 times greater than for a person aged 65-74 years (House of Commons, 

2015). A better understanding of the components of muscle ageing will provide greater 

chance of offsetting these costs to the UK and world economies. 

 

Sarcopenia is characterised by degeneration of skeletal muscle whereby there is a 

reduction in mass, total aerobic capacity and the functional capacity of the muscle is 
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noticeably weakened (Nair, 2005; Lang et al., 2010). These alterations in functional 

capacity or muscle quality cannot be simply explained by loss of muscle quantity but 

by examining a number of cellular processes such as denervation, mitochondrial 

dysfunction, inflammatory and hormonal changes as well as changes in muscle 

strength and rates of fatigue.  

 

The decline in muscle mass begins at the fourth decade of life (Lexell et al., 1988; 

Lindle et al., 1997; Short et al., 2004). As well as decreasing muscle mass with age, 

loss of muscle strength due to increased age also occurs as a result of decreased 

muscle-specific force (muscle force per cross-sectional area) (Delbono, 2002). Loss 

of muscle power and force with age have been well established in humans, with cross-

sectional studies reporting declines of 20-40% knee extension strength comparing age 

groups of 20-40 and 70-90 years, with losses of greater than 50% in individuals over 

the age of 90 (Murray et al., 1985). Similar losses in strength have been reported in 

elbow extension and grip (Doherty, 2003). Longitudinal studies have also highlighted 

the relationship between age and the loss of muscle power, citing declines of between 

12 and 18% over the course of 10 years (Hughes et al., 2001).  

 

Factors implicated in the loss of contractile function, therefore compromising the 

energetic capacity of skeletal muscle, that occurs with age in humans, include: 

- Decreased acto-myosin force and lowered cross-bridge stability (Lowe et al., 

2002) 

- Defective excitation-contraction (EC) coupling (Payne & Delbono, 2004) 

- Reduced capacity for regulation of Ca2+ levels (Weisleder et al., 2006; Zhao 

et al., 2008) 
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Age-related mitochondrial dysfunction (Rooyackers et al., 1996) The metabolic cost 

of locomotion is increased in old adults compared to young adults (Mian et al., 2006; 

Ortega & Farley, 2007). This increased cost results in muscle fatigue and therefore 

could be related to the higher incidence of falls in the elderly, the main cause of injury 

in over 70s. Low levels of activity are a major predictor of mortality (United Nations, 

2007). This introduction will outline the process of EC coupling and mechanisms of 

calcium handling in skeletal muscle such as the role of calsequestrin, and store 

operated calcium entry, with particular focus on the role of the ryanodine receptor 

(RyR), the relationship between muscle disorders linked to RYR1 variants and skeletal 

muscle ageing as well as the connection between calcium handling and mitochondrial 

function/dysfunction.   

 

1.1 Calcium handling in skeletal muscle 

Regulation of intracellular calcium levels is involved in a number of cellular processes 

such as cell growth, mitochondrial function and muscle contraction (Berridge et al., 

2000; Fill & Copello, 2002). The large difference in calcium concentration between 

the cytosol (~100nM in most cells) and sites of calcium storage, endo/sarcoplasmic 

reticulum (ER/SR) (1-3mM in most cells), in conjunction with slow cytoplasmic 

diffusion rate make cells able to efficiently elevate local cytosolic calcium levels 

necessary for triggering biological processes (Berridge et al., 2000).  

 

1.1.1 Excitation contraction coupling 

The process of EC coupling describes the conversion of an electrical stimulus into a 

mechanical response (Sandow, 1952) and is vital for muscle force production. It is the 

link between the depolarisation of the myocyte surface membrane via acetylcholine-
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mediated propagation of an action potential at the neuromuscular junction and Ca2+ 

release from the sarcoplasmic reticulum (SR). It is dependent upon interaction 

between the L-type Ca2+ channel, the dihydropyridine receptor (DHPR), and the 

ryanodine receptor 1 (RyR1) channel (Ozawa, 2011). In skeletal muscle, transmission 

of the voltage sensor signal occurs through a protein-protein interaction between RyR1 

and the II-III loop of the a1 subunit of the dihydropyridine receptor  (Ozawa, 2011) 

(Figure 1.1). This depolarisation-induced activation of RyR1 results in a ten-fold 

increase in intracellular free calcium concentration. 

 

DHPR is a surface membrane, voltage-gated cation channel comprising four repeats 

of six membrane-spanning domains. In skeletal muscle this protein contains α-1, α-

2/δ, β, γ subunits (Figure 1.1A). It is the α-1 subunit of the DHPR that is believed to 

play an important role in the process of transmitting the signal. This subunit is 

embedded in the membrane and contains the Ca2+ ion channel, the dihydropyridine 

binding site and the voltage sensor for EC coupling (Dolphin, 1999; Ahern et al., 

2001). More recently, it has also been indicated in the control of skeletal muscle mass 

and morphogenesis (Piétri-Rouxel et al., 2010). The isoform of the α-1 subunit 

expressed in skeletal muscle is CaV1.1 (also known as α1S). EC coupling is found to be 

absent in myocytes that do not express the DHPR α-1 subunit, providing evidence that 

this subunit is the voltage sensor essential for EC coupling (Adams et al., 1990). 

Activation of RyR1, via its interaction with the DHPR, causes the channels to open 

and permit the influx of calcium ions from the SR to the myoplasm, unbinding the 

calcium ions from calsequestrin (CASQ1) (Figure 1.1B).  



 

 5 

 

 

 

Figure 1.1 Diagram of EC coupling in skeletal muscle cell, depicting interaction between DHPR and RyR1 with calcium release from the SR. A: skeletal muscle in 
a relaxed state. Intracellular calcium levels are low, most is stored in the SR. B: an action potential is triggered at the motor endplate: the signal is transmitted along 
the plasma membrane to the t-tubule where it stimulates the DHPR. This results in interaction with RYR1 via the II-III loop triggering release of calcium from the 
SR (calcium is unbound from CASQ1) and leads to muscle contraction. C: the sarco(endo)plasmic reticulum ATPase (SERCA) pump actively transports calcium 
back into the SR, muscle contraction ends and calcium binds to CASQ1 again. Adapted from (Meissner & Lu, 1995; Lanner et al., 2010)
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1.1.2 Calsequestrin 

Calsequestrin has a high storage capacity for Ca2+, 40-50 moles of Ca2+ per mole of 

calsequestrin, and low binding affinity, which allows the rapid release and binding of 

Ca2+ (Royer & Ríos, 2009; Sanchez et al., 2012). In normal muscle calsequestrin is 

always in equilibrium with the SR luminal [Ca2+]. This allows the rapid release of 

large volumes of Ca2+ from the SR to drive muscle contraction during EC coupling 

(MacLennan & Wong, 1971). Calsequestrin does not have a specific calcium-binding 

site. Instead it structured as an electronegative net to which pairs of Ca2+ ions bind 

(Wang et al., 1998). As SR luminal [Ca2+] rises calsequestrin has the ability to increase 

its binding capacity by sequentially dimerising and then polymerising which results in 

the formation of negatively charged pockets into which more Ca2+ ions can bind. At 

normal resting concentration of SR calcium (around 1mM), calsequestrin is present 

predominantly in the monomeric form (Beard et al., 2004).  

 

1.1.3 Cross-bridge cycling 

Once calcium has been released into the myoplasm from the SR, following EC 

coupling, it binds to troponin alongside the actin filaments (Figure 1.2A) pulling the 

tropomyosin away from the myosin binding sites on the neighbouring actin filaments 

(Figure 1.2B).  
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Figure 1.2 Utilisation of calcium and ATP during cross-bridge formation in skeletal muscle. A: Calcium 
is present in the overlap zone in the sarcomere, myosin in charged position, actin binding sites covered 
by tropo-myosin complex B: Calcium binds to troponin, weakening the troponin-tropomyosin complex 
and revealing the active sites on actin C: Myosin binds to actin forming cross-bridges, D: Energy stored 
in myosin head is released and the myosin head changes position. E: When ATP binds to the myosin 
head the actin-myosin bond is broken, the active site exposed and able to form another cross bridge F: 
Free myosin head splits ATP into ADP + P, released energy forces the myosin head back into charged 
position. Adapted from (Fitts, 2008; England & Loughna, 2013). 
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This uncovers the myosin cross-bridge binding sites on the actin filaments. Through 

the process of ATP hydrolysis and calcium cycling, myosin will now cycle through 

attached and detached states to actin (Figure 1.2A-F). This is known as ‘cross bridge 

cycling’. If enough force develops to exceed the load, a concentric contraction is 

initiated whereby the muscle produces force during shortening.  

 

During this contraction the interaction of actin and myosin results in the movement of 

actin towards the centre of the sarcomere, this contraction of the sarcomere will remain 

in a state of rigor unless sufficient ATP is present to bind to myosin. Simultaneously, 

calcium ions are actively pumped back into the SR by the sarco/endoplasmic reticulum 

calcium ATPase (SERCA) and they rebind to calsequestrin. This results in the 

troponin complex returning to its blocking position as it is no longer bound to calcium 

and tropomyosin returns to a position that covers the binding sites on actin. Cessation 

of cross-bridge cycling causes the sarcomeres to lengthen.  

 

Alterations in the process of cross-bridge cycling are implicated in muscle disorders 

(Guellich et al., 2014) and it was been speculated that deterioration of specific features 

of this cycle could contribute to muscle ageing (Brooks & Faulkner, 1988). It is clear 

that availability of ATP is an essential part of this process, therefore mitochondrial 

defects may have a role in muscle ageing. The mechanism of calcium handling in 

skeletal muscle is also complex, involving a number of interacting proteins.  

 

The contractile elements of mammalian skeletal muscle, that utilise the calcium made 

available through EC coupling, are arranged in a striated pattern. Thin (comprised of 

actin, troponin and tropomyosin) and thick (comprised of myosin) filaments are 
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regularly spaced, comprising the sarcomere: the functional unit of muscle. A 

sarcomere is defined as the regions between two Z-lines at which the actin molecules 

are bound. One sarcomere contains an A-band where the thick and thin filaments 

overlap, a central M-line where the thick filaments meet and an I-band where there are 

only thin filaments (Figure 1.3).  

 
Figure 1.3 Schematic representation of skeletal muscle ultra-structure. Thick filaments are coloured 
grey; thin filaments are coloured orange. Adapted from (England & Loughna, 2013). 
 

During contraction, the thin filaments slide over the thick filaments shortening the I-

band. The availability of calcium ions and adenosine triphosphate (ATP) is essential 

to this process.  

 

 

RELAXED 

M-line Z-line I-band A-band 

Sarcomere 

CONTRACTED 



 

 10 

1.1.4 Store Operated Calcium Entry 

Store operated calcium entry (SOCE) is the mechanism by which extracellular calcium 

can enter a skeletal muscle cell. It was first examined as the major process of calcium 

influx in non-excitable cell types such as lymphocytes (Feske et al., 2006; Feske, 

2007), with identification of stromal interactin molecule 1 (STIM1), located in the 

intracellular compartment, (Liou et al., 2005) and calcium release-activated calcium 

channel protein 1 (Orai1), located in the plasma membrane, proteins as the main 

components of this process.  

 

SOCE has been observed in neurones, cardiac muscle, smooth muscle (Paraekh & 

Putney, 2005) and skeletal muscle (Pan et al., 2002; Launikonis et al., 2003; 

Launikonis & Rios, 2007). Recent work has conclusively shown the importance of 

both STIM1 and Orai1 for SOCE function in skeletal muscle and showed that knock-

down of either STIM1 or Orai1 does not compromise EC-coupling suggesting that the 

two processes are molecularly distinct (Lyfenko & Dirksen, 2008). In addition to 

Orai1, STIM1 has also been shown to interact with transient receptor potential cation 

(TRPC) channel proteins, suggesting that they may also have a role in SOCE 

(Rosenberg et al., 2004; Sampieri et al., 2005) (Figure 1.4A-C). 
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Figure 1.4 Proposed model for SOCE in skeletal muscle. A: At rest Orai1 and TRPC proteins are present within the plasma membrane of the myocyte, STIM1 
proteins are located in throughout the SR. B: Depletion of calcium stores in the SR triggers the rearrangement of STIM1 channels close to the plasma membrane to 
allow interaction with Orai1 and TRPC. C: interaction of STIM1 and Orai1 or TRPC allows for entry of calcium from the extracellular matrix. Image devised based 
on information from (Lewis, 2007; Lyfenko & Dirksen, 2008; Kiviluoto et al., 2011). 
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Expression of STIM1 and ORAI1 are high in skeletal muscle and depletion of the 

corresponding proteins is associated with skeletal myopathy (Stiber et al., 2008; Vig 

et al., 2008). These skeletal myopathies are characterised by loss of muscle fibre 

integrity, progressive muscle instability and structural abnormalities of the sarcomere 

(Völkers et al., 2012). SOCE has also been found to be severely compromised in aged 

mouse skeletal muscle, indicating its role in the diminished capacity for calcium 

homeostasis associated with muscle ageing (Zhao et al., 2008). 

 

1.1.5 The Ryanodine Receptor 

RyRs are the primary calcium release channel in striated muscle, first identified by 

Campbell and colleagues due to their high binding affinity with the plant alkaloid 

ryanodine (Campbell et al., 1987). They comprise a family of poorly selective cation 

channels, which exhibit a slight preference towards divalent ions over monovalent 

ones (Lindsay et al., 1991; Tinker et al., 1992). Due to this poor selectivity, the 

channel is able to rapidly efflux large volumes of ions from the SR during EC coupling 

(see section 1.1.1 for full details). Mammals have 3 isoforms of RyR, which are found 

in different tissue types. RyR1 is found predominantly in skeletal muscle, RyR2 in 

cardiac muscle and RyR3 is found in the majority of tissue types but at relatively low 

expression levels compared to the other isoforms (Fill & Copello, 2002).  

 

RYR1 was first cloned in 1990 and mapped onto chromosome 19q13.2 with a transcript 

of approximately 15,117 nucleotides (MacKenzie et al., 1990). The gene contains 106 

exons with alternative splicing possible at exons 70 and 83 and the full-length protein 

is composed of 5038 amino acid residues. The RyR1 protein comprises four identical 

monomers with a combined mass of ~550kDa forming the largest known ion channel 

(Hamada et al., 2002).  
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Ca2+ regulation of RyR1 is achieved through binding of the ion to either the high-

affinity divalent binding site (A-site) or the low-affinity divalent binding site (I-site). 

When Ca2+ occupies the A-site, the channel is activated, and when it occupies the I-

site, it is inhibited (Meissner, 1994). The structure of RyRs consists of cytoplasmic 

and transmembrane regions, with the cytoplasmic region being responsible for sensing 

interactions with ions such as calcium (Meissner, 1994; Lanner et al., 2010). 

 

Until 2015, the highest resolution reconstruction for an intact RyR1 was 9.6Å 

(Serysheva et al., 2008). While this provided information regarding the dimensions of 

the protein and approximated promotor boundaries it was not capable of isolating 

secondary structural elements or key domains (Zalk et al., 2015). In early 2015, three 

groups independently exceeded this. The structure of the rabbit RyR1 has been solved 

at a resolution of 6.8Å, providing information regarding the calcium binding domain 

and demonstrating that it functions as a conformational switch that changes the shape 

of the channel to gate it (Efremov et al., 2015). This result is supported by another 

study that also showed a unique domain within the transmembrane helices that 

suggests a mechanism for channel gating by calcium (Zalk et al., 2015). The structure 

was also reported in complex with the folding chaperone FKBP12 at a resolution of 

3.8Å and identified three previously unidentified domains: central, handle and helical 

(Yan et al., 2015).  

 

Pharmacological agents can also affect the function of RyR1. Ryanodine, the plant 

alkaloid after which the channel is named, affects channel function in a concentration-

dependent manner. At nM concentrations ryanodine locks RyR1 in a half open state 

leading to massive muscle contractions whereas at µM concentrations it closes the 
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channel causing paralysis (Buck et al., 1992). Caffeine, which has a low binding 

affinity to RyR1, causes conformational changes in the channel making it more 

sensitive to activation by calcium and voltage (Sitsapesan & Williams, 1990).  

 

Progressive oxidation of the skeletal muscle ryanodine receptor occurs with increasing 

age resulting in a leaky channel that is therefore less efficient at the process of calcium 

handling (Jimenez-Moreno et al., 2008; Andersson et al., 2011). Leaky skeletal 

muscle ryanodine receptors are also a feature of myopathies caused by variants in 

RYR1 (Cully & Launikonis, 2016). Increased calcium leak causes increased ROS 

production that in turn will result in oxidative damage to RyR1 (Andersson et al., 

2011; Görlach et al., 2015). 

 

1.2 RYR1 variants and associated myopathies 

Human muscle disorders where myocyte calcium regulation is disrupted, such as MH, 

CCD, EHI and LOAM have been attributed to mutations in RYR1 (Tong et al., 1997; 

McCarthy et al., 2000; Bouchama & Knochel, 2002; Robinson et al., 2002; Robinson 

et al., 2006; Jungbluth et al., 2009; Nishio et al., 2009; Loseth et al., 2013).  

 

1.2.1 Malignant Hyperthermia 

MH is a pharmacogenetic disorder whereby volatile inhalational anaesthetics trigger 

a potentially lethal hypermetabolic reaction in susceptible individuals. The incidence 

of MH is difficult to estimate. Based on data from incidences of reactions during 

anaesthesia in North America it ranges from 1:5000, to 1:50000-100000 anaesthesias 

(Rosenberg et al., 2007). However when factoring diagnostic and genetic data this 

estimate could be as high as 1:2000 (Monnier et al., 2002). 
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The first case was documented in 1962, when a previously healthy 21 year old 

underwent surgery to repair a fractured tibia and fibula (Denborough et al., 1962). 

Having reported to his surgeons that members of his family died during surgery under 

ether induced anaesthesia; the surgery went ahead using halothane instead. However, 

10 minutes into the operation the patient began to exhibit the classical symptoms of 

what would become recognised as an MH reaction. Halothane application was 

removed and cooling procedures implemented resulting in recovery of the patient soon 

after. 

 

The definition of an MH crisis has since been characterised to include a number of 

clinical features: masseter spasm, tachypnoea and tachycardia, increased temperature, 

generalised muscle rigidity, raised creatine kinase, rhabdomyolysis, hyperkalaemia, 

hypoxaemia and if not treated promptly an MH crisis is fatal (Hopkins, 2000; 

Rosenberg et al., 2007). Onset of an MH episode can occur at any time during or 

immediately after anaesthesia. Hyperthermia occurs relatively late during an episode 

and can progress quicker than 1oC every 2.5 minutes reaching a maximum temperature 

of approximately 44oC, resulting in catastrophic and fatal organ failure. If untreated 

the high muscle metabolism can lead to hypoxia resulting in acidosis of body fluids 

(Nelson, 1990). As the episode progresses myocytes die when ATP levels are depleted 

and membrane integrity is compromised (Rosenberg et al., 2007). This results in 

rhabdomyolysis, the breakdown of muscle fibres, releasing potassium and myoglobin 

into the blood, which cause hyperkalaemia, hepatic and renal failure and eventually 

death. An MH crisis does not necessarily include all the aforementioned symptoms 

and the severity can also vary greatly between patients. This is partly related to the 

duration of anaesthesia, type of anaesthetic used and inter-patient variability whereby 
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some individuals have reported normal reactions to anaesthesia on multiple occasions 

prior to displaying an MH reaction.  

 

The symptoms of an MH episode are attributed to dysregulation of calcium handling 

in skeletal muscle (Hopkins, 2000). Approximately 70% of individuals suffering from 

MH exhibit a mutation in RYR1 (Robinson et al., 2006). These mutations make the 

RyR1 channel open more easily and close more slowly in response to certain chemical 

stimuli, such as halothane and caffeine. During an MH episode calcium homeostasis 

of the SR is disrupted. Inhalational anaesthetics trigger RyR1 and it opens without 

neural stimulation. This results in flooding of the myoplasm with Ca2+ resulting in 

uncontrolled muscle contraction. SERCA is constitutively activated and its activity 

increases as the cell attempts to re-establish the gradient across the SR membrane. The 

RyR1 channel is fixed in an open state making the action of SERCA futile (Robinson 

et al., 2006). The increase in myocyte Ca2+ concentration also causes the up-regulation 

of mitochondrial ATP-synthase to supply the SR calcium pumps with ATP and results 

in the muscle entering a hypermetabolic state (Territo et al., 2001).  

 

It is important to note that manifestation of an MH reaction is not always consistent. 

There are documented cases of patients undergoing general anaesthesia on more than 

one occasion, prior to having an MH reaction and no common factor has been found 

that can explain this phenomenon (Halsall et al., 1979). It is therefore essential that 

susceptibility to MH is based on a clear diagnostic test.  

 

The primary method of diagnosing MH susceptibility is through the use of in vitro 

contracture testing (IVCT), procedures for which have been developed by the 
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European Malignant Hyperthermia Group (EMHG) (Ording et al., 1997) and the 

North American Malignant Hyperthermia Group (NAMHG) (Larach, 1989). The 

NAMHG refer to their test as the caffeine halothane contracture test (CHCT). Both 

the IVCT and CHCT measure the contractile response of patients’ muscle biopsies to 

halothane and caffeine. The CHCT diagnoses a patient as susceptible (MHS) when 

they exhibit a positive response to either trigger agent. Until May 2013 an MHS 

diagnosis under EMHG guidelines was given when both of the trigger agents provide 

a positive result and an MHN result if there is no response to the trigger agents, but 

with the addition of a third diagnosis; MH equivocal (MHE) when only one of the 

triggers provided a positive response. This third classification is primarily of interest 

for research purposes as it demonstrates complexity in the IVCT response. For 

diagnostic purposes, MHE=MHS. Following the 2013 EMHG conference it was 

decided that the ‘equivocal’ diagnosis would no longer be used as it is considered 

confusing and uninformative to patients. Nomenclature now used by the Leeds MH 

unit stipulates whether the test has resulted in an MHS (susceptible to both halothane 

and caffeine), an MHSh (susceptible to just halothane), an MHSc (susceptible to just 

caffeine, very rare) or an MHN (not susceptible to either trigger agent).  

 

The protocol for the IVCT uses a viable muscle biopsy obtained from the vastus 

medialis muscle. The muscle is placed in a chamber containing oxygenated Krebs 

Hensleit solution, maintained at a temperature of 37°C.  Static tests are performed on 

the muscle where it is exposed to increasing concentrations of a trigger agent: 0.25mM 

to 32mM caffeine and 0.5% to 2% v/v halothane. The successive concentration is 

added after the specimen has reached a contracture plateau from the previous 

stimulation (Figure 1.5A&B).  
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A dynamic halothane test is also executed, whereby the muscle specimen is exposed 

to the same incremental concentrations of halothane but they are added following 

cycles of contraction at a rate of 4mm/minute for 90 seconds. A diagnosis of MH 

susceptible (MHS) is defined by a sustained contracture of 0.2g at or below 2mM 

caffeine or 2% halothane for all tests. If this level of contracture is not reached, then 

the diagnosis is MH normal (MHN). The IVCT requires an invasive surgical 

procedure to retrieve the muscle tissue for testing, and can only be carried out at 

specialist test centres (Leeds is the UK testing centre for MH). It is considered to have 

a high diagnostic sensitivity: 99% (95% confidence interval 94.8-100%) and a 

satisfactory specificity of 93.6% (95% confidence interval 89.2-96.5%) (Ording et al., 

1997). The CHCT has a sensitivity of 97% (95% confidence interval 84-100%) and a 

specificity of 78% (95% confidence interval 69-85%) (Allen et al., 1998). 
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Figure 1.5 Example traces from halothane IVCT. A: Example of a trace from a muscle sample that 
tested negative for MH. For the range of halothane concentrations administered no increase in muscle 
tension is observed, B: Example trace from a muscle sample that tested positive for MH. Upon addition 
of 0.5% halothane muscle tension rises and continues to do so across the range of concentrations 
applied. 
 

The first MH related RYR1 mutation was identified in 1990 and early studies found 

that MH associated mutations clustered in three regions of the gene: the C-terminal, 
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spread more evenly through the gene and these hotspots were identified due to 

screening bias as researchers focussed their work on the regions where the MH 

associated mutations were first located (Robinson et al., 2006). To date, 35 causative 

mutations in RYR1 have been identified, where functional analysis of these variants 

has indicated that they are causative of MH (EMHG, 2016). Aside from the RYR1 

variants there have been three functionally characterised mutations in the CACNA1S 

gene, which encodes the α-1 subunit of DHPR (Carpenter et al., 2009a; EMHG, 2016). 

These 35 variants are just the ones functionally characterised, there are in excess of 

100 familial mutations that have been identified at the Leeds MH Unit that have yet 

to be functionally characterised. 

 

In the UK, RYR1 variants are implicated in MH susceptibility in over 70% of pedigrees 

and these are inherited in an autosomal dominant manner (Sambuughin et al., 2005). 

There is noted discordance between IVCT phenotype and RYR1 genotype, exemplified 

by the incidence of MHS mutation negative and MHN mutation positive patients. 

Robinson and colleagues conducted a study in European MH families which found 

that in individuals who lack the RYR1 mutation, their relatives still test MHS 2.5% of 

the time (Robinson et al., 2003b). This discordancy indicates that MH may not be a 

single gene disorder and there is evidence to suggest the existence of modifier loci that 

may be causative of MH (Robinson et al., 2000; Robinson et al., 2003a). However, 

with the advent of next generation sequencing (NGS), many cases of discordancy are 

explained for example by the presence of two RYR1 variants in a family that was 

previously only screened for known familial variants or functionally characterised 

mutations (Fiszer et al., 2015). 
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Due to the rapid depletion of SR Ca2+ levels during an MH episode, it has been recently 

hypothesised that SOCE may also play a role in the manifestation of MH (Duke et al., 

2010). Evidence to support this was derived from patient muscle biopsies, indicating 

that SR Ca2+ depletion during an MH episode triggers SOCE. STIM1 was shown to 

have an important role in this process and this sustained SOCE may contribute to the 

pathological increase in calcium concentration in an MH episode (Duke et al., 2010). 

CASQ1 may also play a role in MH due to its role as in calcium storage and as a 

luminal calcium sensor. It has recently been shown to inhibit SOCE by preventing the 

interaction between STIM1 and Orai1 (Wang et al., 2015). Therefore, there is 

increasing evidence for the role of additional mechanisms in the pathophysiology of 

MH. 

 

1.2.2 Central Core Disease 

In addition to MH, RYR1 variants have found to be implicated in central core disease 

(CCD). CCD, first described in 1956, is a congenital myopathy that presents with 

progressive proximal muscle weakness (Shy & Magee, 1956). The National 

Organization for Rare Diseases (NORD) cites that the exact incidence and prevalence 

of CCD is unknown, but that it is believed to be the most common form of congenital 

myopathy and estimates occurrence at 6:100000 live births (NORD, 2015). Diagnosis 

of CCD requires histological evidence of the presence of well-defined areas that lack 

mitochondria together with muscle weakness (Quinlivan et al., 2003). Type 1 fibres 

exhibit cores that arise from unstructured myofibrils that are lacking in mitochondria 

(Zhou et al., 2007; Jungbluth, 2007) (Figure 1.6).  
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Figure 1.6 Histological appearance of central core disease Transverse section from rectus femoris 
muscle. Stained type 1 fibres exhibit cores that are well marked (        ) (Jungbluth, 2007). 
 

Common clinical features of CCD include lower limb weakness and muscle atrophy, 

though a wide spectrum of severity in symptoms is also observed, with many patients 

exhibiting no symptoms despite the presence of cores while others exhibit acute 

muscle weakness. In the majority of cases the disease is not progressive, or progresses 

very slowly (NORD, 2015). 

 

There is overlap between MH and CCD with mutations implicated in MH also being 

implicated in CCD, and individuals with such mutations displaying a more severe MH 

phenotype (Robinson et al., 2002). The mutations implicated in CCD, as with MH, 

are associated with elevated resting calcium due to passive leak through RyR1. In 

patients with CCD it is apparent that this leak is stronger thus resulting in the altered 

muscle phenotypes in the absence of anaesthesia (Tong et al., 1997). Like MH, 

inheritance of CCD is most commonly reported as displaying autosomal dominant 

inheritance (Monnier et al., 2000; Monnier et al., 2001). However, there is evidence 
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indicating that inheritance may be recessive in some families (Ferreiro et al., 2002; 

Jungbluth et al., 2002).  

 

Initial RYR1 mutation screening of CCD patients focused on specific ‘hot spot’ regions 

of the gene, indicating that 47-67% of patients were found to carry RYR1 mutations 

(Monnier et al., 2001; Davis et al., 2003; Shepherd et al., 2004). However later work 

that has sequenced the entirety of RYR1 indicates that more than 90% of patients may 

express variants along the entire length of the gene (Wu et al., 2006). 31 RYR1 variants 

are implicated in MH and CCD, and a further 29 only implicated in CCD to date since 

these variants have not been associated with susceptibility to MH (Robinson et al., 

2006). In these examples, the proposed mechanism for causing CCD is termed ‘EC 

uncoupling’ (Dirksen & Avila, 2002). In brief, the resting calcium level in the 

myoplasm is elevated due to leaky RyR1 channels, and calcium release upon 

depolarisation of the muscle membrane cannot occur due to depleted calcium stores 

and lack of coupling between the DHPR and RyR1.  

 

1.2.3 Exertional Heat Illness 

There have been reports of apparently ‘awake’ MH episodes unrelated to anaesthesia 

causing deaths of young and physically fit individuals (Bouchama & Knochel, 2002). 

Anyone can experience hyperthermia in hot, humid environments or during sustained 

vigorous exercise, but there is evidence to suggest that some people appear to be 

predisposed to it (Davis et al., 2002; Nishio et al., 2009).  The death of three special 

forces soldiers from exertional heat illness (EHI) while on selection in 2013 has 

highlighted the lack of understanding regarding the diagnosis and treatment of this 

potentially fatal condition (Morris, 2015; BBC NEWS, 2015). These fatalities were 
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ruled a consequence of gross failures by the Ministry of Defence (Brown, 2015). The 

Institute of Naval Medicine (INM), the UK military heat illness centre, estimates an 

annual incidence of over 500 cases of heat illness, with 145 referred to the INM for 

heat tolerance testing (Ministry of Defence, 2013). Information regarding the 

epidemiology of EHI in the general population is limited, but has been reported as one 

of the leading causes of death in young athletes (Maron et al., 2009) indicating that 

under the right stressful conditions this condition may be quite common. 

 

The link between MH and EHI was first proposed in 1991, when two members of the 

armed forces that suffered cases of EHI were classified as MHS by the IVCT, along 

with their relatives (Hopkins et al., 1991). There are also clear phenotypic similarities 

in the symptoms of the two conditions. These phenotypic similarities are supported by 

genetic data, specifically the case of a 12-year-old boy where his MH history could be 

linked to an EHI reaction. After surviving an MH reaction during general anaesthesia, 

the boy later died several months later following an episode of EHI during a game of 

football. Genetic analysis of the boy and members of his family revealed the RyR1 

R163C variant, previously implicated in MH and shown to be causative of the 

condition in functional experiments (Tong et al., 1997; Yang et al., 2003).  

 

Some but not all individuals reported to have had episodes of EHI have subsequently 

tested susceptible for MH with the IVCT (Hopkins, 2007; Capacchione & Muldoon, 

2009). This evidence, in addition to the similarity in symptomology, has laid the 

foundation for a link between the two conditions. In an EHI attack the increased body 

temperature results in the RyR1 allowing greater calcium leakage into the myoplasm. 

This stimulates the formation of reactive nitrogen species (RNS) which cause S-
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nitrosylation of RyR1 further activating the channel leading to increased muscle 

metabolism which generates more heat, establishing a positive feedback loop which, 

if left uninterrupted, can cause death (Carsana, 2013). This increased body 

temperature can induce a range of symptoms; from mild muscle weakness and nausea 

to severe metabolic acidosis and rhabdomyolysis and is often coupled with significant 

central nervous system dysfunction, ranging from confused behaviour to acute loss of 

consciousness, coma and death (Capacchione & Muldoon, 2009).  

 

1.2.4 Late-onset axial myopathy 

‘Axial myopathy’ is a non-specific term for the disorders of skeletal muscle that relate 

to the axial musculature. Patients with these conditions may develop contracture of 

the spine, dropped head syndrome and camptocormia (bent spine) (Mahjneh et al., 

2002). Camptocormia is also a feature of Parkinson’s disease, especially in the 

advanced stages as well as a range of neuromuscular disorders (Azher & Jankovic, 

2005). Patients with LOAM exhibit a range of symptoms such as lumbar 

hyperlordosis, scapular winging and camptocormia with one unifying feature - the 

onset occurs between the ages of 30 and 70 years, hence the term ‘late-onset axial 

myopathy’. The symptoms are in contrast to those witnessed in early onset axial 

myopathies where most changes occur in the anterior and medial thigh (Jungbluth et 

al., 2004; Klein et al., 2011).  

 

Some patients with LOAM have also been found to carry variants in RYR1, some of 

which are also implicated in MH (Jungbluth et al., 2009; Loseth et al., 2013). In 

addition to variants in RYR1, LOAM has also been attributed to calpainopathy. 

Calpainopathy is a clinically heterogeneous, autosomal recessive, muscular dystrophy 
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caused by variants in calpain-3 (CAPN3). CAPN3 is involved in sarcomere 

remodelling in skeletal muscle. Symptoms of this condition include; limb girdle 

weakness, exercise induced myalgia, rigid spine syndrome and asymptomatic 

hyperCKemia (Sáenz et al., 2005; Burke et al., 2010; Liewluck & Goodman, 2012). 

 

1.3 Mouse models of impaired calcium handling 

1.3.1 Mouse models of RYR1 variants 

RyR1 knock out (KO) mice are not viable (Takekura et al., 1995). However, knock in 

(KI) murine models of specific RYR1 mutations implicated in MH, CCD and EHI have 

been developed. The variants that have been generated include: R163C (Yang et al., 

2006), Y522S (Chelu et al., 2006), I4898T (Zvaritch et al., 2007), T4826I (Yuen et 

al., 2012). Details of these strains are summarised in Table 1.1. 

 

Extreme exercise and heart failure are associated with leaky RyR1 channels. This can 

be due to phosphorylation of the channel at serine 2844 that leads to muscle weakness 

(Reiken et al., 2003; Bellinger et al., 2008). To investigate this, an S2844D KI mouse 

line was created (Andersson et al., 2011). These mice express leaky RyR1 channels 

and at 6 months old display defective muscle function that is comparable to what is 

observed in 24 month old wild type mice (Andersson et al., 2011). While this variant 

is not implicated in MH, it does share the feature of a leaky RyR1 with the R163C and 

Y522S mutations.  



