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Abstract

This thesis describes research into speaker diarizationefiorded meetings.
It explores the algorithms and the implementation of anlio#-speaker seg-
mentation and clustering system for meetings that have te@memded using one
microphone.

Speaker diarization is defined as a process of partitionisgaken record
into speaker-homogeneous regions. The meeting recordiosrdifferent kinds
of noise and the length of the noise varies significantly. average speech-turn
is short and the number of speakers is unknown.

To reduce the influence of these aural characteristics opdHermance of
the speaker diarization system, this thesis proposed fwratgorithms. First, a
new speech activity detection method, which adjusts thespa®ch model com-
plexity according to the noise length ratio. Second, a nesaker change point
detection measure was derived based on the Fisher Lineariisate Analy-
sis to help detect short speaker turns. Third, the Equal Nv&gnalty Criterion
was formulated as a new model complexity selection critetttrain both the
speakers’ models and the Universal Background Model (UBMpntains two
penalty terms, one penalizes the model dimensions and esmoixtures with
small mixing probability, the other penalizes the Kullbdakibler divergence
between the prior and posterior distribution of the miximggmeters, removing

those components that share the same location. This oriteen be adjusted



by the prior distribution parametér which controls how many components are
used in the model. Fourth, a weight and mean adaptation mheths developed
to adapt potential speaker models from the UBM. In addittgpptential speaker
merging termination scheme, based on the Normalized Catsjmroduced into
the system.

Combining all the new techniques derived in this thesis ttogye the error
rate of the baseline system was reduced from 18.61% to 9.248teocdevelop-
ment set, 18.89% to 10.50% on the evaluation set from AMIgsrpnd 21.35%
to 15.48% on the evaluation set from ISL corpus. When usieg\tbrmalized
Cuts based potential speaker merging termination schdraesrtor rate of the
baseline system was reduced 18.61% to 10.33% on the devehdget, 18.89%
to 9.99% on the evaluation set from AMI corpus, and 21.35%300% per-

centage points on the evaluation set from ISL corpus.
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Chapter 1

Introduction

As processing power, storage capacity and network bandwidiease, so grows
the quantity of available information that can be stored aodessed by ma-
chines. That information can take the form of text (Saltd@9®), audio (Tranter
et al., 2004), graphics (Wang et al., 2008) and multimed@ s, 2008). For
humans to be able to cope with, and exploit, this ‘informatxplosion’ it is
necessary for it to be indexed for ease of future retrievac@ssed for differ-
ent search strategies, and re-used so as to bring togegigendnts which have
not hitherto been juxtaposed but which together can offehéu insights into a
topic. ASCII-based text has long been the target for indgaimd retrieval tech-
niques (Yu et al., 2004) and today that knowledge is helpngdex multimedia
material (Xu and Chang, 2008) (Bruno et al., 2008).

Arguably speech is the most popular form of expressive antiangeable
communication: used to perpetuate stories, to consolejaitodic memory, to
bind people together. But it is not just the overt messagéagoed in the speech
that is important, but the hidden information that idengifiee individual, their
emotional state and the environment in which the messagmoises.

Speaker diarization is a process by which speaker infoonas extracted

from an audio stream. In particular it attempts to identifyorspoke when in a
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conversation between two or more people. As such, the restlie diarization
offers a pre-process for speech recognition, enablingghétemplate to be used
in identifying the words spoken so as to enhance the redognmitte.

This chapter defines what is meant by speaker diarizatiocti(®el.1), how
it is applied (Section 1.2) and outlines the problems thatléi the achievement
of one hundred percent success (Section 1.3). Sectiondndfigs the different
types of discussions for which diarization may be usefufipleed and finally

section 1.5 introduces the strategic issues covered irethaining chapters.

1.1 Acoustic diarization and speaker diarization

In general, a spoken document is a single-channel recomfiraycontinuous
speech stream that contains multiple audio sources (pemglenoise). Audio
diarization is defined as the process of segmenting a spak@mient into sev-
eral clusters according to their different acoustic sosirdéhe types and details
of the acoustic sources vary according to the applicatibthel focus is to find
the speech part in a spoken document, it will be segmentedsip¢ech and
non-speech (silence, noise, music, etc) regions (Sauntie®s). If the band-
width (a measure of the width of a range of frequencies) ofdteversation
or the gender of the speakers need to be known, the spokemeéatwvill be
divided according to the gender of each speaker or theirarsation channels
(Sinha et al., 2005). The most complicated application igaxition a spoken
document into speaker-homogeneous regions. Within NI®h Rranscription
(NIST-RT) evaluation framework (Fiscus et al., 2005), tkisvhat is meant by
speaker diarization (Martin and Przybocki, 2001).

Speaker diarization provides the answer to the ‘Who spokenivtuestion.

That is why it is referred to as ‘unsupervised speaker setatien and cluster-



ing’ in some early documents (Zhou and Hansen, 2000), (&ieglal., 1997). It
consists of three subtasks. The first subtask is to deteatevdpeaker changes
occur in the given spoken document. The second subtask et ghe speech
segments (a segment is a section of speech bounded by twkespdeange
points) from the same speaker together (speaker clusjefihg third subtask is
to estimate the number of speakers that contributed to thkeespdocument (the
final number of the clusters). It is hoped that there is only speaker’s speech
involved in each cluster, and a cluster contains all thedpeéthe correspond-
ing speaker.

Usually there is no prior information provided about theaqsss; for exam-
ple, the number of speakers, their names, their gender,gpeech samples, or
their adjacency in the audio stream. This is what classifieptocessing of the
audio stream as ‘unsupervised’ and makes the speakeratiarizask especially

difficult.

1.2 Applications of speaker diarization

Early research focused on the audio transcription, defregd automatic speech
recognisers. Later on, research concentrated on othectasgfeaudio informa-
tion. Speaker information was extracted to facilitate th#eiing and retrieval
of audio documents, while non-speech information was detieto identify the
structure of the spoken document. Beyond that, informdinked to the spon-
taneous nature of speech was studied to understand speaafucacation be-
haviour.

Speaker diarization concerns speaker information, suckpaaker turns,
the number of speakers and the speakers’ identities (tciassdhe ‘relative’

speaker label as ‘speaker 1’ or ‘speaker 2’, not the truekgpesme). Speaker



diarization has six main applications.

e It helps to improve speech recognition performance. Spedikeization
provides speakers’ locations and boundaries in a spokamuerat, which
could be used within speaker adaptation and vocal trackhengrmal-
ization in speech recognition systems (Tranter et al., 20G4dpta et al.,
2008). Furthermore, speaker information makes transceigsier to read,
since it identifies speech that enables the transcript tafoed into oral

paragraphs.

e Speaker diarization enables speaker-based indexing areVat of a spo-
ken document, as described in (Johnson and Woodland, 2Gd8)also
helps with determining other information, such as the spesagender and

their true identity.

e Although speaker diarization usually deals with only onéiadile with no
prior information of the speakers, it facilitates otherager indexing tasks
such as speaker tracking (Tranter, 2006) and speaker tyisg €t al.,
2007). Speaker tracking tries to explore all the occurrernde particular
speaker in an audio stream. Speaker tying is a classificatmress con-
sisting of finding the number of speakers present in a catleaf audio
documents, then segmenting and clustering all the docugaenbrding to

the speakers.

e Speaker diarization supplies useful information for ditecdisfluencies
and speaker overlaps, which directly link to the spontasemature of

speech (Boakye et al., 2008) (Hung et al., 2008).

e Combined with speech recognition, high-level linguistiformation, such
as the speaker’s name, the conversation topic and speai@rscan be

discovered (Tranter, 2006) (Ma et al., 2008).
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e Speaker diarization, combined with various image proogstchniques,
helps to analyse video content, such as scene segmentatiociassifi-
cation, target object discrimination, etc (Liu et al., 199Quenot et al.,

2003).

1.3 Difficulties arising for speaker diarization

Depending on the nature and the environment of a spoken dadythe speaker
diarization process will encounter several difficultiesecBuse of the sponta-
neous nature of speech, hesitations, repetitions andapgealways happen. The
overlaps between speakers will confuse the recognizeersysand the hesita-
tions in the speech will contaminate the speaker model. Tineber of speaker
turns, and the length of each speech segment will also dffecpeaker diariza-
tion results. When the speaker change frequency is highhergbeech segments
of each speaker are short, the speaker diarization taskrsescmore difficult. If
some speakers talk much more or much less than others in bsti@am, it is
hard to estimate the number of speakers present. The awdio@ment may
also include music, non-verbal sounds such as paper slguéfhd other extra-
neous sounds; all of which have a negative impact on perfocmaFinally, the

more speakers present, the more difficult is the diarizgironess.

1.4 Different types of spoken documents

There are large volumes of spoken documents, includingpradd television
broadcasts, interviews, answer machine messages, telepboversations, voice
mails, meetings, etc. Among them, broadcast news, recongedings, and tele-
phone conversations are the three primary domains useg@daksr diarization

research and development.



The data from these domains differ in the quality of the rdeas, the en-
vironment where the speech happened, and the style of tleelspdelephone
conversation is often recorded with a narrow bandwidth. fibise level is af-
fected by the recording channel. Except for telephone meggtjincluding two
speakers), the number of speakers involved is unknown. d8esd news has
various kinds of programming, usually containing commearbreaks and mu-
sic. The recordings alternate between studio and outsadalbast, with different
bandwidths. The speech in broadcast news is always welkepted, with less
overlap between two speakers. The number of speakers i®wnkiand usually
high. Sometimes there exist a few anchor speakers, but nmmdatrone (Gales
et al., 2006) (Leeuwen, 2005). Only single channel recgslare available for
broadcast news.

Meetings are recorded using table-top microphones, lapabphones, or
headset microphones. If a meeting is recorded with one ipicnoe for each
participant, the number of speakers is known and each nhormm@mainly cap-
tures the voice of a particular speaker. But the speakeizdigon cannot be
accomplished by a simple energy-based approach appliettoiedividual mi-
crophone because there is cross-talk between microph&as €t al., 2001).
Sometimes, recordings from each individual microphonelmcombined and
used to enhance the speaker diarization performance (Aagtal., 2005).

This thesis is focused on the single channel recorded ngeasimg only a
table-top microphone. Such meeting data contains sevetrtions arising
from the microphones being distant from the speakers (Meiget al., 2005).
Moreover, the recorded meetings include informal, najaradl even impromptu
meetings. The natural style of talking leads to plenty ofaéee overlaps and
frequent changes in speakers each with short segments uhfigen of speakers

present in recorded meetings is also unknown, althougHiiniged by the size



of the meeting room. The noise contained in the recordedingeeis always
impulsive, including laughing, breathing, clapping, cbing, doors shutting,
pens falling, speakers touching their microphones, andso o

Each domain presents unique diarization challenges anié Tab summa-

rizes the various difficulties encountered in each spokeuniehent type.

Telephone | Broadcast news Meeting
Number of speakers known unknown, unknown, limited
but high by the room size
Length of segments | usually short usually long some really short
Changes in speaker medium low high
Types of non-speech noise noise, music, various
commercial impulsive noises
Overlap little little alot
Quiality of recording | low bandwidth headset mic | distant tabletop mig
Disfluency rarely rarely sometimes
Bandwidth different setting| different setting same setting

Table 1.1: Difficulties encountered with the three typespafken document

In this thesis, the most difficult problem is of interest: Hpeaker diarization
of single-channel recorded meetings, with no prior infaiioraof the number of
speakers, their gender, etc. The meeting types includefbottal meetings and
natural meetings. Although sometimes prior knowledge pobs the speaker
diarization performance, to make the system more robustpantble, no in-
formation in addition to the audio itself will be used in theoposed system.
The implementation proposed in this thesis works towareatarg a speaker di-
arization system that is insensitive to noise and to chamg® dataset; that is
changing the value of the parameters slightly has no impadystem perfor-

mance.



1.5 Thesis overview

This thesis is split into seven main chapters.

The primary literature on speaker diarization systemseuiewed in Chapter
2 to scope the research area of this thesis, provide a baswléage of acous-
tic feature extraction and speaker modelling techniquesvef-regarded sys-
tem that is based on deep-rooted theory and adopts stéte-@irt techniques is
adopted as a baseline system.

In Chapter 3, the shortcomings of each part of the speakerdi@mn system
are identified, from the speech activity detection to thevdrsal Background
Model training. The specifics of the meeting data that cbaota to the diffi-
culties incurred in speaker diarization are explained aisl measures are
developed to quantify the influence of these difficulties.

A new speaker change detection algorithm is developed ipteh4. Its per-
formance is compared with some traditional speaker chaetgetion measures,
and the improvements are discussed.

In Chapter 5, a new criterion for model complexity selectiti be de-
veloped. This new criterion can reduce intra-speaker magavhen building
speaker models or maintain inter-speaker variance duhadJniversal Back-
ground Model training by adjusting the prior distributiointlee mixing parame-
ters. The model complexity selection criterion proposedrigyieiredo and Jain
(2002) can integrate the selection of the number of compsnaito the EM
training. This is applied at the model adaptation step tastidhe mean and
weight value simultaneously from the UBM.

The experimental procedure that assesses all these noliablegies is de-
scribed in Chapter 6. Their effectiveness, evaluated bypawing their results
to the baseline system separately and in combination anchfirevements, will

also be presented. The results are analysed, and give ashmfwture work.



Finally, Chapter 7 summarizes the major conclusions antribotions ob-

tained in this thesis and proposes some improvements ame fwork.

1.6 Toward a contribution

The objective of the thesis was to explore speaker diagaatiechanisms with
a view of contributing towards achieving perfect perform@an The intention
was to pinpoint the weaknesses in some of the current skeatagd introduce
alternative strategies with variations, all based on sargdment.

In this thesis, four new algorithms were proposed to impthegerformance
of the speaker diarization system. First, a new speechitgatigtection method
was developed to cope with various impulsive noises in mgstiSecond, a new
speaker change point detection measure was derived to éteptdhort speaker
turns. Third, the new model complexity selection criteriBqual Weight Penalty
Criterion, was formulated to train both the speakers’ meaeld the Universal
Background Model (UBM). The new criterion could reduce thedel complex-
ity to reduce intra-speaker variability and allow more mloztmplexity in the
UBM to capture more inter-speaker variability. Fourth, agh¢and mean adap-
tation method was developed to adapt potential speakerisfsxden the UBM.
In addition, a potential speaker merging termination sahdmased on the Nor-

malized Cuts, was introduced into the system.



Chapter 2

Literature Review

For more than a decade, speaker diarization processingkasised to facilitate
speech recognition. Today, it is adopted as a means of ingdarge speech
databases. The requirement for enhanced recognitionayca robustness to
extraneous noise and adaptability in a variety of cond#jdrave all served to
increase the difficulty in processing audio files succeblsful

This chapter is a literature review of related researchspeaker diarization
that has been conducted in the last few years. First, bagkgrinformation
about speaker recognition will be introduced. Various aticdeatures used in
speaker diarization will be explained in section 2.1 ancakpemodelling tech-
niques will be presented in section 2.2. Then the main stepspeaker diariza-
tion system will be introduced. They are speech activityedigbn (SAD) (sec-
tion 2.3), speaker change detection (SCD) (section 2.4),parential speaker
clustering (section 2.5). Next the strategies to combimerdsults of different
diarization systems will be given in section 2.6. Finalhg baseline system that

was used in the research described in this thesis will bstitited in section 2.8.
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2.1 Front-end processing

The front-end is a generalized term that refers to the irstages of a process. In
speaker recognition, front-end refers to the part that edswa continuous speech
stream into a sequence of acoustic feature vectors. Ingbigos, the speech pro-
duction mechanism will be first introduced (section 2.1THen how to extract
the speaker-dependent information from the speech wawefoll be described
in section 2.1.2. Next, the most popular acoustic parametsed for speaker
diarization processing, the Mel-Frequency Cepstrum Goeffts (MFCC), will
be explained in section 2.1.3. Some other acoustic parasnitat are usually
applied in combination with MFCC will be given in section 21 Finally, the

features used in speaker diarization systems will be readew section 2.1.5.

2.1.1 Speech production mechanism

Speech is produced as a result of the acoustic excitatidmeofdcal tract. The
excitation comes from a series of nearly periodic pulsegggad by the vocal
cord or the turbulent flow of air. Then it is constrained by ¥oeal tract, which

can be thought of as an acoustic tube which continually obsiitg shape during
speech production. Finally the produced speech is radfabea the lips, or

from the nostrils in the case of nasal consonants. The negudpeech can be
described by a waveform, plotting the instantaneous aog®i of a periodic

guantity against time.

2.1.2 Speaker characteristics and their representation

For speaker recognition, it is necessary to find in the sptease factors which
convey speaker-dependent information. First, the anairdetails of the vocal

tract vary considerably from one person to another. Sudardifices result from
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the fixed structural differences such as the mass of the vocd] the size of the
mouth, the shape of the tongue, the position of the pharytex, 8econd, the
differences in speaking habits of different individuale an important source
of inter-speaker variation. The differences in the spegkiabits result from the
manner in which people use their speech mechanism, suctoaaiion patterns,
speaking rates, and so on. Such differences are producdeacobustic move
and are seen in the temporal variations. In speaker recognitoth anatomical
and speaking habit differences are exploited to distirigti® speech of one
speaker from another.

To extract speaker-dependent parameters that reflect fnadraical prop-
erties of the vocal tract, the time-invariant parameteesiéeal because of their
independence of the spoken message. On the other hangjndiasies in the
speaking habits of individuals by nature vary from one sotmdnother, and
hence cannot be represented in a time-invariant style. Fast sounds, the
shape of the vocal tract changes slowly compared to theadiwitvibrations,
so the speech production can be considered to be in a qaéisirstry mode.
As a result, when examined over a sufficiently short periotné (between 5
and 100 milliseconds), speech characteristics stay feinhgtant. However, over
longer periods of time (0.2s or more), they change to reflegt-tevel charac-
teristics, in the form of linguistic information. Consealy, it is possible to
carry out a spectral analysis over a short period (20ms-R@Gmisch determines
speech characteristics in the frequency domain. This effficvay to describe
all the acoustic characteristics of speech is called a et spectrum. It pro-
vides a three-dimensional representation of the speecfalsithe coordinates
being time, frequency, and energy. While the short-timeespeharacteristics
are presented by the spectrum of each short time inteneatirtte-varying char-

acteristics can be obtained by averaging over time.
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A wide range of features that are related to some propertyhefshort-
time power spectrum, such as Linear Predictive Coding Guoeffis (Atal and
Hanauer, 1971), MFCC (Mermelstein, 1976), principal corgras of the spec-
tra (Bridle and Brown, 1974), Perceptual Linear Predic{idarmansky, 1990b),
Representation Relative Spectra (Hermansky, 1990a) awh,sbave been in-

vestigated in automatic speaker recognition application.

2.1.3 Mel-Frequency Cepstrum Coefficients

By approximating the human auditory system’s response, Gl erhaps the
best-known and most popular set of acoustic parametersthrdpeech recogni-
tion (Zheng et al., 2001) and speaker diarization (DavisMathelstein, 1976).
Instead of the linearly-spaced frequency bands, MFCC etstiecoustic param-
eters on the Mel-scale.

After being read by the computer, the audio stream is sangtlestjular time
intervals, forming a sequence. The sampling ratéhe number of samples ob-
tained in one second) is fixed during a sampling process aunsuially 16kHz.
To transform this time-sampled, discrete waveform into @tstime spectrum,
the sequence of discrete samples need to be divided into avemkapped short
time frames. Every frame has the same time length, usuaths2®ith an over-
lap of 10ms with the prior block. The signals in each framenaudtiplied with
a Hamming window and then transformed into the frequencyaioiy apply-
ing a Fast Fourier Transform (FFT). The spectrum of eachdranthen filtered
by a collection of triangular filters and the log energy otitgd by each filter is
calculated. Transforming all the log energy back into theetdomain using the
Discrete Cosine Transform (DCT), the MFCCs are obtainedekoh frame, the
dimension of the MFCCs is determined by the number of filt€hese filters are

spaced according to the Mel-scale (Beranek, 1949), in whidhear frequency
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spacing is adopted below 1000 Hz and a logarithmic spaciogeath000 Hz.
Equation 2.1 shows how to approximate the frequency in theddaef,,.; us-
ing the normal frequency,; and Figure 2.1 displays a Mel-scale filter bank that

contains 30 triangular filters.
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Figure 2.1: The mel-scale filter bank that contains 30 tngaugfilters which are
spaced between OHz and 8kHz.

The whole process of extracting MFCC features is illusttateFigure 2.2.
Given the frame size and the overlap between frames, it iplsito compute
how many frames are contained in a time interval. If the frasize is 20ms
and the overlap is 10ms and the speech lasts one secondhérenill be one

hundred frames, and 100 MFCCs will be extracted.
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Figure 2.2: Block diagram of the MFCC processor

2.1.4 Other acoustic parameters

One of the simplest characteristics of any signal is itsdogfgy. For a frame,

the energy vecto#(n) is one-dimension and defined by Equation 2.2:

T
=log() _o(t (2.2)
t=1

where o(t) is theth discrete signals in the frameand T is the size of frame.

The first and second differential coefficients of MFCC togethith this log-
energy feature are widely used as speaker acoustic featdras$ all have the
same dimension as the features that are differentiated.lofenergy feature
and the the first and second differential features are alwagd in combination
with the MFCC.

Throughout the thesis) is used to refer to the dimension of the feature
vectors, andV is the size of the feature vectors. the frame size will be et t

30ms and the overlap will be set to 20 ms.

2.1.5 Features used in speaker diarization systems

The MFCC features are considered to be very effective foalsgrerecognition
because they are obtained by spectrum analysis and thelspeeflects speak-

ers’ predominant physiological characteristics (the VdEct structure). The
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number of MFCC features are generally different in spealaizhtion systems.
For example, 12 MFCCs, the mean-normalized log energy amdftist and
second differential coefficients are extracted as the dicofesature vectors in
the HTK broadcast news transcription system. The dimensioof the fea-
ture vectors is 39. In contrast in the LIMSI broadcast neasdcription system
(Meignier et al., 2005), the log energy feature was not idety resulting in a
dimension of 38. In (Anguera et al., 2006a), only 19 MFCCseneged without
deltas (the divergence features). The PLP feature vecters used in (Tranter
et al., 2004). Recently, long term speaker features, lithpivocal source, and
prosodic features, were applied for speaker diarizati@m{@guchi et al., 2006)
(Chan et al., 2006) (Friedland et al., 2009). Sometimesufeavectors are pro-
jected into a lower dimension space prior to the clusteriag éTsai and Cheng,

2006).

2.2 Speaker modelling

When two people utter the same words, the variations in tee@dpfundamen-
tally originate from the difference between the speakeostes. When a per-
son utters two sequences of different words, the variatidrise speech essen-
tially come from the difference between the two sequencgdhohemes. Even
when the same speaker utters the same word twice, variai@mms. This can
be caused by many factors such as the speaking rate, theoealatate of the
person of the person, and so on. These last two variationsfareed to as intra-
speaker variations. If two utterances with the same worele@ampared in order
to determine whether they are from the same speaker or reotask is called
text-dependent speaker recognition. However, the mosrgespeaker recogni-

tion task is to recognize a voice whatever is spoken and wieegritds said. This
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task is more difficult because inter-speaker variationstriegletected without
being confused by intra-speaker variations. It is calletttedependent speaker
recognition. The speaker diarization task is text-indeleer.

The spectrum acoustic parameters convey not only the spdagendent in-
formation, but also phonetic information and environmeataditions. There-
fore, various speaker-modelling techniques are introdtceepresent speaker-
dependent information over the long term. The more data flrensame speaker
that is included to build the model, the better it discrim@saone speaker from
another. The GMM (Hansen, 1982), the Vector QuantizatioQ)(\¢odebook,
the tied GMM, the Radial Basis Function (Poggio and Giro89d) and the
Multilayer Neural Network (Rumelhart et al., 1986) have ladlen applied in
modelling the speaker (Reynolds and Rose, 1995) (MatsuiFamdi, 2004)
(Reynolds, 2002) (Farell et al., 1994). GMM, which is the imespular and
flexible, was used both in speaker recognition (Reynold@2pand speaker di-
arization (Tranter and Reynolds, 2006). Recently, theikydyrstems of Support
Vector Machine (SVM) (Boser et al., 1992) have been sucubgsidopted for
both speaker verification and speaker recognition (Khéiretial., 2001) (Fine
et al., 2001) (Wan and Renals, 2005a).

The GMM model will be described in the next section 2.2.1. i hevo
principal motivations for using Gaussian mixture densitis a representation of
the speaker characteristics will be given in the sectiorR2tat follows. Finally,
some relevant algorithm issues, such as parameter esiimatitialization, and

how the model order is determined will be introduced in secfl.2.3.

2.2.1 Gaussian Mixture Model (GMM) description

GMM are the most widely used mixture model, and is a weightedure of a

number of Gaussian components. With an appropriate nunflEmeponents,
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GMM has the ability of forming smooth approximations to #&wuily-shaped
densities (Reynolds and Rose, 1995). It can be describedbgtien 2.3:

M
p(x|A) = Z w;gi () (2.3)

wherez is a given feature vector with dimensidi )\ contains all the the pa-
rameters in the modepz|)\) is the probability of the appearance:ogiven the
model. M is the number of components in the model ands the weight of the
component, which must satisfy the conditions that < 1 and>"", w; = 1.
g:(z) is a component of the GMM, and is a multivariate Gaussiantfanof the

form 2.4:

g9i(x) = W exp {—%(ﬁ — i) "5z — Mi)} (2.4)

for 1 < i < M, whereyu; and; are the mean and covariance of the Gaussian
component. The parameters in a GMM can be collectively representedhéy t
notation\ = {u;, 3;,w;} wherei = 1,--- M. p; has the same dimension
asx and is the mean vector of the componéntThe mean vector controls a
component’s position among other componer¥s.is a D *« D matrix, which

is the covariance matrix of the componeéntThe shape of each component is

decided by its covariance matrix.

2.2.2 Motivation Interpretation

The speech contains broad phonetic events. The produdtispeech can be
divided into three classes: voiced sounds, unvoiced soandglosive sounds.
They can be further separated as vowels, semivowels, vetopd, nasals, voice-
less stop consonants, stop consonants, and variousvesatiThese phonetic

events may characterize the sub-spaces of the acoustie gpaspeaker’s voice
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(Reynolds and Rose, 1995). Because all the training omgespeech is un-
labelled, these sub-spaces and acoustic classes arerhidaied are therefore
unknown. These sub-spaces cannot be directly mapped tovdré@us mono-
phones (Reynolds and Rose, 1995).

