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Abstract

As there is a rapid development of the information society, large
amounts of multimedia data are generated, which are shared and
transferred on various electronic devices and the Internet every minute.
Hence, building intelligent systems capable of associating these vi-
sual data at diverse locations and different times is absolutely es-
sential and will significantly facilitate understanding and identifying
where an object came from and where it is going. Thus, the esti-
mated traces of motions or changes increasingly make it feasible to
implement advanced algorithms to real-world applications, including
human-computer interaction, robotic navigation, security in surveil-
lance, biological characteristics association and civil structure vibra-
tion detection.

However, due to the inherent challenges, such as ambiguity, hetero-
geneity, noisy data, large-scale property and unknown variations, vi-
sual data association is currently far from being established. There-
fore, this thesis focuses on the studies of associating visual data at
diverse locations and different times for the tasks of tracking, re-
identification and retrieval. More specifically, three situations includ-
ing single camera, across multiple cameras and across multiple modal-
ities have been investigated and four algorithms have been developed
at different levels.

Chapter 3 The first algorithm is to explore an ensemble system for
robust object tracking, primarily considering the independence of clas-
sifier members. An empirical analysis is firstly given to show that ob-
ject tracking is a non-i.i.d. sampling, under-sample and incomplete-
dataset problem. Then, a set of independent classifiers trained se-
quentially on different small datasets is dynamically maintained to
overcome the particular machine learning problem. Thus, for every
challenge, an optimal classifier can be approximated in a subspace
spanned by the selected competitive classifiers.

Chapter 4 The second method is to improve the object tracking by
exploiting a winner-take-all strategy to select the most suitable track-
ers. This topic naturally extends the concept of ensemble in the first



topic to a more general idea: a multi-expert system, in which members
come from different function spaces. Thus, the diversity of the sys-
tem is more likely to be amplified. Based on a large public dataset,
a prediction model of performance for different trackers on various
challenges can be obtained off-line. Then, the learned structural re-
gression model can be directly used to efficiently select the winner
tracker online.

Chapter 5 The third one is to learn cross-view identities for fast
person re-identification, in a cross-camera setting, which significantly
differs from the single-view object tracking in the first two topics.
Two sets of discriminative hash functions for two different views are
learned by simultaneously minimising their distance in the Hamming
space, and maximising the cross-covariance and margin. Thus, similar
binary codes can be found for images of the same person captured at
different views by embedding the images into the Hamming space.

Chapter 6 The fourth model is to develop a novel Hetero-manifold
regularisation framework for efficient cross-modal retrieval. Com-
pared with the first two settings, this is a more general and complex
topic, in which the samples can be relaxed to the images captured in
the very far distance or very long time, even to text, voice and other
formats. Taking advantage of the hetero-manifold, the similarity be-
tween each pair of heterogeneous data could be naturally measured
by three order random walks on this hetero-manifold.

It is concluded that, by fully exploiting the algorithms for solving the
problems in the three situations, an integrated trace for an object
moving anywhere can be definitely discovered.
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Chapter 1

Introduction

As there is a rapid development of diverse informational platforms, such as the
Internet and surveillance systems and electronic devices, such as the smartphone
and intelligent devices, enormous amounts of visual data are generated, shared
and transferred. These data are huge assets and beneficial to improve the quality
of our daily life. To that end, building intelligent systems capable of associating
these visual data at diverse locations and different times is absolutely essential
and will significantly facilitate the understanding of the behaviours and principals
behind the data. Simply speaking, this thesis will fully identify where an object
came from and where it is going.

However, due to the inherent challenges, such as ambiguity, heterogeneity,
noisy data, large-scale property and unknown variations, the intrinsic structures
within the multimedia data and relationships between them have not been fully
discovered up to now. To address these difficulties, from the perspective of infor-
mation sources, this thesis will comprehensively investigate three problems: single
camera object tracking, cross-camera re-identification and cross-modal retrieval.
By fully exploring the algorithms for the three situations, an integrated trace of
a moving object anywhere can be definitely discovered, see Fig. 1.1. Thus, the
estimated traces of motions or changes increasingly make it feasible to imple-
ment advanced algorithms to real-world applications, including human-computer
interaction, robotic navigation, security in surveillance, biological characteristics
association and civil structure vibration detection.

1.1 Visual Data Association

Data association is a fundamental tool for the research of natural science. In fact,
since humans started to record data to represent natural things and phenomena in
the real world, data association has become the significant component of human

1



Figure 1.1: The general cases of visual data association studied in this thesis.
Considering different types of information sources, these cases can be classified
into three levels and several related tasks can be realised. Firstly, motions in
a view of a moving ( 3©) or a stationary camera ( 1©, 2©, 4©) can be detected.
Secondly, if one subject first goes though the view of camera 2© and then goes
thought the view of camera 3©, the movement between the two cameras can also
be estimated. Finally, the activities in a real world ( 1©, 2©, 3©, 4©) could be
connected to some contents or activities on Internet or some other types of data
( 5©).

living, the development of human intelligence and environmental exploitation, etc.
The principal tasks of data association are to find the relationships, connect the
traces, and deduce the semantic concepts between the data collected at diverse
locations and different times. Generally, the most popular forms of data used
by humans to describe the diversity of the world include signs, texts, signals,
images, voice and video, which are generated by various sensors. On the one hand,
according to the research conducted by the 3M corporation1, 90% of information
transmitted to the brain is visual. On the other hand, due to the advancement
of the Internet and the availability of many imaging sensors, a huge amount of
multimedia data are being generated every day in the form of images or video.

1http://www.3m.co.uk/
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Thus, we can conclude that visual contents are the most important cues for the
understanding and reasoning of humans in the real world. Therefore, in this
thesis, we will focus on the visual data association.

We are experiencing an era of visual information explosion where the contents
of visual data play a part in daily life everywhere. Firstly, according to the report
from Worldwide Quarterly Mobile Phone Tracker in the International Data Cor-
poration (IDC)1, a total of 334.9 million smartphones were shipped worldwide in
the first quarter of 2016 alone. Nowadays, a digital image sensor is a necessary
configuration for almost all users and it is still a very important factor to evaluate
a smartphone. Using these devices, hundreds of thousands of images and videos
are generated, uploaded and shared by the users from all over the world. Sec-
ondly, from the research report released by IHS technology2, 245 million worth of
video surveillance cameras were installed globally in 2014 alone. These cameras,
which are placed in public spaces ranging from transport infrastructures, shop-
ping centres, and sport arenas to residential streets, are consistently producing
huge numbers of videos. Moreover, for the Internet, the DMR3 statistics report
demonstrates that the multimedia data are the very important contents of daily
life in modern society. As reported in April 2014, 300 hours of new videos were
uploaded to YouTube every minute and 6 billion hours of videos were watched
per month on YouTube. Up to July 2015, about 10 billion images were shared
on Flickr, to name just two.

As a result, we can see that these large numbers of users mean that visual
information is now a very important part of daily life and it is also a huge asset.

1.1.1 Potential Applications

By using the visual data, we have opportunities to discover the intrinsic struc-
tures, bridge the gap and associate the objects in different environments and plat-
forms, then to create exciting and interactive applications. In fact, in general,
methods of visual data association, including tracking, identifying and retrieval,
have many potential applications. In this thesis, several examples of promising
applications will be briefly introduced in the following, from the perspective of
the three levels of research.

Vehicle and robotic navigation: The visual object tracking based intelli-
gent system can be developed to automatically navigate and control the vehicles
and robotics [4]. By utilising the extracted trace of targets around the automatic
machines, the visual system can help the drivers of vehicles or robotics plan an
effective path to pass through every area and avoid potential threats of collision.

1http://www.idc.com/
2https://technology.ihs.com
3http://expandedramblings.com/
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Moreover, the intelligence visual system can also provide assistance to human
drivers by alerting of the potential collisions and dangers.

Human-computer interaction: The gestures and motion of the human
body can be exploited as the input signals in computers, mobiles or other in-
telligent devices for natural communicating between humans and equipment [5].
Due to the recent prevalence of low-cost Kinect, recently, visual object track-
ing algorithms have attracted many attentions from researchers from the Human
Computer Interaction (HCI) community. Various methods have been proposed
for tracking the poses or gestures of the human body or its parts, including the
eye [6], head [7] and hand [8, 9].

Security in surveillance: Closed Circuit TeleVision (CCTV) cameras are
common in commercial, industrial, and residential environments [10]. The fun-
damental task of visual surveillance is to track and identify the object, which has
appeared in the view of a single camera or across multiple cameras [11]. Apart
from the physical space, very recently, the association between images captured
in surveillance and activities (texts, voices and images) in virtual space on the
Internet, termed as cross-modal retrieval [12], has attracted much attention from
researchers in both the computer vision and machine learning communities. By
associating the images across cameras, or other types of contents on the Inter-
net, the traces and activities of a suspect can be fully tracked and accurately
identified. Moreover, some potential security threats can be found before taking
action.

Biological characteristics association: Age estimation [13, 14] and kin-
ship verification [15] using visual features in images are two general biological
characteristic related topics in the computer vision community. Starting from
these tasks, two more challenging but interesting applications, which will be dis-
cussed in the Chapter 6, can be implemented by associating the biological char-
acteristics. The first one is cross-age face image retrieval, which can be used to
search for an image of a person of a certain age in a large-scale dataset. The
second one is to discover kinship links in which, using an image of a person, one
can search the images of the kinship group of that person. The two tasks, which
need to find age or heredity invariant features, could be very interesting and used
in social platforms or websites.

Human-induced vibration detection: In addition to these popular appli-
cations of visual data associations including robotics, HCI, surveillance and biol-
ogy, recently some researchers [16] have adopted a vision-based motion tracking
method to detect the human-induced vibration of a civil structure. An example
of experimental setting is given in Fig. 1.2. Compared to marker based systems
and inertial acceleration sensors, vision motion tracking methods have the fol-
lowing advantages: 1) it is possible to measure people in outdoor environments;
2) the number of tracking individuals is not limited; 3) people are not aware of
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Figure 1.2: Vision based human-induced vibration detection. Left: experimental
setting; Right: the detected signals of three subjects.

being recorded; 4) it is a cheap, remote and long-term monitoring system.
Visual data association has extensive applications, which are not only limited

to the above examples but also in the experimental investigation of physics and
chemistry, cell tracking in biomedicine and heavenly body motion tracking in as-
tronomy. By associating the visual features, the relationship between samples,
or the changes over time and locations, can be discovered and identified. There-
fore, visual data association plays an important role in the social development,
economy and research of science.

1.1.2 Definition of Problems

Basically, the general problems in computer vision include: 1) recognising what
the object is and 2) determining where it is going. In recent years, for object
detection and recognition, remarkable progress has been made by using the deep
neural networks related algorithms. However, determining the traces or associat-
ing the samples at diverse locations and different times is still a very difficult task
and far more than being established, because of the inherently challenging factors.
Generally, these visual data are generated by a single camera, multiple cameras
or shared in other platforms. From the perspective of data sources, the tasks
or problems to associate samples can be divided into three parts: single-camera
object tracking, cross-camera person re-identification and cross-modal searching.
An overview of the main studies and the latent structure of the research carried
out in this thesis are given in Fig. 1.3. To put it simply, the basic problem to be
considered in this thesis is to determine where the object is going by using visual
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Figure 1.3: An overview of the main studies and the latent structure of the
researches carried out in this thesis.

data association, no matter whether they are in a single view, across multiple
cameras or active on other platforms.

Single-camera object tracking. The aim of object tracking is to
detect a moving predefined target and associate its locations in the image space
across frames.

• From the perspective of machine learning, what is the essential problem
in object tracking? In general, in most cases, the target would be merely
labelled by experts or detected by other classification methods in the first
frame. Due to limited knowledge of a predefined target, the numbers of
negative and positive samples are not balanced. In addition, the more
important factor is that following changes of the environment around the
target and the target itself are unpredictable when the classifiers are trained
at the first frame.

• How can we balance the efficiency and robustness to overcome the “drift”
problem for object tracking? Normally, to address the complicated chal-
lenges, complex algorithms will achieve better results but be more compu-
tationally expensive. In the real-world applications, most systems require
less computation and real-time properties to reduce cost.
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• How can we integrate the existing methods processing diverse properties
to improve both the performance and efficiency? A large number of object
tracking methods are proposed to consider diverse aspects of problems. It
is very difficult to say which one is the best or which one can track targets
in any conditions. However, they are all valuable and it is necessary to
integrate them with a suitable strategy.

Cross-camera person re-identification. Person re-identification
(Re-ID) has been defined as the recognition of an individual across non-overlapping
camera views at diverse locations and different times. Solving such inter-camera
people association problems involves tracking individuals across disjointed mul-
tiple camera views and enables consistent labelling of a person from diverse dis-
connected scenes.

• Similarity computing is quite important for data association and sample pair
verification. Then, how is it possible to compute the similarity between the
images captured by disjointed multiple cameras to identify people? Due to
the difference of views and locations, the appearance of people changes a
lot, leading to difficulties to capture the view-invariant features.

• How can we efficiently find the exact matches across views? A large number
of surveillance cameras have been installed in public spaces where there may
be tens of thousands of people assembled, even in a day. Thus, hundreds of
thousands of images are generated and, therefore, it is very computationally
expensive to search for an image in such a large-scale dataset. However, in
real-world applications, real-time performance is generally required.

Cross-modal searching. Given a sample, the algorithm of cross-modal
searching is used to search the most matched samples captured in other modalities
or in other information sources. The task is normally achieved by learning cross-
modal similarity. With the help of the learned similarity, it will enable us to
realise image-document retrieval, heterogeneous face recognition (i.e., sketches
and photos), kinship verification and cross-age face retrieval, etc.

• Compared with classical retrieval methods, in most cases of cross-modal
searching, the samples are not in the same feature space. Then, how is it
possible to compute the similarity between samples with different dimen-
sions and diverse physical meanings? The key component is to overcome
the heterogeneity between samples, then to learn the cross-modal similarity
between them.

• How is it possible to connect and integrate all the information from data
in different modalities to describe the diversity of the world? Although the
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Figure 1.4: Two application examples of signal camera object tracking. Left:
Automatically tracking and imaging by unmanned air vehicle; Right: non-touched
human-computer interaction by hand gesture tracking.

data from different modalities have diverse forms and meanings, it is all
connected in some relationships and reflects certain aspects of things and
laws of nature.

• How is it possible to efficiently search the most matched samples in a very
large dataset? In the cross-modal setting, due to the rapid development
of the Internet and hardware, enormous volumes of multimedia data are
generated. Thus, algorithmic efficiency is very prominent for real-world
applications.

1.2 Challenges, Hypotheses, and Solutions

However, to date, visual data association is still very challenging. This section will
further detail the discussions at three levels for each task: the inherent challenges,
the hypothesis behind the proposed methods and the general framework to solve
the problems. Two application examples are shown in Fig. 1.41.

1.2.1 Single Camera Object Tracking

From the perspective of development history, the research of object tracking un-
dergoes four stages when we consider the different challenges and hypotheses. In
the first stage, most methods generally supposed that the target moves smoothly
and some of them also assumed that the cameras keep stationary. Thus, the
image patch matching for two consecutive frames, such as Lucas-Kanade tracker

1The left image is from Dji: www.dji.com
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[17] can be directly used. After that, some researchers thought object tracking as
a dynamic system [18] to incorporate historical information by constructing the
posterior probability density function. Then, about ten years ago, classification
methods started to be used in object tracking [19, 20], in which the problem was
considered as a detection and the classifiers would be updated to be adaptive to
the changes. Recently, due to the limitations of the single model, multi-expert
systems have been used to improve the diversity of trackers. The methods de-
veloped from a simple model to complex algorithm and the hypotheses are more
relaxed and more challenges have been addressed.

Challenges: As in other areas in computer vision, a variety of challenges
affect the performance of a tracking algorithm [21]. The general factors include:
illumination, deformation, scale variation, rotation, occlusion, motion blur, clut-
ters, disappearance, low resolution, fast motion and moving camera. Moreover,
some algorithms have considered to solve more complex difficulties including spec-
ularity, transparency, long duration, low contrast and confusion etc. [3]. More
details about the challenges are given in Table 1.1.

Table 1.1: The general challenges in object tracking
Illumination the illumination in the target region is significantly changed
Deformation non-rigid object deformation
Scale variation the bounding box of the target is significantly changed
Rotation the target rotate in or out of the image plane
Occlusion the target is partially occluded
Motion blur the target region is blurred due to the motion of target or camera
Clutters the background has a similar colour or texture as the target
Disappearance the target are fully occluded or move out of view
Low resolution the number of pixels of the target is less than a certain small value
Fast motion the motion of the target is larger than a certain large value
Moving camera hand-held cameras
Specularity specular highlights on the surface of the target
Transparency being clear and transparent of the surface of the target
Low contrast the variance of all pixels is less than a small value
Confusion some similar objects are in the same view

Beyond these challenges, the following more complex difficulties are also con-
sidered in this thesis.

• In most cases, the varied challenges detailed in Table 1.1 may occur simul-
taneously. For example, when a running car is going across a curve, it is
possible that the car will make a rotation in a certain angle in the image
space and also be occluded by other cars or trees. Thus, it results in more
difficulties in designing features and models to overcome the two challenges
simultaneously.
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• The total number of frames, which need to be tracked, is larger than a
very large value. In this case, various challenges occur in the same video,
thus, the tracker maybe updated by wrongly labelled samples. At present,
normally, most methods are explored to solve the problems in short videos
(only hundreds of frames) and seldom can be robust in a long duration
tracking (more than 10 minutes).

• The proposed algorithms could be run in real time on a low-cost machine.
In addition to performance, efficiency is also a significant factor in real-
world applications, but most existing methods focus on performance only.
In general, improving the performance will make more computation whist
implementing a real-time system tries to reduce the computational expense
as much as possible. Thus, it is difficult to balance the efficiency and per-
formance on a low-cost platform.

Hypotheses: In this study, the hypotheses, which were used to base the
proposed solutions for object tracking, include:

• Given a dataset with ground truth locations, the empirical analysis about
the changes of the sample distribution can be discovered. Moreover, the
empirical investigations can be used to reveal the nature of object tracking
then to guide the design of more powerful trackers.

• By training on the different groups of samples, the classifiers could be rela-
tively independent with each other and then be utilised to deal with different
difficulties.

• It is assumed that, for a particular application, a set of trackers owning
diverse properties can be selected from existing methods. Furthermore, a
relationship between the performance of these selected trackers and motions
(challenges) of a target can be modelled off-line on a large labelled dataset.

Solutions: To address the above complex problems, two models at different
levels were proposed in this thesis, with considering the diversity of the models
in different function spaces.

On the one hand, by introducing a method Learn++ into the object tracking,
a set of Bayesian classifiers in a same function space was considered. In this
model, the “concept drift” problems in object tracking was firstly empirically
investigated. Then, according to the discoveries, a Learn++ (LPP) tracker was
proposed to dynamically sample competitive classifiers for robust and long-term
object tracking. To increase the efficiency and stability for the model, a compet-
itive strategy was adopted to separately solve various “concept drift” challenges,
which appeared in the same video sequence. Learn++ is a new group of machine
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learning methods used to learn additional information from new data, without
accessing the original samples and it can be used for recognition tasks in very
complex situations where new classes would join in. Moreover, Learn++ can
address a set of databases in which the samples are generated by different distri-
butions. To increase the diversity of the model, Learn++ keeps all the classifiers
as long as they can achieve good performance on a subset. In Learn++, the
weights of samples are updated using the ensemble performance. The subsets of
basic classifiers are independent of each other and can be specified to solve certain
different sub-problems, which occur in a non-stationary environment. Thus, for
every challenge, an optimal classifier can be approximated in a subspace spanned
by the selected competitive classifiers which can address the current problem
according to the distribution of the samples and recent performance. As a re-
sult, the LPP tracker can efficiently address the various “concept drift” problems,
which occur together in a long video sequence. Due to the use of sparse weights
for the competitive classifiers, the LPP tracker can keep the balance between the
efficiency and the performance.

On the other hand, to further improve the diversity of a system, a winner-
take-all strategy was exploited to select a winner tracker, which is the most
suitable and efficient to tackle the current challenge, according to the motion
features extracted from the current environment and an efficiency factor. To fast
extract features in a tracking environment, a dense trajectories-based motion fea-
ture was designed to describe the characteristics and challenges of the movement
of an object and its surroundings. Based on a large public dataset, a prediction
model of performance for different trackers on various challenges can be obtained
off-line. Then, the learned structural regression model can be directly used to
efficiently select the winner tracker online. To increase the flexibility of all mem-
bers, the tracked results of the winner will be used to update other trackers.
WTA is useful for two reasons: 1) by eliminating the non-maximal models, it re-
duces computation; 2) it provides additional robustness. The recently proposed
tracking methods with multiple components generally achieve better results than
other single models but most of them are far from real-time. In fact, the most
computationally expensive part of every tracker is the procedure for image patch
representation and state searching. However, to fuse the results from different
components, all the components of most methods have to be run. In this thesis,
the WTA strategy was exploited to select a winner tracker without running all
members. Thus, not only will the performance be improved by incorporating
multiple trackers, but also the average efficiency will be boosted.
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Figure 1.5: A schematic diagram to show that the general purpose of Re-ID is to
detect the trace of a person for security or missing people. In this environment,
a person walked though the view of camera 1 and then went into the view of
camera 2. Using the person re-identification, the system can automatically match
the images of the same person in the views of camera 1 and 2 efficiently and it
will be at the same time, because we need not investigate the view of camera 3.

1.2.2 Cross-camera Person Re-identification

Cross-camera person re-identification (Re-ID) is a fundamental solution for au-
tomated video surveillance [22]. It has been defined as the recognition of an
individual across non-overlapping camera views at diverse locations and different
times. Solving such inter-camera people association problems involves tracking
individuals across disjointed multiple camera views and it enables consistent la-
belling of a person from diverse disconnected scenes. Therefore, an effective
Re-ID system is able to accelerate understanding of crimes, advance conventional
fingerprints/DNA and contribute to all levels of policing and forensic science ap-
plications. A schematic diagram to show the general purpose is given in Fig.
1.5.

Challenges: Re-ID is a difficult vision problem because of the diverse
visual appearance variations, visual ambiguity and spatial-temporal uncertainty
and it possesses very challenging machine learning issues because of the high
intra-class and low inter-class variations and limited/imbalanced image samples.
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• Cross-camera variation: As there is a large difference in the camera views,
which are installed in different locations, the appearances of same person
can change significantly while different persons can look alike across camera
views. Thus, this creates a typical problem of inter- and intra-class variation
in the machine learning area.

• Long-term re-identification: At present, most person Re-ID methods are
only limited to deal with the problems in a setting where the two cameras
are not far from each other. However, re-identification in open environments
can potentially scale to arbitrary levels, covering huge spatial areas spanning
not just different buildings, but also different cities, or countries. In these
cases, the greater change will be made due to some people wearing diverse
clothes or a variety of carried objects will be taken by some persons in
different camera views.

• Limited resources: To discover the relationship between any two views with
a huge time and space separation, a large-scale dataset, which offers suffi-
cient structural information and captures variability, is definitely required.
However, in general, only one image or several images for each person can
be offered in most cases. This then formulates a one-shot or multi-shot
learning which is more complex than classical recognition tasks. Moreover,
collecting sufficient labelled data from every camera to build a supervised
model would be prohibitively expensive as well.

• Scalability: In general, the efficiency of matching mainly depends on two
aspects: (1) the number of samples stored in the gallery set; (2) the def-
inition of similarity. Considering the rapidly increasing usage of cameras
in surveillance, it is impossible to reduce the number of samples. Recently,
several metric learning methods have been exploited for associating people
across views. However, these existing approaches generally cause a heavy
computational burden when searching in a large dataset.

Hypothesis: To associate the persons at diverse locations and different
times, it is assumed that some invariant features about the appearance and struc-
ture of a human body can be learned to represent individuals. Even if these
meaningful features can be discovered by some heuristic methods or learning al-
gorithms, it is still difficult to directly compute the similarity between the images
captured in different views, because of the problem of ambiguity and uncertainty.
Therefore, the general ways to compare the features suppose that a common fea-
ture space, in which a certain effective metric will be used, could be explored by
some linear or kernel-based methods.

Solutions: In this thesis, to address the above problems, we accomplish
person re-identification by learning a set of hash functions for each view. In
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fact, hashing has been widely used for nearest neighbour search in computer
vision areas, such as image retrieval, object recognition and image matching, but
it has seldom been used in re-identification. Using the hash functions, various
special properties can be preserved in the learned codes, such as locality, variance
and affinity. From the feature learning perspective, CBI learns a discriminative
binary representation for each person. Furthermore, from the metric learning
perspective, a more efficient distance metric in the Hamming space is learned for
matching. Thus, similar binary codes can be found for images of a same person
captured at different views by embedding the images into the Hamming space.
Therefore, person re-identification can be solved by efficiently computing and
ranking the Hamming distances between the images. Moreover, compact binary
codes are extremely economical for large-scale data storage.

Specifically, in real-world applications, once an image of one person in one
view is obtained, the projections are used to learn the on-line identity (ID) of
that person. In fact, it is likely that the images of that person in other views
somewhere else have also been captured and the ID has been obtained off-line.
Then, the on-line ID can be used to search the corresponding person in another
view by computing the Hamming distance between two sets of bits (IDs).

1.2.3 Cross-modal Retrieval

The nearest neighbour search across heterogeneous data has attracted consider-
able attention in recent years, due to the explosion of large-scale multimedia data
in different modalities on the Internet and various devices, but it remains a very
challenging problem. In a cross-media retrieval system, the query examples and
retrieval results need not be of the same media type. For example, by submitting
either a text or an image as a query, related audios can be searched. A sample
to describe the kind of animal elephants using text, image and voice is given in
Fig. 1.6. To speed up the nearest neighbour search, cross-modal hashing, which
incorporates hashing techniques into cross-modal retrieval, has recently attracted
much attention.

Challenges Cross-modal hashing has attracted considerable attention in
recent years. However, despite the progress made by existing methods, it remains
a very challenging task because of the integration complexity and heterogeneity
of the multi-modal data.

• Semantic gap: In computer vision, low-level features, no matter whether
they were designed by handcraft or learned automatically, are generally
insufficient to directly represent the semantic meaning of data, such as
labels, identities or classes. There is a big difference between these high-
level tasks and computational representations.
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Elephants are large mammals of the family Elephantidae and the order Pro-
boscidea. All elephants have several distinctive features, the most notable of
which is a long trunk or proboscis, used for many purposes, particularly breath-
ing, lifting water and grasping objects. Their incisors grow into tusks, which
can serve as weapons and as tools for moving objects and digging. Elephants’
large ear flaps help to control their body temperature. Their pillar-like legs can
carry their great weight. African elephants have larger ears and concave backs
while Asian elephants have smaller ears and convex or level backs.

Figure 1.6: A sample of multi-modality to describe a kind of animal elephant
using text (first row), image (left in second row) and voice (right in second
row). It should be noticed that the sequential oscillogram is just used to de-
note the real voice of the elephant. The contents of text and image come from
the free encyclopaedia, Wikipedia, and the real voice comes from a website:
www.soundbible.com/.

• Heterogeneity: Compared with other tasks, the heterogeneity is the most
distinctive characteristic in cross-modal searching, because the query sam-
ple and the retried dataset are collected in different conditions and even
using different sensors. No matter what level of representation there is, dif-
ferences between modalities are very obvious so that it is difficult to build
an effective model to both capture the differences and reveal the common
factors between different modalities. For example, computing the similarity
between two representations with different dimensions is very challenging.

• Efficiency: Like other tasks of information retrieval, the efficiency of search-
ing is also a very significant factor in real-world applications. In fact, the
number of samples in cross-modal retrieval is much more than the number of
samples in a uni-modal setting; because more sensors are used, then more
samples are generated. In addition, what is more important is that the
computation of similarities between the samples from different modalities
is more complex.
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Hypothesis: In this study, the principal aim is to connect and integrate
all the information contained in different modalities into a uniform framework.
Then, based on the integrated structure, a set of projections can be learned and
the samples from different modalities can be embedded into a common space.
The hypotheses behind this, which are used to support the solution in this thesis
include:

• High dimensional data tend to lie in the local structure of a low dimensional
manifold. This is a basic assumption for the classical manifold learning in
a uni-modal setting, but it is still useful in cross-modal tasks. Based on
this point, a sub-manifold can be modelled for each modality to capture
the intrinsic structure of intra-manifold.

• The sub-manifolds in different modalities could be connected by some su-
pervised information, or latent variables, which can be defined in diverse
forms, considering the specificity of the problems. This is a basic assump-
tion to support the connectivity and integrity of hetero-manifold in this
work.

• The information could be propagated on an integrated framework in the
cross-modal setting. Only when the information can be diffused in a certain
pattern, can a global view be built based on these sub-manifolds so that it
enables to cross-modal retrieval.

Solutions: In this thesis, by integrating the supervision information and
the local structure of heterogeneous data, a novel method, termed hetero-manifold
regularisation (HMR), is proposed to learn the hash functions for efficient cross-
modal searching. Three significant advantages are made in the proposed frame-
work. Firstly, a hetero-manifold well describes the local information by represent-
ing homogeneous data on the sub-manifolds. The data in different modalities are
represented by different sub-manifolds, which model the relationship well between
the homogeneous data. Secondly, the hetero-manifold emphasises the global in-
formation of multi-modal data as well, by modelling the information propagation
across modalities with three-order random walks. It is clear that any pair of
points could be connected via two steps on homogeneous sub-manifolds and one
step crossing two different sub-manifolds. Thus, the samples across modalities can
be compared by integrating the information from all related homogeneous sub-
manifolds. Lastly, the hetero-manifold is flexible and can be extended to model
any number of modalities. As far as we know, existing cross-modal searching
algorithms are limited to only two modalities.

Taking advantage of the hetero-manifold, the similarity between each pair of
heterogeneous data could be naturally measured by three order random walks
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on this hetero-manifold. Furthermore, a novel cumulative distance inequality,
defined on the hetero-manifold, is introduced to avoid the computational difficulty
induced by the discreteness of hash codes. By using the inequality, cross-modal
hashing is transformed into a problem of hetero-manifold regularized support
vector learning. Therefore, the performance of cross-modal searching can be
significantly improved by seamlessly combining the integrated information of the
hetero-manifold and the generalization of the support vector machine.

1.3 Contributions

The contributions made in this thesis are summarised below:

• Chapter 3: In sampling competitive classifiers for robust object tracking,
we make the following three contributions: (1) Empirical analysis, which
concludes that object tracking is a non-i.i.d. sampling and small dataset
problem, is given to guide the design of the proposed tracker. (2) A new
framework of Learn++ (LPP), particularly for object tracking, is proposed.
Unlike classical Learn++ methods, a competitive subset of classifiers, which
consists of the ones that are more adaptive to the current environment, is
maintained, a constraint (motion) is added to guide the learning and new
samples are only used to update these classifiers trained in similar situa-
tions. (3) As far as we know, the LPP tracker is the first tracking method
that designs an explicit model for each sub-problem (i.e., challenge) and
the models can be automatically altered according to the environment. The
most distinctive merit of the LPP tracker is that, even when a target moves
out of view and then comes back with totally different locations and appear-
ances, the tracker can still lock the target, as long as the appearances ever
appeared in the past. Because of training a relatively large set of classifiers,
the LPP tracker keeps its diversity so as to improve the generalization and
performance, no matter what concept drifts occur. Despite the complexity
of the model, due to the sparsity of the competitive set, the LPP tracker is
still a real-time method.

• Chapter 4: In the winner-take-all (WTA) strategy for improved object
tracking, the main contributions of this work are as follows: 1) As far
as we know, we are the first to build a structural regression model trained
on a large dataset, to fast predict the probabilities of the performance for
existing methods. 2) Both the effectiveness and efficiency of trackers are
integrated into auniform winner-take-all framework. Only one representa-
tive tracker needs to be executed at any time, but the results can reflect the
strengths of all trackers. 3) The proposed WTA framework is tested on a
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large dataset and our evaluation results demonstrate that WTA can hugely
improve the performance, without sacrificing the efficiency.

• Chapter 5: In learning cross-view identities (CBI) for fast person re-identification,
our contributions are three-fold. (1) By learning the compact binary codes,
each person has a similar identity across different views. Due to the ef-
ficiency of binary codes, person re-identification in a huge dataset can be
realised. For the VIPeR [23] dataset, which contains only 316 samples in
the gallery, CBI is at least 2200 times faster than the non-hashing state-
of-the-art methods. However, if there are millions of samples, CBI will be
also millions of times faster. (2) In CBI, variances of learned bits, cross-
covariance and margin of learned hash codes are simultaneously maximised
and an efficient iterative optimisation solution is introduced. (3) Moreover,
in CBI, a theoretical proof is given to guarantee the transfer from Hamming
space to Euclidean space. Unlike most methods, which directly relax the
sign function, such as [24], we consider the theoretical reason behind when
it is safe to relax the sign function.

