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Abstract  

The awareness of global climate change by emissions of greenhouse gases from fossil 

fuel combustion is widely known by current society. Polymer Electrolyte Fuel cell 

(PEFC) technology has been a very promising  clean technology with high efficiency 

that has been used in a wide range of portable, automotive and stationary applications. 

The fuel cell research has been developing very rapidly and successfully  in the last 

few years. However, some issues remain largely unresolved, namely water 

management and high cost of the PEFC component. One of the efficient and cost-

effective ways to improve the design of the PEFC and consequently resolve the above 

mentioned issues is through modelling. However, the built PEFC models need to be 

fed with accurate transport coefficients to enhance their productivity. One of the most 

important transport coefficients is the gas permeability of the PEFC porous media 

which highly affects the convective flow. 

Therefore, in this thesis, thorough experimental studies have been conducted to 

investigate the gas permeability of gas diffusion media used in PEFCs. The focus  has 

been on the effects of the following on the gas permeability of the gas diffusion layers 

(GDLs): (i) type of carbon black used in the microporous layers (MPL) attached to 

the GDL, (ii) carbon and polytetrafluoroethylene (PTFE) loading, and (iii) the 

thickness of the MPL.  

Further, a novel method has been proposed to estimate the penetration of the MPL 

into the carbon substrate  (i.e. the GDL before being coated with the MPL ink). Also, 

the effect of sintering on the gas permeability of the MPL has been investigated for 

the first time.   
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Chapter 1 

Introduction 

Energy is one of the most fundamental parts of human living and plays an important role 

in our society. Basically, we use energy to do work, light our cities, power our vehicles, 

planes and rockets, warm our foods, homes, play music and power machinery in factories. 

In fact, civilization and development would come to an end without energy. Energy comes 

from many different natural sources such as wind, sun, water, fossils, animals, plants and 

the Earth, Philibert (2007) and Mattick et al. (2010). However, people were learning how 

to use many of these different energy sources and types of energy that they produce before 

and after the industrial revolution, Barge et al. (2014). 

Also, the energy sources are classified into three major groups: nuclear power, fossil fuels 

and alternative energy, Ladislaw (2011). Each energy source is a system which makes 

energy in a certain way, for instance nuclear power is a form of energy which arises from 

a reaction between atomic nuclei. This form of energy comes mainly from nuclear fission. 

Fossil fuels include oil, natural gas and coal. When the fossil fuel has been burnt, energy 

is generated and used as a source of heat to make steam from water, and this is used for 

driving a turbine. This turbine makes electricity with the assistance of a generator, 

Williams (2006) 

Clearly, the traditional burning of fossil fuels, such as coal, to create power is effective, 

but very damaging to the environment since it releases harmful greenhouse gases, such 

as carbon dioxide (CO2), methane, nitrogen oxides, hydrofluorocarbons, 

perfluorocarbons, particulate emissions, and other pollutant that contribute to global 

warming and climate change, Hoffmann (2012). To control these environmental 
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challenges, there is a need to employ the endless sources of alternative (renewable) energy 

that are available in mother nature. Moreover, renewable energy has been referred to as 

the various forms of energy that are produced by means of other than the traditional 

burning of fossil fuels, Appleby (1992), and the advantage is that the Energy sources are 

endless and do not produce any pollution (Ladislaw, 2011; Williams, 2006 and 

Merewether, 2003). 

However, to understand how renewable energy use can assist in the preservation of the 

delicate ecological balance of the planet, and help conserve the non-renewable energy 

sources, such as fossil fuels, it is important to know what types of alternative energy are 

connected to eliminating or minimising the emission of conventional pollution (Clean 

Energy, 1999) and Kulikovsky et al. (1999). Currently, the trend has been towards the 

use of renewable sources for energy, such as biofuel, hydropower and fuel cells 

(Hoffmann, 2012). Fuel cells are promising technology for use as an alternative  energy 

source in our World today, Barge et al. (2014). 

A fuel cell is referred to as a device that can directly convert chemical energy into 

electrical energy by continually feeding it with fuel, such as hydrogen gas (Figure 2.1). 

The fuel cell is used to address the problems associated with the use of fossil fuels, such 

as global warming and the greenhouse effect. There are a variety of fuel cells that have 

been developed and they are identified by their composition of their electrolyte, which 

could be either an alkaline solution, phosphoric acid, a molten carbonate, a solid metal, 

or solid polymer membrane, Barbir (2013). The applications and use of these different 

electrolytes depend on the applications on which the fuel cell systems are required. In 

general, hydrogen is the fuel used in most fuel cell systems and it can be extracted by 

several procedures from many hydrogen-carriers, including water, gasoline natural gas, 
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and alcohols, Lister and Mclean (2004), Barbire, (2013) and Barge et al. (2014).   Fuel 

cells are classified into different types, according to the electrolyte employed. There are 

six popular types of fuel cells that have been identified by scientists, Koido et al. (2008) 

and Lin et al. (2004), namely: solid oxide, molten carbonate, alkaline, direct methanol, 

phosphoric acid and solid polymer fuel cells, Jena and Gupta (1999) and Belkhiri et al. 

(2011). However, each of these fuel cells types operate slightly differently, Singh et al. 

(1999). 

Fuel cell technology is creating a suitable and energy secure hydrogen-driven economy 

through the widespread use of fuel cells. The fuel cell innovation holds the potential to 

provide major environmental, energy, and economic benefits that advance critical 

national environmental goals (Jena and Gupta, 1999). In the current energy producing 

technologies, fuel cells offer the most promising technologies for delivering clean and 

efficient power for automotive, industrial, residential and consumer applications (Lister 

and Mclean, 2004; and Jena and Gupta, 1999). 

Fuel cells are promising technology for use as a source of heat and electricity in buildings 

and an electrical power source for vehicles. Clearly, this has determined the goals for 

research and development of the electric driven system, and presently the design, 

fabrication and manufacture of the fuel cell systems require much more innovation to 

make a much larger impact on the future energy conversion markets, Maiyalagan and 

Pasupathi (2010). Fuel cell technology is most certainly innovative and has an advantage 

over generation using conventional fossil fuels. 

Some potential future roles of fuel cells are introduced in this thesis in the order of the 

fuel cell development and hydrogen production from renewable  resources. There are 

many significant technical factors, such as durability and cost, that need to be overcome 
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for fuel cell technology advancement. Therefore, breakthroughs are required to reduce or 

eliminate these barriers. In particular, the effects of such gas flow structure, for example, 

pressure drop and gas permeability and electrode structures, and new material 

development require significant improvements in a fuel cell performance, Ismail et al. 

(2010). 

Further, on the role of fuel cells being a clean energy technology to improve the economy, 

protect the environment from the emissions of CO2 and pollution by fossil fuels in a more 

sustainable and renewable energy future, the literature has revealed that the fuel cell 

future development directions are three fold: applications in portable, stationary power 

generation and transport; fuel in use – in the most recent technology advancement; and 

technology – by pinpointing major challenges in different types of fuel cell technologies. 

For example, in the future development of the polymer electrolyte fuel cell (PEFC) 

technology (Haile, 2003; Lister and Mclean, 2004; Ismail et al. 2010). 

Further,  future development and implementation of PEFC technology depends on the 

upward trend in a carbon constraint economy, i.e. climate change imperatives into full 

cost accounting and sustainability by rapidly gaining momentum in a world where a shift 

towards a low carbon economy, and this is limited by the dwindling fossil fuel reserves, 

climate change and the improvement in hydrogen energy infrastructure, Hoffmann (2012) 

and Carrrette et al. (2000). In addition, due to the PEFC high efficiencies and low 

emission, Carrette et al. (2001), attention is required for the knowledge-generating 

activities to enable improvements in the understanding of PEFC operation principles and 

the engineering of PEFC technology. 

The polymer electrolyte fuel cell is an energy conversion device, and theoretically it has 

the capability of generating electrical energy for as long as the fuel (hydrogen ) and 
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oxidant (oxygen) are supplied to the porous media, i.e. electrodes (see Chapter 2, Figure 

2.2). In reality, there are many significant hurdles to overcome, and if possible to 

eliminate, on the primary components of fuel cells that limits or influences the practical 

operating life time conditions of the fuel cells, Wang et al. (2011). 

However, various interrelated and complex phenomena occur during the fuel cell 

operation, including mass or heat transfer, electrochemical reactions, and ionic or 

electronic transport, which govern the PEFC operation. The prime importance is to 

improve the design of polymer electrolyte membrane (PEM) fuel cells and the 

understanding of the transport reactant gas and its limitations. 

1.1 Research motivation and objectives 

Firstly, the thesis is motivated mainly by the significant hurdles associated with the 

primary components of the MEA (membrane electrode assembly), namely the porous gas 

diffusion media (gas diffusion layer, microporous layer and catalyst layer) that influence 

the effectiveness of the performance of PEM fuel cells. Also, some challenges occur 

during the full operation of  the PEFC system, such as water flooding and reactant gases 

transport, thus limiting the efficiency performance of the fuel cell. Clearly, there is a need 

to understand the characteristics of the physical properties of the porous gas diffusion 

media used in the PEFCs. For example, the effect of the MPL (microporous layer) 

compositions, and the performance of these porous gas diffusion media in the design of 

PEM fuel cells. 

Secondly, in order to ensure the presence of a sufficient amount of the reacting gases for 

the reaction in the catalyst layers, the porous gas diffusion media, especially the gas 

diffusion layer (GDL) and MPL must demonstrate high transport properties, and gas 
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permeability is one of the transport properties that signals how effective is the convective 

transport. Thus, there is a need to understand the effect of the gas permeability phenomena 

process in the porous materials used in the design of PEM fuel cells. 

Therefore, the aim of the thesis is to determine the gas permeability of the porous media 

in the PEM fuel cells. Also, the accurate prediction of the gas diffusion media, by studying 

the effects of flowing gas pressure across gas diffusion media in PEM fuel cells.  

To summarise, the objectives of this thesis are as follows: 

 to experimentally determine the through-plane gas permeability of porous media in PEM 

fuel cells, 

 to investigate the effects of the compositions of the MPL and sintering on the gas 

permeability of the GDLs 

 to experimentally measure and analyse the microporous layer penetration into the porous 

carbon substrate. 

1.2 Research scope and limitations 

In many applications, the performance of the PEFCs is influenced by the in-plane and 

through-plane permeability of the components of the MEA. However, in this thesis, only 

the through-plane gas permeability of the porous gas diffusion layers as a gas transport 

property of the components of the MEA is covered.  

The scope of this thesis is mainly the experimental measurements, estimations and 

investigations of the porous media materials permeability properties of the components 

of the MEA in PEFC, namely the GDL and the MPL. The purpose of the experimental 

investigation is to accurately input the gas permeability values of the porous gas diffusion 

layers in the modelled fuel cell. However, in this thesis, the in-plane gas permeability 
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properties of the porous gas diffusion layers is not taken into account during the 

experimental study and the numerical investigation. Also, the tested materials (samples) 

are experimentally investigated by determining and predicting the effectiveness and 

efficiencies of the materials in an operational fuel cell system is uncovered in the thesis. 

1.3 Structure of the thesis 

This thesis is divided into 7 chapters. The introductory chapter describes the general basic 

energy background and the fundamental information on the energy sources and renewable 

sources. The fuel cell of interest is, the polymer electrolyte membrane (PEM) fuel cell. 

The chapter has been concluded by pinpointing the motivation, the objectives, scope and 

limitations of the thesis, and the thesis structure. 

In Chapter 2, a comprehensive critical literature review of the porous gas diffusion 

media, used in PEM fuel cell is explored and gaps have been highlighted. Clearly, the gas 

diffusion layer and the microporous layer have significant effects on PEM fuel cell 

performance, and the most common technical issues of the porous gas diffusion media 

are described in the this chapter. In Sections 2.6, 2.7 and 2.8, the attempts to estimate the 

gas permeability of the porous media has been described. The focus was on reviewing the 

areas that have been investigated in the thesis which are the effects of the following on 

the through-plane gas permeability of the GDL: carbon black loading and carbon black 

type, sintering and MPL composition.  

Chapter 3 discusses the techniques and methodology used in this thesis to investigate the 

gas permeability of the porous media. Additionally, an analysis has been added to show 

the limitations of the method. 
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In Chapter 4, the effect of the carbon black loading and carbon black type as materials 

used in the MPLs, and sintering on the through-plane gas permeability of MPL coated 

GDLs is investigated.  

In Chapter 5, the effect of composition of microporous layer on the through-plane gas 

permeability of the gas diffusion layer is investigated.  

In Chapter 6, the effects of the microporous layer penetration into the porous carbon 

substrate on the through-plane gas permeability of the microporous layer coated gas 

diffusion layers is investigated. The chapter addresses the effect of the microporous layer 

thickness on the gas permeability both with or without penetration. 

Finally, Chapter 7,  concludes the thesis by giving a summary account of the main 

findings and discusses possible future work. 
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Chapter 2 

Literature Review 

Energy comes from many different natural sources such as wind, sun, water, fossil fuels, 

animals, plants and the Earth. Communities have been using energy for a long time from 

the use of the sun, wood, gravity, wind and tidal, Boyle et al. (2012). We use energy in 

all aspects of our lives, and without energy, civilisation and development as we know it 

would end. 

The energy sources produce forms of energy related to their sources, for example, wind 

energy is a form of energy generated from the wind, Taylor  (2012), solar energy from 

the sun, biomass energy is energy produced from plants (Boyle et al., 2013; Morris and 

Scurlock, 2012). Also, other forms of energy, such as hydro power and wave energy are 

generated from water and oceans. However, people have been learning how to use many 

of these different energy sources, and types of energy they produce before and after the 

industrial revolution, and even today (California Energy Commission, 2012; The NEED 

Project, 2016). 

The energy sources harnessed through technologies from the power of sun, wood, water, 

radioactive materials and wind are classified into three groups: nuclear power, fossil fuels 

and  renewable energy.  However, each of the energy sources are a system which makes 

energy in a certain way. For instance, nuclear power is a form of energy which arises 

from a reaction between atomic nuclei. This form of energy comes mainly from nuclear 

fission. Fossil fuels include oil, natural gas and coal. When the fossil fuel is burnt, energy 

is generated and used as a source of heat to make steam from water, and this is used for 

the operation of a turbine to make electricity with the assistance of a generator, Williams 

(2001). In the case of renewable energy, the energy source in the case of sun, wind or 
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water is endless and does not produce any pollution (Boyle et al., 2012). Clearly, all these 

forms of renewable energy could be used for generating electrical energy.  

2.1 Renewable energy  

Fuels are any material that can potentially store energy in forms  that can be practicably 

released and used as another form of energy, such as heat energy. The concept initially 

applied only to those materials storing energy in the form of chemical energy that could 

be released through combustion, and also applied to other sources of heat energy (for 

example nuclear energy). The heat energy released by many fuels is harnessed into 

mechanical energy through an engine. Fuels are contrasted with other methods of storing 

potential energy, such as those that directly release mechanical or electrical energy, Boyle 

(2012). 

The combustion of wood or sticks was the first to be used as fuel. The fossil fuels were 

rapidly adopted during the industrial revolution and this was because they were more 

concentrated and flexible than traditional energy sources. The traditional burning of fossil 

fuels, such as coal to create power is effective, but very damaging to the environment, as 

it releases harmful greenhouse gases, such as carbon dioxide (CO2), that contributes to 

global warming and climate change. To control these environmental challenges, there is 

a need to employ the sustainable sources of renewable energy that exist. These have the 

advantage of having no greenhouse gas emissions if based on solar, wind or water power, 

or much reduced if biomass based. 

The aim of eliminating or minimising the use of conventional fossil fuel as energy sources 

to produce electrical power, in general, has been a main concern of energy technologies, 

that is, interdisciplinary engineering  science for the future of energy sustainability (Ismail 
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et al., 2011 and Boyle, 2012). Conventional energy technology produces large amounts 

of electrical power but results in conventional pollution-emissions that affect everyone, 

Ryan (2009). However, many other forms of non-conventional energy sources, i.e. 

renewable energy sources can also produce electricity by harnessing natural processes, 

e.g. sunlight and wind. 

 Presently, renewable energy technology is receiving more attention because of the 

awareness of global warming and energy intensity. In addition, many types of renewable 

energy resources, namely wind and solar energy, are continuously being replenished and 

will never run out, Taylor (2012). Most of the renewable energy resources come either 

from the sun or other natural resources on the Earth. However, the greatest number of 

renewable sources of energy are directly or indirectly derived from the sun or solar 

energy. 

2.2 Renewable energy sources 

The renewable energy sources, namely wind, solar, hydropower, biomass, and 

geothermal, provide clean alternative energy when they are compared to fossil fuels, for 

example coal and oil. Among the renewable energy sources, hydrogen can be generated 

with an enormous potential as a fuel (Barbir, 2013), and the most common element on 

Earth, for instance, water is two-thirds hydrogen.  

Further, hydrogen is an energy carrier and it is one of the emerging renewable energy 

resources, for example, it can be used as the fuel in the fuel cells. The hydrogen can be 

produced from three production processes, (i) as a component extracted from natural gas, 

(ii) transformation of natural gas into hydrogen through a reforming process, and (iii) 

electrolysis of water, that is, using energy already transformed to electricity, Sørensen 
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(2004). Hydrogen fuel cells systems potential and opportunities have been identified as 

being one of the greatest advantages over other energy conversion technologies, O’Hayre 

et al. (2006).  However, the most critical challenge is developing new strategies to 

improve the energy efficiency in the generation of electrical power with zero-emission 

and the least environmental damage. This is the greatest impact that fuel cells have over 

both the conventional and non-conventional energy conversion technologies. 

2.3 Fuel cells 

The fuel cell is a renewable energy system (source) for the future. A fuel cell is a device 

that converts chemical energy into electrical energy when continuously feed with fuel, 

namely  hydrogen. The general purpose of a fuel cell is to generate electricity through an 

alternative energy fuel (i.e. hydrogen) from a non-polluting electrochemical process. The 

fuel cell is used to address the problems associated with the use of fossil fuels, such as 

global warming and the greenhouse effect. However, there are a very large variety of fuel 

cells that have been developed. 

Fuel cells are not like primary batteries and conventional combustion systems, see Figure 

2.1. A comparison of energy densities offered by the fuel cell are higher than those of 

battery  energy densities and they are rechargeable by refuelling, and batteries are 

recharged only by plugging them into an electrical outlet or if not, Sin et al. (2013). 

Compared to conventional combustion systems, the electricity production through the 

chemical energy by the fuel cells is more efficient,  O’Hayre et al. (2006).  

Further, fuel cells are electrochemical devices that are made of thin, planar structures that 

consist of an anode, a cathode, catalysts and an intervening electrolyte, and they are 

attached to an electrical circuit, see Figure 2.1. Hydrogen is a fuel supplied to the anode 
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and oxygen (or air) to the cathode in most fuel cell systems. This results in the production 

of electricity, water and heat.  However, fuel cells are comparatively efficient and reliable, 

have no moving parts, operate without hydrogen combustion, and are modular and 

scalable. The size and the shape of the fuel cell system is flexible and adaptable. In 

addition, they are virtually silent, relatively safe and do not pollute the environment, see 

Hoogers (2003) and O’Hayre et al. (2006). Among the renewable energy technologies, 

the fuel cell technology requires special attention, mainly on the advanced material 

development for the improved component performance, Sin et al. (2013). 

 

 

Figure 2.1. A simple fuel cell. 
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2.3.1 Fuel Cell Technology 

The fuel cell technology is receiving great attention in order to address the use and 

consumption of natural energy resources. However, there are a variety of fuel cells that 

have been developed. In recent years, scientists and engineers have refined technologies 

that are relevant to the fuel cell types and generally there are six main types of commercial 

fuel cells on the market, Sin et al. (2013).  

A fuel cell is identified by the composition of its electrolyte, which defines the chemical 

reactions that occur in the cell during the operational process, see Table 2.1. Table 2.1 

presents a classification of the fuel cell types, the kind of electrolytes required, operating 

temperatures, performance of the fuel cell efficiency, the catalyst used, the advantages 

and the disadvantages and the main applications, as discussed in the literature, see Sin et 

al. (2013), Barbir (2013), O’Hayre et al. (2006) and Hoogers (2003).     

In recent years, scientists and engineers have refined technologies that are relevant to the 

different fuel cell types. Clearly,  the electrolyte to be used depends on the application. 

For portable and automotive application (e.g. smart phone and vehicles), the electrolyte 

is normally a solid polymer membrane. In stationary power plants, the phosphoric acid, 

molten carbonates, or metal oxides could be used as an electrolyte in the fuel cell 

employed. In general, hydrogen is the fuel used in most fuel cell systems, and this can be 

extracted by several procedures from many hydrogen-containing substance: water, 

gasoline, natural gas and alcohols,  Merewether (2003) and Hoogers (2003). 

As mentioned earlier, fuel cells are categorised into six types, based on the electrolyte 

employed. The five common types of fuel cell electrolyte are as follows (Sin et al., 2013 

and Kulikosky et al., 1999): solid oxide, molten carbonate, alkaline, phosphoric acid and 

solid polymer electrolyte membrane. The common fuel cells are therefore named as: 
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alkaline fuel cells (AFCs), phosphoric acid fuel cells (PAFCs), molten carbonate fuel cells 

(MCFCs), solid oxide fuel cells (SOFCs), direct methanol fuel cells (DMFCs) and 

polymer electrolyte or proton exchange membrane (PEM) fuel cells. Furthermore, AFC, 

PEM fuel cells, DMFC and PAFC operate at low- and intermediate-temperatures and the 

two other fuel cells, namely MCFC and SOFC, are high-temperature fuel cells and operate 

at a temperature range of 600 – 1000 ℃, see Table 2.1 (Carrette et al., 2001). 

2.3.2 Polymer electrolyte membrane fuel cells  

The future development and implementation of polymer electrolyte or proton exchange 

membrane (PEM) fuel cell technology depends on the increasing pressures in a carbon 

constrained economy (Basu, 2013), limited by dwindling fossil fuel reserves, climate 

change and the improvement in hydrogen energy infrastructure (Hotza and Costa, 2008). 

Also, due to low emissions and the high efficiencies of the PEM fuel cells, attention is 

needed for the knowledge-generating activities to enable improvements in the 

understanding of the operation principles and the engineering of a typical low temperature 

PEM fuel cell system, Wang et al. (2008). 

PEM fuel cells make use of hydrogen as the fuel which serves as the source of energy and 

oxygen (or air) as the oxidant, and clearly, hydrogen is not a readily available fuel (Barbir, 

2013), see Figure 2.2. It has to be produced from sources of energy such as biogas, coal, 

natural gas, or by electrolysis of water. Use of these sources to generate hydrogen may 

significantly reduce the dependence on fossil fuels, Garland et al. (2012), this will have 

an impact on the control of the CO2 emission and issues of national security,  Barbir 

(2013) and Sørensen (2012). However, the operating principles are based on the 

electrochemical energy conversion by converting chemical energy of fuel (i.e. hydrogen) 
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directly into electrical energy, and unlike combustion systems that converts the  chemical 

energy stored in a fuel into heat.  

 

 

Figure 2.2. A typical polymer electrolyte fuel cell (Barbir, 2013). 

 

In general, electrochemical reactions occur simultaneously on both sides of the 

membrane, and the hydrogen oxidation reaction splits into two electrochemical half 

reactions, Barbir (2013) and O’Hary et al. (2006). The basic reactions that occur are as 

follows: 

At the anode:    H2 → 2H+ + 2e-                (R 2.1) 

At the cathode:   
1

2
 O2 + 2H+  + 2e- → H2O               (R 2.2) 

The overall reaction:   H2 + 
1

2
 O2 → H2O                (R 2.3) 
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The above electrochemical reactions describe the main processes in a typical PEM fuel 

cell in Figure 2.2. The reactions are thereby spatially separated. Electrons are transferred 

from the fuel, namely hydrogen, forced to flow through an external circuit from the anode 

side to the cathode side and this constitutes an electric current. Whilst the protons migrate 

through the electrolyte (membrane). Therefore, the charge transport performs useful work 

before the reaction can be completed.  

In a typical PEM fuel cell, various interrelated and complex phenomena occur during the 

operation, namely mass or heat transfer, electrochemical reactions, ionic or electronic 

transport, and all of which govern the cell operation. Clearly, the operation conditions are 

known to influence the performance of PEM fuel cells, and are affected by many 

parameters, including, the MEA components construction and the design materials.   
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Table 2.1. Electrolyte types and the characteristics of fuel cells. 

Fuel cell Electrolyte Retain material Operating temperature 

 

Efficiency 

(%) 

 

Electrocatalyst 

 

Advantages Disadvantages 

 

Application 

Alkaline fuel 

cell  (AFC) 

Liquid KOH 

(immobilized) 

Matrix of  

asbestos 

35-50 wt.% concentration for 

low temperature (120 ℃), 85 
wt.% concentration for high 

temperature (250 ℃) 

 

 

50-70 

 

Ni, Ag, metal oxide 
and noble metals 

 

High efficiency 

Intolerant to CO2 in impure 

fuel (H2) and oxidant (air), 
corrosion, expensive 

 

Apollo space programme 

(Apollo)  

Polymer 

electrolyte 
membrane 

(PEM) fuel cell 

Perfluorosulfonate

d acid polymer  

Thin proton 

conductive (< 50 

𝜇m) polymer 

membrane 

50-100 ℃ 40-50 

Typically platinum, 

CO, Pt-Ru alloy is 
used 

High power density, 

low temperature 

Intolerant to CO in impure 

fuel (H2), expensive 

Small scale distributed 

stationary, power generator, 
vehicle and portable 

Phosphoric acid 
fuel cell (PAFC) 

Approx. 100 % 
concentrated 

Phosphoric acid, 

Liquid H3PO4 

(immobilized) 

Matrix of SiC 150-220 ℃ 40-45 Platinum, 

Tolerant to CO2 at a 
value of 20 %  

impure fuel (H2), 

commercial value 

Lower power density, 
corrosion, Sulfur poisoning 

Stationary use (stand-alone), 
combined heat and power 

 

Molten 

carbonate fuel 
cell (MCFC) 

A combination of 
alkali Li, Na, K 

carbonate (molten 

carbonate) 

Ceramic matrix of  

LiAlO2 
600-700  ℃ 50-60 

Not required noble 
metal catalysts at 

high operating 

temperature, Nickel 

High efficiency, 

commercial value 

Electrolyte instability, 

corrosion, sulfur poisoning 

Pre commercial or 

demonstration state for 

stationary generator, central, 
stand-alone, combined heat and 

power 

Solid oxide fuel 

cell (SOFC) 

Y2O3-stabilized 

ZrO2 (YSZ) 

Ceramic (solid 

nonporous metal 
oxide) 

800-1000  ℃ 50-60 

Perovskites 

(ceramic) 

 

High efficiency, 

direct fossil fuel 

High temperature, thermal 

stress failure, coking and 
sulfur poisoning 

Precommercial stage for 
stationary power generator, 

central, stand-alone, combined 

heat and power 

Direct methanol 

fuel cell 

(DMFC) 

Direct methanol 
Polymer 

membrane 
50-120 ℃ 25-40 

Typically platinum, 

CO, Pt-Ru alloy is 

used 

Using methanol as 

fuel, no reforming, 

High power density, 
Low temperature 

Low efficiency, methanol 

cross, poisonous by-

product 

Vehicle,  small portable 
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2.4 PEM fuel cell efficiencies and issues 

A typical PEM fuel cell performance is  linked to the efficiency of the power generation 

and the amount of fuel, namely hydrogen, required to generate the power. The 

performance of the PEM fuel cell depends on the operating conditions, namely pressure, 

temperature, reacting gases  flow rates (namely, fuel and air) and humidity, Barbir (2013). 

However, PEM fuel cells are generally operated in the low temperatures range  50 to 80 

℃, and at high temperature ranges of above 80 °C and less than 120 °C, Sin et al. (2013), 

Carrette et al. (2001) and O’Hayre (2006).  

The efficiency of the PEM fuel cell performance is enhanced primarily by improving the 

water management and gas transport mechanisms that occur during the operational 

process. However, scientific and engineering breakthroughs are required to overcome 

barriers related to material developments. 

Good performance is obtained, if the profiles for the water-saturation distribution are 

controlled in the porous material layers used in the design of the MEA components (see 

Figure 2.3), particularly in the two-phase flow regime of PEM fuel cells. The construction 

and properties of the porous materials is known to be influenced by many parameters 

depending on the materials. Also, the operating conditions affect the performance of PEM 

fuel cells. However, PEM fuel cell performance depends on proper water management 

during operation which relates to the construction of the MEAs, see Barbir (2013) and 

O’Hayre (2006). 

In the water management with both application and performance of PEM fuel cells, 

tailoring the porous diffusion materials used as the gas diffusion media in Figure 2.4, 

there have been several approaches to improve water management in PEM fuel cells. 
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These approaches are associated with optimising the following:  the content of the 

hydrophobic agent both the GDL and the MPL, various carbon loading and carbon type, 

e.g. PTFE and fluorinated ethylene propylene (FEP).  

 

 

Figure 2.2. A typical MEA (Barbir, 2013). 

 

2.4.1 Water management 

The poor performance of fuel cells is often an issue as a result of poor water management, 

which reduces and blocks the gas pores in the catalyst layers and the porous gas diffusion 

media (i.e. GDLs and MPLs). The factors that influence the water content within the 

MEAs components are the hydrophobicity, hydrophilicity, and porosity and permeability 

properties of the porous gas diffusion layers (electrodes) under the specific operating 

conditions of the cells, Blanco and Wilkinson (2010). 

To know the driving forces that are most dominant in the managing of the water transport 

for the performance of fuel cells, Park et al. (2004) investigated the design parameters of 

the gas diffusion layers (GDLs) and microporous layers (MPLs). They treated the gas 
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diffusion layers with different amounts of PTFE content and investigated the influence of 

the water management and the gas transportation. The hydrophobic coating facilitates the 

increase in the water and the air transport leads to an increase in the water contact  angle 

which is between 1 and 20º. Further, for improving cell performance with the application 

of different hydrophobic agents, Lim and Wang (2004) studied the effects of the FEP 

(fluorinated ethylene propylene) in the carbon substrate (GDL) on the treated GDL 

without the microporous layer coating. They considered different amounts of FEP 

loadings on the GDL, and reported that at 10 wt.% the FEP impregnated into the carbon 

substrate sufficiently to coat the surfaces of the carbon fibres. Lim and Wang (2004) 

concluded that increasing the FEP content in the GDL only increases the thickness of the 

FEP coating layer, and  there is no change in the surface hydrophobicity property of the 

treated GDL. In addition, Lim and Wang (2004) stated that better cell performance was 

obtained at 10 wt.% FEP. However, many studies in the literature have been more focused 

on the optimisation of the hydrophobicity and hydrophilicity property of the GDL for 

better water management and cell performance. 