GMM is a semi-parametric probabilistic density and prosgigeeat flexibility
and precision in modelling the underlying statistics of pardata. Assuming
the independence of the feature vectors, the componentaiced in a GMM
are suitable for modelling a wide range of hidden acoustiss#s. Speaker char-
acteristics, such as the shape of the vocal tract, are omatan these acous-
tic classes, and will be represented by the mean vector ofdhgonent and
the intra-speaker variation will be captured by the covargamatrix (Reynolds
and Rose, 1995). Also, because the component Gaussianstiag tagether
to model the overall probability density function, any inatacy due to single

components will be compensated by the whole model.

2.2.3 Algorithm issues

Given training feature vectors of a speaker, the goal oflgreaodel training is
to estimate the parameters of the GMM= {p;, ¥;, w;} wherei = 1,--- | M.
The estimated parameters, in some sense, need to make thea@Mbkt match
to the true distribution of the feature vectors. To minimize training errors is
thought to be consistent with minimizing the differencevtn the model and
the true distribution. There are several techniques avaifar estimating the pa-
rameters of a GMM. By far the most popular and well-estaklisinethod is the
Expectation-Maximization (EM) algorithm, which approxates the Maximum
Likelihood (ML) estimates of the parameters.

The aim of ML estimation is to find the model parameters whiaximize

the likelihood of the training data, given the GMM. For a seqee of NV feature
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vectors,X = x1, 1, -, xy, their likelihood in a GMM model can be described

by Equation 2.5:

N

p(x[2) = [ plaalV) (2.5)

n=1

wherep(z,|)\) is given by Equation 2.3. Usually the ML estimation of the pa-

rameters can be obtained by solving Equation 2.6:
dlog(p(X|N))/OX = 0. (2.6)

Unfortunately, this expression with respect to the covargaparameters is a
nonlinear function so Equation 2.6 cannot be solved diyecllhe EM algo-
rithm solves this problem iteratively, by monotonicallyieasing the value of
log(p(X|\)) at each step.

The EM algorithm is widely used to obtain both the ML estinsaded the
maximum a posteriori (MAP) estimates in various appligagioincluding the
Hidden Markov Model (HMM) (McLanchlan and Basford, 1988heldetailed
steps for the EM algorithm as it is applied in the GMM trainjprgcess will be
given in Chapter 5.

Two critical factors in training a Gaussian mixture speakedel are select-
ing the complexityl/ of the mixture (the number of components contained in the
GMM) and initializing the model parameteks A random initialization method,
which randomly choose&/ vectors from a speaker’s training data as the means
of the components, and uses the identity matrix as thersgggtivariance matrix,
is widely used. This method is thought to be simple and coatjurtal efficient.
However, it does not guarantee a global optimum solution.

Determining the number of component$ in a mixture that can model a

speaker adequately is an important but difficult problemer€hs no theoreti-
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cally determined way to estimate the number of mixture camepts in a GMM.

For speaker modelling, the objective is to choose the apiatemumber of com-
ponents to capture adequately the speaker’s charaatsrikither too few or too
many mixture components will affect the GMM'’s ability to ¢ape the distin-

guishing characteristics of the speaker.

In order to train a GMM that reliably models the characteérssof a speaker,
adequate training data is necessary. In speaker diamzdtmwvever, there is
no labelled training data available. Moreover, some speatterances last less
than one second and sometimes the GMM needs to be trained ah data
collections. Hence the model complexity selection inflesnthe success of the

process.

2.3 Speech activity detection

The aim of SAD is to find the speech regions in an audio streahe speech
in a stream may overlap with other sounds, such as music aisd.nBuring
the speech activity-detecting process, all the portiomtéatning speech will be
retained, while the non-speech portions will be discardedmoving the non-
speech parts will reduce the processing time of speaker limggeand improve
speaker diarization performance because it increasedftbiercy of speaker
modelling. If the data obtains a number of different sortaoike, the speaker
models will be contaminated and distorted.

The non-speech in broadcast news could be categorizedhirge types, si-
lence, music, and noise (Tranter and Reynolds, 2006). Trse mtass is com-
posed of any event occurring in the signal that could not begcaiized as silence,
music or speech. Music is not a common type of non-speecleim#etings. Si-

lence portions in the audio can be detected by energy-baseshbld and zero-
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crossing rate. When it comes to the other types of non-spesmte complicated
methods are in need. The general approach used is maxirkehidiod classifi-
cation with GMMs. GMMs are trained to represent differerdustic conditions.
Usually, two GMMs are separately trained for speech andspmech (Wooters
et al., 2004). However, in some work, GMMs were trained saesy for all
kinds of non-speech(Gauvain et al., 1998) (Reynolds anda€awillo, 2004)
(Sinha et al., 2005).

Given two trained GMMs, one for the speech and the other tontin-speech
each feature vectar, extracted from the audio file will be assigned to the model

where it represents the maximum likelihood according todfign 2.7.
]% = arg max(logp(xnp\speech)a logp(xnp\non—speech))l S n S N7 (27)

whereXpeecn, aNA 0, speccr, are the GMM models for speech and non-speech
separately.p(x,|Aspeecn) 1S the probability ofz,, present in the speech model
calculated by Equation 2.3: is the selected acoustic clusteraf, in this case
the speech or the non-speech. Due to the continuity of spdesttlassification
result needs to be smoothed over several frames (Siegler £287) (Reynolds
and Carrasquillo, 2004).

In some work, the detected speech and non-speech were plassegh some
heuristic rules so as to refine their boundaries (ReynoldsCamrasquillo, 2004).
As well as the GMM maximum likelihood classifier with smoatgiwindow, the
HMM model is also widely used for acoustic classificatios;tiansition param-
eters can be used to control the speech length (Tranter aypabRs, 2006).
A hybrid approach that combines the energy-based noisetdetend GMM-
based clusters was proposed to detect noise during meétingsal., 2002);
The speech and non-speech detected by an energy-baseidetesthen used

to train the speech and non-speech GMMs.
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Missing speech (MISS) and false alarm (FA) are the two meadorevaluate
the speech activity detection performance. Missing speeatesponds to those
portions of the audio that are speech, but recognized byetextion process as
non-speech. False alarm, on the other hand, contains tbeseng of the audio
that are non-speech, but recognized by the system as spg&pehch detection
errors include both miss and false alarm errors. The deteetiror rate is the
percentage of the time that all the error portions occupyh& whole audio.
Generally, it is more important to minimize the missing speebecause they
want to enhance the speed.

Sinha et al. (Sinha et al., 2005) and Zhu et al. (Zhu et al.818¢plied a
word recognizer to remove the non-speech parts. Howevenaay speaker di-
arization systems adopt speech activity detection toifatglspeech recognition,
they are not available at this stage. For the speaker ingeask, it is unneces-
sary to include a complicated speech recognition systethel&udio is recorded
in multiple channels by individual microphones, the recogcdf these channels
can be combined to enhance the speech signal and remove@eechsportions
(Pfau et al., 2001) and (Anguera et al., 2005). The meetiogrded by multiple
microphones can also be used to detect the position of trekepe(Pfau et al.,

2001) (Pertila and Parviainen, 2007) (Brutti et al., 20@t(ti et al., 2008a).

2.4 Speaker change detection

There are three essential subtasks contained in the spdiakieation process:
SCD, clustering, and estimating the number of the speakéhe SCD (also
referred to as speaker segmentation) produces a sequeuntterahces with the
same speaker within each one. The boundaries between sacinges, where

the speaker changes, are called the speaker change points.
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Traditionally SCD do not cut words in half and so most changjats are hy-
pothesized to happen within silence. Some energy-basewjeltetectors anal-
yse the energy waveform and use a threshold to find the polmtsena speaker
change is most likely to exist (Kemp et al., 2000) (Nishidd Kawahara, 2003).
A decoder-guided change point detector, in contrast, rifol apeech recogni-
tion process to obtain the change points by forced alignrfieatand Kubala,
1999), (Kubala et al., 1997). However, there is no cleatiggiahip between the
existence of a silence in a recording and a change of spe@kervoice might
be overlapped between different speakers and long pausesapaen during
one person’s speech. Moreover, music or commercial mighgldged as the
background sound when speakers change, instead of silence.

Some systems detect the change in various acoustic camslitielephone
bandwidth, speaker gender, music/speech/noise) instespleakers (Gauvain
et al., 1998) (Ajmera et al., 2002) (Ajmera and Wooters, 20Fr this kind
of system, prior information is required to train the modelsdifferent acoustic
conditions and only some of speaker changes can be dischvirere is no
guarantee that a speaker change happens when there aresiratige acoustic
condition.

Other than the energy-based SCD and acoustic model-bageal§qrithm,
a metric based SCD detects changes depending on the dibetmeen two ad-
jacent segments. To detect if the speaker changes at a powridow is located
around the point and the feature vectors in this window aparsged into two
parts, one before the point, and the other after it. Thenigtante between these
two parts are measured and a threshold is set. If the disiatarger than a spe-
cific threshold, this point is the change point, otherwisgfitot. Various distance
matrices, such as the Bayesian Information Criterion (§E&hwarz, 1978), the

Kullback-Leibler Divergency (KL) (Kullback and Leibler,951), the General-
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ized Likelihood Ratio (GLR) (Willsky and Jones, 1976), thisisdistance (Gish
et al., 1991), the Divergence Shape Distance (Lu and Zha&g)2the Cross
Likelihood Ratio (CLR) (Mood et al., 1974), the Malalanoklistance (Maha-
lanobis, 1936) and the Kolmogorov-Smirnov test (Kolmogod®33)(Smirnov,

1948), have been applied to detect the change points (Clle@@palakrishnam,
1998) (Siegler et al., 1997) (Zhou and Hansen, 2000), (Sétlah, 2005), (Bar-

ras etal., 2004) (Gauvain et al., 1998) overview1-30-4l@isal., 1991) (Lu and
Zhang, 2002) (Anguera et al., 2005) (Wooters et al., 2004jr(@bell, 1997) and
(Deshayes and Picard, 1986). One class-SVM and SVM supereiassifica-

tion errors have also been used as distance measures bétveesagments. The
optimum value of thresholds are usually selected deperadiritpining data sets
(Kadril et al., 2008) (Wan and Renals, 2005b).

Metric based SCD is probably the most used technique to Aateng them,
the BIC distance and the KL2 distance are popular for themmatational effi-
ciency and good performance (Tranter and Reynolds, 2006gsd two SCD
algorithms will be introduced in the next section (2.4.19 #me evaluation of the

task will be presented in the one that follows.

2.4.1 BICand KL2

Bayesian Information Criterion (BIC) is a model selectiaiiezion applied to
choose one among a set of candidate models to represenhalgieeset (Schwarz,
1978). These models are trained maximizing the likelihobithe training data
fitting the models, as computed by Equation 2.7. Itis evidestwhen the num-
ber of parameters used in the model increases, the moddiditataset better.
However, when the parameters contained in the model becomlarge, there
is over-training. BIC penalizes the model by its complexitthe number of

parameters included in the model.
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Let L(X|Ax) be the log likelihood of data set = {z,|n = 1,---, N}
given the model whose model complexity i$, as describe by Equation 2.5.
The BIC score of the model with model complexity is calculated according

to Equation 2.8:
BIC(M) = L(X|Ay) — 1/2¢0M log N (2.8)

where¢ is a constant modified by experiment. Among a series of motieds
BIC criterion prefers the model that maximizes the BIC score

As introduced in (Chen and Gopalakrishnam, 1998), for SGie, Gaussian
model is used for representing the data set and the windavisimitialized
at two seconds and located at the beginning of the featur®nrge(Chen and
Gopalakrishnam, 1998). For each point in the window, BlCsedito check if
this pointis a change point. Denote the Gaussian trainedtise feature vectors
before the point as,, the Gaussian trained using the feature vectors posterior
to the point as\,, and the Gaussian trained using all the feature vectorsein th
window as);. If a change truly happens, the data is better to be repredryt
two models,\, and \,, otherwise a single mode\; is preferred. To compare

their BIC score, Equation 2.9 is applied:

ABIC = BIC(\,) + BIC(\,) — BIC(\y)
= L(X|Ny) + L(X[Ap) = L(X|Ay) — 1/2¢ log Ny [ My, + Mp — My]

= 1/2[N;log([5]) — Ny log(|%4]) — Ny log([%3,)] — 56AM log Ny] (2.9

where N,, N, and N; are the number of feature vectors used to train the pa-
rameters);, \,, and\; and theX;, ¥,, andX; are their covariance matrices.
AM = (D(D+3)/2), whereD is the feature vectors’ dimension.ABIC > 0,

this point is a change point. If a change point is discovemgtié window, a new
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window is started at the change point and the BIC test is dgagaOtherwise,
the window is enlarged to include another one second speettha test is re-
peated. If the boundaries of the window are near a change, jiasdifficult to
detect this point because not enough data is available folehttaining. ¢ can
be simply set as one, but it is better to be tuned by the deredopdataset.

Using the BIC criterion to search for the change point exheely is time
consuming as it must be tested for each point. To speed upgbetam, the test
can be run ever§0 feature vectors. To avoid the computation of three full cova
ance matrices, Hotelling’s? statistics were applied to accelerate the searching
(Zhou and Hansen, 2000). Using only the mean value and adshbavariance
matrix, 7 statistics quickly select one candidate change point innalaw, and
BIC is applied to reject false candidates. Controlling thedew size dynami-
cally and overlooking the points near the window boundaairesother efficient
ways to speed up the BIC based search.

The KL divergence (also referred to as relative entropygnisinsymmetric
measure of the difference between two probability distidns P, and P,. The
KL divergence ofP, from P;, denoted a . (P1|| ), is the expected value
of their entropy with respect to the distribution &%. It is formulated in the

following way:

Dea(PillP) = [ oy tog ™

dx (2.10)

The larger this value, the greater the distance betweerapility densities of
the two random variables. BecauBg 1, ( P;|| P») is not equal taD k1 (P»||P1), a

symmetric measuré L2 is introduced to measure the distance between the two
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densities.K L2 is defined by Equation 2.11 as:
KL2 = Dgp(P||P) + D r(Pa||P1) (2.11)

Using K L2 to measure the model distance, a fixed window with two second
length is used. Two Gaussian models are trained on this wintodel \, =

(s, Xp) is trained on the first half of the window and model = (u,, ¥,) is
trained on the second half of the window. Then KL2 is used asdiktance
measure between the two models to decide if a speaker chapgered at the

middle point of the window. It is described by Equation 2.12

KL2 = tr(S,'5,) + (S Sy + (1 — 1) T (S5 + 551 (ks — ) — 2D
(2.12)

wheretr(X) takes the trace of the matr, D is the dimension of the features.
Y and i are the Gaussian parameters, which are used in EquationThd.
window moves forward point by point, and at each step the Kistadce (2.11)
is calculated for the window. If th& L2 distance achieves the local maximum
at a point, this point will be labelled as a change point (leiegt al., 1997).
Sometimes there are too many peaks in a window. To acceld@tearching,
the peaks can be passed through some smoothing rules, grttiase larger than
a threshold will be treated as the change points (Zhu et@8)1 KL divergence
measures only the expectation of the log-difference batvee distributions.
The relative entropy of variance and skewness between theants can also
been approximated and applied as the distance measureett tle change
points (Brutti et al., 2008b). Once all the speaker changetp@re detected,
the feature vectors between two change points will be latiedks a section (the

feature vector where the change happens will be includdueiséction after it).
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As an initialization step, the speaker change detectiodseebe computed
quickly. Thus algorithms with a low computational burdee &avoured. The
speaker change detection can be evaluated by measuringritgen of missed
changes in speaker (missing turns) and the number of ddteltages that are
not true (false alarm). Reducing missing turns is importanthe SCD because
that speech section containing mixed speech from more tharspeaker will
contaminate the model trained by this speech section dtinmglustering step
later. Although to reduce missing changes is importanhefresulting sections
are too short to cover the main speaker characteristies, pabcessing will be

affected as well.

2.5 Speaker clustering

After the SCD, the purpose of speaker clustering is to ctubtespeech sections
between speaker change points together according to peskers. One cluster
is produced for each speaker in the audio, and all speecioisgdtom a given
person are collected in a single cluster. The speech seatemmbe clustered in
a agglomerative way (bottom-up framework) or using a sptttdown scheme
(top-down framework). The bottom-up framework will be preted in the next
section. To use the new information relating to the speakites the models are
updated, the SCD and clustering steps can be integratedsaslikd in section
2.5.2. Some post-processing strategies will be introdicséction 2.5.3. The

other clustering methods will be introduced in Section2.5.

2.5.1 Bottom-up framework

Within the hierarchical agglomerative clustering framekyall the speech sec-

tions are organized in a tree structure, from the leavesgodabt. It consists of
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the following steps:

1. initialize the leaf speaker clusters of the tree, withheapeech section

assigned to a cluster;

2. a potential speaker model is trained for each clusterdoasehe speech

sections assigned to it;
3. compute pair-wise distances between each pair of chjster

4. select the closest pair of clusters, merge their segnterfisrm a new

cluster;

5. update the potential speaker model for the new clustettendistances of

the other clusters to it;
6. iterate the last two steps until the stopping criteriomed.

Usually, the results of the SCD step will be taken as thealation leaves
in a bottom-up framework (Tranter and Reynolds, 2006). Ahal.e(Zhu et al.,
1998) and Barras et al. (Barras et al., 2006) considereditiséec initialization
problem to be less important and ignored the speaker chagtgetobn step by
simply splitting them into small same-length speech sestidhe number of ini-
tial clusters is set beforehand as a value that is much |#ngerthe real speaker
number (Barras et al., 2006), or is determined automayickdpending on the
length of the audio (Anguera et al., 2006a).

Moh et al. (Moh et al., 2003) and Barras et al. (Barras et 8042 repre-
sented the speaker using a full covariance Gaussian. Gaavail. (Gauvain
et al.,, 1998), Meignier et al. Sinha (Meignier et al., 2006y Moraru et al.
(Moraru et al., 2003) used the GMMs because they model thekspeharacter-
istics better. Tranter et al. (Tranter et al., 2004) adoptsithgle Gaussian model

first when the speech sections were short, then used GMMs titeespeech
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sections became larger. Sinha et al. (Sinha et al., 2005Barrds et al. (Barras
et al., 2004) adopted diagonal GMMs to model the short spsections while
full covariance GMMs were used to model long speech sectiithe GMMs
are used to model the speakers, the parameter complexitgfieict the perfor-
mance, as referred to in Section 2.2.3. Eight component GM#&l® used in
(Gauvain et al., 1998) to model a speech section and this euimlunchanged
in the whole process. In (Wooters et al., 2004) and (Ajmech\&@noters, 2003),
when two clusters were merged, the model complexity of tiemedel was the
sum of the two original models. This helps to remove the needuning the
penalty weightp in Equation 2.9. In (Anguera et al., 2006a), the complexity o
the model was decided dependent on the speech section siz&luster Com-
plexity Ratio (CCR). In (Anguera et al., 2007), the model pbemity is fixed,
and the GMM is trained by cross-validation to improve modsdusacy. The
frame-level purification algorithm was presented in (Anguet al., 2006c¢) to
remove the components that are dominated by non-speechdram

The distance metric used in step 3 can be KL2, GLR,Al1e/C' and nor-
malized CLR (Lee et al., 2007) (Chen and Gopalakrishnam81@hou and
Hansen, 2000). Vijayasenan et al. (Vijayasenan et al., 2pf@posed that the
Jensen-Shannon divergence (Schutze and Manning, 199@8dpted as the sim-
ilarity measure between two segments, This depends on ¢hiesk of mutual
information caused by merging.

If the clustering process terminates, the remaining nurobgotential speak-
ersin the tree determines the number of speakers. If the auohbpeakers in the
speech is estimated in advancefasthe clustering tree will be pruned to obtain
the K tightest clusters (Tranter and Reynolds, 2006). Some reses termi-
nate the clustering procedure if the distance measure iseog&en threshold.

Gauvain et al. (Gauvain et al., 1998) and Barras et al. (Batal., 2004) used
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the likelihood of a model penalized by the weighted sum ofgpbeech section
number detected in the SCD and cluster number to judge ifltieter process
should be continued. The BIC stopping criterion was proidg Moraru et al.
(Moraru et al., 2003) and this has become the predominanbapp. In this
approach for two clusters waiting to be merged, their Ige&l/ C' value will be
computed by Equation 2.9. KBIC < 0, they will be merged and the process
continues, otherwise the clustering algorithm terminatdan and Narayanan
(Han and Narayanan, 2007) (Han and Narayanan, 2008) apuiedalized log
GLR as the stopping criterion. Vijayasenan et al. (Vijayeseet al., 2008)
adopted Minimum Description Length (Rissanen, 1989) amdhabzed mutual

information to select the appropriate number of speakers.

2.5.2 Integrated speaker segmentation and clustering

To run the speaker segmentation and clustering separaieky Flexibility be-
cause once the SCD step has finished, there is no chance ¢atctre errors
occurring in that step. Therefore, some work was undertakethe speaker
segmentation and clustering steps, with the results of @@ 8nly used as an
initialization for the processing that follows.

The integration framework for iteratively combining speakegmentation
and clustering was first established in 1997 for LIMSI 199bHUE transcrip-
tion system (Gauvain et al., 1998). It inserts a segmemtatiep each time two
potential speakers are merged and a new speaker model isdivesd. The seg-
mentation is processed by both the maximum likelihood dias¢Gauvain et al.,
1998) (Meignier et al., 2005) and the HMM (Ajmera et al., 2P0®mera and
Wooters, 2003) (Barras et al., 2004) (Barras et al., 2006}his segmentation
step, first all speech is clustered based on the speaker rfovd=dch potential

speaker; and second, every potential speaker model isegdatording to the
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speech sections that are clustered together. This twopsteess repeats until
the speech sections assigned to all clusters stop changimg.advantages of
this integrated speaker segmentation and clusteringstlptithe boundaries of
speech sections that lie between two speaker change peenefimed during ev-
ery clustering round. However, the whole process is contjounally expensive.

Another scheme which integrates the SCD and clustering steyolutive
HMM (EHMM), was first described by Meignier et al. (Meignietra., 2000),
and then developed in (Meignier et al., 2001) and (Meigniet.e2005). At the
start, an HMM with only one state is initialized and a potahsipeaker model
Ao that is trained on the whole audio stream is used as the statedlel. It
represents all the speakers in the audio. Then severallsgeetions that have
the least likelihood given the modg}, are selected to train a new model for a
new potential speaker. This new model is added to the HMM asnastate and
then all the feature vectors are re-assigned to these tweIsi04ll the exist-
ing potential speaker models in the HMM are adapted accgrtdirthe current
segmentation. The segmentation and updating processdategpuntil the re-
sults stop changing. New potential speaker models are aaluedby one until
the likelihood of the current solution is no more than thelilkood of the pre-
vious solution. Fredouille and Evans (Fredouille and Eya088) introduced a
confidence value to remove the influence of non-speech anthpped speech
portions in the EHMM system.

In (Anguera et al., 2006b), these two kinds of integrated $@® clustering
algorithm were combined. The speech sections were clustete K;,,; initial
clusters by a method similar to the EHMM, and then they werdageratively

clustered by the method introduced in (Barras et al., 2006).
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2.5.3 Post processing

If the training data is not adequate, the speaker model magaver the whole
feature space. Therefore, complex speaker modelling appes will fail to
discriminate different speakers. After several iteratidhe amount of data per
cluster increases. Thus the state-of-the-art speakegméem methods can be
employed to improve the quality of the speaker clusteringUiversal Back-
ground Model (UBM) is a general speaker model, which is &diby plenty
of data to cover all the speaker characteristics underrarpisituations. The
speaker model for a specific person can be created by addmimghe UBM.
The adapted model is thought to represent speaker chasticiebetter, partic-
ularly when the training data for the specific speaker isffigant. Maximum
A Posteriori (MAP) estimation (mean-only) is applied to UBMaptation. Un-
der the Bayesian framework, a variable’s posterior prdhglgiven a model is
the normalized product of model’s prior probability and ageiable’s likelihood
given the model. As its name suggests, MAP estimation of theéalparameters
will select the value that increases the feature vectorsepos probability. Us-
ing the UBM as the prior model, the mean vector of the GMM camwlt@ined
by Equation 2.13:

ubm N
P Y T

i (2.13)
P+ S T

where ;“*™ is the mean vector of the componernin the UBM, andyi; is the
corresponding mean vector of the speaker madgl..., = are the feature vec-
tors andr;; is the posterior probability UBM componentgiven z;. p is the
fixed relevance factor which controls the balance betweerspeaker data and
the prior (UBM) mean. Using UBM-MAP adaptation technologydreate a

speaker model has been shown to improve speaker recogpérf@rmance by
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(Reynolds et al., 2000).

(Barras et al., 2004) provided a post-processing step &r speaker diariza-
tion system. After several iterations of the clusteringgess, when the amount
of data per cluster increases, the UBM-MAP technique wa$expfo re-build
the model of each cluster. Then the agglomerative clugiggiocess was re-
sumed with the Cross Log-likelihood Ratio (CLR) as the diseameasure. The

CLR of two segments(; and X, are calculated by Equation 2.14:

L XA 1 XA
CLR(X;,X,) = —log p(Xi|As) + —log p(Xa|A1)

LI7e) L S Y 2.14
IS A W de 5 ot w B

where )\ denotes the model andis the number of feature vectors. The process
was terminated when the CLR value larger was than a thresbsfidhated from
the development data sets. (Sinha et al., 2005) derivedetiment model by
applying two kinds of iterative-MAP adaptation. They alssadissed the vari-
ous approaches to build the UBM. It can be built using thedast itself (in an
unsupervised fashion), using other training data, or demeding the two types
of data above. Barras (Barras et al., 2006) also appliedtagrosessing step in
their diarization system. The UBM adopted in these systeas avl28 diago-
nal GMM. Feature warping (Barras and Gauvain, 2003a) (Baaradl Gauvain,
2003b) was also applied to eliminate the acoustic diffezsra speaker models.
If gender classification is applied, the post-processindogioperated separately
for each gender, by using a gender-specified UBM (Barras.,e2@06) (Sinha
et al., 2005).

The mean vectors of all the components contained in the UBMRMdapted
speaker model are considered to represent well the spdakercteristics (Faltl-
hauser and Ruske, 2001) (Tsai et al., 2004) (Tsai et al.,)A084i et al., 2007).
Tsai et al. (Tsai et al., 2005) and Tsai et al. (Tsai et al.,72@@opted the nor-

malized inner product of the concatenated mean vectoreastiment similarity
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measure. Tsai et al. (Tsai et al., 2007) applied the segnueity pased stopping

criterion.

