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Abstract 

Cloud Computing has changed the way in which individuals and businesses use 

IT resources. Instead of buying their own IT resources, they can use the Cloud 

services offered by Cloud providers with reasonable costs based on a “pay-per-

use” model. With the wide adoption of Cloud Computing, the costs for 

maintaining the Cloud infrastructure have become a vital issue for the providers, 

especially with the large amount of energy being consumed to operate these 

resources. Hence, the excessive use of energy consumption in Cloud 

infrastructures has become one of the major cost factors for Cloud providers. In 

order to reduce the energy consumption and enhance the energy efficiency of 

Cloud resources, proactive and reactive management tools are used with 

consideration of physical resources’ energy consumption. However, these tools 

need to be supported with energy-awareness not only at the physical machine 

(PM) level but also at virtual machine (VM) level in order to make enhanced 

energy-aware decisions. As the VMs do not have physical interface, identifying 

the energy consumption at the VM level is difficult and not directly measured. 

This thesis introduces an energy-aware Cloud system architecture that 

aims to enable energy-awareness at the deployment and operational levels of a 

Cloud environment. At the operational level, an energy-aware profiling model is 

introduced to identify energy consumption for heterogeneous and homogeneous 

VMs running on the same PM based on the size and CPU utilisation of each VM. 

At the deployment level, an energy-aware prediction framework is introduced to 

forecast future VMs’ energy consumption. This framework first predicts the VMs’ 

workload based on historical workload patterns, particularly static and periodic, 

using Auto-regressive Integrated Moving Average (ARIMA) model. The predicted 
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VM workload is then correlated to the physical resources within this framework 

in order to get the predicted VM energy consumption. 

The evaluation of the proposed work on a real Cloud testbed reveals that 

the proposed energy-aware profiling model is capable of fairly attributing the 

physical energy consumption to homogeneous and heterogeneous VMs, 

therefore enabling energy-awareness at the VM level. Compared with actual 

results obtained in this testbed, the predicted results show that the proposed 

energy-aware prediction framework is capable of forecasting the energy 

consumption for the VMs with a good prediction accuracy for static and periodic 

Cloud application workload patterns. 

The application of the proposed work is providing energy-awareness 

which can be used and incorporated by other reactive and proactive 

management tools to make enhanced energy-aware decisions and efficiently 

manage the Cloud resources. This can lead towards a reduction of energy 

consumption, and therefore lowering the cost of operational expenditure (OPEX) 

for Cloud providers and having less impact on the environment. 
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Chapter 1 Introduction  

1.1 Research Motivation 

The energy consumption in the information and communication technology (ICT) 

industry is an area of significant  ecological and economic concern. According to 

Gartner [1], the ICT industry is responsible for about 2 percent of the global CO2 

emission, which is similar to the amount caused by the aviation industry. Further, 

a data centre may consume about 100 times more energy compared to a typical 

office with the same size [2]. The emergent technology of Cloud Computing is 

considered as a way to help reduce the energy consumption of the ICT industry 

by moving some of the ICT infrastructure from decentralised environments at the 

end-users, like small and medium enterprises (SMEs), to a centralised and more 

controlled environment at the Cloud infrastructure providers. These providers 

make use of virtualisation in the management of ICT resources, which provides 

a simplified server administration, improved resource utilisation, and reduced IT 

costs. 

However, the radical adoption of Cloud Computing technology has 

exposed a significant overhead in maintaining its infrastructure, which has 

become a major issue for the Cloud providers due to the associated high 

operational costs, such as energy consumption especially with the fluctuating 

electricity prices. Cloud Computing infrastructures consist of large computing 

resources that consume a large amount of energy in order to operate. Also, the 

excessive use of energy in Cloud infrastructures leads to more heat dissipated, 

which requires more cooling resources in order to avoid hot spots and service 

performance degradation; and these cooling resources would consume more 
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energy as well. Therefore, Cloud providers consider energy consumption as one 

of the largest cost factors [3] with a substantial impact on the operational cost of 

a Cloud infrastructure [4], [5]. So, efficiently managing the energy consumed by 

the physical servers of the Cloud infrastructure can improve the overall energy 

consumption; in the sense that as the servers consume less power, the heat 

generated by these servers would be reduced, which would then reduce the need 

for cooling resources that consume a large amount of energy as well and result 

in more energy savings. Improving the energy efficiency of Cloud Computing has 

been an attractive research topic for both academia and industry as it has 

become increasingly significant for the future of the ICT [6]. 

The impact of energy consumption is not only dependent on the efficiency 

of the physical resources, but also on the policies deployed to manage these 

resources as well as the efficiency of the applications running on these resources 

[7]. Different methods have been used to efficiently manage the Cloud resources, 

all of which can be based on certain thresholds, called reactive, or based on 

prediction, called proactive. For example, once exceeding a certain threshold, 

80% of CPU utilisation, some actions take place by reactive methods to increase 

resources and avoid service performance degradation. Proactive methods have 

the advantage of taking some actions at earlier stages to avoid reaching that 

threshold and maintain the expected performance. To enable such optimisation 

and the efficient design of Cloud applications, the software analysts and 

developers should be provided with energy information to support their 

programming decisions. Also, the deployment policies should incorporate energy 

information to make energy-efficient decisions when deploying these 

applications on the Cloud resources. As discussed in [8], having appropriate 

tools for energy monitoring and profiling is essential to support energy-
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awareness and contribute to energy optimisation in all layers of the Cloud stack. 

Further, tasks’ workload information can help make efficient task placement 

strategies. As stated in [9], predicting the workload of a Virtual Machine (VM) is 

essential to make effective deployment strategies and energy efficient resource 

allocation decisions. Thus, managing the Cloud stack in all different levels and 

reducing the energy consumption has been an active area of research. 

1.2 Research Context 

Cloud Computing consists of a number of loosely coupled layers that can work 

in isolation and be supported by different providers [10]. In order to address 

energy efficiency through the whole stack of Cloud, energy information is needed 

to support various stakeholders, including Cloud application software analysts 

and developers as well as Cloud service providers. 

 The software analysts need to incorporate the energy information when 

setting the applications requirements [11]. This requires specifying energy 

goals and designing models that make the applications adapt based on 

these goals. 

 In order for the software developers to write energy efficient code, 

programming models that combine energy information are also needed 

[12], [13]. Programming models with energy-awareness can help the 

developers to make efficient programming decisions. 

 The Cloud service providers also need to be supported with energy 

information in order to efficiently deploy the services with energy 

consideration. Additionally, energy information can help the Cloud service 
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providers for efficient placement and management of the VMs on the 

Cloud infrastructures [14]. 

Therefore, identifying and providing energy-awareness to these 

stakeholders is crucially significant to help them achieve their energy efficiency 

goals. The context of this research is applicable for a provider who owns the 

whole Cloud stack, meaning that they have control over all the Cloud layers; and 

the above stakeholders are part of one entity. 

A Cloud application can run on one or many VMs, and these VMs can be 

hosted by one or many of Physical Machines (PMs). The energy consumption 

can be easily identified for the PMs with the use of hardware Watts meters. 

However, identifying the energy consumption at the VM level is difficult and not 

directly measured, and requires modelling the energy of the underlying PMs. 

Further, the energy consumption of an application can be identified by the total 

energy consumption of all the VMs on which this application is running. 

1.3 Research Aim and Objectives 

The overall aim of this research is to answer the following research questions: 

 Q.1: How can energy-awareness be supported at the VM level in a Cloud 

system architecture? 

 Q.2: How to fairly attribute the energy consumption to homogeneous and 

heterogeneous VMs running on the same PM? 

 Q.3: How to proactively predict the energy consumption of the VMs prior 

to their deployment? 

Thus, this research is aimed towards enabling energy-awareness of resource 

usage at virtual level in Cloud Computing environments, which contributes to 
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overcome the challenge of identifying energy-awareness for the VMs. Also, this 

research aims to predict the future energy usage of the new requested VMs prior 

to deployment based on specific Cloud workload patterns. The outcome of this 

research can be used and incorporated by other work to help make energy-

aware decisions when, for example, designing or optimising Cloud applications 

and efficiently managing the Cloud resources. 

In order to achieve this aim, a number of objectives are identified, which 

mainly include: 

 O.1: Exploring the current energy efficiency related issues and challenges 

in the Cloud paradigm. Improving the energy efficiency in Clouds has 

been an active research area. Therefore, it is important to understand the 

current challenges in order to contribute with a solution that can be used 

to help addressing these challenges. 

 O.2: Investigating how the energy usage of Cloud services can be 

identified in  a Cloud environment. The energy consumption can be easily 

identified at the PM level, but is not directly measured at the VM level. 

This work therefore introduces and implements an energy-aware Cloud 

system architecture that can profile the energy usage at both physical and 

virtual levels in a Cloud environment. 

 O.3: Exploring and understanding how the physical resources are 

correlated with the virtual resources usage and their impact on energy 

consumption. This work characterises the physical and virtual resources 

usage with direct experimentation in order to identify the key parameters 

correlated with the energy consumption. 
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 O.4: Investigating the use of mathematical modelling in this research 

context. Hence, a new energy-aware profiling model is introduced to 

attribute PM’s energy consumption to VMs. 

 O.5: Investigating and exploring different workload patterns experienced 

by Cloud applications. This is important in order to study and map the 

energy usage for each specific workload pattern. 

 O.6: Exploring machine learning techniques and prediction methods to 

forecast future workload and energy consumption. This work introduces 

an energy-aware prediction framework to predict future energy 

consumption for VMs prior to deployment based on historical time-series 

workload patterns. 

1.4 Research Methodology 

This research has undergone a number of stages. The first stage is examining 

the issues of energy efficiency in Cloud Computing and the identification of a 

research opportunity, which is the need of energy-awareness at VM level. Then 

introducing an energy-aware system architecture as a solution to fulfil this need 

takes place, followed by the development of an energy-aware profiling model to 

attribute the PM’s energy consumption to VMs. The final stage is the introduction 

of an energy-ware prediction framework to enable energy prediction for both PMs 

and VMs in a Cloud environment. 

In order to achieve the aim and objectives of this research, a scientific 

research method has to be used and followed. There are two main approaches 

that can be followed to do research, quantitative and qualitative [15]; the former 

is mostly used for research involving measuring variables and examining their 
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relationship with statistical analysis, and the latter is mostly used for research 

involving exploring and understanding problems with descriptive analysis. This 

research has followed a quantitative approach with repeatable empirical 

experiments. To conduct research within the distributed systems domain, three 

methods are available: 

 Direct Experiments [16], [17]: This method can be described as the use of 

a real environment, e.g. a testbed, for conducting experiments to validate 

a hypothesis or a solution. This method can give very accurate and 

reliable results but can be limited to the resources availability, time and 

effort to conduct such repeatable experiments. Hence, it can be costly and 

difficult to conduct large-scale experiments in a real environment [18]. 

 Mathematical Modelling [19], [20]: This method can be defined as the 

formulation of mathematical models that can describe a system and the 

relation and behaviours of different parameters within a system. 

Mathematical models usually consist of symbols and operations and can 

be used for different purposes, like training, estimation and prediction of 

behaviours within a system. The models developed in this method  can 

be validated with experiments conducted in a real environment (direct 

experiment) or in a simulation [21]. 

 Simulation [18], [22]: This method can be defined as the use of a 

simulated environment for conducting experiments to validate a 

hypothesis or a solution. This method is based on imitating and emulating 

the real system, and it can offer performing experiments in a short time. 

Also, this method can enable performing large-scale experiments with low 

cost and effort. However, while the nature of this method involves some 

randomness, it gives less accuracy and reliability of the results as 
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compared to direct experiments on a real environment. Hence, another 

limitation of the simulation is that it needs further verification in terms of 

representing the real environment [23]. The simulation methods can be 

validated with mathematical models or direct implementation in a real 

environment [21]. 

For this research, both mathematical modelling and direct experiments 

methods are used. The energy-aware profiling and prediction models presented 

in this thesis are formulated using mathematical modelling. Direct experiments 

are also used and conducted on a Cloud testbed to verify and validate the 

applicability of these models on a real Cloud environment. 

The simulation method has not been considered in this thesis for a twofold 

reason. Firstly, the experimental results obtained in a simulation can be less 

accurate as compared in a real environment. Secondly, it is difficult to learn the 

real behaviour and correlation of the Cloud resources using simulation. To 

illustrate, by conducting some direct experiments in this thesis using a real Cloud 

testbed has led to identifying the required parameters for the development of 

mathematical models, as to be presented in Sections 5.2.1.1 and 6.3.1. Though, 

the simulation method can be considered in future work to further examine the 

scalability-related issues, which is difficult to address in  a testbed with limited 

resources. 

1.5 Main Contributions 

The main contributions of this thesis are the following: 

 An energy-aware Cloud system architecture. This architecture includes 

the required components to address the first research question (Q.1) by 
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enabling energy-awareness at the deployment and operational levels in a 

Cloud environment. 

 An energy-aware profiling model. This model is developed with the use of 

mathematical modelling, and is aimed to address the second research 

question (Q.2) by enabling energy-awareness at the VM level by 

attributing the energy consumption to heterogeneous and homogeneous 

VMs running on the same PM based on the size and CPU utilisation of 

each VM. 

 An energy-aware prediction framework. This framework consists of a 

number of mathematical models with the aim of addressing the thirds 

research question (Q.3) by forecasting the future energy usage of VMs 

prior to service deployment. This framework first predicts the VMs’ 

workload by considering the type of these VMs and their historical 

workload patterns using Auto-Regressive Integrated Moving Average 

(ARIMA) model. The predicted VM workload is then correlated to the 

physical resources within this framework in order to get the predicted VM 

energy consumption. 

1.6 Thesis Overview 

The remaining chapters of this thesis are organised as follows: 

 Chapter 2 presents an overview of the concepts of Cloud Computing, 

Cloud system architecture, Cloud application workload patterns and the 

issues of energy efficiency in Cloud Computing. 

 Chapter 3 reviews the literature and technologies for enhancing the 

energy efficiency in Cloud Computing. It begins with a discussion on the 
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requirements engineering and followed by discussions on programming 

models, energy-aware resource management, and energy-aware profiling 

and prediction models, all of which drive towards energy efficient Cloud 

Computing. 

 Chapter 4 introduces an energy-aware Cloud system architecture with 

thorough details of its main components and their interactions. This is 

followed by some experiments on a Cloud testbed to provide an early 

evaluation of this architecture in terms of enabling energy-awareness in a 

Cloud environment. 

 Chapter 5 presents the mathematical development of an energy-aware 

profiling model for enabling energy-awareness at the VM level in a Cloud 

environment, followed by a number of experiments on the Cloud testbed 

to evaluate the capability of the presented model. 

 Chapter 6 introduces an energy-aware prediction framework which 

consists of a number of mathematical models in order to forecast the 

energy consumption of VMs prior to service deployment. This is followed 

by a demonstration of some experiments on the Cloud testbed to evaluate 

the capability of the introduced framework. 

 Chapter 7 provides an overall evaluation of the research presented in this 

thesis. 

 Chapter 8 summarises the work and contributions presented in this thesis 

and discusses some future work directions.
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Chapter 2 Background 

2.1 Overview 

This chapter presents the essential background of this research. It starts by 

introducing the concept of Cloud Computing with a detailed description of its 

definition, system architecture, services types, deployment types and 

virtualisation technology, as presented in Section 2.2. The aspects of Cloud 

applications are then discussed by describing their properties, design patterns 

and workload patterns, as presented in Section 2.3. The energy consumption 

and energy efficiency issues in Cloud Computing are also presented in Section 

2.4.1. This chapter then concludes with a discussion of some of the streams 

towards addressing these issues and enhancing the energy efficiency in Cloud 

Computing, as presented in Section 2.4.2. 

2.2 Cloud Computing 

Cloud Computing has changed the way businesses and individuals use IT 

resources. Today, instead of buying their own IT resources, they can use 

hardware and software as services offered by Cloud Computing providers with 

reasonable costs, based on pay-per-use model, and not worry about the 

overheads associated with the total cost of ownership. In 2010, Cloud Computing 

has been considered as a strategic shift point in IT after the last shift in 1994, 

which was the wide adoption of the Internet [24]. Additionally, it has been argued 

that with the increasingly perceived common vision, Cloud Computing has 

become the fifth utility after gas, water, electricity and telephony providing the 

basic level of computing services to be used by the general public in a daily basis 

[25]. Cloud Computing has evolved out from the extensive research on Grid 
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Computing. Grids are known as the backbone supporting the development of 

Clouds [26]. In terms of control and management, Clouds are centralised 

whereas Grids are decentralised [25], [27]. For usability, Clouds are considered 

to be user friendly while Grids are known to be difficult to use [27]. 

In the following subsections, Cloud Computing definition, system 

architecture, services types, deployment types, and virtualisation will be 

presented. 

2.2.1 Definition 

Cloud Computing is defined by NIST as: 

“a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable Computing resources that can be 

rapidly provisioned and released with minimal management effort or 

service provider interaction” p.2, [28]. 

However, there is no standard definition for Cloud Computing. So, it has 

also been defined many times by different IT experts, each with different focus 

of Cloud aspects. Vaquero et al reviewed a number of different Cloud Computing 

definitions and offered a comprehensive definition which is a large pool of 

virtualised resources that can be easily used and accessed, re-configured and 

scaled dynamically, utilised, and based on a pay-per-use model and Service 

Level Agreements (SLAs), which is an electronic contract between end-users 

and service providers [27]. 

2.2.2 System Architecture 

NIST has presented a general and high-level reference architecture model that 

considers all Cloud actors along with their roles and interactions in Cloud 

Computing. As shown in Figure 2-1, NIST Cloud Computing architecture model 
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mainly consists of five actors, namely Cloud consumer, auditor, provider, broker 

and carrier [29]. 

In terms of the roles and interactions, the Cloud consumer is an entity, an 

individual or an organisation, that can request and use any Cloud services from 

a Cloud provider, who is responsible for providing and maintaining the Cloud 

services, or through a Cloud broker, who has the role of negotiation between the 

provider and consumer and managing the delivery of Cloud services. The Cloud 

auditor can have the role of collecting essential information in order to assess 

the delivery and implementation of Cloud services. Finally, the Cloud carrier is 

responsible for providing the network connectivity in order to facilitate the 

communication between the actors and the transportation of Cloud services [29]. 

Moving on to the architectural layers of Cloud Computing, Buyya et al [30] 

stated that the Cloud architecture consists of mainly three principal layers, 

namely system level, core middleware, and user-level middleware, as shown in 

Figure 2-2. 

Figure 2-1: NIST Cloud Computing Reference Architecture Model [29] 
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Starting from the lower level, the system level forms the basis of the Cloud 

architecture where all the physical resources, like servers, are set, and these 

resources are controlled by the virtualisation services that exist above this layer 

[30]. Further, the core-middleware layer is the platform that sets the run-time 

environment to host and control the application services at the user-level. 

Moreover, software frameworks exist at the user-level middleware to support the 

developers to create an environment for applications’ development and 

execution in the Clouds [30]. Finally, the Cloud application layer contains the 

applications that can be deployed and accessed directly by the end-users [18]. 

Furthermore, Zhang et al [10] divided the Cloud Computing architecture 

into four main layers, namely hardware, infrastructure, platform and application 

layers, as depicted in Figure 2-3. 

 

Figure 2-2: Layered Cloud Computing Architecture [30] 
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At the bottom of this architecture is the hardware layer where the Cloud 

physical resources, like servers, switches, routers, and cooling systems, are 

managed within data centres [10]. On top of the hardware comes the 

infrastructure layer, also called the virtualisation layer, which consists of a pool 

of virtualised computing resources through the use of virtualisation technologies. 

The application frameworks and operating systems are included in the platform 

layer, which provides the environment to deploy the applications in VMs. The 

actual Cloud applications sit on the top of the architecture, at the application 

layer. The key distinction of the Cloud architecture as compared with other 

traditional environments like dedicated server farms is that the layers of Cloud 

Computing are loosely coupled from each other and can work separately [10]. In 

essence all these Cloud Computing layers can be provided separately by 

different Cloud providers. 

2.2.3 Services Types 

Based on the Cloud architectural layers, there are three main types of Cloud 

services, namely Software as a Service (SaaS) supplied at the application layer 

Figure 2-3: Cloud Computing Architecture [10] 
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(also known as user level), Platform as a Service (PaaS) supplied at the platform 

layer (also known as middleware level), and Infrastructure as a Service (IaaS) 

supplied at the infrastructure and hardware layers that consist of virtual and 

physical hardware (also known as system level) [10], [18]. 

As stated by NIST, in the SaaS service model, the end-users are able to 

access and use the Cloud applications offered by the providers, but they have 

limited control to configure user-specific application settings. Also, they do not 

have control or access to the underlying Cloud resources that host and underpin 

these applications. In the PaaS service model, the end-users can deploy their 

own applications on the provider’s Cloud infrastructure with a full control of the 

applications and their settings and perhaps some settings for the run-time 

environment hosting these applications; but they do not have control or access 

to the underlying Cloud resources, like storage, servers, network or operating 

systems. In the IaaS service model, the end-users can have access to use and 

provision some of the Cloud infrastructure resources, like computing resources, 

networks and storage, on which they can deploy their own applications and 

operating systems; but they do not have the control of the maintenance of the 

underlying Cloud resources, which is the responsibility of the providers [28]. 

SaaS is about offering ready-to-use software applications, like Google 

Documents, to the end-users without worrying about the platform and hardware 

hosting these applications. PaaS is about offering services, like Google App 

Engine, that provide the run-time environment to host end-users’ applications. 

IaaS is about offering virtualised resources, like storage, as services to be used 

by the end-users [31]. All of these three types of Cloud services can be provided 

by one or different Cloud providers. 
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2.2.4 Deployment Types 

Cloud Computing can be deployed in many models, which can be mainly public, 

private, hybrid, and community Clouds [28]. Public Clouds offer open access of 

IT resources and services to all end-users, including individuals and other 

organisations, through the Internet and at reasonable prices that allow the end-

users to save the cost of having in-house built resources. Public Cloud 

infrastructures are fully controlled on the premises of the providers offering the 

services to the end-users, and the end-users do not have control of how and 

where these infrastructures are being managed and hosted. 

On the other hand, access to the IT resources and services offered by 

private Clouds are restricted only to those who own the Clouds and their 

subsidiaries, which can enhance the security aspect. Another benefit of 

deploying a private Cloud is to allow an organisation to utilise its internal IT 

resources efficiently through the use of virtualisation technology [32]. 

Moreover, when organisations need to scale up their private Clouds, they 

can outsource more IT services at low cost from the public Clouds, for example 

to fulfil their non-critical business needs from the public Clouds and keep their 

sensitive business data stored locally in their private Cloud; this type of 

combination is called Hybrid Clouds [24]. The formation of hybrid Clouds can be 

through combining two or more public, private, or community Cloud 

infrastructures [28]. 

Finally, a community Cloud is usually formed between a number of 

organisations with common interests to collaborate and share their Cloud 

infrastructures in order to achieve their missions. The Cloud infrastructures in 
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this community deployment model can be owned and controlled by any of the 

organisations within the community, a third party, or a combination of them [28]. 

2.2.5 Virtualisation 

Virtualisation has been defined as:  

“a technology that combines or divides computing resources to 

present one or many operating environments using methodologies like 

hardware and software partitioning or aggregation, partial or complete 

machine simulation, emulation, time-sharing, and many others” p.2 [33]. 

Hence, the main role of virtualisation is to abstract the physical hardware 

machines and provide virtualised machines that can work in isolation and run 

different applications and even operating systems. Therefore, virtualisation 

technology adds an important value to the Cloud infrastructure by allowing a 

better resource utilisation, cost reduction [34] and achieving significant energy 

savings [35]. 

As mentioned earlier when discussing the architecture of Clouds, the 

virtualisation layer is just set above the physical layer in order to make an 

abstraction between the hardware and software. So, virtualisation is considered 

as a crucial technology of Cloud Computing offering two important features, 

namely abstraction and encapsulation [26]. Virtualisation technology is used to 

enable sharing of physical resources to multiple virtual resources with 

abstracting the complexity and details of the physical resources and make them 

as a unified pool of resources [26], [34]. Via virtualisation technology, each 

application can be encapsulated to provide enhanced manageability, isolation 

and security when performing such operations like configuring, deploying, 

starting, suspending, migrating, resuming and stopping these applications [26]. 
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A number of benefits can be achieved through the use of virtualisation 

technology in Cloud environments. Some of these benefits are allowing better 

resource utilisation, managing the servers easily, server consolidation and live 

VMs migration [36]. Therefore, the use of virtualisation in Cloud data centres can 

reduce the number of the needed physical resources, which would then lower 

the capital cost as well as reducing the power consumption and cooling systems 

[37]. To illustrate, many VMs can be created and run on a single physical 

machine via server consolidation. Live migration of the VMs to the underutilised 

physical machines would enable to turn-off more physical machines and allow 

maximum utilisation of the running physical machines, which would enhance the 

energy efficiency of the data centre [26], [36]. 