 

 27 

Table 1.1 Summary of Mouse models developed to investigate MH/CCD/EHI 
Mouse 
model 

Human condition implicated in Strain details Phenotype Translational discoveries 

R163C MH (Robinson et al., 2006)  
CCD (Yang et al., 2006) 
EHI (Estève et al., 2010) 

Heterozygotes viable  
Homozygous mice die shortly after 
birth/in utero 
 

Halothane exposure: severe MH crises 
Exposure to 42°C (20 mins): MH-like 
crises 

Myotubes have significantly higher resting Ca2+ level 
= Ca2+ leakage from SR (Yang et al., 2006; Yang et 
al., 2007) 
Damaged mitochondrial function = increased ROS 
production (Giulivi et al., 2011) 
Low oxidative phosphorylation and glycolysis 
(Giulivi et al., 2011) 

Y522S MH (Robinson et al., 2006) 
CCD (Chelu et al., 2006) 

Presence of cores lacking mitochondria 
Halothane exposure: severe MH crises 
Exposure to 41°C (15 mins): MH-like 
crises 

Development of cores worsens with increasing age 
(Boncompagni et al., 2009) 
 
Increased Ca2+ leak leads to increased ROS/RNS 
production (Durham et al., 2008, Wei et al., 2011) 
 
AICAR inhibits Ca2+ leak (Lanner et al., 2012) 

I4898T MH (Robinson et al., 2006) 
CCD (Zvaritch et al., 2007) 

Reduction in skeletal muscle force 
(Zvaritch et al., 2009, (Loy et al., 2011) 

Attributed to decreased Ca2+ release 
(Zvaritch et al., 2009, (Loy et al., 2011) 

T4826I MH (Robinson et al., 2006) Homozygous mice viable 
 
 
 

Exposure to 37°C (20 mins): MH-like crises 
Halothane exposure: severe MH crises 

Morpological variations in soleus muscle: Z-line 
streaming, redistribution of mitochondira and regions 
of contracture (Yuen et al., 2012) 
 
Larger Ca2+transients in mutant muscle  
(Barrientos et al., 2012) 

Heterozygous mice viable Exposure to 37°C (20 mins): higher rectal 
temp 
Halothane exposure: variable MH reaction 
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1.3.2 A CACNA1S variant model 

Impaired calcium handling is not only attributed to variants in RyR1. Variants in the 

a-1 subunit of the DHPR (Cav1.1), encoded by CACNA1S, have also been implicated 

in compromised calcium homeostasis in skeletal muscle and MH (Carpenter et al., 

2009a). Recently, a R174W mouse line has been created (Beqollari et al., 2015). 

Homozygous mice are viable, move normally and have lifespans similar to wild-type. 

Exposure to isofluorane results in a hypermetabolic state and eventually death. Like a 

number of the RyR1 variant models, resting cytosolic calcium level in these mice is 

elevated. There was also evidence of mitochondrial displacement, variable 

calsequestrin content of the SR and some evidence of SR stacks (Beqollari et al., 

2015). FDB muscle fibres from homozygous R174W mice were lacking in L-type 

calcium current but intramembrane charge movement was similar to that recorded in 

wild type muscle, suggesting a mechanism for MH susceptibility that is related to 

calcium leak from the SR but EC coupling remains unaffected (Beqollari et al., 2015). 

 

1.3.3 Calsequestrin null mice 

In addition to RyR1 and the a-1 subunit of the DHPR, calsequestrin 1 is also a key 

component of skeletal muscle calcium handling (Beard et al., 2004). Unlike Ryr and 

Cav1.1 mouse models that use point mutation KI, calsequestrin 1 mouse studies have 

used a knock-out (KO) model (Paolini et al., 2007). These mice are viable and fertile 

and show no significant behavioural alteration under normal housing conditions. Male 

Casq1-null mice were observed to have an increased rate of sudden death under usual 

stress conditions such as mating. They were also susceptible to a high mortality rate 

when exposed to halothane or high environmental temperatures (Dainese et al., 2009). 
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Female Casq1-null mice had a higher survival rate than their male Casq1-null 

counterparts but lower than wild type mice. Contractile responses under normal 

conditions was compromised in fast muscles, but not slow, with increased twitch 

amplitude and time to peak and half-relaxation time prolonged (Dainese et al., 2009; 

Paolini et al., 2011). Casq1-null muscle was more resistant to low frequency fatigue 

than wild type, a feature that could be related to the increased mitochondrial density 

in Casq1-null muscle fibres (Scorzeto et al., 2013). Altered mitochondrial density may 

be related to increase ROS production, and recent tests have shown that treatment of 

Casq1-null mice with anti-oxidants such as N-acetylcysteine can reduce damage to 

mitochondria, limit core formation, improve muscle function as well as attenuating 

the hypermetabolic response to halothane in these mice (Michelucci et al., 2016). 

 

In summary, mouse models have highlighted the effects of compromised calcium 

handling in skeletal muscle, how this has a detrimental impact on mitochondrial 

function and subsequently skeletal muscle energetics. Particular models, I4898T and 

Y522S, display alterations that are akin to premature muscle ageing, indicating the 

importance of calcium handling in sarcopenia and myopathic conditions.  

 

1.4 Mitochondrial function and oxidative stress in ageing 

Mitochondria produce ATP, which is, along with calcium, central to the energetic 

capacity of skeletal muscle. One of the best-known theories of aging is the free radical 

theory. This theory proposes a central role for the mitochondrion as the principle 

source of intracellular reactive oxygen species (ROS) which results in mitochondrial 

DNA mutations and progressive damage to mitochondria (Kraytsberg et al., 2006). 

The production of ROS, reactive nitrogen species (RNS), and other types of free 
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radical by mitochondria contribute to oxidative stress which affects muscle function 

and adaptation (Zuo et al., 2013).  Cellular oxidative stress is a significant factor in 

skeletal muscle ageing (Liochev, 2013). Loss of mitochondria is a feature of skeletal 

muscle ageing, a phenomenon that is also a feature of RYR1 myopathies (Zhou et al., 

2007; Payne & Chinnery, 2015; Pietrangelo et al., 2015).  

 

Sustained contractile activity, a feature of both exercise and an MH episode, can lead 

to inflammation and increased production of free radicals (Fittipaldi et al., 2014). 

Nitric oxide (NO) is one of these reactive molecules that is vital for the mediation of 

signalling pathways during muscle contractions (Zuo & Pannell, 2015). NO has also 

been implicated in activation and inhibition of RyR1 (Hart & Dulhunty, 2000). NO 

release increases dramatically during active muscle contraction.  

 

NO and ROS are both generated during skeletal muscle contraction leading to 

increased levels of peroxynitrite (Hayashi et al., 2004). This can activate the adenosine 

monophosphate-activated protein kinase (AMPK) pathway to produce ATP (Xie et 

al., 2006). The AMPK pathway is also involved in translocation of the glucose 

transporter type 4 (GLUT4) that leads to increased glucose uptake in myocytes (Figure 

1.7). 

 



 
 

 31 

 

Figure 1.7 Schematic of the effects of ROS and NO in skeletal muscle, adapted from (Zuo & Pannell, 
2015). 
 

In addition to involvement in AMPK signalling, ROS is involved in initiating the 

mitogen-activated protein kinase (MAPK) signalling cascades (Figure 1.7). MAPK 

phosphorylates various regulatory proteins that either inhibit or activate other 

signalling pathways that induce a cellular response to stress signals and induce skeletal 

muscle adaptation (Powers et al., 2010). Therefore, ROS are important for the 

adaptation of skeletal muscle under stress conditions, but when produced to excess 

can upset this process.  
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1.5 Project Aims and Objectives 

This overall aim of this project was to investigate skeletal muscle energetics and 

ageing in the context of RYR1 variants. Each results chapter begins with a chapter 

specific introduction in addition to the general introduction.  

 

Chapter 2 aim: Investigate the potential for Caenorhabditis elegans models of RYR1 

myopathies to improve the understanding of skeletal muscle ageing. 

 

Chapter 2 objectives: 

• Utilise pre-existing and develop new C. elegans model strains of RYR1 

myopathies 

o Development of new strains will be achieved through recombineering 

specific RYR1 variants in the C. elegans ryanodine receptor. 

• Characterise the response of C. elegans model strains using phenotyping 

assays (employing caffeine and halothane) 

• Develop additional gfp-myosin strains of all RYR1 variant strains to enable 

assessment of skeletal muscle fibre organization 

• Determine the effect of chosen RYR1 variants on muscle ageing in the worm 

through assessment of skeletal muscle fibre organization 

 

Chapter 3 aim: Expand the understanding of MH genetics through a whole genome 

approach with a view to highlighting alternative genes involved in MH and skeletal 

muscle ageing and ultimately develop a predictive risk score for MH susceptibility. 
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Chapter 3 objectives: 

• Utilise existing whole-genome Affymetrix data derived from skeletal muscle 

and peripheral blood to determine the whole genome profile of MH in the 

different tissues 

o Pathway analysis will be used to highlight genes implicated in MH 

o LASSO regression analysis will be performed to determine predictive 

risk score for MH susceptibility 

• Ultilise existing whole-genome Affymetrix data derived from skeletal muscle 

to determine genes of interest of relevance to muscle ageing and MH 

susceptibility 

o Follow up key genes with TaqMan® assays on a separate cohort of 

samples for validation. 

 

Chapter 4 aim: Investigate the role of mitochondrial oxidative phosphorylation 

(OXPHOS) in MH susceptible and normal skeletal muscle in the context of ageing  

 

Chapter 4 objectives: 

• Carry out mitochondrial respirometry on patient muscle biopsies using the 

Oroboros system 

o Characterize different components of mitochondrial OXPHOS and 

estimate mitochondrial content and link alterations to MH status and age 

 

Chapter 5 aim: Develop new equipment required to carry out heat measurements in 

isolated skeletal muscles that will enable calculation of skeletal muscle efficiency. 
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Chapter 5 objectives: 

• Calibration and preliminary testing of new thermopile apparatus (using old and 

young mouse soleus muscle) to demonstrate functional capacity of the 

equipment  

• Produce preliminary data on differences in skeletal muscle efficiency in old 

and young wild-type mice 
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2 A Caenorhabditis elegans model for studying RYR1 variants and muscle 
ageing  

 

2.1  Introduction 
Caenorhabditis elegans is a free-living, transparent nematode. It has been used 

extensively used as a model organism for a large number of human conditions (Kaletta 

& Hengartner, 2006). These have included longevity models for the study of human 

ageing (Harrington & Harley, 1988; Tissenbaum & Guarente, 2002; Driscoll & Yu, 

2011), vulval development models for cancer biology (Fisher et al., 2005) and 

transgenic models to investigate neurological disorders such as Alzheimer’s, 

Huntington’s and Parkinson’s disease (Link, 1995; Faber et al., 1999; Link, 2001). 

 

The adult worms measure approximately 1mm in length (Figure 2.1). In the wild, they 

live in soil, but in a laboratory setting they are housed on nematode growth medium 

in plates. These organisms are most commonly found as self-fertilising 

hermaphrodites (XX), but there are also male C. elegans occurring at a rate of ~0.1% 

(WormAtlas, 2006). It is possible to induce production of males by heat shocking at 

30ºC and then housing the nematodes at temperatures of 25ºC (He, 2011). Wild-type 

C. elegans  have a lifespan of 2-3 weeks, during which the self-fertilising 

hermaphrodites will produce large numbers of offspring (Stroustrup et al., 2013). 
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Figure 2.1 Adult hermaphrodite C. elegans, left lateral side, scale bar 1mm. Adapted from (WormAtlas, 
2006) 
 

The body-wall structure of C. elegans exhibits longitudinal rows of obliquely striated 

muscle cells on the dorsal and ventral sides of the nematode (Wood, 1988). The 

striated nature of C. elegans body wall muscle has striking similarity to the striated 

appearance of human skeletal muscle. The primary difference is that the sarcomeres 

are not arranged in register (which is the case in mammalian muscle), but obliquely 

throughout the muscle (Figure 2.2). 

 

Figure 2.2 Schematic of somatic muscle sarcomere in C. elegans and humans. A: 3D rendering of 
myofilament lattice also showing sarcomere structure in C elegans somatic muscle, myosin fibres 
shown in yellow, actin shown in black, adapted from (Altun & Hall, 2009) B: 2D schematic of human 
sarcomere arrangement, myosin fibres shown in grey, actin shown in orange. 
 

Movement is achieved through the co-ordinated contraction and relaxation of 

opposing dorsal and ventral muscle cells which results in a sinusoidal wave that is 

capable of propelling the worm forwards or backwards (Nicholas, 1984). Structural 
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changes in the sarcomere can be examined visually using GFP tagged myosin in the 

C. elegans body-wall muscle (Herndon et al., 2002). These nematodes have a lifespan 

of just a few weeks, making it possible to easily examine ageing in C. elegans muscle 

and to do so in a high-throughput manner.  

 

It has been documented that patients with some age-related muscle myopathies have 

RYR1 mutations (Jungbluth et al., 2009). Moreover, the myopathy associated with 

RYR1 variants, which are also implicated in MH, imitates premature ageing in mice 

models (Boncompagni et al., 2009; Boncompagni et al., 2010). Examination of the 

structural changes in the muscle of worms containing single-point mutations in the 

worm ryanodine receptor will enable better understanding of how these variants affect 

the muscle ageing process. 

 

The mammalian RyR1 protein is more than 5000 amino acid residues long. This makes 

manipulation of the mammalian gene difficult. The C. elegans unc-68 gene is found 

to encode a ryanodine receptor ortholog that is expressed in body wall muscle cells 

and involved in regulating body-wall muscle contraction and maintaining normal 

tension in these nematodes (Maryon et al., 1996). C. elegans has a compact genome, 

unc-68 is about 30kb long and is entirely contained in the fosmid clone WRM069cA02 

(Figure 2.3).  
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Figure 2.3 Fosmid clone WRM069cA02 (Hodgkin, 2015). It contains the entire unc-68 gene with 
flanking intergenic regions. Scale is in base pairs. 
 

Fosmids are a low-copy-number cosmid vector that is based on the E. coli F-factor 

replicon. Sequences that are cloned are more stable in fosmids than in multi-copy 

vectors such as cosmids (Kim et al., 1992). Cosmids are plasmids that contain cos 

sequences enabling them to be packaged into lambda phage particles that allows for 

cloning of larger DNA fragments than standard plasmids (Kim et al., 1992). 

 

Unc-68(e540) (strain CB540) worms carry a point mutation near the centre of the 

gene, resulting in a premature stop codon that makes the worms genetically unc-68 

null mutants (Sakube et al., 1997). Due to the relatively small size of the worm, they 

are still viable as diffusion of calcium into the myoplasm is sufficient to elicit a 

contraction, but the force of the contraction is reduced. In addition, the reduced force 

is associated with compromised coordination of the muscle contractions resulting in a 

slow, uncoordinated movement phenotype compared to wild-type worms. Unc-68 has 

approximately 40% amino acid identity with the human RYR1 gene (Sakube et al., 

1997). This homology is distributed along the length of the protein, suggesting that 
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the mammalian and nematode ryanodine receptor operate and are controlled in a 

similar manner.  

 

Previous work involving exposure of C. elegans unc-68 revertants has shown them to 

have altered responses to a number of reagents, including caffeine and ryanodine 

(Adachi & Kagawa, 2003). Unc-68 null mutants are insensitive to the paralytic effect 

of ryanodine that is exhibited by the wild type (Maryon et al., 1996). The pattern of 

behaviour in C. elegans in response to volatile anaesthetics is largely similar to what 

is observed in humans (Figure 2.4). In humans the concentration of anaesthetic 

required for surgical anaesthesia is termed “MAC” (minimal alveolar concentration), 

the concentration of gas at which 50% of patients will remain immobile during a 

surgical stimulus (Aranake et al., 2013). To mimic this in C. elegans, reversible 

immobility is used as an endpoint to study control of anaesthetics in the behaviour of 

these worms (Morgan & Cascorbi, 1985). 
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Figure 2.4 Concentrations of halothane required to reach several endpoints in humans and C. elegans. 
1MAC=0.7% halothane. Radial dispersion: the ability of a worm to move radially from the centre of a 
plate towards a peripheral ring of food. Figure adapted from (Morgan et al., 2007). 
 

The concentration of halothane required to achieve the various endpoints are higher in 

C. elegans compared to humans (Figure 2.4). This is likely due to the mode of 

application of the anaesthetic, whereby in C. elegans the chemical must be absorbed 

through the thick cuticle of the worm whereas in humans it is inhaled through the 

respiratory tract. These endpoints serve as the typical criteria for assays that have been 

established to investigate anaesthetic sensitivity in a number of mutant C. elegans 

strains. 

 

The majority of work involving volatile anaesthetics in C. elegans has examined the 

effects of these chemicals on the neural system of the worm and their effects on 
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neurotransmitter release (Crowder et al., 1996; van Swinderen et al., 1999). C. elegans 

strains found to exhbit hypersensitivity to volatile anaesthetics include those with 

‘fainter’ phenotypes such as unc-79, unc-80, nca-1 and nca-2. Fainting in C. elegans 

is defined as periods of inactivity lasting several seconds interspersing a period of 

normal locomotion. These animals are found to be immobile in 2% halothane while 

wild type animals display rapid movement at this concentration (Morgan et al., 2007). 

The genes implicated in the aforementioned mutants are expressed in the neuronal 

tissue of the worm and affect expression of the protein stomatin. Stomatins co-localise 

in tissues such as the dorsal root ganglion (Fricke et al., 2000), a vital component of 

the sensory pathway in mammals. A mouse knock-out for stomatin has been observed 

to have the same anaesthetic sensitivity as seen in the worm (Sedensky et al., 2006).  

 

Mitochondrial effects have also been investigated with respect to altered anaesthetic 

sensitivity in the worm. Gas-1 (general anaesthetic sensitive) encodes a subunit of the 

C. elegans protein of complex I of the mitochondrial electron transport chain (Kayser 

et al., 1999). The mitochondria of gas-1 mutants are defective in oxidative 

phosphorylation using complex I substrates with the rate of electron transfer through 

the chain reduced by over 90% (Kayser et al., 2001). Other mutants such as daf-2  

display increased rates of complex I oxidative phosphorylation and are resistant to 

volatile anaesthetics (Morgan et al., 2007).  In both mammals and worms, complex I 

has been identified as most sensitive to inhibition by volatile anaesthetics (Kayser et 

al., 2004). The data concerning volatile anaesthetics largely fails to reveal a single 

target that is responsible for the effects of these chemicals, indicating that there are 

different sites of anaesthetic action (Morgan et al., 2007).  
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2.2 Materials and Methods  

This chapter presents an investigation into the validity of C. elegans as a model 

organism for investigation of human skeletal muscle myopathies and ageing. Single 

point mutations in unc-68 that correspond with point mutations in RYR1 implicated in 

MH, CCD, EHI and LOAM were engineered by recombineering the fosmid clone 

containing unc-68. Unc-68 null-mutants were then transformed using the altered 

fosmids to generate strains for each myopathy. Phenotyping assays, using caffeine and 

halothane, were performed to test whether the strains respond to these reagents in a 

similar manner to humans. Finally, ageing assays were carried out (using new strains 

generated from crossing myopathy models with gfp myosin worms) to investigate the 

potential impact of the variants on the process of age-related muscle structure decline. 
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2.2.1 Identification of variants 

9 variants in RYR1 were selected for investigation using C. elegans (Table 2.1).  

Table 2.1 Amino acid alignment of all nine variants under investigation 

HUMAN 
CONDITION 

RYR1 VARIANT PROTEIN ALIGNMENT 

Malignant 
hyperthermia 
 
 

 

 

p.G341R 
c.1021G>A 

RyR1 KRDVEGMGPPEIKYGESLCFVQHVASGLW  
UNC-68 EKEEEGMGNATIRYGETNAFIQHVKTQLW 

 
p.R2163H  
c.6488G>A 

RyR1 DTMSLLECLGQIRSLLIVQMGPQEENLMI  
UNC-68 DVTDFLVYLIQIRELLTVQFEHTEEAILK 

  
p.R2454H 
c.7361G>A 

RyR1 CAPEMHLIQAGKGEALRIRAILRSLVPLE  
UNC-68 CAPDPMAIQAGKGDSLRARAILRSLISLD 

  
p.R2458H 
c.7373G>A 

RyR1 IQAGKGEALRIRAILRSLVPLEDLVGIIS  
UNC-68 IQAGKGDSLRARAILRSLISLDDLGQILA  

 
Exertional 
Heat Stroke 
and MH 

p.R163C 
c.487C>T 

RyR1 CWWTMHPASKQRSEGEKVRVGDDIILVSV  
UNC-68 CWWTIHPASKQRSEGEKVRVGDDVILVSV 

  
Central Core 
Disease and 
MH 

p.R4861H 
14582G>A  

RyR1 VVVYLYTVVAFNFFRKFY-NKSEDEDEPD  
UNC-68 VVVYLYTVIAFNFFRKFYVQEGEEGEEPD  

 
p.A4940T 
c.14820G>A 

RyR1 FFFFVIVILLAIIQGLIIDAFGELRDQQE  
UNC-68 FFFFVIIILLAIMQGLIIDAFGELRDQQE 

  
Late-onset 
axial 
myopathy 

p.K3452Q 
c.10354A>C 

RyR1 IFIYWSKSHNFKREEQNFVVQNEINNMSF  
UNC-68 IFRIWSQSQHFKREELNYVAQFEEDAAAT 

 
p.V4849I 
c.14545G>A 

RyR1 KQLVMTVGLLAVVVYLYTVVAFNFFRKFY  
UNC-68 QQLILTIMMTLVVVYLYTVIAFNFFRKFY 

Human variant residues and corresponding C. elegans residues are in red. Other amino acids identical 
in RyR1 and UNC-68 are in blue. 
 

Selection of these specific variants was made according to whether the variant was 

conserved at the amino acid level and in the case of the MH variants, that they showed 

a strong MH phenotype (Carpenter et al., 2009b). A strong MH phenotype is defined 

as a significantly more pronounced response to caffeine and halothane under the 

conditions of the IVCT when compared with the response of the most common RYR1 

variant implicated in MH. This variant, G2434R, confers a relatively weak contracture 

response in the IVCT when compared to other rarer variants. These single point 

mutations were introduced into the C. elegans fosmid clone WRM069cA02 using a 

two-step counter-selection recombineering method. Those variants implicated in MH, 
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CCD and EHS, were recombineered by members of the Hope laboratory at the 

University of Leeds and all microinjection transformations to generate new strains 

were carried out by Professor Ian Hope. Recombineering and microinjection 

transformation of the two variants implicated in late-onset axial myopathy has been 

completed as part of this project. Microinjection transformation was only successful 

with one of the late-onset axial myopathy variants. 

 

2.2.2 Strain maintenance  

All strains used were maintained in culture at 20°C on 50mm NGM plates seeded with 

E. coli strain OP50. Desired transgenic worms were selected using a sterile worm pick 

and picked to fresh seeded plates on a regular basis. 

 

2.2.3 Recombineering of RYR1 variants in unc-68  

Modification of the target gene, unc-68, was achieved by a two-step counter-selection 

recombineering technique (Feng et al., 2012). This is summarised in Figure 2.5.  
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Figure 2.5 Schematic of the recombineering process. A PCR amplified variant and fosmid-specific 
counter-selection cassette is inserted into the target fosmid by bacterial transformation using positive 
selection for the cassette in step 1. The cassette is then replaced, with incorporation of the desired point 
mutation in the second step with a PCR product containing the desired point mutation. 
 

Prior to recombineering, the following steps had to be completed. Fosmid clone DNA 

was electroporated into recombineering competent EL350 cells (Lee et al., 2001). 

These cells have a defective lambda prophage incorporated chromosomally. This 

prophage conatins the gam, bet and exo genes arranged in their natural configuration 

and expressed from a native PL promoter that is stringently regulated by the 

temperature sensitive cI857 repressor (Yu et al., 2000). The repressor is inactivated 

by a short-term temperature change to 42°C. This permits high-level co-ordinated 

expression of the Red genes that mediate homologous recombination between the 

recipient target gene and a double-stranded linear donor DNA. For this method, all 

incubations of EL350 cells were carried out at 32°C, and where shaking was used this 

was set at 200rpm in a waterbath, except for induction of Red functions where the 

temperature was raised to 42°C and shaking carried out at 150rpm. 
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2.2.3.1 PCR-amplification of the rpsL-tetA(C) recombineering cassettes 

Amplification of the fosmid specific rpsL-tetA(C) cassette (RT cassette) DNA was 

achieved by PCR in 10x high fidelity buffer supplemented with 0.167mM dNTPs, 

4mM MgSO4, 1U platinum Taq DNA polymerase and 0.5µM of each primer (Table 

2.2) for amplification of the cassette made up to a total reaction volume of 30ul using 

nuclease free H2O.  

Table 2.2 Primer details for amplification of variant specific cassettes 
Primer details Sequence 5’-3’ 
K3453Q Forward atgaaaatgtagctgtcatcttccgtatttggagtcaaagtcaacatttcgat

gataagctgtcaaacatgag 
K3452Q Reverse ggctgcagcatcctcttcaaattgagccacatagttcagctcttcacgtttcg

ctgtcgagatatgacggtg 
V4849I Forward ttacacacaacttgcaacaactcattctcaccatcatgatgacacttgtagat

gataagctgtcaaacatgag 
V4849I Reverse atagaatttacggaagaaattgaacgcgatgacagtgtagagatacacgatcg

ctgtcgagatatgacggtg 

 

An initial denaturation step lasting 2 minutes at 94°C preceded 30 cycles of 30 seconds 

at 94°C (denaturation), 45 seconds at 50°C (annealing) and 2.5 minutes at 68°C 

(extension). A final incubation at 68°C for 10 minutes ensured extension was 

complete. The PCR product was checked using agarose gel electrophoresis (0.7% gel 

in 1xTAE buffer) and the products purified from the gel using a Qiagen© PCR 

purification kit. The purified PCR product was then run on a gel (0.7% in 1xTAE) to 

quantify the concentration of DNA present.  

 

2.2.3.2 Electroporation of fosmid DNA into electrocompetent cells 

The following procedure was performed on ice. A 20µl aliquot of electrocompetent 

EL350 cells was thawed and mixed with 0.5µl of fosmid DNA. E. coli strain EL350 

is recombineering-competent (Lee et al., 2001). The mixture was then transferred to a 

chilled 0.1cm gap cuvette. Electroporation was then carried out under the following 
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parameters: 1.8kV, 200Ohms and 25µF. 1ml of room temperature LB (0.5% yeast 

extract, 1% tryptone, 171mM NaCl in H2O, autoclaved) was then added to the cuvette 

and the resultant mixture transferred to a sterile 15ml culture tube. Cells were 

incubated for 3 hours at 32°C with shaking to allow the cells to recover. Following 

recovery the cells were plated out (using volumes of 1µl and 33µl) on LB agar plates 

(0.5% yeast extract, 1% tryptone, 171mM NaCl and 1.5% agar in H2O, autoclaved) 

supplemented with chloramphenicol (12.5µg/ml) and grown for 24 hours at 32°C. 

From the resulting colonies, a single one was selected and streaked out and grown 

again for 24 hours at 32°C.  

 

2.2.3.3 Preparation of competent EL350 cells 

Pre-cultures were set up by inoculating 2ml LB containing either 12.5µg/ml 

chloramphenicol to select for fosmid containing EL350 cells (to be used in 

recombineering step 1) or 12.5µg/ml chloramphenicol and 5µg/ml tetracycline to 

select for fosmid+RT cassette containing EL350 cells (to be used in recombineering 

step 2) with a single colony of EL350 cells containing the fosmid or fosmid+RT 

cassette and then incubating at 32°C overnight with shaking at 200rpm. This was then 

used to inoculate 20ml of SOB medium (0.5% yeast extract, 2% tryptone, 10mM 

NaCl, 2.5mM KCl in ddH2O and autoclaved) with appropriate antibiotic in a 50ml 

Falcon tube and incubated with shaking until OD600 (optical density ~0.6). The 

culture was then split equally between two 50ml Falcon tubes, one of which was kept 

on ice. This served as the non-induced control. The other tube was heat-shocked in a 

42°C water bath with shaking for 20 minutes then immediately chilled on ice for 20 

minutes. The cells were pelleted by centrifugation at 4°C, 3300g for ten minutes and 

the pellet re-suspended in 10ml ice-cold 10% glycerol. This process was repeated and 
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the pellet re-suspended in 5ml ice-cold 10% glycerol. The process was repeated a final 

time and the pellet re-suspended in ~100µl of supernatant. The cells were then used 

immediately for recombineering step 1 or 2. 

 

2.2.3.4 Recombineering Step 1: Insertion of the RT-cassette 

On ice, 150-250ng of purified PCR-generated variant-specific RT cassette was mixed 

with 100µl aliquots of induced electrocompetent or non-induced control EL350 cells 

as prepared in 2.2.3.3. The mixture was then transferred to a chilled 0.1cm gap cuvette 

and electroporated (using parameters described in 2.2.3.2). 1ml of SOB was then 

added to each cuvette and the resultant mixture transferred to a sterile 15ml culture 

tube which was incubated with shaking for 2-3 hours to allow cells to recover. 50µl of 

recovered cells was then plated onto LB plates supplemented with 12.5µg/ml 

chloramphenicol and 5µg/ml tetracycline and incubated for 36-48 hours. No colonies 

were present on plates containing non-induced cells. 6 positive colonies were streaked 

onto fresh LB agar plates supplemented with 12.5µg/ml chloramphenicol and 5µg/ml 

tetracycline and incubated for 24-48hours. Colony PCR was performed to confirm 

insertion of the cassette. PCR amplification of cells from a single colony (added using 

a sterile Gilson tip) was carried out in 10x high fidelity buffer supplemented with 

0.167mM dNTPs, 4mM MgSO4, 1U platinum Taq DNA polymerase and 0.5µM of 

each sequencing primer (Table 2.3), made up to a total reaction volume of 30µl using 

nuclease free H2O.  

Table 2.3 Primer details for sequencing primers 
Primer Direction Sequence 5’-3’ 
K3453Q Forward ttgcatcgtgctcaatggct 
K3452Q Reverse tctttctctctgcaatcgcc 
V4849I Forward ttgacgtcgtgctctcattc 
V4849I Reverse gtgacactttcgatctggct 
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An initial denaturation step lasting 2.5 minutes at 94°C preceded 30 cycles of 30 

seconds at 94°C (denaturation), 45 seconds at 50°C (annealing) and 2.5 minutes at 

68°C (extension). A final incubation at 68°C for 10 minutes ensured extension was 

complete. 

 

2.2.3.5 Generation of fragment containing mutation 

The fragment containing the mutation for each variant being generated was produced 

by PCR in 10x high fidelity buffer supplemented with 0.167mM dNTPs, 4mM 

MgSO4, 1U platinum Taq DNA polymerase and 0.5µM of each primer containing the 

desired variant (Table 2.4), made up to a total reaction volume of 30µl using nuclease 

free H2O.  

Table 2.4 Primer details for generation of DNA fragment containing desired variant (variant highlighted 
in red) 

Primer details Sequence 5’-3’ 
K3453Q Forward atgaaaatgtagctgtcatcttccgtatttggagtcaaagtcaacattt

ccaacgtgaagagctg 
K3452Q Reverse ggctgcagcatcctcttcaaattgagccacatagttcagctcttcacgt

tggaaatgttgacttt 
V4849I Forward ttacacacaacttgcaacaactcattctcaccatcatgatgacacttgt

aatcgtgtatctctac 
V4849I Reverse atagaatttacggaagaaattgaacgcgatgacagtgtagagatacacg

actacaagtgtcatca 
 

An initial denaturation step lasting 2 minutes at 94°C preceded 5 cycles of 30 seconds 

at 94°C (denaturation), 45 seconds at 50°C (annealing) and 30 seconds at 68°C 

(extension). A final incubation at 68°C for 10 minutes ensured extension was 

complete. The PCR product was checked using agarose gel electrophoresis (0.7% gel 

in 1xTAE buffer) and the producted purified from the gel using Qiagen© PCR 

purification kit. 
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2.2.3.6 Recombineering Step 2: Replacement of the RT cassette with mutation 

100µl aliquots of electrocompetent EL350 cells containing the RT cassette were 

transformed by electroporation (using parameters detailed previously) with 10µl of the 

purified PCR product of the fragment containing the mutation. After cells had 

recovered 50µl was plated onto NSLB agar plates (1% Tryptone, 0.5% Yeast Extract 

and 1.5% Agar in ddH2O, autoclaved) supplemented with 12.5µg/ml chloramphenicol, 

500µg/ml streptomycin and incubated for 36-48 hours. 12 discrete colonies from the 

induced plates were streaked and incubated for 24-48 hours. Some background growth 

is expected on the plates containing non-induced controls due to streptomycin 

resistance. These colonies were screened by colony PCR (as described previously) for 

replacement of the RT cassette with the fragment containing the mutation. Following 

agarose gel electrophoresis the PCR products were extracted and purified using 

Qiagen© PCR purification kit. The purified PCR product was then sequenced to 

confirm that the mutation had been introduced and that no additional changes had been 

incorporated into the sequence. 

 

2.2.3.7 Preparation of DNA for microinjection transformation 

The recombineered fosmid DNA was isolated from the EL350 cells using a Qiagen© 

plasmid purification kit. The fosmid DNA was then transformed by electroporation 

into electrocompetent EPI300 cells. These cells were grown in culture containing 

12.5µg/ml chloramphenicol and 0.01% arabinose for 24 hours. From these cells 

fosmid DNA was isolated following the standard protocol for a Qiagen© plasmid 

purification kit. The DNA obtained from this step was used for microinjection to 

transform the unc-68 knock out (CB540) worm strains. EcoRI restriction enzyme 

digestion was carried out on DNA isolated from the final recombineered fosmid DNA, 
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the starting fosmid DNA and the fosmid+RT cassette DNA. This provided additional 

confirmation that the DNA was of the correct size following the recombineering 

process, and that no additional changes had been introduced. EcoRI digestion protocol 

used ~1µg/µl of DNA, 0.5µl EcoRI, 1X Buffer EcoRI in a total reaction volume of 

10µl. The mixture was placed in a 0.5ml eppendorf tube and incubated at 37°C for 1 

hour then 2µl of each sample run on a 0.7% agarose gel. DNA was also sequenced at 

the St James’s university sequencing facility using Sanger sequencing to confirm that 

the correct point mutation had been introduced. 

 

2.2.4 Microinjection transformation 

Manipulated wild type unc-68 fosmids were introduced into unc-68(e540) worms by 

microinjection. Unc-68(e540) carries a point mutation towards the centre of the gene 

and behaves genetically as a null (Sakube et al., 1997).  Microinjection needles were 

pulled from borosilicate glass capillaries with an internal filament (Harvard 

Apparatus, Kent, UK: GC100F-10, 1.0x0.58x100mm). DNA loading pipettes were 

created by softening standard glass capillaries (1.15x1.55x75mm micro haematocrit 

tubes) over a Bunsen flame. The capillary was subsequently removed from the flame 

and pulled manually to draw out the capillary to a diameter that will fit within the 

injection needle capillaries. It was then snapped in the centre to produce two loading 

pipettes. Agarose pads were made by dropping ~50µl 2% warm liquid agarose solution 

onto glass coverslips and covering with an additional coverslip to flatten. Once 

solidified, the top coverslip was removed and pads are left at room temperature 

overnight before use. Injections were carried out using an inverted DIC microscope 

(Zeiss Axiovert) for visualisation at 5x and 40x magnification and a micromanipulator 
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(Narashige MO-202) that provided fine mobility in 3 dimensions in conjunction with 

a pressurised injection system with needle holder. 

 

Microinjections were executed by first filling the injection needles with the required 

DNA using the DNA loading pipettes. Then the loaded needle was placed in the needle 

holder controlled by the micromanipulator. A drop of liquid paraffin was placed on 

the agarose pad and under a dissection microscope 1-5 unc-68(e540) hermaphrodites 

were picked from a bacteria free region of a Nematode Growth Medium (1.7% Agar, 

50mM NaCl, 0.25% Peptone in 1L H20 autoclaved then cool and add 25ml 1M 

KH2PO4, 1ml 5mg/ml Cholesterol and 1ml of 1M CaCl2) (NGM) plate and dropped 

into the paraffin. The animals fall through the paraffin and stick to the pad, holding 

them immobilised for injections. The pad is then placed on the stage of the inverted 

microscope. Using the 5x objective the worm was positioned with the needle at a 20° 

angle to the gonad arm. Then the objective was shifted to 40x and the needle top was 

brought against the cuticle and a slight tap of the microscope allowed the needle to 

pierce the cuticle. The air pressure in the injection system was then raised to push the 

DNA into the gonad until it was full. After all individual worms have been injected on 

the pad, 2-3 drops of M9 buffer (21.57mM KH2PO4, 42.27mM Na2HPO4, 85.6mM 

NaCl, 1mM MgSO4) (Stiernagle, 2006) was then added to the paraffin to rehydrate 

the injected animals. Animals were then left to recover on the pad placed on a lid of 

an inverted NGM plate (to provide a humid environment to reduce evaporation). Once 

thrashing in the M9 they were picked onto fresh NGM agar plates and left to grow at 

20°C. 
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Those worms bearing the extra-chromosomal array encoding a functional unc-68 

display a wild type phenotype of movement. Transgenic progeny of injected animals 

are picked to fresh NGM plates 3-4 days after injection. Two types of strain were 

established, one set using just a single fosmid and one set where a manipulated fosmid 

was injected alongside the wild type fosmid (Table 2.5). MH, CCD and EHI strains 

were generated by Professor Ian Hope, LOAM strains were generated by the author. 