2.5.4 Other algorithms

Ajmera and Wooters (Ajmera and Wooters, 2003) proposed -a@doom frame-
work for speaker clustering, using the full covariancesh&f segments as the
similarity measure. Tranter et al. (Tranter et al., 2004)liag the BIC criterion
as the stopping criterion for the splitting procedure.

The use of proxy models in (Reynolds and Carrasquillo, 20@f¥ inspired
by the ideas of anchor models and eigenvoices, which is airnolthe method
used in the speaker indexing system described by Akita anaKara (Akita
and Kawahara, 2003). In this, a series of speaker modelsudteédrepresent
different types of speaker. Then each segment is projentecanother feature
space by computing its likelihood against each proxy modéie dimension
of the space is equal to the number of proxy speakers. Theatiaed likeli-
hood scores are then treated as distance measures anddtegiicfuprocess is

performed.

2.6 Combination strategies

Each speaker diarization system is considered to have itsdstinguishing
features and advantages. They may be good at dealing withieybar situation
or dataset. Therefore, combining methods used in diffet&mization systems
could potentially improve performance over the best singie.

Moraru et al. (Moraru et al., 2003) performed a combinatitategy called
‘piped’ in which two different systems used the results frone to initialize the

other system. Then the two systems were applied one aftevttie to give
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the results. Liu and Kubala (Liu and Kubala, 2004) adoptedliag’ and play’
strategy to combine the steps of different systems. Moregnated merging
methods are described in (Meignier et al., 2005) and (Mozaal., 2003), as the
‘fusion’ strategy. In this the results from two diarizatispstems are compared
and all the segments whose labels conflict found. Then madelsrained on
them and the clustering step resumed. Tranter (Trantef)208ed a ‘cluster
voting’ technique. This also collected those portions @& #udio where the
relative output labels are not agreed by all the systemstlamthe candidate
clusters that maximize the Cluster Voting Metric are selécAn external judge,
BIC, is used to pick the optimum solution among them. Gup&.€Gupta et al.,
2007) (Gupta et al., 2008) integrated systems using diftdeature vectors.

Figure 2.3 displays the main steps adopted in speaker di@nzsystems,
and the main algorithms used for each step. In the Figuresgbech activity
detection is referred to as SAD, and the speaker changetidetstep is labelled
as SCD.

2.7 Evaluation Metrics

The main metric that is used for speaker diarization expanisis the Diariza-
tion Error Rate (DER) as described and used by NIST in the Rluations.
The NIST Rich Transcription diarization evaluations plaojides a Diariza-
tion Error Rate (DER) framework to analyse the performaricpeaker diariza-
tion systems. It consists of missed data, false alarms aeaksp errors. The
final outputs of the speaker diarization system is a sequafricelative’ speaker
labels, which are referred to as the hypothesis speakdslabBER. The ‘true’
speaker labels will be called the reference speaker lal¥atsoptimal one-to-

one mapping of the reference and hypothesis speakers néedderformed to
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Figure 2.3: The main strategies adopted for diarization
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maximize the overlap between their labels. This allows tiegiag of different
speaker tags between the two files. The Diarization Errog Batre is computed

as

Yoy dur(s) - maz(Nyes(s), Nuyy(5)) = Neorpee(s)

DER = :
Zs:l dUT(S) ’ Nref

(2.15)

whereS is the total number of speaker segments where both refegtay-
pothesis files contain the same speaker/s pair/s. It ismdstaby collapsing
together the hypothesis and reference speakers turns. efilme &,.¢(s) and
Niyp(s) indicate the number of speaker speaking in segragand Ny, et ()
indicates the number of speakers that speak in segment sasadbben correctly
matched between reference and hypothesis. Segmentekhbelhon-speech are
considered to contain O speakers. When all speakers/reetlsjin a segment are
correctly matched the error for that segment is 0.

The DER error can be decomposed into the errors coming frerditferent

sources, which are:

e Speaker error: percentage of scored time that a speakerd&signed to
the wrong speaker. This type of error does not account foalksgre in
overlap not detected or any error coming from non-speechdsa It can

be written as

Zf:l dur(s) - min(Nyeg(8), Nnyp(s)) — Neorreet(S)
S dur(s) - Nyos

Egpr = (2.16)

e Missed speech: percentage of scored time that a hypotkesiwrespeech

segment corresponds to a reference speaker segment. e &piessed
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as

Ef:l dur(s) - (Nrep(s) = Niyp(s)) VNpep(8) — Npyp(s) > 0
S5 dur(s) - Nycy re w

Erirss =

(2.17)

e False alarm speech: percentage of scored time that a hygmelespeaker

is labelled as a non-speech in the reference. It can be fatedihs

Fps — Zle dur(s) - (Npyp(s) — Nyes(s)) Ny (5) — Noes(s) > 0

oy dur(s) - Nogs

(2.18)

The DER is the sum of all these three types of errors.

DER = Egpiy + Eniss + Era (2.19)

2.8 Baseline system

When developing a new technique it is preferable to do itisgfrom a baseline
system that has been proven to be successful and populdraamheen integrated
into a well-rooted theory and state of the art technologye Tilfficulties met
by this baseline system during the implementation will lscdssed and a new
algorithmic solution will be developed. Finally experiniemwill be set up to
compare the results of the baseline system and the new syst&Emw whether
or not it has overcome the shortcomings of the baselinesyste

The SAD phase, the SCD phase, the clustering phase and possping are
part of the baseline system. In the SAD phase, a model-basstis detection
method is applied to remove the non-speech segments in the. divo GMMs

are trained for speech and non-speech separately. In theph@ge, the KL2
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divergence is used as the metric to detect the speaker cpairgs.

In the clustering phase, the detected speech sectionsdrespeaker change
points produced by the SCD step are then used to train thé&espemdels. The
Gaussian model is used to initialise potential speaker spslech that each po-
tential speaker model is trained by a speech section. Thateatal speaker
models are then clustered based on their similarity3/C (defined in Equa-
tion 2.9) is used as the measurement of similarity. The dgiotential speaker
models with the lowesABIC values are merged into one, and a new GMM
is trained on all the sections assigned to them. In the new GKB number
of components is the sum of the model complexities of the tWwéMS being
merged. The merging process terminates when the remaiotegiel speaker
number is below a certain threshold. Then, every speeclosetttected be-
tween speaker change points is re-assigned to the remaginiegtial speaker
model with the highest probability.

In the post-processing phase, a GMM with 128 componentsiisetd by all
the speech in the meeting as a UBM. Then mean-only adaptatised to derive
the speaker models of all remaining potential speakers fhentyBM. The CLR
is used as the similarity measure between the UBM-adaptsksp models, and
the pair of potential speaker models with the largest CLRe&/alre merged. The
whole process is terminated when the CLR between all thes pdipotential
speakers is below a certain threshold. Again, all speectiosschetween de-
tected speaker change points are re-assigned to the regppiotiential speakers.
Finally, the non-speech segments detected in the SAD, #echpsections and
their corresponding speakers will be output by the systefinakresults. The
baseline system used in this thesis is illustrated in Figuteln the next chapter,
data analysis will be done to help understand the naturee#lsgy characteris-

tics, in order to derive new techniques to improve systerfopsance.
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Chapter 3

Data Characteristics Analysis

To improve the performance of an existing system, it is nemgsto identify
those aspects that contribute to or detract from its sucaedghen to exploit
those characteristics in new algorithms to overcome thiesys shortcomings.
In the case of a speaker diarization system, no pre-tramiatgrial is available
for speakers, so the systems adopt an evolutionary strategyich the speaker
models are iteratively adjusted based on the accuracyrdatdrom the data.
Therefore, the performance of the system depends heavilyeocharacteristics
of the data, in this case, face-to-face meeting data. Byaimagl the specifics of
the meeting and identifying their effects on the speaketiziiion model, new
algorithms can be proposed that improve the modelling aogur

In this chapter, we examine the shortcomings of each patebaseline
system in terms of the face-to-face meeting charactesidtiom the SAD to the
UBM. Section 3.1 explains in detail the specifics of the nmegetiata that will
contribute to the difficulties incurred in speaker diarizat Several measures are
developed to quantify the influence of these difficulties. déscribe the AMI
corpus, which was selected because it meets all the craédata selection. In
Sections 3.2 to 3.4, a selected sample of AMI corpus datditsr subsets to

test whether the meeting characteristics affect the besslistem performance.
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In addition, the potential solutions are tested in 3 domaine SAD, the SCD,
and the application of the UBM. Finally, Section 3.5 summ@sithe conclusions.
New techniques will be developed in Chapters 4 and 5 baseteoresults
from this chapter, and a new speaker diarization systembeilproposed that
focuses on the specifics of meetings while remaining rolaugatiations in the

meeting characteristics, such as the number of particgpant

3.1 Speaker diarization and data selection

The challenges for successful diarization of meetings eesented in Table

1.1. The details can be summarised along six dimensions:

e The number of speakers: the number of speakers in the setatinge
varies from three to ten. The rate of successful diarizadieereases with
the number of participants, particularly in the algoriteratopping mech-

anism.

e Speaker turn length: in contrast with other types of dialggexchanges
between speakers occur frequently during a meeting. Apmately half

of the speaker turns last less than one second.

¢ Noise conditions: a significant amount of noise obstruatsgéneralisa-
tion of the non-speech training model and degrades theraissfeerfor-

mance.

e Room characteristics: the quality of the walls, floor andigj the room
size, the arrangement of microphones, the positions oflpeoml the re-

verberations of the room all affect the quality of the speech

e Recording microphones: the conversations during meetimgst be recorded

by lapel microphones, headset microphones or table miomgd Each
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type of microphone provides a different level of quality.

e Meeting types: natural meetings are meetings that happbe neal world,
while artificial meetings are designed explicitly for resdapurposes. Ar-
tificial meetings can be controlled by a given scenario oreagranged
topic.

In addition to the individual challenges listed above, theation is further
complicated by interactions among them. The noise leveldcbe affected by
the room characteristics and the recording microphoneg. niéeting type af-
fects the type of noise and speaker turn length. Artificiabtimgs may include a
certain level of (pre-defined) noise. Informal meetingsmoee often interrupted
by laughter, while intense discussion includes shortealspreturns. Therefore,
to test the influence of certain meeting characteristicshenspeaker diariza-
tion performance, the main criteria for data selection shoclude meetings of
different types, in different rooms, with different record microphones and dif-
ferent numbers of speakers. Good reference data alsolmatetto the analysis
of the dataset.

The AMI Meeting Corpus is selected in this thesis, as it maktbe required
selection criteria. The AMI corpus is described in detail (Barletta, 2007)
(Hain et al., 2007) and basic information can be found at#tiprpus.amiproject.org/.
Briefly, the AMI corpus includes 100 hours of meetings, whiare recorded in
English using three different rooms. The corpus capturds batural conversa-
tions and those conducted in pre-designed meetings. Anfengéatural conver-
sations, the number of speakers varies from three to fivendrtype of artificial
meeting, four speakers are involved, taking four pre-gyeanroles (industrial
designer, interface designer, marketing, and project gema Other artificial
meeting types also appear in the AMI corpus, such as a filmsdehario.

The meeting rooms were the Edinburgh Room, the IDIAP Roomthed
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TNO Room, each with its own acoustic properties. Each ppédit had both a
headset microphone and a lapel microphone in the EdinbungylCHAP Rooms.
In the TNO room, only the headset microphone was providedrdikar micro-
phone array was also provided in each room, either in theeenthe table or
on the ceiling. Each meeting was down-sampled from 48 kHz6t&Hz and
recorded in the corpus as WAV files. For each meeting, all cblsnwere pro-
vided in separate files unless the recording equipment wasebr The record-
ings from all microphones were synchronised into a commoreline. The
headset and lapel recordings were mixed separately an@lptbas two single-
channel recordings. The AMI Meeting Corpus includes a higlity transcrip-
tion for each individual speaker, and word-level timingsreveerived using a
speech recogniser in forced alignment mode. A simple eAeagged technique
was applied to process the speech/silence segmentati@adbrspeaker in the
channel derived from the lapel microphone. The meetingsrdedl by the head-
set microphone include more breath noise and cross-taéfegt, and this part
of the noise has not been efficiently labelled by the trapson. Because the
new system proposed in this thesis is designed for singlangiaecordings,
only the lapel microphone recorded meetings will be usedHerdata analy-
sis. Due to the advantages described above, a dataset feofiMhincluding a
variety of rooms and scenarios was selected for data cleaistats analysis in
this chapter. The meetings recorded in the TNO Room werenotiided be-
cause there was no lapel microphone recording for that raowh all meetings
belonged to a single meeting type. In the Edinburgh Roomitketings can be
divided into two types, and in the IDIAP Room there were threseting types.
Three meetings of each type were extracted to form a tessetatihe number
of speakers in the test dataset varies from 3 to 4. This datéisbe used for all

experiments in this chapter. The meetings with 5 speaketsiamlar scenarios
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can only be treated as a special case because of the limitetihgnelata (data
are available for only two meetings).

Several measures were developed to record certain medtargateristics,
such as the number of turns, the percentage of short turnshandumber of

speakers. The following measures were applied to charsetire meetings:

e Average Speech to Noise Ratio (ASNR): this measure desctitgeratio
of the average speech energy to the noise energy. The highealue, the

easier it is to separate the speech from the noise:

ASN 10xlog(average speech power)—10%log(average noise power
R = :
10xlog(average noise power)

), where the en-

ergy power is equal to the average square sum of the corrdsgpsignals.

¢ Noise Length Ratio (NLR): this measure describes the lepgtbentage of

noise in the entire audio sample
e Speaker number: the number of speakers in the sample.

e Meeting room: the selected meetings occurred in two roofa5(Edin-

burgh Room) and 'I' (IDIAP room).

e Meeting type: N - natural meetings, S - artificial meetingslemindus-
trial scenarios, B - artificial meetings under other scergrsuch as club

meetings.

e Average Turn Length: the average length of the speaker.turns
Table 3.1 lists the meeting room, meeting type, speaker eurabd the
ASNR of all meetings in the test dataset. More measuremédriteese meet-

ings will be given in the rest of this chapter.

3.2 Problems arising in Speech Activity Detection

As reviewed in the last chapter, speaker diarization systesnally begin with

a speech detection step. MISS and FA are two types of errat®tecur during
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Meeting name Meeting type| Meeting room| Speaker Number ASNR
EN2002a N E 4 0.2247
EN2006a N E 3 0.2303
EN2009c N E 3 0.1562
ES2003a S E 4 0.2298
ES2009a S E 4 0.2321
ES2016¢ S E 4 0.1162
IB4001 B I 4 0.4469
IB4002 B I 4 0.4325
IB4005 B I 3 0.2613
IN1001 N I 3 0.1950
IN1002 N I 4 0.1798
IN1005 N I 4 0.2354
IS1001b S I 4 0.2507
IS1006a S I 4 -0.0411
IS1009a S I 4 0.1733

Table 3.1: Characteristics of the meetings used in expeisne

SAD. MISS measures the proportion of the length of speedhishadged to be
non-speech, and FA is the proportion of the length of noresipehat is judged
to be speech. In the baseline system, GMM models that have greetrained
for non-speech and speech are used to cluster the audio ontspeech and
speech. These models are trained with a small number ofpediéd datasets
using 12 MFCC and sum of squares of amplitude as acoustigrésat During
SAD, audio is splitinto small segments, which are then eluest into speech and
non-speech using the pre-trained models. Three paranmetedso be computed
in this method: the length of the segments and the numbermneponents used
in speech GMMs and non speech GMMs. This section discuss@sfjortance
of the parameters (and their values) and the way in whichréeing material is

selected.
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3.2.1 Parameter determination

Non-speech segments appear at the intervals betweerediffggeakers and dur-
ing one person’s continuous speech. The non-speech segbatween different
speakers are usually much shorter than the segments frosaithe speaker. Al-
though long segments promote clustering accuracy by avey#ge influence of

outliers, the classifier will be confused if a long segmenitams both speech
and non-speech features. Therefore, the length of the segrhas to be long
enough for good performance without frequently includinghtspeech and non-
speech. To determine the range of the non-speech segntentlistribution of

the non-speech turns with a length less than 3 secondssgdted in Figure 3.1.

The majority of non-speech turns between speech of the speakar have
lengths from about 0.4 seconds and peak around 0.5 secoradlsnreetings,
and similar results are observed in various meeting roondsnageting types
(Figure 3.1, all meetings). As expected, natural meetikggife 3.1, EN and IN
meetings) have more non-speech turns between differeaksggethan artificial
meetings (Figure 3.1, ES, IB and IS meetings). To ensuredtextion of most
of the non-speech segments, the segment length should bedhrdds.

More components are required to model the speech acousticés because
speech has a more complicated distribution, while in naesh GMM, only
four components are sufficient. To investigate how the nurob6&MM com-
ponents affects the performance of SAD, Experiment 3.1 waducted. In this
experiment, a test dataset was divided into two groups, @ntedining data and
the other for test data. The training data were used to ta@éech and non-
speech GMMs with different numbers of components. For tieesp GMM, the
number of components varied from 2 to 7, while for the nonespeGMM, the

Gaussian number varies from 1 to 3. The test data were seganéd speech and
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Figure 3.1: Distribution of averaged non-speech turn nusbe
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non-speech. Then, each was split into a sequence of segofesgsial length
and clustered by the GMMs. The recognition rate was expédotedry with the
number of components used in GMM, and some noise conditi@sarements,
such as the ASNR or the NLR, might also affect the result. Tioegss of the
experiment is illustrated in Figure 3.2. Among the 15 megtast sets described
in Table 3.1, 5 meetings were used for training the speecmangpeech mod-
els, and the other ten meetings were used for testing the Imodae first 10
minutes of audio were extracted from each meeting for thiegrent. The fol-
lowing 10 minutes of speech will be used in the next experim&here we will
test whether the non-speech from different time sectiotisimva meeting has an
effect on the non-speech model construction.

The values of the NLR and ASNR measurements of the modeiradataset
are listed in Table 3.2, and the same measurements of thel testieg dataset
are listed in Table 3.3. In the meeting name, the number &fteefers to the
section of audio that was extracted. For example, ‘EN2QD®enotes the first

10 minutes of audio from meeting EN2009a.

Meeting nameg ASNR | NLR
EN2009a-1 0.326 | 24.0%
ES2016¢c-1 0.284 | 30.3%

IN1002-1 0.190 | 13.2%
1S1009b-1 0.213 | 15.6%
IB4002-1 0.358 | 37.1%

Table 3.2: Meetings used for non-speech model training artdtleir noise
condition measurements: ASNR and NLR.

Figure 3.3 shows that the MISS error rate decreases whenutimnder of
components used in the speech GMM increases. When the noodebay is im-
proved by including more components in the GMM, less spegcahisclassified
as non-speech, as shown in Figure 3.3(a). Indeed, morepeztis is classified

as speech, especially when the number of components in tiigpeech model
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Figure 3.2: Process of Experiment 3.1

52



Meeting nameg ASNR | NLR

EN2002a-1 0.158 | 22.8%
EN2006a-1 0.164 | 47.2%
ES2003a-1 0.229 | 53.1%
ES2009a-1 0.172 | 26.7%

IB4001-1 0.499 | 33.4%
IB4002-1 0.394 | 39.7%
IN1001-1 0.006 | 35.9%
IN1005-1 0.276 | 31.9%

1S1001b-1 0.231 | 43.3%
1S1009a-1 0.089 | 42.7%

Table 3.3: Meetings used for non-speech model testing andrtbise condition
measurements: ASNR and NLR.

is low. As shown in Figure 3.3(b), the increase in the numidenam-speech
GMM components leads to a decrease in FA and an increase i8.Mi% total
error rate is the sum of these two error measures, and it esath minimum
value when the reduction in MISS is not cancelled out by tleeeiase in FA.
Figure 3.3(c) shows that the minimum total error rate oceunen the speech
GMM number is five and the non-speech GMM number is two. NoiSant
error reduction is observed when the speech GMM numberaseseto seven.
Those two values are therefore used as the fixed values of NGMMSGMM
in the next experiment (Figure 3.4). In the experiment, tbst lpesults appeared
when the Speech GMM number was 7 and the Non-speech GMM nundser
1. Figure 3.3 shows how the MISS and FA values change witbréifft numbers
of GMM components.

To test whether the number of GMM components (fixed paramgerer-
ated from the set of all meetings is consistent with eachviddal meeting, we
introduced an optimum solution where the best GMM number g#sulated
as that which give the lowest error rate in each single mgetirne effects of
different speaker numbers and the difference between SGMMEEMM were

also analysed. Figure 3.4 consists of four sub-figures taat)show how the
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Figure 3.3: MISS, FA and total error rate change with GMM comgnt number
when segment length is 0.4 seconds.

total error rate of speech and non-speech clustering ckaawa function of the
energy measures and the speaker number.

Figure 3.4(a) shows the total error rate as a function of t88IR. the ASNR
is high if the speech is much louder than the noise. The optirsalution line
shows the total error rate achieved by the optimum paransetéing for each
particular meeting. The total error rate tends to decreas8NR increases.
The error rate line with fixed parameters shows the error vat&tion when
the speech GMM number and the non-speech GMM number are txtradir
optimum values for the whole test set. It seems that the qtirparameters for
the whole test set are not always those that produce the &dstipance in each
meeting.

The difference between the fixed parameter and the optimlutiGofor the
error rate is shown as a function of the NLR in Figure 3.4(bhe NLR is the
non-speech length ratio of the meeting; its value incremge=n there is more
non-speech in the audio. Figures 3.4 shows that the total exte obtained us-
ing the optimising parameters for the entire test set ansitar each individual

meeting deviate as the NLR increases. Figure 3.4(c) shawsgtimum param-
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Figure 3.4: Total error rate difference between fixed patama&nd optimized

solution when segment length is 0.4 seconds. (a) shows thlectoor rate as a
function of the ASNR. (b) shows the difference between thedigarameter and
the optimum solution for the error rate. (c) shows the optmparameter setting
for each meeting as a function of the NLR. (d) shows the totakeate is lower

for NGMM when there are four speakers.
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eter setting for each meeting as a function of the NLR. It shidvat a higher
non-speech GMM number and a lower speech GMM number areregbwhen
the NLR is high (e.g., 0.4). Two or three GMM components aguied for
the non-speech model when the non-speech is more than 409 atidio. The
difference between the total error rates is more signifiedrgn the noise length
ratio is close to 50%, and to obtain the best performancejdhespeech model
should include at least three components. In Figure 3.4lté)fotal error rate
is lower for NGMM when there are four speakers. However, bseanly two
meetings in the test set have three speakers and one of thsearhigh NL value
and a low SNR value, the decrease in performance is morg ldeelsed by the
noise length than the number of speakers.

This experiment suggests that the non-speech GMM numbettesriuleter-
mined in terms of the NLR. The more non-speech appears irutthe ahe more
components should be applied in the GMM number. This can hieed in two
steps: using one component non-speech model in SAD to datenbn-speech
and then calculating the NLR value depending on the detetdedspeech. If
the NLR value is higher than a given threshold, more compiznare used to

re-train the model. Then SAD is run based on the new model.

3.2.2 Training material selection

The efficiency of the clustering depends on the similaritineen the training
and testing materials. It is difficult to train a non-speeabdel that can cope
with all types of noise present in the meetings. In this sedtien, Experiment
3.2 is designed to analyse how the similarity between theitrg materials and
testing materials affects the detection of speech actiitigxperiment 3.2, three
different sources are used as training materials.

First, each testing audio is used to train speech and nagckpeodels for
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itself (denoted as Self in this experiment). The testingi@asdmples are the
same as those used in Experiment 3.1. The meeting namesg&v8peech to
Noise Ratio and Noise Length Ratio of those testing datai@esngn Table 3.3.

Second, 11-20 minutes of speech from the same meeting atestiolg audio are
used to train the models (denoted as Semi-self). Thirdqitrgimaterials from

different meetings are used (denoted as Different). Thageing data from the
different meetings are the same as the training material$ mmsExperiment 3.1,
and their noise characteristics are given in Table 3.2-1&aling is expected to
give the best performance.

The same process is used in this experiment as in Experintered®ept that
different training materials are used. The segment lergfixéd at 0.4 seconds,
and the component numbers used in the speech and non-spedelsrare the
optimum solutions for each test sample according to thdtsestiExperiment
3.1. The setup of Experiment 3.2 is illustrated in Figure arid the results are

shown in Figure 3.6.

Original experimental setup New e xperimental setup

Semi-self:
Self. data from the Different:
testing data||same meeting as training data
the testing data

Training
data

}
‘i

Model Training Model Training

I
i

Model Testing Testing data Model Te sting Testing data

1
i

Model Validating Model Validating

|
|

Figure 3.5: Experimental set up for different training nmiztis
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As expected, Figure 3.6 shows that the total error rate fitimeieself-training
or semi-self-training is different from the error rate frahfferent-training. In-
terestingly, there is no significant difference betweefisaining and semi-self-
training. Therefore, when constructing the training medédl the speech and
non-speech information detected from test meetings candbeded in the mod-

els, the speech activity detection performance will be mapd.

0.06
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°
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=
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T

total error rate
T
\
|

0.02—

0.01—

|
Selftraining Semi-self raining Training with different meefing

Bar: mean of error rate; Error bars: standard deviation.

Figure 3.6: Comparison of using different training matemaspeech activity
detection.

3.3 Measure of overlap between short speaker seg-
ments

A metric based speaker change detector, which comparesntiiargy of the
speech before and after each point in the meeting to idecthifynge points, is

widely applied in diarization of meetings (Miro, 2006). i similarity is above
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a given threshold, the point in question is identified as anghgpoint. Two
issues with metric based speaker change detectors aree(linth constraint
on the segment length and (2) the selection of the threshiobthg segments
are preferable for speaker characteristics detection. edery the change point
is difficult to recognise if multiple speakers appear in thve segments being
compared.

Figure 3.7 shows the mean and standard deviation of the speak length
for the 15 meetings described in Section 3.2. As illustrameBigure 3.7, the
average speaker turn length for all meetings is in the rangesdconds. The
meeting room and meeting type show no influence on the spaakdength dis-
tribution. The meeting with the largest standard deviaitsameeting “I1S2009a”,
showing that some long speaker turns appear in this meetd®gause most
speaker turns are less than 3 seconds, the distributioneaikep turn lengths
less than 3 seconds in these 15 meetings is displayed inedF8g8r From Figure
3.7, we see that there is no significant difference in theilligion of speaker
turn lengths among different types of meetings recordedfierdnt rooms. The
majority of non-overlapping speech turns are under 1 secamdithis is not af-
fected by the meeting room or the meeting type. Hence, torerike detection
of short speaker turns, the segment length should be séi aefonds.

