
Robust Speaker Diarization for

Single Channel Recorded Meetings

Rong Fu

PhD

The University of York

Computer Science

January, 2011



Abstract

This thesis describes research into speaker diarization for recorded meetings.

It explores the algorithms and the implementation of an off-line speaker seg-

mentation and clustering system for meetings that have beenrecorded using one

microphone.

Speaker diarization is defined as a process of partitioning aspoken record

into speaker-homogeneous regions. The meeting record contains different kinds

of noise and the length of the noise varies significantly. Theaverage speech-turn

is short and the number of speakers is unknown.

To reduce the influence of these aural characteristics on theperformance of

the speaker diarization system, this thesis proposed four new algorithms. First, a

new speech activity detection method, which adjusts the non-speech model com-

plexity according to the noise length ratio. Second, a new speaker change point

detection measure was derived based on the Fisher Linear Discriminate Analy-

sis to help detect short speaker turns. Third, the Equal Weight Penalty Criterion

was formulated as a new model complexity selection criterion to train both the

speakers’ models and the Universal Background Model (UBM).It contains two

penalty terms, one penalizes the model dimensions and removes mixtures with

small mixing probability, the other penalizes the KullbackLeibler divergence

between the prior and posterior distribution of the mixing parameters, removing

those components that share the same location. This criterion can be adjusted

i



by the prior distribution parameterδ, which controls how many components are

used in the model. Fourth, a weight and mean adaptation method was developed

to adapt potential speaker models from the UBM. In addition,a potential speaker

merging termination scheme, based on the Normalized Cuts, was introduced into

the system.

Combining all the new techniques derived in this thesis together, the error

rate of the baseline system was reduced from 18.61% to 9.24% on the develop-

ment set, 18.89% to 10.50% on the evaluation set from AMI corpus, and 21.35%

to 15.48% on the evaluation set from ISL corpus. When using the Normalized

Cuts based potential speaker merging termination scheme, the error rate of the

baseline system was reduced 18.61% to 10.33% on the development set, 18.89%

to 9.99% on the evaluation set from AMI corpus, and 21.35% to 13.70% per-

centage points on the evaluation set from ISL corpus.
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Chapter 1

Introduction

As processing power, storage capacity and network bandwidth increase, so grows

the quantity of available information that can be stored andaccessed by ma-

chines. That information can take the form of text (Salton, 2000)), audio (Tranter

et al., 2004), graphics (Wang et al., 2008) and multimedia (Cortes, 2008). For

humans to be able to cope with, and exploit, this ‘information explosion’ it is

necessary for it to be indexed for ease of future retrieval, processed for differ-

ent search strategies, and re-used so as to bring together fragments which have

not hitherto been juxtaposed but which together can offer further insights into a

topic. ASCII-based text has long been the target for indexing and retrieval tech-

niques (Yu et al., 2004) and today that knowledge is helping to index multimedia

material (Xu and Chang, 2008) (Bruno et al., 2008).

Arguably speech is the most popular form of expressive and exchangeable

communication: used to perpetuate stories, to consolidateepisodic memory, to

bind people together. But it is not just the overt message contained in the speech

that is important, but the hidden information that identifies the individual, their

emotional state and the environment in which the message is spoken.

Speaker diarization is a process by which speaker information is extracted

from an audio stream. In particular it attempts to identify who spoke when in a
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conversation between two or more people. As such, the resultof the diarization

offers a pre-process for speech recognition, enabling the right template to be used

in identifying the words spoken so as to enhance the recognition rate.

This chapter defines what is meant by speaker diarization (Section 1.1), how

it is applied (Section 1.2) and outlines the problems that hinder the achievement

of one hundred percent success (Section 1.3). Section 1.4 identifies the different

types of discussions for which diarization may be usefully applied and finally

section 1.5 introduces the strategic issues covered in the remaining chapters.

1.1 Acoustic diarization and speaker diarization

In general, a spoken document is a single-channel recordingof a continuous

speech stream that contains multiple audio sources (peopleand noise). Audio

diarization is defined as the process of segmenting a spoken document into sev-

eral clusters according to their different acoustic sources. The types and details

of the acoustic sources vary according to the application. If the focus is to find

the speech part in a spoken document, it will be segmented into speech and

non-speech (silence, noise, music, etc) regions (Saunders, 1996). If the band-

width (a measure of the width of a range of frequencies) of theconversation

or the gender of the speakers need to be known, the spoken document will be

divided according to the gender of each speaker or their conversation channels

(Sinha et al., 2005). The most complicated application is topartition a spoken

document into speaker-homogeneous regions. Within NIST Rich Transcription

(NIST-RT) evaluation framework (Fiscus et al., 2005), thisis what is meant by

speaker diarization (Martin and Przybocki, 2001).

Speaker diarization provides the answer to the ‘Who spoke when’ question.

That is why it is referred to as ‘unsupervised speaker segmentation and cluster-
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ing’ in some early documents (Zhou and Hansen, 2000), (Siegler et al., 1997). It

consists of three subtasks. The first subtask is to detect where speaker changes

occur in the given spoken document. The second subtask is to group the speech

segments (a segment is a section of speech bounded by two speaker change

points) from the same speaker together (speaker clustering). The third subtask is

to estimate the number of speakers that contributed to the spoken document (the

final number of the clusters). It is hoped that there is only one speaker’s speech

involved in each cluster, and a cluster contains all the speech of the correspond-

ing speaker.

Usually there is no prior information provided about the speakers; for exam-

ple, the number of speakers, their names, their gender, their speech samples, or

their adjacency in the audio stream. This is what classifies the processing of the

audio stream as ‘unsupervised’ and makes the speaker diarization task especially

difficult.

1.2 Applications of speaker diarization

Early research focused on the audio transcription, derivedfrom automatic speech

recognisers. Later on, research concentrated on other aspects of audio informa-

tion. Speaker information was extracted to facilitate the indexing and retrieval

of audio documents, while non-speech information was detected to identify the

structure of the spoken document. Beyond that, informationlinked to the spon-

taneous nature of speech was studied to understand speech communication be-

haviour.

Speaker diarization concerns speaker information, such asspeaker turns,

the number of speakers and the speakers’ identities (to associate the ‘relative’

speaker label as ‘speaker 1’ or ‘speaker 2’, not the true speaker name). Speaker
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diarization has six main applications.

• It helps to improve speech recognition performance. Speaker diarization

provides speakers’ locations and boundaries in a spoken document, which

could be used within speaker adaptation and vocal track length normal-

ization in speech recognition systems (Tranter et al., 2004) (Gupta et al.,

2008). Furthermore, speaker information makes transcripts easier to read,

since it identifies speech that enables the transcript to be turned into oral

paragraphs.

• Speaker diarization enables speaker-based indexing and retrieval of a spo-

ken document, as described in (Johnson and Woodland, 2000).It is also

helps with determining other information, such as the speaker’s gender and

their true identity.

• Although speaker diarization usually deals with only one audio file with no

prior information of the speakers, it facilitates other speaker indexing tasks

such as speaker tracking (Tranter, 2006) and speaker tying (Tsai et al.,

2007). Speaker tracking tries to explore all the occurrences of a particular

speaker in an audio stream. Speaker tying is a classificationprocess con-

sisting of finding the number of speakers present in a collection of audio

documents, then segmenting and clustering all the documents according to

the speakers.

• Speaker diarization supplies useful information for detecting disfluencies

and speaker overlaps, which directly link to the spontaneous nature of

speech (Boakye et al., 2008) (Hung et al., 2008).

• Combined with speech recognition, high-level linguistic information, such

as the speaker’s name, the conversation topic and speaker’sview, can be

discovered (Tranter, 2006) (Ma et al., 2008).
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• Speaker diarization, combined with various image processing techniques,

helps to analyse video content, such as scene segmentation and classifi-

cation, target object discrimination, etc (Liu et al., 1998) (Quenot et al.,

2003).

1.3 Difficulties arising for speaker diarization

Depending on the nature and the environment of a spoken document, the speaker

diarization process will encounter several difficulties. Because of the sponta-

neous nature of speech, hesitations, repetitions and overlaps always happen. The

overlaps between speakers will confuse the recognizer system, and the hesita-

tions in the speech will contaminate the speaker model. The number of speaker

turns, and the length of each speech segment will also affectthe speaker diariza-

tion results. When the speaker change frequency is high and the speech segments

of each speaker are short, the speaker diarization task becomes more difficult. If

some speakers talk much more or much less than others in an oral stream, it is

hard to estimate the number of speakers present. The audio environment may

also include music, non-verbal sounds such as paper shuffling and other extra-

neous sounds; all of which have a negative impact on performance. Finally, the

more speakers present, the more difficult is the diarizationprocess.

1.4 Different types of spoken documents

There are large volumes of spoken documents, including radio and television

broadcasts, interviews, answer machine messages, telephone conversations, voice

mails, meetings, etc. Among them, broadcast news, recordedmeetings, and tele-

phone conversations are the three primary domains used for speaker diarization

research and development.
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The data from these domains differ in the quality of the recordings, the en-

vironment where the speech happened, and the style of the speech. Telephone

conversation is often recorded with a narrow bandwidth. Thenoise level is af-

fected by the recording channel. Except for telephone meetings (including two

speakers), the number of speakers involved is unknown. Broadcast news has

various kinds of programming, usually containing commercial breaks and mu-

sic. The recordings alternate between studio and outside broadcast, with different

bandwidths. The speech in broadcast news is always well presented, with less

overlap between two speakers. The number of speakers is unknown, and usually

high. Sometimes there exist a few anchor speakers, but no dominant one (Gales

et al., 2006) (Leeuwen, 2005). Only single channel recordings are available for

broadcast news.

Meetings are recorded using table-top microphones, lapel microphones, or

headset microphones. If a meeting is recorded with one microphone for each

participant, the number of speakers is known and each microphone mainly cap-

tures the voice of a particular speaker. But the speaker diarization cannot be

accomplished by a simple energy-based approach applied to each individual mi-

crophone because there is cross-talk between microphones (Pfau et al., 2001).

Sometimes, recordings from each individual microphone canbe combined and

used to enhance the speaker diarization performance (Anguera et al., 2005).

This thesis is focused on the single channel recorded meeting using only a

table-top microphone. Such meeting data contains several distortions arising

from the microphones being distant from the speakers (Meignier et al., 2005).

Moreover, the recorded meetings include informal, natural, and even impromptu

meetings. The natural style of talking leads to plenty of speaker overlaps and

frequent changes in speakers each with short segments. The number of speakers

present in recorded meetings is also unknown, although it islimited by the size
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of the meeting room. The noise contained in the recorded meetings is always

impulsive, including laughing, breathing, clapping, coughing, doors shutting,

pens falling, speakers touching their microphones, and so on.

Each domain presents unique diarization challenges and Table 1.1 summa-

rizes the various difficulties encountered in each spoken document type.

Telephone Broadcast news Meeting
Number of speakers known unknown, unknown, limited

but high by the room size
Length of segments usually short usually long some really short
Changes in speaker medium low high
Types of non-speech noise noise, music, various

commercial impulsive noises
Overlap little little a lot
Quality of recording low bandwidth headset mic distant tabletop mic
Disfluency rarely rarely sometimes
Bandwidth different setting different setting same setting

Table 1.1: Difficulties encountered with the three types of spoken document

In this thesis, the most difficult problem is of interest: thespeaker diarization

of single-channel recorded meetings, with no prior information of the number of

speakers, their gender, etc. The meeting types include bothformal meetings and

natural meetings. Although sometimes prior knowledge enhances the speaker

diarization performance, to make the system more robust andportable, no in-

formation in addition to the audio itself will be used in the proposed system.

The implementation proposed in this thesis works towards creating a speaker di-

arization system that is insensitive to noise and to changesin the dataset; that is

changing the value of the parameters slightly has no impact on system perfor-

mance.
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1.5 Thesis overview

This thesis is split into seven main chapters.

The primary literature on speaker diarization systems are reviewed in Chapter

2 to scope the research area of this thesis, provide a basic knowledge of acous-

tic feature extraction and speaker modelling techniques. Awell-regarded sys-

tem that is based on deep-rooted theory and adopts state-of-the-art techniques is

adopted as a baseline system.

In Chapter 3, the shortcomings of each part of the speaker diarization system

are identified, from the speech activity detection to the Universal Background

Model training. The specifics of the meeting data that contribute to the diffi-

culties incurred in speaker diarization are explained and several measures are

developed to quantify the influence of these difficulties.

A new speaker change detection algorithm is developed in Chapter 4. Its per-

formance is compared with some traditional speaker change detection measures,

and the improvements are discussed.

In Chapter 5, a new criterion for model complexity selectionwill be de-

veloped. This new criterion can reduce intra-speaker variance when building

speaker models or maintain inter-speaker variance during the Universal Back-

ground Model training by adjusting the prior distribution of the mixing parame-

ters. The model complexity selection criterion proposed byFigueiredo and Jain

(2002) can integrate the selection of the number of components into the EM

training. This is applied at the model adaptation step to adjust the mean and

weight value simultaneously from the UBM.

The experimental procedure that assesses all these novel technologies is de-

scribed in Chapter 6. Their effectiveness, evaluated by comparing their results

to the baseline system separately and in combination and theimprovements, will

also be presented. The results are analysed, and give a hint as to future work.
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Finally, Chapter 7 summarizes the major conclusions and contributions ob-

tained in this thesis and proposes some improvements and future work.

1.6 Toward a contribution

The objective of the thesis was to explore speaker diarization mechanisms with

a view of contributing towards achieving perfect performance. The intention

was to pinpoint the weaknesses in some of the current strategies and introduce

alternative strategies with variations, all based on soundargument.

In this thesis, four new algorithms were proposed to improvethe performance

of the speaker diarization system. First, a new speech activity detection method

was developed to cope with various impulsive noises in meetings. Second, a new

speaker change point detection measure was derived to help detect short speaker

turns. Third, the new model complexity selection criterion, Equal Weight Penalty

Criterion, was formulated to train both the speakers’ models and the Universal

Background Model (UBM). The new criterion could reduce the model complex-

ity to reduce intra-speaker variability and allow more model complexity in the

UBM to capture more inter-speaker variability. Fourth, a weight and mean adap-

tation method was developed to adapt potential speaker models from the UBM.

In addition, a potential speaker merging termination scheme, based on the Nor-

malized Cuts, was introduced into the system.
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Chapter 2

Literature Review

For more than a decade, speaker diarization processing has been used to facilitate

speech recognition. Today, it is adopted as a means of indexing large speech

databases. The requirement for enhanced recognition accuracy, a robustness to

extraneous noise and adaptability in a variety of conditions, have all served to

increase the difficulty in processing audio files successfully.