Table 2.5 Details of all transgenic strains generated by microinjection 
Human 

condition 
Model Strain code (variant 

fosmid only) 
Strain code (variant and 

wild type fosmid) 
MH G341R UL4141 UL4167 

R2163H UL4147 UL4153 
R2454H UL4143 UL4165 
R2458H UL4144 UL4158 

CCD R4861H - UL4152 
A4940T UL4157 UL4156 

EHI R163C UL4155 UL4160 
LOAM K3452Q UL4168 UL4169 

 

This provides models of the homozygous state (single fosmid rescue) and 

heterozygous state (dual fosmid rescue) for each variant studied. The fosmid 

expressing the variant equivalent to R4861H (implicated in CCD) was also injected in 

a mixture with pRF4, a plasmid bearing a defective rol-6 gene that causes an obvious 

dominant roller phenotype. This was completed to determine why it was not possible 

to generate a single fosmid rescue strain using this altered fosmid. 

 

The experimental control strain was developed under the same conditions, using only 

the wild type fosmid. The standard wild type (N2) was also maintained along with the 

CB540 strain necessary for microinjection transformation (Table 2.6). 

Table 2.6 Details of additional strains used 
Strain code Details 
N2 Wild type 
UL4140 Unc68(e540) rescued with wild type fosmid 
CB540 Unc68(e540) 

 



 
 

 54 

2.2.5 Age synchronisation 

Eggs were prepared by a bleaching protocol to synchronise worm populations for 

assay. Mixed stage populations of nematodes were washed from the NGM plates in 

500µl M9 buffer. 150µl of Sainsbury’s thin bleach and 100µl 4 M NaOH were added 

and the solution left at room temperature for 5 minutes. After microcentrifugation at 

19100 rcf for 30 seconds the supernatant was removed and the pellet re-suspended in 

1ml fresh M9 buffer. Centrifugation was repeated and the pellet re-suspended in ~50µl 

of residual supernatant for transfer to a freshly seeded NGM plate. This protocol kills 

all post-embryonic stages leaving the eggs that subsequently hatch and develop into 

adults, effectively ensuring that the worms used in the phenotyping assays will be of 

the same age. 

 

2.2.6 Phenotyping assays 

The transgenic strains were assayed to determine their sensitivity to caffeine and 

halothane. Individual adult worms, 4 days after age synchronisation, were selected 

from NGM plates using a sterile worm pick and placed in 1ml of 0, 1, 5, 10, 20, 40 or 

80mM caffeine dissolved in S-medium (1L S Basal (5.85g NaCl, 1g K2HPO4, 6g 

KH2PO4, 1ml cholesterol (5mg/ml in ethanol), H2O to 1L and autoclaved), 10ml 1 M 

potassium citrate pH6, 10ml trace metals solution (1L stock: 1.86g Na2 EDTA, 0.69g 

FeSO4 •7 H2O, 0.2g MnCl2•4 H2O, 0.29g ZnSO4 •7 H2O, 0.025g CuSO4 •5 H2O, H2O 

to 1L, autoclaved and stored in the dark), 3ml 1M CaCl2, 3ml 1M MgSO4) (Stiernagle, 

2006). After 5 minutes the effect of the chemical was quantified by counting the 

number of body bends in 30 seconds by visualisation through a light microscope and 

using a clicker to record bends. Body bends were defined as the number of visible 

thrashes observed with the worm in liquid media. In liquid, the head of the worm 
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thrashes back and forth, with each thrash counting as a body bend. Halothane assays 

were carried out in a similar manner but using 1ml of 0, 0.5, 1, 1.5, 2 and 2.5mM 

halothane solution (prepared from a 25mM stock in DMSO and mixed into S-medium) 

and assaying after 1 minute exposure. Fifty worms were assayed for each strain at each 

concentration. All phenotyping assays were completed by the author. 

 

2.2.7 Generation of GFP-myosin strains 

GFP-myosin strains were developed by mating N2 males with unc-68(e540) 

hermaphrodites to generate hermaphrodite progeny heterozygous for unc-68. The 

males were selected and crossed with RW1596 (stEx30 (myo-3:: gfp rol-6(su1006))) 

hermaphrodites. The RW1596 strain confers a rolling movement phenotype. The 

resulting hermaphrodite progeny were then allowed to self-generate uncoordinated 

rollers meaning they are homozygous for unc-68(e540) and express the extra 

chromosomal array for myo-gfp. These worms were then subjected to UV 

mutagenesis (0.012J/cm2 for 30 seconds) (Mariol et al., 2013) and screened for 100% 

uncoordinated rollers to ensure that the extra chromosomal array for myo-gfp had been 

successfully integrated. Hermaphrodites from this new strain were then mated with 

males each of the unc-68 fosmid transgenic strains and offspring screened for worms 

with well-coordinated roller movement. This is due to the unc-68 bearing 

extrachromosomal array and the chromosomally integrated myo-3::gfp, rol-6(su1006) 

transgenes. Self-fertilization and selection for well-coordinated rollers yielded myo-

3::gfp, rol-6(su1006) homozygous strains bearing the unc-68 transgenes. Strains were 

then catalogued, details of which can be found in Table 2.7. All GFP-myosin strains 

were generated by the author.  
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Table 2.7 Details of strains generated by genetic cross to create myo-gfp models of all variant strains 
Human 

condition 
Model Strain code (variant 

fosmid only) 
Strain code (variant and 

wild type fosmid) 
MH G341R UL4193 UL4200 

R2454H UL4195 UL4206 
R2458H UL4201 UL4197 
R2163H UL4194 UL4198 

CCD R4861H - UL4205 
A4940T UL4203 UL4202 

EHI R163C UL4191 UL4192 
LOAM K3452Q UL4196 UL4199 

 

2.2.8 Muscle ageing assays 

The transgenic strains expressing the myo-3::gfp were age synchronised following the 

details in section 2.2.5 and then assayed on days 0, 2, 4, 6, 8, 10, 12 and 14 of 

adulthood. Day 0 was considered to be 3 days post-hatching. Only live worms were 

selected for analysis. 20 worms were assayed for each strain at each time point. The 

extent of muscle ageing was quantified by direct observation using an ageing scale 

from 1-5 (Figure 2.6) with half scores assigned where the appearance overlapped two 

stages.  
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Figure 2.6 Examples illustrating the 5 grades in the muscle disorganization scoring scale. The 
myosin::gfp fusion protein is localized to the thick filaments and so distribution of the fluorescence 
reports on the regularity in the arrangement of the sarcomeres. Images captured by fluorescence 
microscopy. A: Typical structure of a grade 1 muscle score; myosin filaments are linear and well 
organised. B: Typical structure of a grade 2 muscle score; myosin filaments are starting to show more 
bends but the pattern is still well organised. C: Typical structure of a grade 3 muscle score; myosin 
filaments are more fragmented and there are apparently overlapping filaments. D: Typical structure of 
a grade 4 muscle score; myosin filaments are further fragmented and the regularity of pattern is no 
longer clear. E: Typical example of grade 5 muscle score; the pattern of myosin filaments is severely 
disorganized.  Figure compiled by Matt Pipe. 
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A score of 1 indicates perfectly ordered myofilament structure, through to a score of 

5 indicating total disorder, with half scores for worms that lay between the defining 

states. Visualisation and image capture was carried out using a Leica DMR 

fluorescence microscope and Improvision Openlab software. In preparation for 

microscopy animals were immobilised using 5mM levamisole and placed in 

individual wells of an 8 well microscope slide. Each individual was scored for extent 

of muscle ageing at the head, vulva and tail regions of the body at 20x magnification. 

These scores were combined to provide a whole body score. 

 

Assessment of repeatability of this method was carried out by providing a cohort of 

20 images from various regions of the worm’s body to another observer. This was 

another member of the Hope laboratory trained in evaluating muscle structure using 

the scoring system described above. Each image was scored independently and the 

percentage agreement with the author measured.  

 

2.2.9 Statistical Analysis 

Results of phenotyping assays were analysed to establish any potential differences in 

the rate of body bends when the worms are subjected to halothane and caffeine. Each 

strain containing an altered fosmid was compared to the strain containing the unaltered 

fosmid at each discrete concentration of the reagent in question. Normal distribution 

of the data was established by plotting residuals in RStudio (version 3.2.2). A linear 

model was established describing body bends being dependent upon presence of the 

variant and statistical significance was measured by carrying out analysis of variance 

on the linear model. Post-hock Tukey tests were then performed to establish exactly 
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which strains showed a significant difference in body bends compared to wild type at 

each concentration. 

 

Categorical muscle score data were analysed using ordered logistic regression with p 

values calculated by comparing the T-statistic to the standard normal distribution. 

Initial analysis tested for differences in the specific body regions scored and 

subsequent analysis incorporated the individual body region scores into a whole-body 

score. This enabled examination of any differences between the strains with modified 

unc-68 and the strains rescued with the wild-type unc-68, evaluation of the effect of 

increasing age of the worm in days, and interactions between these two variables.  

Differences between the scores for the regions of the worm down the anterior-posterior 

axis were similarly carried out. All statistical analyses were completed using RStudio 

version 3.2.2 and figures compiled using Microsoft® Excel® for Mac 2011.   
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2.3 Results 

2.3.1 Two-step counter-selection recombineering 

This section presents the results of the two-step counter-selection recombineering 

carried out to introduce variants K3452Q and V8949I.  Figure 2.7 displays the results 

of colony PCR following the first recombineering step. The bands at approximately 

2kb indicate that the fosmid has taken on the RT cassette for each variant. 

 
Figure 2.7 Colony PCR results of recombineering step 1.  Lane 1 is PCR amplification of cells 
containing the unaltered fosmid, lanes 2-5 show PCR amplification of cells containing the fosmid 
+V4849I variant specific cassette, lanes 6-9 show PCR amplification of cells containing the fosmid 
+K3452Q variant specific cassette. Lane M is 1kb ladder. 
 

Figure 2.8 shows the results of the colony PCR performed after completion of the 

second recombineering step along with alignment of the sequencing results for each 

variant. For all alignments the upper case sequence is the sequence of the original 

unchanged fosmid and the lower case sequence displays the results of sequencing 

analysis on the recombineered fosmid for each mutation.  
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Figure 2.8 Colony PCR results of recombineering step 2 and alignment of sequencing results. The desired change for each variant is highlighted in red. A: K3452Q 
and alignment of sequencing results.  Lane 1 shows PCR amplification of cells containing unaltered fosmid, lane 2 is PCR amplification of cells containing fosmid 
with the RT cassette and lanes 3-15 show PCR amplification of cells produced from recombineering step 2-fosmid DNA containing mutation. Lane M is 1kb ladder. 
B: V4849I and alignment of sequencing results. Lane 1 shows PCR amplification of cells containing unaltered fosmid, Lane 2 is PCR amplification of cells containing 
fosmid with the RT cassette. Lanes 3-10 shows PCR amplification of cells produced from recombineering step 2-fosmid DNA containing mutation. Lane M is 1kb 
ladder. 
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EcoR1 restriction digestion was carried out on the unaltered WRM069cA02 fosmid 

DNA, WRM069cA02+RT cassette, and the final recombineered fosmid for each 

variant. The results (Figure 2.9) show that the desired fragment sizes have been 

obtained for the starting fosmid, the fosmid containing the RT cassette and for each 

variant.  

 

 
Figure 2.9 EcoR1 restriction digest. Lanes 1&3:WRM069cA02+RT cassette, lane 2: WRM069cA02-
unaltered, lanes 4-6: WRM069cA02+K3452Q, lanes 7-9: WRM069cA02+V4849I. Red arrow indicates 
additional band at ~2000bp for fosmid containing cassette. 
 

No additional cut sites were introduced by the recombineering, therefore the same 

bands are expected for the recombineered fosmids as the original starting fosmid. An 

additional band of approximately 2kb in size is evident for the digest carried out on 

the fosmid+RT cassette DNA. This is consistent with successful introduction of the 

RT cassette.  
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2.3.2 Rescue of unc-68(e540) by an unc-68 transgene 

Microinjection of unaltered or manipulated WRM069cA02 into the gonad of unc-

68(e540) hermaphrodites yielded progeny with apparently wild type locomotion 

suggesting WRM069cA02 does indeed contain the entire unc-68 gene and all that is 

required for its expression. Transmission of the rescued phenotype to subsequent 

generations allowed establishment of transgenic strains and therefore the unc-68 

transgene on the extra chromosomal array provides appropriate levels of the ryanodine 

receptor in muscle cells. One of these strains, UL4140, with the highest extra 

chromosomal array transmission rate, was used as a baseline reference for comparison 

in subsequent experiments to examine ryanodine receptor variants. Not only was 

UL4140 fully rescued for locomotion but also the strain responded to increasing 

caffeine and halothane concentrations in the same manner as the standard wild type 

strain (N2) (Figure 2.10).  

 

The wild type strain N2 and UL4140, rescued with the wild type fosmid, show an 

increasing frequency of body bends from 1mM to 10mM caffeine (Figure 2.10A). 

There is a progressive reduction in movement at 20mM, 40mM and 80mM (Figure 

2.10A). Halothane inhibited C. elegans locomotion progressively with increasing 

concentrations of the anaesthetic, across all concentrations tested (Figure 2.10B). The 

similar behaviour of UL4140 and N2 strains suggests that UL4140 is a suitable 

experimental control with which to study the consequences of making unc-68 changes 

equivalent to muscle myopathies. 
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Figure 2.10 Comparison of the rate of locomotion of N2 and UL4140 C. elegans strains in increasing 
concentrations of caffeine or halothane. Mean body bends per minute in the presence of various 
concentrations of caffeine (A) or halothane (B) are presented. Error bars are standard deviation, n=50 
for each strain at each concentration measured. 
 

2.3.3 Establishing muscle myopathy strains  

Nine variants in RYR1 were identified for use in C. elegans (Table 2.1). All are 

conserved at the amino acid level. Four variants implicated in MH were chosen: 

G341R, R2163C, R2454H and R2458H. Patients carrying these variants are found to 

display a more severe MH phenotype when compared to the most common MH 

variant, G2434R (Carpenter et al., 2009b). The G2434R variant is not conserved. The 
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(Monnier et al., 2001) and A4940T which is implicated in CCD and MH (Kraeva et 

al., 2013), and K3452Q and V4849I variants implicated in LOAM.  

 

Multiple strains were generated by microinjection with each DNA preparation, of 

which 15 with the strongest transgene transmission were utilised in this study. 

Transgenic strains were established for all variants through microinjection of modified 

fosmids alone and along with the wild type fosmid, except for one implicated in CCD, 

R4861H and one implicated in LOAM, V4849I. For variant R4861H, unc-68 rescue 

was only possible upon microinjection in combination with the wild type fosmid. This 

suggested that the modification equivalent to R4861H had resulted in a non-functional 

unc-68 protein. Co-injection of the R4861H fosmid alongside a pRF4 plasmid yielded 

transgenic worms with a slow rolling phenotype. pRF4 confers a rolling phenotype to 

the worm, and if expressed in combination with a functioning unc-68 it would be 

stronger than what was observed here. This process, using the R4861H fosmid, failed 

to rescue unc-68 to the wild type rate of locomotion. The extra chromosomal transgene 

array in these slow rolling transgenic worms would be expected to include the 

modified fosmid as well as pRF4, but the R4861H fosmid appeared incapable of 

providing wild type unc-68 function. Co-injection of the V4849I fosmid alongside a 

pRF4 plasmid also yielded transgenic worms with a slow rolling phenotype. In 

addition, microinjection of the V4849I fosmid in combination with the wild type 

fosmid did not yield transgenic worms. 
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2.3.4 Malignant hyperthermia and central core disease 

The strains established with the four modified unc-68 fosmids equivalent to human 

RYR1 variants G341R, R2454H, R2458H and R2163H implicated in MH were 

assayed for caffeine and halothane sensitivity (Figure 2.11). 

 

The increase in body bends seen from 1 to 10 mM caffeine, in strains with wild type 

unc-68, is no longer evident. Strains equivalent to R2454H, R2458H and R2163H 

variants display a substantial decrease in locomotion rate between 1mM and 5mM 

caffeine (Figure 2.11A). There is a small progressive further decline from 10 to 40mM 

caffeine with almost complete cessation of movement occurring at 80mM, a 

concentration at which strains with unmodified unc-68 still show considerable if 

somewhat reduced rate of movement. The models for the G341R variant behave in a 

distinct fashion. The rate of body bends remains fairly constant up to 40mM caffeine. 

This could be attributed to a failure to show the stimulated response of the strains with 

the wild type unc-68 at 5 and 10mM caffeine. There is then a substantial decrease at 

80mM caffeine for the G341R model strains. This level is significantly less than the 

strains with only wild type unc-68 (p<0.01), but not as reduced as the other MH model 

strains. 

 

Strains for all four modelled MH variants behaved similarly in response to increased 

halothane concentrations (Figure 2.11B). Decreased body bends in comparison to the 

control strains were apparent even at 0.5mM halothane and were significantly less at 

all concentrations examined (p<0.01). 
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Figure 2.11 Comparison of the rate of locomotion of unc-68 variant strains, implicated in malignant hyperthermia, and wild type C elegans in increasing concentrations of 
caffeine and halothane. A: Caffeine results, B: Halothane results. Error bars are standard deviation, n=50 for each strain at each concentration measured. **p<0.01 ***p<0.001 
results from post-hoc Tukey test. 
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At 1.5mM halothane, a concentration at which strains with only wild type unc-68 show 

no reduced rate of locomotion in the assay, the rate of movement in the MH model 

strains has reduced to 15% of that seen in the absence of halothane. The MH model 

strains show no movement by 2.5mM, while the strains with only wild type unc-68 

show a reduced but still substantial rate of movement at that concentration. There may 

be marginal increase in sensitivity to halothane in the R2163H strains, but this is only 

apparent in the more reduced locomotion at 1mM halothane.  

 

As with caffeine, the G341R models may show slightly less sensitivity to halothane 

but only from the further reduction in the rate of movement observed at 1.5mM. 

 

The CCD model strains for A4940T and R4861H variants behave in a similar manner 

to the R2454H, R2458H and R2163H MH model strains (Figure 2.12). The caffeine 

response appears identical for these CCD and MH models (Figure 2.12A). 

 

In the halothane assays the models of the two CCD variants mirror subtle distinctions 

in response of the MH strains (Figure 2.12B). The A4940T CCD models appear to 

behave in the same way as the R2454H and R2458H MH models while the R4861H 

CCD model appears to behave in the same way as the R2163H MH model across the 

entire concentration range examined. 
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Figure 2.12 Comparison of the rate of locomotion of unc-68 variant strains, implicated in central core disease, and wild type C elegans in increasing concentrations of caffeine 
and halothane. A: Caffiene results, B: Halothane results. Error bars are standard deviation, n=50 for each strain at each concentration measured. **p<0.01 ***p<0.001 results 
from post-hoc Tukey tes
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2.3.5 Exertional heat illness and late onset axial myopathy 

Only a single variant for EHI was recombineered in unc-68. The strains created with 

this fosmid behaved alike, in a way that was distinct from the response of the CCD 

and MH models (Figure 2.13). The response to caffeine is very similar to that of strains 

with only wild type unc-68, with the slight stimulation of locomotion at 5 and 10mM 

caffeine (Figure 2.13A).  

 

At the highest concentration of caffeine assayed (80mM) both the EHI models appear 

virtually paralysed. In contrast to the minimal effect on caffeine sensitivity these 

variants did show a response to halothane similar to that seen in the CCD and MH 

model strains differing from wild type (Figure 2.13B). There is a slight reduction in 

locomotion at 0.5 and 1 mM halothane, with a considerable reduction to 1.5 mM, and 

almost complete paralysis at 2.5 mM.  
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Figure 2.13 Comparison of the rate of locomotion of unc-68 variant strains, implicated in extertional heat illness, and wild type C elegans in increasing concentrations of 
caffeine and halothane. A: Caffiene results, B: Halothane results. Error bars are standard deviation, n=50 for each strain at each concentration measured. ***p<0.001 results 
from post-hoc Tukey test. 
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Like the EHI models, only a single fosmid containing a variant implicated in LOAM 

was successfully engineered and strains generated by microinjection transformation. 

The response of these strains to caffeine was similar to that of the EHI model strains 

but there was no reduction in locomotion observed at 80mM caffeine when compared 

to UL4140 (Figure 2.14A).  

 

The response to halothane in the LOAM model strains was consistent with the 

response of the MH, CCD and EHI models (Figure 2.14B), characterised by a 

progressive reduction in body bends with increasing halothane concentrations that is 

considerably more pronounced compared to the experimental control. 
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Figure 2.14 Comparison of the rate of locomotion of unc-68 variant strains, implicated in late onset axial myopathy, and wild type C elegans in increasing concentrations of 
caffeine and halothane. A: Caffiene results, B: Halothane results. Error bars are standard deviation, n=50 for each strain at each concentration measured. ***p<0.001 results 
from post-hoc Tukey test. 
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2.3.6 Dominant sensitivity to halothane and caffeine 

Genetic dominance is a striking property of RYR1 variants. Noticeably, there was no 

significant difference in the rate of body bends between a strain rescued with a variant 

unc-68 and the corresponding strain rescued in combination with wild type unc-68, 

across the range of caffeine and halothane concentrations used. This is consistent with 

these amino acid changes in unc-68 causing dominant effects in C. elegans as well. 

The one possible exception to this is the G431R variant (Figure 2.11B). A slightly 

elevated rate of body bends was seen at 40 mM caffeine and at 1.5mM halothane 

(p<0.05) for UL4141, rescued with only the modified unc-68 fosmid, in comparison 

to UL4167, rescued in combination with the wild type unc-68.  

 

2.3.7 Differences in myosin disorganisation in different body regions 

As three distinct regions of the worm’s body (head, vulva and tail) were scored for 

analysis it was possible to evaluate differences between these three regions, prior to 

establishing the whole body score. In the wild type model strain (UL4190) it is shown 

that while there is some overlap in the median muscle age scores assigned to the head 

and vulva regions, the tail region is scored higher across the range of days. (Figure 

2.15).  
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Figure 2.15 Line graph of the progressive ageing pattern observed in the head, vulva and tail regions of 
the wild type worm (UL4190). 
 

Overall, across the range of days observed, the median score for the vulva is 

significantly higher than the head, p=0.04 and the tail is scored very significantly 

higher   than the head, p=0.0002. This same pattern of increased myosin 

disorganisation in the tail and vulva compared with the head is evident in the MH 

model strains (Figure 2.16A-D).  

 

It is important to note that no significant difference was observed when comparing the 

progressive decline of muscle structure between the different types of rescue, so scores 

for the respective variants for each rescue type were combined for analysis. In addition 

to the MH model strains, the same pattern of exaggerated muscle structure decline in 

the tail and vulva regions was observed in the CCD, EHI and LOAM model strains 

(Figure 2.17A-D).  
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Figure 2.16 Line graphs of muscle ageing scores in MH strains. A: G341R model strains (scores for UL4190 and UL4200 combined), B: R2454H model strains (scores for 
UL4195 and UL4206 combined), C: R2458H model strains (scores for UL4201 and UL4197 combined), D: R2163H model strains (scores for UL4193 and UL4198 combined).  
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Figure 2.17 Line graphs of muscle ageing scores in CCD (A and B), EHI (C) and LOAM (D) strains. A: A4940T model strains (scores for UL4203 and UL4202 combined), B: 
R4861H model strain, C: R163C model strains (scores for UL4191 and UL4192 combined), D: K3452Q model strains (scores for UL4196 and UL4199 combined).
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As the same pattern of progressive myosin disorganisation was observed across all of 

the strains tested it was then decided that the individual region scores could be 

combined to make a ‘whole body score’ that would be used in subsequent analyses to 

investigate any potential differences in the pattern of muscle ageing relative to the 

variants in question. 

 

2.3.8 Progressive decline in muscle structure with age 

The whole body score devised following analysis of the independent body regions was 

analysed to determine the differences in the progressive decline in muscle structure 

with age across all the strains examined. In order to characterise the reproducibility of 

the scoring method for assessing age-related muscle fibre disorganisation, a test cohort 

of 20 images was assessed by an additional researcher from the Hope laboratory. This 

individual was considered to have equivalent experience with the microscopy 

techniques used by the author. 19 out of 20 images scored were given the same score 

between both examiners. The one image where the scores disagreed, it was classified 

as a 2.5 by one examiner and a 2 by the other. 

 

The wild type rescue model served as the basis for comparison in all statistical tests. 

It demonstrates a clear increase in the median whole body score assigned to the myosin 

structure with increasing age of the worm (Figure 2.18). In the wild type model strain, 

the age profile begins with a median whole body score of 4 on day 0, increasing to 5 

by day 2 and culminating in a median whole body score of 11 on day 14. No significant 

difference in body score was found in any of the variant strains when compared to 

wild-type on day 0 or day 2.  
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Figure 2.18 Increasing myofilament disorganisation with age in wild type model strain (UL4190) n=20, 
boxplots show median, IQR and min and max score. 
 
 

No significant difference was found between a strain rescued with a variant unc-68 

and the corresponding strain rescued in combination with wild type unc-68 for any of 

the variants studied across the time period examined. This further supports the finding 

in relation to the phenotyping assays where no differences were found in the response 

to caffeine and halothane between the two types of rescue. As a result the information 

gathered on the two rescue types was combined and so the data represent 2 strains for 

each variant, with the exception of the R4861H variant, which only has one strain. 

Overall, variant as a predictor variable was found to significantly affect the dependent 

variable (whole body score), p<0.001. When examining the MH strains, the overall 

picture of muscle degradation appears similar to the wild type, whereby there is a 

progressive decline of muscle structure across the range of ages examined (Figure 

2.19A-D, Figure 2.20). 
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Figure 2.19 Whole body scores for increasing myofilament disorganisation from 0 to 14 days of adulthood in MH (G341R (A) (n=40), R2454H (B) (n=40), R2458H (C) (n=40) 
and R2163H (D) (n=40)), boxplots show median, IQR and min and max score. 
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Figure 2.20 Summary of median scores from all MH strains (n=40 for all variants) compared to wild 
type (n=20) 
 

By day 8, strains expressing the G341R variant displayed a significant difference 

(P=0.0001) from wild type in whole body score, exemplified by a marked increase in 

score assigned to the muscle (Table 2.8). In the R2454H and R2458H strains, this 

difference was evident by day 6 and in the R2163H strains by day 10 (Table 2.8).  

 

The two CCD variants displayed slightly different profiles of increased ageing when 

compared to the wild type (Figure 2.21A&B, Figure 2.22). The A4940T model 

displayed markedly higher whole body scores as early as day 4 of adulthood (Figure 

2.21A, Figure 2.22) and this pattern remains significantly higher across the rest of the 

days examined. In contrast the R4861H strain only demonstrates a significant 

difference in whole body score on days 10 and 12 (Table 2.8). 
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Table 2.8 Comparison of strains transgenic for variant and wild type unc-68, in terms of the combined effects of variant and worm age on whole body score of muscle 
organization. 
 

T-statistic is displayed correct to 2 decimal places with associated p-value in brackets. Day 2 represents 5 days after hatching. 
 

DAY of ADULTHOOD 
 2 4 6 8 10 12 14 

V 
A 
R 
I 
A 
N 
T 

G341R -0.71 (0.48) 1.23 (0.22) 1.48  (0.14) 3.72  (0.0001) 5.33  (<0.0001) 4.83  (<0.0001) 4.53  (<0.0001) 
R2454H -0.66 (0.51) 0.55  (0.58) 2.35  (0.018) 2.45  (0.014) 1.86 (0.063) 1.64  (0.0101) 2.07  (0.038) 
R2458H -0.96 (0.34) 0.61  (0.54) 2.15  (0.018) 3.39  (<0.0001) 4.77  (<0.0001) 4.47  (<0.0001) 4.79 (<0.0001) 
R2163H -1.65 (0.099) -0.65 (0.515) 1.27  (0.204) 0.71  (0.478) 5.05  (<0.0001) 4.97  (<0.0001) 4.72  (<0.0001) 
R163C -0.24 (0.81) 2.01  (0.04) 2.73  (0.006) 2.31  (0.02) 3.75  (0.0002) 2.75  (0.006) 2.75  (0.006) 
A4940T -0.77 (0.85) 2.69 (0.007) 3.13  (0.002) 3.65 (<0.0001) 3.36  (<0.0001) 4.38  (<0.0001) 2.91  (0.0036) 
R4861H 0.19 (0.44) 0.27 (0.78) 0.67  (0.501) 1.19  (0.234) 2.61  (0.009) 2.71  (0.007) 1.38  (0.168) 
K3452Q 0.70 (0.48) 1.91 (0.055) 2.09  (0.036) 2.99 (0.003) 2.87  (0.004) 3.23 (0.001) 2.45  (0.01) 
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Figure 2.21 Whole body scores for increasing myofilament disorganisation from 0 to 14 days of adulthood in CCD (A4940T (A) (n=40), R4861H (B)(n=20)), EHI 
(R163C (C) (n=40)) and LOAM (K3452Q (D) (n=40)), boxplots show median, IQR and min and max score. 
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Figure 2.22 Summary of median scores from EHI (n=40), CCD (n=40 A4940T variant, n=20 R4861H 
variant), LOAM (n=40) compared to wild type (n=20) strains 
 

The pattern exhibited by the A4940T strains was also evident in the strains expressing 

RYR1 variants R163C (Figure 2.21C, Figure 2.22) and K3452Q (Figure 2.21D, Figure 

2.22) implicated in EHI and LOAM respectively.  
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2.4 Discussion 

This chapter aimed firstly to evaluate the suitability of C. elegans as a model for MH 

and other myopathies and secondly to investigate the potential effect of these variants 

on ageing in the muscle of the worm. 

 

Microinjection of fosmid clone WRM069cA02 independently and alongside versions 

altered by recombineering into the distal gonad of unc-68(e540) mutants produced 

worms rescued for wild type movement under normal environmental conditions. All 

strains display a rate of movement indistinguishable from each other in liquid in the 

absence of caffeine or halothane.  Therefore, WRM069cA02 and its altered versions 

appear to include a fully functional copy of unc-68 and arrays generated by 

microinjection provide appropriate expression of the unc-68 transgene.  

 

UL4140 was established as the control strain, due to its locomotory pattern being 

indistinguishable from the wild type in response to halothane and caffeine and 

contains only the wild type version of the fosmid clone. It served as a baseline for 

comparison when examining the ryanodine receptor variants. The fosmid is expressed 

as an extra-chromosomal array, meaning that the functional copy of unc-68 is not 

chromosomally integrated. In this strain the array was expressed at a high rate and the 

majority of offspring were transgenic, however to avoid the possibility of low 

transmission rates it would be better for future work to focus on using CRISPR as a 

method for direct genome editing (Jinek et al., 2012). UL4140 is also the only strain 

serving as a control for these experiments, meaning that any problems with this strain, 

arising from poor maintenance or possible loss of the extra chromosomal array could 
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result in error in interpreting the data. Extra care was taken to ensure correct 

maintenance during these experiments to avoid these issues. 

 

Selection of the variants for investigation was made based on conservation at the 

amino acid level. There are currently 35 mutations in RYR1 that are considered to be 

causative of MH and many other variants of unknown pathogenicity (EMHG, 2016) 

The majority of MH patients have variant G2434R, and this is considered to confer a 

weak MH phenotype in the IVCT (Carpenter et al., 2009b). This variant is not 

conserved between C. elegans and humans, unlike some of the variants conferring 

more severe IVCT phenotypes used in this study. 

The fosmid containing the equivalent R4861H variant, implicated in central core 

disease, did not successfully rescue the mutant strain on its own. It was possible to 

generate a strain by co-injection of this fosmid with the wild type version. This was 

also tested by co-injection of the R4861H fosmid with pRF4 that resulted in 

uncoordinated rollers. If the unc-68 gene was being successfully expressed the rolling 

phenotype conferred by the pRF4 plasmid should be wild type (strong rolling 

movement). As such this indicated that the R4861H fosmid was not functional. As for 

most RYR1 variants, all CCD patients with the R4861H variant have this variant in the 

heterozygous state (Zhou et al., 2007). The V4849I fosmid did not successfully 

produce transgenic strains by the process of microinjection either independently or 

with co-injection with the wild-type fosmid or pRF4 plasmid. It is possible that this 

variant results in a lethal phenotype that resulted in unviable offspring. Alternatively, 

the micro injection process may have been unsuccessful at introducing the DNA in the 

worm’s gonad and therefore the DNA was not expressed as a result. 
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The variant strains were subjected to conditions known to result in dysfunctional 

activity of the RyR1 calcium channel in humans. MH is most commonly triggered by 

volatile anaesthetics such as halothane and this reaction is utilised in clinical 

diagnostic tests for MH (IVCT) (Ording et al., 1997). In addition to halothane, caffeine 

is also used as a trigger agent in the IVCT as it confers increased calcium sensitivity 

at high concentrations on a normal ryanodine receptor. In individuals considered to be 

sensitive to MH this increased calcium sensitivity is observed at lower concentrations 

of caffeine. Hence the method of testing the worms was based on the clinical 

diagnostic test.  

 

Caffeine is considered to be a valuable tool for the purposes of muscle function 

research, though the mechanism of action is complicated (Stephenson, 2008). Caffeine 

is considered to have a low binding affinity to RyR1 and induces conformational 

changes in the channel when present in high concentrations making it more sensitive 

to activation by calcium and voltage (Sitsapesan & Williams, 1990). This finding was 

confirmed by studies using frog muscle (Olorunshola & Achie, 2011) and mouse 

muscle (Rossi et al., 2001; James et al., 2004). The pattern of movement displayed by 

the strains containing only wild type unc-68 is characterised by an increase in activity 

from 0 to 10 mM and then a gradual decrease from 10 to 40 mM with a final drop off 

from 40 to 80 mM. This initial excitation followed by a subsequent inhibition of 

activity suggests that caffeine may be acting by two mechanisms in the worm or 

perhaps a single biphasic mechanism. The differential response to changing caffeine 

concentration could reflect different targets of caffeine at different concentrations. The 

MH and CCD model strains display no excitatory response to caffeine and a greater 

decrease in movement at the higher concentrations of the chemical. Here there is only 
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one mechanism of action as the excitatory response is lost. This indicates that the 

presence of the variants investigated for these conditions may be altering the way in 

which the ryanodine receptor is responding to caffeine across the range of 

concentrations tested.  

