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Abstract
The dynamics of the atmosphere span a tremendous range of spatial and temporal scales

which presents a great challenge to those who seek to forecast the weather. To aid

understanding of and facilitate research into such complex physical systems, ‘idealised’

models can be developed that embody essential characteristics of these systems. This

thesis concerns the development of an idealised fluid model of convective-scale Numerical

Weather Prediction (NWP) and its use in inexpensive data assimilation (DA) experiments.

The model modifies the rotating shallow water equations to include some simplified

dynamics of cumulus convection and associated precipitation, extending the model of

Würsch and Craig [2014]. Despite the non-trivial modifications to the parent equations, it

is shown that the model remains hyperbolic in character and can be integrated accordingly

using a discontinuous Galerkin finite element method for nonconservative hyperbolic

systems of partial differential equations. Combined with methods to ensure well-

balancedness and non-negativity, the resulting numerical solver is novel, efficient, and

robust. Classical numerical experiments in shallow water theory, based on the Rossby

geostrophic adjustment problem and non-rotating flow over topography, elucidate the

model’s distinctive dynamics, including the disruption of large-scale balanced flows

and other features of convecting and precipitating weather systems. When using such

intermediate-complexity models for DA research, it is important to justify their relevance

in the context of NWP. A well–tuned observing system and filter configuration is achieved

using the ensemble Kalman filter that adequately estimates the forecast error and has

an average observational influence similar to NWP. Furthermore, the resulting error-

doubling time statistics reflect those of convection-permitting models in a cycled forecast–

assimilation system, further demonstrating the model’s suitability for conducting DA

experiments in the presence of convection and precipitation. In particular, the numerical

solver arising from this research provides a useful tool to the community and facilitates

other studies in the field of convective-scale DA research.
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Chapter 1

Introduction

“The most important task of theoretical meteorology will ultimately be

to take a picture of the condition of the atmosphere as a starting point for

constructing future states.”1

1.1 Background and motivation

Since Aristotle’s Meteorologica attempted to describe and explain properties of the

atmosphere over two millennia ago, humankind has been both fascinated and perplexed

by the weather. In the centuries since, societies have sought greater understanding of

this complex natural phenomenon and recognised its benefit to society, with the ultimate

ambition of making accurate predictions of the future state of the atmosphere. However, it

wasn’t until the second half of the 19th century that significant progress was made towards

achieving this ambition. In 1854, ‘weather forecasting’ became more formalised, with

the creation of the Meteorological Board of Trade in Britain, considered the world’s first

national weather service and a precursor of today’s Met Office in the United Kingdom.

This new organisation was headed by Robert FitzRoy, who gained insight and interest
1From Bjerknes [1904] seminal paper, elucidating ‘The Problem of Weather Prediction’.
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in meteorology while in the navy and set about expanding weather reports and logging

observation data from land and sea. Using the network of observations, FitzRoy plotted

the variable values, such as surface pressure, on a map to give a rough picture of the

state of the atmosphere, and the synoptic chart was born. In the same year, an eminent

astronomer in France, Urbain Le Verrier, turned his mind and hand to meteorology at the

behest of Louis-Napoleon III. Le Verrier had used Newtonian mechanics to predict the

location of a hitherto unobserved planet with startling accuracy – surely the same could

be applied to weather forecasting? Le Verrier also used reports and data from weather

stations to make inferences on the direction and speed of weather systems, particularly

storms. However, unlike astronomy, where Newton’s laws were applied with great

success, there was a distinct lack of physical laws and equations (apart from empirical

rules) in these early weather forecasts, which were formed of hand–drawn charts and

comprised ‘subjective analysis’ only.

In 1904, after years ruminating the fundamental problem of weather forecasting,

Norwegian scientist Vilhelm Bjerknes published a paper framing meteorology from a

hydrodynamic perspective and formulating the problem in terms of the natural laws

of physics [Bjerknes, 1904]. He posited that the future state of the atmosphere is, in

principle, completely determined by the primitive equtions of motion, mass, state, and

energy, together with its known initial state and boundary conditions, given two necessary

and sufficient conditions:

1. the state of the atmosphere is known with sufficient accuracy at a given time;

2. the laws that govern how one state of the atmosphere develops from another are

known with sufficient accuracy.

However, Bjerknes recognised that the governing equations for the whole atmosphere

were far too complex to be solved exactly – a mathemetical problem that remains unsolved

today. Instead, he suggested that the problem should be simplified and solved numerically
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in discrete subdomains and time intervals. It is striking how prescient Bjerknes’ work and

ideas remain to this day and his seminal paper is widely regarded as the dawn of modern

weather forecasting and numerical weather prediction.

Richardson [1922] came up with a scheme for integrating the equations of motion and

imagined huge “forecast factories” computing the motion of the atmosphere:

“After so much hard reasoning, may one play with fantasy? Imagine a

large hall like a theatre, except that the circles and galleries go right round

through the space usually occupied by the stage. The walls of this chamber

are painted to form a map of the globe. The ceiling represents the north polar

regions, England is in the gallery, the tropics in the upper circle, Australia on

the dress circle and the Antarctic in the pit. A myriad computers are at work

upon the weather of the part of the map where each sits, but each computer

attends only to one equation or part of an equation”.

Considered the first attempt at numerical weather prediction (NWP), Richardson

produced a forecast for surface pressure tendency in Germany, numerically integrating the

equations of motion by hand. The solution was alarmingly inaccurate however, predicting

a pressure tendency of 146hPa over six hours (for comparison, the highest and lowest

recorded surface pressure in the UK is 1055hPa and 925hPa respectively). The equations

Richardson solved were valid, but the forecast failed for two reasons: first, the discrete

time interval used for integrating forward in time was too large, violating the as yet

undiscovered Courant-Friedrichs-Lewy time step criterion for numerical stability; second,

Bjerknes’ first condition was not satisfied – noise in the initial conditions destroyed the

solution [Kalnay, 2003].

Nonetheless, Richardson’s failed attempt was ingenious and his ideas of fantasy would

become reality, albeit with far less dramatic imagery. The dawn of computation prompted

massive developments in NWP. In ‘Dynamical forecasting by numerical process’, Jule



4 Chapter 1. Introduction

Charney recognised Richardson’s efforts, commenting: “that the actual forecast used to

test his method was unsuccessful was in no way a measure of the value of his work”

[Charney, 1951]. Charney, along with others in the USA and Sweden, pioneered the use

of modern computers in weather forecasting and witnessed the beginning of operational

(real–time) NWP in the 1950s, which used ‘objective analysis’ to incorporate observations

in the initial conditions. Typically, there are far fewer observations than degrees of

freedom of a forecast model, and observations are spatially incomplete. Thus, the

initialisation problem is ill–posed and cannot be satisfactorily solved by simply inserting

observational values alone. Some other information is required to ‘take a full picture

of the condition of the atmosphere’, in Bjerknes’ words. The ‘objective analysis’ of

Gilchrist and Cressman [1954] combines observations with some prior estimate of the

system (from, e.g., a prior forecast or climatology), which regularises the problem and

provides an improved estimate of the state.

Around the same time as Bjerknes espoused his rational approach to weather forecasting,

the French mathematician Henri Poincaré published ‘Science and Method’, which would

have similarly significant repercussions in the field of weather forecasting and beyond

[Poincaré, 1914]. Determinism, the notion that knowledge of the current state of a

mechanical system completely determines its future (and past), is the foundation of

classical mechanics and had dominated scientific thinking since Newton’s Principia

Mathematica was published in the 17th century. Poincaré postulated that even if the

laws of nature were known exactly, the current state of nature can only ever be known

approximately. Moreover, this approximation, when applied to the laws of nature, may

produce a future state that diverges enormously from the correct future state, especially

if those laws are nonlinear. This concept is manifest as chaos: “small differences in the

initial conditions produce very great ones in the final phenomena” [Poincaré, 1914].

The atmosphere is an unstable, chaotic system that possesses myriad dynamical processes

over a range of temporal and spatial scales. Thus, small errors in the initial conditions will
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grow to become large errors in the resulting forecast, and long–term prediction becomes

impossible. Chaos, error–growth, and atmospheric predictability were brought together

by Edward Lorenz, who confirmed that even if the forecast model is perfect, there is an

upper limit to weather predictability [Lorenz, 1963]. The implication for NWP is that

the models must go through a regular process of reinitialisation as observations become

available in time to restore information lost through error growth due to chaos.

Thus, despite the limitations of the component parts of NWP (imperfect models,

imperfect data) and the constraints on predictability owing to chaos, weather forecasting

remains possible, and indeed successful, due to the regular updates from observations.

Development continued apace towards the end of the 20th century as computational power

expanded greatly, allowing higher spatial resolution and more vertical layers in the model

grids. Furthermore, the advent of satellite data in the 1970s provided new sources of

observations and typically covered hitherto data–sparse geographical areas. This led

to a dramatic increase in forecast skill, highlighting the importance of observational

information in the NWP problem.

Today’s NWP models integrate the full primitive equations of motion, describing

atmospheric motions on many scales whilst parameterising unresolved processes at the

smaller scales as a function of the resolved state. As exemplified by Bjerknes, NWP can

be thought of as an initial value problem comprising a forecast model and suitable initial

conditions, with its accuracy depending critically on both, and which needs reinitialising

regularly to restore information lost through error growth. Data Assimilation (DA; see,

e.g., Kalnay [2003]) attempts to provide the optimal initial conditions for the forecast

model by estimating the state of the atmosphere and its uncertainty using a combination

of forecast and observational information (and taking into account their respective

uncertainties). As demonstrated in Richardson’s first attempt, a “sufficiently accurate”

initial state is crucial in such a highly nonlinear system with limited predictability and is

a key component of NWP. A great deal of attention is thus focussed on observing systems
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and assimilation algorithms; this thesis concerns DA for an idealised mathematical model

of NWP.

Until recently, operational NWP models were running with a horizontal resolution larger

than the size of most convective disturbances, such as cumulus cloud formation, which

were accordingly parameterised. Despite the coarse resolution leaving many ‘subgrid’-

scale dynamical processes unresolved, there has been a great deal of success in weather

forecasting owing mainly to the dominance of large-scale dynamics in the atmosphere

[Cullen, 2006]. ‘Variational’ DA algorithms have successfully exploited this notion that

atmospheric dynamics in the extra-tropics are close to a balanced state (e.g., hydrostatic

and semi-/quasi-geostrophic balance), resulting in analysed states and forecasts that

remain likewise close to this balance [Bannister, 2010].

Increasing computational capability has led in recent years to the development of high-

resolution models at national meteorological centres in which some of the convective-

scale dynamics are explicitly (or at least partially) resolved (e.g., Done et al. [2004];

Baldauf et al. [2011]; Tang et al. [2013]). This so-called ‘grey-zone’, the range of

horizontal scales in which convection and cloud processes are being partly resolved

dynamically and partly by subgrid parameterisations, presents a considerable challenge to

the NWP and DA community [Hong and Dudhia, 2012]. Current regional NWP models

are running at a spatial gridsize on the order of 1km with future refinement inevitable,

and smaller-scale processes are known to interfere with DA algorithms based on the

aforesaid balance principles [Vetra-Carvalho et al., 2012]. As such, high-resolution NWP

benefits hugely from having its own DA system, rather than using a downscaled large-

scale analysis [Dow and Macpherson, 2013].

A crucial part of any DA scheme is the adequate estimation of errors associated with the

forecast, or ‘background’ estimate. Due to the size of the NWP problem, it is not possible

to explicitly calculate or store the full-dimensional error statistics which need modelling

accordingly. The error covariance modelling (Bannister [2008a,b]) required in variational



Chapter 1. Introduction 7

DA algorithms is often suboptimal for high-resolution DA owing to convective-scale

motions exhibiting larger error growth at smaller timescales. Motivated by the need

for flow-dependent errors and the simultaneous development of ensemble forecasting

systems, there is a general consensus (e.g., Zhang et al. [2004]; Bannister et al. [2011];

Ballard et al. [2012]; Schraff et al. [2016]) to move towards ensemble-based DA methods

(either purely ensemble-based or an ensemble-variational hybrid), which use a Monte-

Carlo sample (‘ensemble’) of forecast trajectories to estimate the error covariances.

To aid understanding of and facilitate research into such large and complex operational

forecast-assimilation systems, simplified models can be utilised that represent some

essential features of these systems yet are computationally inexpensive and easy

to implement. This allows one to investigate and optimise current and alternative

assimilation algorithms in a cleaner environment before making insights or considering

implementation in a full NWP model [Ehrendorfer, 2007]. By starting with simplified

models, and gradually increasing complexity, one can proceed inductively, and hopefully

avoid problems when many (potentially poorly understood) factors are introduced all at

once. It is often this approach that drives development and progress in DA, including

the aforementioned issues posed by high-resolution NWP, from research to operational

forecasting.

Perhaps the most famous ‘toy’ model in meteorology is Lorenz’s low-order convection

model (L63; Lorenz [1963]). Despite containing only three variables, this system of

ordinary differential equations (ODEs) describes idealised dissipative hydrodynamic flow

and exhibits high nonlinearity. The L63 model and its successors [Lorenz, 1986, 1996;

Lorenz and Emanuel, 1998; Lorenz, 2005] continue to be the basis for numerous DA

studies (e.g., Neef et al. [2006, 2009]; Subramanian et al. [2012]; Bowler et al. [2013];

Fairbairn et al. [2014]). They provide chaotic dynamics on a range of scales yet their

low dimensionality means that they are computationally cheap and easy to implement in

a data assimilation system.
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Whilst being invaluable tools and offering dynamical phenomena of sufficient interest for

investigating DA algorithms, there is a vast gap between the complexity of such ODE

models and the primitive equation models of operational forecasting. Simplified fluid

models attempt to bridge this gap in the hierarchy of complexity. Shallow water models

capture interactions between waves and vortical motions in rotating stratified fluids and

have received much attention in DA research for the ocean and atmosphere (e.g., Zhu et al.

[1994]; Žagar et al. [2004]; Salman et al. [2006]; Stewart et al. [2013]). Continuing up

the hierarchy, idealised configurations of operational NWP models (e.g., Lange and Craig

[2014]) provide the closest representation of operational forecast–assimilation systems

with which to examine potential advances in performance of new schemes.

Arguably the best way, therefore, to approach convective–scale DA research is by using

idealised models that capture some fundamental features of convective–scale dynamics

that are relevant for high–resolution NWP. In this thesis, a modified shallow water model

(extending that of Würsch and Craig [2014]) is proposed for this purpose. It modifies

the shallow water equations (SWEs) to model some dynamics of cumulus convection,

including rapid ascent and descent of air, and the transport of moisture via a ‘rain mass

fraction’ variable r, and is intended primarily for use as a testbed for convective–scale DA

research.

Convective (cumulus) clouds are characterized by highly buoyant, unstable air that

accelerates upwards in a localized region to significant heights [Houze Jr, 1993a]. If the

air then reaches a sufficient height, precipitation forms and subsequently falls through the

convective column, reducing the buoyancy and turning the updraft into a downdraft (along

with associated effects from latent heat release). The model of Würsch and Craig [2014]

(herein WC14), and the extension presented here, captures some aspects of this life-cycle

of single-cell convection, while following the classical shallow water dynamics in non-

convecting and non-precipitating regions. The binary “on-off” nature of convection and

precipitation is inherently difficult to resolve in NWP models, requiring highly nonlinear
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functions that pose further issues for convective-scale DA algorithms. Thus, the inclusion

of switches, in the form of threshold heights, provides a relevant analogy to operational

NWP and is an important aspect of the modified model. In a recent review article,

Houtekamer and Zhang [2016] commented that:

“the frontier of data assimilation is at the high spatial and temporal

resolution, where we have rapidly developing precipitating systems with

complex dynamics”.

By combining the nonlinearity due to the onset of precipitation and the genuine

hydrodynamic (advective) nonlinearity of the SWEs, the model captures some

fundamental dynamical processes of convecting and precipitating weather systems and,

as will be demonstrated, provides an interesting testbed for data assimilation research at

convective scales.
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1.2 Aims

This thesis concerns the development of an idealised fluid dynamical model intended for

use in inexpensive ‘convective–scale’ DA experiments. It is natural to consider this as a

two–part investigation (as reflected in the thesis title), the first part concerning the model

itself and its dynamics, and the second focussing on DA. As such, the objectives of this

thesis are outlined below in two stages:

1. Establish a physically plausible idealised fluid dynamical model with

characteristics of convective–scale NWP.

(a) Present a physical and mathematical description of the model, based on the

rotating shallow water equations and extending the model of WC14.

(b) Derive a stable and robust numerical solver based on the discontinuous

Galerkin finite element method.

(c) Investigate the distinctive dynamics of the model with comparison to the

classical shallow water theory.

2. Show that the model provides an interesting testbed for investigating DA algorithms

in the presence of complex dynamics associated with convection and precipitation.

(a) Demonstrate a well–tuned forecast–assimilation system using the ensemble

Kalman filter assimilation algorithm.

(b) Elucidate its relevance for convective–scale NWP and DA.
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1.3 Thesis outline

The aims listed in the previous section are addressed chronologically herein, with chapters

2 – 4 focussing on the ‘dynamics’ part and chapters 5 and 6 the ‘data assimilation’

part. Chapter 2 introduces the shallow water equations, upon which the model is

formulated, before describing the physical motivation and mathematical aspects of the

idealised fluid model. Extensions and differences to the model of WC14 are highlighted

where necessary. A key aspect of the model is that, despite the modifications to the

standard SWEs, it remains hyperbolic, thus permitting the use of a powerful class of

numerical methods for such PDE systems. Chapter 3 introduces a novel scheme for the

numerical integration of the model that combines discontinuous Galerkin (DG) finite

element methods with the finite volume scheme of Audusse et al. [2004]. The need

to merge concepts from both DG and Audusse is owing to hitherto unforeseen issues

concerning the treatment of topography in lowest–order DG techniques. In chapter 4,

the modified dynamics of the model are investigated with respect to the classical shallow

water theory using some test case simulations, and is concluded with a brief discussion of

its relevance for the convective scales in advance of its use in a DA framework.

The mathematical formulation of the data assimilation problem and Kalman filtering

is detailed in chapter 5, along with practical considerations and issues in ensemble–

based Kalman filtering. Crucial for the following chapter are methods for interpreting

and verifying ensemble–based forecast–assimilation systems, and these are described

here too. Chapter 6 applies the techniques and ideas of chapter 5 to the idealised fluid

model. Specifically, the process of developing and arriving at a well–tuned DA system

is recounted. Having established a meaningful experimental set–up, this is investigated

in more detail with reference to characteristics and aspects of convective–scale NWP and

DA. Chapter 7 provides a summary of the thesis, discusses key results and findings, and

concludes with numerous suggestions on how this work can be taken further.
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Chapter 2

An idealised fluid model of NWP

“It is almost as if the fluid is magically transformed into another form

once it crosses a certain threshold...” 1

So describes Stevens [2005] the manifestation of atmospheric moist convection in his

review paper on the subject. He goes on to summarise: “moist convection can in many

instances be thought of as a two-fluid problem, where one fluid (unsaturated air) can

transform itself into another (saturated air) simply through vertical displacement.” It is

this concept that Würsch and Craig [2014] (WC14) seek to capture in their ‘convective–

scale’ idealised model: the single–layer shallow water equations are modified when the

height of the fluid crosses certain thresholds. In these modified regions, the behaviour

of the flow is transformed from the standard shallow water dynamics to a simplified

representation of cumulus convection. Modelling a moist atmosphere requires a measure

of the water within the fluid volume. The mass fraction of total water in the system,

typically called the total water specific humidity, is a common choice and this notion is

employed by WC14 and extended in this thesis.

This chapter describes the mathematical formulation and physical motivation of an

1From Stevens [2005], on ‘Atmospheric moist convection’
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idealised fluid model based on the rotating shallow water equations and the model of

WC14. Section 2.1 introduces the parent equations from the shallow water theory before

the modifications and full description of the idealised fluid model are presented in section

2.2.

2.1 Shallow water modelling

Shallow water (SW) flows are ubiquitous in nature and their governing equations have

wide applications in the dynamics of rotating, stratified fluids (e.g., Pedlosky [1992]).

Derived by Laplace in the 18th century, the shallow water equations (SWEs) are

considered a useful tool for modelling dynamical processes of the Earth’s atmosphere and

oceans. They approximately describe inviscid, incompressible free-surface fluid flows

under the assumption that the depth of the fluid is much smaller than the wavelength of

any disturbances to the free surface, i.e., a fluid in which the vertical length-scale is much

smaller than the horizontal length-scale.

Interesting dynamical features of the SWEs are gravity waves, vortical motions, and

shocks. Models based on the SWEs capture the interaction between fast gravity waves

and the slowly varying geostrophic vortical mode. Gravity waves are known to play an

important role in the initiation of atmospheric convection, particularly in the presence

of orography, suggesting a model based on the SWEs is appropriate for investigating

convective-scale data assimilation. By definition, shock waves occur wherever the

solution is discontinuous. Such discontinuities in the model variables (or their spatial

derivatives) are mathematical idealisations of severe gradients, akin to fronts in an

atmosphere. As such, propagation of shock waves in the model can be thought of as

the propagation of atmospheric fronts [Parrett and Cullen, 1984; Frierson et al., 2004;

Bouchut et al., 2009].
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2.1.1 The classical equations

The standard shallow water equations on a rotating Cartesian f -plane in which dynamical

variables do not depend on one of the spatial coordinates (here the y-coordinate, so that

∂(·)/∂y := ∂y(·) = 0) can be written as (see, e.g., Zeitlin [2007]):

∂th+ ∂x(hu) = 0, (2.1a)

∂t(hu) + ∂x(hu
2 + p(h))− fhv = −gh∂xb, (2.1b)

∂t(hv) + ∂x(huv) + fhu = 0, (2.1c)

where h = h(x, t) is the space- and time-dependent fluid depth, b = b(x) is the prescribed

underlying topography (so that h + b is the free-surface height), u(x, t) and v(x, t)

are velocity components in the zonal x– and meridional y–direction, f is the Coriolis

parameter (typically 10−4s−1 in the midlatitudes), g is the gravitational acceleration,

and t is time. The effective pressure p(h), following the terminology of isentropic gas

dynamics, has the standard form: p(h) = 1
2
gh2. It is useful to introduce the equations

in this form to illustrate the modifications described in the next section. This system of

equations, together with specified initial and, where appropriate, boundary conditions,

determine how the flow evolves in time.

Physically, this model extends the one-dimensional SWEs by adding transverse flow v

and Coriolis effects. The existence of transverse flow with no variation in the y-direction

means that the model should not be considered one- or two-dimensional, but rather one-

and-a-half dimensional (e.g., Bouchut et al. [2009]). This set-up offers more complex

dynamics associated with rotating fluids (e.g., geostrophy) than a purely 1D model whilst

remaining computationally inexpensive, a crucial factor for a ‘toy’ model.
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2.2 Modified Shallow Water

The model introduced by WC14 extends the 1D SWEs to mimic conditional instability

and include idealised moisture transport via a ‘rain mass fraction’ r. We use the same

physical concepts and argumentation here but employ a mathematically cleaner approach

without diffusive terms which results in a hyperbolic system of partial differential

equations. The model of WC14 is summarised in appendix A, should the reader wish

to refer to it. Other ‘moist’ SW models have been developed for atmospheric dynamics

on the synoptic-scale, perhaps most famously by Gill [1982] and more recently by, e.g.,

Bouchut et al. [2009]; Zerroukat and Allen [2015]. These modern variants often resemble

or are based in part on the work of Ripa [1993, 1995].

The key ingredients of the modification are the inclusion of two threshold heights. When

the fluid exceeds these heights, different mechanisms kick in and alter the classical

shallow water dynamics. Heuristically, these thresholds can be seen as switches for

the onset of convection and precipitation. The mass and hv-momentum equations are

unchanged. The hu-momentum equation is altered by the effective pressure and the

inclusion of a ‘rain water mass potential’, c20r. To close the system, an evolution equation

for the ‘rain mass fraction’ r is required, including source and sink terms (2.2d below).

The modified rotating shallow water (modRSW) model is described by the following

equations:

∂th+ ∂x(hu) = 0, (2.2a)

∂t(hu) + ∂x(hu
2 + P ) + hc20∂xr − fhv = −Q∂xb, (2.2b)

∂t(hv) + ∂x(huv) + fhu = 0, (2.2c)

∂t(hr) + ∂x(hur) + hβ̃∂xu+ αhr = 0, (2.2d)
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where P and Q are defined via the effective pressure p = p(h) = 1
2
gh2 by:

P (h; b) =

p(Hc − b), for h+ b > Hc,

p(h), otherwise,
(2.3a)

Q(h; b) =

p
′(Hc − b), for h+ b > Hc,

p′(h), otherwise,
(2.3b)

with p′ denoting the derivative of p with respect to its argument h, and:

β̃ =

β, for h+ b > Hr and ∂xu < 0,

0, otherwise.
(2.4)

The constants α (s−1) and β (dimensionless) control the removal and production of rain

respectively, c20 (m2s−2) converts the dimensionless r into a potential in the momentum

equation, and Hc < Hr (m) are critical heights pertaining to the onset of convection and

precipitation. For h + b < Hc and r initially zero, it is clear that the model reduces

exactly to the classical shallow water model; this should be maintained in any numerical

solutions.

The modification to the standard SWEs first occurs to the pressure terms in (2.3) when

free-surface height h+b exceeds the thresholdHc. The fundamental dynamics of cumulus

convection are the dynamics of buoyant air: air motions in all convective clouds emerge in

the form of vertical accelerations that occur when moist air becomes locally unstable (i.e.,

less dense) than its environment (see, e.g., Markowski and Richardson [2011b]). Initiation

of deep convection requires that air parcels reach their level of free convection (LFC), the

height at which the air parcel achieves positive buoyancy, thus forcing it further upwards

through the atmosphere. Associated with the rapid ascent (and subsequent descent) of air

in a localized region is the adjustment of the mass field in and around the cloud due to
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hb Hc

p(Hc − b)

Below Hc Above Hc

P (h; b)

p(h)

Figure 2.1: Schematic of the pressure term P (h; b) in (2.3): the modified pressure p(Hc−
b) = 1

2
g(Hc−b)2 above the thresholdHc is lower than the standard pressure p(h) = 1

2
gh2,

thus forcing the fluid to rise where h+ b > Hc.

perturbations of a characteristic pressure field [Houze Jr, 1993a]. Thus, it can be expected

intuitively that buoyancy cannot be instigated without a simultaneous disturbance to the

pressure field [Houze Jr, 1993b]. This mechanism is exemplified by the threshold height

Hc which can be thought of as the LFC: exceedance of Hc forces fluid in that region to

rise by modifying the pressure terms (2.3). The (modified) pressure above Hc, namely

p(Hc− b), is lower than the standard pressure p(h) at a given height (see the schematic in

figure 2.1). Owing to this relative reduction in pressure, the fluid experiences a reduced

restoring force due to gravity and therefore rises.

Model ‘rain’ is produced when the fluid exceeds a ‘rain’ threshold Hr > Hc (higher to

ensure that precipitation forms at some time after the onset of convection), in addition to

positive wind convergence (∂xu < 0). This convergence condition is synonymous with

the upward displacement of an air parcel from the surface and subsequent convective

updraft. In three-dimensional models, horizontal moisture convergence, −∇ · (quuuH),

for some moisture field q and horizontal velocity uuuH , is often used to parametrise bulk

convection and is also a forecasting diagnostic for the initiation of deep moist convection

[Markowski and Richardson, 2011a]. It is well known that moisture convergence is

correlated with horizontal wind convergence −∇ · uuuH - thus, the condition ∂xu < 0
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is conceptually credible and ensures that air is still rising for precipitation to form.

In a similar manner, Würsch and Craig [2014] offer an interpretation that modifies the

‘geopotential’ term. Combining (2.2b) with the conservation of mass equation (2.2a)

yields an equation for the evolution of u rather than hu and isolates the geopotential

gradient:

∂tu+ u∂xu+ ∂xΦ− fv = 0, (2.5)

where:

Φ =

Φc + c20r, for h+ b > Hc,

g(h+ b) + c20r, otherwise.
(2.6)

The geopotential gradient ∂xΦ acts as momentum forcing away from regions of increased

surface height. This means that when the fluid is elevated, there is a natural restoring

force to return the fluid to a lower level. Replacing the geopotential by a constant value

Φc = gHc when the fluid exceeds Hc reverses this restoring force, instead forcing fluid

into the region of decreased geopotential and thereby increasing the fluid depth [Würsch

and Craig, 2014]. Thus, positive buoyancy is instigated and there is a representation of

conditional instability.

The ‘rain mass fraction’ r increases (i.e., ‘rain’ is produced) when the fluid exceeds

Hr and is rising (hence −hβ̃∂xu > 0). As precipitation forms and subsequently falls

through a cloud, it reduces and eventually overcomes the positive buoyancy, thus turning

an updraft into a downdraft. The rain water mass potential c20r imitates this effect

by increasing the overall geopotential gradient (when r > 0) so that there is greater

momentum forcing away from regions of increased surface height. This provides a

restoring force to the fluid depth and limits growth of convection in the model. Thus,

the modified geopotential in the momentum equation, coupled with an evolution equation
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for rain mass fraction r, provides a representation of negative buoyancy.

Expressing the system so that mass and momentum are conserved illustrates the concept

of r as a rain mass fraction. By combining conservation of (total) mass and conservation

of the rain mass fraction, an equation for evolution of ‘dry’ mass is obtained:

∂t(h(1− r)) + ∂x(hu(1− r))− hβ̃∂xu− αhr = 0. (2.7)

The source and sink terms are interpreted as the transfer of mass as rain is produced (term

involving β̃) and precipitated (term involving α). Note that the term involving β̃ is positive

as it is only non-zero when ∂xu < 0 and h+ b > Hr.

Hyperbolicity

Hyperbolic systems of PDEs arise from physical phenomena that exhibit wave motion

or advective transport. Such systems have a rich mathematical structure and have been

extensively researched from both an analytical (e.g., Whitham [1974]) and numerical

perspective (e.g., LeVeque [2002]). The classical SWEs are a well-known example of

a system of hyperbolic PDEs, being a special case of isentropic gas dynamics. Here

we show that the modRSW model (2.2) remains hyperbolic despite the non-trivial

modifications and non-conservative products (NCPs).

A system of n PDEs is hyperbolic if all the eigenvalues λi(UUU), i = 1, ..., n, of its Jacobian

matrix are real and the Jacobian is diagonalisable (i.e., its eigenvectors form a basis in

Rn). To show hyperbolicity (and facilitate numerical implementation in the next section),

the modRSW model (2.2) is expressed in non-conservative vector form:

∂tUUU + ∂xFFF (UUU) +GGG(UUU)∂xUUU + TTT (UUU) = 0, (2.8)
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where:

UUU =


h

hu

hv

hr

 , FFF (UUU) =


hu

hu2 + P

huv

hur

 , GGG(UUU) =


0 0 0 0

−c20r 0 0 c20

0 0 0 0

−β̃u β̃ 0 0

 , TTT (UUU) =


0

Q∂xb− fhv

fhu

αhr

 ,
(2.9)

and P , Q, and β̃ given by (2.3) and (2.4) respectively. It is non-conservative in the sense

that the system cannot be written in divergence form, i.e., the NCP GGG(UUU)∂xUUU cannot be

expressed in terms of a flux function ∂xF̃FF (UUU) (there is no function F̃FF such that ∂UUUF̃FF = GGG).