2.2.5.1 Virtual Infrastructure Manager 

In order to build and deploy Cloud infrastructures, a Virtual Infrastructure 

Manager (VIM), also known as a Cloud Operating System (Cloud OS), is used 

by the Cloud infrastructure providers to manage the virtualised and physical 

resources and enable the provisioning of the virtualised resources based on the 

end-users requirements of the services. Some examples of the VIMs include 

OpenNebula [38], OpenStack [39], and CloudStack [40], all of which are 

discussed next. 

 OpenNebula is an open source toolkit that provides a platform for 

deploying private, public and hybrid Cloud infrastructures. Its architecture is 

organised in three main layers, namely drivers, core, and tools layers [41]. 

Starting from the bottom of the architecture, the drivers layer consists of physical 

infrastructure drivers that abstract the underlying physical resources. Also this 

layer includes other Cloud drivers to facilitate accessibility to remote Cloud 
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providers. On top of this layer is the core layer which consists of a number of 

components, such as image manager, VM manager, information manager, 

storage manager and network manager. These core components rely on the 

drivers at the bottom layer in order to support the deployment, management and 

monitoring of the virtualised Cloud resources. Finally, the high-level tools layer 

is at the top of the architecture and consists of a number of components that 

facilitate different functionalities. Some of the high-level functionalities supported 

at this layer include initial placement of VMs on particular physical servers and 

access via Graphical User Interface (GUI) or Command-Line Interface (CLI) for 

both administrators and users to make different operations. Other functionalities 

supported at this layer also include the management of multi-tier services and 

admission control to reject or accept such a service and the use of different 

Application Programming interfaces (APIs) interfaces, like Open Virtualised 

Format (OVF), to enable interoperability and portability of OpenNebula and allow 

accessibility of its functionality to external consumers [41]. OVF [42] is an open 

standard format that facilitates packaging, distributing and defining virtual 

appliances and has been widely used in Cloud Computing as it can enable 

interoperability between different providers.  

 OpenStack is another open source VIM that is based on a modular 

architecture consisting of many interrelated components, developed separately 

in different projects, working together to deliver a platform for a complete 

deployment and management of public and private Cloud infrastructures [39]. 

Some of its main components include Compute (Nova) for handling the VM 

instances lifecycle [43]; Networking (Neutron) for enabling network connectivity 

between OpenStack components and providing APIs access to its users [44]; 

Object Storage (Swift) for providing highly fault-tolerant, redundant, and scalable 
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object storage system [45]; Identity (Keystone) for providing authentication and 

authorisation services [46]; Image Service (Glance) for storing and retrieving disk 

images of VMs [47]; and Dashboard (Horizon) for providing a web-based 

interface for the users to access and interact with the underlying services of 

OpenStack and perform operations like instantiating a VM instance [48]. 

 CloudStack is another open source platform that can be used as a VIM to 

manage and orchestrate a pool of computing, networking and storage resources 

and to deploy private, public or hybrid Cloud infrastructures [49]. Its architectural 

deployment mainly comprises of two main components, Management Server 

and the Cloud Infrastructure [50]. The Management Server acts as the main 

controller of the Cloud deployment and has a number of functionalities including 

allocating VM instances to hosts, assigning public and private Internet Protocol 

(IP) addresses and storage to VM instances, providing access for both end users 

and administrators through web interface and APIs, and managing templates, 

ISO images and snapshots. The Cloud infrastructure consists of all other 

resources, such as storage devices, hypervisors, IP address blocks and VLANs, 

to be managed by the Management Server. CloudStack can deploy a set of 

management servers to control scalable and largely distributed Cloud 

infrastructures with the use of any networking technologies, like VLANs and 

VPNs [50]. 

OpenNebula, OpenStack and CloudStack have a common role of 

providing a platform for deploying compute, storage and networking resources 

and allowing management and provisioning of these resources via a Web 

interface, command-line or APIs. However, there are differences in terms of their 

capabilities and performance based on the configurations, settings and size of 

their deployment. For example, OpenStack has many components and installing 
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all of them would introduce an overhead to manage them and may render the 

performance [51]. Therefore, in order to get the best performance when using 

OpenStack, the administrator should only install the required components to fulfil 

the needs of their Cloud deployment. In comparison, OpenNebula does not have 

such limitations as it provides a centralised deployment and has fine-grained 

core [51]. There are other VIMs available freely or commercially for the 

deployment and management of Cloud infrastructures, like Eucalyptus [52], 

Nimbus [53], oVirt [54], VMware vSphare [55] and many others. 

2.2.5.2 Hypervisors 

The Virtual Machine Monitor or Manager (VMM), known as the hypervisor, is the 

main component in a Cloud environment that is responsible for managing and 

controlling the VMs’ operations including creating, running, migrating, copying, 

and deleting the VMs [34]. Hypervisor-based virtualisation abstracts the 

underlying resources to provide virtualised instances known as VMs which can 

have and run their own and complete OS [56], [57]. Hypervisors can be 

implemented in different levels, like full virtualisation and hardware virtualisation. 

Full virtualisation is implemented when the hypervisor runs on top of the 

underlying host OS, and hardware virtualisation is implemented when the 

hypervisor runs directly on top of the underlying physical hardware [51]. Some 

examples of hypervisors include KVM [58], [59], Xen [60] and VMware [61]. 

2.2.5.3 Containers 

Another type of virtualisation can be based on containers technology, which is 

considered a lightweight substitute in comparison to hypervisors [56]. Container-

based virtualisation, also called the OS-level virtualisation, modifies the 

underlying host OS to provide isolated instances, called containers, that can run 
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different applications all together by sharing the host OS [57], [62]. Containers 

can also run on the VMs OS providing further virtualised isolated instances at 

the PaaS layer. When containers run inside the physical host OS, the overhead 

resulting from managing the virtualisation layer of the VMs created by the 

hypervisors is reduced [51]. In terms of performance, containers-based 

virtualisation is better than hypervisor-based virtualisation as there is a small 

overhead for the hypervisor to translate the instructions of the guest OS at the 

VMs to the host OS, while the containers running directly on the host OS can 

achieve almost native performance of host OS [57]. In terms of isolation, 

hypervisor-based is better than container-based virtualisation because each VM 

can run in an isolated guest OS, while containers share the host OS [57]. Hence, 

containers technology also restricts the flexibility of supporting and running 

different applications requiring different OS, while in hypervisor technology each 

application can run on different VMs with its own guest OS. Some examples of 

containers include Linux Containers (LXC) [63], Docker [64] and Warden 

Container [65]. 

2.3 Cloud Computing Applications 

2.3.1 Properties 

The properties of Cloud applications are derived from the characteristics of Cloud 

Computing. As stated by Fehling et al [66], Cloud Computing applications should 

be designed differently from the traditional software applications; in the essence 

that they should exploit the properties of Cloud Computing. So, Cloud 

applications should be able to support the characteristics of Isolate state, 
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Distribution, Elasticity, Automated management, and Loose coupling (IDEAL), all 

of which reflect the patterns of Cloud Computing environments. 

Firstly, Cloud applications should allow distribution by nature; so the Cloud-

native applications should be separated into application components to support 

distribution among Cloud resources [67]. Also, the Cloud-native applications 

should support elasticity to allow dynamic reservation and release of the Cloud 

resources to alter the performance rapidly based on the changes of the 

workloads. So, to adjust the performance according to the increase of workloads, 

these applications should support scaling out (horizontal scaling) by increasing 

the number of the assigned Cloud resources and support scaling up (vertical 

scaling) by increasing the capability of the assigned Cloud resources that run the 

applications. In terms of isolated state, large portions of Cloud application 

components should be designed to be stateless in order to automatically support 

scaling the application more easily with less management for handling the 

resources state when adding or removing any resources. Additionally, 

automated management should be supported by the Cloud-native applications 

to flourish the elasticity of continuously adding and removing resources as 

needed. Finally, the Cloud-native application should support loose coupling in 

the essence that the dependencies should be minimized between its 

components since they run on a number of resources that may change 

constantly [66]. 

2.3.2 Design Patterns 

In the field of Computer Science, a pattern refers to the abstraction of a solution 

to commonly reoccurring problems in different contexts [68]. Design patterns 

refer to abstraction of structured and reusable software design solutions to solve 
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common problems with description of how they can be applied [69]. Similarly, 

Cloud patterns, as a further pattern category, refer to the abstraction and 

description of decent solutions to repeatedly common problems in relation to 

Cloud Computing [70]–[72]. These patterns are needed to help alleviate the 

software design challenges [68], for example when migrating traditional 

applications towards Cloud-native applications that should exploit the nature and 

properties of Cloud Computing. 

The application and implementation of these design patterns can be 

through the use of one or many mechanisms. A mechanism is considered as a 

ready-to-use technology artefact, like a hypervisor. When a number of design 

patterns are combined, they form a compound design pattern that can deliver 

more granular solution, like IaaS [73]. 

2.3.3 Workload Patterns 

There are a large number of different Cloud applications with different 

requirements of resources. Depending on the behaviour of users and submitted 

tasks, the Cloud applications can experience different patterns of workloads, 

which are depicted based on the utilisation of the IT resources hosting the 

applications. These workloads can be categorised as static workload, periodic 

workload, once-in-a-lifetime workload, unpredictable workload, and continuously 

changing workload, as discussed in [66], [74]. 

As shown in Figure 2-4, a static workload pattern occurs when an 

application is running continuously with the same workload resulting in equal 

utilisation  of Cloud resources over a period of time. A periodic workload pattern 

can be experienced when an application is running with a peak interval that 

repeatedly happens over time. 
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Further, when an application is running with equal utilisation of resources 

and has only one peak utilisation over time, it is considered a once-in-a-lifetime 

workload pattern. An unpredicted workload pattern arises when an application 

has a random peak utilisation over time. Finally, when the application has a 

constant increase or decrease of resources utilisation over time, it experiences 

a continuously changing workload pattern [66], [75]. These different types of 

application workload patterns can have a different impact of energy consumption 

depending on the usage of the physical resources. The static and periodic 

workload patterns of Cloud applications are considered in this thesis. 

2.4 Energy Efficiency in Cloud Computing 

2.4.1 Energy Consumptions in Clouds 

The scalability of Cloud Computing is considered one of its main advantages 

supporting dynamic increase and decrease of the computing resources to meet 

the end-users demands. Cloud Computing data centres are commonly known as 

large-scale environments equipped with thousands of servers that consume 

considerably large amounts of energy in order to operate. Also, the cooling 

systems operating within the data centres consume a substantial amount of 

energy as well.  

Static Periodic Once-in-a-lifetime Unpredictable Continuously 

Changing 

Figure 2-4: Cloud Application Workload Patterns [74] 
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Thus, with the wide adoption of Cloud Computing, energy consumption 

cost has become one of the main issues for Cloud providers to maintain. For 

economic aspects, a data centre may consume about 100 times more energy 

compared to a typical office with the same size [2]. In comparison with the 

electricity demand of global countries in 2011, Cloud Computing was ranked the 

sixth largest electricity consumer with 684 billion Kilowatt-Hour (kWh), just after  

China, US, Japan, India, and Russia [76]. As the online population and the use 

of the Internet increase gradually, this electricity demand of Cloud Computing is 

estimated to increase by 60% or even more by 2020 [76]. Therefore, the energy 

consumption has become one of the greatest cost factors for Cloud computing 

vendors who consider energy efficiency as a vital issue [3]. 

Further, the increase of energy consumption and CO2 emissions of Cloud 

infrastructures has become a vital concern in relation to the environmental 

sustainability [77]. So, Cloud vendors face huge pressure from governments and 

other organisations to reduce the CO2 emission from their data centres to have 

less impact on the environment. Thus, energy consumption in Cloud Computing 

infrastructures is considered a significant concern in terms of both economic and 

ecological perspectives, which leads to different streams being emerged towards 

enhancing the energy efficiency in Cloud environments. 

2.4.2 Streams of Enhancing Energy Efficiency in Clouds 

Some studies have investigated different ways for improving the energy 

efficiency of Cloud Computing throughout various streams, such as, energy-

aware resource deployment and management, programming models, 

requirements engineering, and energy awareness modelling by introducing new 

energy-aware profiling and prediction models. For instance, in energy-aware 
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resource management, the focus is on introducing and using different 

techniques, like powering-off idle servers, VM consolidation, and energy-aware 

scheduling, to efficiently manage the Cloud resources with less energy usage. In 

terms of requirements engineering and programming models, the focus is on 

how to provide suitable tools and environments in order to design energy efficient 

software that would consume less energy when running on the underlying 

physical resources. Thus, different energy efficient techniques have been 

introduced in different streams to help the Cloud providers reduce the energy 

consumption cost of their infrastructure, which can then lead to reducing the cost 

of operational expenditure and having less impact on the environment. 

More details and review of those different streams of enhancing the energy 

efficiency in Cloud Computing are discussed in the following Chapter 3. 

2.5 Summary 

This chapter has introduced some essential aspects and background about 

Cloud Computing including its definition, system architecture, services types, 

deployment types and virtualisation technology. The properties, design patterns 

and workload patterns of Cloud applications have been also presented.  Finally, 

this chapter has concluded by discussing the issues of energy consumption and 

energy efficiency in Clouds, and how the current research streams have been 

driven towards addressing these issues. 
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Chapter 3 Energy Efficiency in Cloud Computing 

3.1 Overview 

This chapter reviews the literature towards energy efficient Cloud Computing. It 

first discusses the related work on energy-aware computing, including 

requirements engineering, programming models, energy-aware resource 

management, energy efficiency metrics and finally discusses economic aspect 

on energy-aware pricing, as presented in Section 3.2. Then, it reviews the related 

work on energy aware profiling and modelling for PMs and VMs in Cloud 

environments, along with forecasting models for future prediction of the workload 

and energy usage, as presented in Section 3.3. Finally, a summarised discussion 

of the closely related work is presented in Section 3.3.5. 

3.2 Energy-Aware Computing 

3.2.1 Overview 

As Cloud data centres consist of large computing resources consuming a large 

amount of energy in order to operate, enhancing the energy efficiency has gained 

a significant interest in both academia and industry because of the high 

associated impact of excessive energy usage on economic, environment, and 

performance [78]. For example, the cost of energy usage to run a data centre is 

estimated to double in every five years [79]. Hence, the cost of energy has been 

considered as one of the greatest expenses contributing to increased cost of 

ownership for data centres [16], [80]. Also, the excessive usage of energy in data 

centres causes environmental issues [81], [82]. For instance, gas emission 

caused by the ICT industry is predicted to be accountable for 2.3% of the global 
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emission in 2020 [83]. To address this ICT gas emission issue, more investment 

is expected to be put towards using and adapting energy efficient systems in 

ICT, which predictably could drive this footprint percentage to decrease to 1.97% 

by 2030 [84]. In terms of performance, it can be difficult to achieve high 

performance and energy savings at the same time [78]. But, most of the focus in 

this regard is about finding a balanced trade-off between energy and 

performance, which is still challenging to achieve as different end-users may 

have different preference between having high performance or saving more 

energy costs and sacrificing some of the performance. 

Thus, a number of streams have been investigated at different layers of 

Cloud Computing to ensure efficient operations and management with energy 

awareness in mind. For instance, in requirements engineering, some work 

emphasised the importance of incorporating energy information and specifying 

energy goals within the requirements and ensuring the applications adapt in 

accordance with these goals. Also, some work introduced energy-aware 

programming models so that developers can make use of and write energy 

efficient code that would consume less energy when operating. Additionally, 

other streams presented different techniques to efficiently deploy the Cloud 

services and manage resources with consideration of energy efficiency. 

Furthermore, a number of metrics have been introduced to identify the energy 

usage and evaluate the energy efficiency of Clouds at different layers. For 

economic perspective, some work introduced new pricing mechanisms of the 

Cloud services with consideration of the energy usage. All of these different 

streams will be discussed in the following subsections. 
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3.2.2 Requirement Engineering 

Software systems have advanced to self-adaptive systems to meet the growing 

needs for autonomic computing, which is about automatic management and 

adaptation to overcome unpredictable changes within computing systems. Self-

adaptive systems are capable to adapt themselves by configuring and 

reconfiguring, augmenting their functionality, optimising, protecting, and 

recovering without the users’ interactions [85]. These self-adaptive systems have 

been mostly developed through addressing design-time solutions to provide 

adaptation at run-time, while requirements engineering for self-adaptive systems 

has gained less consideration [86]. Therefore, a number of approaches have 

been introduced to model goal-oriented requirements engineering to support 

self-adaptation at run-time [87]–[89]. 

Nonetheless, requirements engineering that considers energy aspects 

has received less attention. Thus, there is a need to support the requirements 

engineering and design modelling to develop self-adaptive systems that certify 

energy-awareness at different layers of Clouds. Ponsard et al. [11] emphasised 

the need to consider energy efficiency at the application layer of Cloud 

Computing, and introduced a UML-based framework that can relate energy goals 

at the requirements level to be captured at the design level and also monitored 

at the run-time level. The aim of their framework is to provide the Cloud 

application developers with energy-awareness information at the design time to 

select the best trade-off between energy and overall performance. The 

application can then adapt based on the selected trade-off during the run-time. 

Thus, Cloud application analysts can use goal-oriented approach to specify 

energy goals within the requirements to be followed when designing, developing 
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and deploying the applications. Though, energy information feedback from the 

service operational level is still needed to help set these energy goals. 

3.2.3 Programming Models 

In order to address energy efficiency from early stages at the application 

development level, the developers should use programming models that provide 

energy awareness and efficiency information of the underlying infrastructures 

when constructing the applications. With the increase mismatch between the 

programming models and the underlying hardware architecture, Shalf [90] 

highlighted the need to have programming models that reflect the underlying 

hardware. Also, the cause of this mismatch, as stated by Shalf [90], is power 

constrained nature of future hardware architectures. So, the programming 

models should be designed in a way to be efficiently compatible with the 

underlying architecture. 

Xian et al [12] presented a general-purpose programing environment to 

simplify and help the developers make energy-efficient decisions for constructing 

energy-aware applications. Their framework requires in-depth knowledge about 

the logic of the application and offers different plans to get the desired 

functionalities for the execution of applications in accordance with their power 

costs. This programming framework offers an interface that attains the estimated 

energy consumption for selecting a specific plan [12]. Nevertheless, Oriaku and 

Lami in [91] argued that this framework may not be suitable for Cloud Computing 

services as it can increase the environmental cost of a late application 

deployment. 

Schubert et al [92] state that the developers lack the tools that indicate 

where the energy-hungry sections are located in their code and help them 
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optimize their code for enhancing energy consumption accurately instead of just 

relying on their own intuitions. So, in their work, they proposed eprof, which is a 

software profiler that narrates energy consumption to code locations; therefore, 

it would also help developers make better energy-aware decisions when they re-

write their code [92]. For example, with storing data on a disk, software 

developers might choose between storing the data in an uncompressed format 

or a compressed format, which would require more CPU resources. Compressed 

data has been commonly suggested as a way to reduce the amount of I/O 

needed to be performed and therefore reducing the energy based on the 

hypothesis that the CPU can process the task of compression and 

decompression with less energy than the task of transferring large data from and 

to the disk [93]. However, that would depend on the data being processed. In 

fact, some conducted experiments in [92] with eprof profiling tool show that the 

process of compressing and decompressing the data significantly consume more 

energy than the process of transferring large amount of uncompressed data 

because the former would use more CPU resources than the latter. So, it can be 

a controversial issue depending on the application domains. Thus, having such 

tools identifying how the energy has been consumed would help the software 

developers to make energy-aware decisions. 

Moreover, a framework called Symbolic Execution and Energy Profiles 

(SEEP) has been introduced in [13] as an approach to help the software 

developers make well informed decisions for energy optimisation from early 

stages at the code level. SEEP is designed to provide the developers with energy 

estimations to make them energy-aware while they are programming. So, 

instead of analysing the program code after it has been developed and deployed 

to identify the hot spots for high energy consumption, this framework aims to 
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simplify the process of energy-aware programming from early stages during 

software development [13]. 

For Cloud Computing, there are a number of frameworks that are used for 

the development and deployment of Cloud applications and services. Some of 

these are Hadoop [94], Windows Azure [95], Microsoft Daytona [96], Twister [97], 

Manjrasoft Aneka [98], and Google App Engine [99]. However, energy efficiency 

is not considered in these frameworks. Thus, there is a need to have such a 

framework that would enable programming of applications and services in 

Clouds and take into account energy-aware requirements and software design 

appropriate for Cloud architecture. 

3.2.4 Energy-Aware Resource Management 

With the increase of Cloud applications and users, managing the Cloud data 

centre has become challenging for the operators to improve its energy efficiency 

without performance degradation. In terms of energy efficiency, it can be said 

that data centre A is more efficient than data centre B if A can process the same 

workload as B but with less power consumption, or A can process more workload 

than B with the same power consumption [100]. The challenge is even increased 

to address the issue of excessive energy consumption by a server may result in 

higher temperature, which can compromise its reliability and availability [14]. 

Also, the energy consumption of an idle server is considered wasted energy as 

it is used without any beneficial output [101]. Therefore, some consolidation 

techniques are employed to efficiently manage the Cloud resources and turn off 

unused idle servers. Yet, from the Quality of Service (QoS) perspective, turning 

off the idle servers can be considered risky in a dynamic environment because it 
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may affect their availability as they would need some time to be turned on again 

and meet the new demand [14]. 

Previous research has attempted to tackle this challenge by introducing 

policies and techniques that can dynamically adapt to reduce the energy usage 

and enhance the energy efficiency of the data centre. For example, Data Voltage 

and Frequency Scaling (DVFS) technique alters the CPU power supply of 

voltage and frequency in accordance with the offered workload, which would 

then enable controlling one-third of the energy consumed by servers as it 

depends on the CPU utilisation [102]. Also, deploying Dynamic Power 

Management (DPM) can even save more energy by powering down all servers’ 

components including CPU, memory, and disks. However, it would also increase 

the overhead to power these servers back on [102]. Additionally, Chawarut and 

Woraphon [103] proposed a CPU re-allocation algorithm, that combines both 

DVFS and live migration techniques, to reduce the energy consumption and 

increase the performance of applications in Cloud data centres. As shown on 

their simulation results, they argued that their proposed algorithm can decrease 

the energy consumption and execution time of the running Cloud services. 

Moreover, Beloglazov et al proposed VM consolidation policies to 

optimise the resources utilisation of the hosts by migrating VMs from one host to 

another host [14]. Basically, in order to identify from which host the VMs should 

be migrated, upper and lower CPU utilisation thresholds for each host are set. 

When the CPU utilisation of a host exceeds the upper threshold, some VMs 

should be migrated to another host to prevent SLAs violations. On the other side, 

when the CPU utilisation goes below the lower threshold, all the VMs on that 

host should be migrated to another host in order to switch that host to sleep mode 
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and save some energy from idle power consumption. Furthermore, in order to 

identify which VMs should be selected for migration, some VM selection policies 

have also been proposed [14]. When the upper CPU utilisation threshold of a 

host is violated, a Minimization of Migration (MM) policy selects the minimum 

number of VMs to migrate to another host in order to keep the utilisation below 

the upper threshold. Also, if the upper threshold is violated, a Highest Potential 

Growth (HPG) policy selects the VMs having the lowest usage of CPU relative 

to the capacity of CPU to reduce the possible increase of host’s utilisation and 

avoid SLA violations. Furthermore, a Random Choice (RC) policy depends on a 

random selection of VMs needed to reduce the CPU utilisation of a host under 

the upper threshold [14]. However, their work does not consider the energy 

consumption overhead of VM consolidation. 

Further, some studies have been conducted to reduce the energy 

consumption via resource management of the Cloud infrastructure without 

affecting the performance of the running services. For example, Lee and Zomaya 

[104] proposed two energy-conscious task consolidation heuristics to save 

energy by maximising resource utilisation and taking into account idle and active 

energy consumption. The proposed heuristics aim to assign tasks to the 

resources with minimized energy consumption and without performance 

degradation. They argue that the results of their experiments show significant 

energy saving. However, they simply assume in their energy model that there is 

only a linear increasing relationship between the PM CPU utilisation and energy 

consumption. 

Moreover, Jung et al [20] introduced a holistic framework called Mistral 

that optimises the power consumption, application performance benefits and the 

overhead costs acquired by the dynamic adaptation and actions of the 



- 37 - 
 

framework. Their approach focuses on improving the power consumption of the 

physical host, but it does not take into account the effect of particular workloads 

running on particular hardware with different performance characteristics. 

Tchernykh et al. [105] presented an experimental study for several online 

job scheduling strategies in a Cloud environment with different workloads. In the 

experimental results, they used and analysed eight allocation strategies based 

on three group categories, namely, knowledge-free, energy-aware, and speed-

aware. Knowledge-free scheduling strategy requires no information from the 

application (submitted jobs by users) or from the underlying resources; energy-

aware strategy requires information about the energy efficiency and power 

consumption of the underlying machines; speed-aware strategy requires 

information about the speed and performance of the underlying machine. 