 

While caffeine has been shown to sensitise RyR1 to calcium activation, the actual 

binding site for caffeine is unknown (MacLennan & Wayne Chen, 2010). It is thought 

that caffeine and halothane act by increasing the affinity of the A-site on the ryanodine 

receptor for calcium making the receptor more open and subsequently decreasing the 

affinity of the I-site in mutant proteins (Balog et al., 2001; Yang T. et al., 2003). RyRs 

consists of four identical protomers folded into a cytoplasmic and transmembrane 

regions, and the cytoplasmic region is responsible for sensing interactions with ions 

such as calcium (Meissner, 1994; Lanner et al., 2010). Therefore, the A and I-sites are 

likely in this cytoplasmic region. In 2015, three papers were published in Nature that 

mark a significant step forward in understanding the structure of the ryanodine 

receptor (Zalk et al., 2015; Yan et al., 2015; Efremov et al., 2015). The G341R and 

R163C variants are located in the N-terminal domain (NTD), variants R2163H, 

R2454H, R2458H and K3452Q found within the handle and helical domains and 

R4861H and A4940T are found somewhere within the transmembrane regions S1-S6 

(Figure 2.23). 
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Figure 2.23 Schematic of RyR1 domain organisation with putative locations of RYR1 variants indicated 
by red arrows. Original image from (Yan et al., 2015) 
 

The NTD, handle and helical domains are all found in the cytoplasmic region of the 

protein (Yan et al., 2015).  According to the proposed mechanism of calcium-induced 

calcium release proposed by Efremov and colleagues, calcium binds to the EF-hand 

domain and induces conformational changes in the protein making it more open 

(Efremov et al., 2015). None of the RYR1 variants studied here were found in the EF-

hand domain. It is possible that the effect of these variants causes alterations in the 

way in which the rest of the ryanodine receptor changes conformation in response to 

calcium.  
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In mammals, RyR1 is considered primarily a skeletal muscle calcium channel with 

other isoforms expressed in other cell types. In C. elegans there is only a single 

isoform of the ryanodine receptor, UNC-68, and this is likely to be a key intracellular 

calcium channel in all cells and critically excitable cells. Caffeine resistant mutations 

have been localised on two C. elegans genes, osm-3 and che-3 which are required for 

chemosensory nerve function (Hartman, 1987; Hartman et al., 2001). Work carried 

out after completion of this chapter has examined the role of these genes in the 

differential response to caffeine exhibited by the unc-68 variants using RNAi 

knockdown of che-3 and osm-3. Findings showed that for all strains examined (one 

for each myopathy and the two wild type strains) the locomotor response to increasing 

caffeine concentrations was eliminated or markedly reduced. These results could 

indicate that the focus of influence of the UNC-68 amino acid changes upon caffeine 

response is actually in these chemosensory nerve cells. These findings are also 

consistent with the primary site of action of caffeine being in the chemosensory nerve 

cells with downstream consequences dependent on UNC-68 in other cells, including 

or specifically muscle cells (Ferreira, Shaw and Hope, unpublished findings). 

 

The effect of volatile anaesthetics, such as halothane, on C. elegans has been 

investigated largely in the context of its effect on the nervous system, often focusing 

on the differing effects of different types of volatile anaesthetic (Morgan & Carscobi, 

1985; Crowder et al., 1996). Genetic studies strongly suggest a number of potential 

targets of volatile anaesthetics in C. elegans, such as the SNARE complex (Nonet et 

al., 1998), mitochondria (Hartman et al., 2001; Kayser et al., 2003; Falk et al., 2006); 

G-protein coupled receptors and calcium/cation channels (Morgan et al., 2007). While 

numerous other ‘unc’ strains have been investigated in relation to their specific 
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anaesthetic phenotype, e.g. unc-79 and unc-80, both of which are hyper-sensitive to 

halothane, no previous research has investigated the role of unc-68 in volatile 

anaesthetic sensitivity (Morgan et al., 2007). The findings presented in this chapter 

show that variants in unc-68, that are homologous to variants in the human ryanodine 

receptor, confer increased sensitivity to halothane in strains expressing these variants. 

However, it does not conclusively prove that this altered response to halothane is due 

to the interaction of halothane with the worm’s ryanodine receptor. Better 

understanding of the way in which these chemicals are interacting with the ryanodine 

receptor will be supported by increased understanding of the structure of this protein 

on which progress has recently been made (Zalk et al., 2015; Yan et al., 2015; 

Efremov et al., 2015). 

 

The method of halothane application used in these experiments was designed to allow 

for quantification of behavioural adaptation in a similar manner to exposure to 

caffeine. Caffeine is easily dissolved in an aqueous solution up to concentrations of 

80mM at room temperature. However, halothane is lipid soluble and therefore requires 

dilution in DMSO prior to dissolving into the S-medium used as the buffer for all 

phenotyping assays. The method devised here used a single stock concentration of 

25mM halothane in DMSO. This naturally meant that the resulting concentration of 

DMSO in S-medium for the different halothane concentrations also varied. It was 

established that the concentration of DMSO in the strongest working solution of 

halothane (2.5mM) was 1% as it is acknowledged that the only known possible impact 

of immersing C. elegans in DMSO is that it extends the lifespan of the worm at 

concentrations of greater than 1% (Boyd et al., 2011). As lifespan was not being 

examined using the halothane assays any possible effect it may have had on lifespan 
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was considered negligible. Indeed, C. elegans have been observed to tolerate DMSO 

concentrations of up to 2% without displaying an effect on locomotion (Katiki et al., 

2011). It would be pertinent to consider, when repeating these assays, to establish 

stock solutions of halothane that permit for the same concentration of DMSO in each 

working solution used in order to determine any potential consequences of the DMSO 

affecting worm locomotion. 

 

Each of the variants selected for investigation displays a dominant phenotype in the 

human conditions in which they are implicated.  This was investigated using the 

nematode models through examining the differences between the models of the 

heterozygous and homozygous states. No observable difference was found when 

comparing the majority of the homozygous and heterozygous models for each variant 

across the range of caffeine and halothane concentrations. This suggests that the 

phenotype conferred by the variant fosmid is dominant over the wild type and so 

mirroring the situation in each of the human conditions. The exception to this was the 

strains expressing the G341R variant fosmids. There is an increased rate of body bends 

in the strain rescued with the variant and the wild type fosmid at 1 mM caffeine 

compared to the strain rescued only with the variant fosmid. However, this difference 

is not evident at any other concentration of caffeine. Additionally, the general pattern 

of behavior over the range of caffeine and halothane concentrations in the G341R 

strains appears consistent with the other MH models. In future, it may be of use to 

repeat the process of generating strains containing this variant to test if this anomaly 

is significant. 
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Additional work completed in the Hope Laboratory, after the data presented in this 

chapter was obtained, examined the possibility for age-related change in caffeine 

response for these myopathy model strains. A subset of the strains was used for this 

experiment: UL4147, UL4141 (MH), UL4157 (CCD), UL55 (EHI) and UL4168 

(LOAM), UL4140 (wild type control) and N2 (wild type). It was found that in N2 and 

UL4140 young adults (of equivalent age to those used in the phenotyping assays for 

this chapter) the locomotory response was consistent with the findings in shown in 

Figure 2.10, providing independent verification of this finding. Additionally the 

results for young adults of all the myopathy strains used here was also consistent with 

the findings in this chapter (Figure 2.11-2.12). However, in older worms expressing 

the variant implicated in LOAM (strain UL4168), the locomotory response was 

altered. With increasing concentrations of caffeine there was an increased rate of 

locomotion compared with younger worms at the same doses of caffeine. This could 

be evidence of a strong link between the age-related symptoms that are characteristic 

of LOAM. All other strains showed the progressive dampening in rate of locomotion 

in response to increasing caffeine concentrations with age, but the same general 

pattern of response persisted (Ferreira, Shaw and Hope, unpublished findings). 

 

Subsequent work by the Hope Laboratory also examined the lifespan of all strains 

used in this study. Overall, the presence of an unc-68 variant was found to decrease 

median lifespan. The wild type control strain UL4140 and the standard wild type strain 

N2 can live up to 25 days, whereas the lifespan of strains containing any and only the 

unc-68 variant only live for a maximum of 16 days. It is clear therefore that while 

these altered versions of unc-68 confer a functional ryanodine receptor, these single 

amino acid changes also result in a shorter lifespan in the worm. This altered lifespan 
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may have an impact on the extent of muscle degeneration observed in ageing assays 

carried out in this chapter. The ageing assays were carried out on only live worms 

(essential in order to visualise the muscle with gfp) and if the variant worms have a 

shorter lifespan than the wild type this will have a bearing on the extent of muscle 

ageing. 

 

C. elegans models for muscle ageing have highlighted the way in which the muscle 

displays increasing levels of disorder (Herndon et al., 2002; Glenn et al., 2004). The 

results of ageing assays to quantify the extent of muscle ageing indicate that muscle 

appearance and the deterioration of that appearance is dependent on age. Previously, 

the head region has been used in isolation as a measure of muscle degradation (Garigan 

et al., 2002). The method employed here assessed muscle degradation across 3 regions 

of the worm: head, vulva and tail. This enabled assessment of the potential differences 

in the extent of myosin disorganisation in the different regions of the worm’s body. 

When examining the scores for the different regions independently it was found that 

the tail region was consistently scored at a higher level than the head and vulva and 

the vulva was scored consistently higher than the head region. This indicates a 

progressive pattern of muscle ageing throughout the length of the worm, characterized 

by a progressive decline in myosin fibre organisation from the head to the tail. Thus 

the tail region of the worm is subject to increased age-related structural decline 

perhaps due to the increased movement in this region of the worm’s body. 

 

The scoring method employed here is reliant on human observation to evaluate the 

extent of myosin disorganisation in the worm muscle. This has the potential to be 

subjective as it is based on individual interpretation of appearance. However, with 
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training the execution of the technique becomes more effective and consistent. A 

separate observer scored a subset of images blindly and the only incidence of 

disagreement was for one image that was scored as a 2 by one observer and as a 2.5 

by the other. In addition, due to the reliance on scoring live worms (dead worms do 

not express GFP and thus it is not possible to evaluate the disorganisation in the muscle 

of dead worms), the results presented here are a conservative assessment of the age-

related structural decline that occurs in the worm’s muscle. Those worms that die 

early, and are excluded from the analysis, may display more disordered myosin fibre 

arrangements.  

 

In humans, disorganisation of myosin fibres, lowered cross-bridge stability (Lowe et 

al., 2001) and defective EC coupling (Payne & Delbono, 2004) are all processes that 

have been proposed as explanations for the contractile dysfunction that occurs with 

age. Mouse models for muscle ageing in relation to RYR1 variants show evidence of 

variants having an effect on age-related changes in skeletal muscle. RYR1Y522S/+ mice 

have been found to develop metabolically inactive cores as they age, a feature which 

is in accordance with the CCD phenotype associated with Y522S mutation in humans 

(Boncompagni et al., 2009). RYR1I4898T/+ (variant implicated in MH, CCD and LOAM) 

mice exhibit a slowly progressive myopathy with skeletal muscle weakness and age-

dependent formation of cores in their muscle fibres (Zvaritch et al., 2009; 

Boncompagni et al., 2010). 

  

Patients with late-onset axial myopathy exhibit age-related changes in muscle function 

through a variety of symptoms such as camptocormia and other pathologies of the 

axial musculature (Loseth et al., 2013). In the nematode model for this condition 
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(strains expressing K3452Q variant fosmids) the extent of muscle ageing, assessed 

using a method for scoring the degree of disorganisation of the myosin filaments, 

found the pattern of ageing in these model strains to differ significantly from that of 

the wild type. There was still the same progressive increase in disorder of the muscle 

structure, but the extent of muscle disorder was increased as early as day 4 of 

adulthood and this increased disorder persisted over the observed time period. The 

increased disorganisation of the myosin filaments was also exhibited by strains 

expressing variants implicated in MH, CCD and EHI, indicating that the presence of 

these variants is having a significant effect on the process of muscle ageing in these 

model strains. Notably, the MH and EHI variants that were engineered in this study 

are all associated with a relatively severe IVCT phenotype when compared to the most 

common MH variant (Carpenter et al., 2009b).  

 

These nematode models have provided considerable insight into the ways in which 

unc-68 variants alter behavior in response to caffeine and halothane and support the 

use of these models in investigations into muscle ageing. There are parallels between 

these models and the human conditions that they represent. This raises interesting 

questions regarding the potential mechanisms for the way in which caffeine and 

halothane interact with normal and altered ryanodine receptors. This study has 

provided a novel insight into the altered process of muscle ageing that is evident in 

these myopathies. 
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3 Differential mRNA expression in MH patients and muscle ageing 

 

3.1 Introduction 

This chapter will explore differential mRNA expression in skeletal muscle and blood 

samples from MH patients. This information will help to address the genetic 

complexity of malignant hyperthermia as well as many of the unexplored areas of 

skeletal muscle ageing, namely changes in expression of key genes involved in 

skeletal muscle function. It will also evaluate the potential for a predictive risk score 

of MH susceptibility to replace the invasive IVCT used to diagnose MH. 

 

3.1.1 Diagnosis of MH susceptibility: status quo 

The diagnosis of susceptibility to MH has been possible since 1972 using the IVCT 

(Ellis et al., 1972). However, this requires a formal operative procedure through a 5-

8cm incision. As a result, it is relatively expensive, causes 1-2 weeks of discomfort 

and absence from work and leaves a permanent scar on the leg. Due to these factors, 

the test is only used to confirm the diagnosis in individuals that have survived a 

suspected MH reaction and in relatives of individuals shown to have a positive IVCT 

test. It is not applicable to children under the age of 10 or patients on long-term steroid 

therapy due to doubts concerning the sensitivity of the test in these groups (Hopkins, 

2000). Patients unable to travel to Leeds, for medical or social reasons, for the 

procedure also cannot be tested. 

 

There has been some progress made to develop guidelines for the introduction of 

limited DNA-based screening (Robinson & Hopkins, 2001; Urwyler et al., 2001) but, 
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for the most part this was problematic due to the complex genetic basis of MH. Up to 

40 % of MH susceptible families have no known mutations in either RYR1 or 

CACNA1S (Robinson et al., 2006). Discordance between IVCT phenotype and RYR1 

genotype is also a feature in some MH families, exemplified by the incidence of MHS 

mutation negative and MHN mutation positive patients. 2.5% of individuals without 

the familial RYR1 variant test MH susceptible (Robinson et al., 2003b). This 

discordancy indicates that MH may not be a single gene disorder and there is evidence 

to suggest the existence of modifier loci that may be causative of MH (Robinson et 

al., 2000; Robinson et al., 2003a). 

 

Transmission disequilibrium testing has demonstrated independently in UK families 

and collectively in European pedigrees that MH status might be related to multiple 

interacting gene products (Robinson et al., 2000; Robinson et al., 2003a). This 

information suggests that variability in genes other than RYR1 could contribute to for 

MH susceptibility in some cases. In addition to the 35 functionally characterised RYR1 

variants implicated in MH, there are also three functionally characterised variants in 

CACNA1S (encoding the α-1 subunit of the DHPR) that are accepted as diagnostic 

mutations by the EMHG (Weiss et al., 2004; Eltit et al., 2012; EMHG, 2016). 

 

At present, DNA-based screening for MH susceptibility is limited to characterising 

MH risk in patients known to have had MH reactions and their relatives. If they test 

negative in the IVCT there is no further testing, either genetic or functional for any 

family members. If they test positive, they are screened for known MH variants. 

Where no mutation is identified their family members are offered the option of an 

IVCT for diagnosis. Where a mutation is identified family members are subsequently 
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invited for mutation screening and if the same variant is detected they are 

automatically considered to be MHS without an IVCT. If the variant is not detected 

they are offered IVCT. This process clearly ignores a number of potentially 

confounding genetic factors that may contribute to MH. Expanding the genetic screen 

to target the wider population requires consideration of additional genetic information 

to better understand the genetic complexity of this condition. 

 

3.1.2 Whole genome approach to disease profiling 

The current version of GeneChip® Human Genome U13 Plus 2.0 Array from 

Affymetrix © is the most comprehensive whole human genome array (Affymetrix, 

2015). It allows evaluation of over 53,000 transcripts, representing all genes in the 

human genome. This can provide information on the regulation of individual genes 

and patterns of genes whose expression is co-ordinately regulated. For example, arrays 

have been used to evaluate expression profiles in microarray analysis of myocardium 

from healthy and heart failure patients (Dos Remedios et al., 2003). This approach has 

also been used to establish two unique forms of diffuse large B-cell lymphoma 

(Alizadeh et al., 2000) and to accurately predict survival probability in cases of 

leukaemia (Valk et al., 2004).  

 

In addition, it has been shown that it is not necessary to perform the transcriptional 

analysis on the tissue that is the primary focus for the disease process. Transcriptional 

profiling of peripheral blood has demonstrated, in patients with coronary artery 

disease, over 100 genes that are differentially expressed, compared to controls. 

Subsequent functional characterisation of these genes indicated that the changes occur 

in response to the presence of coronary artery disease (Ma & Liew, 2003).  
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Schizophrenia patients have been found to exhibit co-ordinately altered expression of 

SELENBP1 in both brain and blood as well as a further two genes that showed altered 

expression levels in both blood and brain tissue (Glatt et al., 2005). Microarray 

analysis has also been used to show the presence of unique genetic signatures of 

schizophrenia and bipolar disorder, with distinct clustering of the specific diseases 

compared with controls (Lewis et al., 2003). This method of transcriptional profiling 

in blood samples has been further expanded to study additional neurological diseases 

such as neurofibromatosis type 1, epilepsy and Tourette syndrome (Tang et al., 2005).  

 

To date this approach has not been applied to specific skeletal muscle disorders, and 

so it is proposed that despite the heterogeneity of the underlying DNA defect in MH, 

there is a sufficiently homogenous transcriptional response in skeletal muscle, which 

may be reflected in blood in order to distinguish those individuals susceptible to MH. 

The transcriptional profile in blood may not necessarily show the same genes of 

interest as found in skeletal muscle but may provide a unique profile of MH specific 

to that tissue. Using Human Genome U13 Plus 2.0 Arrays should provide a wealth of 

information, and as such it may also be possible to interrogate for genes implicated in 

MH and muscle ageing.  

 

3.1.3 Genetics of skeletal muscle ageing 

Ageing in skeletal muscle is poorly understood. Loss of muscle mass does not entirely 

explain the compromised functional capacity of the muscle. A noted limitation to 

previous gene expression research is the focus on genes already characterised in 

muscle or having importance in muscle structure and function (Jozsi et al., 2000; 

Welle et al., 2000; Welle et al., 2001; Welle et al., 2004). More recent work has 
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established ‘exploratory’ gene approaches as a means to identifying genes not 

previously shown to have an important role in muscle function (Roth et al., 2002). 

This exploratory gene approaches have also utilised whole-genome arrays to profile 

the phenomenon of muscle ageing.  

 

Roth and colleagues investigated the influence of age, sex and strength training (ST) 

on gene expression using microarrays (Roth et al., 2002). Their study utilised 2 age 

groups comprising 5 individuals in each, consisting of both men and women, isolated 

total RNA from muscle biopsy samples and subjected them to GF211 microarrays. 

These arrays contain probe spots for ~4000 human genes. Their results highlighted 

significant sex differences, with >1.7-fold differential expression for ~200 genes and 

~50 genes showed differential expression for age. However, there are clear limitations 

to their approach, namely the small sample size and subsequent bias this has on the 

data. Statistical analysis only comprised pairwise comparisons and 1-way ANOVA, 

meaning that no consideration was made for potential interactions with age and sex. 

The analysis is also over simplified by the categorisation of age into two distinct 

groups. While young versus old may be applicable to mouse models, or other 

organisms with a much shorter life span, it is clear that age in humans is continuous 

and there may be distinct expression differences throughout the course of human life. 

This segregation into specific age groups is a common feature of microarray profiling 

in human studies (Jozsi et al., 2000; Welle et al., 2000; Welle et al., 2003; Welle et 

al., 2004).  

 

Work by Lee and colleagues, using a mouse model for muscle ageing, characterised 

over 6,000 genes expressed in the soleus muscle that displayed a greater than 2-fold 



 
 

 102 

decrease in expression when comparing old to young adult mice. In addition they 

found that this could be offset by calorific restriction, suggesting that changes in gene 

expression may contribute to deterioration in muscle (Lee et al., 1999).  This study 

was followed up by research using Rhesus monkeys, comparing aged to young 

animals, that indicated a selective up-regulation of transcripts involved in 

inflammation and oxidative stress, and a down-regulation of genes involved in 

mitochondrial electron transport and oxidative phosphorylation (Kayo et al., 2001). 

Human studies, also using microarray methods, have shown similar results though 

have indicated smaller numbers of genes to be important, particularly those 

responsible for encoding metabolic enzymes (Welle et al., 2000) and stress-related 

genes (Jozsi et al., 2000). Studies examining age-associated gene expression in human 

skeletal muscle have highlighted the involvement of mitochondrial oxidative 

phosphorylation (Zahn et al., 2006) in skeletal muscle ageing as well as reduced 

expression of genes associated with energy metabolism (de Magalhães et al., 2009). 

Recent evidence has suggested that changes in gene expression with increased age 

may contribute to muscle ageing (Su et al., 2015). Alterations in gene expression in 

response to acute resistance exercise were characterised, with indication that 

maintaining a high physical capacity being beneficial in preventing age-related 

sarcopenia (Su et al., 2015). 

 

The National Institutes of Health (NIH) launched the Genotype-Tissue Expression 

(GTEx) project in 2010 (NIH News, 2010).  It aims to increase understanding of how 

changes in our genes contribute to common human diseases by establishing a database 

and tissue bank to investigate these conditions (NIH, 2016). This project has generated 

RNA sequence data that has detected 1993 genes that change expression with age 
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(Melé et al., 2015). Those genes that decrease expression are enriched in pathways 

involved in neurodegenerative disorders. At present the data with regards to ageing in 

skeletal muscle has not been reported.  

 

Evaluating differential mRNA expression in MH skeletal muscle therefore has many 

avenues for exploration. This chapter presents analysis of whole human genome 

microarray data with a view to understanding the gene expression profile of MH in 

both muscle and blood tissue. Similarities in expression profiles between blood and 

muscle were explored as well as investigation of key pathways highlighting new areas 

that may aid understanding of the genetic complexity of MH. Predictive risk scores of 

MH susceptibility were devised using the whole genome data to establish the potential 

for a simple blood test as a diagnostic parameter that may in future replace the invasive 

IVCT.  

 

In addition to these aspects of the investigation, the microarray data was also 

interrogated to establish a list of genes of interest (GOI), alongside other genes 

involved in skeletal muscle calcium handling, mitochondrial function and EC coupling 

that were validated using TaqMan® gene expression assays on a different cohort of 

muscle samples from the array data. This ultimately provides a greater insight into the 

genetics of skeletal muscle ageing.  
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3.2 Materials and Methods 

3.2.1 Sample Information 

RNA samples are routinely extracted from the muscle biopsies received at the Leeds 

MH unit for IVCT diagnostics as well as from patient blood samples. Two sets of 

samples are used in this chapter, one comprising blood and muscle samples that were 

used for Affymetrix arrays and one comprising additional muscle samples used for 

Taqman® assays (Table 3.1).  

Table 3.1 Samples information for Affymetrix and TaqMan® experiments 
Experiment Affymetrix Array TaqMan® assays 
Tissue Blood (n=94) Muscle (n=59) Muscle (n=108) 
Sex Male Female Male Female Male Female 

MHN 18  
(10-71) 

21 
(10-78) 

11 
(10-61) 

8 
(10-47) 

21 
(10-74) 

22 
(10-87) 

MHS+ 19  
(11-70) 

15 
(11-69) 

10 
(11-71) 

8 
(15-45) 

20 
(10-71) 

22  
(11-69) 

MHS- 12  
(19-49) 

9 
(10-74) 

18 
(9-66) 

4 
(11-40) 

11 
(10-55) 

12 
(11-66) 

Total 49 45 39 20 52 56 
Age ranges (in years) are displayed in brackets, MHN Malignant Hyperthermia Normal, MHS+ 
Malignant Hyperthermia Susceptible with identified causative RYR1 mutation, MHS- Malignant 
Hyperthermia Susceptible with no causative RYR1 mutation 
 

3.2.2 Total RNA extraction and quantification 

RNA extraction for Affymetrix Arrays was completed by Dorota Miller. RNA 

extraction for TaqMan® assays was completed by Katie Nicoll Baines. RNA was 

extracted usng the chloroform/isopropanol method, followed by clean-up using 

RNeasy™ columns (Qiagen). For muscle samples, small sections of tissue (~50mm 

length) were taken from long-term liquid N2 storage and incubated in 500ml RNAlater 

Ice overnight at -80°C. Tissue was then transferred to 1ml TRIzol© prior to rapid 

homogenisation using a rotor stator homogeniser. Following homogenisation, samples 

were thoroughly mixed with 200µl chloroform and centrifuged for 10 minutes. The 

upper aqueous phase was removed and transferred to a fresh 1.5ml tube containing 
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600µl isopropanol (approximately 1:1 ratio of isopropanol:aqueous phase) and mixed 

by inverting the tube. Samples were then stored overnight at -80°C to precipitate RNA. 

RNA was then pelleted by centrifugation at 19,000 rcf in a microfuge for 30 minutes 

at 4°C. The supernatant was discarded and the pellet was then washed in 500µl 75% 

ethanol and spun for 10 minutes. This step was repeated and (after discarding 

supernatant from the first wash) then the final supernatant discarded and the pellet left 

to air dried and then dissolved in 100µl RNase-free water.  

 

A clean-up step was then performed using RNeasy™ mini-columns (Qiagen), 

according to manufacturer’s instructions. Briefly, 350µl Buffer RLT was added to the 

sample and mixed well. Then, 250µl of 100% ethanol was added to the diluted RNA 

mixed by pipetting. The mixture was then transferred to an RNeasy™ spin column 

placed in a 2ml collection tube and spun for 15 seconds at 17,000 rcf in a microfuge. 

The column was then transferred to a fresh collection tube, and 500µl of Buffer RPE 

added to the top of the column to wash the RNA. The column was centrifuged for 15 

seconds at 17,000 rcf in a microfuge and flow-through discarded, followed by addition 

of a further 500µl of Buffer RPE and 2 minutes’ centrifugation at 17,000 rcf in a 

microfuge. The column was again transferred to a fresh collection tube and centrifuged 

for 1 minute at 17,000 rcf to ensure all ethanol was removed. 

 

Finally, RNA was eluted from the column in 30µl RNase-free water. RNA purity and 

quantity was determined using a NanoDrop spectrophotometer (Thermoscientific) and 

BioAnalyser (Agilent 2100). The Agilent 2100 Bioanalyser system evaluates both 

RNA concentration and RNA integrity, assigning an ‘RNA integrity number’ (RIN). 
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It was ensured that all samples used in subsequent analysis had a RIN of 8.0 or greater 

to ensure suitable quality control of the experiment. 

 

3.2.3 Affymetrix Arrays 

Affymetrix HG_U133Plus 2.0 arrays were used to examine gene expression in muscle 

and blood samples (Table 3.1). RNA labelling, hybridization and image acquisition 

were done according to the standard Affymetrix protocol in the Microarray and DNA 

Analysis Section, Faculty of Biomedical and Life Sciences, University of Glasgow. 

 

3.2.4 Affymetrix Data: Data Handling and Statistical Modelling 

3.2.4.1 Pre-processing and quality control 

The samples processed using whole genome Affymetrix arrays yielded a total of 143 

CEL files (59 muscle samples, 94 blood samples). The CEL files were pre-processed 

and sample IDs and corresponding biological information were assigned using 

RStudio 3.0.2. Then the package ‘Affy’ was employed to carry out quality control of 

the data set. This package enables the user to draw images of each individual chip, 

plot RNA degradation and carry our robust multichip analysis (RMA) whereby the 

data is normalised for between and within chip variation. The chip image can be 

examined in 3 different ways (Figure 3.1). 
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Figure 3.1 Chip images derrived from using package 'Affy' in R. A: raw chip image. B: Image of chip defined by residual variance in the chip data, generated using a probe 
level model. C: Image of chip defined by weights of the residual variance in the chip data. 
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The raw chip image is visualised in black and white pixels (Figure 3.1A) and in this 

example there is evidence of a possible smear running down the centre of the chip 

(indicated by the red arrow). These anomalies are dealt with in the ‘Affy’ package 

using a construct called the ‘probe level model’ that determines the residual variance 

between the probe sets relative to the defined norm. This visualised by blue and red 

pixels (Figure 3.1B), those probes assigned a red pixel have greater residual variance 

than the blue. Then, the probe level model assigns weights to these residuals, with 

probes highlighted in green down weighted relative to those probes highlighted in 

orange (Figure 3.1C). Finally, the correct annotations (Gene ID, Affymetrix ID) for 

the probe data were assigned. 

 

3.2.4.2 Statistical Analysis 

The normalised expression data for all chips was analysed using the loop function in 

RStudio 3.0.2, to assign the following different nested linear models to the data:  

- Linear model 1 factored in age, sex and MH phenotype and all possible 

interactions 

- Linear model 2 factored in sex and MH phenotype and the pairwise interaction 

- Linear model 3 factored in age and sex and the pairwise interaction  

- Linear model 4 was effectively the same as model 1 but left out the age-

phenotype interaction term.  

 

After constructing these models Akaike Information Criterion (AIC) values were 

calculated using the formula: AIC = 2K-2log(L), where K is the number of predictors 
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and L is the maximised likelihood value. Therefore, the ‘2K’ part of the equation is 

effectively a penalty for including extra predictors in the model and the ‘-2log(L)’ part 

rewards the fit between the model and the data. As such, the lower the AIC value 

assigned to a model, the better that model fits the data and is the preferred model of 

choice. A difference is AIC values of -2 is considered to be the minimum threshold 

for choosing an appropriate model, with a difference of -10 retaining only a 0.9% 

chance of retaining the incorrect model (Richards, 2005). This effectively ensures 

against falsely discovering genes that show expression differences according to the 

features of the model chosen. This provided the means to compare between models to 

determine those probe sets where age, phenotype and specifically, the age-phenotype 

interaction were important prediction variables.  

 

Firstly, the data from muscle samples was analysed to evaluate the genetic signature 

for MH susceptibility (comparing linear models 1 and 3). Susceptibility was initially 

defined as simply MHS (positive IVCT result) and MHN (negative IVCT result). The 

data was then re-analysed to factor in potential differences between MHS+ (positive 

IVCT with presence of diagnostic RYR1 variant), MHS- (positive IVCT with no 

diagnostic RYR1 variant) and MHN. This process was then repeated using the data 

derived from patient blood samples, specifically re-examining those pathways shown 

to be interesting in skeletal muscle and determining if similar gene expression 

differences could be identified in patient blood samples. The Affymetrix data was then 

analysed to investigate those genes where age (comparing linear models 1 and 2), and 

the age-phenotype interaction (comparing linear models 1 and 4) was a significant 

predictor variable. This analysis was performed using the three levels of MH 
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phenotype (MHS+, MHS- and MHN). This yielded lists of possible genes of interest 

that could then be further interrogated by completing pathway analysis in 

MetaCore™from Thomson Reuters.  

 

MetaCore™ is a comprehensive biological analysis package that can be used to 

perform pathway enrichment, biomarker identification, sample comparison and 

variant analysis. It is compiled based on peer-reviewed literature and provides well-

designed pathway maps for interpretation of experimental results. Briefly, a list of 

probes of interest, coded as Affymetrix IDs, is uploaded from a source file (.txt format) 

into the MetaCoreTM online package (the package is designed to recognise Affymetrix 

IDs and the appropriate annotation, provided the user selects the correct species). The 

‘Which pathways are the most significant in my data?’ question was then selected 

from the ‘Most Popular Questions’ tab. This then provides a list of pathways that have 

been detected based on the list of Affymetrix IDs supplied. In addition to MetaCore™, 

gene functional classification was carried out using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) version 6.7. DAVID is an integrated 

package that provides the means to extract biological meaning from large gene or 

protein lists derived from high-throughput experiments (Huang et al., 2008). The gene 

functional classification tool in DAVID was used to classify the list of genes identified 

as being important in relation to the interaction between MH phenotype and age into 

functional related gene groups. This makes it possible to summarise the major biology 

of the groups identified. The genes defined as interesting following the process of 

model comparison and pathway analysis/functional classification were then subjected 

to ANOVA to determine exactly what the differences were between normal and 
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susceptible in those genes, while also examining effects of age and sex. From the 

results of this analysis a set of candidate genes for further investigation on a different 

cohort of muscle samples using TaqMan® assays was established. 

 

3.2.4.3 Determination of predictive model of MH susceptibility in muscle and blood 

Muscle and blood samples were assessed independently using Least Absolute 

Shrinkage and Selection Operator (LASSO) penalised regression analysis to 

predictive susceptibility to MH. LASSO has the ability to select variables based on 

their contribution to susceptibility while also taking into consideration the other 

variables in the model (Tibshirani, 1996). LASSO was carried out in R software with 

the Penalized package (Goeman, 2010). Firstly, an appropriate penalization parameter 

was determined using the OptL1 function (part of the Penalized package in R), LASSO 

regression was then carried out using the Penalized function. The list of probes derived 

from the model comparison, DAIC-10, were used in order to start with the most refined 

list of probes. From this list a refined number of probes were identified, based on the 

LASSO regress as having the greatest predictive power for determining susceptibility. 

Using these probes and their coefficients it was possible to derive a risk that predicts 

susceptibility and subsequently determine a score from this equation that is definitive 

of MHN and a score that defines MHS individuals. Score plots were created using R 

Studio. The optimal cut off for determine whetere a sample is MHS or MHN was 

established using the Youden’s J statistic in conjunction with receiver operating 

characteristic (ROC) analysis. The probes in the equation were also annotated to 

determine which genes they correspond to and were investigated to determine the 

biological relevance of those genes in relation to MH susceptibility. 
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3.2.5 Preparation of cDNA by reverse transcription 

Reverse transcription on the skeletal muscle RNA samples (n=108, Table 3.1) was 

carried out using a TaqMan® high capacity cDNA reverse transcription kit. 10µl of 

200ng total RNA was added to 10µl reverse transcription master mix (1X reverse 

transcription buffer, 1X RT random primers, multiscribe reverse transcriptase, 1U/µl 

RNase inhibitor, 1X dNTP in nuclease-free H20). Annealing of random primers was 

achieved by incubation for 10 minutes at 25°C, followed by 2 hours at 37°C to 

complete reverse transcription and subsequent deactivation of reverse transcriptase at 

85°C for 5 seconds with a final hold at 4°C. 

 

3.2.6 TaqMan® assays  

A complete list of the genes of interest selected for investigation using TaqMan® can 

be found in (Table 3.2). 