Next, the similarity of 0.5 second short segments from diifié speakers and
from the same speaker is analysed. Fisher’s linear discaimiis a widely used
technique in statistics, pattern recognition and macteaening. It can be ap-
plied for data classification, dimensionality reductionl &ature characteristics
description.

AssumeX; are data from class 1 of size and X, are from class 2 of
sizeny. The Fisher linear discriminant seeks to find an optimum hylpee

< Y* x> +b = 0 (the notation< y*, = > represents the inner product ©f

59



speech turn length (second)

.

-2

Meetinghame EN2002a EN2006a EN2009cES2003a ES2009a ES2016c  1B4001 1B4002  IB4005 INT001  IN1002 INT005 1S1001b 1S2006a IS1009a
Speaker Number 4 3

circle: mean; error bar: standard deviation

Figure 3.7: Comparison of speech turn length in differeneétings

andx) that maximises the ratio of the inter-class distance amd-iciass distance
of the projections ofX; and X,. This Fisher Linear Discriminant Ratio (FDR)
is denoted adr(v*), and the hyperplane that maximises it is given by Equation

3.1:

YT (1 — pi2) * (1 — pi2)" )W
YT (X1 + o)t

Y" = argmax(J;(¢))) = arg max( ), (3.1

where; andu, are the means of class 1 and class 2, apdndX; are their
covariance matrices. Using the Lagrange method, this maation problem
can be represented as a convex quadratic optimisationgmnolshose solution is

given by Equation 3.2

V= (31 4 o) (11 — pa). (3.2)
Figure 3.9 shows how the Fisher discriminant projects datX0oand X,
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onto the optimum hyperplane ¢*,x > +b = 0 It can be seen in Figure 3.9
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X1, X5 represent the data from the two classes of
data separately< ¢*,x > +by = 0, < ¥*,z +

by >= 0 and< ¢*,x > +by = 0 are three sep-
arating planes with different value of biagy, =
(p1+p2)/2,b1 = (p1*n1+p2*n2)/(n1+nz),and

by = (1 * ng + p2 ¥ n1)/(n1 + na).

Figure 3.9: Fisher discriminant separating plane.

that the hyperplane v*, x > +b = 0 divides the features into two parts. This
hyperplane is also called the Fisher linear discriminaasgfier (FDC). The
distance from a feature to the hyperplane< ¢*, x > +b = 0 is equal to the
absolute value of< ¢*,x > +b) / ||| If the two classes are separable by the
hyperplane, as when= b,, any featurer from X1 will satisfy < ¢*, x > +b >
0, while any featurer’ from X, will satisfy < ¢*, 2’ > +b < 0. We denote the
class label of: asy, wherey = 1 if z is from X;; andy = —1 if = is from Xo.
An error occurs whenevers (< ¢*, z > +b) < 0. Whenb = (i, + u2)/2, the
hyperplane is equidistant between the mean values of thelasses.

The FDR is the ratio of the inter-class distance and the-ciaas distance

of the projections of the two datasets onto the FDC. Theeefibmeasures the
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overlap between the two datasets. The higher the valuegdiseolverlap there is
between the two classes. It is assumed that the FDR fronreliffespeakers is
much higher than from the same speaker because featuredifferant speakers
have less overlap.

Using the Fisher Linear Classifier to classify the featuremfa pair of seg-
ments, the classification error rate should be low if the sagmare from dif-
ferent speakers because features from different speatemnsae likely to stay
on different sides of the classification hyperplane. Whentiwyo segments to be
classified are from the same speaker, the error rate shodldjber because the
overlap between the segments is larger.

The average distance from errors to the classification ipygee, another
measure derived from the Fisher Linear Discriminant, cao &le applied to
analyse the data characteristics. If the average distanoethe errors to the
classification hyperplane is small, the errors appear atltssification bound-
ary (near the classification hyperplane); otherwise, therermre isolated from
the rest of the features in the segment. In another type esifieation, if two
datasets are from different clusters, the average distaocethe errors to the
classification boundary should be short because the ovbdapeen different
clusters is small. However, the speaker features shouldimpased of several
different mixtures, and some of the mixtures may be far froedthers. There-
fore, when two segments are from different speakers, thegealistance from
the errors to the boundary is more likely to be large. WhenguiBDC to classify
segments from different speakers, non errors can somebmdstected; there-
fore, the distance from the errors to the classification bawnas discussed here
is only applicable to the cases in which errors do exist.

The FDR, the classification error rate of the FDC, and theamesdistance

from errors to the FDC can be applied to measure the overlaypelea segments
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from different speakers and from the same speaker. Thegaeliatance from
errors to the FDC measure can also be used to detect wheémerate isolated
mixtures in the feature distribution. Although the first tw@asurements have
been widely applied for data characteristic analysis (HbBawsu, 2002), no such
usage has been found for speaker feature analysis.

All 15 meetings described in Section 3.1 will be used in Expent 3.3.
In this section, 19 MFCCs and energy vectors are extractedasstic feature
vectors from the meetings. In Experiment 3.3, each audigkain the test set
is split into different speakers based on the transcripfidre speech from each
speaker in an audio segment is then split into small segnemighe distribution
overlap between each pair of segments is measured. Theireepéal setup
is illustrated in Figure 3.10. The length of the segments.t.sd&@conds. The
overlaps between pairs of segments from different speakefiom the same
speaker are shown in Figure 3.11, Figure 3.13, and Figure 3.1

As expected, the upper panel of Figure 3.11 shows that the ks of
segments from different speakers are much larger than tifassgments from
the same speaker. In other words, after projecting onto I Ryperplane,
segments of different speakers have less overlap. Bechesarige of FDR of
different speakers is much higher than that of the same speakog scale is
adopted to make the data more comparable. The minimum FDRffefemt
speakers is approximately 4 (log(4) = 1.3868), and the mamirkDR of dif-
ferent speakers is approximately 500 (log(10) = 6.2146). tii@nother hand,
the range of FDR of the same speaker is between 0 and 1 (log leda than
1). For each meeting, the minimum FDR of different speaketarger than the
maximum FDR of the same speaker. Moreover, the minimum FDdRffefrent
speakers is larger than the maximum FDR of the same spea&iémeetings. If

a threshold is placed in the gap between the minimum FDR fdréifit speakers
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Step 1:

Speeches are classified into different speakers.

Step 2:

Speech from individal speaker is split into
small segments by a given length,
i.e. 0.5 second.

Step 3:
Each segment is compared to an other segment from
same speaker and also different speaker

Figure 3.10: Process of Experiment 3.3
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In the upper panel, the FDR of segments from different speakeame speaker is determined
in 15 meetings. To make the data comparable, FDR values avensim log scale. For each
meeting, bar presents the value range (minimum and maxir@iFPR, blue colour indicates
different speaker, red colour indicates same speaker. ditothier panel, the FDR difference
between the minimum value of different speakerit(F DR,)) and the maximum value of
same speaker{az(F DR;)) are displayed.

Figure 3.11: Overlap between short segments from diffespetiker or same
speaker measured by FDR.
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and the maximum FDR of the same speaker, all speaker chamgts pall be
identified.

The difference between the minimum FDR of different spesked the max-
imum FDR of the same speaker is displayed in the lower panEigfre 3.11.
The difference is always positive, which is consistent witl result shown in
the upper panel of Figure 3.11. The difference in FDR vargs/ben different
meetings. There is no evidence of a correlation betweeniffezaehce and the
meeting room, meeting type or number of speakers. It is ¢hesrthe meeting
room and type do not affect the speaker characteristicstreard are only two
speakers involved at a given speaker change point.

To investigate whether the noise condition of the audio Ingseffect on the
overlap between short segments, the difference betweemitiienum FDR of
different speakers and the maximum FDR of the same speakisgkayed as
a function of the ASNR in Figure 3.12. The ASNR value of eacletimg is
listed in Table 3.1. There is no clear evidence that the SNRaffect the FDR
difference between different speakers and the same speaker

In Figure 3.13, the FDC error rate is applied to describe theglap between
pairs of segments. As expected, the range of FDC error ratifeyent speakers
is higher than the range of FDC error rates from the same spdak there is no
gap between the minimum FDC error rate of the same speakéhamadaximum
FDC error rate of different speakers for all meetings. Frbmlbwer panel in
Figure 3.13, only three meetings have a positive differérsteeen the minimum
FDC error rate of the same speaker and the maximum FDC eteoofdifferent
speakers. There is no evidence that these differences ardated with the
meeting room, meeting type or number of speakers. Thes#gesiggest that
FDC could partially identify change points.

In the upper panel of Figure 3.14, the average distance fnenDC errors
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Figure 3.12: The effect of noise condition on the FDR diffexe between the
minimum value of different speakem¢n(F' DR,;)) and the maximum value of
same speakernfax(F DRy)).

to the separating hyperplane is applied to analyse the datiacteristics. Be-
cause the range of the average distances of different sjseiak@gh compared
to the average distance of the same speaker, a log scalepggeddo make the
data more comparable. As expected, the range (minimum arohen values
of measures) of the average distance from errors to FDC fefrdift speakers is
higher than the average distance of the same speaker. Howea@own in the
lower panel of Figure 3.14, the minimum average distancefte#rdnt speakers
is always larger than the maximum average distance of the speaker. There-
fore, although features from different speakers are mgraraple by FDR, some

features are also isolated from the other features in the sagment.
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In the upper panel, the FDC error rate of segments from @iffespeaker or same speaker
is determined in 15 meetings. For each meeting, bar pretientgmlue range (minimum and
maximum) of the FDC error rate blue colour indicates différgpeaker, red colour indicates
same speaker. In the lower panel, the difference of FDC eaterbetween the minimum value
of same speaken{in(F DC;)) and the maximum value of different speakersu (F DC}))
are displayed.

Figure 3.13: Overlap between short segments from diffespetiker or same
speaker measured by FDC error rate.
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In the upper panel, distance from FDC errors to the classifichyperplane of segments from
different speaker or same speaker is displayed in 15 meetifigmake the data comparable,
the values are shown in log scale. For each meeting, bamisabe value range (minimum and
maximum) of the average distance, blue colour indicatderaifit speaker, red colour indicates
same speaker. In the lower panel, the difference of distanoe FDC errors to the classifica-
tion hyperplane between the minimum value of different &pes(nin(distancey)) and the
maximum value of different speaken@x(distance,)) are displayed.

Figure 3.14: Overlap between short segments from diffespetiker or same
speaker measured by average distance from errors to FD§lfidason hyper-
plane.
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3.4 Data distribution in the Universal Background

Model

A UBM is used in speaker recognition systems to represenérgémperson-
independent feature characteristics of speakers. BecalMdé is used almost
exclusively for text-independent speaker modelling, iapplied to the UBM
to maintain the consistency and comparability of the mo@ekynolds et al.,
2000). The data used to train the UBM in speaker diarizatiay some from
other sources (other speech corpus) or from the meetinlj {&@ha et al.,
2005). The UBM is incorporated into the speaker diarizaggstems in two
ways: 1) to use the UBM as an alternative hypothesis for tlealsgr model
and 2) to derive speaker models by adapting the UBM. In thépagessing
step of the speaker diarization system, to determine whétleesegments are
from the same speaker, the match score of each segment’d amatithe UBM
are measured and compared. The match score of a segmentliisetimod
ratio test between a speaker-specific model and an alteenatodel (in this
case, the UBM) (Tranter and Reynolds, 2006). Instead ofgoemined inde-
pendently, the speaker models can be derived by an adaptgtjgroach that
updates the parameters in the UBM iteratively toward paldicspeakers. The
UBM-adapted speaker model provides a tighter coupling eetwthe speaker’s
model and the UBM, which leads to better performance at l@mserputational
expense (Reynolds et al., 2000).

The UBM is trained to represent the distribution of the spefeatures for
all speakers in general; therefore, the data selecteditottra UBM should be
balanced in terms of all variables, such as channel, miacnoghand speaker
gender (Hasan et al., 2010). Because the task of this tresisimprove the

speaker diarization system performance for meetings decoby a single type
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of microphone, channel and microphone variability will betdiscussed here. In
addition, the variability concerns about speaker’s infation are irrelevant for
two reasons: 1) data from other corpus and resources wibheatpplied in the
system, and 2) no speaker information is provided for a targeeting. Without
information to group the speech into subpopulations torizadaheir influence on
the UBM, the distribution of acoustic features from diffiergpeakers and their
intertwining will be investigated in Experiment 3.4 to inope the training of the
UBM for speaker diarization systems.

The parameters in the process of training the UBM includentimaber of
components in the GMM, the covariance of Gaussian modetsthaninitialisa-
tion method. Either increasing the number of componentser@MM or using
a full rank matrix instead of a diagonal matrix as the covaz@amatrix will in-
crease the model effectiveness. When a diagonal matrixeasthe covariance
matrix in the GMM, the loss of accuracy in the model can be cemsated for
using more Gaussian components. The acoustic featureodligtn character-
istics, which will be analysed in Experiment 3.4, can be eggjio determine the
parameters of the UBM. For speaker diarization, the ing#ion of the UBM
can take advantage of the results of the speaker changédidetec

To analyse how the feature space correlates with the iptiker variabil-
ity, Experiment 3.4 clusters the acoustic features acogrtb their speaker and
investigates how the clusters are intertwined. First, aitdiim Spanning Tree
(MST) is build to connect all of the features extracted froomeeting. In the
mathematical field of graph theory, a spanning tree is a $udfsedges of a
graph that form a tree spanning every vertex. A spanningctveaects all of the
vertexes without forming any cycles. An MST is a spanning tsose sum of
edges has minimum total length; it is capable of represguticiuster with irreg-

ular boundaries. Refer to the works of Kruskal (1956) anthR(i957) for the
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definition of the problem and its first solution (Kruskal, 89%Prim, 1957). In
the case of an acoustic feature space, the vertexes ardla! fgfatures, and there
is an edge between each pair of features. The length of theeiedge Euclidean
distance between the features. Therefore, the MST of théimgemnnects each
feature to its nearest neighbour and forms a tree traveadiing the features.

The algorithm to produce the MST is described by DijkstrgK&ira, 1960).
After producing the MST, if the two vertex features of a certedge are from
different speakers, the edge will be removed from the MSTn&eng these
edges produces a collection of connected components, vanelsub-trees of
the MST. Finally, the number of the sub-trees remaining @M8&T shows how
many subsets there are in the feature space, which is idddgtéeatures from
different speakers. An example of an MST is shown in 3.1%(@J,the sub-trees
remaining after removing all the edge connecting pointmfabfferent clusters
are illustrated in Figure 3.15(b).

The variance of the acoustic features comes from two soysbesetic vari-
ance and speaker variance. Phonetic variance is basedferedifpronuncia-
tions of various syllables. Different speakers posse$srdifit speech/physiological
characteristics, so that an increase in the number of spelesls to an increase
in the variance of the features. Instead of occupying disjspaces, features
from different speakers are more likely to overlap. The Epeaariability is
likely to be mingled with phonetic variability, and as a riesthey split the
feature space into many small regions. The total number loftimes that are
isolated from the features of the same speaker is expected hagh. Longer
speeches include more vocabulary and hence more phonenws. sideakers
will further divide the feature space. Thus, the number ofated sub-trees is
expected to increase with both the speech length and theenuwhbpeakers.

All 15 meetings described in Section 3.1 will be used in Expent 3.4.
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There are two classes of data set, one is denoted by circlinamther is denoted
by diamond. In the sub-figure (a), the MST is built across the ¢lass, shown
by line '—". In the sub-figure (b), the remaining subtreegafemoving all the

edges connecting data from different clusters are shown.

Figure 3.15: MST illustration.
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Nineteen MFCCs and energy vectors are extracted as acdeatioe vectors
from the meetings. Some characteristics of the meetings$) as the meeting
type, meeting room, number of speakers and average speedistoratio, are
given in Table 3.1. Other characteristics that may have fattedn the experi-
ment, such as the average speech length and turn lengthrnimetiteng, are given

in Table 3.4. The number of isolated sub-trees is displaj@tjavith each meet-

Meeting name Speech Length (second)Average Turn Length (second)
EN2002a 1367 1.5324
EN2006a 1586 1.9778
EN2009c 2174 2.8758
ES2003a 5251 3.1065
ES2009a 9663 2.1466
ES2016¢ 13201 2.4474
IB4001 10200 1.4340
IB4002 9635 1.7275
IB4005 15003 3.7777
IN1001 22993 2.4428
IN1002 18769 2.5710
IN1005 21109 2.2363
IS1001b 13819 2.8729
IS1006a 4667 1.9274
IS1009a 4913 2.3956

Table 3.4: Characteristics of the meeting used in experisnen

ing in Figure 3.16. The meeting type, meeting room and nurabspeakers are
all labelled within the figure. Figure 3.16 shows that the benof isolated sub-
trees has a high value for each meeting, ranging from 7006Q@0@ When the
meeting type is natural, the number of isolated sub-tregis, and the room
type shows no clear influence on the number of isolated ®ésir The effect
of the number of speakers cannot be observed in Figure 3dGeter, because
other meeting characteristics, such as speech lengthnloayet been measured,
the influence of the number of speakers may be concealed, Wex¢how how

the number of isolated sub-trees varies with the speechHendrigure 3.17. It
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can be seen that when the speech length increases, the nofrsbbrtrees tends
to increase. However, several points fall outside the trenlde figure. This may
be caused by two reasons: 1) an increase in the speech lerggtheeting does
not always represent an increase in the number of phonencasidethe same
words/phonemes can be repeated many times in an audio segmndr) the
increase of the number of isolated sub-trees will be aftebtethe number of
speakers. In Figure 3.17, it can be seen that the increamehes been disturbed
by a reduction of the number of speakers. However, there idear evidence
of an influence of these two meeting characteristics on tmeben of isolated

sub-trees.
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Figure 3.16: Number of isolated sub-trees in each meeting.

In Figure 3.18, how the number of isolated sub-trees chawghshe ASNR
and average speech length is illustrated. However, no abwwidence can be
observed showing the influence of the two meeting charatiesion the number
of isolated sub-trees.

From Experiment 3.4, it can be concluded that the speakgbibity is min-

gled with phonetic variability to divide the feature spantia huge number of
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small sub-spaces according to the speaker. The numbenatedsub-spaces is
affected by both the length of the speeches and the numbpeaksrs in a given
meeting. Because the UBM needs to capture as much intekespeariability
as possible, more components must be included in the GMMpi@sent more

sub-spaces.

3.5 Conclusion

In this chapter, the drawbacks of the existing speakerziitdn systems had
been investigated, the meeting characteristics that magecthese problems
were examined, and potential solutions for these drawbaeks deduced. The
experiments in this chapter focused on 3 parts of the spekeration system:
SAD, SCD and the construction of the UBM.

For the SAD process, 5 conclusions can be drawn from Expetité and
Experiment 3.2. First, if the number of components conthinghe GMM for
speech or non-speech is increased, the corresponding raccalacy will in-
crease; on the other hand, the model accuracy of its cowantesfil decrease.
Second, a minimum total error rate is achieved when the sp&&tM has 7
components and the non-speech GMM has 1 component, basdu: @mtire
development-set. Third, when the NLR value is high, more poments should
be incorporated for better performance. Fourth, if the audaterial used to
train the speech / non-speech GMM and the test audio mateseal to test the
performance of the GMMs are from the same meeting, the padoce of the
SAD process increases significantly. Fifth, 0.4 secondssigitable choice for
the segment length in SAD.

Taking advantage of the above conclusions, a new algoritiihb&/to im-

prove the system performance in Section 6.3. The new atgoriirst detects
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speech and non-speech using the existing SAD algorithmilteerdit re-trains
the speech and non-speech GMM by adding the new detectaanation and
increasing the number of components in non-speech GMM inhtfise length
ratio is high.

The aspects of all meeting characteristics that affect éntopmance of SAD
are the ASNR and the NLR. Because the new algorithm can attjgsEMM
component number according to the speech and non-speedteatktit will im-
prove the system performance, especially when the NLR \aflagarget meet-
ing is high. On the other hand, consistent with the expertmesults, the error
rate of the system will decrease with the ASNR value.

Based on Experiment 3.3, we can derive some conclusionedd8€D pro-
cess. First, the FDR, the error rate of the FDC and the avetsg@nce from
errors to the FDC are all capable of determining whether a @ashort seg-
ments is from different speakers or the same speaker. Sesome features are
far from the rest of the features of the same speaker. Camsipi@e results from
Experiment 3.4, this is caused by the phonetic variabititthie acoustic feature
space. Because there is no gap between the minimum averdtgaad of the
same speaker and the maximum average distance of differeakears, it is un-
clear whether features in a given short segment will traveeveral sub-spaces
or how many sub-spaces they span. Third, 0.5 seconds is@adds choice of
segment length in SCD.

The measurements applied in Experiment 3.3 are evaluatedilmn a short
segment length of 0.5 seconds, so the new algorithm baseldeoexperiment
should obtain a better performance when there are many speaker turns of
less than 1 second in a target meeting.

Since the measurements applied in Experiment 3.3 are ¢gdlbased on

short segment length of 0.5 second, the new algorithm bas¢ldeoexperiment
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should obtain a better performance when plenty of shortkgydarns exist in a
target meeting. Being referred to as short speaker tures, ldngth should be
less than 1 second.

From Experiment 3.4, we can conclude that 1) in the acousétufe space,
the inter-speaker variability is intertwined with the pletio variability; as a re-
sult, features from different speakers split the featusespnto many small sub-
spaces; 2) the number of sub-spaces tends to increase witlertgth of the
speech in a target meeting; and 3) a reduction in the numbspexdkers in a
meeting will hinder this trend.

A GMM for a particular speaker should contain fewer compasémdimin-
ish the influence of the intra-speaker variability, whickhis phonetic variability
within a speaker. On the other hand, the UBM needs to reprasanuch inter-
speaker variation as possible to represent more sub-spattesfeature space.
In Chapter 5, a new algorithm will be derived for both speakedelling and
UBM modelling. The number of components in the GMM will be trotled so
that fewer components are allowed in a speaker model, while romponents
are allowed in the UBM.

An increase in the speaker number or the speech length in inyeill
lead to more sub-spaces that are isolated from the feat@ithe same speaker.
Therefore, more components must be included in the UBM.rAftmpting the
new speaker modelling and the UBM modelling algorithm, thstesm perfor-
mance will improve, especially when the speech length ig lmd the speaker

number is high.
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Chapter 4

Fisher Linear Discriminant Based

Speaker Change Detection

In the previous chapter, Fisher Linear Discrimination Asséd (FDA) was used
to detect the overlap between short segments. Three differeasurements, the
FDR, the error rate of the FDC, and the average distance froorsdo the FDC,
were derived to represent the difference in overlap betwegments of different
speakers and segments of the same speaker. In this chbhpserheasurements
will be combined to develop a new algorithm for the SCD taskSéction 4.1, a
description of the new algorithm will be given. In Sectio2 all of the param-
eters of the new algorithm will be adjusted by the developmnseh In Section
4.3, the results of the new algorithm will be compared to ¢hafksthe algorithm

used in the baseline system.

4.1 Description of the FDA-based SCD algorithm

In Section 3.3, we saw that the FDR, error rate of the FDC, apdage distance
from errors to the FDC can be used to determine whether twid seagments are

from the same speaker, although the latter two measuresivpootiuce results
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with errors. In this section, these three measurementsambioed to obtain
an optimum solution that might perform better than any €ingkeasurement;
therefore, a new SCD algorithm is created. The new SCD dlgorchecks for
the existence of speaker change in a given meeting at eattindeaector. First,
for each point, the new measurements are computed based shdn segments
of the same length, before and after a selected point. Actptd the analysis of
the previous chapter (Section 3.2.1), the length of the segsns setto 0.5 s. For
the features in the first 0.5 s and the last 0.5 s of the medtirggcomputation is
ignored because no two complete segments can be obtairme beffter these
points. Subsequently, the peak points of the new measutsraenselected, and
if the adjacent peaks are close to each other (less thancbhde the peak with
the smaller value is removed. Around a real change poirdgefahange points
are always detected because when computing the new valuwe gomt near
the change point, the segment before or after the seleciatiqumtains speech
from more than one speaker, which could affect the value ®htleasurement.
Therefore, manually removing peaks that are close to edwdr wiill reduce the
number of false changes detected by the algorithm. Howthestime restriction
of removing extra peaks must be shortened to avoid missewuént speaker
changes. Finally, the remaining peaks with values highan tnthreshold are
confirmed as the speaker change points.

When comparing the changes detected by the algorithm (eetebanges)
and the real changes, the detected changes are mapped &aklohanges in
a one-to-one relationship. If the detected changes arenndtt®.1 second in-
terval of a real change point, they are mapped to that reaiggh@oint. The
detected points that cannot be mapped to any real changes poéncalled “false
changes”, and the real change points that are not the imdgasyaletected

points are called “missed changes”. Two types of error redeadopted to mea-
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sure the performance of an SCD algorithm: the missed chatggewhich is de-
fined as the ratio of the number of missed changes to the nuohibeal change
points, and the false change rate, which is defined as the aatihe number
of false changes to the number of real changes. There aresagoms why the
first type of error has a greater influence on the speakerzdizgon system as a
whole. The first reason is that the detected sections bettineechange points
will be clustered according to their speaker in the next,steggthere is no chance
that the missed change points will be detected later. Thensereason is that
the speaker models will be trained by these sections anck#tteres from other
speakers will decrease the accuracy of the models. Althtugbkecond type of
error can be corrected later in the system, if two SCD alforét have similar
missed change rates, the one with the lower false changesrateferred. A
lower false change rate means that longer sections arenedtaetween change
points, and therefore, more training material can be usduliid the speaker
models. The point where an overlap begins or ends will begased as a real
change.

To combine the FDR, the error rate of the FDC, and the aver&iantde
from errors to the FDC into a new measurement, a parametdrrauistroduced
to balance their levels of influence on the new measuremdme. efror rate of
the FDC has two characteristics: (1) it has a higher valuenvih® segments
are from the same speaker, which is in contrast to the otheds(2) it is always
smaller than 1; therefore, the FDC error rate can be usedeadehominator
in the new measurement. If the FDC error rate is equal to 2er®,assigned
a very small value (0.001) to avoid division by zero. Using ffarametery
in the numerator to adjust the balance of the other two measemts, the new

measurement is given by Formula 4.1:
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(FDR + a x (average distance from errorsto FDC))
FDC error rate '

In the new algorithm, a threshold is set in the final step tass®p the change
points from the other peaks. Therefore, it needs to be sevatua between the
values of the new measurement between segments of the saalespnd those
of different speakers. The scale of the gap varies for the BB&Rthe average
distance from the errors to the FDC.