Considering the two metrics provider income and power consumption, the results 

reveal that the strategy of allocating jobs to the machine with the least power 

consumption (Min-e) outperforms the other allocation strategies [105]. The 

energy model used in this work simply considers summing up the machine’s idle 

power and the extra variable power, which depends on the workload. However, 

the workload is not considered in this energy model when calculating the variable 

power consumption. Also, the workload used in their work is based on HPC jobs 

based on parallel and Grid environments and not on real Cloud environments as 

elasticity and virtualization aspects are not considered. 

3.2.5 Energy Efficiency Metrics 

Energy efficiency in Clouds can be assessed by different metrics. Most of the 

proposed metrics nowadays focus on assessing the energy efficiency in physical 

Cloud infrastructures while there is also a need for assessing the energy 
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efficiency of Clouds in the other layers, like virtualisation and application layers. 

Therefore, the Cloud application software analysts and developers can make use 

of these metrics at the application layer to enhance their decision-making, for 

example, when setting the requirements of, designing, and developing the 

applications with consideration of energy efficiency. Also, the applications can 

be designed and developed to adapt during run-time in accordance with the 

energy efficiency targets. Further, the Cloud service providers can make use of 

these metrics in a twofold purpose. First, it can help them as an input to their 

techniques and strategies enhance their decisions to make energy efficient 

deployment of the Cloud services on the Cloud infrastructure resources as well 

as to make energy efficient management of these resources during the service 

operation. Second,  it can also help them to evaluate the output of their 

deployment and resource management techniques with regards to energy 

efficiency. 

In terms of Cloud infrastructure, there are some high-level metrics used 

to measure the energy efficiency in data centres. In addition to the well-known 

metric, Power Usage Effectiveness (PUE), Green Grid organisation has 

introduced other three metrics to help the Cloud data centre vendors and 

operators to improve the energy efficiency of their facilities [106]. Firstly, the 

Green Energy Coefficient (GEC) metric is used to calculate the amount of the 

facility’s energy that comes from green sources. It is calculated as the green 

energy used by the data centre divided by the total energy consumption of the 

data centre. Secondly, the Energy Reuse Factor (ERF) metric is introduced to 

quantify the total energy that is exported from the data centre and reused 

somewhere else outside; and it is calculated as total reused energy divided by 

the total energy consumption of the data centre. Thirdly, the Carbon Usage 
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Effectiveness (CUE) metric provides an assessment of the total greenhouse gas 

emission from the data centre in relation to the total IT energy consumption of 

the data centre. It is computed as the total gas emissions divided by the total IT 

energy consumption [106]. 

However, despite the fact that the PUE metric has been successful and 

widely used, it has been argued that it is limited and used as an indicator for 

energy efficiency to the infrastructure management only and not considering the 

actual utilisation and optimisation of the computational resources to enhance the 

efficiency of the whole stack [107], [108]. Also, Bozzelli et al [109] have reviewed 

a number of software metrics and emphasised the importance to assess the 

energy efficiency not only form the hardware side but also from early stages of 

the software lifecycle in order to make such energy savings. Additionally, as 

stated by Wilke et al [110], analysing software’s energy consumption is 

considered an important requirement for such optimisations. Therefore, 

Grosskop proposed a new metric called the Consumption Near Sweet-Spot 

(CNS) that identifies how well the system’s energy efficiency optimum and its 

utilisation are allied by calculating the ratio between the average consumption 

and optimum consumption for a system to deliver a particular unit of work [107]. 

Moreover, other works have looked at other metrics for energy efficiency 

measurements, like utilisation percentage and SLA violation percentage. For 

example, in the work conducted by Beloglazov et al [14], they evaluated the 

efficiency and performance of their proposed resource scheduling algorithms by 

using some metrics, namely the total energy consumption, the average SLA 

violation, and the number of VM migrations. 
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Some work introduced models to measure the energy consumption in 

more details, like measuring energy consumption for each VM inferred from 

energy consumption of PMs in which they are hosted. These models have been 

developed based on different mechanisms, like on performance event counters, 

lookup table, or utilisation of resources, all of which will be presented in Section 

3.3.3. 

All in all, as mentioned earlier, the use of different metrics to consider and 

assess the energy usage and energy efficiency of Clouds from different layers 

other than the physical infrastructures only can be beneficial for different 

stakeholders, including the Cloud application software analysts and developers 

as well as the Cloud service providers. 

3.2.6 Energy-Aware Pricing 

In terms of economic aspect, Cloud Computing has been considered as a 

business model that offers services to the users based on what they use [27]. By 

using Cloud services,  the users can save the cost of Capital Expenditure (CAEX)  

for buying their own IT resources and the cost of Operational Expenditure 

(OPEX) for maintaining these resources. Therefore, the costs of CAEX and 

OPEX in the Cloud delivery model reside on the service providers.  

The energy consumption of Cloud infrastructures resources is considered 

one of the greatest cost factors to maintain by the service providers [3]. Current 

pricing models used by the service providers are based only on the usage of the 

virtualized resources, like CPU, memory, and disk, and do not consider the 

energy consumed by these resources. For instance, Microsoft Azure Virtual 

Machines [111] and Amazon Elastic Compute Cloud (Amazon EC2) [112] charge 

the consumers for the offered services on a timely basis based on the resources’ 
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usage, but without consideration of the energy consumption. In order to properly 

alleviate the cost of OPEX for Cloud service providers and offer transparent 

pricing, energy usage should be considered when designing pricing mechanisms 

for the offered services based on how and when these services are used. For 

example, if these services were extensively used only during the peak times, the 

operation would cost more because the electricity cost would go higher during 

these times. Thus, energy-aware considerations should be taken into account 

when designing pricing mechanisms for Cloud services in order to efficiently 

contribute to the overall business model of Cloud Computing. In order to 

introduce energy-aware pricing models for Cloud services, the energy 

information has to be identified not only at the physical level but also at the virtual 

level as different VMs can be owned by different customers and run on the same 

PM. 

There are many research conducted to model pricing mechanisms for the 

offered Cloud services [113]. However, their approach is still limited in the 

essence that it does not consider the actual cost of energy. With the increasing 

electricity cost of the data centre to the point that it can often surpasses the cost 

of IT equipment over a period of time [114], the power consumption has become 

a vital concern for Cloud service providers. Thus, a number of work has 

introduced new pricing mechanism for the offered services to be aligned with the 

actual energy costs [3], [115]–[117]. For instance, an approach has been 

presented by Mukherjee et al [3] to model the users’ behaviour by making them 

energy-aware when they make decisions for their service configurations. To 

illustrate, they introduce an economic model that allows a user to choose an 

acceptable configuration for the service based on a green point rating. Then, 

discounting is performed dynamically based on the green point. The greener the 
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service configuration is selected the higher discount the customer is offered. So, 

prices of the services can be offered differently based on the customers’ class, 

which would enable the Cloud vendors to maximise their profits while providing 

more discounts [3]. 

Moreover, another study presented by Narayan and Rao [115] proposed 

a pricing mechanism that maps between the cost of electricity input to the 

infrastructure and the output cost of the Cloud services. They claim that their 

pricing scheme fluctuates dynamically in accordance with the variation of the 

electrical input costs that are measured by a smart grid. Nonetheless, since the 

services are priced dynamically, it would elevate an issue with the price 

uncertainty that the end-users have to pay. So, they suggested that a pricing 

prediction model could be further integrated to overcome this limitation. 

3.2.7 Overall Discussion 

Energy consumption has become an important factor in Cloud Computing 

environments. Work presented in Sections 3.2.2 and 3.2.3 shows the importance 

of considering the energy usage information from early stages when specifying 

the requirements, designing and programming Cloud applications to make them 

ideally operate in an energy efficient way. In terms of the work on resources 

management presented in Section 3.2.4, energy consumption is considered 

either as an outcome to evaluate such resource management techniques or as 

an input to feed such decisions to efficiently manage the resources during the 

service operation time. In addition, various metrics that used energy usage as a 

main constituent part for evaluating the energy efficiency in Clouds have been 

reviewed in Section 3.2.5 concluding with the importance to have metrics to 

identify the energy usage not only for the PMs but also for VMs. Further, work 



- 43 - 
 

discussed in Section 3.2.6 emphasises the significance of considering energy 

consumption in pricing mechanisms in order to make the consumers aware 

about their energy usage and increase the transparency of their charges. Also, 

as the energy consumption is considered a significant factor of the OPEX cost of 

maintaining Cloud infrastructures, energy-aware pricing mechanisms can help 

the providers alleviate the cost of energy. 

Therefore, modelling and profiling energy consumption is needed in order 

to provide the awareness of the energy use in a Cloud environment. Some work 

has investigated in energy awareness and modelling, as discussed in the 

following Section 3.3. 

3.3 Energy Awareness and Modelling 

3.3.1 Overview 

To begin with, the energy efficiency of a computer system can be measured by 

the extent of the energy it consumes to complete a task or deliver a piece of 

work. In other words, it is measured in performance by the total dissipated watts 

of energy consumption (performance/watts). The performance metric itself can 

be measured based on the service type whether it is a SaaS, PaaS, or an IaaS. 

For instance, the performance, in SaaS, can be measured by the number of 

users requests completed per second. In PaaS, based on the functionality of the 

software stack of the platform, the performance can be indicated by compilation 

speed. In terms of the IaaS, the performance can be measured by the utilisation 

of the processor that runs the tasks. Thus, it is important to make measurement 

from different aspects in order to provide an overall energy efficiency of a 

computer system. So, in order to make such energy efficiency improvements, it 
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would be by increasing the performance and maintaining the same energy 

consumption, maintaining the same performance but with less energy 

consumption, or more favourably by increasing the performance and reducing 

the energy consumption at the same time. 

Djemame et al [118], [119] emphasised the importance of optimising the 

energy efficiency at different layers of the Cloud stack and proposed an 

architecture that supports energy efficiency when constructing, deploying, and 

operating Cloud services through dynamic intra-layer self-adaptation. 

Considering the energy consumption has become an essential factor to  design 

and optimise operations to be more energy efficient [78]. Hence, monitoring and 

profiling as well as forecasting the energy consumption is a key step towards 

enhancing and optimising the energy efficiency in the Cloud paradigm. 

Thus, it is important to model the energy and introduce energy profiling 

techniques to make awareness about the energy usage of the physical and 

virtual resources in Cloud environments during the service operation time. The 

service providers can then make use of these techniques to get energy 

information and make energy efficient resource management accordingly and 

avoid ending up with hot spots [8], which may lead to performance degradation 

and also to increased energy and financial costs to add more cooling systems. 

Also, the Cloud application analysts and developers can make use of this energy 

information to design and write energy efficient code and specify energy goals 

and make their application adapt accordingly while operating. Further, prediction 

techniques to provide energy information during the service deployment time can 

be also useful for the Cloud service providers to make energy efficient 

deployment of the Cloud services.  Next, existing energy profiling at both physical 
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and virtual levels will be reviewed, and then followed by a discussion about 

existing forecasting models for predicting future energy usage. 

3.3.2 Physical Machine Profiling Models 

There are a number of work focused on analysing and modelling the energy 

usage in Cloud environments at the PM level. The energy consumption of PMs 

can be identified and profiled using hardware tools or software tools based on 

run-time metrics integrated with analytical power models [8]. 

3.3.2.1 Hardware-Based Energy Profiling 

In terms of the hardware tools, the energy consumption of PMs can be easily 

measured using any of the on-the-shelf wall power meters, like WattsUp meter 

[120], EnerGenie meter [121], and Kill A Watt meter [122]. The Power Supply 

Units (PSU) of the PMs get the power via these attached meters. They can 

measure the aggregated run-time power consumption of a PM, and the 

measurements can be obtained via USB interface. In terms of the accuracy, 

these meters can give a measurement accuracy of +/- 1.5% for WattsUp meter, 

+/- 2% for EnerGenie meter, and +/- 0.2% for Kill A Watt meter. 

3.3.2.2 Software-Based Energy Profiling 

In terms of the software tools, there are many research works that have 

investigated how to model the energy of physical machines in order to estimate 

their energy usage without the use of any hardware tools. Some work focus on 

estimating energy consumption based on their relation with the utilisations of a 

number of resource components [123]–[125],  and others based only on the CPU 

resource utilisation [4], [126]–[129]. 
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Resource Usage-Based Energy Profiling 

For the sake of reducing the energy consumption in data centres, some works in 

the literature have investigated the estimation of energy by modelling the energy 

usage at the hardware-component level within a PM. For example, Kansal et al 

[123] introduced an additive power model of PMs that considers the idle physical 

power as a static power and the dynamic power consumed by the physical 

resources, CPU, memory, and disk, when being utilised based on linear 

regression models for each component. So, the total dynamic power model is 

the sum of the power consumed by these physical resource components. 

Similarly, Castañé et al [124] introduced a framework, E-mc2, that models 

the energy consumption at fine-grain level of the physical resources in Cloud 

Computing environments. In their work, they introduced energy models to 

estimate the energy consumption of internal hardware components, including 

CPU, memory, network, and disk, and then introduced an aggregate energy 

model that sums up the energy of these internal components to identify the total 

energy for each PM. 

As stated by Basmadjian et al [125], most of the work estimates the power 

consumption for the dynamic (active) servers, while assuming the idle (not 

active) servers just have constant energy consumption regardless of their types. 

Therefore, they argued that energy-aware algorithms should take into account 

the power consumption estimations for both idle and dynamic servers in order to 

take the most proper energy-aware decisions because the idle severs can vary 

in terms of their power consumption. They proposed models to better estimate 

the power consumption for the idle servers by breaking it down into its constituent 

components, like processors, memories, disks, power supply units, and fans 

[125]. Nonetheless, their proposed models are based on the power 
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characteristics of the current technology. To illustrate, as the technologies evolve 

over time, their equations of the proposed models would need to be revised 

because the power consumption behaviour of each component would change as 

well. 

CPU Usage-Based Energy Profiling 

Notable work by Fan et al. [126] have introduced a framework to estimate the 

power consumption of servers based on CPU utilisation only and argued with 

their results that the power consumption correlates well with the CPU usage. As 

their framework produced accurate predicted results, they also argued that it is 

not necessary to use more complex signals, like hardware performance 

counters, to model power usage. Their work also indicates that the activity of 

other system components, other than CPU, may have either a small effect on 

power usage or their activities correlate well with the CPU activity, by having 

indirect effect on power through triggering the CPU. In their work, they introduced 

two power models, based on linear and non-linear functions of CPU utilisation. 

For the linear model, the total power consumption of a PM is identified by 

summing up its idle power and a fraction of its dynamic power based on CPU 

utilisation. The dynamic power is defined as the maximum power when the host 

is fully busy minus its idle power. For the empirical non-linear model, they 

introduced a calibration parameter and set it to 1.4 in order to reduce the square 

error [126], but this parameter may change in different types of servers and 

consequently need to be identified empirically for each type. Running a 

calibration model to identify such parameter can be considered as a 

disadvantage, as argued in [78]. The linear power model introduced in [126] has 

gained a large popularity in the literature and been used and followed by many 

other works, as in [4], [14], [16], [130]–[132]. However, the applicability of using 



- 48 - 
 

linear power model depends on the characteristic of the physical machines as 

other works, like in [4], [133], [134], show that the physical machines considered 

may not necessarily follow a linear relationship between the power consumption 

and CPU utilisation. Therefore, characterisation of such type of physical 

machines is important in order to establish and construct accurate power models 

accordingly. 

Zhang et al [4] argued that modelling the energy consumption based on 

performance counters, which can be queried from chips or OS, would not work 

appropriately in heterogeneous environments with different servers’ 

characteristics. Different servers would have different performance counters, 

resulting in more overhead to use an energy model that would capture all these 

counters especially if the sampling interval is small. Therefore, the authors 

presented a Best Fit Energy Prediction Model (BFEPM) that flexibly selects the 

best model for a given server based on series of equations that consider only 

CPU utilisation [4]. 

Lien et al [127] presented a prediction model to estimate the power 

consumption of streaming media servers in real time based on the monitored 

CPU utilisation and the servers configuration parameters without the need of 

additional hardware tools, e.g. attached power meters. In order to get the 

required parameters for their model, they introduced three methods. Firstly, a 

filled-manually method that requires the server’s parameters of the base power 

consumption (idle power) and the full load power consumption (max power) to 

be filled manually. Secondly, a hardware-revised method requires the use of a 

hardware power meter only for once to obtain the base power and full load power 

of a given media server. Thirdly, a software-revised method that predicts the 

base and full load power consumption based on previous data collection from 
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hardware configurations [127]. Once the base and full load power values of 

servers have been identified, the authors’ proposed power model is then used to 

estimate the power consumption of the servers based on a linear relation with 

their CPU utilisation. 

Dargie [128] proposed a stochastic model to estimate the power 

consumption for a multicore processor based on the CPU utilisation workload. In 

their work, they found out that the relationship between the workload and power 

is best estimated using a linear function in a dual-core processor and using a 

quadratic function in a single-core processor. 

Garraghan et al [129] analysed and characterised system failures within 

a real data of a large-scale production environment, Google cluster data [135], 

and quantified the wasted energy usage as a result of the failures. The energy 

usage is not presented in the analysed data. Therefore, in order to identify the 

energy usage, the authors mapped the analysed servers with three types of 

servers published by the SPECpower benchmark [136] that have similar 

characteristics. The power characteristic of the three selected servers from this 

benchmark show a linear relationship between the power consumption and CPU 

utilisation. Thus, using a linear power model  based on the published results of 

these three servers, the authors identified the wasted energy as an impact of 

failures. 

3.3.3 Virtual Machine Profiling Models 

Unlike PMs, VMs’ energy consumption cannot be measured directly as they do 

not have direct hardware interfaces to plug in any of the wall watts meters. 

Therefore, their energy information can be indirectly identified via software tools 

that model the energy consumed by the PMs in which they are hosted [137] with 
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the use of different approaches, like resource usage-based [123], [130], [138]–

[140], lookup table-based [134], and performance counters-based [141], [142]. 

3.3.3.1 Resource Usage-Based Energy Profiling 

Kansal et al. [123] introduced Joulemeter as a tool for metering the VM power 

consumption based on linear regression models of physical power usage and 

physical resources usage, like CPU, memory, and disk, by each VM. In their 

models, the physical dynamic power is only attributed to each VM based on the 

physical resources usage when the VMs are running and inducing workload. 

However, the physical idle power is not attributed to each VM, and instead used 

separately and added to the sum of all VMs power consumption to obtain the 

total PM power consumption for evaluation purposes by comparing it with total 

PM power consumption obtained by a real external hardware power meter. They 

considered the limitation of their model that may become over fitted and result in 

more errors over time. As a way to mitigate this issue, they monitor the real 

measured power of the server obtained by the wall power meter and compare it 

with the sum of PM idle power and all estimated VMs power. If the estimation 

exceeds a certain threshold of errors, their models readapt again and the 

parameters are relearned based on the recently measured data, which may 

result in more overhead in using their model and some estimation errors till 

reaching that threshold to be corrected. In addition, they argued that their VM 

power model can benefit the Cloud providers to offer energy-aware pricing 

mechanisms to consider the actual cost of energy usage and be more suitably 

aligned with the pay-as-you-go billing model. When PMs are switched-on and 

not running any workload, they still consume a considerable amount of idle 

energy that comes with costs as well. Nonetheless, their VM power model is 

limited as it does not attribute the PMs idle power fairly to each VM so that actual 



- 51 - 
 

cost of idle energy can also be included for each VM and considered for such 

fair and transparent energy-aware pricing mechanism. 

Quesnel et al [138] has argued that most of the work to identify the energy 

of VMs is only based on the dynamic energy of physical resources, and that 

physical idle energy should be also included when modelling the energy for VMs 

because the PMs are still switched-on to host these VMs and maintain their 

status. Therefore, they introduced a model to attribute the idle energy of a PM to 

the hosted VMs. In order to get the total energy for each VM, they used an energy 

model to attribute the dynamic energy to each VM based on the CPU utilisation 

of the VMs. In their proposed model, the PM’s idle energy is attributed to the VMs 

based on the weight of assigned physical resources, memory and CPU, and the 

utilisation of these resources by each VM. However, if there is only one or a few 

idle VMs hosted on a PM and these have been assigned only part of the PM’s 

resources, part of the PM's idle energy is attributed to these VMs. In other words, 

it means that there will be some part of the PM's idle power not being attributed 

to the VMs [138]. This contradicts with their motivation that the idle energy of the 

PMs should be also attributed to the hosted VMs because these PMs are only 

running to maintain the VMs; otherwise, the PMs could be switched off to save 

the cost of idle energy consumption. Also, in their model of attributing PM's idle 

power to the hosted VMs, the resources utilisation by the VM is considered; 

nonetheless, if the VMs start to utilise some of the assigned resources, then they 

will start to impact on the PM's dynamic power. Therefore, the extent of the 

resources utilisation by the VMs should be considered only when attributing the 

PM’s dynamic power consumption to the VMs. 
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CPU Usage-Based Energy Profiling 

Zakarya and Gillam [130] introduced a VM energy model by extending Fan et al 

[126] linear power model of the physical hosts. In order to identify the total power 

consumption of a given VM, the PM’s idle power is shared evenly among the 

running VMs. Also, a fraction of PM’s dynamic power, which is identified by 

subtracting the PM idle power from the PM max power, is shared to the VMs 

based on VM CPU utilisation and the fraction of the PM’s total CPU allocated to 

each VM [130]. However, this work is applicable and limited only to the hosts that 

follow a linear power model because not all physical hosts follow a linear model 

of their energy usage and CPU utilisation, as shown in [4], [133], [134]. Also, the 

authors assume all VMs are homogeneous and divide the physical idle energy 

evenly among the running VMs on a host. Therefore, fair attribution of the host 

idle power is not considered when heterogeneous VMs are being hosted 

simultaneously at the same PM. 

Kavanagh et al [140] introduced an IaaS energy modeller that distributes 

the PM’s energy consumption to the VMs. In this modeller, the idle energy 

consumption of a given PM is divided evenly among the VMs running on that 

PM, and the active PM’s energy consumption is divided to the VMs based on a 

VM CPU utilisation mechanism. Thus, the introduced energy model would work 

fairly for attributing the PMs energy to homogeneous VMs. Yet, it lacks 

consideration of attributing both idle and active PM’s energy consumption to 

heterogeneous VMs running simultaneously at the same PM. 

3.3.3.2 Lookup Table-Based Energy Profiling 

Jiang et al [134] introduced a method, called VPower, that estimates the total 

power consumption of VMs by considering the static and dynamic power 
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consumption, inferred from the PM. The static power for a given VM is identified 

by evenly dividing the PM's idle power to all VMs hosted on that same PM. The 

dynamic power for a given VM is identified by using a two dimensional lookup 

table (LUT) that returns a specific power value based on given CPU utilisation 

and Last-Level-Cache (LLC) miss rate. The method requires some time for 

training with direct measurement at the PM level in order to construct the LUT 

for a given VM when deployed on a PM for the first time. As the method evenly 

attributes the PM's idle power among the hosted VMs, it is limited only for 

homogeneous VMs as it would not be fair for heterogeneous VMs hosted on the 

same PM to have the same attribution of the idle power. 

3.3.3.3 Performance Counters-Based Energy Profiling 

A research conducted by Chengjian et al. [141] introduced a model to measure 

the estimated power consumption of VM using performance events counter. This 

model attributes power consumption to the VMs based performance event 

counters of the CPU and memory components when they are being utilised 

during runtime. The authors argued that the results of the proposed model can 

get on average about 97% accuracy.  

Yang et al. [142] introduced an integrated power model, called iMeter, that 

estimates the power consumption of VMs. Their power model is based on 

performance counters for CPU, memory, disk, cache, process and network 

components. These performance counters, e.g. page-reads for memory, are 

selected based on preforming principal component analysis. Then, the power 

models are derived using support vector regression (SVR) to estimate the power 

consumption of VMs based on their relationship with the selected performance 

counters. 
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However, the use of performance counters may increase the complexity 

and overhead when modelling the power usage, as argued in [4], [126]. Also, the 

proposed models in [141], [142] estimate the power usage of the VMs when they 

are on and actively inducing some loads; when the VMs are not inducing any 

load, they have no power usage. In other words, these proposed models do not 

consider attributing the PM's idle power usage to the VMs, which can be 

considered as a limitation because the idle power usage of a PM could be saved 

by switching off the PM when not hosting any VM, as argued in [138]. 

3.3.4 Forecasting Models 

Having discussed the existing work for modelling and profiling energy 

consumption during the service run-time operation in Sections 3.3.2 and 3.3.3, 

this section discusses the work for forecasting the energy consumption in future 

time. Providing energy information of the Cloud services ahead of their operation 

time can be very beneficial for the service providers to make proactive energy 

efficient deployment and management of the Cloud services accordingly. 

The energy consumption in a system is effected by the running workload. 