• Chapter 6: In the Hereto-Manifold Regularisation (HMR) for cross-modal
hashing, the novelties conclude that, firstly, the hetero-manifold is a well-
defined platform to capture both local information of sub-manifolds cor-
responding to homogeneous data and global information of the hetero-
manifold corresponding to multi-modal data. Secondly, the proposed hetero-
manifold support vector hashing, taking advantage of the hetero-manifold
in representing the information of multi-modal data and the support vector
machine in generalisation, can generate more effective hash functions for the
cross-modal search. Finally, comprehensive experimental results show the
effectiveness and efficiency of the proposed hetero-manifold regularisation-
based hashing algorithm to tackle the problems of cross-camera person re-
identification, cross-modal image retrieval and cross-age face retrieval.

1.4 Thesis Outline

The rest of this thesis is organised as follows:
Chapter 2 contains a full literature review of basic learning methods and

the previous works relevant to visual data association. First of all, the basic
knowledge of machine learning, including classification, regression and ranking
are introduced. These methods construct the basis of our solutions for visual
data association, considering different aspects of the essential problems. Then,
the related work about single-camera object tracking, cross-camera person re-
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identification and cross-modal retrieval will be described and analysed sequen-
tially.

Chapter 3 presents a Learn++ (LPP) tracker which used to dynamically
sample competitive classifiers for robust and long-term object tracking. In par-
ticular, an efficient descriptor which can be selected by classifiers is firstly given.
Then, an empirical analysis of “concept drift” problems is used to guide the
design of tracker. Next, the Learn++ based tracker is proposed to overcome
the challenges in the non-stationary environment for object tracking. Finally,
extensive experiments show that LPP tracker yields state-of-the-art performance
under various challenging environmental conditions and, especially, can overcome
several challenges simultaneously.

Chapter 4 describes a winner-take-all (WTA) strategy to select a winner
tracker (considering both accuracy and efficiency) from a set of prevailing methods
to tackle the current challenge, according to features extracted from the present
environment and an efficiency factor. To this end, firstly, a structural regression
model to characterise the trackers is discussed. Then, this chapter introduces how
to select the most suitable tracker, the ways to locate the target and how to update
the trackers. The proposed WTA framework is tested on a large benchmark
dataset and extensive experimental results illustrate that WTA can significantly
improve both the performance and the efficiency.

Chapter 5 proposes a method to learn cross-view binary identities (CBI)
for fast person re-identification. To achieve this, three aspects, including min-
imising the distance in the Hamming space, maximising the cross-covariance and
maximising the margin are considered simultaneously. This chapter gives a the-
oretical proof for when it is safe to transfer the problem in Hamming space to
a problem in Euclidean space and what constraints need to be considered, as
well. Extensive experiments are conducted on two public datasets to show CBI
produces comparable results as state-of-the-art re-identification approaches, but
is at least 2200 times faster than these non-hashing methods.

Chapter 6 provides a novel method termed hetero-manifold regulariza-
tion (HMR) to supervise the learning of hash functions for efficient cross-modal
searching. Hetero-manifold integrates multiple sub-manifolds, defined by homo-
geneous data, with the help of cross-modal supervised information. In this chap-
ter, at first, various definitions of hetero-graphs for different conditions are fully
discussed. Next, a novel cumulative distance inequality, defined on the hetero-
manifold, is introduced. Then, cross-modal hashing is transformed into a problem
of hetero-manifold regularized support vector learning and solved by a sequen-
tial optimisation method. Lastly, comprehensive experiments on four datasets
show the proposed HMR achieves advantageous results over the state-of-the-art
methods in several challenging cross-modal tasks.

Chapter 7 details our conclusion and future work.
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To facilitate the understanding of the contents and structures in a holistic
view for this thesis, an overview of main developments is given in Fig. 1.7.
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An ensemble system for object tracking

Chapter 3

A winner-take-all strategy for object tracking

Chapter 4

Hetero-manifold regularisation for cross-modal retrieval

Chapter 6

Learning cross-view identities for person re-identification

Chapter 5

Chapter 1

Introduction

Chapter 2

Literature review

Chapter 7

Conclusion

A set of Bayesian classifiers in a same function space is

considered. For every challenge, an optimal classifier can be

approximated in a subspace spanned by the selected competitive

classifiers which can address the current problem according to

the distribution of the samples and recent performance.

To further improve the diversity of a system, a winner-take-all

strategy is exploited to select a winner tracker which is most

suitable and efficient to tackle the current challenge, according to

motion features extracted from the current environment and an

efficiency factor.

To address the problems in cross-camera person re-

identification, a set of hash functions for each view is learned to

project all samples captured in different views into a common

Hamming space. Then, person re-identification can be solved by

efficiently computing and ranking the Hamming distances

between the images.

By integrating the supervision information and the local structure

of heterogeneous data, a novel method termed hetero-manifold

regularisation (HMR) is proposed to learn hash functions for

efficient cross-modal search. Thus, the similarity between each

pair of heterogeneous data could be naturally measured by three

order random walks on this hetero-manifold.

i

Figure 1.7: Summarisation and structure of all chapters.
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Chapter 2

Literature Review

This chapter will firstly provide a broad review of basic knowledge and concepts
including classification, regression and ranking, which are used to support our
solutions and discoveries in the following chapters and then introduce extensive
backgrounds of present research in visual data association from the three levels:
signal-camera setting, cross-camera setting and cross-modality setting.

2.1 General Learning Framework

Machine learning primarily focuses on the development of computer programs to
deal with extensive problems with respect to some kinds of tasks and theoretical
research of computational learning in artificial intelligence. The essential element
of learning is to provide computers with the ability to iteratively learn from data
(experience) and make decisions according to their learning and understanding,
without explicitly being programmed. A dataset of observations is given:

X = {x1, x2, · · · , xi, · · · , xN , xi ∈ X }, (2.1)

and the corresponding latent variable:

Y = {y1, y2, · · · , yi, · · · , yN , yi ∈ Y }. (2.2)

The purpose of learning is to build a model from a hypothesis space f ∈ F to
bridge the input x and output y, where the hypothesis space has F = {f |y =
f(x)} and N is the number of samples. In general, the samples x could be the
data captured by any sensor and have diverse structural forms, including vector,
matrix and tensor. For example, an image is denoted by a matrix and captured
by a camera. The output y generally refers to the supervised information, such as
labels, clusters or other high-level semantic variables. The output has a variety
of forms ranging from two values {+1,−1}, numbers and real values to more
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Figure 2.1: The general learning flow for classical tasks including classification,
regression and clustering etc..

complex structures including vectors, matrices and tensors which derive from the
complicated structural output learning. The general flow of learning to detail the
procedure of training and making decisions is shown in Fig. 2.1.

In taxonomy of machine learning, most criteria depend on the output variable
y. Firstly, if considering the presence status of y, most of machine learning meth-
ods can be classified into supervised learning in which all samples are given labels,
semi-supervised learning in which a part of the samples (generally a little portion)
are given labels and rest of the samples are unlabelled, and un-supervised learning
in which all samples are unlabelled. Secondly, if considering the forms of output
y, most of methods can be categorised into classifications in which latent variable
is only from {+1,−1}, clustering in which latent variable denotes the index of
clusters and regression in which latent variable is a real value. Finally, if consid-
ering the functional forms in hypothesis space, most of machine learning methods
can be grouped into linear, non-linear and kernel-based methods. For example,
neural networks in which a non-linear activation function has been adopted are
non-linear methods. In fact, there are some other types of taxonomies, e.g.,
depending on the size of the hypothesis or the searching strategy.

In simple terms, classical machine learning methods seem to be uncorrelated
to the task conducted in this thesis: data association. However, in fact, data
association could be achieved if we consider these classical learning tasks as a
transition procedure. Then, the straightforward strategy is that samples can be
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associated by grouping the latent variable y in a certain way or by defining a
similarity measurement for the latent variable. The next subsection will bridge
the gap between the classical tasks and the task of data association.

2.2 Learning to Data Association

This subsection will introduce what the data association is and how to associate
the samples using leaning strategies. Learning recognition or prediction has a
relatively long history of research and has an explicit definition of what is machine
learning. However, leaning data association has rarely been discussed because it
is more complicated and, in many cases, it is only considered as a straightforward
extension of learning. In fact, data association which, to some extent, includes
the classical learning method is a more general concept in the areas of data mining
and artificial intelligence. Given a dataset of observations:

X = {x1, x2, · · · , xi, · · · , xN , xi ∈ X }, (2.3)

and the corresponding associations:

A = {a1, a2, · · · , aj, · · · , an, aj ∈ A}, (2.4)

where aj = {xj1 , · · · , xjn} ⊆ X and jn is the number of samples in the jth
association, the purpose of data association is to build a model from a hypothesis
space f ∈ F to verify whether all the samples in a new set aj = {xj1, · · · , xjn} ⊆
X belong to a same association (group) with a certain semantic meaning or not?
Thus, simply, the hypothesis space can be defined as:

F = {f : {xj1 , · · · , xjn} ⇒ {+1− 1}} (2.5)

where +1 denotes all the samples in the set, which belong to same group, whilst
−1 denotes that they do not. The final best hypothesis will be the one, which
achieves the best results on the training sets and obtains the highest generalisation
ability for the future set.

To seamlessly connect the learning procedure and data association, the first
important thing is to investigate the difference between the general learning
framework and the above scheme of data association. Generally, there are three
major differences:

• Feature space X : The definition of feature space is very broad and gener-
alised. In the classical learning methods, the representation of samples is
required to be in the same space, have the same dimensions and describe
same physical knowledge. In this thesis, this limitation is extremely relaxed
and the samples could be captured by different sensors, be endowed diverse
physical meanings and collected in different locations or times.
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• Input of hypothesis: The number of input samples is also relaxed as well.
In the classical learning methods, generally, one sample is considered as the
input because these tasks are required to make a decision for the sample
itself. However, the task of associating data is to connect a set of samples
and it allows that any number of samples, which are normally larger than
2, are considered as the input of a system.

• Hypothesis space F : Because the samples are possibly collected by differ-
ent sensors, various hypothesis spaces should be adopted for the samples in
different modalities according to the representation form and physical mean-
ing. For example, a best projection for each modality, which is searched
in different hypothesis spaces, can be determined and then a common new
embedding space for all the samples in different modalities can be obtained.
Thus, data association can be achieved in this learned common space.

TTo drive the learning scheme to the data association, a latent variable y
which is the same as in classical methods, can be defined by supervised informa-
tion, and is introduced into the framework of association in Eq. 2.5. The general
learning flow for data association is shown in Fig. 2.2. Then, we can see that the
latent variable plays a role of intermediary to bridge the input of samples and
output of decisions if these samples belong to same group or not. In addition,
from the above discussions, we can see that the most distinctive characteristics
of data association are the information sources. Thus, we divided our topic into
two levels: the same feature space and multiple information sources.

2.2.1 Associating in a Same Feature Space

The first case of data association is to connect samples in a same feature space.
For example, object tracking is to associate the image patches captured by a same
camera in different times. These patches can be considered as the samples in a
same feature space, no matter what representation methods are finally adopted.
Thus, if a latent variable y can also be introduced, then we have:

{yj1, · · · , yjn} = f({xj1, · · · , xjn}). (2.6)

Therefore, the final association can be determined by considering the results of
the latent variable y, where we have {yj1, · · · , yjn} ⇒ {+1− 1}. That is to say, if
the corresponding values in {yj1, · · · , yjn} are the same as each other, then these
samples can be thought of as in a same association. Due to the fact that all
samples are in the same space, a single hypothesis f can be learned to project all
samples into the domain of the latent variable:

{yj1, · · · , yjn} = {f(xj1), · · · , f(xjn)}. (2.7)
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Figure 2.2: The general learning flow for data association.

However, what is the latent variable in this case? The simplest answer is the
label of samples and then the methods of classification y = f(x) can be formulated
to deal with the problem of data association. Particularly, this means that all the
samples with same labels would be in a same association. In fact, most methods
of tracking-by-detection adopt the strategy of classification to associate targets
moving in the image space in different time. Furthermore, the latent variable y
could de defined using other semantic information including index of clusters and
identity of objects etc.

2.2.2 Associating in Multiple Sources

The second case of data association is to connect the samples captured from
different sensors (modalities) where we have X = {M 1, · · · ,MM} and M is the
number of sensors. For example, in cross-modal searching, some voices can be
searched from a large-scale dataset by submitting either a text or an image as
a query. This application enables us to track a criminal from his/her activities
on the Internet or some social platforms by only using the text descriptions of
a witness at the scene of committing a crime. In the case of multiple sources,
data association can be achieved by calculating the similarities between any pair
of samples in a learned common space Y . In general, the first step is to design a
joint optimisation framework, which is used to learn a projection for each modality
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to embed all the samples into such a common space. The Eq. 2.5 will become:

{yj1, · · · , yjn} = {fk1(xk1
j1
), · · · , fk2(xk2

jn
)}. (2.8)

where we suppose that xk1
j1

∈ M k1 and xk2
jn

∈ M k1. Various strategies, which are
used to integrate and connect all the information from different modalities and the
critical components of models, are to overcome the heterogeneity in the multiple
sources. The second step is to define a similarity or a distance DY (y1, y2) between
samples in the learned common space to associate the samples. Therefore, if
Euclidean distance is used, then we have:

DY (y1, y2)
2 = ||y1 − y2||

2
2 = ||fk1(xk1

1 )− fk2(xk2
2 )||22. (2.9)

In fact, the measurement in the new learned common space is not only limited
to Euclidean distance but also some more complicated measurements with special
advantageous properties can be used in this framework. For example, a Hamming
space can be considered as the learned common space and then the Hamming
distance of binary codes can be used to measure the similarity between any pair
of samples. It will enable us to fast cross-modal data association in a very large-
scale dataset.

2.3 Classical Learning Methods

From the above discussions, we can see that learning data association can be
achieved by using classical machine learning methods, such as classification and
embedding learning, etc. In this section, some basic works, which are related to
the new proposed methods in this thesis, will be deliberately discussed including
ensemble learning, online learning, graph-based embedding and hash function
learning.

2.3.1 Ensemble Learning

Ensemble learning is generally used to fusion the results of individual models
to improve the overall performance, which is superior to those of its constituent
individuals. In the area of machine learning, the first key component of ensemble
learning is to train the individuals by dividing the samples into separated groups
[25], partitioning the feature space [26] or even considering different hypothesis
spaces [27]. The second key component is to integrate the individual models
to reach the final decisions, according to a certain criterion including voting,
weighting or a strategy of winner-take-all. From the two components, we can
see that, in fact, ensemble learning is derived from a classical strategy of divide-
and-conquer. That is to say, the first component is used to divide the problem
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Figure 2.3: Combining classifiers with different decision boundaries to reduce
error and/or model selection. The original figure refers to [28].

while the second one is exploited to conquer it. In Fig. 2.3, there is an example
of ensemble learning to show that the combination of the classifiers provides the
best decision boundary and reduces the overall error more than the individuals.
In addition, the original figure refers to [28].

To put it simply, there are two principal reasons to make the methods of en-
semble learning successful in many applications, such as the Viola-Jones algorithm
for fast face detection [29]. The first theoretical reason is explicitly explained in
Schapire’s work [30] that it is likely to convert a weak learning algorithm into
one that achieves an arbitrarily high accuracy. In this work, through a boosting
procedure, some weak classifiers that perform only slightly better than random
guessing could be combined to a strong classifier in a probably approximately
correct (PAC) [31] sense, which is correct on all but an arbitrarily small fraction
of the instance. The other reason probably from an empirical aspect is that the
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diversity of ensemble could be improved by the combination of the individual
models. From the perspective of hypothesis space, improving the diversity of
an ensemble system could reduce the bias of the hypothesis space, which means
that the optimal combined model is much closer to the real optimal solution. In
[32], the authors proved that the generalisation error of the ensemble model is
guaranteed to be less than, or equal to, the average generalization error of the
component individuals. For a more comprehensive review of the diversity issues
in the ensemble learning, see [33]. The two most related ensemble learning meth-
ods, which the topics in Chapter 3 and 4 are based on, are introduced in the
following.

On the one hand, most machine learning algorithms can learn from data that
are assumed to be drawn from a fixed, but unknown, distribution. Taking the
tracking problem as an example, however, this assumption is invalid. Traditional
machine learning methods applied to the tracking problem will fail when there
is a “concept drift” in the NSE. That is because the learnt function on a fixed
sample set previously collected may not reflect the current state of nature due to
a change in the underlying environments. Learn++ [34], which is an ensemble
of classifiers originally developed for incremental learning, can be adapted for
solving the “concept drift” problem in the NSE and to information/data fusion
applications. It specifically seeks the most discriminative information from each
data set through sequentially generating an ensemble of classifiers. The clas-
sifiers trained on individual data sources are fine tuned for the given problem
(concept drift). Learn++ can still achieve a statistically significant improvement
by combining them, if the additional data sets carry complementary information.

On the other hand, winner-take-all can be considered as a case of competitive
learning and has very wide applications including max-pooling in machine learn-
ing, political voting and commercial investment. In the area of machine learning,
WTA is a computational principle that can be implemented using different types
of models [35]. In [36], Lee et al. show that the contrast gain, orientation and
spatial frequency of an image can be activated by a winner-take-all competition
among overlapping visual filters. In [37], by simulating the principle of virtual
cortex, a novel MAX-like operation on inputs to certain cortical neurons is de-
signed for visual object recognition. Inspired by the simulation, the convolutional
neural network [38] also adopts the max-pooling to generate values in the first
few layers. In [39], image synthesisability relevant features are learned to select
the case-optimal method among several existing alternatives for texture synthe-
sis. To realise 100, 000 object classes detection, the WTA hash [40] is applied in
[41] to replace the dot-product kernel operator in the convolution operation. The
WTA strategy can also be used for model selection [42] and action selection [43].
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2.3.2 Online Learning

Online learning normally refers to a group of machine learning methods, which
process one datum at a time [44]. The counterpart of online learning is the
methods of batch learning, which instead consider the dataset as a whole in the
stage of optimisation. Compared with the batch scheme, online learning has
its potential advantages and could be used in some cases where it is unsuitable
for the batch scheme. Roughly speaking, the scope of online learning methods
could be divided into two groups: 1) handling large-scale data; 2) learning to
predict the streaming of time-series data. In general, the strategies exploited
in the two groups are similar to each other since both are required to process a
datum at a time. However, they are separately applied for two different purposes.
More particularly, the first group of methods normally are used to speed up the
optimisation or to avoid the case of memory overflow when faced with a large-
scale dataset, whilst the second group of methods are especially used to solve the
problems in which samples are not obtained in advance but become available over
time, usually one at a time. The second case is very common in the numerous
real-world applications, especially for the time-series data, e.g., object tracking
and weather forecasting. The object tracking will be discussed in Chapter 3 and
4, using online schemes.

On the one hand, in the early stage of machine learning, most of methods
are designed in some online schemes. For example, in Rosenblatt’s Perceptron
machine [45], this algorithm is a supervised learning method for binary classi-
fication and updates the linear function (weight vector) model in an additive
form, whenever a new sample is misclassified, by adding this new sample to the
original function. After several years, in [46], Novikof theoretically proved that
the Perceptron machine would be converged after a finite step of updating, for a
linearly separable classification problem. The Perceptron machine pioneered the
research of machine learning and gave huge expectations for artificial intelligence,
which would eventually replace human intelligence. The most distinctive method
of online learning to speed up the classical method, which adopts a batch scheme
for training, is the Sequential Minimal Optimization (SMO) [47]. SMO transfers
the large QP problem into a series of smallest time-consuming QP problems. In
[48], Bottou and Cun argued that suitably designed online learning algorithms
asymptotically outperform any batch learning algorithm for a large-scale prob-
lem. Recently, to learn a measure of similarity between pairs of objects, [49]
proposed an online dual approach, using the passive-aggressive family of learning
algorithms. In [50, 51], the online hashing approaches were proposed to address
the problems of large-scale streaming data.

On the other hand, there are many potential applications for online learning,
including online email categorization and spam filtering, object tracking and stock
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price prediction, etc. In [52], the author stated that, compared with other off-line
methods, relaxed online SVMs actually achieve similar classification results on
online spam filtering in large benchmark data sets. A comparison of early methods
between batch and online learning on spam filtering is given in [53]. In [54], the
authors demonstrated that, in accordance with email relevance, an online label
ranking algorithm automatically classifies their messages into user defined folders.
Object tacking, which is also investigated in this thesis, is also a traditional area
of online learning methods. In [55], online feature selection is firstly exploited
for object tracking. In 2008, incremental PCA [56] is used to adaptively learn
the intrinsic subspace feature for visual tracking. Based on Adaboost tracking
[20] introduced by Avidan, an online version of Adboost [57] is used to feature
selection through weighting the weak classifiers trained on different features. In
addition, online multiple instance learning [58], online structural output learning
[59] and online Learn++ all are exploited for object tracking. In addition, to
make profit-maximised decisions and investment, using online machine learning
algorithms to analyse and predict financial time series is also an area of active
interest. In [60], by measuring the correlation between the stock market events
and the features both in the micro-blogging platform and an induced interaction
graph, an online market simulation system that can be used to guide stock traders.
Bollen [61] also pointed out that the collective mood states derived from large-
scale Twitter feeds are correlated to the stock market. Several online machine
learning methods were analysed and validated by Soulas on how to find highly
correlated pairs of securities and how to predict foreign exchange rate changes in
an online fashion [62].

2.3.3 Graph-based Embedding

Graph-based Embedding methods generally transform the objective data from
a original space of a high dimensionality to a low dimensional space, preserving
as much of the significant structure as possible, such as linear structure (e.g.,
principal direction variance [63], Euclidean distance [64, 65]) and nonlinear ge-
ometric characteristic (e.g., local tangent [66], local linearities [67], local heat
kernel [68], geodesic distance [69], diffusion distance [70]). In Chapter 5 of this
thesis, the two sets of projections which preserve both the intra-modality vari-
ance and inter-modality covariance are learned to embed the images captures by
different cameras into a one common space. Based on this idea which only used
for person re-identification, in Chapter 6, an more advanced framework of hetero-
manifold regularisation is explored to project samples from multiple modalities
into a common Hamming space, with preserving both high-order intra-modality
and inter-modality structures. Simply, these methods could be categorised into
unsupervised learning, semi-supervised learning and supervised learning.
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Unsupervised Algorithms: Principal Component Analysis (PCA) [63] and
metric multidimensional scaling (MDS) [64] are the two representative unsuper-
vised approaches for linear dimensionality reduction. As for nonlinear dimen-
sionality reduction algorithms, the representative methods include local tangent
space alignment (LTSA) [66], locally linear embedding (LLE) [67], Laplacian
eigenmaps (LE) [68], isometric feature mapping (Isomap) [69], and DM [70], etc.
These algorithms are generally named as manifold learning which is an emerging
and promising approach in nonlinear dimensionality reduction. A manifold is a
topological space that is locally Euclidean. LTSA [66] obtains the low intrinsic
manifold by global minimization of the reconstruction error of the set of all local
tangent spaces in the data set. LLE [67] and LE [68] focus on the preservation of
local neighbor structure. Isomap [69] seeks the subspace that best preserves the
geodesic distances between any two data points. DM method relates the spec-
tral properties of Markov processes on a weighted graph (G,W ) and preserves
the diffusion distance introduced in DM [70]. These linear and nonlinear unsu-
pervised methods are mainly designed to embed high dimensional data into low
dimensional space with preserving geometric information. Such methods only
utilize the geometric relationship between samples, such as linear structure and
nonlinear geometric characteristic. Mostly, such geometric information is not
sufficient to discriminate different samples especially they are very close in the
transformed spatial space. Consequently, the introduced label information can
play an important role and provide useful information for accurate and robust
classification.

Supervised Algorithms: Linear discriminant analysis (LDA) [65] is a well-
known linear supervised algorithm. LDA maximizes the ratio of inter-class vari-
ance to the intra-class variance to guarantee maximal separability. LDA projects
data into low dimensional space with preserving Euclidean distance and the label
information are used as constrains. In recent years, many dimensionality reduc-
tion algorithms which preserve different kinds of geometric information with label
constrains have been proposed.

To the supervised algorithms, it only exploits the geometric and label infor-
mation of the labeled samples. Fukumizu et al. [71] presented a novel kernel
method for dimensionality reduction with Reproducing Kernel Hilbert Spaces in
the setting of supervised learning. In [72], a general framework of supervised di-
mensionality reduction was proposed, which viewed both features and class labels
as exponential-family random variables, and allowed to mix-and-match data- and
label- appropriate generalized linear models for classification and regression. In
[73], an improved version of Isomap, namely S-Isomap, was proposed. S-Isomap
utilizes class information to guide the procedure of nonlinear dimensionality re-
duction which was not sensitive to noise. Kouropteva et al. [74] and Li et al.
[75] also built the supervised based extension of LLE and LTSA, respectively.
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In [76], Sajama and Orlitsky presented a method based on maximum conditional
likelihood estimation of mixture models which ensured that the selected subspace
retained maximum possible mutual information between feature vectors and class
labels. Liang and Li [77] developed a general regularization framework for dimen-
sionality reduction by allowing the use of different functions in the cost function.
The framework can be used as supervised learning with prior knowledge of label
information. In [78], most popular subspace learning algorithms, unsupervised
or supervised, were unitedly explained as instances of a ubiquitously supervised
prototype.

Semi-supervised Algorithms: These supervised algorithms are very effec-
tive for learning the low dimensional representation of labeled samples. But from
an engineering point of view, it is clear that collecting labeled data is generally
more difficult than collecting unlabeled data [79]. As a result, some data sets
include a small amount of labeled samples and a large number of unlabeled sam-
ples. To use the geometric and label information contained in data sets more
effectively, a few semi-supervised frameworks were proposed for dimensionality
reduction. Some methods use label information based on the framework of LDA
for defining the different similarity metrics or neighborhoods [80, 81, 82, 83]. In
[80], Zhang et al. defined the cannot-link and must-link constraints as prior in-
formation corresponding to the between-class and within-class matrices of LDA,
respectively. Zhang et al. [81] and Sugiyama et al. [82] presented a similar
framework which defined within and between similarity based on LDA for global
preserving, and local similarity based on LPP [84] for local preserving. In [83],
Song et al. proposed a method which defined the within-manifold, between-
manifold and total-manifold scatter matrices similar to that in LDA. Xu and Yan
[85] presented a semi-supervised subspace learning algorithm by integrating the
tensor representation and the complementary information conveyed by unlabeled
data.

There are some other methods which consider dimensionality reduction as a
regression algorithm from a high dimension space to a low dimension space [86,
87]. They assume that the low intrinsic coordinates of a part of trained samples
are known. Yang et al. [86] showed that classical unsupervised algorithms could
be modified by taking into account prior information on exact mapping of certain
data points. They reformulate the minimization problem of classical methods
using the label information, so that the global low dimensional coordinates could
be computed by solving a linear set of equations. In [87], Gong et al. converted the
classical minimization problem with a special kernel to an optimization problem
with equality constraints, and the final solution could be obtained by diffusion
from the labeled data points.
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2.3.4 Hash Function Learning

Despite the promising performance achieved by the metric learning related meth-
ods in various areas, all of them suffer from a huge computational burden in the
test stage. Recently, the hashing techniques have been widely adopted to solve
the problem in many vision applications, especially in indexing large-scale data.
This is because hashing methods can map high-dimensional features to compact
binary codes that are efficient to match and robust in preserving original similar-
ity [88]. In this thesis, the two hashing based methods will be explored to fast
cross-camera person re-identification in Chapter 5 and efficiently cross-model re-
trieval in Chapter 6.

After the well-known Locality Sensitive Hashing (LSH) [89], two types of
methods have been developed to generate hash codes. The data-independent
methods [90] are generally based on random projections whilst the learning-based
hashing methods [91, 92] make use of the data distribution. On the one hand,
LSH scheme based methods which are normally data-independent are proposed to
preserve various kinds of distances or similarities. The distances which need to be
kept are generally defined on a general space (any kind of features) and thus the
hash functions are normally generated according to some specific distributions.
Nice theoretic properties of distributions [40, 93, 94, 95, 96, 97] guarantee that
certain distance or similarity can be preserved by the hash projection. On the
other hand, learning to hash, which is, in contrast, data-dependent, aims to learn
more compact binary codes by preserving some data-driven measurements in the
original feature space specified by a dataset X . Among them, the binary codes
refinement has also drawn much attention for some special purposes or some spe-
cific conditions. By joint optimization of search accuracy and search time simul-
taneously, the hashing buckets were perfectly balanced [98]. Using the spherical
hashing scheme [99], both balanced partitioning for each hashing function and
the independence between any two hashing functions were achieved. In [100], by
maximizing the consistency between semantic distance and hashing-based Ham-
ming distance, the pre-computed hashing bits could be reused. Recently, several
interesting methods including ensemble learning based hashing [101], cross-modal
hashing [102] and hashing for distributed data [103] are also explored. In the fol-
lowing, three groups of methods about affinity-based loss, quantilization loss and
cross-modal retrieval are briefly reviewed.

Affinity-based Loss: Some methods consider the affinity or distance dis-
tortion as a kind of loss. when they are too far apart (or too close). In [104],
each hash function was designed to correct the errors made by the previous one.
Instead of the neighbour related pairs defined in [104], the learned hash function
(hyperplane) was required to cross the sparse region of data samples [105]. In
[106], a hinge-like loss function is advocated to control the ratio of the slopes of
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the penalties incurred for similar (or dissimilar) points. Li et al. [107] introduce
a triplet based hinge loss to encode the relative comparison relationships in the
data. In [108], the graph hashing problem is cast into a discrete optimization
framework which directly learns the binary codes. Although the authors call
affinity or distance distortions as losses, these quantities play the same role as
the items of smoothness regularizations, manifold regularizations and pair-wise
constraints in classification. Actually, the higher-order relationships including
listwise supervision [109], top rank [110] and semantic multi-Label [111] could be
also considered to learn hash functions. More details about similarity preserving
in hashing could be found in [112].

Quantilization Loss: Self-taught hashing [113] firstly decomposes the learn-
ing procedure into two steps and, then, the idea is extended in [88] to accommo-
date many different affinity-loss functions. The first step of binary codes learning
can typically be formulated as binary quadratic problems, and the second step of
hash function learning can be accomplished by training standard binary classi-
fiers. [114] formulate the hashing framework as a multi-class classification, where
the learned binary codes (surregate labels) are expected to be optimal for clas-
sification. To improve the two-step hashing, several works [115, 116] consider to
optimize the binary codes and the hash functions, alternatively. Another group
methods follow the similar scheme of two-step hashing but, the first step consid-
ers the affinity-based loss as a smooth problem and the second step minimizes the
quantilization loss by optimally finding the thresholds for the learned continuous
variables. Iterative Quantization (ITQ) [115] minimize the quantization error of
mapping the PCA-projected data to vertices of the binary hypercube. Similarly,
Isotropic hashing [117] can produce embedded dimensions for the PCA-projected
data with isotropic variances thus, to some extent, reduce the quantization er-
ror as well. Followed the alternative quantilization, various techniques including
locally linear reconstruction weight [118], graph Laplacian matrix [119] and bilin-
ear projection [120] are applied into the first step. Actually, the nature of these
methods is to minimize the loss of mean squares between the binary codes and
auxiliary continuous variable.

Moreover, the hinge loss [102, 121, 122] could be used to minimize the risk of
the auxiliary continuous variable close to 0. In [121], a hinge loss is used to learn
hash function one by one with considering the similarity-similarity difference.
Recently, the hinge loss is used to learn a set of hash functions in cross-modal
setting [102, 122]. In [102], Zheng et al. prove that, by incorporating the hinge
loss, the discrete optimization problem could be minimized certainly by mini-
mizing an differentiable upper bound. In [123], a orthogonal transformation is
searched so that the sum of cosine similarities (Angular quantization loss) of each
transformed data point and its corresponding binary landmark is maximized.

Cross-modal Hashing: More recently, the hash function learning is ex-
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tended to multi-modal data or multiple information sources, especially for cross-
view retrieval, such as text and image. Composite Hashing with Multiple Infor-
mation Sources (CHMIS) [124] and the Cross View Hashing (CVH) [125] extend
the SH [91] from different aspects, respectively. The boosting algorithms are
adopted to embed the input data from two arbitrary spaces into a same Ham-
ming space by Cross-Modality Similarity Sensitive Hashing (CMSSH) [126] and an
anchor-supported method [127]. Considering the maximum margin, Predictable
Dual-view Hashing (PDH) [24] explores a joint formulation for learning binary
codes of data from two different views. Collective Matrix Factorisation Hash-
ing (CMFH) [128] is based on the assumption that the interlinked data should
have the same latent factors and the hash codes can be learned from these fac-
tors. Moreover, local functions [129] and correlation-maximal mappings [130] are
exploited to learn the common binary codes.