The Jacobian matrix JJJ = ∂UUUFFF +GGG of the system (2.8) is given by:

JJJ(UUU) =


0 1 0 0

−u2 − c20r + ∂hP 2u 0 c20

−uv v u 0

−u(β̃ + r) β̃ + r 0 u

 , (2.10)

and its four eigenvalues are:

λ1,2 = u±
√
∂hP + c20β̃ , λ3,4 = u. (2.11)

Clearly λ3,4 are real. Since β̃ is non-negative and P (h, b) is non-decreasing (hence ∂hP ≥

0; see figure 2.1), the term under the square root is non-negative. Hence, λ1,2 are real and,

since there are repeated eigenvalues, it can be concluded that the modRSW model is

(weakly) hyperbolic.

Hyperbolic systems are often studied analytically via the method of characteristics.

This leads to a transformation of variables UUU into a new set of Riemann variables that

propagate along characteristic curves in (x, t)-space [Whitham, 1974]. Although this is

in principle possible for the modRSW model, the complexity of the system results in

abstruse expressions for Riemann variables, offering little insight analytically. But as
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the prime purpose here is to provide a physically plausibly numerical forecast model for

conducting idealised DA experiments, further Riemann analysis is neglected. However,

one aspect relating to the wave speeds (determined by the eigenvalues) deserves a further

comment. It is well-known that waves travelling through saturated regions of convection

slow down (e.g., Harlim and Majda [2013]). Therefore, simplified models of a moist

atmosphere should reflect this. For example, the SW model of Bouchut et al. [2009] for a

large-scale moist atmosphere has lower wave speeds in ‘moist’ regions compared to dry

regions. For comparison, the eigenvalues of the classical shallow water system (2.1) are:

µ1,2 = u±
√
p′(h) = u±

√
gh , µ3 = u. (2.12)

For the modRSW model (2.2), max{|λ1,2|} is smaller when Hc < h+ b < Hr, since then

∂hP = 0, and smaller for h + b > Hr when c20β̃ is sufficiently small (specifically, less

than gh), both relative to the standard shallow water case with h + b < Hc. Hence, this

aspect is captured here too.

Non-dimensionalised system

It is useful to work with the non-dimensionalised equations. This acts to simplify

and parametrise the problem, yielding non-dimensional parameters that characterise

the modelled system and embody its dynamics. This is particularly practical for

numerical implementation and comparing quantities that have different physical units.

The dimensionless coordinates and variables are related to their dimensional counterparts

by characteristic scales L0, H0, and V0:

x = L0x̂, (u, v) = V0(û, v̂), (h, b,Hc,r) = H0(ĥ, b̂, Ĥc,r), r = r̂. (2.13)
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Then the dimensionless time coordinate and relevant derivatives are:

t = T0t̂ =
L0

V0
t̂, ∂x =

1

L0

∂x̂, ∂t =
V0
L0

∂t̂, ∂h =
1

H0

∂ĥ. (2.14)

Substituting these into the model equations and defining the non-dimensional effective

pressure p = gH2
0 p̂ yields the following dimensionless system (with the hats dropped):

∂th+ ∂x(hu) = 0, (2.15a)

∂t(hu) + ∂x(hu
2 + P ) +Q∂xb+ hc̃0

2∂xr −
1

Ro
hv = 0, (2.15b)

∂t(hv) + ∂x(huv) +
1

Ro
hu = 0, (2.15c)

∂t(hr) + ∂x(hur) + hβ̃∂xu+ α̃hr = 0, (2.15d)

where:

P (h, b) =
1

2Fr2
[
h2 + ((Hc − b)2 − h2)Θ(h+ b−Hc)

]
, (2.16)

Q(h, b) =
1

Fr2
[h+ (Hc − b− h)Θ(h+ b−Hc)] , (2.17)

β̃ = βΘ(h+ b−Hr)Θ(−∂xu), (2.18)

and Θ is the Heaviside function,

Θ(x) =

1, if x > 0;

0, if x ≤ 0.

(2.19)

The following non-dimensional parameters have been introduced:

Fr =
V0√
gH0

, Ro =
V0
fL0

, c̃0
2 =

c20
V 2
0

, α̃ =
L0

V0
α. (2.20)
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The Rossby number, Ro, and Froude number, Fr, control the strength of rotation and

stratification respectively compared to the inertial terms uuu · ∇uuu.

2.3 Summary

An idealised fluid model of convective–scale NWP has been outlined, based on the

rotating shallow water equations and extending the model of WC14. The starting point

for the model is the rotating shallow water equations on an f -plane with no variation in

the meridional direction (2.1). In this setting, there are meridional velocity v and Coriolis

rotation effects, while retaining only one spatial dimension.

The mathematical modifications to the parent equations, and the physical arguments

behind the changes, are described in detail in section 2.2. These are strongly motivated

by the model of WC14 (see appendix A) but improve upon it in two ways. First, the

inclusion of v-velocity and rotation means dynamics associated with rotating fluids, such

as geostrophy, are present in the model. Second, and more importantly, the diffusion

terms used to stabilise the model of WC14 have been removed. The dynamics of WC14

are highly sensitive to these terms, specifically the diffusion coefficients Kh, Ku, and

Kr, which are tuned to stabilise the model for a specific set-up and are the dominant

controlling factor of the system’s dynamics. As such, the numerical implementation is

not robust to alterations to, e.g., the bottom topography, the gridsize, and constants α, β,

and γ. Each change requires ad hoc tuning of the diffusion coefficients and integration

time step.

Clearly, it is desirable to simplify this and alleviate the reliance on these arbitrary

coefficients. The hyperbolic character of the model described in this chapter permits

the use of robust numerical techniques developed for hyperbolic systems. The following

chapter makes use of these and derives a novel, stable solver for the idealised fluid model

(2.2).
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Chapter 3

Numerics

“A day without mistake is a day without mathematics.”1

There exists a powerful class of numerical methods for solving hyperbolic problems,

motivated by the need to capture shock formation in the solutions, a consequence of

nonlinearities in the governing equations. Efficient and accurate finite volume schemes

for systems of conservation laws are very well developed (e.g., LeVeque [2002]; Toro

[2009]). For shallow water models, there are well-balanced schemes that deal accurately

with topography and Coriolis effects, maintaining steady states at rest and non-negative

fluid depth h(x, t) [Audusse et al., 2004; Bouchut, 2007]. However, the nature of the

modRSW model (namely the presence of non-conservative products (NCPs) including

step functions) requires careful treatment beyond the typical methods for conservation

laws. The discontinuous Galerkin finite element method (DGFEM) developed by

Rhebergen et al. [2008] offers a robust method for solving systems of non-conservative

hyperbolic partial differential equations of the form (2.8) but, as will be shown, does not

satisfactorily deal with topography in the SWEs at lowest order. To mitigate this, a novel

scheme is developed here for the modRSW model (2.2) that mixes the NCP theory from

Rhebergen et al. [2008] and the well-balanced scheme of Audusse et al. [2004].
1Prof. Jan G. Verwer (1946-2011)
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The first section introduces the theory of one-dimensional space-DGFEM for hyperbolic

conservation laws. Section 3.2 extends the theory to nonconservative hyperbolic systems,

before the aforementioned issue with topography at lowest order is rigorously investigated

in section 3.3. Finally, the ‘mixed NCP-Audusse’ methodology for the modRSW model

(2.2) is formulated in full. This chapter makes use of two appendices and the reader is

referred to them in the main text when appropriate. The chapter concludes with a concise

summary of the full scheme.

3.1 1D DGFEM for hyperbolic conservation laws

This section addresses the space DGFEM discretisation of nonlinear hyperbolic systems

of conservation laws, i.e., a system of partial differential equations (PDEs) of the form:

∂tUUU + ∂xFFF (UUU) + TTT (UUU) = 0 on Ω = [0, L], (3.1)

where UUU = UUU(x, t) ∈ Rn are the model variables, FFF ∈ Rn is a flux function such

that ∂FFF/∂UUU ∈ Rn×n has real eigenvalues (hence defining the system as, at least

weakly, hyperbolic), and TTT ∈ Rn is linear and contains extraneous forcing terms. The

conservation law (3.1) has initial conditions UUU(x, 0) = UUU0 and specified boundary

conditions:

UUU(0, t) = UUU left, UUU(L, t) = UUU right, (3.2)

typically periodic or inflow/outflow conditions.

3.1.1 Computational mesh

The one-dimensional flow domain Ω = [0, L] is divided into Nel elements Kk =

(xk, xk+1) for k = 1, 2, ..., Nel with Nel + 1 nodes/edges x1, x2, ..., xNel , xNel+1. Element
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x1 = 0

x2 x3 xNel−1 xNel
xNel+1 = L

K0 K1 K2 KNel−1 KNel KNel+1

F1 F2 FNel FNel+1

xk−1 xk xk+1 xk+2

Kk−1 Kk Kk+1

Fk−1 Fk Fk+1 Fk+2

Figure 3.1: The computational mesh Th (3.3) is extended to include a set of ghost elements
K0 and KNel+1 at the boundaries (see section 3.1.4). Central to the DGFEM schemes are
the fluxes numerical F through the nodes, introduced in section 3.1.2.

lengths |Kk| = xk+1 − xk may vary. Formally, one can define a tessellation Th of the Nel

elements Kk:

Th = {Kk :

Nel⋃
k=1

K̄k = Ω̄, Kk ∩Kk′ = ∅ if k 6= k′, 1 ≤ k, k′ ≤ Nel}, (3.3)

where overbar denotes closure Ω̄ = Ω ∪ ∂Ω. This simply means that the elements Kk

cover the whole domain and do not overlap. A schematic of the mesh is shown in figure

3.1; the concept of flux functions and ghost elements is introduced in sections 3.1.2 and

3.1.4 respectively.

3.1.2 Weak formulation

The first step of any finite element method is to convert the PDE of interest into its

equivalent weak formulation using the standard test function and integration approach

(e.g., Zienkiewicz et al. [2014]):

(i) multiply the system (3.1) by an arbitrary test function w ∈ C1(Kk), generally
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continuous on each element but discontinuous across an element boundary;

(ii) integrate by parts over each element Kk and sum over all elements;

(iii) replace the exact model states UUU and test functions w by approximations UUUh, wh,

and, where appropriate, the flux function FFF by a numerical flux F .

Steps (i) and (ii)

Proceeding thus with the multiplication and integration:

0 =

Nel∑
k=1

∫
Kk

[w∂tUUU + w∂xFFF (UUU) + wTTT (UUU)] dx

=

Nel∑
k=1

∫
Kk

[w∂tUUU + ∂x(wFFF (UUU))−FFF (UUU)∂xw + wTTT (UUU)] dx

=

Nel∑
k=1

{∫
Kk

[w∂tUUU −FFF (UUU)∂xw + wTTT (UUU)] dx+
[
w(x−k+1)FFF (x−k+1)− w(x+k )FFF (x+k )

] }
(3.4)

where w(x−k+1) = limx↑xk+1
w(x), w(x+k ) = limx↓xk w(x), and FFF (x±k ) is to be read as

FFF (UUU(x±k , t)). Reworking the summation of the fluxes over elements, terms evaluated at

the interior (k = 2, ..., Nel) and exterior (k = 1, Nel + 1) nodes are isolated:

Nel∑
k=1

[
w(x−k+1)FFF (x−k+1)− w(x+k )FFF (x+k )

]
= w(x−Nel+1)FFF (x−Nel+1)− w(x+1 )FFF (x+1 )

+

Nel∑
k=2

[
w(x−k )FFF (x−k )− w(x+k )FFF (x+k )

]︸ ︷︷ ︸
=:wLFFFL−wRFFFR

, (3.5)

with superscript L,R denoting evaluation left or right of node xk. The average of a

quantity is denoted by {{·}} = 1
2
((·)L + (·)R) and the difference by J·K = (·)L − (·)R.
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Then the flux at the interior nodes can be written:

wLFFFL − wRFFFR = JwK(γ1FFFL + γ2FFF
R) + JFFF K(γ1wR + γ2w

L)

= JwK(γ1FFFL + γ2FFF
R), (3.6)

with γ1 + γ2 = 1 and after imposing flux conservation at a node, i.e., continuity of FFF :

JFFF K = 0. Then the weak formulation (3.4) reads:

0 =

Nel∑
k=1

{∫
Kk

[w∂tUUU −FFF (UUU)∂xw + wTTT (UUU)] dx
}

+
[
w(x−Nel+1)FFF (x−Nel+1)− w(x+1 )FFF (x+1 )

]
+

Nel∑
k=2

JwK(γ1FFFL + γ2FFF
R). (3.7)

Step (iii)

Since continuity of FFF has been enforced above, it suggests that the fluxes FFFL and FFFR

through each node should be replaced by the same numerical flux F that depends on

variable values to the left and right of that node:

Fk = F̂FF (UUU(x−k ),UUU(x+k )). (3.8)

It follows that (γ1FFF
L + γ2FFF

R) = F and, after replacing the model states UUU and test

functions w by approximations UUUh, wh in (3.7), the discretised weak form reads:

0 =

Nel∑
k=1

{∫
Kk

[wh∂tUUUh −FFF (UUUh)∂xwh + whTTT (UUUh)] dx
}

+ wh(x
−
Nel+1)F̂FF (UUUh(x

−
Nel+1),UUU right)− wh(x+1 )F̂FF (UUU left,UUUh(x

+
1 ))

+

Nel∑
k=2

{(
wh(x

−
k )− wh(x+k )

)
F̂FF (UUUh(x

−
k ),UUUh(x

+
k ))
}
, (3.9)
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where the values UUUh(x
−
1 ) = UUU left and UUUh(x

+
Nel+1) = UUU right are chosen to enforce the

boundary conditions (3.2). The approximations UUUh and wh are defined by expansions

in terms of polynomial basis functions of degree dp, with dp determining the order of the

scheme. Typical choices for the numerical flux are the Lax-Friedrichs flux or approximate

Riemann solvers such as the HLL or HLLC flux (see, e.g., Toro [2009]).

3.1.3 Space-DG0 discretisation

This thesis is concerned with the lowest order scheme dp = 0; the reasons behind this are

explained in section 3.4. The zero-order expansion (so-called DG0) yields a piecewise

constant approximation in each element:

UUUh(x, t) = Uk(t) =
1

|Kk|

∫
Kk

UUU(x, t)dx. (3.10)

Inserting this in (3.9) and, since the test functionwh is arbitrary, settingwh = 1 alternately

in each element, the DG0-discretisation for each element reads:

0 =
dUk

dt
+
Fk+1 −Fk
|Kk|

+ TTT (Uk), (3.11)

where Fk = F̂FF (U−k , U
+
k ) is the numerical flux to be defined, and typically U−k = Uk−1,

U+
k = Uk since the values are constant in an element. This is equivalent to a ‘Finite

Volume’ (FV) Godunov scheme in one dimension (e.g., LeVeque [2002]).

3.1.4 Boundary conditions and ghost elements

It is apparent from sections 3.1.2 and 3.1.3 that computing the fluxes and updating each

elementKk requires information from neighbouring elementsKk−1 andKk+1, known as a

‘three-point stencil’ since the update algorithm spans three elements. For k = 2, ..., Nel−
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1, this is provided by updates in time of the computational values (3.10). However, in the

first and last elements of the mesh, K1 and KNel , the required neighbouring information

is not present and the physical boundary conditions (3.2) must be used in updating these

elements. Typically, this is achieved by extending the computational mesh with so-called

‘ghost’ elements (see figure 3.1 and, e.g., LeVeque [2002], chapter 7). The ghost elements

K0, KNel+1 are used to update the fluxes F1, FNel+1 at x1 = 0, xNel+1 = L, respectively.

Values in these elements are set at the beginning of each time-step in a way that takes

into consideration the boundary conditions, and the updating algorithm is then exactly the

same in every element. Two common types of boundary condition, and the two used in

this thesis, are ‘periodic’ and ‘outflow’.

Periodic boundaries

Periodic boundary conditions have the form UUU(0, t) = UUU(L, t). To implement this

condition numerically, values to the left of node x1 in ghost element K0 should be the

same as those to the left of node xNel+1 in KNel , and values to the right of node xNel+1

in KNel+1 should be the same as those to the right of node x1 in K1. This is achieved by

setting

U−1 = U−Nel+1, U+
Nel+1 = U+

1 , (3.12)

at the start of each time-step. For the standard DG0 scheme (3.11), this impliesU0 = UNel

and UNel+1 = U1. It follows that F1 = FNel+1 and periodicity is ensured.

Outflow boundaries

Outflow boundary conditions mean that the fluid is allowed to leave the flow domain in

a physically-consistent manner, essentially setting the domain to be infinitely large. In

this case, the required information is typically extrapolated from the interior solution.

Care needs to be taken when implementing outflow conditions to ensure that the specified
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boundary information does not contaminate the interior solution. Outgoing waves should

propagate out of the domain without generating spurious reflections from the artificial

boundary [LeVeque, 2002]. The simplest, yet extremely powerful and effective, approach

uses a zero-order extrapolation [LeVeque, 2002], meaning extrapolation by a constant

function, and sets

U−1 = U+
1 , U+

Nel+1 = U−Nel+1, (3.13)

at the start of each time-step. For the standard DG0 scheme (3.11), this implies U0 = U1

and UNel+1 = UNel .

3.2 1D DGFEM for non-conservative hyperbolic PDEs

In this section, following the DGFEM weak formulation for conservation laws, a method

is derived for solving nonlinear hyperbolic systems of PDEs in non-conservative form:

∂tUUU + ∂xFFF (UUU) +GGG(UUU)∂xUUU + TTT (UUU) = 0, (3.14)

where UUU ∈ Rn are the model variables, FFF ∈ Rn is a flux function,GGG ∈ Rn×n is the NCP

matrix, and TTT ∈ Rn is linear and contains extraneous forcing terms. Since the system is

hyperbolic, ∂FFF/∂UUU +GGG ∈ Rn×n has real eigenvalues. It is non-conservative in the sense

that GGG(UUU)∂xUUU cannot be expressed in terms of a flux function ∂xF̃FF (UUU), i.e., there is no

function F̃FF such that ∂UUUF̃FF = GGG. Alternatively, the system (2.8) can be written:

∂tUUU +DDD(UUU)∂xUUU + TTT (UUU) = 0, (3.15)

whereDDD = ∂FFF/∂UUU +GGG ∈ Rn×n.

The DGFEM theory for non-conservative hyperbolic PDEs in multi-dimensions has been

developed by Rhebergen et al. (2008). Crucial to the weak formulation derived for
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equations of the form (3.14) is the work of Dal Maso, LeFloch, and Murat (DLM;

Dal Maso et al. [1995]). This so-called DLM theory is used to overcome the absence

of a weak solution due to the non-conservative productsGGG(UUU)∂xUUU .

3.2.1 DLM theory

Le Floch [1989] illustrates the DLM theory using the following example. Consider a

single non-conservative product (NCP) g(u)∂xu where g : Rn → Rn is a smooth function

but u : [a, b]→ Rn may admit discontinuities. E.g.:

u(x) = uL + Θ(x− xd)(uR − uL) (3.16)

where uL,R ∈ Rn are constant vectors, xd ∈ [a, b], and Θ : R → R is the Heaviside

function (Θ(x) = 1 if x > 0; and 0 if x ≤ 0). For any smooth function g : Rn → Rn, the

NCP g(u)∂xu with (3.16) is not defined at x = xd since |∂xu| → ∞ here. To overcome

this, a smooth regularisation uε of the discontinuous u is introduced:

g(u)
du

dx
≡ lim

ε→0
g(uε)

duε

dx
. (3.17)

Such a regularisation of u enables the NCP to be defined as a bounded measure and gives

sense to a weak formulation of the PDEs. The limit in (3.17) depends on the choice of

uε. To define the regularisation, introduce a Lipschitz continuous path φ : [0, 1] → Rn

satisfying φ(0) = uL and φ(1) = uR and connecting uL to uR in Rn. The following

regularisation arises, defined for ε > 0:

uε(x) =


uL, if x ∈ [a, xd − ε];

φ(x−xd+ε
2ε

), if x ∈ [xd − ε, xd + ε];

uR, if x ∈ [xd − ε, b].

(3.18)
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Using this, Le Floch [1989] states that:

lim
ε→0

g(uε)
duε

dx
= Cδxd , with C =

∫ 1

0

g(φ(τ))
∂φ

∂τ
(τ)dτ, (3.19)

where δxd is the Dirac measure at xd. The regularisation in the limit ε→ 0 clearly depends

on the path φ, except when g is in fact conservative, i.e., ∃q : Rn → R with g = ∂xq. If

this is the case then C = q(φ(1))− q(φ(0)) = q(uR)− q(uL).

It is this formulation, namely that of the NCP as a bounded measure, that enables

the weak formulation to be derived for equations of the form (3.14). In DGFEM, the

computational states are generally continuous on each element but discontinuous across

an element boundary. It is in this context that the framework afforded by the DLM theory

(and culminating in (3.19)) appears naturally in the weak formulation and subsequent

discretisation, cf. (3.21) and (3.22) in section 3.2.2. A full derivation, including the

key theorems employed from the DLM theory, is given by Rhebergen et al. [2008]. A

summary is given in the next section.

3.2.2 Weak formulation

The space DGFEM weak formulation for the system (3.14) with linear source terms SSS is

given by equation (A.11) in Rhebergen et al. [2008] and below here. In the following,

repeated indices are used for the summation convention with i, j = 1, ..., 4 denoting

components of vectors. In one space dimension and considering cell Kk only, the weak

form reads:

0 =

∫
Kk

[w∂tUi − Fi∂xw + wGij∂xUj + wTi] dx

+
[
w(x−k+1)P

p
i (x−k+1, x

+
k+1)− w(x+k )Pmi (x−k , x

+
k )
]
, (3.20)
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where Pp and Pm are given by:

Pp = P̂NC +
1

2

∫ 1

0

Gij(φφφ)
∂φj
∂τ

dτ, (3.21a)

Pm = P̂NC − 1

2

∫ 1

0

Gij(φφφ)
∂φj
∂τ

dτ, (3.21b)

and the NCP flux is:

P̂NCi (UUUL,UUUR) =


FL
i − 1

2

∫ 1

0
Gij(φφφ)

∂φj
∂τ

dτ, if SL > 0;

FHLL
i − 1

2
SL+SR

SR−SL
∫ 1

0
Gij(φφφ)

∂φj
∂τ

dτ, if SL < 0 < SR;

FR
i + 1

2

∫ 1

0
Gij(φφφ)

∂φj
∂τ

dτ, if SR < 0;

(3.22)

Here, FHLL
i is the standard HLL numerical flux [Harten et al., 1983]:

FHLL
i =

FL
i S

R − FR
i S

L + SLSR(UR
i − UL

i )

SR − SL
, (3.23)

Gij is the ij-th element of the matrix GGG, and SL,R are the fastest left- and right-moving

signal velocities in the solution of the Riemann problem, determined by the eigenvalues

of the Jacobian ∂FFF/∂UUU +GGG of the system.

3.2.3 Space-DG0 discretisation

Using piecewise constant basis functions, we take U ≈ Uh = Uk(t) and, since the test

function w ≈ wh is arbitrary, wh = 1 alternately in each element. The semi-discrete

space-DGFEM scheme for element Kk reads:

0 = |Kk|
dUk

dt
+ Pp(U−k+1, U

+
k+1)− P

m(U−k , U
+
k ) + |Kk|T k, (3.24)

where U−k+1 = Uk, U+
k+1 = Uk+1, U−k = Uk−1, U+

k = Uk, and T k = TTT (Uk). This is

equivalent to a ‘Finite Volume’ (FV) Godunov scheme in one dimension.
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3.3 SWEs: issues with well-balancedness at DG0

In principle, the topography b in the idealised fluid model (2.2) can be treated as a model

variable (b = b(x, t) with ∂tb = 0) such that the topographic source term Q∂xb in

(2.9) is then treated as an NCP. However, hitherto less well-known issues with ‘well-

balancedness’ for DG0 discretisations with varying topography mean this approach is

unsatisfactory. A numerical scheme is well-balanced if trivial steady states (e.g., rest

flow) are satisfied, i.e., rest flow remains at rest in the numerical solution. These issues

are addressed in this section. To do so, it is sufficient to consider the non-rotating shallow

water system with non-zero bottom topography:

∂th+ ∂x(hu) = 0, (3.25a)

∂t(hu) + ∂x

(
hu2 +

1

2
gh2
)

= −gh∂xb, (3.25b)

∂tb = 0, (3.25c)

which can be expressed in non-conservative form (3.14) with:

UUU =


h

hu

b

 , FFF (UUU) =


hu

hu2 + 1
2
gh2

0

 , GGG(UUU) =


0 0 0

0 0 gh

0 0 0

 . (3.26)

The eigenvalues of the Jacobian ∂FFF/∂UUU +GGG are λ± = u±
√
gh and λ0 = 0, which give

the following numerical speeds:

SL = min
(
uL −

√
ghL , uR −

√
ghR

)
, (3.27a)

SR = max
(
uL +

√
ghL , uR +

√
ghR

)
. (3.27b)
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For i = 1, 3, there are no NCPs in the equations so contributions to the integrals in

(3.21) and (3.22) are zero. For i = 2 and employing a linear path φφφ(τ ;UUUL,UUUR) =

UUUL + τ(UUUR −UUUL):

∫ 1

0

G2j(φφφ)
∂φj
∂τ

dτ =

∫ 1

0

g(hL + τ(hR − hL))(bR − bL)dτ

= g(bR − bL)

∫ 1

0

(hL + τ(hR − hL))dτ

= g(bR − bL)

[
hLτ +

1

2
τ 2(hr − hL)

]1
0

= g(bR − bL)
1

2
(hL + hR)

= −gJbK{{h}}, (3.28)

recalling that {{·}} = 1
2
((·)L + (·)R) and J·K = (·)L − (·)R. It is shown analytically here

that when taking a linear path and piecewise constant DG0 approximation for the model

states and test functions, the resulting scheme is not well-balanced. Flow at rest requires

that the free surface height remains constant bL + hL = bR + hR with uL = uR = 0.

Under these conditions, SL < 0 < SR always and so the NCP flux (3.22) is:

P̂NCi = FHLL
i − 1

2

SL + SR

SR − SL
V NC
i (3.29)

where V NC
i is given by (3.28) for i = 2 and zero for i = 1, 3. Since F1 = hu = 0 for rest

flow and F3 = 0, the fluxes for the h- and b-equations are:

P̂NC1 =
SLSR(hR − hL)

SR − SL
, P̂NC3 =

SLSR(bR − bL)

SR − SL
, (3.30)

and by (3.21) we have that Pp1 = Pm1 = P̂NC1 and Pp3 = Pm3 = P̂NC3 . For the hu-

equation, we note that U2 = hu = 0, F2 = 1
2
gh2 and V NC

2 = 1
2
g((hL)2 − (hR)2) for rest
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flow and so the flux is:

P̂NC2 =
1

SR − SL
[
SRFL

2 − SLFR
2 −

1

2
(SL + SR)V NC

2

]
=

1

SR − SL
[1

2
SRg(hL)2 − 1

2
SLg(hR)2 − 1

4
(SL + SR)g((hL)2 − (hR)2)

]
=

1

4
g

1

SR − SL
[
SR(hL)2 − SL(hR)2 − SL(hL)2 + SR(hR)2)

]
=

1

4
g

1

SR − SL
[
(SR − SL)((hL)2 + (hR)2)

]
=

1

4
g((hL)2 + (hR)2), (3.31)

=⇒ Pp2 = P̂NC2 +
1

2
V NC
2

=
1

4
g((hL)2 + (hR)2) +

1

4
g((hL)2 − (hR)2)

=
1

2
g(hL)2, (3.32)

=⇒ Pm2 = P̂NC2 − 1

2
V NC
2

=
1

4
g((hL)2 + (hR)2)− 1

4
g((hL)2 − (hR)2)

=
1

2
g(hR)2. (3.33)

To summarise:

Pp =


SLSR(hR−hL)

SR−SL

1
2
g(hL)2

SLSR(bR−bL)
SR−SL

 , Pm =


SLSR(hR−hL)

SR−SL

1
2
g(hR)2

SLSR(bR−bL)
SR−SL

 , (3.34)

Using piecewise constant basis functions w ≈ wh = 1 alternately in each element and

U ≈ Uh = Uk(t), the space-DG0 scheme for element Kk reads:

0 = |Kk|
dUk

dt
+ Pp(U−k+1, U

+
k+1)− P

m(U−k , U
+
k ), (3.35)
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where U−k+1 = Uk, U+
k+1 = Uk+1, U−k = Uk−1, U+

k = Uk and so:

Pp =


SLk+1S

R
k+1(hk+1−hk)

SRk+1−S
L
k+1

1
2
gh2k

SLk+1S
R
k+1(bk+1−bk)

SRk+1−S
L
k+1

 , Pm =


SLk S

R
k (hk−hk−1)

SRk −S
L
k

1
2
gh2k

SLk S
R
k (bk−bk−1)

SRk −S
L
k

 , (3.36)

We prove rest flow remains at rest by considering the evolution of hu and h + b as

determined by the DG0 discretisation (3.24):

hu : 0 = |Kk|
d

dt
(huk) +

1

2
gh2k −

1

2
gh2k =⇒ d

dt
(huk) = 0, (3.37)

h+ b : 0 = |Kk|
d

dt
(hk + bk) +

SLk+1S
R
k+1(hk+1 − hk + bk+1 − bk)

SRk+1 − SLk+1

− SLk S
R
k (hk − hk−1 + bk − bk−1)

SRk − SLk
=⇒ d

dt
(hk + bk) = 0, (3.38)

since hL + bL = hR + bR. Thus, the free surface height h + b remains constant for rest

flow. However, consider the evolution of b only:

0 = |Kk|
d

dt
(bk) +

SLk+1S
R
k+1(bk+1 − bk)

SRk+1 − SLk+1

− SLk S
R
k (bk − bk−1)
SRk − SLk

, (3.39)

and note that the evolution equation for h is the same as this after replacing b with h

everywhere. Since b ≈ bh is discontinuous at the nodes for non-constant b, the sum of

the flux terms is non-zero, leading to evolving topography. The same is true for h. Thus,

although flow remains at rest in the sense that h + b = 0, the DG0 scheme is not well-

balanced since d(bk)/dt 6= 0 and d(hk)/dt 6= 0. For DG1 expansions (and higher), we

can project the DG expansion coefficients of b such that bh remains continuous across

elements, then bR = bL and d(bk)/dt = 0. Then all aspects of rest flow are satisfied

numerically and the scheme is truly well-balanced. A proof is given in appendix C.



40 Chapter 3. Numerics

3.4 Numerical formulation: modRSW

3.4.1 Approach: a mixed NCP-Audusse scheme

Since the goal here is a toy model for DA research, it is preferable to keep the scheme

as computationally efficient as possible and acknowledge higher-order accuracy as of

secondary importance. However, as was shown in section 3.3, there are issues with well-

balancedness for DG0 discretisations with varying topography. In order to remain at

DG0, the topographic source term is discretised directly using the established method of

Audusse et al. [2004], resulting in a well-balanced scheme at lowest order that efficiently

preserves non-negativity of fluid depth h. It is first necessary to isolate the topographic

source term in (2.9) from the other terms pertaining to rotation and removal of rain:

TTT (UUU) = TTTO(UUU) + TTTB(UUU) = [0,−fhv, fhu, αhr]T + [0, Q∂xb, 0, 0]T . Then TTTO is

discretised as a standard linear extraneous forcing term andTTTB via the method of Audusse

et al. [2004].