Through a thin film-agglomerate approach, Lin and Nguyen (2004) investigated the effect 

of water flooding in the gas diffusion layer and catalyst layer of the cathode on the overall 

performance of the PEM fuel cell. The results obtained indicate that more water flooding 

is observed at the catalyst layer than that of the porous gas diffusion layer, and they agreed 

that water is first formed in the catalyst layer. The porous layer has to be coated with the 

microporous layer for the purpose of controlling other operating parameters that affect 

the water generation and removal process, for example the RH (relative humidity) and 

operating temperature, relate to the performance of the porous media.   
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Further, Lin and Nguyen (2005) examined the effect of the thickness and wet-proof level 

(PTFE content) of the gas diffusion layers on the performance of a PEM fuel cell, and 

they have taken into account the carbon substrate coated and uncoated with microporous 

layers. The results obtained indicate that low current densities of the materials used 

exhibit common electrochemical behaviour. For example, some liquid water occurs when 

the GDL without coating materials are used, which does not affect the gas permeability 

of the GDLs, and the gas transport has been fast enough for an adequate supply of reactant 

gas flows with no significant loss being detected in the cells performance. For high current 

densities, loss of performance is also reported. Thus, more of the liquid water 

accumulation is observed at high current densities with  non-coating GDL compared with 

the coated GDL that performs better. Also, the addition of high wet-proof material to the 

GDL (i.e. microporous layers with high PTFE content) has  contributed to the 

improvement in the voltages and the pressure drops at the same current densities. A clear 

understanding of the gas flows, the liquid water and operating factors that affect the 

pressure drops of the porous gas diffusion layers has been also considered, which  relate 

to the thickness of the coated GDLs. On the other hand, factors that influence the 

thickness property of the GDLs after coating have been considered, while further 

understanding of the effect has to be studied. However, the issue for controlling the cell 

performance as the current density increased beyond 1.1 A/m2, has been influenced by 

determining accurately the thickness and optimum microporous layer compositions of the 

gas diffusion media of the PEM fuel cells. 

Furthermore, improving the water drainage in the channels and porous media for better 

cell performance, Wang et al. (2008) modelled two-phase flow in the PEM fuel cell 

channels by envisioning a structural and flow analogy between the channels and random 

porous media. Issues of the channels flooding, water trapping within the porous media of 
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the components of the MEA and other related parameter effects on the water drainage are 

addressed. They conclude that the liquid water builds up fast at the entrance region at full-

humidification inlet conditions compared with what occurs elsewhere. In addition, the 

results obtained are to be validated  against  key factors that affect the saturation of the 

liquid water in the cell channels and the porous media in the PEM fuel cells. On the other 

hand, Mortazavi and Taijiri (2014) determined the dynamic behaviour of liquid water 

droplet and the detachment from the gas diffusion layer. Also, they reported that the other 

important dominant parameters, such as the surface adhesion force, drag force, capillary 

pressure and shape of the droplet strictly depends on the contact angle, which clearly 

affects the water management and the performance of the cells. However, the greatest 

challenges that have been addressed are in the improvement in the cells performance by 

targeting porous diffusion layers treatment and the coating properties, such as the water 

and gas transport properties in both the cases, see Mortazavi and Tajir (2014). 

 

Figure 2.3. A schematic of a dual-layer GDL for PEFCs (Park et al. 2006). 
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2.4.2 Gas transport  

For improving the performance of PEM fuel cells, Jordan et al. (2000a) demonstrated the 

possibility of using electrode diffusion-layers made of two different carbon black 

materials, namely Vulcan XC-72 and Acetylene black, on the performance of different 

types of cells. Also, they studied the performance of the cells together with the optimum 

operating conditions of the cells. They explained that the gas diffusion can be improved, 

except the gas diffusion layer (for example, the diffusion layer made of Acetylene black) 

indirectly improves the diffusion by controlling the water formed (or product) in the cell. 

They concluded that the porosity of the carbon substrate used as a material in the porous 

gas diffusion layer could also affect the optimum water profile for the performance of the 

cells.  

For an improvement in the overall gas diffusion layer characteristics for minimising the 

water management, Antolini et al. (2002) discussed that the cell performance is improved 

by increasing the polytetrafluoroethylene (PTFE) content material in the GDL. The 

impact of the carbon and PTFE as materials used have an influential impact on the cells 

performance, Jordan et al. (2000b) and Antolini et al. (2002). However, it is not clear in 

their investigations what is the gas transport mechanism within the porous gas diffusion 

layers for the efficiency of the cells performance. 

Recently, on the mechanical properties of the GDLs with the application of good 

performance, Su et al. (2016) investigated the effect of the PTFE content on the GDL and 

the MPL on the electrode performance. They reported that varying the amount of PTFE 

content in the GDL does not have much effect compared with the PFTE loading in the 

MPL, which has a significant effect on the performance of the cell. Further, El-kharouf 

et al. (2012) characterised the GDLs for the PEM fuel cell performance, by considering 
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the GDL and MPL for the design and modelling of the MEA and the fuel cell stack. They 

concluded that the properties of the porous gas diffusion media are related, particularly 

in the substrate structure, PTFE and MPL loading, which is required for the development 

of the GDLs with higher performance for the cell performance. 

Further, the characterisation of the transport properties in the porous gas diffusion media 

requires further attention, and the gas permeability is one of the features required in 

porous media for the reactant gases to have access to the catalyst layer, Zamora et al. 

(2015). Much work in the literature has been reported on the estimation of the transport 

properties in the gas diffusion layers, Gurau et al. (2007),  Tamayol et al. (2012).  

Gurau et al. (2007) measured the absolute permeability property of the GDLs, and 

estimated the in-plane and through-plane permeability values of the GDLs and MPLs. 

The gas permeability values of the GDLs is influenced by the presence of the MPL in the 

GDL, and similar results have been reported by Ismail et al. (2010), as the different PTFE 

loading in the MPL increases the permeability values of the GDLs. However, the reports 

from Gurau et al. (2007) and Ismail et al. (2010) have not been clarified and the 

conclusions that the characteristic gas transport properties of the porous media are 

relatively related has been claimed.   

2.5 Materials used in the gas diffusion media 

For materials development, many  authors have investigated ways of improving the PEM 

fuel cells efficiency (Nguyen et al., 2015; Kim et al. 2013), in particular on the water 

management, and factors that affect the materials has to be targeted for the treatment of 

the porous gas diffusion media for the performance of the PEM fuel cells. However, the 

high efficiencies of the PEM fuel cells performance have been a greater issue, due to the 
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inherent non-uniformity, which has not been completely targeted, particularly on the 

transport properties, Nguyen et al. (2015).  

The gas diffusion media generally consists of treated gas diffusion layers (GDLs) and 

with a coated thin layer, commonly known as microporous layers (MPLs). However, the 

GDL materials are treated and coated for the purpose of determining the hydrophobicity 

and hydrophilicity  properties, Kim et al. (2013), and to avoid flooding accumulation and 

easy flow of the reactant gas flows within the PEM fuel cell (Zamel and Li, 2013; Barbir, 

2013). In addition, the effect of the treatments of the porous GDL has been discussed in 

Section 2.4, particularly for the performance of the PEM fuel cells, and much more may 

be found in the literature, El-kharouf et al. (2012).  

Further, the effect of coating the porous GDLs with the MPL made slurry have been 

considered in this section. The microporous layer is a layer that consists of two basic 

materials, namely carbon black particles (or powders) and hydrophobic agents, namely 

the PTFE and FEP, as made of a MPL slurry (ink). The MPL is simple in structure 

compared to the gas diffusion layer as described in the literature (Zamel and Li, 2013), 

and which can be used to evaluate the characteristic properties, El-kharouf et al. (2012).  

The characterisation of the GDLs, as materials for the gas diffusion media, is an approach 

by coating the MPL ink onto one side of the carbon substrate surfaces. The addition of 

the MPL to the GDL is to enhance the performance of the MEA, for controlling the 

transport of the reactant gases (El-kharouf et al., 2012) and the management of the flow 

of the reactant gas product (liquid water formed) for the overall effective performance of 

the PEM fuel cells (Su et al., 2016).  

The effects of the gas diffusion media have been presented by many authors on the 

different parameters that affect the performance of the PEM fuel cells. Chen and Chang 
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(2013) showed that the effects of the PTFE and carbon loading in the cathode MPL 

obtained the optimum cell performance due to the MPL composition at the cathode side 

for different operating conditions that were considered in their investigations. The 

optimum power density was obtained at the composition of the MPL with a carbon 

loading of 1.5 mg/cm2 and 20 wt.% PTFE on effect of gas flow rate, and similar results 

were reported in Velayutham et al. (2008). Also, similar performances  were obtained, as 

the effect of the different carbon loadings in the MPL with 20 wt.% PTFE content and 

the maximum power density were observed at a carbon loading of 1.5 mg/cm2.  They 

explained that as the PTFE content and carbon loading in the MPL increases, the power 

density also increases. They have taken into account the effects of the various loadings of 

carbon black and the PTFE content in the MPL. However, it is unclear on the effects of 

the different carbon black types used in the materials of the MPL for the same operating 

conditions. The authors have not reported the effects of these factors on the other major 

parameters, such as the thicknesses and gas permeability of the gas diffusion media, and 

in this regard to have a better understanding of the operating conditions and the overall 

performance of the PEM fuel cell.     

According to other reports, Lee et al. (2004) and Lin and Nguyen (2005), the effect of the 

gas diffusion electrode thickness on the PEM fuel cell performance was investigated. The 

best performance of the cells was obtained at intermediate carbon loadings in the gas 

diffusion electrode layers (Lee et al., 2004), and also, Lin and Nguyen (2005) reported 

that the gas diffusion media with thinner layers materials of the MPLs have been shown 

to have a better performance compared to the thicker layers.  However, it is clear that an 

accurate thickness of the gas diffusion layer after coating with the microporous slurry still 

competes with the other properties, such as the gas permeability of the coated gas 

diffusion layers. 
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Further, Kim et al. (2013) studied the effect of the different carbon black powders as the 

material of the MPL composition on the performance of a high concentration methanol 

fuel cell. The PTFE content of the compositions was fixed at 25 wt.% in all the different 

types of carbon black particles used as the material in the MPL. The authors measured 

the thicknesses for all the MPLs of the different carbon types and those are estimated to 

be about 30 µm, which could have been attributed to the amount of the carbon loadings 

in the MPL and the type of the carbon substrate sheets (i.e. the GDLs) used and coated 

with the MPLs slurry of those carbon powders. In contrast, the gas permeability of those 

MPLs with different carbon powders are reported to be different, which could have been 

attributed to the characteristic properties of those carbon powders. Also, the variations in 

the gas permeability values of those MPLs can be as a result of the penetration of the 

MPLs slurry materials into the porous carbon substrates that affect an accurate estimation 

of the thickness of the MPLs, as described in Kitahara et al. (2010).  However, they found 

that the carbon powders used as the materials for the MPLs have affected the electrical 

properties, namely the ohmic resistance of the MEA. In addition, the influence of the 

different MPLs with various carbon powder parameters, namely the carbon loading, 

carbon types and thickness have a significant impact on the performance of the MEAs 

and this can be ascribed to the effective performance of the PEM fuel cells.   

Furthermore, Liu and Chang (2013) and Chen and Chang (2013) studied the effect of the 

microporous layer composition. They determined  the optimum MPL composition at 1.0 

and 1.5 mg/cm2 of carbon loading. From these investigations, the performance of the cell 

has been obtained at 1.5 mg/cm2 of carbon loading. As Liu and Chang (2013) reported, 

the performance of the cell begins to degrade after the carbon loading increases above 1.5 

mg/cm2 and a similar amount of carbon loading has been used to obtain the best 

performance by Chen and Chang (2013). In the case of the PTFE content in the MPL at 
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30 wt.% PTFE loading, a better performance was observed than that at 20 wt.% PTFE 

loading and the highest peak in the power densities was obtained at low RH (relatively 

humidity) in Chen and Chang (2013),  and at 40 wt.% PTFE as it has been obtained by 

Liu and Chang (2013). It was concluded that the effect of the PTFE is significantly 

influenced by the performance of the MEA compared to the carbon loading in the MPL 

composition. In addition, the MPL material in the gas diffusion media significantly 

improves the transport of liquid water, particularly on the cathode side (Chen and Chang, 

2013). However, further studies are required to investigate the relative effect of the  PTFE 

content and carbon loading of the MPLs on the performance of the PEM fuel cells, 

Schweiss (2016).  

2.6 Gas permeability of the gas diffusion layer  

For influencing the physical parameters of the gas diffusion media (GDM), the thickness 

of the GDM has a direct effect on the transport properties of both the gas and water, 

namely the permeability, diffusion and electrical conductivity, El-kharaouf et al. (2012). 

The effect of the GDL and MPL thickness as the physical property of the GDM, has been 

attributed to the various amounts of the PTFE content and the carbon loadings in the GDL 

and MPL (Park et al., 2004; Lim and Wang, 2004). However, the thickness is an important 

property for the GDL materials. For the pressure drop of the gas flow through the porous 

media, this is related to factors such as the GDM thickness, as discussed by Lin and 

Nguyen (2005), and the GDLs with the highest thickness performs better compared with 

the GDLs of lesser thickness at high current densities. However, the different effects of 

the GDM thickness on the performance of the cells is traceable to the effect of the total 

GDM thickness on the through-plane gas permeability of the porous GDM. 
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Ong et al. (2008) detailed the effect of the MPL thickness on the gas permeability and the 

resistance of the GDL after coating. In their report, the resistance increases as the 

thickness of the MPL increases, but on the other hand, the gas permeability of the GDLs 

decreases with an increase in the MPL thickness. They concluded that the various 

amounts of the compositions of the MPL ratios are ascribed to the thickness of the GDLs.  

Moreover, the gas permeability of the gas diffusion media is affected mainly by the GDL 

thickness before and after the coating, porosity, pore size and pore distribution.  For an 

effective permeability as a key parameter to be determined and tailored by adding MPL 

to the GDL, the GDL fibre structure affects the thickness of the GDM which apparently 

influences the gas flow direction through the porous media, Shou et al (2013). However, 

the influence of these parameters can be ascribed to the characteristic properties of the 

carbon black and the PFTE loadings as the materials of the MPLs and the GDLs.  

Many researchers have studied the various amounts of PTFE and carbon loadings in the 

MPLs by considering the effect of different carbon types and PTFE loading on the 

thickness of the porous GDM through-plane gas permeability, Ismail et al.(2011), Tamyol 

et al. (2012) and Kim et al. (2013).   

For the effect of the PTFE loading in the MPL, Ismail et al. (2011) experimentally 

measured the  through-plane gas permeability of the GDL coated with MPLs of different 

loadings of PTFE. In addition, the estimated MPL thickness by adding GDL, and the 

same batch of the carbon paper has been investigated. They reported that the through-

plane gas permeability of the MPL-coated GDLs increases as the amounts of the PTFE 

loading in the MPLs increases and this is in agreement with the literature, Ismail et al. 

(2010). While the carbon loading in the MPL decreases the through-plane gas 

permeability of the GDLs as the amount of the carbon loading increases at a constant 
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PTFE loading in the MPL, Tamyol et al. (2012) and Kim et al. (2013).  However, the 

different effects of the MPLs added to the GDLs, on the gas permeability of the GDLs is 

more dependent on the thickness of the MPL and other affecting factors of the MPL, such 

as the pore size, porosity, etc., as detailed in Wilde et al. (2004) and Kim et al. (2013). 

2.7 Gas permeability of the microporous layer 

Further, the performance of PEM fuel cells are often controlled by the coating materials 

of the porous gas diffusion media with a wet-proof agent which is used to properly and 

adequately control the liquid water generated during the fuel cell operation. The effects 

of the various factors, such as the hydrophobicity content in the gas diffusion media have 

been investigated by many authors, in particular on the effect of the PTFE content in the 

gas diffusion layers (GDLs) and the microporous layers (MPLs).  

The hydrophobic polymer-treated porous GDL is identified as playing a crucial role in 

the performance of PEM fuel cells and this relates to the treated-GDL performance. Also, 

the reactant gas transport and water management (such as the flooding) rely strongly on 

the degree of the hydrophobic characteristics property of the treated-GDL (Lin and Wang, 

2004), the through-plane gas permeability (Ismail et al., 2010), and the electrochemical 

reactions at the anode and cathode sides, for using different quantities of hydrophobic 

agents, such as PTFE (Moreira et al., 2003). However, the content of the hydrophobic 

agent in the treated-GDL significantly affects the PEM fuel cells performance. Moreira 

et al. (2003) and Lim and Wang (2004)  investigated the influence of the hydrophobic 

agents contents, namely the PTFE and FEP in the gas diffusion media of H2/O2 and H2/air 

PEM fuel cells, respectively. The best results are from the power density obtained at 10 
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wt.% compared with the 30 wt.%  (Lim and Wang, 2004), and for the current 30 wt.% 

obtained at a potential of 0.5 V, Moreira et al. (2003). 

The effect of the different PTFE-carbon ratios in the electrodes has a great influence on 

the performance of the PEM fuel cells. Significantly higher current densities were 

observed  between the different electrodes as the hydrophobic agent and the carbon ratio 

increases, Bayrakçeken et al. (2008). Also, the electrodes with the large volume pores 

have a better mass transport at higher current densities and this is due to the high PTFE 

content in either the GDL or the MPL, Su et al. (2016). The ohmic resistance increases as 

the PTFE-carbon content ratio increases, thus changing the PTFE content has an effect 

on the performance of the PEM fuel cell. The results of Bayrakçeken et al. (2008) and Su 

et al. (2016), show that lower PTFE content in the MPL exhibited lower electrical 

resistance and decreased the ohmic  resistance, which also results in higher performance 

of the fuel cells.  

On other hand, Velayutham et al. (2008) investigated the effect of the PTFE loading in 

the GDL and MPL on the gas diffusion electrodes of the performance of the PEM fuel 

cell. They observed that as the PTFE-carbon content increased in both the GDLs and 

MPLs, the internal resistance was increased, and also there was higher electrical 

resistance. This has led to lower performance of the PEM fuel cells. However, the 

hydrophobic and hydrophilic properties of both the GDL and MPL effects the 

performance of the PEM fuel cells. Clearly, the PTFE loading in both the GDL and MPL 

have to be finely matched.  For example, the results showed that a good performance of 

the cell was observed at 23 wt.% PTFE loading for the GDLs. For the MPL, the best 

performance was obtained at 20 wt.% PTFE loading. As the PTFE content in the GDL 

(carbon substrate) was kept constant at 23 wt.% and varied, the PTFE loading in the MPL 
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varied between 10 and 32 wt.%. However, it was only the effect of the PTFE content in 

the gas diffusion electrodes that has been taken into account. None of the authors have 

investigated the significance of the effects of the carbon loading and the carbon types. 

Tseng and Lo (2010) measured the microscale characteristic properties of the MPL and 

GDL in order to determine the effects of the GDL before and after adding the MPL on 

the cell performance. They showed that the pore sizes of the GDL are in the range 18 to 

26 µm, and were reduced to be in the range 0.32 to 12 µm with the MPL and this is due 

to the pore sizes distribution effects and the capillary effects. Also, they reported that the 

best cell performance was obtained for the GDL with 20 wt.% PTFE, and the MPL with 

40 wt.% PTFE exhibited the best performance. Generally, the microscale properties of 

the MPL and GDL contribute to the degree of the cell  performance. For example, the 

small pores have a higher capillary action, supporting the removal of the liquid water 

formed easily, and decrease the gas permeability mass of the gas diffusion media. In 

contrast, large pores enhance better transport of the reactant gases and reduce the mass 

transport resistance. In addition, the thickness of the MPL showed a significant effect on 

the performance of the cell. The thickness of the MPL estimated are varied in the range 

38, 84 and 136 µm, the pore diameter increased as the thickness increased as well as the 

gas permeability. Clearly, the effects of the thickness of the MPL, the PTFE loading in 

the GDL and the MPL on the PEM fuel cell performance have been investigated. It is  

clearly shown that the difference in the variation of the MPL thicknesses is due to the 

amount of  the carbon loading in the MPL, and this factor has not been taken into account. 

Also the compositions of the MPL (that is, the PTFE content and the carbon loading) have 

not been thoroughly considered in the studies, Tseng and Lo (2010).  
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However, the materials used to construct the required gas diffusion electrodes  have to be 

systematically tailored to target the appropriate characteristic properties of the materials. 

The illustrated literature reviews highlight  that the following effects have not been 

thoroughly investigated: (i) carbon black loading and carbon black types, (ii) 

compositions of the microporous layer, that is, the PTFE contents and the carbon loadings 

relation, and (iii) an accurate estimation of the thickness of the MPL  of the gas diffusion 

media for the PEM fuel cell performance. In addition, the basic role of the MPL is known 

to facilitate the management of the liquid water formed within the MEA in order to 

improve the overall performance of the PEM fuel cells. However, it is still unclear (lack 

of in-depth) on  the influence of the MPL basic property, namely the thickness, has on the 

reactant gas transport of the gas diffusion media in order to control the water transport 

mechanism within the MEA.  

For the effect of the MPLs on the gas permeability, the MPL performance characterisation 

depends on the GDL and CL (catalyst layer) properties, such as the pore size, as detailed 

in Zamel and Li (2013). The MPL consists of a combination of a powdery mixture of 

carbon black and emulsion of PTFE particles. The preparation requires a heat treatment 

at a temperatures of 120, 280 ºC and finally to be sintered at 350 ºC and for 1 hour, 30 

minutes and 30 minutes, respectively, Rohendi et al. (2014) and Jordan et al. (2000b).  

The MPL effects can only be determined by measuring the parameters that are under 

investigation before and after adding the MPL to the porous GDLs, followed by 

estimating the influencing factors, Zamel and Li (2013). Much work has been reported in 

the literature on the effect of the MPLs with composite carbon black as the materials 

added to the GDLs to characterise the porous gas diffusion media performance in the 

PEM fuel cell technology, Wang et al. (2006).  
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Recently, Zamora et al. (2015) analysed the MPLs characteristic properties with different 

materials. A comparison of the behaviour of the advanced carbon materials, namely 

Carbon Nanospheres, Ribbon Carbon Nanofibers, and Platelet Carbon Nanofibers, 

together with Vulcan XC-72 has been performed. The permeability of the materials varies 

with the gases utilized and the porous materials investigated, and they concluded that the 

permeability values of the different gases in the MPLs made with Carbon Nanospheres 

and Vulcan XC-72 materials are higher than in the other materials investigated. The 

surface compaction has been found to be the only factor that could have hindered the flow 

of the gases. However, the effects of the other influencing parameters of the MPLs, such 

as the thickness, sintering, and penetration of the MPLs into the porous GDLs, may be 

considered to be worthy of further analysis.   

2.8 Effect of the microporous layer sintering 

The Sintering is the process of altering the effect of the PTFE distribution within the 

diffusion layer via heat. The sintering time of the treated GDL and MPL-coated GDL is 

an influencing factor on the physical properties of the porous gas diffusion media, namely, 

the through plane conductivity, gas permeability and hydrophobicity, Bevers et al. (1996) 

and Rohendi et al. (2014). However, the aim of the sintering is to characterise the relevant 

performance of the treated or coated porous media. However, little work has discussed 

the effects of the sintering temperature and the timing of the sintering.   

Bevers et al. (1996) characterised the performance of the treated gas diffusion layers, and 

examined the sintering temperature at which the GDL is treated with PTFE. They 

explained the approach of the sintering process as the treated GDLs being placed into the 

sintering oven at a temperature below 200 °C and followed by the oven heating to the 
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desired sintering temperature for the desired time. In this case, the sintering temperature 

and timing of the sintering for the samples with different PTFE contents is set at 20 

minutes and at a temperature 390 °C and the sinter time for the treated GDL sample of 

the different sintering temperature at 15 minutes. The gas flow through the treated GDL 

samples before and after is discussed and this shows that the pressure drop of the treated 

GDL samples before sintering are higher than after the sintering are for the pressure drop 

of the gas flow against the samples with a different sintering temperature. On the other 

hand, the treated GDL samples that are sintered with different temperatures of constant 

180 wt.% PTFE loading exhibit a higher resistance after sintering than the non-sintering 

counterpart (treated GDL samples). It is clearly shown that the influence of the sintering 

of the treated GDLs significantly changed with different timings of the temperature. For 

example, Bevers et al. (1996) sintered for 20 min at 390 ºC, and treated the GDL 

containing 35 wt.% PTFE sintered at a temperature at 350 ºC for 3 hours by Rohendi et 

al. (2014).  However, Bevers et al (1996) have only measured and examined the GDLs 

treated with PTFE and considered the effect of 15 minutes for the sintering time of the 

samples at different sintering temperatures, and they have not taken into account the 

influence of different sintering times on the gas permeability of the treated and coated 

GDLs. 

In investigating the parameters that affect the optimal performance of the fuel cell, Jordan 

et al. (2000a) observed the parameters of the GDL when these parameters are varied by 

examining the effect of the sintering on the performance of the gas diffusion layers with 

different carbon black types. The effect of sintering on the MPL-coated GDLs with 

different carbon types is discussed, and it is found that the sintering significantly affects 

the performance of the fuel cell, particularly at high current densities. In addition, the type 

of the carbon black material utilised in the preparation determines the effect of the 
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sintering on the MPL performance, for example, Jordan et al. (2000a) found that the fuel 

cell has the best performance with the sintered MPL-coated GDLs with Acetylene black 

carbon rather with the same carbon black material and non-sintered. However, the MPLs 

compositions (PTFE contents and carbon loadings) physical properties have to be 

considered relative to the influence of the sintering, which the authors have not taken into 

consideration in their studies. 

Prior to the measurement and estimation of the gas diffusion media, the sintering of the 

treated and coated GDLs for the uniform distribution of the PTFE in the GDL and MPL 

is an influencing factor that effects the relevant performance of the gas diffusion media. 

However, the impact of the sintering and the temperature on the overall performance of 

the fuel cells requires further studies. Thus, the effect of the sintering on the through-

plane gas permeability of the MPL-coated GDLs has been measured, estimated and 

investigated in this thesis.   

2.9 Effect of the microporous layer composition  

The components of the MPL, i.e. the carbon black and the hydrophobic agent, are factors 

that influences the optimisation of the content and the thickness of the MPL, and this 

relates to the gas permeability of the gas diffusion media used in PEM fuel cells. 

However, different carbon black types are utilised in  the preparation of the MPLs with 

different physical characteristic properties, such as the surface morphology, electrical 

resistance, gas permeability, microstructure, etc., Han et al. (2006), Ong et al. (2008) and 

Kim et al. (2013). 

Han et al. (2006) studied the fabrication and electrochemical performance of a carbon-

filled gas diffusion layer (CFGDL) and analysed the results from the investigation. The 
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CFGDL is made of a carbon electrode (PE-74) backing filled with a combined mixture 

of carbon particles and PTFE. The significant effect of the carbon content in the MPLs 

on the fuel cell performance over the PTFE content is reported. They found that a large 

amount of carbon particles of 6 mg/cm2 and 40 wt.% PTFE in the MPL have been 

considered, while the PTFE content may require to be considered for the agglomerate 

composition of the MPLs and the performance of the fuel cell. 

The effect of the preparative parameters on the hydrophobic agent has been investigated 

by Ong et al. (2008), who examined the characteristics of the preparative parameters on 

the MPL, such as the PVDF (polyvinlidene fluoride) concentration and the type of PVDF 

solvent.  The effect of the MPL thickness on the resistance and gas permeability of the 

prepared MPL indicated that the resistance increases as the thickness of the MPL 

increases. On the other hand, the gas permeability decreases from 1.35 to 0.83 × 10-4 

mols-1Pa-1m-2 with an increase in the MPL thickness from 41 to 112 µm. In contrast, 

Chang and Chen (2013) studied the PTFE loading in the MPL, which indicates that the 

PTFE loading in the MPLs plays an important factor in the performance of the fuel cells. 

Within the range of the studies, the effect of the different types of PVDF have been 

considered and the influence of the different carbon black types for the preparation has 

not been taken into account. 

For the effects of the various carbon blacks in the  MPLs compositions in the anode, Kim 

et al. (2013) discussed in  detail the physical properties that the various carbon particles 

and the compositions exhibited on the performance of the fuel cells. With different carbon 

black types, the thicknesses of the MPLs are about 30 µm and this agrees with the MPL 

thickness range reported in the literature, Kitahara et al. (2010). In contrast, the gas 
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permeability values are significantly different for the MPL-coated GDLs with different 

types of carbon blacks.  

2.10 Microporous layer penetration 

The difficulty of direct measurements of the microporous layer  thickness as a primary 

parameter has not been possible to enable accurate estimation of the gas permeability of 

the layer. Thus, the microporous layer is not a stand-alone layer in the fuel cell, and its 

influencing parameters cannot be measured and estimated without the presence of the 

porous gas diffusion layer as a support layer. The thickness of the GDL before and after 

coating are measured by Ismail et al. (2011) and Kitahara et al. (2010) and the thickness 

of the MPL is inferred by determining the difference between the thicknesses of the GDL 

and the MPL-coated GDL.  

The MPL thickness is manually measured by using a micrometer and scientifically 

verified by employing a scientific analytical technique, namely the scanning electron 

microscope method (SEM), Ong et al. (2008). Ong et al. (2008) measured in particular 

the thickness of the MPL from the same batch of three different samples and estimated 

the mean value. The MPL thickness is measured by a micrometer and they showed the 

SEMs images for cross-sectional view  of the MPL. The measurements of the thickness 

is based on the total thickness of the coated GDL samples, which has a direct effect on 

the estimation of the gas permeability of the MPL-coated GDL. However, measuring the 

actual thickness of the MPL and calculating the accurate gas permeability are challenging 

and have not been  reported in any of the literature.  

Efforts to characterise the gas transport properties in PEM fuel cells has been made by 

Gurau et al. (2007), who experimentally measured and estimated the through-plane and 
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in-plane viscous inertia permeability values of GDLs with and without MPL. They stated 

that, knowing the permeability values for the GDLs without and with MPLs, the 

permeability of the MPL can be determined, however, they assumed that the porous layers 

(MPL and GDL) are parallel to each other. However, Gurau et al. (2007) did not account 

for the thickness of the MPL material that has penetrated into the porous substrate. 

Weber and Newman (2004) modelled a simple fuel cell to predict transport of protons in 

the polymer electrolyte membrane, with the assumption that the porous diffusion media 

are uniform and symmetric. Similar assumptions were made by Pharoah (2005) in 

investigating the effect of gas diffusion media (GDM) permeability and he employed a 

computational  model to determine the relevance of the convective transport as a function 

of the GDM permeability. Pharoah held the thickness of the GDM constant at 250 μm, 

and found that the value of the permeability for a bare substrate (i.e. without MPL) is 10-

11 m2 and the GDL coated with the MPL spanning one or two orders of magnitude from 

10-12 to 10-13 m2.  

Numerically, there have been two efforts to date on utilising the agglomerate structure of 

the MPL as a thin layer in the modelling of fuel cells (Zamel and Li, 2013 and Gurau et 

al., 2007) and it is assumed that the thin layer (MPL) and its counter-part (porous GDL) 

are parallel to each other (Pharoah, 2005), assigned values to the thickness of the 

agglomerates structure of the MPL (Kithara et al., 2010). However, it has not been taken 

into account the effect of the penetration of the MPL material into the porous substrate 

on the total thickness of the MPL used in fuel cell models in the literature.  

Accurately, measuring the thickness of the MPL has not been possible, but the penetration 

of the MPL material into the porous substrate is important and therefore should be taken 

into account, as discussed by Kitahara et al. (2010). They described an approach by 
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comparing the in-plane permeability obtained from the GDLs before and after coating the 

MPL. Both the gas and water permeability have been considered to estimate the 

penetration thickness. They found that the penetration thickness of the MPL into the 

substrate increases the cross-sectional area of the porous substrate by significantly 

enhancing the in-plane permeability. In addition, the SEM method has not been able to 

view the unique visualisation of the boundary between the visible MPL layer and the 

penetration. However, estimation of the MPL thickness has not paved a way to establish 

values of the MPL gas permeability, which can serve as an information guide for fuel cell 

models, to accurately predict the performance of the porous media in fuel cells, Zamel 

and Li (2013). 