The value of the threshold should vary accordingvtcsince different val-
ues ofa adjust the combination and thus change the scale of the gathel
next section, experiments will be conducted to test differevalues and their

corresponding thresholds to find the best combination.

4.2 Parameter adjusting

In this section, experiments will be set up to determine thleey of« that opti-
mises the performance of the new SCD algorithm and the qoyreing thresh-
old that minimises the missing error rate. The meeting dptdied in these
experiments are the same fifteen meetings that were usedgtioat the last
chapter. To exclude the influence of the non-speech segnmetits SCD task,
all of the non-speech segments are removed from the meetaogsding to the
transcription. The 19 MFCCs and the energy feature arertias the feature
vectors in the experiment. The performance of differeniealof the parameters
will be measured by the missed change rate.

Figure 4.1 shows the missed change rate along with differaluies ofa.
The missed change rate is averaged over all fifteen meetimjssaobtained
by choosing the optimum threshold value for each corresipgnd. It can be

observed from Figure 4.1 that the missed error rate reath@simimum when
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a = 500 anda = 550. In the figure, the performance of is shown in the
range between 5 and 850. Since the value of the FDR is abotintes more
than the average distance from errors to the FDC (measurétebbymean and
median values), whea < 10, the FDR has more influence on the new mea-
surement, and whem > 100, the average distance from errors to the FDC has a
much greater impact on the new measurement. When5, the missed change
rate increases rapidly. When> 850, the missed change rate stabilises around
0.0370. Though the average distance from errors is morebt@pé detecting
change points than the FDR, based on this experiment, aogte combina-

tion of all three FDA-based measurements is more suitabldn&SCD.
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Figure 4.1: The variation of the missed change rage a&sreases, using the
new measurement.

When the value ofv is assigned as 500, the variation of the missed change

rate with the threshold value is illustrated in Figure 4.8k Figure 4.2, it can
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be seen that the missed change rate increases when theottineallne increases,
and its minimal value is 0.0365. As long as the threshold tsveen 0 and
150000, the value is unchanged. Since the false changen@atases with the
threshold, a higher threshold is preferred. However, thestiold also requires a
certain degree of tolerance of fluctuations in the unknowvia (tzther meetings).
Therefore, in the new algorithm, the value @fis set to 500, and the value

threshold is assigned to be 120000.
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Figure 4.2: The variation in the missed change rate as teshbid increases,
using the new measurement.
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4.3 Comparing the new SCD algorithm with the
KL2-based SCD algorithm

In the baseline system, a similar SCD algorithm is appliedguthe KL2 Di-
vergence to determine whether two segments are from the speaker. The
variation of the missed change rate as a function of the hiotdss shown in
Figure 4.3 for the baseline SCD algorithm. The experimentipds the same
as those described in the previous section. The range ohtashold that min-
imises the missed change rate is below 40. By comparing &g and 4.3, it
can be seen that the missed change rate increases morg napeh the KL2
Divergence-based SCD algorithm is applied. Therefore ndw algorithm is
less affected by the choice of the threshold. In the baseligeem, the threshold
value for the KL2 Divergence is set to 30.

The mean missed change rate averaged over the fifteen neetisgown
in Figure 4.4(a). The mean false change rate is given in Eigut(b), and the
standard deviation of the missed change rate is illustrateti4(c). We can
conclude that the new algorithm obtains lower error ratebdh types of errors.
At the same time, the smaller standard deviation value detrates that the new

algorithm is less affected by the variability of the data.
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Chapter 5

Model Complexity Determination

In the Chapter 3, the data analysis results showed that feeveponents should
be included in the GMM for speaker models so as to reduce-gspteaker vari-
ance, while more components should be preserved in the UBA sorepresent
inter-speaker variance.

In this chapter, a method for calculating the new speakeremnommplexity
is proposed. From data analysis, it has been observed tttathmnumber of
components used in the model and the location of their mdlaevare essential
for the success of the system. So the novel method descibtdsi chapter
will not only select the appropriate component number, g arrange these
components in their correct position.

In section 5.1, an overview of the model complexity selectdterion will
be given. Then a new criterion, named Equal Weight Penalitgi@m will be
developed in section 5.2. This criterion can remove extrapmments in the
GMM by using a removal scheme, which is controlled by a patame The
intra-speaker variance can be reduced by settifayv for speaker modelling,
and in the UBM more components will be preserved by increpsie value of
0. Furthermore, a new EM training algorithm derived by Figedo and Jain

(2002) will be integrated into the new criterion, so as tenghiate extra com-
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ponents in the GMM automatically based on parameter dimengiumber of
parameters). In section 5.3, a weight and mean adaptatidh tiBt can remove

the uncovered components automatically will be explained.

5.1 Model complexity determination

Gaussian Mixture Model (GMM) is a flexible and powerful probistic mod-
elling tool. It has been introduced in section 2.2 and it isadided by Equation
2.3 and 2.4. The model effectiveness is determined by théruaf components
in the GMM (model complexity).

Assume the true value of model complexity is within the range {/,,,;, <
M < M,,..). Inthe Bayesian framework, a way of selecting the modelmlen:
ity is to choose the one with the highest posterior probigbily Bayes theorem,
the posterior probability of model complexifyf; given dataseX is defined by

Equation 5.1:

p(X|Mz)p(Ml)
%::j\lmm p<X‘Mr)p<Mr>

p(Mi|X) = (5.1)

wherep(X|M,) is the conditional probability ok given the model complexity
M, andp(M,) is its prior probability. Thus the optimum model complexity

satisfies Equation 5.2:

~

M = arg max log p(X|M) +1logp(M)] (Mpin < M < Mpaz) (5.2)

The right hand side of Equation 5.2 can be treated as a mdeetisa criterion.
Its first term concerns how the model with complexityfits X and the second
term focuses on the model with complexity. It may not be restricted to the

prior probability of the complexity, it can be the smoothsie$ the model, its
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parameter distribution, and so on. The second term can bergeed as a
penalty term; and then a generalized model complexity g8etecriterion has

the form of Equation 5.3:
M = arg min I1C (M, M) (5.3)
whereIC(\y, M) is defined by Equation 5.4:
IC Ny, M) = —1log p(X|\r) + Pe(M, \yr) (5.4)

where )y, is the ML estimate (has been introduced in section 2.2.3) MM
parameters\,; when M components are included?e(M, )\}w) is the penalty
term. Since the data’s likelihood will not decrease widrincreasespe(M)
takes the opposite sign to the second term in Equation 5.2der do penalize
higher values of\/.

Five main types of such criteria have been used for selentimadel complex-

ity (McLachlan and Peel, 2000):

1. Bias correction based criteria usifig( M) to eliminate the Kullback Leibler
(KL) Divergence between the true distribution and the eated approxima-
tion based on the samples. Bootstrap-Based Informatitericm (McLach-
lan, 1987) and Cross-Validation-Based information cidte{Smyth, 2000)

belong to this type.

2. Laplace Approximation (Schwarz, 1978) based infornmatiateria have
been derived within a Bayesian framework for model selegtimt it can
be applied also in a non-Bayesian framework. It approxistite Equation
5.2 to selecf\/ with the highest posterior probability. Examples of thisdi
of criteria include BIC (Campbell et al., 1997) (Dasguptd Raftery, 1998)
(Fraley and Raftery, 1998), Laplace-Empirical CriteriRoberts et al., 1998)
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and Laplace-Metropodis Criterion (Meinicke and RitterQ2)

. Coding theory based criterion selédtby minimizing the code length nec-
essary to describe the parametgr and to represent the data given the pa-
rameter),;. MDL criterion (Rissanen, 1989) (Cover and Hall, 1991), Min
imum Message Length criterion (Oliver et al., 1996) (Wadland Dowe,
1999) (Wallace and Freeman, 1987), Akaike’s Informatioite@ion (Whind-
ham and Cutler, 1992), and Information Complexity Critgi®zdogan,
1993) all exploit coding theory.

. Classification based Information Criteria takes thesifasition likelihood
of the data into account when determining model compleBgnfield and
Raftery, 1997) (Cheung, 2005). Classification likelihosdpplied in the
EM framework as complete-data likelihood for model fittitigusesPe(M)

to penalize the model whose components are not well-apadssifica-
tion Likelihood Criterion (CLC) (Biernacki and Govaert,94B), Normalized
Entropy Criterion (Biernacki and Govaert, 1999) (Celeur &oromenho,
1996), and Integrated Classification Likelihood (Biernaetkal., 2000) are

computed using complete-data information.

. The Fully Bayesian approach (Neal, 1992) (Rasmusse)ZBichardson
and Green, 1997) has been proposed for model selection. &wnerstble
jump Markov Chain Monte Carlo method is applied for sampliogheck
model posterior probability (Bensmail et al., 1997) (Mersge and Robert,
1996) (Roeder and Wasserman, 1997). It is computation&igashding
(McLachlan and Peel, 2000), so the Variational Bayes (Ras@n and
Green, 1997) (Ghahramani and Beal, 2000) has been developster-
mine the model complexity under a Bayesian framework. lbhgs to the
mean field methods (Jaakkola, 2000). The factored postdistribution

of the parameters are updated depending on each other toxappte the
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true joint distribution of the parametepg) ;). This algorithm will remove
the components whose posterior probability are close to (Z&tias, 2001)
(Corduneanu and Bishop, 2001) (Ueda and Ghahramani, 2088)updat-
ing of model parameters also depends on the EM (Neal and iia&98),

and it can be applied on-line (Sato, 2001).

5.2 Derivation of the new criterion

In the beginning of this chapter, the demands for the neweénmodel com-
plexity determination criterion were listed. To reduceantpeaker variance or
maintain the inter-speaker variance, how training datectdfthe modelling pro-
cedure needs to be reviewed. In this process the latentblarbat links an
observation with a particular model is important.

The CLC is a model complexity selection criterion based @sélatent vari-
ables. By analysing the CLC criterion, the relation betweemponent mixing
parameters and the latent variables will be illustratedisTim this section, CLC
is introduced first (section 5.2.1), followed by the derliwvatof the new crite-
rion (section 5.2.2). In section 5.2.3, the model selectoterion developed
by Figueiredo and Jain (2002) will be introduced and how téwe oriterion is

integrated into EM algorithm will be described in sectiof.8B.

5.21 CLC

A GMM with complexity M hasM Gaussian components and its parameters are
described by, = {u;, X, w; } wherei = 1,--- | M. Assuming that the dataset

X ={z,---,zy} are features that are independently and identically Qistieid
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(iid) according to the model, then their generation mectrans described by:

(z|An) = ijgj |, (5.5)

and the likelihood of dataseéf follows Equation 5.6
L(X|Ax) Z long]gj (i, 5)- (5.6)

Let Z = {z!,---, 2} be the latent variables that show the component from
which the observations originate. In contrastutpwhich is the probability of
x; generated from each component in the GMNs an indicator parameter that

relatesr; to the component containing the highest probability:obccurrence.

i i i \T
2=z, 2
z; =1 x;1s from component j,

zi =0  otherwise,

d Z=1 (I<i<N 1<j<M).

The probability that:; is generated by a particular component can be calculated
by Equation 2.4.

The observation is referred to as incomplete data, ahtl, 7} is called
complete data. Assume is randomly generated from one of the components,
and theZ are iid given model parameters. Further assumezhst multinomial

distribution, so that the marginal joint density %fis given by Equation 5.7

N M )
p(Zx) = [T T (ws)? (5.7)

=1 j=1
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SupposeX are conditionally independent giveéfy the conditional density ok
given Z is described by Equation 5.8
N M
p(X1Z.2n) = [T T ot@ilns. =5 (5.8)
=1 j=1
Consequently the joint density of the complete data is gweBquation 5.9
N M )
p(X, Z ) = [ [T wig(ilus, £5))% (5.9)
i=1 j=1
Therefore the complete data log likelihood is given by Eoune5.10:
N M

(X, ZIA) =D ) " 2 (log w; + log g (il s, ;) (5.10)

=1 j5=1

The L.(X, Z|A\yr) is also referred to as classification log likelihood. How the
classification information is contained can be shown byitiiedetweenl.( X, Z|\y,)

andL(X|\,,) described by Equation 5.11.

ECy(X|A\y) = L X, Z|Ay) — L(X|Aym)

N M
= — Z Z z; log 7'; (5.11)

i=1 j=1

wherer is described by Equation 5.12.

T = PT(Z;- = 1|z, Anr)

J

= Li\Zill, % (5.12)
> i1 wig(wil g, X5)

T;I is the posterior probability of thgth component given;. It is also equal to
Pr(z; = 1|z;, Aur), Which is the conditional probability of; from the compo-

nentj givenz; and\,,;. EC), is the entropy ofZ.
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The entropyEC), is a measure of the ability of th&/ component mixture
model to partition dataseX. If X is well separated by thé/ components,
EC); =~ 0. However, if the mixture components are mingled togethér;, has
a large value. Thereforé;C),; andr provide data classification information.

CLC is a model complexity selection criterion that u&s,, as the penalty
term Pe. Thus the criterion selects the model that maximizes thepbeta data
likelihood, and as a result it prefers the model that spregdst the data. But
the CLC criterion does not consider the influence of paranuteension on the
model’s generality. Moreover, the prior distribution ohet parameters is also
neglected. Therefore, a new criterion, Equal Weight Pgr@titerion (EWPC)
will be developed to overcome these drawbacks and make tlielrselection

fits the UBM better.

5.2.2 Equal Weight Penalty Criterion (EWPC)

When there are extra components included in a mixture meikey, may have
little data to support the existence of the components (dedbNakano, 1998)
or share close position with other components (Hofmann awthiznn, 1997).
In the first case, these components have a low mixing paramete 0; in the
second case, they have similar weight parameters in thaureiXtUeda et al.,
2000). The first kind of extra components can be removed bygritezia that pe-
nalizes the model parameter dimension (the number of paeasia the model)
or removes these components with ~ 0. In the new criterion a penalty term
based on the KL divergence of the prior and posterior distidim of w is adopted
to overcome the second situation.

The conjugate prior of the multinomial distribution is theqgp distribution
of w, po(w). w follows a Dirichlet distributionDir(dy, - - - , dps) (Bernardo and

Smith, 1994), where paramet&rcontrols the shape of the distributign.(w) is
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set according to Equation 5.13:

po(w]d) = Dir(w]d) oc wd™ - wi™ - wi? (5.13)

The change of, (w) with different values ob in a one dimensional case is shown

in Figure 5.1. It can be seen that wher 1 the distribution has a concave shape

0.06
—— Dir(0.3,0.3)
0,051 Dir(0.8,0.8)
' — — -Dir(1.2,1.2)
— % - Dir(1.5,1.5)
Dir
0.04 @2)

0.03f

0.02

0.011

Figure 5.1: Dirichlet prior with different negative paratee

and thatw has a high probability when it is near 0 or 1. Wheapproaches 1 the
distribution becomes flatter; and whén- 1 the distribution has a convex shape
reaching its highest value at = 0.5. The Dirichlet distribution ofw with less
than 1 makes the existence of the components unstable anchtist ‘compete
to survive'. By controlling the value aof, different prior distributions fop,(w)
can be obtained. Assuming a concave distributiongfdev) with 6 < 1, the

prior favoursw with value near 0 or 1. The KL divergence measures the differ-
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ence between the prior distribution and the posterioritigion. If the posterior
distribution has a flat distributio) x 1, (p.-, po) (defined later in Equation 5.17)
becomes large and the model will be penalized more. The ctitiopebetween
components is fierce and among two components that sharartteedata space;
only one will win and the other will be removed. If a flatter Bhlet distribution
is applied topy(w), more components are allowed in the mixture model.
The new criterion measures the KL divergence betwgen Z) and py(w)

with respect tgp(w|Z), and is labelled ad k1, (p.|-, po). Settingd’ = § —1, then

the prior distribution ofw follows

M
po(w) = [Jwf /4,
j=1

A = (5.14)

wherel is the Gamma function. The distribution pfZ|w) follows:

ZN 2l f\ilz’% N i
p(Z|w) ocwi =t T T g T (5.15)

Sincep(w|Z) o< po(w)p(Z|w),

N Zi~+5/

M
SN
pw|Z) =TJwi=""" /4,
j=1

_ F(Zﬁ\; Zi +9) - 'F(Ei\; Zyy +9)
Az = 1 T'(N + MJ) - (5.16)
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Submitting Equation 5.14 and Equation 5.16 if@ ,(p.|-, o),

DKL<pw|zap0) = Epw|z) {IOg(pw\Z) — log(po(w))}

—Z Zz log(w,)) +log A

j=1 =1
T(§YMT(N + M6)

A=A,/A, = - 4
VA = S ) T, 2+ O)T(MY)

(5.17)

whereL, ., z){: - - } is the expected value ¢f - - } with respect to the probability
density functiorp(w|Z). Using the absolute value of Equation 5.177as the

extra components will be removed from the model. Howeverirtfluence of the
data size and the number of parameters also need to be takeroisideration.
BIC criterion (defined in Equation 2.8) selects the appmrtprmodel complexity
depending on both data size and parameter dimension (thieerwhparameters
used in the model). Applying BIC to approximatéX|\,,), the new criterion

becomes:

EW PCy = —log p(X|\ar) + Pe(M, \yr)

- 1
—log p(X|Am) + \iMlogN + DKL(pw\z>p0>|
R 1 M N
—logp(X|Xur) + 5 Mlog N + | ST Zlog(u;) + log Al
j=1 i=1
. 1 M
—logp(X|An) + 5 M log N + | > " (Niy) log ; + log A
j=1

M = arg mj\}n EW PCy (5.18)

Two examples are used to show the performance of the newianteln
the first example, 1000 samples are generated from a four @oemp bivariate
GMM. They are referred to as datasetl below, and the sampiethair genera-

tion model is illustrated in the sub-figure (a) of Figure 542l the components
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have different means and are located close to each otherof@hem has a low
variance and a low mixing proportion. GMMs are trained basedatasetl us-
ing the EM algorithm. The range of the model complexity is M < 10, and
the EWPC is applied to select the optimum component numiag@mtimimizes
EW PC)y;. A random initialization of GMM with 10 components is shown i
Figure 5.2 (b). Figure 5.2 (c)-(f) shows the GMM selected oy EWPC with
different settings for parametér

It can be seen from Figure 5.2 that whénr= 0.3 andé = 0.5, the EWPC
selects the correct model for the dataset. As the valderaireases, the criterion
allows more components to be contained in the model. Whea 0.1, the
smallest component fails the competition and the largerpmorant occupies its
space. If the dataset is well separated in the space, the ES&RCts the true
generated model no matter what the valué .ofThis will be illustrated in the
next example.

In the second example, 1000 samples are generated fromeaedifffour-
component bivariate GMM. This time they are well separatecthfeach other.
They are referred to as dataset2 below, and the sampleseingeherated model
are illustrated in the Figure 5.3 (a). It can been in the fighat the same model
is selected by different settings &f Therefore, the EWPC will control the com-
ponent number by the parameter setting only when the dattabdison is am-
biguous or overlapped.

When applying the new criterion to select the model compyetiiV PCy,
(represented by Equation 5.18) needs to be calculated fangerof), from
M, in t0 M4, It iS time consuming because, needs to be estimated for each
M. Although to obtaim\,;_; by EM, the model can be initialized by removing
the component with least likelihood i, but the algorithm is still inefficient.

Another problem that will be encountered by the new criteigodue to EM.
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(a)The experimental dataset and the
true mixture model. The data is de-

noted by gray points and the model is

represented by the ellipse.

(c)The model selected by the EWPC,
setd = 0.1. It has 3 mixtures.

(e)The model selected by the EWPC,
seté = 0.5. It has 4 mixtures.

T2 10 8 6 -4 -2 [ 2 4 6

(b)Randomiinitialization with 10 mix-

tures.

(d)The model selected by the EWPC,
setd = 0.3. It has 4 mixtures.

(HThe model selected by the EWPC,
setd = 0.8. It has 5 mixtures.

Figure 5.2: Fitting a GMM to datasetl according to EWPC
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(a)The experimental dataset and the

true mixture model. The data is de-
noted by gray points and the model is
represented by the ellipse.

2 . °
-2
-4
6 . @
-4 -3 2 -1 [ 1 2

(c)The model selected by the new cri-
terion, set = 0.1. It has 4 mixtures

(e)The model selected by the new cri-
terion, set = 0.5. It has 4 mixtures

I EE&)

tures.

(b)Randomiinitialization with 10 mix-

(d)The model selected by the new cri-
terion, set = 0.3. It has 4 mixtures

(HThe model selected by the new cri-
terion, sety = 0.8. It has 4 mixtures

Figure 5.3: Fitting a GMM to dataset2 according to EWPC
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EM has two main drawbacks. First, it is sensitive to the atization; second,
it may converge to the boundary of the parameter space (i€lupyorg and Ta-
van, 1997) (Meinicke and Ritter, 2001). Thus to select tligalization model
complexity, M,,.... is difficult to compute. Using high/,,... results in a heavy
computational burden, and will increase the risk of compdmeonverging to
the space boundary (Rose, 1998). On the other hand, usindy/lgw the model
cannot well fit the features.

To overcome these problems, the criterion developed iru@tigdo and Jain,
2002) will be integrated into the EWPC. It is based on Laptaééethod of

Approximation, which will be introduced in the next section

5.2.3 Laplace’s Method of Approximation

The marginal distribution of dataset X can be described hyaign 5.19, given

model complexityM:

p(X|M) = / DX ) das

= /exp{logp(X, )\M)}d)\M (519)

Using second-order Taylor series to approximat&, A,,) at Ay, = A,

1

2()‘M — M) THOw) (O — M) (5.20)

log p(X, M) = log p(X, Aur)

where),; denotes the posterior mode bf; satisfyingd log p(X, M) /Ay =

0. H()y) is the negative Hessian matrixlof; p(X, \y/) evaluated ak,, = \j;.

104



Substituting the expansion described by Equation 5.20Hqteation 5.19,

p(X|M) = exp{log p(X, A\pr)} / exp{—%()\M — ) THN ) (Aar — M) Yo

D=

= p(X, \ar) (2m) 2P| H ()|
(5.21)

Therefore, from Equation 5.21, the marginal log likelihaash be approximated

as

. . 1 . 1_
log p(X|M) & log p(X |Aar) +log p(Anr) — 5log|H (Anr)| + 5 Dlog(27)

(5.22)

Usually, the ML estimate\;, is used instead of the posterior maotlg. Since
the negative Hessian matrix is the negative of the squarexwditsecond-order
partial derivatives of all parametet®(\,,) is equal to the observed information
matrix /(A X ), which is the negative of the second derivative of the Idbari
of the likelihood function based on observations in datasetThen Equation

5.22 can be approximated by

. .1 . 1.
log p(X|M) ~ log P(X|Ax) + log p(Aur) — 5108 1L (An| X)] + §DZOQ(27T)

(5.23)

The BIC criterion is derived by replacirigg |I(\y|X)| asM log N, as de-
scribed by Equation 2.8M log N is the number of parameters in the GMM.
1Dlog(2r) is a constant term and when the sizeXfincreases, this term will
become considerably small compared with other terms. Sdreated as an o(1)
term (a term that converges to 0 when data size is large) aned in BIC.

Figueiredo and Jain (2002) integrated the model selectiberion in the

likelihood function, so the model complexity can be optiedzgradually using
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EM. It approximates$! (1| X)| using the complete data information matrix with

a block diagonal structure (Titterington et al., 1991) (Mchlan and Peel, 1997):

I, = N blockdiag{w IW (uq, 1), - -+ wp IV (puar, Sar), A} (5.24)

WherE|A| = (w1w2 s wM)‘l.

blockdiag refers to a block diagonal matrix, which is a square diagaoma
trix in which the diagonal elements are square matrices gfsire, and the
off-diagonal elements are 0.

Square matriceg I (1, 1), -, wa I (ar, ar) @andA are on the
diagonal oblockdiag{w, IV (111, %1), - - -, war I (puar, ar), V'} and the blocks
off the diagonal are zero matrice&" (y;, 33;) is the observed information matrix
with respect to componeris parameterg;; and; given a single observation.

Therefore the value df| is defined as Equation 5.25:

M M
log [I(Ay|X)| =" Q(p, ) log Nw, — ZlogwﬁZlogM (13, %;)]

j=1 j=1 7j=1

(5.25)

where{) (i, X2) represents the number of parameters in a Gaussian component
Assume parameters of different components are indeperatahthe mixing pa-
rameters are independent of the Gaussian parametersatigasd non-informative

Jeffrey’s prior of the parameters is adopted as Equatiod: 5.2

M
p()‘M) :p(wnuvz):p wM H :uja
B =
oc (wywy -+ wp) T TOI (, £1)) (5.26)

j=1
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Therefore,

M M
10gp<)\;\/[) = 10gp<w7:u7 E) = —1/2Zlogw3 + 1/2210gl(1)(:ujv 2])
(5.27)

Substituting Equation 5.25 and 5.27 into 5.23, then
log p(X| M) ~ log L(Ay) — —Q (11, % Zlog (Nw;) + Dlog(27r) (5.28)
7j=1

Neglecting the last term (because it is an o(1) term), Equdii28 becomes:
logp(X|M) =~ log L()\M — —Q (p, 22 Z log w; — i, X)log N (5.29)
Then the model complexity selection criterion is descriasd
M = arg min log p(X| M) (5.30)

This criterion has an intuitively appealing interpretatiocor each compo-
nent, the expected number of data points generated fromVitis According to
BIC, the model complexity is penalized b/, ) log(/Nw,). Thus the criterion
check for each component is whether there is sufficient egieléor its existence
according to BIC. This criterion can be integrated into ti &gorithm, which
selects the model complexity automatically during modaining. In the next

section, the EM algorithm will be introduced briefly.

5.2.4 EM algorithm for GMM parameter estimation

The EM algorithm (Dempster et al., 1977) is a general methiodbtaining

the maximum-likelihood estimation of the parameters of adeslying distri-
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bution from a given incomplete data set. There are two mgiegyfincomplete
dataset. The first occurs when the data loses parts of vailleeodgproblem re-
striction or observation process. The second assumesigterse of additional
hidden parameters to simplify the optimizing of the likeldd function that is
analytically intractable. The EM algorithm can also be &apto find a MAP
estimate of the parameters, where MAP is a mode of the pasampbsterior
distribution. (McLachlan and Peel, 1997).