Using piecewise constant basis functions UUU ≈ UUUh = Uk(t) and wh = 1 alternately in

each element (since the test function w ≈ wh is arbitrary), the semi-discrete space-DG0

scheme (3.24) for element Kk ∈ Th reads:

0 = |Kk|
dUk

dt
+ Pp(U−k+1, U

+
k+1)− P

m(U−k , U
+
k ) + |Kk|TOk + TBk , (3.40)

whereU±k are reconstructed states to the left and right of node xk, and TBk is the discretised

topographic source term. The flux terms Pp and Pm are given by (3.21) and the NCP flux

PNC (3.22) needs deriving for the modRSW system (2.8, 2.9). Before deriving the fluxes,

the scheme of Audusse et al. [2004] to discretise TBk and define the reconstructed states

U±k is outlined.
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3.4.2 Discretising the topographic source term

In Audusse et al. [2004], a well-balanced scheme is derived for solving the shallow water

equations with non-flat topography. The two main developments to achieve this are: (i)

using reconstructed computational states U−k and U+
k to the left and right of an element

edge in the numerical flux instead of cell-centred values Uk−1 and Uk; and (ii) discretising

the topographic source term by considering the leading order balancing requirement for

nearly hydrostatic flows. A summary is given here; for full details the reader is referred

to section 2 of Audusse et al. [2004].

In the asymptotic limit for nearly hydrostatic flows the leading order fluid depth h adjusts

so as to satisfy the balance of momentum flux and momentum source terms:

∂x (p(h)) = ∂x

(
1

2
gh2
)

= −gh∂xb. (3.41)

This also ensures that the ‘lake at rest’ property (i.e., the trivial steady state solution u = 0

and h + b = constant) is satisfied. Integrating over element Kk yields an approximation

to the topographic source term in the form of a flux:

−
∫
Kk

gh∂xbdx =
1

2
g(h−k+1)

2 − 1

2
g(h+k )2 = p(h−k+1)− p(h

+
k ). (3.42)

The reconstructions for the leading order fluid depth:

h−k = hk−1 + bk−1 −max(bk−1, bk), (3.43a)

h+k = hk + bk −max(bk−1, bk), (3.43b)

and are truncated to ensure non-negativity of the depth: h±k = max(0, h±k ). Note that a

modified CFL condition imposes an elemental time-step restriction also required to ensure

both stability and non-negativity. This is shown in appendix B; the time-step is given by

(B.21–B.22). The reconstructed computational states U±k to the left and right of node xk
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are:

U−k =


h−k

h−k uk−1

h−k vk−1

h−k rk−1

 , U+
k =


h+k

h+k uk

h+k vk

h+k rk

 . (3.44)

The fluxes in (3.21) and (3.22) are evaluated using these reconstructions and the

discretised topographic source term TBk in (3.40) is:

TBk =


0

P (h−k+1, b
−
k+1)− P (h+k , b

+
k )

0

0

 , (3.45)

for P defined in (2.3). The resulting scheme satisfies ’flow at rest’ for h + b < Hc,

Hc < h+ b < Hr, and h+ b > Hr.

3.4.3 NCP flux: derivation

The NCP flux PNCi (3.22) is derived for i = 1, ..., 4 in this section for a linear path

φφφ(τ ;UUUL,UUUR) = UUUL + τ(UUUR − UUUL). The integrands involve calculations from the rows

of the ‘non-conservative’ GGG matrix in equation (2.9). It is clear from (3.22) that in the

absence of non-conservative products (Gij = 0 for all i, j) the numerical flux reduces

exactly to the standard HLL flux (3.23). However, for Gij 6= 0, the NCP contributions of

the form in (3.17) must be calculated. The fastest left- and right-moving signal velocities

SL,R are determined by the eigenvalues (2.11) of the Jacobian of the system:

SL = min

(
uL −

√
(∂hP )|L + c20β̃|L , uR −

√
(∂hP )|R + c20β̃|R

)
, (3.46a)

SR = max

(
uL +

√
(∂hP )|L + c20β̃|L , uR +

√
(∂hP )|R + c20β̃|R

)
. (3.46b)
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It helps to define P = P (h, b) and Q = Q(h, b) in terms of the Heaviside function Θ

(2.19):

P (h, b) =
1

2
g
[
h2 + ((Hc − b)2 − h2)Θ(h+ b−Hc)

]
(3.47a)

Q(h, b) = g [h+ (Hc − b− h)Θ(h+ b−Hc)] (3.47b)

and note the following properties of Θ:

d

dτ
[τΘ(τ)] = Θ(τ),

d

dτ

[
1

2
τ 2Θ(τ)

]
= τΘ(τ). (3.48)

For i = 1, 3, the non-conservative products are zero since the first and third rows of the

matrix GGG have zero entries only. Thus, the integrals in the flux (3.22) are zero and PNC

reduces to the HLL flux (3.23).

For i = 2, the integrand to be calculated is:

G2j(φφφ)
∂φj
∂τ

= G21(φφφ)
∂φ1

∂τ
+G24(φφφ)

∂φ4

∂τ

= −c20(rL + τ(rR − rL))(hR − hL) + c20(h
RrR − hLrL)

= c20
(
JhK(rL − τJrK)− JhrK

)
, (3.49)

recalling that J·K denotes the jump of a quantity across a node, J·K = (·)L − (·)R.

Integrating over τ ∈ [0, 1] yields:

∫ 1

0

(
c20JhK(r

L − τJrK)− c20JhrK
)

dτ = c20JhK
∫ 1

0

(rL − τJrK)dτ − c20JhrK
∫ 1

0

dτ

= c20

(
JhK(rL +

1

2
(rR − rL))− JhrK

)
= −c20JrK{{h}}. (3.50)
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Thus, the expression to be inserted in the flux function (3.22) then becomes:

∫ 1

0

G2j(φφφ)
∂φj
∂τ

dτ = −c20JrK{{h}} (3.51)

Thus, for SL > 0, the numerical flux is:

PNC2 = FL
2 −

1

2

(
−c20JrK{{h}}

)
, (3.52)

while for SR < 0:

PNC2 = FR
2 +

1

2

(
−c20JrK{{h}}

)
, (3.53)

and for SL < 0 < SR:

PNC2 = FHLL
2 − 1

2

SL + SR

SR − SL

∫ 1

0

G2j(φφφ)
∂φj
∂τ

dτ

= FHLL
2 − 1

2

SL + SR

SR − SL

(
− c20JrK{{h}}

)
. (3.54)

For i = 4, the integrand includes the β̃ term, the switch dependent on model variables

h, u and topography b. We have that:

G4j(φφφ)
∂φj
∂τ

= G41(φφφ)
∂φ1

∂τ
+G42(φφφ)

∂φ2

∂τ

= −β̃
(
uL + τ(uR − uL))(hR − hL)

)
+ β̃(hRuR − hLuL)

= β̃
(
JhK(uL + τ(uR − uL))− JhuK

)
, (3.55)
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and so the integral to be computed in the flux is:

∫ 1

0

G4j(φφφ)
∂φj
∂τ

dτ =

∫ 1

0

β̃
(
JhK(uL + τ(uR − uL))− JhuK

)
dτ

= JhK
∫ 1

0

β̃(uL + τ(uR − uL))dτ − JhuK
∫ 1

0

β̃dτ

=
(
JhKuL − JhuK

)∫ 1

0

β̃dτ − JhKJuK
∫ 1

0

τ β̃dτ. (3.56)

To proceed, we set z = h + b and consider β̃ defined by equation (2.4) but with z =

zL + τ(zR − zL) and u = uL + τ(uR − uL), so that β̃ is a function of τ :

β̃ = βΘ(zL + τ(zR − zL)−Hr)Θ(−∂xu). (3.57)

It is apparent that Θ(−∂xu) depends on the end points of φ only, and is therefore

independent of τ . If uL < uR then ∂xu > 0, and if uL > uR then ∂xu < 0. Thus

Θ(−∂xu) is equivalent to Θ(uL − uR) = Θ(JuK). It should be noted that this argument

is valid for piecewise constant numerical profiles only, i.e., cell averages. A scheme

that approximates continuous profiles using means and slopes would require greater

consideration.

First, we compute the integral of β̃ over [0, 1]:

∫ 1

0

β̃dτ =

∫ 1

0

βΘ(zL + τ(zR − zL)−Hr)Θ(−∂xu)dτ

= βΘ(JuK)
∫ 1

0

Θ(zL + τ(zR − zL)−Hr)dτ

= βΘ(JuK)
∫ 1

0

Θ(Xτ + Y )dτ︸ ︷︷ ︸
Iβ

, (3.58)
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where X = zR − zL = −JzK and Y = zL −Hr. When X = 0, this integral is trivial:

∫ 1

0

β̃dτ = βΘ(JuK)
∫ 1

0

Θ(Y )dτ = βΘ(JuK)Θ(Y ). (3.59)

For X 6= 0, a change of variable ξ = Xτ + Y and integration yields:

∫ 1

0

β̃dτ =
β

X
Θ(JuK)

∫ X+Y

Y

Θ(ξ)dξ =
β

X
Θ(JuK) [ξΘ(ξ)]X+Y

Y

=
β

X
Θ(JuK) [(X + Y )Θ(X + Y )− YΘ(Y )] .

(3.60)

Hence,

∫ 1

0

β̃dτ = βΘ(JuK)Iβ,

where: Iβ =

Θ(Y ), if X = 0;

(X+Y )
X

Θ(X + Y )− Y
X

Θ(Y ) if X 6= 0.

(3.61)

Intuitively, this makes sense: when X + Y < 0 and Y < 0 (i.e., zR < Hr and zL < Hr),

the rain threshold has not been exceeded, meaning no rain is produced, and the above

integral is zero.

Proceeding in the same manner, we compute the integral of the product τ β̃ over [0, 1]:

∫ 1

0

τ β̃dτ = βΘ(JuK)
∫ 1

0

τΘ(Xτ + Y )dτ︸ ︷︷ ︸
Iτβ

. (3.62)

Again, when X = 0, this integral is trivial:

Iτβ =

∫ 1

0

τΘ(Y )dτ =
1

2
Θ(Y ). (3.63)
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For X 6= 0, a change of variable ξ = Xτ + Y and integration yields:

Iτβ =
1

X2

∫ X+Y

Y

(ξ − Y )Θ(ξ)dξ =
1

X2

[
1

2
ξ2Θ(ξ)− Y ξΘ(ξ)

]X+Y

Y

, using (3.48)

=
1

2
X−2

[(
X2 − Y 2

)
Θ(X + Y ) + Y 2Θ(Y )

]
.

(3.64)

Hence,

∫ 1

0

τ β̃dτ = βΘ(JuK)Iτβ,

where: Iτβ =
1

2

Θ(Y ), if X = 0;

X−2[(X2 − Y 2)Θ(X + Y ) + Y 2Θ(Y )], if X 6= 0.

(3.65)

Equation (3.56) now reads:

∫ 1

0

G4j(φφφ)
∂φj
∂τ

dτ =
(
JhKuL − JhuK

)∫ 1

0

β̃dτ − JhKJuK
∫ 1

0

τ β̃dτ

= βΘ(JuK)
(

(JhKuL − JhuK)Iβ − JhKJuKIτβ
)

= −βJuKΘ(JuK)
(
hRIβ + JhKIτβ

)
. (3.66)

Thus, for SL > 0, the numerical flux is:

PNC4 = FL
4 +

1

2
βJuKΘ(JuK)

(
hRIβ + JhKIτβ

)
, (3.67)

while for SR < 0:

PNC4 = FR
4 −

1

2
βJuKΘ(JuK)

(
hRIβ + JhKIτβ

)
, (3.68)
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and finally for SL < 0 < SR:

PNC4 = FHLL
4 +

1

2

SL + SR

SR − SL
βJuKΘ(JuK)

(
hRIβ + JhKIτβ

)
. (3.69)

This completes the calculations; the NCP flux in vector form is summarised as follows:

PNC(UL, UR) =


FFFL − 1

2
VVV NC , if SL > 0;

FFFHLL − 1
2
SL+SR

SR−SLVVV
NC , if SL < 0 < SR;

FFFR + 1
2
VVV NC , if SR < 0;

(3.70)

where FFFHLL is the HLL numerical flux:

FFFHLL =
FFFLSR −FFFRSL + SLSR(UR − UL)

SR − SL
, (3.71)

and VVV NC arises due to the non-conservative products:

VVV NC =


0

−c20JrK{{h}}

0

−βJuKΘ(JuK)
(
hRIβ + JhKIτβ

)

 . (3.72)

where Iβ and Iτβ are given by (3.61) and (3.65), respectively.
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3.4.4 Outline: mixed NCP-Audusse scheme

The final part of this section provides a concise summary of the full mixed NCP-Audusse

scheme. The semi-discrete DG0 scheme reads:

0 = |Kk|
dUk

dt
+ |Kk|TOk + TBk + Pp(U−k+1, U

+
k+1)− P

m(U−k , U
+
k ), (3.73)

where:

• Uk = [hk, huk, hvk, hrk]
T and U±k are the reconstructed states (3.44);

• TOk = TTTO(Uk) where TTTO = [0,−fhv, fhu, αhr]T and TBk is the discretised

topographic source term (3.45);

• the flux terms Pp,m are given by (3.21) and the NCP flux PNC has been derived in

section 3.4.3, culminating in equations (3.70–3.72);

• the expressions containing Heaviside functions associated with the thresholds Hc

and Hr in the fluxes are Iβ (3.61) and Iτβ (3.65).

Non-negativity is ensured using the time step (B.21–B.22) derived in appendix B for the

time discretisation.



50 Chapter 3. Numerics



51

Chapter 4

Dynamics

“... moist convection is many things...”1

A recurring theme throughout Stevens [2005] review of atmospheric moist convection is

the sheer complexities and intricacies of the subject. Manifest as clouds, it comprises a

variety of regimes spanning a vast range of spatial and temporal scales, with diverse and

nonlinear physical processes in each regime; hence, he concludes, it is many things. The

most powerful state-of-the-art numerical models of the atmosphere struggle with their

treatment of moist convection, and so an idealised model of convection and precipitation

is naturally limited in what it can expect to capture. However, as described in chapter

2, one can seek to represent some of the fundamental processes and aspects of moist

convection in a relatively simple modelling environment. In this chapter, the dynamics

of the idealised fluid model (2.2) are investigated numerically using the methodology

described in chapter 3.

1 Stevens [2005]
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4.1 Numerical experiments

This section presents the results of experiments that have been chosen specifically to

highlight the dynamics of the modified rotating shallow water model (2.2) compared to

those of the classical model (2.1). The experiments are based on: (i) a Rossby adjustment

scenario, and (ii) non-rotating flow over topography, both of which have a rich history in

shallow water theory including known exact steady state solutions. To illustrate the effect

that exceeding the threshold heights Hc < Hr has on the dynamics, a hierarchy of model

‘cases’ is employed:

• Case I: h + b < Hc always (effectively setting Hc, Hr → ∞). The model (2.2)

reduces to standard (rotating) SWEs (2.1) if hr = 0 initially.

• Case II: h + b < Hr always, but may exceed Hc. This is considered a ‘stepping

stone’ to the full model to isolate the effect of the first threshold exceedance. Thus,

givenHc exceedance and the consequent modification to the gradient of the pressure

(2.3a), we expect the fluid to be forced upwards (a ‘convective updraft’).

• Case III: h + b may exceed both Hc, Hr (and ∂xu < 0). This is the full model

with convection and rain processes to be used for idealised convective-scale DA

research.

For the modRSW model to have credibility as a shallow water-type model, it is crucial

that it reproduces, in case I, known results of the standard shallow water equations.

The existence of exact steady state solutions thus provides a benchmark to test this and

the solutions can be used as reference states to compare the subsequent modifications

introduced by cases II and III. The non-dimensionalised equations (section 2.2) are

implemented on a domain of unit length using the mixed NCP-Audusse numerical scheme

summarised in section 3.4.4 and the forward Euler time discretisation. All simulations in
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Figure 4.1: Time evolution of the height profile h(x, t) for the case I (left), II (middle), III
(right). Non-dimensional simulation details: Ro = 0.1,Fr = 1, Nel = 250; (Hc, Hr) =
(1.01, 1.05); (α, β, c20) = (10, 0.1, 0.81).

this chapter use outflow boundary conditions (3.13) - see section 3.1.4. Further simulation

details for each experiment are given in figure captions and the main text.

4.1.1 Rossby adjustment scenario

The following experiment, motivated by Bouchut et al. [2004], explores Rossby

adjustment dynamics in which the evolution of the free surface height is disturbed from its

rest state by a transverse jet, i.e., fluid with an initial constant height profile is subject to

a localised v-velocity distribution. In order to adjust to this initial momentum imbalance,

the height field evolves rapidly, emitting inertia gravity waves and shocks that propagate

out from the jet and eventually reach a state of geostrophic balance [Blumen, 1972;

Arakawa, 1997]. The shape of the initial velocity profile of the jet v(x) is that employed

by Bouchut et al. [2004]:

Nv(x) =
(1 + tanh(4x+ 2))(1− tanh(4x− 2))

(1 + tanh(2))2
, (4.1)
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and the initial conditions are h = 1, hu = hr = 0, and hv = Nv(x). The bottom

topography b is zero throughout the domain.

Snapshots of the time evolution of the height field are shown in figure 4.1. In case I, two

low-amplitude gravity waves propagate to the left and right of the jet core, in agreement

with the results of Bouchut et al. [2004] (their figure 2) for the standard shallow water

theory. Thus, the model reduces analytically and numerically to the classical rotating

shallow water model when the fluid does not exceed the threshold heights Hc and Hr.

To verify this further, simulations are conducted for case 1 with double and quadruple

the number of elements (Nel = 500 and Nel = 1000; see figure 4.2). The difference

in solutions is small, and analysis of the error verifies the convergence of the scheme.

The L∞ norm for Nel = 250 and Nel = 500 is computed at each time with respect to

the Nel = 1000 simulation, denoted L∞250 and L∞500 respectively. As expected for a DG0

scheme, doubling the number of elements reduces the error by a factor of 2 (see values in

bottom-right corner of figure 4.2 panels).

For case II, exceedance ofHc modifies the pressure gradient, triggering positive buoyancy

and leading to a convective updraft. However, no ‘rain’ is produced asHr is not exceeded.

In case III, given Hr exceedance and convergence (∂xu < 0), ‘rain’ is produced and

then slowly precipitates (see figures 4.3 and 4.5), providing a downdraft to suppress

convection. The strength of the downdraft and consequent suppression of the height field

is controlled directly by the c20 parameter. This process is illustrated in figure 4.1 for

cases II and III: as rain is produced the vertical extent of the updraft is diminished (see

case III, figures 4.1 and 4.4), yet it remains a coherent convective column. Physically,

this is due to the c20r contribution in the geopotential (2.6) and provides justification of

the conceptual arguments put forward in section 2.2 and WC14. It may be the case that,

as t → ∞, the solution diverges in case II (especially as |Kk| → 0) since there is no

restoring force provided by the downdraft. However, numerical diffusion at the element

nodes plays a key role at lowest order where the gradients are steep (i.e., at shocks or
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Figure 4.2: Time evolution of the height profile h(x, t) for case I only: Nel = 250 (dotted),
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significant updrafts), and prevents continuous growth of the convective columns, even in

case II.

The evolution of all four model variables for each case is illustrated in figure 4.3 and

detailed further for the fluid depth and rain in figure 4.4. The gravity waves, indicated by

a sharp contour gradient, in the h and u fields are clearly apparent as they propagate from

the jet core. In cases II and III, the left wave propagates as in the standard shallow water

case from t = 0 to 0.5 before decreasing in amplitude and leaving the domain. However,

the right wave is somewhat absorbed as the convective column grows and remains fairly

stationary. This reflects the wave speed argument given in ‘Hyperbolicity’ section in 2.2:

waves in convecting and precipitating regions are slower than their ‘dry’ counterparts.

Multicellular convection (probably the most common form of convection in midlatitudes)

is characterized by repeated development of new cells along the gust front and enables

the survival of a larger-scale convective system [Markowski and Richardson, 2011c]. A

basic representation of this is achieved here: the initial convective column subsides around

t = 0.5 and a new updraft develops in its place with the associated production of rain. The

downdraft from the subsiding column instigates a gravity wave that propagates leftward

and initiates a region of light convection and rain away from the initial disturbance,

another key aspect of atmospheric convection. This is apparent in the top left corner

of the Hovmöller plots for h and u in figure 4.3 for case II and III and the h and r profiles

at t = 0.5, 0.75 in figure 4.4.

Figure 4.5 shows fluid height > Hr and positive wind convergence −∂xu > 0 alongside

the evolution of r. The production of rain requires both Hr exceedance and convergence,

hence we see rain forming in regions where these two processes coincide. It should

be noted here that the amount of rain produced and the speed at which it subsequently

precipitates is controlled by the parameters β and α. Different values would lead to

different solutions, not just for hr but all variables, as the amount of rain acts as on the

geopotential in the hu-momentum equation and couples to the whole system. Moreover,
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the rate of rain production is directly proportional to the strength of convergence −∂xu

and this explains why there is more rain produced in the main convective columns than

in the smaller updraft associated with the propagating gravity wave, where convergence

is weaker.

The Rossby adjustment scenario [Blumen, 1972; Arakawa, 1997] describes how an initial

momentum imbalance adjusts to a state of geostrophic balance between the pressure

gradient and rotation. Shallow water flow in perfect geostrophic balance satisfies (to

leading order with quadratic terms neglected):

g∂xh− fv = 0 and u = 0. (4.2)

In the standard shallow water theory, the geostrophic mean state (i.e., g∂xh ≈ fv) is

rapidly achieved via the emission of gravity waves (in some cases forming shocks) from

the jet core [Bouchut, 2007]. An interesting point here, in the context of convective-

scale dynamics and DA, is how the modRSW model destroys this balance principle. By

construction of the effective pressure (2.3a), and hence its gradient, a breakdown of the

balance (4.2) is to be expected in cases II and III, and the numerical results verify this.
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The top row of figure 4.6 plots the difference (4.2) as a function of space and time for

the three cases, illustrating where a state close to geostrophic balance is achieved (light

shading) and where this balance is broken (deep shading); subsequent rows show profiles

of fv and g∂xh at different times.

In case I, the height field adjusts by emitting shocks from the jet core and quickly

approaches the expected balanced state with the Coriolis acceleration fv. Bouchut [2007]

notes that oscillations may persist for some time in the jet core. Exceedance of the

first threshold causes the fluid in that region to rise and diminishes the right-propagating

shock. The gradient of the height field is severely altered and so we see the breakdown of

geostrophic balance in the jet (case II: figure 4.6, middle column). The same is true for

case III - the height field is qualitatively similar to case II and thus geostrophic balance

is not achieved. The leftward propagation of the gravity wave is also manifest here from

t = 0.5 as a region far from geostrophic balance.

The modRSW model thus exhibits a range of dynamics in which flow is far from

geostrophic in the presence of convection whilst remaining ‘classical’ in the shallow

water sense in non-convecting and non-precipitating regions. The breakdown of such

balance principles is a fundamental feature of convective-scale dynamics and is therefore

a desirable feature of the model.

4.1.2 Flow over topography

We consider non-rotating (infinite Rossby number) flow over an isolated parabolic ridge

defined by:

b(x) =

bc
(

1−
(x−xp

a

)2)
, for |x− xp| ≤ a;

0, otherwise;
(4.3)
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where bc is the height of the hill crest, a is the hill width parameter, and xp its location

in the domain. Such flow over topography has been extensively researched (see, e.g.,

Baines [1998]) and is often used as a test case in numerical studies owing to the range

of dynamics (dependent on Froude number Fr), including shocks, and the existence of

analytical non-trivial steady state solutions. Here, we consider supercritical flow with

Fr = 2. In this regime, the fluid depth increases over the ridge (as opposed to subcritical

flow (Fr < 1) in which the depth decreases over the ridge) and a shock wave propagates at

a height above the rest depth to the right of the ridge. Such a set-up caters for the present

purpose of illustrating the modifications via the hierarchy of model cases as the fluid rises

naturally and exceeds the chosen thresholds above the rest height. The initial conditions

are: h + b = 1, hu = 1, hr = hv = 0. Since there is no rotation, the transverse velocity

v is zero always and the dynamics are purely 1D in space. For standard shallow water

flow (case I), the exact steady state solution is found by solving a third-order equation in

h [Houghton and Kasahara, 1968]:

h3 +

(
b(x)− 1

2
Fr2 − 1

)
h2 +

1

2
Fr2 = 0, with hu = 1. (4.4)

Note that although b is a function of x, it is considered a parameter when solving for h.

This is obtained by considering the steady state system (i.e., (2.1) with v = f = 0 and

∂t(·) = 0) and then solving for h conditional on hu = 1. For modRSW flow, such an

analytical equation for the steady state solution does not exist when h + b > Hc (cases

II and III). However, it is possible to derive a system of ordinary differential equations

(ODEs) in h and r and solve for their steady states for all three cases, which can then

be used as a benchmark for the numerical PDE solution for large t for all three cases.

The ODE solution for case I matches the analytical solution (4.4) (not shown). The ODE

solutions are derived in the next section.

Figure 4.7 shows the evolution of the total height h + b and rain r for the three cases.

In case I, flow over the ridge reaches the known exact steady state solution (red–dashed
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Figure 4.7: Flow over topography (bc = 0.5, a = 0.05, and xp = 0.1): profiles of h + b,
b (black; left y-axis), exact steady-state solution for the SWEs (red dashed; as derived in
section 4.1.2) and rain r (blue; right y-axis) at different times: case I (left), II (middle),
and III (right). The dotted lines denote the threshold heights Hc < Hr. Non-dimensional
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Figure 4.8: Hovmöller plots for flow over topography (Fr = 2), highlighting the
conditions for the production and subsequent evolution of rain: case III. From left to
right: h+ b, −∂xu, and r. Non-dimensional simulation details: same as figure 4.7.

line), thus confirming that correct solutions of the classical shallow water model have

not been violated. The ‘convection’ threshold Hc (and later Hr) is exceeded in two

regions: (i) directly over the ridge, and (ii) downstream from the ridge where the wave

propagates to the right (cases II and III respectively; figure 4.7), and the long-time

numerical PDE steady-state solution (black solid line) for these cases converges to the

steady–state solution (red–dashed line). As with the previous experiment, the extent of

the updraft in case III is slightly reduced owing to the c20r geopotential contribution when

r is positive, although this suppression is less pronounced than the Rossby adjustment

scenario. It is emphasised here that a different choice of c20 (and indeed α and β) leads to

different dynamics relating to the convection and precipitation. Values chosen here are for

illustrative purposes, highlighting the modified the dynamics. When using the model for

idealised DA experiments, these parameters can be tuned to yield different configurations

as desired.

It is apparent from figure 4.7 that the wave that triggers the downstream updraft is

absorbed by the convective column and subsequently propagates slower than for the

standard SW flow, as was observed in the Rossby adjustment experiment and is expected

from the wave speed analysis in 2.2. Rain is produced in and advected with the
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Figure 4.9: Same as figure 4.7 but with two orographic ridges: bc = 0.4, a = 0.05, and
(xp1 , xp2) = (0.0875, 0.2625). Non-dimensional simulation details: same as figure 4.7.
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Figure 4.10: Same as figure 4.8 but with two orographic ridges. Non-dimensional
simulation details: same as figure 4.7.

convective column as it propagates downstream from the ridge and slowly precipitates.

Such lee-side enhancement and propagation of deep convection downstream from a

ridge is a characteristic phenomenon of orographically-induced clouds [Houze Jr, 1993c].

Figure 4.8 plots Hr exceedance and wind convergence alongside r and, as with the

Rossby adjustment scenario, illustrates the conditions required for the production of rain.

Generating rain both requires and is proportional to positive wind convergence, so we

see more rain where this is greater. This relates to the physical argument put forward in

section 2.2 that rain is produced only when the fluid is rising and the amount of rain is

controlled by the strength of the updraft.

Figures 4.9 and 4.10 show corresponding results with two orographic ridges. Again,

the steady-state solution is achieved in all three cases, whilst the inclusion of a second

obstacle for the fluid introduces more complex dynamics and multiple regions of

convection and precipitation.

Semi-analytic steady state solutions for flow over topography

For standard shallow water flow, the exact steady state solution for the non-

dimensionalised equations is found by solving a third-order equation in h (4.4). For
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modRSW flow, an analytical equation for the steady state solution does not exist.

However, it is possible to derive a system of ordinary differential equations (ODEs) in

h and r and solve for their steady states. To facilitate this, we first combine (2.2a) with

2.2b) and 2.2d), yielding a system of equations for h, u, and r (similar to the model of

WC14; appendix A):

∂th+ ∂x(hu) = 0, (4.5a)

∂tu+ u∂xu+ ∂xΦ = 0, (4.5b)

∂tr + u∂xr + β̃∂xu+ αr = 0, (4.5c)

where Φ is given by equation (2.6). Steady-state solutions are found by considering time-

independent flow (∂t(·) = 0):

∂x(hu) = 0, (4.6a)

u∂xu+ ∂xΦ = 0, (4.6b)

u∂xr + β̃∂xu+ αr = 0, (4.6c)

The first of these steady-state equations gives immediately a solution of u in terms of h:

∂x(hu) = 0 =⇒ hu = K, for constant K =⇒ u =
K

h
, (4.7)

which is then substituted into the remaining equations, yielding a system of 2 ODEs to

solve for h and r. Using (4.7) and noting that:

∂xu = ∂x

(
K

h

)
= −K

h2
∂xh, (4.8)
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the system in terms of h and r reads:

− K2

h3
∂xh+ ∂xΦ = 0, (4.9a)

K

h
∂xr −

K

h2
β̃∂xh+ αr = 0. (4.9b)

A system of the formMMMXXX ′ = YYY is sought, whereXXX = (h, r)T , prime denotes derivative

with respect to x, and MMM ∈ R2×2, YYY ∈ R2 are given from the equations set. If MMM is

non-singular (and hence invertible), then we can solve XXX ′ = MMM−1YYY numerically for XXX

using, e.g., a simple finite difference scheme.

The system (4.9) is expanded as follows:

[
− K2

h3
+ g|Hc

]
∂xh+

[
c20

]
∂xr = −

[
g|Hc∂xb

]
, (4.10a)[K

h

]
∂xr −

[K
h2
β̃
]
∂xh = −

[
αr
]
, (4.10b)

where g|Hc = g if h + b ≤ Hc and zero otherwise and the terms in square brackets are

components ofMMM and YYY :

MMM =

−K2

h3
+ g|Hc c20

−K
h2
β̃ K

h

 , YYY =

−g|Hc∂xb
−αr

 . (4.11)

The β̃ term (given in (2.4)) requires further manipulation; re-writing in terms of the

Heaviside function we have:

β̃ = βΘ(−∂xu)Θ(h+ b−Hr)

= βΘ(K/h2∂xh)Θ(h+ b−Hr), using (4.7),

= βΘ(∂xh)Θ(h+ b−Hr). (4.12)

Thus, the system readsXXX ′ = f(XXX) where f(XXX) = MMM−1YYY and is solved using a forward
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Euler finite difference scheme: XXXj+1 = XXXj + 4xf(XXXj,XXXj−1). The value at j − 1 is

required to compute the Heaviside of the height gradient in (4.12); all other components

in f(XXX) = MMM−1YYY are evaluated using values at level j. To start marching through space,

note that XXX1 = XXX2, so that β̃ = 0. Then proceed as usual for j ≥ 1. The solutions are

indicated in figures 4.7 and 4.9 (red dashed lines).