2.11 Limitations in Knowledge 

Due to the increase in the global population and the social-economic development, it has 

been observed that there is a high demand for energy. The conventional energy resources 

based on fossil fuels used to generate the energy release harmful chemicals and 

greenhouse gas emissions. The use of fossil fuels has caused the degradation of both local 

and global environment, which has posed health hazards to all the inhabitants of the Earth 

due to the climate change. The energy demand, and the security of access to and the 

distribution of energy have created global awareness in order to control the climate 

change. However, several energy source technologies have been engaged in research to 

find possible solutions for controlling greenhouse gas emissions into the environment. 

Among the many renewable energy sources and their technologies, fuel cells technology 

has been considered because of its high energy efficiency and minimal total emissions. 
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Providing the hydrogen is sourced renewably. Fuel cells are promising renewable energy 

sources and energy converters with which high energy efficiency is achievable. 

Polymer electrolyte, or proton exchange membrane (PEM) fuel cells are a suitable  

technology which has gained momentum as a result of the attainable high power densities 

and their relative simplicity of use. Clearly, there is a need for improving the performance 

of the fuel cell systems components, namely the MEA. The great challenge that limits the 

effectivity and efficiency of fuel cells performance is in particular the water management, 

followed by the gas transport mechanism within the porous media in the fuel cells. A 

comprehensive review on the engineering of porous gas diffusion media (GDL and MPL) 

has been given in more detail in this chapter where the limitations and areas of possible 

further investigations have been highlighted. It is clear that the impact and role that the 

MPLs play on the overall performance of the PEM fuel cell is significant. Thus, more 

insight into the improvement of the gas distribution and water management in the PEM 

fuel cell is required. To do this, the accurate transport properties of the reactant gases are 

crucial, and in particular in the numerical simulations. However, the following limitations 

have been identified, investigated and discussed in this thesis: 

 the effect of carbon black as a material used in the microporous layers on the 

characterisation properties of the porous gas diffusion layers gas permeability for 

the performance of the MEAs in fuel cells. 

 the influence of the composition of microporous layers with in the porous gas 

diffusion layers on gas permeability of porous gas diffusion media in fuel cells. 

 the effect of the influencing factors, namely the thickness of the microporous layer 

and the penetration of microporous layer materials into the porous carbon 

substrate on the gas permeability of the porous media and the microporous layers. 
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In general, the studies of these effects and their influence parameters on the through-plane 

gas permeability of the porous gas diffusion media gives us a better understanding and a 

comprehensive information guide, particularly for the use in numerical models of PEM 

fuel cells. Those effects have not been reported in the literature and these  limitations have 

been identified and investigated in this thesis.  

2.12 Contribution of this thesis on PEM fuel cells 

A typical polymer electrolyte membrane (PEM) fuel cell is environmentally 

advantageous compared to the conventional energy-generation resources that the PEM 

fuel cell technology wants to replace. The cost, durability and efficiency goals for PEM 

fuel cells are the major technical issues to the PEM fuel cell technology, Barbir (2013). 

For a typical fuel cell to achieve these goals and overcome the challenges, the 

development of the fuel cell has to be based on accurate measurements, estimations and 

predictions of the parameters that influence the design of the fuel cell. In addition, 

knowledge of the materials, processes and material interactions is important to properly 

design and fabricate fuel cell stacks, Barbir (2013). However, fuel cell modelling plays 

an important and significant impact in the design of fuel cells. 

For numerical simulation, there are several efforts to date that have been made to 

determine the accurate gas permeability and estimate the actual thickness of the 

microporous layer for the designing of the porous media used in the development of the 

fuel cell stack, Zamel et al. (2013). Finding the gas permeability of the porous gas 

diffusion media accurately enhances the predictive capability of the PEM fuel cell model, 

and also increases the efficiency and durability of the porous media used in PEM fuel 

cells.  
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However, this thesis addresses the issues of unknown properties and parameters that 

influence the structure of the microporous layers of a typical PEM fuel cell to attain its 

best efficiency and durability during the processes of designing, modelling, fabricating 

and diagnosing the fuel cell. Further, the gas permeability and thickness values that are 

necessary to enhance the agglomerate structure of the microporous layer which is 

redesigned based on the stochastic models of the PEM fuel cell have been accurately  

experimentally investigated and calculated.  

The PEM fuel cells are composed of architectural components that are small, with 

microscopic changes that have a significant effect on the performance. In this thesis, the 

carbon black loadings and carbon types have been taken into account. The impact of the 

microscopic changes on the PEM fuel cell performance becomes more sensitive on the  

multiple roles of the porous media. For example, carbon black loadings and types, as the 

materials used in the microporous layer, are increased or decreased, then the impact on 

the passage of the reactant gases transport and water (or heat) removal predictions for 

PEM fuel cell modelling (numerical simulation and modelling), Zamel and Li (2013) and 

Wang et al. (2011),  since this is another aspect of how cost, durability (lifetime) and high 

efficiency are intimately related, Barbir (2013), that this thesis greatly contributes to the 

development of PEM fuel cell technology.     

 2.13 Summary 

This chapter has discussed the polymer electrolyte membrane (PEM) fuel cell as a 

renewable energy technology and reviewed the challenges that are hindering the 

achievement of the cost, durability and efficiency goals for the design and performance 

of the PEM fuel cells. The emphasis has been based on the major technical barriers that 
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affect the performance of the fuel cells under the operational conditions and material 

components. Thus, the common properties and parameters of the porous materials, 

namely the gas diffusion layers (GDLs) and microporous layers (MPLs) used as porous 

media in the construction and design of the MEA components have been considered and 

reviewed in this chapter. 

The water management and reactant gases transport within the path in the porous media 

that have been the primary challenges for the high performance of the PEM fuel cells 

have been also discussed in more detail. Further, the effect of the influencing factors that 

affect the parameters and properties of the porous gas diffusion media (i.e. gas diffusion 

layer and microporous layer) are discussed, and this chapter has helped identify the 

knowledge gaps in the literature which have to be addressed in the thesis.  

In addition, this chapter has helped formulate the direction of this thesis  by reviewing the 

fundamental and frontier knowledge on the gas permeability as one of the primary 

properties and parameters of the microporous layers and gas diffusion layers, which has 

been referred to as the porous gas diffusion media in this thesis. The through-plane gas 

flow directions and the through-plane gas permeability of the porous gas diffusion media  

have been reviewed.  

Also, the chapter has discussed the contribution of this thesis on the PEM fuel cells as an 

another aspect of how efficiency, lifetime (durability) and cost goals of the PEM fuel cell 

can be numerically accurate during the construction and design of the fuel cell stack and 

diagnosis. This chapter has critically reviewed the gas permeability of gas diffusion media 

used in the polymer electrolyte, or the exchange membrane fuel cells and this will help to 

provide guidelines for the measurement and estimation techniques that will be discussed 

in the subsequent chapter. 
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Chapter 3 

Techniques used to Investigate Gas permeability of Porous Media  

The techniques used to investigate the through-plane gas permeability of porous gas 

diffusion media, namely the microporous layers (MPLs) and carbon substrates are 

explained in detail in this chapter.   

In-house experimental techniques have been employed to investigate the gas permeability 

of the porous gas diffusion media. The techniques are classified into three forms, namely 

preparation of materials methods, measurements of the properties procedures and the 

evaluation of the effects of the gas transport properties that are investigated. Many authors 

have employed in-house methods to (i) prepare materials, (ii) measure associated physical 

factors, and (iii) characterise the transport properties of the gas diffusion media (Tseng 

and Lo, 2010; Wang et al., 2010; Ismail et al., 2011). 

An experimental approach has been undertaken in this thesis. Figure 3.1 presents  a 

schematic view of the methodologies employed to address the investigation of the gas 

permeability of the porous gas diffusion material. The porous materials are the porous gas 

diffusion layers, namely the carbon substrates and microporous layers. 

The experimental investigation includes the measurement of characterisation properties 

of the gas diffusion layers and their effects on through-plane gas permeability of the 

porous gas diffusion media for PEFCs. The effects of the characteristic physical 

properties investigated include: (i) the thickness of the GDLs (before and after coating) 

and MPLs, (ii) the carbon loading and carbon types, (iii) sintering, (iv) MPL composition, 

and (v) MPL penetration.  
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However, the porous media consists of a two-layer structure (Ltot), namely the 

microporous layer (MPL, Lmpl) and the gas diffusion layer (GDL, Lsub), as shown in 

Figure 3.2.  Figure 3.2 depicts  a schematic of the typical investigated porous gas diffusion 

media used in a PEFC. The MPL is a thin layer added to one side surface of the carbon 

substrate and the porous substrate layer is the visible part of the carbon substrate after 

coating with the thin layer (i.e. the MPL). 

 

                        

   Figure 3.1. Schematic of the general technical experimental approach used in 

this thesis. 

 

 

Property 

 

Porous  material 

Gas permeability of PEM fuel cell gas diffusion layer 

Measure  

next material 

and  

parameters 



 

48 

 

 

 Figure 3.2. Schematic of a typical porous gas diffusion layers in a PEM fuel 

cell. 

 

3.1 Materials 

In this section, the main materials that have been used as the gas diffusion media materials 

are discussed in detail. The porous media with a two-layer structure was prepared. The 

SGL® 10BA carbon paper wet-proofed with 5wt% PTFE (polytetrafluoroethylene) 

content has been used as the porous substrate material for the gas diffusion layers (GDLs). 

All the samples were prepared from same batch of carbon paper sheets and the carbon 

sheets were provided by SGL Carbon GmbH, Meitingen, Germany. The carbon substrate 

is one of the most commonly used for gas diffusion layers (GDLs) in low temperature 

fuel cells. The substrate has about 88% porosity and 85 g/m2 areal weight, as provided by 

the manufacturer in Table 3.1. However,  Ismail et al. have calculated the porosity values 

of the GDLs  using equation (18) in Ismail et al. (2011).  Table 3.1 summarised the SGL®  

10BA carbon substrate thickness, areal weight, porosity and PTFE content physical 

properties. 
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Further, to produce the porous media that allows negligible penetration of MPL material, 

a membrane filter, AAWP02500 (Merck Millipore, US), with a diameter of 25 mm, a 

thickness of 100 µm and pore size of 0.8 µm was selected as a candidate substrate. 

  

 Table 3.1. Manufacturer's physical properties of the SGL 10 BA carbon paper 

substrate. 

 

 

However, one unique difference between the two substrates is that the carbon substrates 

were made of carbon fibre and the membrane filter is made of nitrocellulose membrane, 

Blanco and Wilkinson (2010).  

Two different carbon black powders were used as materials to prepare the microporous 

layer, namely Ketjenblack EC-300J (AkzoNobel, the Netherlands) and Vulcan XC-72R 

(Cabot Corporation, USA). The carbon blacks have distinct characteristic physical 

properties as the materials used for the microporous layers applied to the surfaces of the 

porous carbon substrate. The physical properties, namely the pore volume, bulk density, 

surface area, particle diameter, pH and volatile content of these two carbon blacks are 

summarised in Table 3.2, as provided by the manufacturers. The differences in the MPLs 

prepared from the two different carbon powders are reported in  the literature, in particular 

Physical parameter Reported value 

Thickness 380 ± 60 μm 

Areal weight 85 ± 2 g m-2 

Porosity 0.88 

PTFE loading 5 % by weight 
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the SEM (scanning electron microscope) of the surface of the MPLs, Yu et al. (2005), 

and gas permeability of the porous gas diffusion layers used in the PEFCs, respectively.  

 

 Table 3.2. The manufacturer's physical properties of carbon black materials 

(AkzoNoble, the Netherlands datasheets) and (Cabot Corporation, USA 

datasheets). 

 

 

In addition, the preparation of the MPL also requires an hydrophobic agent as a 

bounding material for the carbon particles. The hydrophobic agent used was 

polytetrafluoroethylene (PTFE) with 60 wt.% aqueous dispersion emulsion, Sigma-

Aldrich, UK. Also, isopropyl alcohol has been used as a dispersion agent, which is 

about 99.7 % concentration (Sigma-Aldrich, W292907-8KG-K, Germany). The 

following sections discuss in detail the methods employed in the preparation of the 

microporous layer ink, thus providing insight into the application of the MPL ink 

material on the surface of the samples (i.e. the GDLs). 

Properties Ketjenblack EC-300J Vulcan XC-72R 

Pore volume (ml/100 g) 310-345 178 

Apparent bulk density 

(kg/m3) 
125-145 20-380 

Surface area (m2/g) 950 254 

Particle diameter (nm) 30 30 

pH 9.0-10.5 2-11 

Volatile (by weight % max.) 1.0 2-8 
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3.2 Methods  

In this thesis, a conventional method of wet-proof has been employed to a two-layer 

structure of the gas diffusion media. The method is a process of considering microporous 

layer ink on treated or untreated porous GDLs, and the mixture of the carbon particles 

and PTFE as materials for the MPL ink, see Yu et al. (2005) and Litster and McLean 

(2004).  

3.2.1 Microporous layer preparation process  

The process to prepare the microporous layer (MPL) ink prior to coating one-side of the 

porous carbon substrate sample surface is described as follows. The amounts of carbon 

black particles and the PTFE dispersion loadings in the MPLs were measured taking into 

account the calculations of the loading compositions, see Figure 3.3. The compositions 

of carbon black and the PTFE loadings in the MPLs (by weight)  are of 50, 60, 70, 80 and 

90 %, and 10, 20, 30, 40 and 50 wt. %, respectively. For simplicity, a composition of the 

MPL with 10 % of PTFE loading would require 90 % carbon black particles, and an MPL 

with 70 % carbon loading by weight requires 30 wt.% PTFE loading in the MPL ink.  

For each set of preparations there were six carbon substrate samples which share the same 

compositions of the MPLs. The experimental calculations and analysis of the carbon 

black particles and the PTFE loadings that are required for preparing an MPL composition 

set are presented in more detail and discussed in Appendix A. All the calculated values 

of the compositions measurements (by weight) for the MPL preparation are summarised 

in Table 3.3.  

Figure 3.3 shows photographs of the experimental procedures and the steps involved in 

measurement of the carbon loadings and the PTFE dispersion loadings prior to the 
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mechanical manual mixing of the mixture by using calibrated weight-Denver Instrument 

(Figure 3a-b). The calibration certificate for the scale is traceable to International 

prototype kilogram through NIST: National Institute of Standards and Technology 

(CE09-01-011, M, 24608827, Denver Instrument Germany). In Figure 3.3(a), the amount 

of the carbon black particles required in a composition of a MPL with 0.5 mg/cm2 of 80 

% (by weight) was measured, 46.20 mg. In Table 3.3, the actual estimated value for 0.5 

mg/cm2 of carbon black is 45.62 mg, and the slightly difference (±0.58) has been taken 

into account in Section 3.4 and also for all other carbon loadings.  

Similarly, the 20 wt.% PTFE loading was measured, 19.90 mg for 80 % carbon black 

particle loading in Figure 3.3(b). In Table 3.3, the estimated loading value for 20 wt.% 

PTFE  of 0.5 mg/cm2 is 18.22 mg, the difference in the experimental measurement value 

(±1.68) has been taken into account in Section 3.4. In Figure 3.3(c), the paste-like material 

was formed by adding together the carbon particles and the PTFE solution in isopropyl 

alcohol solution (i.e. IPA) and were manually mixed. Figure 3.4 shows preparation of the 

MPL ink by adding more of IPA to the content of the mixture to form suspension 

homogenous MPL ink by using an Ultrasonic bath.  

Generally, the preparation processes, procedures and steps of the MPL ink are 

summarised as follows: the carbon black loadings are considered in all the investigations 

to be 0.5, 1.0, 1.5, 2.0 and 2.5 mg/cm2, and these correspond to the compositions of the 

PTFE loadings range between 10, 20, 30, 40 and 50 wt.%, see Tables 3.3-3.5. The 

calculated and measured amounts of the carbon black particles and the PTFE dispersion 

were manually mixed in an alcohol solution (i.e. isopropyl alcohol, IPA) as a dispersion 

agent, until a paste-like material was formed. The paste-like material suspension was 
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homogenously mixed and stirred in an  ultrasonic bath for a set period of 3 hour, see 

Figure 3.4.  

The resulting formed homogenous suspension of the MPL slurry was applied to one of 

the surfaces of the carbon substrate samples and more detail is given in the next section.  

In  addition, the estimation of the analysis  for the coating the actual amount of  MPL to 

the carbon substrate is discussed in more detail in Section 3.2.3.  

 

 

 

(a) 
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(b) 

 

 

(c) 

 Figure 3.3. Photographs of the preparation of microporous layer ink 

procedures and steps for (a) carbon black powders loading by weight, (b) 

PTFE loading by weight, and (c) past-like material mixture of microporous 

layer slurry. 
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 Figure 3.4. Photograph of the preparation of homogeneous suspension of MPL 

ink using an Ultrasonic bath. 
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 Table 3.3.The carbon black and PTFE dispersion loadings measured by weight (mg) for the preparation of the MPL ink. 

 

 

 

Carbon 

loading / 

mg cm-2 

Carbon 

loading 

required / mg 

by weight 

Carbon loading 

required per 

sample / mg 

cm-2 

10 % PTFE 

loading 

required / mg 

by weight 

20 % PTFE 

loading 

required / 

mg by 

weight 

30 % PTFE 

loading 

required / mg 

by weight 

40 % PTFE 

loading 

required / mg 

by weight 

50 % PTFE 

loading 

required / mg 

by weight 

0.5 45.62±0.31 2.54±0.16 
8.10±0.07 18.22±0.15 31.23±0.07 48.59±0.06 72.88±0.06 

1.0 91.24±0.5 5.08±0.92 
16.20±0.93 36.44±0.09 62.46±0.06 97.18±0.08 145.76±0.99 

1.5 136.86±0.52 7.62±0.13 
24.30±0.13 54.66±0.25 93.69±1.23 145.77±0.24 218.64±0.18 

2.0 182.48±0.36 10.16±0.14 
32.40±1.37 72.88±0.29 124.92±0.12 194.36±0.54 291.52±0.42 

2.5 228.10±0.81 12.70±0.26 
40.50±0.24 91.10±0.6 156.15±0.50 242.95±0.99 364.40±0.61 
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Table 3.4.The carbon black and PTFE mixture required per sample by weight (mg). 

 

 

Carbon 

loading / 

mg cm-2 

10 wt.% PTFE mixture 20 wt.% PTFE mixture 30 wt.% PTFE mixture 40 wt.% PTFE mixture 50 wt.% PTFE mixture 

PTFE 

loading 

required / 

mg 

C + PTFE 

loading 

required / 

mg 

PTFE 

loading 

required / mg 

C + PTFE 

loading 

required / 

mg 

PTFE 

loading 

required / 

mg 

C + PTFE 

loading 

required / mg 

PTFE 

loading 

required/ 

mg 

C + PTFE 

loading 

required/ mg 

PTFE 

loading 

required/ 

mg 

C + PTFE 

loading 

required/ mg 

0.5 0.28±0.05 2.82±0.38 0.64±0.17 3.18±0.73 1.09±0.11 3.63±0.31 1.69±0.78 4.23±0.32 2.54±0.18 5.08±0.30 

1.0 0.56±0.04 5.64±0.30 1.28±0.12 6.36±0.49 2.18±0.23 7.26±0.65 3.38±0.30 8.46±0.62 5.08±0.52 10.16±0.87 

1.5 0.84±0.08 8.46±0.67 1.92±0.63 9.54±2.66 3.27±0.49 10.89±1.39 5.07±0.57 12.69±1.20 7.62±0.32 15.24±0.53 

2.0 1.12±0.13 11.28±1.13 2.56±0.55 12.72±2.31 4.36±0.55 14.52±1.54 6.76±0.26 16.92±0.54 10.16±0.85 20.32±1.43 

2.5 1.40±0.15 14.10±1.30 3.20±0.60 15.90±2.54 5.45±0.91 18.15±2.56 8.45±2.61 21.15±5.52 12.70±2.04 25.40±3.45 
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Table 3.5. Amount of MPL slurry coating on the top of one-side of the carbon substrate sample surfaces. 

 

 

 

 

 

 

 

 

 

 

Carbon loading / 

mg/cm2 

Amount of MPL slurry coating per sample,  
𝐂 + 𝐏𝐓𝐅𝐄

𝟓.𝟎𝟔𝟗
  mg/cm2 

10 wt.% PTFE 20 wt.% PTFE 30 wt.% PTFE 40 wt.% PTFE 50 wt.% PTFE 

0.5 0.56±0.07 0.63±0.12 0.72±0.05 0.83±0.07 1.00±0.06 

1.0 1.11±0.07 1.25±0.10 1.43±0.13 1.67±0.12 2.00±0.17 

1.5 1.67±0.11 1.88±0.52 2.15±0.28 2.50±0.23 3.01±0.20 

2.0 2.23±0.22 2.51±0.46 2.86±0.30 3.34±0.11 4.01±0.28 

2.5 2.78±0.26 3.14±0.25 3.58±0.51 4.17±1.09 5.01±0.68 
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3.2.2 Gas diffusion layer preparation process 

Prior to applying the MPL ink on one surface of the carbon substrate sample, the substrate 

sample was made circular with a 2.50 cm diameter, as shown in Figure 3.5. The thickness 

of the GDL sample was measured using a micrometre before and after coating the MPL 

ink using a micrometre, see Figure 3.6. The measurement technique employed, each 

sample was measured at 4 equal-spaced positions within it to provide a representative 

averaged valued of the thickness, see Appendix B. Also, the SEM (scanning electron 

microscope) technique was employed to confirm the thickness of the coated GDL samples 

by viewing the cross-sectional image of the coated sample. The micrograph of the cross-

sectional images  were used in estimating the thickness of the coated MPL which was 

required in calculating its gas permeability, as shown in Chapters 4, 5 and 6. The SEMs 

images were produced using MA15SEM (EVOZEISS, 80 mm2) and JEOL (JBM-

BO10LA), see Figure 3.7.  

 

 

 Figure 3.5. Photograph of set of carbon substrates made circular with a 2.50 

cm diameter before coating. 

 

GDL samples 

Heat plate 
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 Figure 3.6. Photograph of the measured thickness technique for the carbon 

substrate sample before and after the coating MPL ink on the GDL on one side 

surface. 

 

 

 

 

(a) 

SEM facilities 

(MA15SEM) 

GDL sample 

micrometre 
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                                          (b) 

 Figure 3.7. Photographs of the SEMs facilities used to measure the thickness, 

surfaces and cross-sectional micrographs of the carbon substrate samples 

before and after coating with MPL, of (a) MA15SEM (EVOZEISS, 80 mm2) 

at University of Leeds, and (b) JEOL JSM-6010LA at University of Sheffield. 

 

The topography of tested samples’ surfaces has been scanned through the SEs (Secondary 

electrons) of  SEM type with distinct energy ranges used to detect the various signals, 

which depends on the information desired to obtain on morphology of the MPLs 

structures made of various carbon and PTFE loadings after coating on substrate, Robert 

and Dietmar (2012). The SEs is a process of In the next chapters, the signals of the SEs 

detectors are shown for both the cross-sectional and surfaces images of the GDLs before 

and after coating and sintering. 

 3.2.3 Microporous layer ink application process 

In this section, the amount of the MPL applied to the surfaces of the carbon substrate, and 

the coating application technique employed are discussed. For the purpose of 

SEM facilities 

(JEOL) 
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experimental reproducibility, in each set, there were 6 carbon substrates from the same 

batch of carbon paper (i.e. SGL 10BA).  

The following procedures were employed to determine the amount of the MPL coated on 

the surface of the carbon substrate. The GDL samples were weighed before and after 

coating, see Figure 3.8. In Figure 3.8(a), the initial weight of the carbon substrate sample 

was measured (41.84 mg). The expected loading by weight for the GDL sample was 

determined by adding the estimated value of carbon-PTFE loadings per sample as shown 

in Table 3.4, to the initial weighed value of the carbon substrate, and obtaining the 

expected weight value for the amount of carbon-PTFE loading on the surface of the GDL 

sample. The actual weighed value of the GDL sample after coating was measured, as 

shown in Figure 3.8(b). Further, the initial weighed value of the GDL sample before 

coating was subtracted from the actual weighed value of GDL sample after coating and 

the difference in the weighed value was obtained. The difference in the weighed value for 

the amount of carbon-PTFE loading was divided by the surface area of the sample (5.069 

cm2) and the actual amount of carbon-PTFE loading on the sample surface was obtained, 

see Table 3.6. This mainly determines the amounts of the MPL ink that have been coated 

on the surface of the tested GDL sample.  Table 3.6 summarises a list of the procedural 

steps for the estimation of the amount of Carbon-PTFE coated on one-side of the GDL 

sample surface by weight. However, these estimation methods and procedures  have been 

used to determine (i) the actual amount of carbon-PTFE loading, (ii) the amounts of the 

MPL composition required, (iii) the thickness of the GDL after coating, and (iv) the MPL 

thickness. Table 3.6 lists the estimated values for 2.5 mg/cm2 of 40 wt.% PTFE loadings, 

for a set of prepared samples. Clearly, the estimated values are relatively close to the 

magnitude value (4.17 mg/cm2) presented in Table 3.5. It should be noted that the 

variations in the values compared with the pre-estimated value (i.e. 4.17 mg/cm2) are due 
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to the slight variation in the coating. However, this has been taken into account in Section 

3.4. Also, all the other estimated values for the prepared samples are summarised in 

Appendix C. 

For coating the GDL samples, the samples were stuck to a heated plate, as shown in 

Figure 3.9, and the formed slurry was manually sprayed onto them using a gun (Badger 

100TM LG, USA). Nitrogen gas was used for applying the slurry on the surfaces of the 

GDL samples. The temperature of the plate was set to about 80 ℃ in order to evaporate 

the volatile components as the slurry was applied to the substrate. The MPL-coated GDL 

samples were heat-treated and the processing is discussed in the next section.  

 

  

  (a)     (b) 

 Figure 3.8. Photographs of the measured GDL sample by mass weight (a) 

before coating, and (b) after coating. 
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Table 3.6. The estimation of the amount of Carbon-PTFE coated on one-side of the GDL sample surface by weight. 

 

Sample 
Initial weight, 

wt1(mg) 

Expected weight, 

wt2(mg) + 21.15 

 

Actual weight, 

wt*(mg) 

 

Difference, ∆wt* 

[wt*-wt(1)] 

∆𝐰𝐭

𝟓.𝟎𝟔𝟗
 (mg/cm2) 

1 49.01 70.16 71.16 22.15 4.37 

2 43.95 65.10 66.57 22.62 4.46 

3 48.13 69.28 72.40 24.27 4.79 

4 46.75 67.90 69.97 23.22 4.58 

5 41.10 62.25 62.51 21.41 4.22 

6 42.97 64.12 67.76 24.79 4.89 
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 Figure 3.0.9. Photograph of a set of samples after coating and heat treated at 

temperature 80 ℃ of the heated plate. 

 

3.2.4 Sintering setup 

Figure 3.10 shows the sintering setup furnace for the heat-treatment. The furnace was set 

for three stages of the temperature, namely 120, 280 and 350 ℃ for 1 hour, 30 minutes 

and 30 minutes, respectively.  For, each set of 6 samples prepared, 3 samples were used 

for sintering and  other 3 samples were non-sintered. Nitrogen gas was flowing into the 

furnace for about 20 minutes to heat treated the tested samples. 

Further, the gas permeability of the coated samples were experimentally measured before 

and after heat-treatment and sintering in order to evaluate the effects of the latter process. 

The morphology of the MPLs before and after heat-treatment was examined through the 

SEM images of the surfaces of the coated samples. In addition, the gas permeability of 

the MPL-coated GDL samples were measured before and after sintering.  
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 Figure 3.0.10. Photograph of the furnace used for the heat-treatment of the 

GDL samples. 

 

3.2.5 Calibration of the flow meter 

 

The flow controller was calibrated by setting a given flow on the controller, and 

measuring the time taken for a soap film in a small glass tube connected to the flow 

controller outlet to move a given distance corresponding to a known volume.  Thus the 

volumetric flow rate is determined for the given flow controller setting, and this is 

repeated for a number of flow controller settings in the working range of the flow 

controller. The experimental setup includes: a mass flow meter EK model 202 blue 

Hasting with its associated controller, ranging from 0 to 10 litre per minute, a small 

marked glass tube, and a squeeze bulb to create the bubbles, see Figure 3.11, which 

depicts the calibration setup. 
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Figure 3.11. Photograph of the calibration setup for the flow meter. 

 

The gas flow was compressed air. The rubber bulb on the glass tube was squeezed and 

bubbles were formed. A stopwatch was used to measure the time taken for a bubble to 

move between two fixed points on the tube. For the best results to be obtained, several 

bubbles were formed, five to six seconds apart, and a well-formed bubble was considered 

time (t) in second (s). However, caution must be taken not to continuously squeeze the 

Metal stand 

Gas outlet 

Metal stand  

Flow meter 

Glass tube 

Gas inlet 

Squeezing bulb 

Flow controller 
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bulb because this causes a froth to form on the walls and of this makes the timing difficult. 

Further, the measurement values were recorded, then the volumetric flow rate was 

calculated by employing the following equation: 

                               Q  =  
Volume of cylinder

Time in second (s)
                                               (3.1) 

           Q  =  
πr2h(m3)

t(s)
                                                          (3.2) 

where Q is the volumetric flow rate of air, r is the radius of the tube, h is the height of the 

tube which is the distance between the two marked points on the cylinder and t is time, s. 

The flow rate of the calibrated flow meter was corrected for variation of temperature and 

pressure as follows, Nield and Bejan (2013): 

   Flow rate = Q (m3s-1) × 
T(K)

Trm(K)
 × 

Pr (m)

P (m)
                        (3.3) 

where T is the standard temperature of 273.15 K, P is  the standard pressure of 1013.25 

mb, Trm and Pr are the room temperature of 295.65 K measured using a thermometer and 

the pressure of 1015 mb was taken from the BBC (British Broadcasting Corporation) 

weather. However, the variations in the measured temperature and recorded pressure was 

found to be negligible. Finally, the flow rate in cubic metre per second is multiplied by 6 

× 104 to be converted to litres per minute.  

Tables 3.8, shows the calibration experimental data for the calibration. The calibration 

curve is constructed based on the measurement data summarised in Table 3.7. The values 

obtained for the volumetric average flow rate was plotted against the setting points of the 

mass flow meter EK2. Figure 3.12 shows the calibration of  the flow meter for flow rate 

as a function of voltage signal (i.e. X = set point from EK2). 
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 Table 3.7. The experimental data for voltage signal used for the calibration 

curve flow rate. 

 

X = Set Point From EK2 Y = Average Flow Rate (l /min) 

1.5 1.703 

2.5 2.724 

3.5 3.766 

4.5 4.827 

5.5 5.837 

6.5 6.887 

7.5 7.971 

8.5 9.220 

 

 

 

 Figure 3.12. The calibration curve for a 10 litre per minute mass flow meter 

for the calculation of pressure drop for the flow across the samples. 
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 Table 3.8. Experimental data for the flow meter calibration of a litre/minute 

flow meter. 