2.4 Object Tracking

Generally, according to the type of samples used to build the model, the on-
line adaptive algorithms can be divided into two groups: generative methods
which only use positive samples to infer the relationship between them, and dis-
criminative methods which use both positive and negative samples to train a
classification hyperplane. Moreover, from the perspective of development history
of object tracking, there are four stages: optical flow to match two consecutive
frames [17], particle filter to model the underlying dynamics of a motion system,
tracking by detection and multi-expert model.

A most basic concept of object tracking is direct image patch matching. Fol-
lowing this basic idea, there are several well-known methods, such as: Lucas-
Kanade tracker [17], fragments-based tracker [131] and mean shift tracking [132].
However, the target in these methods is not updated according to the appearance
change of the object. Thus, an essential step forward is to build a generative
appearance model to capture the variation over time, such as online subspace
learning [56] and sequential Monte Carlo sampling [133]. Recently, sparse coding
based methods catch much attention in the community of object tracking. Re-
ported in the two experimental evaluation results [3, 134], the two sparse coding
based methods [135] and [136] achieve high performance. However, despite the
superior performance on partial occlusion, in a survey [137], the authors state
that their experimental results have shown that visual tracking may not be a
sparse representation problem. Moreover, generative methods would easily fail
with a cluttered background.

Considering the significant role of discriminative information from background,
pioneered by support vector tracker [19] and ensemble tracker [20], various dis-
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criminative algorithms have been built to model the difference between the fore-
ground and the background. Collins et al. [55] explore a mechanism which adap-
tively selects the most discriminative features from a set of different colour spaces.
In addition, the random projection is used in compressive tracking (CT) [138].
However, CT is a data-independent method which guarantees that no noise is
introduced but lacks flexibility. Moreover, numerous methods exploring the dif-
ferent properties of samples and relationships between samples, including P-N
learning [1], semi-supervised SVM [139], semi-supervised boosting [140], multi-
ple instance learning [58], weighted reservoir sampling [141] and semi-supervised
transfer learning [142], have been also proposed to improve the performance of
trackers. Recently, in [143], the confidence of a classifier is considered as a prob-
ability which can be analysed using Gaussian Processes regression. Structured
output tracking with kernels (Struck) [59], using the windows as input, explores
the training data with the form of appearance and translation. The experimen-
tal survey [144] concludes that Struck performs well on all aspects but one, the
change of scale, bringing it to the number one position over their entire dataset.

Futhermore, in the past few decades, numerous methods integrating multiple
components are proposed to solve the various challenges. Intuitively, the diversity
can be improved by using the information or knowledge from multiple sources.
According to the stage of different components, we can categorise these meth-
ods into three groups: combination of features, ensemble of classifiers in a same
hypothesis space and multi-expert trackers.

Combination of features: Collins et al. [55] explore a mechanism which
adaptively selects the most discriminative features from a set of different colour
spaces. [145] fuses multiple observation models with parallel and cascaded eval-
uation. Yoon et al. [146] adopt two steps: tracker selection and interaction to
fuse multiple features. In [147], three different levels of features are modelled to
enable robust model relearning.

Ensemble of classifiers: The co-tracking algorithm [139] trains multiple
SVM classifiers using different feature types and combines their tracking results to
achieve robust tracking. A set of random ferns is adopted to explore comparative
features in [1]. Visual tracker sampler [148] incorporates a process of sampling
trackers into the framework of particle filtering [18], without differentiating the
trackers. Randomised ensemble trackers [149] consider the weights of classifiers
as a non-stationary distribution. Three Struck [59] based trackers with different
features [150] are combined to select the best tracking result among the three
forward trackers. In [151], several online SVM algorithms are used as the base
classifiers and a minimum entropy criterion is designed to evaluate the members.

Multi-expert trackers: In [152], the Lucas-Kanade (LK) [17] method and
one random forest based classifier are combined for target tracking. Similar to
[152], Yan et al. [153] design an ensemble framework for the optimal selection of
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detectors and trackers to do multi-target tracking. Recently, a complex system
with multiple components [154]: a short-term Integrated Correlation Filter (ICF)
processing, a short-term key points processing, a long-term memory updating, an
output controller and a ICF updater, is proposed to produce sensitive and stable
responses to complex situations.

All these methods require various updating schemes to capture the continuous
deformations of the objects. As a consequence, they tend to drift by incorporating
wrong information. To avoid the drifting, diverse strategies are adopted, such as:
different update rates [155], data-independent knowledge [138] and selectively
updating the parts [156]. However, the essential reason why drifting occurs is
that classical trackers have not considered the object tracking as a “concept drift”
problem and tried to solve different challenges by only one super-power model. In
fact, the differences between various challenges are very large. Thus, we can see
the limitation of the classical trackers comes from the basic i.i.d. assumption in
machine learning, on which most of tracking-by-detection methods depend. The
drifting problem is not very obvious and can be partially solved by the classical
methods in short sequences but it is still quite difficult for the long-term tracking
[144]. In the tracking-by-detection methods, recovering from drift may also prove
a useful way to make tracking robust but the update of wrong information will
destroy the structure of the classifier.

2.5 Person Re-identification

Recently, inspired by [23], person re-identification catches much attention of re-
searchers. Although several researchers start to consider situations of multiple-
shot [157, 158] or video based [159] person re-identification, most of methods still
focus on one-shot situations where, to some extent, the tasks are more difficult
because less information is available for each person. To address the challenge of
person re-identification, many efforts have been made along the two directions:
learning discriminative features and learning the metric functions. Moreover,
both aspects are considered to further improve the performance in [160].

On the one hand, the learned features are generally invariant to the view
changes and simple metrics are used for matching. Compared with [23], a stronger
feature representation (SCNCD) [161] is proposed, in which the colour distribu-
tions over colour names in different colour spaces are obtained. A different feature
transform for a pair of configurations is learned in [162]. The visual features are
projected to a common feature space and matched by a local expert. [163] points
out that certain appearance features can be more important than others in de-
scribing an individual from other people. Unsupervised salience learning [164]
is used to extract distinct features but suffers from the computational burden
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because the feature of one image is related to a large scale reference dataset.
Similar to salience learning, part-based template matching [165] is exploited to
person re-identification by using the candidacy graph and cluster sampling mech-
anism. In [166], deep learning is exploited to automatically learn features for the
re-identification task and the deep framework has been improved in [167] by incor-
porating neighbouring locations of other images. Moreover, in [168], deep neural
networks are used to learn the features with maximising the relative distance.

On the other hand, complex distance metrics are learned to rank the pairs
of observations from different views. Support Vector Ranking (PRSVM) [169]
is firstly used for ranking the feature differences. Zheng et al. [170] introduce
a relative distance comparison (PRDC) model to maximise the likelihood of a
pair of true matches having a relatively smaller distance than that of a wrongly
matched pair. By using the equivalence constraints, Köstinger et al. [171] propose
an efficient metric learning method to reduce the training time. In [172], the
unsupervised and supervised dimensionality reduction methods are combined to
learn the intrinsic representation and distances are computed in the learned lower
space. Very recently, ensemble metrics, such as a mixture of similarities [173]
and an ensemble of distances [174], are exploited to discover multiple matching
patterns.

In fact, very recently, some researchers have started to focus the vehicle re-
identification which is similar to the person re-identification. Some strategies
proposed for person Re-ID could be directly used for vehicle but most methods
cannot be applied. This is because the vehicle is a rigid object whist the person
normally is non-rigid. Moreover, the shapes between different vehicles are more
likely to be similar and the appearances of vehicle are also simpler. In [175], a
large-scale benchmark dataset for vehicle Re-Id in the real-world urban surveil-
lance scenario is collected. This dataset contains over 40,000 bounding boxes of
619 vehicles captured by 20 cameras in unconstrained traffic scene. At the same
time, another dataset named as “CompCars” [176] is collected, in which covers
not only different car views, but also their different internal and external parts,
and rich attributes. Zapletal and Herout [177] introduced a simple but effective
model which uses color histograms and histograms of oriented gradients by a
linear regressor for verifying the pair of vehicle images captured by different cam-
eras. Based on the dataset [175], in [178], the appearance attributes of vehicle for
a coarse filtering and the Siamese Neural Network for license plate verification to
accurately identify vehicles are combined to facilitate progressive vehicle Re-Id.
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2.6 Cross-modal Retrieval

The cross-modal similarity is generally established by mapping multi-modal data
into a common space. The projection based method is motivated by the fact that
multi-modal data are used to represent common objects. For example, in [179], a
non-linear dimension reduction technique is introduced for cross-modal retrieval,
where bimodal data are represented in a common low-dimensional Euclidean
space and the cross-modal similarity is defined by using the Euclidean distance
in the learned space. Mao et al.[180] propose a cross-modal retrieval algorithm
based on parallel field alignment in which heterogeneous data are mapped into a
common Euclidean space to measure the similarity between heterogeneous data.
Deep learning [181] is also employed to learn a common feature space which
could be shared by heterogeneous data. Similar to classical discriminant analysis
methods, in [182], two pairwise sets (must-link and cannot-link) on the cross-
modal samples are considered to learn a similarity function. More references can
be found [12, 183, 184, 185, 186, 187].

The Hamming space is more attractive than the Euclidean space because
of its efficiency of searching in a large-scale multi-modal dataset. Some existing
cross-modal search algorithms, such as [124, 125, 126], adopt an ideal hash coding
restriction that heterogeneous data representing common objects share the same
hash coding. Others, such as [24, 128, 188], accept a more relaxed hash coding
restriction that heterogeneous data representing common objects share similar
binary codes which means the Hamming distance of their binary codes, should
be small enough.

Many works of cross-modal search adopt the manifold concept to model multi-
modal data, however, the motivations of constructing the manifold are different.
Firstly, multi-modal data are treated as an ensemble of homogeneous data, which
are modelled as multiple homogeneous manifolds, such as [124, 180, 189, 190]. For
example, Gao et al.[190] constructed a similarity graph matrix for each uni-modal
feature or label feature, and then learned an optimal similarity graph matrix for
the given multi-modal data by fusing the similarity information of uni-modal
similarity graph matrices and the label information with semi-supervised learn-
ing. Secondly, a cross-modal manifold is constructed whereas uni-modal man-
ifolds are omitted, such as [179]. In [179], Mahadevan et al.focused on using
covariance between the labels of different modal data to measure the similar-
ity between cross-modal data. Lastly, both uni- and cross-modal manifolds are
adopted but the information of the uni- and cross-modal manifolds cannot be
simultaneously used during the training process. For example, Masci et al.[191]
use two uni-modal manifolds and one cross-modal manifold to represent bi-modal
data; however, the information of these two uni-modal manifolds cannot be used
at the same time because of the usage of gradient based optimisation. Zoidi et
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al.[192] employed a high-order similarity matrix (similarity tensor) to represent
the similarity information of uni- and cross-modal data. Amiri and Jamzad [193]
modeled the similarity information of multi-modal data with a supergraph in
which the similarity information of uni-modal data is represented by a subgrahp
of the supergraph and the similarity information between cross-modal data is
modeled by the connected weights between subgraphs.

Besides manifold-related methods, other techniques are also explored for cross-
modal retrieval. For example, Masci et al.[191] proposed a novel deep learning
framework to simultaneously learn multiple hash functions for preserving multi-
modal similarity. Song et al.[194] proposed another deep learning framework
for integrating semi-supervised similarity learning and hash function learning.
Lai et al.[195] proposed deep neural networks for simultaneous feature learning
and hash functions learning. Zhu et al.[183] proposed a cross-modal dictionary
learning framework for representing multi-modal features with common sparse
codes. Pereira et al.[12] paid more attention on the role of semantic correlation
matching in multi-modal retrieval. More references on hash code learning for
similarity search can be seen in [196].

The methods, such as [124, 125, 180, 184], support our view that exploiting the
manifold structure is very important for boosting the performance of cross-model
retrieval. However, no general frameworks for multi-modalities are available, no
higher-order relationships have been considered, and, except for CHMIS[124], all
existing methods can hardly be extended to more complex multi-modalities.

2.7 Discussion

The reviewed topics in this chapter range from the general learning framework,
learning data association and that the three special applications of data asso-
ciation are relatively broad and support all the proposed works in this thesis.
More specifically, a general framework of learning data association is from two
aspects: firstly, associating in the same feature space and in multiple sources.
Based on such a framework, the classical learning methods, including recogni-
tion, regression and ranking can be easily formulated to associate samples for
different applications. Secondly, some basic knowledge, which is closely related
to the proposed novel methods in the following chapters, is reviewed. Finally, the
related works in the three applications, including object tracking, cross-camera
re-identification and cross-modal retrieval are reviewed and discussed.

However, despite the results achieved by the exiting methods, there are still
many problems that need to be solved and thus automatic data association is
far from being established. In the following chapters, novel methods, which are
used to overcome the challenges in different directions and levels, are proposed.
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Firstly, Chapter 3 introduces a novel method, which is derived from Learn++
methods, to simultaneously tackle the various challenges of object tracking in a
single camera. Then, based on the discoveries in Chapter 3, a more advantageous
method, which adopts a multi-expert strategy is proposed to improve both the
performance and efficiency of existing methods in Chapter 4. Afterwards, Chapter
5 presents a cross-view hashing method to deal with the problem of cross-camera
person re-identification. Lastly, by exploiting a framework of a hetero-manifold
regularisation, the most difficult task of cross-modal retrieval to associate samples
captured by different sensors or platforms are achieved in Chapter 6.

42



Chapter 3

Sampling Competitive Classifiers
for Robust Object Tracking

Object tracking is a traditional and fundamental topic and has wide-ranging
applications in designing various systems in computer vision such as surveillance,
augmented reality, robotics and human-computer interaction. Recently, adaptive
tracking-by-detection approaches [20, 55, 56, 58, 152] based on machine learning
methods, which treat the tracking problem as a classification task, are proposed to
overcome difficulties in the non-stationary environment (NSE). In some of these
methods, several on-line learning tricks are adopted to update the representation
of the target [55] or the parameters of a classifier [56] to adapt to NSE. Another
type of method is the ensemble learning for tracking [20, 152] which adapts to
the NSE through sequentially training the classifiers.

However, firstly, most methods typically can only solve certain challenges but
are less effective for others - there is no single tracker that is perfect for all chal-
lenges. In addition, to date, developing an effective and efficient method for robust
target tracking is still challenging, due to the non-stationary environment (NSE)
[197] such as presence of occlusion, background clutter, varying viewpoints, illu-
mination changes, scale changes and camera motion etc.. Moreover, our empirical
analysis proves that object tracking is a non-i.i.d. (independent identity distri-
bution) sampling and small dataset problem, which limits the performance of
classical machine learning based methods. Motivated by the above three points,
this chapter will propose an ensemble learning based tracker in which, most im-
portantly, the members keep the independence with each other for signal target
association. The flowchart of visual data association in a view of signal camera
is illustrated in Fig. 3.1.

The rest of this chapter is organised as follows. We first give the hypotheses
and motivation of this work in Section 3.1. A fast and compact descriptor for
image patches is introduced in Section 3.2. The empirical analysis is given Section
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Figure 3.1: Visual data association in a signal camera using multiple classifiers
sampled from a same function space.

3.3. Section 3.4 details the proposed Learn++ based method for visual tracking.
Experimental results are reported and analysed in Section 3.5. Finally, summary
are drawn in Section 3.6.

3.1 Preliminaries

3.1.1 Hypotheses

• The basic hypothesis of object tracking is that very few labelled samples
can be given in the first frame while many unpredictable variations and
changes are allowed for the object and corresponding environment in the
following fames. Hence, the object tracking is a small sample-set problem
(few labelled samples) and a un-stationary environment problem (unpre-
dictable variations). The sample distribution changes over time, according
to the future surrounding scene and the status of the object.

• We also assume that, before obtaining the first frame, the location and
status of target are totally unknown. This is a general assumption in object
tracking. At present, there are indeed a few of models which are trained
offline to track some popular objects. However, this strategy plays the
same role as detection and, in most cases of tracking task, it is impossible
to obtain any information of the target.
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• Given a dataset with ground truth locations, the empirical analysis about
the changes of the sample distribution can be discovered. Moreover, the
empirical investigations can be used to reveal the nature of object tracking
then to guide the design of more powerful trackers.

• By training on the different groups of samples, the classifiers could be rela-
tively independent with each other and then be utilised to deal with different
difficulties.

3.1.2 Motivation

Most machine learning algorithms can learn from data that are assumed to be
drawn independently from a fixed but unknown distribution (i.i.d.). However,
the i.i.d. assumption cannot be valid in case of the tracking problem. This is be-
cause, in object tracking, the classifiers can only be trained on a small sample set
and these samples are generated over time. Thus, traditional machine learning
methods applied to the tracking problem will fail when there is a “concept drift”
in the NSE. The knowledge in this small sample-set which is under-complete is
insufficient to describe the overall distribution. The term “concept drift” can
be used to represent changes in the underlying distribution of samples. In
object tracking, the distribution of samples changes a lot due to the deforma-
tion of the object and the change in the underlying environment. It is worth
to mention that the sample distribution relies on both the target and the en-
vironment and, in most cases, the environment is more likely to be completely
unpredictable. Especially during the transition between different difficulties (sub-
problems), such as from occlusion to varying viewpoints, the samples in the two
different situations differ significantly. Thus, the function learned on a fixed sam-
ple set previously collected may not reflect the current state of nature and the
separability of adopted features will decrease in the new situation. If x are the
samples and y ∈ {1,−1} are classes, the whole distribution of the problem at time
t, which is characterised by the joint distribution pt(x, y), can be represented by:
the unconditional probability density function pt(x) and posterior probabilities
pt(y|x). Then, the “concept drift” can be defined as any scenarios where the
posterior probability changes over time:

KL(pt+n(y|x), pt(y|x)) < τd (3.1)

where t is the time, n is the time step of drift, τd is a small value and the Kullback-
Leibler (KL) divergence describes the dissimilarity of the two distributions.

In this chapter, we first empirically investigate the “concept drift” problems
in object tracking. Then, according to the findings of analysis, a Learn++ (LPP)
tracker is proposed to dynamically sample competitive classifiers for robust and
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Figure 3.2: Assuming that the best classifiers for the previous frames are available,
which classifiers should be used in the current frame (bottom right)? f2, f5 or
their combination? Also, when the target moves out of view then comes back,
which classifiers are the best to be used? This chapter tries to solve these problems
in object tracking.

long-term object tracking. In this chapter, “competitive classifier” is used to de-
note those function which can achieve more advanced performance than others.
To increase the efficiency and stability for the model, a competitive strategy is
adopted to separately solve various “concept drift” challenges appeared in a same
video sequence. Learn++ [198] is a new group of machine learning methods to
learn additional information from new data without accessing the original sam-
ples and can be used for recognition tasks in very complex situations where new
classes would join in. The structure of an optimal classifier in Learn++ is very
similar to that in AdaBoost but there are several key differences: AdaBoost runs
on a single database and is based on the assumption of an i.i.d. distribution;
Some classifiers whose errors are larger than 0.5 will be discarded; Most impor-
tantly, the later weak classifier in AdaBoost depends on their previous one; And,
the weight distribution of samples is updated using the error of current weak clas-
sifier. However, Learn++ can address a set of databases in which the samples
are generated by different distributions. To increase the diversity of the model,
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Figure 3.3: The framework of fast structural representation can be chosen by our
proposed LPP tracker.

Learn++ keeps all the classifiers as long as they can achieve good performance
on a subset. In learn++, the weights of samples are updated using the ensemble
performance.

The proposed LPP tracker dynamically maintains a set of basic classifiers
fi ∈ Ωt

e which are trained sequentially on a small sample set. The “concept drift”
problems can be solved by adaptively sampling the most suitable classifiers named
as competitive subset Ωt

a ⊂ Ωt
e as shown in Fig. 3.2(a). These basic classifiers

are independent from each other and used to address different sub-problems. For
each challenge, the democratic mechanism can be adopted, where all classifiers
should compete with each other to be added into a competitive subset to suit the
present environment. Next, the optimal classifier f t in the present environment
can be fast searched in a function space linearly spanned by these basic classifiers
in the competitive subset. After the detection guided by motion constraints,
the most important samples will be collected to update the classifiers which are
trained in the same situation.

3.2 Structural Representation for Image Patch

In object tracking, the two important factors of appearance representation are
efficiency and discriminativeness. At present, lots of powerful features have been
explored for various tasks but most of them cannot be directly used in object
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tracking, because they are either computationally expensive or not discriminative
in NSE. In this section, a fast structural representation (SR) is introduced to
represent an image patch as shown in Fig. 3.3. The advantage of scale invariant
SR is that the optimal projections and filters can be decided by selecting the
third-layer nodes using the specially designed classifier. As a result, the proposed
tracker can keep a good balance between efficiency and performance. SR has a
three-level hierarchy: H0-virtual stage of filtering, H1-stage of random projection,
and H2-stage of encoding.

H0: filtering. Given a patch z ∈ RI×J in which I and J denote the
numbers of rows and columns respectively, a set of rectangular smoothing filters
{hi×j ∈ Ri×j, 1 ≤ i ≤ I, 1 ≤ j ≤ J} are defined, for which all entries of each filter
hi×j equal 1/(i× j). In total, there are I × J filters, each of which is convolved
with the entire patch and produces I × J values. So, the dimension nV = (IJ)2

of the original feature V ∈ RnV is very high and much information is redundant.
H1: random projection. Next, a sparse random matrix is used for dimen-

sionality reduction, which is defined as: P (i, j) = 1 with the probability 1/(2s),
P (i, j) = −1 with the probability 1/(2s) and P (i, j) = 0 with the probability
1 − 1/s, where p is the probability. In [199], Achlioptas pointed out that this
matrix with s = 2 or 3 satisfies the Johnson-Lindenstauss lemma. Compres-
sive sensing theory ensures that the extracted features preserve almost all the
information of the original image patch. In this chapter, we set s = nV /4.

Thus, the value vk ∈ R projected by each row of the random matrix is:
vk = P (k, ·)V . The stage of filtering can be considered as virtual. This is because
most of the entries are zeros so that a large proportion of the filter needs not
to be calculated. We only need to store the nonzero entries and the positions of
their corresponding rectangular filters in an image. Moreover, vk can be efficiently
computed by using P (k, ·) to sparsely measure the rectangular features which can
be efficiently computed using the Integral Image. For patches with a different size
z∗ ∈ RI∗×J∗

, the number of rectangular features will be different. In fact, we need
not to resize the patch. Applying a scale IJ/(I∗J∗) to the locations of elements in
V ∗ will be feasible to realize scale invariance. For each value vk, its mean µk and
variance σk of positive samples will be computed when its corresponding classifier
is trained.

H2: encoding. The third layer is constructed similarly to Fern [200], in
which a feature was calculated by comparing two randomly selected pixels in a
patch. However, directly comparing two pixels is very sensitive to noise, especially
when the two pixels are located around an edge. Normally, to eliminate this
drawback, filters will be used firstly. Instead of comparing the pixels, the value
vk can be considered as basic cues. Thus, for each projected value vk, a binary
feature can be defined as: bk = Γ⌊vk ∈ [µk − σk, µk + σk]⌋, where Γ⌊⌋ is the
indicative function. Each node in the third layer consists of a set of bits, and in
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this chapter, the size of the set nb is set to 7. Thus, the node of the deepest layer
in the hierarchy is defined as: B =

∑nb

k=0 2
kbk.

In summary, firstly, SR is a simple but powerful and efficient representation
for image patch, which has a similar formulation to the convolutional neural net-
work algorithm [38] in the first several layers. We can see that the first layer is
to calculate local mean values with various scales and the second layer, which
combines patches in different locations, is to capture the global structure of ob-
jects. Thus, SR can extract the local and global features simultaneously and be
invariant to partial occlusion. The binary encoding in the third layer, to which
a naive Bayes classifier can be directly used, plays the same role as activation
function. Secondly, if the values of sparse projection are fixed so that adjacent
rectangles are combined and no binary coding is used, then SR extracts the Harr-
like features. Next, if the size of a filter is fixed, the number of nonzero entries of
random projection is set to two, and the two weights are also opposite numbers,
then SR will become the classical framework of Fern [200]. Moreover, besides
the natural properties of intensity, scale and partial occlusion invariance, SR is
very computationally efficient because of the usage of sparse projection and bi-
nary coding. Finally, each node in the third layer can capture a certain internal
structure of objects. By selecting the nodes, different information can be used.
Therefore, various challenges in object tracking can be handled by selecting the
abundant and diversified features.

3.3 “Concept Drift” in Object Tracking

In this section, the “Concept Drift” problem in object tracking is investigated on
a public dataset which contains 50 sequences [21]. From the theoretical definition
of “Concept Drift”, to investigate the “drift”, the necessary steps are firstly to
fit the sample distribution and then to calculate the changes of the distribu-
tion over time. However, it is impractical to directly obtain stable distributions,
because, normally, the dimension of a sample is very high. Therefore, we seek to
calculate the distribution of Euclidean distance between any pair of samples. The
intuition behind is that the distribution of distances or similarities can reflect the
distribution of samples. For example, if two variances x1 and x2 are independent,
standard normal random variables, then the quantity ||x1 − x2||

2 is distributed
according to the one degree chi-squared distribution.

Moreover, we observe that most classical methods can handle the translation
in simple situations (trivial cases shown in Fig. 3.4 (a)) without large deforma-
tion or other challenges, but are unable to cope with complex “concept drift”
situations (drift cases shown in Fig. 3.4 (b)). However, at present, the differences
of appearance features between the trivial and the drift situations have not been
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(a) Trivial case with frames from #1 to #20.

(b) Drift case with frames from #13 to #32.

Figure 3.4: Two short videos in FaceOcc1 [21] to show the difference between
the trivial case (a) and drift case (b). Each short video consisting of front set
(first row) and latter set (second row) is annotated by three numbers. Take the
second video for example, the first number #13 is the index of the starting frame,
the second one #22 denotes the moment when the object begins to change and
the third one #32 is the index of the ending frame. The two cases are just used
to show the differences between them. In fact, in the procedure of real tracking,
it is impossible to know what kinds of challenges occur in the following frames.

studied. The study of the differences can facilitate understanding the nature of
object tracking and guide the design of more robust methods. To achieve this,
100 short videos (A sample is shown in Fig. 3.4 (b)) with the challenges exclud-
ing fast motion1 from the dataset are manually identified and other 984 short
videos (A sample is shown Fig. 3.4 (a)) are randomly selected from the rest of
the dataset. Thus, we can see that the short videos are divided into two parts by
the three numbers: the front set before drift and the latter set after the drift.

We illustrate the experience analysis in Fig 3.52. Firstly, based on the two
sets, three groups of feature distances d = ||x1−x2|| can be calculated depending
on which sets the pairs of samples come from. Then, for each group of distances,

1This problem can be solved easily by dense sampling using the tracking-by-detection meth-
ods.

2(a) The distance distribution of the HOG feature between the two sets. (b) The distance
distribution of the SR feature between the two sets. (c) The bounding box overlap distribution
between the two sets. (d) The distance distribution of the HOG feature for two consecutive
frames. (e) The distance distribution of the SR feature for two consecutive frames. (f) The
bounding box overlap distribution of two consecutive frames.
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Figure 3.5: Statistical analysis of the two situations in object tracking: “concept
drift” and the trivial case.
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a distribution of them can be obtained. For the “drift” cases, pdf denotes the

distribution of distances between two samples both within the front set, pdl denotes
the distribution of distances between two samples both within the latter set and
pdc denotes the distribution of distances across the two sets. For the trivial cases,
we can also calculate the three distance distributions including ptf , p

t
l and ptc. In

this analysis, two features, HOG [201] and SR, are used. The comparisons of six
distributions are shown in Fig. 3.5 (a) and (b) for HOG and SR, respectively.
Moreover, besides the feature distance, the distribution of the overlap of bounding
boxes in the two sets is also investigated. The comparisons of six distributions
for the overlap of bounding boxes are given in 3.5 (c). In contrast, for the feature
distance and overlap of bounding boxes between any two consecutive frames,
distributions of them are also calculated and the comparisons are referred to 3.5
(d), (e) and (f), respectively. Finally, the quantitative analysis

∫

d
|p1(d)−p2(d)|▽d

between two distributions are given in Table 3.1.
From the statistical analysis given in Fig. 3.5 and Table 3.1, the following

observations can be obtained:

• The six distributions of the two types of features HOG and SR are similar.
It indicates that the statistics reflect the nature of variations of objects and
the environment.

• The feature distances across the two sets are obviously larger than the ones
within a set. Next, from Table 3.1, we can see the distribution discrepancy
between pdc and ptc both across the two sets is almost three times larger
than the one between pdf and ptf within the front set. Furthermore, the

distribution discrepancy between pdf within set before drift and pdc across
the two sets is quite large. Because the distance distribution can reflect the
intrinsic structure of samples, the analysis demonstrates that the sample
distributions of the two sets distinguish from each other, especially for the
cases of “concept drift” situations. To some extent, the assumption that
the samples are generated by different distributions over time is verified.

• In contrast, the distributions of feature distance between the two consec-
utive frames for the drift and trivial conditions are similar and the distri-
bution discrepancy is also small, no matter which type of representation is
adopted.

• Furthermore, the overlap distributions of bounding boxes between the two
consecutive frames are also similar for the drift and trivial situations.

In brief, by the empirical study, we can conclude that the object tracking is
a non-i.i.d. sampling and small set problem. Therefore, the ability of classical
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machine learning is limited. And, it is unsuitable to classify the samples in the
following set after the “concept drift”, by a function which is trained on a small
sample set generated by different latent distributions. However, the procedure
of tracking-by-detection can be connected together using the motion information
(two consecutive frames). In this chapter, a competing strategy is adopted to
select the most suitable classifiers to address the current special problem and
the motion constraint between two consecutive frames is used to supervise the
training and updating of classifiers.

Table 3.1: The discrepancy
∫

d
|p1(d) − p2(d)| ▽ d between the two distributions

p1(d) and p2(d) shown in Fig. 3.5. The largest discrepancy approximates 2.

Comparison
pdf pdc pdl pdt pdc
ptf ptc ptl pta ptd

HOG feature 0.2326 0.7488 0.1835 0.1408 1.2590
SR feature 0.2142 0.5976 0.1548 0.1817 1.1441

Bounding box 0.1579 0.2037 0.1423 0.3518 0.6858

3.4 Learn++ for Solving the Problem of “Con-

cept Drift”

Based on the above observations, in this section, a LPP tracker is learned to
solve the numerous problems of “Concept Drift” which is guided by motion con-
straints. Assume the classifier set Ωt

e consists of a competitive set Ωt
a and its

complementary set Ωt
c. We have Ωt

c

⋃

Ωt
a = Ωt

e, n
t
e = |Ωt

e| and nt
a = |Ωt

a|, where
| · | denotes the number of members of the set. W t

i denotes the historical weights
of all existing fi ∈ Ωt

e.

3.4.1 Motion constraints

The similarity transform is used as the motion model for our system. There
are four parameters: (1) horizontal and vertical coordinates; (2) horizontal and
vertical scales. a is the state of target describing its motion.

Based on the observation in two consecutive frames, Optical flow (OP) [17] is
used to construct the motion model in our framework. OP follows the movement
of the target frame by frame and has very high flexibility because no historical
information is considered. The motion model p(at|at−1) reflects the motion char-
acteristic of the target by predicting the current state at based on the previous
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state at−1. If p(at|at−1) > τ1, then at is a valid result no matter whether “con-
cept drift” occurs or not. The P-N constraints [1], p(at|fi), were proposed to
estimate the confidence of the ith classifier fi. If p(at|fi) > τ2(i) where fi ∈ Ωt

a,
the outcome of classifier fi is validated. This triggers the application of the P-N
constraints that exploit the structure of the data. From the manifold perspec-
tive, P-N constraints maintain a purified sub-manifold for positive and negative
samples. All samples far from such a sub-manifold will be ignored. So, P-N con-
straints are used by LPP tracker to guarantee the stability of each classifier. If
p(at|Ωt

a) > τ2, where p(at|Ωt
a) = maxi p(a

t|fi), there is no occurrence of drifting.
The classifier constraints are designed based on the observations of the two sets
in the analysis of “concept drift”.