This chapter is a literature review of related research intospeaker diarization

that has been conducted in the last few years. First, background information

about speaker recognition will be introduced. Various acoustic features used in

speaker diarization will be explained in section 2.1 and speaker modelling tech-

niques will be presented in section 2.2. Then the main steps of a speaker diariza-

tion system will be introduced. They are speech activity detection (SAD) (sec-

tion 2.3), speaker change detection (SCD) (section 2.4), and potential speaker

clustering (section 2.5). Next the strategies to combine the results of different

diarization systems will be given in section 2.6. Finally, the baseline system that

was used in the research described in this thesis will be illustrated in section 2.8.
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2.1 Front-end processing

The front-end is a generalized term that refers to the initial stages of a process. In

speaker recognition, front-end refers to the part that converts a continuous speech

stream into a sequence of acoustic feature vectors. In this section, the speech pro-

duction mechanism will be first introduced (section 2.1.1).Then how to extract

the speaker-dependent information from the speech waveform will be described

in section 2.1.2. Next, the most popular acoustic parameters used for speaker

diarization processing, the Mel-Frequency Cepstrum Coefficients (MFCC), will

be explained in section 2.1.3. Some other acoustic parameters that are usually

applied in combination with MFCC will be given in section 2.1.4. Finally, the

features used in speaker diarization systems will be reviewed in section 2.1.5.

2.1.1 Speech production mechanism

Speech is produced as a result of the acoustic excitation of the vocal tract. The

excitation comes from a series of nearly periodic pulses generated by the vocal

cord or the turbulent flow of air. Then it is constrained by thevocal tract, which

can be thought of as an acoustic tube which continually changes its shape during

speech production. Finally the produced speech is radiatedfrom the lips, or

from the nostrils in the case of nasal consonants. The resulting speech can be

described by a waveform, plotting the instantaneous amplitudes of a periodic

quantity against time.

2.1.2 Speaker characteristics and their representation

For speaker recognition, it is necessary to find in the speechthose factors which

convey speaker-dependent information. First, the anatomical details of the vocal

tract vary considerably from one person to another. Such differences result from
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the fixed structural differences such as the mass of the vocalcord, the size of the

mouth, the shape of the tongue, the position of the pharynx, etc. Second, the

differences in speaking habits of different individuals are an important source

of inter-speaker variation. The differences in the speaking habits result from the

manner in which people use their speech mechanism, such as intonation patterns,

speaking rates, and so on. Such differences are produced by the acoustic move

and are seen in the temporal variations. In speaker recognition, both anatomical

and speaking habit differences are exploited to distinguish the speech of one

speaker from another.

To extract speaker-dependent parameters that reflect fixed anatomical prop-

erties of the vocal tract, the time-invariant parameters are ideal because of their

independence of the spoken message. On the other hand, idiosyncrasies in the

speaking habits of individuals by nature vary from one soundto another, and

hence cannot be represented in a time-invariant style. For most sounds, the

shape of the vocal tract changes slowly compared to the excitation vibrations,

so the speech production can be considered to be in a quasi-stationary mode.

As a result, when examined over a sufficiently short period oftime (between 5

and 100 milliseconds), speech characteristics stay fairlyconstant. However, over

longer periods of time (0.2s or more), they change to reflect high-level charac-

teristics, in the form of linguistic information. Consequently, it is possible to

carry out a spectral analysis over a short period (20ms-30ms), which determines

speech characteristics in the frequency domain. This efficient way to describe

all the acoustic characteristics of speech is called a short-time spectrum. It pro-

vides a three-dimensional representation of the speech signal, the coordinates

being time, frequency, and energy. While the short-time speech characteristics

are presented by the spectrum of each short time interval, the time-varying char-

acteristics can be obtained by averaging over time.
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A wide range of features that are related to some property of the short-

time power spectrum, such as Linear Predictive Coding Coefficients (Atal and

Hanauer, 1971), MFCC (Mermelstein, 1976), principal components of the spec-

tra (Bridle and Brown, 1974), Perceptual Linear Prediction(Hermansky, 1990b),

Representation Relative Spectra (Hermansky, 1990a) and soon, have been in-

vestigated in automatic speaker recognition application.

2.1.3 Mel-Frequency Cepstrum Coefficients

By approximating the human auditory system’s response, MFCC is perhaps the

best-known and most popular set of acoustic parameters for both speech recogni-

tion (Zheng et al., 2001) and speaker diarization (Davis andMermelstein, 1976).

Instead of the linearly-spaced frequency bands, MFCC extracts acoustic param-

eters on the Mel-scale.

After being read by the computer, the audio stream is sampledat regular time

intervals, forming a sequence. The sampling ratefs (the number of samples ob-

tained in one second) is fixed during a sampling process and isusually 16kHz.

To transform this time-sampled, discrete waveform into a short-time spectrum,

the sequence of discrete samples need to be divided into manyoverlapped short

time frames. Every frame has the same time length, usually 20ms, with an over-

lap of 10ms with the prior block. The signals in each frame aremultiplied with

a Hamming window and then transformed into the frequency domain by apply-

ing a Fast Fourier Transform (FFT). The spectrum of each frame is then filtered

by a collection of triangular filters and the log energy outputted by each filter is

calculated. Transforming all the log energy back into the time domain using the

Discrete Cosine Transform (DCT), the MFCCs are obtained. For each frame, the

dimension of the MFCCs is determined by the number of filters.These filters are

spaced according to the Mel-scale (Beranek, 1949), in whicha linear frequency
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spacing is adopted below 1000 Hz and a logarithmic spacing above 1000 Hz.

Equation 2.1 shows how to approximate the frequency in the Mel-scalefmel us-

ing the normal frequencyfc; and Figure 2.1 displays a Mel-scale filter bank that

contains 30 triangular filters.

fmel = 2595 log10(
fc
700

+ 1) (2.1)
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Figure 2.1: The mel-scale filter bank that contains 30 triangular filters which are
spaced between 0Hz and 8kHz.

The whole process of extracting MFCC features is illustrated in Figure 2.2.

Given the frame size and the overlap between frames, it is simple to compute

how many frames are contained in a time interval. If the framesize is 20ms

and the overlap is 10ms and the speech lasts one second, then there will be one

hundred frames, and 100 MFCCs will be extracted.
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Figure 2.2: Block diagram of the MFCC processor

2.1.4 Other acoustic parameters

One of the simplest characteristics of any signal is its log-energy. For a framen,

the energy vectore(n) is one-dimension and defined by Equation 2.2:

e(n) = log(
T
∑

t=1

o(t)2). (2.2)

where o(t) is thetth discrete signals in the framen and T is the size of framen.

The first and second differential coefficients of MFCC together with this log-

energy feature are widely used as speaker acoustic features. And all have the

same dimension as the features that are differentiated. Thelog-energy feature

and the the first and second differential features are alwaysused in combination

with the MFCC.

Throughout the thesis,̄D is used to refer to the dimension of the feature

vectors, andN is the size of the feature vectors. the frame size will be set to

30ms and the overlap will be set to 20 ms.

2.1.5 Features used in speaker diarization systems

The MFCC features are considered to be very effective for speaker recognition

because they are obtained by spectrum analysis and the spectrum reflects speak-

ers’ predominant physiological characteristics (the vocal tract structure). The
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number of MFCC features are generally different in speaker diarization systems.

For example, 12 MFCCs, the mean-normalized log energy and their first and

second differential coefficients are extracted as the acoustic feature vectors in

the HTK broadcast news transcription system. The dimensionD̄ of the fea-

ture vectors is 39. In contrast in the LIMSI broadcast news transcription system

(Meignier et al., 2005), the log energy feature was not included, resulting in a

dimension of 38. In (Anguera et al., 2006a), only 19 MFCCs were used without

deltas (the divergence features). The PLP feature vectors were used in (Tranter

et al., 2004). Recently, long term speaker features, like pitch, vocal source, and

prosodic features, were applied for speaker diarization (Yamaguchi et al., 2006)

(Chan et al., 2006) (Friedland et al., 2009). Sometimes, feature vectors are pro-

jected into a lower dimension space prior to the clustering step (Tsai and Cheng,

2006).

2.2 Speaker modelling

When two people utter the same words, the variations in the speech fundamen-

tally originate from the difference between the speakers’ voices. When a per-

son utters two sequences of different words, the variationsof the speech essen-

tially come from the difference between the two sequences ofphonemes. Even

when the same speaker utters the same word twice, variationsoccur. This can

be caused by many factors such as the speaking rate, the emotional state of the

person of the person, and so on. These last two variations arereferred to as intra-

speaker variations. If two utterances with the same words are compared in order

to determine whether they are from the same speaker or not, the task is called

text-dependent speaker recognition. However, the most general speaker recogni-

tion task is to recognize a voice whatever is spoken and whenever it is said. This
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task is more difficult because inter-speaker variations must be detected without

being confused by intra-speaker variations. It is called text-independent speaker

recognition. The speaker diarization task is text-independent.

The spectrum acoustic parameters convey not only the speaker-dependent in-

formation, but also phonetic information and environmental conditions. There-

fore, various speaker-modelling techniques are introduced to represent speaker-

dependent information over the long term. The more data fromthe same speaker

that is included to build the model, the better it discriminates one speaker from

another. The GMM (Hansen, 1982), the Vector Quantization (VQ) codebook,

the tied GMM, the Radial Basis Function (Poggio and Girosi, 1990) and the

Multilayer Neural Network (Rumelhart et al., 1986) have allbeen applied in

modelling the speaker (Reynolds and Rose, 1995) (Matsui andFurui, 2004)

(Reynolds, 2002) (Farell et al., 1994). GMM, which is the most popular and

flexible, was used both in speaker recognition (Reynolds, 2002) and speaker di-

arization (Tranter and Reynolds, 2006). Recently, the hybrid systems of Support

Vector Machine (SVM) (Boser et al., 1992) have been successfully adopted for

both speaker verification and speaker recognition (Kharroubi et al., 2001) (Fine

et al., 2001) (Wan and Renals, 2005a).

The GMM model will be described in the next section 2.2.1. Then, two

principal motivations for using Gaussian mixture densities as a representation of

the speaker characteristics will be given in the section 2.2.2 that follows. Finally,

some relevant algorithm issues, such as parameter estimation, initialization, and

how the model order is determined will be introduced in section 2.2.3.

2.2.1 Gaussian Mixture Model (GMM) description

GMM are the most widely used mixture model, and is a weighted mixture of a

number of Gaussian components. With an appropriate number of components,

17



GMM has the ability of forming smooth approximations to arbitrarily-shaped

densities (Reynolds and Rose, 1995). It can be described by Equation 2.3:

p(x|λ) =
M
∑

i=1

wigi(x) (2.3)

wherex is a given feature vector with dimension̄D; λ contains all the the pa-

rameters in the model;p(x|λ) is the probability of the appearance ofx given the

model.M is the number of components in the model andwi is the weight of the

componenti, which must satisfy the conditions thatwi ≤ 1 and
∑M

i=1wi = 1.

gi(x) is a component of the GMM, and is a multivariate Gaussian function of the

form 2.4:

gi(x) =
1

(2π)D̄/2|Σi|1/2
exp

{

−
1

2
(x− µi)

TΣ−1
i (x− µi)

}

(2.4)

for 1 ≤ i ≤ M , whereµi andΣi are the mean and covariance of the Gaussian

componenti. The parameters in a GMM can be collectively represented by the

notationλ = {µi,Σi, wi} wherei = 1, · · · ,M . µi has the same dimension

asx and is the mean vector of the componenti. The mean vector controls a

component’s position among other components.Σi is a D̄ ∗ D̄ matrix, which

is the covariance matrix of the componenti. The shape of each component is

decided by its covariance matrix.

2.2.2 Motivation Interpretation

The speech contains broad phonetic events. The production of speech can be

divided into three classes: voiced sounds, unvoiced soundsand plosive sounds.

They can be further separated as vowels, semivowels, voicedstops, nasals, voice-

less stop consonants, stop consonants, and various fricatives. These phonetic

events may characterize the sub-spaces of the acoustic space of a speaker’s voice
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(Reynolds and Rose, 1995). Because all the training or testing speech is un-

labelled, these sub-spaces and acoustic classes are ‘hidden’ - and are therefore

unknown. These sub-spaces cannot be directly mapped to their various mono-

phones (Reynolds and Rose, 1995).

GMM is a semi-parametric probabilistic density and provides great flexibility

and precision in modelling the underlying statistics of sample data. Assuming

the independence of the feature vectors, the components contained in a GMM

are suitable for modelling a wide range of hidden acoustic classes. Speaker char-

acteristics, such as the shape of the vocal tract, are contained in these acous-

tic classes, and will be represented by the mean vector of thecomponent and

the intra-speaker variation will be captured by the covariance matrix (Reynolds

and Rose, 1995). Also, because the component Gaussians are acting together

to model the overall probability density function, any inaccuracy due to single

components will be compensated by the whole model.

2.2.3 Algorithm issues

Given training feature vectors of a speaker, the goal of speaker model training is

to estimate the parameters of the GMM,λ = {µi,Σi, wi} wherei = 1, · · · ,M .

The estimated parameters, in some sense, need to make the GMMa best match

to the true distribution of the feature vectors. To minimizethe training errors is

thought to be consistent with minimizing the difference between the model and

the true distribution. There are several techniques available for estimating the pa-

rameters of a GMM. By far the most popular and well-established method is the

Expectation-Maximization (EM) algorithm, which approximates the Maximum

Likelihood (ML) estimates of the parameters.

The aim of ML estimation is to find the model parameters which maximize

the likelihood of the training data, given the GMM. For a sequence ofN feature
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vectors,X = x1, x2, · · · , xN , their likelihood in a GMM model can be described

by Equation 2.5:

p(X|λ) =
N
∏

n=1

p(xn|λ) (2.5)

wherep(xn|λ) is given by Equation 2.3. Usually the ML estimation of the pa-

rameters can be obtained by solving Equation 2.6:

∂ log(p(X|λ))/∂λ = 0. (2.6)

Unfortunately, this expression with respect to the covariance parameters is a

nonlinear function so Equation 2.6 cannot be solved directly. The EM algo-

rithm solves this problem iteratively, by monotonically increasing the value of

log(p(X|λ)) at each step.

The EM algorithm is widely used to obtain both the ML estimates and the

maximum a posteriori (MAP) estimates in various applications, including the

Hidden Markov Model (HMM) (McLanchlan and Basford, 1988). The detailed

steps for the EM algorithm as it is applied in the GMM trainingprocess will be

given in Chapter 5.

Two critical factors in training a Gaussian mixture speakermodel are select-

ing the complexityM of the mixture (the number of components contained in the

GMM) and initializing the model parametersλ. A random initialization method,

which randomly choosesM vectors from a speaker’s training data as the means

of the components, and uses the identity matrix as the starting covariance matrix,

is widely used. This method is thought to be simple and computational efficient.

However, it does not guarantee a global optimum solution.

Determining the number of componentsM in a mixture that can model a

speaker adequately is an important but difficult problem. There is no theoreti-
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cally determined way to estimate the number of mixture components in a GMM.

For speaker modelling, the objective is to choose the appropriate number of com-

ponents to capture adequately the speaker’s characteristics. Either too few or too

many mixture components will affect the GMM’s ability to capture the distin-

guishing characteristics of the speaker.