Selection of these GOIs was based on a number of criteria:  

- implicated by the Affymetrix data analysis with respect to age and MH 

susceptibility  

- involved in calcium handling in skeletal muscle that may be involved in 

skeletal muscle ageing 

- involved in skeletal muscle mitochondrial function and ageing 

- involved in EC coupling and ageing 

- undergoing next generation sequencing by the Leeds MH unit due to their 

potential involvement in MH susceptibility 
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Table 3.2. Summary of all genes used in Taqman® assays 

GENE PROTEIN SELECTION REASONS 
B2M Beta-2 microglobulin  

 
 
Reference Gene (Vandesompele et al., 2002) 

GAPDH Glyceraldehyde 3-phosphate 
dehydrogenase 

RPLP0 Ribosomal protein, large, P0 
HPRT1 Hypoxanthine-guanine 

phosphoribosyltransferase 
TBP TATA-binding protein 
UNC13C UNC13C Involved in skeletal neuro-muscular disorder ALS 

(Kwee et al., 2012) 
Affymetrix data analysis 

JUN c-Jun  
 
Affymetrix data analysis 
 

CAV1 Caveolin 1 
DTNA Dystrobrevin alpha 
SNTB1 Beta-1-syntrophin 
CAPN3 Calpain 3 
KCNA1 Potassium voltage-gated 

channel 
CHERP Calcium homeostasis 

endoplasmic reticulum protein 
Modulates caffeine-mediated Ca2+ release, potential 
regulator of RyR1 (Ryan et al., 2011) 
Potential role in ageing (Puzianowska-Kuznicka & 
Kuznicki, 2009) 

CALM1 
 

Calmodulin 1 
 

Involved in regulation of L-type Ca2+ channels (Mori 
et al., 2004) 

CASQ1 Calsequestrin 1 Involved in Ca2+ storage in SR and EC-coupling 
(Beard et al., 2004) 

ORAI1 ORAi 1 Involved in SOCE in skeletal muscle, SOCE affected 
by age (Lyfenko & Dirksen, 2008) 

STIM1 Stromal interactin molecule 1 Involved in SOCE in skeletal muscle, SOCE affected 
by age (Lyfenko & Dirksen, 2008) 

TRPC3 Transient receptor protein 3 Involved in ROCE in skeletal muscle, interacts with 
STIM1 (Horinouchi et al., 2012) 

TRPC6 Transient receptor protein 6 Involved in ROCE in skeletal muscle, interacts with 
STIM1 (Horinouchi et al., 2012) 

PDE1A Phosphodiesterase 1A, 
calmodulin-dependent 

Activated by Calmodulin(NCBI, 2016) 

HSPA4 Heat-shock protein 4 Potential role in ageing in skeletal muscle (Broome 
et al., 2006) 

NFKB1 Nuclear factor K Potential relevance to human ageing process 
(GenAge, 2013) 

MICU1 Mitochondrial induced calcium 
uptake protein 1 

Involved in Ca2+ handling in mitochondria, 
implicated in muscle ageing (Csordas et al., 2013; 
Gene Cards, 2013)M 

MCU Mitochondrial Calcium 
Uniporter 

Mediates Ca2+ uptake into mitochondria, interacts 
with MICU1, implicated in muscle ageing 
(Pietrangelo et al., 2015) 

SLC25A37 Solute carrier family 25, 
member 37 

Translocated to the inner mitochondrial membrane 
during oxidative phosphorylation. 

RAD Ras-related associated with 
Diabetes 

Expression enhanced in response to oxidative stress 
(Sumner et al., 2013) 

REM2 Ras-like GTP binding protein Over-expression mimics EC coupling (Sumner et al., 
2013) 
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TaqMan® gene expression assays were designed (following the guidelines in the 

TaqMan® protocol) for each gene of interest and the 5 reference genes. These 

references genes were utilised as they had been previously established to be 

consistently expressed in human skeletal muscle (Vandesompele et al., 2002). 

 

Assays were carried out according to the protocols outlined for TaqMan® gene 

Expression Assays. Briefly, amplification of ~100ng cDNA was carried out in 1X 

gene expression master mix supplemented with 0.5x gene specific assay made up to a 

total reaction volume of 10µl with nuclease-free H2O. Amplification of samples was 

on an Applied Biosystems 7900HT Real-Time PCR system: STAGE 1: 50°C for 2 

minutes, STAGE 2: 95°C for 10 minutes and STAGE 3: 95°C for 15 seconds then 

60°C for 1 minute (40 cycles). 

 

3.2.7 Normalisation of TaqMan® expression data  

The process of normalisation controls for variation in extraction and reverse 

transcription yield as well as efficiency of amplification (Rome et al., 1988). The use 

of reference genes is commonly accepted as the most applicable strategy for 

normalisation (James et al., 1995b). The expression data obtained from qPCR was 

normalised using Microsoft® Excel® geNorm freeware. This procedure normalises 

the expression levels of the GOI based on the reference genes utilised in these assays. 

It ranks the reference genes based on stepwise elimination of the least stable gene and 

defines expression stability as average pairwise variation (standard deviation of log 

transformed ratios) of a given gene with all other candidate reference genes 

(Vandesompele et al., 2002).  
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3.2.8 Statistical Analysis of TaqMan® expression data 

Statistical analysis was carried out using freeware statistical package RStudio 3.0.2. 

Linear models were fitted to the normalised, observed expression levels that 

incorporated all possible interactions with the independent variables, in this case; age, 

sex and MH status. Residuals were plotted to confirm normal distribution. ANOVA 

was then carried out on these fitted models to establish whether expression levels were 

significantly different according to these three variables or any interaction between 

them. Akaike Information Criterion (AIC) was used to establish the best-fit model for 

the observed expression levels and ANOVA carried out on the simplified model. 

Tukey tests were used to investigate further where there were significant p values for 

MH phenotype. Graphical illustration of results was completed in Microsoft® Excel® 

for Mac 2011.  
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3.3 Results and Discussion 

3.3.1 Genome wide profile of MH susceptibility in skeletal muscle and blood 

Linear model comparison using AIC scores was carried out on the following models: 

- probe ~ age + sex + status + age:sex + sex:status + age:status    +age:sex:status 

(model 1) 

- probe ~ age + sex + age:sex (model 3) 

It was possible to derive lists of probesets from the whole genome data. A minimum 

cut off from the AIC model comparison of -2 was established to include all those 

probes relevant to differences in MH susceptibility (summarised in Table 3.3).  

Table 3.3 Results of linear model comparison on Affymetrix expression data derived from patient 
muscle and blood samples 

 Muscle (n=59) Blood (n=94) 
ΔAIC Probes Genes Probes Genes 

-2 
-5 

-10 

4561 
1671 
281 

3506 
1401 
249 

2347 
712 
79 

1687 
532 
74 

 

Additional cut offs were established at -5 and -10 ΔAIC to derive lists with the most 

differentially expressed genes with respect to MH susceptibility. These results 

highlight the distinctly lower number of probe sets implicated in MH susceptibility 

detected across the whole genome in blood compared to muscle. As the manifestation 

of this condition is primarily concerned with compromised regulation of skeletal 

muscle function, then this result is not surprising. What is clear is that it is possible to 

establish a profile of MH susceptibility purely using peripheral blood when expression 

across the whole genome is analysed. When plotted graphically the proportion of 

probes of interest in relation to MH phenotype relative to the entire collection of 

human genome probes can be visualised (Figure 3.2 and Figure 3.3).  



 
 

 117 

 
Figure 3.2 Bar plot of AIC differences when comparing linear models 1 and 3 for analysis of patient muscle samples. Red lines indicate the -10, -5 and -2 cut offs 
with -10 being nearest to the y axis and -2 being further away.  Enlarged plot shows the selection of probes from delta AIC -2 (4561 probes) to the delta AIC -10 
(281), it overlies the large selection of probes where MH susceptibility is not an important factor in the model. 



 
 

 118 

 

Figure 3.3 Bar plot of AIC differences when comparing linear models 1 and 3 for analysis of patient blood samples. Red lines indicate the -10, -5 and -2 cut offs with 
-10 being nearest to the y axis and -2 being further away.  Enlarged plot shows the selection of probes from delta AIC -2 (2347 probes) to the delta AIC -10 (79), it 
overlies the large selection of probes where MH susceptibility is not an important factor in the model. 
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3.3.2 Pathway analysis to determine genetic signature for MH susceptibility in 

skeletal muscle and peripheral blood 

Using the data derived from microarray experiments using patient muscle and blood 

samples, it was possible to investigate potential pathways of interest in relation to MH 

phenotype. Potential pathways were first evaluated in the muscle sample cohort, as 

this is the tissue directly affected by an MH episode. The blood sample cohort was 

then interrogated for the same pathways of interest to ascertain whether it was possible 

to detect first, the same pathway and second, any of the same genes implicated in that 

pathway. 

 

A total of 880 pathways were detected based on the probes fed into the MetaCoreTM 

pathway analysis software. Through further manual interrogation, searching for 

pathways with particular relevance to skeletal muscle this number was refined to two 

pathways that were followed up by direct examination of the genes involved in those 

pathways. 

 

3.3.2.1 The development role of HDAC and calcium/calmodulin-dependent kinase in 

control of skeletal myogenesis 

The first pathway identified through this process, was the ‘development role of HDAC 

and calcium/calmodulin-dependent kinase (CaMK) in control of skeletal myogenesis’. 

Fifty-four genes are featured in this pathway, with 12 of them identified by the model 

comparison process as being of interest in relation to MH phenotype in patient muscle 

samples. A schematic of this pathway with those 12 genes highlighted can be found 

in Figure 3.4. Expression levels of these 12 genes was then analysed using 3-way 
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ANOVA (testing for effects of age, sex and MH phenotype and all possible pairwise 

and 3-way interactions) to determine the specific differences in gene expression 

occurring in this pathway in relation to MH phenotype. 

 

Figure 3.4 Pathway schematic showing the development role of HDAC and calcium/calmodulin-
dependent kinase (CaMK) in control of skeletal myogenesis. Grey boxes mark those genes shown to 
be of interest in MH phenotype from skeletal muscle, red boxes mark those genes shown to be of interest 
in relation to MH phenotype in peripheral blood. 
 
 

Calcineurin A is encoded by the PPP3CC gene. Expression of this gene was found to 

be significantly different according to the age, sex and MH status 3-way interaction, 

p=0.038 (F=4.54, df=1, 51). There was no significant difference when considering 

MH status independently. Calcineurin A is activated by calmodulin (encoded by 

CALM1), expression of which was found to be significantly lower in MHS samples 
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compared to MHN, p=0.0013 (F value= 11.56, df=1, 51). There was also found to be 

a significant effect of the sex-MH phenotype interaction on expression of this gene, 

p=0.0013 (F=11.48, df=1, 51).Using a post-hoc Tukey test it was established that, 

there was significantly higher expression of this gene in male MHN samples compared 

to female MHN (p=0.008) and male MHS (p<0.001). 

 

Therefore, the significant difference between all MHN individuals compared to the 

MHS group could be influenced by the significant difference in expression of CALM1 

that is specific to male MHNs. Female MHNs show no significant difference in 

expression of this gene compared to male or female MHSs.  

 

There is a significant difference in expression of IGF-2 in relation to the sex-

phenotype interaction, p=0.031 (F=4.92, df=1, 51). IGF-2 encodes for insulin-like 

growth factor 2, which is involved in stimulation of myogenesis. The specific 

differences in expression are reflected as a reduction in expression in male MHS 

compared to male MHN, p=0.031 (Tukey test).  

 

This could indicate an altered muscle development profile in males with susceptibility 

to MH compared to males that are not susceptible. IGF-2 binding to the IGF receptor 

which initiates a signalling cascade that involves a number of molecules that 

eventually activates the transcription factor myogenin (MYOG) that is ultimately 

responsible for activating muscle-specific genes (Figure 3.4) (Xu & Wu, 2000). Other 

aspects of this signalling cascade were highlighted by the pathway analysis looking at 

the Affymetrix probes in relation to MH susceptibility. PIK3CB that codes for PI3K 

category class IA showed a significant effect of the sex-MH phenotype interaction on 
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expression, p=0.006 (F=8.08, df=1, 51). By applying a post hoc Tukey test to the 

expression data it was revealed that the expression difference was a significant 

decrease in expression in male MHS patients compared with male MHNs, p=0.04. 

 

Expression of PDPK1 that encodes for PDK showed a significantly higher level of 

expression in MHS individuals compared to MHN, p=0.008 (F=7.59, df=1, 51). There 

was also found to be a significant effect of the sex-MH phenotype interaction on 

expression of this gene, p=0.014 that was specifically evident when observing the 

significantly higher expression in male MHS individuals to male MHNs, p=0.006. 

 

Expression of c-JUN also differed in relation to the sex-MH phenotype interaction, 

p=0.005 (F= 8.63, df=1, 51). Specifically, there was decreased expression of this gene 

in male MHN samples compared to female MHN (p=0.009, Tukey test) and increased 

expression in male MHS samples compared to male MHNs (p=0.034, Tukey test). c-

JUN is a transcription factor oncogene involved in the control of duration of myoblast 

differentiation (Daury et al., 2001). These expression differences could indicate 

alterations in the profile of myoblast differentiation in male patients with MH. 

 

Mammalian skeletal muscle differentiation is coupled to withdrawal from the cell 

cycle and associated with transcriptional activation of an array of muscle-specific 

genes (Lu et al., 2000). Two families of transcription factors play important roles 

during this process. One includes MyoD family proteins which is sometimes referred 

to as myogenic regulatory factors (MRFs) which contains four members: Myf5, 

Myogenic differentiation 1 (MYOD1), Myogenin (MYOG), and Myogenic factor 6 

(MYF6) that are exclusively expressed in skeletal muscle. Of the genes involved in 
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this aspect of the pathway, only MYOD1, shown as MYOD in Figure 3.4, expression 

was found to differ significantly according to MH phenotype (p=0.017, F=6.02, df=1, 

51), evidenced by a significant reduction in expression in MHS individuals compared 

to MHN. 

 

Sustained expression of MYOD1 is essential for retaining the expression of muscle-

related genes (Fong & Tapscott, 2013). Further investigation of this gene is required, 

perhaps at the functional or protein level to better understand the consequences of this 

reduction in expression. As it is such a crucial factor in myogenic regulation this gene 

could play a role in the pathogenicity of MH.  

 

The other group consists of Myocyte enhancer factors 2 (MEF2): MEF2A, MEF2B, 

MEF2C, and MEF2D. The latter can form homo- and heterodimers that constitutively 

bind to the promoters or enhancers of the majority of the muscle-specific genes. 

Additionally, MRF and MEF2 members can physically interact with each other to 

synergistically activate many muscle-specific genes (Xu & Wu, 2000; McKinsey et 

al., 2002). As is shown in Figure 3.4, MEF2 is associated with a number of regulating 

proteins, including four and as a result regulation of its activity is complex.  

 

HDAC4 was found to differ significantly according to the sex-phenotype interaction, 

p=0.002 (F=10.31, df=1, 51). Through investigation using a post-hoc Tukey test this 

significance can be attributed to the decreased expression of this gene in male MHN 

samples compared to female samples of the same phenotype, p=0.0008.  
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HDAC4 acts to block conversion of fibroblasts into myotubes during myoblast 

proliferation by inhibiting MEF2-dependent transcription (Lu et al., 2000). Upon 

differentiation it is translocated to the cytoplasm and as a result no longer inhibits 

MEF2 and myoblast differentiation can occur (Moresi et al., 2015). HDAC4 

expression has been shown to be up-regulated in the muscle of amyotrophic lateral 

sclerosis (ALS) patients and is inversely correlated with disease severity. Indeed it has 

been shown that treating ALS mice with HDAC inhibitors has beneficial effects on 

survival and muscle maintenance (Yoo & Ko, 2011). As the expression differences in 

this cohort appear to be between males and females in the MHN group this gene may 

not be of interest in relation to MH susceptibility.  

 

CaMK IV is essential in the process of translocating HDACs to the cytoplasm to allow 

for initiation of myoblast differentiation. CaMK IV is phosphorylated by CAMKK 

(encoded by CAMKK2, calcium/calmodulin-dependent protein kinase 2) and therefore 

plays an essential role in the signalling cascade involved in skeletal muscle 

development. Expression of CAMKK2 was found to be significantly lower in MHS 

samples compared to MHN, p=0.02 (F=5.4, df=1, 51).  

 

The lists of probes derived from Affymetrix arrays on patient blood samples were also 

subjected to the same process of pathway analysis in MetaCore as the patient muscle 

samples. The resulting list of 536 pathways was manually interrogated establish 

whether the same pathways were evident in the blood data as were found in the muscle 

data. As highlighted by the red box in Figure 3.4, CAMKK2 was also detected as 

having significantly lower expression in the blood samples from MHS patients, 
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compared to expression levels in blood from MHN patients, p<0.001 (F=15.67, df=1, 

51).  

 

The expression profile for this gene detected in peripheral blood samples complements 

the expression profile of the same gene in skeletal muscle biopsies. Additional work 

would be necessary on a larger population, including more susceptible individuals and 

a larger control group from the general population to better understand how definitive 

this expression pattern is in relation to the MH phenotype. 

 

3.3.2.2 nNOS signalling in skeletal muscle 

Nitric oxide (NO) is a gaseous free radical that has been established as an important 

endogenous regulator of skeletal muscle physiology at both the tissue and cellular 

level (Reid, 1998). Storage of NO is not possible, therefore control of signalling 

specificity is controlled at the level of synthesis (Bredt, 2003).  

 

There are three major isoforms of nitric oxide synthase (NOS) enzymes that act to 

generate NO from L-Arginine, molecular oxygen and NADPH.  

- Type I NOS, also referred to as neuronal NOS or nNOS, is localised to the 

sarcolemma of the myocyte.  

- Type II NOS, also known as inducible NOS or iNOS is localised to the cytosol. 

- Type III NOS or endothelial NOS (eNOS) is localised to the mitochondria 

(Reid, 1998).   

The nNOS signalling pathway in skeletal muscle was identified using MetaCore 

pathway analysis on the list of genes derived from the AIC comparison (DAIC-2) for 
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those probes (4561) that show significantly different expression in relation to MH 

phenotype (Figure 3.5).  

 
Figure 3.5 Pathway schematic showing nNOS signalling in skeletal muscle. Proteins outlined in boxes 
(grey=from in muscle samples, red=from in blood samples) were shown to be of interest in relation to 
MH phenotype based on AIC model comparison (DAIC-2). 
 

Nitric oxide synthases are of considerable importance in maintaining sarcolemmal 

integrity due to their direct interaction with the Actin (encoded by ACTB) cytoskeleton 

(Chen et al., 2003; Rybakova et al., 2006).  Expression of ACTB was found to differ 

significantly according to phenotype (p=0.0005, F=15.79, df=1, 51) in the skeletal 

muscle cohort, with significantly lower expression levels detected in the MHS cohort 

compared to MHN muscle.  

 

The arrangement of the actin cytoskeleton with dystrophin and dystroglycan 

associated nNOS with the sarcolemma. Here it can generate NO and this skeletal 

Blood vessel dilatation 

Muscle contraction 

Motor neurone axon 
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muscle derived NO then diffuses to adjacent blood vessels to increase perfusion of 

contracting muscle (Stamler & Meissner, 2001). It was found that in MHS patients, 

expression of nNOS was significantly reduced compared to the level detected in MHN 

samples by microarray analysis (p=0.04, F=4.19, df=1, 51). 

 

nNOS is dependent on calcium/calmodulin binding in order to carry out NO 

production, whereby calmodulin functions to allow electron transport from the 

reductase domain of the haem group of nNOS (Su et al., 1995). Unlike iNOS, nNOS 

and eNOS are inactive at resting intracellular calcium levels. They are activated when 

calcium concentrations are elevated to maintain calmodulin binding (Kone, 2000; 

Shirran et al., 2005). Calmodulin 1, as encoded by CALM1, expression which was 

found to be significantly reduced in individuals susceptible to MH compared with 

those not susceptible (p=0.001, F= 11.56, df=1, 51). CALM1 was also a feature of the 

HDAC and CaMK pathway discussed in section 3.3.2.1. 

 

Interestingly, none of the genes identified in the skeletal muscle cohort from this 

pathway were highlighted as being significant in the blood samples. None the less, 

this pathway was still identified as one of interest in the pathway analysis on the blood 

samples because a different gene, SNTB2 was highlighted as being of interest in 

relation to MH phenotype. Expression was found to differ significantly according to 

the sex-phenotype interaction (p=0.002, F=9.08, df=1, 51). Specifically, it was 

significantly higher in male MHS samples compared to male MHN and significantly 

lower in female MHS samples compared to female MHN. 
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While none of the genes in this pathway that were detected in the muscle samples were 

correspondingly detected in blood, it is of potential use that another gene involved in 

nNOS signalling was detected. It could provide an avenue for investigation towards 

developing a blood test for MH susceptibility, perhaps in combination with CAMKK2 

detected in the skeletal myogenesis pathway.  

 

3.3.3 Determination of a predictive model for MH susceptibility 

3.3.3.1 Predictive model based on Affymetrix array data from skeletal muscle 

In order to identify genes from the Affymetrix array that are associated with MH 

susceptibility (either MHS or MHN), LASSO regression was performed using the 

DAIC-10 refined list of 281 probes implicated in MH susceptibility from patient 

skeletal muscle samples. This method performs a sub-selection of probes involved in 

MH by shrinkage of the regression coefficient through imposing a penalty 

proportional to their size. This results in most predictors being shrunk to zero, leaving 

only a small number with a weight of non-zero.  

 

Using this method, 17 probes were identified with non-zero regression coefficients 

(Table 3.4). In order to make subsequent equation definition more manageable, 

Affymetrix probe IDs were simplified using the format ‘m000’. The penalised 

regression coefficients were used to define the parameters for generating the risk score 

for MH susceptibility. Probes assigned a negative LASSO coefficient are positive 

predictors of MH susceptibility and those with a positive LASSO coefficient are 

negative predictors of MH susceptibility. 
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Three of the probes identified are unannotated and one probe targets two genes. 

Therefore, 15 genes are implicated in this predictive model for MH susceptibility. 

Table 3.4 Probes associated with susceptibility to MH using the LASSO regression test (muscle 
samples) 

Probe ID Probe 
Code 

Gene LASSO penalised coefficient for risk 
score (log2) 

218806_s_at m026 VAV3 -3.8965086 
239370_at m272 LINC01133 -3.2144525 

1556763_at m178 unannotated -2.8517881 
227404_s_at m217 EGR1 -1.1678859 
210139_s_at m095 PMP22 -0.7981979 
208917_x_at m084 NADK -0.5811914 

217259_at m165 unannotated -0.5413827 
212525_s_at m004 H2AFX -0.4614276 

213931_at m182 ID2 -0.3866819 
220359_s_at m160 ARPP21 -0.3670338 
231926_at m259 EPS15L1 -0.3637492 

202426_s_at m046 RXRA -0.0920112 
233637_at m252 DCAF8 0.2519220 

1555272_at m120 RSPH10B2 0.5552463 
221960_s_at m244 RAB2A 0.9616943 
214290_s_at m172 HIST2H2AA3; 

HIST2H2AA4 
1.2790261 

231042_s_at m031 unannotated 2.0465129 
  

A risk score was generated using the sum of the probe expression values weighted by 

the coefficients from the LASSO regression: 

 

(-3.896509*m026) + (-3.214453*m272) + (-2.851788*m178) + (-1.167886*m217) + 

(-0.798198*m095) + (-0.581191*m084) + (-0.541383*m165) + (-0.461428*m004) + 

(-0.386682*m182) + (-0.367034*m160) + (-0.363749*m259) + (-0.092011*m046) + 

(0.251922*m252) + (0.555246*m120) + (0.961694*m244) + (1.279026*m172) + 

(2.046513*m031)  

 

The risk score was applied to all muscle samples in the dataset. This identified a clear 

distinction between normal and susceptible samples using this predictive model, 
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where samples with a median score of <0 being MHN and those with a median score 

>0 are MHS (Figure 3.6). 

 

Figure 3.6 Comparison of median scores for normal and susceptible samples derived from muscle risk 
score. 
 

The notches on the boxplots roughly represent the 95% confidence interval for the 

difference in the two medians (Chambers et al., 1983). This indicates that this 

prediction very clearly distinguishes between MHS and MHN in this dataset, as the 

notches do not overlap (Figure 3.6).   

 

3.3.3.2 Predictive model based on Affymetrix array data from peripheral blood 

LASSO regression was performed using the DAIC-10 refined list of 78 probes 

implicated in MH susceptibility from patient peripheral blood samples. Using this 
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method, 18 probes were identified with non-zero regression coefficients (Table 3.5). 

In order to make subsequent equation definition more manageable, Affymetrix probe 

IDs were simplified using the format ‘b00’. One of the probes identified is unannotated 

and one probe targets two genes. Therefore, 18 genes are implicated in this predictive 

model for MH susceptibility. 

Table 3.5 Probes associated with susceptibility to MH using the LASSO regression test (blood samples) 
Probe ID Probe 

Code 
Gene LASSO penalised coefficient for risk 

score (log2) 
215505_s_at b45 STRN3 -1.140474 
215013_s_at b25 USP34 -0.837732 
227393_s_at b29 TRA2A -0.581304 
218433_at b61 PANK3 -0.567443 

222930_s_at b39 AGMAT -0.123679 
222919_at b27 TRDN 0.012401 
222134_at b75 DDO 0.239126 
220436_at b04 unannotated 0.244762 

206740_x_at b14 SYCP1 0.251144 
216876_s_at b71 IL17A 0.455281 
244839_at b16 LINC00518 0.603584 
213455_at b51 FAM114A1 0.894760 
204926_at b09 INHBA 1.289086 
231943_at b49 ZFP28 1.355012 

1569110_x_at b15 LOC728613 1.385875 
241713_s_at b17 DYXC1;DYXC1-CCPG1 1.413366 
220551_at b38 SLC17A6 1.574433 
205838_at b20 GYPA 2.099101 

 

The penalised regression coefficients were used to define the parameters for 

generating the risk score for MH susceptibility. Probes assigned a negative LASSO 

coefficient are positive predictors of MH susceptibility and those with a positive 

LASSO coefficient are negative predictors of MH susceptibility. A risk score was 

generated using the sum of the probe expression values weighted by the coefficients 

from the LASSO regression: 
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(-1.140474*b45) + (-0.837732*b25) + (-0.581304*b29) + (-0.567443*b61) +              

(-0.123679*b39) + (0.012401*b27) + (0.239126*b75) + (0.244762*b04) + 

(0.251144*b14) + (0.455281*b71) + (0.603584*b16) + (0.894760*b51) + 

(1.289086*b09) + (1.355012*b49) + (1.385875*b15) + (1.413366*b17) + 

(1.574433*b38)   + (2.099101*b20) 

 

The risk score was applied to all blood samples in the dataset with incorporation of 

the intercept (-30.996903) to set the baseline to zero. This identified an overlap 

between normal and susceptible samples using this predictive model (Figure 3.7).  

 

Figure 3.7 Comparison of median scores for normal and susceptible samples derived from blood risk 
score. 
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The optimal cut off for the risk score difference between normal and susceptible 

patients using blood was not as clear as in the muscle data. Therefore, an optimal cut 

off was established using the Youden’s J statistic in conjunction with receiver 

operating characteristic (ROC) analysis (Figure 3.8). Using the Youden method it was 

established that the optimal cut off for discriminating between normal and susceptible 

individuals using blood samples is 0.52 with a sensitivity of 0.87 and specificity of 

0.97 where the area under the curve at that cut off is 0.92. 

 

Figure 3.8 ROC curve for risk scores from blood 
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3.3.3.3 Risk score validation 

The risk scores defined in sections 3.3.3.1 and 3.3.3.2 have been generated and tested 

on the same data set. This is possible because LASSO employs leave-one-out cross 

validation, where the model is rerun iteratively, each time leaving a sample out 

(Goeman, 2010). This reduces over fitting of the model to the dataset. Ideally, 

validation should be performed on an independent dataset from a different population 

or with a different technique. However, this data is not available. Further work could 

be carried out to validate the predictive models generated here through the use of 

qPCR on a separate cohort of muscle and blood samples to quantify the sensitivity and 

specificity of this test as a means of determining susceptibility to MH. 

  

3.3.4 Targeted analysis of genes implicated in MH and ageing in skeletal muscle 

The aim of this process was to define potential genes of interest that could be analysed 

using TaqMan® assays on a separate cohort of skeletal muscle samples to perform a 

more detailed analysis of genes implicated in MH susceptibility and skeletal muscle 

ageing. In order to account for all potential genetic complexities, the data was re-

analysed using 3 levels of MH phenotype:  

- MHN: Malignant Hyperthermia normal 

- MHS+: susceptible to MH with a causative mutation in RYR1 

- MHS-: susceptible to MH with no causative mutation in RYR1 

 

The two pathways highlighted in the previous section that were of relevance to MH 

susceptibility (just comparing MHS and MHN) also indicated a number of potential 

genes of interest in relation to MH susceptibility considering the 3 levels of MH 

phenotype and ageing. The -10 delta AIC difference should be used as a cut off for 
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deciding which probes should be followed up using TaqMan®. Summarised in Figure 

3.9 is the distribution of probes that showed to be of interest in relation to MH 

susceptibility. Compared to the first analysis that used two levels of MH phenotype 

and established 281 probes at the -10 delta AIC cut off, this analysis using three levels 

of MH phenotype highlighted 302 probes at the same cut off (Figure 3.9). 

 

Figure 3.9 Bar plot of AIC score differences for comparison of models 1 and 3, demonstrating those 
probes that show significant differences in gene expression where MH status is an important predictor 
variable. DAIC-10 is marked by red line. 

 

This indicates that at the whole genome level there are differences in the expression 

profile when considering whether or not a susceptible individual carries a causative 

RYR1 mutation.  
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A model comparison to determine those probe sets of interest in relation to age was 

also carried out in order to establish possible genes of interest in relation to skeletal 

muscle ageing. The -10 delta AIC was used in this process to refine the list of genes. 

It resulted in 1607 probes with a delta AIC equal to or less than -10 that equates to 

1411 gene products (Figure 3.10).  

 

Figure 3.10 Bar plot of AIC score differences for comparison of models 1 and 2, demonstrating those 
probes that show significant differences in gene expression where age is an important predictor variable. 
DAIC-10 is marked by red line. 

  

 A final comparison was made between models 1 and 4 to establish a refined list of 

genes where the age-MH phenotype interaction is an important predictor variable. 

This resulted in 85 probes representing 69 specific gene products. These lists of probes 

were then interrogated based on the pathways that had been previously established (in 
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sections 3.3.2.1 and 3.3.2.2) as well as using gene functional characterisation using 

DAVID to determine genes that may be worthy of follow up using TaqMan®.  

 

When examining the list of probes determined in relation to age, MH phenotype and 

the age-phenotype interaction, the CaMK pathway exhibited a different selection of 

genes of interest compared to the previous analysis Figure 3.11. 

 

 
Figure 3.11 Pathway schematic showing the development role of HDAC and calcium/calmodulin-
dependent kinase (CaMK) in control of skeletal myogenesis. Proteins circled in green showed a 
significant difference for MH phenotype, proteins circled in yellow showed a significant difference for 
age and presence of both coloured circles denotes an interaction between age and phenotype. 
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This analysis only included those probes with a delta AIC of -10 or lower and so it is 

not surprising that many of the aspects of the pathway identified previously are no 

longer highlighted. This process was devised in order to better refine the list of genes 

to be followed up by TaqMan®.  

 

Only one feature of this pathway, c-Jun (encoded by JUN), was found to have an 

altered expression profile in response to MH phenotype and age. Expression of JUN 

was significantly higher in MHN samples compared to MHS+, p=0.04 (F=3.48, df=2, 

47). Expression of JUN was found to decrease significantly with increasing age, 

p=0.00004 (F=20.03, df=1, 47) and the interaction of age and MH status also showed 

a significant effect on expression of JUN, p=0.02 (F=3.51, df=1, 47). Increasing age 

in the MHS- samples did not show decreased expression of JUN unlike the MHS+ and 

MHN samples which both showed decreased expression with increased age.  

 

In combination with c-Fos, c-Jun forms the AP-1 early response transcription factor 

and in skeletal muscle it is involved in controlling the duration of myoblast 

proliferation (Bergstrom & Tapscott, 2001). c-Jun activity is found to be regulated by 

c-Jun amino N-terminal kinases (JNKs) (Cargnello & Roux, 2011). Activation of 

JNKs in skeletal muscle is associated with age, however using a mouse model,  this 

activation can be suppressed by application of testosterone showing that sarcopenia 

can be reduced in aged mice through testosterone suppression of age-related oxidative 

stress that is mediated by JNKs (Kovacheva et al., 2010). Alteration of elements in 

this skeletal myogenesis pathway have been shown to be age related, suggesting that 

the process of muscle development is altered with age and that genes such as JUN may 

be worthy of additional investigation in the context of MH and ageing. 
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Figure 3.12 Pathway schematic showing nNOS signalling in skeletal muscle, results of pathway 
analysis on Affymetrix data investigating importance of age-phenotype interaction. Proteins circled in 
green showed a significant difference for MH phenotype, proteins circled in yellow showed a 
significant difference for age and presence of both coloured circles denotes an interaction between age 
and phenotype 
 

When re-examining the nNOS signalling pathway using the lists of genes derived from 

the model comparison to determine genes of interest in relation to MH susceptibility 

and ageing and the interaction between these factors, five genes were identified 

(Figure 3.12). The gene coding for Actin was found to have significantly different 

expression between MH phenotype groups and the gene coding for Calmodulin was 

found to have significantly different expression with respect to increasing age. Genes 

coding for the skeletal muscle Ryanodine Receptor (RyR1), Syntrophin B1 and 

Dystrobrevin alpha were found to show differences in gene expression relating to both 

age and MH phenotype. 

Blood vessel dilatation 

Muscle contraction 

Motor neurone axon 
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Expression of CALM1 was shown to differ significantly with age (p=0.01, F=10.12, 

df=1, 47), with expression increasing with increasing age.  

 

In the previous analysis, CALM1 expression differed significantly according to MH 

phenotype and the sex-MH phenotype interaction, where expression was higher in 

MHNs, specifically male MHNs. However, when the MHS category is subdivided 

into MHS+ and MHS-, this significance is no longer evident. Altered expression of 

CALM1 could have an impact on calcium handling in skeletal muscle as these 

molecules have been shown to interact with calcium channels (Tripathy et al., 1995; 

Mori et al., 2004). There is no information relating to changes in expression of this 

gene being related to ageing in human skeletal muscle, however its involvement in 

calcium handling could indicate its relevance considering that there is evidence of 

other aspects of calcium handling in skeletal muscle being disrupted with age 

(Weisleder et al., 2006). 

 

Expression of ACTB was found to differ significantly between MHN samples and both 

distinct groups of MHS samples (p<0.001, F=4.37, df=2, 47), with expression levels 

in MHS+ and MHS- groups being of a similar level. This is consistent with the finding 

in the previous analysis and suggests that with respect to expression of this gene in the 

MHS groups, is unlikely to be of value in explaining the evident genetic differences 

in conjunction with similar IVCT phenotype. 

 
 

RYR1 was not identified using the model comparison between MHS and MHNs. 

However, when the MHS category was subdivided according to whether the sample 

has a causative RYR1 mutation, and the data re-analysed using a model comparison to 
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highlight genes of interest in relation to age and MH phenotype RYR1 was found to be 

important.  

 

There was a significantly higher level of RYR1 expression was detected in males 

compared to females, p=0.002 (F=8.3, df=1, 47). There was also a significant increase 

in RYR1 expression with increasing age, p=0.0007 (F=10.12, df=1, 47) and as a result 

a significant effect on expression when factoring in age and sex, p=0.02 (F=3.41, df=1, 

47), with a marked increase in expression with age in males compared to females. 

 
 

It could be argued that this significantly higher level of expression in males could 

actually be due to the increased number of older males in this sample (n=39 males, 

n=20 females). The oldest female participants are in their late 40s, whereas the male 

cohort includes individuals spanning a much wider age range (Table 3.1). Indeed, 

there is still an observed increase in expression with age in the female cohort. RYR1 

expression clearly increases with age and this result is consistent with other research 

concerning expression of this gene though the tissue type in question for this study 

was skin (Glass et al., 2013). 

 

The sarcolemmal localisation of nNOS in skeletal muscle is related to the way it 

interacts with the dystrophin glycoprotein complex, which influences the activity and 

distribution of this enzyme in skeletal muscle (Kone, 2000). DTNA1 encodes for 

Dystrobrevin alpha, a component of the dystrophin glycoprotein complex. DTNA 

expression in skeletal muscle was also shown to be of interest in relation to MH 

phenotype and age. There was significantly higher expression in MHS+ muscle 
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compared to MHS-, p=0.04 (F=3.18, df=2, 47). There was also a significant increase 

in expression with increasing age, p=0.0003 (F=12.7, df=1, 47) and a significant 

interaction between the two factors, p=0.03 (F =3.9, df=2, 47). 