3.4.2 Objective function

In frame t, xt
l and ytl denote the structural representation and the label of im-

age patch ztl , respectively. Each entry xt
l(i) contains the nB number of nodes

{Bi,j : j = 1, · · · , nB}, for the classifier fi. Also, X t is the set of collected
samples and nt

X = |X t| . The distribution of samples Dt will be calculated ac-
cording to the results of old classifiers and used to describe the importance of
samples. For simplicity, we define fi(x

t
l) = fi(x

t
l(i)), w

t = (wt
1, · · · , w

t
na
) and

Ωt
e = (f1, · · · , fna

)T .
Our goal is to find an optimal classifier f t with most discriminative features in

the function space Ht linearly spanned by a set of classifiers Ωt
e which are trained

in previous frames, where Ht = {ht : ht = wtΩt
e}. Moreover, to improve the

efficiency of the system, the weights wt are required to be sparse so that most
basic classifiers are not used in the current frame. Thus, in theory, the objective
function is defined as:

wt = argmin
wt

∑

l

L(ht(xt
l), y

t
l) + λ

∣

∣

∣

∣wt
∣

∣

∣

∣

0
(3.2)

where L and λ are the loss function and regularization parameter, respectively.
Therefore, we obtain the hypothesis as:

f t = wtΩt
e (3.3)

The optimal classifier f t can be used to detect the object in the current frame
(new environment). The final classification for each image patch xt

i is achieved
as: ytl = sign(f t(xt

l)). Eqn. 3.2 cannot be optimised directly, due to that the
true label ytl of image patch xt

l is unknown. However, based on the assumption
of the “concept drift” (Eqn. 3.1), we can approximate to the optimal solution
using the classifiers that have yielded good performance in recent n frames or in
the same situations by Learn++. Learn++, which is an ensemble of classifiers
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originally developed for incremental learning. It specifically seeks the most dis-
criminative information from each sample set (sub-problem) through sequentially
generating an ensemble of classifiers which are trained on individual data sources
and carry complementary information. It can still achieve a statistically signif-
icant improvement by combining these classifiers which are finely tuned for the
given problem. In this chapter, the “concept drift” problem in the NSE is solved
through two steps: (1) selection of the active subset Ωt

a; (2) optimal approxima-
tion f t = wtΩt

a. In the following, how to train basic classifiers fi and how to
approximate the optimal classifier f t by calculating wt

i will be introduced.

3.4.3 Basic classifier

The Näıve Bayesian are used as the basic classifiers in our proposed system.
These classifiers will be trained on different datasets thus the parameters of clas-
sifiers will be different to capture varied information. Thus, fi can be defined by
posterior probabilities by combining nB nodes (assuming an uniform prior p(y)):

fi(xl) = argmax
y

p(y|xl(i)) (3.4)

where p(y|xl(i)) ∝
∏nB

j p(xl(i, j)|y). Therefore, for each fi, the posterior proba-
bilities will be trained and updated to adapt to the changes of the environment
and the object by calculating and updating the class conditional distribution
pt(Bi,j|y) of each Fern.

Training. The parameters of SR for each classifier fi will be generated ran-
domly. Once generated, these parameters will be fixed during the whole lifespan
of the classifier fi. At frame t, based on a set X t

1 with all positive samples and
2000 negative samples in the set X t and distributionDt, we can define two quanti-
ties which are used to train or update classifiers: N t(y, Bi,j) =

∑

l D
t
lΓ⌊x

t
l(i, j) =

Bi,j⌋Γ⌊y
t
l = y⌋ and N t(y) =

∑

l D
t
lΓ⌊y

t
l = y⌋, where xt

l ∈ X t
1. Other nega-

tive samples are used to evaluate the classifier. Therefore, τ2(i) = maxat
l
p(at|fi),

where atl denotes the corresponding states of negative samples xt
l ∈ X t/X t

1. Thus,
the class conditional distributions for fi are calculated by:

pt(Bi,j|y) =
1 +N(y, Bi,j)

1 +N(y)
(3.5)

where N(y, Bi,j) = N t(y, Bi,j) and N(y) = N t(y).
Learning. If fi has been used in frame t. The set X t can be used to update

the class conditional distribution pt(Bi,j |y) so as to adapt to the changes by:

N(y, Bi,j) ⇐ N(y, Bi,j) +N t(y, Bi,j);N(y) ⇐ N(y) +N t(y) (3.6)

By recalculating Eqn. 3.5, the updated class conditional distributions are
obtained.
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3.4.4 Tracking by detection

At the beginning (t = 0), random Ferns f1 needs to be trained according to
the selected target in the first frame and we can directly jump to the sample
collection step. At frame t(t > 0), assume that f t(xt

l) is the ensemble learned
at time t − 1 and the location at−1 has been determined. The goal is to detect
the location of the target and evaluate the state of the target. To achieve this,
the following steps which are similar to most tracking-by-detection approaches
are processed sequentially. First, by applying the sliding window method to the
current frame, the classifier in the competitive subset is used to classify each
patch of this frame. Second, the OP method is used to compare the two targets
in the two successive frames. Third, the probabilities p(at|at−1) and p(at|Ωt

a) are
calculated. Fourth, all states classified as positive samples by f t will be fused
and the optimal state at with the highest confidence in the current frame will
be obtained. Finally, the classifiers will be updated according to the present
performance. The entire procedure is organised as in Algorithm 1. According to
the results of current frame, how to search optimal classifier for next frame will
be given in the following section.

Algorithm 1 LPP tracker
Initialization Define a target in the first frame and build a classifier f1.
Repeat t = 1, · · ·
(0) Capture a new frame. If no frame: Exit.
(1) Run each classifier fi ∈ Ωt

a of the competitive subset on the present frame.
(2) Combine the results f t according to Eqn. 3.3 and obtain the best results: at.
(3) If at is valid target: Compute the probabilities p(at|at−1) and p(at|fi).
(4) If p(at|at−1) > τ1: Collect and weight samples Xt,
(5) If p(at|Ωt

a) > τ2: Update the old classifiers fi,
(6) Else If p(at|Ωt

c) > τ2: Revive a classifier from Ωt
c;

(7) Else: Train a new classifier fnt
a
+1.

End

End

(8) Resampling and evaluate the classifiers.

Return Update the classifier f t+1 and set the state at, Go To (0).

3.4.5 Collecting and weighting samples

If p(at|at−1) > τ1 is satisfied, it means that the tracked target is valid and can
be used to update the set of classifiers. Otherwise, when no valid target is in the
current frame, we can directly jump to the classifier sampling step.

Collecting. The sample set X t is constructed as follows: If the overlap of
at and atl exceeds 0.5, the patch ztl of state atl will be considered as the positive
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Figure 3.6: Signoidal weights used in Eqn. 3.9. λ1, λ2 and η are set to 0.5, 10
and 8, respectively.

sample; otherwise if the overlap of at and atl is lower than 0.2, it is considered as
the negative sample. Also, according to the fused results at, 400 positive samples
will be generated by the affine warping of the selected patch zt to increase the
richness of positive samples.

Weighting. At the beginning (t = 0), the distribution of samples Dt used
to train the first classifier is set to be equal to 1/nt

X . If (t > 0), the distribution
of patches in the tth frame will be computed. Firstly, the current ensemble f t is

evaluated on the new patches X t: Et = 1
nt
X

∑nt
X

l=1 Γ⌊sign(f
t(xt

l)) 6= ytl⌋. Secondly,

sample weights Dt
l of x

t
l are defined by:

Dt
l =

{

Et, sign(f t(xt
l)) = ytl ;

1, otherwise.
(3.7)

Finally, set Dt
l ⇐ Dt

l/
∑nt

X

l=1D
t
l . Normalizing the error weights by their sum then

provides us the updated penalty distribution. Samples of the new environment
xt
l , which are not recognised by the existing knowledge base f t, are identified.

3.4.6 Sampling the classifiers

In this section, how to approximate the optimal classifier based on Learn++,
according to the recent performance of the ensemble, will be introduced. The
strategies include learning the new samples to the existing classifiers, reviving the
old classifiers, training a new classifier and sampling all of them. If the current
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competitive subset can deal with the changes, the optimal classifier in the next
frame has the same basic classifiers. To increase the adaptivity, the new samples
will be learned by existing classifiers. For each fi ∈ Ωt

a, if p(a
t|fi) > τ2(i), then

fi will be updated by the samples X t according to their distribution Dt
l following

Eqn. 3.6. Otherwise, reviving the old classifiers or training a new classifier will
be considered. This step of selecting the samples is important for keeping the
stability of the classifiers. From the analysis of “concept drift”, we can see that
most classifiers are trained on a small dataset. If some samples generated by
different distributions are used to update the classifiers, the intrinsic structure of
the classifiers will be easily destroyed. Thus, the model will fail to deal with any
challenges even if the classifiers have incorporated the history information.

Reviving. If p(at|Ωt
a) < τ2 and p(at|at−1) > τ1, due to the “concept drift”,

it means that the current ensemble cannot deal with the changes. So, a new
set of basic classifiers need to be built. New classifiers will be added into the
ensemble so that the optimal classifier will be searched in a new set of classifiers.
Firstly, all existing classifiers fi ∈ Ωt

c will be used to check whether the current
appearance can be recognised or not by old classifiers. If a similar “concept
drift” has occurred before, an old classifier can be revived. This procedure is
efficient to compute because no sliding window is needed. If p(at|Ωt

c) > τ2,
where p(at|Ωt

c) = maxi p(a
t|fi), there exists one classifier fi that can recognise

the current state. Thus, this classifier fi will be revived directly without adding
a new one. Otherwise, a new classifier will be trained and added to the ensemble
following Eqn. 3.5.

Resampling. No matter whether the valid target has been detected in the
current frame or not, some classifiers killed before will be revived through the re-
sampling procedure according to the historical weights W t

i . This will increase the
diversity and avoid the local optimal solution. The adaptive rejection sampling
method [202] is employed to realize this step.

Evaluating. After learning, reviving or training, the competitive set of basic
classifiers Ωt+1

a is fixed. For finding the optimal classifier for the next frame,
evaluating all classifiers fi ∈ Ωt+1

a on the new data X t is necessary. Firstly, the
error of each fi ∈ Ωt+1

a on weighting samples is defined as:

εti =

nt
X

∑

l=1

Dt
lΓ⌊fi(x

t
l) 6= ytl⌋ (3.8)

Thus, εti ⇐ εti/(1−εti). ε
t
i can be considered as the performance of the function.

If fi contributes mostly to the error of the ensemble classifier f t, εti will be larger
than others. Secondly, for incorporating the performance on recent frames, a
sigmoidal error weight is defined as: γt

i(m) = 1/(1 + exp(λ1m − λ2)), {m =
0, · · · , nt

e + η − i}, where λ1, λ2 are two parameters, η is the time step and i is
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Figure 3.7: The success plots and AUC rankings of 10 tracking methods.

the index of the function in the ensemble. Thus, the weights are normalised so
that γt

i(m) ⇐ γt
i(m)/

∑

m γt
i(m) (see Fig. 3.6). Finally, the error of fi ∈ Ωt+1

a is
weighted with respect to time so that recent competence (error rate) is considered
more heavily for categorizing knowledge. The weighted errors are defined by:

βt
i =

nt
e+η−i
∑

m=0

γt
i(n

t
e + η − i−m)εt−m

i (3.9)

Thus, we calculate the classifier voting weights: wt
i = log 1/βt

i and normalise
them: wt+1

i ⇐ wt
i/
∑

i w
t
i. The instant voting weights can be used to update the

historical weights according to W t+1
i ⇐ (1−α)W t

i +αwt
i, where α is the updating

rate and is set to 0.05.
Optimal approximation. To balance the increase of the diversity of the

ensemble and efficiency of the model, the following conditions will be considered:
(1) For any fi ∈ Ωt+1

a with wt+1
i < τ3, the classifiers will be killed and moved to

Ωt+1
c ; (2) For any fi ∈ Ωt+1

c with W t+1
i < τ3, the classifiers will be deleted for

ever. Because the size of Ωt+1
a is much smaller than Ωt+1

e , the weights wt+1 are
sparse. Therefore, the optimal approximation classifier used in the next frame
will be defined by:

f t+1 =
∑

fi∈Ω
t+1
e

wt+1
i fi (3.10)

3.5 Experiments

In our experiments, the greyscale images are taken as input. τ1, τ2 and τ3 are set
to 0.75, 0.9 and 0.05, respectively. LPP tracker will be compared with 13 state-
of-the-art methods, including Struck [59], SCM [136], VTS [148], VTD [203],
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CSK [204], ASLA [135], DFT [205], L1APG [206], LSK [207], MIL [58], OAB [57],
Frag [131] and CT [138]. Most of them were recently proposed and ranked in
the top list in the experimental comparison in [21]. Our experiments follow
the setting in [21]. Each sequence is repeated 5 times with different random
seeds by LPP tracker, and the median results are reported. To compare with
numerous methods, two types of metric are used to evaluate the different methods.
(1) Center location distance: following [21], if the distance between the center
of the tracked patch and the center of ground truth is within 20 pixels, the
estimated target is considered as correct. Thus, the precision can be defined as
the proportion of the correctly tracked frames to the total number of frames.
The precision rankings of the 10 methods on the 21 videos are given in Table
3.2. (2) Bounding box overlap: the success plot shows the ratios of successful
frames at the thresholds varying from 0 to 1. The area under curve (AUC) [21]
of each success plot is used to rank the tracking algorithms. Wu et al. [21]
pointed out that AUC is fairer and more accurate because it measures the overall
performance. Both success plots and AUC rankings are shown in Fig. 3.7 and
some screenshots are shown in Fig. 3.10.

3.5.1 Comparison with state-of-the-art methods

Firstly, taking the sequence singer1 (624×352) for example, CT, LPP tracker and
Struck take the average time per frame of 17ms, 55ms and 209ms respectively on
a Dell M4600 (Intel Core 2.8GHz and 8G RAM). Thus, LPP tracker can address
most real-world problems in real-time (more than 18 FPS).

Secondly, from Fig. 3.7, LPP tracker can achieve the best performance among
all the 13 methods (Only top 10 are shown in the figure) on most of the challenges,
from the perspectives of both center location distance and bounding box overlap.
From this figure, we can see that LPP outperforms other methods obviously both
at the overlap range from 0 to 0.6 and the location distance range from 15 to 50.
Generally, template matching based methods including SCM and ASLA achieve
better results both at higher overlap rates and nearer pixel distances. In fact,
at this situation, LPP tracker performs very closely to the best method and the
performances of all methods are nearly the same.

Thirdly, the performance comparisons on different challenges are given in
Table 3.2, Fig. 3.8 and Fig. 3.9. On the one hand, using the bounding box overlap
criterion, LPP tracker has a great advantage over the other methods except for
the challenges of scale variation and low resolution. Although LPP tracker is not
the best method for these two challenges, it still ranks in the top three. It is also
meaningful to point out that LPP tracker achieves much better results on the
challenges of fast motion, motion blur and out of view than other methods. In
fact, the first motivation of LPP tracker is to address the challenges of appearance
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Challenges LPP Struck SCM ASLA CSK L1APG OAB
IV 0.677 0.558 0.594 0.517 0.481 0.341 0.388

OPR 0.725 0.597 0.618 0.518 0.540 0.478 0.503
SV 0.720 0.639 0.672 0.552 0.503 0.472 0.541
OCC 0.719 0.564 0.640 0.460 0.500 0.461 0.483
DEF 0.734 0.521 0.586 0.445 0.476 0.383 0.470
MB 0.663 0.551 0.339 0.278 0.342 0.375 0.360
FM 0.679 0.604 0.333 0.253 0.381 0.365 0.416
IPR 0.677 0.617 0.597 0.511 0.547 0.518 0.471
OV 0.698 0.539 0.429 0.333 0.379 0.329 0.454
BC 0.693 0.585 0.578 0.496 0.585 0.425 0.446
LR 0.501 0.545 0.305 0.156 0.411 0.460 0.376

Challenges VTD VTS DFT LSK CT MIL Frag
IV 0.557 0.573 0.475 0.449 0.359 0.349 0.326

OPR 0.620 0.604 0.497 0.525 0.394 0.466 0.444
SV 0.597 0.582 0.441 0.480 0.448 0.471 0.407
OCC 0.545 0.534 0.481 0.534 0.412 0.427 0.475
DEF 0.501 0.487 0.537 0.481 0.435 0.455 0.468
MB 0.375 0.375 0.383 0.324 0.306 0.357 0.288
FM 0.352 0.353 0.373 0.375 0.323 0.396 0.346
IPR 0.599 0.579 0.469 0.534 0.356 0.453 0.401
OV 0.462 0.455 0.391 0.515 0.336 0.393 0.355
BC 0.571 0.578 0.507 0.504 0.339 0.456 0.421
LR 0.168 0.187 0.211 0.304 0.152 0.171 0.163

Table 3.2: The precision rankings of 14 tracking methods on challenging se-
quences.

61



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
uc

ce
ss

 r
at

e

Success plots of background clutter (21)
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Success plots of deformation (19)
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Success plots of fast motion (17)
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Success plots of in−plane rotation (31)
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Success plots of illumination variation (25)
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Success plots of low resolution (4)
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Figure 3.8: The success plots and AUC rankings of 10 tracking methods on
challenging sequences.

changes during movement. For example, by updating the selected classifiers, the
“concept” can be reflected by the independent particular classifier. If the object
leaves out of view then comes back, LPP tracker can still track it using a particular
classifier as long as the appearance has been learned in a certain time. On the
other hand, using the center location distance criterion, LPP tracker outperforms
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Success plots of motion blur (12)
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Success plots of occlusion (29)
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Success plots of out−of−plane rotation (39)
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Success plots of out of view (6)
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Success plots of scale variation (28)
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Figure 3.9: The success plots and AUC rankings of 10 tracking methods on
challenging sequences.

all other methods on most challenges only except for the low resolution challenge.
The advantages using pixel distance criterion are more obvious than the overlap
rate criterion. Unlike template matching methods, in some difficult situations
including out-of-plane rotation and occlusion, LPP tracker can track the part
of object without containing the pixels from environment. However, at such
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Figure 3.10: Screenshots of top 9 tracking methods (AUC ranking in Fig. 3.7) on
challenging sequences, including LPP (red), Struck (green), SCM (blue), ASLA
(yellow), VTD (pink), VTS (cyan), CSK (dark red), LSK (orange) and DFT
(turquoise).

conditions, the ground truth annotations of video samples in the dataset normally
contain the pixels from the environment.

In total, LPP tracker gains nine firsts, one second and one third by the AUC
ranking, and it gains ten firsts and one second by the precision ranking. The
difference between the two rankings is scale variation. That is because LPP
tracker can build a new classifier for one part of the object when there are some
large deformations in the remaining part in these challenges, where the object
has been tracked by LPP tracker but the score of overlap is relatively low. In
addition, there are only four sequences in the dataset containing the challenge of
low resolution. The plots in Fig. 3.8 for low resolution are very unsmooth because
the samples are not sufficient. At present, no method can solve this challenge
very well and the highest score is only 0.389 which is much lower than the scores
for other challenges. For LPP tracker, although filters which are robust to noise
are used in the image patch representation, when the present classifier focuses on
the local part of the object, the descriptor is also influenced by the challenge of
low resolution.

There are two parameters of motion constraints τ1 and τ2 to guide the learning
of LPP tracker. When we investigate one parameter, other parameters will be
set to default (same values for all videos). In Fig. 3.11 (a) and (b), the overall
performance on all the videos vs. the different settings for the two parameters are
given. We can see that the parameter τ1 achieves the best performance around
0.75 while the parameter τ2 achieves the best performance around 0.9. If the two
parameters are set too small, the model will become more flexible but less stable.
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Figure 3.11: (a) The AUC performance vs. parameter τ1. (b) The AUC perfor-
mance vs. parameter τ2.

More erroneous information will be added into the model and the performance
will deteriorate. However, if the two parameters are set too large, the model
cannot adapt to the new environment and the performance of the model will
decrease as well. Moreover, the scores of AUC are relatively stable around the
best values of the two parameters, which means they are not very sensitive.

3.5.2 More analysis on the long-term sequences

To further demonstrate the capabilities of our system, we compare LPP tracker
with Struck (the best method in evaluations [21] and [144]) on three more chal-
lenging long-term sequences named motorcross, panda and sheep. There are sev-
eral difficulties, which are normally not considered by other methods before: (1)
the target makes a complete rotation; (2) the target moves out of view and gets
back with a totally different appearance and location; (3) the video is very long
and various challenges appear simultaneously. To some extent, the assumptions
of smooth motion and smooth variation necessary for most methods are not valid
anymore in such sequences. The three sequences with the above three difficulties
will be good examples to test the flexibility and stability of a model. Firstly,
Struck fails at frames 30, 1016 and 828 for sequences motorcross, panda and
sheep, respectively, when the target starts to move out of view. However, LPP
tracker can successfully reject the learning from wrong samples and keep its sta-
bility. Secondly, from Fig. 3.12, we can see that LPP tracker can tackle all these
problems simultaneously because LPP tracker builds one classifier for each prob-
lem. Finally, Fig. 3.13 demonstrates the weights of classifiers on all the frames
of sequence sheep. When no valid target is detected, LPP tracker will sample
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Figure 3.12: Comparsion of tracking results on three more challenging sequences
between LPP tracker (Red) and Struck (Green). motorcross (top row), panda
(middle row) and sheep (bottom row) have 1800, 3000 and 2532 frames, respec-
tively.

Figure 3.13: The weights for the optimal classifier f t.

the classifiers according to their historical weights. Once the predefined target
appears in view, LPP tracker will select the most effective classifier to track the
target. From Fig. 3.13, we can see that the weights are very sparse and just a
few members will be run for each frame.

3.6 Summary

In this chapter, we have proposed a Learn++ based tracker for visual tracking.
By means of automatically adjusting the members of classifiers, a democracy
mechanism is adopted by LPP tracker to solve numerous challenges appearing in
the scenarios, simultaneously. Moreover, LPP tracker achieves an optimal bal-
ance between flexibility and stability of the classifiers and between the efficiency
and performance of the model as well. In future work, it is worth considering
using other constraints to guide the sampling of classifiers. Moreover, for abrupt
deformation of the target when typically n < 5, LPP tracker may refuse to add
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a new classifier to the ensemble. How to define an adaptive quantity to tackle
such a situation is under investigation. In this chapter, the classifiers are gener-
ated in a same function space and based on a same type of feature but trained
using different filters and samples. In fact, there is evidence that performance
of tracking may be increased by combining different successful models. Thus, to
further improve the diversity of the tracker, it is meaningful to investigate how
to combine various successful models in the future.
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Chapter 4

A Winner-take-all Strategy for
Improved Object Tracking

As pointed out in Chapter 3, visual tracking is a fundamental task in computer
vision and the goal is to estimate the locations or motion states of a predefined tar-
get in video. It has many potential applications in surveillance, human-computer
interaction, reality augmentation and robotics. In Chapter 3, a set of indepen-
dent classifiers sampled in a same function space are dynamically maintained
and updated according their recent performance and environment. However, the
essential reason why online object tracking is very challenging is that it is an
under-sample and incomplete-dataset problem. Thus, from the perspective of
statistical learning theory, the problem leads to overfitting and low generalisation
to tackle the various unpredictable changes. Therefore, to further improve the
diversity of the system in this chapter (See Fig. 4.1), a Winner-take-all strategy
will be exploited for online object tracking. The differences between the model
LPP introduced in Chapter 3 and the model in this chapter are:

• The model in the last chapter selects a set of classifiers from a same func-
tional space but the parameters of them are different. These classifiers
which are trained using different datasets and at different time are used
to conquer various challenges. However, in this chapter, the tracker mem-
bers with diverse considerations are from different functional space and thus
possess more diversity.

• A set of competitive classifiers are chosen to solve current problem whist,
in this chapter, only one winner tracker is selected to improve both the
performance and the efficiency of system simultaneously.

The rest of this chapter is organised as follows. The hypotheses and motivation
of this work is introduced in Sec. 4.1. In Sec. 4.2, how to build a performance
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Figure 4.1: Visual data association in a signal camera using a winner tracker
selected from different function spaces.

prediction model and how to online select a winner tracker is detailed. Sec. 4.4
presents experimental results. Section 4.5 draws summary.

4.1 Preliminaries

4.1.1 Hypotheses

Beside the basic hypotheses of object tracking introduced in the last chapter, this
chapter has the following hypotheses as well:

• The diversity of a system could be improved by incorporating different
models. Moreover, the diversity of these models have the difference with
each other so that they are complementary.

• It is assumed that, for a particular application, a set of trackers owning
diverse properties can be selected from existing methods. Furthermore, a
relationship between the performance of these selected trackers and motions
(challenges) of a target can be modelled off-line on a large labelled dataset.
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Figure 4.2: Comparison of two trackers Struck [59] (Red) and CT [138] (Green)
on sequences carDark and Doll in the TB-50 dataset [21]. Struck outperforms
CT on the first sequence (first row) but the performance is obviously lower on
the second sequence. The question is: when and how to combine the two trackers
without sacrificing the efficiency? This chapter will answer this question from
the perspective of a winner-take-all strategy.

4.1.2 Motivation

For decades, numerous algorithms are proposed but different models achieve dis-
similar results for different difficulties. For example, part-based models [208] are
more robust to partial occlusion, comparative features [138] are more invariant to
illumination changes and the tracking-by-detection methods [1] have a stronger
ability to tackle the out-of-view problem. Fig. 4.2 shows that two trackers Struck
[59] and CT [138] perform very differently on two sequences. And, if several dif-
ferent challenges occur in a long video sequence, most methods will fail to track
the target because a single method cannot deal with all the challenges. In general,
it is difficult to say which existing tracker can completely outperform all other
methods in any environment.

To avoid the overfitting and improve the generalisation, the easiest way is
to directly fuse the results from an ensemble [20, 149], which amplify the diver-
sity of the system. However, this strategy naturally increases the computational
complexity. Complicated trackers [59] normally perform better on very complex
situations than some simple models but the computational complexity of these
complicated methods is very high so that they are far from real-time. For exam-
ple, from the findings in [134], Struck [59] achieves at least 54.9% (47.4 vs. 30.6)
higher overall accuracy than CT [138] but its time complexity is more than triple.

Moreover, several existing evaluation reports [3, 134, 137, 144] give a compre-
hensive investigation of the performance of recently proposed trackers and several
datasets for evaluating different trackers are built. In these works, the strengths
of various methods and their robustness to different challenges are analysed in
detail. The datasets and analysis are very valuable and beneficial to understand
the intrinsic principle of object tracking. If the knowledge can be exploited, the
performance of a new object tracking system can be improved.

Motivated by the above three observations, in this chapter, a winner-take-
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all strategy is exploited to select a winner tracker which is most suitable and
efficient to tackle the current challenge, according to features extracted from
the current environment and an efficiency factor. To fast extract features in
a tracking environment, a dense trajectories based motion feature is designed
to describe characteristics and challenges of the movement of an object and its
surrounding. Based on a large public dataset, a prediction model of performance
for different trackers on various challenges can be obtained off-line. Then, the
learned structural regression model can be directly used to efficiently select the
winner tracker online. To increase the flexibility of all members, the tracked
results of the winner will be used to update other trackers. The advantages of
the proposed WTA tracker are reflected from the following three aspects: 1) By
exploiting the knowledge off-line, the performance of trackers can be carefully
identified on a large sample set. We can consider the knowledge transferred
from a dataset into a new testing sequence. 2) By incorporating the powerful
and complementary abilities from multiple trackers, the diversity of the model is
improved so that the WTA tracker can tackle various unpredictable difficulties.
3) Since, at any time, only one suitable tracker in terms of both accuracy and
speed is executed, the WTA tracker will be much faster than the slowest one.
The best cases are that the fastest tracker can be chosen for simple situations
most of the time and a complex and accurate tracker will be occasionally used
only when there is a difficult challenge.

4.2 Learning to Predict the Performance

Our proposed WTA tracker contains two parts: off-line tracker evaluation and
online tracking. On the one hand, based on the public dataset, the off-line evalua-
tion is to learn a model to predict the performance of the trackers in the selected
set. It is worth to point out that this step is not to pre-train the tracker but
rather to build an evaluation criterion. On the other hand, online tracking is
used to choose a winner tracker (most suitable) according the motion feature and
the efficiency factor in the current situation and then to update all trackers.

Consider the following general setting. Suppose that there are K trackers
available in the selected set fk ∈ T, indexed by k. To balance the performance
and efficiency of the system, a quantity of speed statistics S = {sk : fk ∈ T} for
trackers is also considered. We assume that I t is the current frame in which the
state of object needs to be estimated. Therefore, we have

ᾱ = maxα,kp(α, fk|I
t
t−δ, S)

= maxα,kp(α|fk, I
t)p(fk|I

t−1
t−δ , S),

(4.1)

where I tt−δ = {I t, · · · , I t−δ} is the previous frames and δ is a fixed parameter.

71



It is worth to point out that, if the operation is replaced by a summation, thus
the framework becomes an ensemble of trackers. In this situation, the system
will be very computationally expensive. The key of our WTA tracker is that the
best tracker can be selected according to current motion features and it is not
necessary that all trackers should be executed.

4.2.1 Evaluation criterion

Given a frame Ii in a video V for which the ground truth state α̂i of a motion is
labelled, we can obtain state αk

i for tracker fk. Then, a rate can be defined to
describe the performance of different trackers by using the intersection.

yki =
Area(α̂i ∩ αk

i )

Area(α̂i ∪ αk
i )

(4.2)

For different trackers fk, the overlapping rate will be dissimilar because the abil-
ities of trackers are very different. It is obvious that yki is between 0 and 1 and
when the value is larger, the tracker is more powerful. In this chapter, a rectangle
which encloses the object will be considered as the state and the overlapping rate
is defined as the overlap between the rectangles of the ground truth and the one
estimated by tracker fk. Our aim in the evaluation step is to build a relationship
between the overlapping rate yki and the motion in several previous frames I t−1

t−δ .

4.2.2 Motion features

Motion is a most informative cue for tracking and most difficulties are induced by
the motion of the target, including deformation, in-plane rotation, out-of-plane
rotation, fast motion, motion blur, scale variation and occlusion. Moreover, due
to the diverse shape of objects and the cluttered environment, the motion will
become more complex. How to design a robust representation of motion is still
a very challenge task. Recently, dense trajectories [209] has been shown to be
effective for action recognition in a cluttered environment. The trajectories are
extracted by tracking densely sampled points using KL tracker [17]. Following
[209], action localisation proposals from dense trajectories is proposed in [210] by
using an efficient proposal generation algorithm. KL tracker is normally used to
assist the algorithms using the idea of tracking-by-detection, such as [1, 152]. KL
tracker is very efficient when the sampled points are sparse.

In this chapter, we adopt the dense trajectories to describe the motion for
choosing the most suitable tracker. If the current frame is I t, then several previous
frames I t−1

t−δ are available and the corresponding states αt−1
t−δ = {αt−δ, · · · , αt−1}

of the target have been estimated. We divide the rectangle αt−1 in the last frame
I t−1 into 9 × 9 grids and thus 100 points need to be back tracked. A common
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Figure 4.3: Four cases of challenges captured by the motion flow. Top left
(FaceOcc1): some points are vanished due to the occlusion; Top right (Mhyang):
out-of-plane rotation; Bottom left (Singer1): scale change and camera motion;
Bottom right (MountainBike): in-plane rotation and camera motion.

phenomenon is that, due to the motion of the target, some points will disappear
and others forming new appearances will appear in the scene (e.g., recover from
partial occlusion). However, this has no negative influence on the representation
of motion, as long as the traces of selected points in the last frame are correctly
estimated. If one point cannot been found in some frames, the location will be set
to the same as the location which has been already traced. Also, we can estimate
the locations in the current frame by using KL tracker.

Motion flow calculated in a region centered around the object is used to cap-
ture the variations and encode local motion patterns induced by the environment
and object. Camera motion can be considered one of the challenges and can
be characterized by the motion feature similarly as other challenges. Fig. 4.3
shows how to calculate the motion flow and two cases (third and fourth) con-
tain the challenge of camera motion. Both in training and testing stages, the
motion flow is computed inside the rectangles based on the past δ labelled or
tracked states and used to predict current performance. More clearly, the fea-
ture x contains two parts: x = (xm, xb). We have xm = (S1, · · · ,S100) where
Sj = (△P t

j , · · · ,△P t−δ+1
j ) and △P t

j = (△xt
j,△yt

j). △xt
j is the horizontal-

coordinate displacement of point j in the image space between two frames. Also,
we have xb = (△Bt, · · · ,△Bt−δ+1) where△Bt is the average brightness difference
of the points between two frames.
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4.2.3 Structural regression modal training

Through the reviews [134, 144], we can see that different trackers give very dis-
similar performances for different challenges. In this section, we will build a
relationship between the performance of various trackers and the challenges.