For parameter estimation in the GMM, the indicator paramgtes applied
as the latent set of parameters (McLanchlan and Basfor®)1®8&Lachlan and
Peel, 1997).Z has been introduced in Section 5.2.1 and it shows from which
component of the GMM an observation originates. Since theegaof 7 are
unknown in the parameter estimation process, the EM alguarieplaces them
by their expected value conditioned by observation&'ofind then obtains the
parameters.,; = {u;, X;, w; } by maximizing thel.(X, Z|\,,). This procedure
includes an E-step and an M-step and these two steps williogematively until
the stop criterion is met.

The EM algorithm can be described as follows:

e initialize: Initialize thehy, = {u;, Xi, w;} asA}, = {u}, X} w} .

e In the E-step: At theth iteration, assume;f (described by Equation 5.12)
denotes the expected valuez@ifgiven the value obtained at the last iteration
t — 1, then the complete data log likelihood conditioned dn' can be

presented as Equation 5.31.:
N M
QU A =D > mi(log w; + log g (i, T5)) (5.31)

=1 j=1

¢ In the M Step: Take the derivative of Equation 5.31 with respew;, 1,

and; respectively, and the optimum values that maximize Eqo&ii@1
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will be obtained. It follows that

Ny = arg max Q(Aar, AyrY) (5.32)
M
where
N
w§- = Z T;/N
=1
=Yl 3
=1 =1
SE=Y i — ) — )" T (5.33)
i=1 i=1
forj=1to M.

e Stop criterion: The E-step and M-stem will be operated tteedy until the

log likelihood of the observations(.X |\,,) increases no further.

5.2.5 Integrating the model complexity selection in the EM

Figueiredo and Jain had integrated an EM algorithm intor tbréierion, which
will find the MAP estimate of parameters, and at the same tengorves extra
components in the GMM (Figueiredo and Jain, 2002).

Integrating the second term of Equation 5.2 Q(y, ¥) log(w;), into the
Q(M\, A5, defined by Equation 5.31 in order to maximize it with respeci

results in Equation 5.34:

0 |XN, rilogw; — 3Q(u, D) log(w;)

0wj

=0 (5.34)
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wherezjz‘i1 w; = 1. Therefore in iteration, w; will be updated by

e maxf0, 55, 7 - 30 D)

(1,
’ Et 1maX{0 Ez 1Tt _% (1, 2)}

(5.35)

instead of what has been described in Equation 5.33. The @oemp with a
weight less thar%Q u, ) will be removed automatically from the model. The
term 2Q(u, X) is only a part of the criterion described in Equation 5.29fs®
selection of the model complexity still needs to go througére possible)M.
However, allowing the weight of parts of the components thuoe to zero and
removing them automatically in EM training will greatly aderate the UBM
training.

The performance of the EM depends heavily on initializati®imce EM is a
localized algorithm, if its initial values fail to cover s@nof the data space that
space may never be covered by the model. To initialize theetneith enough
components to cover all of the data space is a way to solvertitgdgm, but it
will cause a singularity of the covariance matrix. Whenapproaches 0, the
corresponding covariance matrix may become arbitrardgelto singular. If the
number of components assumed is much larger than what imalptihis tends
to happen frequently. However, by removing thile component once; is less
than)(u, ), this will be avoided.

To integrate this model selection criterion into EWPC, Boua5.29 is ap-
plied to approximate the tering L(\,;) — $Q(M)log N in Equation 5.18. Then
EWPC becomes

M
EWPCy = —log L(A\y) + 29 iy % Zlog Nuw; + | Z Nw;)logw; + log Al

Jj=1 Jj=1
(5.36)

When training the speaker model or the UBM with the EM, the et@lec-
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tion procedure is first run automatically in EM by updatinag using Equation
5.35. Then EWPC of the model is calculated as described iafifqu5.36. The
components with the smallest likelihood will be removedrirthe model and
the EM training is run again. Finally, the model whose EWPGnmsllest will
be picked as the optimal model. The performance of the pexpB¥VPC-based
model complexity selection mechanism is illustrated inurg5.4. In this ex-
ample, 1000 samples are generated from a four-componemntdier GMM with
plenty of overlap. They are referred to as dataset3 belod/tlae samples and
their generation model is illustrated in the Figure 5.4 (a)Figure 5.4 (b), the
random initialization with ten-components is shown. Itanatically shrinks to
a six-component model in Figure 5.4 (c). The optimal mod&ded by this
criterion is shown in Figure 5.4 (d). EWPC can also selectcibreect model
when0.3 < § < 0.6, as illustrated in Figure 5.4 (e). However, in Figure 5.4 (f)

(setd < 0.2) EWPC prefers the model with fewer component.

5.3 Efficient sample size UBM adaptation

In a speaker diarization system, where segments are @dstecording to the
speakers, a model is built for each segment by adapting trmmthe UBM. It
has been shown in section 3.4 that short segments cannatalbtlee subspace
of a particular speaker. Although the UBM can be used to heffetstand the
subspace structure, it may reduce the inter-speaker cariéiiere is not enough
data for adaptation. Therefore, in this section, an adaptatethod is proposed
to remove automatically the components that the data indgments does not
support well.

Mean-only adaptation is applied to the task and the regu#t@gment model

has the same model complexity as the UBM. However, if litééadn the seg-
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(a)The experimental dataset and the (b)Random initialization with 10 mix-
true mixture model. The data is de- tures.

noted by gray points and the model is
represented by the ellipse.

(c)The evolution of the criterion of (d)The model selected by the criterion
Figueiredo. After the first iteration of Figueiredo.

with 10 component initialization

-12 -12
-10 -5 o 5 ‘14 -12 -10 -8 -6 -4 -2 o 2 4 6

(e)The model selected by EWPC, set (HThe model selected by the new cri-
0=0.6 terion, sety = 0.2

Figure 5.4: Fitting GMM to the dataset3 based on the criteoibFigueiredo and
Jain (2002) and EWPC.
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ment is assigned to a component of the UBM, in the adapted Inibdemean
value of the component will be dominated by the one from theMJB may
cause the dissimilarity between the models of two segmenit® treduced. In
this section, a new UBM adaptation method is described. Bwthmean adap-
tation and the weight adaptation is applied so that the compbin the UBM
with little data assigned to it will disappear in the segmeatdels. The new
adaptation method is based on the criterion of Figueiredalam (2002), which
has been described in the last section.

The weight adaptation for a segment from a UBM follows the séonmula

as Equation 5.35. It is described by Equation 5.37

N i
i — max{0, Y . , T Q(p, %)} (5.37)

oy max{0, 330, o — Q(n, 2)/2}

whereT;' is the posterior of componeritgiven the data; from the segment to
be adapted. If less thdn(y, >) /2 data is assigned to the component, it will not
appear in the segment’s model. This weight adaptation canfilained if one of
the components becomes too weak, meaning that it is not siggioy enough
data, it will be removedQ(M) /2 is the threshold to judge if the effective sample
size generated from the component is enough (Figueireddand2002).

Then the component’s mean will be adapted only for these ocoemis whose

weight parameter is not zero.

uom N
b — Pt + 3T T
¢ N
pit 2 i

if w(j) #0 (5.38)

wherep; is used to control how the UBM'’s mean affects the adapted mean
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Chapter 6

Experiment and Discussions

In Chapter 3, the characteristics of meetings and thosectsspi®at affect the
speaker diarization system were identified. Potentialtgoia to the system’s
shortcomings were suggested and developed into new dlgariin Chapter 4
and Chapter 5. In this chapter, experiments will be condutieevaluate the
effectiveness of these novel strategies when they are edapthe speaker di-
arization of single channel recorded meetings. In Sectitntbe meetings used
to evaluate the performance of the new algorithms will beoshiced. In Section
6.2, the difference between the baseline system and the ystens consisting
of the new strategies will be presented. In Sections 6.3utihid®.6, the perfor-
mance of all of the novel strategies derived in this theslstiven be evaluated
against the baseline system. In Section 6.7, the overailtsesill be discussed,

and finally, possible conclusions will be drawn.

6.1 Meeting corpus selection

In Chapter 3, fifteen meetings from the AMI corpus were stddieexamine the
shortcomings of the baseline system in terms of variousinggeharacteristics.

These meetings were also used to select the optimum valtiesfparameters of
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the speaker diarization system, such as the segment lesfgd#eD and SCD (in
Chapter 3) and the combination parameteand threshold of SCD (in Chapter
4). In this chapter, we use the same meetings to select cih@emeters appearing
in both the baseline system and the new system. They willfleereel to as the
“development set” in the rest of the thesis. Because theachenistics detection
and parameter selection of all meetings are based on théogevent set, they
are presumed to obtain better results when the new spealteradion system is
applied.

To test the stability of the new strategies and the choseanpeters, we
should use other meetings to test the system to check théstemy of the re-
sults. Those meetings, which are collectively termed tialteation set”, should
be different from the development set. Therefore, anotben8etings from the
AMI corpus are selected as the evaluation set. They arefefdift types and are
recorded in the Edinburgh Room and the IDIAP Room. None cf@hmeetings
is affected by irresolvable recording problems, which insincases were due
to equipment failure. Only single-channel recordings iad by mixing lapel
recordings are used in the evaluation set, based on the sasening of devel-
opment set selection described in Section 3.1. BecauseNhedtpus includes
very limited types of meetings and the range of speaker ntsribéhese meet-
ings is narrow (from 3 to 5), meetings from another corpusughbe selected
to increase the diversity of the evaluation set. Therefoegtings from the ISL
Meeting Corpus Part | (ISL-MC1) are included in the evaloaset.

The ISL Meeting Corpus Part | (ISL-MC1) is the first publistedbset of
the ISL Meeting Corpus (112 meetings). It contains 18 mesticollected at
the Interactive Systems Laboratories (ISL) at CarnegieldidUniversity. All
meetings were recorded in an open-plan office, with backgtawises similar

to a quiet cubicle office environment. Each participant wakapel microphone,
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and the meetings were recorded directly onto a hard disk kiHz@Gs WAV files.
For each meeting, all channels were provided in separase ditewell as a single
WAV file containing a mix of all channels tracks. Three megéinm053, m054
and m057, could not be used in our experiment because ofdiaggproblems
(some speakers are off microphone). One of the meetingsq®Becorded in
two parts, m039a and m039b. Because our research focus ingle-shannel
recordings, 16 mixed-channel meeting audios are used iexqeriments. The
durations of the ISL-MC1 meetings range from 8 to 64 minwtes, the average
is 34 minutes. Four types of meetings are included in the ISILM project
meetings, discussion, chatting and game playing. Among theoject meetings
are natural meetings that occur in the real world, wheressudsion, chatting
and game playing are artificial meetings that were desigaethe purpose of
data collection. The number of speakers appearing in théimgseof the ISL-
MC1 ranges from 3 to 9, a wider range than in the meetings oAkcorpus.
A detailed description of ISL-MC1 can be found in (Burger let2002).

The DER, which is the main metric for measuring the perforoeaof the
speaker diarization systems, was introduced in SectionThé& DER first finds
an optimal one to one mapping between the speakers detegtiet [speaker
diarization system and the real speakers. This mappindghanimise the total
fraction of time that is attributed to an incorrect sourcs.iiroduced in Section
2.8, incorrect attributions occur in three different casksthis chapter, when
speech is rated as non-speech, the resulting error ratenedeter);;55. The
error rate caused by rating non-speech as speech is defiptedVhen speech
is attributed to the wrong speaker, the error rate is denbiggd. Equations 2.17,
2.18 and 2.16 described the method to calculatgss, Era andEg,;,. DER is
used to represent the total error rate, which is the suBhgfss, Era and Eg,.

When multiple speakers talk at the same time, the speechecasdigned to any
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of them without increasing the DER.

The real speakers and the time stamps of their dialogue axedped in the
reference document of the corresponding corpus, whichllesdcthe transcrip-
tion. In the AMI corpus, forced alignments are used as thestaption, and they
can be downloaded at http://corpus.amiproject.org/doaahl In the ICL corpus,
the meetings are transcribed by hand. Compared to foroguhaéints, hand tran-
scription extends the durations when multiple speakerakspethe same time
and is unreliable for detecting short silence segmentsebtundary between
speech and non-speech. Table 6.1 summarises the data tise@kperiment in

this chapter. For a complete list of the individual filesereb Appendix A.

Development set Evaluation set
Corpus AMI AMI ICL
Number of meetings 15 30 16
Range of speaker numbefrs 3-4 3-4 3-9
Number of room types 2 2 1
Number of meeting types 3 3 4

Table 6.1: Meetings used in experiments in this chapter

6.2 Differences between the baseline system and the
new system

The baseline system described in Section 2.8 contains feasgs: Speaker Ac-
tivity Detection (SAD), Speaker Change Detection (SCD)st#ring, and post
processing. In the new system, new algorithms are propaseallfphases to
improve system performance. In Chapter 3, 12 MFCCs + enegyised as
acoustic feature vectors to detect speech/non-speecaatbastics in the SAD
phase, and 19 MFCCs + energy are used in the other parts.slchhpter, 19

MFCCs + energy feature vectors are used throughout all ghaseaintain con-
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sistency.

In the SAD phase, the baseline system applies a model-bpsedlsdetec-
tion method to remove the non-speech segments in the aulimeAtings in the
development set are used to train the speech and non-speelgismA single
Gaussian model is used as the non-speech model, and arceighbnent GMM
is used as the speech model. Meetings are segmented inticsegralents with
lengths of 0.4 seconds; these segments are then clusteseeles or non-speech
based on the GMM models. The number of components used inNiédsGand
the segment length are determined by the analysis in Sex:tioh.

By Experiment 3.1, we have seen that more components sheuldcbr-
porated in the GMM when the NLR value is high. Furthermorehd speech
and non-speech segments from a meeting are used to trairMig Better per-
formance will be obtained (Experiment 3.2). Based on theselasions, a new
SAD algorithm is proposed. The new algorithm has two stdpsfitst step is the
same as that used in the baseline system; in the secondstefgtected speech
and non-speech segments are used to adjust the GMMs. If tRas\iigher than
a certain threshold, the number of components used in thapeach GMM will
be increased. Then, the new GMMs will be used to detect spethon-speech
segments. The performance of the new SAD algorithm will Iseussed in 6.3.

Inthe SCD phase, the KL2-based speaker segmentatiorgstiatgsed in the
baseline system as described in Section 2.8. The new SCitalgowhich is
based on FDA analysis, will be applied in the new system. Régbrithms were
described in Chapter 4, as well as all values of the parameféne threshold
value of the new algorithm was determined in Section 4.2, thedthreshold
value of the baseline KL2-based algorithm was determin&grtion 4.3. Their
performance will be compared in Section 6.4.

In the clustering phase, the detected speech sectionsdiespeaker change
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points produced by the SCD steps are then used to train tlekespenodels.
The Gaussian model is used to initialise potential speakelats, such that each
potential speaker model is trained by a speech section.elpa&ential speaker
models will then be clustered based on their similarity. Ha baseline system,
ABIC (defined in Equation 2.9) is used as the measurement of sityildhe
pair of potential speaker models with the lowgsB/C' values are merged into
one, and a new GMM are trained on all the sections assigndukta.t In the
new GMM, the number of components is the sum of the model cexitp@s
of the two GMMs being merged. The merging process terminaten the
remaining potential speaker number is below a certain fimds Then, every
speech section detected between speaker change pointsew#-assigned to
the remaining potential speaker model with the highestgiooiby.

The post-processing phase includes three steps: UBM hgildiodel adap-
tation and speaker clustering. In the baseline system, a G 128 com-
ponents is trained by all the speech in the meeting as the UBMN mean-
only adaptation is used to derive the speaker models of miir@ng potential
speakers from the UBM. The CLR is used as the similarity mesaisetween the
UBM-adapted speaker models, and the pair of potential gveakdels with the
largest CLR value are merged. The whole process is ternunaten the CLR
between all the pairs of potential speakers is below a cetiteeshold. Again,
all speech sections lying between detected speaker chairgs pre re-assigned
to the remaining potential speakers. Finally, the non-gpesegments detected
in the SAD, the speech sections and their correspondingspeare output by
the system as final results.

In the new system, a new model complexity decision critedNVPC, is ap-
plied to determine the model complexity of the potentialedq®e models and the

UBM. The EWPC is described in Chapter 5; it controls the madetplexity us-
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ing KL-divergence in such a way that fewer components acsvat in a poten-
tial speaker model, whereas more components are allowbd WBM. The CLR
similarity measure is used to select the candidate pair @@l speakers to be
merged instead oAB/C. In addition, a mean and weight adaptation method
(also described in Chapter 5) is applied to derive potespabker models from
the UBM. The performance of the new model complexity decisioheme and
the new adaptation method will be given in Section 6.5.

In Figure 6.1, both the baseline system (Figure 6.1 (a)) hachew system
(Figure 6.1 (b)) are described, with their differences hgitted in red. Other
than the new algorithms labelled in red in Figure 6.1, a nemitgation scheme,
which is based on the Normalized Cuts (NC), will be introdiizeSection 6.6.
The structure of the new system integrating the new ternanacheme will also

be illustrated in Section 6.6.

6.3 The performance of the new SAD algorithm

In this section, the new SAD algorithm will be described irtaile and its per-
formance will be compared to the SAD process in the baselistes1. The aim
of the new algorithm is to integrate the information detddatethe first round of
speech/non-speech classification into a second round tmvaphe classifica-
tion models.

First, we determine the model complexity of the non-speddian the sec-
ond round depending on the NLR detected in the first rounde®as the data
analysis in Section 3.5, when the NLR is lower than 40%, the-@ymponent
GMM is sufficient to model the non-speech segments. When ttiR Iblecomes
higher, more components (2-3) should be included in the GMMEXperiment

3.1, every recording extracted and used to determine th®ppate model com-
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(a) The illustration of the baseline system. All
of the parts that are different from their coun-
terparts in the new system are highlighted in
red. M represents the model complexity of
the GMM. The suffix after the underline shows
the types of the GMM, wheréni denotes the
initialisation models for each small section,
and ubm refers to the UBM.M _new repre-
sents the model complexity of the new poten-
tial speaker model obtained by merging two
models, whose model complexities aké_1
andM 2.

B

Final outputs

(b) The illustration of the new system.
All of the parts that are different from
their counterparts in the new system
are highlighted in red.M represents
the model complexity of the GMM.
The suffix after the underline indicates
the types of GMM, where non-speech
refers to thewon — speech GMM.

Figure 6.1: The basline system, new system and their diftere
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plexity for the non-speech GMM had the same length, whiclgssts that the
NLR is proportional to the length of the noise. Therefore tptimum model
complexity value could be affected by either the NLR or threglté of the noise.
In the experiment described in this section, the meetingtlenaries from meet-
ing to meeting, so the NLR and the length of the noise are ngdonorrelated.
As a result, we must decide how to adjust the model complexihether ac-
cording to the NLR or to the length of the noise. Because itlmambserved
in Figure 3.3 that the MISS error rate and the FA error ratenghan opposite
directions, it is better to adjust the model complexity laase the NLR, which
represents the relationship between the non-speech landitine speech length.
We here introduce the paramet&to control for the number of components used
in the non-speech GMM: the model complexity is equal to thending value of
B % NLR.

Second, we adjust the speech and non-speech models usingwhede-
tected information. If the model complexity of the non-sgeenodel does not
need to be increased, it will be adapted towards the detexteespeech in the
first round. Mean-only adaptation is applied to derive bbih $peech and the
non-speech models in the second round. The mean valuesméshmodels are

updated following Equation 6.1.

old N
new PG T > o1 THT
i N

P+ Tii

(6.1)

where p“* is the mean value of thé&h component of the model after mean
only adaptation, withu¢'® as its counterpart before the adaptation; is the
jth feature vector of the detected speech (or non-speegh}: p(z;|u$') is
the post probability ofz; given the model before the adaptation; an the
parameter to balance the influence of the training matanchtlae newly detected

information. Because we want the classification models tadspted towards
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the target meeting without losing the ability to cover a &griof sound types, the
value ofp is set to 0.5. If the non-speech model complexity must besamsed
in the second round, it will first be re-trained using the v training material
with the redefined model complexity and then adapted towtheldetected non-
speech using the same adaptation strategy described itidnaal.

The 15 meetings of the development set are used to deterh@value of the
parametep for the new SAD algorithm. The variation of the speech/npeaeth
detection error rate as a function@is illustrated in Figure 6.2. In Section 3.5,
more components must be included in the non-speech GMM wiehLR is
higher than 40%, which suggests that the valug should be 5. However, the
optimum value of3 that minimises the sum of th€,,;ss andE'r 4 is much larger
than 5 when the value df is determined by whole meetings. This may occur
for two reasons: first, the meetings are much longer than @hmnibute audio
segments used in Section 3.5, and therefore contain morsperth; second,
sometimes the non-speech segments detected in the first avarshorter than
the actual non-speech segments in the meetings. It can bevebsn Figure 6.2
that the sum of thé’,;;55 and Er4 achieves its minimum value wheh= 12.
Choosing 12 as the optimum valuegfthe model complexity of the non-speech
GMM is equal to 2 when 17% non-speech has been detected irrsheofiind,
and 3 when 25.5% non-speech has been detected. We set tineumivialue of
the non-speech model complexity to 1 and the maximum val&einothe new
SAD algorithm.

To examine the performance of the new SAD algorithm, we swibstthe
new SAD algorithm for its counterpart in the baseline syséem compare this
new system to the baseline system. The baseline systematedieasSys_0 and
the system using the new SAD algorithm is denoted'as sad. The perfor-

mance of both the baseline system and the system with the A@nafjorithm
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is displayed in Figure 6.3F)/;ss, Fra, andE;,,., the components of the DER,
are shown in the three sub-figures of Figure 6.3, respegtif@gure 6.3(a) il-
lustrates the mean value and the standard deviatidi,gfs. Using the new
SAD algorithm leads to a decrease in the mean valug,pfss in the evaluation
set and an increase in the development set. Because théxspeboon-speech
of the development set have been included in the trainingma&tto adjust the
corresponding GMMs towards the detection information mdlevelopment set
may not be as beneficial as in the evaluation set. Because é¢b@ngs from
the ISL corpus in the evaluation set are more likely to havéffardnt sound
environment from those in the development set, the new ithgorshows the
greatest improvement on them. Moreover, the new SAD algorgéllows more
components to be included in the non-speech GMM of some ngetivhich
may increase the value éf,;;s5, as shown in Figures 3.3 and 6.2.

Figure 6.3(b) illustrates the mean value and the standaratiten of the

Er4. For the development set and the evaluation set from the Advpius, the
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mean value ot 4 decreases and the standard deviation narrows. For the eval-
uation set from the ISL corpus, the decrease is not as cléar.mieetings from

the ISL obtain higheF 4 values, as detected both by thgs_0 and Sys_sad.

This may be because the transcription of the ISL corpus isualgnproduced

and is inaccurate. Figure 6.3(c) illustrates the mean vahgethe standard devi-
ation of theE,,, . The mean value of the Espkr decreases slightly in the system
with the new SAD algorithm. However, taking the standardiak&m into con-
sideration, the decrease in tig,;, value is not fully supported. This is not a
surprise because these errors are not directly caused lspéaeh /non-speech
detection. However, thé&,,;, value may be affected by the SAD step because
if non-speech components are not completely removed frenmtbetings, they
may contaminate the speaker models. The mean value dfthes, Er4, and

E,, are shown in Table 6.2 for the development set and the evatuset.

Meeting SAD | Eiss(%) | E1a(%) | Eqprr(%) | DER(%)
Development set Sys_0 0.96% | 3.41% | 14.24% | 18.61%
Development set Sys_sad | 1.00% | 1.00% | 13.82% | 15.82%
Evaluation set (AMI)| Sys.0 1.48% | 3.14% | 14.27% | 18.89%
Evaluation set (AMI)| Sys_sad | 1.41% | 1.29% | 13.79% | 16.49%
Evaluation set (ISL) | Sys.0 1.14% | 6.57% | 13.64% | 21.35%
Evaluation set (ISL) | Sys_sad | 0.84% | 6.38% | 13.22% | 20.44%

Table 6.2: Performance of the baseline SAD algorithm andhéve SAD algo-
rithm

In Chapter 3, we concluded that increasing the model contglekthe non-
speech GMMs when the NLR is high will decrease #e,, based on Experi-
ment 3.1. Indeed, the mean value of fie, does show a decrease when the new
SAD algorithm is applied. We display the,;;ss and E 4 of speaker diariza-
tion systems with different SAD algorithms in Figure 6.4 steow the influence
of the NLR on the system performance. Thg ;ss of the development set is

shown in Figure 6.4(a), and ther 4 of the development set is shown in Figure
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6.4(b). The new SAD algorithm obtains lower-, than the baseline SAD al-
gorithm, and the difference between the performance of #selme SAD and
the new SAD increases when the NLR increases. Correspdygdihg Fy;/;ss
of some meetings increases, as predicted in ExperimentlB.Eigure 6.4(c)
and (d), similar results are observed, except that the aseref theF,,;ss and
the decrease of the», are not always consistent with the NLR. This may be
because the meetings with high NLR detected in the first ranag not be the
meetings with actual high NLR values. In Figure 6.4(e) andn® correlation
could be observed between the error rate and the NLR. Adasniay be caused
by the inaccurate transcription of the ISL meetings. Alagnrely, as observed
from Figure 6.4(e) and (f), the NLR of meetings in the ISL agsjis much lower
than that of the meetings in the AMI corpus; therefore, theleh@omplexities

of the non-speech GMM of most meetings are unchanged.