In order to train a GMM that reliably models the characteristics of a speaker,

adequate training data is necessary. In speaker diarization, however, there is

no labelled training data available. Moreover, some speaker utterances last less

than one second and sometimes the GMM needs to be trained on small data

collections. Hence the model complexity selection influences the success of the

process.

2.3 Speech activity detection

The aim of SAD is to find the speech regions in an audio stream. The speech

in a stream may overlap with other sounds, such as music and noise. During

the speech activity-detecting process, all the portions containing speech will be

retained, while the non-speech portions will be discarded.Removing the non-

speech parts will reduce the processing time of speaker modelling, and improve

speaker diarization performance because it increases the efficiency of speaker

modelling. If the data obtains a number of different sorts ofnoise, the speaker

models will be contaminated and distorted.

The non-speech in broadcast news could be categorized into three types, si-

lence, music, and noise (Tranter and Reynolds, 2006). The noise class is com-

posed of any event occurring in the signal that could not be categorized as silence,

music or speech. Music is not a common type of non-speech in the meetings. Si-

lence portions in the audio can be detected by energy-based threshold and zero-
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crossing rate. When it comes to the other types of non-speech, more complicated

methods are in need. The general approach used is maximum-likelihood classifi-

cation with GMMs. GMMs are trained to represent different acoustic conditions.

Usually, two GMMs are separately trained for speech and non-speech (Wooters

et al., 2004). However, in some work, GMMs were trained separately for all

kinds of non-speech(Gauvain et al., 1998) (Reynolds and Carrasquillo, 2004)

(Sinha et al., 2005).

Given two trained GMMs, one for the speech and the other for the non-speech

each feature vectorxn extracted from the audio file will be assigned to the model

where it represents the maximum likelihood according to Equation 2.7.

k̂ = argmax(log p(xn|λspeech), log p(xn|λnon−speech))1 ≤ n ≤ N, (2.7)

whereλspeech andλnon−speech are the GMM models for speech and non-speech

separately.p(xn|λspeech) is the probability ofxn present in the speech model

calculated by Equation 2.3.̂k is the selected acoustic cluster ofxn, in this case

the speech or the non-speech. Due to the continuity of speech, this classification

result needs to be smoothed over several frames (Siegler et al., 1997) (Reynolds

and Carrasquillo, 2004).

In some work, the detected speech and non-speech were passedthrough some

heuristic rules so as to refine their boundaries (Reynolds and Carrasquillo, 2004).

As well as the GMM maximum likelihood classifier with smoothing window, the

HMM model is also widely used for acoustic classification; its transition param-

eters can be used to control the speech length (Tranter and Reynolds, 2006).

A hybrid approach that combines the energy-based noise detector and GMM-

based clusters was proposed to detect noise during meetings(Li et al., 2002);

The speech and non-speech detected by an energy-based detector was then used

to train the speech and non-speech GMMs.
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Missing speech (MISS) and false alarm (FA) are the two measures to evaluate

the speech activity detection performance. Missing speechcorresponds to those

portions of the audio that are speech, but recognized by the detection process as

non-speech. False alarm, on the other hand, contains these portions of the audio

that are non-speech, but recognized by the system as speech.Speech detection

errors include both miss and false alarm errors. The detection error rate is the

percentage of the time that all the error portions occupy in the whole audio.

Generally, it is more important to minimize the missing speech, because they

want to enhance the speed.

Sinha et al. (Sinha et al., 2005) and Zhu et al. (Zhu et al., 1998) applied a

word recognizer to remove the non-speech parts. However, asmany speaker di-

arization systems adopt speech activity detection to facilitate speech recognition,

they are not available at this stage. For the speaker indexing task, it is unneces-

sary to include a complicated speech recognition system. Ifthe audio is recorded

in multiple channels by individual microphones, the recording of these channels

can be combined to enhance the speech signal and remove non-speech portions

(Pfau et al., 2001) and (Anguera et al., 2005). The meeting recorded by multiple

microphones can also be used to detect the position of the speakers (Pfau et al.,

2001) (Pertila and Parviainen, 2007) (Brutti et al., 2007) (Brutti et al., 2008a).

2.4 Speaker change detection

There are three essential subtasks contained in the speakerdiarization process:

SCD, clustering, and estimating the number of the speakers.The SCD (also

referred to as speaker segmentation) produces a sequence ofutterances with the

same speaker within each one. The boundaries between such utterances, where

the speaker changes, are called the speaker change points.
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Traditionally SCD do not cut words in half and so most change points are hy-

pothesized to happen within silence. Some energy-based change detectors anal-

yse the energy waveform and use a threshold to find the points where a speaker

change is most likely to exist (Kemp et al., 2000) (Nishida and Kawahara, 2003).

A decoder-guided change point detector, in contrast, runs afull speech recogni-

tion process to obtain the change points by forced alignment(Liu and Kubala,

1999), (Kubala et al., 1997). However, there is no clear relationship between the

existence of a silence in a recording and a change of speaker.The voice might

be overlapped between different speakers and long pauses may happen during

one person’s speech. Moreover, music or commercial might beplayed as the

background sound when speakers change, instead of silence.

Some systems detect the change in various acoustic conditions (telephone

bandwidth, speaker gender, music/speech/noise) instead of speakers (Gauvain

et al., 1998) (Ajmera et al., 2002) (Ajmera and Wooters, 2003). For this kind

of system, prior information is required to train the modelsfor different acoustic

conditions and only some of speaker changes can be discovered; there is no

guarantee that a speaker change happens when there are changes in the acoustic

condition.

Other than the energy-based SCD and acoustic model-based SCD algorithm,

a metric based SCD detects changes depending on the distancebetween two ad-

jacent segments. To detect if the speaker changes at a point,a window is located

around the point and the feature vectors in this window are separated into two

parts, one before the point, and the other after it. Then the distance between these

two parts are measured and a threshold is set. If the distanceis larger than a spe-

cific threshold, this point is the change point, otherwise itis not. Various distance

matrices, such as the Bayesian Information Criterion (BIC)(Schwarz, 1978), the

Kullback-Leibler Divergency (KL) (Kullback and Leibler, 1951), the General-
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ized Likelihood Ratio (GLR) (Willsky and Jones, 1976), the Gish distance (Gish

et al., 1991), the Divergence Shape Distance (Lu and Zhang, 2002), the Cross

Likelihood Ratio (CLR) (Mood et al., 1974), the Malalanobisdistance (Maha-

lanobis, 1936) and the Kolmogorov-Smirnov test (Kolmogorov, 1933)(Smirnov,

1948), have been applied to detect the change points (Chen and Gopalakrishnam,

1998) (Siegler et al., 1997) (Zhou and Hansen, 2000), (Sinhaet al., 2005), (Bar-

ras et al., 2004) (Gauvain et al., 1998) overview1-30-4 (Gish et al., 1991) (Lu and

Zhang, 2002) (Anguera et al., 2005) (Wooters et al., 2004) (Campbell, 1997) and

(Deshayes and Picard, 1986). One class-SVM and SVM supervised classifica-

tion errors have also been used as distance measures betweentwo segments. The

optimum value of thresholds are usually selected dependingon training data sets

(Kadri1 et al., 2008) (Wan and Renals, 2005b).

Metric based SCD is probably the most used technique to date.Among them,

the BIC distance and the KL2 distance are popular for their computational effi-

ciency and good performance (Tranter and Reynolds, 2006). These two SCD

algorithms will be introduced in the next section (2.4.1) and the evaluation of the

task will be presented in the one that follows.

2.4.1 BIC and KL2

Bayesian Information Criterion (BIC) is a model selection criterion applied to

choose one among a set of candidate models to represent a given data set (Schwarz,

1978). These models are trained maximizing the likelihood of the training data

fitting the models, as computed by Equation 2.7. It is evidentthat when the num-

ber of parameters used in the model increases, the model fits the dataset better.

However, when the parameters contained in the model become too large, there

is over-training. BIC penalizes the model by its complexity- the number of

parameters included in the model.
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Let L(X|λM) be the log likelihood of data setX = {xn|n = 1, · · · , N}

given the model whose model complexity isM , as describe by Equation 2.5.

The BIC score of the model with model complexityM is calculated according

to Equation 2.8:

BIC(M) = L(X|λM)− 1/2φM logN (2.8)

whereφ is a constant modified by experiment. Among a series of models, the

BIC criterion prefers the model that maximizes the BIC score.

As introduced in (Chen and Gopalakrishnam, 1998), for SCD, one Gaussian

model is used for representing the data set and the window size is initialized

at two seconds and located at the beginning of the feature vectors (Chen and

Gopalakrishnam, 1998). For each point in the window, BIC is used to check if

this point is a change point. Denote the Gaussian trained using the feature vectors

before the point asλb, the Gaussian trained using the feature vectors posterior

to the point asλp, and the Gaussian trained using all the feature vectors in the

window asλf . If a change truly happens, the data is better to be represented by

two models,λb andλp, otherwise a single modelλf is preferred. To compare

their BIC score, Equation 2.9 is applied:

∆BIC = BIC(λb) +BIC(λp)−BIC(λf)

= L(X|λb) + L(X|λp)− L(X|λf)− 1/2φ logNf [Mb +Mp−Mf ]

= 1/2[Nf log(|Σf |)−Nb log(|Σb|)−Np log(|Σp|)]−
1

2
φ∆M logNf ] (2.9)

whereNb, Np andNf are the number of feature vectors used to train the pa-

rametersλb, λp, andλf and theΣb, Σp, andΣf are their covariance matrices.

∆M = (D̄(D̄+3)/2), whereD̄ is the feature vectors’ dimension. If∆BIC > 0,

this point is a change point. If a change point is discovered in the window, a new
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window is started at the change point and the BIC test is done again. Otherwise,

the window is enlarged to include another one second speech and the test is re-

peated. If the boundaries of the window are near a change point, it is difficult to

detect this point because not enough data is available for model training.φ can

be simply set as one, but it is better to be tuned by the development dataset.

Using the BIC criterion to search for the change point exhaustively is time

consuming as it must be tested for each point. To speed up the algorithm, the test

can be run every30 feature vectors. To avoid the computation of three full covari-

ance matrices, Hotelling’sT 2 statistics were applied to accelerate the searching

(Zhou and Hansen, 2000). Using only the mean value and a shared covariance

matrix,T 2 statistics quickly select one candidate change point in a window, and

BIC is applied to reject false candidates. Controlling the window size dynami-

cally and overlooking the points near the window boundariesare other efficient

ways to speed up the BIC based search.

The KL divergence (also referred to as relative entropy), isan unsymmetric

measure of the difference between two probability distributionsP1 andP2. The

KL divergence ofP2 from P1, denoted asDKL(P1||P2), is the expected value

of their entropy with respect to the distribution ofP1. It is formulated in the

following way:

DKL(P1||P2) =

∫ +∞

−∞

p1(x) log
p1(x)

p2(x)
dx (2.10)

The larger this value, the greater the distance between probability densities of

the two random variables. BecauseDKL(P1||P2) is not equal toDKL(P2||P1), a

symmetric measureKL2 is introduced to measure the distance between the two
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densities.KL2 is defined by Equation 2.11 as:

KL2 = DKL(P1||P2) +DKL(P2||P1) (2.11)

UsingKL2 to measure the model distance, a fixed window with two second

length is used. Two Gaussian models are trained on this window. Modelλb =

(µb,Σb) is trained on the first half of the window and modelλp = (µp,Σp) is

trained on the second half of the window. Then KL2 is used as the distance

measure between the two models to decide if a speaker change happened at the

middle point of the window. It is described by Equation 2.12

KL2 = tr(Σ−1
b Σp) + tr(Σ−1

p Σb) + (µb − µp)
T (Σ−1

b + Σ−1
p )(µb − µp)− 2D̄

(2.12)

wheretr(Σ) takes the trace of the matrixΣ, D̄ is the dimension of the features.

Σ andµ are the Gaussian parameters, which are used in Equation 2.4.The

window moves forward point by point, and at each step the KL2 distance (2.11)

is calculated for the window. If theKL2 distance achieves the local maximum

at a point, this point will be labelled as a change point (Siegler et al., 1997).

Sometimes there are too many peaks in a window. To acceleratethe searching,

the peaks can be passed through some smoothing rules, and only those larger than

a threshold will be treated as the change points (Zhu et al., 1998). KL divergence

measures only the expectation of the log-difference between two distributions.

The relative entropy of variance and skewness between the two parts can also

been approximated and applied as the distance measure to detect the change

points (Brutti et al., 2008b). Once all the speaker change points are detected,

the feature vectors between two change points will be labelled as a section (the

feature vector where the change happens will be included in the section after it).
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As an initialization step, the speaker change detection needs to be computed

quickly. Thus algorithms with a low computational burden are favoured. The

speaker change detection can be evaluated by measuring the number of missed

changes in speaker (missing turns) and the number of detected changes that are

not true (false alarm). Reducing missing turns is importantfor the SCD because

that speech section containing mixed speech from more than one speaker will

contaminate the model trained by this speech section duringthe clustering step

later. Although to reduce missing changes is important, if the resulting sections

are too short to cover the main speaker characteristics, later processing will be

affected as well.

2.5 Speaker clustering

After the SCD, the purpose of speaker clustering is to cluster the speech sections

between speaker change points together according to their speakers. One cluster

is produced for each speaker in the audio, and all speech sections from a given

person are collected in a single cluster. The speech sections can be clustered in

a agglomerative way (bottom-up framework) or using a splitting down scheme

(top-down framework). The bottom-up framework will be presented in the next

section. To use the new information relating to the speakersafter the models are

updated, the SCD and clustering steps can be integrated, as described in section

2.5.2. Some post-processing strategies will be introducedin section 2.5.3. The

other clustering methods will be introduced in Section 2.5.4.

2.5.1 Bottom-up framework

Within the hierarchical agglomerative clustering framework, all the speech sec-

tions are organized in a tree structure, from the leaves to the root. It consists of
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the following steps:

1. initialize the leaf speaker clusters of the tree, with each speech section

assigned to a cluster;

2. a potential speaker model is trained for each cluster based on the speech

sections assigned to it;

3. compute pair-wise distances between each pair of clusters;

4. select the closest pair of clusters, merge their segmentsto form a new

cluster;

5. update the potential speaker model for the new cluster andthe distances of

the other clusters to it;

6. iterate the last two steps until the stopping criterion ismet.

Usually, the results of the SCD step will be taken as the initialization leaves

in a bottom-up framework (Tranter and Reynolds, 2006). Zhu et al. (Zhu et al.,

1998) and Barras et al. (Barras et al., 2006) considered the cluster initialization

problem to be less important and ignored the speaker change detection step by

simply splitting them into small same-length speech sections. The number of ini-

tial clusters is set beforehand as a value that is much largerthan the real speaker

number (Barras et al., 2006), or is determined automatically depending on the

length of the audio (Anguera et al., 2006a).