Dataset collection: The first step is to collect samples and give the anno-
tations to the samples for each tracker. We use the ALOV300 dataset collected
in [144], which contains 315 sequences and the ground truth of each sequence is
annotated. Suppose that there are K trackers available in the selected set fk ∈ T.
Then, each tracker will be tested on each sequence individually and we can ob-
tain the estimated state αk

i for every frame. To achieve this, each tracker will be
initialised in the first frame, and used to track the target in following frames and
also updated ontime normally.

Because the sequences are annotated, the set αt−1
t−δ consists of the states of

ground truth in the previous frames I t−1
t−δ . Therefore, according to dense trajecto-

ries, the motion feature xi of the target for the current frame Ii can be obtained.
For frame Ii, we have the state of ground truth α̂i and the states αk

i estimated by
every tracker individually. Thus, the overlapping rate yki for tracker fk can also
be calculated. Therefore, for each motion feature xi, an overlapping rate vector
yi = (y1i , · · · , y

K
i ) can be obtained. If all the items are close to zero which means

the object and environment keep still (The current situation can be easily solved
by all the trackers), the pair of samples (xi, yi) will be ignored.

Once the dataset D = (X,Y) is constructed, where xi ∈ X and yi ∈ Y, a
relationship can be built to predict the performance according the motion feature.
Therefore, our aim is to learn a compatibility function L : X × Y → R over the
pairs of motion feature and performance of each tracker. By maximising L over
the response variable for a specific given input xi, we can derive a prediction
function as:

F (x;w) = maxy∈YL(x, y;w), (4.3)

where w denotes a parameter vector and will be estimated in the optimisation
step. In this chapter, we suppose the L is a linear combination of joint features
[211] Ψ(x, y):

L(x, y;w) = wTΨ(x, y), (4.4)

where Ψ(x, y) is a feature vector induced by a joint kernel K(xi, yi, xj, yj) =
(Ψ(xi, yi))

TΨ(xj , yj). Hence, given a tracker set T and sample pair (xi, yi),
we have: maxy∈Yw

TΨ(xi, y) ≤ wTΨ(xi, yi). If we define ∆Ψi(y) = Ψ(xi, yi) −
Ψ(xi, y), for any i and y, the inequality can be simplified as:

wT∆Ψi(y) ≥ 0. (4.5)

wT∆Ψi(y) is the linear margin in the feature space.
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To find the optimal parameter, a loss function ∆(y, yi) : Y×Y → R should be
defined to quantity the loss associated with a prediction y, if the true performance
is yi. We assume that ∆(y, yi) = 0 if y = yi; otherwise ∆(y, yi) > 0. The loss can
be considered as the lower boundary of line margin wT∆Ψi(y), meaning that the
optimal w should maximise the line margin wT∆Ψi(y) as much as possible. We
are usually not able to find a model that satisfies constraints exactly, hence some
slack variables are added to allow examples to deviate from the boundary.

wT∆Ψi(y) ≥ ∆(y, yi)− ξi. (4.6)

It is obvious that the solution is more than one as long as the norm of w is
large enough so that all constraints are satisfied. To obtain a unique solution,
the norm is limited to be smaller than 1: ||w||2 ≤ 1. This derives the general
maximum-margin framework and the objective function can be defined as:

minw
1
2
||w||2 + C

∑

i ξi
s.t.∀i, y

wT∆Ψi(y) ≥ ∆(y, yi)− ξi.
(4.7)

The problem 4.7 can be solved using the SVM-struct library [212]. In this
chapter, a tensor product joint kernels [213] is used to represent the joint feature
maps and there is K(xi, yi, xj, yj) = Kx(xi, xj)Ky(yi, yj). Both motion feature
and performance measurement will use a liner kernel to construct the feature
maps: Kx(xi, xj) = xT

i xj and Ky(yi, yj) = yTi yj. By solving the problem 4.7, we
can obtain an optimal w as follows:

w =
∑

i

∑

y∈Si

βiy∆Ψi(y), (4.8)

where Si is a working violate set for sample xi and βiy is a parameter. Both will
be estimated by solving the dual problem of 4.7. The algorithm of training is
given in Alg. 2.

Algorithm 2 WTA training
Input Trackers fk ∈ T and ALOV300 Dataset.
(a) Run each tracker fk for all sequences V in the dataset.
(b) Calculate overlapping rate yk according to Eq. 4.2.
(c) Compute motion features x using the dense trajectories S.
(d) Optimise the objective function 4.7.
(e) Obtain parameters by 4.8.
Output The prediction function F (x;w).

During training, 5000 annotated samples D = {(xi, yi)|i = 1, · · · , 5000} di-
vided into two parts (4000 used for training and the remaining for validation)
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are generated and the cross-validation method is used to obtain robust param-
eters and avoid over-fitting. δ is set to 10 in our experiments, considering the
robustness of motion flow.

4.3 Online Winner-take-all Tracking

Once the prediction model of performance is built, we can use it to select the
most suitable tracker (winner) according to the current motion feature and the
efficiency factor. To keep the flexibility, the result of the winner will be used to
update all members. The algorithm of online tracking is given in Alg. 3.

Algorithm 3 WTA tracking
Input Tracker set T, prediction function F (x;w), distribution p(fk|S) and state of a target
in the first frame.
Initialisation Initialise trackers fk according the ground truth in the first frame.
Repeat t = 1, · · ·
(0) Capture a new frame. If no frame: Exit.
(1) Calculate the motion feature x.
(2) Obtain the distribution p(fk|I

t−1
t−δ , S) according to Eq. 4.9.

(3) Choose the winner tracker fk∗ according to Eq. 4.10.
(4) Run the winner on the current frame.
(5) Obtain the state of target using p(α|fk∗).
(6) Collect samples in the current frame.
(7) Update all trackers. Go To (0).

Return The state of target in all frames.

4.3.1 Winner selection

According to the probability framework of WTA in Eq. 4.1, we can see that the
simplest way to boost the performance is to firstly execute all the trackers and
then choose the state of best tracker as the state of system. However, this strategy
is obviously computationally expensive. In general, for most object tracking
algorithms, the most time-consuming process is to search the target in the image
space, which includes patch representation, classification and fusion. The number
of sampled patches, which are generated by dense sampling or local sampling,
primarily determines the overall efficiency of the proposed tracker. Therefore, to
avoid the time-consuming checking for all trackers, we turn to adopt another way
that a most suitable tracker is first selected by calculating p(fk|I

t−1
t−δ , S), then the

optimal state will be estimated by this tracker according to p(α|fk, I
t).

For online tracking, the first step is to calculate the probability p(fk|I
t−1
t−δ , S).

We assume that, through the analysis on a big dataset, the prediction function
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F (x, w) of performance has be built and the efficiency statistics S of trackers are
obtained. The larger value of sk means that the efficiency of the corresponding
tracker is higher. We can consider it as the prior information to select the track-
ers according to the distribution: p(fk|S) = sk/

∑

k sk. The quantity sk keeps
relatively stable, because the speed only depends on the searching framework of
trackers themselves. For most trackers, the process of online tracking is same for
different frames or various difficulties. Thus, the two variables I t−1

t−δ and S are
independent with each other and we have:

p(fk|I
t−1
t−δ , S) = p(fk|I

t−1
t−δ )p(fk|S). (4.9)

In the cases where the predicted performance of most trackers is similar or there
are no changes for the target and and environment, the fastest tracker will be the
desired one.

To calculate p(fk|I
t−1
t−δ ), we further assume that the current frame is I t and the

previous frames I t−1
t−δ and their corresponding states αt−1

t−δ are available. Hence,
a motion feature x can be extracted from I t−1

t−δ . Then, the prediction model of
performance y = F (x, w) is used to evaluate the trackers. Therefore, we can
calculate the probability p(fk|I

t−1
t−δ ) = yk/

∑

k yk. Finally, a winner tracker will be
selected according:

k∗ = maxkp(fk|I
t−1
t−δ , S). (4.10)

Once the most suitable tracker is selected, the second step of online tracking
is to detect the predefined target as usual. It is worth to notice that the most
suitable tracker is not the one which can achieve the best performance but rather
the most efficient tracker in a set which can solve the current problem. Finally,
the state result of frame I t depends on the selected tracker and different trackers
adopt various methods of representation, classification and fusion.

4.3.2 Online updating

According to recent surveys [134, 137, 144], a typical tracking system includes
four important components: state sampling, patch representation, matching or
recognition and updating. Different algorithms explore diverse schemes to imple-
ment every part but all the methods should be updated according to the result
from the current frame. Updating is the most significant step so that the system
can be adaptive to the changes induced by targets and environments. Fortu-
nately, comparing to state searching, updating is much faster because normally
only several patches need to be calculated. To keep the effectiveness of all track-
ers, we should maintain them using the current result so that all the trackers can
adapt to the changes. Hence, the state in the current frame is the connecting
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Method WTA Struck CT TLD ASLA KMS CSK
mFPS 134.2 20.2 64.4 28.1 8.5 316 362
AUC 56.9 47.4 30.6 43.7 43.4 32.6 39.8

Table 4.1: The properties of selected trackers. mFPS means the average FPS of
the tracker on all frames.

point and plays a role as a medium. All member trackers can interact mutually
at this point and one tracker can learn from others and become more powerful.

Suppose that αt = maxαp(α|fk∗, I
t) is the optimal state in frame I t using

the selected tracker fk∗. Same to the update procedure in most methods, 50
positive samples will be generated by the affine warping of the selected patch
whose overlap with αt exceeds 0.5. For updating the discriminative methods,
50 negative samples will be generated randomly from the patches whose overlap
with αt is less than 0.1.

4.4 Experiments

4.4.1 Two public datasets

In our experiments, two recent public datasets ALOV300 [144] and TB-50 [21]
are used.

ALOV300: This dataset1 is used to learn the structural regression model
off-line. ALOV300 dataset consists of 315 video sequences and the total number
of frames is 89, 364. The average length of these sequences is 9.2 seconds with
a maximum of 35 seconds. The collection is categorised into thirteen aspects of
difficulty. The sequences are annotated by a rectangular bounding box along the
main axes of a flexible size every fifth frame. In rare cases, when motion is rapid,
the annotation is more frequent. The ground truth has been acquired for the
intermediate frames by linear interpolation.

TB-50: This datseset2 is used to test our WTA tracker online. TB-50 dataset
contains 50 sequences and the total number of frames is 29, 000. All sequences
are manually tagged with 11 attributes, which represent the challenging aspects
in visual tracking. Unlike ALOV300, most sequences are longer and are labelled
with at least three difficulties. Every frame in TB-50 is manually annotated by
a rectangular bounding box.

1http://www.alov300.org/
2http://www.visual-tracking.net
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Figure 4.4: Screenshots of the 7 tracking methods including the proposed WTA
(Red), Struck (Green), CT (Blue), TLD (Black), ASLA (Magenta), KMS (Cyan)
and CSK (Gray) on challenging sequences. In total, 29486 frames are tested.
(Zoom in for better viewing.)

4.4.2 Selected trackers

From the report in [21], six methods including Struck [59], CT [138], TLD [1],
ASLA [135], KMS [214] andCSK [204] are chosen as the basic trackers in WTA.
The mean number of frames per second (mFPS and the overall performance AUC
on dataset TB-50 are shown in Table 4.1. The experiments were run on a Dell
M4600 (Intel Core 2.8GHz and 8G RAM). The properties of trackers are similar
to that in [21]. Struck is a structured supervised classifier based method and is the
best tracker according to the overall performance among the six selected trackers.
In CT, a set of projections randomly generated is used to embed the features into
a low dimensional space. It is fast because the projections are fixed and updating
is only applied to the naive Bayesian classifier. ASLA is a representative sparse
coding based method. It is relatively slow but generally achieves better results
for partial occlusions. KMS uses a kernel-based similarity to define the distance
between the target model and target candidates and is very fast. In the top ten
methods of the report in [21], CSK has the highest speed where the proposed
circulant structure plays a key role. We can see that each selected tracker has
strengths and weaknesses. In fact, the selection of trackers is not limited to the
six methods and any tracker can be chosen, but in the general rule is any selected
tracker contains some characteristics that complement other selected trackers.
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Figure 4.5: Overlap success and distance precision plots over the benchmark using
OPE. AUC rankings are given in the legend.

4.4.3 Overall performance on benchmark

To quantitatively illustrate the performance of the WTA tracker, using one-pass
evaluation (OPE) [21], two metrics including the centre location error and the
overlapping rate are adopted. The centre location error is the Euclidean distance
between the centre of the tracking result and the ground truth while the over-
lapping rate is defined by the ratio between intersection and union of the two
rectangles. For fair comparison, other selected algorithms are run individually.
The overall performance is shown in Fig. 4.5 and one screenshot for each sequence
is given in Fig. 4.4. All the methods are ranked according to the area under curve
(AUC) in Fig. 4.5. We can see that the proposed WTA tracker achieves much
better results than the compared methods, no matter which metric is used. Ac-
cording to the overall performance reported in [21], Struck is the best method.
However, the performance of our WTA tracker is at least 9.1% higher using the
overlap metric and 11.4% higher using the centre error metric. Moreover, the
precision comparisons on 11 challenges are illustrated in Fig. 4.6 and 4.7. From
the AUC scores, we can conclude that WTA can boost the performance over all
the challenges. Struck cannot outperform others on challenges of illumination
variation and scale variation, but WTA can perform much better than others
by incorporating the abilities of different trackers. Furthermore, we can see that
the performance of WTA is at least 6.9% higher than others on the challenge of
fast motion and 10% higher on most other challenges. Finally, the mean number
of frames per second (mFPS) is also computed to show the efficiency of track-
ers. From Table 4.1, the mFPS score of WTA ranks the third. We can see that
WTA is much faster than the trackers including Struck, CT, TLD and ASLA by
choosing other two faster trackers KMS and CSK, when there is no challenge.

WTA is compared with the state-of-the-art methods, which is shown in Table
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Figure 4.6: Overlap success and distance precision plots for different challenges.

4.2 (including ensemble based methods: MEEM, EBT and Muster). We can
see that the proposed WTA is competitive with the state-of-the-art methods.
Moreover, the efficiency of KCF is 28% higher but the performance is 25% lower
than WTA. And, the performance of WTA is 10% lower than Muster but our
WTA is almost 4 times faster than it.
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Figure 4.7: More about overlap success and distance precision plots for different
challenges.

4.4.4 Component analysis

From the framework of winner-taker-all, we can see that only one tracker will be
selected to tackle the problem for each frame. Thus, the selection probabilities
shown in Fig. 4.8 (a) are calculated to illustrate how many frames are selected
for each tracker. Firstly, the probability is slightly proportional to the efficiency
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Method WTA KCF TGPR MEEM Muster RPT EBT
mFPS 134.2 172 3.5 10 29.5 4 1
AUC 56.9 45.5 53.9 57.2 64.1 57.6 53.8

Table 4.2: Comparison with the state-of-the-art methods including KCF [215],
TGPR [216], MEEM [151], Muster [154], RPT [217] and EBT [218].

Struck CT TLD ASLA KMS CSK
0

0.1

0.2

0.3

0.4

0.5

Trackers

P
ro

ba
bi

lit
y

 

 

Selection
Efficiency
Performance

0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Overlap

N
um

be
rs

 

 

Struck
CT
TLD
ASLA
KMS
CSK

(a) (b)

Figure 4.8: (a) Selection probabilities comparison to the efficiency and overall
performance of the 6 components. (b) Relationship between the overlap score
and the number of times the corresponding tracker is chosen.

distribution p(fk|S) but has less connection to the overall performance of trackers.
It does not mean that the performance of each tracker is completely independent
of the selection. In fact, trackers are selected mainly according to their instant
performance on special challenges. Secondly, from Fig. 4.8 (b), we can see that
most trackers are chosen when they can achieve good results (overlapping rate is
larger than 0.5). It is interesting to report that TLD is chosen many times at the
rate 0.2, because, in TLD, the samples which are divided into two groups at the
threshold 0.2 are used to train and update the trackers.

Finally, to further evaluate the contribution of each component, we build
our WTA tracker based on 5 trackers. The mean number of frames per second
and overall performance are investigated when one tracker is removed from the
set. From Table 4.3, comparing with other methods, we can see that the over-
all performance is influenced much when Struck or ASLA is removed but the
efficiency is a little improved. On the contrary, if the fast trackers KMS and
CSK are removed, the efficiency is hugely influenced. Therefore, we can conclude
that complex trackers normally contribute much to performance and simple, fast
models contribute much to efficiency of the proposed winner-take-all framework.
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Method -Struck -CT -TLD -ASLA -KMS -CSK
mFPS 263.3 140.6 143.8 150.9 109.7 89.2
AUC 52.8 57.2 54.7 53.1 56.1 55.1

Table 4.3: Component analysis. “-Struck” means that Struck will be removed
from the framework of WTA. Hence the corresponding quantities mFPS and AUC
are calculated without Struck.

Sequence S1 S2 S3 S4 S5 S6 S7
MEEM 0.53 0.61 0.14 0.04 0.25 0.32 0.33
MUSTer 0.85 0.25 0.26 0.07 0.99 0.28 0.04
Struck 0.68 0.43 0.15 0.04 0.55 0.63 0.38
TLD 0.98 0.72 0.81 0.33 0.40 1.00 0.40
WTA 0.97 0.83 0.95 0.65 0.75 0.89 0.65

Table 4.4: Precision comparison of tracking results on 7 long-term challenging
sequences. S1 and S2 are collected from [1], S3 are from [2] and the last 4
sequences are from [3]. Precision is defined as the centre distance between the
truth rectangle and the detected rectangle is less than 20 pixels.

4.4.5 Analysis of long-term tracking

Generally, long-term tracking could be considered as one of the most challenging
because of possible different problems presenting in a same sequence. Single
tracker which models a certain aspect of challenging normally fail to meet the
requirement to tackle these problems simultaneously. To further evaluate the
performance of our proposed WTA, 7 long-term sequences, which the average and
minimum numbers of frames are 2791 and 2133 respectively, are selected from
public datasets and the comparison results between WTA and some methods
including TLD, Strack, MUSTer and MEEM, which are thought as the relative
powerful for long-term tracking, are reported in Table 4.4 and 4.5. From the
two table, we can see that the proposed WTA achieves consistently advantageous
results over the state-of-the-art methods. It is worth to point out that WTA is
obviously more robust than others on these 7 sequences. For example, MUSTer
could completely track the object on the 5th sequence but almost fail on the 4th
and 9th sequences. In contrast, WTA could solve the different sets of problems
in the different sequences.
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Sequence S1 S2 S3 S4 S5 S6 S7
MEEM 3 1295 23 21 130 20 14
MUSTer 3 173 10 143 82 34 5
Struck 48 1285 8 57 82 25 13
TLD 872 228 8 65 82 2500 7
WTA 1486 1297 2011 356 325 1663 186

Table 4.5: Fail comparison of tracking results on 7 long-term challenging se-
quences. The number denotes which number of frames the centre distance of one
tracker is larger than 20 pixels.

4.5 Summary

In this chapter, to improve the performance and efficiency, a winner-take-all
framework has been proposed for object tracking by incorporating the strengths
of trackers for different challenges. It proves that different trackers have differ-
ent characteristics and the combination of them is valuable. In the future, there
are two points which need to be further investigated. On the one hand, in this
chapter, to guarantee the performance, several advantageous trackers are used.
In fact, it is meaningful to consider whether the performance can be hugely im-
proved, when merely simple fast trackers are combined. On the other hand, in
this chapter, the trackers interact with each other simply through the result of
the current frame. Whether trackers can learn from each other more deeply and
grow in a similar way of the crossover and mutation steps in genetic programming
is still under investigation.
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Chapter 5

Learning Cross-view Binary
Identities for Fast Person Re-ID

This chapter will turn to person re-identification (Re-ID) in a cross-camera set-
ting, see Fig. 5.1. Cross-camera person re-identification (Re-ID) is a funda-
mental solution for automated video surveillance [22]. It addresses the prob-
lem of associating people, at different locations and times, observed by the non-
overlapping Closed-Circuit TeleVision (CCTV) system. It has various potential
applications, such as long-term multi-person tracking, person re-acquisition and
forensic search [22]. Thus, the models introduced in previous chapters could be
considered as the preprocessing of person Re-ID. Normally, in solving the task
of person Re-ID, the single-view person detection and tracking are assumed to
be successfully addressed. By combining the procedures of object tracking and
re-identification induced in this chapter, a fully trace of a person in a large area
could be discovered. Nevertheless, we still need to point out that although the
methods proposed in last two chapters could be considered as the pre-stage of
person Re-ID when the predefined target is set to a person, it is not limited to
a person only and other objects could also be tracked. Furthermore, both single
view tracking and cross-camera re-identification are designed to realise the tasks
of visual data association. However, the sources or the settings of the two tasks
are striking different. For instance, only one positive sample is given in the task
of tracking online whist a large number of samples could be collected offline for
the task of re-identification. Hence, the potential necessary assumptions behind
of the two tasks are different.

Due to the various difficulties including illumination changes, viewpoint and
pose variations, inter-object occlusions and low resolution images, person re-
identification is still a very challenging task and far from being tackled. Most
of the state-of-the-art approaches can be categorised into two groups: learning
discriminative features which are invariant to view changes [23, 162, 163, 166]
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Figure 5.1: Visual data association in a cross-camera setting for person re-
identification. The traces of a person in a single view could be addressed using
the models introduced in the Chapter 3 and 4.

and learning the metric functions which are used to rank the pairs of observa-
tions from different views [169, 170, 172, 219]. However, in spite of their good
performance on public datasets, existing methods generally neglect considering
the efficiency of the algorithm in the matching stage. In fact, the searching
speed of a re-identification algorithm plays a significant role in real-world appli-
cations. Therefore, in this chapter, a novel approach, learning Cross-view Binary
Identities (CBI), is proposed to reduce the computational burden for person re-
identification.

The rest of this chapter is organised as follows. The hypotheses and motivation
of this work are introduced in Sec. 5.1. In Sec. 5.2, how to build a model to
learn cross-view identities for person re-identification is detailed. Then, Sec. 5.3
presents how to solve the complicated objective function and convergence proof.
Sec. 5.4 presents experimental results. Section 5.6 draws summary.

5.1 Preliminaries

5.1.1 Hypotheses

Generally, the hypotheses of cross-camera Re-ID task include:

• The basic hypothesis is that the human body detection and tracking in a
single view have been already solved using the methods induced in last two
chapters.
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• To build a robust system, the model should have an advanced generaliza-
tion performance. Hence, it assumes that sufficient samples which depict
the sample distribution could be collected in advance. This point is very dif-
ferent to the cases of single-view object tracking induced in the previous two
chapters. The inherent reason is that the labelled samples in object tracking
is very limited and generally given in the first frame, thus it is impossible
to describe the sample distribution only using these limited samples.

• To associate the persons at diverse locations and different times, it is as-
sumed that some invariant features about the appearance and structure of
a human body can be learned to represent individuals.

• Even if these meaningful features can be discovered by some heuristic meth-
ods or learning algorithms, it is still difficult to directly compute the similar-
ity between the images captured in different views, because of the problem
of ambiguity and uncertainty. Therefore, the general ways to compare the
features suppose that a common feature space, in which a certain effec-
tive metric will be used, could be explored by some linear or kernel-based
methods.

5.1.2 Motivation

In general, the efficiency of matching mainly depends on two aspects: (1) the
number of samples stored in the gallery set; (2) the definition of similarity. As
for the first aspect, it is impossible to reduce the number of samples. It is be-
cause [22]: (1) A large number of surveillance cameras have been installed in
public spaces ranging from transport infrastructures, shopping centers, sport are-
nas to residential streets. These places are always assembled with hundreds of
thousands of persons, even in a day. (2) Re-identification in open environments
can potentially scale to arbitrary levels, covering huge spatial areas spanning not
just different buildings but also different cities, or countries, leading to an over-
whelming quantity of “big data”. (3) Furthermore, person re-identification can be
extended from multi-camera networks to distributed Internet spaces, necessarily
across multi-sources over the Internet taking images from, for instance, the Face-
book profiles, Flickr and other social media. Therefore, with an explosive growth
of images, speeding up the matching stage of a re-identification system by design-
ing a more advantageous similarity criterion is an essential and non-replaceable
option.

In this chapter, a novel approach, learning Cross-view Binary Identities (CBI),
is proposed to reduce the computational burden for person re-identification. In
fact, hashing has been widely used for nearest neighbour search in computer
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Figure 5.2: Assuming that the left and middle images are of one person and the
middle and right images are of different persons but captured by one camera. Our
aim is to learn two sets of hash functions (one for each view) which embed the
images to binary codes (IDs) so that the IDs (second row) of a same person are
similar with each other and the IDs of different persons are quite dissimilar. As
illustrated in this figure, the learned binary codes play a same role as fingerprints.
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vision areas, such as image retrieval, object recognition and image matching, but
it has been seldom used in re-identification. Using the hash functions, various
special properties can be preserved in the learned codes, such as locality, variance
and affinity. For two observations xa and xb of one person in two different views,
CBI can learn two similar codes, which are considered as the identity (ID) of
that person, as shown in Fig. 5.1.2. The learned binary codes enable efficient
similarity search in different views using the Hamming distance between codes.
Moreover, compact binary codes are extremely economical for large-scale data
storage. Specifically, once the ID of one person in one view is obtained, the ID
can be used to search the corresponding person in another view by computing
the Hamming distance between two sets of bits ya and yb.

5.2 Learning Cross-view Binary Identities

For two different camera views: a and b, we can collect two training datasets
Xa = {x1

a, x
2
a, · · · , x

n
a} and Xb = {x1

b , x
2
b , · · · , x

n
b }, where xi

a is a column vector
observed by view a for person i and n is the number of paired samples (xi

a, x
i
b).

Our aim is to find K hash functions F = {f 1
v , · · · , f

K
v } for each view v ∈ {a, b}

and yv(k) = fk
v (xv). In this chapter, the hash functions are constructed by a

set of linear hyperplanes: Wv = {w1
v, w

2
v, · · · , w

K
v }. Thus, for dataset Xv, we

obtain Yv = {y1v, y
2
v, · · · , y

n
v} by using yikv = sign((wk

v)
Txi

v). It is obvious that
yiv ∈ {−1, 1}K. For simplicity, we can write it as: Yv = sign(W T

v Xv).
For a person with an image in the probe view, the first step is to calculate the

ID by using the learned projections of the probe view. Next, the ID can be used
to retrieve the images of persons with similar IDs in the gallery view. The IDs
of persons in the gallery view can be obtained in advance. Finally, the person
re-identification can be achieved by ranking the Hamming distances. Because
the learned pairs of projections can embed the images of a same person into a
same ID, the top list of ranking will conclude the ones corresponding to the probe
image.

5.2.1 Maximising the variance of bits

We want to produce an efficient code for each view v, in which the variance of
each bit is maximised and the bits are pairwise uncorrelated [115]. Thus, we need
to do this by maximising the following objective function:

Iv =
∑

k var(f
k
v (xv))

s.t. cor(fk1
v (xv), f

k2
v (xv)) = 0,

cor(fk
v (xv), f

k
v (xv)) = 1,

(5.1)
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where k1 6= k2. However, the requirement of exact balancedness makes the above
objective function intractable. By signed magnitude relaxation, we get the fol-
lowing continuous objective function based on dataset Xv:

Iv =
∑

k E(||(wk
v)

Txv||
2
2) ≈

1
n

∑

k(w
k
v)

TXvX
T
v w

k
v

= 1
n
tr(W T

v XvX
T
v Wv)

s.t. W T
v Wv = I.

(5.2)

We relax the constraints as: ((wk1
v )Twk2

v )2 < δv, k1 6= k2, without considering the
norm of each linear projection. δv is a minimal positive value. In fact, in the
following, we can see that it is not necessary to require the unit norm constraints
if the linear functions satisfy the hinge loss constraint.

5.2.2 Minimising the Hamming distance

In a single-view problem, the main consideration is that the learned codes are
discriminative to represent all the samples by preserving some special proper-
ties. However, it is not enough in a multi-view problem, such as person re-
identification. Our main goal, in this chapter, is to learn K hash functions for
each view so that two observations of each person have the most similar binary
codes (IDs). That is to say, the Hamming distance between two sets of codes
of one person should be minimised. For a pair of sample sets (Xa, Xb) collected
under the two views a and b, the Hamming distance between them is defined as:

Lh(Xa, Xb) =
∑

i

Dh(y
i
a, y

i
b), (5.3)

where Dh indicates the Hamming distance. The Hamming distance Dh is equal
to the number of ones in yia⊕ yib, where ⊕ is a logical operation that outputs true
whenever the inputs differ.

However, despite its efficiency, minimisation of the Hamming distance is gen-
erally intractable, because it is non-differentiable to the linear functions. Thus,
we seek to minimise an alternative item, which guarantees the Hamming distance
will be minimised simultaneously. Fortunately, Proposition 1 shows that we can
achieve this, when the linear hash functions satisfy the hinge loss constraint de-
fined as follows.

Definition 1: Hinge loss constraint. For any sample xi
v in one view v, if

the linear function wk
v is satisfying

yikv (w
k
v)

Txi
v ≥ 1− ξkiv , (5.4)

where ξkiv is a minimal non-negative value and yikv = sign((wk
v)

Txi
v), thus wk

v is
the hinge loss constraint satisfied function.
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The hinge loss function is used for “maximum-margin” classification, most no-
tably for Support Vector Machines (SVM) [220]. It penalises the items satisfying
yikv (w

k
v)

Txi
v < 1 so that all items can be correctly classified and the classification

score should keep stable as well. In our framework, we hope all the samples can
be projected outside of [−1, 1] by each linear function so that the learned codes
are relatively stable for all the samples. Moreover, if W k

a and W k
b are hinge loss

constraint satisfied functions, the Hamming distance between the learned codes
are constrained by the Euclidean distance.

Proposition 1: If two sets of linear projections Wa and Wb for two views are
the hinge loss constraint satisfied functions and their corresponding binary codes
are defined by yiv = sign(W T

v x
i
v), v ∈ {a, b}, thus the inequality can be established

when satisfying ∀k, ξkia + ξkib ≤ 1:

Dh(y
i
a, y

i
b) < ||W T

a x
i
a −W T

b x
i
b||

2
2. (5.5)

Proof. The Hamming distance between two binary codes ya and yb is defined by:

Dh(ya, yb) =
∑

k y
k
a ⊕ ykb

=
∑

k 1(sign((w
k
a)

Txa) 6= sign((wk
b )

Txb)),

where 1(· ) is an indicator function. Thus, for any k, we consider two conditions:
(1) If sign((wk

a)
Txa) = sign((wk

b )
Txb), it is obvious that

yka ⊕ ykb = 0 ≤ |(wk
a)

Txa − (wk
b )

Txb|.

(2) If sign((wk
a)

Txa) 6= sign((wk
b )

Txb), we assume that sign((wk
a)

Txa) = 1 (Other-
wise, same conclusion can be also obtained). There must be sign((wk

b )
Txb) = −1.

Since the two linear projections are both hinge loss constraint satisfied functions,
we have (wk

a)
Txa ≥ 1 − ξka and (wk

b )
Txb ≤ −1 + ξkb . So, there is 2 − ξka − ξkb ≤

|(wk
a)

Txa − (wk
b )

Txb|. Provided that ξka + ξkb ≤ 1, the following inequalities hold:

yka ⊕ ykb = 1 ≤ 2− ξka − ξkb ≤ |(wk
a)

Txa − (wk
b )

Txb|.

In total, provided with 1(.)2 = 1(.), we obtain the following conclusion by satis-
fying ∀k, ξka + ξkb ≤ 1:

Dh(ya, yb) =
∑

k 1
2(sign((wk

a)
Txa) 6= sign((wk

b )
Txb))

≤
∑

k ||(w
k
a)

Txa − (wk
b )

Txb||
2

= ||W T
a xa −W T

b xb||
2
2.
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5.2.3 Overall objective function

To construct our objective function, three points need to be considered: (1) The
cumulative Hamming distance should be minimised while the variance of bits
should be maximised, thus

L(Wa,Wb) =
∑

i ||W
T
a x

i
a −W T

b x
i
b||

2
2 − n

∑

v Iv
= −2tr(W T

a SabWb),
(5.6)

where Sv1v2 = Xv1X
T
v2
, v1, v2 ∈ {a, b}. (2) For conditions ξkia + ξkib <= 1, we

can sum all of them over samples and functions to obtain the relaxed inequality
Υ =

∑

ki ξ
ki
a +

∑

ki ξ
ki
b <= K ∗n. (3) To increase the generalisation of the model,

it is necessary to penalise each learned projection by maximising the margin of
two separated samples ||W ||2 = 1

2

∑

v∈{a,b}

∑

k ||w
k
v ||

2, which is same as an SVM
classification model. Therefore, we obtain

L = λ2L(Wa,Wb) + CΥ + ||W ||2, (5.7)

where λ2 and C are used to balance the different types of loss. In Eqn 5.7,
L(Wa,Wb) can be considered as a cross-view loss function for matching, Υ is a
within-view quantization loss for hashing and ||W ||2 is a regularization.