Set point 

from flow 

controller 

 

Time (s) 

 

Average time 

(s) 

Volume of 

Cylinder = 

𝜋𝑟3ℎ (m3) 

Volumetric 

flow rate: Q 

(m3/s) 

Flow rate 

(m3/s) 

Flow 

rate 

(lit/min

) 

 

1.5 

39.73 

39.57 

39.40 

39.06 

39.36 

 

39.42 

 

1.21x10-03 

 

3.07 x 10-05 

 

2.84x10-05 

 

1.70 

 

2.5 

24.19 

24.63 

24.87 

24.81 

24.71 

 

24.64 

  

4.91x10-05 

 

4.54x10-05 

 

2.72 

 

3.5 

17.81 

17.79 

17.86 

17.83 

17.84 

 

17.83 

  

6.78x10-05 

 

6.28x10-05 

 

3.766 

 

4.5 

13.94 

13.73 

13.90 

13.99 

13.98 

 

13.91 

  

8.69x10-05 

 

8.05x10-05 

 

4.83 

 

5.5 

11.43 

11.52 

11.43 

11.52 

11.61 

 

11.50 

  

1.05x10-04 

 

9.73x10-05 

 

5.84 

 

6.5 

9.59 

9.70 

9.88 

 

9.75 

  

1.24x10-04 

 

1.15x10-04 

 

6.89 
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3.2.6 Gas permeability setup  

 The measurement and estimation of the gas permeability of the porous media are primary 

factors which could influence characterisation of porous gas diffusion media. Gurau et al. 

(2006) described an estimation method, applied  to GDM with different components of 

the carbon substrates (GDLs) and MPLs. Also, Ismail et al. (2011) estimated the gas 

permeability of the microporous layers by employing similar estimation method in Gurau 

et al. (2006). Clearly, the basic approach that is require to determine the influencing 

parameters is discussed by Blanco and Wilkinson (2010).  

The experimental setup and procedures for the measurements of the through-plane gas 

permeability is described in this section. Figure 3.13 shows the in-house experimental 

setup for the measurement of the through-plane gas permeability of the tested GDL 

samples. This typical setup has been previously employed in Ismail et al. (2011) and this 

setup and procedures have been adopted to measure the through-plane gas permeability 

of the GDL.  

9.65 

9.92 

 

7.5 

8.46 

8.50 

8.32 

8.48 

8.35 

 

8.422 

  

1.44x10-04 

 

1.33x10-04 

 

7.97 

8.5 7.41 

7.43 

7.45 

7.59 

7.59 

7.28  1.66x10-04 1.54x10-04 9.22 
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The setup consists of upstream and downstream fixtures and the GDL sample is 

positioned between the upper and lower fixtures (Figure 3.14). It should be noted that the 

diameter of the GDL sample is 2.5 × 10-2 m, and after the fixing of the sample between 

the two fixtures of the setup, the diameter reduces to 2.0 × 10-2 m. The gas flows across 

the sample at a fixed rate (set from flow control) and the resulting pressure drop was 

measured by pressure sensors and taking the voltage signal readings through the 

Multimeter.   

 

  

 

 Figure 3.13. The experimental setup of the through-plane gas permeability of 

the tested GDL samples. 
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Flow controller 
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Figure 3.14. Schematic diagram of the experimental setup. 

 

The pressure drop across the sample was measured at 8 equal-interval values of the flow 

rate, namely 0.00, 0.48, 0.97, 1.47, 1.96, 2.46, 2.95 and 3.45 Pa. The flow controller used 

was an HFC-202 (Teledyne Hastings, UK) with a range of 0.0-0.5 SLPM and the 

differential pressure sensor used was a PX653 (Omega, UK) with a range of ±12.5 Pa. 

The experimental methods employed have been focused on the measurement, 

characterisation and determination of the through-plane gas permeability of the GDL 

GDL 
Sample 

Downstream 
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Upstream Fixture 

Local  Pressure 

Mass Flow Controller 
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pout 

pin 

Δ
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samples before and after coating, particularly the effects of microporous layers (MPLs) 

when it is adding to the porous carbon substrates (GDLs).  

The pressure drop for the six samples prepared from a SGL 10BA sheet was measured 

before and after coating. The experimental data obtained from the voltage signals values 

at different flow rates were used to calculate the pressure drops for each GDL sample. 

The data analysis of the calculations process is discussed in more detail in the next 

section. 

3.3. Data analysis  

Darcy’s law is a generalised relationship on the state for the flow in porous media which 

is shown to be a proportionality constant between the flow rate and the applied pressure 

difference (Nield and Bejan, 2013; Wang, 2004).  Darcy’s law includes the volumetric 

flow rate which is a function of the flow area, thickness of the porous layer, fluid pressure 

and a proportionality constant of the porous media (Shou et al., 2013). In addition, the 

pressure drop across the porous diffusion layer is as a function of the friction between the 

reactant gas and the flow field across the porous media, namely the gas diffusion layers 

(GDLs), microporous layers (MPLs) and catalyst layers (CLs), Barbir (2013). 

Darcy’s law is employed in this thesis since (i) the viscous resistance is one of the major 

causes for the pressure drop across the porous media , especially if the gas velocity is 

sufficiently small, Ismail et al. (2011), (ii) sufficiently low flow rates, the maximum 

Reynolds number was 3, and then the inertial losses are negligible, and (iii) used to 

characterised the laminar flow across porous layers, and linearly relates the volume-

average velocity with the pressure gradient, particularly through-plane gas permeability, 

Shou et al. (2013). 
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However, the gas flow rate used was sufficiently small for Darcy’s law to be used to 

calculate the through-plane gas permeability of the porous layers with the following 

associated parameters before and after MPL coating, after MPL sintering and the MPL 

penetration into the substrate. 

3.3.1 Darcy’s law 

Consequently Darcy’s law is employed, which is given as follows: 

                                            
∆𝑃

𝐿
  =   

μ

k
 v                                               (3.4)  

                                             v = 
𝑄

𝜋
𝐷2

4

                                                 (3.5) 

where ∆P is the pressure drop across the sample, L is the thickness of the sample, 𝜇 is the 

dynamic fluid viscosity of the nitrogen gas at the test temperature (20 ℃), k is the gas 

permeability of the porous GDL sample, and v is the velocity of the flowing gas, Q is the 

volumetric flow rate and D is the diameter of the sample exposed to the flow. However, 

the inertial resistance is important to be considered if relatively high flow rates are used, 

a modified version of Darcy’s law, namely the Forchheimer equation, is normally used 

to account for the inertial pressure losses. 

3.3.2 MPL thickness and gas permeability  

The carbon substrate and MPL are typically layered in the coated GDL,  the pressure drop 

across the coated sample is expressed as follows, Wang et al. (2006):  

 

               ∆PGDL = ∆PMPL + ∆Psub                                                      (3.6) 

where ∆PGDL, ∆PMPL, and ∆Psub are the pressure drops through the coated GDL, MPL and 

the carbon substrate, respectively. From Equation (3.4), Equation (3.6) can be written as 

follows: 
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μLGDL

kGDL
v   =     

μLMPL

kMPL
 v   +    

μLsub

ksub
v                                     (3.7) 

 

where LGDL, LMPL, and Lsub are the thicknesses of the coated GDL, the MPL and carbon 

substrate respectively, and the kGDL, kMPL, and ksub are gas permeability values for the 

coated GDL, the MPL and the carbon substrate, respectively. Clearly, equation (3.7) was 

used to solve for the gas permeability of the MPL:     

 

                 kMPL    =    
LMPL

LGDL
KGDL

 −  
Lsub
Ksub

                                                    (3.8) 

 

As mentioned in Section 3.2.2, the thickness of the MPL was estimated locally using 

cross-sectional SEM images at as many points as possible in order to have a well-

representative value of the thickness of the MPL in Section 4.4. However, the gas 

permeability of the carbon substrate used was estimated by fitting the experimental data 

of the pressure gradients as a function of the velocity to equation (3.4).  

3.3.3 MPL penetration and gas permeability 

In this section, a method to estimate the penetration of the MPL into the carbon substrate 

on the GDL gas permeability is analysed.  

Figure 3.14 shows schematic representation of a method for estimating the MPL 

penetration into a porous carbon substrate. The resistance of a porous material that is 

permeable with very small pores, but does not permit penetration of the MPL into it, and 

the permeability of material after coating can be ascribed to the resistance of the gas flow 

distance through its flow pathways, Blanco and Wilkinson (2010). 

The MPL thickness penetration was calculated by employing the total resistance 

expression as follows: 
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   Rtot = Rmpl + Rsub                                      (3.9) 

 

where, Rmpl and Rsub are the resistance values for the MPL and the material sample, 

respectively, and Rtot is the total resistance of the material. Equation (3.9) can also be 

expressed as follows: 

   
Ltot

ktot
  =  

Lmpl

kmpl
   +    

Lsub

ksub
                                               (3.10) 

 

where Ltot is the total thicknesses of the material, Lmpl is the thickness of the MPL coated 

on the material and Lsub is the thickness of the material before coating, ktot is the gas 

permeability of the coated material, kmpl is the gas permeability of the MPL and ksub is the 

gas permeability of the material before coating. In this case, a material, namely the 

membrane filter was used, as described in Section 3.1.  The gas permeability of the MPL 

with no penetration was calculated using Equation (3.8) in Section 3.3.2. Further, the gas 

permeability of the MPL with penetration was determined. From Equation (3.10), the 

total thickness of the MPL is estimated as follows: 

     Lmpl    =    Lvis−mpl    +   Lpen                                    (3.11) 

 

where Lvis-mpl is the visible MPL thickness and Lpen is the MPL penetration into porous 

carbon substrate, see Figure 6.2. If Equation (3.11) is substituted into Equation (3.10), 

then the following expression provides a relationship between the visible MPL thickness 

and the penetration: 

 

     
Ltot 

ktot
    =     

Lvis  +   Lptn

kmpl
    +      

Lsub

ksub
                                                  (3.12) 
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                 Lpen   =     kmpl   
Ltot

ktot
  −   

Lsub

ksub
    -   Lvis                                       (3.13) 

 

As the gas permeability value of the MPL with no penetration has been estimated, and 

the other parameters are known, namely the gas permeability of the coated GDL (ktot), 

the total thickness of the coated GDL (Ltot), gas permeability and thickness of the carbon  

substrate. Then, the amount of MPL penetration material into the porous carbon substrate 

can be calculated by using Equation (3.13), which presents the method employed to 

determine the penetration of the MPL into porous carbon substrate using a permeable and 

non-penetrable material as described in Section 3.1.  
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 Figure 3.15. Schematic representation of a method for estimating the MPL 

penetration into a porous carbon substrate. 
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3.4. Uncertainty and error analysis 

In this thesis, the experimental measurements were performed on the following 

equipment, materials and parameters: calibration of the flow meter, thickness of the 

carbon substrate before and after coating, carbon black particles loading, PTFE loading, 

carbon-PTFE loading by weight. In order to reduce measurement errors, the 

measurements are repeated several times and the mean and standard deviation methods 

were utilised for estimating the measurement errors within the 95 % confidence interval 

(Figures 3.15 – 3.19).  Figure 3.15 shows the experimental data for amount of carbon-

PTFE loading in the MPL as a function of PTFE loading in the MPL. The carbon black 

loading in the MPL is kept constant at 0.5, 1.0, 1.5, 2.0 and 2.5 mg/cm2 while, the PTFE 

loading varies over the range 0, 10, 20, 30, 40 and 50 wt.%, respectively. For deducing 

the measurement  error of uncertainty for the carbon-PTFE loading in the MPL, the error 

bars estimate the 95 % confidence interval calculated for the MPL slurry coated on the 

surfaces of the six samples as mentioned in Section 3.2.3 (see Figure 3.16).  Figure 3.16 

presents the amount of the MPL ink coated on a set of six GDLs samples taken from the 

same sheet, the carbon-PTFE loading in the MPL increases as the PTFE loading for the 

two carbon blacks used as a material for the MPL, namely Ketjenblack and Vulcan carbon 

black. However, the measurement error bar has been estimated for coating one-side of 

the surface of the tested samples, see Figure 3.16. 

Experimental measurements 

The following steps have been taken to calculate the measurement errors of the 

investigation:  

1. Estimated gas permeability of each 6 samples for a set of group. 

2. Calculate the mean of the samples, that is, average the 6 samples permeability. 
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3. Calculate the standard deviation for the 95 % confidence interval by employing, 

Moffat (1988); 

(n − 1) ∗ STDV(x)

SQRT(n)
 

where n-1 is the degrees of freedom (df) for the number of tested samples, n, x is 

the standard deviation of tested samples. Additionally,  

Mean (x) = 
∑(xi)

n
 

where n is the total number of tested samples. 

4. Calculate the maximum and minimum values as follows: 

Mean (x) ± Standard Deviation 

5. Finally, the degrees of freedom is simply the number of measurements (n) – the 

number of calculated quantities (1), hence df = n-1. 

 

 

 Figure 3.16. Amount MPL slurry coating on the top of one-side of the carbon 

substrate sample surfaces. 
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(a) 0.5 mg/cm2 Ketjenblack carbon black loading in the MPL. (b) 0.5 mg/cm2 Vulcan carbon black loading in the MPL. 
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(c) 1.0 mgcm2 Ketjenblack carbon black loading in the MPL.    (d) 1.0 mg/cm2 Vulcan carbon black loading in the MPL. 
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(e) 1.5 mg/cm2 Ketjenblack carbon black loading in the MPL.   (f ) 1.5 mg/cm2 Vulcan carbon black loading in the MPL. 
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(g) 2.0 mg/cm2 Ketjenblack carbon black loading in the MPL.   (h) 2.0 mg/cm2 Vulcan carbon black loading in the MPL. 
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(i) 2.5 mgcm2 Ketjenblack carbon black loading in the MPL.                  (j)  2.5 mg/cm2 Vulcan carbon black loading in the MPL. 

 

 Figure 3.17. The estimation of the amount of Carbon black type-PTFE loading in the MPL coated on one-side of the GDL sample 

surface by weight and measurement error bars of 95 % conf. int. 
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(a)           (b) 
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    (c)                   (d) 
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                         (e)         (f)   
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    (g)          (h) 
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(i)                                                                                                                           (j) 

 Figure 3.18. The measurement error bars of 95% confidence interval for pressure gradient of MPL-coated GDLs  with Vulcan for 

each of 6 tested samples of 20 wt.% PTFE. 
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(a) 0.5 mg/cm2 Ketjenblack loading           (b)      0.5 mg/cm2 Vulcan loading 
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(c) 1.0 mg/cm2 Ketjenblack loading                 (d) 1.0 mg/cm2 Vulcan loading 
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                (e) 1.5 mg/cm2 Ketjenblack  loading     (f)  1.5 mg/cm2 Vulcan loading 
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               (g)   2.0 mg/cm2 Ketjenblack loading    (h)     2.0 mg/cm2 Vulcan loading 
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(i) 2.5 mg/cm2 Ketjenblack loading                             (j) 2.5 mg/cm2 Vulcan loading 

 

 Figure 3.19. The measurement error bars of 95% confidence interval for pressure gradient as a function of velocity of flowing gas across 

MPL-coated GDLs with Ketjenblack and Vulcan carbon blacks of 20 wt.% PTFE. 
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      (a)         (b)  

 Figure 3.20. The measurement error bars of 95% confidence interval for gas permeability  of MPL-coated GDLs as a function of 

carbon loading in the MPL with (a) Ketjenblack and (b) Vulcan carbon blacks with 20 wt.% PTFE. 
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0.5 mg/cm2 Ketjenblack loading                                                   0.5 mg/cm2 Vulcan loading 
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1.0 mg/cm2 Ketjenblack loading                        1.0 mg/cm2 Vulcan loading 
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    1.5 mg/cm2 Ketjenblack loading                                                    1.5 mg/cm2 Vulcan loading  
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 2.0 mg/cm2 Ketjenblack loading    2.0 mg/cm2  Vulcan loading 
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2.5 mg/cm2 Ketjenblack loading.                     2.5 mg/cm2 Vulcan loading. 

 Figure 3.21. The measurement error bars of 95% confidence interval for gas permeability  of MPL-coated GDLs as a function of 

PTFE loading in the MPL with Ketjenblack and Vulcan carbon blacks. 
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(a) MPL-Ketjenblack.        (b) MPL-Vulcan. 

 Figure 3.22. The measurement error bars of 95% confidence interval for MPL thickness as a function of carbon loading in the MPL 

with (a) Ketjenblack and (b) Vulcan carbon blacks. 
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     MPL-Ketjenblack       MPL-Vulcan 

 Figure 3.23. The measurement error bars of 95% confidence interval for gas permeability  of MPL as a function of carbon loading in 

the MPL with Ketjenblack and Vulcan carbon blacks. 
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3.5. Summary  

This chapter has presented the techniques and methodology adopted to experimentally 

estimate the through-plane gas permeability of the porous gas diffusion media in PEFCs. 

The experimental techniques explored the materials and methods used for preparing the 

gas diffusion media, namely MPLs and MPL-coated GDLs. In addition, a new method 

for preparing the MPL materials and the coating on the porous material (i.e. membrane 

filter) which is permeable, but does not allows MPL penetration into its pores.  
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Chapter 4 

The effects of Carbon black as the material used for the Microporous 

Layer of Gas Diffusion Media  

A detailed knowledge of the reacting gas transport from the porous gas diffusion media 

(GDM), namely the gas diffusion layer (GDL) and microporous layer (MPL) to the active 

site of the catalyst layers is crucial in the performance of polymer electrolyte fuel cells 

(PEFCs). The performance of the GDM is varied by changing the physical characteristics 

of the porous media used in PEFCs (Amirinejad et al., 2006). In order to ensure the 

presence of a sufficient amount of the reactant gases for the reaction in the catalyst layers, 

the GDM must be able to demonstrate high transport properties (Tamayol et al., 2012,  

Wu et al., 2012).  

Gas permeability is one of transport properties that signals how effective the convective 

transport is within the porous media used in the membrane electrolyte assembly (MEA) 

components of the PEFCs (Tadbir et al., 2015 and  Lindermeir et al., 2004). However, 

the comprehensive gas permeability values of the GDL before and after adding MPL, 

have not been reported in the literature by taking into account the effects of the carbon 

black loadings and carbon black types. Also, the effects of sintering the MPL on the gas 

permeability of the coated GDL has not previously been evaluated. 

Several studies have been reported on the gas permeability coefficients of the GDLs and 

MPLs. Wang et al. (2010) reported the correlation between the gas and liquid 

permeability of some GDLs, and experimentally determined the liquid water saturation 

level. The gas permeability was measured through the pre-saturated sample, and it 

increases as the pressure drop displaced by the liquid phase. In addition, the gas 
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permeability of the GDLs have been measured before and after the wet sample. Also, the 

saturation level was estimated based on the difference between before and after the wet 

samples; however, they have not been taken into account the presence of the MPL.  

El-kharouf et al. (2012) reported the through-plane gas permeability of the GDL after 

adding MPL. The results show that adding MPL to the GDL, the thickness, the fibre 

density and PTFE loading significantly have effects on the gas permeability of the GDL 

after coating. Also, they have not considered the possible effects of carbon loadings and 

carbon types, respectively, on the overall thickness of the GDL after coating that affect 

the gas permeability of the GDLs.  

Park et al. (2006) have experimentally investigated the carbon loadings in the MPL coated 

to the GDL and found that there is a significant influence on the pore diameter and the 

total pore volume in the GDLs. The results show that by increasing the carbon loading in 

the MPL, the average pore diameter and total volume of the GDL reduces and the total 

volume decreases. Clearly, the results indicate the significant effects of the MPL coated 

to the GDL, but how these affect the gas permeability of the GDL after coating was not 

reported.  

Further, the influence of the uniform distribution of the PTFE loading in the MPL by 

sintering has on the gas permeability of the MPL-coated GDL was not considered. Jordan 

et al. (2000) studied the effect of altering the PTFE distribution loading in the MPL. Also, 

they considered two carbon types, namely Acetylene and Vulcan carbon blacks. They 

reported that the maximum power density is obtained with a sintered MPL with an 

Acetylene carbon black of loading 1.9 mg cm-2. The maximum power density of the cells 

performance was operated with oxygen, while the air operation maximum power density 

is attained with a loading 1.25 mg cm-2, a sintered MPL with same Acetylene black.  
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However, there have been no thorough investigations on the effects of carbon types and 

loadings in the MPL of the coated GDLs gas permeability of GDL before and after 

coating. Also, taking into account the effects of sintering, the MPL added  to the GDL 

sintering effect has not been considered on the gas permeability of the coated GDL.  

In this chapter, the gas permeability of the GDM, i.e. the  GDL and MPL used in the PEM 

fuel cells has been experimentally investigated. In addition, the effects of sintering the 

MPL with different carbon types of loading on the gas permeability of the coated GDL 

has been evaluated. In the first stage, the through-plane gas permeability of the carbon 

substrate both before and after coating, were measured, and in the second stage, the 

through-plane gas permeability of the coated GDL after sintering was investigated by 

considering the effects of different carbon types. Finally, the through-plane gas 

permeability of the MPL has been estimated. 

4.1 Through-plane gas permeability of the carbon substrate 

In order to investigate the gas permeability of the gas diffusion layers when MPL is 

present, the through-plane gas permeability of the porous carbon substrate has been 

measured. Figure 4.1 shows typical scanning electron microscope (SEM) micrographs for 

the surface of the SGL 10BA carbon substrate before coating. The gas permeability of 

the GDL before coating was calculated by fitting the experimental data of the pressure 

gradients as a function of the gas velocity to Equation (3.4). Figure 4.2 shows a typical 

pressure gradient as a function of the gas velocity used to estimate the gas permeability.  

The average thickness of 30 carbon paper samples was estimated to be about 370 ±40 

μm. The averaged through-plane gas permeability for the carbon substrate tested samples 

was found to give a gas permeability value of the GDL before coating to be 2.08 ±0.33  
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× 10-11 m2. This value is in good agreement with those reported in the literature for the 

same substrate, namely 1.80 × 10-11 m2  Ihonen et al. (2004). On the other hand, the value 

is lower than 2.72 × 10-11 m2  as reported by Ismail et al. (2011),  and 3.74 × 10-11 m2 

Gostick et al. (2006). 

 

 

 Figure 4.1. A typical SEM image for the surface area of a SGL 10BA carbon 

substrate. 

 

4.2 Through-plane gas permeability of MPL-coated GDLs 

The through-plane gas permeability values of the coated GDLs with MPL for two types 

of carbon black loadings have been determined. The effects of the carbon loading and 

carbon type in the MPL on the gas permeability of the MPL-coated GDLs have been 

investigated.  Figure 4.3 shows a typical SEM image for the surface of a GDL after 

coating with MPL.  It is worth noting that the PTFE loading in the MPL is kept constant 
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at 20 wt.%, as this is a value frequently used in the literature, Kitahra et al. (2010) , Park 

et at. (2006) and Uchida et al. (1995). 

 

 

 Figure 4.2. Measured pressure gradient as a function of the gas velocity for a 

SGL 10BA sample. The solid line represents the linear pressure gradient-

velocity curve. 

 

 

Figure 4.4 presents the experimental data of the pressure gradient-velocity curve for the 

GDLs after coating with various carbon loadings for Ketjenblack carbon black. Also, 

Figure 4.5 shows experimental data of the pressure gradient as a function of the gas 

velocity for the MPL-coated GDLs with various carbon loading of Vulcan carbon black. 

However, the pressure gradients of each set of set tested samples are linear and increases 

as the carbon loadings in the MPLs increases, and the distributions are shown in the form 

of 95 % confidence intervals, see Figure 3.19 (Chapter 3). 
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The gas permeability values for the MPL-coated GDL samples were calculated using 

Equation (3.4). From the curves, the experimental data shows a  linear trend of the gas 

pressure gradients as the velocity of the gas flow increases, see Figures 4.4 and 4.5.  These 

figures indicate that, for the given velocity, the pressure gradient increases as the carbon 

loading increases in the MPL. This is as a result of the increases in the thickness as the 

carbon loading increases in the MPL. The gas permeability value is the average gas 

permeability for six samples of the same carbon loading in the MPL. Further, a 

comparison is made for various carbon loadings in the MPL with two different carbon 

types that are discussed in Sub-section 3.2.1, which is based on the carbon types utilised 

in this thesis.  

4.2.1 Effects of carbon loading 

The significant effects of the carbon loading in the MPL on the gas permeability of MPL-

coated GDLs is the increase in the total thickness of the coated GDL. The value of the 

thickness was obtained by using Equation (3.8). As the carbon loading in the MPL 

gradually increases from 0.5 to 2.5 mg/cm2 of carbon black, the corresponding thickness 

of the coated GDL increases. Figure 4.6 indicates the total thickness of the coated GDLs 

as a function of carbon loading in the MPL. Given that the averaged thicknesses of the 

coated GDLs attained are 414 ±11, 435 ±18, 488 ±17, 497 ±20,  519 ±34 µm with MPL 

carbon loadings of 0.5, 1.0, 1.5, 2.0 and 2.5 mg/cm2, respectively.  This shows that the 

gas travel paths across the porous layers of the coated GDLs increases as the carbon 

loading increases and the corresponding thickness of the coated GDL. The indicated trend 

of the increase in the amount of carbon loading in the MPL increasing the thickness of 

the MPL-coated GDL is in agreement as reported by Liu and Chang (2013) and Ko et al. 

(2010).  
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(a) 

 

(b) 

 Figure 4.3. Typical SEM image for the surface area of the MPL-coated GDL 

sample, (a) MPL-coated GDL with Ketjenblack carbon black, and (b) MPL-

coated GDL with Vulcan carbon black. 
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 Figure 4.4. Measured pressure gradient as a function of the nitrogen gas 

velocity for the MPL-coated carbon substrates with various carbon loadings in 

the MPL for 20 wt.% PTFE, and before and after,  coating the GDL with MPL 

using Ketjenblack carbon black. 

 

 

 Figure 4.5. Measured pressure gradient as a function of the nitrogen gas 

velocity for the MPL-coated carbon substrates with various carbon loadings in 

the MPL of 20 wt.% PTFE, and before and after, coating the GDL with MPL 

using Vulcan XC-72R carbon black.  
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The gas permeability values of the MPL-coated GDLs are displayed with a progressive 

and rapid decrease in the averaged gas permeability of the GDLs after coating. Figure 4.7 

shows the through-plane gas permeability as a function of the carbon loading in the MPL 

for the coated-GDLs after coating. This indicates that, as the MPL carbon loading 

increases, the total GDL thickness increases after coating and clearly, the gas permeability 

of the coated GDL decreases.  

Furthermore, the gas permeability reduces as the carbon loading in the MPL increases as 

a result of an increase in the pressure drop of the MPL-coated GDL. The resistance of the 

flowing gas across the MPL-coated GDL increases as the carbon loading increases, 

Figures 4.4 and 4.5. This clearly indicates that changing in the properties of the GDL 

before and after coating, namely the porosity and pore size distribution have been 

attributed to the changes in the MPL properties, such as the micro-pores, meso-pores and 

macro-pores by the carbon black loading in the MPL (Park et al., 2006, Chen and Chang, 

2013). However, the gas permeability of the GDL after adding the MPL decreases as the 

capillary pressure of the coated GDL decreases based as the carbon loading increases in 

the MPL (Pharoah, 2005, Tamyol et al., 2012, Kim et al., 2013). The gas permeability 

values of the MPL-coated GDLs are lower than those of the base carbon substrate by an 

order of magnitude at the 95 % confidence intervals (Figure 3.20) .  
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 Figure 4.6. Thickness of the carbon substrate before and after coating. 

 

 

 Figure 4.7. Through-plane gas permeability of the MPL-coated GDLs with 

various amounts of carbon loading in the MPL with 20 wt.% PTFE. 
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4.2.2 Effects of carbon black type 

Figure 4.8 illustrates the thicknesses of the MPL-coated GDLs investigated measured 

using the MPLs loaded with various amounts of the two carbon blacks, namely 

Ketjenblack and Vulcan carbon blacks.  It shows that the use of the MPLs with Vulcan 

carbon black coated GDL thickness is less compared to the MPLs with Ketjenblack 

carbon black coated GDL. This is as a result of the MPL dispersion and the penetration 

into the  carbon substrate (Jordan et al., 2000 and Kitahara et al., 2010), and the 

characteristic properties of the MPL structure based on the carbon black structure, such 

as the breadth of the pore size distribution that is loading in the MPL (Prasanna et al., 

2004 and El-kharouf et al., 2013). Clearly, the thickness of the MPL increases as the 

loading of the carbon powder increases in the MPL that is adding to the surface of the 

carbon substrate.  

The through-plane gas permeability values of the GDL after coating with the different 

MPLs of different carbon types have been determined.  Figure 4.9, presents the through-

plane gas permeability as a function of the carbon type that is the loading in the MPL. 

The distributuions of raw data for all carbon loadings in the MPL on the results are shown 

in the form of 95 % confidence intervals, see Figures 3.18 and 3.20. Also, the standard 

deviations for each data points in the figures and the results are tabulated in Appendices 

C and D.  The gas permeability of the coated GDLs with MPLs made of Vulcan carbon 

black have higher values compared to the MPL-coated GDLs with Ketjenblack carbon 

black. Clearly, the results indicate that the properties of  the carbon blacks utilised affect 

the properties of the MPLs, such as the micropores, mesopores and macropores (Park et 

al., 2006, El-kharouf et al., 2012).   
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 Figure 4.8. MPL-coated GDL thickness as a function carbon loading in the 

MPLs. Two different carbon types,    Kejenblack carbon black and     Vulcan 

XC 72R carbon black.  

 

 

(a) 
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(b)  

 

 

(c) 

 Figure 4.9. Through-plane gas permeability as a function of carbon loading of 

coated GDLs for different carbon black type loadings in the MPL, (a) 

Kejenblack carbon black and (b)     Vulcan XC 72R carbon black.  
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4.3  Effects of sintering  

Figure 4.10 shows the gas permeability of the MPL-coated GDL before and after 

sintering. The results show that, regardless of the carbon loading and carbon black used 

in the MPL, the through-plane gas permeability of the  coated GDLs decreases after 

sintering. This is as a result of the uniform distribution of the PTFE loading in the MPL. 

The gas permeability of the coated GDLs for the loading 0.5 mg/cm2 of Ketjenblack 

carbon black slightly decreases after sintering but significantly reduces for the loading 

Vulcan carbon black. For a carbon loading 2.5 mg/cm2 in the MPL of both types of carbon 

blacks, the gas permeability slightly decreases after sintering.  

Further, these results indicate that when the carbon loading is varied and the PTFE loading 

is kept constant, sintering the MPL with higher carbon loading from 2.5 mg/cm2 has a 

negligible influence on the gas permeability of the coated GDL. However, the most likely 

spreading effect that sintering has on the MPL material is clear in loadings from 0.5 

mg/cm2 (Vulcan) to 1.5 mg/cm2 for both type of carbon black, respectively. This is most 

likely due to the physical properties and uniform distribution of the PTFE within the MPL, 

see Figure 4.11. Additionally, sintering narrows down the cracks that exist in the MPL 

(due to the above mentioned spreading effect) and which eventually increases the gas 

(mass) resistance.  
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 Figure 4.10. Through-plane gas permeability of MPL-coated GDLs before and 

after sintering as a function of carbon loading in the MPL, for comparison of 

the effects of sintering on the MPLs coated on GDLs with 20 wt.% PTFE.  
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(a)          (b) 

 

 Figure 4.11. SEM images for the MPL with 1.5 mg/cm2 Ketjenblack of 20 wt.% PTFE carbon loading  (a) before sintering, and (b) after 

sintering. 
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(a)           (b)     

  

 Figure 4.12. SEMs images for the MPL with 1.5 mg/cm2 Vulcan of 20 wt.% PTFE carbon loadings  (a) before sintering, and (b) after 

sintering. 
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4.4 Through-plane gas permeability of MPLs 

The gas permeability values of the MPLs (microporous layers) that are coated onto the 

surface of the carbon substrates have been estimated and compared when using both 

Ketjenblack carbon black and Vulcan carbon blacks as materials for the MPLs. Equation 

(3.8) was used to estimate the through-plane gas permeability of the MPLs of coated SGL 

10BA samples. The thickness of the MPL, and all the other parameters required to 

estimate the gas permeability of the MPL, were determined as explained in Chapter 3 

(Sections 3.1 and 3.2).  