Moh et al. (Moh et al., 2003) and Barras et al. (Barras et al., 2004) repre-

sented the speaker using a full covariance Gaussian. Gauvain et al. (Gauvain

et al., 1998), Meignier et al. Sinha (Meignier et al., 2005) and Moraru et al.

(Moraru et al., 2003) used the GMMs because they model the speaker character-

istics better. Tranter et al. (Tranter et al., 2004) adopteda single Gaussian model

first when the speech sections were short, then used GMMs whenthe speech
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sections became larger. Sinha et al. (Sinha et al., 2005) andBarras et al. (Barras

et al., 2004) adopted diagonal GMMs to model the short speechsections while

full covariance GMMs were used to model long speech sections. If the GMMs

are used to model the speakers, the parameter complexity will affect the perfor-

mance, as referred to in Section 2.2.3. Eight component GMMswere used in

(Gauvain et al., 1998) to model a speech section and this number is unchanged

in the whole process. In (Wooters et al., 2004) and (Ajmera and Wooters, 2003),

when two clusters were merged, the model complexity of the new model was the

sum of the two original models. This helps to remove the need for tuning the

penalty weightφ in Equation 2.9. In (Anguera et al., 2006a), the complexity of

the model was decided dependent on the speech section size and Cluster Com-

plexity Ratio (CCR). In (Anguera et al., 2007), the model complexity is fixed,

and the GMM is trained by cross-validation to improve model accuracy. The

frame-level purification algorithm was presented in (Anguera et al., 2006c) to

remove the components that are dominated by non-speech frames.

The distance metric used in step 3 can be KL2, GLR, the∆BIC and nor-

malized CLR (Lee et al., 2007) (Chen and Gopalakrishnam, 1998) (Zhou and

Hansen, 2000). Vijayasenan et al. (Vijayasenan et al., 2007) proposed that the

Jensen-Shannon divergence (Schutze and Manning, 1999) be adopted as the sim-

ilarity measure between two segments, This depends on the the loss of mutual

information caused by merging.

If the clustering process terminates, the remaining numberof potential speak-

ers in the tree determines the number of speakers. If the number of speakers in the

speech is estimated in advance asK, the clustering tree will be pruned to obtain

theK tightest clusters (Tranter and Reynolds, 2006). Some researchers termi-

nate the clustering procedure if the distance measure is over a given threshold.

Gauvain et al. (Gauvain et al., 1998) and Barras et al. (Barras et al., 2004) used
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the likelihood of a model penalized by the weighted sum of thespeech section

number detected in the SCD and cluster number to judge if the cluster process

should be continued. The BIC stopping criterion was provided by Moraru et al.

(Moraru et al., 2003) and this has become the predominant approach. In this

approach for two clusters waiting to be merged, their local∆BIC value will be

computed by Equation 2.9. If∆BIC < 0, they will be merged and the process

continues, otherwise the clustering algorithm terminates. Han and Narayanan

(Han and Narayanan, 2007) (Han and Narayanan, 2008) appliednormalized log

GLR as the stopping criterion. Vijayasenan et al. (Vijayasenan et al., 2008)

adopted Minimum Description Length (Rissanen, 1989) and normalized mutual

information to select the appropriate number of speakers.

2.5.2 Integrated speaker segmentation and clustering

To run the speaker segmentation and clustering separately lacks flexibility be-

cause once the SCD step has finished, there is no chance to correct the errors

occurring in that step. Therefore, some work was undertakenon the speaker

segmentation and clustering steps, with the results of the SCD only used as an

initialization for the processing that follows.

The integration framework for iteratively combining speaker segmentation

and clustering was first established in 1997 for LIMSI 1997 Hub-4E transcrip-

tion system (Gauvain et al., 1998). It inserts a segmentation step each time two

potential speakers are merged and a new speaker model is thentrained. The seg-

mentation is processed by both the maximum likelihood classifier (Gauvain et al.,

1998) (Meignier et al., 2005) and the HMM (Ajmera et al., 2002) (Ajmera and

Wooters, 2003) (Barras et al., 2004) (Barras et al., 2006). In this segmentation

step, first all speech is clustered based on the speaker modelfor each potential

speaker; and second, every potential speaker model is updated according to the
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speech sections that are clustered together. This two-stepprocess repeats until

the speech sections assigned to all clusters stop changing.The advantages of

this integrated speaker segmentation and clustering step is that the boundaries of

speech sections that lie between two speaker change points are refined during ev-

ery clustering round. However, the whole process is computationally expensive.

Another scheme which integrates the SCD and clustering steps, Evolutive

HMM (EHMM), was first described by Meignier et al. (Meignier et al., 2000),

and then developed in (Meignier et al., 2001) and (Meignier et al., 2005). At the

start, an HMM with only one state is initialized and a potential speaker model

λ0 that is trained on the whole audio stream is used as the state’s model. It

represents all the speakers in the audio. Then several speech sections that have

the least likelihood given the modelλ0 are selected to train a new model for a

new potential speaker. This new model is added to the HMM as a new state and

then all the feature vectors are re-assigned to these two models. All the exist-

ing potential speaker models in the HMM are adapted according to the current

segmentation. The segmentation and updating process is repeated until the re-

sults stop changing. New potential speaker models are addedone by one until

the likelihood of the current solution is no more than the likelihood of the pre-

vious solution. Fredouille and Evans (Fredouille and Evans, 2008) introduced a

confidence value to remove the influence of non-speech and overlapped speech

portions in the EHMM system.

In (Anguera et al., 2006b), these two kinds of integrated SCDand clustering

algorithm were combined. The speech sections were clustered intoKini initial

clusters by a method similar to the EHMM, and then they were agglomeratively

clustered by the method introduced in (Barras et al., 2006).
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2.5.3 Post processing

If the training data is not adequate, the speaker model may not cover the whole

feature space. Therefore, complex speaker modelling approaches will fail to

discriminate different speakers. After several iterations, the amount of data per

cluster increases. Thus the state-of-the-art speaker recognition methods can be

employed to improve the quality of the speaker clustering. AUniversal Back-

ground Model (UBM) is a general speaker model, which is trained by plenty

of data to cover all the speaker characteristics under arbitrary situations. The

speaker model for a specific person can be created by adaptingfrom the UBM.

The adapted model is thought to represent speaker characteristics better, partic-

ularly when the training data for the specific speaker is insufficient. Maximum

A Posteriori (MAP) estimation (mean-only) is applied to UBMadaptation. Un-

der the Bayesian framework, a variable’s posterior probability given a model is

the normalized product of model’s prior probability and thevariable’s likelihood

given the model. As its name suggests, MAP estimation of the model parameters

will select the value that increases the feature vectors posterior probability. Us-

ing the UBM as the prior model, the mean vector of the GMM can beobtained

by Equation 2.13:

µ̃i =
ρµubmi +

∑N
j=1 τjixj

ρ+
∑N

j=1 τji
(2.13)

whereµubmi is the mean vector of the componenti in the UBM, andµ̃i is the

corresponding mean vector of the speaker model.x1, ..., xN are the feature vec-

tors andτji is the posterior probability UBM componenti given xj . ρ is the

fixed relevance factor which controls the balance between the speaker data and

the prior (UBM) mean. Using UBM-MAP adaptation technology to create a

speaker model has been shown to improve speaker recognitionperformance by
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(Reynolds et al., 2000).

(Barras et al., 2004) provided a post-processing step for their speaker diariza-

tion system. After several iterations of the clustering process, when the amount

of data per cluster increases, the UBM-MAP technique was applied to re-build

the model of each cluster. Then the agglomerative clustering process was re-

sumed with the Cross Log-likelihood Ratio (CLR) as the distance measure. The

CLR of two segmentsX1 andX2 are calculated by Equation 2.14:

CLR(X1, X2) =
1

n1
log

p(X1|λ2)

p(X1|λubm)
+

1

n2
log

p(X2|λ1)

p(X2|λubm)
(2.14)

whereλ denotes the model andn is the number of feature vectors. The process

was terminated when the CLR value larger was than a threshold, estimated from

the development data sets. (Sinha et al., 2005) derived the segment model by

applying two kinds of iterative-MAP adaptation. They also discussed the vari-

ous approaches to build the UBM. It can be built using the testdata itself (in an

unsupervised fashion), using other training data, or concatenating the two types

of data above. Barras (Barras et al., 2006) also applied a post-processing step in

their diarization system. The UBM adopted in these systems was a 128 diago-

nal GMM. Feature warping (Barras and Gauvain, 2003a) (Barras and Gauvain,

2003b) was also applied to eliminate the acoustic differences of speaker models.

If gender classification is applied, the post-processing will be operated separately

for each gender, by using a gender-specified UBM (Barras et al., 2006) (Sinha

et al., 2005).

The mean vectors of all the components contained in the UBM-MAP adapted

speaker model are considered to represent well the speaker characteristics (Faltl-

hauser and Ruske, 2001) (Tsai et al., 2004) (Tsai et al., 2005) (Tsai et al., 2007).

Tsai et al. (Tsai et al., 2005) and Tsai et al. (Tsai et al., 2007) adopted the nor-

malized inner product of the concatenated mean vectors as the segment similarity
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measure. Tsai et al. (Tsai et al., 2007) applied the segment purity based stopping

criterion.

2.5.4 Other algorithms

Ajmera and Wooters (Ajmera and Wooters, 2003) proposed a top-down frame-

work for speaker clustering, using the full covariances of the segments as the

similarity measure. Tranter et al. (Tranter et al., 2004) applied the BIC criterion

as the stopping criterion for the splitting procedure.

The use of proxy models in (Reynolds and Carrasquillo, 2004)were inspired

by the ideas of anchor models and eigenvoices, which is similar to the method

used in the speaker indexing system described by Akita and Kawahara (Akita

and Kawahara, 2003). In this, a series of speaker models are built to represent

different types of speaker. Then each segment is projected into another feature

space by computing its likelihood against each proxy model.The dimension

of the space is equal to the number of proxy speakers. The normalized likeli-

hood scores are then treated as distance measures and the clustering process is

performed.

2.6 Combination strategies

Each speaker diarization system is considered to have its own distinguishing

features and advantages. They may be good at dealing with a particular situation

or dataset. Therefore, combining methods used in differentdiarization systems

could potentially improve performance over the best singleone.

Moraru et al. (Moraru et al., 2003) performed a combination strategy called

‘piped’ in which two different systems used the results fromone to initialize the

other system. Then the two systems were applied one after theother to give
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the results. Liu and Kubala (Liu and Kubala, 2004) adopted a ‘plug and play’

strategy to combine the steps of different systems. More integrated merging

methods are described in (Meignier et al., 2005) and (Moraruet al., 2003), as the

‘fusion’ strategy. In this the results from two diarizationsystems are compared

and all the segments whose labels conflict found. Then modelsare trained on

them and the clustering step resumed. Tranter (Tranter, 2005) used a ‘cluster

voting’ technique. This also collected those portions of the audio where the

relative output labels are not agreed by all the systems, andthen the candidate

clusters that maximize the Cluster Voting Metric are selected. An external judge,

BIC, is used to pick the optimum solution among them. Gupta etal. (Gupta et al.,

2007) (Gupta et al., 2008) integrated systems using different feature vectors.

Figure 2.3 displays the main steps adopted in speaker diarization systems,

and the main algorithms used for each step. In the Figure, thespeech activity

detection is referred to as SAD, and the speaker change detection step is labelled

as SCD.

2.7 Evaluation Metrics

The main metric that is used for speaker diarization experiments is the Diariza-

tion Error Rate (DER) as described and used by NIST in the RT evaluations.

The NIST Rich Transcription diarization evaluations plan provides a Diariza-

tion Error Rate (DER) framework to analyse the performance of speaker diariza-

tion systems. It consists of missed data, false alarms and speaker errors. The

final outputs of the speaker diarization system is a sequenceof ‘relative’ speaker

labels, which are referred to as the hypothesis speaker labels in DER. The ‘true’

speaker labels will be called the reference speaker labels.An optimal one-to-

one mapping of the reference and hypothesis speakers need tobe performed to
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Figure 2.3: The main strategies adopted for diarization
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maximize the overlap between their labels. This allows the scoring of different

speaker tags between the two files. The Diarization Error Rate score is computed

as

DER =

∑S
s=1 dur(s) ·max(Nref (s), Nhyp(s))−Ncorrect(s)

∑S
s=1 dur(s) ·Nref

(2.15)

whereS is the total number of speaker segments where both referenceand hy-

pothesis files contain the same speaker/s pair/s. It is obtained by collapsing

together the hypothesis and reference speakers turns. The termsNref(s) and

Nhyp(s) indicate the number of speaker speaking in segments, andNcorrect(s)

indicates the number of speakers that speak in segment s and have been correctly

matched between reference and hypothesis. Segments labelled as non-speech are

considered to contain 0 speakers. When all speakers/non-speech in a segment are

correctly matched the error for that segment is 0.

The DER error can be decomposed into the errors coming from the different

sources, which are:

• Speaker error: percentage of scored time that a speaker ID isassigned to

the wrong speaker. This type of error does not account for speakers in

overlap not detected or any error coming from non-speech frames. It can

be written as

Espkr =

∑S
s=1 dur(s) ·min(Nref (s), Nhyp(s))−Ncorrect(s)

∑S
s=1 dur(s) ·Nref

(2.16)

• Missed speech: percentage of scored time that a hypothesized non-speech

segment corresponds to a reference speaker segment. It can be expressed
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as

EMISS =

∑S
s=1 dur(s) · (Nref(s)−Nhyp(s))

∑S
s=1 dur(s) ·Nref

∀Nref (s)−Nhyp(s) > 0

(2.17)

• False alarm speech: percentage of scored time that a hypothesized speaker

is labelled as a non-speech in the reference. It can be formulated as

EFA =

∑S
s=1 dur(s) · (Nhyp(s)−Nref(s))

∑S
s=1 dur(s) ·Nref

∀Nhyp(s)−Nref(s) > 0

(2.18)

The DER is the sum of all these three types of errors.

DER = Espkr + EMISS + EFA (2.19)

2.8 Baseline system

When developing a new technique it is preferable to do it starting from a baseline

system that has been proven to be successful and popular, andhas been integrated

into a well-rooted theory and state of the art technology. The difficulties met

by this baseline system during the implementation will be discussed and a new

algorithmic solution will be developed. Finally experiments will be set up to

compare the results of the baseline system and the new systemto show whether

or not it has overcome the shortcomings of the baseline system.

The SAD phase, the SCD phase, the clustering phase and post processing are

part of the baseline system. In the SAD phase, a model-based speech detection

method is applied to remove the non-speech segments in the audio. Two GMMs

are trained for speech and non-speech separately. In the SCDphase, the KL2
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divergence is used as the metric to detect the speaker changepoints.