Proposition 2: Substituting L(Wa,Wb), Υ and ||W ||2 into (5.7) with con-
sidering the conditions, the objective function can be written as:

{W ∗
a ,W

∗
b } = argminWa,Wb

−λ2tr(W
T
a SabWb)

+1
2

∑

k ||w
k
a||

2 + C
∑

ki ξ
ki
a

+1
2

∑

k ||w
k
b ||

2 + C
∑

ki ξ
ki
b

s.t. ∀v ∈ {a, b}, i, k, k1 6= k2 :
((wk1

v )Twk2
v ))2 ≤ δv,

(yikv (w
k
v)

Txi
v) ≥ 1− ξkiv , ξkiv > 0.

(5.8)

Firstly, we can see that the proposed CBI is related to Canonical Correlation
Analysis (CCA) [221], but without minimising the covariance of intra-module.
A solution of CCA may be affected by highly correlated but unimportant (in
the sense of low variation and/or covariation) variables. However, a preserved
large variance will increase the stability and discriminativeness of the learned
codes. Secondly, we can see that Sab is the cross-covariance matrix between the
two views a and b. Maximum Cross-variance Analysis (MCA) [222] is a typical
dimensionality reduction method for two cross sets of highly correlated variables
in the low dimensional space. The proposed CBI can also learn the compact,
highly correlated binary codes by maximising the cross-covariance in the new
space. Thirdly, although PDH [24] also learns the projection by maximising the
margins, there are two significant differences between CBI and PDH. On the one

93



hand, both the cross-variance and the variances of bits have been maximised in
CBI but neither of them is considered in PDH. On the other hand, PDH obtains
the projection by directly using the classical SVM, but, in CBI, a novel dual
problem with a first degree item is solved to learn the projections. That is why
PDH cannot improve the performance by increasing the number of bits. Finally,
the Hamming distance of two IDs of one person in two different views will be the
least when the learned linear hash functions are hinge loss constraint satisfied.

5.3 Optimisation

Despite the complex formula in Proposition 2, in general, the problem can be
solved by gradient descend with iterative projection. However, we adopt a more
efficient way to search the local optimal solution, considering that the objective
is convex to each variable with other variables fixed. Following [223], we can
iteratively optimise the projections one by one. The training procedure of CBI is
summarised in Algorithm 4.

Algorithm 4 CBI training
Input: Training dataset Xa, Xb and parametersλ1, λ2, C and K.
Output: Wa and Wb.
Initialisation

(0) Solve the SVD problem tr(WT
a SabWb).

(1) Initiate Wa and Wb by the first K left and K right eigenvectors.
Repeat t = 1, · · ·
(2) Choose the kth pair of projections using Eqn. 5.16.
(3) Decide the view order of v1 and v2 to be optimised successively.

(a) Calculate Θk

v1
and sv2kv1v2

.
(b) Solve the quadratic programming problem in Eq. 5.14.
(c) Calculate the projection for view v1 using Eq. 5.13.
(d) Update the codes of view v1 by yikv1 = sign((wk

v1
)Txi

v1
).

(4) Assign the codes for view v2 by yikv2 = yikv1 .
(a) Calculate Θk

v2
and sv1kv2v1

.
(b) Solve the quadratic programming problem in Eq. 5.14.
(c) Calculate the projection for view v2 using Eq. 5.13.
(d) Update the codes of view v2 by yikv2 = sign((wk

v2
)Txi

v2
).

If satisfy conditions: Exit.

Return Update the kth binary codes and hash functions.

For further simplifying the optimisation, the orthogonal constraint of projec-
tions in intra-module has been added into the objective function. Thus, as shown
in Proposition 3, we can see that the problem is the same as the classical SVM
but only by adding an item of first degree.
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Proposition 3: We fix all other variables except for wk
a and ξkia . By removing

the irrelevant items, we obtain:

wk
a = argmin 1

2
||wk

a||
2 + C

∑

i ξ
ki
a

−λ2(w
k
a)

TSabw
k
b +

λ1

2
(wk

a)
TQk

aw
k
a,

s.t. (yika (w
k
a)

Txi
a) ≥ 1− ξkia , ξkia > 0,

(5.9)

where Sab = XaX
T
b and Qk

a =
∑

j 6=k w
j
a(w

j
a)

T .

5.3.1 Dual problem

The problem in Proposition 3 can be reorgnised as:

wk
a = argmin 1

2
(wk

a)
TΘk

aw
k
a − (wk

a)
T sbkab + C

∑

i ξ
ki
a ,

s.t. yika (w
k
a)

Txi
a ≥ 1− ξkia , ξkia > 0,

(5.10)

where Θk
a = Qk

a + λ1I and sbkab = λ2Sabw
k
b .

So far, all variables related to view b have been absorbed into the vector sbkab.
For simplicity, we delete the subscripts of views and the index of projections k in
this subsection. The optimal parameters wk

a and ξkia can be obtained by solving
the following objective function:

w = argmin 1
2
wTΘw − wTs+ C

∑

i ξ
i,

s.t. yiwTxi ≥ 1− ξi, ξi > 0.
(5.11)

The objective function becomes a classical convex quadratic programming
problem. To simplify the optimisation by transferring inequality constraints to
equality constraints, a dual problem is designed. Thus, the Lagrange function
can be defined as:

L(w, ξ, α, γ) = 1
2
wTΘw − wTs+ CeT ξ

−wTXyα+ eTα− αT ξ − γT ξ,
(5.12)

where e = (1, · · · , 1)T , ξ = (ξ1, · · · , ξn)
T , α = (ξ1, · · · , αn)

T , γ = (ξ1, · · · , γn)
T

and Xy = (y1x1, · · · , ynxn). The gradient with respect to the parameters: ∂L
∂w

=
Θw− s−Xyα and ∂L

∂ξ
= Ce−α− γ. Then, the optimal values should satisfy the

following constraints:
w = Θ−1(s+Xyα);

γ = Ce− α.
(5.13)

Substituting the above equations into the original Lagrange function, we ob-
tain the dual problem:

α = argminα
1
2
αT (Xy)TΘ−1Xyα + (sTΘ−1Xy − eT )α

0 ≤ αi ≤ C.
(5.14)
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Eqs. 5.13 and 5.14 are similar to the equations in the classical linear SVM.
However, it is meaningful to point out the two differences between them, which
constitute the advantages of CBI and distinguish from PDH. On the one hand,
the inverse of Q in the quadratic item forces that the learned projection must be
orthogonal to the other projections within the same view. On the other hand,
the s in the first degree item forces that the learned projection should be highly
related to the corresponding projection within another view.

5.3.2 Greedy selection

Various ways can be used to initiate the projections, such as random generation.
However, to speed up the optimisation, we generate the projections by solving
the maximum cross-covariance problem firstly. The first K right and K left
eigenvectors of cross-covariance matrix Sab have been chosen to initiate Wa and
Wb, corresponding to the first K largest eigenvalues.

Then, the problem becomes how to choose a projection which will be optimised
at present. Once one projection has been selected, the new optimal projection
will be obtained by solving the problem in Proposition 3. Assume the loss of each
projection wk

a, at the present iteration, is defined as:

L(wk
a) =

1
2
(wk

a)
TΘk

aw
k
a − (wk

a)
T sbkab

+C
∑

i⌊1 − yika (w
k
a)

Txi
a⌋+,

(5.15)

where ⌊⌋+ is the hinge loss function. Therefore, greedy selection will be achieved
by:

k = max
k

(L(wk
a) + L(wk

b )). (5.16)

We hope the overall loss will be decreased by minimising the items which have a
high loss. The next step is to optimise the selected kth pair of projections, which
are detailed as follows.

First, view v1 with less loss will be optimised in advance, because the learned
binary codes probably approach the optimal ones. The binary codes yikv1 of
the last round will be considered as the initials to optimise the problem in
Proposition 3 for view v1. Next, the binary codes will be updated according to
yikv1 = sign((wv1v

k)Txi
v1
) by using the learned projection. After that, the learned

codes of view v1 will be used to optimise the projection in view v2. This means
yv2 is initiated by yv1 . This process is the same as in [24]. Finally, the same
optimisation of Proposition 3 will be conducted for view v2. Thus, the binary
codes of view v2 will be also updated by yikv2 = sign((wv2v

k)Txi
v2
).

The optimisation procedure can be terminated by different criteria, such as
difference between two binary codes of two views less than a small positive number
or the fixed number of iterations. In our experiments, we observed that when
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Figure 5.3: Some image samples of the two datasets: VIPeR (left) and CUHK01
(right).

the number of iterations is around the number of projections K, the difference
between two binary codes will be the least.

5.3.3 Convergence

In this section, a theoretical analysis is provided by rigorous proof of the conver-
gence of the objective function in Proposition 2.

Proposition 4: L in Proposition 2 monotonically decreases with each opti-
mization step for wk

a and ξkia , and therefore L converges to a local optimum.

Proof. Denote J(wk
a, ξ

ki
a |i = 1, · · · , n) as the objective function in Proposition 3

and R as the remaining which is unrelated to wk
a and ξkia in Proposition 2, respec-

tively. Then, we obtain the objective function in Proposition 2 L = J(wk
a, ξ

ki
a |i =

1, · · · , n)+R. At tth step of optimisation, suppose that wk
a (Otherwise, same con-

clusion can be also obtained for wk
b .) has been chosen. Then, we can denote Lt−1

as the objective function before optimising wk
a and Lt is the function after we ob-

tain the optimum (wk
a)

∗ of J(wk
a , ξ

ki
a |i = 1, · · · , n). Since J(wk

a, ξ
ki
a |i = 1, · · · , n)

is a convex problem, there must be J(wk
a, ξ

ki
a |i = 1, · · · , n) ≥ J((wk

a)
∗, ξkia |i =

1, · · · , n). Moreover, because R is fixed, the following inequality can be estab-
lished.

· · · ≥ Lt−1 ≥ Lt ≥ · · · . (5.17)
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5.4 Experiments

We test our proposed CBI for person re-identification on two public datasets:
VIPeR [23] and CUHK01 [166]. Some example images of the three datasets are
shown in Fig. 5.3. To illustrate the performance and efficiency of CBI, 17 recent
algorithms, including 13 person re-identification methods and 4 multi-modal hash
function learning methods, are used for comparison.

Image representation: In recent two years, various robust features have
been proposed for person re-identification. Especially, the Salient Colour Names
based Colour Descriptor (SCNCD) [161] and the Local Maximal Occurrence Fea-
ture (LOMO) [160] have achieved promising performance. In this chapter, to
reflect the advantage of our CBI to learn binary codes for different descriptors,
three types of image representations including SCNCD, LOMO and ELF (Ensem-
ble of Localised Features) which was proposed in [23], are adopted as the basic
descriptors. (1) In SCNCD, 16 colour names are used and a colour distribution
over the colour names in an image part is computed. SCNCD divides each im-
age into six horizontal stripes of equal size and colour names’ distributions of all
parts are fused to form an image-level feature. Only the descriptor for the VIPeR
dataset is offered by the authors. (2) The LOMO feature analyses the horizon-
tal occurrence of local features, and maximises the occurrence to make a stable
representation against viewpoint changes. To handle both the colour constancy
and dynamic range compression, a multi-scale Retinex transform is applied. The
original dimension of LOMO feature is 26960. (3) ELF descriptor has been used
in several methods, such as: [163, 169] and [170]. Each image containing a person
was divided into six horizontal stripes. For each stripe, the RGB, YCbCr and
HSV colour features and two types of texture features extracted by 13 Schmid
and 8 Gabor filters were computed. Thus, each person image was described by
a feature vector in a 2784 dimensional feature space. More details are referred
to the original paper [23]. CBI is not sensitive to the parameters for the two
datasets and we set λ1 = 2 and C = 200 for all the experiments. However, λ2

will be set to 0.05, 10 and 5 for ELF, SCNCD and LOMO, respectively.
Evaluation protocol: We randomly partition a dataset into two parts with-

out overlap on person identities, according to a certain percentage. The ex-
pectation is reported by conducting 10 trials of evaluation. The parameters of
other hashing algorithms are carefully tuned so that the best results are obtained.
The results of other person re-identification methods either come from original
papers or by running their offered codes, with exactly the same experimental
setting. Same as most person re-identification publications, the standard Cumu-
lated Matching Characteristics (CMC) [224] curves and the corresponding Area
Under Curve (AUC) are used to illustrate the performance of different methods.

Datasets: The VIPeR contains 632 pedestrian image pairs in an outdoor
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Methods CBI-500 CBI-700 SDALF KISSME MLF
Time(s) 1.1e-06 1.4e-06 3.6e+00 9.2e-03 0.98e+01
Methods PRDC eSDC PRSVM MRank SCNCD
Time(s) 9.3e-03 1.14e+01 3.2e-03 3.4e-02 4.2e-03

Table 5.1: Time comparison of computing the similarities between one probe
sample and all the gallery samples (316) using the compared methods. CBI-500
denotes that only 500 hash codes have been learned.

environment. Each pair contains two images of the same individual taken from
two different camera views. Changes of viewpoint, illumination and pose are the
most significant causes of appearance change. Each image has been scaled to
be 128 × 48 pixels. The experimental setting is the same as [170]. Half of the
dataset including 316 images for each view is used for training the algorithms and
the reminding (316 pedestrian) is used for testing. The CUHK01 contains 971
pedestrians and is also captured with two camera views in a campus environment
but each pedestrian has two images from each camera view. Camera A captures
the frontal view or back view of a pedestrian, while camera B captures the side
view. All the images are normalized to 160×60 for evaluations. Our two settings
follow [166] (100 test persons and 871 persons for training and [225] (486 test
persons and the remaining as training samples).

5.4.1 The efficiency of CBI

The Hamming distance comparison of the learned binary codes for two different
persons in two views on the VIPeR dataset is shown in Fig. 5.4. Two persons
with similar appearances are selected. According to the proposed CBI, binary
codes with length 704 for each image are learned and resampled into an image
with 22× 32 pixels so that it is easy to illustrate the difference of learned codes.
From this figure, we can see that the Hamming distance between two images of a
same person in two views is much lower than that between the images of different
persons no matter they are captured in the same view or not.

CBI is efficient for similarity search in the testing stage, since the bit XOR op-
eration is applied when calculating the Hamming distance between binary codes.
To illustrate the efficiency of CBI, we compare the time of similarity computa-
tion for various methods on the VIPeR dataset. To simulate a real situation,
the time includes the feature projection for the probe image but the embedded
features of gallery images are obtained in advance. All algorithms are run on a
Matlab 7 platform installed on Windows 7 with Intel Core 3.4GHz CPU and 8M
memory. The codes of compared methods are provided by their original authors
and comparison results are shown in Table 5.1. We can see that the proposed
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Figure 5.4: Top row: the images in the two views of the 577th (left two) and 547th
(right two) persons from test sets in the VIPeR dataset. Middle and bottom rows:
the Hamming distances between the learned codes for the four samples and the
exact Hamming distances are 57, 331, 317, 328, 316 and 78, respectively.
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CBI is at least 2200 times faster than other non-hashing methods. It is worth to
point out that the local patches based methods, including eSDC [164], MLF [225]
and SalMatch [226], achieve advantageous performance (Rank 1: eSDC-26.74% in
Fig. 5.6). However, this group of methods exploiting the local patches introduces
a huge computational burden and they are 107 times slower than CBI.

We set the original dimension of the feature and the number of samples in
the gallery set to be nd and n, respectively. Thus, in CBI, the total complexity
will be Knd multiplication and K(nd − 1) addition operations for projection and
nK logical operations for computing the Hamming distance. If all the codes
are implemented by a low-level programming language, the advantages of CBI in
terms of XOR operation will become even more significant. Moreover, if we build
the relationship between the learned binary codes and the physical addresses in a
real-world application, the addressing time is O(1) and the retrieval task can be
achieved without any similarity computation. However, if the Euclidean distance
is directly considered as the measurement of similarity, besides the projections,
there are more nK multiplication and 2nK addition operations. Metric learning
is a very popular method for the retrieval and identification tasks, such as PRDC
and KISSME [171]. The distance in this group of methods normally has the
form: (△x)TM △ x, where M should be learned in some cases and can be set
as covariance matrix for Mahalanobis distance1. Thus, for one test sample, the
complexity of retrieval tasks in a gallery set will be nnd(nd + 1) multiplication
and n(nd + 1)(nd − 1) addition operations. Therefore, in theory, the efficiency of
CBI is at least n(nd + 1)/K times faster than metric learning based methods. In
general, in a real-world application, the number of samples in the gallery set n
is huge and the original dimension nd is much larger than the number of learned
bits K.

5.4.2 Comparison with the state-of-the-art methods

For evaluating on the VIPeR, we compare the proposed CBI for person re-
identification with recent published algorithms, including: ELF [23], PRDC [170],
PRSVM [169], SDALF [227], CPS [228], Mrank [229], eSDC [164], SalMatch [226],
MLF [225], KISSME [171], SCNCD [161] and LOMO [160]. The comparison re-
sults are shown in Fig. 5.5 and 5.6. Among them, PRDC, Mrank and PRSVM
used the ELF feature. We can see that the proposed CBI achieves much better
results than the three methods almost in all ranking. Following [160], a Cosine
similarity measure is applied to SCNCD and LOMO. To compare with the three
types of original features, we can see that the performance is boosted by CBI

1In computing the Mahalanobis distance, the quantity △x is a difference vector between
the pair of compared samples and can not be precomputed before the probe sample is obtained.
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Figure 5.5: The CMC rankings of the methods using the ELF feature on the
VIPeR datasets with #316 test persons. Numbers in legend is the Rank-1 accu-
racy.

for at least 30%. Moreover, using the SCNCD feature, CBI is the best method
at rank 1 and is better at low ranks (≤ 30) than other state-of-the-art meth-
ods. Finally, by using LOMO feature, CBI has a 29.1% accuracy at rank 1 and
outperforms other methods almost at all ranks.

For comparing on the CUHK01, we follow two partitions as in [166] and [225]
and the results are shown in Fig. 5.7 and 5.8. For the first partition with 100 test
persons, three methods including FPNN [166], eSDC [164] and SDALF [227] are
compared with. We can see that CBI can achieve much better results than eSDC
and SDALF at all ranks, no matter what features are used. To compare with
the deep architecture based method FPNN, using the LOMO feature, CBI can
achieve better results at all ranks while, using the SCNCD feature, is only slightly
inferior FPNN at rank 1 (1.6 %) but better than FPNN at all other ranks. For
the second partition with 486 test persons, the task is relatively more difficult and
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Figure 5.6: The CMC rankings of the state-of-the-art methods on the VIPeR
datasets with #316 test persons. The two types of features SCNCD and LOMO
are used by the proposed CBI.

four state-of-the-art methods including eSDC [164], SDALF [227], SalMatch [226]
and MLF [225] are compared against. In this setting, MLF is the best method
but, using the LOMO feature, CBI achieves very similar performance to MLF.
In fact, MLF is a local patches based method thus the computational burden of
feature calculating and matching is very high.

In total, CBI can achieve competitive performance with the state-of-the-art
methods. We have to point out that recent works on improved deep learning
[167] and fusion based methods (LOMO+XQDA [160], MLF+LADF [225], mix-
ture of similarities [173] and ensemble of distances [174]) reported higher results.
However, since this chapter mainly focuses on the efficiency, the combination of
different methods is not considered, because they are computationally very expen-
sive. Naturally, the performance of binary coding, a.k.a. hashing, methods will
be lower than their corresponding non-hashing based methods due to the quanti-
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Figure 5.7: The CMC rankings on the CUHK01 datasets with #100 test persons.
The two types of features ELF and LOMO are used by the proposed CBI.

zation loss [115]. In the following section, the comparison of CCA [221] and CVH
[125], which is a hashing version of CCA, will also prove this point. Therefore,
we can conclude that, as a binary coding method for person re-identification, the
performance of CBI is acceptable.

5.4.3 Comparison with other hashing methods

We compare our CBI with CCA [221] and recently proposed multi-modal binary
code learning methods, including PDH [24], CVH [125], CMSSH [126] and CFMH
[128] on the VIPeR and CUHK01 datasets. Most of the compared methods are
used for cross-view searching, such as across text and image. Normally, the intra-
module or inter-module relationship between the samples has been considered in
these methods. In fact, for the problem of person identification, discriminative
representation is more important than the preserved local properties, especially
for one-shot recognition. In this experiment, half of the persons (VIPeR: 316 test
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Figure 5.8: The CMC rankings on the CUHK01 datasets with #486 test persons.
The two types of features ELF and LOMO are used by the proposed CBI.

persons and CUHK01: 486 test persons) are chosen for test and the remaining
persons are used for training. The same features are used as input in all the
methods for fairness.

The comparisons of ranking scores vs. dimensions of learned codes at ranks 1,
10 and 20 for the three features including ELF, SCNCD and LOMO are shown in
Figs. 5.9, 5.10 and 5.11, respectively. Firstly, due to the finite rank of the variance
matrix, the dimensions of the features learned by CCA and CVH are constrained,
thus their best performance is poor. Secondly, at very low dimensions, most
methods achieve similar results and the performance of CCA is better than others.
However, the hashing version CVH of CCA achieves much lower results than CCA
and is also lower than other methods in most cases. Thirdly, in general, most
methods achieve better when the length of learned codes is longer. However, after
a certain length, the ranking scores of other three methods including CMFH,
PDH and CMSSH do not progressively increase by the increase of the length of
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Figure 5.9: Comparison with four multi-modal hashing methods using ELF fea-
ture on the VIPeR dataset at ranks: 1 (left of first row), 10 (right of first row)
and 20 (second row).

codes. This is because the later learned codes tend to add little discriminative
information, due to ignoring the orthogonal constraint between different hash
functions. Fourthly, our proposed method achieves much better results than
other methods when the code length is over 400. Finally, we can see that features
also play an important role for improving the performance and most methods
achieve better results when using advantageous features.

Furthermore, the overall AUC performance for ranks 1 to 85 and the ranking
accuracies at ranks 1, 5, 10, 15 and 20 for the three features on the VIPeR dataset
are shown in Tables 5.2, 5.3 and 5.4, respectively. The CMC matching scores in
the tables are computed at the dimension when the methods achieve the best
performance. From the tables, we can see that CCA achieves much better results
than the corresponding hashing version CVH at all ranks and, in some cases, the
accuracies of CCA are almost twice to CVH. Moreover, no matter what features
are adopted, we can observe that CBI outperforms all other binary code learning
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Figure 5.10: Comparison with four multi-modal hashing methods using SCNCD
feature on the VIPeR dataset at ranks: 1 (left of first row), 10 (right of first row)
and 20 (second row).

methods at all ranks, and from the perspective of overall AUC performance, CBI
is also the best method. It is worth to point out that the advantages are more
highlighted at lower ranks and this can be also reflected from Figs. 5.9, 5.10 and
5.11. For example, CBI achieves at least 4.4% higher result than other methods
at rank 1, no matter what features are adopted.

CBI is also compared with the five methods on the CUHK01 dataset using
two features ELF and LOMO, and the comparisons are shown in Tables 5.5 and
5.6. From the tables for the CUHK01 dataset, we can draw the same conclusions
as on the VIPeR dataset that CBI performs the best among the six methods. For
rank 1, CBI achieves at least 8.6% higher results than others.
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Methods CBI CMFH PDH CMSSH CCA CVH
Rank 1 0.229 0.165 0.130 0.108 0.136 0.073
Rank 5 0.486 0.402 0.380 0.310 0.345 0.190
Rank 10 0.591 0.549 0.519 0.475 0.513 0.247
Rank 15 0.695 0.647 0.614 0.573 0.595 0.310
Rank 20 0.747 0.716 0.715 0.655 0.668 0.373
AUC 80.28 77.18 75.63 73.96 73.49 50.12

Table 5.2: Ranking accuracy comparison at ranks 1, 5, 10, 15 and 20 and overall
AUC performance comparison, using ELF feature on VIPeR dataset.

Methods CBI CMFH PDH CMSSH CCA CVH
Rank 1 0.313 0.231 0.222 0.165 0.199 0.158
Rank 5 0.573 0.500 0.440 0.389 0.513 0.380
Rank 10 0.699 0.639 0.576 0.491 0.655 0.503
Rank 15 0.782 0.718 0.658 0.570 0.711 0.566
Rank 20 0.826 0.769 0.747 0.620 0.767 0.598
AUC 84.09 82.58 80.26 72.84 79.90 66.82

Table 5.3: Ranking accuracy comparison at ranks 1, 5, 10, 15 and 20 and overall
AUC performance comparison, using SCNCD feature on VIPeR dataset.

Methods CBI CMFH PDH CMSSH CCA CVH
Rank 1 0.291 0.247 0.171 0.190 0.168 0.085
Rank 5 0.563 0.528 0.449 0.437 0.427 0.209
Rank 10 0.734 0.712 0.604 0.639 0.551 0.294
Rank 15 0.794 0.766 0.693 0.725 0.633 0.345
Rank 20 0.858 0.816 0.778 0.791 0.693 0.399
AUC 86.67 85.20 80.40 81.19 75.98 54.04

Table 5.4: Ranking accuracy comparison at ranks 1, 5, 10, 15 and 20 and overall
AUC performance comparison, using LOMO feature on VIPeR dataset.
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Figure 5.11: Comparison with four multi-modal hashing methods using LOMO
feature on the VIPeR dataset at ranks: 1 (left of first row), 10 (right of first row)
and 20 (second row).

5.4.4 Optimisation analysis

In this subsection, the procedure of optimisation is investigated. To demonstrate
how to find the local optimal hashing functions, we run CBI on the VIPeR dataset
using the LOMO feature and set the length of binary codes to 800. Normally,
the algorithm will be terminated after 800 iterations, but to see more about the
optimisation, the number of iterations is set to 850. Moreover, to reflect the
ability of greedy searching, all the projections are initialised randomly and then
are normalised. From the definition of Hamming distance, we understand that
the largest Hamming distance between two binary codes is the length of codes, in
which all the bits are different. A quantity which is an averaged ratio (Hamming
distance ratio) between the Hamming distance and the length of code for all pairs
of samples is defined to measure the similarity between two sets of binary codes.
If this quantity equals 0, the two sets are completely same and 1 means they are
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Method CBI CMFH PDH CMSSH CCA CVH
Rank 1 0.236 0.150 0.057 0.103 0.156 0.066
Rank 5 0.429 0.340 0.159 0.251 0.335 0.193
Rank 10 0.530 0.475 0.255 0.344 0.457 0.282
Rank 15 0.598 0.566 0.311 0.401 0.533 0.340
Rank 20 0.643 0.613 0.356 0.453 0.580 0.397
AUC 0.719 0.680 0.459 0.532 0.643 0.493

Table 5.5: Ranking accuracy comparison at ranks 1, 5, 10, 15 and 20 and overall
AUC performance comparison, using ELF feature on CUHK01 dataset.

Method CBI CMFH PDH CMSSH CCA CVH
Rank 1 0.307 0.188 0.059 0.100 0.153 0.060
Rank 5 0.529 0.499 0.158 0.266 0.406 0.163
Rank 10 0.616 0.606 0.250 0.355 0.529 0.264
Rank 15 0.669 0.672 0.318 0.413 0.592 0.329
Rank 20 0.691 0.714 0.366 0.469 0.634 0.377
AUC 0.771 0.759 0.458 0.539 0.695 0.484

Table 5.6: Ranking accuracy comparison at ranks 1, 5, 10, 15 and 20 and overall
AUC performance comparison, using LOMO feature on CUHK01 dataset.

totally different. In Fig. 5.12, three aspects including Hamming distance ratio,
ranking accuracy (at ranks 1, 10 and 20) of training set and ranking accuracy of
test set vs. the number of iterations are investigated. Firstly, by the increase of
the iteration number, the Hamming distance ratio of the training set gradually
decreases and the descend speed is stable. In this case, the optimal hash functions
are obtained at the ratio of 0.221. Secondly, the ranking accuracies of both the
training set and the test set increase generally but not constantly. Moreover, the
accuracy at rank 1 of the test set increases stably but the ascend speeds of other
ranks are faster at the front of optimisation than the later. Finally, we can see
that the accuracies of the training set increase faster than the ones of the test set
and most accuracies will converge after the number of iterations is around the
length of binary codes.

5.5 Extension

In this chapter, we mainly focus on single-shot person re-identification across two
views nv = 2, but the proposed framework can be easily extended into nv(nv > 2)
and multi-shot situations. Although, in the CUHK01 dataset, each pedestrian
has two images from each camera view, most methods [166, 225, 226] have not
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Figure 5.12: The optimisation analysis. In the legend, Hamming means “Ham-
ming distance ratio”, test refers to “Test set” and train refers to “Training set”.

considered the relationships between any pair of images from both same view and
different views.

In a real world scenario, even in a building or a shopping mall, much more
than two cameras nv(nv > 2) are installed to monitor the human activities.
Therefore, learning the IDs of persons from more than two views is useful. In
this multi-view case, we hope nv projections W = {W1, · · · ,Wnv

} will be learned
considering that the Hamming distance between any two views v1 and v2 in the
learned space should be minimised. Thus, the overall objective function in Eq.
5.6 will become:

L(W) =
∑

v1,v2 6=v1

∑

i ||W
T
v1
xi
v1
−W T

v2
xi
v2
||22

−(nv − 1)n
∑nv

v=1 Iv
= −2tr(

∑

v1,v2 6=v1
W T

v1
Sv1v2Wv2).

(5.18)

Because CBI optimises the projections on each view v1 separately with other
projections fixed, when there is nv > 2, it can be easily proved that the projections
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can be learned using the objective function in Eq. 5.10 by directly computing
sv1 =

∑nv

v2 6=v1,v2=1 λ2Sv1v2w
k
v2
.

Furthermore, CBI can also be generalised to multiple-shot cases by considering
two aspects. In such cases, we have Xv = {X1

v , X
2
v , · · · , X

n
v } where X i

v is the
sample set of person i in view v. On the one hand, different images of one person
in a same view should have the same identity. Thus, we hope item

∑

i,j ||W
T
v x

i
v−

W T
v x

j
v||

2
2A

i,j
v can be minimised, where Ai,j = 1 if image samples xi

v and xj
v belong

to a same person, otherwise Ai,j
v = 0. By defining the Laplacian matrix Lv using

the affinity matrix Av, this item can be rewritten as tr(W T
v XvLvX

T
v Wv). On

the other hand, the Hamming distances between any image pair of one person
for any two different views

∑

ja,jb
||W T

a x
i,ja
a − W T

b x
i,jb
b ||22 should be minimised,

where xi,jv
v ∈ X i

v denotes the jvth samples of person i in view v. Next, if we
define Si

v1,v2
= X i

v1
(X i

v2
)T , the item can be rewritten as tr(

∑

v∈{a,b} W
T
v S

i
vvWv −

2W T
a S

i
abWb). In summary, for the multi-shot cases, the overall objective function

can be defined as:

L(W) =
∑

i tr(
∑

v W
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v S

i
vvWv − 2W T

a S
i
abWb)

−n
∑

v Iv +
∑

v tr(W
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v XvLvX
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= −2tr(W T
a SabWb +

∑

v W
T
v K

i
vWv),

(5.19)

where the cross-variance matrix Sa,b =
∑

i S
i
ab and Kv = Xv(Lv−I)XT

v +
∑

i S
i
vv.

Therefore, same as in (5.10), an iterative optimisation method can be applied to
obtain the hash functions.

5.6 Summary

In this chapter, a cross-view binary code learning method has been proposed
for fast person re-identification. The main advantage of this method is that it
hugely speeds up the procedure of the ranking or retrieval stage, when achieving
equivalent performance to the state-of-the-art methods. Moreover, three more
important points have also been observed. Firstly, just the heuristic hand-craft
descriptors are used in this chapter and we think that utilising a stronger pixel-
based descriptor which is learned using deep architecture will improve CBI a
lot. Secondly, maximum margin has been used in learning binary codes by other
methods. However, we firstly give an inside view of the intrinsic mechanism that
the Hamming distance can be minimised by minimising the Euclidean distance
when the learned linear hash functions satisfy the hinge loss constraint. In the
future, it is meaningful to give a more compact boundary via the statistical
perspective to enable a faster convergence of the algorithm. Finally, just dual
modules have been used to learn the IDs of different persons. However, learning
the IDs of persons from more than two views is useful. From this point of view, we
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can see that CBI is just a starting point in this area. Whether other information,
such as the topology of the camera system and other biological features, would
also benefit the learning of more robust IDs is still under investigation.
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Chapter 6

Hetero-manifold Regularisation
for Cross-modal Hashing

In the past three chapters, visual data association in both the signal camera set-
ting and the cross-camera setting are discussed. In this chapter, we will turn to
more general cases where the visual data could be associated to other types of
data, such as text and voice, see Fig. 6.1. Compared to the fist two situations, the
model of cross-modal retrieval is more complex, because the data between differ-
ent modalities have diverse structures and different physical meanings. Moreover,
the methods of cross-modal retrieval could be used to, in a higher level, connect
the traces, which are detected both in a single view or across cameras, to other
activities which need to be described using other types of data. For instance, by
identifying a person in a view of camera which is set to public areas through some
virtual activities on Internet, many potential security threats can be found before
taking action. Furthermore, traces of a criminal which are detected by both the
single camera tracking and the cross-camera tracking could be fully connected
using some texts written by a witness. To this end, beside object tracking meth-
ods across cameras, it is necessary to develop some methods of cross-modality
data association. In fact, cross-modal searching is the most popular strategy to
address such kind of problems.