4.2 Summary

This chapter has investigated the dynamics of the modified shallow water model (2.2)

using the numerical methodology described in chapter 3. Classical numerical experiments

in shallow water theory, based on (i) the Rossby geostrophic adjustment problem (section

4.1.1) and (ii) non-rotating flow over topography (section 4.1.2), have been studied here

to illustrate the modified dynamics of the model. To highlight the response of the fluid

exceeding the threshold heights Hc < Hr, a hierarchy of model cases is employed and

the dynamics of each case is discussed with reference to the physical basis put forward in

chapter 2.

The model reduces exactly to the standard SWEs in non-convecting, non-precipitating

regions. It is clear from the model formulation in equations (2.2) – (2.4) that this should

be the case; the numerical model satisfies this, reproducing known shallow water results

in case I. The model also exhibits important aspects of convective-scale dynamics relating

to the disruption of large-scale balance principles which are of particular interest from a

DA perspective [Bannister, 2010]. The Rossby adjustment scenario clearly illustrates the

breakdown of geostrophic balance in the presence of convection and precipitation, while

the breakdown of hydrostatic balance is implicitly enforced by the modified pressure

(2.3) when the level of free convection Hc is exceeded. Furthermore, the experiments

simulated here have illustrated other features related to convecting and precipitating

weather systems, such as the initiation of daughter cells away from the parent cell by
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gravity wave propagation, and convection downstream from an orographic ridge.

Although based on the model of WC14, the absence of artificial diffusion terms from the

governing equations results in a mathematically cleaner formulation with conservation

of total mass (‘dry’ plus ‘rain’), and a markedly different dynamical behaviour emerges.

With the addition of rotation (and consequent Rossby adjustment dynamics) and analysis

of steady-state solutions for flow over topography, a rigorous investigation of the model’s

distinctive dynamics has been conducted in advance of its use in data assimilation

experiments.

This chapter brings the first part of this thesis, on the model and its dynamics, to

an end. The second part concerns data assimilation; the mathematical formulation of

the data assimilation problem (in particular Kalman filtering) is introduced in the next

chapter, along with practical considerations, before forecast–assimilation experiments are

conducted using the idealised fluid model in chapter 6.
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Chapter 5

Data assimilation and ensembles:

background, theory, and practice

“In theory, there is no difference between theory and practice. But, in

practice, there is.” 1

Data assimilation (DA) is the process of combining limited and imperfect observations of

a system with an imperfect model to produce a more accurate and comprehensive estimate

of the current and future state of the modelled system as it evolves in space and time. A

successful assimilation algorithm takes into account any other useful information, such

as dynamical/physical constraints and knowledge of uncertainties, in producing the ‘best’

estimate of the state. This chapter introduces the mathematical formulation of the data

assimilation problem and the relevant background material for the next chapter. The basic

tools required to solve the DA problem are provided by filtering and estimation theory

(see, e.g., Jazwinski [2007]). In the context of NWP, Kalnay [2003] gives a concise

introduction to the DA problem and the various different solving techniques employed in

weather forecasting. The notation in this chapter follows that proposed by Ide et al. [1997]

1Jan L.A. van de Snepscheut (1953-1994), computer scientist.
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where possible, with Houtekamer and Zhang [2016] also providing a concise notational

guide for the ensemble Kalman filter (section 5.3). There is somewhat of an overlap with

notation used in previous chapters; however, use of symbols and super/sub-scripts will be

defined herein independently of their use in previous chapters.

5.1 Overview of the classical DA problem

Consider an n–dimensional state vector x ∈ Rn, representing the (discrete) state of the

atmosphere. A prior estimate of the atmosphere typically comes from a forecast xf and

differs from the true state xt according to the the forecast error εf :

xf = xt + εf . (5.1)

Consider a p–dimensional vector y ∈ Rp of observations of the state of the atmosphere,

valid at the same time as the model state xf . In operational NWP, the state vector

contains the values of the prognostic variables at all model grid points. The number

of degrees of freedom of a forecast model, i.e., the value of n, is O(109) while the

number of observations is O(107) (see, e.g., Houtekamer and Zhang [2016]), so that n

is much greater than p. Furthermore, y is typically a very heterogeneous collection of

observations comprising numerous indirect and spatially–incomplete measurements of x.

The (nonlinear) observation operator H : Rn → Rp maps the state vector x from model

space to observation space:

y = H[xt] + εo, (5.2)

where εo ∈ Rp is the observational error, usually comprising instrumental and

representativeness errors. Representativity concerns the notion that the model is

not capable of representing some of the physical processes that can be seen in the

observations, owing to the resolution being too coarse, or simply the fact that some
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processes are not being modelled at all (see, e.g., Janjić and Cohn [2006]). The error

term εo also accounts for errors in the observation operatorH.

The n–dimensional state vector x ∈ Rn is integrated forward in time using the nonlinear

(discretised) forecast modelM : Rn → Rn. Thus, the true state xt at a previous time ti−1

is related to the truth at the present time step ti via:

xt(ti) =M[xt(ti−1)] + ηi−1 (5.3)

where η ∈ Rn is the model error.

The quantification of uncertainty is a crucial part of any DA algorithm that seeks to

determine an optimal estimate of the model state vector. Thus, estimations of the error

statistics associated with the forecast and observations and their underlying probability

distributions are essential. The covariance between two random variables η1, η2 is defined

as:

cov(η1, η2) = 〈(η1 − 〈η1〉)(η2 − 〈η2〉)〉, (5.4)

where 〈·〉 is the expectation operator. In multivariate space, the representation (5.4) is

used to construct a covariance matrix which relates how vector components covary in

space. Thus, an error covariance matrix contains information about the magnitude of

errors and their correlations in space. It is assumed that the forecast and observation error

are unbiased (i.e., have zero mean) and are uncorrelated with each other:

〈εf〉 = 〈εo〉 = 0, and 〈εf (εo)T 〉 = 〈εo(εf )T 〉 = 0. (5.5)

The error covariance matrices for the forecast, observations, and model respectively are



74 Chapter 5. Data assimilation and ensembles: background, theory, and practice

given by:

Pf = 〈εf (εf )T 〉 ∈ Rn×n (5.6a)

R = 〈εo(εo)T 〉 ∈ Rp×p (5.6b)

Q = 〈ηηT 〉 ∈ Rn×n. (5.6c)

The goal of data assimilation is to estimate the state and uncertainty of the atmosphere

as accurately as possible by combining the forecast xf and observations y given their

respective uncertainties εf and εo. The ‘best’ estimate xa, called the analysis, is defined

by:

xa = xt + εa, (5.7)

where εa is the analysis error. Given the previous unbiased assumptions, εa is itself

unbiased, 〈εa〉 = 0, and the analysis error covariance is Pa = 〈εa(εa)T 〉 ∈ Rn×n.

A natural framework for tackling the DA problem is provided by Bayes’ theorem

(e.g., Wilks [2011]), which relates probability density functions (PDFs) of two random

variables A and B:

P (A|B) =
P (B|A)P (A)

P (B)
. (5.8)

Let A be the event that x < xt < x + dx and B the event y < yt < y + dy, where yt is

the true observation. The aim is to find the state of the atmosphere x given observations

y, i.e., the posterior P (x|y). Applying Bayes’ (5.8) yields:

P (x|y) =
P (y|x)P (x)

P (y)
, (5.9)

where P (y|x) is the conditional PDF of observations y given a state x (called the

likelihood and P (x) is the prior PDF of the forecast state. The prior PDF P (y) of the
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observation vector is a normalising factor:

P (y) =

∫
P (y|x′)P (x′)dx′, (5.10)

that ensures the posterior PDF is indeed a probability measure (i.e., the integral over all

probabilities is unity). The desired analysis state xa is the most probable state of the joint

PDF P (x|y)

Traditional DA methods are classified as either variational or sequential [Ide et al.,

1997]. Both approaches assume Gaussian statistics and produce an equivalent analysis

estimate. In practice however, this assumption rarely holds and the resulting posterior

estimate is a sub-optimal solution. Modern filtering techniques have been developed

which make no assumptions about the underlying distributions but a computationally–

tractable implementation for large problems such as NWP remains elusive.

There are typically two approaches to defining and computing the ‘best’ estimate, (i) the

‘maximum likelihood’ estimate and (ii) the ‘minimum variance’ estimate. The maximum

likelihood estimate (or maximum a posteriori (MAP) estimate) seeks the most likely x

and is determined by the mode of P (x|y). The minimum-variance estimate seeks to

minimise the analysis variance and is determined by the mean of P (x|y). Hence, for

Gaussian distributions (mean = mode), the two estimates are equivalent.

Assuming Gaussian forecast and observation errors, εf ∼ N (0,Pf ) and εo ∼ N (0,R),

the prior and likelihood are given by:

P (x) ∝ exp

[
−1

2
(x− xf )T (Pf )−1(x− xf )

]
, (5.11a)

P (y|x) ∝ exp

[
−1

2
(y −H[x])TR−1(y −H[x])

]
. (5.11b)
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Using (5.11) in (5.9) yields the posterior PDF:

P (x|y) ∝ exp

[
−1

2
(x− xf )T (Pf )−1(x− xf )

]
× exp

[
−1

2
(y −H[x])TR−1(y −H[x])

]
= exp

[
−1

2

[
(x− xf )T (Pf )−1(x− xf ) + (y −H[x])TR−1(y −H[x])

]]
= exp [−J(x)] . (5.12)

The maximum probability (and corresponding analysis xa) occurs when x minimises the

cost function J(x). This function quantifies the distance between the analysis and the

forecast (weighted by the forecast error) and the analysis and the observations (weighted

by the observation error). Generally, the cost function J is minimized directly using

an iterative optimisation method that requires the computation of its gradient ∇J , a

linearised observation operator H (i.e., the Jacobian of H), and uses a prescribed static

forecast error covariance matrix. It provides the MAP analysis estimate as a weighted

linear combination of forecast and observation:

xa = xf +
(
(Pf )−1 + HTR−1H

)−1
HTR−1(y −H[xf ]). (5.13)

In the ‘minimum variance’ approach, the estimate is computed that minimises the mean

of the square error (“least–squares”) and is also a linear combination of forecast and

observation:

xa = xf + K(y −H[xf ]). (5.14)

The observation departure y−H[xf ] is weighted by a matrix K ∈ Rn×p and the problem

is solved by seeking the optimum elemental weights in K that yield the analysis with

the minimum variance. The resulting matrix is called the Kalman gain and combines
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information from the forecast and observation error covariances:

K = PfHT (HPfHT + R)−1, (5.15)

and yields the Best Linear Unbiased Estimate (BLUE; see, e.g., Kalnay [2003]) as well

as an expression for the analysis error covariance:

Pa = (I−KH)Pf . (5.16)

This procedure is also known as ‘Optimal Interpolation’. It is useful to interpret this

weighting procedure in one dimension (i.e., n = p = 1) with a state x ∈ R and a single

observation y ∈ R of the same variable (so that H = 1), with forecast error variance

σ2
f and observation error variance σ2

o . The Kalman gain (5.15) weights the observation

increments by the forecast error variance normalised by the total error variance:

K =
σ2
f

σ2
f + σ2

o

. (5.17)

If the forecast is very accurate compared to the observations (σ2
f � σ2

o), then K→ 0 and

the forecast xf dominates. On the other hand, if the forecast is of a much lower quality

than the observations (σ2
f � σ2

o), then K→ 1 and the observation y is given the maximum

weight. From a different perspective, if for some reason the variance of the forecast is

underestimated (i.e., there is over-confidence in its skill), then valid observations may not

have the expected influence when producing the analysis estimate.

The Kalman gain plays an analogous role in higher dimensions (i.e., n > 1): the optimal

weight is given by the forecast error covariance normalised by the total error covariance

taking into account the different model and observation spaces in which the respective

covariances are expressed. However, it plays a far greater role in higher dimensions as it

contains information on spatial correlations between variables via the error covariance
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matrices. The structure of Pf in particular has a profound impact on the quality of

the analysis estimate: variances on its diagonal estimate the confidence in the forecast

state while off-diagonal elements allow the spreading of information in space between

variables.

The importance of Pf is evident in the following example with n = 2 and p = 1.

Consider a state vector x = (x1, x2)
T ∈ R2 with forecast error variances σ2

f1 and σ2
f2

and covariances c, and a direct measurement y ∈ R of x1 with error variance σ2
o . Then

the matrices of interest are:

Pf =

σ2
f1 c

c σ2
f2

 , R = σ2
o , H = H =

[
1 0

]
, (5.18)

and so the Kalman gain equals:

K = PfHT (HPfHT + R)−1

=

σ2
f1 c

c σ2
f2

1

0

[1 0
]σ2

f1 c

c σ2
f2

1

0

+ σ2
o

−1

=
1

σ2
f1 + σ2

o

σ2
f1

c

 . (5.19)

The resulting analysis increment is a vector proportional to the first column of Pf :

xa − xf =
y − xf1
σ2
f1 + σ2

o

σ2
f1

c

 , (5.20)

and shows clearly how an unobserved state component (in this case x2) is updated via

the off-diagonal covariances of Pf . Accordingly, a misspecified Pf results in incorrect

updates and can have a very detrimental impact on the analysis estimate.

Using the Sherman-Morrison-Woodbury formula [Sherman and Morrison, 1950], the
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Kalman gain matrix can be rewritten:

K = PfHT (HPfHT + R)−1 =
(
(Pf )−1 + HTR−1H

)−1
HTR−1, (5.21)

and it becomes clear that the analysis estimates (5.13, 5.14) derived using the two

different approaches are indeed equivalent. Although arriving at the same estimate,

the two approaches are algorithmically very different and yield two distinct frameworks

for solving the DA problem. The solution derived by considering the MAP estimate

and minimising a cost function is known as three–dimensional variational assimilation

(3DVAR), while the minimum-variance estimate obtained via the Kalman gain is called

Optimal Interpolation (OI). The choice of method depends on the size of the problem

in hand; historically NWP has favoured variational methods but modern variants of the

Kalman filter (which uses the OI equations) are becoming more popular in practice.

5.2 Kalman Filtering

The Kalman Filter (KF; Kalman [1960]; Kalman and Bucy [1961]) is a sequential method

in which a linear model is integrated forward in time from an initial analysis state estimate

and, whenever observations are available, they are used to reinitialise the model before

the integration continues. However, NWP involves solving nonlinear partial differential

equations describing atmospheric motion on many scales, and so a linear DA method

such as the standard KF is wholly inadequate. In an attempt to overcome this deficiency,

advances in nonlinear Kalman filtering have led to schemes which at least partially

capture some of the nonlinearity, including the Extended Kalman Filter (EKF; in which

the forecast and observation models can be nonlinear) and the Ensemble Kalman Filter

(EnKF; which uses an ensemble of nonlinear model integrations). Here, I outline the

concepts and formulation of the traditional KF and its modern variants, and highlight

some crucial points for its numerical implementation.
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Kalman filtering can be described in a two-step process: a ‘forecast’ step advances the

model state and its corresponding error statistics, followed by an ‘analysis’ step which

assimilates the observations in a way to produce an optimal estimate of the state and

reinitialise the model. This sequence is repeated in a loop when observations become

available. To start the loop, prior knowledge of the state is needed. Here, this is

assumed to come from a previous forecast, which provides the state vector itself and

some corresponding statistical information (e.g., correlation/covariance structure).

5.2.1 The forecast step

The goal of the KF (and indeed any DA scheme) is to provide the best estimate of the

true state xt given all the information available. This information typically consists

of a prior forecast (or an analysis obtained in the previous DA cycle) and sequential

observations/measurements of the modelled system. The following formulation assumes

nonlinear model dynamics, and so derives the EKF. For the standard KF, M is a linear

operator (or ‘state transition matrix’). Given the analysis xa at time ti−1, the forecast state

xf at the next time step ti is determined by the (imperfect) model dynamics:

xfi =Mi−1[x
a
i−1]. (5.22)

The error covariance matrix associated with the model state vector x is given by P. For

the analysis and forecast respectively, this is defined as:

Pa = 〈(xa − xt)(xa − xt)T 〉 = 〈εa(εa)T 〉, (5.23a)

Pf = 〈(xf − xt)(xf − xt)T 〉 = 〈εf (εf )T 〉, (5.23b)

where the difference between truth and analysis (forecast) is defined as the analysis

(forecast) error: xa = xt + εa (xf = xt + εf ). It is assumed that these errors are
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uncorrelated, i.e., 〈εai (ε
f
i )
T 〉 = 0 etc. The forecast error is computed in the following

way:

εfi = xfi − xti

=Mi−1[x
a
i−1]−Mi−1[x

t
i−1]− ηi−1

=Mi−1[x
a
i−1]−Mi−1[x

a
i−1 − εai−1]− ηi−1

=Mi−1[x
a
i−1]−Mi−1[x

a
i−1]−Mi−1ε

a
i−1 +O(|εai−1|2)− ηi−1

≈Mi−1ε
a
i−1 − ηi−1, (5.24)

using the Taylor expansion:

M[xa + εa] =M[xa] + Mεa +O(|εa|2) (5.25)

where M is the tangent linear model (TLM) of the model operator is defined:

M =
∂M
∂x

∣∣∣∣
x=xa

∈ Rn×n. (5.26)

The EKF assumes that the contribution from all the higher order terms is negligible. This

is known as the EKF closure scheme and provides an approximation of the forecast error

covariance matrix only. It is exact in the standard KF in which model dynamics are

linear. Thus, neglecting O(|εa|2) terms, the approximate equation for the evolution of the

forecast error covariance matrix is:

Pfi = 〈εfi (ε
f
i )
T 〉

= 〈(Mi−1ε
a
i−1 − ηi−1)(Mi−1ε

a
i−1 − ηi−1)T 〉

= 〈(Mi−1ε
a
i−1(ε

a
i−1)

TMT
i−1 + ηi−1(ηi−1)

T 〉

= Mi−1P
a
i−1M

T
i−1 + Qi−1, (5.27)
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where Qi−1 = 〈ηi−1ηTi−1〉 from (5.6c). The model forecast (5.22) and its corresponding

error covariance matrix (5.27) constitute the forecast step of the EKF:

xfi =Mi−1[x
a
i−1]

Pfi = Mi−1P
a
i−1M

T
i−1 + Qi−1

(5.28a)

(5.28b)

Note that the previous analysis state xai−1 and its error covariance matrix Pai−1 are assumed

known (‘prior information’) from a previous cycle (see figure 5.1).

5.2.2 The analysis step

In the analysis step, observational information available at time ti is merged with previous

information carried forward by the forecast step in a way that gives the ‘best’ estimate of

the true state. This estimate, namely the analysis at time ti, is obtained by adding an

optimally weighted observational increment to the forecast state:

xai = xfi + Kidi (5.29)

where Ki is the optimal weight and di is the observational increment (known as

the ‘innovation’), defined as the difference between the observation and forecast in

observation space:

di = yi −Hi[x
f
i ]. (5.30)

The matrix Ki is the Kalman gain matrix:

Ki = PfiH
T
i (HiP

f
iH

T
i + Ri)

−1, (5.31)

a time-dependent extension of the weight matrix (5.15) of the ‘Optimal Interpolation’

equations, which give the ‘best linear unbiased estimation’ for the analysis xa. It
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weights the innovation d according to the ratio between forecast and observational error

covariances, where H is the TLM of the (nonlinear) observation operatorH:

H =
∂H
∂x

∣∣∣∣
x=xf

∈ Rp×n. (5.32)

As with the model dynamics, the standard KF assumes a linear observation operator. The

Kalman gain is also used to update the analysis error covariance matrix Pa. Using the

Taylor expansion ofH about xf :

Hi[x
t
i] = Hi[x

f
i − ε

f
i ] = Hi[x

f
i ]−Hiε

f
i +O(|εf |2) (5.33)

with higher-order error terms ignored, the analysis error is given by:

εai = xai − xti

= xfi + Ki(yi −Hi[x
f
i ])− xti

= xfi − xti + Ki(yi −Hi[x
t
i] +Hi[x

t
i]−Hi[x

f
i ])

= εfi + Ki(ε
o
i −Hix

f
i )

= (I−KiHi)ε
f
i + Kiε

o
i . (5.34)

Then the analysis error covariance matrix (5.23a) is given by:

Pai =
〈(

(I−KiHi)ε
f
i + Kiε

o
i

)(
(I−KiHi)ε

f
i + Kiε

o
i

)T〉
= (I−KiHi)〈(εfi )(ε

f
i )
T 〉(I−KiHi)

T + Ki〈(εoi )(εoi )T 〉KT
i

= (I−KiHi)P
f
i (I−KiHi)

T + KiRiK
T
i . (5.35)
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Finally, rewriting equation (5.31) so that Ki(HiP
f
iH

T
i + Ri)K

T
i = PfiH

T
i K

T
i , a concise

expression is obtained for the Kalman-updated analysis error covariance matrix:

Pai = Pfi −KiHiP
f
i − PfiH

T
i K

T
i + KiHiP

f
iH

T
i K

T
i + KiRiK

T
i

= Pfi −KiHiP
f
i

= (I−KiHi)P
f
i . (5.36)

This expression (5.36) and the update equation (5.29) complete the analysis step of the

KF:

xai = xfi + PfiH
T
i (HiP

f
iH

T
i + Ri)

−1di

where di = yi −Hi[x
f
i ]

Pai = (I−KiHi)P
f
i

(5.37a)

(5.37b)

(5.37c)

Once complete, the model is reinitialised with the updated analysis and the loop continues

forward as observations are made available. This Kalman filtering algorithm is illustrated

in figure 5.1.

5.2.3 Summary

The general formulation of the KF has been outlined here as a sequential data assimilation

technique which merges observational data and a model forecast in a way that produces

a best estimate of the model state. The outcome is optimal in the ‘best linear unbiased

estimation’ and ‘cost function minimisation’ sense [Kalnay, 2003].

In the standard KF, the forecast modelM and forward observation operatorH are linear,

while one or both of the models are nonlinear in the EKF. An important theorem from

filtering theory for the linear KF states that if the dynamical system comprising imperfect

state propagation and imperfect measurements is uniformly completely observable and

uniformly completely controllable, then the KF is uniformly asymptotically stable



Chapter 5. Data assimilation and ensembles: background, theory, and practice 85

Prior knowledge
of state

xa(ti−1)
Pa(ti−1)

Forecast step:
using model dynamicsM,

TLM M, and model error Q.

xf (ti)
Pf (ti)

Reinitialise model:
go to next time step

Analysis step:
add weighted innovation

to forecast

xa(ti)
Pa(ti)

Available observations:
y(ti), R(ti)

Output estimate of
state: xa(ti) and

uncertainty Pa(ti)

Figure 5.1: A schematic diagram illustrating the general formulation of the KF. The
filtering technique starts with some given prior information and then continues in cycles
with the availability of observations.

(see, e.g., Jazwinski [2007]). Observability refers to the amount of observation

information and takes into account the propagation of this information with the model.

Controllability refers to the plausibility of nudging the system to the correct solution by

applying appropriate increments. Uniform asymptotic stability implies that, for bounded

observation errors, the errors in the output will remain bounded regardless of the initial

data. This means that even with an unstable modelM, the KF will stabilise the system.

A major drawback of the EKF in NWP is the huge computational cost involved in

propagating the forecast error covariance matrices Pf . This is equivalent to dim(x)

forward model integrations, where dim(x) is of order 109. This is extremely prohibitive

and is the major reason why the EKF is not a tractable algorithm for operational forecast–

assimilation systems. Another problem of the EKF is the use of the approximate

closure scheme in (5.27), in which third- and higher-order moments in the forecast

error covariance equation are discarded. Evensen [2003] notes that this linearisation is
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often invalid in a number of applications, e.g., in Evensen [1992] the linear evolution

of Pf in an ocean model leads to an unbounded linear instability. Miller et al. [1994]

noted that estimated solutions were only tolerable in a short time interval and proposed

a generalisation of the EKF which extended the covariance evolution to include third-

and fourth-order moments. Although this leads to improvements in the estimation, it still

remains a computationally expensive approximation.

Recent developments in the NWP and DA community have led to techniques which

approximate and update the forecast error covariance matrix in a computationally

tractable manner and attempt to capture the nonlinearity associated with atmospheric

modelling. The main obstacle hindering applications with a high-dimensional

atmospheric forecast model is obtaining an appropriate low-dimensional approximation

of the forecast error covariance matrix for a feasible implementation on a computational

platform. The use of random ensembles currently seems to be the most practical way to

address the issue.

5.3 The Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) was introduced by Evensen [1994] and combines

Kalman Filter theory with Monte Carlo estimation methods. It follows the same

conceptual framework of the standard KF and EKF, outlined in the previous section,

but differs in that it uses Monte Carlo methods to estimate the error covariances of

the forecast error. In doing so, it provides an approximation to the time-dependent

forecast error covariance matrix Pf without the need of the tangent linear model M in

the forecast step (see equation (5.27)). It implicitly treats the errors as Gaussian by

its reliance on the mean and covariance, which completely characterise the Gaussian

distribution. In combination with other techniques (addressed in section 5.5), it provides

an approximation to the Kalman-Bucy filter [Kalman, 1960; Kalman and Bucy, 1961])
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that is feasible for operational atmospheric DA problems; additionally, it provides an

ensemble of initial conditions that can be used in an ensemble prediction system.

The EnKF is relatively simple to implement and much more affordable computationally

than the EKF. Furthermore, it does not use any linearisations for the forward integration of

the forecast error covariance, thereby including the full effects of nonlinear dynamics. By

providing flow-dependent estimates of the background error from the nonlinear model,

the EnKF is better suited to adapting to current observations than the EKF (which uses

linear flow-dependency) and 3DVAR (which assumes static background error).

Since its first application in Evensen [1994], there have been numerous important

contributions to its development, notably by Burgers et al. [1998], Houtekamer and

Mitchell [1998], Evensen and Van Leeuwen [2000], and Houtekamer and Mitchell [2001].

Evensen [2003] reviews the important results of these studies and gives a comprehensive

overview of the formulation and implementation of the EnKF. Meng and Zhang [2011]

and Houtekamer and Zhang [2016] provide more recent reviews and cover issues relating

to high-resolution ensemble-based Kalman filtering.

5.3.1 Basic equations

In the following, subscripts are reserved for indexing ensemble members only, not time

as in the previous section. For an N–member ensemble, the j th member xj (j = 1, .., N )

is integrated forward via (possibly a perturbed realisation of) the forecast modelMj:

xfj (ti) =Mj[x
a
j (ti−1)], j = 1, ..., N, (5.38)



88 Chapter 5. Data assimilation and ensembles: background, theory, and practice

and the update (analysis) is performed using a randomly perturbed vector of observations

yj:

xaj (ti) = xfj (ti) + K(yj −H[xfj (ti)]), (5.39a)

K = PfHT (HPfHT + R)−1, (5.39b)

where K and the matrices within are at time ti. This time-dependence is now implicitly

assumed and no longer indexed. The reason for using perturbed observations is addressed

in the following section. As is typical in the Monte Carlo approach to forecasting, the

best estimate of the state is given by the ensemble mean:

x =
1

N

N∑
j=1

xj. (5.40)

State error covariance matrices in the standard Kalman filter are defined in terms of a

(usually unknown) truth state, as in (5.23a, 5.23b), and must accordingly be modelled in

some way. In the EnKF, the error covariance matrix is approximated using an ensemble

of states (i.e., an ensemble of nonlinear model integrations):

P ' Pe =
1

N − 1

N∑
j=1

(xj − x)(xj − x)T

=
N

N − 1
(x− x)(x− x)T (5.41)

where the overline denotes an average over the ensemble. In this set-up, errors are defined

as perturbations from the ensemble mean rather than the truth and the forecast error is

characterised by covariance matrix. It should be noted that in an EnKF it is not necessary

to compute the full covariance matrix Pf in model state space, which is prohibitively large

if n is of order O(109). Instead, when computing the Kalman gain in (5.39), one can use
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ensemble approximations to PfHT andHPfHT [Houtekamer and Mitchell, 2001]:

PfHT =
1

N − 1

N∑
j=1

(xfj − xf )(H[xfj ]−H[xf ])T , (5.42a)

HPHT =
1

N − 1

N∑
j=1

(H[xfj ]−H[xf ])(H[xfj ]−H[xf ])T , (5.42b)

where xf is the forecast ensemble mean (5.40) and we define the mean of the forecast

ensemble in observation space:

H[xf ] =
1

N

N∑
j=1

H[xfj ]. (5.43)

In this way, the full non–linear observation operator H is used in the update. To

summarise the basic EnKF equations:

Forecast: xfj (ti) =Mj[x
a
j (ti−1)], j = 1, ..., N,

Analysis: xaj (ti) = xfj (ti) + K(yj −H[xfj (ti)]),

K = PfHT (HPfHT + R)−1.

(5.44a)

(5.44b)

(5.44c)

5.3.2 The stochastic filter: treatment of observations

After the first implementation of an EnKF by Evensen [1994], Burgers et al. [1998] and

Houtekamer and Mitchell [1998] noted that for a completely consistent analysis scheme

the observations should be treated as random variables, i.e., random perturbations should

be added to the observations which are sampled from a distribution with mean equal to

the ‘first-guess’ observation y and covariance R. If this is not the case, the EnKF scheme

results in an updated ensemble with a variance which is too low.
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Without perturbed observations

To illustrate this, consider first an EnKF cycle (i.e., a forecast followed by an analysis

update) in which the (same) observation vector y is assimilated into all ensemble

forecasts. Assume also for simplicity that the observation operator is linear, H = H.

The forecast step is:

xfj (ti) =Mj[x
a
j (ti−1)], j = 1, ...N, (5.45)

and Pfe is given by (5.41) at time ti. Each ensemble member is then updated using the

Kalman gain matrix (5.31) with Pf replaced by Pfe , all at time ti:

xaj = xfj + PfeH
T (HPfeH

T + R)−1︸ ︷︷ ︸
=:Ke

(y −Hxfj ). (5.46)

The analysis mean is given by:

xa =
1

N

N∑
j=1

xaj =
1

N

N∑
j=1

{
xfj + Ke(y −Hxfj )

}
,

=
1

N

N∑
j=1

xfj + Ke(y −H
1

N

N∑
j=1

xfj ),

= xf + Ke(y −Hxf ). (5.47)

The final step is to evaluate the analysis ensemble error covariance Pae given by the

definition (5.41). From (5.46) and (5.47):

xaj − xa = xfj − xf + Ke(y −Hxfj )−Ke(y −Hxf ),

= xfj − xf −KeH(xfj − xf ),

= (IN −KeH)(xfj − xf ), (5.48)
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where IN is the N × N identity matrix. It follows that the analysis ensemble error

covariance matrix is given by:

Pae =
N

N − 1
(xa − xa)(xa − xa)T ,

=
N

N − 1
(IN −KeH)Pfe (IN −HTKT

e ). (5.49)

Comparing this with the analysis covariance (5.36) in the standard KF, it is clear that

the covariance of the analysed ensemble differs by a factor of (IN −HTKT
e ). This factor

results in the ensemble covariance being reduced too much, as illustrated by the following

scalar example [Burgers et al., 1998]. Say Pf = 1 and R = 1, then the analysis variance

is Pa = 0.5 (from (5.36)) yet the ensemble analysis (5.49) gives Pae = 0.25. It can be

concluded that using the same observation to update each ensemble member results in an

underestimation of the analysis error covariances.