6.4 The performance of the new SCD

The new SCD algorithm has been described in detail in Chaptand in this
section, we examine its performance when integrated itgpleaker diarization
system. Two speaker diarization systems are used to cortipaperformance
of the two SCD algorithms: (1) the baseline system with the 84D analysed
in Section 6.3 and the old SCD and (2) the baseline systemthatimew SAD
and the new SCD. The first one is denoted &8gs'sad” and the second one is
denoted asSys_scd”. By performing this comparison, the influence of different
SAD algorithms can be removed. The performance is shownguargi6.5 and
the specific values of the mean and standard deviation grkaged in Table 6.3.
In Figure 6.5, it can be observed that the new SCD algorithtainb the lower

mean value of the DER in all sets of meetings. However, thedstal deviation
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shows no difference. We observed in Section 4.3 that the @ &gorithm

misses fewer speaker changes and detects fewer false chaime than the
SCD algorithm. However, better performance in the SCD stmot ensure
an improvement of the entire system because the resulte @D only serve
as initialisation material for the potential speaker mddahing. An inefficient
training method may affect the performance of the entiréesgs Although in

the conclusion of Chapter 3 the new SCD algorithm is sugddstanprove the
system performance when there are more short turns, noreéder this can be
found in the experiment. The reason could be either thatéh®pnance of the
new SCD algorithm is not connected to the number of shoristurra meeting

or that the result of the SCD steps has a limited influence emnvtiole system.
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Figure 6.5: Performance of the baseline SCD algorithm aachéw SCD algo-
rithm
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Meeting SCD | Emiss(%) | Era(%) | Esprr(%) | DER(%)
Development set Sys_sad | 1.00% | 1.00% | 13.82% | 15.82%
Development set Sys_sed | 1.00% | 1.00% | 11.60% | 13.60%
Evaluation set (AMI)| Sys_sad | 1.41% | 1.29% | 13.79% | 16.49%
Evaluation set (AMI)| Sys_scd | 1.41% | 1.29% | 11.26% | 13.96%
Evaluation set (ISL) | Sys_sad | 0.84% | 6.38% | 13.22% | 20.44%
Evaluation set (ISL) | Sys_scd | 0.84% | 6.38% | 11.30% | 18.52%

Table 6.3: Performance of the baseline SCD algorithm anaé¢aeSCD algo-
rithm

6.5 The performance of the new model complex-
ity selection algorithm and the mean adapta-
tion method

In Chapter 5, three new algorithms were proposed to impiow@todel training
in speaker diarization systems. First, a new criterion vesgbbped to determine
the model complexity in Section 5.2.2. Second, a new EM dlgor, with the
model complexity selection scheme integrated into it, wé®duced in Section
5.2.5. Third, a weight and mean adaptation method was destm Section 5.3.
In this section, the performance of a combination of theseetimew algorithms
will be analysed.

In the clustering step of the speaker diarization systehesspeech sections
lying between speaker change points are merged accorditing teimilarity of
the potential speaker models trained by these sectionshelpast-processing
step, the UBM is trained, and these potential speaker madesdapted from the
UBM. Therefore, it is essential to train efficient modelshwatppropriate model
complexity to ensure the success of the speaker diarizaeyistems. If too many
components are used to model small training sets, the modeduifer from
over-fitting. However, with too few components to represiata characteristics,

the model will fail to discriminate. In Section 5.2.2, a newael complexity de-
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termination criterion, EWPC, was developed to determieatiodel complexity
for both the potential speaker models and the UBM. The EWRErahenes the
model complexity for a GMM by selecting the one with higheshalised like-
lihood. The penalty term contains two parts, one part basethe parameter
dimension and data size and the other based on the KL diveedsstween the
prior and posterior distributions of the mixing parametéhe second part can
be controlled by, which is the distribution parameter of the prior distribat
of the mixing parametew. The higher the value af, the more components will
be included in the model. Therefore, by settinlpw (6 = 0.2) for the poten-
tial speaker models and settifidpigh (6 = 0.8) for the UBM, fewer components
could be included in the GMM for the speaker models to redneéntra-speaker
variance, whereas more components could preserved in tMetdBepresent the
inter-speaker variance.

A standard EM algorithm is usually used to train the GMMs agot guar-
antee to achieve a local maximum, and it is sensitive to thialisation of the
parameters. To overcome the problem that the EM algorithsensitive to the
initialisation parameter, the complexity-integrated EMaaithm proposed by
Figueiredo (2002) that was introduced in Section 5.2.5 gllused to train the
model. By integrating a model complexity penalty term irtie EM algorithm,
it initialises the EM training with a large number of compateand then re-
moves them if there is insufficient evidence to support teristence during the
training.

In the post processing, the UBM is adopted to derive the speaodels.
When the training data for a single speaker is insufficidrg, gpeaker models
derived from the UBM will capture more speaker charactiessind have a bet-
ter presented structure. However, if the training datarmgglny to a speaker are

too short, the resulting speaker model characteristicsbsildominated by the
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UBM and make it hard to discriminate it from other speakensSéction 5.3, a
new UBM adaptation algorithm was proposed, which adapted thee weight
and the mean of the UBM. The components in the UBM that are uygt@rted
by the speaker data are removed, and their weights are igradsamong the
remaining components.

In the new speaker diarization system, after the SAD steS&1d step, po-
tential speaker models will be trained using the detecteddpsections between
the speaker change points. The average speaker turn lsragiprioximately 1.5
seconds, as displayed in Figure 3.5. In addition, the paemnef the SCD al-
gorithm are adjusted to minimise the missed speaker chantgish will cause
more false speaker changes to be detected and cause thgeasletacted turn
length to be less than the real average turn length. Theraforst of the detected
speech sections lying between speaker change points atdsarter than two
seconds), so a single full-covariance Gaussian modeiigettdor these sections.
If long sections are detected (longer than 5 seconds), tltkehcomplexityM;,,;

is determined by Equation 6.2:
M;y; = round(N,/100) (6.2)

whereN, is the number of feature vectors in a speech section. A spssstion
with 100 feature vectors is equivalent to two seconds long-ul\-covariance
Gaussian is used in the GMMs. When the potential speaker Isibdee been
initialised for all speech sections, the similarity betwed pairs of models will

be measured. CLR (defined by Equation 6.3) is used to medsignilarity.

1 p(X1|)\2) 1 p(X2|>\1)
LR(X{,X5) = —log——= + —log ———% .

where X; and X, are speech sections assigned to a pair of potential speaker
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models); and\,, respectively, and; andn, are the number of feature vectors
included in the sections. The pair of potential speaker fsogéh the largest
CLR are merged. The speech sections assigned to the origingbotential
speakers are assigned to the new potential speaker modethamodel will
be retrained by these speech sections. Using the combinigotwo original
potential speaker models as the initialisation, with hiaéf tveight value of the
components, the new model is retrained using the new EM ithgor The new
EM algorithm automatically removes the extra componenthénGMM. The
remaining model complexity of the GMM is reduced by one, amaltraining
process is repeated until the remaining model complexilgss than any of the
original two potential speaker models. Then, the GMM witk thodel com-
plexity that minimises the EWPC is chosen as the new polesgeaker model
(with 6 = 0.2). The merging process terminates when the number of rengaini
potential speakers is less than a given threshold.

Because, in post processing, the potential speaker modebewpdated by
adaptation from the UBM, it is better to begin when the datagaed to every
cluster are long enough to support the adaptation. Duriagattaptation, each
component in the UBM will be adjusted towards a particulateptial speaker.
If there are not enough data assigned to a cluster, its adiaptelel will be
dominated by the characteristics of the UBM instead of its @varacteristics.
As aresult, the post-processing should begin when all afltreters have enough
data.

Meetings have different numbers of speakers, and thewramtes are of dif-
ferent lengths. Moreover, some meetings have one or sed@mahant speakers
so that the other speakers occupy only a small proportiohebterall audio
stream. Hence, it is difficult to decide when there are enalagh in a cluster

to start the adaptation. However, the number of potentiehkers remaining in
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the process can be used to start the post-processing. Reoahe AMI corpus
the range of speaker numbers is 3-4 and in the ISL corpus tigeraf speaker
numbers is 3-8, we choose 20 as the threshold for the rengamimber of po-
tential speakers to enter the post-processing step. This \&larger than the
actual number of speakers in the meetings and at the samdeawes room
for adjusting the speaker model. In post-processing, th&1UBtrained by a
method similar to the way the potential speaker models aredd, except that
the UBM is initialised by a combination of all of the potertipeaker models,
with the weight value averaged over all of them, and the lowesdel com-
plexity of the UBM is the upper limit of the model complexity @l individual
potential speaker models. Then, the entire potential gyeakdels need to be
re-trained by adapting the UBM towards the speech sectissigi@ed to each
potential speaker, using the weight and mean adaptatiomaieT hen, the simi-
larity between each pair of new potential speaker modelg;iwik adapted from
the UBM, will be measured by a slightly changed version of@h&, defined in

Equation 6.4:

1 XalA 1 X+l
CLR(Xy,X3) = —log p(Xa|) + —log P(Xi[A2)

N ] L S A 6.4
I 5 N W PR der5 ot W B

where\,;,, represents the UBM model. The pair of the potential speakihs
the largest CLR will be merged, and the new potential speaiadel will be
re-adapted from the UBM, using our new weight and mean atlapta The
merging process will terminate when the CLR measuremerntgdes all pairs
of the remaining potential speakers are below a certairsitiold.

In the baseline system, a simple model complexity selecareme and a
common EM algorithm are applied. All of the potential speakedels are ini-

tialised as a single Gaussian model. The model complexitgeohew potential
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speaker model is the sum of the original two models, and thsllBs 128 full
covariance components. To compare the three new algorfithopesed in Chap-
ter 5, we compare the new system illustrated in Figure 6.4 savrevised baseline
system, whose original SAD and SCD steps are replaced byetheSAD and
SCD algorithms explained in Section 6.3 and 6.4, respdygtilrethe experiment
in this section, the revised version of the baseline systdrb&denoted 5y s,”.

The three new algorithms proposed in Chapter 5 are relateadb other.
The new EM algorithm integrates the parameter dimensiordatalsize part of
the penalty term into the EWPC and can automatically remgira eomponents
from the GMM. This will accelerate the model complexity sgien process,
which will pick the GMM with the lowest EWPC value from amonigj@ossible
model complexity values. The component-removing schenegrated into
the weight and mean adaptation strategy in a similar wayveastintegrated into
the EM algorithm. Therefore, instead of evaluating thevidiial performance
of the three new algorithms, we check the performance of tmenbination. As
a result, the entire new system, which will be referred to%ss;,..,” in the rest
of the section, will be applied in the performance analysithe section.

In addition to our new algorithms, many other model trainaigorithms
and model complexity selection criteria have been impldeeteto improve the
performance of the speaker diarization system. In (Angeeid., 2006a), the
number of components used in the potential speaker modmsredated with the
guantity of training data. The CCR will be used to decide thigal number of
components used for each potential speaker model. The mohbemponents

used in a cluster is defined by Equation 6.5:

My = round( C]gR) (6.5)

wherelN; is the number of features. CCR=7 is the value recommendeMdiio,(
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2006). This algorithm is called the CCR model selectiorecidn in the rest of
this section.

An incremental method to train the GMM is described in the HibkIkit
(Young et al., 2005). In this method, a Gaussian model istcocted for the
whole training data set. The Gaussian model is then split tiwb, and the
GMMs are trained. The splitting process continues untilgiven model com-
plexity has been achieved. In this way, the position of eaxrhponent will be
better modelled. This algorithm is called “incrementairtiag” in the rest of
this section.

Cross validation EM (CVEM) is an algorithm to adjust the piosis of a
fixed number of components (Anguera et al., 2007). DuringBNetraining,
the feature vectors are split inf® parallel partitions, and a GMM is trained on
each partition of the data. In the E-step, the expected tiondi probability
of the hidden variables of all of the GMMs will be calculatedskd on their
corresponding partitions. Then, in the M-step, for each GMiM data and
hidden parameter of other partitions will be used to crossimiae the GMMs.
The parameteP of the CVEM is recommended to be set to 35 in (Miro, 2006).
This algorithm is called “CVEM training” in the rest of thigstion.

To compare the performance of these model complexity sefeatgorithm
and model training algorithms to our new algorithm, two mepeaker diariza-
tion systems are built. All of them using the new SAD step a@DSas 5
andS,..,. CCR model selection criterion is used in both systems terdehe
the model complexity. Incremental training is applied te af the systems for
model training of both potential speaker models and the UBMEM training
is used in another system, only for the UBM training sincedsiert speech sec-
tions are not suitable to be split into many partitions. Thstam with CCR

model selection criterion and incremental training willeéerred to as Sys,”
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in the rest of the section, and the system with CCR model sefecriterion and
CVEM training will be referred to asSys,”. The other part of theSys; and
Sys, are the same as the baseline system.

The performance of abysg, Sysi1, Sys, andSys,...,, IS displayed in Figure
6.6. It can be observed that for the development set, bottm#an value of DER
and the standard deviation are lowerdgs,,..,, than inSysg, Sysi, Sys.. For
the two evaluation sets, the mean DER%fs,,.,, decreases, but the standard
deviation is slightly higher. This may be due to the fact tiatnew algorithms
are more sensitive to the threshold of the CLR. In all otheteys, the model
complexity of the adapted potential speaker models is fixedl28, which is
also the fixed model complexity of the UBM. In tt8;s,..., System, however,
the model complexity of the UBM changes from meeting to nmggtand the
model complexity of the adapted potential speaker modelssnon-fixed. The
higher flexibility of the new algorithm makes it more likeky be affected by the
value of the parameter. In the other two systefs;; andSys,, the mean value
of the DER shows no obvious reduction. This may be due to timeptexity
selection criterion of the CCR model. Determining the mantghplexity based
on the quantity of training data may cause excessive conmsme be included
in the GMMSs, especially when the speech sections assigniécte long. The
standard deviation of th8ys,’s DER is wide. This may be because the CVEM
model training algorithm is sensitive to the paramdtewhich is the number of
split partitions used to train the UBM. The specific mean galof the DER of
these speaker diarization systems are shown in Table 6.4.

In Chapter 3, it was suggested that the new model complegigcgon cri-
terion copes better when the speech length in a meetinggefar the number
of speakers is higher. Therefore, we show how the speecthlang the number

of speakers affect the DER of tt¥8/s, and Sys,..., in Figure 6.7 and 6.8.
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Figure 6.6: Performance of the speaker diarization systems, Sysi, Syss,
andSys,ew-

Meeting System| E,,iss(%) | Ero(%) | Egprr (%) | DER(%)
Development set Syso 1.00% | 1.00% | 11.60% | 13.60%
Development set Sysq 1.00% | 1.00% | 10.28% | 12.28%
Development set Syso 1.00% | 1.00% | 9.88% | 11.88%
Development set SYSnew 1.00% 1.00% | 7.24% 9.24%
Evaluation set (AMI)| Sysq 1.41% | 1.29% | 11.26% | 13.96%
Evaluation set (AMI)| Sys; 1.41% | 1.29% | 11.17% | 13.87%
Evaluation set (AMI)| Syss 1.41% | 1.29% | 10.59% | 13.29%
Evaluation set (AMI)| Syspew | 1.41% | 1.29% | 7.80% | 10.50%
Evaluation set (ISL) | Sysg 0.84% | 6.38% | 11.30% | 18.52%
Evaluation set (ISL) | Sys; 0.84% | 6.38% | 11.58% | 19.00%
Evaluation set (ISL) | Syss 0.84% | 6.38% | 11.22% | 18.44%
Evaluation set (ISL) | Sys,ew | 0.84% | 6.38% | 8.30% | 15.48%

Table 6.4: Performance of the speaker diarization systery, Sysi, Sysq, and
Sysnew
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Figure 6.7 (a), (b) and (c) shows the DER of the meetings idatt sets as
functions of the speech. For almost all of the meetirtgys;,,.., obtains the best
performance. However, in contrast to the assumption in @&} there is no
evidence that the new system has a greater advantage whiergdeizh long
meetings with long speech lengths. In Chapter 3, it is olesktivat feature vec-
tors from different speakers split the feature space intaynsmnall sub-spaces
when the speech length is higher; therefore, the assuntpidasing more com-
ponents in the UBM to model the inter-speaker variability wnprove the sys-
tem performance was made. However, a UBM that is more capdbtedelling
the inter-speaker variability does not necessarily leaddoe accurate potential
speaker models. Moreover, the sensitivity to the CLR tholsmay also have
an effect on the outcomes, since the trend that the differbetween th&ys,
andSys,.., increases can be observed in the development set.

In Figure 6.8(a), the DER values of the meetings from the Abtpatis are
displayed against the number of speakers. In either caseDER decreases
when Sys,..., IS used. The decrease is clearer when the number of speakers i
3. What is worth noting is that wheslys, is used, the system performs worse
when the speaker number is 3, and wh#ys,,.,, is used, the system performs
worse when the speaker number is 4. Among all of the meetongg, five of
them have three speakers, and all of the others contain paakers. It is hard
to tell whether the difference in the DER is due to the indibcases. Figure
6.8(b) displays the DER of the meetings from the ISL corpusah be observed

that Sys,..., performs better when the speaker number is higher.
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Figure 6.7: How DER changes with the Speech length.
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6.6 Normalized Cuts applied to clustering

In Figure 6.8, it can be observed that the standard deviafitme DER from the
evaluation set is high. This may be because the performdribe mew system
depends strongly on the value of the CLR threshold to detexmwhen to termi-
nate the merging process of the potential speakers. MorgbeeCLR threshold
based termination strategy is a local solution rather thgtobal solution. In
the new system, the timing to end the process is based omililarily between
the closest pair of potential speaker models, regardleizeadverall similarity
between all of the potential speaker models. The choice abagwtime to ter-
minate the merging will not only cause speech sections toroagly assigned
but also lead to errors in the estimation of the speaker nuriberefore, in this
section | will develop a new method to terminate the potéspaaker merging
without a threshold, taking the similarity among all potahgépeaker models into
consideration.

The mean values of the components in the potential speakéd€Xhat were
adapted from the UBM are thought to be a reliable representatf speaker
characteristics (Tsai et al., 2005) (Tsai et al., 2007). jdtential speaker mod-
els created by mean-only adaptation have the same numbemgfanents and
during the adaptation process, all of the components in M&IGre forced to
follow the order of the UBM. Therefore, by conjoining all theean vectors of
the components in the GMM one by one, a large feature vectfmrised for
each cluster (dimension of the acoustic features * numbeowiponents in the
GMM). The normalized inner product can be used to measursithigarity be-

tween these super-vectors. The normalized inner produgt@f/ectorsy; and
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v; will be defined as in Equation 6.6:

< V3, V5 >

[ojl 1]

S(vi,v5) = (6.6)

Using the inner-product of the super-vectors to measuresitndarity be-
tween potential speaker models, a merging process tefioringtheme based
on the ratio of the intra-speaker variability and interaer variability can be
developed using Normalized Cuts (NC). NC ((Shi and MalikQ@) was first
proposed for two-class graph partitions, which measuradnmalized dissimi-
larity between two disjoint sets. Assuming that two data #eand B satisfy the
conditionsA|J B = V andA( B = @, their dissimilarity can be measured by
Necut(A, B):

cut(A, B) cut(A, B)
assoc(A, V) = assoc(B,V)

Ncut(A, B) = (6.7)

wherecut(A, B) is the total dissimilarity fromA to B andassoc(A, V') is the to-
tal connection fromA to V. Assume that/w;; denotes the dissimilarity between

v; andv;; thencut(A, B) andassoc(A, V')) are given by Equations 6.8 and 6.9:

cut(A, B) Z dw; (6.8)
i€A,jEB

assoc(A, V) Z dw;; (6.9)
1EAJEV

where a lower value afw;; indicates a greater distance betweand;. Be-
causecut(A, B) = assoc(A, V) —assoc(A, A), Ncut is directly proportional to

the total inter-class dissimilarity and inversely propamtl to the total intra-class
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dissimilarity. Extending the definition of the NC to the nidlass situation:

cut(A, V — Ay) N cut(Ag, V — As) cut(Ag, V — Ay)
assoc(Ay, V) assoc(As, V) assoc(Ag, V)

(6.10)

Ncut, =

where A, - - - A are disjoint sets and; | J A2 J- - -|J Ax = V andk is the
number of the remaining potential speakers.

Ncut;, can be used to select the appropriate number of speakeraufec
there are always fewer than ten people attending a meetisgnerging pro-
cess will run without stopping to check until ten clusters aft. After each
merging step, théVcut, value should be calculated, until there is only one re-
maining cluster. The partition who$écut, achieves the minimum value will be
selected by the system as the final result. Because the desiymeasureiw;;
is proportional to the distance betweey, the inverse value of (v;, v;) will be
used in Equation 6.8 and 6.9 as a dissimilarity measure. Becthe potential
speaker models adapted from the UBM by weight and mean adaplteave dif-
ferent numbers of components, the super-vectors of theselsibave different
dimensions and(v;, v;) is not computable. Therefore, mean only adaptation
will be applied to adapt the potential speaker models froemmUBM so that the
super-vectors of all potential speaker models have the saotkel complexity
and the inner product of these super-vectors is computable.

Using the NC to terminate the potential speaker merginggs®ca detailed
structure of the new system, which is labelled 8g$,....2”, is illustrated in Fig-
ure 6.10. The parts dfys,...2 that are different fronbys,,.., are labelled in red.
The performance ofys,..... Will be illustrated in Figure 6.9, compared to the
new systemsys,,.... It can be observed from Figure 6.9 that the standard devia-
tion of theSys,,..,2 narrows on the evaluation set from the AMI corpus compared

to Sys,ew, Without a dramatic change in the mean value of the DER1gf,..,.
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This may be because when replacing the weight and mean #daptath the
mean only adaptation for the potential speaker adaptation the UBM, the ac-
curacy of the potential speaker models decreases. Howsesieg the NC-based
merging termination scheme, which has no threshold vala€ijigst to construct
global optimum solution, will improve the steadiness of speaker diarization
system. For the evaluation set from the ISL, the mean valubeDER de-
creases, and the standard deviation narrows. Because #imgssfrom the ISL
have a wider range of speaker numbers, terminating the ngeggocess at the
right time is more essential to the system performance ®sdhmeetings. The

specific mean values of the DER {8¥/s,,.., andSys,....» are listed in Table 6.5.

0251 Bar: mean value .
Error bar: standard deviation Evaluation set (ISL)

02r Evaluation set
Development set (A1)

DER

Sys

l Sysnew SySnew2 Sysnew new2 Sysnew Sysnew2

Figure 6.9: The performance 6%s,,.., compared t&ys,,cu2-
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Meeting System | E,.i55(%) | E1a(%) | Egprr (%) | DER(%)
Development set SYSnew 1.00% | 1.00% | 7.24% 9.24%

Development set SYSnew 1.00% | 1.00% | 8.33% | 10.33%
Evaluation set (AMI)| SySpew 1.41% | 1.29% | 7.80% | 10.50%
Evaluation set (AMI)| SySpew2 | 1.41% | 1.29% | 7.29% 9.99%

Evaluation set (ISL) | Sysnew 0.84% | 6.38% | 8.30% | 15.48%
Evaluation set (ISL) | SySpew2 | 0.84% | 6.38% | 6.48% | 13.70%

Table 6.5: Performance of the NC-based merging terminagtbeme

6.7 Overall Experiments and Analysis of Results

In this chapter, the new algorithms derived in earlier ceephave been inte-
grated into the new system and their performance presentediscussed. Here
| summarise these new algorithms as follows:

1. a new model-based SAD algorithm that contains two roundglze speech
and non-speech models in the second round will be adjustatding to
the detected information from the first round;

2. anew SCD algorithm that is based on the FDA analysis;

3. anew model complexity selection criterion, the EWPC #tlacates lower
model complexity for potential speaker models to reduceirtfieence of
intra-speaker variability, while allocating higher moaeimplexity for the
UBM to capture more inter-speaker variability;

4. anew EM algorithm that integrates the data size penaity t¢ the EWPC
to accelerate the removal of extra components in the GMMnaatizally in
the training process;

5. a weight and mean adaptation algorithm to adapt modets tihe UBM for
potential speakers;

6. a new NC-based merging process termination scheme tdededien the

remaining potential speakers will be output by the systefmasresults.
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Among all of the new algorithms, the performance of (1), (BY &6) is
compared, respectively, with the new algorithms. The atlgars (3)-(5) are
combined in application and their performance is analysgéther. The per-
formance levels of all new algorithms are displayed in a noWwigure 6.11 and
compared with the baseline system. In Figure 6.11, the in&ssystem is de-
notedSys,y. The system that is similar to the baseline system, exceptso
application of the new SAD algorithm instead of its countetpn the baseline
system, is denoteflyss,q. The system that uses the new SAD algorithm in the
SAD step, the new SCD algorithm in the SCD step, and keepsttier algo-
rithms the same as those of the baseline system is céljed, in Figure 6.11.
The new systems described in Figure 6.10 and in Figure 6.tefegred to as
SYSnew ANA SYS, w2, respectively. In Figure 6.11, it can be observed that each
new algorithm improves the performance of the speakerzdiion systems by
decreasing the mean of the DER, except when using the NG} maseging ter-
mination scheme on the development set. In addition, thedata deviation of
the systems’ performance is wide, except when integraliasdNC-based merg-
ing termination scheme in all datasets.