 
Dystrobrevin alpha binds to Syntrophin B1 (coded by SNTB1), another molecule in 

this complex. SNTB1 expression also increased with increasing age, p<0.001 

(F=13.02, df=1, 47) and the age-phenotype interaction (p=0.04, F=4.54, df=1, 47). 

There is an increase in expression relative to age in the MHS+ group compared to the 

MHS- group and the increase with age in the MHN group is most consistent with the 

MHS+ group.  

 

The pathways defined by MetaCore are extensive but no means exhaustive, and as a 

result it was considered necessary to test for potential GOIs by other means. In 

addition to carrying out pathway analysis in MetaCore, lists of probesets defined by 

the AIC model comparison process (DAIC-10) as being of potential interest in relation 

to the interaction between MH phenotype and age were also subjected to gene 

functional classification using DAVID. Nineteen probe sets were present in this list 

that belonged to the ‘muscle contraction’ functional group defined by this software 

(Table 3.6). 
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Table 3.6 Probe sets implicated in muscle contraction according to DAVID gene ontogeny 
Affy Probe ID Gene Name 
224528_s_at Kv channel interacting protein 2 
221232_s_at ankyrin repeat domain 2 (stretch responsive muscle) 
226277_at collagen, type IV, alpha 3 (Goodpasture antigen) binding protein 
208430_s_at dystrobrevin, alpha 
217154_s_at endothelin 3 
216235_s_at endothelin receptor type A 
204271_s_at, 204273_at endothelin receptor type B 
228563_at gap junction protein, gamma 1, 45kDa 
230090_at glial cell derived neurotrophic factor 
204763_s_at guanine nucleotide binding protein (G protein), alpha activating activity 

polypeptide O 
209342_s_at inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta 
205826_at myomesin (M-protein) 2, 165kDa 
232871_at myomesin 1, 185kDa 
206394_at myosin binding protein C, fast type 
34471_at myosin, heavy chain 8, skeletal muscle, perinatal 
228414_at potassium large conductance calcium-activated channel, subfamily M, alpha 

member 1 
226660_at ribosomal protein S6 kinase, 70kDa, polypeptide 1 
205485_at ryanodine receptor 1 (skeletal) 
215431_at syntrophin, beta 1 (dystrophin-associated protein A1, 59kDa, basic 

component 1) 
 

Nine probe sets were identified as of interest in the ‘response to calcium ion’ functional group (Table 
3.7). 
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Table 3.7 Probe sets implicated in response to calcium ion according to DAVID gene ontogeny 
Affy Probe ID Gene Name 

224528_s_at Kv channel interacting protein 2 

AFFX-
HSAC07/X00351_3_at 

actin, beta 

212363_x_at actin, gamma 1 

243922_at calcium-sensing receptor 

211985_s_at calmodulin 3 (phosphorylase kinase, delta) 

214475_x_at calpain 3, (p94) 

212097_at caveolin 1, caveolae protein, 22kDa 

202389_s_at huntingtin 

228414_at potassium large conductance calcium-activated channel, subfamily M, 
alpha member 1 

 

It is clear from examining these tables that a number of the genes detected in the pathways shown by 
pathways shown by the MetaCore analysis have come up again such as actin, calmodulin (Nine probe 
sets were identified as of interest in the ‘response to calcium ion’ functional group (Table 3.7). 
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Table 3.7) dystrobrevin alpha, syntrophin beta 1 and the ryanodine receptor (Table 

3.6). This indicates that these genes may be worth following up with additional gene 

expression experiments to investigate genes related to MH phenotype and muscle 

ageing. Other genes were also highlighted, including calpain 3 (CAPN3). This gene 

has been established as coding for a major intracellular protease, though its function 

has not been well established. Calpain 3 has been shown to interact with titin and is 

implicated in limb girdle muscular dystrophy type 2A (Yasuko et al., 1998).  

 

In the array data, CAPN3 expression was significantly reduced in MHS- individuals 

compared to MHN, p=0.02 (F=4.42, df=2, 47). With age, expression of this gene is 

shown to increase significantly, p=0.0001 (F=11.98, df=1, 47). The combined effect 

of age and phenotype on expression of CAPN3 was very highly significant, p=0.0008 

(F=11.87, df=2, 47) whereby there is a clear increase in expression with age in MHN 

and MHS+ individuals but no increase in expression with age in MHS- individuals. 

 

The pattern in the data here could explain the altered expression level evident in the 

MHS- group as this cohort is not shown to have increased expression of CAPN3 with 

age, compared to both the MHS+ and MHN groups. Further analysis of this gene using 

TaqMan® assays on a larger sample set, will help to investigate this interaction and 

the potential role of this gene in MH susceptibility and ageing. 

 

CAV1 encoding for Caveolin 1 was also identified by the DAVID gene ontogeny 

(Table 3.7). It showed significantly decreased expression with increasing age, p<0.001 

(F=10.89, df=1, 47). Caveolin is the main constituent of caveolae which are 

responsible for a number of cellular functions such as vesicular transport and 



 
 

 146 

cholesterol and calcium homeostasis (Mougeolle et al., 2015). These structures also 

constitute a plasma membrane reservoir that is activated under conditions of 

mechanical stress (Sinha et al., 2011). In skeletal muscle, they are specifically 

involved in maintaining the contractile unit of differentiated muscle and also the 

differentiation of myogenic regenerative cells. High oxidative stress results in rapid 

degradation of Caveolin 1 in proliferative mouse myoblasts, leading to impairment of 

endocytosis and a reduction in the ability to adapt to mechanical stress (Mougeolle et 

al., 2015). The reduction in expression of CAV1 with increasing age could be a 

reflection of increased oxidative stress in skeletal muscle that has been indicated in 

impaired caveolae function. However additional experiments such as western blot 

analysis of Caveolin 1 content of skeletal muscle in addition to measurement of 

oxidative stress in older versus younger muscle would be required to support this 

result. 

 

Another gene implicated in the DAVID analysis was KCNA1, which codes for a 

potassium voltage-gated channel. This gene is involved in the regulation of muscle 

contraction at the neurological level and is implicated in episodic ataxia and 

myokymia (D’Adamo et al., 1999). In the muscle samples examined using Affymetrix 

whole genome arrays, expression of KCNA1 was found to differ significantly 

according to the age-phenotype interaction, p<0.01 (F=8.91, df=2, 47). Specifically, 

it decreased with increasing age in the MHN and MHS+ groups but increased with 

increasing age in the MHS- group. This age-phenotype effect on expression suggests 

that it may be a potential GOI in relation to MH phenotype and muscle ageing and 

worthy of follow-up using TaqMan® gene expression assays. 
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3.3.5 TaqMan® assay results 

A total of 22 genes were selected for TaqMan® assay validation, the results of which 

are summarized in table 3.8. 

Table 3.8 Summary of results from TaqMan® assays on selected GOIs 
Gene Sex effect Phenotype effect* Age effect Interactions 
UNC13 Ýin males None Ýwith Ý age Age+Sex 

Greater Ýmales with Ýage 
JUN None None None Age+Sex 

Ýfemales with Ýage 
ßmales with Ýage 

CAV1 None ßin MHS- None None 
DTNA None ßin MHS-# None None 
SNTB1 None None None Age+Sex 

Ýfemales with Ýage 
ßmales with Ýage 
Age+Phenotype 
ÝMHS+ with Ýage 
ßMHS- with Ýage 

CAPN3 None Ýin MHS+ Ýwith Ý age None 
ACTB None None None None 
KCNA1 None None None None 
CHERP None None None None 
CALM1 None None None None 
CASQ1 Ýin males None ßwith Ý age Sex+Phenotype 

ßfemale MHN 
ORAI1 None None ßwith Ý age None 
STIM1 None Ýin MHS- None Age+Sex 

Ýfemales with Ýage 
ßmales with Ýage 

TRPC3 Ýfemales ßin MHS None None 
TRPC6 Ýfemales ßin MHS None None 
PDE1A None ßin MHS- None None 
HSPA4 None None None Age+Sex 

Ýfemales with Ýage 
ßmales with Ýage 

NFKB1 None None None None 
MCU None None ßwith Ý age None 
MICU1 None None Ýwith Ý age None 
SLC25A37 None ßin MHS- None None 
RAD None None ßwith Ý age None 
REM2 None None None None 

*Defined as comparison with MHN unless specified otherwise 

 

UNC13C, while not involved in calcium handling, or even directly involved in skeletal 

muscle function, was identified as the highest ranked gene in the list of important 

probesets in relation to age and MH phenotype in the Affymetrix data (according to 
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AIC model comparison). This gene plays a role in neurotransmitter release by acting 

in synaptic vesicle priming prior to vesicle fusion as well as engaging in the activity-

depending refilling of readily releasable vesicle pool. In addition, it has been 

implicated in Amyotrophic Lateral Sclerosis (ALS), a fatal disease characterised by 

age-related motor neurone degeneration and muscle wasting (Kwee et al., 2012). It 

therefore represents a key component of the neurological control element of skeletal 

muscle function.  

 

There was found to be a significant difference between males and females for 

expression of this gene (p=0.003, F=9.55, df=1, 89), with significantly higher levels 

shown in males. Expression of UNC13C was found to differ significantly with age 

(p<0.001, F=34.63, df=1, 89). Specifically, expression of UNC13C increased with 

increasing age. In addition, when considering the interaction between age and sex, it 

was clear that there was a significant difference between males and females with 

respect to age for expression of UNC13C (p=0.04, F=4.18, df=1, 89).  

 

Alterations in the C. elegans version of this gene (unc-13) have been shown to alter 

lifespan of worms, indicating the importance of synaptic transmission in the control 

of the animal’s lifespan machinery (Shen et al., 2007). Alterations in expression of 

this gene in human ageing could have an impact on the efficacy of synaptic 

transmission, and provide a potential insight into the underlying mechanisms of 

muscle ageing in humans. 

 

Expression of JUN in the TaqMan® muscle samples was found to differ significantly 

according to the interaction between sex and age, p=0.05 (F value=2.87, df=1, 98). 
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Across the span of ages, the overall expression of this gene in male samples decreases, 

whereas in female samples expression increases. This result is evidently different from 

the expression profile outlined in the Affymetrix data that previously highlighted this 

gene as being of interest in relation the MH phenotype and age (Figure 3.4 and Figure 

3.9). There is still an age effect but in this cohort of samples it appears to also be 

related to gender differences in expression. These gender differences are only evident 

in conjunction with age, suggesting age-related, sex-specific changes in expression of 

JUN in skeletal muscle. It could be of importance in explaining the alteration in 

skeletal muscle that appears to be more related to gender differences compared to 

overall structural and functional compromises. 

 

CAV1 expression was significantly lower in the MHS- samples compared to the 

MHS+ in the TaqMan® assays, p=0.05 (Tukey test). The level of expression in MHS 

samples when the MHS+ and MHS- groups are combine is not shown to be 

significantly different from MHN samples. There is also no significant difference in 

expression between MHN and either of the MHS groupings when they are considered 

separately. However, the evidence of significantly lower expression in the MHS- 

group compared to MHS+ samples, suggests that expression of this gene could be 

related to manifestation of MH episodes in the absence of causative RYR1 variants. 

This claim would have to be followed up with functional analysis and determination 

of the altered gene expression consequences at the protein level.  

 

In the Affymetrix array data, expression of this gene was found to decrease with 

increasing age, however this was not supported in the samples tested using TaqMan® 

assays for the same gene. Expression of DTNA was also significantly reduced in MHS- 
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samples compared to MHS+ samples, p=0.002 (Tukey test). This expression pattern 

is similar to that of CAV1, though DTNA is expressed at a lower level. This reduction 

in expression in the MHS- group was also observed in the Affymetrix cohort. 

However, the additional reduction in expression with age shown in the Affymetrix 

data set was not seen in the TaqMan® assays. This could be attributed to the increased 

sample size in the TaqMan® cohort, with the greater range of ages actually reducing 

the age effect that was observed previously. This gene has been shown to have a role 

in other muscular dystrophies. The results here indicate a potential role for DTNA in 

the manifestation of the MHS phenotype in individuals lacking a causative mutation 

in RYR1. 

 

Expression of STNB1 was found to differ significantly according to the age-sex, 

p=0.02 (F=3.67, df=1, 98) and age-MH phenotype interaction, p=0.009 (F=8.51, df=2, 

98). Overall expression of this gene was detected at a low level, especially compared 

to the levels identified in the Affymetrix arrays. This could be related to the sensitivity 

of the TaqMan® assay compared to the Affymetrix array being reduced. 

 
SNTB1, along with DNTA, is an important component of the dystrobrevin glycoprotein 

complex. Alteration of this complex is implicated in Duchenne Muscular Dystrophy 

(DMD). It appears from the results of this analysis that STNB1 may also have a role 

in ageing and MH. 

 

Expression of CAPN3 was significantly elevated in MHS+ samples compared to 

MHN, p=0.018 (F=2.98, df=2, 98). There was also shown to be a significant increase 

in expression with age, p=0.011 (F=4.31, df=1, 98). 
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This gene has been implicated in the neuromuscular disorder calpainopathy, which is 

autosomal recessive (Yasuko et al., 1998; Burke et al., 2010; Liewluck & Goodman, 

2012). Patients with calpainopathy typically exhibit the first symptoms during 

childhood and are wheelchair bound by their early 40s (Burke et al., 2010).  It is 

apparent from these results that expression differences of this gene may be implicated 

in the manifestation of MH and distinctly in the process of skeletal muscle ageing. 

 

ACTB expression was also investigated using TaqMan® assays on the 108 skeletal 

muscle cDNA samples identified for this process. In the Affymetrix data, this gene 

was found to have decreased expression in both MHS+ and MHS- groups, however in 

this data there was no significant difference found in expression of this gene between 

the different MH phenotype groups, nor for sex, age or any combination of the factors.  

 

Expression of KCNA1 determined using TaqMan® was not found to differ 

significantly according to any of the variables examined. This is in contrast to the 

result from the Affymetrix data where a significant effect of age-MH phenotype was 

found.  

 

Additional cohorts of genes were investigated using TaqMan® assays. Impaired 

calcium handling in skeletal muscle is of relevance to muscle ageing (Weisleder et al., 

2006; Zhao et al., 2008) as well as the pathophysiology of MH (Duke et al., 2010) and 

other myopathies related to RYR1 mutations (Dirksen & Avila, 2004).  

CHERP encodes the calcium homeostasis endoplasmic reticulum protein and is 

identified as a potential gene of interest based on its interaction with RYR1 (Ryan et 

al., 2011). It has also been indicated to play a role in ageing (Puzianowska-Kuznicka 
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& Kuznicki, 2009) therefore it was considered to be of potential interest in relation to 

skeletal muscle ageing and MH. CALM1 encodes the protein calmodulin that has a 

high affinity for calcium and is involved in signal transduction and the synthesis and 

release of neurotransmitters. It was also highlighted in the Affymetrix data analysis as 

having significantly increased expression with age and significantly lower expression 

in MHS patient muscle samples compared to MHNs. However, in the cohort analysed 

using TaqMan® gene expression assays no significant difference was found in 

expression of either CHERP or CALM1 for age or MH status or the combined effect 

of these variables. This could be due to the use of a different cohort of samples. The 

TaqMan® assays were performed on a much larger sample set (n=108), almost double 

that used in the Affymetrix arrays on skeletal muscle (n=59).  

 

CASQ1 is a gene of interest identified by the Leeds MH unit. It encodes calsequestrin 

which is involved in the process of excitation-contraction coupling in skeletal muscle 

(see 1.1.2 for full details) (Beard et al., 2004). Differences in expression levels of this 

gene with age could provide some insight into the mechanisms affecting EC-coupling 

in ageing. Expression levels of CASQ1 was found to differ significantly between males 

and females, p=0.003 (F=9.06, df=1, 95).   

 

No significant difference was found between the mean expression levels in each group 

of MH phenotype however, following simplification of the linear model (simplified 

model: Expression~Age+Sex+Status+Sex:Status) and ANOVA on the simplified 

model, there was found to be a significant difference in expression levels of CASQ1 

when considering interaction between sex and MH status, p=0.043 (F=3.24, df=2, 
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100). This gene was found to differ significantly according to age (p=0.01, F=6.28, 

df=1, 100) with expression levels decreasing with increasing age. 

 

Calsequestrin is responsible for binding to calcium in the SR and therefore is 

inherently related to the level of calcium available for muscle contraction. Earlier work 

using mouse models for muscle ageing did not identify altered expression levels of 

CASQ1 in relation to age (Narayanan et al., 1996). However, more recent proteomic 

analysis of mouse muscle has shown differential expression of calsequestrin in aged 

mice, suggesting a potential role in muscle ageing (Hwang et al., 2014). This indicates 

that there is a clear conflict in the literature regarding the role of this gene in muscle 

ageing and this result could form the foundation for more investigation into its part in 

this process. 

 

STIM1 encodes stromal interactin molecule 1 (Jungbluth et al., 2004). It acts as a 

calcium sensor in the SR, upon detecting a decrease in calcium concentration is 

activates Orai1 calcium channels in the plasma membrane, to increase intracellular 

calcium concentration. This process is termed ‘store-operated calcium entry’ (SOCE) 

and is described in detail in section 1.1.4. It has been suggested that SOCE limits 

fatigue in aged skeletal muscle fibres and in addition, increased SOCE has been 

proposed as contributing towards Ca2+ dysregulation in MH (Lyfenko & Dirksen, 

2008). Based on its involvement in SOCE ORAI1 (encoding for Orai1 calcium 

channels) was also identified as a potential gene of interest. TRPC3 and TRPC6 encode 

transient receptor potential cation channel subfamily 3 and 6 respectively. They also 

play a role in calcium handling in skeletal muscle. They are involved in ‘receptor-
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operated calcium entry’ (ROCE) and have been found to interact with STIM1 

(Horinouchi et al., 2012).  

 

ORAI1 expression levels were also found to differ significantly with Age (p<0.001, 

F=16.02, df=1, 100). As age increases, expression levels of this gene are shown to 

decrease. There was no significant difference in expression levels between males and 

females, or between individuals with different MH phenotypes. 

  

STIM1 expression was found to differ significantly between individuals of different 

MH Status, p=0.049 (F=4.39, df=2, 100).  There is increased expression of this gene 

in the MHS- group compared with MHN. This suggested the potential role for this 

gene in the manifestation of MH, particularly in individuals that do not exhibit a 

variant in RYR1 that is causative of the condition. Expression of STIM1 also differed 

according to the age-MH status interaction, p=0.018 (F=4.79, df=2, 100), with 

evidence of a slight increase in expression with age in MHN samples, compared to a 

clear decrease in expression in both MHS+ and MHS- samples. 

 

Expression of TRPC3 was found to differ significantly between males and females 

(p=0.029, F=4.38, df=1, 100), with increased expression in females. There was no 

significant difference found in expression level of TRPC3 according to age of the 

patients tested. TRPC3 expression was found to differ significantly according to MH 

status, p=<0.001(F=9.87, df=2, 100). 

  

There is greater expression of this gene in the MHN group, compared with 

MHScombined and MHS- groups. The lowest mean expression levels are 
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demonstrated in the MHS- group and were significantly lower than the level found in 

the MHS+ group. This indicates the potential value of this gene as being involved in 

MH, particularly in individuals lacking a causative variant in RYR1. Additional work 

to investigate the potential consequences of this altered expression profile would be 

required to support this. Expression levels of TRPC6 were found to differ significantly 

according to sex, p=0.043 (F=4.31, df=1, 100).  

 

PDE1A expression in MHS- skeletal muscle was significantly lower than expression 

in MHN muscle, p=0.03 (F=3.89, df=2, 95) but no difference in expression in MHS+ 

muscle. A similar pattern of expression of this gene was observed in the Affymetrix 

samples, though the results showed greater significance. There is potential for this 

gene to be involved in the pathophysiology of MH, specifically with regards to those 

individuals that test positive in the IVCT but do not carry a causative RYR1 variant. 

 

HSPA4 (also named HSP70) encodes heat shock 70kDa protein 4. The ability of cells 

to induce heat shock proteins is found to be reduced in aged individuals (Boncompagni 

et al., 2009). This heat shock protein belongs to heat shock protein (HSP) family A, a 

family that has been identified as having a possible role in ageing of skeletal muscle 

(Broome et al., 2006). This study specifically focused on the reduced capacity for aged 

mice to produce HSPs in response to stress. It was also indicated that old wild type 

mice became unable to activate nuclear factor kappa B (NF-kB encoded by NFKB1) 

after contractions, compared to adult wild type mice (Broome et al., 2006). In humans, 

one study has shown that protein concentrations of NF-kB is fourfold higher in elderly 

muscle compared to young muscle (Cuthbertson et al., 2005). Despite this observation 
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there has been no investigation of the exact mechanism of how NF-kB might be 

involved in ageing muscle (Mourkioti & Rosenthal, 2008).  

 

Expression of NFKB1 was not found to differ significantly according to age, sex, MH 

phenotype or any interaction between these factors. Expression of HSPA4 was found 

to differ significantly according to an interaction between age and sex, p<0.05 

(F=3.57, df=1, 95).  

 

In males, expression of this gene decreases with age, whereas in female samples 

expression appears to slightly increase. No alteration in expression was detected 

between MHN and MHS groups. Up regulation of HSPA4 is part of a highly 

coordinated stress response that limits the stress induced rate of cellular degeneration 

and as a result prevents muscular atrophy (Chung & Ng, 2006). Impairment of this 

response it thought to be involved in age-related contractile deficits (McArdle et al., 

2004). Indeed, mice that overexpress HSPA4 are partly protected from fibre 

degeneration (Broome et al., 2006). The pattern observed in the male samples 

indicates that decreased expression of HSPA4 is evident in individuals of increased 

age, suggesting that in older muscle there is impairment of the stress response that 

mediates muscle atrophy. However, this profile is not observed in the female samples 

indicating there may be sex specific differences in muscle ageing relative to the stress 

response.  

 

EC coupling at calcium release units (CRUs) is essential for skeletal muscle function. 

Impaired EC coupling in aged skeletal muscle leads to a reduced supply of calcium 

ions available for the contractile elements and results in reduced specific force during 
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contraction (Delbono et al., 1995). Alteration in mitochondrial structure, function and 

number are implicated in muscle ageing (Trounce et al., 1989; Shigenaga et al., 1994; 

Balaban et al., 2005; Peterson et al., 2012). These types of deficits are also observed 

in murine models of MH, with Y522S mice exhibiting swollen and misshapen 

mitochondria (Durham et al., 2008) and evidence of compromised oxidative 

phosphorylation in R163C mice mitochondria (Giulivi et al., 2011).  

 

CRUs and mitochondria are functionally linked via Ca2+ and reactive oxygen species 

(ROS) (Rossi et al., 2009; Eisner et al., 2013). This is demonstrated by the uptake of 

a small fraction of Ca2+ ions, released during EC coupling, into the mitochondrial 

matrix (Baughman et al., 2011). Three genes, two involved in mitochondrial calcium 

handling (MCU and MICU1) and one (SLC25A37) involved in oxidative 

phosphorylation were identified for investigation using TaqMan® assays.  

 

MCU encodes the mitochondrial calcium uniporter. MICU1 encodes mitochondrial 

calcium uptake protein 1. It is a key regulator of the mitochondrial calcium uniporter 

which acts to inhibit calcium uptake when the concentration of calcium in the 

cytoplasm is low (Csordas et al., 2013). It has been identified as a potential gene of 

interest bases on its role in the mitochondria and how this may be affected with age 

(Pietrangelo et al., 2015). Mutations in MICU1 are implicated in a muscle disorder 

lined to impaired mitochondrial calcium signalling (Logan et al., 2014). Expression 

of MCU was found to significantly increase with increasing age, p<0.001 (F=11.87, 

df=1, 95). 
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Expression levels of MICU1 were found to differ significantly according to age 

(p=0.001, F value=9.56, df=1, 100). As age increases there is a decrease in expression 

of this gene. There was no significant difference detected between individuals of 

different MH status or between males and females for either MCU or MICU1 

expression. 

 

Handling of calcium by mitochondria is crucial to effective mitochondrial function. It 

has been shown that excessive calcium levels can be damaging to mitochondria and 

lead to mitochondrial fragmentation (Finkel et al., 2015). Overexpression of MCU has 

recently been shown to protect against denervation-induced muscle atrophy, 

indicating that modulation of mitochondrial calcium uptake may be a means to 

preventing loss of muscle mass (Mammucari et al., 2015). The increased expression 

of this gene found here could be the result of an increased age-related demand, coupled 

with the decreased expression of MICU1 and may show that regulation of this complex 

is deteriorating with age despite increased expression of the gene itself. A better 

understanding of the exact mechanism would require more experiments at the protein 

level to determine if the increased gene expression translates to increased protein 

expression, to ascertain the impact of this altered gene expression on muscle ageing. 

 

Expression of SLC25A37 was significantly lower in MHS- individuals compared to 

MHN and MHS+ (p<0.01, F=8.71, df=2, 95). When the MHS cohort was combined, 

no significant difference is observed.  

 

Impaired EC coupling has been associated with the age related reduction in the number 

of L-type channels in the muscle cell plasma membrane (Wang et al., 2000). A 
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potential link between compromised EC coupling and oxidative stress (an age-

dependent cellular signal) is the RGK family of G proteins, including Rad and Rem2, 

because Rad expression is increased in response to oxidative stress in skeletal muscle 

and over-expression of Rem imitates excitation contraction uncoupling (Sumner et al., 

2013). More recent work has identified that members of the RGK family inhibit L-

type calcium channels, with Rad doing so via voltage-sensor limitation and Rem 

supporting inhibition through a mechanism that allows for translocation of Cav1.1’s 

voltage sensors (Beqollari et al., 2014). RAD and REM2, two of the genes from the 

RGK family were chosen for investigation using TaqMan®. Expression levels of RAD 

were found to differ significantly according to MH status, p=0.007 (F=6.98, df=2, 95). 

Expression of RAD was also found to differ significantly with age, p=0.004 (F=4.86, 

df=1, 95), with an apparent decrease in expression of the gene with increasing age. 

Expression of REM2 in this cohort was not found to be significantly different for any 

of the factors considered in the analysis. 

 

These results highlight that the significant difference is found when comparing the 

MHS- group to the MHN and MHS+ groups, p<0.05 for both comparisons. This result 

is indicative of the genetic complexity associated with MH. For expression levels of 

this gene to differ so significantly between the MHS+ and MHS- groups, suggests that 

there might be other genetic factors involved in the manifestation of the condition.  

 

Expression of RAD is significantly reduced in the MHS- cohort. As increased 

expression of this gene is shown to be related to oxidative stress, it could be the case 

that oxidative stress is less of a feature in individuals susceptible to MH but with no 

mutation in RyR1.  
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3.3.6 Summary discussion of gene expression in skeletal muscle in the context of 

ageing and MH phenotype 

Affymetrix data was analysed to devise a list of genes of interest in relation to MH 

status and age in skeletal muscle. These genes were also analysed using TaqMan® 

assays in order to validate the result from the array data (Table 3.9). 

Table 3.9 Summary of results from Affymetrix array data on GOIs 
Gene Sex effect Phenotype effect* Age effect Interactions 
UNC13 Ý in males None ß with Ý age None 

JUN None ßin MHS+ ß with Ý age Age:Phenotype 
No ß with Ý age in MHS- 

CALM1 None None Ý with Ý age None 

ACTB None ßin MHS+ and MHS- None None  

DTNA None ßin MHS – compared 
to MHS+ 

Ý with Ý age Age:Phenotype 
No Ý with Ý age in MHS- 

SNTB1 None None Ý with Ý age Age:Phenotype 
No Ý with Ý age in MHS- 

CAPN3 None ßin MHS- Ý with Ý age Age:Phenotype 
No Ý with Ý age in MHS- 

CAV1 None None ß with Ý age None 
KCNA1 None None None Age:Phenotype 

Ý with Ý age in MHS- 
*Defined as comparison with MHN unless specified otherwise. Green shading denotes where 
TaqMan® result was consistent with result from Array data, red shading denotes where TaqMan® 
result was not consistent with Array data. 
 

It is clear that not all results were confirmed by the TaqMan® validation. This could 

suggest that the method of selecting the genes of interest from the array data was not 

ideally suited to this process. The gene that showed the most consistent results when 

validated using TaqMan® was UNC13. This gene was ranked as having the largest 

AIC difference (ΔAIC -49) in the model comparison, indicating that it may have been 

better to choose a larger AIC cut off than -10 to avoid falsely including genes that 

were showing age-phenotype expression differences. 
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Only two pathways of the 881 identified from the list of genes defined as being 

important in relation to MH phenotype were comprehensively interrogated in this 

chapter. The Affymetrix data represents a wealth of information and could be analysed 

further to explore additional genes of interest with a specific focus on MH. One avenue 

that has not been explored in the analysis of the array data is network analysis (Schäfer 

& Strimmer, 2005; Lowes et al., 2017). This would involve quantitative modelling of 

the direct interactions between genes, and has the potential to highlight a number of 

different features such as sub-groups, interrelated groups and the density (the extent 

of the connections within the group) of the gene network (Nair et al., 2014). This 

method would be valuable for exploring other aspects of genetic complexity that are 

associated with MH susceptibility, such as relationships between genes responsible 

for calcium handling in skeletal muscle, rather than simply examining them in 

isolation. 

 

Many of the major differences in gene expression in the groups with different MH 

phenotypes were related to differences in expression between the MHS+ and MHS- 

groups. The distinction between MHS+ and MHS- is specifically related to whether 

(MHS+) or not (MHS-) a causative, diagnostic variant in RYR1 has been identified. 

The process of determining presence of an RYR1 variant has been augmented over the 

course of this project and since many of the samples were identified. Initially, the 

process involved determining whether an individual was from a family carrying a 

diagnostic variant in RYR1 and subsequently screening for that variant. Samples with 

no family history of a diagnostic variant were also sequenced for a panel of diagnostic 

variants (varying between 5 and 13 depending on sample and timing). More recently 

samples with no detected diagnostic variant are sent for next generation sequencing of 
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RYR1 and CACNA1S and for research purposes samples are also processed using 

Haloplex to determine novel variants in a panel of 50 candidate genes including RYR1 

and CACNA1S.  It is possible that with further characterisation of RYR1 variants that 

the classification used here may no longer be of value or meaningful. 

 

The MHS- samples in the Affymetrix data (n=18) were identified and processed in 

2007. Five have family members with the 7300G>A variant (the most common 

associated with MH in the UK population) but in these individuals that variant was 

not found. Three have none of the diagnostic RYR1 variants and have since been 

screened using Haloplex. The remaining (n=10) are from families with no causative 

variant, three are from families with a non-functionally characterised RYR1 variant 

that was not identified and the remaining seven are from families with no variant in 

RYR1 detected through sequencing of the gene.  

 

Of the MHS- samples in the TaqMan® data (n=22), 13 are from families with no 

causative variant that have been screened for the diagnostic RYR1 mutations with no 

further follow up. Three have been assigned to screening with Haloplex and have, 

since this project started, had uncharacterised novel variants identified in CACNA1S. 

The remaining six samples have had RYR1 and CACNA1S screened using NGS with 

no variants in either gene found. It is clear that the MHS- category is somewhat 

arbitrary due to the underlying genetic complexity of the samples. Despite no evidence 

of a diagnostic variant, it is possible that many have another, as yet uncharacterised 

variant that may be causative of MH. It is also important to acknowledge the genetic 

complexity of the MHS+ category. Despite all exhibiting a diagnostic RYR1 variant, 

these have been shown to have a range of reaction severities in the IVCT (Carpenter 
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et al., 2009b). It could be argued that individuals with different variants may exhibit 

different expression profiles. An ideal experiment would utilise a specific variant in 

RYR1 that is known to be causative of MH and this serve as the basis for comparison 

with a group that definitively does not have that variant or any others, providing a 

scenario whereby the variables for all other variants are controlled.  

 

The methods used in this chapter represent only a small number of ways to investigate 

differential gene expression in skeletal muscle. The Affymetrix data was obtained in 

2008, with more recent developments in next-generation sequencing, RNA-Seq is 

perhaps a more exhaustive means of investigating differential expression.  This 

technique uses largely the same sample preparation methods as Affymetrix arrays, 

however also provides the full sequence information for the samples processed. This 

would enable investigation of novel variants alongside differential gene expression. 
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4 Basal oxidative phosphorylation and expression of genes implicated in 

mitochondrial dysfunction in malignant hyperthermia and in the context of 

ageing 

 

4.1 Introduction 

Normal skeletal muscle contraction is dependent on calcium and ATP and is therefore 

reliant on effective function of calcium channels and their associated proteins as well 

as mitochondria. This chapter focuses on the role of mitochondria in ageing and RYR1 

related myopathies. It will also examine changes in expression levels of genes 

involved in mitochondrial dysfunction that have been implicated in human ageing. 

 

4.1.1 Mitochondrial energy metabolism 

Mitochondria are the cellular powerhouse, responsible for the producing the majority 

of ATP required to drive cellular functions that require energy. In skeletal muscle these 

functions include EC coupling and subsequently cross-bridge cycling (summarised in 

detail in chapter 1.1) and active calcium transport (Pietrangelo et al., 2015). When EC 

coupling is impaired (a feature of aged and myopathic muscle) there is reduction in 

the supply of calcium ions to the skeletal muscle contractile apparatus, resulting in 

reduced specific force (Delbono et al., 1995).  

 

Oxidative phosphorylation (OXPHOS) is the pathway through which mitochondria 

generate ATP and is reliant upon the electron transport chain (ETC) (Bratic & 

Trifunovic, 2010) (). The ETC is a series of complexes (I-IV) that transfers electrons 
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from electron donors to electron acceptors. The complexes couple this electron 

transfer with the transfer of protons across the inner mitochondrial membrane. The 

substrates required for this process (NADH and FADH2) are formed during glycolysis, 

fatty-acid oxidation and the citric acid cycle. These substrates donate electrons to the 

ETC. These functionally coupled complexes are located in the mitochondrial inner 

membrane (MIM). As the electrons are transferred through the ETC, protons (H+) are 

driven across the MIM at three of the ETC complexes (I, III and IV) (Mailloux & 

Harper, 2012). This proton flux generates kinetic energy that is harnessed by complex 

V, driving the generation of ATP. 

 
Figure 4.1 Schematic of mitochondrial oxidative phosphorylation (OXPHOS) (adapted from, Koopman 
et al., 2013). Five multi-subunit complexes comprise OXPHOS system residing in the mitochondrial 
inner membrane (MIM): Complex I-NADH dehydrogenase, Complex II-Succinate dehydrogenase, 
Complex III-cytochrome C reductase, Complex IV- cytochrome C oxidase and Complex V-ATP 
synthase. Complex I and Complex II oxidise NADH and FAH2 respectively. Electrons are derived from 
oxidation of these compounds and transported to the Q junction (electron carrier Q10). Electrons are 
transported from Complex III via cytochrome-C. Complexes I-IV make up the electron transport chain 
(ETC). The energy derived from the flow of electrons through the ETC establishes an electrochemical 
gradient via the efflux of H+ ions from the matrix across the MIM into the inter membrane space 
(IMS)(occurring at Complex 1, III and IV). Flow of H+ ions back into the matrix is coupled to ATP 
generation by Complex V, each ATP molecule produced requires the Complex V mediated backflow 
of 2.7 H+ ions (Watt et al., 2010). 
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Complex I oxidises NADH. NADH is produced through the tricarboxylic cycle, 

decarboxylation of pyruvate and β-oxidation of fatty acids. Through this oxidation 

rection electrons are donated to Co-enzyme Q10 (CoQ10,) (shown in Figure 4.1 as ‘Q’). 