With perturbed observations

To retain the correct analysis covariance, it is essential that observations are treated as

random vectors whose distribution has mean equal to the unperturbed observation and

covariance matrix R. The perturbed observation ensemble is defined as:

yj = y + εoj , εoj ∼ N(0,R). (5.50)

It may be necessary to correct the observations against any bias that may arise (i.e., yj 6= y

if εoj 6= 0) after the perturbations have been applied, especially when N is small. The

forecast step is the same as without perturbed observations. However, the analysis update

differs since the j th perturbed observation yj is assimilated with the j th ensemble forecast

xfj , rather than using the single observation y for all ensemble forecasts. Hence, the
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analysis step reads:

xaj = xfj + Ke(yj −Hxfj ), (5.51)

where Ke = PfeH
T (HPfeH

T + R)−1, (5.52)

with analysis mean given by (5.47). Errors are given by perturbations from the ensemble

mean:

xaj − xa = xfj − xf + Ke(yj −Hxfj )−Ke(y −Hxf ),

= xfj − xf + Ke(yj − y)−KeH(xfj − xf ),

= (IN −KeH)(xfj − xf ) + Ke(yj − y). (5.53)

and the analysis ensemble error covariance matrix is given by:

Pae =
N

N − 1
(xa − xa)(xa − xa)T ,

=
N

N − 1
(IN −KeH)Pfe (IN −HTKT

e ) + KeReK
T
e ,

=
N

N − 1
(IN −KeH)Pfe . (5.54)

This expression is the result obtained previously (5.36) in the standard KF analysis scheme

with the covariance matrices replaced by their ensemble representations. It is clear that

perturbed observations are required to get the observation error covariance R into the

expression of analysis covariance and that by treating observations as random vectors

there is correspondence between the standard KF and EnKF in both the forecast and

analysis step. Indeed, the EnKF with perturbed observations in the limit of infinite

ensemble size gives the same result in the calculation of the analysis as the KF and EKF

[Evensen, 2003]. A schematic for the EnKF algorithm is shown in figure 5.2.



Chapter 5. Data assimilation and ensembles: background, theory, and practice 93

5.3.3 Matrix formulation

It is useful to consider the matrix representation when implementing the EnKF analysis

scheme. Bold type face x is used to denote a full state vector in Rn only and is indexed by

the ensemble member j. Where there are 2 subscripts xkj , k = 1, ..., n indexes the state

vector component and j = 1, ..., N indexes the ensemble member. The N independent

ensemble members are collated into an n×N matrix, defined as the ensemble state matrix:

X =
(
x1 x2 · · · xN

)
=


x11 x12 · · · x1N

x21 x22 · · · x2N
...

...
...

xn1 xn2 · · · xnN

 ∈ Rn×N , (5.55)

with superscript f and a for the forecast and analysis ensemble matrix respectively. Define

the ensemble mean matrix X as the product of X with 1N ∈ RN×N , a square matrix with

all elements are equal to 1/N :

X = X1N =
1

N



N∑
j=1

x1j
N∑
j=1

x1j · · ·
N∑
j=1

x1j

N∑
j=1

x2j
N∑
j=1

x2j · · ·
N∑
j=1

x2j

...
...

...
N∑
j=1

xnj
N∑
j=1

xnj · · ·
N∑
j=1

xnj



=⇒ X =


x1 x1 · · · x1

x2 x2 · · · x2
...

...
...

xn xn · · · xn

 ∈ Rn×N . (5.56)

Thus, the ensemble mean matrix stores the ensemble mean state x ∈ Rn, repeated in each

column. Ensemble perturbations (or displacements about the centre of mass) are defined
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as the difference between each ensemble member and the ensemble mean: x′j = xj − x.

In matrix form:

X′ = X− X =
(
x′1 x′2 · · · x′N

)

=


x11 − x1 x12 − x1 · · · x1N − x1
x21 − x2 x22 − x2 · · · x2N − x2

...
...

...

xn1 − xn xn2 − xn · · · xnN − xn

 ∈ Rn×N , (5.57)

Thus, the ensemble error covariance matrix can be defined (from (5.41)):

Pe =
1

N − 1

N∑
j=1

(xj − x)(xj − x)T

=
1

N − 1

(
(x1 − x)(x1 − x)T + · · ·+ (xN − x)(xN − x)T

)
=

1

N − 1

(
x′1 x′2 · · · x′N

)(
x′1 x′2 · · · x′N

)T
=

1

N − 1
X′(X′)T ∈ Rn×n, (5.58)

with appropriate superscripts for analysis and forecast. Diagonal entries are the variances

and off-diagonal entries are the covariances between each component in the state vector

x: X′(X′)T =



N∑
j=1

(x1j − x1)2
N∑
j=1

(x1j − x1)(x2j − x2) · · ·
N∑
j=1

(x1j − x1)(xnj − xn)

N∑
j=1

(x2j − x2)(x1j − x1)
N∑
j=1

(x2j − x2)2 · · ·
N∑
j=1

(x2j − x2)(xnj − xn)

...
...

...
N∑
j=1

(xnj − xn)(x1j − x1)
N∑
j=1

(xnj − xn)(x2j − x2) · · ·
N∑
j=1

(xnj − xn)2


.

(5.59)
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Similarly, perturbed observations are assembled into the columns of the p×N matrix Υ:

Υ =
(
y1 y2 · · · yN

)
∈ Rp×N . (5.60)

Using the matrices defined in this way, the analysis equation for the EnKF is written:

Xa = Xf + Ke(Υ−H[Xf ])

where Ke = PfeHT (HPfeHT + R)−1, (5.61)

andH[Xf ] is shorthand for applyingH to each column of Xf in turn. The ensemble mean

analysis can also be expressed in the matrix representation:

Xa = Xa1N = Xf1N + Ke(Υ−H[Xf ])1N

= Xf + Ke(Υ−H[Xf ]), (5.62)

and the analysis error covariance matrix follows directly from (5.58):

Pae =
1

N − 1
X′a(X′a)T . (5.63)

5.3.4 Summary

The forecast and analysis scheme for the EnKF has been derived here and shown to

maintain the same structure as the standard KF. The EnKF was proposed by Evensen

[1994] as a Monte Carlo alternative to the deterministic EKF. It uses an ensemble of

forecasts to estimate and evolve flow-dependent background error covariances which

are required to compute the Kalman gain in the analysis step. If the same observations

are used to update each ensemble member, there is a systematic underestimation of the

analysis error covariances. However, by treating the observations as random variables
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Generate initial
ensemble using, e.g.,

ensemble of initial states

xaj (ti−1)
xa(ti−1)

Forecast step: update
each member individually
using model dynamicsM

xfj (ti)

xf (ti)
Pfe (ti)

Reinitialise model:
go to next time step

Analysis step: add
weighted innovation with
perturbed obs. to forecast

xaj (ti)
xa(ti)

Perturb obs.:
yj(ti) = y(ti) + εoj

Available observations:
y(ti), R(ti)

Output estimate of
state xa(ti) and

error Pae(ti)

Figure 5.2: A schematic diagram illustrating the general formulation of the EnKF. The
EnKF forecast and update equations with perturbed observations are structurally identical
to those of the traditional and extended KF.

and assimilating an ensemble of stochastically perturbed observations with correct error

statistics, this problem is corrected [Burgers et al., 1998; Houtekamer and Mitchell,

1998]. Moreover, it has been shown [Mandel et al., 2011] that, with linear forecast

and observation models and in the limit of large ensemble size, the EnKF converges in

probability to the KF.

Unlike the EKF, there is no need for linearisations in the propagation of forecast error

statistics, and consequently the effects of nonlinear dynamics in the forecast model

are included. Moreover, the computationally expensive tangent linear model M and
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its adjoint MT are not required, making the EnKF easier to implement in practical

applications with high-dimensional state vectors. A useful artefact of the EnKF is the

automatic computation of a random sample of analysis states (and the corresponding

error distribution) which can be used as initial conditions for an ensemble prediction

system. Ensemble generation for NWP is a key area of research which has greatly

benefited both to and from the development of ensemble DA methods. An ensemble of

perturbations obtained from the analysis error statistics is by construction intrinsically

suited to ensemble prediction initialisation, i.e., the DA scheme produces “realistic”

perturbations, in the sense that the initial perturbations reflect the statistics evolved by

the underlying dynamics via the estimated analysis uncertainty [Kalnay, 2003].

5.4 Other filters

Numerous other ensemble-based filters exist, some of which are sufficiently developed to

be operational, others which still require further advancement before potential usage in an

NWP setting. Some of the most popular flavours are briefly discussed here, but since the

stochastic EnKF is the method employed in this thesis, further details are omitted. Reich

and Cotter [2015] provide an excellent summary of numerous linear and nonlinear filters.

5.4.1 Deterministic filters

Treating observations as random variables leads to a stochastically formed analysis

ensemble and subsequent estimate of analysis errors. This stochastic scheme produces

asymptotically correct analysis estimates for large enough ensemble size, yet it inevitably

introduces further sampling errors (one source of sampling errors is already present

through estimation of the forecast error covariances). These additional sampling errors

arise due to the Monte Carlo simulation of observations and subsequent estimation of
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observation error covariances (i.e., treating observations as random variables). Increased

sampling errors can lead to biased analysis error covariance estimates [Tippett et al.,

2003]. This has motivated the development and use of deterministic (or ‘square root’)

filters that form the analysis ensemble deterministically, thereby removing sampling

errors associated with perturbed observations. Since it avoids the impact of spurious

correlations from perturbed observations, the deterministic filter can achieve a comparable

performance as a corresponding stochastic filter with a smaller total ensemble size

[Mitchell and Houtekamer, 2009]. However, it has also been shown [Lawson and Hansen,

2004] that, without the regular introduction of random forcing, the deterministic filter

can develop highly non-Gaussian distributions and subsequently degrade the KF solution

which assumes Gaussian statistics. As such, it may be considered less robust than the

stochastic EnKF [Houtekamer and Zhang, 2016].

5.4.2 Ensemble transform filters

The ensemble transform Kalman filter (ETKF) is a suboptimal KF that uses a transform

to obtain rapidly the forecast error covariance matrices [Bishop et al., 2001]. In doing so,

it lends itself to an efficient implementation in an operational setting. The local ETKF

(LETKF; Hunt et al. [2007]) merges the transform filter with the Local Ensemble Kalman

Filter [Ott et al., 2004], and has also been developed with computational efficiency on

massively parallel computers in mind. The Met Office uses an LETKF to initialise

their ensemble prediction system [Bowler et al., 2008, 2009] and other operational

configurations are employed by the Italian Meteorological Service (CNMCA; Bonavita

et al. [2010]) and Deutsche Wetter Dienst (DWD; Schraff et al. [2016]). The Japanese

Meteorological Agency (JMA) and ECMWF have developed an LETKF for research

purposes.
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5.4.3 Nonlinear filters

Nonlinear data assimilation, in which no assumptions are made about the underlying

probability distributions, is receiving a lot of attention in the geosciences [van Leeuwen,

2010]. This is unsurprising; given that higher resolution models include more small-

scale processes and more complex and indirect observations require highly nonlinear

observation operators, the data assimilation problem is becoming more and more

nonlinear.

Nonlinear filters are nothing new (e.g., Anderson and Anderson [1999]; Bengtsson et al.

[2003] and the particle filter has been applied in the geosciences [Van Leeuwen, 2009].

However, these filters are known to be extremely inefficient due to the so–called ‘curse

of dimensionality’, which states that the number of particles (i.e., ensemble members)

required scales exponentially with the state dimension [Snyder et al., 2008; Bengtsson

et al., 2008; Van Leeuwen, 2009]. This renders particle filters wholly unsuitable for the

NWP problem in their current form, but recent variants have attempted to address the

curse of dimensionality and have been applied to high dimensional systems (e.g., Ades

and Van Leeuwen [2013, 2015]). Nonetheless, NWP is an extremely high dimensional

problem and a great deal of progress and further research is required before fully nonlinear

data assimilation is plausible in an operational system.

5.5 Issues in ensemble-based Kalman filtering

Monte-Carlo ensemble forecasts attempt to sample the true PDF of the atmosphere

starting from a finite number of initial random perturbations [Epstein, 1969; Leith, 1974].

The ensemble provides a discrete estimate of this distribution; the mean (‘first moment’)

yields the Best Linear Unbiased Estimate of the future state, while the covariance (‘second

moment’), of the ensemble exemplifies the uncertainty in the ensemble mean forecast
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[Murphy, 1988]. These finite sample estimates are known to converge slowly and

considerably undersample the true PDF when the number of degrees of freedom is large

[Stephenson and Doblas-Reyes, 2000]. In the context of NWP, the computational cost of

integrating the forecast model M limits the size of the ensemble N used operationally,

which is typically O(10− 100), much smaller than the number of degrees of freedom of

the model n = O(109). Consequently, all ensemble DA schemes suffer from sampling

error as N � n.

The efficiency and effectiveness of the EnKF algorithm depends on myriad factors, almost

all of which stem from this undersampling due to the small ensemble size [Houtekamer

and Mitchell, 1998]. The ensemble is used to estimate the forecast error covariance

matrix which has a profound impact on the success in any data assimilation problem.

As such, special techniques are necessary to counter the limited ensemble size and obtain

good filter behaviour. Issues in ensemble-based Kalman filtering are well documented

and comprehensive reviews of the problems and alleviating techniques can be found in

Ehrendorfer [2007] and Houtekamer and Zhang [2016]. The rest of this section discusses

three of the main issues pertinent for this thesis in more detail and summarises other points

of concern for practical implementation of the EnKF.

5.5.1 The rank problem and ensemble subspace

The forecast error covariance matrix has dimension n × n and to calculate Pf in the

original (E)KF equations requires n model integrations. This is clearly prohibitively large

for the NWP problem in which n = O(109), but if it were attainable it would provide

n different directions (i.e., eigenvectors of Pf ) in the model’s phase space on which to

project the observational information. However, an EnKF system withN members covers

a subspace with at most N − 1 directions which is evidently much restricted compared

with the full space. This means that the p observations must be mapped onto a limited

number of directions [Lorenc, 2003].
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To illustrate this mathematically, consider the Kalman update equation (5.39) for the

analysis increment of ensemble member j, rewritten as a linear transform:

xaj − xfj = Pfevj, where vj = HT (HPfeHT + R)−1(yj −H[xfj ]), (5.64)

and recall that Pfe is defined as the outer product of forecast deviations from the mean

(5.58). Then it is apparent that the analysis increments lie in the subspace of the ensemble:

xaj − xfj =
1

N − 1
(Xf )′((Xf )′)Tvj =

1

N − 1
(Xf )′ṽj (5.65)

for ṽj = ((Xf )′)Tvj . This means that the analysis increments are constrained to lie in the

span of the columns of (Xf )′, even if observations indicate otherwise.

The rank problem, namely that N � n and N � p, manifests the sampling issue

in the EnKF and is one of the main differences compared to the original KF theory

[Houtekamer and Zhang, 2016]. The small number of directions and lack of information

of the full model space leads to an ensemble which does not sufficiently sample the space

and is potentially underspread. Rank deficiency of Pf , and how this is dealt with, is a

crucial aspect when the EnKF is implemented in practice. Concerning idealised forecast-

assimilation experiments with the simplified fluid model, the rank problem is less severe

since the model space is much reduced (n = O(100− 1000)) and depends very much on

the observing system.

5.5.2 Maintaining ensemble spread: the need for inflation

A well-configured and sufficiently spread ensemble is key to providing an adequate

estimation of forecast error in the EnKF. The ensemble spread should be comparable to the

root mean square error of the ensemble mean if the filter is to perform adequately. It is well

known that ensembles exhibit insufficient spread due to undersampling [Houtekamer and
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Mitchell, 1998]. Indeed, globally-averaged spread values in an ECMWF ensemble DA

system have been found to be half the size of the corresponding forecast error [Bonavita

et al., 2012], and Houtekamer and Zhang [2016] note that other ensemble-based DA

studies reveal that in general only about a quarter of the error variance of the ensemble

mean is explained by the ensemble.

Insufficient ensemble spread can lead to ‘inbreeding’ [Houtekamer and Mitchell, 1998],

a phenomenon in which the analysis error covariances are consistently underestimated,

leading to ever–smaller ensemble spread. Underestimating ensemble error is akin to the

EnKF placing too much confidence in the accuracy of the ensembles at the expense

of the observations, which may be more faithful to reality. This causes a feedback

cycle in which ever more trust is placed on the forecasts (hence the term inbreeding)

and the observations are eventually ignored altogether. Once the ensemble spread

collapses due to ever-smaller error estimates, the ensemble mean diverges completely

from the observations. To maintain sufficient spread and prevent this ‘filter divergence’

due to undersampling, so-called covariance inflation techniques have been developed.

Broadly speaking, inflation methods are either multiplicative or additive (although more

specialised adaptive algorithms exist) and increase the ensemble spread to a desired level.

The concept of additive inflation originates in the standard KF theory. When the forecast

error covariance matrix is evolved in the forecast step (5.27), the model error covariance

terms contribute to the updated forecast errors. In a similar vein, additive inflation

comprises adding random Gaussian perturbations ηj ∼ N (0, γaQQQ) during the forecast

step:

xj(ti) =M(xj(ti−1)) + ηj, j = 1, ..., N (5.66)

where the forecast–model error matrix QQQ is prescribed from some knowledge of the

modelling system and γa is a tunable parameter controlling the overall magnitude of the

sample perturbations. How one best defines QQQ is an open question - ideally it should be

constructed using flow-dependent perturbations [Hamill and Whitaker, 2011] but is often
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a static matrix developed offline from historical analysis increments. Additive inflation

does not try to represent the model error explicitly, but acts in some sense as a lower bound

for the forecast error, thus preventing filter divergence. Moreover, the addition of random

Gaussian perturbations can counteract the non-Gaussian higher moments nonlinear error

growth may have generated in the forecast step, and since the optimal EnKF solution

assumes Gaussian distributions, this is expected to benefit the quality of the analysis

estimate [Houtekamer and Zhang, 2016]. However, adding random Gaussian noise may

also mask useful covariance information pertaining to the model dynamics.

The simplest and most popular form of covariance inflation is multiplicative [Anderson

and Anderson, 1999], a ‘catch-all’ method which artificially inflates the ensemble

perturbations:

xj ← x + γm(xj − x), γm > 1, (5.67)

where γm is a factor tuned to give the desired spread. Multiplicative inflation tends to work

well when γm remains fairly close to one [Houtekamer and Zhang, 2016], however larger

values are often required in operational NWP systems. Care should be taken when larger

values are used as the repeated application may prompt unbounded covariance growth in

data–sparse areas [Anderson, 2009].

Both additive and multiplicative inflation are somewhat ad hoc in their approach in

that factors γa,m require tuning on an individual basis. Two common adaptive inflation

methods aim to standardise the process: ‘Relaxation To Prior Perturbation’ (RTPP; Zhang

et al. [2004]) and ‘Relaxation To Prior Spread’ (RTPS; Whitaker and Hamill [2012]).

It is widely accepted that inflation techniques are crucial for maintaining sufficient

ensemble spread and satisfactory filter performance; typically, a combination of additive,

multiplicative, and adaptive methods are used in practice. However, it is should be noted

that the alterations in the ensemble trajectories due to inflation dilute the impact of flow–

dependent statistics developed in the EnKF.
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5.5.3 Spurious correlations: the need for localisation

The rank problem means that correlations present in the error covariance matrices are also

subject to sampling error. This is manifest as spurious correlations in the forecast error

covariance, i.e., unphysical correlations between components in the state vector (usually

at long distances) due to sampling noise. For example, two components of x whose

true correlation (“signal”) is negligible may have a non-negligible spurious correlation

(“noise”) according to Pf . Since observations influence the analysis estimate via Pf ,

spurious correlations can lead to components of the state vector being falsely updated by

a distant and/or physically irrelevant observation. Thus, if the noise is greater than the

signal in Pf (as is the case at long distances for N � n), the analysis update is degraded

[Hamill et al., 2001]. The sampling errors essentially make the long distance correlations

untrustworthy, and the effects of the resulting noise may outweigh improvements that DA

has achieved elsewhere in the spatial domain.

Localisation is a technique that attempts to prevent the analysis estimate being degraded

by spurious correlations by cutting off long range correlations in the error covariance

matrix [Hamill et al., 2001; Houtekamer and Mitchell, 2001; Whitaker and Hamill, 2002].

The intuition behind localisation relates directly to the rank problem and limitations of

the ensemble subspace. By splitting the full assimilation problem into several smaller

‘local’ problems, the N ensemble members only have to span the (smaller) local space,

effectively increasing the rank of the problem [Hamill et al., 2001; Oke et al., 2007]. The

increase in rank is apparent in the eigenvalue spectrum of the localised covariance matrix

[Petrie, 2012] and implies that there are more degrees of freedom for assimilating the

observations, resulting in a greater observational influence on the final analysis estimate

[Ehrendorfer, 2007]. It is widely accepted that the severity of the rank problem in NWP

and heterogeneity of the observing system means ensemble-based DA methods are only

feasible when used in conjunction with localisation [Hamill et al., 2001; Ehrendorfer,

2007; Anderson, 2012; Houtekamer and Zhang, 2016].
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Localisation is usually achieved by multiplying the elements of the forecast error

covariance matrix with elements of a carefully chosen covariance taper matrix ρ that

reduces correlations as a function of distance. In matrix operations, this comprises

elementwise multiplication and is achieved using the Schur (or Hadamard) product

[Schur, 1911]:

(A ◦B)ij = AijBij, (5.68)

for two matrices A and B of the same dimension and i, j indexing the row and

column number respectively. Entries of the covariance taper matrix ρ are calculated

using a correlation function % with compact support (i.e., non-zero in local region, zero

everywhere else), resulting in a localised forecast error covariance matrix Pfloc = ρ ◦ Pf .

Several properties of the Schur product, reviewed by Horn [1990], make it a desirable

choice for implementing localisation. Three of the most important theorems concerning

localisation are repeated here (see Horn [1990] for further details and proofs):

1. IfA,B are square matrices that are positive semi-definite, then so isA ◦B.

2. If B is a strictly positive square matrix and A is a positive semi-definite matrix

of the same size with all its main diagonal entries positive, then A ◦ B is strictly

positive definite.

3. Let A be a positive semi-definite correlation matrix (i.e., all diagonal entries equal

to 1) and let B be a positive semi-definite matrix of the same size (say, m by m).

Suppose that their eigenvalues λi(A) and λi(B) are each ordered decreasingly such

that λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. Then:

k∑
i=1

λi(A ◦B) ≤
k∑
i=1

λi(B), k = 1, 2, ...,m. (5.69)

It follows from theorem 1 that the Schur product of two covariance matrices is also a

covariance matrix. Theorem 2 implies that even though Pf is rank-deficient, if a positive
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definite taper matrix is chosen (and Pf has positive variances which is typically the case)

then the localised covariance ρ ◦Pf has full rank. Finally, it follows from theorem 3 that:

Tr(ρ ◦ Pf ) ≤ Tr(Pf ). (5.70)

This means that, although localisation can solve the problem of rank-deficiency, it does

not increase the overall variance, and so is typically used in combination with covariance

inflation (section 5.5.2).

The most common choice for the localising function %, and the one taken in this thesis,

is the so-called Gaspari-Cohn function, a fifth-order piecewise rational function (Gaspari

and Cohn [1999]; equation 4.10). It has similar shape to a half-Gaussian and depends

on a single length-scale parameter (Lloc; see figure 5.3). The correlations are filtered out

gradually and suppressed completely beyond a certain distance Lloc (due to the compact

support), leading to an observation having zero influence there.

Implementing localisation remains a fairly ad hoc procedure and is very much specific

to the problem and flavour of EnKF used. Ideally, model-space localisation Pf ←

ρ ◦ Pf should be used [Houtekamer and Zhang, 2016], however this is unfeasible due

to the dimension of Pf . However, localisation can be implemented via the ensemble

approximations (5.42), ρ̃◦(PfHT ) and ˜̃ρ◦(HPfHT ). The choice of length-scale is clearly

crucial and should reflect the signal-to-noise ratio as the distance increases, attempting to

maintain true correlations until the effects of sampling error dominate. Flowerdew [2015]

has attempted to introduce a systematic approach to localisation based on minimising

analysis variance given a fixed ensemble size, but a standardised technique for such

complex systems with an array of heterogeneous observations remains elusive. As such,

a degree of tuning and experimentation is required to find the optimum length-scale for

an individual forecast-assimilation system.

As with inflation techniques, it should be noted that replacing Pf with its localised form
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Figure 5.3: Example Gaspari-Cohn functions % for different length-scales Lloc as a
function of distance x. Here, x is the number of equally-spaced grid points away from the
observation location at x = 0. Lloc = ∞ implies no localisation (cyan line); the smaller
Lloc, the tighter the localisation. The number of grid points relates to the experiments in
chapter 6.

represents quite a departure from the KF theory, and therefore a localised EnKF does

not possess a number of properties intrinsic in the standard EnKF. For example, the

resulting analysis increments (5.64) will no longer be completely in the space spanned

by the forecast ensembles and may lead to states that are not completely dynamically

consistent [Oke et al., 2007]. Consequently, forecasts initialised from the analyses and

and subsequent cycles may exhibit a rapid adjustment (‘initialisation shock’, see, e.g.,

Daley [1993]) due to the inconsistencies associated with the analysis.
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5.6 Interpreting an ensemble-based forecast-assimilation

system

5.6.1 Error vs. spread

An ideal ensemble is expected to have the same magnitude of ensemble spread as the

root mean square error of its mean at the same lead time in order to adequately represent

the full uncertainty in the forecast [Stephenson and Doblas-Reyes, 2000]. The root mean

square error of the ensemble mean is defined as:

RMSE =

√√√√ 1

n

n∑
k=1

(xk − xtk)2 , where xk =
1

N

N∑
j=1

xkj, (5.71)

and xtk is the kth component of the true state vector xt. A natural measure of the typical

spread of the ensemble is the root mean squared dispersion:

SPR =

√√√√ 1

N − 1

N∑
j=1

1

n

n∑
k=1

(xkj − xk)2 ≡
√

1

n
Tr(P) . (5.72)

where P is the error covariance matrix (as in (5.59)). The ‘spread vs. RMS error’ statistics

provide a simple but relevant diagnostic on the suitability of the generated ensemble in

the EnKF.

5.6.2 Observation influence diagnostic

The update equation for the Kalman filter provides an optimal analysis state xa by

combining observations y with some background (prior) information xf , usually from a
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previous forecast. This analysis estimate is the optimal generalised least squares solution:

xa = xf + K(y −Hxf )

= Ky + (I−KH)xf , (5.73)

where K = PfHT (HPfHT + R)−1 contains error information of the observations and

prior to accordingly weight both pieces of information. The projection of the analysis

estimate into observation space, calculated by left-multiplying (5.73) by the observation

operator H:

ŷ = Hxa = HKy + (I−HK)Hxf , (5.74)

is the sum of observations and the background in observation space weighted by the

matrices HK and I−HK respectively.

The influence matrix S, developed in ordinary least squares regression analysis, monitors

the influence of individual data sources on the analysis estimate. In this case, data sources

are observations and the background state, and the influence matrix provides a measure

of the overall impact of observations/background state on the analysis. The analysis

sensitivity with respect to observations is defined by:

S =
∂ŷ

∂y
= HK. (5.75)

Similarly, the analysis sensitivity with respect to the backround (all in observation space)

is given by:
∂ŷ

∂(Hxf )
= I−HK = I− S. (5.76)

The global average observation influence diagnostic is defined as:

OID =
Tr(S)

p
, where p = dim(y), (5.77)

and provides a norm for quantifying the overall influence of observations on the analysis
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estimate. Cardinali et al. [2004] have applied this diagnostic to the ECMWF global

NWP model and found an observation influence of 0.18, suggesting that the global

average observation influence is quite low compared to that of the forecast. That is,

the analysis estimate primarily comes from the prior forecast, adjusted slightly towards

the observations. However, it should be noted that the prior forecast estimate contains

observational information from previous analysis cycles.

5.6.3 Continuous Ranked Probability Score

In the EnKF, a well–configured ensemble is crucial to good performance as it is used to

the estimate flow–dependent forecast–error covariances. Spread and RMSE are a good

first check for an adequately performing ensemble, but it would be useful to have a

tool that focuses on the entire permissible range of outcomes, i.e., the full distribution

provided by the ensemble. The Continuous Ranked Probability Score (CRPS; Matheson

and Winkler [1976]; Hersbach [2000]; Hamill et al. [2001]; Jolliffe and Stephenson

[2003]; Bröcker [2012]) verifies the reliability of an ensemble for scalar quantities, and is

a popular verification tool for probabilistic forecasts. Reliability measures the degree to

which forecast probabilities agree with outcome frequencies. It is a negatively–oriented

scoring rule that assigns a numerical score (zero being perfect) to probabilistic forecasts

and form attractive summary measures of predictive performance. A key feature of the

CRPS is that it generalizes the absolute error to which it reduces if the forecast is a

point measure (i.e., deterministic forecast). Thus, it is a valid metric for evaluating both

probabilistic and deterministic forecasts, and so can be used to compare the performance

of two conceptually different forecasts.

The challenge for diagnosis of probabilistic forecasts is that the forecast takes the form

of a distribution function F (or density P ) whereas the observations (or true state) are

point–valued. The CRPS expresses the “distance” between a forecast F and true value
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xt:

CRPS(F, xt) =

∫ ∞
−∞

(F (x)− Ft(x;xt))2dx, (5.78)

where F and Ft are the forecast and true cumulative distribution functions respectively:

F (x) =

∫ x

−∞
P (x′)dx′, (5.79a)

Ft(x;xt) = Θ(x− xt), for Heaviside Function (2.19) Θ. (5.79b)

Hersbach [2000] calculates the CRPS for an ensemble prediction system as follows.

Assume the (scalar) ensemble members xj , j = 1, ..., N are equally probable and ordered

(xi ≤ xj , i < j). Then distribution function F provided by the ensemble is:

F (x) =
1

N

N∑
j=1

Θ(x− xj), (5.80)

a piecewise constant function where transitions occur at the values xj of individual

ensemble members. Since each member is equally probable, each member is given an

equal weight and F (x) = pj ≡ j/N for xj < x < xj+1. Define x0 = −∞, xN+1 = ∞

and consider the xj < x < xj+1 contribution cj to the CRPS:

cj =

∫ xj+1

xj

(pj −Θ(x− xt))2dx, with CRPS =
N∑
j=0

cj. (5.81)

Depending where xt lies in (x0, xN+1), Θ(x− xt) is either zero or unity, or partly both if

in (xj, xj+1). In general [Hersbach, 2000]:

cj = αjp
2
j + βj(1− pj)2, (5.82)
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where:

αj =


xj+1 − xj,

xt − xj,

0,

βj =


0, if xj+1 < xt,

xj+1 − xt, if xj < xt < xj+1,

xj+1 − xj if xj > xt.