In the clustering phase, the detected speech sections between speaker change

points produced by the SCD step are then used to train the speaker models. The

Gaussian model is used to initialise potential speaker models, such that each po-

tential speaker model is trained by a speech section. These potential speaker

models are then clustered based on their similarity.∆BIC (defined in Equa-

tion 2.9) is used as the measurement of similarity. The pair of potential speaker

models with the lowest∆BIC values are merged into one, and a new GMM

is trained on all the sections assigned to them. In the new GMM, the number

of components is the sum of the model complexities of the two GMMs being

merged. The merging process terminates when the remaining potential speaker

number is below a certain threshold. Then, every speech section detected be-

tween speaker change points is re-assigned to the remainingpotential speaker

model with the highest probability.

In the post-processing phase, a GMM with 128 components is trained by all

the speech in the meeting as a UBM. Then mean-only adaptationis used to derive

the speaker models of all remaining potential speakers fromthe UBM. The CLR

is used as the similarity measure between the UBM-adapted speaker models, and

the pair of potential speaker models with the largest CLR value are merged. The

whole process is terminated when the CLR between all the pairs of potential

speakers is below a certain threshold. Again, all speech sections between de-

tected speaker change points are re-assigned to the remaining potential speakers.

Finally, the non-speech segments detected in the SAD, the speech sections and

their corresponding speakers will be output by the system asfinal results. The

baseline system used in this thesis is illustrated in Figure2.4. In the next chapter,

data analysis will be done to help understand the nature of speaker characteris-

tics, in order to derive new techniques to improve system performance.
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Figure 2.4: Block diagram of the baseline system
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Chapter 3

Data Characteristics Analysis

To improve the performance of an existing system, it is necessary to identify

those aspects that contribute to or detract from its successand then to exploit

those characteristics in new algorithms to overcome the system’s shortcomings.

In the case of a speaker diarization system, no pre-trainingmaterial is available

for speakers, so the systems adopt an evolutionary strategyin which the speaker

models are iteratively adjusted based on the accuracy obtained from the data.

Therefore, the performance of the system depends heavily onthe characteristics

of the data, in this case, face-to-face meeting data. By analysing the specifics of

the meeting and identifying their effects on the speaker diarization model, new

algorithms can be proposed that improve the modelling accuracy.

In this chapter, we examine the shortcomings of each part of the baseline

system in terms of the face-to-face meeting characteristics, from the SAD to the

UBM. Section 3.1 explains in detail the specifics of the meeting data that will

contribute to the difficulties incurred in speaker diarization. Several measures are

developed to quantify the influence of these difficulties. Wedescribe the AMI

corpus, which was selected because it meets all the criteriaof data selection. In

Sections 3.2 to 3.4, a selected sample of AMI corpus data is split into subsets to

test whether the meeting characteristics affect the baseline system performance.
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In addition, the potential solutions are tested in 3 domains: the SAD, the SCD,

and the application of the UBM. Finally, Section 3.5 summarises the conclusions.

New techniques will be developed in Chapters 4 and 5 based on the results

from this chapter, and a new speaker diarization system willbe proposed that

focuses on the specifics of meetings while remaining robust to variations in the

meeting characteristics, such as the number of participants.

3.1 Speaker diarization and data selection

The challenges for successful diarization of meetings werepresented in Table

1.1. The details can be summarised along six dimensions:

• The number of speakers: the number of speakers in the set of meetings

varies from three to ten. The rate of successful diarizationdecreases with

the number of participants, particularly in the algorithm’s stopping mech-

anism.

• Speaker turn length: in contrast with other types of dialogue, exchanges

between speakers occur frequently during a meeting. Approximately half

of the speaker turns last less than one second.

• Noise conditions: a significant amount of noise obstructs the generalisa-

tion of the non-speech training model and degrades the system’s perfor-

mance.

• Room characteristics: the quality of the walls, floor and ceiling, the room

size, the arrangement of microphones, the positions of people and the re-

verberations of the room all affect the quality of the speech.

• Recording microphones: the conversations during meetingsmight be recorded

by lapel microphones, headset microphones or table microphones. Each
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type of microphone provides a different level of quality.

• Meeting types: natural meetings are meetings that happen inthe real world,

while artificial meetings are designed explicitly for research purposes. Ar-

tificial meetings can be controlled by a given scenario or a pre-arranged

topic.

In addition to the individual challenges listed above, the situation is further

complicated by interactions among them. The noise level could be affected by

the room characteristics and the recording microphones. The meeting type af-

fects the type of noise and speaker turn length. Artificial meetings may include a

certain level of (pre-defined) noise. Informal meetings aremore often interrupted

by laughter, while intense discussion includes shorter speaker turns. Therefore,

to test the influence of certain meeting characteristics on the speaker diariza-

tion performance, the main criteria for data selection should include meetings of

different types, in different rooms, with different recording microphones and dif-

ferent numbers of speakers. Good reference data also contribute to the analysis

of the dataset.

The AMI Meeting Corpus is selected in this thesis, as it meetsall the required

selection criteria. The AMI corpus is described in detail by(Carletta, 2007)

(Hain et al., 2007) and basic information can be found at http://corpus.amiproject.org/.

Briefly, the AMI corpus includes 100 hours of meetings, whichwere recorded in

English using three different rooms. The corpus captures both natural conversa-

tions and those conducted in pre-designed meetings. Among the natural conver-

sations, the number of speakers varies from three to five. In one type of artificial

meeting, four speakers are involved, taking four pre-arranged roles (industrial

designer, interface designer, marketing, and project manager). Other artificial

meeting types also appear in the AMI corpus, such as a film clubscenario.

The meeting rooms were the Edinburgh Room, the IDIAP Room andthe
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TNO Room, each with its own acoustic properties. Each participant had both a

headset microphone and a lapel microphone in the Edinburgh and IDIAP Rooms.

In the TNO room, only the headset microphone was provided. A circular micro-

phone array was also provided in each room, either in the centre of the table or

on the ceiling. Each meeting was down-sampled from 48 kHz to 16 kHz and

recorded in the corpus as WAV files. For each meeting, all channels were pro-

vided in separate files unless the recording equipment was broken. The record-

ings from all microphones were synchronised into a common timeline. The

headset and lapel recordings were mixed separately and provided as two single-

channel recordings. The AMI Meeting Corpus includes a high quality transcrip-

tion for each individual speaker, and word-level timings were derived using a

speech recogniser in forced alignment mode. A simple energy-based technique

was applied to process the speech/silence segmentation foreach speaker in the

channel derived from the lapel microphone. The meetings recorded by the head-

set microphone include more breath noise and cross-talkingeffect, and this part

of the noise has not been efficiently labelled by the transcription. Because the

new system proposed in this thesis is designed for single channel recordings,

only the lapel microphone recorded meetings will be used forthe data analy-

sis. Due to the advantages described above, a dataset from the AMI including a

variety of rooms and scenarios was selected for data characteristics analysis in

this chapter. The meetings recorded in the TNO Room were not included be-

cause there was no lapel microphone recording for that room,and all meetings

belonged to a single meeting type. In the Edinburgh Room, themeetings can be

divided into two types, and in the IDIAP Room there were threemeeting types.

Three meetings of each type were extracted to form a test dataset. The number

of speakers in the test dataset varies from 3 to 4. This dataset will be used for all

experiments in this chapter. The meetings with 5 speakers and similar scenarios
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can only be treated as a special case because of the limited meeting data (data

are available for only two meetings).

Several measures were developed to record certain meeting characteristics,

such as the number of turns, the percentage of short turns andthe number of

speakers. The following measures were applied to characterise the meetings:

• Average Speech to Noise Ratio (ASNR): this measure describes the ratio

of the average speech energy to the noise energy. The higher the value, the

easier it is to separate the speech from the noise:

ASNR = 10∗log(average speech power)−10∗log(average noise power)
10∗log(average noise power)

, where the en-

ergy power is equal to the average square sum of the corresponding signals.

• Noise Length Ratio (NLR): this measure describes the lengthpercentage of

noise in the entire audio sample

• Speaker number: the number of speakers in the sample.

• Meeting room: the selected meetings occurred in two rooms: ’E’ (Edin-

burgh Room) and ’I’ (IDIAP room).

• Meeting type: N - natural meetings, S - artificial meetings under indus-

trial scenarios, B - artificial meetings under other scenarios, such as club

meetings.

• Average Turn Length: the average length of the speaker turns.

Table 3.1 lists the meeting room, meeting type, speaker number and the

ASNR of all meetings in the test dataset. More measurements of these meet-

ings will be given in the rest of this chapter.

3.2 Problems arising in Speech Activity Detection

As reviewed in the last chapter, speaker diarization systems usually begin with

a speech detection step. MISS and FA are two types of errors that occur during
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Meeting name Meeting type Meeting room Speaker Number ASNR
EN2002a N E 4 0.2247
EN2006a N E 3 0.2303
EN2009c N E 3 0.1562
ES2003a S E 4 0.2298
ES2009a S E 4 0.2321
ES2016c S E 4 0.1162
IB4001 B I 4 0.4469
IB4002 B I 4 0.4325
IB4005 B I 3 0.2613
IN1001 N I 3 0.1950
IN1002 N I 4 0.1798
IN1005 N I 4 0.2354
IS1001b S I 4 0.2507
IS1006a S I 4 -0.0411
IS1009a S I 4 0.1733

Table 3.1: Characteristics of the meetings used in experiments.

SAD. MISS measures the proportion of the length of speech that is judged to be

non-speech, and FA is the proportion of the length of non-speech that is judged

to be speech. In the baseline system, GMM models that have been pre-trained

for non-speech and speech are used to cluster the audio into non-speech and

speech. These models are trained with a small number of pre-labelled datasets

using 12 MFCC and sum of squares of amplitude as acoustic features. During

SAD, audio is split into small segments, which are then clustered into speech and

non-speech using the pre-trained models. Three parametersneed to be computed

in this method: the length of the segments and the numbers of components used

in speech GMMs and non speech GMMs. This section discusses the importance

of the parameters (and their values) and the way in which the training material is

selected.
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3.2.1 Parameter determination

Non-speech segments appear at the intervals between different speakers and dur-

ing one person’s continuous speech. The non-speech segments between different

speakers are usually much shorter than the segments from thesame speaker. Al-

though long segments promote clustering accuracy by averaging the influence of

outliers, the classifier will be confused if a long segment contains both speech

and non-speech features. Therefore, the length of the segments has to be long

enough for good performance without frequently including both speech and non-

speech. To determine the range of the non-speech segments, the distribution of

the non-speech turns with a length less than 3 seconds is illustrated in Figure 3.1.

The majority of non-speech turns between speech of the same speaker have

lengths from about 0.4 seconds and peak around 0.5 seconds inall meetings,

and similar results are observed in various meeting rooms and meeting types

(Figure 3.1, all meetings). As expected, natural meetings (Figure 3.1, EN and IN

meetings) have more non-speech turns between different speakers than artificial

meetings (Figure 3.1, ES, IB and IS meetings). To ensure the detection of most

of the non-speech segments, the segment length should be 0.4seconds.

More components are required to model the speech acoustic features because

speech has a more complicated distribution, while in non-speech GMM, only

four components are sufficient. To investigate how the number of GMM com-

ponents affects the performance of SAD, Experiment 3.1 was conducted. In this

experiment, a test dataset was divided into two groups, one for training data and

the other for test data. The training data were used to train speech and non-

speech GMMs with different numbers of components. For the speech GMM, the

number of components varied from 2 to 7, while for the non-speech GMM, the

Gaussian number varies from 1 to 3. The test data were separated into speech and
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Figure 3.1: Distribution of averaged non-speech turn numbers.
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non-speech. Then, each was split into a sequence of segmentsof equal length

and clustered by the GMMs. The recognition rate was expectedto vary with the

number of components used in GMM, and some noise condition measurements,

such as the ASNR or the NLR, might also affect the result. The process of the

experiment is illustrated in Figure 3.2. Among the 15 meeting test sets described

in Table 3.1, 5 meetings were used for training the speech andnon-speech mod-

els, and the other ten meetings were used for testing the models. The first 10

minutes of audio were extracted from each meeting for this experiment. The fol-

lowing 10 minutes of speech will be used in the next experiment, where we will

test whether the non-speech from different time sections within a meeting has an

effect on the non-speech model construction.

The values of the NLR and ASNR measurements of the model training dataset

are listed in Table 3.2, and the same measurements of the model testing dataset

are listed in Table 3.3. In the meeting name, the number after“-” refers to the

section of audio that was extracted. For example, ‘EN2009a-1’ denotes the first

10 minutes of audio from meeting EN2009a.

Meeting name ASNR NLR
EN2009a-1 0.326 24.0%
ES2016c-1 0.284 30.3%
IN1002-1 0.190 13.2%
IS1009b-1 0.213 15.6%
IB4002-1 0.358 37.1%

Table 3.2: Meetings used for non-speech model training and and their noise
condition measurements: ASNR and NLR.

Figure 3.3 shows that the MISS error rate decreases when the number of

components used in the speech GMM increases. When the model accuracy is im-

proved by including more components in the GMM, less speech is misclassified

as non-speech, as shown in Figure 3.3(a). Indeed, more non-speech is classified

as speech, especially when the number of components in the non-speech model

51



speech

segments


non-speech

segments


5 audio

training data


Model training

GMM:

Gaussian Mixture Model


non-speech

GMM


Component No.: 1-3


Model testing

* segments with different

   length are used

   individually for

   model  testing.


speech

segments*


non-speech

segments*


10 audio

testing data


Model validating
 best performance in term

of component number


Error rate  is compared for models with

different number of mixture components.

segment length is 0.4 second.


non-speech

GMM


Component No.: 1-7


Figure 3.2: Process of Experiment 3.1
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Meeting name ASNR NLR
EN2002a-1 0.158 22.8%
EN2006a-1 0.164 47.2%
ES2003a-1 0.229 53.1%
ES2009a-1 0.172 26.7%
IB4001-1 0.499 33.4%
IB4002-1 0.394 39.7%
IN1001-1 0.006 35.9%
IN1005-1 0.276 31.9%
IS1001b-1 0.231 43.3%
IS1009a-1 0.089 42.7%

Table 3.3: Meetings used for non-speech model testing and their noise condition
measurements: ASNR and NLR.

is low. As shown in Figure 3.3(b), the increase in the number of non-speech

GMM components leads to a decrease in FA and an increase in MISS. The total

error rate is the sum of these two error measures, and it reaches its minimum

value when the reduction in MISS is not cancelled out by the increase in FA.

Figure 3.3(c) shows that the minimum total error rate occurswhen the speech

GMM number is five and the non-speech GMM number is two. No significant

error reduction is observed when the speech GMM number increases to seven.

Those two values are therefore used as the fixed values of NGMMand SGMM

in the next experiment (Figure 3.4). In the experiment, the best results appeared

when the Speech GMM number was 7 and the Non-speech GMM numberwas

1. Figure 3.3 shows how the MISS and FA values change with different numbers

of GMM components.