Searching is dramatically changed by the amount and the appearance of multi-
modal data. Multi-modal data are heterogeneous and large-scale because of the
advancement of digital technologies and the Internet. Both of these fundamental
characteristics of multi-modal data require measuring the cross-modal similarity
when developing any searching algorithms by hashing.

To bridge the gap between modalities, various straightforward strategies have
been developed to learn the cross-modal similarity. Some methods focus on
the supervision information including correspondences [179], semantic correlation
[180], pairwise sets [182] and semantic affinities [230] between heterogeneous data,
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Figure 6.1: Visual data association in a cross-modal setting using a novel Hetero-
manifold regularised hashing.

while others including composite multiple information sources [124], α-average
technique [189, 231], Markov random field [232] and deep neural networks [181]
emphasise the value of homogeneous manifold in the problem of multi-modal
similarity learning in a common space. In this chapter, by integrating the super-
vision information and the local structure of heterogeneous data, a novel method
termed hetero-manifold regularisation (HMR) is proposed to learn hash functions
for efficient cross-modal search.

The rest of this chapter is organised as follows. The hypotheses and moti-
vation of this work is introduced in Sec. 6.1. In Sec. 6.2, how to construct a
Hetero-manifold for multi-modal data is detailed. Next, based on the introduced
Hereo-manifold, how to learn a set of hash function for cross-modal retrieval will
be presented in Sec. 6.3. Then, Sec. 6.4 presents how to solve the compli-
cated objective function and convergence proof. Sec. 6.5 presents comprehensive
experimental results for four datasets. Section 6.6 draws summary.

6.1 Preliminaries

6.1.1 Hypotheses

In this study, the principal aim is to connect and integrate all the information
contained in different modalities into a uniform framework. Then, based on the
integrated structure, a set of projections can be learned and the samples from
different modalities can be embedded into a common space. The hypotheses
behind this, which are used to support the solution in this thesis include:

• High dimensional data tend to lie in the local structure of a low dimensional
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manifold. This is a basic assumption for the classical manifold learning in
a uni-modal setting, but it is still useful in cross-modal tasks. Based on
this point, a sub-manifold can be modelled for each modality to capture
the intrinsic structure of intra-manifold.

• The sub-manifolds in different modalities could be connected by some su-
pervised information, or latent variables, which can be defined in diverse
forms, considering the specificity of the problems. This is a basic assump-
tion to support the connectivity and integrity of hetero-manifold in this
work.

• The information could be propagated on an integrated framework in the
cross-modal setting. Only when the information can be diffused in a certain
pattern, can a global view be built based on these sub-manifolds so that it
enables to cross-modal retrieval.

6.1.2 Motivation

However, despite the progress made by existing methods considering certain as-
pects of the problem, cross-modal search remains a very challenging task because
of the integration complexity and heterogeneity of the multi-modal data. In
fact, the nature of multi-modal data is a combination of heterogeneity and the
homogeneity. Thus, in cross-modal search, the cross-modal and within-modal
similarity information should be simultaneously considered. On the one hand,
the methods developed based on supervision information mainly focus on the
similarity information of heterogeneity without considering the homogeneous in-
formation, but it is obvious that the within-modal similarity benefits to capture
the intrinsic geometric structure. On the other hand, the methods generated by
emphasising within-modal similarity decompose multi-modal data into a set of
uni-modal data, which means multi-modal similarity learning cannot be treated
as a whole because more than one manifold are needed to represent both cross-
modal and within-modal similarities. Therefore, it is necessary to connect and
integrate all information from data in different modalities to describe the diver-
sity of the world. To achieve this, the key of cross-modal search is to overcome
the obstacle of multiple modalities by considering both the local geometric and
global supervision information.

In this chapter, by integrating the supervision information and the local struc-
ture of heterogeneous data, a novel method termed hetero-manifold regularisa-
tion (HMR) is proposed to learn hash functions for efficient cross-modal search.
Three significant advantages are illustrated in the schematic diagram of a hetero-
manifold shown in Fig. 6.2. Firstly, a hetero-manifold well describes the local
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information by representing homogeneous data on the sub-manifolds. In Fig.
6.2, the data in three different modalities are represented by three sub-manifolds
which well model the relationship between homogeneous data. Secondly, the
hetero-manifold emphasises the global information of multi-modal data as well,
by modelling the information propagation across modalities with three-order ran-
dom walks. It is clear in Fig. 6.2 that any pair of points could be connected via
two steps on homogeneous sub-manifolds and one step crossing two different sub-
manifolds. Thus, the samples across modalities could be compared by integrating
the information from all related homogeneous sub-manifolds. Lastly, the hetero-
manifold is flexible and can be extended to model any number of modalities. As
far as we know, existing cross-modal searching algorithms are limited to only two
modalities.

Given a training set, the inherent similarity of multiple modalities on the
hetero-manifold is represented by the hetero-Laplacian matrix. Thus, by minimis-
ing the regularisation item via the graph hetero-Laplacian, a set of cross-modal
hash functions which are smooth on the hetero-graph can be learned to embed
original data points into a Hamming space. In other words, the learned hash func-
tions will preserve the geometrical structure and global supervision information of
the hetero-manifold. Meanwhile, a novel weighted cumulative distance inequal-
ity on hetero-graph is introduced to cross the gap between Hamming distance
and Euclidean distance. By using this novel distance inequality, the problem of
learning hash functions is transformed into training a hetero-manifold regularised
support vector machine.

6.2 Hetero-manifold of multi-modal data

Let O = {O1, O2, · · · , ON} be a set containing N objects. For the uth modality,
O is recorded as a du × N matrix Xu where the ith column vector of Xu, xu

i

corresponds to Oi, 1 ≤ u ≤ M , M is the number of modalities, and du is the
dimension of xu

i . Generally, the number of modalities is larger than 2, i.e., M ≥ 2.
A hetero-manifold is an ensemble of uni- and cross-modal sub-manifolds. Uni-

modal sub-manifolds are the manifolds whose elements corresponding to different
objects share a common modality. For example, Xu is a dataset in which all
samples are on the uth uni-modal sub-manifold. It is clear that uni-modal sub-
manifolds are used to represent the intra-structure of uni-modal data. In contrast,
cross-modal sub-manifolds serve as bridges to connect different uni-modal data.
Ideally, any pair of data points on different uni-modal sub-manifolds could be
connected via a path on the cross-modal manifolds and the distance of the path
could be used to represent the similarity between the cross-modal data.

Given training samples, the hetero-manifold could be represented as a hetero-
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Figure 6.2: A hetero-manifold with three modalities: the blue, red and green
closed curves represent three uni-modal data sub-manifolds; the lines used to con-
nect two uni-modal data sub-manifolds constitute a cross-modal sub-manifold; all
uni- and cross-modal sub-manifolds constitute a hetero-manifold; any change of
a uni- or cross-modal sub-manifold will result in a change of the hetero-manifold.

graph G = (V, S), where V is the set of vertices and S is the set of edges. In this
chapter, V contains all feature matrices X1, X2, · · · , XM , and the edge between
two vertices is defined as the similarity measurement between these two vertices.
Following the idea of the hetero-manifold, a hetero-graph could be decomposed
into a set of sub-graphs on the homogeneous sub-manifolds and a set of sub-
graphs on the cross-modal sub-manifolds. Generally, both sub-graphes could be
defined as follows:

Definition 1. Uni-modal sub-graph. Guu = (V uu, Suu) is a uni-modal sub-
graph, if all vertices in this graph come from Xu.

Definition 2. Cross-modal sub-graph. Guv = (V uv, Suv) is a cross-modal
sub-graph, if, for each edge of this graph, one vertex comes from Xu and the other
vertex comes from Xv.

Definition 3. Hetero-graph. G = (V, S) is a hetero-graph, if, its vertices
correspond to all multi-modal data X1, X2, · · · , XM , and the similarity matrix S
satisfies

S =









S11 S12 · · · S1M

S21 S22 · · · S2M

· · · · · · · · · · · ·
SM1 SM2 · · · SMM









. (6.1)
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Three-order random walks on the hetero-graph is used to model the informa-
tion diffusion among the vertices on the hetero-graph. For each pair of vertices
xu
i , x

v
j on the hetero-graph, the connection between them consists of three steps:

from the end xu
i to a possible neighbour of xu

i , from the neighbour of xu
i to the

neighbour of xv
j , and from the neighbour of xv

j to the end xv
j , just like the path

shown in Fig. 6.3. On the one hand, for the first and third steps, the neighbours
of the end must be represented in a common modality and the similarity between
xu
i and its neighbour xu

i′ is generally measured by a Gaussian kernel, such as

su(i, i′) = exp{−
||xu

i − xu
i′ ||

2

σ2
}, (6.2)

where σ 6= 0 is a kernel parameter. Similarly, the similarity between xv
j and its

neighbour xv
j′ is sv(j, j′) = exp{−

||xv
j−xv

j′
||2

σ2 }. On the other hand, for the second
step, the similarity between xu

i′ and xv
j′ should be defined according to the different

situations of their modalities. If xu
i′ and xv

j′ share a same modality, the similarity
between them could be defined according to their neighborhood relationship, such
as

p(xu
i′ , x

v
j′)

= p(xu
i′ , x

u
j′)

=

{

1, su(i′, j′) ≤ δ,
0, su(i′, j′) > δ,

(6.3)

where δ ≥ 1 is a parameter for controlling the connection between two points on a
uni-graph. δ ≥ 1 can be selected as the criterion in classical Laplacian Eigenmaps
[68]. If xu

i′ and xv
j′ are represented in different modalities, the similarity between

them should be defined according to the credible priori information. For example,
the similarity between xu

i′ and xv
j′ could be set to be 1 if they correspond to a

same object, and set to be 0 otherwise, that is

p(xu
i′ , x

v
j′) =

{

1, i′ = j′,
0, otherwise.

(6.4)

If the label information of multi-modal data is available, the similarity between
xu
i′ and xv

j′ could be also defined according to the similarity of the labels of xu
i′

and xv
j′, such as

p(xu
i′ , x

v
j′) =

{

1, ti′ = tj′,
0, otherwise,

(6.5)

where ti′ , tj′ are respectively the labels of xu
i′ , x

v
j′. If the objects are described by

multiple labels, the similarity between xu
i′ and xv

j′ could be also described as

p(xu
i′ , x

v
j′) =

|ti′ ∩ tj′|#
|ti′ ∪ tj′|#

, (6.6)

119



where ti′ , tj′ are the sets of multiple labels for describing objects Oi′ and Oj′, and
| · |# is the size of a set. More meaningful priori depending on a particular task
can be used here, such as semantic affinities and correlations.

Thus, all possible one-order similarities between the vertices on a uni- or
cross-modal sub-graph could be respectively represented by three matrices Su =
(su(i, i′)), P uv = (p(xu

i′ , x
v
j′)), and Sv = (sv(j, j′)). According to these examples

of p(xu
i′ , x

v
j′), for any u, v, we assume in this chapter that the priori matrix P uv

satisfies:

P uv = (P vu)T . (6.7)

By combining these one-order similarities, the similarity information diffusion
model could be defined by a three-order random walk as

Suv = SuP uvSv. (6.8)

As a special case, the similarity matrix of a uni-modal sub-graph is Suu =
SuP uuSu. The similarity matrix Suv satisfies the following Lemmas.

Lemma 1. Non-negativity. The elements of similarity matrix Suv are non-
negative.

Lemma 2. Asymmetry. In general, if two matrices Suu and Svv are unequal,
Suv is an asymmetric matrix.

Lemma 3. Equivalence. Any pair of similarity matrices Suv and Svu satisfies
the relationship:

Suv = (Svu)T . (6.9)

Therefore, the similarity matrix S on the hetero-graph satisfies S = ST .
Lemma 1 is a result of the non-negativeness of Gaussian kernel (6.2) and the
definition of p(xu

i′ , x
v
j′). Lemma 2 is the result of the definition of matrix multi-

plication. The proof of Lemma 3 can be found in Appendix 6.7.
Lemma 1 is the theoretical base of learning hash functions on a hetero-

manifold. Lemma 2 unveils the intrinsic barrier of treating a multi-modal problem
in a cross-modal view because of the asymmetry of both similarity matrices Suv

and Svu. Lemma 3 hints the advantages of the global view to understanding
multi-modal data as the hetero-manifold because of the symmetry of the similar-
ity matrix on the hetero-manifold S. See Fig. 6.3 for more details.

6.3 Hash function learning on the hetero-manifold

A hetero-manifold integrates multi-modal data into a common manifold, however,
a huge gap still exists for efficient cross-modal retrieval because of the difference
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Figure 6.3: Cross-modal similarities between features of two objects Oi and Oj

captured in two modalities. The lines represent the similarity between two points.
The longer the lines, the less similar the two points are. The black lines represent
the uni-modal similarity while the dashed lines represent the similarity defined
by three-order random walks from one modality to another modality. Among
them, we can see that the features x1

1 and x2
2 are connected by two red dashed

lines whilst the two features x1
2 and x2

1 are connected by only one dashed blue
line. This point reflects the asymmetry of Suv in Lemma 2.

between different modalities. To this end, a framework of hetero-manifold reg-
ularised hash function learning is introduced to embed multi-modal data into
a common Hamming space and simultaneously preserve the cross-modal and
within-modal similarities on the hetero-manifold.

For the u-th uni-modal data Xu, a set of functions Fu = {fu
k , 1 ≤ k ≤ K}

is used to generate the hash codes of Xu, where K is the length of codes. Us-
ing these functions Fu, for each sample xu

i , a vector of real values1 F (xu
i ) =

(fu
1 (x

u
i ), f

u
2 (x

u
i ), · · · , f

u
K(x

u
i ))

T ∈ RK can be obtained. Then, a binary code vec-
tor yui of xu

i can be learned by using yui = (F (xu
i ))+, where (·)+ is an operator

which sets all positive numbers to 1 and other numbers to 0. Specifically, we have
the k-th element of yui :

yui (k) = (fu
k (x

u
i ))+. (6.10)

1For simplicity, F (xu
i ) = Fu(xu

i ) without confusion.
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6.3.1 Distance inequality on a graph

In general, learning to hash tries to minimise a cumulative Hamming distance
with some constraints. If the distance is defined on a manifold, then a weighted
cumulative Hamming distance Lh

c (G) should be minimised.

Lh
c (G) =

M
∑

u,v=1

N
∑

i,j=1

suv(xu
i , x

v
j )Dh(y

u
i , y

v
j ), (6.11)

where Dh(y
u
i , y

v
j ) is the Hamming distance between yui and yvj . Actually, the

weights between the samples embody the intrinsic structures and useful informa-
tion including local neighbourhood, prior semantic cues and affinities. By con-
sidering these weights, the original structure and information can be preserved in
a new learned space. In this paper, the weights reflect the information contained
in the hetero-manifold. Meanwhile, besides the Hamming distance, for any pair
of points xu

i and xv
j on graph G in the learned space, an accompanied Euclidean

distance1 can be defined as De(F (xu
i ), F (xv

j )) = ||F (xu
i ) − F (xv

j )||
2
2. Same as

Hamming distance, a weighted cumulative Euclidean distance on graph (G, S) is
given as:

Le
c(G) (6.12)

=
M
∑

u,v=1

N
∑

i,j=1

suv(xu
i , x

v
j )De(F (xu

i ), F (xv
j )).

Normally, during the matching stage, the Hamming distance is far less compu-
tationally expensive than the Euclidean distance. However, despite the simplicity
in Eq. 6.11, minimisation of the Hamming distance is generally intractable, be-
cause it is a concrete quantity. Thus, we seek to minimise an alternative item,
which guarantees that the Hamming distance will be minimised simultaneously.

First, a constraint will be given as follows:

Definition 4. Hinge loss constraint. For a function fu
k in the uth modality,

if any point xu
i captured in this modality and its corresponding hash code defined

in Eq. 6.10 satisfies
yui (k)f

u
k (x

u
i ) ≥ 1− ξuik, (6.13)

where ξuik is a minimal non-negative value, thus fu
k is the hinge loss constraint-

satisfied function in the uth modality.

Next, under the above constraint, a distance inequality in the following can
be obtained:

1For simplicity, F (xu
i ) = Fu(xu

i ) without confusion.
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Lemma 4. Distance inequality. If two sets of functions Fu and Fv are the
hinge loss constraint-satisfied functions in modalities u and v respectively, for
any two samples xu

i and xv
j , the two types of distance in the learned Hamming

space and the Euclidean space have the following relationship, when satisfying
∀k, ξuik + ξvjk ≤ 1:

Dh(y
u
i , y

v
j ) ≤ De(F (xu

i ), F (xv
j )), (6.14)

Dh and De are defined in Eq. 6.11 and 6.12, respectively.

It is worth to point out that fu
k is a hinge loss constraint-satisfied function

only when all the samples in modality u satisfy condition 6.13. And Eq. 6.14
can be proved, when a condition ∀k, ξuik + ξvjk ≤ 1 is given. We can see that ξuik
and ξvjk are two minimal non-negative values in the definition of the hinge loss
constraint. If the two modalities are the same (u = v), the same inequality can
be established for any two samples captured in the same modality.

Then, based on the condition 6.13, we can extend the inequality 6.14 to a
weighted cumulative distance inequality on a graph.

Corollary 1. Weighted distance inequality. For a graph G = (V, S), if two
sets of functions Fu and Fv satisfy the condition in Eq. 6.13, thus the following
weighted cumulative distance inequality can be established, when S is a similarity
matrix with non-negative members:

Lh
c (G) ≤ Le

c(G). (6.15)

Consequently, with the help of the inequality in the Corollary 1, a relaxed
optimisation problem which will be introduced in the following section can be
generated. In this chapter, we will consider to learn two sets of linear hash
functions W u and W v via minimising the upper bound Le

c(G) of the cumulative
Hamming distance Lh

c (G). Corollary 1 is a direct result of Lemma 4. More proof
details of Lemma 4 are provided in the Appendix 6.7.

6.3.2 Objective function

Specifically, the binary codes of xu
i are defined by linear functions as yui =

(((wu
1 )

Txu
i )+, ((w

u
2 )

Txu
i )+, · · · , ((w

u
K)

Txu
i )+)

T = ((W u)Txu
i )+, where W u is a ma-

trix whose k-th column vector is wu
k . Then, for the u-th uni-modal dataset Xu,

the corresponding binary code set is Y u = ((W u)TXu)+, in which the i-th column
yui is the binary code vector of xu

i .
Furthermore, denote projection matrix

WT = ((W 1)T , (W 2)T , · · · , (WM)T ), (6.16)
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and multi-modal data matrix

X =









X1 0 · · · 0
0 X2 · · · 0
· · · · · · · · · · · ·
0 0 · · · XM









. (6.17)

Thus, the binary codes can be obtained:

Y = (WTX)+. (6.18)

Using Y u = ((W u)TXu)+, it is easy to prove that Y = (Y 1, · · · , Y u, · · · , Y M).
Meanwhile, using Eq. 6.16 and 6.17, the cumulative Euclidean distance Le

c(G)
can be rewritten as

Le
c(G) = 2tr(WTXLXTW), (6.19)

where Laplacian matrix L = D − S, D = diag(d11, d12, · · · , dui, · · · , dMN) and
dui =

∑

v,j S(x
u
i , x

v
j ). In this paper, diag is an operator to generate a diagonal

matrix. The detailed proof of Eq. 6.19 is given in Appendix 6.7.
With the hinge loss constraint, the problem of hash function learning on

hetero-manifold (6.11) could be approximated by minimising its upper bound
(6.19) with some constraint conditions:

W∗ = argmin
W

1

2
tr(WTXLXTW) (6.20)

s.t. ∀u, i, k

(i) yui (k)(w
u
k)

Txu
i ≥ 1− ξuik, ξuik ≥ 0,

(ii) ξuik + ξujk ≤ 1,

(iii) WTW = I,

where ξuik is a slack variable, yui is the hash coding vector corresponding to the
u-th modal data of the i-th object, and yui (k) is the k-th element of yui . The
first and second constraint conditions which are from Lemma 4 ensure Euclidean
distance based loss Le

c(G) be the upper bound of the Hamming distance based
loss Lh

c (G). The third constraint condition corresponds to the requirement of
orthogonality between two hash functions.

To further simplify the optimisation problem (6.20), the last two constraint
conditions are slightly relaxed and transferred into the objective function by using
the Lagrangian principle. As for constraint condition (ii), the total number of
pairs ξuik, ξ

u
jk is M2N2K

2
because of the structure of the hetero-graph, and each ξuik
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exists in MN constraint conditions. Thus all of these constraint conditions can
be summed up and the conditions will be relaxed as

M
∑

u=1

N
∑

i=1

K
∑

k=1

ξuik ≤
MNK

2
. (6.21)

Therefore, the original optimisation problem (6.20) is transformed by replac-
ing the constraint conditions (ii) with the relaxed constraint conditions (6.21)
and using the Lagrangian principle into

W∗ = argmin
W

1

2
tr(WTXLXTW) (6.22)

+C1

M
∑

u=1

N
∑

i=1

K
∑

k=1

ξuik

s.t. ∀u, i, k

(i) yui (k)(w
u
k)

Txu
i ≥ 1− ξuik, ξuik ≥ 0

(ii) WTW = I,

where C1 > 0 is the regularisation parameter.
It should be noticed that the Laplacian matrix L depends on all uni- and

cross-modal similarity matrices because any sole sub-matrix used to define the
similarity matrix S, for example Suv, is not enough for defining the counterpart
sub-matrix of L. It implies that the Laplacian matrix contains the global infor-
mation of the hetero-manifold. Therefore, the optimisation problem (6.22) is a
hetero-manifold regularised hash function learning problem.

6.4 Sequential optimisation

In order to solve the problem in Eq. 6.22, we first divide it into sub-problems, in
each of which only one projection for the k-th code is considered. Thus, in Eq.
6.18, the k-th row vector yk of Y is a binary vector which corresponds the k-th
bits of all samples in all modalities while the corresponding k-th column vector
of W is denoted as wk. Then, we have

yk = (wT
kX)+, (6.23)

where the vector wT
k = ((w1

k)
T , (w2

k)
T , · · · , (wM

k )T ).
Although these sub-problems are not independent with each other, they are

convex when all the other variables are fixed. The convexity will be reflected
by the standard quadratic programming problems in the following Eq. 6.25 and
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6.27. Hence, the optimisation problem (6.22) could be resolved bit by bit in a
sequential way. A similar work of sequential learning could be found in [233],
when the sub-problems can be solved by a direct eigen-decomposition. In this
paper, more specifically, the local optimal solution W∗ is learned by sequentially
optimising each of its column vectors w∗

k, k = 1, 2, · · · , K. For distinguishing the

iterations of optimisation, the τ -th W∗ and w∗
k are denoted as W(τ) and w

(τ)
k ,

respectively. In round τ , before solving the sub-problem, the binary codes y
(τ−1)
k

should be initiated using codes in the last round or generated randomly.

6.4.1 The first hash function learning

Firstly, the first set of linear projections W∗ is learned by sequentially optimising
each of its column vectors w∗

k, k = 1, 2, · · · , K. For distinguishing the iterations
of optimisation, the τ -th W∗ is denoted as W(τ), and the corresponding column
vectors of W(τ) are denoted as w

(τ)
k , k = 1, 2, · · · , K. Therefore, we have

Y
(τ)
k = (w

(τ)
k )TX. (6.24)

To train the hash functions, the hash codes Y (0) will be randomly initialised
in the first round when τ = 1. Then, w

(1)
1 could be learned from the optimisation

problem

w
(1)
1 = argmin

w1

1

2
wT

1 XLXTw1 (6.25)

+C1

M
∑

u=1

N
∑

i=1

ξui1

s.t. ∀u, i,

(i) yui (1)(w
u
1 )

Txu
i ≥ 1− ξui1,

(ii) ξui1 ≥ 0.

The optimisation problem (6.25) is derived from the problem (6.22) where the

orthogonal constraint condition becomes zero because it is assumed that w
(1)
1 is

orthogonal with the other projection directions w
(1)
k , k = 2, 3, · · · , K without any

information about w
(1)
k , k = 2, 3, · · · , K.

It is clear that the optimisation problem (6.25) is convex. Meanwhile, the
Lagrange dual of the optimisation problem (6.25) is a problem of quadratic pro-

gramming. Therefore, the optimal w
(1)
1 could be defined as

w
(1)
1 = (XLXT )−1X

(0)
Y α

(1)
1 , (6.26)

where X
(0)
Y1

= diag(X1
Y1
, · · · , XM

Y1
)1, the matrix Xu

Y1
= (yu1 (1)x

u
1 , · · · , y

u
N(1)x

u
N ),

1Without confusion, the subscript X
Y

(0)
1

will be simplified as X
(0)
Y1

.
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and α
(1)
1 is the result of the Lagrange dual problem of (6.25). yui (1) is the initial

bit which is from Y
(0)
1 for object Oi in the uth modality.

6.4.2 The following hash function learning

Given w
(1)
1 ,w

(1)
2 , · · · ,w

(1)
k−1, the next optimal projection w

(1)
k could be defined via

the following optimisation problem

w
(1)
k = argmin

wk

1

2
wT

kXLXTwk (6.27)

+
C2

2
wT

kQ
(1)
k wk + C1

M
∑

u=1

N
∑

i=1

ξui,k

s.t. ∀u, i,

(i) yui (k)(w
u
k)

Txu
i ≥ 1− ξui,k,

(ii) ξui,k ≥ 0,

where C2 > 0 is a regularisation parameter, and Q
(1)
k =

∑k−1
l=1 wlw

T
l which is

used to measure the orthogonality between wk and the other learned wl, l =
1, 2, · · · , k − 1. It is clear that

wT
kQ

(1)
k wk =

k−1
∑

l=1

(wT
kwl)

2, (6.28)

where wT
kwl defines the linear correlation between wk and wl. By minimising

the term wT
kQ

(1)
k wk, the learned projection direction w

(1)
k will be approximatively

orthogonal to all of the other learned projection directions. Similar to formula
(6.26), the optimisation problem (6.27) could also be resolved by using the La-
grange dual method

w
(1)
k = (XLXT + C2Q

(1)
k )−1X

(0)
Yk
α
(1)
k , (6.29)

where α
(1)
k is the result of Lagrange dual of optimisation problem (6.27) and X

(0)
Yk

will be updated according to the binary vector Y
(0)
k .

When W(1) is learned according to the formulas (6.25) and (6.29), the follow-
ing W(τ), τ = 2, 3, · · · , t could be learned by using a similar objective function.
The differences to problem (6.25) are the definition of the orthogonal item:

Q
(τ)
k =

∑

l 6=k

w
(τ−1)
l (w

(τ−1)
l )T −w

(τ−1)
k (w

(τ−1)
k )T ,
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and, according to the bits learned in the last round Y
(τ−1)
k , the quantity X

(τ−1)
Yk

should be also updated. Similarly, the optimal result w
(τ)
k could be represented

as

w
(τ)
k = (XLXT + C2Q

(τ)
k )−1X

(τ−1)
Yk

α
(τ)
k . (6.30)

The objective functions in Eq. 6.25 and 6.27 can be considered as a general
dual problem1, when we define H = XLXT + C2Q

(1). Thus, the optimal solu-
tion can be obtained by a Representation Theory in Appendix 6.7. Therefore,
all of these steps of optimising the original optimisation problem (6.22) can be
summarised in Algorithm 5.

Algorithm 5 Hetero-manifold Regularised Hashing (HMR)

Input: Dataset {X1, · · · , XM}, parameters C1, C2, the number of iterations t and the length
of hash coding vector K.

Output: Wt.
Initialisation

(0) Construct matrix S according to Eqs. (6.2), (6.8), and (6.1).
(1) Construct Laplacian graph L according to Eq. (6.19).

(2) Randomly initiate the binary codes Y(0) and calculate X
(0)
Y1

.

(3) Generate the first projection w
(1)
1 according to Eq. (6.26).

For k = 2, · · · ,K

(4) Randomly initiate the binary codes y
(0)
k .

(5) Calculate Q
(1)
k and X

(0)
Yk

.

(6) Generate w
(1)
k according to Eq. (6.29).

(7) Update Y
(1)
k using Eq. 6.24.

End

For τ = 2, · · · , t
For k = 1, · · · ,K

(8) Calculate Q
(τ)
k and X

(τ−1)
Yk

.

(9) Generate the k-th projection w
(τ)
k according to Eq. (6.30).

(10) Update W(τ) and Yτ
k using Eq. 6.24.

End

End

Return

6.5 Experiments

The proposed HMR is validated on four recent public datasets: the VIPeR [23]
and CUHK01 [166] datasets for cross-camera person re-identification, the Wiki

1In the case of Eq. 6.25, the parameter can be set to C2 = 0.
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Figure 6.4: Some image examples of the two person re-identification datasets:
VIPeR (left) and CUHK01 (right).

dataset [12] for cross-modal retrieval and the FG-NET ageing dataset [234] for
cross-age face image retrieval where the number of modalities is 6. Four state-
of-the-art cross-modal binary code learning methods, including PDH [24], CVH
[125], CMSSH [126] and CMFH [128], are mainly compared with and some other
area-specific methods are also used for comparative analysis in our experiments.

Evaluation Metrics: On the one hand, for identification systems, the Cumu-
lated Matching Characteristics (CMC) [224] are commonly used for performance
evaluation and measuring how well an identification system ranks the identities
in the gallery with respect to a probe sample. Moreover, the Area Under Curve
(AUC) corresponding to the CMC curves is also reported to show the overall
performance at ranks from 1 to a fixed maximum. A larger AUC score means the
corresponding method is more robust. On the other hand, for the ranking cases
of multiple feedbacks, the precision and recall are normally calculated:

precision =
|ℑ ∩ ℜ|#
|ℜ|#

, recall =
|ℑ ∩ ℜ|#
|ℑ|#

,

where ℜ is a set of retrieved samples, ℑ is a set of relevant samples and |· |#
denotes the size of the set. Precision-Recall (PR) curves [235] which are often used
in information retrieval are used to measure performance in cross-modal retrieval.
By varying the similarity measurement between the pair of retrieved samples
(Hamming distance in this chapter) and evaluating the precision, recall and the
number of retrieved points accordingly, PR curves can be obtained. Furthermore,
Mean Average Precision (MAP) [128], which is the average precision at the ranks
where recall changes, is generally used to evaluate a ranking system.
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LADF−0.3
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Figure 6.5: The CMC rankings of the compared methods on the VIPeR dataset
with #316 test persons. Numbers in legend are the Rank-1 accuracies and HMR-
512 means the length of learned codes of HMR is 512.

6.5.1 Cross-camera re-identification

Cross-camera person re-identification is a very challenging task because of the
variation of camera views and the environment. Given a probe image containing
a person, the most popular method of recognising the person is to rank the
similarities between the probe image and the images in the gallery (captured by
other cameras). In this experiment, the similarity is calculated in the learned
Hamming space across the cameras and the maximum rank of AUC is 85.

VIPeR: This dataset contains 632 pedestrian image pairs in an outdoor en-
vironment. Each pair contains two images of the same individual taken from
two different camera views. Changes of viewpoint, illumination and pose are the
most significant causes of appearance change. Each image has been scaled to be
128 × 48 pixels. Some example images in VIPeR are shown in Fig. 6.4 (Left).
The experimental setting is the same as [170]. Half of the dataset including 316
images for each view is used for training the algorithms and the remaining (316
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Method R1 R5 R10 R15 R20 AUC
HMR 0.299 0.590 0.729 0.826 0.880 0.897

CMFH 0.247 0.528 0.712 0.766 0.816 0.871
PDH 0.171 0.449 0.604 0.693 0.778 0.822

CMSSH 0.190 0.437 0.639 0.725 0.791 0.831
CCA 0.168 0.427 0.551 0.633 0.693 0.776
CVH 0.085 0.209 0.294 0.345 0.399 0.551

Table 6.1: Ranking accuracy comparison at ranks 1, 5, 10, 15 and 20 and overall
AUC performance comparison when 512 dimensional binary codes are learned.
R1 denotes Rank 1.

pedestrian) is used for testing.
CUHK01: Two cameras setting in different places of a campus environment

are used to collect the samples. Camera A captures the frontal view or back view
of pedestrians, while camera B captures the side view. This dataset contains
971 persons, each of which has two images. Some example images in CUHK01
are shown in Fig. 6.4 (Right). All the images are normalised to 160×60 for
evaluations. The experimental setting is the same as [225] where 486 persons are
chosen for testing and the remaining persons for training.