(5.83)

It should be noted that outliers can contribute significantly to the CRPS: if the true value

does not lie in the ensemble range then extra weight is given to the penalising terms.

Also, it is defined for scalar quantities x, and so is calculated for each element of the state

vector x, e.g., for the idealised fluid model (2.2) the CRPS is calculated for each variable

at each grid point.

5.6.4 Error-growth rates

The error–doubling time Td of a forecast-assimilation system is the time taken for the

error E of a finite perturbation (produced by the analysis increment) at time T0 to double:

E(Td)

E(T0)
= 2, (5.84)

where E is some error norm (usually taken to be the RMSE). The error–doubling time

is expected to fluctuate somewhat between variables (since certain variables behave more

nonlinearly than others) and is controlled by the ‘dynamics of the day’. However, by

averaging over a number of staggered forecasts covering a range of dynamics and initial

perturbations, the mean error–doubling time of the system can be estimated. For global

NWP, Buizza [2010] found a doubling time of 1.28 days for the Northern Hemisphere

forecast error. Errors in high-resolution NWP grow faster than in the global case due to

the strong nonlinearities at convective scales. Thus, in order to be relevant for convective-

scale NWP, the idealised forecast-assimilation system should be tuned to give a mean
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error–doubling time on the order of hours rather than a day. Moist convection severely

limits mesoscale predictability [Zhang et al., 2003], and for limited–area cloud–resolving

models, the mean error–doubling time has been found to be around 4 hours [Hohenegger

and Schär, 2007].
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Chapter 6

Idealised DA experiments

“The frontier of data assimilation is at the high spatial and temporal

resolution, where we have rapidly developing precipitating systems with

complex dynamics”1

As described in chapter 2 and shown in chapter 4, the modified shallow water model is

able to simulate some fundamental dynamical processes of convecting and precipitating

weather systems, thus suggesting that it is a suitable candidate for investigating DA

algorithms at convective scales. In this chapter, the assimilation techniques described

in chapter 5 are applied to the idealised fluid model to demonstrate this suitability

further. An exploration of the model’s distinctive dynamics should be considered a

necessary but not sufficient qualification for its suitability. By demonstrating a well-

tuned forecast-assimilation system that exhibits characteristics of high-resolution NWP,

one can be confident that the model is indeed a useful tool for inexpensive yet relevant

DA experiments (e.g., Inverarity [2015]).

Achieving a meaningful and interesting experimental set-up is more nuanced than simply

interfacing a model with an assimilation algorithm. It requires careful consideration of

1 Houtekamer and Zhang [2016]
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the ‘real–life’ problem at hand, in this case convective–scale NWP and DA, and should

attempt to mimic certain attributes of the whole system, not just the dynamical aspects.

The first section of this chapter introduces the ‘twin model environment’, in which

idealised experiments are performed, and sets up the basic framework of the forecast–

assimilation system. In practice, operational forecast–assimilation systems require a great

deal of tuning in order to perform optimally, taking into account all facets of the forecast

model, the observing system, and the assimilation algorithm. Accordingly, the process of

developing and arriving at a well–tuned system deserves attention in an idealised setting.

This process is conveyed in the following sections before focussing on aspects of a single

experiment in greater detail. The results of this exploratory investigation, together with

the dynamical analysis in chapter 4, indicate that the model provides an interesting testbed

for DA research in the presence of convection and precipitation.

6.1 Twin model environment

Data assimilation research using idealised models is primarily carried out in a so–called

‘twin’ experiment setting, whereby the same computational model is used to generate

a ‘nature’ run (which acts as a surrogate truth) and the forecasts. If the forecasts are

generated using exactly the same model integration as the nature run, the resulting DA

experiments are said to be carried out in a perfect model setting. On the other hand, in an

imperfect model scenario, forecasts are generated using a different model configuration,

e.g., with misspecified model parameters or at a coarser spatial resolution.

The nature run is a single long integration of the numerical model and is a proxy for

the true evolving physical system. It is the principal difference between idealised and

operational DA experiments and its function is twofold. First, it is used to produce

pseudo-observations of the physical system, which are then assimilated into the forecast

model. These pseudo-observations (also known as synthetic observations) are generated
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by applying the observation operator H to the state vector from the nature run xt and

adding random samples from a specified observational error distribution. Second, it

provides a verifying state with which to compare the forecast and analysis estimates

and thus quantify the errors in each. The configuration of the model and assimilation

algorithm employed in this chapter is described here.

6.1.1 Setting up an idealised forecast–assimilation system

Model: dynamics

Motivated by the experiments with orography in chapter 4 (in particular figure 4.9),

supercritical flow over topography is considered for the experiments herein with non-

dimensional parameters Ro = ∞ and Fr = 1.1. The topography is defined to be a

superposition of sinusoids in a sub-domain and zero elsewhere:

b =


3∑
i=1

bi, for xp < x < xp + 0.5;

0, elsewhere;

(6.1)

and bi = Ai
(
1 + cos

(
2π(ki(x− xp)− 0.5)

))
(6.2)

where xp = 0.1, k = {2, 4, 6}, A = {0.1, 0.05, 0.1}. Given a non-zero initial velocity and

periodic boundary conditions (3.12), this ‘collection of hills’ (see top panels in figure 6.1)

generates varied and complex dynamics (including gravity-wave excitation) without the

need for external forcing or an imposed mean wind field. Periodic BCs mean that waves

that leave the domain wrap around again, and so the flow remains energetic; this keeps

the flow moving and dynamically interesting without further forcing.

Given the Froude and Rossby number, potential characteristic scales of the dynamics

can be analysed and, where possible, likened to high-resolution NWP. Note that infinite
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(a) Forecast xf : Nel = 200
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(b) Nature xt: Nel = 800

Figure 6.1: Snapshot of model variables h (top), u (middle), and r (bottom) from (a)
the forecast model and (b) the nature run. The forecast trajectory is smoother and
exhibits ‘under-resolved’ convection and precipitation while the nature run has sharper
‘resolved’ features and is a proxy for the truth. The thick black line in the top panels is
the topography (eq. 6.1), the red dotted lines are the threshold heights.

Rossby number implies non-rotating flow, and therefore zero transverse velocity v (if it

is initially zero). Consider a fixed length of domain L0 = 500 km and velocity-scale

V0 ∼ 20 ms−1, implying a time-scale T0 ∼ 25000 seconds (∼ 6.94... hours). Thus, one

hour is equal to 0.144 non-dimensional time units. A Froude number Fr = 1.1 implies

gH0 ∼ 330 m2s−2.

Model: defining forecast and nature

Current high-resolution NWP models are operating with a horizontal gridsize on the order

of one kilometre. For example, the Met Office’s UKV model has a gridsize of 1.5 km

and MOGREPS-UK ensemble runs at 2.2 km [Tang et al., 2013; Bowler et al., 2008];
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the Deutsche Wetter Dienst’s COSMO-DE model has a 2.8 km horizontal grid spacing

[Baldauf et al., 2011]. Running models at this resolution means that convection is resolved

explicitly (albeit poorly) and yields more realistic–looking precipitation fields [Lean et al.,

2008]. With this in mind, a forecast grid spacing of ∼ 2.5km is imposed for the idealised

model. Thus, given that the length of domain is L0 ∼ 500 km, the computational grid has

Nel = 200 elements and the total number of degrees of freedom of the forecast model is

n = 600 (note that hv is removed from the integration since flow is non-rotating).

Despite the improved representation of clouds and precipitation in models with gridsize

O(1km), it is widely recognised that convection is still under-resolved and does not exhibit

many aspects of observed convection [Tang et al., 2013]. To reflect this, an imperfect

model scenario is employed in which the nature run is generated at a (four times) finer

resolution than the forecast model, i.e., Nel = 800 for the nature run. This is the only

difference compared to the model configuration used for the forecast integrations. An

example trajectory of both forecast and nature at a given time is shown in figure 6.1;

conceptually, the basic data assimilation problem can be summarised using this figure:

adjust the forecast (6.1a) using pseudo-observations of the “truth” in order to provide a

better estimate of the nature run (6.1b).

Assimilation: experimental set-up and algorithm

The EnKF and its variants have been extensively investigated with different models at

different scales (see Meng and Zhang [2011] for a review on high-resolution ensemble-

based DA and Houtekamer and Zhang [2016] for a general EnKF review). There are

strong arguments for ensemble-based algorithms at convective scales, primarily the use

of the ensemble for approximating the forecast error covariances. Having flow-dependent

error statistics is crucial at finer scales where nonlinear error growth proliferates. Here, the

‘perturbed-observation’ (stochastic) EnKF is chosen to be the algorithm for the idealised

forecast-assimilation system, owing to its straightforward implementation and robustness.
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The state vector is defined x = (h, u, r)T ∈ Rn rather than in terms of flux variables

x̃ = (h, hu, hr)T ∈ Rn used in the model integration. Thus, the model operator M,

namely the numerical scheme derived in chapter 3, acts on x̃ and before passing the

model state x̃ to the analysis step, it is transformed via a mapping Ψ to the state vector:

x = Ψ(x̃). This simply maps h to h, hu to u, and hr to r.

The analysis update frequency is fixed to be one hour, and ensemble size is N = 40

(comparable to operational convective-scale systems, e.g., Schraff et al. [2016]). All

variables are observed directly (hence the observation operator is linear, H = H) with

specified error σσσ = (σh, σu, σr) and density ∆y (e.g., observe every 20 gridcells ∼ 50km

on forecast grid). This observing system and filter configuration (i.e., localisation length-

scale and inflation factors) should be tuned to give an experimental set-up relevant for

convective-scale NWP. Exactly what this entails is addressed in section 6.1.2.

A compact algorithm for one complete cycle (forecast plus analysis) of the EnKF is

summarised here, to be read loosely with figure 5.2.

1. FORECAST STEP:

(a) To start the cycle, one requires a prescribed ensemble of initial conditions xic
j .

That is, for i = 1:

x̃fj (t1) =M[x̃ic
j ], j = 1, ..., N. (6.3)

(b) At later times, the forecast uses the analysis ensemble from the previous cycle

to integrate forward in time. For i > 1:

x̃fj (ti) =M[x̃aj (ti−1)], j = 1, ..., N. (6.4)

(c) Transform to the state vector for assimilation: xfj (ti) = Ψ(x̃fj (ti)). When

practised, additive inflation is applied as per equation (5.66) in one step at
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time ti:

xfj ← xfj + ηj, where ηj ∼ N (0, γaQQQ). (6.5)

2. ANALYSIS STEP:

(a) Pseudo-observations yj are generated by stochastically perturbing the nature

run xt valid at the observing time ti:

yj = Hxt + εoj , j = 1, ..., N, where εoj = σσσzj, zj ∼ N (0, 1), (6.6)

and σσσ = (σh, σu, σr) is some prescribed observational error.

(b) Compute (i) the forecast error covariance matrix Pfe (or ensemble

approximations) from the ensemble of forecast states xfj from step 1; (ii) the

(diagonal) observational error covariance matrix R = diag(σ2
h, σ

2
u, σ

2
r)I, given

observational error with standard deviation σ from step 2 (a); and (iii) the

innovations dj = yj − Hxfj using the (potentially inflated) forecast states

from step 1 and perturbed observations from step 2 (a)

(c) Apply (model-space) localisation using the Gaspari-Cohn function % for a

given length-scale Lloc (as per section 5.5.3):

Pf ← ρ ◦ Pf , (6.7)

compute Kalman gain Ke (5.52) and subsequent analysis ensemble:

xaj = xfj + Kedj. (6.8)

A fixed multiplicative covariance inflation (section 5.5.2) is applied by linearly

inflating the analysis ensemble perturbations by a factor γm:

xaj ← xa + γm(xaj − xa), γm > 1, (6.9)
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When desired (diagnostics, resampling), compute analysis error covariance

matrix Pae using (5.54).

(d) Return to step 1: analysis states from step 2 (c) are transformed back x̃aj (ti) =

Ψ−1(xaj (ti)) for integration and the cycle continues.

Note that, in this implementation, the length-scale Lloc is the number of gridcells beyond

which correlations are set to zero (see figures 5.3 and 6.14). As x moves from 0 to Lloc,

%(x) tapers from 1 to 0, and for x > Lloc, %(x) = 0. Since H is linear in this setting, the

observation location always coincides with the model grid.

Ensemble initialisation

How one specifies the initial ensemble (xic
j in step 1 (a) above) is a major topic of research

(e.g., Zhang et al. [2004]; Bowler [2006]; Zupanski et al. [2006]). The question is

whether selective or Monte Carlo sampling of initial condition uncertainty is the best

option, and whether the extra effort required in selective sampling provides sufficient

added value compared with pure Monte Carlo sampling [Gneiting and Raftery, 2005].

In principle, the initial ensemble should be constructed to represent as fully as possible

(given the finite ensemble size) the error statistics of the model state [Evensen, 2007]. For

operational ensemble-based DA systems, it is common to sample random but dynamically

consistent perturbations from off-line static forecast error covariances (usually provided

by a previous or concurrent variational DA system) to represent the initial condition

uncertainties [Houtekamer et al., 2005]. However, given enough spin–up time, these

initial perturbations usually do not impact the overall EnKF performance since they are

only used once at the very first assimilation cycle [Houtekamer and Zhang, 2016].

This is especially pertinent at higher resolutions where information loss occurs on fast

time–scales; a frequently cycling ensemble system can adjust quickly from random initial

perturbations and generate an ensemble which adequately samples the forecast error. As



Chapter 6. Idealised DA experiments 123

such, for convective-scale DA (and especially idealised experiments) it is common to

use spatially-uncorrelated random Gaussian perturbations to initialise the first cycle (e.g.,

Zhang et al. [2004]). Zhang et al. [2006] tested the EnKF for high-resolution DA and

noted that for an ensemble initiated with random perturbations, initial errors grow from

“smaller-scale, largely unbalanced and uncorrelated perturbations to larger-scale, quasi-

balanced disturbances within 12–24 hours”. As long as the initial perturbations are not too

small (so that the filter does not diverge immediately) and sufficient measures to combat

undersampling are in place, a structured representation of forecast error can be obtained

easily and quickly.

The basic (unperturbed) initial conditions used in these experiments are:

h(x, 0) + b(x, 0) = 1; hu(x, 0) = 1; hr(x, 0) = 0. (6.10)

A range of initial errors σσσic = (σic
h , σ

ic
hu, σ

ic
hr) have been trialed and, as noted by

Houtekamer and Zhang [2016], the initial perturbations are forgotten promptly and

negligible difference is noted between the trials after a few cycles. The noise used

to generate the initial ensemble for all experiments is σσσic = (0.05, 0.05, 0), i.e., for

j = 1, ..., N :

hj(x, 0) = h(x, 0) + σic
h zj, where zj ∼ N (0, 1), (6.11)

and similarly for hu and hr. The rain variable is not perturbed as the rain field is initially

zero everywhere and adding Gaussian noise is neither desired (unphysical negative rain)

nor required (perturbations to the h field lead to a random sample of rain fields).

Non-negativity constraints

The Kalman filter and its variants (and indeed most operational DA algorithms) are in

essence Bayesian estimators that assume Gaussian statistics. Consequently, the analysis

update may produce a negative value for a state variable which should be strictly non-
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negative, e.g., rain rate or humidity. Numerics that preserve non-negativity ensure this

is the case in the forecast step, but spurious negative values may still result from the

analysis step. For the idealised model, the height and rain variables h and r should

remain non-negative, with the numerics described in chapter 3 ensuring this in the forecast

step. Negative h is not only unphysical but also causes the subsequent integration to

fail; negative r poses no problems for the model integration but is clearly unphysical and

impacts the other variables via the momentum coupling.

The most straightforward solution is to enforce non-negativity simply by setting any

spurious negative values to zero after the update. Whilst effectively ensuring the desired

non-negative analysis states, this artificial modification is a somewhat ‘brute force’

approach that destroys conservation of mass and may cause an ‘initialisation shock’ in

the subsequent forecasts. More sophisticated methods exist which incorporate constraints

in the assimilation algorithm itself (e.g., Janjić et al. [2014]). However, these methods add

considerable expense and so the simpler method is usually applied in operational NWP

where an efficient algorithm is paramount. In the idealised experiments presented here,

any negative h and/or r values are set to zero in step 2 (d).

6.1.2 Tuning a forecast–assimilation system

Operational vs. idealised

In an operational forecast–assimilation system, tuning is performed to produce the lowest

analysis error given the available observing system. Typically, this involves permuting

through various parameters associated with assimilation algorithms, such as ensemble

size, inflation factors/methods and localisation length-scales, in an attempt to arrive at the

filter configuration with the best performance, i.e., the one that yields lowest analysis

error. This is achieved usually in a systematic fashion (e.g., Bowler et al. [2015];

Poterjoy and Zhang [2015]) that requires subjective comparison of potential parameter
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combinations. Recent attempts at optimal tuning by Ménétrier et al. [2015a,b] pursue a

more objective approach than simply permuting through a prescribed set of parameters.

The process of tuning an idealised forecast–assimilation system differs somewhat from

the operational case in that the observing system is not given and must be generated.

How it is generated should reflect the problem at hand and in some sense becomes part

of the process: the observing system should be tuned alongside the filter configuration to

produce an idealised system that demonstrates attributes of an operational system (e.g.,

Fairbairn et al. [2014]; Inverarity [2015]). For example, if an experiment has the lowest

analysis error but an observational influence of, say, a few percent, it cannot be considered

relevant for NWP. Analogously, if error growth rates of ensemble forecasts initialised

using the ‘optimal’ analysis increments are not comparable with operational values, it is

difficult to consider the experiment meaningful from an NWP perspective.

“Well–tuned”: definition and method

A well–tuned experiment should mimic, where possible, characteristics of NWP whilst

seeking an optimal analysis estimate. But what constitutes a well–tuned experiment? This

thesis focusses on the aspects detailed in section 5.6 when diagnosing the suitability and

performance of a forecast–assimilation system, summarised as follows:

• A well-configured ensemble (i.e., sufficiently spread) is crucial to providing

an adequate estimation of forecast error, and consequently an optimal analysis

estimate. Thus, the RMSE of the ensemble mean (5.71) should be comparable

to the ensemble spread (5.72).

• In operational NWP, most weight comes from the forecast (∼ 82% Cardinali et al.

[2004]; recall section 5.6.2). In reality, observations are too few and incomplete

(compared to the size of the system) to provide a comprehensive picture of the

state. As such, observations adjust the more comprehensive forecast estimate closer
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to reality, rather than replace it completely. The observational influence diagnostic

(5.77) of an idealised framework should reflect this; as a guiding figure, it should

not be lower than 10% or higher than 50%.

• The CRPS verifies the reliability of an ensemble with lower scores indicating higher

skill. It should be expected that the analysis ensemble has a lower CRPS than the

forecast ensemble valid at the same time.

• Ensemble forecasts initialised with the optimal analysis estimates should exhibit

characteristic error growth rates of NWP. At convection-permitting scales, the

average time for the error of an initial perturbation to double is approximately 4

hours [Hohenegger and Schär, 2007]. A well–tuned experiment should produce

similar error-doubling time statistics.

Here, this is achieved by simultaneously addressing the rank / sampling issues due to

small ensemble size and varying the observation error σσσ and spatial density ∆y. The

filter is tuned systematically by first fixing the observing system parameters σσσ and ∆y

and permuting over a set of inflation factors γa, γm, and localisation length-scales Lloc.

6.2 Results

6.2.1 The need for additive inflation

Initial experiments in the imperfect model setting employed multiplicative inflation only.

However, it became apparent immediately that additive inflation is crucial due to the

resolution mismatch between the the forecast model and nature run, from which the

observations are generated. This point is illustrated here before results from the tuning

process are presented.
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Recall that additive inflation consists of adding random Gaussian perturbations ηηηj ∼

N (0, γaQQQ) during the forecast step:

xj(ti) =M(xj(ti−1)) + ηηηj, j = 1, ..., N. (6.12)

As mentioned in section 5.5.2, how best to define and constructQQQ is somewhat ambiguous

and a major topic of research. The purpose of additive inflation is to increase artificially

the spread of the ensemble using structured perturbations, ultimately in order to prevent

filter divergence. As such, QQQ is not an explicit attempt to represent true model error

covariance, but rather a mechanism to prevent filter divergence in the face of unknown

‘system’ error (i.e., error coming from the coupled forecast–assimilation system, not just

the model). Here, it comes from a climatology of true model errors due to the resolution

mismatch between the forecast model and nature run. The surrogate truth provided by

the nature run is projected onto the forecast grid and the difference between the two is

calculated each hour and the covariances are then time-averaged. This is updated after

each cycle and prior to applying the ηj perturbations in the analysis step; therefore, it

should not be considered a measure of model error since it contains information from the

forecast–assimilation system as a whole. Two experimental set-ups are now examined,

identical except that one runs without additive inflation and the other with. After an

initial exploration, the set-up with additive inflation uses γa = 0.45; no additive inflation

implies γa = 0. Candidate values γa = {0.4, 0.45, 0.5} were deduced after several ‘trial-

and-error’ attempts at including additive inflation, with γa = 0.45 providing the lowest

analysis error (not shown). The remaining parameters shared by both experiments are:

γm = 1.01, Lloc = ∞ (i.e., no localisation), ∆y = 20 (i.e., observe every 20 gridcells

viz. 50km), and σσσ = (0.1, 0.05, 0.005). Similar to the additive inflation, the size of the

prescribed observation error σσσ was determined after several ‘trial-and-error’ runs with

different candidate values: these values reflect the typical magnitude of h, u, and r and

provide a simple starting point from which to experiment. However, it should be noted
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Figure 6.2: Ensemble spread (solid) vs. RMSE of the ensemble mean (dashed): from top
to bottom h, u, r. Without additive inflation, insufficient spread leads rapidly to filter
divergence; with additive inflation, the ensemble spread is comparable to the RMSE of
the ensemble mean, thus preventing filter divergence. The time-averaged values are given
in the top-left corner.

that the results from this forecast–assimilation system are naturally dependent on these

values.

Time series of the RMS error and spread in both experiments are shown in figure 6.2 for

48 cycles. When no additive inflation is applied (figure 6.2a), the RMS error (dashed

lines) and spread (solid lines) diverge rapidly in both forecast (red) and analysis (blue)
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ensembles. That is, the error grows (quasi-linearly) while the spread decreases over

time, resulting in an order of magnitude discrepancy between the two after cycling for

48 hours. This is the classic signature for filter divergence (section 5.5.2): the ensembles

have insufficient spread and hence grossly underestimate the forecast error. This means

false confidence is placed in the forecasts and the observations are given progressively

less weight until essentially being ignored altogether. Thus, the ensemble trajectories

diverge ever further away from the verifying nature run. On the other hand, with additive

inflation (figure 6.2b), RMS error and spread are of comparable magnitude throughout.

As expected, the analysis error/spread is lower than that of the forecast. The inclusion

of additive inflation means the ensemble has sufficient spread to adequately estimate the

forecast errors. Thus, at each analysis step, the forecasts are adjusted by the observations

and remain close to the nature run.

Examining the behaviour of the ensemble trajectories at a given time illustrates this further

(figure 6.3). Figure 6.3a shows the ensemble trajectories (blue) and their mean (red

for forecast; cyan for analysis), pseudo-observations (green circles with corresponding

error bars), and nature run (green solid line) for each variable after 36 hours/cycles for

the experiment with no additive inflation. The left column is before the assimilation

update and shows the forecast ensemble (prior distribution); the right column is after

the observations have been assimilated and shows the analysis ensemble (posterior

distribution). The nature run has several regions of convection, apparent in the height

field (top row) where the fluid exceeds the threshold heights (dotted black lines), with a

similar structure and corresponding peaks in the precipitation field (bottom row). By this

time, the forecast ensemble (left column) has already collapsed, manifesting the gross

underestimation of forecast error, and is a long way from the “truth”. The observations

are drawn from the nature run and clearly do not lie in the subspace spanned by the the

forecast ensemble. Thus, given the arguments of section 5.5.1 concerning the ensemble

subspace, in particular equation (5.65), the analysis update has no chance of improving

things. Indeed, assimilating the observations has negligible impact, leading to an analysis
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(b) With additive inflation: accounts for model error and prevents filter divergence

Figure 6.3: Ensemble trajectories (blue) and their mean (red for forecast; cyan for analysis),
pseudo-observations (green circles with corresponding error bars), and nature run (green solid line)
after 36 hours/cycles. Left column: forecast ensemble (i.e., prior distribution, before assimilation);
right column: analysis ensemble (i.e., posterior distribution, after assimilation).
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ensemble (right column) similar to the forecast but with even less spread. Subsequent

observations are given less and less weight as the underestimation of forecast error

becomes more severe with every update.

This problem is ameliorated markedly by additive inflation (figure 6.3b). The spread

of the forecast ensemble is much larger and the nature run lies mostly within the space

spanned by the ensemble. In particular, there is a larger spread in regions of convection

and precipitation, that is, regions where the flow is highly nonlinear and so where the

greatest forecast error is expected. This translates to a better estimation of the forecast

error throughout the domain and consequently better filter performance. Although

the forecasts (and corresponding mean estimate; red line) are not able to resolve the

convection and precipitation fields fully, updating the ensemble with the observational

information yields an improved analysis estimate (cyan line) and corresponding posterior

distribution. It is apparent from figure 6.2b that the forecast is still slightly underspread

at this time (T = 36) but it is sufficiently large for the filter to operate adequately,

allowing the forecast to stay close to ‘reality’. Even with enhanced multiplicative

inflation factors γm ≥ 1.5, filter divergence is observed if there is no additive inflation

(not shown). As noted by Houtekamer and Zhang [2016], a combination of additive

and multiplicative inflation is critical for maintaining sufficient ensemble spread and

good overall performance, especially in the presence of model error. This has been

demonstrated clearly here; given the discrepancy between the forecasts and nature run

owing to the resolution mismatch, it is impossible to obtain a working filter without

additive inflation.

6.2.2 Summarising the tuning process

The tuning process presented here involves permuting through the parameters:

∆y = {20, 40}, γm = {1.01, 1.05, 1.1}, Lloc = {∞, 200, 80, 50}, (6.13)
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Table 6.1: Parameters used in the idealised forecast-assimilation experiments.

Model Assimilation
Rossby, Ro ∞ Forecast Nel 200
Froude, Fr 1.1 Nature Nel 800
Hc 1.02 Ensemble size N 40
Hr 1.05 Update frequency Hourly
α 10 Observations Direct (H linear)
β 0.2 σσσ = (σh, σu, σr) (0.1, 0.05, 0.005)
c20 0.085 ∆y {20, 40}
Topography Eq. (6.1) γa 0.45
ICs Eq. (6.10) γm {1.01, 1.05, 1.1}
BCs Periodic Lloc {∞, 200, 80, 50}

with the goal of arriving at an experiment that mimics some characteristics of NWP. The

lengthscale Lloc is a distance defined in terms of number of gridcells (recall figure 5.3),

with ∞ implying no localisation and the smaller Lloc, the tighter the localisation. All

other parameters pertaining to the forecast-assimilation system have been described in

section 6.1 and summarised in table 6.1. An observation density ∆y = 20 means each

variable is observed every 20 gridcells on the forecast grid. Thus, given Nel = 200, this

means there are 10 observations of each variable and p = 30 in total. Similarly, ∆y = 40

implies a less dense observing network with p = 15. Each combination of parameters

in (6.13) yields a single experiment, yielding 24 in total. These are now systematically

compared in pursuit of a well-tuned example (recall section 6.1.2).

Figures 6.4 and 6.5 summarise the RMS error and spread values for ∆y = 20 and

∆y = 40, respectively. These values are domain- and time-averaged to produce a single

number for each experiment and thereby allow a simple comparison between experiments.

For both ∆y = 20 and ∆y = 40, the experiment that produces the lowest analysis error

is with no localisation Lloc = ∞ and a multiplicative inflation factor γm = 1.01. In

general, the analysis is degraded by larger γm values and increasingly stricter localisation

(i.e., smaller Lloc values), as indicated by deepening colour from top-left to bottom-right.



Chapter 6. Idealised DA experiments 133

1.01 1.05 1.1

inf

200

80

50

0.0564

0.0599

0.0618

0.0649

0.0579

0.0625

0.0643

0.0585

0.0608

0.0625

0.0673

nan

rmse_fc
1.01 1.05 1.1

inf

200

80

50

0.0228

0.0303

0.0361

0.0407

0.0242

0.0339

0.0385

0.0403

0.0266

0.0329

0.0425

nan

rmse_an

1.01 1.05 1.1

inf

200

80

50

0.0351

0.0412

0.0457

0.0515

0.0399

0.0475

0.0528

0.0524

0.0461

0.0546

0.0609

nan

spr_fc
1.01 1.05 1.1

inf

200

80

50

0.0249

0.0305

0.035

0.0396

0.0295

0.0368

0.0414

0.0436

0.0358

0.0428

0.0499

nan

spr_an

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 6.4: Average RMS error and spread: for different combinations of multiplicative
inflation γm (x-axis) and localisation lengthscales Lloc (y-axis); additive inflation γa =
0.45 and observation density ∆y = 20 (so p = 30). Top - error; bottom - spread; left
- forecast; right - analysis. The experiment that produces the lowest analysis error is in
bold, namely Lloc =∞, γm = 1.01. ‘NaN’ denotes an experiment that crashed before 48
hours.

The order of magnitude of spread and error values is comparable throughout, but a more

detailed picture also emerges. For γm = 1.01, the analysis spread and error match

particularly well (right column, figures 6.4 and 6.5), while for γm = 1.05, 1.1 the analysis

ensemble is progressively overspread. This suggests that a multiplicative inflation factor

γm = 1.01 is sufficient in this case. The forecasts are moderately underspread in general,

but sufficiently spread to produce a much-improved analysis estimate. Increasing the
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Figure 6.5: Same as figure 6.4 but with ∆y = 40 (i.e., p = 15). Note that the colour bar
is slighty different to that in figure 6.4.

additive inflation factor γa increases the forecast spread but actually degrades the analysis

(not shown). A ’NaN’ entry denotes an experiment that did not complete 48 cycles due

to the ensemble spread becoming unbounded (catastrophic ensemble divergence) or an

inconsistent reinitialisation, causing the model integrations to fail. This fits with the

pattern of increasing multiplicative inflation on the one side, and stricter localisation on

the other. This is particularly problematic for the ∆y = 40 experiments, in which there

are less observations to constrain the forecasts.

The CRPS is a metric that assesses the performance of a (probabilistic) forecast, in
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Figure 6.6: Continuous Ranked Probability Score (5.6.3): for different combinations of
multiplicative inflation γm (x-axis) and localisation lengthscales Lloc (y-axis); additive
inflation γa = 0.45 and observation density (a) ∆y = 20 and (b) ∆y = 40. Left -
forecast; right - analysis.
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this case represented by the forecast and analysis ensembles, assigning lower values to

better forecasts. It focusses on the entire possible range of outcomes (i.e., all ensemble

members) and provides another measure of ensemble performance. The domain- and

time-average CRPS values for each experiment are shown in figure 6.6 and further support

the conclusion from figures 6.4 and 6.5 that the best experiment is Lloc = ∞ and

γm = 1.01. Indeed, as with the RMS spread and error, the CRPS is degraded by larger γm

values and tighter localisation, as indicated by deepening colour from top-left to bottom-

right. The analysis ensemble has consistently lower scores than the forecast ensemble.