To test whether the number of GMM components (fixed parameter) gener-

ated from the set of all meetings is consistent with each individual meeting, we

introduced an optimum solution where the best GMM number wascalculated

as that which give the lowest error rate in each single meeting. The effects of

different speaker numbers and the difference between SGMM and NGMM were

also analysed. Figure 3.4 consists of four sub-figures (a-d)that show how the
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Figure 3.3: MISS, FA and total error rate change with GMM component number
when segment length is 0.4 seconds.

total error rate of speech and non-speech clustering changes as a function of the

energy measures and the speaker number.

Figure 3.4(a) shows the total error rate as a function of the ASNR. the ASNR

is high if the speech is much louder than the noise. The optimum solution line

shows the total error rate achieved by the optimum parametersetting for each

particular meeting. The total error rate tends to decrease as SNR increases.

The error rate line with fixed parameters shows the error ratevariation when

the speech GMM number and the non-speech GMM number are equalto their

optimum values for the whole test set. It seems that the optimum parameters for

the whole test set are not always those that produce the best performance in each

meeting.

The difference between the fixed parameter and the optimum solution for the

error rate is shown as a function of the NLR in Figure 3.4(b). The NLR is the

non-speech length ratio of the meeting; its value increaseswhen there is more

non-speech in the audio. Figures 3.4 shows that the total error rate obtained us-

ing the optimising parameters for the entire test set and those for each individual

meeting deviate as the NLR increases. Figure 3.4(c) shows the optimum param-
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eter setting for each meeting as a function of the NLR. It shows that a higher

non-speech GMM number and a lower speech GMM number are required when

the NLR is high (e.g., 0.4). Two or three GMM components are required for

the non-speech model when the non-speech is more than 40% of the audio. The

difference between the total error rates is more significantwhen the noise length

ratio is close to 50%, and to obtain the best performance, thenon-speech model

should include at least three components. In Figure 3.4(d),the total error rate

is lower for NGMM when there are four speakers. However, because only two

meetings in the test set have three speakers and one of them has a high NL value

and a low SNR value, the decrease in performance is more likely caused by the

noise length than the number of speakers.

This experiment suggests that the non-speech GMM number is better deter-

mined in terms of the NLR. The more non-speech appears in the audio, the more

components should be applied in the GMM number. This can be achieved in two

steps: using one component non-speech model in SAD to detectthe non-speech

and then calculating the NLR value depending on the detectednon-speech. If

the NLR value is higher than a given threshold, more components are used to

re-train the model. Then SAD is run based on the new model.

3.2.2 Training material selection

The efficiency of the clustering depends on the similarity between the training

and testing materials. It is difficult to train a non-speech model that can cope

with all types of noise present in the meetings. In this sub-section, Experiment

3.2 is designed to analyse how the similarity between the training materials and

testing materials affects the detection of speech activity. In Experiment 3.2, three

different sources are used as training materials.

First, each testing audio is used to train speech and non-speech models for
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itself (denoted as Self in this experiment). The testing audio samples are the

same as those used in Experiment 3.1. The meeting names, Average Speech to

Noise Ratio and Noise Length Ratio of those testing data are given in Table 3.3.

Second, 11-20 minutes of speech from the same meeting as eachtesting audio are

used to train the models (denoted as Semi-self). Third, training materials from

different meetings are used (denoted as Different). Those training data from the

different meetings are the same as the training materials used in Experiment 3.1,

and their noise characteristics are given in Table 3.2. Self-training is expected to

give the best performance.

The same process is used in this experiment as in Experiment 3.1, except that

different training materials are used. The segment length is fixed at 0.4 seconds,

and the component numbers used in the speech and non-speech models are the

optimum solutions for each test sample according to the results of Experiment

3.1. The setup of Experiment 3.2 is illustrated in Figure 3.5, and the results are

shown in Figure 3.6.
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Figure 3.5: Experimental set up for different training materials
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As expected, Figure 3.6 shows that the total error rate from either self-training

or semi-self-training is different from the error rate fromdifferent-training. In-

terestingly, there is no significant difference between self-training and semi-self-

training. Therefore, when constructing the training models, if the speech and

non-speech information detected from test meetings can be included in the mod-

els, the speech activity detection performance will be improved.
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Bar: mean of error rate; Error bars: standard deviation.

Figure 3.6: Comparison of using different training material in speech activity
detection.

3.3 Measure of overlap between short speaker seg-

ments

A metric based speaker change detector, which compares the similarity of the

speech before and after each point in the meeting to identifychange points, is

widely applied in diarization of meetings (Miro, 2006). If the similarity is above
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a given threshold, the point in question is identified as a change point. Two

issues with metric based speaker change detectors are (1) the time constraint

on the segment length and (2) the selection of the threshold.Long segments

are preferable for speaker characteristics detection. However, the change point

is difficult to recognise if multiple speakers appear in the two segments being

compared.

Figure 3.7 shows the mean and standard deviation of the speaker turn length

for the 15 meetings described in Section 3.2. As illustratedin Figure 3.7, the

average speaker turn length for all meetings is in the range 1-2 seconds. The

meeting room and meeting type show no influence on the speakerturn length dis-

tribution. The meeting with the largest standard deviationis meeting “IS2009a”,

showing that some long speaker turns appear in this meeting.Because most

speaker turns are less than 3 seconds, the distribution of speaker turn lengths

less than 3 seconds in these 15 meetings is displayed in Figure 3.8. From Figure

3.7, we see that there is no significant difference in the distribution of speaker

turn lengths among different types of meetings recorded in different rooms. The

majority of non-overlapping speech turns are under 1 second, and this is not af-

fected by the meeting room or the meeting type. Hence, to ensure the detection

of short speaker turns, the segment length should be set at 0.5 seconds.

Next, the similarity of 0.5 second short segments from different speakers and

from the same speaker is analysed. Fisher’s linear discriminant is a widely used

technique in statistics, pattern recognition and machine learning. It can be ap-

plied for data classification, dimensionality reduction and feature characteristics

description.

AssumeX1 are data from class 1 of sizen1 andX2 are from class 2 of

sizen2. The Fisher linear discriminant seeks to find an optimum hyperplane

< ψ∗, x > +b = 0 (the notation< ψ∗, x > represents the inner product ofψ∗
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Figure 3.7: Comparison of speech turn length in different meetings

andx) that maximises the ratio of the inter-class distance and intra-class distance

of the projections ofX1 andX2. This Fisher Linear Discriminant Ratio (FDR)

is denoted asJF (ψ∗), and the hyperplane that maximises it is given by Equation

3.1:

ψ∗ = argmax
ψ

(Jf(ψ)) = argmax
ψ

(
ψT ((µ1 − µ2) ∗ (µ1 − µ2)

T )ψ

ψT (Σ1 + Σ2)ψ
), (3.1)

whereµ1 andµ2 are the means of class 1 and class 2, andΣ1 andΣ2 are their

covariance matrices. Using the Lagrange method, this maximisation problem

can be represented as a convex quadratic optimisation problem whose solution is

given by Equation 3.2

ψ∗ = (Σ1 + Σ2)
−1(µ1 − µ2). (3.2)

Figure 3.9 shows how the Fisher discriminant projects data of X1 andX2
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onto the optimum hyperplane< ψ∗, x > +b = 0 It can be seen in Figure 3.9
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data separately.< ψ∗, x > +b0 = 0, < ψ∗, x +
b1 >= 0 and< ψ∗, x > +b2 = 0 are three sep-
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(µ1+µ2)/2, b1 = (µ1∗n1+µ2∗n2)/(n1+n2),and
b2 = (µ1 ∗ n2 + µ2 ∗ n1)/(n1 + n2).

Figure 3.9: Fisher discriminant separating plane.

that the hyperplane< ψ∗, x > +b = 0 divides the features into two parts. This

hyperplane is also called the Fisher linear discriminant classifier (FDC). The

distance from a featurex to the hyperplane< ψ∗, x > +b = 0 is equal to the

absolute value of(< ψ∗, x > +b) / ‖ψ‖. If the two classes are separable by the

hyperplane, as whenb = b2, any featurex fromX1 will satisfy< ψ∗, x > +b ≥

0, while any featurex′ fromX2 will satisfy< ψ∗, x′ > +b < 0. We denote the

class label ofx asy, wherey = 1 if x is fromX1; andy = −1 if x is fromX2.

An error occurs whenevery ∗ (< ψ∗, x > +b) < 0. Whenb = (µ1 + µ2)/2, the

hyperplane is equidistant between the mean values of the twoclasses.

The FDR is the ratio of the inter-class distance and the intra-class distance

of the projections of the two datasets onto the FDC. Therefore, it measures the
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overlap between the two datasets. The higher the value, the less overlap there is

between the two classes. It is assumed that the FDR from different speakers is

much higher than from the same speaker because features fromdifferent speakers

have less overlap.

Using the Fisher Linear Classifier to classify the features from a pair of seg-

ments, the classification error rate should be low if the segments are from dif-

ferent speakers because features from different speakers are more likely to stay

on different sides of the classification hyperplane. When the two segments to be

classified are from the same speaker, the error rate should behigher because the

overlap between the segments is larger.

The average distance from errors to the classification hyperplane, another

measure derived from the Fisher Linear Discriminant, can also be applied to

analyse the data characteristics. If the average distance from the errors to the

classification hyperplane is small, the errors appear at theclassification bound-

ary (near the classification hyperplane); otherwise, the errors are isolated from

the rest of the features in the segment. In another type of classification, if two

datasets are from different clusters, the average distancefrom the errors to the

classification boundary should be short because the overlapbetween different

clusters is small. However, the speaker features should be composed of several

different mixtures, and some of the mixtures may be far from the others. There-

fore, when two segments are from different speakers, the average distance from

the errors to the boundary is more likely to be large. When using FDC to classify

segments from different speakers, non errors can sometimesbe detected; there-

fore, the distance from the errors to the classification boundary as discussed here

is only applicable to the cases in which errors do exist.

The FDR, the classification error rate of the FDC, and the average distance

from errors to the FDC can be applied to measure the overlap between segments
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from different speakers and from the same speaker. The average distance from

errors to the FDC measure can also be used to detect whether there are isolated

mixtures in the feature distribution. Although the first twomeasurements have

been widely applied for data characteristic analysis (Ho and Basu, 2002), no such

usage has been found for speaker feature analysis.

All 15 meetings described in Section 3.1 will be used in Experiment 3.3.

In this section, 19 MFCCs and energy vectors are extracted asacoustic feature

vectors from the meetings. In Experiment 3.3, each audio sample in the test set

is split into different speakers based on the transcription. The speech from each

speaker in an audio segment is then split into small segments, and the distribution

overlap between each pair of segments is measured. The experimental setup

is illustrated in Figure 3.10. The length of the segments is 0.5 seconds. The

overlaps between pairs of segments from different speakersor from the same

speaker are shown in Figure 3.11, Figure 3.13, and Figure 3.14.

As expected, the upper panel of Figure 3.11 shows that the FDRvalues of

segments from different speakers are much larger than thoseof segments from

the same speaker. In other words, after projecting onto the FDC hyperplane,

segments of different speakers have less overlap. Because the range of FDR of

different speakers is much higher than that of the same speaker, a log scale is

adopted to make the data more comparable. The minimum FDR of different

speakers is approximately 4 (log(4) = 1.3868), and the maximum FDR of dif-

ferent speakers is approximately 500 (log(10) = 6.2146). Onthe other hand,

the range of FDR of the same speaker is between 0 and 1 (log value less than

1). For each meeting, the minimum FDR of different speakers is larger than the

maximum FDR of the same speaker. Moreover, the minimum FDR ofdifferent

speakers is larger than the maximum FDR of the same speaker inall meetings. If

a threshold is placed in the gap between the minimum FDR of different speakers
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Figure 3.10: Process of Experiment 3.3
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meeting, bar presents the value range (minimum and maximum)of FDR, blue colour indicates
different speaker, red colour indicates same speaker. In the lower panel, the FDR difference
between the minimum value of different speaker (min(FDRd)) and the maximum value of
same speaker (max(FDRs)) are displayed.

Figure 3.11: Overlap between short segments from differentspeaker or same
speaker measured by FDR.
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and the maximum FDR of the same speaker, all speaker change points will be

identified.

The difference between the minimum FDR of different speakers and the max-

imum FDR of the same speaker is displayed in the lower panel ofFigure 3.11.

The difference is always positive, which is consistent withthe result shown in

the upper panel of Figure 3.11. The difference in FDR varies between different

meetings. There is no evidence of a correlation between the difference and the

meeting room, meeting type or number of speakers. It is clearthat the meeting

room and type do not affect the speaker characteristics, andthere are only two

speakers involved at a given speaker change point.

To investigate whether the noise condition of the audio has any effect on the

overlap between short segments, the difference between theminimum FDR of

different speakers and the maximum FDR of the same speaker isdisplayed as

a function of the ASNR in Figure 3.12. The ASNR value of each meeting is

listed in Table 3.1. There is no clear evidence that the SNR will affect the FDR

difference between different speakers and the same speaker.

In Figure 3.13, the FDC error rate is applied to describe the overlap between

pairs of segments. As expected, the range of FDC error rates of different speakers

is higher than the range of FDC error rates from the same speaker, but there is no

gap between the minimum FDC error rate of the same speaker andthe maximum

FDC error rate of different speakers for all meetings. From the lower panel in

Figure 3.13, only three meetings have a positive differencebetween the minimum

FDC error rate of the same speaker and the maximum FDC error rate of different

speakers. There is no evidence that these differences are correlated with the

meeting room, meeting type or number of speakers. These results suggest that

FDC could partially identify change points.

In the upper panel of Figure 3.14, the average distance from the FDC errors
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Figure 3.12: The effect of noise condition on the FDR difference between the
minimum value of different speaker (min(FDRd)) and the maximum value of
same speaker (max(FDRs)).

to the separating hyperplane is applied to analyse the data characteristics. Be-

cause the range of the average distances of different speakers is high compared

to the average distance of the same speaker, a log scale is adopted to make the

data more comparable. As expected, the range (minimum and maximum values

of measures) of the average distance from errors to FDC of different speakers is

higher than the average distance of the same speaker. However, as shown in the

lower panel of Figure 3.14, the minimum average distance of different speakers

is always larger than the maximum average distance of the same speaker. There-

fore, although features from different speakers are more separable by FDR, some

features are also isolated from the other features in the same segment.
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is determined in 15 meetings. For each meeting, bar presentsthe value range (minimum and
maximum) of the FDC error rate blue colour indicates different speaker, red colour indicates
same speaker. In the lower panel, the difference of FDC errorrate between the minimum value
of same speaker (min(FDCs)) and the maximum value of different speakers (max(FDCd))
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Figure 3.13: Overlap between short segments from differentspeaker or same
speaker measured by FDC error rate.
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different speaker or same speaker is displayed in 15 meetings. To make the data comparable,
the values are shown in log scale. For each meeting, bar presents the value range (minimum and
maximum) of the average distance, blue colour indicates different speaker, red colour indicates
same speaker. In the lower panel, the difference of distancefrom FDC errors to the classifica-
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maximum value of different speaker (max(distances)) are displayed.