It has been stated in Section 6.3 that using the new SAD d#hgonwill de-
crease the value df 4, especially when the NLR of the meetings is high. There
are some exceptions because the disproportionateness LR and the non-
speech length in the meetings may reduce the efficiency afatvealgorithm, or
the NLR of the detected non-speech in the first round may nobhsistent with
the NLR of the whole meeting. As explained in Section 6.4 aose the standard
deviation is wide, it is difficult to measure the efficiencytbé new SCD algo-
rithm. However, because the SCD step is an early step in tiodevgystem, the
advantages of the new SCD algorithm may accumulate, anerkpttformance

is observed when it is combined with the new algorithms 8)-{ntegrating the
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new algorithms (1)-(5) into the baseline speaker diamratystem, we obtain
the new system described in Section 6.2. The combinatidmeafiéw algorithms
(3)-(5) provides the largest contribution to the perforgenf the system, com-
pared to the prior system in Figure 6.11. However, the neteayss sensitive to
the CLR threshold because the success of the new systeniyagyends on the
model accuracy, as discussed in Section 6.5. In Chaptett8y lperformance is
expected when using new model complexity selection caterespecially when
the speech length is long and the speaker number is high.réiogpto the ex-
perimental results, no evidence supports the assertidriitbanew system has
a greater advantage when dealing with meetings with longdpkengths. For
the evaluation set from the ISL corpus, the new algorithmg%Bimprove the
system performance when the speaker number becomes higbesever, the
same results cannot be found for the evaluation set from Mk A

In Section 6.6, a new NC-based potential speaker mergingriation scheme
is developed. This new scheme is without threshold and mtdesslecision
based on the global information. The new speaker diarizaystem (illustrated
in Figure 6.10) that includes the NC-based terminationisehis steadier. In Ta-
ble 6.6, the mean values of the DER of all systems and themaystprovements
are listed. “Improvement vs prior” measures the decreaskdrDER of each
system compared to its prior system, in the order shown inrgi¢.11. ‘Im-
provement vs baseline’ measures the decrease in the DERlokgatem com-
pared to the baseline system. The DER of all meetings olntais@g.Sys,q,

SYSsads SYSseds SYSnew aNASY S, are specified in Appendix A.
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Bar: mean value
Error bar: standard deviation

Sysm d SysSa d Sys,

scd Y SYShewa

ew

Evaluation set (AMI)

SYSqq SYSsaa S¥Ssca YSnew YSnewa

SYSqig YSeaq VSscq SYSnew SYonewe

Figure 6.11: The performance of all systems

Meeting System | DER(%) | Improvement| Improvement
VS prior vs baseline

Development set Sysoa | 18.61% 0% 0%
Development set Syssaa | 15.82% 2.79% 2.79%
Development set Syssea | 13.60% 2.22% 5.01%
Development set SYSnew 9.24% 4.36% 9.37%
Development set SYSnewz | 10.33% -0.17% 9.20%
Evaluation set (AMI)| Sys,q | 18.89% 0% 0%
Evaluation set (AMI)| Syssq | 16.49% 2.40% 2.40%
Evaluation set (AMI)| Syssq | 13.96% 2.53% 4.93%
Evaluation set (AMI)| Sys,ew | 10.50% 3.46% 8.39%
Evaluation set (AMI)| Sys,ew2 | 9.99% 0.51% 8.90%
Evaluation set (ISL) | Sysoq | 21.35% 0% 0%
Evaluation set (ISL) | Syssa | 20.44% 0.91% 0.91%
Evaluation set (ISL) | Syss.q | 18.52% 1.92% 2.83%
Evaluation set (ISL) | Sysnew | 15.48% 3.04% 5.87%
Evaluation set (ISL) | SySpew2 | 13.70% 1.18% 7.01%

Table 6.6: Summary of average DER for all new algorithms
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, | have investigated the shortcomings of ttistiag speaker di-
arization systems and examined the meeting charactertbtit may cause these
problems by focusing on the SAD, SCD and the constructioh@{iBM steps
of the speaker diarization system (Chapter 3). Based onrtiegms discovered
in Chapter 3, four new technologies for speaker diarizapitessing, includ-
ing an SAD algorithm, a change point detector, a model coxityleriterion
and a weight and mean model adaptation technique, weretigatsl in this
thesis. Those technologies significantly improve the parémce of the speaker
diarization system, especially when combined. In addjttbe new EM algo-
rithm proposed in (Figueiredo and Jain, 2002) was introduoeaccelerate the
training of the model, and the NC (Shi and Malik, 2000) wasddticed to deter-
mine when to terminate the potential speaker merging psocgkhough these
algorithms were not developed in this thesis, this is the tiinge that they have
been applied to speaker diarization. The performance sktihew algorithms
was examined and compared to the baseline system in Chapiéretdetailed

conclusions of each step and performance of new systemsiammarised as
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follows:

SAD: It was discovered that more components should be incotgubrfar
better performance when the NLR value is higher. Moreover,pgerformance
of the SAD process improves if the audio material used to titae speech/non-
speech GMM and the test audio material used to test the peafoze of the
GMMs are from the same meeting. Based on these observatiamsy SAD
algorithm was proposed in Section 6.3 Compared to the SADrithgm in the
baseline system, the new algorithm reduces bottEthess and theE 4 values,
especially when thé’r, of the NLR is high. When the new SAD algorithm
was employed to replace its counterpart in the baselinesyghe mean value
of Ey155 was increased from 0.96% to 1.00% percentage points, antdd¢he
value of Er4 was reduced from 3.41% to 1.00% in the development set. The
same trend was observed in the evaluation set from the AMiusyrwhere the
mean value ofF,;;55 decreased from 1.48% to 1.41% and the mean value of
Er4 decreased from 3.14% to 1.29%. For the evaluation set frendSh, the
mean value offy;;ss decreased from 1.14% to 6.57%, and the mean value of
the Er 4 decreased from 6.57% to 6.38%. The mean value of the DERaksxmte
18.61% to 15.82%, from 18.89% to 16.49% and 21.35% to 20.4d8pectively,
for the three datasets.

SCD: FDA-based measurements were introduced to examine thikap\ee-
tween the data distributions of a pair of short segmentsa#tavscovered that the
FDR, the error rate of the FDC, and the average distance froomseo the FDC
are all capable of determining whether a pair of short seggnerfrom differ-
ent speakers or the same speaker. In Chapter 4, a new sphakgealetection
algorithm was developed based on the combination of vanwessurements of
the FDA. Compared to the SCD algorithm in the baseline systieenew algo-

rithm minimises the missing change error rate, while at #raestime reducing
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the false change error rate and narrowing the standardtaesviz the two types
of errors. In Section 6.4, the speaker diarization systeth thie new SCD al-
gorithm is compared to the speaker diarization system wighltaseline SCD
algorithm. When using the new SCD algorithm, a decreaseeofitban of the
DER is observed. In Section 3.4, | concluded that in the aoofesature space,
inter-speaker variability is intertwined with phonetiaiability; as a result, fea-
tures from different speakers split the feature space irgnynsmall sub-spaces.
In the development set, when both the new SAD algorithm aechéw SCD
algorithm were employed in the baseline system, a redudtmm 15.82% to
13.60% in the mean of the DER was observed compared to thensysgith only
the new SAD algorithm. The decrease in the mean of the DER wa9% to
13.96% for the evaluation set from the AMI corpus and froni2% to 18.52%
for the evaluation set from the ISL corpus.

Model Training : Depending on the analysis in Chapter 3, in the acoustic fea-
ture space, the inter-speaker variability is intertwinethwhe phonetic variabil-
ity; as a result, features from different speakers spliftfa¢ure space into many
small sub-spaces. The number of sub-spaces tends to iasvghshe length of
the speech and the number of speakers in a target meetingw Aoédel com-
plexity criterion was proposed in Chapter 5. By setting taeametep to differ-
ent values, the new criterion could reduce the model contglexreduce intra-
speaker variability and allow more model complexity in thBNJ to capture
more inter-speaker variability. Combining the new crivarivith EM algorithm
developed by (Figueiredo and Jain, 2002) and a new weightreeah adapta-
tion algorithm, the new diarization system significanticiased the mean of
the DER compared to the baseline system. However, the sthddaiation of
the DER is still wide. No clear evidence supports the hypsiththat the new

criterion works better when the speech length is longer. tRerevaluation set
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from the ISL corpus, the DER of the new system decreases wieesgeaker
number becomes higher.

In the new system, when the EWPC criterion, the new EM algoritFigueiredo
and Jain, 2002), and the weight and mean adaptation werenaloged, the
mean of the DER decreased from 13.60% to 9.24% in the developset, from
13.96% to 10.50% in the evaluation set (AMI), and 18.52% ta18% in the
evaluation set (ISL), compared to the system with only the 8D and SCD
algorithms.

Termination Scheme In Section 6.6, a new NC-based potential speaker
merging termination scheme was developed to improve tlaglstess of the new
speaker diarization system. This new scheme is thresheddaind makes the de-
cision based on the global information. The new speakeizdion system con-
taining the NC-based termination scheme narrowed the atdmtviation of the
DER, compared to the system with a local merging terminagaation. When
the NC is applied as the termination strategy for the poaéspeaker merging
process and the stacks of the mean values of the potentiakespmodels are
used as super-vectors, the standard deviation of the DERaksxs. Although
the mean of the DER increased from 9.24% to 10.33% for theldenent set,
it decreased from 10.50% to 9.99% and from 15.48% to 13.70%méevalua-
tion sets (AMI) and (ISL).

The performance of the new systemsin contrast to the baseline system,
the new systems with or without the new termination schenaebedter perfor-
mance. For the development set, the new system without theerenination
scheme decreased the mean value of the DER from 18.61% t®%9rAdking
an improvement of 9.37 percentage points; the new systemthét new termi-
nation scheme decreased the mean value of the DER from 186%1%33%,

making an improvement of 9.20 percentage points. For theatran set (AMI),
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the new system without the new termination scheme decrdhsetiean value
of the DER from 18.89% to 10.50%, making an improvement o® §&rcentage
points; the new system with the new termination scheme eatitiee mean value
of the DER from 18.89% to 9.99%, making a 8.90 percentaget pmiprove-
ment. For the evaluation set (ISL), the new system withoainw termination
scheme decreased the mean value of the DER from 21.35% t8%pmaking
an improvement of 5.86 percentage points; the new systetm tivt new ter-
mination scheme reduced the mean value of the DER from 21t85P8.70%,
making an improvement of 7.01 percentage points. Amonglthreetdatasets,
the lowest mean value of the DER appears when using the néansyegthout
the new termination scheme. The new system with the new pation scheme,
on the other hand, is steadier because the standard dewetibe two evalua-
tion datasets is narrower. Therefore, we conclude that &ggtems have their

own strengths.

7.2 Future work

An interesting area of recent work for speaker recognit®the use of latent
factor analysis to compensate for speaker variability i(€sal., 2007). These
methods adopt a GMM super-vector consisting of the stacleahsiof the GMM
that is mean-only adapted from the UBM. Because this supetov is of a high
dimension (several hundreds or thousands dimension), S\&dan to be a com-
petent clustering strategy based on super-vectors. SViagpalar classification
strategy that clusters by projecting the data into a highedision latent space.
The kernels of the projected data are calculated, and the &gbdtithm clusters
the data based on the kernel matrix directly.

SVM has been used in both the speaker recognition task andptsker
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verification in recent years. Because a collection of themvedues of speaker
models adapted from the UBM can be used as a super-vectatheydre more
discriminable between different speakers, adopting isfaraker diarization will
reduce the influence of noise and speaker overlaps. SVMecldsta only de-
pend on some vectors being at the class boundary (suppdorsgcrhus, using
SVM avoids the need to detect the complicated intrinsiccstime of the speaker
data. However, SVM is always executed in a supervised wagyeds speaker
diarization is an unsupervised task. Therefore, some neatiifins must be made
if adopting SVM to speaker diarization.

The NC has been used as a cluster number selection criteriisithesis.
In graph theory, the optimum data partition can be obtainethimimising the
NC. To solve a standard eigensystem, the second smallestveicfor carries a
clustering solution for a bi-cut. The other eigenvectosoaarry different levels
of dissimilarities in a graph. Combining these eigen-ves;tthe global solution
for clustering will be achieved, and the number of clusteay @so be detected.
Introducing the NC theory into the speaker diarization pescto determine the
speaker number appears to be an interesting future directio

If, in speaker diarization, the speaker model can be sufiiji¢rained and
the influence of the noise and speaker overlaps can be clearlgved, as is
the case in speaker recognition research, the recognéterwill achieve a high
value. However, the speaker diarization process has timsti@nts on many
steps that make it difficult to identify speaker utteranddsess than one second.
Therefore, even if the speaker models were sufficientlyéaiand the number
of speakers correctly detected, the performance of thekepearization will

still be restricted by false alarm errors and missed sha&dalegr turns.
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Appendix A

Meeting characteristics and new

system performance

Table A.1 and A.2 and A.3 shows all meetings used in expettisiarChapter 6,
in terms of their type, number of speakers, the length of geeeh in the meet-
ings, NLR, and whether it is used in the development set (ODherevaluation
set (E).

Table A.4 lists the abbreviations of the experimental systand their de-
scription.

Tables A.5, A.6 and A.7, show the results of the seven stiegqmerformed

on each of the meeting for the development and evaluation set

157



Name Room and| Number of| Speech Length NLR | Development
Type Speakers (second) or Evaluation
EN2002a EN 4 1659.1 0.2338 D
EN2006a EN 3 1852.8 0.4780 D
EN2009c EN 3 2357.8 0.2183 D
ES2003a ES 4 548.8 0.5185 D
ES2009a ES 4 1077.1 0.2356 D
ES2016¢ ES 4 1381.5 0.4043 D
IB4001 1B 4 1174.1 0.3433 D
IB4002 IB 4 1128.4 0.4044 D
IB4005 IB 3 1596.1 0.2123 D
IN1001 IN 3 2694.2 0.2284 D
IN1002 IN 4 2011.1 0.1903 D
IN1005 IN 4 2208.0 0.2157 D
IS1001b IS 4 1454.5 0.3152 D
IS1006a IS 4 516.8 0.3896 D
1S1009a IS 4 552.8 0.3210 D

Table A.1: Meetings characteristics of development set
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Name Room and| Number of | Speech Length NLR | Development
Type Speakers (second) or Evaluation
EN2002b EN 4 1303.3 0.2793 E
EN2002d EN 4 1671.2 0.2514 E
EN2006b EN 3 1597.5 0.4722 E
ES2002d ES 4 1877.9 0.2461 E
ES2003b ES 4 1539.4 0.2739 E
ES2003d ES 4 1665.1 0.2959 E
ES2004a ES 4 675.3 0.3607 E
ES2004d ES 4 1510.1 0.3252 E
ES2005b ES 4 1698.5 0.2681 E
ES2007a ES 4 684.3 0.4356 E
ES2007b ES 4 1127.3 0.3340 E
ES2007d ES 4 823.8 0.3456 E
ES2009b ES 4 1087.1 0.2436 E
ES2016b ES 4 1381.9 0.4294 E
ES2016d ES 4 913.1 0.4029 E
IB4004 B 4 2032.0 0.1508 E
IB4011 B 4 1892.7 0.2123 E
IN1007 IN 4 2039.2 0.1596 E
IN1008 IN 4 2636.3 0.2332 E
IN1009 IN 4 863.1 0.3117 E
IN1012 IN 4 2588.3 0.1719 E
IN1013 IN 4 2692.3 0.1513 E
IN1016 IN 4 3108.2 0.1452 E
IS1001c IS 4 978.6 0.3263 E
1S1002c IS 4 1580.2 0.2430 E
1S1002d IS 4 838.9 0.3354 E
IS1003c IS 4 1319.8 0.2865 E
1S1003d IS 4 1487.5 0.2957 E
IS1006b IS 4 1518.2 0.2988 E
IS1009b IS 4 1655.4 0.1903 E

Table A.2: Meetings characteristics of evaluation set féahl corpus
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Name | Room and| Number of| Speech Length NLR | Development
Type Speakers (second) or Evaluation
mO035 Game 4 2318.3 0.1814 E
mO036 Game 5 1698.2 0.0287 E
mO038 Disc 5 472.9 0.0212 E
mO039a| Game 4 466.5 0.0998 E
mO039b| Game 4 440.1 0.0734 E
mO042 Chat 4 785.6 0.0725 E
mO043 Proj 5 468.7 0.0511 E
mO045 Disc 5 2414.2 0.0239 E
mO046 Disc 4 1932.1 0.1247 E
mO0438 Disc 3 2817.0 0.0862 E
mO051 Game 5 1185.7 0.2061 E
mQ052 Game 5 1686.4 0.1149 E
mO055 Disc 9 2960.6 0.1134 E
mO061 Disc 5 3163.9 0.0302 E
mO063 Proj 5 1724.5 0.0682 E
mO064 Disc 4 2039.0 0.1326 E

Table A.3: Meetings characteristics of evaluation set fiS8incorpus

System Notatior

System Description

SYSold

Baseline system

Syssad

Baseline system with
New SAD algorithm

Sysscd

Baseline system with
New SAD algorithm
New SCD algorithm

Sysnew

Baseline system with
New SAD algorithm
New SCD algorithm
Equal Weight Penalty Criterion
a new EM algorithm
Weight and mean adaptation

SysnewZ

Baseline system with

New SAD algorithm

New SCD algorithm
Equal Weight Penalty Criterion

a new EM algorithm

Normalized Cuts based termination scheme

Table A.4: Experimental systems abbreviations and detsamip
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Name Sysold Syssad Sysscd Sysnew Sysnew2

EN2002a| 0.2074| 0.1589| 0.1085| 0.0863| 0.0607

EN2006a| 0.1529| 0.1941| 0.1246| 0.0864 | 0.1178

EN2009c| 0.1531| 0.1854| 0.1689| 0.0927| 0.1168

ES2003a| 0.2447| 0.1995| 0.1760| 0.0921| 0.0946

ES2009a| 0.1988| 0.1804| 0.1828| 0.1382| 0.1067

ES2016¢| 0.3115| 0.3605| 0.2097| 0.1179| 0.0906

IB4001 | 0.1066| 0.0874| 0.1137| 0.0278| 0.0856

IB4002 | 0.1236| 0.1269| 0.1006| 0.0772| 0.1157

IB4005 | 0.1690| 0.1762| 0.1176| 0.1222| 0.1033

IN1001 | 0.1802| 0.1849| 0.1752| 0.0810| 0.1026

IN1002 | 0.1781| 0.1966| 0.1382| 0.0902| 0.1155

IN1005 | 0.2443| 0.2059| 0.1504| 0.1133| 0.1113

IS1001b | 0.1750| 0.1335| 0.1112| 0.0793| 0.1080

IS1006a | 0.1530| 0.1939| 0.1327| 0.1181| 0.1201

IS1009a | 0.1980| 0.1498| 0.1141| 0.1261| 0.1158

Table A.5: The DER of development set
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Name Sysold Syssad Sysscd Sysnew SysnewZ

EN2002b| 0.1705| 0.1573| 0.1384| 0.0818| 0.0995

EN2002d| 0.1696| 0.1532| 0.1653| 0.0802| 0.0975

EN2006b| 0.2114| 0.1814| 0.1264| 0.0583| 0.1007

ES2002d| 0.2079| 0.1760| 0.1747| 0.1157| 0.0789

ES2003b| 0.2602| 0.2336| 0.2058| 0.1349| 0.1077

ES2003d| 0.2539| 0.2036| 0.1279| 0.0295| 0.1134

ES2004a| 0.1702| 0.2133| 0.1137| 0.1384| 0.1172

ES2004d| 0.1410| 0.1638| 0.1806| 0.1082| 0.0843

ES2005b| 0.1672| 0.1746| 0.1032| 0.1638| 0.1085

ES2007a| 0.1405| 0.1676| 0.0996| 0.0661| 0.1011

ES2007b| 0.1910| 0.1687| 0.1565| 0.0763| 0.1165

ES2007d| 0.2048| 0.1819| 0.1368| 0.1695| 0.1104

ES2009b| 0.2611| 0.1543| 0.1411| 0.1609| 0.1180

ES2016b| 0.1882| 0.2800| 0.2479| 0.1288| 0.0959

ES2016d| 0.0908| 0.0824| 0.0900| 0.1149| 0.1204

IB4004 | 0.2399| 0.1869| 0.0868| 0.0353| 0.0540

IB4011 | 0.1812| 0.0848| 0.1281| 0.0171| 0.0883

IN1007 | 0.1476| 0.2200| 0.1014| 0.1384| 0.0721

IN1008 | 0.1911| 0.2150| 0.1230| 0.0410| 0.0909

IN1009 | 0.1756| 0.1826| 0.1496| 0.0269| 0.1128

IN1012 | 0.1650| 0.1554| 0.1228| 0.1063| 0.1165

IN1013 | 0.1694| 0.1540| 0.1137| 0.1571| 0.1104

IN1016 | 0.2027| 0.1800| 0.1291| 0.0438| 0.1180

IS1001c | 0.2376| 0.1509| 0.1914| 0.1804| 0.0962

IS1002c | 0.1936| 0.2325| 0.1469| 0.1474| 0.0959

1S1002d | 0.2214| 0.2299| 0.1653| 0.1037| 0.1204

IS1003c | 0.1555| 0.1524| 0.1460| 0.1933| 0.0953

1S1003d | 0.1899| 0.2102| 0.1627| 0.1257| 0.1075

IS1006b | 0.1896| 0.1351| 0.1516| 0.1565| 0.1224

IS1009b | 0.1892| 0.2010| 0.1226| 0.1853| 0.1137

Table A.6: The DER of evaluation set from AMI corpus
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Name Sysold Syssad Sysscd Sysnew Sysnew2

mO035 | 0.2169| 0.2190| 0.2336| 0.1823| 0.1390

mO036 | 0.1872| 0.1541| 0.1377| 0.0921| 0.1481

mO038 | 0.2036| 0.1932| 0.1811| 0.1422| 0.1392

mO039a| 0.2005| 0.2028| 0.1724| 0.1583| 0.1192

mO039b| 0.2083| 0.1961| 0.1434| 0.1266| 0.1278

mO042 | 0.2467| 0.2052| 0.1617| 0.0984 | 0.1345

mO043 | 0.1814| 0.1531| 0.1579| 0.1811| 0.1661

mO045 | 0.2400| 0.1787| 0.1820| 0.1645| 0.1200

mO046 | 0.2307| 0.2251| 0.2113| 0.1728| 0.1525

mO048 | 0.2165| 0.2121| 0.1944| 0.0982| 0.1324

mO051 | 0.1841| 0.1802| 0.1966| 0.1318| 0.1162

mO052 | 0.2392| 0.2031| 0.1565| 0.1654| 0.1314

mO055 | 0.2302| 0.2281| 0.2075| 0.1982| 0.1353

mO061 | 0.1973| 0.1972| 0.2304| 0.2566| 0.1081

mO063 | 0.2130| 0.1875| 0.1836| 0.1469| 0.1408

mO064 | 0.1905| 0.2037| 0.2433| 0.2326| 0.1208

Table A.7: The DER of evaluation set from ISL corpus
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Glossary of Acronyms

AMI
ASNR
BIC
CCR
CcLC
CLR
CVEM
DCT
DER
EHMM
EM
EWPC
FA
FDA
FDR
FDC
FFT
GMM
HMM
HTK
ISL
KL2
MAP
MFCC
MISS
ML
MST
NC
NGMM

Augmented Multi-party Interaction
Average Speech to Noise Ratio
Bayesian Information Criterion
Cluster Complexity Ratio
Classification Likelihood Criterion
Cross Log-likelihood Ratio
Cross Validation EM
Discrete Cosine Transform
Diarization Error Rate
Evolutive Hidden Markov Model
Expectation-Maximization
Equal Weight Penalty Criterion
False Alarm
Fisher linear Discriminant Analysis
Fisher linear Descriminant Ratio
Fisher Descriminant Classifier
Fast Fourier Transform
Gaussian Mixture Model
Hidden Markov Model
Hidden Markov Model Toolkit
Interactive Systems Laboratories
Kullback Divergency 2
Maximum A Posterior
Mel-Frequency Cepstrum Coefficients
Missing speech error rate
Maximum Likelihood
Minimum Spanning Tree
Normalized Cuts
Non-speech GMM
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NIST-RT National Institute of Standards and TechnologhRiicanscripti
NLR Noise Length Ratio

SAD Speech Activity Detection
SCD Speaker Change Detection
SGMM Speech GMM

SVM Support Vector Machine
UBM Universal Background Model
VQ Vector Quantization
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Experimental Systems

Abbreviations

| System Notatior]

System Description

Sysg O SYseq

Baseline system

Syssad

Baseline system with
New SAD algorithm

Sysscd

Baseline system with
New SAD algorithm
New SCD algorithm

Sysi

Baseline system with

New SAD algorithm

New SCD algorithm
Cluster Complexity Ratio criterion

Incremental training

Syss

Baseline system with

New SAD algorithm

New SCD algorithm
Equal Weight Penalty Criterion

Cross-validation EM

Sysnew

Baseline system with
New SAD algorithm
New SCD algorithm
Equal Weight Penalty Criterion
a new EM algorithm
Weight and mean adaptation

SysnewZ

Baseline system with
New SAD algorithm
New SCD algorithm
Equal Weight Penalty Criterion
a new EM algorithm
Normalized Cuts based termination sche

me
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Glossary of Symbols

fmel
fC

e(n)
o(t)

Dhat

9i(x)
p(z[A)
p(X[A)
)\speech

)\n(m—speech

~

k

BIC(M)
ABIC
L(X| M)
AM

o

Dy (P P,)
tr(X)

K

ubm

M
i
P

Tji

CLR(X;,Xs)

Mel-scale frequency

Centre frequency

Energy vector of theith frame

Thetth discrete signal in a frame

Number of feature vectors in a frame

Dimension of a feature vectors

A feature vector

A sequence of feature vector

Number of feature vectors in a sequence

Mean of theith component in the GMM

Covariance Matrix of théth component in the GMM
Weight of theith component in the GMM

Number of components in the GMM / model complexity
Collection of all parameters in the GMM

Probability of the appearance ofgiven theith component
Conditional probability of the appearancezofjiven parametek
Conditional probability of the appearanceXfgiven parametek
Collection of all parameters in the speech GMM
Collection of all parameters in the non-speech GMM
Selected acoustics cluster for

BIC score of model whose model complexitylis

BIC score difference

log likelihood of X given the model whose model complexitylis
Model complexity difference

Constant parameter in the BIC

KL divergence between distributiad and P,

Trace of covariace matrix

Number of speakers in a meeting

Mean of the componeritin the UBM

Adapted mean of the componerih the speaker model
Fixed relevance factor for mean adaptation

posterior probability UBM componetgivenz;

Cross log-likelihood ratio oX; and X,
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Eniss

Era

Espkr

(0

b

Jr(¥)

¢*

o

An

A

M

Pe(M, )\;\/[)
IC (A, M)
Z

p(Z|Aum)
p(X, Z|>\]\/])
LC(X7 Z|)\J\/l>
ECu(X|Aum)
g

po(w)
)
Dir
r
Pw)z

QKL(pw\zapO)

Av
H(A)
I(Am[X)
blockdiag
IO (p;, %)
A

Qp, X

AL

Ay

Q()‘Mv )‘tj\zl)

Missed speech error rate

False alarm error rate

Wrong speaker error rate

Weight of a hyperplane in high dimension space

Bias of the hyperplane in high dimension space

FDR when data is projected onto the hyperplaneé*, z > +b =0
Weight of the hyperplane that maximizes the FDR

Balance control parameter in the speaker change detection
Collection of all GMM parameters when the model complexsty/
Maximum likelihood estimate of,,

Maximum likelihood estimate of/

Penalty term based on parametg&ggs and model complexity/
Model complexity selection criterion

Latent indicator variables

Probability of Z given parameters,,

Conditional probability ofX givenZ and parameters,,

Joint probability ofX andZ given parameters,,

Complete joint log-likelihood ofX andZ given paramters ,,
Entropy of Z

Posterior probability of thgth component given;

Prior probability ofw

Parameter of the multinomial distribution

Dirichlet distribution

L) = [, e tdt

Posterior distribution ofv

KL divergence betweep,,. andp,

Posterior mode of ,,

Hessian matrix with respect to,

Observed information matrix with respectXg, given X
Block diagonal matrix

Observed information matrix given a single observation
A= (TT5, w) ™

Number of parameters in a Gaussian component

Ay, computed in thét — 1)th iteration

A, computed in theth iteration

L.(X|Z, ;) whenZ is computed using’,*

Adapted weight of the componenin the speaker model
Parameter that controls model complexity in the non-sp&idiv
Theith vector

The normalized inner product of two vectors

The normalized dissimilarity between disjoint séteind B
The total dissimilarity fromA to B

AUB=V

The total connection fromi to

The dissimilarity betweei; andV/;
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