But, as with the spread and error scores, the gap between the two closes with larger

inflation and stricter localisation, suggesting that inflation factors ≥ 1.05 and localisation

degrade the analysis.

While the CRPS and spread/error measures ascertain the general performance of the

forecast-assimilation system itself, in particular the role of the ensemble, they do not

indicate its relevance to the NWP problem. To this end, the observational influence

diagnostic is examined (figure 6.7), averaged over the 48 cycles. Given that the imposed

observation error is fixed for these experiments, the overall influence of the observations

is controlled by the observation density ∆y and the changing role of the forecast (due

to inflation and localisation). For ∆y = 20 (figure 6.7a) values range from around 8–

20%, while for less dense observations (figure 6.7b) the average influence increases with

values of 15–40%. This appears somewhat counter-intuitive but suggests that the extra

contribution to the sensitivity matrix (5.75) by including more observations is less than

the actual number of extra observations. This can be interpreted using equation (5.77):

the number of observations p in the ∆y = 20 experiment is twice that with ∆y = 40, so

unless the trace of the sensitivity matrix HK given the extra observations at least doubles,

the overall observational influence will decrease.

In general, the average influence of the observations increases with increasing inflation

and localisation. There is a clear explanation for inflation affecting the influence in this
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Figure 6.7: Averaged Observational Influence Diagnostic (equation (5.77) in section
5.6.2): for different combinations of multiplicative inflation γm (x-axis) and localisation
lengthscales Lloc (y-axis); additive inflation γa = 0.45 and observation density (a)
∆y = 20 and (b) ∆y = 40. The experiment with the largest observational influence
is in bold. In general, the influence increases with γm and localisation.
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way: a larger multiplicative inflation factor γm brings about a larger ensemble spread, and

consequently a larger estimation of the forecast error. In fact, as is clear in figures 6.4 and

6.5, the analysis ensemble overestimates the error for γm = 1.05, 1.1. It follows that more

weight is given to the observations and increases their influence on the analysis estimate.

The goal of localisation (section 5.5.3) is to suppress spurious long-distance correlations

in the forecast error covariance matrix Pf , an artefact of undersampling due to a small

ensemble size. If localisation is employed incorrectly, valid information from the forecast

(i.e., signal rather than noise) is removed from the assimilation update, to the detriment of

the resulting analysis. This loss of forecast information means its potential impact on the

analysis is reduced, and consequently the observations have greater impact. Moreover,

localisation increases the number of degrees of freedom of the problem, implying that the

analysis state vector is able to fit the observations more closely, increasing their overall

influence. The role of localisation in this set-up is discussed in sections 6.2.3 and 6.3 in

more detail.

Although the experiments with ∆y = 20 produce lower analysis errors than ∆y = 40 (top

right panel of figures 6.4 and 6.5), the observational influence of the experiment with the

lowest error is only 8.1%, somewhat lower than the typical value for NWP. On the other

hand, the ∆y = 40 experiment with the lowest analysis error has an average observational

influence of 15.4%, which lies in the range of the operational NWP problem. As explained

in section 6.1.2, when tuning an idealised forecast-assimilation system it is important

to balance what constitutes the ‘best’ result (i.e., lowest analysis error) without losing

relevance to the problem at hand. Thus, the experiment with ∆y = 40, γm = 1.01,

Lloc = ∞ is regarded as ‘better tuned’ than ∆y = 20, γm = 1.01, Lloc = ∞. The final

part of this section focusses on this experiment in more detail.
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Figure 6.8: Error vs. spread measure and CRPS for the ∆y = 40, γm = 1.01, Lloc = ∞
experiment. (a) The ensemble spread is comparable to the RMSE of the ensemble mean
for both the forecast (red) and analysis (blue). (b) The assimilation update improves the
reliability of the ensemble. From top to bottom: h, u, r. Time-averaged values are given
in the top-left corner.

6.2.3 Experiment: ∆y = 40, γm = 1.01, Lloc =∞

When summarising the tuning process and comparing experiments, domain- and time-

averaged values for spread, error, CRPS, and observational influence have been used.

Here, these measures for the well-tuned experiment with ∆y = 40, γm = 1.01, Lloc =∞
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are presented as functions of time and space (for a given time), and discussed in more

detail.

Time series of the domain-averaged error vs. spread measure and CRPS are shown in

figure 6.8. Similar to figure 6.2b, figure 6.8a illustrates that the ensemble spread (solid) is

comparable to the RMS error of the ensemble mean (dashed) for both the forecast (red)

and analysis (blue), indicating that the ensemble is providing an adequate estimation of

the forecast error covariance matrix. There is some variation between variables but, in

general, there is good agreement throughout. It is worth noting the y-axis for each variable

– error/spread for h is an order magnitude larger than for u and r – and so the values

reported in figures 6.4 and 6.5 are dominated by the values for h. Dynamically this makes

sense: the flow, particularly the convective part, is driven by h and the threshold heights

induce highly nonlinear behaviour and so larger error and uncertainty (manifest in the

spread). The CRPS time series (figure 6.8b) confirms that the posterior distribution (blue

line) is superior to the prior (red line) for all variables.

The observational influence diagnostic is calculated at each assimilation time (i.e., hourly)

and is expected to vary for the given dynamical situation - the ‘weather-of-the-hour’. If

at a given time there is a lot of uncertainty in the forecasts, e.g., due to a lot of convective

behaviour and associated nonlinearity, then it is to be expected that the observations have

a greater influence at this time. On the other hand, a situation without much convection

is relatively predictable, suggesting more certainty in the forecasts and less influential

observations. The variations in the observational influence are plotted in figure 6.9. The

overall influence (thick black line) is typically in the region of 10–25% with an average of

15.4%, comparable to operational forecast–assimilation systems. The influence of h-, u-,

and r-observations is also shown and, while this too fluctuates depending on the ‘hourly

weather’, their average influence over 48 hours is comparable.

Focussing now in more detail on the ‘weather-of-the-hour’, figure 6.10 plots individual

ensemble members (blue) and the ensemble mean (red for forecast; cyan for analysis),
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Figure 6.9: Time series of the observational influence diagnostic: the overall influence
(thick black line) fluctuates between 10–25% with an average of 15.4%. Coloured lines
(see legend) indicate the influence of the individual variables and sum to the overall
influence.

pseudo-observations (green circles with corresponding error bars), and the verifying

nature solution (green solid line) for each variable at T=36. Note that this is the same

dynamical situation seen in figure 6.3b, but with ∆y = 40: the left column is valid

before the assimilation update and shows the forecast ensemble (prior distribution),

the right column is valid after assimilation, showing the analysis ensemble (posterior

distribution). As before, the ‘weather-of-the-hour’ exhibits several regions of convection,

apparent in the height field (top row) where the fluid exceeds the threshold heights (dotted

black lines), with a similar structure and corresponding peaks in the precipitation field

(bottom row). The forecasts are not able to fully resolve the convection (and therefore

precipitation) due to their coarse spatial resolution. This is particularly apparent in the
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Figure 6.10: Ensemble trajectories (blue) and their mean (red for forecast; cyan for
analysis), pseudo-observations (green circles with corresponding error bars), and nature
run (green solid line) after 36 hours/cycles. Left column: forecast ensemble (i.e.,
prior distribution, before assimilation); right column: analysis ensemble (i.e., posterior
distribution, after assimilation)
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three peaks between x = 0.2 and 0.4: focussing on the precipitation field (bottom left

panel), there are three distinct peaks in the nature run with (close to) zero rainfall in the

intermediate troughs. The forecast ensemble has rather smoothed features and and a large

spread, reflecting the higher uncertainty as to each peak’s location and magnitude. Very

few members pick up the zero rainfall in the trough between the first and second peak, but

the assimilation algorithm successfully addresses this (bottom right panel). The height

field is also favourably adjusted with the posterior ensemble showing good agreement

with the verifying nature solution (top right panel).

Figure 6.11 plots the ensemble spread and RMSE of the ensemble mean for each variable

as a function of x (left column). This reinforces the remark that the ensemble exhibits

larger spread in regions of convection where the errors are largest. There is good

agreement throughout the domain in all but the highest peaks, emphasising that the

forecast model has been set up to only partially resolve the convection. The right column

of figure 6.11 plots the difference between the error and spread. Positive (negative) values

indicate regions where the ensemble is under- (over-) spread. There is near-perfect match

in non-convecting regions while the forecast (analysis) is slightly under- (over-) spread

where there is convection/precipitation. Examining the CRPS for each variable as a

function of x tells a similar story, with high values picking out the regions of larger error

and uncertainty associated with convection (figure 6.12). The analysis ensemble (blue

line) shows considerable improvement on its forecast counterpart, implying a successful

assimilation.

The goal of data assimilation is to provide the best estimate of the state of the atmosphere

by merging forecast and observational information. Typically, this best estimate is used

to initialise forecasts that run longer than the length of the assimilation window. To

complete the analysis, the error–doubling time statistics (section 5.6.4) are considered by

running numerous staggered forecasts initialised with the analysis increments produced

in this experiment. Each cycle provides N = 40 analysis increments and, by taking a
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Figure 6.11: Left column: error (dashed) and spread (solid) as a function of x at T=36.
Both are of a similar magnitude and larger in regions of convection/precipitation (cf.
figure 6.10), where the flow is highly nonlinear. Domain-averaged values are given in
the top-left corner. Right column: the difference between the error and spread. Positive
(negative) values indicate under- (over-) spread.

range of increments from successive cycles, the staggered forecasts cover a wide range of

dynamics. In total, 640 24-hour forecasts are made and the time Td taken for the initial

error to double (see equation (5.84)) is recorded: histograms of the error-doubling times

for each variable are shown in figure 6.13. Owing to the nonlinearity associated with the
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Figure 6.12: CRPS as a function of x at T=36: forecast (red) and analysis (blue) ensemble.
The ensembles are less reliable (higher CRPS values) in regions of convection and
precipitation. Domain-averaged values are given in the top-right corner.

height and rain variables, they are expected to have smaller doubling times than the wind

field, and this is indeed the case. As noted in section 5.6.4, the average doubling time

in convection-permitting NWP models is around 4 hours [Hohenegger and Schär, 2007];

thus, the idealised forecast–assimilation system analysed here has been shown to have the

error growth properties characteristic of convective-scale NWP.
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Figure 6.13: Histograms of the error-doubling times (5.6.4) for 640 24-hour forecasts
initialised using analysis increments from the idealised forecast-assimilation system.
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6.3 Synopsis

The data assimilation techniques of chapter 5 have been applied to the modified shallow

water model described in the first part of this study, with the aim of further demonstrating

its suitability for investigating DA algorithms at convective scales. The exploratory

investigation presented in this chapter, together with the dynamical analysis in chapter

4, indicates that a well–tuned idealised forecast–assimilation system can be obtained that

exhibits some characteristics relevant for convective-scale NWP and possesses sufficient

error growth for meaningful hourly–cycled DA at the kilometre–scale.

Twin–model experiments have been established in the imperfect model scenario using

the stochastic EnKF assimilation algorithm. The nature run simulates varied dynamics,

with convection and precipitation occurring due to topographic forcing only, and is used

to generate pseudo-observations and as a verifying surrogate of the truth. The forecast

model runs on a coarser horizontal grid (akin to a 2.5km gridsize) and is only able to

resolve partially the convection and precipitation field, thus mimicking the state-of-the-

art of convection-permitting NWP models. An assimilation update frequency of one hour

is also analogous to high-resolution DA systems. A basic observing system is imposed in

which all variables are observed directly (hence the observation operatorH is linear) at a

given density ∆y.

Tuning a forecast–assimilation system is performed to optimise the filter configuration

to give the lowest analysis error. In an idealised setting, the observing system (in

this case density and error) should be tuned alongside the filter configuration to

produce an idealised system that demonstrates attributes of an operational system. The

process of tuning the idealised system and arriving at a well-tuned experiment with an

observational influence similar to that of NWP has been recounted here. Given the simple

observing system and strong nonlinearities of the forecast model, the EnKF performs

adequately when supplemented with techniques to combat undersampling. Indeed, as
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Figure 6.14: Facets of localisation: taper functions, a localising matrix, and the effect
on correlation matrices. Top left: Gaspari-Cohn taper functions %(x) for a given cut-off
length-scale Lloc. Top right: the 3×3 block localisation matrix ρ ∈ Rn×n computed from
% with Lloc = 80. Bottom left: a correlation matrix after T=36 cycles from the experiment
with ∆y = 40, γm = 1.01, Lloc = ∞. Notice the strength of off-diagonal correlations.
Bottom right: the same correlation matrix localised using the above ρ with Lloc = 80.
This suggests that applying localisation in this setting suppresses true covariances, thereby
degrading the analysis.
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demonstrated in section 6.2.1, additive inflation is crucial for maintaining satisfactory

filter performance. By comparing the ensemble spread and the RMS error of the ensemble

mean, it is shown that certain filter configurations yield ensembles that adequately

estimate the forecast errors. The overall skill of the ensembles is assessed using the CRPS

as well. Good performance is achieved with a reasonable (i.e., not too large) multiplicative

inflation factor of γm = 1.01. Hamill et al. [2001] find that inflation factors of only 1% or

2% are adequate with an ensemble size of 100 and a global isentropic two-layer model,

and Houtekamer and Zhang [2016] note that inflation values close to one are desirable.

For the idealised experiments presented here, localisation degrades the analysis. This is

somewhat at odds with operational practice in which some form of localisation is crucial

for ensemble-based DA systems to function satisfactorily. In the operational DA problem,

N � p � n (where N is O(10 − 100), p is O(107) and n is O(109)) exemplifies

severe rank-deficiency. The subspace spanned by the ensemble is extremely restrictive

and confines the observations to an insufficient number of directions, especially given the

indirect nature of the vast majority of observations. Localisation increases the effective

degrees of freedom of the system, thereby increasing the rank of the problem and making

the high-dimensional problem tractable.

On the other hand, the dimensions corresponding to the idealised system are p < N < n

where p = {15, 30},N = 40, and n = 600. This is clearly very different to an operational

setting; by their very definition, idealised systems are low order and do not seek to match

this aspect of operational systems. In particular, N > p and the observations are direct.

This suggests that there is no need for localisation in this specific experimental setting: the

observations lie within the spread of the ensembles (note the observations in figure 6.10)

and so there is no need to increase the rank of the problem. This issue is also encountered

by Anderson [2012, 2015] in an idealised setting with N > p. The fact the analysis is

increasingly degraded by stricter localisation (i.e., decreasing Lloc) suggests also that real

correlations are being suppressed in this case. Indeed, the correlation matrices plotted
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in figure 6.14 show that ‘signal’ rather than ‘noise’ is being removed by localisation.

However, it should be stressed that this is only one realisation of a possible observing

system: treating the observations differently (e.g., vary the error σσσ and/or observation

operatorH) may lead to a different conclusion concerning the role of localisation.

Finally, the analysis increments from a well-tuned experiment with ∆y = 40, γm =

1.01, Lloc =∞ were used to initialise staggered 24-hour forecasts as part of an idealised

ensemble prediction system. An analysis of the error-growth statistics exposes doubling

times comparable with convection-permitting NWP models.
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Conclusion

High–resolution ‘convection–permitting’ NWP models are now commonplace and

are able to resolve some of the finer–scale features associated with convection and

precipitation. However, increasing the spatial resolution is not a panacea; the so-called

‘grey-zone’ – the range of horizontal scales in which convective processes are being partly

resolved dynamically and partly by subgrid parametrisations – poses many challenges for

NWP, including how best to tackle the assimilation problem. This thesis concerns the

development of an idealised model of convective-scale Numerical Weather Prediction and

its use in inexpensive data assimilation experiments. A summary of the work undertaken

and research findings is given in section 7.1, before the aims presented in the introduction

are revisited in section 7.2. Finally, potential ideas for taking this work further are

suggested in section 7.3.

7.1 Summary

Idealised models are designed to represent some essential features of the physical

problem at hand and offer a computationally inexpensive tool for researching assimilation

algorithms. A great deal of preliminary analysis on the performance and suitability of
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potential DA algorithms is conducted using the low-order models of Lorenz [Lorenz,

1986, 1996; Lorenz and Emanuel, 1998; Lorenz, 2005]. However, there is a vast gap

between the complexity of these models and operational NWP models which integrate

the primitive equations of motion [Kalnay, 2003].

The first part of this thesis, ‘Dynamics’, develops and analyses an idealised fluid

dynamical model of intermediate complexity (extending that of Würsch and Craig [2014];

WC14) that attempts to fill this gap in hierarchy of complexity of ‘toy’ models. It modifies

the shallow water equations (SWEs) to model some dynamics of cumulus convection and

associated precipitation effects. A full description and the physical basis of the model

is given in chapter 2. Changes to the dynamics are brought about by the exceedance

of two threshold heights Hc and Hr, akin to (i) the level of free convection, and (ii)

the onset of precipitation. When the fluid exceeds these heights, the classical shallow

water dynamics are altered to include a representation of conditional instability (leading

to a convective updraft) and idealised moisture transport with associated downdraft and

precipitation effects. The main differences compared to the model proposed in WC14

are the inclusion of rotation and corresponding transverse flow and, more significantly,

the removal of various diffusive terms in the governing equations included for numerical

stability. The numerical model of WC14 is very sensitive to the diffusive terms and not

very robust to changes, making it difficult to explore different experimental set-ups.

Despite the non-trivial modifications to the parent equations, it is shown mathematically

that the model remains hyperbolic and can be integrated accordingly using a

discontinuous Galerkin (DG) finite element framework that deals robustly with systems

of partial differential equations with non-conservative products (NCPs; Rhebergen et al.

[2008]). However, hitherto unknown issues with topography and well-balancedness in

DG0 discretisations necessitated a novel approach to the problem. To this end, a stable

solver has been developed in chapter 3 that combines the method of Rhebergen et al.

[2008] for treating the NCPs and the method of Audusse et al. [2004] which ensures a
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well-balanced scheme that preserves non-negativity.

To test the solver and investigate the distinctive dynamics of the modified model, a series

of simulations are conducted in chapter 4 and the resulting solutions examined with

reference to the classical shallow water theory. Two scenarios are explored, based on

(i) the Rossby adjustment problem, and (ii) non-rotating flow over topography; within

these scenarios, a hierarchy of model ‘cases’ is employed to illustrate the effect that

exceeding the threshold heights Hc < Hr has on the dynamics. Crucially, the model

reduces exactly to the standard SWEs in non-convecting, non-precipitating regions; this

is clear analytically and the experiments confirm that the correct shallow water dynamics

are retained in the numerics.

The shift from large- to convective-scale NWP is in some sense a shift from balanced to

unbalanced dynamics. Traditional DA systems developed for large-scale NWP exploit

the fact the midlatitude dynamics at the synoptic scale are close to geostrophic and

hydrostatic balance. However, this balance is no longer manifest at smaller scales where

rotation no longer dominates and vertical accelerations modulate the flow. The modified

model exhibits important aspects of convective-scale dynamics relating to the disruption

of these large-scale balance principles. The Rossby adjustment scenario illustrates the

breakdown of geostrophic balance in the presence of convection and precipitation and

hydrostatic balance is disrupted implicitly by the modified pressure when the level of

free convection Hc is exceeded. The simulations show that the model is able to capture

features relating to convection and orographic forcing, such as the initiation of so-called

‘daughter’ convection cells away from the parent cell by gravity wave propagation, and

convection downstream from a ridge. There are well-known non-trivial steady state

solutions for flow over a parabolic ridge in the classical shallow water theory. The

model satisfies these and a novel extended set of solutions derived for the ‘convection’

and ‘rain’ case. Given the physical description and numerical investigation presented

here, the modified shallow water model is able to simulate some fundamental dynamical
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processes associated with convecting and precipitating weather systems, thus suggesting

that it is a suitable candidate for investigating DA algorithms at convective scales.

It is widely accepted that ensemble-based DA algorithms offer most success at convective

scales. These methods use an ensemble of forecast states to approximate the forecast

error covariances. These flow-dependent error statistics are able to capture nonlinear

and intermittent aspects of the convective-scale flow that a static covariance matrix

method would not. The stochastic ensemble Kalman filter (EnKF), in combination with

techniques to tackle undersampling, offers a robust algorithm with which to investigate the

suitability of the model in idealised forecast-assimilation experiments. The classical DA

problem is outlined in chapter 5 alongside the theoretical and practical aspects of Kalman

filtering. Experiments are carried out in the twin-model setting and, where possible,

mimic characteristics of NWP. The forecast model is designed to partially resolve the

convection and precipitation fields while observations are sampled from a nature run

integrated at a higher resolution. Given this mismatch between the forecast and “truth”,

it is shown that additive inflation is crucial for maintaining satisfactory filter performance

and preventing filter divergence, and that there is sufficient error growth for meaningful

hourly-cycled DA at the kilometre–scale.

The observing system and filter configuration can be tuned to yield a forecast-assimilation

system that satisfactorily estimates the forecast errors and has an average observational

influence similar to that of operational NWP. Reasonable multiplicative inflation factors

are obtained, but the dimensions of the problem, namely that the size of the ensemble is

larger than the number of observations, mean that there is no need for localisation. This

is somewhat unfortunate as localisation is a crucial aspect of operational ensemble-based

DA systems. It would therefore be desirable to have a situation that requires localisation

in the idealised setting. Ideas for how this can be achieved, along with other suggestions

for future work, are discussed in section 7.3.

Nonetheless, the results of the idealised DA experiments and tuning process described
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in chapter 6, along with the dynamics investigation, indicate that the idealised fluid

model is a suitable tool for controlled forecast–assimilation experiments in the presence

of convection and precipitation.

7.2 Aims revisited

In the introductory chapter, a set of aims was proposed to direct the research carried out

in this thesis; these are revisited briefly here.

1. Establish a physically plausible idealised fluid dynamical model with

characteristics of convective–scale NWP.

(a) Present a physical and mathematical description of the model, based on the

rotating shallow water equations and extending the model of WC14.

Starting from the rotating SWEs, the modifications are introduced and the

physical reasoning behind them is discussed in detail in chapter 2, with

reference to the dynamics of cumulus convection. Despite the modifications,

and unlike the model of WC14, the model is shown to be hyperbolic.

(b) Derive a stable and robust numerical solver based on the discontinuous

Galerkin finite element method.

In chapter 3, the so-called ’non-conservative product’ (NCP) flux is derived

which captures the nonlinear switches of the threshold heights. Since the goal

is to use the model in inexpensive DA experiments, computational efficiency

is paramount, implying a zero-order DG discretisation. However, hitherto

unknown issues concerning topography and well-balancedness at this order

necessitated an innovative approach that merged the NCP theory and the

method of Audusse et al. [2004]. Stability is ensured via a dynamic time
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step that is robust to changes in the dynamics and maintains non-negativity of

h.

(c) Investigate the distinctive dynamics of the model with comparison to the

classical shallow water theory.

A thorough investigation of the model’s dynamics is conducted numerically

in chapter 4. A hierarchy of model cases illustrates the effect of convection

(exceeding Hc) and precipitation (exceeding Hr) with reference to the

classical shallow water dynamics in two scenarios: (i) Rossby adjustment

problem and (ii) flow over topography.

2. Show that the model provides an interesting test bed for investigating DA algorithms

in the presence of complex dynamics associated with convection and precipitation.

(a) Demonstrate a well–tuned forecast–assimilation system using the ensemble

Kalman filter assimilation algorithm.

The results of idealised forecast–assimilation experiments and the tuning

process are presented in chapter 6. By permuting through observational

density, inflation factors, and localisation length-scales, a well–tuned

observing system and filter configuration is achieved that adequately estimates

the forecast error and has an average observational influence similar to NWP.

(b) Elucidate its relevance for convective–scale NWP and DA.

The forecast–assimilation system has been designed to mimic aspects of

convective-scale NWP and DA. The forecast model has a grid size of∼ 2.5km

and only partially resolves the convection and precipitation fields, while

observations are sampled from a higher resolved nature run. The hourly

update frequency is comparable to operational high-resolution NWP and

error-doubling time statistics reflect those of convection-permitting models

in a cycled forecast–assimilation system. Ideally, realising an experiment that

requires localisation would be more relevant as this is a crucial aspect of an
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operational system. Suggestions for how this might be achieved follow.

7.3 Future work: plans and ideas

This thesis has developed an idealised model for research purposes that offers a wealth

of opportunities for further research in numerous directions. The model of WC14

has deservedly received a great deal of attention for its fluid dynamical approach to

convective-scale DA research but suffers from a lack of robustness that prevents rigorous

use. It is hoped that the mathematically cleaner formulation and stable solver arising

from this research provides a useful tool to the community and facilitates other studies in

the field of convective-scale DA research. To this end, we plan to integrate the model’s

source code into EMPIRE (Employing MPI for Researching Ensembles), an open-source

repository for interfacing numerical models with DA methods [Browne and Wilson,

2015], and a journal article is in preparation that covers the model and its dynamics

(chapters 2–4).

The idealised experiments presented in chapter 6 should be considered a preliminary

investigation that demonstrate the model’s suitability for this purpose. There remains

plenty of scope for further work, with myriad experimental set–ups to explore and

concepts to investigate. To conclude the thesis, a few comments and suggestions for

extensions to this work are proposed.

1. Comments on additive inflation and the QQQ matrix

In the EnKF algorithm implemented in this thesis, additive inflation is applied to the

forecast states xfj right before the assimilation step, while multiplicative inflation

follows the assimilation step and is applied to the analysis states xaj . However,

additive inflation is usually applied incrementally per time step throughout the

forecast stage, or alternatively after the assimilation step (and ideally after the
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multiplicative inflation is applied). Adding Gaussian noise immediately prior to

the assimilation has the potential to dominate any non-Gaussianity resulting from

the nonlinear forecast model. While this is beneficial to the EnKF algorithm,

which assumes Gaussian statistics, it does not give the forecast model a chance

to evolve the Gaussian additive error into something non-Gaussian, which is more

like operational NWP.

Operational NWP does not have access to a “truth” forecast, like the nature run xt

in idealised experiments. As such, an idealised configuration seeking to mimic

an operational system should not incorporate the nature run in the assimilation

algorithm itself. Here, as explained in section 6.2.1, the QQQ matrix is updated each

cycle using the nature run, which is not a realistic feature. Ideally, QQQ should be

computed independently of the cycled forecast/assimilation system and having no

dependence on the observing system, so that the same matrix is used throughout

the experiments. EstimatingQQQ is in itself a considerable area of research that could

benefit from studies using intermediate-complexity models such as this one.

2. Conduct experiments with rotation

The idealised forecast–assimilation experiments conducted in this thesis consider

non-rotating flow over topography. As demonstrated in chapter 4, the modified

model is able to simulate interesting dynamics with Coriolis rotation effects and

transverse velocity v. An obvious next step is to conduct idealised DA experiments

in the presence of rotating convection and precipitation. This is achievable with

zero bottom topography but, in its current form, the numerical solver cannot

accommodate rotating flow over topography. However, this should be further

developed.

3. Change the way the system is observed

The observing system, embodied in the observation operator H, has a critical

impact on the behaviour and performance of a forecast–assimilation system. The
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experiments of chapter 6 employ a basic observing system in which all variables

are observed directly and homogeneously in space (so thatH is linear).

(a) Before considering a nonlinear H, it would be interesting to see the effect

of observing a subset of the variables only, e.g., only observing h. The role

of the forecast error covariance matrix Pf is to partition the observational

information throughout the state space using the estimated spatial correlations

between variables. By only observing, say, h, the ability of Pf to do this

can be ascertained. This could also necessitate localisation as the role of the

Pf and effect of spurious correlations increases. Another way to increase the

need for localisation is to use a larger domain, thereby increasing the distance

from some observations and subsequently decreasing true correlations at these

distances. Spurious correlations will then be more noticeable.

(b) Operational observing systems are heterogeneous and nonlinear. A nonlinear

observing system can be introduced to the idealised system by, e.g., observing

wind speed and direction (in the rotating case) or simply an arbitrary nonlinear

function of the variables, e.g.,
√
h. A nonlinearH, coupled with the nonlinear

dynamics of convection and precipitation in the forecast modelM, would be

expected to push the limits of linear assimilation algorithms such as the EnKF.

(c) The advent of satellites in the 1970s offered a new extensive source of

observations and brought huge benefit to NWP. Nowadays, many of the

observations come from satellites (or other remote sensing techniques such

as radar) and these are expected to play a critical role in advancing high-

resolution DA. However, they pose huge challenges and the question of how

best to assimilate such a vast quantity of indirect observations is a major topic

of research. It would be possible to mimic satellite observing systems in an

idealised setting by having periodic observations localised in space and time

and a simplified radiative transfer model. The model with such an observing
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system would provide an interesting testbed for satellite DA research.

4. Comparison of algorithms

Idealised models are most typically employed in a framework to compare the

performance of different assimilation algorithms (e.g., Fairbairn et al. [2014]).

The model could be used to compare methods in the presence of convection and

precipitation. For example, how does the EnKF perform against a hybrid ensemble–

variational method or a fully nonlinear filter? The debate around nonlinear data

assimilation (section 5.4.3) is growing with the resolution of NWP models; an

idealised model with highly nonlinear convective processes is a useful tool for

furthering research in this direction.
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Appendices

A The model of Würsch and Craig [2014]

The augmented shallow water system employed by Würsch and Craig [2014] provides

a computationally inexpensive yet physically plausible environment for convective-scale

data assimilation research. It extends the shallow water equations (SWEs) to include the

transport of moisture by introducing a (dimensionless) ‘water mass fraction’ r which is

coupled to the momentum equation by modifying the geopotential Φ. The system reads:

∂th+ ∂x(hu) = Kh∂xxh, (A.1a)

∂tu+ u∂xu+ ∂x(Φ + γr) = Ku∂xxu, (A.1b)

∂tr + u∂xr = Kr∂xxr − αr −

β∂xu, if Z > Hr and ∂xu < 0;

0, otherwise,
(A.1c)

where

Φ =

Φc + gH, for Z > Hc;

gZ, otherwise,
(A.2)

Here Z = h + b is the absolute fluid layer height, b = b(x) is the topography and

h = h(x, t) is the free-surface height. The geopotential Φ is modified when total height

exceeds a threshold Hc, above which it takes a (low) constant value Φc. Model ‘rain’ is

produced when the total height exceeds a higher ‘rain’ thresholdHr in addition to positive
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wind convergence (∂xu < 0). Elsewhere, α and β are positive constants controlling the

removal and production of rain, respectively, and γ is a scaling constant with geopotential

units, m2s−2. The diffusion coefficients Kh, Ku, and Kr are tuned to stabilise the model

for a specific numerical implementation and are the dominant controlling factor of the

subsequent solutions.
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B Non-negativity preserving numerics

Schemes that preserve the non-negativity of h are able to efficiently compute the ‘dry’

states where h = 0 (e.g., Audusse et al. [2004]; Bokhove [2005]; Xing et al. [2010]) by

reconstructing the computational variables and modifying the numerical flux function via

a positivity-preserving limiter. Given a derived time-step criterion, this yields a stable,

well-balanced scheme that preserves steady states, non-negativity and conservation of h.

The following appendix presents the scheme of Audusse et al. [2004], a detailed proof

of the non-negativity preservation including the derived elemental time step, and a test

simulation that requires the computation of dry states and moving wet/dry boundaries.