Figure 3.14: Overlap between short segments from differentspeaker or same
speaker measured by average distance from errors to FDC classification hyper-
plane.
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3.4 Data distribution in the Universal Background

Model

A UBM is used in speaker recognition systems to represent general person-

independent feature characteristics of speakers. BecauseGMM is used almost

exclusively for text-independent speaker modelling, it isapplied to the UBM

to maintain the consistency and comparability of the models(Reynolds et al.,

2000). The data used to train the UBM in speaker diarization may come from

other sources (other speech corpus) or from the meeting itself (Sinha et al.,

2005). The UBM is incorporated into the speaker diarizationsystems in two

ways: 1) to use the UBM as an alternative hypothesis for the speaker model

and 2) to derive speaker models by adapting the UBM. In the post-processing

step of the speaker diarization system, to determine whether two segments are

from the same speaker, the match score of each segment’s model and the UBM

are measured and compared. The match score of a segment is thelikelihood

ratio test between a speaker-specific model and an alternative model (in this

case, the UBM) (Tranter and Reynolds, 2006). Instead of being trained inde-

pendently, the speaker models can be derived by an adaptation approach that

updates the parameters in the UBM iteratively toward particular speakers. The

UBM-adapted speaker model provides a tighter coupling between the speaker’s

model and the UBM, which leads to better performance at lowercomputational

expense (Reynolds et al., 2000).

The UBM is trained to represent the distribution of the speech features for

all speakers in general; therefore, the data selected to train the UBM should be

balanced in terms of all variables, such as channel, microphone, and speaker

gender (Hasan et al., 2010). Because the task of this thesis is to improve the

speaker diarization system performance for meetings recorded by a single type
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of microphone, channel and microphone variability will notbe discussed here. In

addition, the variability concerns about speaker’s information are irrelevant for

two reasons: 1) data from other corpus and resources will notbe applied in the

system, and 2) no speaker information is provided for a target meeting. Without

information to group the speech into subpopulations to balance their influence on

the UBM, the distribution of acoustic features from different speakers and their

intertwining will be investigated in Experiment 3.4 to improve the training of the

UBM for speaker diarization systems.

The parameters in the process of training the UBM include thenumber of

components in the GMM, the covariance of Gaussian models, and the initialisa-

tion method. Either increasing the number of components in the GMM or using

a full rank matrix instead of a diagonal matrix as the covariance matrix will in-

crease the model effectiveness. When a diagonal matrix is used as the covariance

matrix in the GMM, the loss of accuracy in the model can be compensated for

using more Gaussian components. The acoustic features distribution character-

istics, which will be analysed in Experiment 3.4, can be applied to determine the

parameters of the UBM. For speaker diarization, the initialisation of the UBM

can take advantage of the results of the speaker change detection.

To analyse how the feature space correlates with the inter-speaker variabil-

ity, Experiment 3.4 clusters the acoustic features according to their speaker and

investigates how the clusters are intertwined. First, a Minimum Spanning Tree

(MST) is build to connect all of the features extracted from ameeting. In the

mathematical field of graph theory, a spanning tree is a subset of edges of a

graph that form a tree spanning every vertex. A spanning treeconnects all of the

vertexes without forming any cycles. An MST is a spanning tree whose sum of

edges has minimum total length; it is capable of representing a cluster with irreg-

ular boundaries. Refer to the works of Kruskal (1956) and Prim (1957) for the
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definition of the problem and its first solution (Kruskal, 1956) (Prim, 1957). In

the case of an acoustic feature space, the vertexes are all ofthe features, and there

is an edge between each pair of features. The length of the edge is the Euclidean

distance between the features. Therefore, the MST of the meeting connects each

feature to its nearest neighbour and forms a tree traversingall of the features.

The algorithm to produce the MST is described by Dijkstra (Dijkstra, 1960).

After producing the MST, if the two vertex features of a certain edge are from

different speakers, the edge will be removed from the MST. Removing these

edges produces a collection of connected components, whichare sub-trees of

the MST. Finally, the number of the sub-trees remaining in the MST shows how

many subsets there are in the feature space, which is isolated by features from

different speakers. An example of an MST is shown in 3.15(a),and the sub-trees

remaining after removing all the edge connecting points from different clusters

are illustrated in Figure 3.15(b).

The variance of the acoustic features comes from two sources, phonetic vari-

ance and speaker variance. Phonetic variance is based on different pronuncia-

tions of various syllables. Different speakers possess different speech/physiological

characteristics, so that an increase in the number of speakers leads to an increase

in the variance of the features. Instead of occupying disjoint spaces, features

from different speakers are more likely to overlap. The speaker variability is

likely to be mingled with phonetic variability, and as a result, they split the

feature space into many small regions. The total number of sub-trees that are

isolated from the features of the same speaker is expected tobe high. Longer

speeches include more vocabulary and hence more phonemes. More speakers

will further divide the feature space. Thus, the number of isolated sub-trees is

expected to increase with both the speech length and the number of speakers.

All 15 meetings described in Section 3.1 will be used in Experiment 3.4.
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a
 b


There are two classes of data set, one is denoted by circle andthe other is denoted
by diamond. In the sub-figure (a), the MST is built across the two class, shown
by line ’–’. In the sub-figure (b), the remaining subtrees after removing all the
edges connecting data from different clusters are shown.

Figure 3.15: MST illustration.
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Nineteen MFCCs and energy vectors are extracted as acousticfeature vectors

from the meetings. Some characteristics of the meetings, such as the meeting

type, meeting room, number of speakers and average speech tonoise ratio, are

given in Table 3.1. Other characteristics that may have an effect on the experi-

ment, such as the average speech length and turn length in themeeting, are given

in Table 3.4. The number of isolated sub-trees is displayed along with each meet-

Meeting name Speech Length (second)Average Turn Length (second)
EN2002a 1367 1.5324
EN2006a 1586 1.9778
EN2009c 2174 2.8758
ES2003a 5251 3.1065
ES2009a 9663 2.1466
ES2016c 13201 2.4474
IB4001 10200 1.4340
IB4002 9635 1.7275
IB4005 15003 3.7777
IN1001 22993 2.4428
IN1002 18769 2.5710
IN1005 21109 2.2363
IS1001b 13819 2.8729
IS1006a 4667 1.9274
IS1009a 4913 2.3956

Table 3.4: Characteristics of the meeting used in experiments.

ing in Figure 3.16. The meeting type, meeting room and numberof speakers are

all labelled within the figure. Figure 3.16 shows that the number of isolated sub-

trees has a high value for each meeting, ranging from 7000 to 35000. When the

meeting type is natural, the number of isolated sub-trees ishigh, and the room

type shows no clear influence on the number of isolated sub-trees. The effect

of the number of speakers cannot be observed in Figure 3.16. However, because

other meeting characteristics, such as speech length, havenot yet been measured,

the influence of the number of speakers may be concealed. Next, we show how

the number of isolated sub-trees varies with the speech length in Figure 3.17. It
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can be seen that when the speech length increases, the numberof sub-trees tends

to increase. However, several points fall outside the trendin the figure. This may

be caused by two reasons: 1) an increase in the speech length in a meeting does

not always represent an increase in the number of phonemes because the same

words/phonemes can be repeated many times in an audio segment, and 2) the

increase of the number of isolated sub-trees will be affected by the number of

speakers. In Figure 3.17, it can be seen that the increase trend has been disturbed

by a reduction of the number of speakers. However, there is noclear evidence

of an influence of these two meeting characteristics on the number of isolated

sub-trees.
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Figure 3.16: Number of isolated sub-trees in each meeting.

In Figure 3.18, how the number of isolated sub-trees changeswith the ASNR

and average speech length is illustrated. However, no obvious evidence can be

observed showing the influence of the two meeting characteristics on the number

of isolated sub-trees.

From Experiment 3.4, it can be concluded that the speaker variability is min-

gled with phonetic variability to divide the feature space into a huge number of
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Figure 3.18: How the number of isolated sub-trees changes along with other
meeting characteristics.
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small sub-spaces according to the speaker. The number of isolated sub-spaces is

affected by both the length of the speeches and the number of speakers in a given

meeting. Because the UBM needs to capture as much inter-speaker variability

as possible, more components must be included in the GMM to represent more

sub-spaces.

3.5 Conclusion

In this chapter, the drawbacks of the existing speaker diarization systems had

been investigated, the meeting characteristics that may cause these problems

were examined, and potential solutions for these drawbackswere deduced. The

experiments in this chapter focused on 3 parts of the speakerdiarization system:

SAD, SCD and the construction of the UBM.

For the SAD process, 5 conclusions can be drawn from Experiment 3.1 and

Experiment 3.2. First, if the number of components contained in the GMM for

speech or non-speech is increased, the corresponding modelaccuracy will in-

crease; on the other hand, the model accuracy of its counterpart will decrease.

Second, a minimum total error rate is achieved when the speech GMM has 7

components and the non-speech GMM has 1 component, based on the entire

development-set. Third, when the NLR value is high, more components should

be incorporated for better performance. Fourth, if the audio material used to

train the speech / non-speech GMM and the test audio materialused to test the

performance of the GMMs are from the same meeting, the performance of the

SAD process increases significantly. Fifth, 0.4 seconds is asuitable choice for

the segment length in SAD.

Taking advantage of the above conclusions, a new algorithm will be to im-

prove the system performance in Section 6.3. The new algorithm first detects
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speech and non-speech using the existing SAD algorithm, andthen it re-trains

the speech and non-speech GMM by adding the new detected information and

increasing the number of components in non-speech GMM if thenoise length

ratio is high.

The aspects of all meeting characteristics that affect the performance of SAD

are the ASNR and the NLR. Because the new algorithm can adjustthe GMM

component number according to the speech and non-speech detected, it will im-

prove the system performance, especially when the NLR valueof a target meet-

ing is high. On the other hand, consistent with the experiment results, the error

rate of the system will decrease with the ASNR value.

Based on Experiment 3.3, we can derive some conclusions for the SCD pro-

cess. First, the FDR, the error rate of the FDC and the averagedistance from

errors to the FDC are all capable of determining whether a pair of short seg-

ments is from different speakers or the same speaker. Second, some features are

far from the rest of the features of the same speaker. Considering the results from

Experiment 3.4, this is caused by the phonetic variability in the acoustic feature

space. Because there is no gap between the minimum average distance of the

same speaker and the maximum average distance of different speakers, it is un-

clear whether features in a given short segment will traverse several sub-spaces

or how many sub-spaces they span. Third, 0.5 seconds is a reasonable choice of

segment length in SCD.

The measurements applied in Experiment 3.3 are evaluated based on a short

segment length of 0.5 seconds, so the new algorithm based on the experiment

should obtain a better performance when there are many shortspeaker turns of

less than 1 second in a target meeting.

Since the measurements applied in Experiment 3.3 are evaluated based on

short segment length of 0.5 second, the new algorithm based on the experiment
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should obtain a better performance when plenty of short speaker turns exist in a

target meeting. Being referred to as short speaker turns, their length should be

less than 1 second.

From Experiment 3.4, we can conclude that 1) in the acoustic feature space,

the inter-speaker variability is intertwined with the phonetic variability; as a re-

sult, features from different speakers split the feature space into many small sub-

spaces; 2) the number of sub-spaces tends to increase with the length of the

speech in a target meeting; and 3) a reduction in the number ofspeakers in a

meeting will hinder this trend.

A GMM for a particular speaker should contain fewer components to dimin-

ish the influence of the intra-speaker variability, which isthe phonetic variability

within a speaker. On the other hand, the UBM needs to represent as much inter-

speaker variation as possible to represent more sub-spacesin the feature space.

In Chapter 5, a new algorithm will be derived for both speakermodelling and

UBM modelling. The number of components in the GMM will be controlled so

that fewer components are allowed in a speaker model, while more components

are allowed in the UBM.

An increase in the speaker number or the speech length in a meeting will

lead to more sub-spaces that are isolated from the features of the same speaker.

Therefore, more components must be included in the UBM. After adopting the

new speaker modelling and the UBM modelling algorithm, the system perfor-

mance will improve, especially when the speech length is long and the speaker

number is high.
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Chapter 4

Fisher Linear Discriminant Based

Speaker Change Detection

In the previous chapter, Fisher Linear Discrimination Analysis (FDA) was used

to detect the overlap between short segments. Three different measurements, the

FDR, the error rate of the FDC, and the average distance from errors to the FDC,

were derived to represent the difference in overlap betweensegments of different

speakers and segments of the same speaker. In this chapter, these measurements

will be combined to develop a new algorithm for the SCD task. In Section 4.1, a

description of the new algorithm will be given. In Section 4.2, all of the param-

eters of the new algorithm will be adjusted by the development set. In Section

4.3, the results of the new algorithm will be compared to those of the algorithm

used in the baseline system.

4.1 Description of the FDA-based SCD algorithm

In Section 3.3, we saw that the FDR, error rate of the FDC, and average distance

from errors to the FDC can be used to determine whether two short segments are

from the same speaker, although the latter two measures would produce results
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with errors. In this section, these three measurements are combined to obtain

an optimum solution that might perform better than any single measurement;

therefore, a new SCD algorithm is created. The new SCD algorithm checks for

the existence of speaker change in a given meeting at each feature vector. First,

for each point, the new measurements are computed based on two short segments

of the same length, before and after a selected point. According to the analysis of

the previous chapter (Section 3.2.1), the length of the segments is set to 0.5 s. For

the features in the first 0.5 s and the last 0.5 s of the meeting,this computation is

ignored because no two complete segments can be obtained before or after these

points. Subsequently, the peak points of the new measurements are selected, and

if the adjacent peaks are close to each other (less than 0.1 second); the peak with

the smaller value is removed. Around a real change point, false change points

are always detected because when computing the new value fora point near

the change point, the segment before or after the selected point contains speech

from more than one speaker, which could affect the value of the measurement.

Therefore, manually removing peaks that are close to each other will reduce the

number of false changes detected by the algorithm. However,the time restriction

of removing extra peaks must be shortened to avoid missing frequent speaker

changes. Finally, the remaining peaks with values higher than a threshold are

confirmed as the speaker change points.

When comparing the changes detected by the algorithm (detected changes)

and the real changes, the detected changes are mapped to the real changes in

a one-to-one relationship. If the detected changes are within a 0.1 second in-

terval of a real change point, they are mapped to that real change point. The

detected points that cannot be mapped to any real change points are called “false

changes”, and the real change points that are not the images of any detected

points are called “missed changes”. Two types of error rate are adopted to mea-
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sure the performance of an SCD algorithm: the missed change rate, which is de-

fined as the ratio of the number of missed changes to the numberof real change

points, and the false change rate, which is defined as the ratio of the number

of false changes to the number of real changes. There are two reasons why the

first type of error has a greater influence on the speaker diarization system as a

whole. The first reason is that the detected sections betweenthe change points

will be clustered according to their speaker in the next step, so there is no chance

that the missed change points will be detected later. The second reason is that

the speaker models will be trained by these sections and the features from other

speakers will decrease the accuracy of the models. Althoughthe second type of

error can be corrected later in the system, if two SCD algorithms have similar

missed change rates, the one with the lower false change rateis preferred. A

lower false change rate means that longer sections are obtained between change

points, and therefore, more training material can be used tobuild the speaker

models. The point where an overlap begins or ends will be processed as a real

change.