Figure 4.13 shows the MPL thickness values as a function of the carbon loading in the 

MPL. In Yu et al. (2005), the procedures adopted for the MPL thickness have been 

estimated in this study through the use of cross-sectional SEM images of the coated 

GDLs, see Figure 4.13. It clearly indicates that the thickness of the MPL increases as non-

independent carbon type but as carbon loading in the MPL. However, there is a significant 

difference in the MPL with Ketjenblack carbon black material and MPL with Vulcan 

carbon black thicknesses, which are based on the carbon types that have been used as 

materials for the MPL, i.e. the MPL with Vulcan black thickness is less than that of the 

Ketjenblack carbon black (MPL). These results indicate that the properties of the carbon 

type used affects the MPL coated onto the substrate, namely the thickness, dispersion and 

density, pore size, pore volume and distribution, see Table 3.3 (Prasanna et al., 2004, El-

kharouf et al., 2012). Further, it is clear from the Figure 4.13 that the thickness of the 

coated MPL is varies widely for the different carbon black types.  

The effects of the MPLs with the different carbon blacks used in PEFCs (polymer 

electrolyte fuel cells) on the gas permeability of the porous layers, by considering the 

thickness, have been investigated, see Figure 4.15. Clearly, from this figure the gas 
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permeability of the MPL with Ketjenblack is higher  compared with that of the Vulcan 

MPL (Figure 4.15), and this may be due to the effects of the thickness and the carbon 

blacks that significantly affect the through-plane permeability of both the MPLs. 

Furthermore, the gas permeability of the MPL decreases with increasing the carbon 

loading, but, this should not be the case due to uncertainty estimation of the MPL 

thickness. Regardless, of the carbon loading, the gas permeability values should ideally 

have been the same values for all the coated samples. Since the composition of the MPLs 

is the same for all the MPLs: 80 wt.% carbon loading and 20 wt. % PTFE content. In 

other words, the MPL material does not change as the carbon loading changes. Therefore, 

its gas permeability value should be ideally the same as the latter is an intrinsic property 

of the material, Ismail et al. (2010). This signifies that the current approach of estimating 

the MPL gas permeability, by either using a micrometre or cross-sectional images of the 

MPL-coated GDLs, it appears to lead to rather inaccurate results. This is most likely due 

to the significant penetration of the MPL materials into the body of the carbon substrates 

which leads to an uncertainty in the estimation of the MPL thickness.   
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 Figure 4.13. MPL thickness as a function of carbon loading in the MPL for     

(a)     Ketjenblack carbon black and (b)    Vulcan carbon black as materials for 

the MPLs.  

 

 Figure 4.14. A typical SEM cross-sectional micrograph of an MPL-coated GDL 

for MPL with Ketjenblack carbon black.  
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 Figure 4.15. Through-plane gas permeability of the MPL as a function of 

carbon black loading in the MPL with two different carbon blacks (a) 

Ketjenblack carbon black and (b) Vulcan carbon black.  

 

4.5 Conclusions 

The through-plane gas permeability of the gas diffusion media and sintering have been 

experimentally investigated. The gas permeability of the GDLs coated with MPLs having 

various carbon loadings have been estimated using two types of commonly-used carbon 

blacks, namely Ketjenblack and Vulcan carbon back.  

The gas permeability of the MPL was estimated through employment of (i) the measured 

permeability and thickness of the GDL before and after the MPL-coating, and (ii) the 

cross-section  SEM images of the coated GDLs to estimate the thickness of the MPLs. 

The main conclusions from this study are as follows: 
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 The MPL-coating reduces the gas permeability of the GDL by at least one order 

of magnitude and this is clearly due to the significantly lower gas permeability of 

the MPLs. 

 The gas permeability of the MPL was found to change significantly with the 

carbon loading, despite the use of the invariable weight composition for all the 

MPLs coated, namely 20 wt.% PTFE and 80 wt.% carbon black. This is mainly 

due to the inaccurate estimation of the MPL thickness using either the micrometre 

or the cross-sectional images SEM of the coated GDL which do not account for 

the penetration part of the MPL. 

 The MPL sintering was found to slightly decrease the gas permeability of the GDL 

as it appears to narrow the gaps between the cracks in the MPL. 

 Finally, it should be noted that all of the findings in this study are applicable to 

both the carbon blacks investigated. Also, the gas permeability of the MPL-coated 

GDLs with Ketjenblack carbon black  is less than that of the MPL-coated GDLs 

with Vulcan carbon black. While, in order of the MPLs, the gas permeability of 

the MPL with Vulcan carbon black is higher compared with that of the 

Ketjenblack carbon black, see Figures 4.9 and 4.14.  

This study has highlighted the need to accurately determine the effects of  the MPL 

thickness and the penetration into substrate, despite the fact that the carbon black type 

is non-independent of the carbon loading in the MPL. In addition, the composition of 

the MPL effects on the through-plane gas permeability of the porous gas diffusion 

media used in the PEFCs and requires further investigation. 
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Chapter 5 

The Effects of the Composition of the Microporous Layer on the 

Through-plane Gas Permeability of the Gas Diffusion Media 

As a result of the experimental studies which were performed on the effect of carbon 

black loading in the microporous layer (MPL) on the through-plane gas permeability of 

the coated gas diffusion layer (GDL) in Chapter 4, and in order to understand the effects 

of the composition of the MPL coated GDL, the effects of the polytetrafluoroethylene 

(PTFE) loading in the MPL with various carbon loadings have been investigated in this 

thesis.  

It is common practice to treat GDLs with MPL coating for better transport phenomena 

within the GDLs used in polymer electrolyte fuel cells (PEFCs). The composition of the 

porous gas diffusion media (carbon substrates and microporous layers) plays an important 

role on the performance of the cells, Ramasamy et al. (2008) and Kim et al. (2013).  

Velayutham et al. (2007) investigated the effect of the PTFE loadings in the porous gas 

diffusion layers (carbon substrate and microporous layer) of the MEAs on the 

performance of the PEMFC (polymer electrolyte membrane fuel cell) tested under 

ambient pressure. They reported that the MEAs with microporous layer of  20 wt.% of 

PTFE performed better compared with those loadings of 10 and 32 wt.% PTFE, 

respectively. The carbon loading in the MPL has been kept constant, and the comparative 

loadings of both the PTFE  and carbon in the MPL by considering different amounts of 

carbon loadings have not been taken into account in this case. 

Park et al. (2008) studied the effects of the PTFE loading in the MPL on the proton 

exchange membrane (PEM) fuel cell water management. They measured the cumulative 
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pore  volumes in the GDLs after coating for different PTFE loadings in the MPLs. The 

amount of PTFE content in the MPL was varied  from 10, 20, 30 and 40 wt.%, and the 

carbon loading was kept constant at 2.0 mg/cm2.  They reported that the cumulative pore 

volume in the pore size of the MPL reduces from 30 to 0.01 µm with increases in the 

PTFE loading in the MPL as a result of decreases in the porosity of the MPL. In addition, 

as the PTFE loading in the MPL varies, that is, increases from 10 to 40 wt.%, the threshold  

pressure value for the liquid water flow increases from 1.8 to 3.5 kPa. However, they did 

not determine the effect of  different PTFE contents and carbon loadings in the MPL on 

the gas permeability of the GDLs after coating. 

Further, Kim et al. (2013) studied the effects of the microstructure and carbon black 

compositions of the MPL in a direct methanol fuel cell.  Their investigations focused on 

the important roles that the MPL plays in the anode side of the cell and considered the 

control of the water transport and the gas (methanol) on the performance of the MEA 

under the operation of highly concentrated methanol. They reported that the gas 

permeability of the gas diffusion layers (GDLs) after coatings was significantly 

dependent on the cracks in the MPLs compared with the thickness of the MPLs which is 

based on the effects of the different carbon black types of compositions in the MPLs. In 

their report,  the PTFE loadings was kept constant at 25 wt.%, however, the effect of the 

amount of Vulcan XC 72R carbon black used has not been taken into account. 

Chen and Chang (2013) experimentally investigated the effects of the composition of 

MPL at the cathode side and considered the PTFE and carbon black loadings on the 

performance of the PEMFC. The performance of the PEMFC was evaluated under 

different relative humidity at the air inlet. They reported that the optimal performance of 

the cell depends on the MPL composition with 1.5 mg/cm2 carbon black and 20 wt.% 
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PTFE loadings at different air relative humidity. Also, they noted that increasing the 

PTFE loading in the MPL improves the performance of the cell at a lower relative 

humidity state. However, the effect of the relative amount of carbon black types and PTFE 

loading in the MPLs on gas permeability of the gas diffusion media in their experiments 

is unclear. 

Mangal et al. (2015) experimentally studied the mass transport in a PEMFC by 

investigating the through-plane permeability and molecular diffusivity in the GDLs. They 

found that an increase in the PTFE loadings in the GDLs have a significant effect, either 

“positive” or “negative”, on the permeability and diffusivity. However, they did not 

consider the relatively matching PTFE – carbon loadings in the MPL, and the effect of 

the carbon black types have not been taken into account. 

In general, it is clear that the illustrated literature review highlights the lack of in-depth 

experimental investigations of the effects of the composition of the microporous layer 

(MPL) on the through-plane gas permeability of MPL-coated GDLs of the PEFCs. In the 

present study, the through-plane gas permeability of the GDLs after coating with the MPL 

has been investigated, considering the effects of the composition of the MPL added to the 

GDLs. In addition, the effects of the PTFE loadings in the MPL with two different carbon 

types, namely Ketjenblack EC-300JD and Vulcan XC-72R have been presented and 

discussed in detail in this chapter. 

5.1 PTFE loading in the MPL  

Figures 5.1 and 5.2 show the experimental data for the pressure gradient as a function of 

velocity of flowing gas (nitrogen) across the MPL-coated GDLs with different 

compositions of the MPLs. The carbon loadings in the MPL varied from 0.5, 1.0, 1.5, 2.0 
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and 2.5 mg/cm2, and also the PTFE loadings varied between 0 and 50 wt.%. Two different 

carbon blacks have been used in this study, namely Ketjenblack EC-300JD and Vulcan 

XC-72R.  it is observed that a given velocity, the pressure gradient curve is linear. The 

pressure gradient curves for the MPL-coated GDLs with  0.5 mg/cm2 carbon black with 

various PTFE loadings of the two carbon black types have been considered.  

In Figure 5.1, the MPL-coated GDLs have a minimum pressure gradient at 20 wt.% PTFE 

loading and maximum pressure gradient observed at 30 wt.% PTFE loading in the MPL. 

Also, it is shown that the MPL-coated GDLs with 0 wt.% PTFE and the substrate have 

mostly the same values for the pressure gradient and they are between 20 and 50 wt.% 

PTFE of the MPL-coated GDLs.  Whilst the pressure gradient values of 10 and 40 wt.% 

PTFE loading in the MPL-coated GDLs are slightly closer in magnitude and both the 

coated GDLs are below the MPL-coated GDLs of 30 wt.% PTFE and above the MPL-

coated GDL of 50 wt.% PTFE, respectively. However, the pressure gradient values of the 

MPL-coated GDLs indicate the significant loading of the PTFE when the carbon loading 

is kept at a constant value in the MPLs.   

Figure 5.2 shows that the minimum pressure gradient is observed  in the substrate, and a 

maximum pressure gradient is exhibited in the MPL-coated GDLs with 40 wt.% PTFE 

loading in the MPLs, respectively. The significant variations in the pressure gradient 

values shown in both figures is as a result of the carbon black characteristic property that 

affects the porosity of the treated gas diffusion layers used in the polymer electrolyte fuel 

cells (Ramasamy et al., 2008). Similar  results are also obtained at the other compositions 

with higher carbon loadings, see Table 5.1. 
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 Figure 5.1. Measured pressure gradient as a function of the nitrogen gas 

velocity for the MPL-coated carbon substrates with different PTFE loadings 

in the MPL for 0.5 mg/cm2 Ketjenblack carbon black.  

 

 

 Figure 5.2. Measured pressure gradient as a function of the nitrogen gas 

velocity for the MPL-coated carbon substrates with different PTFE loadings 

in the MPL of 0.5 mg/cm2 Vulcan carbon black.  
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Table 5.1. The through-plane gas permeability of the MPL with Ketjenblack and Vulcan carbon blacks. 

 

 

Carbon 

loading, 

mg/cm2 

PTFE loading, wt.% and gas permeability, m2 

0 10 20 30 40 50 

Ketjenblack Vulcan Ketjenblack Vulcan Ketjenblack Vulcan Ketjenblack Vulcan Ketjenblack Vulcan 
Ketjenbla

ck 
Vulcan 

0.5 1.36×10-11 3.95×10-11 2.41×10-12 4.92×10-12 8.22×10-13 2.29×10-12 1.10×10-12 9.65×10-12 1.66×10-12 1.78×10-11 4.01×10-12 4.95×10-11 

1.0 6.91×10-13 1.06×10-12 4.67×10-13 6.89×10-13 2.59×10-13 4.15×10-13 2.89×10-13 8.55×10-13 4.31×10-13 1.09×10-12 5.56×10-13 2.13×10-12 

1.5 5.19×10-13 8.19×10-13 5.79×10-13 1.86×10-13 3.27×10-13 1.56×10-13 3.24×10-13 3.24×10-13 3.83×10-13 4.29×10-13 6.68×10-13 4.56×10-13 

2.0 4.51×10-13 3.43×10-13 5.43×10-13 3.06×10-13 1.66×10-13 3.00×10-13 3.99×10-13 3.77×10-13 5.22×10-13 5.07×10-13 7.18×10-13 6.16×10-13 

2.5 4.83×10-13 1.93×10-12 5.61×10-13 1.08×10-12 1.40×10-13 4.75×10-13 1.61×10-13 1.52×10-12 3.13×10-13 2.50×10-12 4.15×10-13 2.32×10-12 
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5.1.1 Effects of the carbon black loading  

Figures 5.3 (a) and (b) present the through-plane gas permeability of the MPL-coated 

GDLs as a function of the carbon loading in the MPL for the Ketjenblack EC-300JD and 

Vulcan XC-72R carbon black. A set of MPL composition is a combination of the carbon 

loadings, namely 0.5, 1.0, 1.5 and 2.5 mg/cm2 with different PTFE loading varying in the  

range  0, 10, 20, 30, 40  and 50 wt.%.  The figures show that the gas permeability values 

of the composition of the GDLs after coating with a composition of  the MPL reduces by 

an order of magnitude as the carbon loading increases from 0.5 to 2.5 mg/cm2 and as well 

as the PTFE contents in the MPL. 

In Figure 5.3(a), the coated GDLs with MPLs of Ketjenblack EC-300JD carbon loading 

from 0.5, 1.0, 1.5 to 2.5 mg cm-2, the gas permeability reduces at PTFE loadings of (i) 0 

wt.% (85.39, 15.23, 9.38 7.92 and 7.35) %, (ii) 10 wt.% (54.27, 15, 13.48, 11.46 and 9.32) 

%, (iii) 20 wt.% (33.71, 11.69, 8.20, 6.69 and 4.05) %, (iv) 30 wt.% (33.71, 11.66, 8.20, 

6.69 and 4.05) %, (v) 40 wt.% (4.85, 14.49, 9.05, 8.60 and 4.79) %, and (vi) 50 wt.% 

(56.07, 20, 11.91 and 10.51) %, respectively. Compared with Figure 5.3 (b), similar 

results are obtained as the magnitude of the gas permeability values of the MPL-coated 

GDLs composition decreases with Vulcan XC-72R carbon black loadings in the MPL. 

The gas permeability value magnitude of the compositions 0.5, 1.0, 1.5 and 2.5 mg/cm2 

Vulcan XC-72R carbon black and PTFE loadings at  (i) 0 wt.% (88.94, 57.21, 18.32, 3.65 

and 9.78) %, (ii) 10 wt.% (70.67, 32.55, 13.41, 2.11 and 5.19) %, (iii) 20 wt.% (79.33, 

33.13, 15.72, 11.97 and 11.97)%, (iv) 30 wt.% (79.81, 37.74, 20.29, 12.60 and 7.31) %, 

(v) 40 wt.% (85.58, 38.85, 22.16, 13.75 and 12.02) %, (vi) 50 wt.% (89.90, 52.40, 23.94, 

14.18,  and 11.15) %, respectively. However, the gas permeability of the coated GDLs 

with Ketjenblack EC-300JD and Vulcan XC-72R loadings as the material of the MPLs  
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show common trends with a decrease as the carbon loading increases in the composition 

of the MPL coated to the porous GDLs. The decrease in the gas permeability value is 

mainly attributed to the decrease in the pore size and pore volume of the GDL when the 

MPL is coated on the carbon substrate (Park et al., 2006). Also, the decrease in the gas 

permeability by increasing the carbon loading in the MPL is as a result of an increase in 

the thickness of the MPL coated onto the GDL samples as illustrated in Figure 5.4, 

Orogbemi et al. (2016). In Section 3.4, 95 % confidence range of these gas permeability 

values are presented, see Figure 3.20. 

In Figure 5.4, it was found that there is an increase in the thickness of the scanning 

electron micrographs (SEMs) of the typical cross-section images of the MPL-coated 

GDLs as the amount of carbon particle loadings in the MPL increases from 0.5 to 2.0 mg 

cm-2, respectively. For Figure 5.4, 20 wt.% PTFE loading in the MPLs for coated GDLs 

is considered. From this figure, it is observed that the SEM images show that the averaged 

thickness of the MPL is about at 86, 100, 143 and 145 µm for 0.5, 1.0, 1.5 and 2.0 mg/cm2 

Ketjenblack EC-300JD carbon black loading, respectively.  

Further, the PTFE loading is sensitive to the carbon loading in the MPL-coated GDL. 

Figure 5.3(a), shows that the gas permeability of the coated GDL with PTFE loading of 

0 to 10wt.%, decreases for the 0.5 mg/cm2 carbon loading, remains almost the same for 

1.0 mg/cm2 carbon loading and increases for the 1.5 and 2.5 mg/cm2 carbon loadings. 

However, the MPL-coated GDLs with 0.5 mg/cm2 carbon loading of PTFE ranges from 

0 to 50 wt.% compositions of both MPLs have the highest gas permeability values in both 

Figures 5.3(a) and (b), respectively. This is mainly due to the insufficiency of the 0.5 

mg/cm2 carbon black to completely cover the large pores on the surface of the carbon 

substrate, see Figure 5.5. 
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(a) 

 

 

(b) 

 Figure 5.3. Through-plane gas permeability as a function of carbon loading in 

the MPL  (a) Ketjenblack and (b) Vulcan. 
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             (a)                                            (b)                                                         (c)                                                     (d)  

 Figure 5.4. SEMs of cross-sectional images of the coated GDLs with  Ketjenblack carbon black loadings of (a) 0.5 mg/cm2, the MPL 

thickness (i = 121, ii = 79, iii = 99, iv = 79, v = 64, and vi = 74) µm.  (b) 1.0 mg/cm2,  the MPL thickness (i = 116, ii = 106, iii = 96, iv = 100 

and v = 84) µm. (c) 1.5 mg/cm2,    the MPL thickness (i = 138, ii =117, iii =152, iv =166, v = 145) µm.  (d) 2.0 mg/cm2, the MPL thickness 

(i  =168, ii =142, iii =126, iv =137, v =158) µm.  
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 Figure 5.5. SEM image for the surface of the MPL with Ketjenblack of 0.5 

mg/cm2 and 20 wt.% PTFE.  

 

 

 

 Figure 5.6. SEM for the surface of the MPL with Vulcan XC-72R of 0.5 

mg/cm2 and 20 wt.% PTFE. 
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In Figure 5.5, the skeleton of the carbon substrate clearly shows after coating with 0.5 

mg/cm2 carbon black at 20 wt.% PTFE loading. This indicates the large gaps that exist 

between the gas permeability values of the coated GDL with 0.5 mg/cm2 and all other 

coated GDLs with higher carbon loadings. Additionally, this significantly shows that 

when increasing the carbon loading and adding some high content of the PTFE as material 

to the carbon black reduces the size of the large pores and consequently decreases the gas 

permeability, Mangal et al. (2015). However, for relative high carbon loadings, namely 

1.0, 1.5 and 2.5 mg/cm2 carbon black, the high carbon loading is apparently sufficient to 

completely cover the large pores on the surface of the substrate.  

5.1.2 Effects of the carbon black types  

Figures 5.7 (a) and (b) show the estimated through-plane gas permeability of the MPL-

coated GDLs as a function of the PTFE loading in the MPL for various considered carbon 

loadings, namely 0.5, 1.0, 1.5 and 2.5 mg/cm2. The two figures present the gas 

permeability of the MPL-coated GDLs with Ketjenblack EC-300JD, Figure 5.7 (a) and 

Vulcan XC-72, Figure 5.7(b) carbon blacks, respectively. The same kind of PTFE loading 

in the MPL, and identical preparation methods were applied to prepare the two sets MPLs 

slurry for both Ketjenblack and Vulcan carbon of the MPL-coated GDLs. The 

distributions are shown in the form of 95 % confidence interval in Figure 3.21. 

There is a significant difference in the  gas permeability of the coated GDLs for the two 

cases. In Figure 5.7 (a), with 20 wt.% PTFE loading, the gas permeability of the coated 

GDLs increases with increasing PTFE loading in the MPL compared  to the gas 

permeability obtained in Figure 5.7 (b), the gas permeability increases after 10 wt.% 

PTFE loading in the MPL. For Figure 5.7 (a), the results obtained are in good agreement 

with the literature, this justifying that the relatively large PTFE particles could not 
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penetrate the relatively small pores within the carbon agglomerate but the larger pores 

between these agglomerates, Su et al. (2016). The sizes of the agglomerate increases and 

there is an increase in  the porosity of the MPL, Orogbemi et al. (2016). Also, the pore 

sizes of the MPL decreases with increasing the PTFE loading in the MPL, and this shows 

that the PTFE reduces the porosity of the MPL, Park et al. (2008) and  Uchida et al. 

(1995).  

The gas permeability of the GDL decreases when the PTFE content is increased in the 

MPL from 10 to 20 wt.% PTFE in Figure 5.7 (a). Compared with Figure 5.7 (b), this 

significant difference is not obtained when Vulcan XC-72R carbon black is considered 

as the material in an MPLs with different PTFE loadings. Clearly, in Figure 5.7 (a) the 

results obtained indicate that the increase in the content of the PTFE loading increases the 

thickness of the MPL. In addition, the PTFE loading is not sufficiently adequate to make 

a positive-increasing influence compared with its negative-increasing thickness effect. 

This means that in this case the gas permeability increase by the positive effect is more 

than offset by the negative effect, Park et al. (2004).  

Figure 5.7 (b) shows that all the samples have a decrease in the gas permeability with the  

PTFE compositions increasing from 0 to 10 wt.%. This is because the coated GDL with 

Vulcan XC-72R carbon black (MPL) apparently fills the pores without increasing the 

MPL thickness coated onto the GDLs (Park et al., 2004). Despite their similar trends of 

an increase of gas permeability attained at the higher PTFE loading in the MPL. The 

various PTFE loadings with Vulcan XC-7R carbon black loadings in the MPL-coated 

GDLs reveals much less gas permeability variation as compared with the same PTFE 

compositions and the Ketjenblack EC-300JD carbon black loading in the MPLs. It should 

be noted that the gas permeabilities are higher in the Figure 5.7(b), although they do not 
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have the same sensitivity to PTFE loading. However, the 1.0 mg/cm2 carbon loading is 

where the increase in the thickness and decrease in the gas permeability are the competing 

effects for the 10 wt.% PTFE loadings are counterbalanced as shown in Figure 5.7 (a). 

 

(a) 

 

(b) 

 Figure 5.7. The through-plane gas permeability of the  MPL-coated GDLs as a 

function of  the PTFE loading for various carbon loadings, (a) gas permeability 

of MPL-coated GDLs with Ketjenblack carbon black, and (b) gas permeability 

of MPL-coated GDLs with Vulcan carbon black. 



 

142 

 

5.2 Effect of sintering  

The gas transport and liquid water flow within the porous media are linked with the 

hydrophobicity characteristics property of the gas diffusion media in general. The ability 

of the gas transport property of the porous media can be illustrated by the gas permeability 

the porous carbon substrates, and PTFE contents in the GDLs together with the MPL 

coated which can be used to characterise the hydrophobicity property exhibited by the 

porous media, Ismail et al. (2010). Meanwhile, the hydrophobicity is the ability of 

managing of liquid water and its flooding in the MEA porous media components, Gurau 

et al. (2006).   

However, the PTFE loading in the MPL can either cause a decrease or increase in the gas 

transport and water flow in the fuel cell. For a uniform distribution of the PTFE in the 

applied MPLs to the GDLs, sintering of the MPL-coated GDLs is an influencing factor 

that improves the performance of the porous gas diffusion media used in the fuel cell, see 

Bevers et al. (1996), Jordan et al. (2000) and Rohendi et al. (2014). 

For the effect of sintering on the gas permeability of the MPLs with different PTFE 

loadings, Figure 5.8 shows the through-plane gas permeability of MPL coated GDL as a 

function of PTFE loading in the MPL before and after sintering. The MPLs are sintered 

at a temperature of 350 ºC for 30 minutes. In this case, the effect of sintering on MPLs 

made of Ketjenblack and Vulcan carbon blacks with different  PTFE loading has been 

considered. The carbon loading is kept constant at 1.5 mg/cm2 and the PTFE content in 

the MPLs varies in the range from 0 to 50 wt.%. The gas permeability values for the 

MPL-coated GDLs are evaluated before and after sintering for the MPLs with different 

PTFE contents. Generally, the gas permeability of the coated GDL is reduced after 

sintering as discussed in Section 4.3. 
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 Figure 5.8. Through-plane gas permeability of MPL-coated GDLs before and 

after sintering as a function of PTFE loading in the MPL, for comparison of 

the effects of sintering on the MPLs coated on the GDLs with different PTFE 

(wt.%) consist of 1.5 mg/cm2. 

 

In the case of  the MPL-coated GDLs for the loadings of 0, 40 and 50 wt.% PTFE in 

Figure 5.8, the gas permeability of the coated GDLs increases after sintering. For MPLs 

with 0 wt.% PTFE of Ketjentblack carbon black, this increase is as a result of physical 

properties of the Ketjenblack carbon black, such as pore volume, see Table 3.2. For the 

MPLs with 40 and 50 wt.% PTFE loading, the gas permeability increases after sintering 

in the MPLs with both Ketjenblack and Vulcan carbon blacks. On other hand, the gas 

permeability of the MPL-coated GDLs reduces for the MPLs loading of 10, 20 and 30 

wt.% PTFE  after sintering.  

The results show that, regardless of carbon type loading, when the amount of the PTFE 

loading is higher than 30 wt.% in the MPLs after sintering the gas permeability increases 
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rather than decreases as observed in Section 4.3. Clearly, the results indicate the complex 

relationship between the PTFE and carbon loading  in the MPL, uniform distribution of 

the PTFE in the MPL, and PTFE influence on the gas transport properties of the coated 

GDL. In addition, the agglomeration of the carbon-PTFE particles in the MPL structure 

is affected with respect to the sintering and the amounts of the PTFE contents in the MPL. 

Also, the sintering of different PTFE loading regardless of the carbon type and loading in 

the MPL has characterised the gas transport property (gas permeability) and 

hydrophobicity for water-repellent substances in the PEM fuel cells, Rohendi et al. 

(2014).  

5.3 Through-plane gas permeability of MPLs  

In Section 3.3, Equation (3.8) was used to estimate the through-plane gas permeability of 

the microporous layers of the coated gas diffusion layers. Figure 5.9 shows the calculated 

MPL gas permeability values as a function of the PTFE loading for all the Ketjenblack 

and Vulcan carbon loadings investigated. As anticipated, the trends of the gas 

permeability of the MPLs are generally in good agreement with those of the MPL-coated 

GDLs. The gas permeability values of the MPLs have the same PTFE loading, and the 

MPLs of the carbon types considered have the same composition for all the above MPLs.  

Figure 5.9(a), shows that the MPLs with 10 wt.% PTFE loading must ideally all have the 

same gas permeability value as the weight compositions of those MPLs, i.e. 10 % PTFE 

and 90 % Ketjenblack carbon loading. Similarly, the same results are obtained in most of 

all the other MPLs compositions, namely 10, 20, 30, 40 and 50 wt.% PTFE loadings, see 

Figure 5.9(b).  However, this is not the case for the MPL gas permeability values in Figure 

5.9(c) – (d) where there is a significant variation in the gas permeability values for the 
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MPLs of the same composition. The variation in the gas permeability is as a result of the 

significant penetration of the MPL and the carbon black type used as the material of the 

MPL in the porous carbon substrates. In conclusion, an accurate estimation of the MPL 

thickness and the penetration and subsequently the gas permeability of the MPL are 

required as discussed in Chapter 6. 

Figure 5.10 shows the SEMs micrographs of the surfaces of the MPLs with Ketjenblack 

and Vulcan carbon black, respectively. A comparison of the surfaces of the MPLs with 

Ketjenblack and Vulcan carbon black as material is considered relatively to the PTFE 

loading in the MPLs. The SEM images of the surfaces demonstrate the pore structure of 

the coated GDLs. It is visible in the surfaces of the MPL-Vulcan images that only some 

range of pores compare to MPL-Ketjenblack surfaces, which indicate that the surface 

structure of the MPLs with the two carbon black types is clearly different and in 

agreement with the SEMs surfaces images measured and analysed by Yu et al. (2005). 

However, the importance of this result can help in the process of electrode design for low-

cost and maximising the efficiency of porous electrode materials used in the PEM fuel 

cell. 
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(a)            (b) 
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     (c)                                                                        (d) 

 Figure 5.9. (a)-(b) The curves representing the gas permeability of the MPL as a function of PTFE loading for various Ketjenblack EC-

300JD and Vulcan XC-72R carbon black, and (c) - (d)   the curves after excluding the 0.5 mg/cm2 carbon loading curve  from (a)-(b).
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                      (a) 2.0 mg/cm2 Ketjenblack with 0 wt.% PTFE.                    (b) 2.0 mg/cm2 Vulcan with 0 wt.% PTFE. 
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  (c) 2.0 mg/cm2 Ketjenblack with 10 wt.% PTFE.    (d) 2.0 mg/cm2 Vulcan with 10 wt.% PTFE. 
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                           (e) 2.0 mg/cm2  Ketjenblack with 20 wt. % PTFE.   (f) 2.0 mg/cm2 Vulcan with 20 wt.% PTFE.   
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 (g) 2.0 mg/cm2 Ketjenblack with 30 wt.% PTFE.               (h) 2.0 mg/cm2 Vulcan with 30 wt.% PTFE. 
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                   (i)   2.0 mg/cm2 Ketjenblack with 40 wt. % PTFE.                                 (j)   2.0 mg/cm2  Vulcan with  40 wt. % PTFE. 
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 (k)   2.0 mg/cm2 Ketjenblack with 50 wt. % PTFE.                (l)   2.0 mg/cm2 Vulcan with 50 wt.% PTFE. 