As stated in [143], predicting the energy consumption of Cloud applications and 

VMs about to be deployed and run would require understanding the 

characteristics of the underlying physical resources, like idle power consumption 

and variable power under different utilisation of workload, and the projected 

virtual resources usage. Therefore, in order to forecast the future energy usage, 

the workload should be also predicted and then translated into energy 

consumption. 
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3.3.4.1 Workload Prediction 

In terms of workload prediction, uncertainty issues associated with a Cloud 

environment makes it difficult to do such prediction, like predicting job runtime in 

future time. Tchernykh et al [144] have emphasised the difficulty of dealing with 

uncertainty in a Cloud environment especially since its workload can change 

dramatically over time. The authors have reviewed and classified the uncertainty 

issues associated with a Cloud environment and discussed some approaches to 

mitigate them, for example, using stochastic scheduling, load balancing [145], 

and adaptive and knowledge-free approaches [146]. Also, another approach 

presented in [147] looked at the historical data of applications to predict the 

runtime job of similar applications to be executed. 

 Knowing the workload of the tasks can help to make efficient task 

placement strategies. As stated by Patel et al [148], most Cloud infrastructure 

providers currently ask the users to specify and set the required resources for 

their jobs/tasks so that appropriate resources are allocated accordingly. 

However, new customers may find it difficult to specify the actual need of the 

resources to execute their jobs. Therefore, the authors in [148] proposed a new 

workload estimation approach based on historical clustered tasks with similar 

patterns. The approach initially places a new task randomly, and then does 

continuous monitoring and analysis in order to first get enough data about the 

initial workload pattern. This initial pattern is then used to map the new task with 

the historical clustered tasks and accordingly predict the workload, the PMs’ CPU 

usage, ahead of time so that proactive and efficient resource management can 

take place. However, this approach depends on initial placement of task 

randomly for a period of time till getting enough observations to identify and map 

the task pattern with previous clustered tasks in order to do the prediction. This 
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would increase the overhead and latency to predict the workload and may make 

it inappropriate and difficult to do efficient resource management during the initial 

period. 

Zhang et al. [149] proposed a prediction model to match QoS 

requirements based on the detection of service workload patterns (SWP). Thus, 

they use a top-down approach, based on QoS-SWP matrix, to enable dynamic 

reconfiguration and auto-scaling to meet performance requirements in a Cloud 

environment. The prediction of workload patterns is based on previous execution 

and monitoring logs of the resources, including server CPU utilisation, network 

throughput and data storage size. The aim of this work is to predict the workload 

patterns of the services and match it with the required QoS to enable proactive 

resource management. 

Khan et al [150] introduced a method to predict repeatable patterns of 

VMs workload variations over time based on Hidden Markov Modelling (HMM). 

The workload considered in their work is CPU utilisation. The VMs that exhibit 

repeatable workload patterns are first explored and then grouped using co-

clustering technique into groups with correlated workload patterns. The clustered 

groups with predictable workload patterns are considered in their prediction 

method. They classify co-clustered groups to have predictable workload patterns 

when they show a consistent workload pattern over time or correlated behaviour 

with other co-clustered groups. Their proposed method based on HMM model 

uses this clustered information in order to predict the future variation of workload 

for the VMs. The motivation of their work is to help Cloud providers consolidate 

and provision their resources efficiently to meet the demand. But they neither 

predicted the energy usage nor explored the impact of their work on energy 

usage and cost. 
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Further, other work has predicted future workload in a Cloud environment 

based on historical time-series data and using ARIMA model [151]–[154]; 

nonetheless, their objectives do not consider predicting the energy consumption. 

For example, Calheiros et al [154] introduced a Cloud workload prediction 

module based on the ARIMA model to proactively and dynamically provision 

resources. They define their workload as the expected number of requests 

received by the users, which are then mapped to predict the number of VMs 

needed to execute users’ requests and meet the QoS. 

3.3.4.2 Workload and Energy Prediction 

Moreover, other work has looked at forecasting models to predict the workload 

of resources and energy consumption of such workload, all of which can be 

based on the analysis of historical data, end-user behaviour and/or predefined 

types and description of submitted tasks. For example, as stated by Farahnakian 

et al. [155], it is important to predict the future resource usage in order to energy 

efficiently manage the Cloud infrastructure resources and avoid violating any 

SLAs. Therefore, the authors introduced a method, called LiRCUP, that predicts 

the short-time future host workload, CPU utilisation, by using linear regression 

model and based on recent historical workload. The period of the historical 

workload considered in their method is for the last hour, as of last 12 intervals, 

in order to predict the future 5 minutes workload as the next interval. The aim of 

LiRCUP is to determine and predict when an over-loaded host, above 85% of 

CPU utilisation threshold, is likely to happen so that VMs can proactively be 

migrated to another host to avoid SLA violation prior to reaching the threshold. 

Also, LiRCUP is aimed to detect when an under-loaded host, less than 10% of 

CPU utilisation threshold, is likely to happen so that they can migrate VMs to 
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another host and put the predicted under-loaded host into a sleep mode sooner 

to achieve more energy savings. In order to evaluate this work, the authors 

implemented the proposed method in CloudSim [18] and used power 

characterisations of two types of servers, HP ProLiant G4, and HP ProLiant G5, 

published by SPECpower benchmark [136]. The characterisations of these two 

servers show a linear relationship between the power consumption and the CPU 

utilisation. Thus, by using this benchmark, they translated the predicted CPU 

utilisation into power consumption in order to show the energy savings that could 

be achieved by their method. Yet, this work is focused on predicting the workload 

and then the energy consumption only at the host level of Cloud environment 

and not considering the workload and energy prediction for the VMs. 

3.3.5 Overall Discussion 

Having such tools that would help to identify the energy usage in Cloud 

environment is essential in order to help the Cloud application software analysts 

and developers to design and construct applications with energy-awareness 

consideration. Also, the Cloud service providers can be facilitated with energy-

awareness to enhance their decisions to efficiently manage Cloud resources. 

Identifying the energy consumption at VMs granularity is considered important to 

make effective VMs consolidation by taking into account not only the resource 

utilisation but also the energy consumption as well [142]. 

Section 3.3 has reviewed the related work on modelling and profiling the 

power consumption during the run-time in Cloud environments at both physical 

level, as presented in Section 3.3.2, and at the virtual level, as presented in 

Section 3.3.3. The following Table 3-1. provides a comparison summary of the 
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closely related work on profiling energy consumption for VMs inferred from their 

hosting PMs energy consumption. 

Table 3-1: Summary of Existing VM Energy Profiling Models 
 

Criteria 

By 

Attributing PM’s idle 
power usage? 
(Mechanism/Resources) 

Attributing PM’s active power 
usage? 
(Mechanism/Resources) 

Type of VMs 
(Heterogeneous/
Homogeneous) 

[123] Not considered. Yes. All PM’s active power is 
attributed to VMs based on 
linear models of PM’s power and 
resources usage, like CPU, 
memory, and disk, by each VM. 

Considered 
homogeneous VMs 
only. 

[138] Yes. Part of the PM’s idle 
power is attributed to VMs 
based on the assigned PM 
resources, memory and 
CPU, and the utilisation of 
these resources by each 
VM. If any of the PM’s CPU 
or memory resources is 
fully assigned to VMs, then 
all PM’s idle power is 
attributed to VMs. 

Yes. All PM’s active power is 
attributed to VMs based on their 
CPU utilisation. 

Considered 
heterogeneous and 
homogeneous VMs 
for PM’s idle power 
attribution, and only 
homogeneous VMs 
for the PM’s active 
power attribution. 

[130] Yes. All PM’s idle power is 
evenly attributed to the 
running VMs. 

Yes. All PM’s active power is 
attributed to VMs based on the 
allocated physical CPU 
resources to each VM and the 
CPU utilisation by each VM. 

Considered 
heterogeneous and 
homogeneous VMs 
for active power, 
but only 
homogeneous VMs 
for the idle power. 

[140] Yes. All PM’s idle power is 
evenly attributed to the 
running VMs. 

Yes. All PM’s active power is 
attributed to VMs based on their 
CPU utilisation. 

Considered 
homogeneous VMs 
only. 

[134] Yes. All PM’s idle power is 
evenly attributed to the 
running VMs. 

Yes. All PM’s active power is 
attributed to VMs based on a 
two dimensional-LUT that 
returns a specific power value 
based on given CPU utilisation 
and LLC miss rate by each VM. 

Considered 
homogeneous VMs 
only. 

[141] Not considered Yes. All PM’s active power is 
attributed VMs based on 
performance event counters of 
CPU and memory components. 

Considered 
homogeneous and 
heterogeneous 
VMs for the active 
power only. 

[142] Not considered. Yes. All PM’s active power is 
attributed to VMs by using SVR 
model to estimate the power 
consumption of VMs based on 
their relationship with the 
selected performance counters 
of CPU, memory, disk, cache, 
process, and network 
components. 

Considered 
homogeneous and 
heterogeneous 
VMs for the active 
power only. 
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 In terms of VM energy forecasting models, it would first require predicting 

their workload, which then can be translated into energy based on their physical 

resources usage. As discussed in Section 3.3.4, the work in [148]–[154] used 

models to predict the workload in Cloud environments in order meet the demand, 

performance requirements and efficiently provision the resources, but not 

considering the energy consumption and energy efficiency of the resources, as 

summarised in Table 3-2. Though the work in [155] predicted the workload, CPU 

utilisation, and translated into energy consumption to consider the energy 

efficiency aspect of the Cloud resources, their prediction focus is only at the 

physical hosts to identify under-loaded and over-loaded hosts so VMs can be 

moved to another host accordingly. Thus, there is still a need to forecast the 

energy consumption of VMs prior to their deployment. 

Table 3-2: Summary of Forecasting Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Criteria 

By 

Predicting workload? 

(Type of workload) 

Predicting Energy? 

(Level of prediction) 

[148] Yes. The considered 
workload is PM CPU 
utilisation. 

Not considered 

[149] Yes. The considered 
workload is PM CPU 
utilisation, network 
throughput, and data storage 
size. 

Not considered 

[150] Yes. The considered 
workload is VM CPU 
utilisation. 

Not considered 

[151] Yes. The considered 
workload is PM CPU 
utilisation. 

Not considered 

[153] Yes. The considered 
workload is PM CPU 
utilisation and memory 
usage. 

Not considered 

[154] Yes. The considered 
workload is number of users 
requests. 

Not considered 

[155] Yes. The considered 
workload is PM CPU 
utilisation. 

Yes. Energy prediction at PM 
level. 
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3.4 Summary 

This chapter has reviewed the literature on energy efficient Cloud Computing. 

Firstly, it has presented and discussed different streams of energy-aware 

computing, including requirements engineering, programming models, energy-

aware resource management, energy efficiency metrics and energy-aware 

pricing. Secondly, it has reviewed different models for enabling energy-aware 

profiling at the PMs and VMs in Clouds. Besides, existing forecasting models for 

future workload and energy usage predictions within Clouds have been also 

reviewed. This chapter has finally concluded with a summary of the closely 

related work to this thesis. 

 To enable energy-awareness in a Cloud environment, an energy-aware 

Cloud system architecture is proposed in this thesis, which will be discussed 

thoroughly in the subsequent chapter. 
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Chapter 4 System Architecture 

4.1 Overview 

This chapter firstly reviews the motivation and requirements towards energy-

aware Cloud Computing, as presented in Section 4.2. Then, it introduces the 

proposed energy-aware system architecture for enabling energy awareness  in 

Cloud environments, which is presented in Section 4.3. It also provides a 

thorough description of this architecture’s main components and their 

interactions. Definitions and assumptions considered in this thesis are given in 

Section 4.4. Finally, this chapter concludes by discussing a number of early 

experiments conducted on an existing real Cloud testbed to validate the ability 

of the proposed architecture as a concept for enabling energy profiling at both 

physical and virtual level, as demonstrated in Sections 4.5 and 4.6. 

4.2 Energy Awareness in Cloud Computing 

4.2.1 Motivation 

Energy consumption has been considered as one of the main operational cost 

factors in Cloud environments [3]. Cloud service providers encounter a challenge 

to efficiently maintain and lower the energy usage of their resources in order to 

reduce the operational cost and maximise the profit [129]. Consideration of the 

energy usage has been highlighted to be critical to the software analysts and 

developers of Cloud applications and to the service providers in order to enhance 

the energy efficiency at different levels of the Cloud stack. The software analysts 

need to be supported with energy-awareness to specify energy goals from the 

early stages at the requirements engineering level [11]. Also, programming 
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models should incorporate energy information to help the software developers 

enhance their programming decisions and construct applications that would 

meet the required energy goals when operating. Further, energy usage along 

with resource usage information is critical for the service providers as it can 

enhance their decisions to efficiently deploy and manage the Cloud services with 

less energy usage and without performance degradation. Identifying the energy 

usage along with the resource usage per customer can also help the service 

providers to set transparent pricing for the offered services with consideration of 

the actual costs of resources as well as energy usage. Thus, considering energy-

awareness from different level of the Cloud stack is very critical to drive towards 

energy efficient Cloud Computing. 

4.2.2 Requirements 

In order to efficiently manage and optimise the energy consumption in Cloud 

environments, tools should be first put in place to provide awareness about the 

energy usage to be used at different layers of Cloud Computing. As presented 

in Section 2.2.2, existing Cloud Computing architectures, e.g. as shown on 

Figure 2-2,  describe the main layers along with their components, functionalities 

and interactions. However, there are missing key functionalities in terms of 

energy-awareness support within these existing architectures. Therefore, an 

energy-aware Cloud system architecture is needed to support energy-

awareness with consideration of the following requirements: 

 R.1: The infrastructure layer needs to include the functionality of enabling 

energy-awareness of PMs and VMs during the service operation. This is 

needed to fulfil the above motivation by providing energy information as 

feedback to enhance the decisions-making for the service providers when 
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managing the resources and for the software analysts and developers 

when specifying energy goals and optimising the applications.  

 R.2: The platform layer needs to include the functionality of enabling the 

energy-awareness proactively prior to the service deployment. This is 

needed to help the service providers to predict the energy usage of the 

resources and make energy efficient service deployment accordingly. 

4.3 Proposed Energy-aware Cloud Architecture 

Enabling energy-awareness in the Cloud paradigm is a key step towards 

optimising its energy efficiency. As discussed in the previous Chapter 3, the 

energy consumption can be easily identified and obtained for the PMs by using 

any of the shelf Watt meters, but it is difficult and not directly identified for the 

VMs. Therefore, an energy-aware Cloud system architecture is proposed in this 

thesis. As depicted in Figure 4-1, this proposed architecture follows the standard 

reference architecture of Cloud Computing, which consists of three main layers, 

namely the SaaS layer where the service creation takes place, the PaaS layer 

where the service deployment takes place, and the IaaS layer where the service 

operation takes place. This architecture abstracts the details of these three 

layers and mainly focuses on monitoring and profiling energy consumption 

during the operation of the services to both the PMs and VMs in order to fulfil the 

first requirement (R.1). Also, it focuses on predicting the energy consumption 

prior to the deployment of the services in  order to fulfil the second requirement 

(R.2). Hence, it is aimed at enabling energy-awareness at the deployment and 

operational levels of the Cloud paradigm. 
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This architecture consists of a number of components, mainly, the 

Resource Monitoring Unit (RMU), Energy-aware Profiling Unit (EPU), Reporting 

and Analysis Unit, and Energy-aware PREdiction Unit (EPREU), all of which are 

discussed in the following Section 4.3.1. The grey highlighted components, EPU, 

and EPREU, are the key components containing the other two main contributions 

of this thesis that will be presented in Chapter 5 and Chapter 6, respectively. 

4.3.1 Key Components 

4.3.1.1 Resources Monitoring Unit 

The main role of the RMU is to monitor the resources’ usage of the PMs and 

VMs during the run-time operation, which can be obtained with the use of any of 

the existing monitoring infrastructure tools, like Zabbix [156]. As the aim of this 

architecture is for modelling and profiling the energy consumption for Cloud 

infrastructures, the resources usage to be monitored should be only those that 

are correlated with the energy consumption. Many of the previous work, as 

Figure 4-1. Energy-aware Cloud System Architecture 
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presented in [4], [126]–[128], [130], [140], [155], have used the CPU as the only 

component when modelling the energy consumption. Therefore, the proposed 

work follows the same approach and considers the usage of the CPU component 

to be monitored for PMs and VMs. The energy consumption of the PMs should 

be also obtained in the RMU, which can be through the use of any of the available 

wall Watt meters. 

4.3.1.2 Energy-aware Profiling Unit 

The aim of the EPU is to address the first requirement (R.1) by enabling energy-

awareness at the VM level. Therefore, an energy-aware profiling model is 

proposed to identify and profile the energy consumption for the VMs during the 

operation time. The details of this model will be discussed in Chapter 5. 

4.3.1.3 Reporting and Analysis Unit 

The Reporting and Analysis Unit is envisaged in this architecture as the tool and 

link that provides a meaningful feedback, which could be formatted in visualised 

reports, about the energy usage in the physical and virtual resources of the Cloud 

infrastructures. This feedback information can be provided to the software 

analysts and developers in order to enhance their awareness of the energy 

consumption when specifying energy goals, optimising and constructing the 

applications. Also, this feedback information can be useful and incorporated by 

the resource management tools to efficiently provision and manage the Cloud 

infrastructures resources with energy efficiency in mind. 

4.3.1.4 Energy-aware Prediction Unit 

The EPREU is aimed to address the second requirement (R.2) by forecasting 

the energy usage of VMs. Thus, an energy-aware prediction framework is 
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proposed to enable forecasting the energy consumption of VMs prior to their 

deployment. The details of this framework will be discussed in Chapter 6. 

4.3.2 Components Interaction 

To start with, the Cloud service is created and configured in the application 

development tool with descriptions of the allocated software and hardware 

resources. Then, it is deployed in the service deployment environment and goes 

through VM management at the operational level to run on a given VM hosted 

by a given PM. 

Hence, the proposed system would then start with the RMU to capture 

and monitor the physical and virtual resources’ usage and physical energy 

consumption along with the number of assigned VMs to each PM during the run-

time operation of the Cloud service. Then, EPU, addressing the first requirement 

(R.1), has an appropriate energy model that takes as input the monitored data 

from RMU and outputs the attribution of the energy consumption to each VM 

based on the energy consumption of their underlying physical hosts. Next, the 

EPU profiles and populates these measurements to a knowledge database, 

which can be further used by the Reporting and Analysis Unit to provide energy-

aware reports to the software analysts and developers to help them learn how 

their applications consume energy and make such energy-efficient decisions 

accordingly to optimise their applications. Also, these measurements can be very 

useful for such resource management tools by enhancing their energy-

awareness and making energy-efficient decisions when, for example, scheduling 

the tasks and balancing the workload. Further, this energy-related information of 

VMs, which can be used by different customers and run on the same PM, can 

help the service providers introduce a new pricing mechanism that charge the 
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customers based not only on their IT resources usage, but on their energy usage 

as well. 

Moving up to the middle layer when the Cloud services are about to be 

deployed, EPREU, addressing the second requirement (R.2), has a framework 

consisting of a number of models with the aim of enabling the energy 

consumption prediction of the requested VMs prior to service deployment. This 

framework works by considering the type of these VMs and their historical data. 

The predicted energy consumption for VMs can be incorporated by other 

deployment strategies to help making energy-efficient decisions proactively. 

4.4 Assumptions and Definitions 

The following list includes the main assumptions and definitions of variables and 

terms considered in this thesis: 

 1: The research presented in this research makes abstraction of the type 

of Cloud applications. Yet, the energy prediction in this research is driven 

through Cloud application workload patterns; in the essence, it considers 

Cloud applications having repeated historical workload patterns, static 

and periodic only, when predicting the energy consumption. 

 2: Power is the rate of electrical usage when performing a work at an 

instant of time. It can be measured in different units, including Watt (W) 

and Kilowatt (kW). 

 3: Energy is the averaged power consumption over a period of time to 

deliver a work. It can be measured in different units, including Watt-Hour 

(Wh) and Kilowatt-Hour (kWh). Both energy consumption and power 
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consumption terms have been used interchangeably throughout this 

thesis. 

 4: VM CPU utilisation represents the workload of the VM when profiling 

and predicting VM energy consumption at the operational and deployment 

levels, respectively. It is measured in percentage unit (%). 

 5: VM VCPUs (Virtual CPUs) represents the size of the VM when profiling 

and predicting VM energy consumption. It is measured as a whole number 

(e.g. 1, 2, or 3), and it cannot be fractioned (e.g. 0.5 or 1.7). 

 6: Actual ratio of VM VCPUs usage represents the actual usage of the VM 

VCPUs when predicting VM energy consumption. It is measured as a 

number between zero and the total number of VCPUs of the VM. It can 

be fractioned to represent the ratio of actual usage. It is calculated as 

shown in Equation 4.1 (which uses the above definitions 4 and 5). 

𝑨𝒄𝒕𝒖𝒂𝒍 𝑹𝒂𝒕𝒊𝒐 𝒐𝒇 𝑽𝑴 𝑽𝑪𝑷𝑼 𝑼𝒔𝒂𝒈𝒆 = 𝑽𝑴 𝑽𝑪𝑷𝑼𝒔 ∗
𝑽𝑴 𝑪𝑷𝑼 𝑼𝒕𝒊𝒍𝒊𝒔𝒂𝒕𝒊𝒐𝒏

𝟏𝟎𝟎
 (4.1) 

 7: VM power consumption represents the attributed power consumption 

of the VM at a given point in time when profiling or predicting. It is 

measured in W unit. 

 8: PM CPU utilisation represents the workload of the PM when profiling 

and predicting VM energy consumption. It is measured in percentage unit 

(%). 

 9: PM power consumption represents the actual or predicted power 

consumption of the PM at a given point in time when profiling or predicting 

VM power consumption. It is measured in W unit. 
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 10: VM energy consumption represents the attributed energy 

consumption of the VM over a period of time when profiling and predicting. 

It is measured in Wh unit. 

  11: PM energy consumption represents the energy consumption of the 

PM over a period of time. It is measured in Wh unit. 

 12: The term homogeneous VMs is referred to the VMs having the same 

size in terms of the number of VCPUs (as defined earlier in point 5), e.g. 

two VMs each with one VCPU. 

 13: The term heterogeneous VMs is referred to the VMs having different 

sizes based on their number of VCPUs (as defined in point 5), e.g. two 

VMs, one VM with one VCPU and the other VM with two or more VCPUs. 

4.5 Early Implementation 

In order to get an early evaluation of the proposed energy-aware Cloud system 

architecture as a concept for enabling energy-awareness, a number of 

experiments have been conducted on an existing real Cloud environment, Leeds 

Cloud testbed. The details of this testbed and how it supports energy-awareness 

at physical host and VM levels will be discussed next. 

4.5.1 Cloud Testbed 

The Leeds Cloud testbed consists of a cluster of commodity Dell servers, and 

each one of these servers has Centos version 6.6 installed as its operating 

system (OS). Three of these servers with a four core X3430 Intel Xeon CPU on 

each have been used for the experiments presented in Section 4.6. Also, each 

server has a total of 8GB of RAM and 250GB of SATA HDD. Additionally, the 
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testbed has a Network File System (NFS) share running on the head node of the 

cluster and providing a 2TB total storage for VM images. 

The architecture of this testbed is shown in Figure 4-2. The testbed utilises 

OpenNebula [38] version 3.8 as the Virtual Infrastructure Manager (VIM). For the 

Virtual Machine Monitor or Manager (VMM), the testbed uses Xen [60] 

hypervisor version 4.0.1 along with the Linux Kernel version 2.6.32.24. 

[21] 

4.5.2 Monitoring Infrastructure 

The resources usage and energy monitoring on the Leeds Cloud testbed is 

depicted on Figure 4-3. At the physical host level, each of the PM has a WattsUp 

[120] meter attached via  USB interface. These WattsUp meters directly measure 

power consumption at per second basis for each PM. The measured power 

values are then pushed to Zabbix [156], which is the monitoring infrastructure 

tool used in this testbed. Additionally, Zabbix also monitors the resources usage, 

Figure 4-2: Leeds Cloud Testbed Architecture [21]  
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like CPU, memory and disk, for each of the running PMs and VMs. Finally, the 

PMs power usage along with the CPU resource usage are sent to the energy-

aware profiling unit, which is responsible for enabling energy-awareness at the 

VM level. The details of the model used within the energy-aware profiling unit will 

be presented in Chapter 5. 

 

 

4.5.3 Specifications of PMs and VMs 

As explained earlier, the testbed has a cluster of commodity Dell servers, and 

the following Table 4-1 summarises the specs of the five PMs considered in this 

thesis. Hosts A and B are considered in the experiments conducted in Chapters 

5 and 6. Hosts C, D and E are considered in the experiments conducted in this 

Chapter.  

Figure 4-3: Monitoring on Leeds Cloud Testbed - adapted from [140] 
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The testbed has been upgraded to a newer version, as to be described in 

Section 5.3, and the earlier version of the testbed has been described before in 

Section 4.5.1. Hosts A and B are part of the new upgrade of the testbed (to be 

discussed in Section 5.3) and therefore used for the later experiments conducted 

in Chapters 5 and 6. At earlier time of this research, Hosts C, D, and E existed 

as part of the earlier version of the testbed and therefore used for the 

experiments conducted in this Chapter. 