This complex is the largest in the ETC, initially appearing to consist of 45 subunits 

(Carroll et al., 2006) though more recently it has been proposed that one of the 

subunits (NDUFA4) actually appears to be a component of complex IV (Balsa et al., 

2012).  It is organised into a lipophilic arm, embedded in the MIM, and a hydrophilic 

arm that protrudes into the matrix, resulting in an L-shaped structure (Clason et al., 

2010). Complex II (succinate dehydrogenase), like Complex I, has a region that 

protrudes into the matrix that oxidises FADH2, transferring the released electrons to 

CoQ10, and a region embedded in the MIM that catalyses succinate into fumarate 

(Brière et al., 2005). CoQ10 can receive electrons donated by other enzymes (Koopman 

et al., 2010). 

 

The convergent electron flux through complex I and complex II is received by 

complex III (Cytochrome C reductase) via CoQ10. Cytochrome C (shown as ‘C’ in 

Figure 4.1) transfers electrons from complex III to complex IV (cytochrome C 

oxidase) where the electrons are donated to O2 to form H2O. Approximately 95% of 

inspired oxygen in humans is consumed by complex IV (Ferguson-Miller et al., 2012). 

At complexes I, III and IV the energy released by the electron transport drives the 

efflux of protons (H+) through the MIM, resulting in a trans-MIM proton motive force 

consisting of an electric charge and pH difference across the MIM (Mailloux & 

Harper, 2012, Figure 4.1). This energy is coupled to the formation of ATP from ADP 

and inorganic phosphate (Pi) at complex V (ATP synthase). Complex V is a molecular 

machine consisting of two components, one that can utilise the proton motive force to 
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generate ATP and one that can use ATP to fuel the transport H+ across the MIM 

(Okuno et al., 2011; Watanabe et al., 2011). 

 

4.1.2 Alterations in mitochondrial content and function 

The pathophysiology of MH is notably complex in a manner that is also evident in 

skeletal muscle ageing. Alterations and abnormalities in the mitochondria of skeletal 

muscle may provide insight into these complexities.  

 

Mitochondria in healthy skeletal muscle exist as two distinct subpopulations, one 

localised within a few microns of the plasma membrane (subsarcolemmal) and the 

other found within the myofibril distributed along the contractile proteins (Lanza & 

Nair, 2010). The ability to sustain muscular work during contraction is directly related 

to the volume and density of the mitochondria (Chance et al., 1985). Mitochondrial 

content has been shown to decrease with age (Conley et al., 2000; Welle et al., 2003; 

Menshikova et al., 2006), and it is posited that this reduction holds partial 

responsibility for the age-related declines in skeletal muscle function. 

 

Altered mitochondrial content is also a feature of certain myopathies associated with 

RYR1 variants, such as central core disease. CCD is characterised histologically by 

regions of muscle fibres that lack mitochondria (Dubowitz & Pearse, 1960). Knocking 

out calsequestrin in mice has also shown that this causes core formation with a similar 

presentation to those shown in CCD (Paolini et al., 2015). It is also important to note 

that in the calsequestrin null mice, the cores were primarily observed in old mice (14-

27 months) and more rarely seen in age-matched WT mice (Paolini et al., 2015). Cores 

are a feature of skeletal muscle from individuals expressing the Y522S mutation in 
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RYR1 that is implicated in MH and CCD (Chelu et al., 2006). These cores are a striking 

feature of some, but not all MH-inducing mutations, begging the question of why this 

discrepancy? It has been proposed that the cores may be the result of chronically 

elevated calcium resulting in damage to the mitochondria (MacLennan & Zvaritch, 

2011) or potentially caused by increased oxidative/nitrosative stress by reactive 

oxygen and nitrogen species (Durham et al., 2008; Lanner et al., 2012; Manno et al., 

2013). 

 

Cores are notably not present in all myopathic muscle or indeed in all aged muscle, 

therefore other factors altering mitochondrial function must be investigated. It was 

first suggested in 1971 that the uncoupling of OXPHOS could aid in explaining the 

metabolic disturbances observed in MH (Wilson et al., 1971). This has since been 

demonstrated in the R163C mouse model, reporting altered bioenergetics in skeletal 

muscle from these rodents under normal conditions (Giulivi et al., 2011). Maximal 

respiratory capacity has shown to be compromised in T4826I mice (Yuen et al., 2012). 

These models have not been examined in the context of ageing. There have been some 

rodent studies simply examining age-related uncoupling of OXPHOS, though the 

results are contradictory. Some have demonstrated increased mitochondrial efficiency 

with age (Iossa et al., 2004), whereas others show reduced coupling in aged mice using 

an in vivo approach (Marcinek et al., 2005). Data for human tissue OXPHOS and 

ageing is limited (Peterson et al., 2012), studies have shown that ATP turnover is 

lower in elderly compared to young adults (Johannsen et al., 2012) supporting earlier 

work indicating uncoupling of mitochondrial function with age (Amara et al., 2007).  
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There is clearly a picture of potential similarities between the basal metabolic rates of 

myopathic and aged muscle with respect to mitochondrial function. Further 

investigation is needed to better understand these aspects and how they may interact. 

This chapter aims to investigate the potential for compromised OXPHOS capacity in 

MH skeletal muscle, in the context of age, MH status and sex. Additionally, age-

related changes in gene expression will be considered using a panel of genes 

implicated in mitochondrial dysfunction and ageing. 
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4.2 Materials and Methods 

4.2.1 Sample information 

Excess tissue from patient muscle biopsies from the IVCT was subjected to high-

resolution respirometry (HRR) to evaluate oxidative phosphorylation capacity. The 

samples comprise a ~5cm long by 1cm wide by 0.5cm thick section of vastus medialis 

muscle obtained from a patient under local anaesthesia by a member of the MH 

diagnostic team. The HRR titration protocol is outlined in section 4.2.3. Muscle 

biopsies are conducted by the Leeds MH group on a weekly basis with the typical aim 

of processing 3 patients each week. Of those 3 weekly patients, a total number of 90 

patients had excess muscle biopsy tissue which was made available for HRR over the 

course of this project (Table 4.1).  

Table 4.1 Sample information for muscle biopsies used in mitochondrial respirometry assays 
Sex Male Female 

MHN 18  
(11-83)* 

45  
(12-66)* 

MHS 17  
(12-71)* 

10  
(14-46)* 

*Age ranges in years are displayed in bracket 
 

The use of excess muscle tissue is covered by the ethical approval assigned to the MH 

diagnostic unit and all patients have the option to opt-out of their muscle biopsy 

material being used for additional scientific research (Appendices A and B).  

 

The first 30 samples were processed using a simplified version of the HRR protocol, 

where complex IV activity was not quantified. This only permits for normalisation 

using the flux control ratio (full details in 4.2.4). The remaining 60 samples were 

processed using the full protocol allowing for normalisation with the flux control ratio 

(FCR) and calculation of % maximum OXPHOS capacity. Therefore 90 samples were 
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used in the flux control ratio normalisation and 60 were used in the % maximum 

OXPHOS capacity normalisation (Table 4.2). 

Table 4.2 Sample information according to different normalisation processes 
Normalisation FCR %MAX OXPHOS 

Sex Male Female Male Female 
MHN 18 

(11-83)* 
45 

(12-66)* 
15 

(11-83)* 
28 

(12-65)* 
MHS 17 

(12-71)* 
10 

(14-46)* 
11 

(12-71)* 
6 

(20-61)* 
*Age ranges in years are displayed in brackets 
 

I carried out storage and transportation of all samples. Dr John Boyle completed initial 

HRR processing in 2013-2014 processing approximately 40 samples, as I was 

occupied with attempts to devise muscle energetics experiments during this time. I 

then took over HRR processing in 2015 and processed the remaining samples. I 

completed all data handling, normalisation and statistical analysis for all the samples 

processed. Data obtained by me and Dr Boyle was compared to establish any 

significant differences that might be related to different experimenters but no 

difference was observed. As such, the data was combined. 

 

Tissue from patients undergoing IVCT is also routinely stored for RNA extraction by 

the Leeds MH group. Additional tissue samples from patients subjected to HRR in this 

chapter also underwent TaqMan® gene expression analysis (detailed in section 4.2.6). 

14 samples that underwent mitochondrial HRR did not have additional muscle tissue 

available for RNA extraction, therefore a subset of available samples was processed 

(Table 4.3). 

Table 4.3 Sample information for TaqMan® gene expression analysis. 
Sex Male Female 

MHN 15  
(11-83)* 

37  
(12-66)* 

MHS 15 
(12-71)* 

9  
(14-46)* 

*Age ranges in years are displayed in brackets 
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4.2.2 Sample handling and preparation 

During storage and transportation, muscle samples (vastus medialis) were kept in 1ml 

BIOPS solution (2.77mM CaK2EGTA + 7.23mM K2EGTA, 0.1µM free calcium, 

20mM imidazole, 20mM taurine, 50mM K+-MES, 0.5mM dithiothreitol, 6.56mM 

MgCl2, 5.77mM ATP, 15mM phosphocreatine, at pH 7.1) in a 1.5ml eppendorf tube 

on ice. Dissection of the muscle sample was carried out under a light microscope at 

x3 magnification, on ice in chilled BIOPS, using fine forceps. Any dead tissue 

(apparent as pale in appearance, healthy muscle tissue is red) was removed along with 

any non-muscle tissue (such as capillaries, connective tissue and adipose tissue) 

attached to the sample. The sample was dissected until individual fibre bundles were 

visible (Figure 4.2). 

 
Figure 4.2 Example of dissected muscle biopsy sample showing small fibre bundles. 

 

Following dissection, the sample was placed into 1ml fresh BIOPS in a 1.5ml 

eppendorf tube and chemically permeabilised using saponin (50µg/ml). Saponin acts 

as a detergent that selectively permeabilises the sarcolemma while retaining the 

structural integrity of the inner and outer mitochondrial membranes as well as other 

extracellular components (Figure 4.3).  
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Figure 4.3 Effect of saponin on muscle tissue. A: schematic of an aspect of the muscle cell depicting 
the intact plasma membrane (sarcolemma) with saponin added the extracellular matrix. B: schematic 
of how saponin selectively binds to cholesterol in the plasma membrane creating pores that permit 
addition of compounds that can interact with the still intact mitochondria (adapted from, Kuznetsov et 
al., 2008). 
 

This makes the mitochondria accessible to subsequent titrations of exogenous 

components while best preserving their in vivo state (Kuznetsov et al., 2008). 

Procedures that involve isolation of mitochondria have a number of disadvantages, 

including; requiring large quantities of cells or tissue for optimal yield (Frezza et al., 

2007), introducing defects in normal mitochondrial properties (Piper et al., 1985) and 

altering normal mitochondrial interactions (Saks et al., 1998; Milner et al., 2000). 

Dissected fibre bundles were then blotted using filter paper to remove excess BIOPS 

and wet weight determined prior to conducting respirometry. 
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4.2.3 High-resolution respirometry 

A high-resolution respirometer (HRR), Oxygraph-2k (Oroboros Instruments, 

Innsbruck, Austria) with two 2ml chambers was used ( S). This permitted 

simultaneous duplicate measurements of the same sample. Chambers were filled with 

2.2ml mitochondrial respirator media (MiRO5) (0.5mM EGTA, 3mM MgCl2, 60mM 

K+-lactobionate, 20mM taurine, 10mM KH2PO4, 20mM HEPES, 110mM sucrose, and 

1g/L bovine serum albumin at pH 7.1). Calibration of respirometers with MiRO5 and 

at air saturation was conducted daily.  

 

Respiratory states were induced by sequential titration of substrates, inhibitors and 

uncouplers to the closed chambers by Hamilton microsyringe. A Peltier temperature 

controller maintained chamber temperature at 37°C for the duration of experiments. 

Oxygen levels were maintained in the normoxic range (~150µM) by reoxygenation 

via syringe.  

 

First, NADH-related substrates were added to stimulate complex I respiration (10mM 

glutamate, 1mM malate, 5mM pyruvate). After stabilisation of the O2 flux signal, ADP 

(2.5mM) was added to measure ADP stimulated respiration. Then, mitochondrial 

membrane integrity was evaluated by the addition of cytochrome C (10µM). This 

action should not affect O2 flux in undamaged mitochondria (Gnaiger, 2013). This 

step represents the first quality control step in the experiment. Maximal respiration 

with convergent flow of electrons through complex I and II was measured through 

addition of succinate (10mM). This was followed by addition of 1µl increments of 

FCCP (uncoupler of complex I and II) until no further increase in respiratory rate was 

observed. This process permits determination of the maximal ETC capacity in an  
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Figure 4.4. Schematic of HRR Oxygraph-2k equipment. Intact appearance is shown (chamber A), demonstrating the window into the chamber, alongside cross section (chamber 
B) to illustrate the oxygen sensor within the chamber and the way titanium cannula used to allow titration of chemicals into the chamber. Both chambers are housed in a copper 
block (insulated and temperature-regulated). Peltier thermopiles are in contact between the copper block and the Peltier heat dissipation plate. Figure adapted from 
OROBOROS©.  
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uncoupled state. Titration to an optimum concentration was conducted as beyond this 

point FCCP can inhibit respiration. 

 

Rotenone (0.25µM) was then added to inhibit complex I to measure complex II 

respiration alone. Subsequently, complex III was inhibited with antimycin A (12.5µM) 

for estimation of residual, non-mitochondrial, oxygen consumption. In later 

experiments an extra step was added, Ascorbate (2.5mM) and TMPD (0.5mM) 

titration, to activate complex IV. These substrates act as artificial electron donors to 

reduce cytochrome c and determine OXPHOS capacity as an estimate of 

mitochondrial mass. The experiment was terminated by the addition of azide (20mM). 

This final step is the second quality control measure as it confirms that the O2 flux 

measured during the experiment is due to real mitochondrial function and not transient 

O2 flux by the respirometer. Mass-specific O2 flux (steady-state O2 flux normalised to 

sample wet fibre mass, pmol/s) was recorded using DATLAB (Oroboros) (Figure 4.5).  

 

All respiratory states measured were adjusted for instrumental background of the 

polargraphic oxygen sensors and residual oxygen consumption. Complex IV activity 

was corrected for the autooxidation of ascorbate and TMPD by subtraction of the 

chemical background coefficient. This protocol is carried out in Excel® (macro 

supplied by Oroboros). 
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Figure 4.5 Example HRR trace (OROBOROS, DatLab software). Left hand axis is O2 concentration (blue line), right hand axis is O2 flux (red line). Annotation 
outlines titration protocol and reoxygenation
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4.2.4 Normalisation of mitochondrial oxygen consumption 

Following data processing in Excel® the O2 flux for the different parts of the ETC are 

presented as a ratio of the maximum flux in an uncoupled state relative to convergent 

electron flow through complexes I and II. This is one approach to internal 

normalisation of mitochondrial oxygen consumption, known as the flux control ratio 

(FCR). It expresses respiratory control independent of mitochondrial content 

(Gnaiger, 2014). 

 

Complex IV activity has recently been reported as being strongly associated with 

muscle OXPHOS capacity in humans (Larsen et al., 2012). As measuring complex IV 

activity through the addition of TMPD and ascorbate provides a measure of OXPHOS 

capacity as an estimate of mitochondrial mass this metric was also used as an 

alternative means of internal normalisation by expressing the raw O2 flux for each 

aspect of the ETC as a percentage of the O2 flux through complex IV, termed %MAX 

OXPHOS capacity. 

 

4.2.5 Statistical analysis of FCR and %MAX OXPHOS capacity data 

The resulting normalised data was tabulated in Excel® and exported to the statistical 

package RStudio 3.2.2 for analysis. Linear models were designed to test for effects of 

age, sex and MH status on each of the measured aspects of the ETC (complex I basal, 

complex I ADP stimulated, complex II, complex I+II coupled, complex I+II 

uncoupled, membrane integrity and complex IV). Then 3-way ANOVA was 

performed on the linear models that enabled examination of all individual, pair-wise 

and the 3-way interaction of the independent variables. To account for multiple-
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testing, Bonferroni correction of p values was applied to correct for the 6 aspects of 

the ETC measured, and both sets of p values presented in the results. Graphical 

illustration of results was completed in Microsoft® Excel® for Mac 2011 (version 

14.6.4). 

 

4.2.6 Gene expression analysis of mitochondrial genes in human ageing 

RNA extraction, cDNA synthesis and Taqman® assays were all carried out using the 

same process outlined in chapter 3 (3.2.2, 3.2.5 and 3.2.6 respectively). The panel of 

genes were identified based on a commercial available Array produced by Qiagen 

(RT2 ProfilerTM PCR Array Human Ageing). The array itself comprises 84 genes 

altered during ageing, covering categories such as genomic instability, telomere 

attrition, transcriptional regulation and epigenetic alterations. These categories are 

clearly related to human ageing as a whole but do not address the aspect that is the 

focus of this chapter. However, the array does include a cohort of 9 genes considered 

to be implicated in mitochondrial dysfunction in ageing (Table 4.4). 

Table 4.4 Genes implicated in mitochondrial dysfunction in ageing (compiled from, QIAGEN, 2016). 
Gene ID Role 
MRPL43 Mammalian ribosomal protein L43, aids in protein synthesis within the 

mitochondrion. 
NDUFB11 NADH: ubiquinone oxidoreductase subunit B11, a component of mitochondrial 

complex I. 
POLRMT Mitochondrial RNA polymerase, responsible for mitochondrial gene expression 

and provides RNA primers to initiation and replication of the mitochondrial 
genome. 

SIRT1 Members of the sirtuin family (class I), NAD-dependent enzymes. In humans they 
are suggested to function as intracellular regulatory proteins with mono-ADP-
ribosyltransferase activity and play a role in RNA repair and inflammation. 

SIRT3 
SIRT6 
TFAM Transcription factor A, a key mitochondrial transcription factor also involved in 

mitochondrial DNA replication and repair. Polymorphisms are associated with 
Alzheimer’s and Parkinson’s disease. 

TFB1M Transcription factor B1 and 2, necessary for mitochondrial gene expression. 
TFB2M 
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Reference genes, B2M, GAPDH and TBP were used for normalisation and the same 

method applied as chapter 3 (3.2.7). Statistical analysis also followed the same method 

as chapter 3 (3.2.8). Graphical illustration of results was completed in Microsoft© 

Excel© for Mac 2011 (version 14.6.4). 
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4.3 Results 

4.3.1 Flux Control Ratio 

All samples processed were subjected to internal normalisation of O2 consumption 

using the flux control ratio. This expresses the various respiratory states induced by 

the HRR protocol as a ratio of the maximum flux in the uncoupled state of electron 

flow through complex I and II. All chamber replicates for each sample were included 

in analysis. It was therefore possible to visualise possible differences in the FCR of 

the different aspects of the ETC between MHS and MHN samples (Figure 4.6) 

controlled for age and sex. 

 

Figure 4.6 Flux control ratios measured in skeletal muscle samples from MHN (n=63) and MHS (n=27). 
Data is presented as means with error bars showing standard deviation. *p<0.05. 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Complex I 
(Basal)

Complex I (ADP 
stimulated)

Mitochondrial 
integrity

Complex II Complex I+II 
(Uncoupled) 

Fl
ux

 C
on

tro
l R

at
io

MHN
MHS

*



 
 

 182 

Basal activity of complex I was slightly elevated in MHS samples, though this was 

not statistically significant when compared to MHN using ANOVA. Following 

addition of ADP, activity of complex I was stimulated in both MHN and MHS 

samples, with a greater increase observed in MHS samples than in MHN though when 

comparing the FCR means for MHS and MHN at this stage in the ETC there was no 

significant difference. With the addition of cytochrome C to test mitochondrial 

integrity there was a marked increase in FCR observed in MHS samples. When 

compared to MHN, this was statistically significant, p=0.015. However, following 

Bonferroni correction, p=0.09. Upon inhibition of complex I and stimulation of 

complex II activity the FCR was found to be very similar when comparing MHS and 

MHN samples, both close to 0.9. Measuring complex I and complex II uncoupled 

activity was also similar when examining MHS and MHN samples. 

 

No significant differences were observed when comparing FCR in males and females 

for any aspect of the ETC measured except for complex I&II uncoupled activity 

(Figure 4.7). FCR of complex I and II uncoupled activity was significantly lower in 

females, p=0.0001 (corrected p=0.0006).  
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Figure 4.7 Differences between males (n=35) and females (n=55) for Complex I&II uncoupled activity 
(FCR). Error bars are standard deviation, ***p<0.001. 
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and MHS males (Figure 4.8). The rate of complex I&II uncoupled activity in these 

three groups was similar and reduced compared to that shown in the MHN males 

group. It was lowest in MHN females. 

 

 

Figure 4.8 Mean complex I&II uncoupled activity, normalised using FCR for groups of MH status 
separated by gender. ***p<0.001, **p<0.01, *p<0.05. Error bars are standard deviation. 
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complex IV activity was just below 70pmol/(s*mg) whereas in MHS samples, mean 

complex IV activity was closer to 50pmol/(s*mg) (Figure 4.9). However, this result 

was not statistically significant. 

 

 

Figure 4.9 Maximum mitochondrial complex IV activity (OXPHOS CAPACITY) in MHN (n=43) and 
MHS (n=17) individuals. Data is presented as mean with error bars showing standard deviation.  
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Figure 4.10 O2 flux during the different measured respiratory states expressed as a percentage of the 
maximum OXPHOS capacity. Data is presented as means with error bars showing standard deviation. 

 

Statistical analysis was also carried out to determine the potential effects of sex and 

age on the respiratory rates in each aspect of the OXPHOS pathway. As variables 
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4.3.3 Gene expression analysis of mitochondrial genes in human ageing 

A cohort of genes implicated in human ageing was chosen for analysis, using the 

samples that underwent HRR. Owing to availability of tissue, only 76 of the 90 

samples that underwent HRR were analysed using TaqMan® gene expression analysis 

for the genes implicated in human ageing. Data was analysed factoring in age, sex and 

MH status as possible predictor variables and also considering the possible pairwise 

and three-way interactions between these variables. Following this rigorous analysis 

it was found that none of the genes in the cohort showed differential expression 

according to the variables previously defined. One exception was TFB2M that showed 

significantly lower expression in females compared to males, p=0.038 (Figure 4.11). 

However, with Bonferroni correction this p value is no longer significant, p=0.342. 

 

Figure 4.11 TFB2M Expression in skeletal muscle , error bars show standard deviation, *p<0.05. 
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4.4 Discussion 

4.4.1 Mitochondrial oxidative phosphorylation capacity 

This chapter has addressed the question of whether there is evidence of altered or 

abnormal mitochondrial function in malignant hyperthermia susceptible skeletal 

muscle in the context of age. This was examined through the use of high-resolution 

respirometry to quantify alterations in OXPHOS capacity of muscle samples derived 

from patients. These biopsy samples were obtained from patients that had not been 

exposed to any triggering agents and therefore the measurements represent an 

assessment of the basal metabolic activity of the mitochondria. It may be of interest in 

future work to examine the potential for altered mitochondrial function in MH 

susceptible muscle following application of caffeine and halothane, to determine 

whether these substrates alter the basal bioenergetics of the mitochondria in both 

normal and susceptible muscle. 

 

Quality control of experimental procedure was ensured by using the cytochrome c 

assays to establish and deficit in mitochondrial membrane integrity and termination of 

the experiment using azide to confirm that measurements made were really due to 

mitochondrial activity and not random noise. Quality control of mitochondrial data is 

currently the subject of a European Cooperation in Science and Technology (COST) 

initiative called MITOEAGLE (COST, 2017). MITOEAGLE aims to improve 

knowledge of mitochondrial function in health and disease related to evolution, age, 

gender, lifestyle and environment. It is working towards establishing protocols to 

standardise mitochondrial assays so that data from all labs can be directly compared. 

The fact that two experimenters carried out the assays in this chapter and no 
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differences were observed in the data obtained suggests that the protocol used is robust 

and reliable. 

 

It has been indicated, by a study using R163C (implicated in MH, CCD and EHI) 

knock-in mice, that in addition to other changes in mitochondrial function, there is a 

reduction in basal OXPHOS capacity that is associated with this variant (Giulivi et al., 

2011). The approach used with the R163C mice used isolated mitochondria and 

therefore the results may not be directly comparable to the information obtained from 

permeabilised muscle fibres used in this chapter. Age-related changes in 

mitochondrial OXPHOS capacity have also been identified and this chapter sought to 

investigate the potential for an age-related decline in mitochondrial OXPHOS in the 

context of MH susceptibility. 

 

Findings from this investigation have highlighted that the FCR for mitochondrial 

integrity is significantly higher in MHS muscle compared with MHN. This provides 

evidence for possibly compromised mitochondria in MHS individuals, suggesting that 

they might be leakier. However, all other aspects of the OXPHOS pathway for this 

metric (FCR) were unaffected by MH status, showing similar levels to that of MHN 

muscle. This could indicate possible compensatory mechanisms in the MH 

mitochondria to account for the loss of membrane integrity.  

 

Recent findings by Larsen et al (2012) suggest that complex IV activity is strongly 

associated with the oxidative capacity of skeletal muscle, and therefore respiratory 

states were also normalised to maximal complex IV activity. By this method, the 

difference in respiratory activity between MHN and MHS phenotypes is also 
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negligible. This analysis was not performed on the same number of samples as the 

FCR cohort, owing to adopting this altered method partway into sample processing. It 

would clearly be desirable to make more measurements of this type on additional 

samples to derive a more representative sample set. At present, the data encompasses 

only 18 MHS samples, but 42 MHN which could be affecting the results. 

 

In light of the information that complex IV activity is an accurate marker of OXPHOS 

(Larsen et al., 2012) then these results suggest the total OXPHOS capacity of MHS 

muscle mitochondria is lowered compared to MHN. However, this result was not 

statistically significant. This may be due to the small sample size of the MHS group 

and if there were more samples it would reduce the residual error in the mean and may 

make the result significant. It is clear however, that the individual aspects of the 

OXPHOS pathway don’t differ between MHN and MHS muscle, indicating that 

relative to this reduced total OXPHOS capacity, the mitochondrial are still functioning 

in a similar manner. This possibly lowered total OXPHOS capacity in human MH 

skeletal muscle is also in line with findings from an MH-susceptible mouse model that 

complex IV activity was significantly reduced in skeletal muscle mitochondria of 

R163C mice (Giulivi et al., 2011).  

 

The findings of this study contradict those reported from experiments using 

mitochondria extracted from skeletal muscle of R163C mice, where state 3 oxygen 

uptake rates with both NAD and FAD-linked substrates were significantly lower than 

values obtained for wild-type animals (Giulivi et al., 2011). However, in the data from 

this chapter, there were no observed differences in MHS and MHN skeletal muscle 

from human biopsies. These contrasting observations could simply reflect a species-
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specific difference that is additionally confounded by the potential for the human 

samples to represent a number of different RYR1 variants possibly not even including 

the R163C variant. R163C is implicated in CCD as well as MH and is defined by a 

reduction to oxidative activity (Brislin & Theroux, 2013), and therefore this mutation 

is likely to present with reduced oxidative capacity of skeletal muscle whereas this 

may not be the case for other MH genotypes. These differing results may also be 

related to the fact the R163C mouse experiments were carried out on isolated 

mitochondrial populations, rather than in permeabilised tissue, suggesting that the 

results of that study may not be reflective of the in vivo state of the mitochondria. 

 

In this in situ preparation it is only possible to look at the activity of the total 

mitochondrial population (Kuznetsov et al., 2008). It may be more relevant to look at 

subpopulations within the skeletal muscle. For instance, in the knock-in mouse line 

that expresses RYR1 variant T4826I, mitochondria are seen to redistribute to 

subsarcolemmal regions and are often found to be surrounded by accumulations of 

amorphous electron-dense material (Yuen et al., 2012). This may suggest 

mitochondria in this region are more likely to be more physiologically compromised. 

If this translates to human MH, and pathological alterations affect mitochondrial 

subpopulations differently, using HRR alone could underestimate OXPHOS 

abnormalities.  Confocal imaging has provided evidence of functional heterogeneity 

of mitochondrial subpopulations (Kuznetsov et al., 2006). Oxidative state, reflected 

by intensity of flavoprotein autofluorescence, was significantly increased in the 

subsarcolemmal subpopulation compared with intermyofibrillar mitochondria. This 

higher oxidative state of subsarcolemmal mitochondria correlated with the higher 

levels of resting calcium in this subpopulation. Further work in this area could utilise 
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a fluorescent-imaging approach in conjunction with HRR to identify potential subsets 

of pathologically altered human mitochondria. 

 

Altered resting calcium levels are another feature of MH that may be of interest due 

to altered ryanodine receptor function (Lyfenko et al., 2004; Eltit et al., 2012). It is 

also a feature of muscle ageing whereby the receptor has been shown to become leaky 

and thus elevate resting calcium levels (Wang et al., 2012). Considering the signalling 

properties of calcium within skeletal muscle has been shown to extend to stimulation 

of the ETS in skeletal muscle (Glancy et al., 2013) it seems imperative to study 

mitochondrial respiration in their relevant environment. Higher mitochondrial calcium 

levels were excluded as the cause of mitochondrial dysfunction in R163C mice since 

chelation of free Ca2+ with EGTA did not significantly alter state 3 oxygen uptake 

(Giulivi et al., 2011). However, preparations of isolated mitochondria which eliminate 

a functioning cytoplasm lose the pathological consequences of increased Ca2+.  

Additionally, there is a loss of organelle interaction in isolated mitochondria, and 

therefore any interactions between functionally-altered SR and mitochondria will be 

absent. Although the permeabilised tissue preparation utilised within this study more 

closely resembles the integrated cellular system of an intact cell (i.e. basic interactions 

with cytoskeleton and organelles are present), in both this preparation and that of the 

isolated mitochondria the full influence of any changes to resting [Ca2+] are lost. It is 

therefore likely that the OXPHOS activity observed in these preparations is not a fully 

accurate representation of skeletal muscle mitochondria of MHS in vivo.  

 

There are factors regarding the protocol itself which may alter the HRR measurements 

obtained. For example, the preparation of the fibres is subjective and even having been 
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performed by one individual does not guarantee dissection to the same level. The time 

between surgical removal of biopsy specimens to analysis in the laboratory also 

appears to influence basal mitochondrial activity. Variables such as these are hard to 

standardise and in such a varied cohort factors which may affect the respiratory 

activity of the tissue are more likely result in exaggerated differences in the parameters 

being measured. While there was every attempt to minimise transport and storage time 

and to ensure consistency in dissection, it is not possible to fully eliminate these 

variables as having an influence on the results. In hindsight, it might have been helpful 

to more accurately record the time of biopsy relative to time of sample processing for 

mitochondrial respirometry to accurately quantify any potential effects of transport 

and storage time. Future work could focus on developing the means to carry out the 

mitochondrial measurements on location at St James’s Hospital where the biopsies 

take place. This would reduce transport time and reduce the variation in storage and 

processing time.  

 

Previous work looking at gender alone showed no differences between the genders in 

relation to the different aspects of the OXPHOS pathway in gastrocnemius muscle 

samples (Thompson et al., 2014). This is reflected by the results of this chapter. 

 

4.4.2 Gene expression differences in HRR muscle samples 

Of the genes identified for analysis that were cited as being implicated in human 

ageing and mitochondrial dysfunction, none demonstrated age related changes in 

expression when investigated in this cohort of samples. There were also no observed 

differences in expression between MHS and MHN samples or between males and 

females, with the exception of TFB2M which showed a very week effect of MH status 
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on expression and could be a chance finding. There was no effect of any pairwise 

interaction of age, sex or MH status or indeed the 3-way interaction. This result could 

indicate that these genes were perhaps not the right choice for investigation in these 

samples, and that there may be other as yet investigated genes that are altered in their 

expression with respect to mitochondrial function. Alternatively, due to the fact no 

change in mitochondrial function was observed in these samples (apart from in relation 

to the age-sex interaction for complex I activity) then it is reasonable to expect no 

changes in gene expression for this cohort of genes. 

 

Further work is required to put the results of this chapter into the wider context of MH 

susceptibility and ageing. Examination of mitochondrial OXPHOS in triggered 

skeletal muscle will provide useful comparison of the data shown here and enable us 

to better understand the evidence of compromised mitochondria in MH skeletal 

muscle. Additionally, evaluation of gene expression in skeletal muscle that has been 

exposed to triggering agents would serve as a useful comparison to the investigation 

carried out here on un-triggered skeletal muscle. 
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5 Development of a system for quantifying the effect of age on skeletal muscle 

energetics 

 

5.1 Introduction 

5.1.1 Muscle mechanical performance 

An essential function of skeletal muscle is to produce force that powers locomotion. 

Force can be produced when the muscle is held at a constant length (isometric 

contraction) or be actively shortened to produce mechanical work, or stretched to 

absorb mechanical energy. The rate of work production is termed the mechanical 

power output. Force, work and power determine an animal’s locomotor performance. 

 

An isolated muscle can be mechanically activated in vitro by the application of an 

electrical stimulus. Under isometric conditions a single stimulus elicits a twitch, 

during which muscle force rapidly increases and then returns to the resting state. A 

train of stimuli, delivered at an appropriate frequency, causes mechanical summation 

where tension is developed further before relaxation occurs. If stimulation is of a high 

enough frequency, a plateau is observed and the muscle is considered to be in tetanus.  

The level of force produced during an isometric contraction is largely determined by 

the sarcomere length. Sarcomere length determines the degree of overlap between the 

actin and myosin filaments and hence the number of cross-bridges that can form. 

When the overlap is optimised, maximal isometric force is produced (Gordon et al., 

1966). Optimum in vitro sarcomere length corresponds with optimum muscle length 

in vivo (Rome et al., 1988; James et al., 1995). Isotonic contractions occur when the 

length of the muscle changes but tension remains constant. This is exhibited in 
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concentric contractions where the force produced by the muscle exceeds the force 

applied and the muscle will shorten, and in eccentric contractions whereby the length 

of the muscle increases due to the force of the load exceeding the force produced by 

the muscle. 

 

While isometric and isotonic contractions provide fundamental information 

concerning the intrinsic physiological properties of the muscle, they do not represent 

the way in which many muscles function in vivo. In normal locomotion, many muscles 

undergo cycles of contraction, with distinct power generating and recovery phases, 

and undergo a range of length trajectories and activation patterns. In 1985, a new 

technique, based on an earlier study from 1959, was pioneered that enabled muscle 

physiologists to quantify skeletal muscle function in vitro using in vivo-like 

conditions, the ‘work loop technique’ (Josephson, 1985). Using this method, a muscle 

can be subjected to a cyclical length change and phasic stimulation resulting in force 

generation (Figure 5.1A-D). Muscle power can be determined as the product of force 

and velocity (length change) and muscle work is established by dividing power by 

cycle frequency.  
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Figure 5.1 Illustration of the work loop technique used to measure muscle work output. Data derived 
from mouse soleus muscle at 9Hz cycle frequency A: Sinusoidal length trajectory trace, muscle had a 
mean fibre length of 10.6mm (L0). B: Force production while the muscle is stimulated (stimulation 
initiated 20ms prior to the start of shortening and lasted for 22ms) undergoing the length change shown 
in A, force normalised relative to maximum force generated during the first cycle. C: Power produced 
during each cycle of work. D: Plot of force against strain showing a series of work loops for the data 
from in A-C. Upward pointing arrow indicates the start of stimulation and downward pointing arrow 
indicates the end of stimulation. 
 

5.1.2 The energetic cost of muscle contraction 

All muscles convert chemical energy into mechanical work. The first step in this 

process involves the production of ATP by oxidative metabolism in the mitochondria, 

from fuels such as glucose, the efficiency of this process is referred to as the ‘oxidative 

recovery efficiency’(Er). The second step concerns the hydrolysis of ATP by the cross-

bridges in the myofibrils (myosin ATP cycle) to produce mechanical work (Smith et 

al., 2005), termed ‘myofibrillar efficiency’ (Ei) (Figure 5.2).  
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Figure 5.2. Energy cascade during muscle contraction. Initial heat: heat produced during the 
contraction, associated with the non-contractile processes and the inefficiencies of the cross bridges. 
Recovery heat: heat produced following the contraction, associated with the oxidative recovery 
processes. 
 