Scheme of Audusse et al. [2004]

The spatial domain x ∈ [0, L] is discretised into cells Kk = [xk−1/2, xk+1/2] for k =

1, 2, ..., N with N + 1 nodes 0 = x1/2, x3/2, ..., xN−1/2, xN+1/2 = L. Cell lengths |Kk| =

xk+1/2 − xk−1/2 may vary. The computational variables Uk(t) in finite volume methods

approximate the model states U(x, t) as a piecewise constant function in space (i.e., as a

cell average):

Uk(t) =
1

|Kk|

∫
Kk

U(x, t)dx. (B.3)

Integrating the system (2.1) over the cell Kk and using (B.3) yields the space-discretised

scheme:
d

dt
Uk +

1

|Kk|
[
Fk+1/2 −Fk−1/2

]
+ S(Uk) = 0, (B.4)

where Fk+1/2 = F(UL,UR) = F(U(xk+1/2, t)) is the flux evaluated at the node xk+1/2

using the computational states to the left and right of the node.

The first-order finite volume scheme for the h-equation using a forward Euler time
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discretisation is:

hn+1
k = hnk − µ

[
Fh(U−k+1/2,U

+
k+1/2)−F

h(U−k−1/2,U
+
k−1/2)

]
(B.5)

where µ = 4t/|Kk|, F is a numerical flux, and U±k+1/2 are reconstructed states to the left

and right of node xk+1/2:

U−k+1/2 =

 h−k+1/2

h−k+1/2uk

 , U+
k+1/2 =

 h+k+1/2

h+k+1/2uk+1

 , (B.6)

with:

h−k+1/2 = max (0, hk + bk −max(bk, bk+1)) , (B.7a)

h+k+1/2 = max (0, hk+1 + bk+1 −max(bk, bk+1)) . (B.7b)

For the numerical flux F through node xk+1/2, take the HLL flux (after Harten et al.

[1983]):

Fh(U−k+1/2,U
+
k+1/2) =


h−k+1/2uk, if SLk+1/2 > 0;

FHLLk+1/2, if SLk+1/2 < 0 < SRk+1/2;

h+k+1/2uk+1, if SRk+1/2 < 0;

(B.8)

where:

FHLLk+1/2 =
h−k+1/2ukS

R
k+1/2 − h

+
k+1/2uk+1S

L
k+1/2 + SLk+1/2S

R
k+1/2(h

+
k+1/2 − h

−
k+1/2)

SRk+1/2 − SLk+1/2

,

(B.9)
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and the numerical speeds are given by:

SLk+1/2 = min
(
uk −

√
gh−k+1/2 , uk+1 −

√
gh+k+1/2

)
, (B.10a)

SRk+1/2 = max
(
uk +

√
gh−k+1/2 , uk+1 +

√
gh+k+1/2

)
. (B.10b)

Note that, by construction of (B.7), the following inequalities hold:

0 ≤ h−k+1/2 ≤ hk, 0 ≤ h+k+1/2 ≤ hk+1. (B.11)

Theorem

For the scheme described above in (B.5) to (B.10), if hnk , hnk±1 ≥ 0, then hn+1
k ≥ 0 (given

a time-step criterion, to be derived).

Proof

There are 9 different cases that the discretised h-equation (B.5) can take, each

corresponding to the correct flux term for the given numerical speed. For each case, it

is shown that if hnk , hnk±1 ≥ 0, then hn+1
k ≥ 0 for a given a time-step criterion. Finally,

these criteria are amalgamated into a single elemental time step restriction covering all 9

cases.

Case 1: if (SLk+1/2 > 0) ∧ (SLk−1/2 > 0), then:

hn+1
k = hnk − µ

[
h−k+1/2uk − h

−
k−1/2uk−1

]
=

[
1− µuk

h−k+1/2

hnk

]
hnk +

[
µuk−1

h−k−1/2
hnk−1

]
hnk−1.

The expression in the second bracket is always non-negative since uk−1 > 0 and (B.11).
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The first bracket is non-negative given the time-step restriction:

µuk
h−k+1/2

hnk
≤ 1. (B.12)

Given this criterion, we see that hn+1
k is a linear combination of hnk , hnk±1 and all the

coefficients are non-negative. Thus, hn+1
k ≥ 0.

Case 2: if (SRk+1/2 < 0) ∧ (SRk−1/2 < 0), then:

hn+1
k = hnk − µ

[
h+k+1/2uk+1 − h+k−1/2uk

]
=

[
1 + µuk

h+k−1/2
hnk

]
hnk +

[
−µuk+1

h+k+1/2

hnk+1

]
hnk+1.

The expression in the second bracket is always non-negative since uk+1 < 0 and (B.11).

Since uk < 0, the first bracket is non-negative given the time-step restriction:

− µuk
h+k−1/2
hnk

≤ 1. (B.13)

Thus, hn+1
k ≥ 0.

Case 3: if (SRk+1/2 < 0) ∧ (SLk−1/2 > 0), then:

hn+1
k = hnk − µ

[
h+k+1/2uk+1 − h−k−1/2uk−1

]
= hnk +

[
−µuk+1

h+k+1/2

hnk+1

]
hnk+1 +

[
µuk−1

h−k−1/2
hnk−1

]
hnk−1.

Since uk+1 < 0, uk−1 > 0, and (B.11), all the coefficients are non-negative. Thus,

hn+1
k ≥ 0.
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Case 4: if (SLk+1/2 > 0) ∧ (SRk−1/2 < 0), then:

hn+1
k = hnk − µ

[
h−k+1/2uk − h

+
k−1/2uk

]
=

[
1− µuk

h−k+1/2 − h
+
k−1/2

hnk

]
hnk .

But SLk+1/2 > 0 =⇒ uk > 0 while SRk−1/2 < 0 =⇒ uk < 0, which is clearly a

contradiction. Thus, the case (SLk+1/2 > 0) ∧ (SRk−1/2 < 0) is not possible.

Case 5: if (SLk+1/2 < 0 < SRk+1/2) ∧ (SLk−1/2 < 0 < SRk−1/2), then:

hn+1
k = hnk − µ

[
FHLLk+1/2 −FHLLk−1/2

]
= hnk − µ

[
h−k+1/2ukS

R
k+1/2 − h

+
k+1/2uk+1S

L
k+1/2 + SLk+1/2S

R
k+1/2(h

+
k+1/2 − h

−
k+1/2)

SRk+1/2 − SLk+1/2

]

+ µ

[
h−k−1/2uk−1S

R
k−1/2 − h

+
k−1/2ukS

L
k−1/2 + SLk−1/2S

R
k−1/2(h

+
k−1/2 − h

−
k−1/2)

SRk−1/2 − SLk−1/2

]

=

[
1− µ

SRk+1/2

4Sk+1/2

h−k+1/2

hnk

(
uk − SLk+1/2

)
− µ

SLk−1/2
4Sk−1/2

h+k−1/2
hnk

(
uk − SRk−1/2

)]
hnk

+

[
µ
SLk+1/2

4Sk+1/2

h+k+1/2

hnk+1

(
uk+1 − SRk+1/2

)]
hnk+1

+

[
µ
SRk−1/2
4Sk−1/2

h−k−1/2
hnk−1

(
uk−1 − SLk−1/2

)]
hnk−1,

where 4Sk+1/2 = SRk+1/2 − SLk+1/2 > 0. Clearly the sign of the coefficients depends on

the sign of the twice-underlined terms, defined shorthand as:

SL,uk+1/2 := uk − SLk+1/2, SR,uk+1/2 := uk+1 − SRk+1/2. (B.14)
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Then the scheme reads:

hn+1
k =

[
1− µ

SRk+1/2S
L,u
k+1/2

4Sk+1/2

h−k+1/2

hnk
− µ

SLk−1/2S
R,u
k−1/2

4Sk−1/2

h+k−1/2
hnk

]
hnk

+

[
µ
SLk+1/2S

R,u
k+1/2

4Sk+1/2

h+k+1/2

hnk+1

]
hnk+1 +

[
µ
SRk−1/2S

L,u
k−1/2

4Sk−1/2

h−k−1/2
hnk−1

]
hnk−1.

Examining the conditions of the numerical speeds, it can be concluded that:

(
SLk+1/2 < 0 < SRk+1/2

)
=⇒

(
SL,uk+1/2 > 0

)
∧
(
SR,uk+1/2 < 0

)
. (B.15)

Therefore, since SLk+1/2 < 0 and noting (B.11), the coefficient of hnk+1 is always

non-negative. Similarly, since SRk−1/2 > 0, the coefficient of hnk−1 is always non-

negative. Demanding the coefficent of hnk to be non-negative yields the following time-

step restriction:

µ

[
SRk+1/2S

L,u
k+1/2

4Sk+1/2

h−k+1/2

hnk
+
SLk−1/2S

R,u
k−1/2

4Sk−1/2

h+k−1/2
hnk

]
≤ 1. (B.16)

Due to (B.15), the expression in square brackets is always non-negative. Thus, given this

time-step restriction, hn+1
k ≥ 0.



Appendices 169

Case 6: if (SLk+1/2 < 0 < SRk+1/2) ∧ (SLk−1/2 > 0), then:

hn+1
k = hnk − µ

[
FHLLk+1/2 − h−k−1/2uk−1

]
= hnk − µ

[
h−k+1/2ukS

R
k+1/2 − h

+
k+1/2uk+1S

L
k+1/2 + SLk+1/2S

R
k+1/2(h

+
k+1/2 − h

−
k+1/2)

SRk+1/2 − SLk+1/2

− h−k−1/2uk−1
]

=

[
1− µ

SRk+1/2S
L,u
k+1/2

4Sk+1/2

h−k+1/2

hnk

]
hnk +

[
µ
SLk+1/2S

R,u
k+1/2

4Sk+1/2

h+k+1/2

hnk+1

]
hnk+1

+

[
µuk−1

h−k−1/2
hnk−1

]
hnk−1,

where 4Sk+1/2 = SRk+1/2 − SLk+1/2 > 0. Noting (B.11), (B.15), and the numerical

speed conditions (uk−1 > 0), it is clear that the coefficients of hnk±1 are always non-

negative. Demanding the coefficent of hnk to be non-negative yields the following time-

step restriction:

µ

[
SRk+1/2S

L,u
k+1/2

4Sk+1/2

h−k+1/2

hnk

]
≤ 1. (B.17)

Due to (B.15), the expression in square brackets is always non-negative. Thus, given this

time-step restriction, hn+1
k ≥ 0.

Case 7: if (SLk+1/2 < 0 < SRk+1/2) ∧ (SRk−1/2 < 0), then:

hn+1
k = hnk − µ

[
FHLLk+1/2 − h+k−1/2uk

]
= hnk − µ

[
h−k+1/2ukS

R
k+1/2 − h

+
k+1/2uk+1S

L
k+1/2 + SLk+1/2S

R
k+1/2(h

+
k+1/2 − h

−
k+1/2)

SRk+1/2 − SLk+1/2

− h+k−1/2uk
]

=

[
1− µ

SRk+1/2S
L,u
k+1/2

4Sk+1/2

h−k+1/2

hnk
+ µuk

h+k−1/2
hnk

]
hnk +

[
µ
SLk+1/2S

R,u
k+1/2

4Sk+1/2

h+k+1/2

hnk+1

]
hnk+1,

where 4Sk+1/2 = SRk+1/2 − SLk+1/2 > 0. Noting (B.11), (B.15), it is clear that the
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coefficient of hnk+1 is always non-negative. Demanding the coefficent of hnk to be non-

negative yields the following time-step restriction:

µ

[
SRk+1/2S

L,u
k+1/2

4Sk+1/2

h−k+1/2

hnk
− uk

h+k−1/2
hnk

]
≤ 1. (B.18)

Due to (B.15) and the numerical speed condition (uk < 0), the expression in square

brackets is always non-negative. Thus, given this time-step restriction, hn+1
k ≥ 0.

Case 8: if (SLk+1/2 > 0) ∧ (SLk−1/2 < 0 < SRk−1/2), then:

hn+1
k = hnk − µ

[
h−k+1/2uk −F

HLL
k−1/2

]
= hnk − µ

[
h−k+1/2uk

−
h−k−1/2uk−1S

R
k−1/2 − h

+
k−1/2ukS

L
k−1/2 + SLk−1/2S

R
k−1/2(h

+
k−1/2 − h

−
k−1/2)

SRk−1/2 − SLk−1/2

]

=

[
1− µuk

h−k+1/2

hnk
− µ

SLk−1/2S
R,u
k−1/2

4Sk−1/2

h+k−1/2
hnk

]
hnk +

[
µ
SRk−1/2S

L,u
k−1/2

4Sk−1/2

h−k−1/2
hnk−1

]
hnk−1,

where 4Sk−1/2 = SRk−1/2 − SLk−1/2 > 0. Noting (B.11), (B.15), it is clear that the

coefficient of hnk−1 is always non-negative. Demanding the coefficent of hnk to be non-

negative yields the following time-step restriction:

µ

[
uk
h−k+1/2

hnk
+
SLk−1/2S

R,u
k−1/2

4Sk−1/2

h+k−1/2
hnk

]
≤ 1. (B.19)

Due to (B.15) and the numerical speed condition (uk > 0), the expression in square

brackets is always non-negative. Thus, given this time-step restriction, hn+1
k ≥ 0.
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Case 9: if (SRk+1/2 < 0) ∧ (SLk−1/2 < 0 < SRk−1/2), then:

hn+1
k = hnk − µ

[
h+k+1/2uk+1 −FHLLk−1/2

]
= hnk − µ

[
h+k+1/2uk+1

−
h−k−1/2uk−1S

R
k−1/2 − h

+
k−1/2ukS

L
k−1/2 + SLk−1/2S

R
k−1/2(h

+
k−1/2 − h

−
k−1/2)

SRk−1/2 − SLk−1/2

]

=

[
1− µ

SLk−1/2S
R,u
k−1/2

4Sk−1/2

h+k−1/2
hnk

]
hnk +

[
−µuk+1

h+k+1/2

hnk+1

]
hnk+1

+

[
µ
SRk−1/2S

L,u
k−1/2

4Sk−1/2

h−k−1/2
hnk−1

]
hnk−1,

where 4Sk−1/2 = SRk−1/2 − SLk−1/2 > 0. Noting (B.11), (B.15), and the numerical

speed condition (uk+1 < 0), it is clear that the coefficient of hnk±1 is always non-

negative. Demanding the coefficent of hnk to be non-negative yields the following time-

step restriction:

µ

[
SLk−1/2S

R,u
k−1/2

4Sk−1/2

h+k−1/2
hnk

]
≤ 1. (B.20)

Due to (B.15), the expression in square brackets is always non-negative. Thus, given this

time-step restriction, hn+1
k ≥ 0.

Elemental time step: for each case of numerical flux, it has been shown that hn+1
k ≥ 0 for

hnk , hnk±1 ≥ 0 and a corresponding elemental time step restriction. We can combine these

cases into a concise expression for the elemental time-step4tk:

4tk =
hnk |Kk|
max
k
Dk

, (B.21)
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where the denominator Dk is given by:

Dk = ukh
−
k+1/2Θ(SLk+1/2) +

[
SRk+1/2S

L,u
k+1/2

4Sk+1/2

h−k+1/2

]
Θ(−SLk+1/2)Θ(SRk+1/2)

− ukh+k−1/2Θ(−SRk−1/2) +

[
SLk−1/2S

R,u
k−1/2

4Sk−1/2
h+k−1/2

]
Θ(−SLk−1/2)Θ(SRk−1/2),

(B.22)

and Θ is the Heaviside function:

Θ(x) =

1, for x > 0,

0, for x ≤ 0.

(B.23)

The fluid depth thus remains non-negative provided the time step is less than the minimum

value of the elemental time step: 4t < 4tk.

Test case: parabolic bowl

A standard experiment for testing non-negativity preserving numerics in shallow water

flows is a sloped fluid height in parabolic bottom topography (see, e.g., Bokhove [2005];

Xing et al. [2010]). Physically, the problem models an oscillating lake in a basin, and

requires the computation of dry states and moving wet/dry boundaries. The parabolic

bottom topography is:

b(x) = h0

(x
a

)2
(B.24)

and the analytical fluid height is given by:

h(x, t) + b(x) = h0 −
B2

4g
cos(ωt)− B2

4g
− Bx

2a

√
8h0
g

cos(ωt), (B.25)
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Figure B.1: Parabolic bowl problem at times t = 400, 800, 1200, 1600: blue - bottom
topography b, green - exact solution h + b , red - numerical solution h + b. The
computational domain is [−5000, 5000] with 1000 uniform cells.

where ω =
√

2gh0/a . The fixed parameter values used here follow Xing et al. [2010]:

a = 3000, B = 5, h0 = 10. Figure B.1 shows the good agreement between numerical and

exact solutions at different times.
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C Well-balancedness: DG1 proof

For DG1 expansions (and higher), we can project the DG expansion coefficents of b such

that bh remains continuous across elements, then bR = bL and d(bk)/dt = 0. Then

all aspects of rest flow in (3.26) are satsified numerically and the scheme is truly well-

balanced. This is proved in this appendix for the space-DG1 discretisation. For reference,

the shallow water system (3.26) is characterised by:

UUU =


h

hu

b

 , FFF (UUU) =


hu

hu2 + 1
2
gh2

0

 , GGG(UUU) =


0 0 0

0 0 gh

0 0 0

 . (C.26)

The DG1 discretisation uses piecewise linear basis functions (i.e., first-order polynomials)

to approximate the trial function U and test function w and thereby discretise the weak

formulation (3.20) in space. The DG1 expansions are:

U ≈ Uh = U + ξÛ ; w ≈ wh = w + ξŵ. (C.27)

with mean and slope coefficients U = Uk(t) and Û = Ûk(t), where ξ ∈ (−1, 1) is a local

coordinate in the reference element K̂k such that:

x = x(ξ) =
1

2

(
xk + xk+1 + |K̂k|ξ

)
. (C.28)
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Thus, when ξ = −1, x = xk and ξ = 1, x = xk+1. Also note that dx = 1
2
|K̂k|dξ. We

evaluate the integrals in (3.20) with wi = wi|Kk and Ui = Ui|Kk as follows:

∫
Kk

wi∂tUidx =

∫
Kk

(wi + ξŵi)∂t(U i + ξÛi)dx

=
1

2
|Kk|

∫ 1

−1
wi∂tU i + (ŵi∂tU i + wi∂tÛi)ξ + (ŵi∂tÛi)ξ

2dξ

=
1

2
|Kk|

[
2wi∂tU i +

2

3
ŵi∂tÛi

]
= |Kk|wi∂tU i +

1

3
|Kk|ŵi∂tÛi, (C.29)

∫
Kk

−Fi∂xwidx = −
∫
Kk

Fi(U + ξÛ)∂x(wi + ξŵi)dx

= −
∫ 1

−1
Fi(U + ξÛ)

2

|Kk|
∂ξ(wi + ξŵi)

1

2
|Kk|dξ

= −ŵi
∫ 1

−1
Fi(U + ξÛ)dξ, (C.30)

∫
Kk

wiGij∂xUjdx =

∫
Kk

(wi + ξŵi)Gij(U + ξÛ)∂x(U j + ξÛj)dx

=

∫ 1

−1
(wi + ξŵi)Gij(U + ξÛ)

2

|Kk|
∂ξ(U j + ξÛj)

1

2
|Kk|dξ

=

∫ 1

−1
(wi + ξŵi)Gij(U + ξÛ)Ûjdξ

= wi

∫ 1

−1
Gij(U + ξÛ)Ûjdξ + ŵi

∫ 1

−1
ξGij(U + ξÛ)Ûjdξ. (C.31)

The flux terms in (3.20) are:

wi(x
−
k+1)P

p
i (x−k+1, x

+
k+1) = (wi + ŵi)|KkP

p
i

(
(U i + Ûi)|Kk , (U i − Ûi)|Kk+1

)
, (C.32)

wi(x
+
k )Pmi (x−k , x

+
k ) = (wi − ŵi)|KkPmi

(
(U i + Ûi)|Kk−1

, (U i − Ûi)|Kk
)
. (C.33)
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The space-discretised scheme for means U i and slopes Ûi is obtained by considering

coefficients of the test function means wi and slopes ŵi and taking wi = ŵi = 1

alternately for each element (again due to arbitrariness of wh):

0 = |Kk|∂tU i + Ppi
(
UL|Kk , UR|Kk+1

)
− Pmi

(
UL|Kk−1

, UR|Kk
)

+

∫ 1

−1
Gij(U + ξÛ)Ûjdξ (C.34a)

0 =
1

3
|Kk|∂tÛi + Ppi

(
UL|Kk , UR|Kk+1

)
+ Pmi

(
UL|Kk−1

, UR|Kk
)

−
∫ 1

−1
Fi(U + ξÛ)dξ +

∫ 1

−1
ξGij(U + ξÛ)Ûjdξ, (C.34b)

where UL = U+ Û and UR = U− Û are the trace values to the left and right of a element

edge.

Here it is shown analytically that when taking a linear path and using first-order expansion

for the model states and test functions, rest flow in the shallow water system (C.26)

remains at rest and the non-constant topography b does not evolve as long as bh remains

continuous across elements. The semi-discrete scheme is given by (C.34) and we evaluate

the integrals therein for rest flow, and check the following:

d

dt
(hk + bk) = 0,

d

dt
(ĥk + b̂k) = 0,

d

dt
(huk) = 0,

d

dt
(ĥuk) = 0. (C.35)

For i = 1, 3, integrals involving G are zero. For i = 2:

∫ 1

−1
G2j(U + ξÛ)Ûjdξ = g

∫ 1

−1
(h+ ξĥ)b̂dξ = g

∫ 1

−1
(hb̂+ ĥb̂ξ)dξ = 2ghb̂, (C.36)∫ 1

−1
ξG2j(U + ξÛ)Ûjdξ = g

∫ 1

−1
ξ(h+ ξĥ)b̂dξ = g

∫ 1

−1
(hb̂ξ + ĥb̂ξ2)dξ =

2

3
gĥb̂.

(C.37)

with the first integral featuring in the equation for means U i and the second in the equation
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for slopes Û . For the integral involving the flux F :

∫ 1

−1
F1(U + ξÛ)dξ =

∫ 1

−1
(hu+ ξĥu)dξ = 0, since flow is at rest; (C.38a)∫ 1

−1
F2(U + ξÛ)dξ =

∫ 1

−1

1

2
g(h+ ξĥ)2dξ =

1

2
g

∫ 1

−1
(h2 + 2ξhĥ+ ξ2ĥ2)dξ

=
1

2
g

[
2h2 +

2

3
ĥ2
]

= gh2 +
1

3
gĥ2; (C.38b)∫ 1

−1
F3(U + ξÛ)dξ = 0. (C.38c)

Using (3.34), (C.36), and (C.38) in (C.34), we check the conditions (C.35) for rest flow

to be satisfied numerically:

h+ b : 0 = |Kk|
d

dt
(hk + bk) +

SLk+1S
R
k+1(h

R
k+1 − hLk+1 + bRk+1 − bLk+1)

SRk+1 − SLk+1

−
SLk S

R
k (hRk − hLk + bRk − bLk )

SRk − SLk
=⇒ d

dt
(hk + bk) = 0; (C.39)

ĥ+ b̂ : 0 =
1

3
|Kk|

d

dt
(ĥk + b̂k) +

SLk+1S
R
k+1(h

R
k+1 − hLk+1 + bRk+1 − bLk+1)

SRk+1 − SLk+1

+
SLk S

R
k (hRk − hLk + bRk − bLk )

SRk − SLk
=⇒ d

dt
(ĥk + b̂k) = 0; (C.40)

hu : 0 = |Kk|
d

dt
(huk) +

1

2
g(hk + ĥk)

2 − 1

2
g(hk − ĥk)2 + 2ghkb̂k

= |Kk|
d

dt
(huk) + 2ghk(ĥk + b̂k)

=⇒ d

dt
(huk) = 0; (C.41)
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ĥu : 0 =
1

3
|Kk|

d

dt
(ĥuk) +

1

2
g(hk + ĥk)

2 +
1

2
g(hk − ĥk)2 − gh2k −

1

3
gĥ2k +

2

3
gĥkb̂k

=
1

3
|Kk|

d

dt
(ĥuk) + gh2k + gĥ2k − gh2k −

1

3
gĥ2k +

2

3
gĥkb̂k

=
1

3
|Kk|

d

dt
(ĥuk) +

2

3
gĥk(ĥk + b̂k)

=⇒ d

dt
(ĥuk) = 0. (C.42)

Twice-underlined terms in the above evaluations are zero after noting that, for flow at rest,

hL + bL = hR + bR and the slope of h+ b is zero. Thus, it has been proven that rest flow

remains at rest for the DG1 space discretisation when using a linear path. Moreover, if

we consider the evolution of b only:

0 = |Kk|
d

dt
(bk) +

SLk+1S
R
k+1(b

R
k+1 − bLk+1)

SRk+1 − SLk+1

− SLk S
R
k (bRk − bLk )

SRk − SLk

0 =
1

3
|Kk|

d

dt
(b̂k) +

SLk+1S
R
k+1(b

R
k+1 − bLk+1)

SRk+1 − SLk+1

+
SLk S

R
k (bRk − bLk )

SRk − SLk

and project the topography b such that bh remains continuous across elements (i.e., bR =

bL), then d(bk)/dt = d(b̂k)/dt = 0. Then all aspects of rest flow are satisfied numerically

and the scheme is truly well-balanced.
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Janjić, T., McLaughlin, D., Cohn, S. E., and Verlaan, M. (2014). Conservation of mass

and preservation of positivity with ensemble-type Kalman filter algorithms. Monthly

Weather Review, 142(2):755–773.

Jazwinski, A. H. (2007). Stochastic processes and filtering theory. Courier Corporation.

Jolliffe, I. and Stephenson, D. (2003). Forecast Verification: A Practitioner’s Guide in

Atmospheric Science. Wiley.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal

of Basic Engineering, 82(Series D):35–45.

Kalman, R. E. and Bucy, R. S. (1961). New results in linear filtering and prediction theory.

Journal of Basic Engineering, 83(1):95–108.

Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation and Predictability.

Cambridge University Press.

Lange, H. and Craig, G. C. (2014). The impact of data assimilation length scales on

analysis and prediction of convective storms. Monthly Weather Review, 142(10):3781–

3808.

Lawson, W. G. and Hansen, J. A. (2004). Implications of stochastic and deterministic

filters as ensemble-based data assimilation methods in varying regimes of error growth.

Monthly weather review, 132(8):1966–1981.



188 BIBLIOGRAPHY

Le Floch, P. (1989). Shock waves for nonlinear hyperbolic systems in nonconservative

form. Report 593, Institute for Mathematics and its Applications, Minneapolis, MN.

Lean, H. W., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A., Forbes, R., and

Halliwell, C. (2008). Characteristics of high-resolution versions of the Met Office

Unified Model for forecasting convection over the United Kingdom. Monthly Weather

Review, 136(9):3408–3424.

Leith, C. (1974). Theoretical skill of Monte Carlo forecasts. Monthly Weather Review,

102(6):409–418.

LeVeque, R. J. (2002). Finite-Volume Methods for Hyperbolic Problems. Cambridge

University Press.

Lorenc, A. C. (2003). The potential of the ensemble Kalman filter for NWP – a

comparison with 4D-Var. Quarterly Journal of the Royal Meteorological Society,

129(595):3183–3203.

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric

Sciences, 20(2):130–141.

Lorenz, E. N. (1986). On the existence of a slow manifold. Journal of the Atmospheric

Sciences, 43(15):1547–1558.

Lorenz, E. N. (1996). Predictability: A problem partly solved. In Proceedings ECMWF

Seminar on predictability, volume 1, pages 1–18, ECMWF, Shinfield Park, Reading,

United Kingdom.

Lorenz, E. N. (2005). Designing chaotic models. J. Atmos. Sci., 62:1574–1587.

Lorenz, E. N. and Emanuel, K. A. (1998). Optimal sites for supplementary weather

observations: Simulation with a small model. Journal of the Atmospheric Sciences,

55(3):399–414.



BIBLIOGRAPHY 189

Mandel, J., Cobb, L., and Beezley, J. D. (2011). On the convergence of the ensemble

kalman filter. Applications of Mathematics, 56(6):533–541.

Markowski, P. and Richardson, Y. (2011a). Convection Initiation. In Mesoscale

Meteorology in Midlatitudes, volume 2, chapter 7. John Wiley & Sons.

Markowski, P. and Richardson, Y. (2011b). Mesoscale Meteorology in Midlatitudes,

volume 2. John Wiley & Sons.

Markowski, P. and Richardson, Y. (2011c). Organization of Isolated Convection. In

Mesoscale Meteorology in Midlatitudes, volume 2, chapter 8. John Wiley & Sons.

Matheson, J. E. and Winkler, R. L. (1976). Scoring rules for continuous probability

distributions. Management science, 22(10):1087–1096.

Ménétrier, B., Montmerle, T., Michel, Y., and Berre, L. (2015a). Linear filtering of

sample covariances for ensemble-based data assimilation. part I: optimality criteria and

application to variance filtering and covariance localization. Monthly Weather Review,

143(5):1622–1643.

Ménétrier, B., Montmerle, T., Michel, Y., and Berre, L. (2015b). Linear filtering of sample

covariances for ensemble-based data assimilation. part II: Application to a convective-

scale NWP model. Monthly Weather Review, 143(5):1644–1664.

Meng, Z. and Zhang, F. (2011). Limited-area ensemble-based data assimilation. Monthly

Weather Review, 139(7):2025–2045.

Miller, R. N., Ghil, M., and Gauthiez, F. (1994). Advanced data assimilation in strongly

nonlinear dynamical systems. Journal of the Atmospheric Sciences, 51(8):1037–1056.

Mitchell, H. L. and Houtekamer, P. (2009). Ensemble Kalman filter configurations and

their performance with the logistic map. Monthly Weather Review, 137(12):4325–4343.



190 BIBLIOGRAPHY

Murphy, J. (1988). The impact of ensemble forecasts on predictability. Quarterly Journal

of the Royal Meteorological Society, 114(480):463–493.

Neef, L. J., Polavarapu, S. M., and Shepherd, T. G. (2006). Four-dimensional data

assimilation and balanced dynamics. Journal of the Atmospheric Sciences, 63(7):1840–

1858.

Neef, L. J., Polavarapu, S. M., and Shepherd, T. G. (2009). A low-order model

investigation of the analysis of gravity waves in the ensemble Kalman filter. Journal of

the Atmospheric Sciences, 66(6):1717–1734.

Oke, P. R., Sakov, P., and Corney, S. P. (2007). Impacts of localisation in the EnKF and

EnOI: experiments with a small model. Ocean Dynamics, 57(1):32–45.

Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza, M., Kalnay, E.,

Patil, D., and Yorke, J. A. (2004). A local ensemble kalman filter for atmospheric data

assimilation. Tellus A, 56(5):415–428.

Parrett, C. and Cullen, M. (1984). Simulation of hydraulic jumps in the presence

of rotation and mountains. Quarterly Journal of the Royal Meteorological Society,

110(463):147–165.

Pedlosky, J. (1992). Geophysical Fluid Dynamics. Springer study edition. Springer New

York.

Petrie, R. E. (2012). Localisation in the ensemble Kalman filter. Master’s thesis,

University of Reading.
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