 

 Figure 5.10. SEMs images for the surfaces of the MPL with PTFE loadings ranging from 0  to 50 wt. % PTFE, and 2.0 mg/cm2 of 

Ketjenblack and Vulcan carbon black. 
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5.4 Conclusions 

The effects of the composition of the microporous layers on the through-plane gas 

permeability of the gas diffusion layers has been investigated. The gas permeability is 

found to decrease as the carbon loading increases at a given PTFE loading. This is as a 

result of the increase in the thickness of the MPL and property of the carbon black. 

The main conclusions from this study are as follows: 

 For all the investigated carbon loadings of the carbon blacks, the gas permeability 

of the GDL was found to be a minimum at 20 wt.% PTFE loading for the 

Ketjenblack EC-72R and 10 wt.% PTFE loading for all the Vulcan XC-72R, apart 

from 2.5 mg/cm2 in Figure 5.3(b). 

 

 For all the investigated carbon loadings of the carbon blacks, the GDL gas 

permeability was found to increase when the PTFE loading of the MPL increases 

from 10 to 50 wt.% PTFE loading in the MPL for Vulcan XC-72R and 20 wt.% 

PTFE loading in the MPL for the Ketjenblack EC-300JD. This is due to the 

increase in the porosity of the MPL induced by the large PTFE particles and the 

characteristic properties of the carbon blacks used as the material in the MPL. 

 

 The GDL gas permeability was found to decrease when the PTFE loading of the 

MPL is increases from 10 to 20 wt.% PTFE for all the investigated Ketjenblack 

EC-300JD carbon loadings. This is most likely to be as a result of the increase in 

the MPL thickness and the pore size of the Ketjenblack carbon black that results 

in higher mass transport resistance. 
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 For Ketjenblack EC-300JD, the effects of the PTFE loading in the MPL on the 

GDL gas permeability significantly depends on the carbon loading of the PTFE 

in the range 0 to 10 wt.%: (i) for a carbon loading of 0.5 mg/cm2, the coated GDL 

gas permeability decreases with increasing the MPL-PTFE loading, (ii) for a 

carbon loading of 1.0 mg/cm2, the coated GDL gas permeability remains almost 

the same, and (iii) for a carbon loading of 1.5 to 2.0 mg/cm2, the GDLs gas 

permeability increases with increasing PTFE loading. These results are explained 

in Chapter 6 considering the competing effects of (a) the MPL coverage of the 

surface of the carbon substrate, (b) the increase in the MPL porosity due to the 

addition of the PTFE particles, and (c) the carbon blacks properties. 

 

 The influence of the compositions of the MPLs and the following sintering on 

through-plane gas permeability is measured and discussed, in addition to sintering 

effect of different PTFE loadings. The results show that the MPL surface structure 

depends on the carbon black used as material for the MPL and it is found that the 

MPLs surfaces and structure of the two carbon blacks are significantly different. 

 

In this study, the through-plane gas permeability of the MPLs of all the cases investigated 

were determined. The results were found to follow the same general trends as those of the 

MPL-coated GDLs. This study has highlighted the need to accurately determine the MPL 

thickness and the penetration of the MPL thickness, since the gas permeability values of 

the MPLs with the same composition were found to significantly vary due to the MPL 

penetration into the porous carbon substrate.  
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Chapter 6 

An Estimation of the Microporous Layer Thickness  

In this chapter, the effect of microporous layer penetration into polymer electrolyte fuel 

cells carbon substrates has been investigated. The significant penetration of the MPL 

material into the body of the carbon substrates has shed information on the uncertainty in 

the estimation of the MPL thickness in Kitahara et al. (2010). A method has been 

described to accurately estimate the thickness of MPL and also accurately calculate the 

gas permeability of the MPL by determining the MPL penetration into the carbon 

substrates. 

As a result of the gas diffusion layers (GDL) structure, design and performance, the GDL 

must have its central nature of the effective interface with other thin layers, namely 

microporous layers (MPLs) and catalyst layers (CLs). The characterisation of the GDL is 

based on its central nature by adding MPLs to the surfaces for tailoring the structure and 

the composition of the GDL. Also, the properties of the MPL by adding to the surface of 

the GDL have to be better understood. The transport properties of the GDL depend on its 

structure before and after adding the MPLs onto the surface, Zamel and Li (2013). To 

have a comprehensive understanding of the GDL after coating with an MPL, the  

characteristic properties of the  MPL, namely the carbon loading, carbon type, thickness, 

etc. have to be determined. These properties of the MPL have to be experimentally 

investigated and numerically validated.  

The transport properties of the GDL before and after coating with an MPL have been 

experimentally and numerically studied and reported in the literature. Lin and Nguyen 

(2005) tested two types of carbon substrates , namely SGL SIGRACET carbon paper and 

Toray TGPH carbon paper, and MPLs coated to the surfaces of the carbon papers. The 
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effect of the thickness of the carbon papers before and after coating were investigated on 

the electrode flooding and performance of a cell in a PEM fuel cell. They reported that 

the two factors that mainly affected the pressure drop are, the thickness of the gas 

diffusion media and the liquid water saturation level. The effect of the MPL visible 

thickness has been investigated, however, the effect of the penetration of the MPL into 

the carbon substrates  of the GDLs after coating has not been previously investigated. 

Gurau et al. (2007) characterised the transport properties, namely the absolute 

permeability, in GDLs for PEMFCs (proton exchange membrane fuel cells). They 

described a method for the estimation of the absolute gas permeability in the in-plane and 

through-plane directions in order to determine the viscous and inertial permeability values 

of the GDL and MPL, respectively. The method was used to estimate the permeability 

values of (i) the porous GDL before coating, and (ii) the GDL after coating with various 

thickness layers of the MPLs. Also, the method was employed to determine the 

permeability values of the coated GDLs with MPLs of different carbon types and PTFE 

(polytetrafluoroethylene). However, the method has been applied to calculate the 

thickness of the MPL, but they have not considered the penetration of the MPL effect on 

the permeability values of the GDLs used in the PEMFCs. 

Kitahara et al. (2010) clarified the effect of the MPL thickness and the penetration into 

the  substrate on the in-plane and through-plane air permeability.  The authors reported 

that the  MPL penetration  into the substrate influences the through-plane and in-plane 

gas permeability of the GDL after coating. The penetration thickness enhances the in-

plane permeability of the coated GDLs, while the MPL penetration thickness decreases 

the cross-sectional area of the coated GDLs. The penetration thickness was estimated by 

comparing the in-plane permeability values of the GDLs before and after coating. They 
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reported that the thickness of penetration was unable to be obtained directly by employing 

the in-plane permeability value ratio. Also, the boundary between the MPL and the 

substrate was unclear when using SEM micrographs to observe the MPL penetration. 

However, the use of a permeable and non-penetrable material has not be used and taken 

into account the effect of the carbon types. 

Furthermore, Kim et al. (2013) investigated the effects of different carbon powders use 

as materials for MPLs have on the performance of high concentration methanol fuel cell. 

They considered the parameters that influence the properties of the MPLs porous 

materials in the components of MEAs of a cell, namely thickness and gas permeability. 

Kim et al. found that the  thicknesses of the prepared MPLs with 5 different types of the 

carbon powders are about 30 μm, while their gas permeability coefficients are different, 

which is can be attributed to the physical characteristics of the carbon type. However, 

they did not account for the penetration of the MPL material into the porous carbon 

substrate for the five carbon powder types. Though, it is agreed that the gas permeability 

of the coated GDLs with these different MPLs materials are depending on cracks in the 

MPLs than the thickness of the MPLs. Moreover, for the MPLs having the same 

characteristic physical properties, such as densities, should have shown close gas 

permeability coefficients, which has not investigated nor mentioned in this case.   

In the present study, a method to estimate the MPL penetration into the substrate has been 

developed. The method is applied initially to a permeable and non-penetrable membrane 

filter material after coating and subsequently to the MPL-coated GDL with different 

carbon loadings of two different carbon types. The method is used to determine (i) the 

gas permeability of the MPL with no penetration of different carbon loadings and carbon 

black types, (ii) the MPL penetration thickness of different carbon loadings with the same 
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composition, (iii) the actual MPL thickness of the carbon loadings and gas permeability, 

and (iv) the overall effect of the MPL penetration on the through-plane gas permeability 

of porous gas diffusion media.   

6.1. MPL with penetration 

The gas permeability values of microporous layers (MPLs) greatly vary, particularly  in 

the modelling investigations. Figure 6.1 shows that the experimental determination of the 

through-plane gas permeability values of MPLs are in the order of 4.29 to 6.42 × 10-13 m2 

and 5.59 to 7.79 × 10-13 m2 for Ketjenblack and Vulcan carbon blacks, respectively.  

Values of the MPL gas permeability are determined as a function of thickness of the MPL, 

where the thickness of the MPL  is obtained as the amount of carbon loading in the MPL, 

range 0.5 and  2.5 mg/cm2. Figure 6.1(a) shows that the gas permeability values of the 

MPLs with Ketjenblack carbon black change as a function of MPL visible thickness. The 

thickness value of the MPL increases as the carbon loading in the MPL increases, and 

also, similar results are obtained in Figure 6.1 (b), for the MPLs made of Vulcan carbon 

black. A comparison of the measured thickness values for the two figures clearly show 

that the thickness values of the Vulcan carbon black (MPLs) are less in magnitude than 

that of the Ketjenblack carbon black (MPL), as shown in Table 6.1. 

Similarly, the gas permeability values vary as a result of the visual thickness 

measurements of the MPL without considering the influence of the penetration of the 

MPL material into the porous carbon substrates. The values of the gas permeability of the 

MPLs for Ketjenblack carbon black and Vulcan carbon black are different in magnitude 

values, i.e. the MPL gas permeability values of the Ketjenblack carbon black is high in 

values than that of Vulcan carbon black, see Figure 6.2. This indicate that the carbon 
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black type used as a material for the microporous layer has a significant effect on the gas 

permeability of the MPL. It has to be noted that the composition of the MPLs is fixed, 

such as  20 % of PTFE and 80 % of the carbon loading, and the effects of carbon black 

types are significant on the values of the gas permeability, the thickness, and the 

penetration of the MPL.  

However, the difference in the thickness values and gas permeability values of the 

Ketjenblack and Vulcan MPLs are mainly due to the characteristic properties of the 

carbon blacks and which are in good agreement with Yu et al. (2005).  

Further, the effect of the MPL visible thickness as a function of carbon loading for two 

different carbon black types on factors that influence the MPL physical properties has 

been reported in the literature, for example see Park et al. (2006), Ismail et al. (2011) and 

Kim et al. (2013). Also, it has been reported in the literature that the gas permeability 

values of the MPL of the same composition adding to the porous carbon substrate has not 

been close in order of magnitude values (Kim et al., 2013), this is as a result of the 

penetration of the MPL material into the porous carbon substrate, Kim et al. (2013) and 

Kitahara et al. (2010). Clearly, the values of the gas permeability of both the Ketjenblack 

carbon black and Vulcan carbon black as materials for the MPLs are significantly 

decreased as the MPLs thicknesses increase, which can be ascribed to the increase in the 

carbon black powder loading in the MPL, as shown in Figures 6.1 and 6.2. The 95 % 

confidence interval of the distribution of carbon loading on thicknesses and gas 

permeability of the MPL are  shown in Figures 3.22 and 3.23. 
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(a)  

 

                             (b)    

 Figure 6.1. Through-plane gas permeability of the MPL as a function of  the 

MPL visible thickness of (a) Ketjenblack carbon black, and (b) Vulcan carbon 

black, as the materials of the MPLs.  
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 Table 6.1. Measured thickness values for the microporous layers of 

Ketjenblack and Vulcan carbon blacks using SEM. 

 

Carbon 

black type 

0.5 mg/cm2 

carbon 

loading 

1.0 mg/cm2 

carbon 

loading 

1.5 mg/cm2 

carbon 

loading 

2.0 mg/cm2 

carbon 

loading 

2.5 mg/cm2 

carbon 

loading 

Ketjenblack 

(MPL / µm) 

 

18±3.3 

 

41±2.5 

 

80±1.10 

 

88±2.3 

 

122±3.10 

Vulcan 

(MPL / µm) 

 

6±4.0 

 

19±1.0 

 

73±5.3 

 

79±2.2 

 

87±5.1 

     

 

 Figure 6.2. Gas permeability of the MPL as a function of  the carbon black 

loading in the MPL, for a comparison of the (a) Ketjenblack carbon black, and 

(b) Vulcan carbon black, as the materials of the MPLs.  
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Figure 6.3 depicts a schematic diagram for the cross-sectional view through the MPL-

coated GDLs and makes a distinction between the visible thickness of the MPL (Lmpl) 

and the MPL penetration (Lpen). Assumptions are made towards the calculation of the 

MPL thickness that (i) the penetrating part has the same properties as the visible part of 

the MPL, and (ii) the porosity and pore size of the porous carbon substrate visible part is 

not significantly affected due  to the flow of the gas. This figure is used to describe the 

parameters required for determining the penetrating values for the MPLs after adding the 

MPL to one side surface of the carbon substrate.   

 

 Figure 6.3. A schematic diagram for the cross-section of the MPL-coated 

GDL and the penetration of the MPL into the carbon substrate.  

 

The effect of the visible MPL thickness as a function of carbon loading for two different 

carbon black types, namely Ketjenblack and Vulcan, on the estimation of the through-

plane gas permeability values of the MPL is discussed in the next section. 
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6.1.1 MPL thickness with penetration 

When an MPL is coated to the surface of the carbon substrate with carbon loadings 0.5, 

1.0, 1.5, 2.0 and 2.5 mg/cm2, the visible MPL thicknesses varied  from 20 to 122 µm 

(Ketjenblack carbon back), and 6 to 87 µm (Vulcan carbon black) as shown in Figure 6.4 

and summarised in Table 6.1. 

The average gas permeability of the GDL before coating (ksub) and the thickness (Lsub) 

are  estimated to be 1.78 × 10-11 m2 and 397 ±60 µm in Section 4.1. On the addition of  

MPL to one side of the GDL, it is observed that there is a significant increase in the 

thickness of the GDLs in relatively the same amount of the carbon loading in the MPL, 

as shown in Figure 6.4. 

Figure 6.4 shows the thickness of the MPL-coated GDL as a function of the carbon 

loading in MPL. The estimation of the visible MPL thickness is determined by employing 

the following expression, Ismail et al. (2011): 

              Lmpl  =  Ltot   -    Lsub                                (6.1) 

where Lsub, Ltot and Lmpl are the thickness of the carbon substrate, MPL-coated GDL 

and MPL. The values of the visible MPL thickness significantly depends on the amount 

of (i) carbon loading, and (ii) carbon black type, as shown in Figure 6.4. 

In Figure 6.4, similar common trends are observed towards the orders of magnitude of 

the values of the MPL-coated GDLs thickness and the carbon black types, and the 

thickness value of the carbon substrate from the same batch of carbon paper sheet is 397 

±25 µm. Figure 4 (a-b) shows the 95 % confidence interval for variation in thicknesses 

of MPL-coated GDLs due to application of MPL to the surface of carbon substrate. 

Clearly, the magnitude of the MPL-coated GDLs thickness with Vulcan carbon black is 
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less compared with the thickness magnitude of the coated GDL with MPL of Ketjenblack 

(Figure 4c). However, the two different carbon blacks exhibit similar trends of increasing 

as the amount of carbon loading in the MPL increases. This simply indicates that the 

thickness of the GDLs after coating significantly depends on (i) the amount of carbon 

loading, and (ii) carbon black type.   

 

 

(a) 
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(b) 

 

(c) 

 Figure 6.4. The MPL-coated GDL thickness as a function of carbon loading 

and carbon type utilised as materials in the MPL (a) Ketjenblack, (b) Vulcan 

and (c) comparison of MPLs thicknesses.  
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In Figure 6.5, the visible thickness of the MPLs with Ketjenblack carbon black is higher 

compared with Vulcan carbon black. Also, the visible MPL thickness of the MPLs 

increases as the carbon loading increases in the MPL. This means that the properties of 

the carbon particles type use as material for the MPL have a significant influence on the 

thickness of the MPL that is added to the GDL. For the Ketjenblack carbon black, it has 

a surface area of 950 m2/g and this is higher than that of Vulcan which is  about 254 m2/g, 

see Table 3.2. Further, the MPL gas permeability can also be determined, and this is 

discussed in the next section. 

6.1.2 MPL gas permeability with penetration 

Equation (3.8) is used to estimate the gas permeability of the MPLs for each set of carbon 

loading, as shown in Figure 6.2.  Through-plane gas permeability of  the MPL decreases 

as the carbon loading in the composition of the MPL increases, which relate to the 

measured visible thickness of the MPL increases, see Figure 6.2.  

In Figure 6.2, the through-plane gas permeability of the MPLs have been estimated with 

uncertainities of constant values of the measured thicknesses of the MPLs, and this is due 

to the effect of the MPL penetration to the porous substrate. However, Figure 6.5 shows 

the effect of the visble MPL thickness on the through-plane gas permeability of the MPL.  

The  thickness layer of the visible MPL of 122 µm (2.5 mg/cm2 carbon loading) has the 

lowest gas permeability compared with  all other less thicknesses (thin layers), namely 

20, 41, 80 and 88  µm in Figure 6.1 (a). Also, a decrease in the MPL visible thickness 

from 87 µm of 2.5 mg/cm2 to 6, 19, 73 and 79 µm of 0.5, 1.0, 1.5, 2.0 mg/cm2 , the gas 

permeability values of the MPLs increase in Figure 6.1(b).  
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The amount of the carbon loading in the MPL apparently determines the thickness of the 

MPL. Clearly, the results show that the thickness of the MPL has a significantly effect on 

the gas permeability of the MPL.   

In addition, the effect of the carbon black utilised as the material in the MPL on the 

through-plane gas permeability is significant. The results show that the through-plane gas 

permeability of the MPL with Ketjenblack are less compared with the through-plane gas 

permeability values for Vulcan as shown in Figure 6.2. This is due to the significant 

influence of  the penetration of the MPL material into the body of the carbon substrates, 

more information on the reason for the uncertainty in the estimation of the MPL thickness 

has been given by Kitahara et al. (2010). 

 

 

 

 Figure 6.5. Comparison of the MPL visible thickness as a function of the 

carbon loading and carbon type utilised as materials in the MPL.  
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The accurate estimation of the gas permeability of the MPL requires that the actual 

estimation of the thickness of the MPL considering the penetration, and this is discussed 

in the next section. 

6.2 MPL  without penetration 

As mentioned in Section 3.3.3, knowing the gas permeability value (ktot)  and the 

thickness (Ltot) of the porous material, namely the membrane filter after coating,  then, 

the   thickness (Lmpl) of the MPL may be determined from Equation (6.1), and which the 

actual permeability value (kmpl) of the MPL is determined, from the following equation 

Ismail et al. (2011): 

 

 kmpl      =     
Lmpl

Ltot
ktot

      −         
L

sub 

ksub

              (6.2) 

 

where Lsub  is the thickness of the membrane filter substrate and ksub is the gas 

permeability of the membrane filter substrate before coating. The Lmpl
  represents the 

MPL visible thickness, as described in Figure 6.3.    

Figure 6.6. shows a SEM cross-sectional image view for the membrane filter after coating 

with MPL, and clearly the membrane filter does not permit the penetration of the MPL.  
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 Figure 6.6. SEM cross-sectional image view for the membrane filter after 

coating with MPL.  

 

6.2.1 MPL gas permeability 

The gas permeability and the thickness of the membrane filter substrate before coating is 

estimated to be 4.25 × 10-13 m2 and 160 µm. For all other parameter values estimated for 

determining the (i) gas permeability of the membrane filter after coating, and (ii) the 

MPL-coated membrane filter thickness. Table 6.2 lists the parameter values of the two 

carbon loadings (0.5 and 1.0 mg/cm2) for the two carbon blacks utilised as materials in 

the MPLs coated on one side of the surface of the membrane filter substrates. Figure 6.7 

shows some the SEMs cross-sectional images of membrane filter after coating with 0.5 

mg/cm2 of Ketjenblack carbon black, and coated Vulcan XC-72R carbon black. 

Equation (6.2) is used to calculate the through-plane gas permeability of the MPL, 

average gas permeability of the MPL with Ketjenblack carbon black 2.89 ±0.02 × 10-13 

m2 for 0.5 mg/cm2 and for Vulcan carbon black it gives a value of 5.31 ±0.03 × 10-14 m2. 

The actual estimated thickness of the MPL with the same composition depends on the 

amount of the carbon loading. Figure 6.8 shows the MPL thickness of the non-penetrable 
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material as a function of the carbon loading. Clearly, the effect of sensitivity of carbon 

blacks on the thickness of the MPL is observed. 

Also, the type of the carbon black used as the material in the MPLs have a significant 

effect on the thickness and the gas permeability of the MPLs. Figure 6.9 shows the gas 

permeability values of the MPLs for the Ketjenblack and Vulcan carbon black as a 

function of the carbon loadings in the MPLs. It is found that the thicknesses of the MPLs 

with Ketjenblack carbon black have higher magnitude values than the thicknesses of the 

MPLs with Vulcan carbon black for the two carbon loadings, as shown in Figures 6.8.  

The values of the through-plane gas permeability of the MPLs with no penetration are 

estimated and used to estimate the penetration of the MPL into the porous carbon 

substrates.  However, the values of the MPL gas permeability have been confidently 

calculated to estimate the amount of the MPL penetration into the carbon substrates. 

 

 Table 6.2. List of the parameters values estimated for the two types of MPLs 

with no penetration. 

Parameters 

description 

0.5 mg/cm2 carbon blacks 1.0 mg/cm2 carbon blacks 

Ketjenblack Vulcan Ketjenblack Vulcan 

gas permeability / m2 
4.04 × 10-13 3.39 × 10-13 3.90 × 10-13 2.66 × 10-13 

Lcoated / µm 180 166 198 175 
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(a)  

 

 

 

 

              (b) 

 Figure 6.7. SEMs of (a) a coated membrane filter with 0.5 mg/cm2 cross-

sectional image of Ketjenblack EC-300JD carbon black, and (b) a coated 

membrane with 0.5 mg/cm2 cross-sectional image of Vulcan XC-72R carbon 

black.  
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 Figure 6.8. The MPL visible thickness without penetration as a function of the 

carbon loading in the MPL.  

 

 

 

 

 Figure 6.9. Through-plane gas permeability of MPL without penetration as a 

function of the carbon loading for the Ketjenblack and Vulcan carbon blacks.  
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Figure 6.10 (a)-(j) present the scanning electron micrographs (SEMs) of the surfaces of 

the MPLs with Ketjenblack and Vulcan carbon black for the filter membrane with no 

penetration, respectively. The SEMs of the surface of the MPL were taken with the JEOL 

JSM-6010LA SEM under an accelerating voltage of 20 kV. 

 It should be noted that the same amount of carbon black and PTFE loadings in the MPL, 

i.e. 2.0 mg/cm2 of carbon black and 20 wt.% PTFE, and identical preparation technique 

were applied to prepare the surfaces of the two layers. A comparison of the surfaces of 

the MPLs, showed no significant difference of the micromorphology of the surfaces of 

the two MPL layers  in Figure 6.10 (a) and (b), the cracks on the surface insignificant, 

due to the dominant effect of the amount of PTFE content (i.e. 20 wt.%) over the carbon 

loading (0.5 mg/cm2).  Further, it is clearly observed the cracks of the surfaces as the 

carbon loading in the MPLs increases from 1.0 mg/cm2 to 2.5 mg/cm2  while, the PTFE 

loading remained constant at 20 wt.%, see Figures 6.10 (c)–(j). it should be noted that, 

there is significant difference  of cracks on the surfaces of the MPLs and clear indication 

of the surface morphology structure of the MPLs, which is an evidence that the MPLs 

made from the two carbon blacks  are different. 
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(a) 0.5 mg/cm2 Ketjenblack and 20 wt.% PTFE loadings.   (b) 0.5 mg/cm2  Vulcan and 20 wt. %PTFE loading. 
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           (c) 1.0 mg/cm2 Ketjenblack and 20wt. % PTFE loadings.   (d) 1.0 mg/cm2 Vulcan and 20wt.% PTFE loadings. 
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                 (e) 1.5 mg/cm2 Ketjenblack and 20 wt.% PTFE loadings.            (f) 1.5 mg/cm2 Vulcan and 20 wt.% PTFE loading. 
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                         (g) 2.0 mg/cm2 Ketjenblack and 20 wt.% PTFE loadings. (h) 2.0 mg/cm2 Vulcan and 20 wt. % PTFE loadings. 
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                   (i) 2.5 mg/cm2 Ketjenblack and 20 wt.% PTFE loadings.  (j) 2.5 mg/cm2 Vulcan and 20 wt.% PTFE loadings. 

 Figure 6.10. SEMs images for the surfaces of the MPL with various Ketjenblack and Vulcan carbon black loadings of 20 wt.% PTFE. 



 

180 

 

6.2.2 MPL penetration into the carbon substrate 

 

The effect of the MPL penetration into the carbon substrates is significant. Therefore, 

Equation (6.2) is slightly modified to account for the penetration of the MPL material to 

the porous carbon substrate: 

                          kmpl      =     
Lmpl_vis   +  Lpen

Ltot
ktot

      −         
Lsub  −   Lpen

ksub

              (6.2) 

where Lmpl_vis  is the visible MPL thickness of the carbon substrate  and kmpl is 

permeability of the MPL without penetration, Lsub is the visible thickness of the carbon 

substrate, and Lpen is the penetration thickness into the porous carbon substrate. It should 

be noted that the penetration part of the MPL includes carbon fibres from the carbon 

substrate, see Figure 6.3. 

For simplification, it is assumed in equation (6.2) that the presence of the carbon fibres 

in the penetration part of the MPL has no effect on its characteristics, such as porosity 

and pore size Kitahara et al. (2010) and Kim et al. (2013). Therefore, having estimated 

the MPL gas permeability with no penetration, Equation (6.2) can now be used to estimate 

the amount of the MPL penetration into the porous carbon substrate as follows: 

   
Lmpl_vis + Lpen

Kmpl
     =      

Ltot 

Ktot
   -    

Lsub_vis  −  Lpen

Ksub
  (6.3) 

Therefore, knowing the following values:  Lmpl_vis, kmpl, Ltot, ktot, Lsub_vis, and 

ksub experimentally, then the MPL penetration (Lpen) into the porous carbon substrate 

can be determined. Figure 6.11 shows the penetration of the MPL coating into the porous 

carbon substrate as a function of the carbon loading in the MPL. This figure presents a 
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comparison of the penetration of the MPL materials of the two different carbon black 

types (i.e. Ketjenblack and Vulcan)  and the amount of their penetration into the substrate.  

From Figure 6.11 it can be seen that the penetration thickness of the MPL relative to the 

amount of carbon loading is significant, and as the amount of carbon loading increases, 

then penetration increases. This means that a decrease in the penetration of the MPL 

thickness into the carbon substrate increases the cross-sectional area of the porous 

substrate Kitahara et al. (2010), see Figure 6.12.   

 

 

 Figure 6.11. Comparison of the MPL penetration thickness of the carbon 

loading and carbon type.  

 

Figure 6.12 shows that the boundary between the visible MPL and the substrate is not 

clear in order to observe the penetration of the MPL material, and the calculations of the 

thicknesses of the MPLs have been discussed in Section 5.1, see Figure 5.4. Further, the 

penetration of the MPL thickness of the Ketjenblack carbon black is of a higher 
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magnitude at 0.5 and 1.0 mg/cm2  carbon loading compared to that of the Vulcan carbon 

black. With the Vulcan carbon black, the MPL penetration thickness is of a higher 

magnitude compared with that if the Ketjenblack carbon black as the loading of the 

related carbon black increases from 1.5 to 2.5 mg/cm2 in Figure 6.11. This could be 

attributed to that when preparing the MPL ink then the size of the Vulcan carbon black 

agglomerates are smaller than that of the Ketjenblack agglomerates. This indicates that 

the Vulcan agglomerates have less difficulty in penetrating the porous carbon substrate.  

Table 6.3 presents a comparison of the visible and penetration of the MPL thickness of 

Ketjenblack and Vulcan carbon blacks relative to the amount of carbon loading in the 

MPL. Clearly, the significant influence of the MPL penetration on the estimation of the 

total MPL thickness significantly depends on (i) the amount of carbon loading in the 

MPL, and (ii) the typical carbon black used as the material for the MPL.  

 Table 6.3. A comparison of the MPL visible thickness and penetration of the 

two carbon types for the different carbon loadings in the MPL. 

 

Carbon 

loading 

/mg cm-2 

MPL with Ketjenblack EC-300JD MPL with Vulcan XC-72R 

Visible 

thickness / µm 

Penetration 

thickness / µm 

Visible 

thickness / µm 

Penetration 

thickness / µm 

0.5 20 7 6 6 

1.0 41 28 19 20 

1.5 80 32 73 54 

2.0 88 36 79 72 

2.5 122 44 87 80 
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        0.5 mg/cm2 carbon loading.   1.0 mg/cm2 carbon loading.        1.5 mg/cm2 carbon loading.  
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                             2.0 mg/cm2 carbon loading.               2.5 mg/cm2 carbon loading. 

  

 Figure 6.12. The SEMs cross-sectional images for the visible MPL thickness and the penetration of the coated GDLs with carbon black. 
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Furthermore, the overall effect of the MPL penetration thickness on the estimation of the 

MPL thickness is that the values of the total MPL thickness added to the porous carbon 

substrate surfaces (GDLs) have been under-estimated, in particular those reported in the 

modelling literature by Inamuddin et al. (2011) and Yuan et al. (2010). Table 6.4 presents 

a comparison of the total MPL thickness of the two different carbon black types used as 

the  materials in the MPLs in this study. The table provides an estimate of the total 

thickness of the MPL and gives  estimation of the total thickness of the MPL-coated GDL. 

This  gives a more comprehensive set of information than most of the assumptions that 

are made in the literature.  

 Table 6.4. A comparison of the MPL total thickness and the GDL total 

thickness after the coating of two different carbon types for various carbon 

loadings in the MPL. 

 

Carbon 

loading 

/mg/cm2 

MPL with Ketjenblack EC-300JD MPL with Vulcan XC-72R 

MPL total 

thickness / µm 

MPL-coated GDL 

thickness / µm 

MPL total 

thickness / µm 

MPL-coated GDL 

thickness / µm 

0.5 27±11 439±5 12±8 409±4 

1.0 69±11 481±9 39±6 480±4 

1.5 112±12 524±12 127±11 497±6 

2.0 124±11 536±9 203±74 504±9 

2.5 166±12 578±5 253±31 507±3 

 

In addition, experimental determination of through-plane gas permeability values  have 

been significantly overdetermined due to the visible MPL thickness used as the total 

estimate of  the MPL thickness. The effect of the MPL penetration has been always 

assumed in modelling the MEA components of PEM fuel cell, by excluding the  
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penetration thickness of the MPL material into the porous substrate. Apparently, the 

composition of the MPLs added to the GDL is almost the same.  

6.3 Conclusions 

In this chapter, the estimation of the MPL penetration thickness for two different carbon 

black types with various amounts of carbon loading have been determined. A novel 

method has been used to estimate the amount of the penetration of the MPL material into 

the porous carbon substrate (GDL). Based on the results obtained, the following 

conclusions are obtained: 

 The penetration thickness of the MPL into the porous carbon substrate is 

significantly sensitive to the carbon loading in the MPL. This implies that the 

amount of the carbon loading in the MPL corresponds to the thickness and the 

penetration of the MPL added to the total thickness of the GDL after coating, and 

the MPL thickness and the penetration increase as the carbon loading in the MPL 

increases. 