Table 4-1: Specs of the PMs 

PM Name CPU Memory Disk 

Host_A 
A four core X3430 Intel 
Xeon CPU (default clock 
speed of 2.40GHz) 

Total of 16GB of RAM 
(four modules of 4GB 
DDR3 at 1600MHz) 

250GB (Model 
Number: WDC 
WD2502ABYS) 

Host_B 
A eight core E3-1230 V2 
Intel Xeon CPU (default 
clock speed of 3.30GHz) 

Total of 16GB of RAM 
(two modules of 8GB 
DDR3 at 1600MHz) 

1000GB (Model 
Number: 
ST1000NM0033) 

 

Host_C 
A four core X3430 Intel 
Xeon CPU (default clock 
speed of 2.40GHz) 

Total of 8GB of RAM 
(four modules of 2GB 
DDR3 at 1333MHz) 

250GB (Model 
Number: 
WD5003ABYS) 

Host_D 
A four core X3430 Intel 
Xeon CPU (default clock 
speed of 2.40GHz) 

Total of 8GB of RAM 
(four modules of 2GB 
DDR3 at 1333MHz) 

250GB (Model 
Number: 
WD2502ABYS) 

Host_E 
A four core X3430 Intel 
Xeon CPU (default clock 
speed of 2.40GHz) 

Total of 8GB of RAM 
(four modules of 2GB 
DDR3 at 1333MHz) 

250GB (Model 
Number: 
WD2502ABYS) 

  

In terms of the VMs considered in the experiments presented in this 

thesis, Table 4-2 summarises their specs. 

Table 4-2: Specs of the VMs 

VM Type VCPU Memory Disk 

Small VM 1 VCPU 1GB 10GB 

Medium VM 2 VCPUs 1GB 10GB 

Large VM 3 VCPUs 1GB 10GB 
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4.6 Experiments and Evaluation 

4.6.1 Design of Experiments 

Some direct experiments have been conducted on the Leeds Cloud testbed. The 

overall aim of these experiments is to evaluate the capability of the energy-aware 

Cloud system architecture as a concept for enabling energy-awareness within a 

real Cloud environment at both physical host and VM levels. Small VMs with one 

VCPU on each have been used in these experiments for consistency and to 

explore the power consumption of the same types of VMs when being run on 

different hosts, as to be presented in Experiment 3. 

In order to design such experiments, a software testing tool that 

represents real patterns of Cloud applications is needed. Cloud9, a software 

testing benchmark, has therefore been setup on the testbed to generate real 

scale-out workloads. The generated workloads by Cloud9 reflect real Cloud 

applications patterns [157]. Cloud9 is capable of scheduling a task or set of tasks 

to run on one or multiple VMs, and these tasks can be configured to run in parallel 

or in stages after each other [158] to represent real pattern of elastic Cloud 

application. 

The following experiments have been designed differently to show various 

aspects of Cloud Computing patterns as well as energy-awareness at the PM 

and VM levels. The first experiment has been designed to explore the implication 

on power consumption when overprovisioning the number of VCPUs on a single 

VM, having one VCPU only. The second experiment has been designed to 

explore the impact on power consumption when scaling-out the number of VMs, 

each having one VCPUs, on the same PM. The third experiment has been 

designed to show how the power consumption would be influenced  when 
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running the same types of VMs, having one VCPUs each, on three different PMs. 

In order to get the average mean value of the power consumption and eliminate 

any anomalies of the results, each experiment has been repeated 10 times [159]. 

4.6.2 Experiment 1 

This experiment is designed to schedule some tasks to run dynamically in four 

stages scaling-up from one VCPU up to four VCPUs on the same VM on a single 

host. Each stage is set to run for 60 seconds. The following Figures 4-4 and 4-5 

show the results of power consumption at host level. 
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Figure 4-4 shows the results of power consumption for a single run of the 

experiment, and Figure 4-5 shows the results of the aggregated average of 

power consumption for each stage over 10 runs. As shown in Figure 4-4, the 

power consumption at the end of each stage decreases owing to the transition 

of terminating the current stage and starting the next stage as designed in the 

Cloud9 benchmark. Each of the four stages shown on Figure 4-4 is set to run 

only for 60 seconds, but because of the nature of the Cloud9 benchmark, it adds 

further delays for the transition of starting and ending each stage. 

As depicted in Figures 4-4 and 4-5, over-provisioning the number of 

VCPUs on a single VM does not have an impact on the overall power 

consumption of the host. The reason in this particular case is that the VM has 

only one VCPU assigned to one physical CPU. So, overloading that one VCPU 

with four times of its capacity would still consume the same amount of power. A 

linear stable trend of the power consumption is represented in Figure 4-5. 

4.6.3 Experiment 2 

This experiment is scheduled to run some tasks dynamically in four stages 

scaling-out from one VM up to four VMs on a single host with each stage set to 

run for 60 seconds. 

Figures 4-6 and 4-7 show the results of the power consumption at the host 

level. Figure 4-6 shows the results of power consumption for a single run, and 

Figure 4-7 shows the results of the aggregated average of power consumption 

for each stage over 10 runs. 
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As the case with Experiment 1, the transition between each stage results 

in the reduction of the power consumption, as shown in Figure 4-6. It is clearly 

shown that increasing the number of VMs from one up to four VMs in a single 

host has an impact on the overall power consumption for that host. The power 

consumption shows a linear growth with the increment of VMs. Increasing the 

number of VMs means increasing the usage of physical resources, like CPU, 

assigned to these VMs. So, as more physical resources are used, the power 

consumption increases accordingly. 
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Figure 4-8 shows the results of the power consumption at the VM level of 

the same single run depicted in Figure 4-6. It shows the power consumption for 

each VM, which has been calculated by using the EPU unit as proposed in the 

energy-aware Cloud system architecture. 

It is clearly shown that total power consumption increases accordingly 

with the number of VMs used. The total power consumption shown in Figure 4-

6 is the same as shown in Figure 4-8; but Figure 4-8 shows the distribution of 

power consumption among the running VMs on that host thanks to the EPU unit. 

Before the start of the first stage, all VMs have even distributions of power 

consumption, but in each stage, the active VMs consume more power than the 

others in idle state (running but not utilising any workload). This experiment 

shows that an application consisting a number of tasks can run across multiple 

VMs simultaneously with energy-aware monitoring and profiling, which can help 

to identify the energy consumed by an application. 
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4.6.4 Experiment 3 

This experiment has been designed to run some tasks dynamically in three 

stages scaling-out from one VM up to three VMs across three different hosts 

simultaneously with each stage set to run for 60 seconds. 

Figures 4-9 and 4-10 show the power consumption for each host at 

physical host level. Figure 4-9 shows the results of power consumption for a 

single run, and Figure 4-10 shows the results of the aggregated average of power 

consumption for each stage over 10 runs. Like the previous Experiments 1 and 

2, the transition between each stage results in the reduction of power 

consumption, as shown in Figure 4-9. 

Figures 4-9 and 4-10 show that increasing the number of VMs from one 

up to three VMs across three physical hosts has an impact on the overall power 

consumption for each host. 

 

 

Figure 4-9: VM Scaling on Three Different Host (Time vs Power) 
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The results shown in this Experiment 3 are similar to those shown in 

Experiment 2; but here the results are shown for three physical hosts running 

simultaneously, whereas Experiment 2 for only a single physical host. So, the 

power consumption in this Experiment 3 increases linearly with the increment of 

VMs running on each host. This experiment also shows that an application 

consisting a number of tasks can be scaled-out and run across multiple VMs 

hosted by different physical host machines at the same time. 

4.6.5 Overall Results Discussion 

The conducted Experiments 1, 2, and 3 on the testbed have shown an early 

evaluation of the ability of the proposed energy-aware Cloud system architecture 

in terms of supporting energy-awareness at the VM level, which addresses the 

first research question (Q.1 – see Section 1.3). Now the energy consumption can 

be identified not only at the PM level, but also at VM level as well. 

Also, all of the experiments show that the scalability aspect of Cloud 

Computing patterns is supported based on the requirements design of the 

Figure 4-10: VM Scaling on Three Different Host (Time vs Power) 
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scheduled tasks when running Cloud9. For example, an application consisting of 

a number of tasks can be scaled-out and run on a number of VMs at the same 

time on a single or multiple physical hosts with energy-awareness profiling. 

Hence, this can help to identify the energy usage of an application either running 

on a single or multiple VMs, which can be certainly useful for the software 

analysts and developers to monitor and understand the energy usage of their 

applications. Further, identifying the energy consumption of PMs and VMs can 

help the service providers to enhance their decisions in order to efficiently 

manage the resources. For example, as shown in Figure 4-10, Host_E 

consumes less energy than the other two physical hosts when running two or 

three VMs. Hence, this information can indicate to the service provider that it is 

more energy efficient to utilise Host_E fully before utilising the other two hosts. 

4.7 Summary 

This chapter has introduced the proposed energy-aware Cloud system 

architecture for supporting energy awareness. The main components of the 

architecture have been described along with their interactions. A number of 

experiments have been presented to provide an early evaluation of the ability of 

the proposed Cloud system architecture as a concept to enable energy-aware 

profiling at both physical and virtual level. The next chapter will discuss in details 

the energy-aware profiling model introduced as the key element for facilitating 

the EPU component of the proposed architecture.
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Chapter 5 Energy-Aware Profiling 

5.1 Overview 

This chapter thoroughly discusses the energy-aware profiling model introduced 

in this thesis. It firstly discusses on how this model has been developed to identify 

the energy consumption at the VM level in Cloud environments, as presented in 

Section 5.2. Direct experiments along with their results are demonstrated to 

evaluate the capability of the proposed model in terms of fairly attributing the 

PM’s energy consumption to homogeneous and heterogeneous VMs, as 

presented in Section 5.4. 

5.2 Energy-aware Profiling Unit 

The aim of the Energy-aware Cloud System architecture introduced in Chapter 

4 is to enable energy-awareness in a Cloud environment. The key component to 

Figure 5-1: Energy-aware Cloud System Architecture - EPU 
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address and achieve that aim is the EPU unit, as highlighted in blue in Figure 5-

1. The objective of EPU is to identify the energy usage of the VMs at the 

operational level via a mathematical model, which will be introduced in the 

following Section 5.2.1. 

5.2.1 Energy-aware Profiling Model 

The power consumption of a PM can be directly measured and mainly consists 

of two parts, the idle and active power. The idle power is consumed when the 

PM is turned on but not running any workload. The active power is the extra 

power induced to the PM when it is busy and running some workload. The total 

power of the PM can be identified by adding up both its idle and active power. 

As the case with the PM, the total power consumption of a VM can be 

equal to its idle power consumption plus its active power consumption. Yet, the 

power consumption of VMs is difficult to identify and cannot be directly 

measured. Hence, the power consumption of VMs can be indirectly inferred from 

their underlying PMs, which is still challenging and difficult to achieve [123]. 

A PM can host one or many VMs to run all together at the same time. 

These VMs can be homogeneous or heterogeneous based on their 

characteristics, e.g. the number of VCPUs for each VM. Thus, these conditions 

should be considered when modelling and identifying the power consumption for 

the VMs. 

Previous work has introduced a couple of energy models based on 

different mechanisms to identify the energy consumption of VMs inferred from 

their underlying PMs, as discussed earlier in Section 3.3.3. Some of these 

models, as introduced in [123], [141], [142], just attribute the PMs’ active energy 

to the VMs. Other models, as introduced in [130], [134], [138], [140], attribute 
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both of the PMs’ idle and active energy to the VMs. However, all of these 

introduced models do not consider a fair attribution the PMs’ idle and active 

energy to homogeneous and heterogeneous VMs running simultaneously. 

Therefore, a new energy-aware profiling model is introduced for Cloud 

infrastructures where the service operation takes place in order to understand 

how the energy has been consumed at the VM level. The new model aims to 

overcome the above limitations of the existing VM energy models by not only 

attributing the PMs’ idle and active energy to the VMs, but also fairly attributing 

the PMs energy to homogeneous and heterogeneous VMs. 

Like the power consumption of a PM, the power consumption of a given 

VM x, 𝑉𝑀𝑥𝑃𝑤𝑟, consists of idle and active parts, 𝑉𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟 and 𝑉𝑀𝑥𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑤𝑟 

respectively, as shown in Equation 5.1. 

 𝑉𝑀𝑥𝑃𝑤𝑟 = 𝑉𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟 + 𝑉𝑀𝑥𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑤𝑟 (5.1) 

The VM idle and active power consumption can be identified based on the 

idle and active power consumption of the hosting PM. Many of the existing 

approaches model and identify the energy usage in PMs, as in [4], [126]–[129], 

and the energy usage in VMs, as in [130], [140], by considering only the CPU 

resource usage, as presented earlier in Section 3.3. Hence, the work presented 

in this thesis follows the same approach and considers only the CPU resource 

usage when modelling and identifying the energy consumption for the VMs. 

The new energy-aware profiling model works by fairly attributing the PM’s 

idle energy to VMs based on the number of VCPUs assigned to each VM. As 

shown in Equation 5.2, 𝑃𝑀𝐼𝑑𝑙𝑒𝑃𝑤𝑟 is the idle power consumption of the PM where 

the VMs are hosted; 𝑉𝑀𝑥𝑉𝐶𝑃𝑈 is the number of the VCPUs assigned to the given 

VM x; 𝑉𝑀𝐶𝑜𝑢𝑛𝑡 is the number of VMs running on the same PM; and 𝑉𝑀𝑦𝑉𝐶𝑃𝑈 is 
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the number of VCPUs assigned to a member of the VMs set hosted by the same 

PM. In this way, the idle energy of the PM is fairly attributed to heterogeneous 

and homogeneous VMs by considering the size of each VM in terms of the 

VCPUs assigned to them. 

 
𝑉𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟 = 𝑃𝑀𝐼𝑑𝑙𝑒𝑃𝑤𝑟 ×  

𝑉𝑀𝑥𝑉𝐶𝑃𝑈

∑ 𝑉𝑀𝑦𝑉𝐶𝑃𝑈
𝑉𝑀𝐶𝑜𝑢𝑛𝑡
𝑦=1

 (5.2) 

Also, this model fairly attributes the PM’s active energy to the VMs based 

on the VM CPU utilisation mechanism as well as the number of VCPUs assigned 

to each VM. As shown in Equation 5.3, 𝑃𝑀𝑃𝑤𝑟 is the total power consumption of 

the PM, from which the PM’s idle power is deducted in order to identify the PM’s 

active power; 𝑉𝑀𝑥𝑈𝑡𝑖𝑙 is the CPU utilisation of the given VM x; and 𝑉𝑀𝑦𝑈𝑡𝑖𝑙 is the 

CPU utilisation of a member of the VMs set hosted by the same PM. This way, 

the active energy of the PM is fairly attributed to heterogeneous and 

homogeneous VMs by considering the VM CPU utilisation and number of VCPUs 

assigned for each VM. 

𝑉𝑀𝑥𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑤𝑟 = (𝑃𝑀𝑃𝑤𝑟 − 𝑃𝑀𝐼𝑑𝑙𝑒𝑃𝑤𝑟) ×  
𝑉𝑀𝑥𝑈𝑡𝑖𝑙 × 𝑉𝑀𝑥𝑉𝐶𝑃𝑈

∑ (𝑉𝑀𝑦𝑈𝑡𝑖𝑙 × 𝑉𝑀𝑦𝑉𝐶𝑃𝑈)
𝑉𝑀𝐶𝑜𝑢𝑛𝑡
𝑦=1

 (5.3) 

Having identified the idle and active power, Equation 5.1 can be replaced 

with Equation 5.4 to identify the total power consumption for each VM at any 

given time. 

𝑉𝑀𝑥𝑃𝑤𝑟 = 𝑃𝑀𝐼𝑑𝑙𝑒𝑃𝑤𝑟  ×  
𝑉𝑀𝑥𝑉𝐶𝑃𝑈

∑ 𝑉𝑀𝑦𝑉𝐶𝑃𝑈
𝑉𝑀𝐶𝑜𝑢𝑛𝑡
𝑦=1

+ (𝑃𝑀𝑃𝑤𝑟 − 𝑃𝑀𝐼𝑑𝑙𝑒𝑃𝑤𝑟)

×  
𝑉𝑀𝑥𝑈𝑡𝑖𝑙 × 𝑉𝑀𝑥𝑉𝐶𝑃𝑈

∑ (𝑉𝑀𝑦𝑈𝑡𝑖𝑙 × 𝑉𝑀𝑦𝑉𝐶𝑃𝑈)
𝑉𝑀𝐶𝑜𝑢𝑛𝑡
𝑦=1

 
(5.4) 

Hence, the introduced energy-aware profiling model can fairly attribute the 

idle and active energy consumption of a PM to the same or different sizes of VMs 
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in terms of the allocated VCPUs for each VM. For instance, when both a small 

VM with 1 VCPU and a large VM with 3 VCPUs are being fully utilized on the 

same PM, the large VM would have triple the value in terms of energy 

consumption as compared to the small VM; so that the energy consumption can 

be fairly attributed based on the actual physical CPU resources used by each 

VM. 

In a Cloud environment, a single or part of a physical CPU can be 

allocated to one or many VCPUs, in which it allows resource overprovisioning. 

Thus, it is important to consider the right parameter, either the VCPUs or physical 

CPUs, that would reflect the actual usage of the physical CPU resources. The 

number of VCPUs parameter is considered in the introduced model because it 

represents and reflects the actual usage of the physical CPU resources by each 

VM; this finding has been obtained through empirical direct experiments on a 

real Cloud environment, as presented in the next section. 

5.2.1.1 CPUs Provision to VCPUs 

A VM can have one or a number of VCPUs assigned to one or a number of 

physical CPUs. For the introduced energy-aware profiling model, it is important 

to know and consider which parameter would reflect the actual usage of physical 

CPU resources when the VM is utilised. Thus, two experiments have been 

conducted on the Cloud testbed (see Section 5.3). The aim of these experiments 

is to identify whether the physical CPU parameter or the VCPU parameter 

reflects the actual usage of the physical resources and impacts the power 

consumption. In order to perform a statistical analysis to get the mean values 

and eliminate any anomalies of the results, each experiment has been repeated 

five times [140]. 
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Experiment 1: Assigning one physical CPU to one or many VCPUs. 

Two VMs have been setup to run on the same PM, which has eight physical CPU 

cores. The first VM, VM_A, has one VCPU assigned to one physical CPU, and 

the second VM, VM_B, has three VCPUs assigned to one physical CPU. The 

experiment has been designed to run at four stages and utilise one VM at each 

stage by stressing their VCPUs using a tool called Stress [160]. The experiment 

starts with the first stage utilising 1 VCPU on VM_A, the second stage utilising 1 

VCPU on VM_B, the third stage utilising 2 VCPUs on VM_B, and the fourth stage 

utilising 3 VCPUs on VM_B. Given the fact that each VM has been allocated to 

one physical CPU only, the aim is to explore the impact on the PM’s CPU 

utilisation and power consumption when these two VMs are being utilised. 

 Figures 5-2 shows the mean along with the variation of the results over 

five repeated runs for VM_A CPU utilisation. Recall, this VM_A has only one 

VCPU assigned to one physical CPU, and this VCPU has been fully utilised only 

during the first stage. Thus, its CPU utilisation is at 100% during the first stage 

and idling for the remaining stages. 
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Figure 5-2: Mean CPU Utilisation for VM_A 
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Figure 5-3 shows the mean along with the variation of the results for VM_B 

CPU utilisation. This VM_B has three VCPUs assigned to one physical CPU, and 

it utilises 1 VCPU during stage two, 2 VCPUs during stage three, and 3 VCPUs 

during stage four. Thus, its CPU utilisation is idling during the first stage, at 33% 

during the second stage, 66% during the third stage, and 100% during the fourth 

stage. 

 

Figure 5-4 shows the variation along with the mean of CPU utilisation and 

power consumption for the PM over five runs. These results indicate that the 

PM’s CPU utilisation and power consumption stay the same during the first and 

second stages, and then increase for each subsequent stages three and four. 

Thus, even though VM_B has three VCPUs assigned to only one physical CPU, 

the observed results reveal that VM_B actually uses three physical CPUs when 

it is utilising all of its VCPUs, as shown during the fourth stage. 
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Figure 5-3: Mean CPU Utilisation for VM_B 
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Experiment 2: Assigning half, one and multiple physical CPUs to one 

VCPU. 

Three VMs have been setup to run on the same PM, which has eight physical 

CPU cores. The first VM, VM_A, has one VCPU assigned to half of a physical 

CPU, the second VM, VM_B, has one VCPU assigned to one physical CPU, and 

the third VM, VM_C has one VCPU assigned to three physical CPUs. The 

experiment has been designed to run at three stages, starting with the first stage 

utilising 1 VCPU on VM_A, the second stage utilising 1 VCPU on VM_B, and the 

third stage utilising 1 VCPU on VM_C. Given the fact that each VM has been 

assigned with different number of physical CPUs, the aim is to explore the impact 

on the PM’s CPU utilisation and power consumption when these VMs are being 

utilised. 
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Figure 5-5: Mean CPU Utilisation for VM_A 
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Figure 5-6: Mean CPU Utilisation for VM_B 
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Figure 5-7: Mean CPU Utilisation for VM_C 
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As designed in this experiment, each one of the three VMs has one VCPU, 

which has been fully utilised during the first stage for VM_A, second stage for 

VM_B, and the third stage for VM_C, as shown on Figures 5-5, 5-6, and 5-7. Yet, 

as each one of the VMs has a different number of physical CPU assignment, it 

is expected that each VM would have a different impact on the actual usage of 

physical CPU when being fully utilised. 

However, the results on Figure 5-8 reveal that the hosting PM’s mean 

CPU utilisation and power consumption stay the same over the three stages. 

These results indicate that when each VM has one VCPU and is being fully 

utilised, it attempts to use one physical CPU regardless of whether it is being 

allocated half or multiple physical CPUs. 

Overall Results Discussion and Finding 

The first experiment reveals that even though when a VM has three VCPUs 

assigned to only one physical CPU, that VM can use up to three physical CPUs 
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Figure 5-8: Mean Power Consumption and CPU Utilisation for the PM 
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when being fully utilised. The main reason of having that is because the default 

settings of the current VIM, OpenNebula, along with the hypervisor, KVM, on the 

Cloud testbed support overselling the physical CPU resources. Moreover, there 

is no such policy implemented in the testbed to enforce hard restrictions on the 

assignment of physical CPUs to the VMs (VCPUs). Also, the second experiment 

reveals that when a VM has one VCPU assigned to either a half or many physical 

CPUs, that VM uses only one physical CPU when being fully utilised. 

Therefore, it can be concluded when each VCPU is being utilised on a 

VM, it will attempt to use one physical CPU regardless of the assignment of the 

physical CPUs to the VMs. Hence, the main finding of these two experiments is 

that the VCPU should be considered as the key parameter that would reflect the 

actual usage of the physical CPU resources by each VM. Nonetheless, it should 

be noted that in case a hard policy is enforced to limit the physical CPU usage 

by each VM based on the assigned number of physical CPUs, then the physical 

CPU parameter should be considered. 

5.3 Implementation 

In order to evaluate the capability of the introduced energy-aware profiling model 

to fairly attribute the energy usage for homogeneous and heterogeneous VMs, a 

number of direct experiments have been conducted on the Cloud testbed (see 

Section 4.5). This testbed currently supports OpenNebula [41] version 4.10.2 as 

the VIM, and KVM [161] hypervisor for the VMM. 

The power consumption at the PM level is obtained by the WattsUp meter 

[120]. The power consumption at the VM level is identified by the EPU, which 

works offline based on the introduced energy-aware profiling model. A profiler 
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facilitating the introduced model has been created in shell script. This profiler 

works offline by taking as input the CPU resource usage for the VMs along with 

the power usage for the PM on which the VMs are hosted. It then outputs the 

profiled power consumption for each VM based on the introduced energy-aware 

profiling model. 

5.4 Experiments and Evaluation 

5.4.1 Design of Experiments 

The overall aim of the experiments is to demonstrate that the new energy-aware 

profiling model is capable of fairly attributing the PM’s energy consumption to 

homogeneous and heterogeneous VMs based on their CPU utilisation and size. 

The size of the VM is identified by its capacity in terms of the number of VCPUs. 

In the following, if two VMs have the same number of  VCPUs on each, then they 

are considered homogeneous VMs. If one has one VCPU and the other has two 

or more VCPUs, then they are considered heterogeneous VMs. 