At each step the process of energy transfer is not completely efficient, and some of the 

energy is lost as heat. There are also some processes that consume ATP that are 

required to support the contraction, but that produce no mechanical work, such as 

calcium cycling; as a result, this energy consumption is ultimately given off as heat 

and represents an inefficiency in the transduction of chemical energy into mechanical 

work.  Through the measurement of initial heat (Hi) produced during the contraction, 

recovery heat (Hr) produced after the contraction and net mechanical work (W), it is 

possible to quantify the oxidative recovery and myofibrillar efficiencies and as a 

result, the net mechanical efficiency (En). 

Ei = W/(W+Hi  En = W/(W+Hi+Hr  Er = En/Ei 
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Combination of the work-loop technique and myothermic measurements (obtained 

using metal-film thermopiles) has previously been used to quantify muscle energetics 

in mice (Table 5.1), but has yet to be specifically utilised on aged mice, mice 

expressing RYR1 variants or on human skeletal muscle.  

Table 5.1 Summary of myothermic work carried out in mice to date 
Strain Age Authors 
Swiss 4-8 weeks (Barclay et al., 1993) 

Swiss Adult* (Barclay, 1994) 

Swiss Adult* (Barclay et al., 1995) 

Swiss Adult* (Barclay, 1996) 

C57BL/6 
C57BL/6 x CBA 

not specified (Curtin et al., 2002) 

Swiss Adult* (Barclay & Weber, 2004) 

Swiss Adult* (Barclay et al., 2010) 

CD1 5-9 weeks (Holt & Askew, 2012) 

*definition of Adult is not specified 

 

It has been indicated that there is a reduction in net efficiency of ATP production in 

aged skeletal muscle due to the decrease in the volume of ATP produced per unit of 

O2 consumed (Marcinek et al., 2005; Amara et al., 2008). This uncoupling of oxidative 

phosphorylation is due to an increase in the proton leak through the inner 

mitochondrial membrane and has a significant physiological impact on exercise 

performance (Brand, 2000; Conley et al., 2007; Amara et al., 2007). Compromised 

basal oxidative phosphorylation has also been identified in mouse models of MH 

(Giulivi et al., 2011).  These alterations in mitochondrial function may be related to 

elevated intracellular calcium concentration (Yang et al., 2007). Elevated calcium 

levels are a feature of both aged and myopathic muscle, attributed to increased leak 

through the RyR1 owing to mutations in RYR1  and CACNA1S (Yang et al., 2007; 

Beqollari et al., 2015) in the case of myopathies, or age related oxidative damage to 

the RyR1 (Puzianowska-Kuznicka & Kuznicki, 2009). The combination of the work 
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loop technique and myothermic measurements represents a unique way in which to 

examine the consequences of impaired calcium handling and uncoupling of 

mitochondrial oxidative phosphorylation on skeletal muscle energetics. It is 

hypothesised that the impaired calcium handling will affect the recovery capacity of 

the muscle and ultimately also impact the ability for the muscle to efficiently produce 

mechanical work. 

 

This chapter will present the development of new thermopile equipment, and 

preliminary data from old and young wild type mice highlighting the performance of 

the equipment and some indication of potential alterations in skeletal muscle 

efficiency associated with age. It represents the foundation for future work that will 

focus on utilising wild type mice in conjunction with mouse lines expression RYR1 

and CACNA1S variants to investigate the effect of these variants on skeletal muscle 

efficiency with age. 
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5.2 Materials and Methods 

5.2.1 Measurement of heat production in skeletal muscle 

Determining energy output by quantifying heat production during muscle contraction 

is a valuable, non-destructive, tool for understanding muscle energetics (Woledge et 

al., 1985). A metal-film thermopile can be used to measure temperature change and 

this information converted into a measure of heat output.  

 

The metal film thermopile used in this apparatus is made from vacuum deposited 

antimony and bismuth onto a film substrate (manufactured and supplied by Dr C. J. 

Barclay). The arrangement of these substances means that alternate thermocouples 

(the active junctions) lie in the centre of the thermopile, with remaining couples 

(reference junctions) located at the edges (Figure 5.3). The reference junctions are 

clamped into a frame and maintained at a constant temperature by a Peltier 

temperature control unit (custom built device with Peltier heat pumps, capable of 

regulating the temperature of muscle chamber to with 0.01 degrees).  

 

During muscle contraction, heat is generated as a by-product of force generation. This 

raises the temperature of the active junctions on the thermopile and is measured as a 

voltage output according to the thermoelectric effect. The magnitude of this voltage 

output is determined by the temperature difference between the two locations and the 

Seebeck coefficient (a).  
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Figure 5.3 Schematic of thermopile apparatus showing muscle attached to the length controller and 
force transducer while resting on the thermopile. All thermopile apparatus is enclosed in brass block. 
 

5.2.2 Thermopile calibration 

In order to determine the temperature change from the voltage output from the 

thermopile, the Seebeck coefficient of the thermopile is required. This can be 

calculated from the rate of change of the thermopile output and the heat capacity of 

the thermopile immediately following a period of Peltier heating, i.e the heating and 

cooling of alternate junctions in response to a small, known current being passed 

through the thermopile (Kretzschmar & Wilkie, 1972; Kretzschmar & Wilkie, 1975). 

All calibration measurements were carried out at room temperature (21°C).  
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This was achieved by placing 10 different sized silver blocks (mass range 40.7-

180.4mg) in turn on the active region of the thermopile (3 replicates for each block 

were performed at random). This active region was heated by passing a current (I) 

(1021 DC Current Source, Time Electronics Ltd., Botany Industrial Estate, Kent) of 

100µA through the thermopile for 200 seconds (sufficient time to reach steady-state 

temperature). Thermopile output was amplified by a factor of 2000 (Low noise voltage 

preamplifier model SR560, Stanford Research Systems, Cambridge Technology Inc, 

MA, USA) and recorded onto a PC at 1000Hz using a PowerLab (ADI 

INSTRUMENTS). A single exponential curve was fitted using the equation V=V0exp-

(t/tau), where V is thermopile output (in Volts), V0 is a constant, t is the time and tau 

is the time constant. The initial rate of cooling (dV0/dt) was calculated by multiplying 

V0 by invTau. Curve fitting excluded the first second of data as this represents the 

change in temperature at the reference junctions not cooling in the active region of the 

thermopile (Kretzschmar & Wilkie, 1972).  The relationship between the heat capacity 

of the silver blocks and the inverse rate of cooling was then be plotted (Figure 5.4). 
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Figure 5.4 Relationship between heat capacity of silver blocks (hcs) and the mean (n=3 for each block) 
inverse rate of thermopile cooling (1/dV0/dt). Error bars show standard deviation. 
 

The gradient of the line (m) is given by ITn2a2, where I (Amperes) is the current 

passed through the thermopile, T is the environmental temperature (K), n is the 

number of thermocouples in the active region (16 in this thermopile) and a is the 

Seebeck coefficient (µVK-1couple-1). Therefore, given that the gradient of the line is 

m=1x107 the equation can be used to determine that a=115 µVK-1couple-1 for this 

thermopile.  

 

5.2.3 Muscle preparation 

Assessment of apparatus function and preliminary data was performed on isolated 

soleus muscles from young (Age=6 weeks, n=3) and old (Age=100 weeks, n=3) 

female C57BL/6 mice. Lower limbs were made available to us as excess from another 

project in the Faculty of Biological Sciences (FBS) that did not utilise this tissue. 

Animals were housed and maintained according to local requirements and killed by 
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cervical dislocation, in accordance with the Code of Practice for the humane killing of 

animals in Schedule 1 of the UK Animals (Scientific Procedures) Act 1986. Skin was 

removed from the hind limbs and legs removed at the hip joint and placed in chilled 

(4°C), oxygenated (95% O2, 5% CO2) Krebs-Henseleit solution (117mM NaCl, 

4.7mM KCl, 2.5mM CaCl2, 1.2mM MgSO4, 24.8mM NaHCO3, 1.2mM KH2PO4, 

11.1mM C6H12O6, pH 7.4). Soleus muscles were dissected out leaving the proximal 

and distal tendons attached. Aluminium foil clips were attached to the ends of the 

preparation (without damaging the muscle fibres) so that it could be attached to the 

experimental apparatus. 

 

5.2.4 Experimental Protocol 

The muscle was mounted onto the thermopile apparatus at approximately resting 

length and allowed to recover and thermoequilibrate at 37°C for 30 minutes whilst 

being irrigated with oxygenated Ringer’s solution. It was attached at one end to a high-

speed length controller (series 305B Aurora Scientific Inc., Ontario, Canada) and the 

other to a force transducer (model 404, Aurora Scientific, London, Ontario, Canada). 

Muscle activation was achieved through stimulation via platinum wire electrodes with 

stimuli generated by a muscle stimulator (S48; Grass, W. Warwick, USA) and the 

current amplified using a stimulus isolation unit (UISO model 236; Hugo Sachs 

Elektronik, March-Hugstetten, Germany). A series of isometric twitches were 

performed at a range of muscle lengths (increments varying by 0.5mm) to optimise 

length. The length at which twitch force was maximal was used in subsequent 

mechanical measurements, expressed as a measure of fibre length by multiplying by 

0.85, known ratio of fibre length:muscle length (Askew & Marsh, 1997), and was 
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defined as L0. Tetanic force was not measured in order to prevent the muscle becoming 

too fatigued to perform cycles of work. 

 

The work loop technique was then used to measure net mechanical power output of 

the muscle during a series of sinusoidal length changes at cycle frequencies of 1, 3, 5, 

7 and 9Hz with a constant length change of ±6% of fibre length (Table 5.2).  

Table 5.2 Stimulation parameters for different cycle frequencies, used for both old and young mice 
Cycle Frequency (Hz) Phase* (ms) Train Duration (ms) 

1 -25 470 
3 -25 120 
5 -20 45 
7 -20 30 
9 -20 22 

*Phase is defined as the time stimulation occurs before peak length. 

 

The soleus muscle from young mice (6 weeks) has previously been shown to be 

capable of generating net positive power across this range of cycle frequencies 

(James et al., 1995; Askew and Marsh, 1997). It was expected that the optimum cycle 

frequency of soleus muscles from old mice would shift to lower cycle frequencies, 

compared with young mice. However, as no data exist on the performance of soleus 

muscle from old mice during cyclical contractions from which the event of this shift 

could be determined, the same frequency range was used for both young and old mice. 

Initial mechanical efficiency (Ei) was calculated by dividing the total work performed 

by the muscle (mJ) by the sum of the total work (mJ) and heat produced during the 

contraction (mJ).  
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5.3 Results 

5.3.1 Basic mechanical properties 

All results obtained from experiments with animals are reported in accordance with 

the ARRIVE guidelines (Kilkenny et al., 2010). Old mice (100 weeks) were on 

average larger than young mice (6 weeks), with a higher total body mass (Table 5.3). 

However, the mass of the soleus muscle in young and old mice appears similar. This 

could indicate a greater relative soleus muscle mass in young mice. Optimum length, 

L0 was also similar in old and young mice (Table 5.3). 

Table 5.3 Mechanical properties of young and old mouse soleus muscle  
Age 6 weeks 100 weeks 
Mouse 1 2 3 1 2 3 
Total body mass (g) 20.35 19.06 20.35 31.6 32.6 26.9 
Muscle mass (mg) 10.38 9.06 9.85 10.1 12.78 11.77 
L0 (mm) 13.5 11 11.75 11.5 13.5 13.75 
P0 Isometric twitch stress (Ncm-2) 57.49 35.52 37.61 24.31 21.03 26.45 
Estimated* isometric tetanic stress (Ncm-2) 479.07 296.01 313.37 202.56 175.24 220.41 
Twitch rise time (ms) 22.2 17.9 14.3 26.3 23.7 25.4 
Half relaxation time (ms) 27.1 25.4 23.1 50.7 66.4 57.8 

*based on twitch:tetanus ratio of 012 (Askew & Marsh, 1997) 

 

 Isometric twitch and estimated isometric tetanic stress was higher in young mice than 

in old animals (Table 5.3). The time taken for a twitch to peak (twich rise time) was 

consistent between young and old mice. However, there was a marked difference in 

half relaxation time with old mice appearing to take over twice as long to relax after 

peak force generation compared to young mice (Table 5.3). 

 

5.3.2 Power-frequency relationship 

In all the young mouse soleus muscle tested, peak power production occurred at 3Hz 

with power rapidly declining at frequencies above and below this frequency (Figure 

5.5). In old mouse soleus muscle, the peak power production appeared to be at 1Hz, 
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the lowest frequency studied, with rapid decline in power at frequencies above 1Hz. 

It is unknown what the optimal cycle frequency for maximum net power 

generation was in old mouse soleus as frequencies below 1 Hz were not studied.  None 

of the old mouse muscle was capable of generating similar power at 3Hz when 

compared to the young mice.  

 

Figure 5.5 Mechanical net power output of soleus muscle from old (100 weeks, blue lines) and young 
(6 weeks, red lines) mice as a function of cycle frequency. 
 

5.3.3 Heat production 

The new thermopile apparatus was capable of detecting heat production in skeletal 

muscle, whereby it was observed that with successive contractions there was sustained 

heat production (attributed to inefficiencies in the cross bridge cycle) and evidence of 

continued heat production following cessation of contraction that can be attributed to 

the recovery processes such as regeneration of ATP (Figure 5.6). 
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Figure 5.6 Example of heat production (red trace) during cyclical length change (blue trace) in mouse 
soleus muscle.  
 

5.3.4 Initial mechanical efficiency 

A range (1-9Hz) of frequencies were used on the soleus muscle from the young mice. 

This same range was applied to the soleus muscles from the old mice, however, at the 

higher cycle frequencies (7 and 9Hz) the muscle was incapable of generating net 

positive work and power and these data are excluded from the analysis. 

 

Despite the apparent increased power production at a cycle frequency of 1Hz in old 

soleus muscle, this translates to a similar level of mechanical efficiency at this 

frequency as observed in young soleus muscle (Figure 5.7).  
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Figure 5.7 Initial mechanical efficiency of old (n=3, blue dots) and young (n=3, red dots) soleus muscle 
across range of frequencies studied. 
 

There is clearly no overlap between the efficiency of old and young soleus muscle at 

5Hz, with young mice demonstrating efficiency as high as 57% (young mouse 1) 

(Figure 5.7). Efficiency in young muscle is lowest at 9Hz. In old muscle, initial 

mechanical efficiency is lowest at 3Hz (10.6%, old mouse 3), though this cannot be 

directly compared to the range of frequencies examined in young muscle as the old 

soleus muscle did not complete successful cycles at 7 and 9Hz. 
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5.4 Discussion 

Fundamentally, this work represents very preliminary data that was generated 

primarily to test the functionality of the thermopile apparatus that has been developed. 

With such low n values (n=3 for old and young mice) and only using female mice, 

interpretation of the results should be done with caution. 

 

Previous work on mouse soleus muscle has used adult mice, generally defined as aged 

between 4 and 9 weeks (Table 5.1). The mechanical properties identified in this project 

(Table 5.3) appear consistent with previously reported values on mice of a similar age 

to the young mice used here. Holt and Askew (2012) reported a maximum isometric 

stress of 47.1Ncm-2 in mouse soleus muscle. Results of this work found maximum 

isometric stress to be 35.52, 37.61 and 57.49Ncm-2 in each of the young mice. This 

limited sample number appears to be close to what has been previously observed, 

though additional replicates would be necessary to make the results more reliable and 

make proper comparisons. 

 

Preliminary data indicates that this new thermopile apparatus is functioning and 

capable of measuring heat during muscle contractions. It is important to acknowledge 

the limited sample size in interpreting the data obtained, however it clearly shows that 

this set-up is capable of detecting heat production in isolated skeletal muscles.  

 

The observed differences in the power-frequency curve between old and young soleus 

muscle indicate an age-related shift in power production relative to cycle frequency.  

This is characterised by old muscle producing more power at 1Hz, whereas young 

muscle produces more power at 5Hz.  This finding could indicate a slowing of the 
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muscle (Vmax and relaxation), the consequences of which is a reduction in the 

optimum frequency for power generation. This is because for a given frequency, when 

the strain is held constant, the shortening velocity represents a higher fraction of the 

Vmax and because of the force-velocity effects this results in lower forces. Also, the 

slowing of relaxation means that for a given frequency the muscle will be sub-

maximally activated for a greater fraction of the cycle but may also resulted in 

increased force during relaxation, which reduces net mechanical work. 

 

The increase in power at this frequency in old muscle demonstrates a similar level of 

efficiency as observed in young mice though young mouse soleus elicits lower power 

at 1Hz. This suggests that old muscle is relatively more efficient at producing power 

at 1Hz than young muscle. However, at 5Hz, old mouse soleus muscle is producing 

marginally less power but at a considerably reduced mechanical efficiency, indicating 

that at higher frequencies aged muscle is less efficient at producing work. This finding 

is consistent with changes in muscle phenotype with age towards more slow twitch 

fibres that will have a lower optimal frequency (Barclay, 1996; He et al., 2000; 

Barclay & Weber, 2004). 

 

The level of initial efficiency produced in young mouse soleus muscle at 5Hz is similar 

to that previously reported in adult (6-8 weeks) female mice in earlier work using 

sinusoidal length changes. However the efficiencies measured at all other cycle 

frequencies were considerably lower (Barclay, 1994). The higher frequencies used in 

this study (1-9Hz) are perhaps not optimal for the majority slow-twitch soleus muscle 

and as such may not be relevant for future study. These differences could also be 
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attributed to the small sample size in these experiments, and so with additional 

replicates there may be more consistent results.  

 

Future work using this equipment will involve the assessment of contractile and 

oxidative recovery efficiency in three age groups of mice, young (6-8 weeks), adult 

(10-12 months) and old (18-20 months) mice to better ascertain the effects of age on 

these contractile properties. The cycle frequency range for old soleus muscle should 

also be extended to incorporate lower cycle frequencies in order to determine the 

optimum frequency for maximum net power output, allowing initial efficiency to be 

compared at the optimum frequency for each age group. 

 

Preliminary data suggests that different frequencies will demonstrate differences in 

contractile efficiency in aged skeletal muscle compared to young, with a shift towards 

greater efficiency at lower frequencies with increasing age. Future investigations will 

also be made on mouse lines expressing RYR1 and CACNA1S variants as well as a 

CASQ1-null mouse model. It is hypothesised that the impaired calcium handling in 

these strains will have an effect on the contractile efficiency of the muscle, and also 

on the oxidative recovery efficiency due to the detrimental effect of raised intracellular 

calcium concentration on mitochondria.   The soleus will be used, as in the preliminary 

study presented here, along with the EDL in order to provide an insight into the 

comparison between slow and fast-twitch skeletal muscle efficiency alterations with 

age. 
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6 General Discussion 

 

The studies presented in this thesis explored muscle ageing and how factors such as 

calcium handling and mitochondrial function are involved in the manifestation of 

conditions linked with variants in RYR1. 

 

6.1 The relevance of skeletal muscle development in muscle ageing and myopathic 

conditions 

The efflux of calcium from the SR is central to the control of skeletal muscle EC 

coupling. This process is dependent on normal functioning of RyR1 to ensure 

coordinated calcium release. Calcium is also a key component of muscle development, 

involved in migration, fusion and differentiation of myoblasts and growth of skeletal 

muscle (Berchtold et al., 2000; Gehlert et al., 2015). Pathway analysis of Affymetrix 

array data from skeletal muscle samples (Chapter 3), showed that aspects of the 

‘development role of HDAC and calcium/calmodulin-dependent kinase (CaMK) in 

control of skeletal myogenesis’ pathway may also be implicated in skeletal muscle 

ageing and MH. This illustrates the importance of considering components of skeletal 

muscle development in conjunction with the process of skeletal muscle ageing and 

manifestation of myopathies. Calmodulin kinase II (CaMKII), part of the CaMK 

pathway, is also involved in phosphorylation of the RyR1 (Gehlert et al., 2015). 

CaMKII responds to increased levels of Ca2+ ions in the SR (mediated by SERCA), 

and contributes to phosphorylation of RyR1 increasing channel activity and open 

probability. It may be relevant to consider the possibility that skeletal muscle ageing 

is related to the consequences of dysregulation of muscle development. 
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In addition to its crucial role in muscle contraction, more recently, RyR1 has been 

found to have an important non-contractile role in muscle organ development. This 

has been established through studying RyR1-null mice and the data shows that mice 

lacking this protein display differential expression of genes encoding muscle-specific 

structural and contractile proteins, suggesting that RyR1-mediated calcium signalling 

is important for normal muscle development and differentiation (Filipova et al., 2016). 

The next step would be to investigate how models of RYR1 variants, implicated in 

MH, might be implicated in the process of muscle development. This could be 

investigated through using cultured human myoblasts that can be differentiated into 

myotubes in vitro, from patients at the Leeds MH Unit that are MHS and MHN, to 

determine the impact of RYR1 variants on muscle cell development and 

differentiation. It would also be useful to study the muscle structure of the unc-68 

knock-out strain CB540 using the approach used in this thesis to determine if lacking 

a functional ryanodine receptor has an impact on myosin fibre arrangement. 

 

6.2 Muscle structure in and ageing and myopathic conditions 

It is well understood that as humans age there is loss of muscle mass and evidence of 

compromised muscle structure that leads to impaired muscle function (Faulkner et al., 

2007). While there is no direct study of skeletal muscle ultra-structure in humans with 

RYR1 variants, there is data to support changes in microscopic structure in mouse lines 

expressing RYR1 variants, with the presence of core regions in skeletal muscle that 

lack mitochondria together with Z-line streaming suggesting disorganisation of 

sarcomeric structure (Zvaritch et al., 2009; Yuen et al., 2012).  
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C. elegans lines expressing eight different unc-68 variants (equivalent to human RYR1 

variants) causative of four human myopathic conditions have been established. All 

variant strains demonstrated an altered response to halothane compared to the wild-

type control, indicating a similar phenotypic response to that observed in humans. This 

makes them a viable means of studying these conditions in this model system with a 

view to setting a precedent for further translational research. As the only alteration 

present in these strains was in unc-68, the altered phenotype can be attributed to the 

presence of the variant. In addition to providing phenotypic characterisation of these 

strains, the impact of the variants on the muscle structure in these worms was been 

examined, by crossing the variant strains with a strain expressing gfp-myosin. This 

has created an additional cohort of C. elegans lines that can be used for direct 

visualisation of muscle fibre arrangement. Results have shown that the progressive 

disorganisation of nematode muscle, that has been well established in these worms, is 

also observed in strains expressing unc-68 variants, but that the onset of fibre 

disorganisation is earlier  (Herndon et al., 2002). Some strains demonstrated 

disorganisation occurring as early as day 4 of adulthood. This indicates the crucial 

importance of normal ryanodine receptor function in muscle ageing, and that when a 

variant in the ryanodine receptor is present it will result in premature ageing of skeletal 

muscle. 

 

Under normal resting conditions, worms with unc-68 variants display no discernible 

differences in normal locomotion. However, with advanced age there is accelerated 

degeneration of skeletal muscle structure in the variant strains compared to wild-type. 

This suggests that there could be a consequence of the altered unc-68 on the 

maintenance of muscle structure. Future work could test for any effect on calcium 
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transients in these strains expressing unc-68 variants to determine if there is a direct 

involvement of calcium handling on maintenance of muscle structure. Data also 

indicated greater disorganisation of myosin fibres in the vulva and tail regions 

compared with the head. This could inform study of C. elegans locomotion and 

suggests that the head region may be subject to enhanced muscle cell development 

compared to the vulva and tail regions, perhaps because it is of more importance in 

driving movement of these nematodes. Neuronal control of movement is also relevant 

in relation to skeletal muscle ageing, though not considered a component of this thesis, 

the manifestation of action potentials and coordination of muscle contraction by the 

nervous system is an important factor in skeletal muscle ageing. Mechanisms of 

neuronal dysregulation could also be easily studied using the C. elegans models 

developed in order to better understand the nervous system’s role in muscle ageing. 

 

6.3 Muscle ageing and quality of life 

The economic impact of an ageing population is characterised by the increased cost 

of healthcare in older age groups (House of Commons, 2015). A large portion of this 

assessment involves the cost of treating injuries from falls that result as a consequence 

of compromised muscle function.  This study has shown that unc-68 variants result in 

accelerated decline of skeletal muscle structure in C. elegans, supporting the notion 

that muscle calcium homeostasis is important in the ageing process. However, the 

results are a conservative estimate of muscle structure decline, owing to the necessity 

for including live worms in analysis. This work has been expanded by a senior 

research associate and in a new PhD project investigating muscle ageing in C. elegans. 

New work has included assessment of lifespan in the variant strains (Ferreira, Shaw 

and Hope, unpublished data) as well as analysis of healthspan (Graham, Shaw, Hope, 
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unpublished data). It will be interesting to ascertain whether worms with these variants 

have compromised longevity and any alterations in the quality of life, generally 

characterised by their ability to move towards a food source. This further study will 

provide information on mechanisms that could have a considerable impact in 

improving human health. As people are living longer in the 21st century it is imperative 

that research is carried out to better understand how to improve the healthspan of the 

ageing population. 

 

6.4 Muscle ageing: a consequence of reduced mobility 

The question of why muscle ageing occurs is a key component of understanding 

sarcopenia. It is clearly a process that involves a number of factors, and research from 

different perspectives often tries to underpin a principle underlying component. 

Exercise physiologists have indicated that with the right type of training, the 

impairments of skeletal muscle function that are characteristic of advancing age can 

be offset (Short et al., 2004; Broskey et al., 2014). This has led some researchers to 

suggest that the reason our muscle begins to decline is because humans become less 

active. This notion implies that there is a conscious choice to move less, or that there 

is a habitual drive towards inactivity due to people becoming too busy for exercise, 

they train less and then as a consequence training is uncomfortable. There is clear 

evidence for decreased muscle protein synthesis with disuse of skeletal muscle (de 

Boer et al., 2007). Immobilisation can induce anabolic resistance in human 

myofibrillar protein synthesis (MPS), exemplified by the finding that increasing blood 

amino acid levels offset this decline in MPS but do not fully reverse it (Glover et al., 

2008). Effectively, it is possible to generate an elderly muscle phenotype in young 

individuals through making them immobile. However, the fact that resistance training 
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or aerobic exercise can offset some of the declines in muscle function observed with 

age is confounded by the fact that there is evidence to suggest that even elite athletes 

demonstrate the same rates of muscle power decline as healthy, age-matched, 

untrained controls (Pearson et al., 2002). This indicates that, even with sustained 

training and healthy exercise, there are still underlying mechanisms at work that result 

in skeletal muscle ageing. Evidence from C. elegans models also refutes the notion 

that muscle ageing is the result of reduced mobility. Data in this thesis (Chapter 2) 

supports pre-existing work that there is steady decline of muscle structure with 

increasing age yet these animals still move in a wild-type manner.  

 

6.5 Mitochondrial involvement in muscle ageing and MH 

Loss of mitochondria is a feature of skeletal muscle ageing, a phenomenon that is also 

a feature of RYR1 myopathies. Mitochondria produce ATP, which is, along with 

calcium, central to the energetic capacity of skeletal muscle. It must be produced and 

readily available for cross-bridge formation and rapidly re-synthesised following 

contractions. Supply of ATP can be raised through exercise training regimes that 

results in an increase in muscle performance (Conley, 2016). It has been shown that a 

decrease in mitochondrial coupling is a factor in the reduced mechanical performance 

of elderly compared to adult muscle in humans (Conley et al., 2013). This project has 

evaluated mitochondrial oxidative phosphorylation in human skeletal muscle biopsies. 

Findings have shown a sex-specific alteration in mitochondrial OXPHOS, 

characterised by increased oxygen flux with age in complex I of the electron transport 

chain in males, but decreased flux in with age in females. There is also corresponding 

data that suggests there is loss of mitochondrial membrane integrity with increasing 

age in males, thereby reducing the capacity for mitochondria to produce ATP. The 
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difference between men and women could be related to hormonal differences between 

the subjects. Indeed, receptors for glucocorticoids, oestrogens, androgens and thyroid 

hormones have been detected in mitochondria and these receptors may play a role in 

cell survival and apoptosis (Psarra & Sekeris, 2008). 

 

Results demonstrated altered levels of mitochondrial number in MH skeletal muscle 

(though not statistically significant), exemplified by a reduction in O2 flux through 

complex IV of the electron transport chain. This ties in with skeletal muscle 

phenotypes that have been observed in mouse models of MH, such as the presence of 

core regions in the muscle fibres that lack mitochondria (Quane et al., 1994). The 

reason for these changes in mitochondrial content and OXPHOS capacity remain 

unclear. They may be attributed to impairment of calcium handling in skeletal muscle. 

However, in MH muscle these deficiencies in calcium homeostasis are typically 

evident only in the presence of triggering agents. It would be worthwhile utilising the 

resource of muscle biopsies at the Leeds MH Unit to investigate mitochondrial 

OXPHOS in muscle that has been exposed to halothane and caffeine, in order to 

establish if the mishandling of calcium that is characteristic of MH has a direct impact 

on ATP production. 

 

The thermopile apparatus that has been developed as part of this project will also 

provide a new means to investigate the efficiency of ATP generation following muscle 

contraction.  The changes in mitochondrial function that have been characterised in 

muscle ageing can be examined in the context of muscle work production to determine 

how these alterations in mitochondrial function impact mechanical performance. 
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6.6 Calcium handling 

Genes encoding proteins involved in calcium handling in skeletal muscle have been 

investigated in this project (Chapter 3). Expression of both ORAI1 and CASQ1 

significantly decreases with increasing age. This could reflect involvement of these 

aspects of the calcium handling apparatus in skeletal muscle ageing. Follow up 

experiments should examine the consequences of this altered gene expression at the 

protein level.  

 

Expression of genes involved in calcium handling in mitochondria has also shown 

changes with age, with decreased expression of MICU1 and increased expression of 

MCU with increasing age. The next step in understanding the consequences of this 

altered expression profile is to ascertain protein expression and perhaps examine 

calcium transients in the mitochondria.  

 

A feature of calcium handling in skeletal muscle that has not been examined in this 

thesis is the role of SERCA. It is responsible for the reuptake of calcium into the SR 

during EC coupling in order to bring about muscle relaxation (Rossi & Dirksen, 2006). 

Impaired calcium handling, leading to aberrant calcium signal transduction is a well 

reported feature of skeletal muscle disorders (Chemaly et al., 2013). Over-expression 

of SERCA isoforms has been shown to ameliorate the symptoms of muscular 

dystrophy as well as preventing the swelling of mitochondria that is associated with 

this condition (Goonasekera et al., 2011). SERCA pump expression and activity is 

also shown to be reduced in ageing (Periasamy & Kalyanasundaram, 2007). The action 

of SERCA is an active process, requiring ATP to pump Ca2+ ions against the 

concentration gradient back into the SR. Therefore, the involvement of mitochondrial 
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ATP production of obviously key to activity of SERCA. This study has shown altered 

mitochondrial integrity in MH susceptible skeletal muscle, indicating there is 

impairment of ATP production. This is likely to have additional consequences on the 

other active processes in skeletal muscle, such as SERCA. Activity of SERCA has 

been shown to be inadequate during an MH episode, though this is likely due to the 

rapid depletion of ATP that occurs because RyR1 remains in an open state and so no 

matter what Ca2+ is taken back up into the SR it will continue to be released 

(Rosenberg et al., 2015). 

 

6.7 Fibre type composition in ageing muscle and MH 

This project has not concerned changes in muscle fibre type with age in humans, as 

the shift in muscle fibre type with age towards a slower fibre type is well characterised 

(Lexell, 1995). It has also been established that the efficiency of slow muscles is higher 

compared with fast muscles (Barclay, 1996; Barclay & Weber, 2004).  As such it 

might be reasonable to hypothesise that with age there might be an increase in 

contractile efficiency accompanied by a reduction in oxidative recovery efficiency. 

Results in this thesis, using the predominantly slow twitch soleus muscle, demonstrate 

that there are differences in contractile efficiency across a range of frequencies, with 

older soleus muscle operating most efficiently at low (1Hz) frequencies while young 

soleus muscle operates most efficiently at 5Hz. It will be important to supplement 

these results with study of muscles that express a majority of fast fibres, such as EDL, 

to understand if there is an effect of age in the efficiency of this muscle fibre type.  

 

The overarching aim of this study was to study skeletal muscle energetics in the 

context of RYR1 variants and ageing. This has been achieved through successfully 



 
 

 223 

establishing and charactering C. elegans models for myopathic conditions caused by 

RYR1 variants and demonstrating that the muscle in these models displays accelerated 

muscle ageing. It has also highlighted the importance of genes involved in calcium 

homeostasis, mitochondrial function and other disorders affecting skeletal muscle in 

muscle ageing and the pathophysiology of MH. A new thermopile apparatus has been 

developed, providing the means to quantify the efficiency of skeletal muscle function. 

Preliminary data has demonstrated that there is reduced efficiency in aged mice 

compared to young. Future work using this apparatus will also involve the study of 

mouse lines expressing RYR1 variants and a CASQ1-null mutant. This will provide the 

means to study the involvement of various aspects of calcium handling in skeletal 

muscle and how they impact muscle efficiency in ageing. Overall, this project has 

provided a framework for future research in skeletal muscle ageing in the context of 

RYR1 variants. Future research will be able to build upon the information gathered in 

this thesis to expand understanding of the role of calcium handling in muscle ageing 

as well as utilising differential expression data to better understand the complexity of 

MH genetics.  
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Appendix B: Patient consent form for use of muscle biopsy tissue for research 

purposes 

PATIENT CONSENT FORM  

(Version 1.2, 11.11.2010) 

Genetics of malignant hyperthermia 

Patient name: …..…………………………………..  Initials: ……… 

Date of Birth: ………………..........………………….   

 Please initial each box 

 

1. I confirm that I have read and understand the information sheet dated 11.11.2010 (version 1.2) for the above 
study. I have had the opportunity to consider the information, ask questions and have had these answered 
satisfactorily. 

 

2. I understand that my participation is voluntary and that I am free to withdraw at any time without my medical 
care or legal rights being affected. 

 

3. I understand that relevant sections of my medical notes and data collected during the study, may be looked at 
by individuals from the sponsor for the study or by regulatory bodies, where it is relevant to my taking part in 
this research. I give permission for these individuals to have access to my records. I also give permission for a 
copy of this consent form to be sent to the Sponsor for the study. 

 

4. I understand that my tissues will be stored for the duration of this research. I consent to my tissues being 
retained at the end of the study for future research approved by the regulatory authorities.  

 

5. I consent to samples of my tissues, with all personal information removed, being sent to laboratories in the UK, 
Europe or the USA. 

 

6. I consent to the storage including electronic, of personal information for the purposes of this study. I understand 
that any information that could identify me will be kept strictly confidential and that no personal information will 
be included in the study report or other publication. 

 

7. I agree to allow the use of any information or results arising from this study for healthcare and/or   medical 
research purposes. I understand that my identity will remain anonymous. 

 

8. I understand that I will be contacted if any results from the research may be to my clinical benefit or to the 
benefit of my relatives. 

 

9.   I agree to take part in the study 
 
Signatures: 

Name of patient Date Signature 

   

Name of Person taking Consent 
(if different from the Principal Investigator) 

Date Signature 

   

(Original to be retained and filed in the site file, 1 copy to patient, 1 copy to be filed in patient’s notes, 1 copy for Sponsor) 

Malignant Hyperthermia Unit 

Level 08, Clinical Sciences Building 

St James’s University Hospital 

LEEDS LS9 7TF 

 

 

 

 

 

 

 

 

 

 