 

 The carbon black used as the material for the MPL has a significant effect on the 

MPL thickness and the penetration. This is because the carbon black particle 

characteristic properties are sensitive to the dispersion of the MPL coated onto the 

surface of the porous substrate. 

 

 Gas permeability value of the MPL obtained is close in value for the thickness of 

the MPL with no penetration, and for the different loadings of the same carbon 

black in the MPLs. 
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 The MPL thickness is underestimated in the literature as the MPL penetration has 

not been accounted for, and the results obtained give comprehensive information 

on  the computational modelling of porous media used in polymer electrolyte 

membrane (PEM) fuel cells. 

Having concluded the above, it must be stressed that the gas permeability of the 

microporous layer that is added to the porous gas diffusion layer in the fuel cell is 

overestimated.  

Further, a decrease in the MPL thickness significantly determines the penetration of MPL 

material into the carbon substrate, and the across the sectional area of the MPL-coated 

GDLs used in the PEFCs, however, it enhances the in-plane flow. Therefore, it is of 

importance to always consider the penetration thickness of the MPL as it significantly 

affects both the experimental and numerical modelling of the gas diffusion media used in 

PEM fuel cells.    
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Chapter 7 

Conclusions and Possible Future Work 

In this thesis, the primary parameters that affect the performance of the porous materials 

used in the construction and the design of the gas diffusion media of membrane electrode 

assemblies (MEAs) have been studied. The gas permeability of the porous gas diffusion 

materials, namely the gas diffusion layers (GDLs) and microporous layers (MPLs) is 

experimentally investigated. For this to be achieved, an in-house experimental approach 

has been employed in order to investigate the effects of (i) carbon black as the material 

used for the microporous layers, and the sintering of the microporous layers, (ii) 

compositions of the microporous layer , and (iii) the microporous layer penetration on the 

gas permeability of the gas diffusion media. 

The knowledge contributions (novelty) of this thesis  are summarised in the next section 

of this chapter, which is followed by all the main conclusions from the experimental work 

performed, and the suggestions on possible future work are also highlighted in this 

chapter.  

7.1 Contribution to Knowledge  

The research which has been conducted in this thesis has contributed to knowledge in 

the following fields: 

 Through-plane gas permeability of the coated GDLs decrease after coating with 

the MPL, slightly reduces after sintering the MPL-coated GDL, and the gas 

permeability of the MPL-coated GDL made of Ketjenblack carbon black is less 

than that of the MPL-coated GDLs with MPL of Vulcan carbon black before and 
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after sintering. The experimental estimations of the gas permeability value are of 

important in the case of the MPL, in particular after sintering since much 

information on the reactant gases transport of the MPL itself is required to 

understand the material interactions in the design and modelling of the fuel cells. 

 Further, the novel aspects of this thesis have been highlighted as follows: the gas 

permeability decreases as the carbon loading increases at a given PTFE loading, 

the gas permeability of the coated GDL is a minimum at 20 wt.% PTFE loading 

in the MPL-Ketjenblack carbon black coated GDL and 10 wt.% PTFE loading for 

the MPL-Vulcan carbon black coated GDL.  

The gas permeability increases when the PTFE loading of the MPL increases from 

10 to 50 wt.% PTFE loading in the MPL-Vulcan carbon black coated GDLs and 

20 wt.% PTFE loading for the MPL-Ketjenblack carbon black coated GDLs. In 

addition, the gas permeability of the coated GDL with MPL-Ketjenblack carbon 

black decreases when the PTFE loading of the MPL increases from 10 to 20 wt.%.  

The gas permeability of 0.5 mg cm-2 carbon loading decreases with increasing the 

PTFE in the range 0 to 10 wt.%, for 1.0 mg/cm2 carbon loading, the gas 

permeability remains almost the same and the gas permeability increases between 

1.5 and 2.0 mg/cm2 carbon loading as the PTFE loading in the MPL increases. 

The minimum gas permeability was found at 20 wt.% PTFE loading for both the 

MPLs of the Ketjenblack carbon black and Vulcan carbon black.  

The estimation of the MPL penetration thickness for the Ketjenblack carbon black 

and Vulcan carbon black with various amounts of their loadings in the MPLs have 

been provided through this study. In addition to that, a novel method has been 

described and used to estimate the amount of the penetration of the MPL material 

into the porous carbon substrate (GDL).  
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 Furthermore, the sensitivity of the penetration of the MPL material into the 

substrate, determined by the amounts of the carbon loadings and carbon types 

used, have been evaluated in this thesis. In addition to that, as the PTFE loadings 

increase in the compositions of the MPLs, the thickness of the MPL relatively 

increase. The significant effect on the MPL thickness and the penetration has also 

been evaluated for the modelling of the PEM fuel cells. However, a microscopic 

change in the composition of the MPL dramatically has an effect on the 

characteristic properties of the porous media, which can result in a significant 

change in both the porous media and the PEM fuel cell performance.  

 

 Finally, the actual estimated gas permeability values for different loadings of the 

carbon black in the MPLs of 0.5 and 1.0 mg/cm2 have been obtained, and it has 

been shown that the gas permeability of the microporous layer that is added to the 

porous diffusion layer in the fuel cell is underestimated by the literature. 

7.2 Conclusions 

In order to have a comprehensive information on the gas permeability of the gas diffusion 

media, i.e. MPL and GDL used in the PEM fuel cells, this work provides an experimental 

study of the investigated effects on the gas permeability of the MPLs.  

 

 In Chapter 4, the gas permeability of the gas diffusion layers before and after 

coating have been experimentally investigated. Also, the effects of sintering the 
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MPLs on the gas permeability of the coated gas diffusion layers (GDLs) have 

been determined.  

The gas permeability of the GDLs coated with MPLs, which have different 

amounts of carbon loadings  have been estimated using two different types of 

commonly used commercial carbon powders, namely Ketjenblack and Vulcan 

carbon black. The MPL-added reduces the gas permeability of the GDL, the MPL 

sintering was found to slightly decrease the gas permeability of the GDL, and the 

gas permeability of the MPL made of Ketjenblack carbon black is less than that 

of the MPL-coated GDLs with MPL of Vulcan carbon black. In the order of 

MPLs, the gas permeability values of the MPL-Vulcan carbon black is higher 

compared with that of the MPL-Ketjenblack carbon black.  

 

 In Chapter 5, the effects of the compositions of the MPLs on the through-plane 

gas permeability of the gas diffusion layers was investigated. The gas permeability 

is found to decrease as the carbon loading increases at a given PTFE loading.  

The gas permeability of the GDL is found to be a minimum at 20 wt.% PTFE 

loading for the MPL-Ketjenblack carbon black and 10 wt.% PTFE loading for the 

MPL-Vulcan carbon black. The gas permeability is found to increase when the 

PTFE loading of the MPL increases from 10 to 50 wt.% PTFE loading in the 

MPL-Vulcan carbon black and 20 wt.% PTFE loading for the MPL-Ketjenblack 

carbon black. In addition, the coated GDL with MPL-Ketjenblack carbon black 

was found to decrease when the PTFE loading of the MPL increases from 10 to 

20 wt.% PTFE, for all the Ketjenblack carbon loadings investigated. 

The gas permeability of 0.5 mg/cm2 carbon loading decreases with increasing the 

PTFE in the range 0 to 10 wt.%, for 1.0 mg/cm2 carbon loading, the gas 
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permeability remains almost the same and the gas permeability increases between 

1.5 and 2.0 mg/cm2 carbon loading as the PTFE loading in the MPL increases. 

The minimum gas permeability was found at 20 wt.% PTFE loading for both the 

MPLs of the Ketjenblack carbon black and Vulcan carbon black. 

 

 Finally, in Chapter 6 an estimation of the MPL penetration thickness for the 

Ketjenblack carbon black and Vulcan carbon black with various amounts of 

loadings in the MPLs have been determined. In addition, a novel method has been 

used to estimate the amount of the penetration of the MPL material into the porous 

carbon substrate (GDL).  

The sensitivity of the penetration of the MPL material into the substrate is 

determined by the amounts of the carbon loadings and carbon types used. The 

amount of the carbon loading in the MPL corresponding to the thickness and the 

penetration of the MPL added to the total thickness of the GDL after coating. The 

MPL thickness and the penetration increases as the carbon loading in the MPL 

increases. 

It was found that the carbon black used as the material for the MPL has a 

significant effect on the MPL thickness and the penetration. The estimations of 

the MPL penetration depth, and the thickness of the layer will enhance the 

accuracy of the predictions of the gas transport and water flooding in the 

modelling of the multi-phase flow under operational conditions of high-efficiency 

in the PEM fuel cell.  

It has been shown through the novel method used the value of the MPL gas 

permeability that is close in value for the different loadings of the carbon black in 

the MPLs, and which has been proved that the gas permeability of the microporous 
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layer that is added to the porous diffusion layer in the fuel cell is underestimated 

by the literature.  

Therefore, this study can aid in enabling the realistic and accurate simulation of 

multi-phase flows, namely the gas transport and liquid water through the porous 

media with highly non-uniform pore sizes, and complete understanding of how 

MPL properties affect the efficiency of the PEM fuel cell performance. 

7.3 Possible future work 

The gas transport inside the porous media is closely related to the MPL-coated GDLs 

structural characteristics, which plays an important role on the conversion of energy in 

the PEM fuel cell. In this thesis, the bare GDLs are usually 320-440 μm thick, a common 

commercial GDL material, namely SGL 10BA is a porous carbon substrate based for the 

porous media. The GDL properties and parameters, such as thickness and gas 

permeability have been utilised to characterise the features of the microporous layer, and 

this has provided possible solutions (results) and explanation for the reconstructing of the 

porous gas diffusion media micro-layer that have been developed for several stochastic 

models in the literature. However, MPLs applied to the GDLs exhibit different effects on 

the gas transport characteristics of the porous gas diffusion media. It should be pointed 

out that the investigations effects and results discussed in this study are valid only when 

the properties of the MPL, i. e. thickness and gas permeability, are considered and it may 

need a further study on the influence of other possible affecting factors. 

This study highlights the factors that affect the gas transport properties, namely the gas 

permeability of the porous materials used in the construction and design of the MPL 

components of PEM fuel cells. However, more research is required in order to investigate 
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many parameters that do affect the tailoring of the gas diffusion media effective and 

efficiency performance of the porous gas diffusion materials in PEM fuel cells, in 

particular the MPLs that are added to the carbon substrates, and there is a need for further 

investigations, for example, 

 the effect of different carbon substrates (i.e. GDLs) on the investigation of the 

different sintering time at different sintering temperatures of the MPLs on the gas 

permeability of the microporous layers coated to the porous materials. In this 

study, the sintering temperature is at 350 °C for 30 minutes and this is in good 

agreement with what has been reported in much of the literature, see Chen and 

Chang (2013), Ko et al. (2010), Kim et al. (2013), Kannan et al. (2006), Han et al. 

(2006) and Hwang et al. (2011). However, many authors  have reported different 

sintering temperatures and time which can affect the heat treatment of the MPLs 

coating. For the purpose of porous material requirements and how well the 

materials satisfy the efficiency of the fuel cell in the modelling of the components, 

further investigations are required in order to have a better understanding of the 

sintering different compositions of the MPLs at different sintering temperatures 

for varying sintering times on the gas transport properties of the porous material 

used. 

 

 not only should the effect of the compositions of the MPLs on the permeability of 

the porous media and the MPLs be considered since the effects of the composite 

of the carbon blacks in the composition of the MPL itself are unknown for the gas 

permeability  of the porous media. Therefore, the development of a numerical 

simulation that takes into account the gas permeability in the small pores of the 

MPL with composite carbon black materials has to be investigated. However, this 
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is another aspect of the cost of the porous materials used in PEM fuel cell for the 

effective performance of the porous media within the MEA components. 

 

 the effects of the reactant gas flow rates on the gas permeability of the 

microporous layers compositions and composites carbon materials, and the gas 

diffusion media are also still under active research. Thus, the small velocity of gas 

flow has been considered, since the viscous resistance to the gas flow is a major 

cause of the pressure drop, which in turn is related to the rate of the chemical 

reactions that take place at the catalyst layer interface. This effect can  be studied 

from the perspective of utilising higher gas velocities that take into account the 

inertial resistance, when considering the compositions of the microporous layers 

along with the porous carbon substrates. 
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Appendix A                                                                                                             

Calculations of the compositions loadings for MPL ink preparation 

Step 1.   

Area of single sample, A = 
𝜋

4
(2.54)2 cm2 = 5.069 cm2 

Area for 6 samples, A = (5.069 × 6 ) cm2 = 30.414 cm2 

Carbon particles required, C of (i) 0.5, (ii) 1.0, (iii) 1.5, (iv) 2.0 and (v) 2.5 mg by 

weight is estimated as follows for loading density: 

(i)  0.5 mg/cm2 of C loading: 0.5 mg/cm2 × 30.414 cm2 = 15.207 mg  

(ii) 1.0 mg/cm2 of C loading: 1.0 mg/cm2 × 30.414 cm2  = 30.414 mg 

(iii) 1.5 mg/cm2 of C loading: 1.5 mg/cm2 × 30.414 cm2  = 45.621 mg 

(iv) 2.0 mg/cm2 of C loading: 2.0 mg/cm2 × 30.414 cm2  = 60.828 mg 

(v) 2.5 mg/cm2 of C loading: 2.5 mg/cm2  × 30.414 cm2  = 76.035 mg 

The loss factor is assumed to be 3 then, 

(i) 0.5 mg/cm2 of C loading: 15.207 mg × 3 = 45.621 mg 

(ii) 1.0 mg/cm2 of C loading: 30.414 mg × 3 = 91.242 mg 

(iii) 1.5 mg/cm2 of C loading: 45.621 mg × 3 = 136.843 mg 

(iv) 2.0 mg/cm2 of C loading: 60.828 mg × 3 = 182.484 mg 

(v) 2.5 mg/cm2 of C loading: 76.035 mg × 3 = 228.105 mg 

Step 2 

Adding PTFE (wt.%), 

 For 10 wt.% of, 
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(i) 0.5 mg =   
10 mg PTFE

90 mg C
 × 45.621 mg 

PTFE solution required , (mg) = 5.069 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
  

(ii) 1.0 mg =  
10 mg PTFE

90 mg C
 × 91.242 mg 

PTFE solution required , (mg) = 10.138 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(iii) 1.5 mg = 
10 mg PTFE

90 mg C
 × 136.843 mg 

PTFE solution required , (mg) = 15.205 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(iv) 2.0 mg = 
10 mg PTFE

90 mg C
 × 182.484 mg 

PTFE solution required , (mg) = 20.276 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(v) 2.5 mg = 
10 mg PTFE

90 mg C
 × 228.105 mg 

PTFE solution required , (mg) = 25.35 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

For 20 wt.% of, 

(i) 0.5 mg =   
20 mg PTFE

80 mg C
 × 45.621 mg 

PTFE solution required , (mg) = 11.405 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(ii) 1.0 mg =  
20 mg PTFE

80 mg C
 × 91.242 mg 

PTFE solution required , (mg) = 22.811 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(iii) 1.5 mg = 
20 mg PTFE

80 mg C
 × 136.843 mg 

PTFE solution required , (mg) = 34.211 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
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(iv) 2.0 mg = 
20 mg PTFE

80 mg C
 × 182.484 mg 

PTFE solution required , (mg) = 45.621 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(v) 2.5 mg = 
20 mg PTFE

80 mg C
 × 228.105 mg 

PTFE solution required , (mg) = 57.026 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

For 30 wt.% of, 

(i) 0.5 mg =   
30 mg PTFE

70 mg C
 × 45.621 mg 

PTFE solution required , (mg) = 19.552 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(ii) 1.0 mg =  
30 mg PTFE

70 mg C
 × 91.242 mg 

PTFE solution required , (mg) =  39.104 mg PTFE × 
100 mgPTFE

62.60 mgPTFE
 

(iii) 1.5 mg = 
30 mg PTFE

70 mg C
 × 136.843 mg 

PTFE solution required , (mg) = 58.647 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(iv) 2.0 mg = 
30 mg PTFE

70 mg C
 × 182.484 mg 

PTFE solution required , (mg) = 78.207 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(v) 2.5 mg = 
30 mg PTFE

70 mg C
 × 228.105 mg 

PTFE solution required , (mg) = 97.759 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

For 40 wt.% of, 

(i) 0.5 mg =   
40 mg PTFE

60 mg C
 × 45.621 mg 
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PTFE solution required , (mg) = 30.414 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(ii) 1.0 mg =  
40 mg PTFE

60 mg C
 × 91.242 mg 

PTFE solution required , (mg) = 60.828 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(iii) 1.5 mg = 
40 mg PTFE

60 mg C
 × 136.843 mg 

PTFE solution required , (mg) = 91.229 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(iv) 2.0 mg = 
40 mg PTFE

60 mg C
 × 182.484 mg 

PTFE solution required , (mg) = 121.656 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(v) 2.5 mg = 
40 mg PTFE

60 mg C
 × 228.105 mg 

PTFE solution required , (mg) = 152.07 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

For 50 wt.% of, 

(i) 0.5 mg =   
50 mg PTFE

50 mg C
 × 45.621 mg 

PTFE solution required , (mg) = 45.621 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(ii) 1.0 mg =  
50 mg PTFE

50 mg C
 × 91.242 mg  

PTFE solution required , (mg) = 91.242 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(iii) 1.5 mg = 
50 mg PTFE

50 mg C
 × 136.843 mg 

PTFE solution required , (mg) = 136.843 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(iv) 2.0 mg = 
50 mg PTFE

50 mg C
 × 182.484 mg 
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PTFE solution required , (mg) = 182.484 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

(v) 2.5 mg = 
50 mg PTFE

50 mg C
 × 228.105 mg 

PTFE solution required , (mg) = 228.105 mg PTFE × 
100 mgPTFE

62.6 mgPTFE
 

Step 3 

Table 3.3 summarised the individual loadings for carbon black and PTFE solution as 

required materials of the prepare MPL mixture. 

Step 4  

Amounts of  carbon black particles, C and PTFE solution required to add together. 

Recall, area of sample, A  = 5.069 cm2, 

1. For carbon black particles loading, C; 

(i) 0.5 mg/cm2 of C loading:  0.5 mg/cm2 × 5.069 cm2 = 2.535 mg 

(ii) 1.0 mg/cm2 of C loading: 1.0 mg/cm2 × 5.069 cm2  = 5.069 mg 

(iii) 1.5 mg/cm2 of C loading: 1.5mg/cm2 × 5.069 cm2 = 7.604 mg 

(iv) 2.0 mg/cm2 of C loading: 2.0 mg/cm2 × 5.069 cm2 = 10.138 mg 

(v) 2.5 mg/cm2 of C loading: 2.5 mg/cm2 × 5.069 cm2 = 12.673 mg 

2. For PTFE solution required, PTFE; 

(i) 0.5 mg C 

(a) 10 wt. % = 
10 mgPTFE

90 mg C
  × 2.535 mg C  = 0.282 wt.% 

(b) 20 wt.% = 
20 mgPTFE

80 mg C
  × 2.535 mg C = 0.634 wt.% 

(c) 30 wt.% = 
30 mgPTFE

70 mg C
  × 2.535 mg C = 1.086 wt.% 
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(d) 40 wt.% = 
40 mgPTFE

60 mg C
  × 2.535 mg C = 1.690 wt.% 

(e) 50 wt.% = 
50 mgPTFE

50 mg C
  × 2.535 mg C = 2.535 wt.% 

(ii) 1.0 mg C  

      (a) 10 wt.% =  
10 mgPTFE

90 mg C
  × 5.069 mg C = 0.563 wt.% 

(b) 20 wt.% =  
20 mgPTFE

80 mg C
  × 5.069 mg C = 1.267 wt.% 

(c) 30 wt.% =  
30 mgPTFE

70 mg C
  × 5.069 mg C = 2.172 wt.% 

(d) 40 wt.% =  
40 mgPTFE

60 mg C
  × 5.069 mg C = 3.379 wt.% 

(e) 50 wt.% =  
50 mgPTFE

50 mg C
  × 5.069 mg C = 5.069 wt.% 

(iii) 1.5 mg C  

      (a) 10 wt.% =  
10 mgPTFE

90 mg C
  × 7.604 mg C = 0.845 wt.% 

(b) 20 wt.% =  
20 mgPTFE

80 mg C
  × 7.604 mg C = 1.901 wt.% 

(c) 30 wt.% =  
30 mgPTFE

70 mg C
  × 7.604 mg C = 3.259 wt.% 

(d) 40 wt.% =  
40 mgPTFE

60 mg C
  × 7.604 mg C = 5.069 wt.% 

(e) 50 wt.% =  
50 mgPTFE

50 mg C
  × 7.604 mg C = 7.604 wt.% 

(iv) 2.0 mg C 
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      (a) 10 wt.% =  
10 mgPTFE

90 mg C
  × 10.138 mg C = 1.126 wt.% 

(b) 20 wt.% =  
20 mgPTFE

80 mg C
  × 10.138 mg C = 2.535 wt.% 

(c) 30 wt.% =  
30 mgPTFE

70 mg C
  × 10.138 mg C = 4.345 wt.% 

(d) 40 wt.% =  
40 mgPTFE

60 mg C
  × 10.138 mg C = 6.759 wt.% 

(e) 50 wt.% =  
50 mgPTFE

50 mg C
  × 10.138 mg C = 10.138 wt.% 

(v) 2.5 mg C  

      (a) 10 wt.% =  
10 mgPTFE

90 mg C
  × 12.673 mg C = 1.408 wt.%  

(b) 20 wt.% =  
20 mgPTFE

80 mg C
  × 12.673 mg C = 3.168 wt.% 

(c) 30 wt.% =  
30 mgPTFE

70 mg C
  × 12.673 mg C = 5.431 wt.% 

(d) 40 wt.% =  
40 mgPTFE

60 mg C
  × 12.673 mg C = 8.449 wt.% 

(e) 50 wt.% =  
50 mgPTFE

50 mg C
  × 12.673 mg C = 12.673 wt.% 

Therefore, add carbon black, C and PTFE together (C+PTFE) by weight, see Table 3.4. 

Step 5 

Carbon black particles and PTFE required per a single sample, (C + PTFE); 

(i) 0.5 mg C 

(a) 10 wt.% PTFE  =   
2.535+0.282

5.069
 =  0.556 wt.% 
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(b) 20 wt.% PTFE  =    
2.535+0.634

5.069
 =  0.625 wt.% 

(c) 30 wt.% PTFE  = 
2.535+0.429

5.069
  = 2.964 wt.% 

(d) 40 wt.% PTFE  =  
2.535+0.600

5.069
 = 0.619 wt.%            

(e) 50 wt.% PTFE  =  
2.535+1.00

5.069
  =  0.697 wt.%                    

(ii) 1.0 mg C 

(a) 10 wt.% PTFE  = 
5.069 + 0.563

5.069
 = 1.111 wt.% 

(b) 20 wt.% PTFE  =   
5.069+1.267

5.069
  =  1.250 wt.% 

(c) 30 wt.% PTFE  =  
5.069 +2.172

5.069
  = 1.423 wt.% 

(d) 40 wt.% PTFE  =  
5.069+3.379

5.069
  = 1.667 wt.%           

(e) 50 wt.% PTFE  =  
5.069+5.069

5.069
  = 2.00 wt.%                      

(iii) 1.5 mg C 

(a) 10 wt.% PTFE  =  
7.604 +0.845

5.069
  =  1.667 wt.% 

(b) 20 wt.% PTFE  =  
7.604+1.901

5.069
 = 1.875 wt.%     

(c) 30 wt.% PTFE  =  
7.604+3.259

5.069
  =  2.143 wt.% 

(d) 40 wt.% PTFE  =  
7.604+ 5.069

5.069
 = 2.500 wt.%           

(e) 50 wt.% PTFE  =  
7.604 +7.604

5.069
   = 3.000 wt.%                   

(iv) 2.0 mg C 

(a) 10 wt.% PTFE  = 
10.138+1.126

5.069
 = 2.222 wt.% 

(b) 20 wt.% PTFE  =    
10.138+2.535

5.069
 = 2.500 wt.%         
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(c) 30 wt.% PTFE  = 
10.138+4.345

5.069
  = 2.857 wt.% 

(d) 40 wt.% PTFE  =  
10.138+6.759

5.069
  = 3.333 wt.%           

(e) 50 wt.% PTFE  =  
10.138+10.138

5.069
  = 4.000 wt.%                     

(v) 2.5 mg C 

(a) 10 wt.% PTFE  = 
12.673+1.408

5.069
 = 2.778 wt.%  

(b) 20 wt.% PTFE  =    
12.673+3.168

5.069
  = 3.125 wt.%      

(c) 30 wt.% PTFE  = 
12.673+5.431

5.069
  = 3.572 wt.% 

(d) 40 wt.% PTFE  =  
12.673+8.449

5.069
 = 4.167 wt.%          

(e) 50 wt.% PTFE  =  
12.673+12.673

5.069
   = 5.000 wt.% 

The amount of carbon black particles and PTFE loadings required by a sample 

summarised in Table 3.5. However, specific amounts of carbon particles and PTFE from 

the values above are determined as follows: 

For carbon black loading per sample is, 

C (mg) + PTFE (mg)

5.069 
 × C %(by weight) 

Example, 0.5 mg/cm2 of 20 wt.% PTFE is  

2.535+0.634

5.069
 ×

80 

100
 = 0.500 mg/cm2 carbon black 

The total amount MPL slurry coated  is 0.625 mg/cm2, and amount of carbon in the MPL 

coated is 0.50 mg/cm2, then the amount of PTFE loading per sample is 0.125 mg/cm2 

(i.e., 0.625 – 0.500) mg/cm2. 
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Appendix B                                                                                                               

Estimation value for MPL-coated GDLs thickness with Ketjenblack 

and Vulcan carbon black loading 

Table B-1: MPL-coated GDL thickness with 0.5 mg/cm2 Ketjenblack carbon black 

and PTFE loading. 

 

C-0% 

Mean 
µm 95% Conf. Int. C-30% 

Mean 
µm 95% Conf. Int. 

445 432  ±15.77 385 403 ±17.86 

438   393   

420   403   

420   393   

453   408   

418   433   

      

C-10% 

Mean 
µm 95% Conf. Int. C-40% 

Mean 
µm 95% Conf. Int. 

410 401 ±31.27 423 419 ±11.93 

383   420   

388   413   

385   425   

458   433   

382   400   

      

C-20% 

Mean 
µm 95% Conf. Int. C-50% 

Mean 
µm 95% Conf. Int. 

418 419  ±25.60 463 453  ±12.29 

408   453   

423   460   

465   430   

400   455   

400   455   
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Table B-2: MPL-coated GDL thickness with 1.0 mg/cm2 Ketjenblack carbon black 

and PTFE loading. 

 

C-0% 

Mean 
µm 95% Conf. Int. C-30% 

Mean 
µm 95% Conf. Int. 

485 467  ±20.30 408 415 ±6.79 

440   425   

458   415   

455   408   

475   413   

490   418   

      

C-10% 

Mean 
µm 95% Conf. Int. C-40% 

Mean 
µm 95% Conf. Int. 

428 428  ±3.84 413 416  ±8.30 

425   428   

428   420   

428   408   

425   420   

435   408   

      

C-20% 

Mean 
µm 95% Conf. Int. C-50% 

Mean 
µm 95% Conf. Int. 

520 473 ±39.92 535 481 ±33.43 

513   475   

468   483   

465   493   

450   458   

420   443   
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Table B-3: MPL-coated GDL thickness with 1.5 mg/cm2 Ketjenblack carbon black 

and PTFE loading. 

 

C-0% 

Mean 
µm 95% Conf. Int. C-30% 

Mean 
µm 95% Conf. Int. 

488 515 ±18.77 470 464  ±16.56 

520   470   

543   480   

513   438   

518   453   

508   475   

      

C-10% 

Mean 
µm 95% Conf. Int. C-40% 

Mean 
µm 95% Conf. Int. 

435 462  ±17.63 478 464 ±20.16 

450   460   

468   483   

475   473   

480   458   

465   430   

      

C-20% 

Mean 
µm 95% Conf. Int. C-50% 

Mean 
µm 95% Conf. Int. 

465 438  ±20.17 513 509  ±12.99 

428   520   

453   508   

410   485   

438   515   

435   513   
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Table B-4: MPL-coated GDL thickness with 2.0 mg/cm2 Ketjenblack carbon black 

and PTFE loading. 

 

C-0% 

Mean 
µm 95% Conf. Int. C-30% 

Mean 
µm 95% Conf. Int. 

510 520  ±6.63 465 464  ±26.01 

523   480   

523   490   

513   420   

525   455   

523   475   

      

C-10% 

Mean 
µm 95% Conf. Int. C-40% 

Mean 
µm 95% Conf. Int. 

548 565 ±14.49 450 477  ±16.48 

570   470   

580   478   

575   488   

570   480   

548   495   

      

C-20% 

Mean 
µm 95% Conf. Int. C-50% 

Mean 
µm 95% Conf. Int. 

515 484  ±29.46 588 565  ±24.87 

488   590   

468   578   

488   535   

438   555   

508   543   
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Table B-5: MPL-coated GDL thickness with 2.5 mg/cm2 Ketjenblack carbon black 

and PTFE loading. 

 

C-0% 

Mean 
µm 95% conf. Int. C-30% 

Mean 
µm 95% Conf. Int. 

578 559 ±19.78 533 525 ±16.05 

578   533   

560   548   

545   510   

530   513   

563   513   

      

C-10% 

Mean 
µm 95% Conf. Int. C-40% 

Mean 
µm 95% Conf. Int. 

535 530  ±16.19 540 547  ±42.01 

518   580   

533   603   

538   515   

548   495   

505   550   

      

C-20% 

Mean 
µm 95% Conf. Int. C-50% 

Mean 
µm 95% Conf. Int. 

550 522  ±23.09 650 626  ±23.56 

513   600   

535   600   

525   650   

525   625   

485   630   
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Table B-6: MPL-coated GDL thickness with 0.5 mg/cm2  Vulcan carbon black and 

PTFE loading. 

 

C-0% 

Mean 
µm 95% Conf. Int. C-30% 

Mean 
µm 95% Conf. Int. 

445 432  ±15.77 450 432 ±23.15 

438   455   

420   448   

420   418   

453   403   

418   415   

      

C-10% 

Mean 
µm 95% Conf. Int. C-40% 

Mean 
µm 95% Conf. Int. 

470 435  ±21.17 413 430  ±27.31 

418   418   

438   405   

415   468   

428   420   

443   458   

      

C-20% 

Mean 
µm 95% Conf. Int. C-50% 

Mean 
µm 95% Conf. Int. 

505 491  ±41.92 488 439  ±31.04 

548   458   

518   415   

468   420   

465   438   

440   413   
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Table B-7: MPL-coated GDL thickness with 1.0 mg/cm2  Vulcan carbon black and 

PTFE loading. 

 

C-0% 

Mean 
µm 95% Conf. Int. C-30% 

Mean 
µm 95% Conf. Int. 

415 433  ±16.64 393 410  ±23.90 

418   425   

440   400   

438   445   

430   415   

458   383   

      

C-10% 

Mean 
µm 95% Conf. Int. C-40% 

Mean 
µm 95% Conf. Int. 

410 403  ±15.89 390 409  ±23.07 

403   405   

418   388   

418   400   

385   443   

385   428   

      

C-20% 

Mean 
µm 95% Conf. Int. C-50% 

Mean 
µm 95% Conf. Int. 