The experiments consider three sizes of VMs, a small VM with one VCPU, 

a medium VM with two VCPUs, and a large VM with three VCPUs. The first 

experiment is designed to run two small VMs on the same PM to show how the 

energy consumption is attributed to homogeneous VMs, as to be presented in 

Section 5.4.2. The second experiment is designed to run a small VM and a large 

VM on the same PM to show how the energy consumption is attributed to 

heterogeneous VMs, as to be presented in Section 5.4.3. The third experiment 

is designed to run a small VM, a medium VM, and a large VM on a PM, and also 

to run the same types of these three VMs on another PM having different 

characteristics, as to be demonstrated in Section 5.4.4. The aim of the third 
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experiment is to explore how the energy consumption is attributed to the same 

types of VMs when being run on different PMs. 

In terms of inducing workload on the VMs, Cloud9 [157], is a suitable 

software tool to use for fully stressing each VCPU on the VM, as introduced in 

Section 4.6.1. However, it is not flexible in terms of stressing the VCPUs of the 

VM at certain utilisation level, e.g. 80%. Therefore, the software tool Stress [160] 

is used along with cpulimit to generate workload on the VMs at any level of CPU 

utilisation. All of the VMs used in these three experiments are designed to be idle 

for 15 minutes at the first stage, and then actively run at 80% of CPU utilisation 

for another 15 minutes at the second stage. This way can help to explore how 

the idle and active power consumption of the PM are attributed to the VMs over 

time. All of the experiments are repeated five times and the statistical analysis is 

performed in order to consider the mean values of the results and eliminate any 

anomalies [140]. 

5.4.2 Experiment 1: Two Homogeneous VMs on a Single Host 

This experiment shows the results of attributing the power consumption to two 

homogeneous small VMs, VM_A and VM_B, running on the same PM. The mean 

power consumption and CPU utilisation for VM_A and VM_B are shown in 

Figures 5-9 and 5-10, respectively. Recall, both VMs are idle in the first stage 

during the first 15 minutes and active in the second stage with 80% of CPU 

utilisation during the remaining 15 minutes. The vertical error bars illustrate the 

standard deviation, which is very small and not noticeable for the CPU utilisation 

and the power consumption during the first stage. 
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Figure 5-10: Mean Power Consumption and CPU Utilisation for VM_B 
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Figure 5-11: PM Mean Power Consumption Attributed to each VM 
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Figure 5-9: Mean Power Consumption and CPU Utilisation for VM_A 
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Figure 5-11 shows the distribution of the PM’s mean power consumption 

to these two VMs, and Figure 5-12 shows the mean energy consumption per VM. 

As these two VMs are homogeneous and run the same workload, they have the 

same attribution of the PM’s idle and active energy consumption. Hence, the 

energy-aware profiling model is capable of fairly attributing the PM’s energy 

consumption to homogeneous VMs. 

5.4.3 Experiment 2: Two Heterogeneous VMs on a Single Host 

This experiment shows the results of attributing the energy consumption to two 

heterogeneous VMs, VM_A (small VM) and VM_B (large VM), running on the 

same PM. The mean power consumption and CPU utilisation for VM_A and 

VM_B are shown in Figures 5-13 and 5-14, respectively. Recall, both VMs are 

idling for the first 15 minutes and actively running with 80% of CPU utilisation for 

the remaining 15 minutes. Similarly, the vertical error bars are used to illustrate 

the standard deviation, which is very small and not clearly noticeable. 

Figure 5-12: Mean Energy Consumption per VM (for 30 minutes) 

0

2

4

6

8

10

12

14

16

18

20

VM_A (small) VM_B (small)

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
W

h
)

Idle Active Total



- 97 - 
 

 

 

 

0

20

40

60

80

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
P

U
 U

ti
lis

at
io

n

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
)

Time Index (1 per Minute)

Mean Power

Mean CPU Utilisation

Figure 5-13: Mean Power Consumption and CPU Utilisation for VM_A 
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Figure 5-14: Mean Power Consumption and CPU Utilisation for VM_B 
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Figure 5-15: PM Mean Power Consumption Attributed to each VM 
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Figure 5-15 shows the distribution of the PM’s mean power consumption 

to these two VMs over time, and Figure 5-16 shows the mean energy 

consumption per VM. Both VMs run at 80% of CPU utilisation, but as they are 

heterogeneous they have different attribution of the idle and active energy 

consumption, which fairly corresponds to their size. As having triple the size in 

terms of VCPUs, the energy consumption of the large VM, VM_B, during the idle 

and active stages is about three times larger than the energy consumption of the 

small VM, VM_A. Overall, the results show that the energy-aware profiling model 

is capable of fairly attributing the PM’s energy consumption to heterogeneous 

VMs based on their utilisation and size, which reflect the actual physical 

resources’ usage. 

5.4.4 Experiment 3: Heterogeneous VMs on Different Hosts 

This experiment shows the results of energy consumption attribution to three 

heterogeneous VMs, VM_A (small VM), VM_B (medium VM), and VM_C (large 

VM) running on a PM, Host_A. Additionally, this experiment also presents the 

results of attributing the same types of these three VMs on another PM, Host_B. 

Figure 5-16: Mean Energy Consumption per VM (for 30 minutes) 

0

5

10

15

20

25

30

VM_A (small) VM_B (large)

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
W

h
)

Idle Active Total



- 99 - 
 

5.4.4.1 Host A 

The mean power consumption and CPU utilisation for VM_A, VM_B and VM_C 

running on Host_A are shown in Figures 5-17, 5-18 and 5-19, respectively. As 

designed, all of the VMs are idling for the first 15 minutes and actively running 

with 80% of CPU utilisation for the remaining 15 minutes. 
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Figure 5-17: Mean Power Consumption and CPU Utilisation for VM_A 
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Figure 5-18: Mean Power Consumption and CPU Utilisation for VM_B 
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Figure 5-19: Mean Power Consumption and CPU Utilisation for VM_C 
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Figure 5-20: PM Mean Power Consumption Attributed to each VM 

Figure 5-21: Mean Energy Consumption per VM (for 30 minutes) 
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Figure 5-20 shows the distribution of the PM’s mean power consumption 

to all these three VMs over time, and Figure 5-21 shows the mean energy 

consumption per VM in terms of their idle, active and total energy. Like in the 

previous experiment, the VMs are heterogeneous in terms of the size and 

therefore have different attribution of the idle and active energy consumption. 

The energy consumption of VM_A is about two times smaller than VM_B and 

three times smaller than VM_C, which is fairly based on their CPU utilisation and 

sizes defined by the number of VCPUs each VM has. 

5.4.4.2 Host B 

The mean power consumption and CPU utilisation for VM_A, VM_B and VM_C 

running on Host_B are shown in Figures 5-22, 5-23 and 5-24, respectively. 

Recall, all of the VMs are idling in the first 15 minutes and actively running with 

80% of CPU utilisation for the remaining 15 minutes. 
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Figure 5-22: Mean Power Consumption and CPU Utilisation for VM_A 
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Figure 5-24: Mean Power Consumption and CPU Utilisation for VM_C 
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Figure 5-23: Mean Power Consumption and CPU Utilisation for VM_B 
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Figure 5-25: PM Mean Power Consumption Attributed to each VM 
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Figure 5-25 shows the distribution of the PM’s mean power consumption 

to all three VMs, and Figure 5-26 shows the mean energy consumption per VM 

in terms of their idle, active and total energy. As the VMs are heterogeneous in 

terms of the size, they consequently have different attribution of the idle and 

active energy consumption. The energy consumption of VM_A is about two times 

smaller than VM_B and three times smaller than VM_C, which is fairly based on 

their CPU utilisation and sizes defined by the number of VCPUs each VM has. 

5.4.5 Overall Results Discussion 

The energy-aware profiling model has been introduced to fairly attribute the PM’s 

energy consumption to homogeneous and heterogeneous VMs. Based on the 

results of the conducted experiments, the proposed energy-aware profiling 

model is capable of fairly attributing the PM’s energy consumption to 

homogeneous VMs, as shown in Section 5.4.2, and to heterogeneous VMs as 

shown in Section 5.4.3. The attribution mechanism of the PM power consumption 

considered in this model is based on the VMs’ CPU utilisation and their sizes in 

terms of the number of the VCPUs, which reflects the real usage of the physical 

Figure 5-26: Mean Energy Consumption per VM (for 30 minutes) 
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CPU resource impacting the real power usage. Hence, the real power 

consumption of a PM can be fairly attributed to the VMs owing to the introduced 

energy-aware profiling model, which addresses the second research question 

(Q.2 - see Section 1.3). 

The third experiment presented in Section 5.4.4 has shown the energy   

consumption attribution for three heterogeneous VMs running on the same PM. 

Also, it has revealed that when these three types of VMs run on a different PM, 

they can have different attribution of energy consumption based on the power 

characteristics of the PM. Host_B has less idle and active power consumption 

than Host_A; therefore, when these three types of VMs are running on Host_A, 

they have more energy consumption as compared to when running on Host_B, 

as shown in Figures 5-21 and 5-26, respectively. Hence, enabling energy-

awareness at the VM level can help the Cloud service providers to monitor the 

energy consumption of the VMs and, if necessary, migrate the VMs to another 

host to maintain their energy goals. 

Further, the conducted experiments reveal that a considerably large portion 

of the VMs’ total energy resides on their the idle energy, which is being attributed 

from the idle energy of the underlying PM. Thus, attributing the PM’s idle energy 

to the VMs, which is already considered in the proposed model, is very important, 

especially to alleviate the idle energy costs for the PMs, as it has been also 

argued in [138]. 

5.5 Summary 

The energy-aware profiling model for enabling energy-awareness at the VM level 

during the operation of Cloud services has been presented and discussed 
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thoroughly. This chapter has presented some experiments conducted on the 

Cloud testbed to verify that the number of VCPUs is the key parameter reflecting 

the actual usage of the physical CPU resources, and therefore this parameter 

has been used in the proposed model. Finally, the energy-aware profiling model 

has been evaluated in terms of its ability to fairly attribute the PM’s energy 

consumption to homogeneous and heterogeneous VMs by a number of direct 

experiments conducted on the Cloud testbed. 

 The following chapter will discuss the energy-aware prediction framework 

proposed in this thesis for forecasting the power consumption of the VMs prior 

to the deployment of Cloud services. 
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Chapter 6 Energy Prediction 

6.1 Overview 

This chapter firstly presents the energy-aware prediction framework that aims to 

forecast the power usage for VMs prior to service deployment, as presented in 

Section 6.2. This framework works by predicting the VMs workload based on 

historical workload data that has reoccurring patterns and correlating the 

predicted VM workload with physical resources to predict the power usage of 

VMs. A number of experiments along with their results are then presented in 

Section 6.4 to evaluate this framework for predicting the power consumption of 

VMs in future run-time. 

6.2 Energy-aware Prediction Unit 

The previous chapter has presented the EPU unit as the key component of the 

introduced energy-aware Cloud system architecture for enabling energy-

awareness of VMs during the service run-time at the operational level. The key 

component of this architecture to enable energy-awareness of VMs at future run-

time of the services is the EPREU unit, as highlighted in blue in Figure 6-1. The 

EPREU unit has a framework consisting of a number of models with the overall 

objective to forecast the energy consumption of VMs prior to service deployment 

by considering the type of VMs and their historical workload data. The predicted 

energy consumption of VMs can help service providers to deploy their services 

with enhanced energy-efficient decisions proactively. The details of the 

framework are introduced next in Section 6.2.1. 
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6.2.1 Energy-aware Prediction Framework 

As measuring the current power consumption is difficult and cannot be 

performed directly at the VM level, predicting the future power consumption is 

even more difficult at this level because it would rely on the predicted PM’s power 

to be used. Therefore, an energy-aware prediction framework that aims to 

forecast the power consumption for the new VMs prior to service deployment is 

introduced. This framework includes a model that first predicts the workload at 

the VM level. After that, this predicted VM workload is correlated to PM workload 

in order to estimate the new PM power consumption, from which the predicted 

VM power consumption would be based on. As depicted in Figure 6-2, this 

energy-aware prediction framework includes four main steps in order to forecast 

the VMs’ power consumption. 

 

Figure 6-1: Energy-aware Cloud System Architecture - EPREU 



- 108 - 
 

 

6.2.1.1 Predict VM Workload 

The first step of the framework is to predict the VM workload, which is the VM 

CPU utilisation. The deployment environment specifies the prerequisite 

information, which is the requested number of VMs along with their capacity in 

terms of VCPUs to execute the application, before such deployment process 

takes place. Using the ARIMA model, the VM workload is then predicted based 

on historical workload patterns retrieved from a knowledge database. As 

previously discussed in Section 2.3.3, there are five different types of workload 

patterns that can be experienced in Cloud applications; and two types of these 

workload patterns, namely static and periodic, are considered for the historical 

data to be used in this framework. Thus, this work is limited to only these two 

workload patterns due to time constraint, and the other patterns are considered 

as part of the future work. Despite considering only two patterns, this framework 

presents promising work as being the first for predicting the VM workload driven 

through Cloud application workload patterns. 

Figure 6-2: Energy-aware Prediction Framework 
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The ARIMA model is a time series prediction model that has been used 

widely in different domains owing to its sophistication and accuracy [162]. As 

previously discussed, a number of work, as in [151]–[154], have used ARIMA 

model to predict workload in the Cloud Computing domain; though their 

objectives do not consider predicting the energy consumption. Hence, the same 

approach using ARIMA model is applied in this thesis to predict the workload, 

but with the objective towards predicting the energy consumption of VMs. Unlike 

other prediction methods, like sample average, ARIMA takes multiple inputs as 

historical observations and outputs multiple future observations depicting the 

seasonal trend. It can be used for seasonal or non-seasonal time-series data. 

The type of seasonal ARIMA model is used in this research as the targeted 

workload patterns are reoccurring and showing seasonality in time intervals. In 

order to use the ARIMA model for predicting the VM workload, the historical time 

series workload data has to be stationary, otherwise it should be transformed to 

stationary. There are some ready-to-use methods available in any statistical 

packages, like R package [163], for transforming the non-stationary data to 

stationary. Some of these methods include data differencing and Box and Cox 

transformation [164], which are used in this research. Further, the model 

selection of ARIMA can be automatically processed in R package [163] and the 

best fit ARIMA model is selected based on Akaike Information Criterion (AIC) or 

Bayesian Information Criterion (BIC) value [162]. 

6.2.1.2 Predict PM Workload 

Once the VM’s workload is predicted, the second step is to understand how this 

workload would be reflected on the physical resources and predict the new PM’s 

workload, which is PM CPU utilisation, with consideration of its current workload 

as the PM may be running other VMs. Therefore, the relationship between the 
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number of VCPUs and the PM’s CPU utilisation should be characterised for the 

targeted PMs. For the purpose of this research, two different PMs in a Cloud 

testbed have been characterised with regression models, as presented in 

Section 6.3.1. Thus, based on the linear relation equation of VCPUs and CPU 

utilisation for each PM, the new increment of PM’s CPU utilisation can be 

estimated by considering the used ratio of the requested VCPUs for the VMs, 

𝑉𝑀𝑥𝑅𝑒𝑞𝑉𝐶𝑃𝑈𝑠, identified by the predicted VM CPU utilisation, 𝑉𝑀𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙. 𝑉𝑀𝐶𝑜𝑢𝑛𝑡 

is the number of VMs requested to run on the same PM. This new increment of 

PM’s CPU utilisation would need to be added to the current PM’s CPU utilisation, 

𝑃𝑀𝑥𝐶𝑢𝑟𝑟𝑈𝑡𝑖𝑙, in order to identify the new total of the predicted PM’s CPU 

utilisation, 𝑃𝑀𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙, as described in Equation 6.1. Alpha, 𝛼, and beta, 𝛽, are 

the interceptor and slope values obtained in the linear regression relation of 

VCPUs and CPU utilisation for each PM. The PM’s idle CPU utilisation, 

𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑈𝑡𝑖𝑙, is subtracted from the current PM’s CPU utilisation because the 

relation equation already considers this idle value. 

 
𝑃𝑀𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙 = (𝛽 × (∑ (𝑉𝑀𝑥𝑅𝑒𝑞𝑉𝐶𝑃𝑈𝑠 ×

𝑉𝑀𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙

100
)

𝑉𝑀𝐶𝑜𝑢𝑛𝑡

𝑦=1
) + 𝛼)

+ (𝑃𝑀𝑥𝐶𝑢𝑟𝑟𝑈𝑡𝑖𝑙 − 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑈𝑡𝑖𝑙) 

 

(6.1) 

6.2.1.3 Predict PM Energy Consumption 

After predicting the PM’s workload, the third step is to predict the PM’s energy 

consumption based on the correlation of this predicted workload with PM energy 

consumption. Thus, the considered PMs in the Cloud testbed need to be 

characterised in terms of their power consumption relation with CPU utilisation 

using regression models, as presented in Section 6.3.1. 
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Hence, the PM’s predicted power consumption, 𝑃𝑀𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟, can be 

identified using a linear relation with the predicted PM’s CPU utilisation, as shown 

in Equation 6.2. 𝛼 and 𝛽 are the interceptor and slope values obtained from the 

regression relation. 

 𝑃𝑀𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟 =  𝛽 × 𝑃𝑀𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙 +  𝛼 (6.2) 

However, as discussed previously, not all existing PMs may necessarily 

follow a linear power model  with their CPU utilisation. In this case, other 

regression models, e.g. polynomial, can be investigated and used to identify the 

relation between the power consumption and CPU utilisation of the targeted PM. 

6.2.1.4 Predict VM Energy Consumption 

The final step within this framework is to profile and attribute the predicted PM’s 

energy consumption to the new requested VM and to the VMs already running 

on that physical host based on the energy-aware profiling model introduced in 

Section 5.2.1. Thus, the predicted power consumption for the new VM, 

𝑉𝑀𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟, prior to deployment can be identified for the next interval time using 

Equation 6.3. 

𝑉𝑀𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟 =  𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟 ×
𝑉𝑀𝑥𝑅𝑒𝑞𝑉𝐶𝑃𝑈𝑠

∑ 𝑉𝑀𝑦𝑉𝐶𝑃𝑈
𝑉𝑀𝐶𝑜𝑢𝑛𝑡
𝑦=1

 

+  (𝑃𝑀𝑥𝑃𝑟𝑒𝑑𝑃𝑤𝑟 − 𝑃𝑀𝑥𝐼𝑑𝑙𝑒𝑃𝑤𝑟)

×  
𝑉𝑀𝑥𝑃𝑟𝑒𝑑𝑈𝑡𝑖𝑙 × 𝑉𝑀𝑥𝑅𝑒𝑞𝑉𝐶𝑃𝑈

∑ (𝑉𝑀𝑦𝑈𝑡𝑖𝑙 × 𝑉𝑀𝑦𝑉𝐶𝑃𝑈)
𝑉𝑀𝐶𝑜𝑢𝑛𝑡
𝑦=1

 
(6.3) 

6.3 Implementation 

The energy-aware prediction framework is introduced in this research to predict 

the power consumption of VMs prior to service deployment based on historical 
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static and periodic workload patterns. Thus, in order to evaluate this framework, 

a number of direct experiments have been conducted on the Leeds Cloud 

testbed to synthetically generate historical workload data. The historical data has 

been generated to represent real workload patterns of Cloud applications 

(discussed in Section 2.3.3), including static and periodic, by stressing the CPU 

on different types of VMs with the Stress tool [160] (see Section 5.4.1). The type 

of VMs is identified by their size in terms of the number of VCPUs, e.g. a small 

VM with one VCPU and a large VM with three VCPUs. The generated workload 

of each VM type has four time intervals of 30 minutes each. The first three 

intervals will be used as the historical data set for prediction, and the last interval 

will be used as the testing data set to evaluate the predicted results. 

The prediction process works offline by firstly predicting the VM workload 

using the auto.arima function in R package [163] to automatically select the best 

fit model of ARIMA based on AIC or BIC value. Once the VM workload is 

predicted, the process is then completed by going through the steps of the 

introduced framework to consider the correlation between the physical and 

virtual resources and consequently predict the power consumption of VMs prior 

to their deployment on PMs. As a key requirement of the framework, the targeted 

PMs should be characterised for once in terms of the relation between the 

number of VCPUs and the CPU utilisation as well as the relation between the 

CPU utilisation and power consumption. Therefore, two different PMs in the 

Cloud testbed have been characterised, as presented next in Section 6.3.1. 

6.3.1 Characterisation of Physical Machines 

The CPU usage of a VM has an effect on the underlying PM’s CPU usage, which 

also impacts the PM’s power consumption. As a VM can have and use one or 
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many VCPUs, it is important to understand the correlation between the targeted 

PM’s CPU utilisation and the number of used VCPUs. In the context of the 

introduced framework, it is also important to understand the correlation between 

the CPU utilisation and power consumption of a PM. 

In this regard, two different PMs on the Leeds Cloud testbed have been 

considered. The first PM, Host_A, has a four core X3430 Intel Xeon CPU, and 

the second PM, Host_B, has a eight core E3-1230 V2 Intel Xeon CPU. Two direct 

experiments have been conducted with the aim to 1) understand the relation 

between each PM’s CPU utilisation and the number of VCPUs, and 2) 

understand the power characteristics of each PM with their CPU utilisation. 

6.3.1.1 Host A 

The first experiment is designed to run a VM having four VCPUs at five stages 

on Host_A, with each stage running for five minutes. The VM is idling at the first 

stage and not utilising any VCPUs, and for the subsequent stages the VM is 

scaling up utilising one to four VCPUs. 
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Figure 6-3: Number of VCPUs vs CPU Utilisation for Host_A 
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By averaging the results of each stage, Figure 6-3 reveals a linear relation 

between the number of VCPUs and CPU utilisation for Host_A. Also, Figure 6-4 

reveals a linear relation between the CPU utilisation and power consumption for 

Host_A. 

The standard deviations of the CPU utilisation and power consumption for 

each of the five stages in this experiment are shown in Table 6-1, as they are 

very small and not noticeable in the figures. 

 

Table 6-1: Standard Deviation of the CPU Utilisation and Power 
Consumption for each Stage 

Stage CPU Utilisation Power Consumption 

1 0.12 0.09 

2 0.04 0.19 

3 0.03 0.24 

4 0.05 0.21 

5 0 0.2 
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Figure 6-4: CPU Utilisation vs Power Consumption for Host_A 
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Thus, using the linear relation along with the identified values of the slope 

and interceptor, as shown on Figure 6-3, can help predict the CPU utilisation of 

Host_A based on the ratio of the used VCPUs by the VMs, as discussed in 

Section 6.2.1.2. Likewise, using the linear relation shown on Figure 6-4 can help 

predict the power consumption of Host_A based on its predicted CPU utilisation, 

as discussed in Section 6.2.1.3. 

6.3.1.2 Host B 

Similarly, the second experiment is designed to run a VM having eight VCPUs at 

nine stages on Host_B, with each stage running for five minutes. The VM is idling 

at the first stage and not utilising any VCPUs, and for the subsequent stages the 

VM is scaling up utilising one to eight VCPUs. 

By averaging the results of each stage, Figure 6-5 reveals a linear relation 

between the number of VCPUs and CPU utilisation for Host_B. Yet, Figure 6-6 

reveals when the CPU utilisation is in the range 50% - 100%, the power 

consumption almost stabilises and does not increase further. With the linear 

model shown in Figure 6-6, the power consumption of Host_B is overestimated 

when the CPU utilisation is less than 15% and above 80%, and underestimated 

when the CPU utilisation is between 15% and 80%. 
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Figure 6-5: Number of VCPUs vs CPU Utilisation for Host_B 
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Therefore, a linear power model is not suitable for Host_B, and another 

regression model should be investigated to describe the power relation with the 

CPU utilisation. As shown in Figure 6-7, the relation of CPU utilisation and power 

consumption for Host_B can be suitably described using a polynomial model with 

order three. 
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Figure 6-6: CPU Utilisation vs Power Consumption for Host_B 
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Figure 6-7: CPU Utilisation vs Power Consumption for Host_B 
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The standard deviations of the CPU utilisation and power consumption for 

each of the nine stages in this experiment are shown in Table 6-2. 

Table 6-2: Standard Deviation of the CPU Utilisation and Power 
Consumption for each Stage 

Stage CPU Utilisation Power Consumption 

1 0.08 0.08 

2 1.09 0.07 

3 2.47 0.15 

4 0.02 0.11 

5 0.03 0.27 

6 0.03 0.2 

7 0.46 0.33 

8 0.05 0.22 

9 0 0.18 

 

All in all, using the linear relation along with the identified values of the slope 

and interceptor, as shown on Figure 6-5, can help predict the CPU utilisation of 

Host_B based on the ratio of the used VCPUs by the VMs, as discussed in 

Section 6.2.1.2. Likewise, the polynomial relation shown on Figure 6-7 can help 

predict the power consumption of Host_B based on its predicted CPU utilisation, 

as discussed in Section 6.2.1.3. 