In this experiment, the Local Maximal Occurrence Feature (LOMO) which
was proposed in [160] is used. The original dimension of the LOMO feature is
26960 and then is reduced to 70 as suggested by [160]. In this experiment, the
parameters C1 and C2 of Algorithm 5 are set to 20 and 2, respectively. All the
results are reported by averaging 10 runs.

To compare the performance with the state-of-the-art person re-identification
methods, we evaluate the proposed HMR and the recently published algorithms
on the VIPeR dataset including: SDALF [227], CPS [228], KISSME [171], eSDC
[164], SalMatch [226] MLF [225] and LADF [236]. For the proposed HMR, two
lengths of binary codes 512 and 800 have been learned and the experimental
results corresponded to both code lengths are denoted as HMR-512 and HMR-
800, respectively. The comparison results are shown in Fig. 6.5. Firstly, we can
see that, except for LADF, HMR (HMR-512 and -800) significantly outperforms
other methods and the advantages are more obvious especially at higher ranks
(from 5 to 60). It is worth to point out that HMR is the only hashing-based
method among the compared ones and still achieves comparative results to a
non-hashing metric learning method LADF. In fact, due to quantisation loss,
the performance of hashing methods is normally lower than that of non-hashing
methods in many applications. Secondly, HMR-512 achieves similar results as
HMR-800 and this demonstrates that the performance keeps stable when the
code length is above a certain threshold. Finally, we also compare with other
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hashing methods on the VIPeR dataset when the binary code length is fixed at
5121 and the comparison results are illustrated in Table 6.1. We can see that, both
from the perspectives of ranks 1, 5, 10, 15 and 20 and the overall performance
AUC, HMR achieves much better results than state-of-the-art hashing methods.

To further compare with other hashing methods, binary codes of shorter
lengths (32, 64 and 128) are learned on the CUHK01 dataset. The results are
shown in Fig. 6.6 and Table 6.2. We can observe that, as the code length
increases, the performance of eigenvalue decomposition based methods such as
CVH decreases since the first few projection directions occupy most of variances.
However, it is reasonable that our HMR can achieve better when the code length
increases. More information can be kept because HMR considers both the orthog-
onality and the cross-modal intrinsic structure. We can see that HMR achieves
best results at all code lengths. Specifically, the advantages of HMR are more
obvious, when the length of learned codes increases. The rank 1 scores of the five
methods are also shown in the legend of Fig. 6.6 and HMR obtains at least 0.024
higher scores than other methods.

Method CVH CMFH PDH CMSSH HMR
32 bits 45.66 65.39 58.96 54.21 67.99

64 bits 38.47 65.37 66.59 54.78 69.36

128 bits 30.13 67.03 69.29 55.15 72.14

Table 6.2: AUC Comparison on CUHK01 corresponding to the curves in Fig. 6.6.

6.5.2 Cross-modal retrieval

Images and texts are the two popular modalities for testing cross-modal retrieval
methods. There are several datasets available but Wiki is the most popular one.
Thus, in this experiment, the Wiki [12] dataset is used for our evaluations.

Wiki: It is generated from the “Wikipedia featured articles” and consists of
2866 image-text pairs in 10 most populated categories. The texts are represented
by 10 dimensional latent Dirichlet allocation model and each image has a 128
dimensional SIFT histogram feature. We follow the data partition adopted in
[12] to split the dataset into a training set of 2173 pairs and a test set of 693
pairs. In our setting, both gallery and query samples are from the test set which
is different to the setting in [128]. In [128], the gallery samples are from the
training set and thus their retrieval results are better than ours. If the query
comes from the test set, then the samples in the text test set will be considered

1Because of the limitation of covariance, CVH and CCA cannot learn functions with a
number exceeding the rank of the matrix. Thus, best results are reported at a certain length.
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Figure 6.6: The CMC rankings of five methods on the CUHK01 dataset at code
lengths 32, 64 and 128 with 486 test persons.

as the database and vice versa. In this experiment, the parameters C1 and C2 of
Algorithm 5 are set as 30 and 1.2, respectively. The number of retrieved instances
is set to |ℜ|# = 50.

The MAP results on the test set are shown in Table 6.3. The same phe-
nomenon of performance reduction as the code length increases for the eigenvalue
decomposition based methods can be also observed on Wiki. From Table 6.3, we
can see that HMR outperforms the state-of-the-art methods at code lengths 32
and 64, and achieves very close scores to the best method at code length 16. More-
over, the Precision-Recall (PR) curves on the Wiki dataset, which are obtained
by varying the Hamming distance between the query points and the retrieved
points, are reported in Fig. 6.7. HMR can obtain higher scores for almost all
the Hamming radii from 1 to the maximum at code lengths 32 and 64 and get a
similar PR curve to the best one at code length 16. Finally, MAP performance
on each category is shown in Fig. 6.8. The retrieval difficulties of the 10 cate-
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Task Method 16 bits 32 bits 64 bits

Image
Query

CVH 0.2021 0.1668 0.1723
CMSSH 0.2276 0.1940 0.1982
PDH 0.1885 0.1796 0.2086
CMFH 0.2583 0.2567 0.2691
HMR 0.2503 0.2621 0.2833

Text
Query

CVH 0.2560 0.1902 0.2019
CMSSH 0.2483 0.2431 0.2505
PDH 0.2309 0.2278 0.2279
CMFH 0.3192 0.3347 0.3351
HMR 0.3151 0.3408 0.3511

Table 6.3: MAP Comparison on Wiki.

gories to the five methods are similar and three of them, i.e., Biology, Geography
and Warfare, seem to be more easily classified. From Fig. 6.8, we can see that
HMR is more robust on different categories over other methods. Very recently,
deep neural networks were also exploited for multi-modal hashing [237] or cross-
modal hashing [238] and achieved more advanced results than some other types
of methods. However, the complexity of code generation in deep neural networks
is generally much higher than that in linear functions. Take the model of layers
100−256−128−64−32−32 in [237] for example, the number of multiplications
is 68608 times of that in the corresponding linear function.

6.5.3 Cross-age face retrieval

In this section, we validate the proposed HMR on a more challenging task: cross-
age face retrieval. Given a probe face image, we need to search for the face
images of the same person but captured in different age stages. This task is
derived from age estimation [13] but it is more difficult and novel because: 1)
The principal characteristics of the face appearance of a same person vary hugely
along with the variation of his or her age. 2) The capturing conditions of images
are quite diverse in different places and years. 3) As far as we know, the cross-
age face retrieval is the first multi-modal experiment, in which 6 modalities are
considered. Intuitively, the ages of faces can be considered as modalities in our
setting, in which faces of different persons with the same age range share similar
characteristics including smoothness, wrinkles and hair.

FG-NET: Some examples of an ageing dataset [234], which contains 82 people
with age ranges from 0 to 69, are shown in Fig. 6.9. The images of a same person
distribute unevenly and most of the images are captured in the early ages. Thus,
we divide the ages into 6 stages including 0−4, 5−9, 10−14, 15−19, 20−30 and
31− 69 which correspond to 6 modalities in our method. In this experiment, the
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Figure 6.7: Precision recall curves on Wiki by varying the Hamming distance.

parameters C1 and C2 of Algorithm 5 are set to 10 and 0.1, respectively. 10-fold
cross validation is used and, in each fold, 90% persons will be chosen as training
and the remaining as for testing. In this experiment, the maximum value for
AUC is set to 50.

Firstly, same as most age estimation works, features are directly extracted
based on the 64 landmarks offered by the FG-NET dataset. For each landmark,
a simple descriptor GIST [239] is used for representing a fixed rectangle (19×19)
around it and then a feature for a face image can be constructed by concatenating
the features of all landmarks. Principal Component Analysis (PCA) is adopted to
reduce the feature into a space with 255 dimensions. Secondly, it is worth to point
out that the number of images of a same person differs significantly for different
age stages. Thus, compared to person re-identification and cross-modal retrieval,
the task becomes more difficult because the correspondence matrix between two
modalities is not diagonal. For some methods such as CMFH, the optimisation
is not even technically correct. By duplicating the samples of a same person, a
diagonal correspondence matrix can be obtained. Moreover, except for our HMR,
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Figure 6.8: MAP performance for each category at 32 bits.

no existing methods can directly tackle multiple modalities with an inconsistent
number of samples or features. To compare with these methods, any two modal-
ities will be considered as the input of the two-modality methods. Taking the
PDH, CMFH, CCA, CMSSH and CVH as examples, these methods will be trained
15 times for cross-age face retrieval and, for each modality, 5 different groups of
projections will be obtained. This demonstrates that our proposed HMR is very
powerful and flexible to deal with different tasks without particular limitations
and the hash functions for different modalities can be obtained simultaneously
by one optimisation.

Modalities 0-4 5-9 10-14 15-19 20-30 31-69
0-4 – 0.108 0.102 0.059 0.043 0.000
5-9 0.248 – 0.216 0.179 0.050 0.050
10-14 0.220 0.265 – 0.134 0.125 0.163
15-19 0.096 0.220 0.162 – 0.149 0.304
20-30 0.120 0.102 0.055 0.141 – 0.322
31-69 0.033 0.113 0.132 0.125 0.103 –

Table 6.4: Rank 1 performance of cross-age retrieval on the FG-NET face dataset
with 6 modalities.

The overall performance comparison of cross-age face retrieval is given in Fig.
6.10 and the different methods are ranked according to the Area Under Curve
(AUC). From this figure, we can see that the proposed method consistently out-
performs other methods at all ranks. Moreover, we can conclude that non-hashing
method CCA achieves better results than other hashing-based methods. Further-
more, compared to the above experiments of two modalities, the advantages of
the proposed HMR are more obvious in this experiment. The substantial reason
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Figure 6.9: Some image examples of the FG-NET dataset. For person 007, the
dataset contains no image samples with age range 5-14.

is that the information can be propagated on the proposed Hetero-manifold and
then supervises the learning of hash functions. However, most state-of-the-art
methods are specially designed for two modalities and, in the multi-modal cases
(M > 2), to some extent, the global information is ignored.

To investigate the details of cross-age retrieval, the performance at ranks 1,
10 and 20 between any modalities is shown in Tables 6.4, 6.5 and 6.6, respec-
tively. On the one hand, we can see that, in general, the performance of cross-age
retrieval between two adjacent modalities is higher than that of non-adjacent
modalities. In essence, the appearance changes between adjacent modalities will
be smaller than those between large age gaps. On the other hand, it is interest-
ing that the retrieval performance when the probe image comes from older age
stages and the gallery consists of images from earlier ages normally will be better
than the opposite conditions. We think this is because the appearance variation
trend in the later age stages becomes smaller and some important identification
characteristics remain as age increases.
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Figure 6.10: Overall performance comparison between the proposed HMR, CCA
and other state-of-the-art methods. The number in the legend is the Area Under
Curve (AUC) and the possible largest AUC can be up to 1.

Two probe samples with first 3 matches are shown in Fig. 6.11. The two
persons have images from the 0 − 4 modality to the 15 − 19 modality. The
left probe comes from the 5 − 9 modality while the right one comes from the
0 − 4 modality. We can see that several images with a same person have been
successfully matched in different age stages by cross-age retrieval.

6.6 Summary

In this chapter, the concept of hetero-manifold was introduced for integrating
the uni- and cross-modal similarities of multi-modal data in a global view. Both
types of similarity are represented in the Laplacian matrix L corresponding to the
hetero-manifold. The Laplacian matrix L appears smoothly when the Hamming
distance in Eq. (6.11) is replaced by the Euclidean distance in Eq. (6.20), which
hints that no hash functions could be learned without all uni- and cross-modal
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Modalities 0-4 5-9 10-14 15-19 20-30 31-69
0-4 – 0.284 0.216 0.151 0.085 0.111
5-9 0.537 – 0.437 0.358 0.400 0.250
10-14 0.515 0.565 – 0.387 0.328 0.490
15-19 0.346 0.488 0.414 – 0.460 0.536
20-30 0.337 0.367 0.233 0.424 – 0.589
31-69 0.333 0.340 0.374 0.347 0.370 –

Table 6.5: Rank 10 performance of cross-age retrieval on the FG-NET face dataset
with 6 modalities.

Modalities 0-4 5-9 10-14 15-19 20-30 31-69
0-4 – 0.319 0.282 0.168 0.106 0.148
5-9 0.578 – 0.477 0.421 0.475 0.350
10-14 0.556 0.604 – 0.465 0.391 0.571
15-19 0.394 0.549 0.485 – 0.506 0.565
20-30 0.361 0.408 0.301 0.515 – 0.633
31-69 0.400 0.453 0.396 0.403 0.495 –

Table 6.6: Rank 20 performance of cross-age retrieval on the FG-NET face dataset
with 6 modalities.

similarities being defined on the hetero-manifold. Therefore, the proposed frame-
work of hetero-manifold regularised hash function learning (Eq. (6.20)) could
benefit from the view of treating multi-modal data as a whole. The experimen-
tal results demonstrate that the proposed HMR outperforms the state-of-the-art
methods on four popular datasets.

The hetero-manifold also offers some interesting problems in the field of cross-
modal hashing. Firstly, it is interesting to consider a kernel extension of the pro-
posed HMR. It is clear that the proposed hetero-manifold regularised framework
(Eq. (6.20)) can be rewritten in Reproducing Kernel Hilbert Space (RKHS). By
using RKHS, nonlinear hash functions could be learned, which may improve the
performance of HMR. However, to achieve this, an induced problem needs to be
considered for multi-modalities. For a common reproduced space or several indi-
vidually reproduced spaces, which case is more reasonable? Moreover, what is the
relationship between the reproduced spaces and the kernels? Secondly, it would
be interesting to consider the proposed framework (Eq. (6.20)) in semi-supervised
settings.
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Figure 6.11: The cross-modal first three matching results of two probe images.
The red rectangles demonstrate the correctly matched images in the gallery of a
same person.

6.7 Appendices

Proof of Lemma 3

Proof. We have Suv = SuuP uvSvv and Svu = SvvP vuSuu. The transposition of
Svu is:

(Svu)T = (SvvP vuSuu)T

= (Suu)T (P vu)T (Svv)T

= SuuP uvSvv

= Suv.

The third equation holds because matrices Suu, Svv and P uv = (P vu)T are sym-
metric.

According to the definition of similarity matrix S, the symmetry of S could
be proved by using the fact of (Svu)T = Suv.

Proof of Lemma 4

Proof. The Hamming distance between two binary codes yui and yvj is defined by:

Dh(y
u
i , y

v
j ) =

∑

k

yui (k)⊕ yvj (k)

=
∑

k

1((fu
k (x

u
i ))+ 6= (f v

k (x
v
j ))+),
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where 1(· ) is an indicator function. Thus, for any k, we consider two conditions:
(1) If (fu

k (x
u
i ))+ = (f v

k (x
v
j ))+, it is obvious that

yui (k)⊕ yvj (k) = 0 ≤ |fu
k (x

u
i )− f v

k (x
v
j )|.

(2) If (fu
k (x

u
i ))+ 6= (f v

k (x
v
j ))+, we assume that (fu

k (x
u
i ))+ = 1 (Otherwise, same

conclusion can be also obtained). There must be (f v
k (x

v
j ))+ = −1. Since the two

linear projections are both hinge loss constraint-satisfied functions, we have:

fu
k (x

u
i ) ≥ 1− ξuik,

f v
k (x

v
j ) ≤ −1 + ξvjk.

So, there is 2 − ξuik − ξvjk ≤ |fu
k (x

u
i ) − f v

k (x
v
j )|. Provided that ξuik + ξvjk ≤ 1, the

following inequality is true:

yui (k)⊕ yvj (k) = 1 ≤ 2− ξuik − ξvjk ≤ |fu
k (x

u
i )− f v

k (x
v
j )|.

In total, we obtain the following conclusion by satisfying ∀k, ξuik + ξvjk ≤ 1:

Dh(y
u
i , y

v
j ) =

∑

k

yui (k)⊕ yvj (k)

=
∑

k

1((fu
k (x

u
i ))+ 6= (f v

k (x
v
j ))+),

=
∑

k

12((fu
k (x

u
i ))+ 6= (f v

k (x
v
j ))+),

≤
∑

k

(fu
k (x

u
i )− f v

k (x
v
j ))

2.

The third equation holds due to that 02 = 0 and 12 = 1. Therefore, we have:

Dh(y
u
i , y

v
j ) ≤ ||F (xu

i )− F (xv
j )||

2
2

= De(F (xu
i ), F (xv

j )).

Proof of Equation (6.19)

Proof. According to the definition of WT (6.16) and the definition of X (6.17),
it is clear that

WTX

= ((W 1)T , · · · , (WM)T )









X1 0 · · · 0
0 X2 · · · 0
· · · · · · · · · · · ·
0 0 · · · XM









= ((W 1)TX1, (W 2)TX2, · · · , (WM)TXM). (6.31)
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Then

tr(WTXSXTW)

= tr
(

(

(W u)TXu
)M

u=1

(

Suv
)M

u,v=1

(

(Xv)TW v
)M

v=1

)

=
∑

u,v

tr((W u)TXuSuv(Xv)TW v) (6.32)

Notice the definition of F (xu
i ) and Xu = (xu

1 , · · · , x
u
N), we have

tr(WTXSXTW)

=
∑

u,v

tr((F (xu
i ))

N
i=1S

uv((F (xv
j ))

N
j=1)

T )

=
∑

u,v

∑

i,j

Suv(xu
i , x

v
j )〈F (xu

i ), F (xv
j )〉2. (6.33)

Meanwhile, we have the following equations

tr(WTXDXTW) =
∑

u,i

dui||F (xu
i )||

2
2

=
∑

u,i

||F (xu
i )||

2
2

∑

v,j

S(xu
i , x

v
j )

=
∑

u,v

∑

i,j

S(xu
i , x

v
j )||F (xu

i )||
2
2 (6.34)

where D = diag(d11, d12, · · · , dui, · · · , dMN) and dui =
∑

v,j S(x
u
i , x

v
j ). Similarly,

the following equation is true.

tr(WTXDXTW) =
∑

u,v

∑

i,j

S(xu
i , x

v
j )||F (xv

j )||
2
2 (6.35)

Combining the equations (6.33), (6.34) and (6.35) and considering S(xu
i , x

v
j ) =

Suv(xu
i , x

v
j ), we have

2tr(WTXLXTW)

= 2tr(WTXDXTW)− 2tr(WTXSXTW)

=
∑

u,v

∑

i,j

Suv(xu
i , x

v
j )‖F (xu

i )− F (xv
j )‖

2
2

= Le
c(G) (6.36)
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Proof of the formula (6.29 and 6.26)

Proof. For simplicity, we delete the index of projections and, then the objective
function in 6.27 become similar to the function in 6.25. The only difference
between them is Eq. 6.27 has a orthogonal item. Thus, if further define H =
XLXT + C2Q, we obtain:

w∗ = argmin
w

1

2
wTHw + C1

M
∑

u=1

N
∑

i=1

ξui (6.37)

s.t.∀u, i, yui (w
u)Txu

i ≥ 1− ξui , ξui ≥ 0,

where the element yui of y is the bit of initial or learned in the last round. In case
of solving the problem in 6.25, the parameter C2 can be directly set to 0. The
Lagrange function of the problem 6.37 is

L(w, ξ, α, γ) (6.38)

=
1

2
wTHw + C1e

T ξ

−wTXyα + eTα− αT ξ − γT ξ,

where α = (α1
1, · · · , α

u
i , · · · , α

M
N )T and Xy = diag(X1

y, · · · , X
u
y , · · · , X

M
y ), the

matrix Xu
y = (yu1x

u
1 , · · · , y

u
Nx

u
N ). The gradients with respect to the parameters

are:

∂L

∂w
= Hw−Xyα;

∂L

∂ξ
= C1e− α− γ.

Thus, the optimal values should satisfy the following conditions:

w∗ = H−1Xyα;

γ = C1e− α.

Substituting the above equations into the original Lagrange function (6.38), we
obtain the dual problem:

α∗ = argmin
α

−eTα +
1

2
αTXT

yH
−1Xyα

s.t. 0 ≤ αi ≤ C1. (6.39)

The problem (6.39) is a standard quadratic programming problem. Therefore, if
α∗ is the solution of (6.39), the optimal projection direction can be obtained as:

w∗ = (XLXT + C2Q)−1Xyα
∗.
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Relationship to KKT conditions

In this chapter, a non-convex constraint optimisation problem 6.22 is considered.
We first divide the overall problem into finite sub-problems. Then, to solve this
complex objective, we use Lagrange multipliers to transfer constraint problem to
a non-constraint problem and thus a optimal solution for the primal sub-problem
could be obtained by a dual problem. Here, we show that the results could
be related to KKT (Karush-Kuhn-Tucker) conditions of a general optimisation
problem:

x∗ = argmin
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, · · · , m,

hj(x) = 0, j = 1, · · · , p.

where m and p are the numbers of inequality and equality constraints. We can
define the Lagrangian function associated with the above problem:

L(x, µ, ν) = f0(x) +
∑

i

µifi(x) +
∑

j

νjhj(x),

where µ and ν are the dual variables. Therefore, the dual problem could be
obtained:

(µ∗, ν∗) = argmax
µ,ν

g(µ, ν),

s.t. µi ≥ 0, i = 1, · · · , m,

where g(µ, ν) = infx(L(x, µ, ν)). The dual problem g(µ, ν) is always concave no
matter whether the primal problem f0 is convex or not. Moreover, if a strong
duality holds, x is primal optimal, and both µ and ν are the dual optimal, hence
the following four conditions called KKT conditions hold:

• Primal feasibility: fi(x) ≤ 0, hj(x) = 0 i = 1, · · · , m, j = 1, · · · , p.

• Dual feasibility: µi ≥ 0 i = 1, · · · , m.

• Complementary slackness: µifi(x) = 0, i = 1, · · · , m.

• Stationarity: ∂L(x, µ, ν) = 0.

The mathematical symbols introduced above are only used to illustrate the
general framework of a constraint optimisation. Now, we turn back to our op-
timisation problems for cross-modal hashing. Firstly, it is obvious that the ob-
jective and constraint functions in Eq.6.25 and 6.27 are differentiable and thus
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∂L(w, ξ, α, γ) could be computed. Secondly, it is easy to prove that the primal
problem is convex because that the Laplacian matrix in quadratic term (highest-
degree) is positive semi-definite. Therefore, the strong duality holds where the
minimum of primal objective equals to the maximum of dual objective. Then,
the optimal solution must satisfy the KKT conditions. Thirdly, according to the
KKT Stationarity condition ∂L(w, ξ, α, γ) = 0, we can obtain our representation
theory to build a relationship between the original optimal and the dual optimal
in Eq. 6.26 and 6.29. Moreover, the dual problem (infimum of Lagrangian func-
tion) in Eq. 6.39 can be obtained when ∂L(w, ξ, α, γ) = 0. This is because all the
objective and constraint functions are convex and thus a single optimal function
could be obtained when ∂L(w, ξ, α, γ) = 0. Finally, the complementary slackness
property provides a sparsity explanation of α in Eq. 6.26 and 6.29. That is to
say, the inequality conditions in Eq. 6.37 and the optimal solution of the dual
problem α∗ have the following relationships:

αu
i > 0 =⇒ yui (w

u)Txu
i = 1− ξui ,

or equivalently,

yui (w
u)Txu

i > 1− ξui =⇒ αu
i = 0.
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Chapter 7

Conclusions

This chapter summarises the findings of this thesis, presents the limitations, which
could not be more deeply discussed in this thesis due to the limited space, and
points out some directions for future work.

7.1 Discussion

To realise the goal provided in Chapter 1, this thesis has presented four novel
algorithms to solve the diverse problems of visual data association in three levels:
signal camera object tracking, cross-camera person re-identification and cross-
modal retrieval. In particular, the essential problem of object tracking has been
carefully investigated. Based on the discoveries, the improvement of the diver-
sity of the tracking system has also been intensively discussed from two different
conditions, in which the trackers are sampled from the same function space or
several different hypothesis spaces. It is more valuable to mention that the pro-
posed tracking methods are real time and of low computational cost and one of
them has been successfully executed on an intelligent Mobile with an Android
platform. In addition, how to efficiently associate samples collected in two differ-
ent cameras for fast person re-identification has also been studied. In addition,
a framework of hetero-manifold regularisation for cross-modal hashing has been
proposed to extend the research into more general cases. In total, in this thesis,
efficiency is always considered to be one of the most significant factors to achieve
the ends of the visual data association.

Specially,

• Chapter 3 proposed a Learn++ based tracker for visual tracking. By means
of automatically adjusting the members of classifiers, a democracy mech-
anism has been adopted by the LPP tracker to solve numerous challenges
appearing in the scenarios, simultaneously. Moreover, the LPP tracker has
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achieved an optimal balance between the flexibility and stability of the
classifiers and between the efficiency and performance of the model as well.

• Chapter 4 explained a winner-take-all framework for object tracking by
incorporating the strengths of trackers for different challenges, to further
improve the performance and efficiency. It proves that different trackers
have different characteristics and the combination of them is valuable. The
proposed WTA framework has been tested on a large benchmark dataset
and extensive experimental results have illustrated that WTA can signifi-
cantly improve both the performance and the efficiency.

• Chapter 5 detailed a cross-view binary code learning method for fast per-
son re-identification. The main advantage of this method is that it greatly
speeds up the procedure of the ranking or retrieval stage, when achieving
equivalent performance to the state-of-the-art methods. Moreover, three
more important points have also been observed. Firstly, just as the heuris-
tic hand-craft descriptors are used in Chapter 5 and we think that utilising
a stronger pixel-based descriptor, which is learned using deep architecture,
will greatly improve CBI. Secondly, maximum margin has been used in
learning binary codes by other methods. However, we firstly give an inside
view of the intrinsic mechanism that the Hamming distance can be min-
imised by minimising the Euclidean distance when the learned linear hash
functions satisfy the hinge loss constraint.

• Chapter 6 introduced a novel concept of hetero-manifold for integrating
the uni- and cross-modal similarities of multi-modal data in a global view.
Both types of similarity are represented in the Laplacian matrix correspond-
ing to the hetero-manifold. The Laplacian matrix appears smoothly when
the Hamming distance is replaced by the Euclidean distance, which hints
that no hash functions could be learned without all uni- and cross-modal
similarities being defined on the hetero-manifold. Therefore, the proposed
framework of hetero-manifold regularised hash function learning could bene-
fit from the view of treating multi-modal data as a whole. The experimental
results demonstrate that the proposed HMR outperforms the state-of-the-
art methods on four popular datasets.

We conclude that, by fully exploiting the algorithms for solving the problems
in the three situations, an integrated trace for an object moving anywhere can
be definitely discovered. By using the detected traces, we have opportunities to
investigate the intrinsic structures of the data, bridge the gaps between different
modalities or sensors and associate the objects in different environments and
platforms, then to create exciting and fascinating applications.
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7.2 Future Work

Undoubtedly, visual data association is a novel, interesting but challenging area
in both the theoretical research and the system development of real-world appli-
cations. Obviously, this thesis would serve as a modest spur to induce someone
to come forward with more valuable contributions on visual data association in
the future. To improve and extend the discoveries in this thesis, some potential
research directions for future work from two perspectives will be summarised as
follows to end this thesis.

On the one hand, from the perspective of theoretical research, we have fol-
lowing valuable directions:

• In the first level of research for single camera object association, the pro-
posed methods have concentrated on single object association in different
locations and times only. In fact, multiple objects in the same view, in which
some of them maybe similar or dissimilar to each other, occur frequently in
the real world. The existing multi-object tracking (MOT) methods mainly
focus on instant or long historical trajectories of these targets. However,
this task of MOT could be considered as a visual data association prob-
lem in which the appearance identities could be modelled as well by using
multiple classifiers (agents).

• Based on the research of learning cross-view identities, the CBI can be ex-
tended for person re-identification in the setting of multiple cameras (more
than two) or multi-shot setting. In fact, in a real world scenario, even in a
building or a shopping mall, many more than two cameras are installed to
monitor the human activities. Therefore, learning the identities of persons
from more than two views is useful. Moreover, in most cases, more than
one image, or even a video, could be captured and utilised for one subject
in one camera. Hence, since more valuable information has been used, both
the performance and robustness of the system could be further improved.

• Cross-modal online hashing would be very a promising direction to solve
the problems rapidly in visual data association, or some other related tasks,
when samples are obtained sequentially. Recently, due to the urgent neces-
sity of research for large-scale data, hashing has become a very hot topic in
the areas of machine learning and the data mining communities. However,
there are rare online methods of hashing which have been proposed and,
in the literature of hash learning, only two initial works [50, 51] considered
such types of problem and there are still many challenges. Furthermore,
as far as we know, the cross-modal online hashing has never been investi-
gated in any area. In fact, in most real cases, no matter whether in a signal
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modality or multiple modalities setting, it is likely that the samples are
generated in sequential way and, generally, collecting a sufficient dataset
before building a model is a human-labour expensive task. Thus, to effi-
ciently associate samples, it is very meaningful to propose a cross-modal
online hashing method in the future.

• Similar to the development of SVM, HMR can be naturally extended to
the semi-supervised setting or non-linear function learning in Reproduced
Kernel Hilbert Space (RKHS). Briefly, HMR can be considered as the im-
provement of manifold regularisation in a setting of multiple information
sources or representations. In classical methods, generally, the manifold
structure could be reflected by the unlabelled samples, which are easily col-
lected and used to penalise the smoothness of learned models. Hence, in the
multi-modality setting, the unlabelled samples could be exploited to guide
the learning as well. In addition, HMR can also be considered as the initial
extension of the Support Vector Machine (SVM) for cross-modal tasks. The
kernel version of SVM could be used to classify the samples, which are orig-
inally linear non-separable, in a high-dimensional feature space induced by
a Kernel function. There are many advantageous properties in such a type
of RKHS. Thus, HMR also can be extended to improve the performance
by exploiting these properties. As a result, it is predictable that the role of
cross-modal support vectors could be investigated in some more ways.

On the other hand, from the perspective of applications, we have the following
interesting and promising developments:

• Cross-modal retrieval methods proposed in this thesis can be used in a new
application: cross-age image retrieval, which was firstly discussed in the
HMR paper. Given an image of a person, the task is to search the images
of the same person in other certain age stages. This task is far more difficult
than the two classical tasks: age estimation or cross-age face recognition.
Firstly, the learned function set should be sensitive to the age variant as the
system needs to search the image in a specified age. Secondly, similar to the
age period discriminative characteristic, the function set is required to be
individual sensitive, which means, for any age stage, the similarity between
the same individual is supposed to be larger than for different individuals.
Lastly, in fact, cross-age face retrieval is a task of multiple-task learning, in
which both age and individual information must be sampled in a common
manifold.

• Kinship verification or retrieval is also a very interesting and challeng-
ing problem. The proposed HMR also can be applied to learn kin links
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for four representative relations: Father-Son, Father-Daughter, Mother-Son
and Mother-Daughter. Compared to cross-age face retrieval, this task of
learning kin links is more challenging due to the inherited properties that
are controlled by both gene and some occasional mutations, which can-
not be predicted. In addition, the appearance of a face is also influenced
by many other factors, such as local climate and lifestyle. However, kin-
ship verification has many potential applications, including family album
organization, image annotation, social media analysis, and missing chil-
dren/parents search, etc. With exploring the common manifold, which is
used to describe the cross-kin structures and local similarities between any
pair of persons, the four types of relations can be integrally investigated.

• Visual data association can be exploited to solve some basic problems in
Human-Computer Interaction (HCI). At present, based on the results in
this thesis, several colour information based systems have been developed
for controlling the computer, TV and mobile by using hand gestures or
motions of the human body. Firstly, in the future, similar systems can be
implemented using the depth image or other types of sensors. In fact, to
develop some low-cost system for simple applications is a very promising
direction for HCI. Secondly, based on a real-time system on an Android
platform to play games on mobiles, it is possible to develop a system to
control mobiles using any object around the user. Thirdly, the discoveries
of visual data association in this thesis could be used for a natural controller
in virtual reality. If users can interact with the virtual object using hands
directly, rather than devices, then the experience of users will be hugely
improved. Finally, the cues of visual data association can also be exploited
for intelligent advertising. If people can interact with the advertisement,
then people are more likely to watch it and remember the content of the
adverts.
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