520 473 ±39.92 445 393 ±29.81 

513   375   

468   373   

465   373   

450   405   

420   385   
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Table B-8: MPL-coated GDL thickness with 1.5 mg/cm2  Vulcan carbon black and 

PTFE loading. 

 

C-0% 

Mean 
µm 95% Conf. Int. C-30% 

Mean 
µm 95% Conf. Int. 

483 462  ±24.58 468 447  ±18.91 

460   440   

480   428   

418   440   

468   433   

460   470   

      

C-10% 

Mean 
µm 95% Conf. Int. C-40% 

Mean 
µm 95% Conf. Int. 

420 439  ±30.29 428 427  ±14.15 

410   450   

468   430   

468   418   

460   410   

410   428   

      

C-20% 

Mean 
µm 95% Conf. Int. C-50% 

Mean 
µm 95% Conf. Int. 

513 490  ±55.29 420 427  ±7.56 

473   433   

463   438   

460   420   

587   425   

445   428   
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Table B-9: MPL-coated GDL thickness with 2.0 mg/cm2  Vulcan carbon black and 

PTFE loading. 

 

C-0% 

Mean 
µm 95% Conf. Int. C-30% 

Mean 
µm 95% Conf. Int. 

485 476 ±8.30 438 460  ±19.63 

478   458   

475   443   

463   463   

473   468   

483   490   

      

C-10% 

Mean 
µm 95% Conf. Int. C-40% 

Mean 
µm 95 Conf. Int. 

428 446  ±18.10 448 465  ±11.66 

475   473   

435   475   

455   473   

435   465   

445   455   

      

C-20% 

Mean 
µm 95% Conf. Int. C-50% 

Mean 
µm 95% Conf. Int. 

483 507  ±25.76 425 437  ±21.11 

515   433   

515   410   

548   440   

495   443   

485   470   
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Table B-10: MPL-coated GDL thickness with 2.5 mg/cm2  Vulcan carbon black 

and PTFE loading. 

 

C-0% 

Mean 
µm 95% Conf. Int. C-30% 

Mean 
µm 95% Conf. Int. 

418 448  ±24.15 485 507  ±43.75 

435   570   

465   470   

440   523   

448   533   

483   463   

      

C-10% 

Mean 
µm 95% Conf. Int. C-40% 

Mean 
µm 95% Conf. Int. 

488 459  ±30.62 510 466 ±36.92 

465   450   

468   505   

408   460   

443   420   

480   448   

      

C-20% 

Mean 
µm 95% Conf. Int. C-50% 

Mean 
µm 95% Conf. Int. 

510 504  ±10.55 473 485  ±19.14 

518   500   

500   455   

488   498   

505   485   

505   500   
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Appendix C                                                                                                               

Estimation values for carbon-PTFE loaded onto GDL samples  

Table C-1: 0.5 mg Vulcan carbon black and PTFE loading. 

 

C-0 % 

mean 
mg/cm2 95 % Conf. Int.  C-30% 

mean 
mg/cm2 95 % Conf. Int.  

0.94 0.76  ±0.16 0.89 0.97  ±0.07 

0.96     0.99     

0.74     1.04     

0.68     1.02     

0.65     0.98     

0.61     0.9     

            

C-10% 

mean 
mg/cm2 95 % Con. Int. C-40% 

mean 
mg/cm2 95 % Conf. Int.  

0.9 0.85  ±0.07 1.34 1.43  ±0.06 

0.92     1.38     

0.82     1.41     

0.75     1.5     

0.8     1.46     

0.91     1.47     

            

C-20% 

mean 
mg/cm2 95 % Conf. Int.  C-50% 

mean 
mg/cm2 95 % Con. Int.  

0.56 0.90  ±0.18 1.03 0.95  ±0.06 

0.99     1.01     

1.01     0.93     

0.97     0.91     

0.93     0.93     

0.95     0.9     
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Table C-2: 1.0 mg Vulcan carbon black loading. 

 

C-0% 

mean 
mg/cm2 95% Conf. Int. C-30% 

mean 
mg/cm2 95% Conf. Int. 

1.1 1.32  ±0.29 1.88 1.84  ±0.13 

1.43   2.07   

1.28   1.81   

1.14   1.77   

1.13   1.78   

1.83   1.75   

      

C-10% 

mean 
mg/cm2 95% Conf. Int. C-40% 

mean 
mg/cm2 95% Conf. Int. 

1.19 1.29  ±0.08 2.25 2.41  ±0.28 

1.25   2.43   

1.38   2.19   

1.25   2.23   

1.28   2.44   

1.37   2.91   

      

C-20% 

mean 
mg/cm2 95% Conf. Int. C-50% 

mean 
mg/cm2 95% Conf. Int. 

3.58 1.96  ±0.83 2.39 2.39  ±0.16 

1.58   2.55   

1.62   2.43   

1.65   2.11   

1.69   2.38   

1.64   2.45   
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 Table C-3: 1.5 mg Vulcan carbon black loading. 

 

C-0% 

mean 
mg/cm2 95% Conf. Int. C-30% 

mean 
mg/cm2 95% Conf. Int. 

1.94 1.79  ±0.13 1.88 1.84  ±0.13 

1.86   2.07   

1.67   1.81   

1.62   1.77   

1.77   1.78   

1.87   1.75   

      

C-10% 

mean 
mg/cm2 95% Conf. Int. C-40% 

mean 
mg/cm2 95% Conf. Int. 

1.87 1.74  ±0.13 2.25 2.41  ±0.28 

1.67   2.43   

1.63   2.19   

1.61   2.23   

1.73   2.44   

1.91   2.91   

      

C-20% 

mean 
mg/cm2 95% Conf. Int. C-50% 

mean 
mg/cm2 95% Conf. Int. 

1.87 2.29  ±0.25 2.39 2.39  ±0.16 

2.28   2.55   

2.61   2.43   

2.4   2.11   

2.25   2.38   

2.3   2.45   
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 Table C-4: 2.0 mg Vulcan carbon black loading. 

 

C-0% 

mean 
mg/cm2  95% Conf. Int. C-30% 

mean 
mg/cm2  95% Conf. Int.  

2.42 2.64  ±0.14 2.74 3.22  ±0.31 

2.71   3.49   

2.78   3.11   

2.71   3.1   

2.54   3.36   

2.69   3.5   

      

C-10% 

mean 
mg/cm2 95% Conf. Int. C-40% 

mean 
mg/cm2 95% Conf. Int. 

3.09 3.45  ±0.21 2.59 2.61  ±0.13 

3.59   2.62   

3.54   2.55   

3.57   2.65   

3.33   2.82   

3.57   2.45   

      

C-20% 

mean 
mg/cm2 95% Conf. Int. C-50% 

mean 

mg/cm2 95% Conf. Int. 

2.54 2.75  ±0.29 3.75 3.65  ±0.26 

2.86   3.96   

2.98   3.58   

3.11   3.23   

2.55   3.59   

2.44   3.78   

 



 

236 

 

 Table C-5: 2.5 mg Vulcan carbon black loading. 

 

C-0% 

mean 
mg/cm2  95% Conf. Int.  C-30% 

mean 
mg/cm2  95% Conf. Int. 

2.51 2.69 ±0.27 4.69 4.58  ±0.50 

2.38   5.42   

2.93   4.58   

2.59   4.49   

2.69   4.1   

3.04   4.18   

      

C-10% 

mean 
mg/cm2 95% Conf. Int. C-40% 

mean 
mg/cm2 95% Conf. Int. 

3.44 3.58 ±0.24 6.34 5.21 ±0.99 

3.98   6.44   

3.47   4.79   

3.38   4.58   

3.46   4.22   

3.72   4.89   

      

C-20% 

mean 
mg/cm2 95% Conf. Int. C-50% 

mean 
mg/cm2 95% Conf. Int. 

3.71 3.53 ±0.17 5.43 5.19 ±0.61 

3.47   6.09   

3.66   5.32   

3.62   4.55   

3.38   4.57   

3.33   5.15   
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Table C-6: 0.5 mg Ketjenblack carbon black and PTFE loading. 

 

C-0% 

mean 
mg/cm2 95% Conf. Int.  C-30% 

mean 
mg/cm2  95% Conf. Int. 

0.41 0.46 ±0.05 0.74 0.85 ±0.14 

0.5     0.81     

0.5     0.76     

0.48     0.86     

0.45     1.1     

0.4     0.83     

            

C-10% 

mean 
mg/cm2 95% Conf. Int.  C-40% 

mean 
mg/cm2 95% Conf. Int.  

0.73 0.81 ±0.37 0.89 1.02 ±0.17 

1.03     1.18     

0.34     1.05     

1.38     1.11     

0.75     1.11     

0.64     0.76     

            

C-20% 

mean 
mg/cm2 95% Conf. Int.  C-50% 

mean 
mg/cm2 95% Conf. Int. 

0.56 0.63 ±0.08 1.1 1.04 ±0.05 

0.68     1.07     

0.72     1.02     

0.68     1.01     

0.62     1.06     

0.53     0.97     
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Table C-7: 1.0 mg Ketjenblack carbon black and PTFE loading. 

 

C-0% 

Mean 
mg/cm2   95% Conf. Int. C-30% 

Mean 
mg/cm2  

 95% Conf. 

Int. 

1.47 1.11 ±0.19 1.73 1.67 ±0.12 

0.99   1.81   

1.01   1.52   

1.05   1.63   

1.05   1.57   

1.09   1.77   

       

C-10% 

Mean 
mg/cm2 95% Conf. Int. C-40% 

Mean 
mg/cm2  95% Conf. Int. 

1.1 1.29 ±0.10 1.98 1.86 ±0.11 

1.29   1.79   

1.32   1.97   

1.37   1.71   

1.31   1.86   

1.34   1.83   

       

C-20% 

mean 
mg/cm2 95% Conf. Int. C-50% 

mean 
mg/cm2 95% Conf. Int. 

1.27 1.24 ±0.28 2.18 2.53 ±0.27 

1.37   2.69   

0.71   2.67   

1.42   2.72   

1.28    2.7   

1.37     2.22    
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Table C-8: 1.5 mg Ketjenblack carbon black and PTFE loading. 

 

C-0% 

Mean 
mg/cm2 

 

95% Conf. Int. C-30% 

Mean 
mg/cm2 95% Conf. Int. 

1.55 1.74 
 

0.16 2.32 2.34 0.16 

1.75  

 

 2.23   

1.98  

 

 2.62   

1.8  

 

 2.28   

1.74  

 

 2.38   

1.61  

 

 2.2   

  

 

    

C-10% 

Mean 
mg/cm2 

 

95% Conf. Int. C-40% 

Mean 
mg/cm2 95% Conf. Int. 

1.56 1.82 
 

0.18 2.69 3.03 0.40 

1.81  

 

 2.82   

1.9  

 

 3.53   

2.03  

 

 3.14   

1.94  

 

 3.37   

1.69  

 

 2.61   

  

 

    

C-20% 

Mean 
mg/cm2 

 

95% Conf. Int. C-50% 

Mean 
mg/cm2 95% Conf. Int. 

2.6 2.47 
 

0.29 3.14 3.12 0.09 

2.63  

 

 3.01   

2.6  

 

 3.26   

2.63  

 

 3.12   

2.46  

 

 3.14   

1.92  

 

 3.07   
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Table C-9: 2.0 mg Ketjenblack carbon black and PTFE loading. 

 

C-0% 

Mean 
mg/cm2 95% Conf. Int. C-30% 

Mean 
mg/cm2 95% Conf. Int. 

2.01 2.02 0.02 3.01 3.44 0.43 

2.02   3.38   

2.02   3.53   

2.06   4.02   

2.02   3.72   

2.01   2.96   

      

C-10% 

Mean 
mg/cm2 95% Conf. Int. C-40% 

Mean 
mg/cm2 95% Conf. Int. 

2.21 2.28 0.07 3.47 3.62 0.50 

2.29   4.03   

2.21   3.23   

2.37   3.09   

2.23   3.59   

2.34   4.33   

      

C-20% 

Mean 
mg/cm2 95% Conf. Int. C-50% 

Mean 
mg/cm2 95% Conf. Int. 

2.47 2.43 0.10 4.01 4.16 0.16 

2.29   4.08   

2.39   4.44   

2.57   4.11   

2.41   4.24   

2.44   4.08   
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Table C-10: 2.5 mg Ketjenblack carbon black and PTFE loading. 

 

C-0% 

Mean 
mg/cm2 95% Conf. Int. C-30% 

Mean 
mg/cm2 95% Conf. Int. 

2.58 2.71 0.15 3.68 3.79 0.18 

2.89   3.97   

2.62   3.91   

2.79   3.89   

2.82   3.51   

2.55   3.75   

      

C-10% 

Mean 
mg/cm2 95% Conf. Int. C-40% 

Mean 
mg/cm2 95% Conf. Int. 

2.82 2.98 0.17 3.99 4.21 0.88 

2.99   5.59   

2.96   4.84   

3.2   3.78   

3.11   3.52   

2.78   3.52   

      

C-20% 

Mean 
mg/cm2 95% Conf. Int. C-50% 

Mean 
mg/cm2 95% Conf. Int. 

3.23 3.32 0.42 5.37 5.32 0.09 

3.08   5.36   

3.26   5.38   

4.11   5.2   

3.19   5.23   

3.02   5.4   
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Appendix D                                                                                                                                                                                             

The Measurement of Error Bars of 95% Confidence Interval for Gas 

Permeability of MPL-coated GDLs  with Ketjenblack and Vulcan 

carbon blacks 

D-1: MPL-coated GDL with Ketjenblack carbon black loading for gas permeability 

for each of 6 tested samples with various PTFE loadings in the MPLs. 

 

For 0.5 mg Ketjenblack loading 

Wt.%

PTFE 

1 2 3 4 5 6 

0 1.56×10-11 

±2.36×10-12 

1.17×10-11 

±8.07×10-13 

1.65×10-11 

±2.22×10-12 

1.53×10-11 

±2.44×10-12 

1.46×10-11 

±2.68×10-12 

1.76×10-11 

±1.76×10-12 

10 9.15×10-12 

±8.87×10-14 

9.46×10-12 

±9.34×10-13 

1.11×10-11 

±1.15×10-13 

9.86×10-12 

±7.76×10-13 

1.05×10-11 

±4.11×10-13 

1.25×10-11 

±1.45×10-13 

20 5.85×10-12 

±2.59×10-13 

5.15×10-12 

±1.32×10-13 

5.93×10-12 

±2.33×10-13 

6.19×10-12 

±9.83×10-14 

5.21×10-12 

±2.07×10-14 

5.83×10-12 

±1.72×10-13 

30 8.65×10-12 

±4.24×10-13 

6.86×10-12 

±2.34×10-13 

9.69×10-12 

±7.85×10-14 

5.89×10-12 

±1.52×10-13 

3.21×10-12 

±6.47×10-14 

7.35×10-12 

±7.30×10-14 

40 8.44×10-12 

±1.19×10-13 

6.60×10-12 

±3.30×10-14 

7.75×10-12 

±6.11×10-14 

6.47×10-12 

±1.45×10-13 

5.64×10-12 

±7.64×10-14 

8.87×10-12 

±2.43×10-13 

50 1.10×10-11 

±8.86×10-13 

1.10×10-11 

±8.86×10-13 

1.06×10-11 

±9.95×10-13 

9.64×10-12 

±2.04×10-13 

8.02×10-12 

±6.10×10-13 

9.64×10-12 

±2.04×10-13 
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For 1.0 mg Ketjenblack loading 

Wt.%

PTFE 

1 2 3 4 5 6 

0 6.40×10-12 

±1.00×10-13 

2.71×10-12 

±2.36×10-14 

2.17×10-12 

±7.22×10-14 

7.08×10-12 

±2.24×10-13 

5.53×10-12 

±8.04×10-14 

3.16×10-12 

±4.28×10-14 

10 4.34×10-12 

±1.41×10-13 

1.52×10-12 

±1.53×10-14 

3.04×10-12 

±3.85×10-14 

1.52×10-12 

±2.92×10-14 

2.47×10-12 

±2.00×10-14 

3.13×10-12 

±3.37×10-14 

20 2.07×10-12 

±7.30×10-14 

1.37×10-12 

±1.04×10-14 

2.21×10-12 

±1.52×10-13 

1.64×10-12 

±2.68×10-14 

2.01×10-12 

±4.68×10-14 

1.33×10-12 

±1.31×10-14 

30 2.75×10-12 

±1.74×10-14 

2.24×10-12 

±2.10×10-14 

3.49×10-12 

±6.18×10-14 

2.35×10-12 

±1.93×10-14 

2.29×10-12 

±2.67×10-14 

1.44×10-12 

±1.37×10-14 

40 2.02×10-12 

±3.79×10-14 

3.05×10-12 

±2.54×10-14 

2.17×10-12 

±3.12×10-14 

2.68×10-12 

±3.05×10-14 

1.58×10-12 

±1.14×10-14 

2.48×10-12 

±3.59×10-14 

50 4.73×10-12 

±6.35×10-14 

2.95×10-12 

±9.52×10-14 

1.79×10-12 

±1.86×10-14 

3.13×10-12 

±4.73×10-14 

2.00×10-12 

±2.77×10-14 

3.42×10-12 

±6.14×10-14 

 

For 1.5 mg Ketjenblack loading 

Wt.%

PTFE 

1 2 3 4 5 6 

0 2.48×10-12 

±3.23×10-14 

2.22×10-12 

±3.38×10-14 

1.26×10-12 

±186×10-14 

1.46×10-12 

±1.22×10-14 

1.24×10-12 

±7.33×10-14 

1.38×10-12 

±1.04×10-14 

10 3.48×10-12 

±8.04×10-14 

2.32×10-12 

±4.45×10-14 

2.24×10-12 

±1.46×10-14 

2.38×10-12 

±2.77×10-14 

2.70×10-12 

±3.88×10-14 

2.36×10-12 

±2.71×10-14 

20 1.49×10-12 

±3.79×10-14 

1.29×10-12 

±1.13×10-14 

1.69×10-12 

±2.31×10-14 

1.21×10-12 

±7.58×10-15 

8.94×10-13 

±2.62×10-14 

7.65×10-13 

±2.01×10-14 

30 1.66×10-12 

±1.04×10-14 

1.83×10-12 

±8.51×10-15 

1.05×10-12 

±2.34×10-14 

2.45×10-12 

±1.88×10-14 

9.99×10-13 

±2.67×10-15 

1.07×10-12 

±1.32×10-14 

40 1.80×10-12 

±1.85×10-14 

1.25×10-12 

±1.83×10-14 

7.62×10-13 

±1.84×10-14 

9.86×10-13 

±9.63×10-15 

5.98×10-13 

±3.27×10-14 

7.45×10-13 

±3.10×10-14 

50 2.10×10-12 

±4.28×10-14 

1.89×10-12 

±2.72×10-14 

1.71×10-12 

±1.60×10-14 

1.46×10-12 

±1.02×10-14 

1.23×10-12 

±6.30×10-15 

2.30×10-12 

±2.54×10-14 
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 For 2.0 mg Ketjenblack loading 

Wt.%

PTFE 

1 2 3 4 5 6 

0 1.22×10-12 

±1.06×10-14 

1.90×10-12 

±2.21×10-13 

7.37×10-13 

±6.67×10-14 

1.44×10-12 

±2.84×10-14 

1.08×10-12 

±1.20×10-14 

9.05×10-13 

±2.87×10-14 

10 3.40×10-12 

±1.34×10-13 

3.51×10-12 

±2.74×10-14 

3.33×10-12 

±5.38×10-14 

3.28×10-12 

±6.90×10-14 

2.23×10-12 

±4.57×10-14 

1.84×10-12 

±1.80×10-14 

20 2.19×10-12 

±2.15×10-14 

1.86×10-12 

±1.93×10-14 

2.19×10-12 

±3.24×10-14 

2.53×10-12 

±1.50×10-14 

1.44×10-12 

±1.51×10-14 

1.13×10-13 

±2.62×10-14 

30 1.30×10-12 

±8.49×10-15 

9.35×10-13 

±2.64×10-14 

5.08×10-13 

±5.94×10-15 

6.06×10-13 

±3.07×10-14 

6.62×10-13 

±1.70×10-14 

2.34×10-12 

±2.95×10-14 

40 1.78×10-12 

±2.90×10-14 

2.02×10-12 

±1.81×10-14 

1.20×10-12 

±2.84×10-14 

2.01×10-12 

±3.36×10-14 

1.06×10-12 

±2.63×10-14 

1.10×10-12 

±2.07×10-14 

50 6.68×10-13 

±2.44×10-14 

1.87×10-12 

±8.71×10-15 

7.37×10-13 

±2.17×10-14 

9.29×10-13 

±3.75×10-14 

9.58×10-13 

±1.63×10-14 

1.19×10-12 

±2.18×10-14 

 

For 2.5 mg Ketjenblack loading 

Wt.%

PTFE 

1 2 3 4 5 6 

0 1.15×10-12 

±3.52×10-14 

9.58×10-13 

±2.37×10-14 

1.56×10-13 

±1.01×10-14 

1.60×10-12 

±2.30×10-14 

1.82×10-12 

±1.16×10-14 

7.87×10-13 

±2.43×10-14 

10 2.39×10-12 

±3.20×10-14 

1.46×10-12 

±1.61×10-14 

1.62×10-12 

±8.45×10-15 

1.60×10-12 

±1.70×10-14 

1.58×10-12 

±8.52×10-15 

1.02×10-12 

±3.89×10-14 

20 2.46×10-12 

±5.08×10-14 

1.76×10-12 

±2.06×10-14 

2.17×10-12 

±1.36×10-14 

2.22×10-12 

±1.43×10-14 

1.94×10-12 

±1.69×10-14 

1.14×10-12 

±5.72×10-15 

30 9.00×10-13 

±4.48×10-14 

7.65×10-13 

±4.27×10-14 

6.12×10-13 

±2.51×10-14 

8.72×10-13 

±2.75×10-14 

7.85×10-13 

±4.45×10-14 

8.89×10-13 

±1.58×10-14 

40 1.71×10-12 

±4.98×10-14 

8.16×10-13 

±6.22×10-14 

7.28×10-13 

±9.57×10-15 

1.28×10-12 

±2.41×10-14 

8.50×10-13 

±4.80×10-14 

6.09×10-13 

±5.05×10-14 

50 6.98×10-13 

±5.97×10-14 

4.48×10-13 

±1.73×10-14 

1.56×10-12 

±1.01×10-14 

1.60×10-12 

±2.30×10-14 

1.82×10-12 

±1.16×10-14 

7.87×10-13 

±2.43×10-14 
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D-2: MPL-coated GDL with Vulcan black loading for gas permeability for each of 

6 tested samples with various PTFE loadings in the MPLs. 

 

 

For 0.5 mg Vulcan loading 

Wt.%

PTFE 

1 2 3 4 5 6 

0 1.65×10-11 

±7.20×10-13 

1.46×10-11 

±2.63×10-13 

1.78×10-11 

±6.83×10-13 

2.22×10-11 

±6.27×10-13 

2.02×10-11 

±4.45×10-13 

1.97×10-11 

±9.27×10-13 

10 1.52×10-11 

±3.26×10-13 

1.53×10-11 

±5.57×10-13 

1.42×10-11 

±3.99×10-13 

1.77×10-11 

±3.25×10-13 

1.31×10-11 

±6.11×10-13 

1.27×10-11 

±4.62×10-13 

20 1.64×10-11 

±2.66×10-13 

1.71×10-11 

±1.41×10-12 

1.69×10-11 

±1.42×10-12 

1.97×10-11 

±2.10×10-12 

1.69×10-11 

±1.44×10-12 

1.20×10-11 

±5.45×10-13 

30 1.40×10-11 

±4.17×10-13 

1.67×10-11 

±6.25×10-13 

1.42×10-11 

±3.31×10-13 

1.93×10-11 

±1.01×10-12 

1.92×10-11 

±3.78×10-13 

1.62×10-11 

±2.09×10-12 

40 1.18×10-11 

±4.28×10-13 

9.37×10-12 

±3.58×10-13 

9.94×10-12 

±5.54×10-13 

1.10×10-11 

±3.14×10-13 

9.05×10-12 

±5.79×10-13 

1.02×10-11 

±1.92×10-13 

50 1.46×10-11 

±8.20×10-13 

2.40×10-11 

±8.20×10-12 

2.12×10-11 

±5.33×10-13 

1.51×10-11 

±3.57×10-13 

2.09×10-11 

±1.73×10-12 

1.61×10-11 

±1.73×10-12 
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For 1.0 mg Vulcan loading 

Wt.%

PTFE 

1 2 3 4 5 6 

0 1.22×10-11 

±3.73×10-13 

7.38×10-12 

±2.89×10-13 

1.05×10-11 

±2.11×10-13 

1.42×10-11 

±5.24×10-13 

1.28×10-11 

±5.11×10-13 

1.42×10-11 

±7.81×10-13 

10 5.41×10-12 

±1.47×10-13 

9.13×10-12 

±2.65×10-13 

4.88×10-12 

±4.18×10-13 

8.95×10-12 

±4.18×10-13 

5.85×10-12 

±1.29×10-13 

7.02×10-12 

±2.74×10-13 

20 1.11×10-11 

±5.00×10-13 

9.69×10-12 

±4.16×10-13 

5.95×10-12 

±1.00×10-13 

8.23×10-12 

±2.70×10-13 

6.18×10-12 

±1.81×10-13 

8.45×10-12 

±8.45×10-13 

30 6.75×10-12 

±2.04×10-13 

6.40×10-12 

±1.72×10-13 

9.10×10-12 

±5.3×10-13 

7.93×10-12 

±2.95×10-13 

9.20×10-12 

±3.97×10-13 

7.74×10-12 

±2.92×10-13 

40 1.07×10-11 

±6.78×10-13 

6.93×10-12 

±2.43×10-13 

8.72×10-12 

±4.71×10-13 

7.33×10-12 

±4.20×10-13 

7.59×10-12 

±3.72×10-13 

7.18×10-12 

±2.75×10-13 

50 8.07×10-12 

±2.44×10-13 

1.03×10-11 

±4.98×10-13 

1.43×10-11 

±4.62×10-13 

1.12×10-11 

±6.54×10-13 

9.42×10-12 

±4.37×10-13 

1.19×10-11 

±7.95×10-13 

 

For 1.5 mg Vulcan loading 

Wt.%

PTFE 

1 2 3 4 5 6 

0 3.47×10-12 

±5.94×10-14 

3.04×10-12 

±6.89×10-14 

4.70×10-12 

±1.18×10-13 

4.77×10-12 

±5.29×10-14 

3.58×10-12 

±7.02×10-14 

3.31×10-12 

±7.39×10-14 

10 5.44×10-12 

±4.86×10-14 

5.09×10-12 

±4.87×10-14 

6.30×10-12 

±7.02×10-14 

4.49×10-12 

±7.51×10-14 

5.85×10-12 

±6.55×10-14 

2.79×10-12 

±5.25×10-14 

20 2.18×10-12 

±3.28×10-14 

1.28×10-12 

±1.22×10-14 

2.26×10-12 

±3.62×10-14 

1.88×10-12 

±1.09×10-14 

3.27×10-12 

±6.61×10-14 

1.39×10-12 

±2.06×10-14 

30 3.54×10-12 

±9.27×10-14 

4.39×10-12 

±6.49×10-14 

4.89×10-12 

±1.25×10-13 

4.89×10-12 

±4.74×10-14 

7.86×10-12 

±2.61×10-13 

6.80×10-12 

±2.44×10-13 

40 6.22×10-12 

±9.45×10-14 

5.52×10-12 

±1.27×10-13 

7.88×10-12 

±2.24×10-13 

6.15×10-12 

±1.60×10-13 

5.68×10-12 

±1.87×10-13 

3.46×10-12 

±6.92×10-14 

50 4.93×10-12 

±1.52×10-13 

4.34×10-12 

±3.45×10-14 

4.48×10-12 

±1.10×10-13 

6.60×10-12 

±1.30×10-13 

8.07×10-12 

±2.87×10-13 

6.89×10-12 

±3.45×10-13 
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For 2.0 mg Vulcan loading 

Wt.%

PTFE 

1 2 3 4 5 6 

0 4.85×10-13 

±6.03×10-14 

6.88×10-13 

±1.05×10-14 

4.57×10-13 

±4.57×10-14 

1.30×10-12 

±1.84×10-14 

1.22×10-12 

±4.68×10-14 

4.10×10-13 

±2.26×10-14 

10 4.62×10-13 

±6.22×10-14 

4.12×10-13 

±5.78×10-14 

3.81×10-13 

±1.02×10-14 

4.39×10-13 

±2.20×10-14 

4.54×10-13 

±1.04×10-13 

3.86×10-13 

±2.11×10-14 

20 2.58×10-12 

±1.76×10-14 

2.49×10-12 

±4.58×10-14 

4.47×10-12 

±3.53×10-14 

4.26×10-12 

±5.58×10-14 

4.50×10-12 

±4.83×10-14 

5.28×10-12 

±8.00×10-14 

30 1.46×10-12 

±1.25×10-14 

7.52×10-13 

±9.95×10-15 

8.11×10-13 

±1.86×10-14 

1.55×10-12 

±1.45×10-14 

7.52×10-13 

±9.95×10-15 

7.61×10-13 

±1.58×10-14 

40 2.26×10-12 

±4.26×10-14 

2.26×10-12 

±2.19×10-14 

4.08×10-13 

±4.28×10-14 

3.80×10-12 

±3.90×10-13 

2.33×10-12 

±2.96×10-14 

3.69×10-12 

±4.08×10-14 

50 1.25×10-12 

±2.23×10-14 

6.32×10-12 

±1.74×10-14 

4.08×10-13 

±2.43×10-14 

1.63×10-12 

±2.43×10-14 

2.55×10-12 

±2.43×10-14 

1.67×10-12 

±2.13×10-14 

For 2.5 mg Vulcan loading 

Wt.%

PTFE 

1 2 3 4 5 6 

0 2.05×10-12 

±2.40×10-14 

2.14×10-12 

±2.31×10-14 

1.95×10-12 

±2.50×10-14 

2.18×10-12 

±1.38×10-14 

1.72×10-12 

±3.22×10-14 

1.56×10-12 

±2.23×10-14 

10 1.45×10-13 

±1.90×10-14 

8.55×10-13 

±1.31×10-14 

4.84×10-13 

±1.12×10-14 

7.44×10-13 

±2.89×10-14 

1.33×10-12 

±2.99×10-14 

1.60×10-12 

±1.71×10-14 

20 8.36×10-13 

±1.11×10-14 

4.77×10-13 

±1.11×10-14 

6.60×10-13 

±4.01×10-15 

3.55×10-13 

±1.82×10-14 

3.96×10-13 

±1.82×10-14 

4.88×10-13 

±5.84×10-15 

30 2.11×10-12 

±4.84×10-14 

2.00×10-12 

±2.64×10-14 

8.98×10-13 

±2.10×10-14 

2.34×10-12 

±4.35×10-14 

9.21×10-13 

±2.97×10-14 

8.44×10-13 

±4.89×10-14 

40 2.45×10-12 

±6.39×10-14 

3.59×10-12 

±1.27×10-13 

3.98×10-12 

±6.13×10-14 

1.11×10-12 

±1.82×10-14 

2.41×10-12 

±3.29×10-14 

5.06×10-13 

±2.17×10-14 

50 1.60×10-12 

±2.88×10-14 

6.25×10-13 

±1.28×10-14 

1.13×10-12 

±1.13×10-14 

5.05×10-12 

±1.42×10-13 

3.07×10-12 

±3.48×10-14 

2.45×10-12 

±2.45×10-14 

 