6.4 Experiments and Evaluation 

6.4.1 Design of Experiments 

The overall aim of the experiments is evaluate the energy-aware prediction 

framework for forecasting the power consumption of the VMs prior to service 
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deployment based on historical static and periodic workload patterns. As 

discussed in Section 6.3, historical static and periodic workload patterns have 

been generated synthetically by conducting a number of experiments stressing 

the CPU utilisation on different types of VMs. In order to generate a static 

workload pattern, each VM type is run at 80% of CPU utilisation for four repeated 

time intervals, with 30 minutes runtime in each interval. To generate a periodic 

workload pattern, each VM type has four repeated time intervals, with each 

interval running for 30 minutes and having two peaks of CPU utilisation at 80%. 

The reason of having four time intervals is to use the first three intervals as 

historical data set for prediction and the last interval as the testing data set for 

evaluation purposes. A similar approach is used in [154] and followed in this 

research. 

The generated historical data, both VM workload and their power 

consumption, will be presented first in each experiment. The first three intervals 

of the generated VM workload are only used as historical data set by the 

framework to predict VM workload and power consumption for the next time 

interval. The last interval of the generated VM workload and power consumption 

will be used as testing data set to evaluate the predicted results. 

In terms of the design of the experiments: 

1) The first experiment is designed to forecast the workload and 

power consumption of a large VM based on historical static 

workload pattern, as presented in Section 6.4.2.  

2) The second experiment is designed to forecast the workload and 

power consumption of a large VM based on historical periodic 

workload pattern, as presented in Section 6.4.3.  
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3) The third experiment is designed to forecast the workload and 

power consumption of two types of VMs, small and large, each one 

based on different historical workload patterns, static and periodic, 

respectively. Also, this third experiment is designed to forecast the 

workload and power consumption of these two VMs when being 

run on two different PMs with different characteristics, as presented 

in Section 6.4.4. Thus, the aim of the third experiment is to evaluate 

the prediction for heterogeneous types of VMs with a mix of 

workload patterns when being run on two different hosts, having 

different power characteristics. 

For all experiments, the mean value along with the higher and lower 

values of 95 and 80 percent confidence intervals are considered and shown for 

the predicted workload of each VM based on the ARIMA model. Also, these 

predicted VM workload values are correlated with the physical resources via the 

proposed framework to get the mean along with the higher and lower values of 

the 95 and 80 percent confidence intervals for the predicted power consumption 

of each VM. 

6.4.2 Experiment 1: Large VM with Static Workload Pattern on  a 

Single Host 

This experiment shows the prediction results for a large VM about to run in a 

single PM, Host_A, based on historical static workload pattern. In terms of the 

historical and testing data sets used in this experiment, Figure 6-8 presents the 

generated VM workload along with its power consumption in four time intervals. 
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As discussed previously, the process of VM workload prediction within the 

framework uses the ARIMA model to forecast the next 30 minute period of 

workload, as shown in Figure 6-9, based on three historical intervals of workload 

data. Overall, the predicted VM workload results closely match the actual 

workload owing to the sophistication of the ARIMA model. 
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Figure 6-8: Historical Data for a Large VM Based on Static Workload 
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Based on this predicted workload, the VM power consumption is predicted 

using the remaining models within the framework, as previously discussed in 

Section 6.2.1. 

Figure 6-10 shows the predicted VM power consumption results, which 

have a small variation as compared to the actual power consumption. The reason 

of this variation is because there is an accumulation of errors from the previous 

steps within the framework, especially when correlating the PM’s CPU utilisation 

to the PM’s power consumption. 

 

As shown on Figure 6-10, the actual power consumption increases in the 

first part of the interval; this may be due to the thermal energy, which is not 

captured in this work, causing the machine’s fan to run faster and thus leading 

to an increase of PM power, which is then attributed to the VM. Despite this 

accumulation of error, the proposed framework can predict the VM power 

consumption accurately. 
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In terms of prediction accuracy, a number of metrics described in [165], 

[166] are used to evaluate the predicted VM workload and power consumption 

based on static workload, as shown in Table 6-3. The error value is calculated 

as the difference between the observed (actual) value and the predicted value, 

and the mean Error (ME) is used to calculate the average of all errors within the 

data set; the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) 

are scale-dependant accuracy measures that can be used when comparing 

between data sets having the same scale; the Mean Percentage Error (MPE) 

and Mean Absolute Percentage Error (MAPE) are scale-independent accuracy 

measures that can be used when comparing between different data sets [165], 

[166]. 

As previously discussed in Section 6.4.1, the actual data of the VM 

workload and power consumption is used as the testing data set for evaluation 

purposes. 

Table 6-3: Prediction Accuracy for a Large VM Based on Static Workload 
Pattern 

Accuracy Metric 

 
Predicted VM Workload 

Predicted VM Power 

Consumption 

ME -0.11 -1.75 

RMSE 0.42 3.28 

MAE 0.33 3.04 

MPE -0.14 -1.89 

MAPE 0.42 3.17 

 

The accuracy of the predicted VM workload is very high as its metrics‘ 

values are close to zero. The predicted VM power consumption is less accurate 

as compared with the predicted VM workload, but still achieves a good prediction 
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accuracy, with -1.89 of MPE. The reason of the predicted VM power consumption 

being less accurate than the predicted workload when compared to the actual 

data is due to the accumulated error when correlating this VM workload to 

physical resources. 

6.4.3 Experiment 2: Large VM with Periodic Workload Pattern on  a 

Single Host 

In this experiment, the prediction results for a large VM about to run in a single 

PM, Host_A, based on historical periodic workload pattern are presented. Figure 

6-11 presents the generated VM workload along with its power consumption 

used in this experiment as the historical and testing data sets. 

 

Figure 6-12 shows the results of the predicted versus the actual VM 

workload. Despite the periodic utilisation peaks, the predicted VM workload 

results closely match the actual results, which reflects the capability of the 

ARIMA model to capture the historical seasonal trend and give a very accurate 

prediction accordingly. 
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Figure 6-11: Historical Data for a Large VM Based on Periodic Workload 
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The proposed framework is also capable of predicting the power 

consumption of the VM with only a small variation as compared to the actual one. 

As shown in Figure 6-13, the actual VM power consumption in the middle of the 

interval shows a small peak, which was not followed by the predicted VM power 

consumption. This is again can be due to the thermal energy which is not 

considered in this work. 
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For evaluating the accuracy of the predicted VM workload and power 

consumption based on periodic workload, different accuracy metrics are used, 

as shown in Table 6-4. 

Table 6-4: Prediction Accuracy for a Large VM Based on Periodic 
Workload Pattern 

Accuracy Metric Predicted VM Workload Predicted VM Power 

Consumption 

ME -0.02 -3.04 

RMSE 1.51 5.76 

MAE 0.81 4.61 

MPE 2.58 -4.47 

MAPE 5.30 6.43 

 

Despite the high variation of the workload utilisation in the periodic 

pattern, the accuracy metrics indicate that the predicted VM workload achieves 

a good accuracy, with 2.58 of MPE. As previously discussed, the accumulated 

error when correlating the predicted VM workload with the physical resources in 

order to get the power affects the accuracy of the predicted VM power 

consumption. Therefore, the predicted VM power consumption is less accurate 

as compared with the predicted VM workload, but still achieves a good prediction 

accuracy with -4.47 of MPE. 

6.4.4 Experiment 3: Heterogeneous VMs and Workload Patterns on 

Different Hosts 

This experiment shows the prediction results for two types of VMs, a small VM 

and a large VM, based on static and periodic workload patterns, respectively, 

when running on two different PMs, having different characteristics. Section 

6.4.4.1 presents the prediction results of these two VMs prior to deployment on 
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Host_A, and Section 6.4.4.2 presents the prediction results of these two VMs to 

be deployed on Host_B. The aim of this experiment is to evaluate the capability 

of the proposed framework to predict the power consumption for a mix of VMs 

with a mix of workload patterns when being run on different PMs. 

6.4.4.1 Host A 

In terms of the historical and testing data sets, Figure 6-14 shows the generated 

workload along with the power consumption for the small VM, and Figure 6-15 

shows the generated workload along with the power consumption for the large 

VM, with both VMs running on Host_A at the same time. 

 

 

By using the ARIMA model within the proposed framework to forecast 

each VM workload, Figure 6-16 shows the predicted results versus the actual for 

the small VM, and Figure 6-17 shows those results for the large VM. 
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Figure 6-14: Historical Data for a Small VM Based on Static Workload 
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Overall, the predicted static workload for the small VM closely matches 

the actual workload, as depicted on Figure 6-16. Also, the predicted periodic 

workload for the large VM matches the actual workload, as shown on Figure 6-

17. Recall, this shows the strength of the ARIMA model for forecasting based on 

historical seasonal data, repeated patterns of the static and periodic workload. 
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Figure 6-15: Historical Data for a Large VM Based on Periodic Workload 
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Based on the predicted workload for each VM, their power consumption 

is predicted via the remaining steps within the framework. Figures 6-18 and 6-19 

show the predicted versus the actual results of the power consumption for the 

small VM and the large VM, respectively. 
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The predicted power consumption results for the small VM has a few 

variations as compared with its actual power consumption. As shown in Figure 

6-18, the actual power of the small VM fluctuates while the predicted power 

almost does not change over the whole interval period as it follows the predicted 

static workload of this VM; the reason of the changes of the small VM’s actual 

power is because of the changes in the actual PM’s power consumption during 

which the large VM’s workload starts to fluctuate for each of its two utilisation 

peaks within the same interval period. Hence, the predicted power consumption 

of the large VM, as shown on Figure 6-19, closely matches the actual power 

consumption since its periodic workload utilisation is the cause of the PM’s actual 

power to vary which follows the periodic pattern of this VM. 

In terms of the accuracy metrics, Table 6-5 shows the evaluation of the 

predicted workload and power consumption for the small VM based on static 

workload pattern, and Table 6-6 shows the evaluation of the predicted results for 

the large VM based on periodic workload pattern. 
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Table 6-5: Prediction Accuracy for a Small VM Based on Static Workload 
Pattern 

Accuracy Metric Predicted VM Workload Predicted VM Power 

Consumption 

ME -0.008 -0.29 

RMSE 0.04 2.88 

MAE 0.03 1.82 

MPE -0.01 -1.99 

MAPE 0.04 6.47 

 

Table 6-6: Prediction Accuracy for a Large VM Based on Periodic 
Workload Pattern 

Accuracy Metric Predicted VM Workload Predicted VM Power 

Consumption 

ME -0.17 -0.27 

RMSE 1.61 2.47 

MAE 0.96 1.59 

MPE -0.44 -0.58 

MAPE 6.56 2.47 

 

Despite the combination of different types of VMs with different workload 

patterns running on the same PM, the accuracy metrics, shown in Tables 6-5 

and 6-6, reveal that the predicted workload of the VMs achieves a good 

prediction accuracy, with -0.01 of MPE for the small VM and -0.44 for the large 

VM. Also, the results show a good prediction accuracy in terms of the predicted 

power consumption for the small VM with -1.99 of MPE and -0.58 for the large 

VM. Similar to the previous experiments, the accuracy of the predicted VMs 

power consumption is less that the predicted VMs workload due to the 

accumulation of error within the process of the proposed framework when 
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correlating the VMs predicted workload with the physical resources to estimate 

the VMs power prediction. Further, the prediction accuracy of the large VM’s 

workload is less than the small VM’s workload because of the high variation of 

the workload utilisation in the periodic pattern. However, the prediction accuracy 

of the large VM’s power consumption is more accurate than the small VM’s 

power consumption; as explained earlier, when the large VM’s actual workload 

utilisation fluctuates in each of its two peaks within the interval period, it affects 

the PM’s actual CPU resources and therefore the PM’s actual active power 

consumption to fluctuate as well. Hence, this change of PM’s active power is 

attributed to the VMs’ actual active power consumption, which matches the 

periodic pattern of the large VM but not the static pattern of the small VM. 

6.4.4.2 Host B 

In terms of the historical and testing data sets of the VMs on Host_B, Figure 6-

20 shows the generated workload and the power consumption for the small VM, 

and Figure 6-21 shows the generated workload along with the power 

consumption for the large VM. 

The workload prediction results obtained using the ARIMA model versus 

the actual values for the small VM and the large VM are shown in Figures 6-22 

and 6-23, respectively. As depicted on these two figures, the predicted workload 

of both VMs matches their actual workload values. 
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Figure 6-20: Historical Data for a Small VM Based on Static Workload 
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Figure 6-21: Historical Data for a Large VM Based on Periodic Workload 
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The predicted power consumption results versus the actual values for the 

small and large VMs are presented on Figures 6-24 and 6-25, respectively. The 

predicted power consumption of the small VM has a few variations as compared 

with the actual values. Again, the same reason with the variation of the actual 

power consumption for the small VM on Host_A is experienced in this small VM. 
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Figure 6-23: Workload Prediction for a Large VM Based on Periodic 
Workload Pattern 
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Pattern 
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The predicted power consumption for the large VM is closely matched 

with the actual power, as shown on Figure 6-25. 

In terms of the prediction accuracy, Table 6-7 shows the evaluation of the 

predicted results for the small VM, and Table 6-8 shows the evaluation of the 

predicted results for the large VM. 

Table 6-7: Prediction Accuracy for a Small VM Based on Static Workload 
Pattern 

Accuracy Metric Predicted VM Workload Predicted VM Power 

Consumption 

ME 0.0005 -1.55 

RMSE 0.04 2.08 

MAE 0.03 1.65 

MPE 0.0006 -9.28 

MAPE 0.04 9.76 
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Figure 6-25: Power Prediction for a Large VM Based on Periodic 
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Table 6-8: Prediction Accuracy for a Large VM Based on Periodic 
Workload Pattern 

Accuracy Metric Predicted VM Workload Predicted VM Power 

Consumption 

ME -0.05 -1.93 

RMSE 1.65 2.47 

MAE 0.87 1.94 

MPE 2.75 -4.96 

MAPE 7.09 4.98 

 

The values of the accuracy metrics shown on Tables 6-7 and 6-8 indicate 

that both VMs achieve a good prediction accuracy in terms of the workload, with 

0.0006 of MPE for the small VM and 2.75 for the large VM. 

The predicted power consumption results for both of these two types of 

VMs are a little overestimated when being run on Host_B, as shown on Figures 

6-24 and 6-25. When these two types of the VMs being run on Host_A, their 

power consumption are estimated with almost the same level of the actual power, 

as shown on Figures 6-18 and 6-19. The main reason of this is because of the 

underlying Host_B has an overestimation of the actual power consumption while 

Host_A has the same level of estimation with the actual power. Thus, Tables 6-

7 and 6-8 indicate that the predicted power consumption results for small and 

large VMs when being run on Host_B are less accurate than when being run on 

Host_A, as shown on Tables 6-5 and 6-6. 

6.4.5 Overall Results Discussion 

The aim of the proposed energy-aware prediction framework is to address the 

third research question (Q.3 – see Section 1.3) by forecasting the power 

consumption of the VMs prior to service deployment based on historical static 
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and periodic workload data. Based on the results of the conducted experiments, 

the proposed energy-aware prediction framework is capable of forecasting the 

workload and the power consumption with a good prediction accuracy for a VM 

based on historical static workload patterns, as presented in Section 6.4.2, and 

based on historical periodic workload pattern, as presented in Section 6.4.3. 

The third experiment shown in Section 6.4.4 revealed that the framework is 

also capable of forecasting workload and power consumption for mixed types of 

VMs, each with a different workload pattern, when being run on two PMs having 

different characteristics. Furthermore, this experiment has revealed that the 

predicted power consumption for the same type of VMs when being run on 

Host_B is less than the predicted power consumption when being run on Host_A 

since Host_B has less power characteristics in terms of the idle and active as 

compared to Host_B. Hence, enabling energy-awareness prior to the service 

deployment can help Cloud service providers to efficiently deploy the VMs on the 

suitable host that can achieve and maintain the energy goals of the VMs. 

6.5 Summary 

The proposed energy-aware prediction framework for forecasting the power 

consumption of VMs prior to service deployment has been presented and 

discussed comprehensively in this chapter. Also, this has been followed by a 

demonstration of a number of experiments along with their results to evaluate 

the capability of the proposed framework for forecasting the power consumption 

of VMs in future run-time based on historical static and periodic workload 

patterns running on different types of VMs. 

 The overall evaluation of the work presented in this thesis will be 

discussed in the next chapter. 
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Chapter 7 Thesis Evaluation  

7.1 Overview 

This chapter provides an overall evaluation of the work proposed in this thesis. 

It first presents an overview of the research motivation in Section 7.2. After that, 

an overview of the conducted experiments along with statistical assessment to 

evaluate their results are presented in Section 7.3. The discussion of the related 

work is then followed and compared with the work introduced in this thesis, as 

presented in Section 7.4. Finally, Section 7.5 concludes this chapter by 

discussing the limitations of the research based on the results obtained from the 

conducted experiments and the comparison with the related work. 

7.2 Motivation 

IT services offered by Cloud Computing technology have been widely used by 

individuals and businesses, especially SMEs. Cloud Computing has increasingly 

become popular owing to the incentive offered to the consumers to save the 

capital costs of buying IT resources to just renting the IT resources from the 

Cloud service providers with affordable costs based on their usage. In this way, 

the consumers can also save effort and costs to maintain the IT resources as it 

becomes the Cloud service providers’ responsibility. 

Cloud Computing infrastructures consist of a large amount of computing 

resources along with cooling resources that consume a large amount of energy 

in order to operate. This excessive use of energy has caused ecological issues 

in terms of the dissipated heat from these resources increasing gas emissions to 

the atmosphere. This has also caused economic issues especially with the 
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increased pricing of electricity. Hence, the excessive use of energy has been 

considered a major overhead to maintain by the Cloud service providers [3]. 

Therefore, managing the energy consumption has become very significant in 

Cloud Computing environments. 

To optimise the energy efficiency in a Cloud environment, energy 

information is first required. Software analysts of Cloud application would need 

this information in order to specify energy goals within the requirements to be 

followed by the software developers when creating and optimising the 

applications. Further, the developers would need to use programming models 

that incorporate this information and therefore provide energy-awareness to help 

them make energy efficient decisions during the construction of the applications. 

Moreover, energy information is also needed to be incorporated with other tools 

to help Cloud service providers enhance their decisions when deploying and 

managing the Cloud services and improving the energy efficiency of their 

infrastructures. Consequently, profiling and forecasting the energy consumption 

has become significantly a requirement in order to optimise the energy efficiency 

in Cloud environments. 

Cloud services can run on one or many VMs, which can be hosted on 

different PMs. The energy consumption of the PMs can be identified easily by 

using any of the on-the-shelf hardware Watt meters. However, the energy 

consumption of VMs cannot be identified easily as they do not have a physical 

hardware interface into which Watt meters can be attached, and it would 

therefore require modelling the energy consumption of the underlying PMs. 

Thus, identifying the energy consumption of the VMs has also become critical for 

Cloud Computing. 
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7.3 Results Analysis 

In this thesis, an energy-aware Cloud system architecture has been proposed in 

order to enable energy-awareness at the VM level in a Cloud environment. Within 

this architecture, an energy-aware profiling model has been proposed to profile 

the energy consumption of the VMs during service operation. Additionally, an 

energy-aware prediction framework has been proposed to forecast the energy 

consumption of VMs prior to the service deployment. 

Next, Section 7.3.1 will present an overall evaluation of the energy-aware 

profiling model, and Section 7.3.2 will present an overall evaluation of the energy-

aware prediction framework. 

7.3.1 Energy-aware Profiling Model 

A number of experiments have been demonstrated in Chapter 5 to evaluate the 

energy-aware profiling model, which is the key element facilitating the EPU 

component of the proposed architecture as discussed in Section 5.2. The aim of 

the model is to fairly attribute the PM’s energy consumption to homogeneous 

and heterogeneous VMs based on their CPU utilisation and size in terms of the 

number of VCPUs each VM has. The overall outcome of the results obtained 

from these experiments on a Cloud testbed reveals that  the proposed model is 

capable of fairly attributing the PM’s energy consumption, including their idle and 

active energy, to heterogeneous and homogeneous VMs. Further, the results of 

these experiments reveal that a large part of the VMs energy consumption is 

based on their idle energy consumption, being attributed form their underlying 

PM’s idle energy. Hence, as it has been also argued in [138], the attribution of 

the idle energy consumption of the PMs to the VMs is very critical for the Cloud 

service providers in order to alleviate the costs of the PMs’ idle energy. 
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As the energy consumption of VMs is inferred from the underlying PMs, 

the total energy consumption of all VMs running on a PM should be equal to the 

energy consumption of that PM. The work presented in [123] has attributed the 

PM’s active energy only to the VMs. In order to evaluate their profiling tool, the 

authors added the PM’s idle energy to the sum of all VMs’ energy consumption 

and compared it with the total energy consumption of the PM. Likewise, to further 

evaluate the energy-aware profiling model proposed in this thesis, the total 

energy consumption of the VMs, including their idle and active energy, is 

compared with the energy consumption of their underlying PM, as to be 

presented next for each experiment in Chapter 5. 

7.3.1.1 Experiment 1 

This experiment, as presented in Section 5.4.2, has shown the results of 

attributing the energy consumption to two small VMs, representing 

homogeneous VMs running together on a PM. Figure 7-1 shows the total energy 

consumption of these two VMs in comparison with the energy consumption of 

their hosting PM. 

 

Figure 7-1: All VMs Energy vs PM Energy (for 30 minutes) 
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As shown in the above Figure 7-1, the energy consumption of VM_A is 

17.25 Wh, and 17.21 Wh for VM_B. Despite having the same size and workload, 

there is a very small variation between the attribution of energy consumption to 

these two VMs. The main reason of this variation is because of the small variation 

of their CPU utilisation considered when attributing their active energy. It is 

important to note that these two small VMs have exactly the same attribution of 

idle energy consumption as it is based on their size in terms of number of VCPUs 

only and not considering their CPU utilisation.  

By aggregating the energy of these two VMs, their total energy 

consumption is the same as their underlying PM’s energy consumption, which is 

34.46 Wh. Thus, the model is capable of attributing the exact PM’s energy 

consumption, including its idle and active energy, to the VMs. 

7.3.1.2 Experiment 2 

This experiment has shown the results of the energy consumption attribution to 

a small VM and a large VM, representing heterogeneous VMs running altogether 

on the same PM, as presented in Section 5.4.3. As depicted on Figure 7-2, the 

energy consumption of VM_A is 10.60 Wh, and 30.93 for VM_B. VM_B has about 

three times of energy attribution as compared to VM_A, which corresponds fairly 

to their size as VM_B is three times larger than VM_A. 

By summing up the energy of these two VMs, their total energy 

consumption is equal to the energy consumption of their hosting PM, which is 

41.53 Wh. Hence, the model does not neglect any of the PM’s energy 

consumption when being attributed to heterogeneous VMs. 
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7.3.1.3 Experiment 3 

As presented in Section 5.4.4, the third experiment has shown the results of 

attributing the energy consumption to three heterogeneous VMs, small, medium 

and large, running on a PM, Host_A. Also, this experiment has shown the results 

of the energy consumption attribution to the same types of these three VMs when 

running on another PM, Host_B. 

Figure 7-3 shows that the energy consumption measured in Wh unit is 

7.23 for VM_A, 14.40 for VM_B, and 22.27 for VM_C, which corresponds fairly 

based on their size. By aggregating the energy consumption of these three VMs, 

their total energy consumption is 43.90 Wh, which is equal to their underlying 

PM, Host_A. 

When the same type of these three VMs are running on the other PM, 

Host_B, the energy consumption is 4.02 Wh for VM_A, 8.00 Wh for VM_B, and 

11.99 Wh for VM_C. Their total energy consumption is 24.01 Wh, which equally 

matches the energy consumption of Host_B, as depicted on Figure 7-4. 

Figure 7-2: All VMs Energy vs PM Energy (for 30 minutes) 
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7.3.2 Energy-aware Prediction Framework 

The energy-aware prediction framework proposed in this thesis aims to forecast 

the power consumption of VMs prior to service deployment based on historical 

static and periodic workload patterns. This framework is a key part of the EPREU 

component within the proposed architecture that enables energy prediction of 

the VMs at the deployment level, as discussed in Section 6.2. A number of direct 

Figure 7-3: All VMs Energy vs PM Energy - Host_A (for 30 minutes) 
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Figure 7-4: All VMs Energy vs PM Energy - Host_B (for 30 minutes) 
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experiments have been conducted in a Cloud testbed to evaluate the framework, 

as demonstrated in Chapter 6. The results obtained reveal that the framework is 

capable of forecasting the workload and power consumption with a good 

prediction accuracy for a VM prior to the deployment based on historical static 

and periodic workload patterns. Additionally, the results obtained indicate that 

the framework is also able to achieve a good prediction accuracy when 

forecasting the workload and power consumption for different types of VMs with 

different workload patterns prior to their deployment altogether on two PMs 

having different characteristics. 

Statistical significance tests can be applied using SPSS statistical tool 

[167] to further evaluate the results obtained. As there are two data groups, 

predicted and actual, the Two-Sample T test (also known as the Independent 

Samples T test) can be used to test whether the mean of the two samples are 

statistically significantly different or not [168]. Let the null and alternative 

hypothesis of the T test be expressed as follows: 

 Null hypothesis (𝐻0): there is no significant difference statistically between 

the mean of the two samples, which is supported when the p-value of the 

T test is larger than 0.05. 

 Alternative hypothesis (𝐻1): there is a significant difference statistically 

between the mean of the two samples, which is supported when the p-

value of the T test is equal or less than 0.05. 

In order to use the T test, the data should be normally distributed; 

otherwise the non-parametric Mann-Whitney U test (MWU), the well-known 

alternative to the T test for non-normal data, can be used to test whether the two 
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samples follow the same distribution or not [169]. Let the null and alternative 

hypothesis of the MWU test be expressed as follows: 

 Null hypothesis (𝐻0): the two samples statistically significantly follow the 

same distribution, which is supported when the p-value of the MWU test 

is larger than 0.05. 

 Alternative hypothesis (𝐻1): the two samples statistically significantly do 

not follow the same distribution, which is supported when the p-value of 

the MWU test is equal or less than 0.05. 

For data distribution normality testing, the well-known Shapiro-Wilk test 

can be used [170]. Let the null and alternative hypothesis of the Shapiro-Wilk 

test be expressed as follows: 

 Null hypothesis (𝐻0): the data is statistically significantly normally 

distributed, which is supported when the p-value of the Shapiro-Wilk test 

is larger than 0.05. 

 Alternative hypothesis (𝐻1): the data is statistically significantly not 

normally distributed, which is supported when the p-value of the Shapiro-

Wilk test is equal or less than 0.05. 

Next, the obtained predicted results of the VMs’ workload and power 

consumption for the three experiments discussed in Chapter 6 are evaluated in 

terms of their statistical significance with their corresponding actual data using 

SPSS with 95% of Confidence Interval. For each experiment, the actual and 

predicted data distribution is first tested for normality by the Shapiro-Wilk test. 

Moreover, if both actual and predicted data is statistically significantly normally 

distributed when their p-values are larger than 0.05, the Independent Sample T 

test is used; otherwise, the alternative non-parametric MWU test is used. 
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7.3.2.1 Evaluation Results 

Table 7-1 presents the results of the statistical significance tests for all three 

experiment. Beginning with the first experiment, it has shown the predicted 

workload and power consumption for one large VM prior to deployment on a 

single PM based on historical static workload pattern, as discussed in Section 

6.4.2. As shown in Table 7-1, the null hypothesis of the normality test in this 

experiment is rejected for both actual and predicted data of the VM workload and 

power consumption as their p-values of Shapiro-Wilk test are less than 0.05. The 

alternative hypothesis is supported that the data is statistically significantly not 

normally distributed. The non-parametric MWU test is then used, and it reveals 

a p-value larger than 0.05 for both VM workload and power consumption, 

meaning that null hypothesis is supported and therefore the predicted VM’s 

workload and power consumption statistically significantly have the same 

distribution as their corresponding actual data. 

In terms of the second experiment, it has shown the prediction results of 

the workload and power consumption for a large VM prior to deployment on a 

PM based on historical periodic workload pattern, as discussed in Section 6.4.3. 

The evaluation results of this experiment presented in Table 7-1 show that the 

actual and predicted data of the VM workload and power consumption are 

statistically significantly not normally distributed. Therefore, the MWU test is 

used, and it reveals that the predicted data of the VM workload and power 

consumption statistically significantly follow the same distribution as their 

corresponding actual data. 
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Table 7-1: Evaluation Results of the Energy-aware Prediction Framework 

 

As discussed in Section 6.4.4, the third experiment has shown the results 

of workload and power consumption prediction for two types of VMs, a small and 

a large, based on static and periodic workload pattern, respectively, prior to 

deployment on two different PMs, Host_A and Host_B. As shown in Table 7-1, 

the evaluation results of two VMs (on Host_A) show that the actual and predicted 

data of the workload and power consumption is statistically significantly not 

Data 
Shapiro-Wilk Test 

Actual–Predicted Data 
T Test MWU Test 

Exp. 1    

VM workload 0.004 – 0.001 - 0.104 

VM power 
consumption 

0.000 – 0.001 - 0.183 

Exp. 2    

VM workload 0.001 - 0.001 - 0.912 

VM power 
consumption 

0.001 - 0.001 - 0.128 

Exp 3. (Host_A)    

Small VM 
workload 

0.002 - 0.644 - 0.391 

Small VM power 
consumption 

0.001 - 0.000 - 0.169 

Large VM 
workload 

0.003 - 0.003 - 0.819 

Large VM power 
consumption 

0.002 - 0.003 - 0.615 

Exp 3. (Host_B)    

Small VM 
workload 

0.395 - 0.995 0.952 - 

Small VM power 
consumption 

0.000 - 0.002 - 0.000 

Large VM 
workload 

0.003 - 0.002 - 0.690 

Large VM power 
consumption 

0.002 - 0.001 - 0.287 
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normally distributed. The MWU test is therefore used, and it reveals that 

predicted data of the two VMs’ workload and power consumption statistically 

significantly have the same distribution as their corresponding actual data. 

In terms of the evaluation results of the small VM (on Host_B), the actual 

and predicted workload data is statistically significantly normally distributed as 

their p-values of the Shapiro-Wilk test are larger than 0.05. Therefore, the 

Independent Samples T test is used and reveals a p-value larger than 0.05 

implying that there is no significant difference statistically between the mean of 

the predicted workload and the mean of the actual workload. For the power 

consumption of the small VM, the MWU test is used as the actual and predicted 

data is not statistically significantly normally distributed. The p-value of the MWU 

test is less than 0.05 indicating that null hypothesis is rejected and the alternative 

hypothesis is supported that the distribution of the predicted power consumption 

statistically significantly has the same shape but it is shifted from the distribution 

of the actual power consumption; in other words, the results indicate that the data 

of either the predicted or actual power consumption tends to be larger than the 

other one. This outcome can be expected as the predicted power is larger than 

actual power almost across all the interval time, as can be seen in Figure 6-24. 

Also, the MPE of the predicted VM’s power consumption is -9.28, as shown in 

Table 6-7. 

Finally, the evaluation results of the large VM (on Host_B) show that both 

actual and predicted data of the VM workload and power consumption are 

statistically significantly not normally distributed. The MWU test is then used and 

shows that the predicted data of the workload and power consumption for the 

large VM statistically significantly have the same distribution as their 

corresponding actual data. 
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7.3.3 Overall Discussion 

All in all, the evaluation of the energy-aware profiling model, as presented in 

Section 7.3.1, has revealed that the total energy consumption of all VMs in each 

of the conducted experiments, discussed in Chapter 5, matches their underlying 

hosting PM. Hence, the proposed model is capable of profiling the exact amount 

of the PM’s energy consumption to the VMs; it neither attributes more energy or 

less energy to the VMs than the energy consumed by their underlying PM. 

In terms of the evaluation of the energy-aware prediction framework, as 

presented in Section 7.3.2, the predicted workload and power consumption of 

almost all VMs in each of the experiments, discussed in Chapter 6, equally have 

the same distribution as their corresponding actual data. The only exception 

within the obtained evaluation results is for the predicted power consumption of 

the small VM on Host_B that reveals not having equal distribution as the actual 

power consumption. As discussed earlier, this outcome corresponds to the 

observed results in Figure 6-24 that shows the predicted power consumption of 

this small VM is larger than its actual power for almost the whole interval time. 

7.4 Comparison of Research Approaches with Related Work 

Enabling energy-awareness at the VM level in Cloud environments has become 

significant and attracted the attention of many researchers. As discussed in 

Section 3.3.3, different approaches and models have been introduced to identify 

the energy consumption of VMs based on the energy consumption of the 

underlying PMs on which the VMs are running. Table 7-1 presents a comparison 

of these related energy models along with the model introduced in this thesis for 

profiling the energy consumption to the VMs. 



- 150 - 
 

In terms of the PM’s idle power consumption, as shown on Table 7-2, most 

of the related work does not consider it or attributes it evenly to the VMs, which 

would not be fair when heterogeneous VMs are running alongside on the same 

PM. The only exception is the model presented in [138] which considers 

attributing the PM’s idle power consumption to homogeneous and 

heterogeneous VMs; yet when part of the PM’s CPU and memory resources are 

assigned to the VMs, it only attributes part of the PM’s idle power to VMs, which 

is considered unfair as that given PM is switched on to run and maintain the 

status of the VMs; otherwise, that given PM could be switched off to save its idle 

power consumption. In terms of the PM’s active power consumption, four of the 

related work models, [123], [134], [138], [140], attribute it to homogeneous VMs 

only, as shown in Table 7-2. The other models, presented in  [130], [141], [142], 

consider attributing the PM’s active power to homogeneous and heterogeneous 

VMs, but using different approaches. The model introduced in [130] is the only 

model that has a similar approach to the one introduced in this thesis when 

attributing the PM’s active power consumption to the VMs; however, their model 

still lacks fair attribution of the PM’s idle power consumption to heterogeneous 

VMs. 
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Table 7-2: Comparison of VMs Energy-aware Profiling Models 
 

   Criteria 

By 

Attributing PM’s idle 
power usage? 

(Mechanism/Resources) 

Attributing PM’s active power 
usage? 

(Mechanism/Resources) 

Type of VMs 
(Heterogeneous/
Homogeneous) 

(Kansal et 
al, 2010) 

[123] 

Not considered. 

Yes. All PM’s active power is 
attributed to VMs based on 

linear models of PM’s power and 
resources usage, like CPU, 

memory, and disk, by each VM. 

Considered 
homogeneous VMs 

only. 

(Quesnel et 
al, 2013) 

[138] 

Yes. Part of the PM’s idle 
power is attributed to VMs 
based on the assigned PM 

resources, memory and 
CPU, and the utilisation of 
these resources by each 

VM. If any of the PM’s CPU 
or memory resources is 

fully assigned to VMs, then 
all PM’s idle power is 

attributed to VMs. 

Yes. All PM’s active power is 
attributed to VMs based on their 

CPU utilisation. 

Considered 
heterogeneous and 
homogeneous VMs 
for idle power, and 
only homogeneous 
VMs for the active 

power. 

(Zakarya 
and Gillam, 
2016) [130] 

Yes. All PM’s idle power is 
evenly attributed to the 

running VMs. 

Yes. All PM’s active power is 
attributed to VMs based on the 

allocated physical CPU 
resources to each VM and the 
CPU utilisation by each VM. 

Considered 
heterogeneous and 
homogeneous VMs 

for active power, 
but only 

homogeneous VMs 
for the idle power. 

(Kavanagh 
et al, 2015) 

[140] 

Yes. All PM’s idle power is 
evenly attributed to the 

running VMs. 

Yes. All PM’s active power is 
attributed to VMs based on their 

CPU utilisation. 

Considered 
homogeneous VMs 

only. 

(Jiang et al, 
2013) [134] 

Yes. All PM’s idle power is 
evenly attributed to the 

running VMs. 

Yes. All PM’s active power is 
attributed to VMs based on a 

two dimensional-LUT that 
returns a specific power value 
based on given CPU utilisation 
and LLC miss rate by each VM. 

Considered 
homogeneous VMs 

only. 

(Chengjian 
et al, 2013) 

[141] 

Not considered 

Yes. All PM’s active power is 
attributed VMs based on 

performance event counters of 
CPU and memory components. 

Considered 
homogeneous and 

heterogeneous 
VMs for the active 

power only. 

(Yang et al, 
2014) [142] 

Not considered. 

Yes. All PM’s active power is 
attributed to VMs by using SVR 

model to estimate the power 
consumption of VMs based on 

their relationship with the 
selected performance counters 
of CPU, memory, disk, cache, 

process, and network 
components. 

Considered 
homogeneous and 

heterogeneous 
VMs for the active 

power only. 

This 
Research 

Yes. All PM’s idle power is 
fairly attributed to the VMs 

based on their size in terms 
of the number of VCPUs. 

Yes. All PM’s active power is 
attributed to the VMs fairly 

based on their CPU utilisation 
and size. 

Considered 
homogeneous and 

heterogeneous 
VMs for the active 

and idle power. 



- 152 - 
 

The energy-aware profiling model presented in this thesis is different 

when compared to existing models found in the literature. It considers attributing 

the PM’s idle power consumption to heterogeneous and homogeneous VMs 

based on their size in terms of the number of VCPUs each VM has, which reflects 

the actual PM’s CPU resource and power usage as discussed in Section 5.2.1.1. 

Also, the PM’s active power consumption is attributed to homogeneous and 

heterogeneous VMs based on their CPU utilisation and size. Thus, the model 

introduced in this research is the only one that considers homogeneous and 

heterogeneous VMs when attributing both the idle and active power 

consumption. 

In terms of forecasting the future energy consumption of VMs prior to 

deployment, it would first require forecasting their workload, which can be then 

translated into energy based on their physical resource usage. Most of the 

related work, as discussed in Section 3.3.4, presented different approaches to 

predict the workload in order to meet the demand and efficiently provision the 

resources in Cloud environments, yet not considering the energy consumption 

and energy efficiency of the resources. However, only the work presented in 

[155] considers predicting the workload and translating it into energy 

consumption in Cloud environment. The following Table 7-3 presents a 

comparison of these related work along with the work presented in thesis for 

forecasting. 
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Table 7-3: Comparison of Forecasting Approaches 
 

 

As shown in Table 7-3, the work presented in [155] is the only work that 

has a similar approach to the one introduced in this thesis in terms of forecasting 

the workload and then translating it into energy consumption. Nonetheless, their 

approach is only focused at the PM level, whereas the prediction approach 

introduced in this thesis focuses at both the VM and PM levels. The approach of 

the framework presented in this thesis first forecasts the workload of the VMs 

and then correlates the predicted VM workload with the PM to estimate the PM’s 

workload and power consumption, from which the power consumption for the 

VMs is predicted. 

 

 

Criteria 

By 

Predicting workload? 

(Type of workload) 

Predicting Energy? 

(Level of prediction) 

(Patel et al, 
2015) [148] 

Yes. The considered workload is PM 
CPU utilisation. 

Not considered 

(Zhang et al, 
2015) [149] 

Yes. The considered workload is PM 
CPU utilisation, network throughput, 

and data storage size. 
Not considered 

(Khan et al, 
2012) [150] 

Yes. The considered workload is VM 
CPU utilisation. 

Not considered 

(Fang et al, 
2012) [151] 

Yes. The considered workload is PM 
CPU utilisation. 

Not considered 

(Huang et al, 
2013) [153] 

Yes. The considered workload is PM 
CPU utilisation and memory usage. 

Not considered 

(Calheiros et al, 
2015) [154] 

Yes. The considered workload is 
Number of users requests. 

Not considered 

(Farahnakian et 
al, 2013) [155] 

Yes. The considered workload is PM 
CPU utilisation. 

Yes. Energy prediction 
at PM level. 

This Research 
Yes. The considered workload is the 

VM CPU utilisation and PM CPU 
utilisation. 

Yes. Energy prediction 
at the PM and VM 

levels. 
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7.5 Limitations 

The direct experiments conducted on the Cloud testbed along with their 

evaluation demonstrate very promising results for enabling energy-awareness at 

the VM level during the operation and prior to the deployment of the services in 

Cloud environments. Though, there are a few limitations, as follows: 

 The proposed energy-aware profiling model only considers the CPU 

resource, VM CPU utilisation and number of VCPUS, when profiling the 

energy to the VMs. Other resources usage such as memory, storage and 

network throughput are not taken into account. However, many of the 

related work concluded that the CPU is the only component that affects 

the power consumption and any other components do not have any 

impact on the power or indirectly impact the power through triggering the 

CPU component. 

 The proposed energy-aware prediction framework does not consider the 

thermal energy when predicting the PM’s power consumption. 

Considering the thermal energy can be useful as it can have an effect on 

the PM’s power consumption, as discussed in the results of experiments 

1 and 2 demonstrated in Chapter 6. Despite the predicted VM’s power 

consumption in these two experiments achieved high accuracy without 

consideration of the thermal energy, their prediction could be even more 

accurate if the thermal energy was considered. 

 The step of predicting the VM workload in the proposed energy-aware 

prediction framework is based on historical static and periodic workload 

patterns only; other patterns such as once-in-a-lifetime, unpredictable, 

and continuously changing can be considered. Yet, this is still very 



- 155 - 
 

encouraging as being the first work to present VM workload prediction 

driven through the patterns of Cloud application workload. Additional 

patterns can be further explored in the future. 

7.6 Summary 

This chapter has presented an overall evaluation of the work introduced in this 

thesis. It has firstly revisited the research motivation, then provided an overall 

evaluation of the conducted experiments along with statistical significance of 

their results. After that, this chapter has presented a comparison between the 

related work and the work introduced in this thesis and found that the proposed 

energy model is the only model that considers both homogeneous and 

heterogeneous VMs when attributing their idle and active energy. Also, it has 

found that the prediction framework is the only work that predicts the VM 

workload and correlates it with the physical resources to predict the PM workload 

and power consumption, and therefore predict the VM power consumption. This 

chapter has finally discussed the limitations of the research. 

The next chapter will conclude by providing an overall summary of the 

work presented in this thesis, the main contributions and future work directions. 
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Chapter 8 Conclusion 

This chapter concludes this thesis and provides a summary of the conducted 

research, as presented in Section 8.1. The key contributions of the research are 

followed and discussed in Section 8.2. Finally, some future work directions that 

can be explored based on the work presented in this research are suggested 

and discussed in Section 8.3. 

8.1 Research Summary 

Energy consumption has become one of the most important overheads to 

maintain by the Cloud service providers [3], as it is being extensively consumed 

to operate the large computing along with the cooling resources in Cloud 

environments. Consequently, efficiently maintaining and optimising the energy 

consumption in Cloud Computing environments has increasingly become an 

important research topic for both academia and industry. In order to optimise the 

energy efficiency in Cloud environment, energy-awareness should be provided 

in different layers of Cloud Computing. The software analysts can benefit from 

energy information to identify energy goals within the requirements of the Cloud 

application. Incorporating energy information in programming models can help 

the software developers obtain energy-awareness and enhance their 

programming decisions while constructing the applications. Further, the Cloud 

service providers can benefit from obtaining energy information to enhance their 

decisions to efficiently deploy and manage the Cloud services and improve the 

energy efficiency of their Cloud resources. Thus, profiling and predicting the 

energy consumption in Cloud environments has become very critical in order to 

achieve energy efficiency enhancement of the Cloud resources. 
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Therefore, the work presented in this thesis aims at enabling energy-

awareness in Cloud environment. The energy consumption of the PMs can be 

easily identified by using any of the hardware Watt meters, but identifying the 

energy consumption of VMs is challenging and requires the use of the 

appropriate profiling model that infers their energy from their underlying PMs. 

Hence, an energy-aware Cloud system architecture is introduced along with a 

profiling model and a prediction framework to enable energy awareness at the 

VM level during the operation and deployment of Cloud services. 

 Chapter 2: introduces the background of the research in terms of Cloud 

Computing aspects including its definition, services types, deployments 

types and virtualisation technology. A detailed description of the Cloud 

system architecture is presented highlighting all main layers along with 

their roles and interactions. Additionally, properties, design patterns and 

workload patterns of Cloud applications are discussed. Then, the issues 

in terms of energy consumption and energy efficiency in Cloud Computing 

are highlighted along with the streams and trends towards addressing 

these issues. 

 Chapter 3: focuses on reviewing the related work towards energy efficient 

Cloud Computing. It starts by discussing the existing work on energy-

aware computing that emphasised the importance of incorporating energy 

information in different layers of the Cloud stack, e.g. within the 

requirement engineering to specify energy goals, the programming 

models to aid the developers with energy-awareness to write efficient 

code that would consume less energy when operating, and the tools used 

for deployment and operation of the Cloud services to efficiently manage 

the resources with energy awareness in mind. In addition, the related work 
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on profiling and modelling the energy consumption at both PM and VM 

levels during service operation in Cloud environments is reviewed. Finally, 

existing models for predicting the workload and energy consumption in 

Cloud environments are discussed. 

 Chapter 4: reviews the motivation and importance of energy-awareness 

in Cloud environments. The proposed energy-aware Cloud system 

architecture aiming to enable energy-awareness at the VM level is 

introduced. Detailed descriptions of the architecture’s main components 

along with their roles and how they interact to achieve their objectives are 

discussed. Some early experiments along with their results are 

demonstrated to evaluate the ability of the proposed architecture for 

enabling energy-awareness in a Cloud environment. 

 Chapter 5: introduces the energy-aware profiling model used as the key 

part of the proposed Cloud system architecture presented in Chapter 4 for 

enabling energy-awareness at the VM level during the service operation 

time. This model focuses on profiling the energy consumption of 

homogeneous and heterogeneous VMs fairly based on their CPU 

utilisation and size. A thorough discussion of the development of this 

model is provided. A number of direct experiments are conducted on a 

Cloud testbed to evaluate the capability of the model of fairly attributing 

the PMs’ energy consumption to homogeneous and heterogeneous VMs 

during the operation of Cloud services. 

 Chapter 6: presents the energy-aware prediction framework used as the 

key part of the architecture discussed in Chapter 4 for providing energy-

awareness at the VM level prior to the deployment of the Cloud services. 

This framework focuses on predicting the VM workload and then 
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correlating it with the physical resources to get the predicted power 

consumption of the VMs prior to deployment. A number of direct 

experiments on the Cloud testbed are demonstrated along with their 

results to evaluate the framework in terms of its capability to predict the 

workload and power consumption of the VMs prior to the deployment of 

Cloud services. 

 Chapter 7: provides an overall evaluation of the work presented in this 

thesis. A summary of the research motivation is first presented. This is 

followed by an overview of the conducted experiments in Chapters 5 and 

6 along with further evaluation and statistical analysis of the obtained 

results. Furthermore, a comparison of the work introduced in this thesis 

with the related work is provided along with a discussion in terms of their 

novelty. Finally, the limitations of the research are discussed. 

8.2 Research Contributions 

In order to address the research questions of this thesis (see Section 1.3), a 

number of contributions have been presented in this thesis and they are mainly 

summarised as follows: 

 An energy-aware Cloud system architecture. This architecture has been 

proposed in order to address the first research question (Q.1) by enabling 

energy-awareness in Cloud environments. Two key components, EPU 

and EPREU, are introduced within this architecture in order to identify the 

energy usage at the VM level during the operation as well as prior to the 

deployment of Cloud services. Early results presented in Chapter 4 show 
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that the architecture is capable of identifying the energy consumption of 

the VMs inferred from the energy consumption of their underlying PMs. 

 An energy-aware profiling model. This model is the key element of the 

EPU component within the proposed architecture aiming to enable 

energy-awareness at the VM level during service operation. As different 

sizes of VMs can be hosted on the same PM, this model has been 

developed to address the second research question (Q.2) by fairly 

attributing the PMs’ energy consumption to the VMs with consideration of 

their homogeneity and heterogeneity. The results presented in Chapter 5 

show that this model is capable of profiling the PMs’ energy consumption 

to homogeneous and heterogeneous VMs fairly based on their CPU 

utilisation and size. 

 An energy-aware prediction framework. This framework is the key 

element of the EPREU component within the architecture focusing on 

enabling energy-awareness at the VM level prior to the service 

deployment. A number of models have been introduced within this 

framework with the overall objective to address the third research 

question (Q.3) by predicting the power usage of the VMs prior to 

deployment. Firstly, the VM workload is predicted using ARIMA model 

based on historical static and periodic workload patterns. Then, the 

predicted VM workload is correlated with the physical resources using 

regression models introduced within this framework in order to get the 

predicted PM’s power consumption, based on which the predicted power 

consumption for the VMs is identified. The results presented in Chapter 6 

show that high prediction accuracy of the VMs’ power consumption along 

with their workload has been achieved by the introduced framework. 
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8.3 Future Work Directions 

To further extend the work presented in this thesis, there are some directions 

that can be followed, as suggested next: 

 The energy-aware profiling model presented in this research focuses on 

enabling energy-awareness for the VM instances in a Cloud environment, 

exploiting hypervisor-based virtualisation. With the evolving technologies 

of container-based virtualisation in Clouds [57], [63], a promising 

extension of the model in that context is to consider attributing the PMs’ 

energy consumption to container instances instead of VM instances. This 

extension would be useful to enable energy-awareness in Cloud 

environments not only based on hypervisor-based virtualisation but also 

on container-based virtualisation. 

 The energy-aware prediction framework presented in this thesis does not 

consider the impact of the thermal energy when predicting the power 

consumption of PMs. An extension to this is to also consider the thermal 

energy when correlating the PM’s CPU utilisation to the power 

consumption. This would be a beneficial enhancement which may 

increase the accuracy of the predicted power consumption of the PMs, 

and hence the VMs. 

 The VM workload prediction within the framework considers only historical 

static and periodic workload patterns. Another suggested extension is to 

consider additional Cloud applications workload patterns, e.g. 

unpredictable, once-in-a-lifetime, and continuously changing. This 

extension would be valuable to broaden the scope of using the framework 
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to predict the workload and power consumption of the VMs based on 

different types of workload patterns.
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