To combine the FDR, the error rate of the FDC, and the average distance

from errors to the FDC into a new measurement, a parameter must be introduced

to balance their levels of influence on the new measurement. The error rate of

the FDC has two characteristics: (1) it has a higher value when two segments

are from the same speaker, which is in contrast to the others,and (2) it is always

smaller than 1; therefore, the FDC error rate can be used as the denominator

in the new measurement. If the FDC error rate is equal to zero,it is assigned

a very small value (0.001) to avoid division by zero. Using the parameterα

in the numerator to adjust the balance of the other two measurements, the new

measurement is given by Formula 4.1:
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(FDR + α ∗ (average distance from errors to FDC))

FDC error rate
.

In the new algorithm, a threshold is set in the final step to separate the change

points from the other peaks. Therefore, it needs to be set to avalue between the

values of the new measurement between segments of the same speaker and those

of different speakers. The scale of the gap varies for the FDRand the average

distance from the errors to the FDC.

The value of the threshold should vary according toα, since different val-

ues ofα adjust the combination and thus change the scale of the gap. In the

next section, experiments will be conducted to test different α values and their

corresponding thresholds to find the best combination.

4.2 Parameter adjusting

In this section, experiments will be set up to determine the value ofα that opti-

mises the performance of the new SCD algorithm and the corresponding thresh-

old that minimises the missing error rate. The meeting data applied in these

experiments are the same fifteen meetings that were used throughout the last

chapter. To exclude the influence of the non-speech segmentsin the SCD task,

all of the non-speech segments are removed from the meetingsaccording to the

transcription. The 19 MFCCs and the energy feature are extracted as the feature

vectors in the experiment. The performance of different values of the parameters

will be measured by the missed change rate.

Figure 4.1 shows the missed change rate along with differentvalues ofα.

The missed change rate is averaged over all fifteen meetings and is obtained

by choosing the optimum threshold value for each corresponding α. It can be

observed from Figure 4.1 that the missed error rate reaches its minimum when
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α = 500 andα = 550. In the figure, the performance ofα is shown in the

range between 5 and 850. Since the value of the FDR is about tentimes more

than the average distance from errors to the FDC (measured bytheir mean and

median values), whenα < 10, the FDR has more influence on the new mea-

surement, and whenα > 100, the average distance from errors to the FDC has a

much greater impact on the new measurement. Whenα < 5, the missed change

rate increases rapidly. Whenα > 850, the missed change rate stabilises around

0.0370. Though the average distance from errors is more capable of detecting

change points than the FDR, based on this experiment, an appropriate combina-

tion of all three FDA-based measurements is more suitable for the SCD.
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Figure 4.1: The variation of the missed change rage asα increases, using the
new measurement.

When the value ofα is assigned as 500, the variation of the missed change

rate with the threshold value is illustrated in Figure 4.2. From Figure 4.2, it can
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be seen that the missed change rate increases when the threshold value increases,

and its minimal value is 0.0365. As long as the threshold is between 0 and

150000, the value is unchanged. Since the false change rate increases with the

threshold, a higher threshold is preferred. However, the threshold also requires a

certain degree of tolerance of fluctuations in the unknown data (other meetings).

Therefore, in the new algorithm, the value ofα is set to 500, and the value

threshold is assigned to be 120000.
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Figure 4.2: The variation in the missed change rate as the threshold increases,
using the new measurement.
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4.3 Comparing the new SCD algorithm with the

KL2-based SCD algorithm

In the baseline system, a similar SCD algorithm is applied using the KL2 Di-

vergence to determine whether two segments are from the samespeaker. The

variation of the missed change rate as a function of the threshold is shown in

Figure 4.3 for the baseline SCD algorithm. The experiment set-up is the same

as those described in the previous section. The range of the threshold that min-

imises the missed change rate is below 40. By comparing Figure 4.2 and 4.3, it

can be seen that the missed change rate increases more rapidly when the KL2

Divergence-based SCD algorithm is applied. Therefore, thenew algorithm is

less affected by the choice of the threshold. In the baselinesystem, the threshold

value for the KL2 Divergence is set to 30.

The mean missed change rate averaged over the fifteen meetings is shown

in Figure 4.4(a). The mean false change rate is given in Figure 4.4(b), and the

standard deviation of the missed change rate is illustratedin 4.4(c). We can

conclude that the new algorithm obtains lower error rates for both types of errors.

At the same time, the smaller standard deviation value demonstrates that the new

algorithm is less affected by the variability of the data.
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Figure 4.3: The variation in the missed change rate as the threshold increases
using the KL2 Divergence.
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Chapter 5

Model Complexity Determination

In the Chapter 3, the data analysis results showed that fewercomponents should

be included in the GMM for speaker models so as to reduce intra-speaker vari-

ance, while more components should be preserved in the UBM soas to represent

inter-speaker variance.

In this chapter, a method for calculating the new speaker model complexity

is proposed. From data analysis, it has been observed that both the number of

components used in the model and the location of their mean values are essential

for the success of the system. So the novel method described in this chapter

will not only select the appropriate component number, but also arrange these

components in their correct position.

In section 5.1, an overview of the model complexity selection criterion will

be given. Then a new criterion, named Equal Weight Penalty Criterion will be

developed in section 5.2. This criterion can remove extra components in the

GMM by using a removal scheme, which is controlled by a parameter δ. The

intra-speaker variance can be reduced by settingδ low for speaker modelling,

and in the UBM more components will be preserved by increasing the value of

δ. Furthermore, a new EM training algorithm derived by Figueiredo and Jain

(2002) will be integrated into the new criterion, so as to eliminate extra com-
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ponents in the GMM automatically based on parameter dimension (number of

parameters). In section 5.3, a weight and mean adaptation UBM that can remove

the uncovered components automatically will be explained.

5.1 Model complexity determination

Gaussian Mixture Model (GMM) is a flexible and powerful probabilistic mod-

elling tool. It has been introduced in section 2.2 and it is described by Equation

2.3 and 2.4. The model effectiveness is determined by the number of components

in the GMM (model complexity).

Assume the true value of model complexityM is within the range (Mmin ≤

M ≤Mmax). In the Bayesian framework, a way of selecting the model complex-

ity is to choose the one with the highest posterior probability. By Bayes theorem,

the posterior probability of model complexityMl given datasetX is defined by

Equation 5.1:

p(Ml|X) =
p(X|Ml)p(Ml)

∑Mmax

Mr=Mmin
p(X|Mr)p(Mr)

(5.1)

wherep(X|Ml) is the conditional probability ofX given the model complexity

Ml andp(Ml) is its prior probability. Thus the optimum model complexitŷM

satisfies Equation 5.2:

M̂ = argmax
M

[log p(X|M) + log p(M)] (Mmin ≤M ≤Mmax) (5.2)

The right hand side of Equation 5.2 can be treated as a model selection criterion.

Its first term concerns how the model with complexityM fitsX and the second

term focuses on the model with complexityM . It may not be restricted to the

prior probability of the complexity, it can be the smoothness of the model, its

91



parameter distribution, and so on. The second term can be generalized as a

penalty term; and then a generalized model complexity selection criterion has

the form of Equation 5.3:

M̂ = argmin
M

IC(λ̂M ,M) (5.3)

whereIC(λ̂M ,M) is defined by Equation 5.4:

IC(λ̂M ,M) = − log p(X|λ̂M) + Pe(M, λ̂M) (5.4)

whereλ̂M is the ML estimate (has been introduced in section 2.2.3) of GMM

parametersλM whenM components are included.Pe(M, λ̂M) is the penalty

term. Since the data’s likelihood will not decrease whenM increases,Pe(M)

takes the opposite sign to the second term in Equation 5.2 in order to penalize

higher values ofM .

Five main types of such criteria have been used for selectingmodel complex-

ity (McLachlan and Peel, 2000):

1. Bias correction based criteria usingPe(M) to eliminate the Kullback Leibler

(KL) Divergence between the true distribution and the estimated approxima-

tion based on the samples. Bootstrap-Based Information criterion (McLach-

lan, 1987) and Cross-Validation-Based information criterion (Smyth, 2000)

belong to this type.

2. Laplace Approximation (Schwarz, 1978) based information criteria have

been derived within a Bayesian framework for model selection, but it can

be applied also in a non-Bayesian framework. It approximates the Equation

5.2 to selectM̂ with the highest posterior probability. Examples of this kind

of criteria include BIC (Campbell et al., 1997) (Dasgupta and Raftery, 1998)

(Fraley and Raftery, 1998), Laplace-Empirical Criterion (Roberts et al., 1998)
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and Laplace-Metropodis Criterion (Meinicke and Ritter, 2001).

3. Coding theory based criterion selectM̂ by minimizing the code length nec-

essary to describe the parameterλM and to represent the data given the pa-

rameterλ̂M . MDL criterion (Rissanen, 1989) (Cover and Hall, 1991), Min-

imum Message Length criterion (Oliver et al., 1996) (Wallace and Dowe,

1999) (Wallace and Freeman, 1987), Akaike’s Information Criterion (Whind-

ham and Cutler, 1992), and Information Complexity Criteria(Bozdogan,

1993) all exploit coding theory.

4. Classification based Information Criteria takes the classification likelihood

of the data into account when determining model complexity (Banfield and

Raftery, 1997) (Cheung, 2005). Classification likelihood is applied in the

EM framework as complete-data likelihood for model fitting.It usesPe(M)

to penalize the model whose components are not well-apart. Classifica-

tion Likelihood Criterion (CLC) (Biernacki and Govaert, 1997), Normalized

Entropy Criterion (Biernacki and Govaert, 1999) (Celeux and Soromenho,

1996), and Integrated Classification Likelihood (Biernacki et al., 2000) are

computed using complete-data information.

5. The Fully Bayesian approach (Neal, 1992) (Rasmussen, 2000) (Richardson

and Green, 1997) has been proposed for model selection. The Reversible

jump Markov Chain Monte Carlo method is applied for samplingto check

model posterior probability (Bensmail et al., 1997) (Mengersen and Robert,

1996) (Roeder and Wasserman, 1997). It is computationally demanding

(McLachlan and Peel, 2000), so the Variational Bayes (Richardson and

Green, 1997) (Ghahramani and Beal, 2000) has been developedto deter-

mine the model complexity under a Bayesian framework. It belongs to the

mean field methods (Jaakkola, 2000). The factored posteriordistribution

of the parameters are updated depending on each other to approximate the
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true joint distribution of the parametersp(λM). This algorithm will remove

the components whose posterior probability are close to zero (Attias, 2001)

(Corduneanu and Bishop, 2001) (Ueda and Ghahramani, 2002).The updat-

ing of model parameters also depends on the EM (Neal and Hinton, 1998),

and it can be applied on-line (Sato, 2001).

5.2 Derivation of the new criterion

In the beginning of this chapter, the demands for the new derived model com-

plexity determination criterion were listed. To reduce intra-speaker variance or

maintain the inter-speaker variance, how training data affects the modelling pro-

cedure needs to be reviewed. In this process the latent variable that links an

observation with a particular model is important.

The CLC is a model complexity selection criterion based on these latent vari-

ables. By analysing the CLC criterion, the relation betweencomponent mixing

parameters and the latent variables will be illustrated. Thus, in this section, CLC

is introduced first (section 5.2.1), followed by the derivation of the new crite-

rion (section 5.2.2). In section 5.2.3, the model selectioncriterion developed

by Figueiredo and Jain (2002) will be introduced and how the new criterion is

integrated into EM algorithm will be described in section 5.2.4.

5.2.1 CLC

A GMM with complexityM hasM Gaussian components and its parameters are

described byλM = {µi,Σi, wi} wherei = 1, · · · ,M . Assuming that the dataset

X = {x1, · · · , xN} are features that are independently and identically distributed
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(iid) according to the model, then their generation mechanism is described by:

p(x|λM) =
M
∑

j=1

wjgj(x|µj,Σj) (5.5)

and the likelihood of datasetX follows Equation 5.6

L(X|λM) =
N
∑

i=1

log
M
∑

j=1

wjgj(xi|µj,Σj). (5.6)

Let Z = {z1, · · · , zN} be the latent variables that show the component from

which the observations originate. In contrast tow, which is the probability of

xi generated from each component in the GMM,z is an indicator parameter that

relatesxi to the component containing the highest probability ofxi occurrence.

zi = {zi1, · · · , z
i
M}T ,

zij = 1 xi is from component j,

zij = 0 otherwise,

M
∑

j=1

zij = 1 (1 ≤ i ≤ N, 1 ≤ j ≤ M).

The probability thatxi is generated by a particular component can be calculated

by Equation 2.4.

The observationsX is referred to as incomplete data, and{X,Z} is called

complete data. Assumexi is randomly generated from one of the components,

and theZ are iid given model parameters. Further assume thatZ is a multinomial

distribution, so that the marginal joint density ofZ is given by Equation 5.7

p(Z|λM) =
N
∏

i=1

M
∏

j=1

(wj)
zij (5.7)
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SupposeX are conditionally independent givenZ, the conditional density ofX

givenZ is described by Equation 5.8

p(X|Z, λM) =
N
∏

i=1

M
∏

j=1

g(xi|µj,Σj)
zij (5.8)

Consequently the joint density of the complete data is givenby Equation 5.9

p(X,Z|λM) =
N
∏

i=1

M
∏

j=1

(wjg(xi|µj,Σj))
zij (5.9)

Therefore the complete data log likelihood is given by Equation 5.10:

Lc(X,Z|λM) =
N
∑

i=1

M
∑

j=1

zij(logwj + log g(xi|µj,Σj)) (5.10)

TheLc(X,Z|λM) is also referred to as classification log likelihood. How the

classification information is contained can be shown by the link betweenLc(X,Z|λM)

andL(X|λM) described by Equation 5.11.

ECM(X|λM) = Lc(X,Z|λM)− L(X|λM)

= −

N
∑

i=1

M
∑

j=1

zij log τ
i
j (5.11)

whereτ is described by Equation 5.12.

τ ij = Pr(zij = 1|xi, λM)

=
wjg(xi|µj,Σj)

∑M
j=1wjg(xi|µj,Σj)

(5.12)

τ ij is the posterior probability of thejth component givenxi. It is also equal to

Pr(zij = 1|xi, λM), which is the conditional probability ofxi from the compo-

nentj givenxi andλM . ECM is the entropy ofZ.
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The entropyECM is a measure of the ability of theM component mixture

model to partition datasetX. If X is well separated by theM components,

ECM ≈ 0. However, if the mixture components are mingled together,ECM has

a large value. Therefore,ECM andτ provide data classification information.

CLC is a model complexity selection criterion that usesECM as the penalty

termPe. Thus the criterion selects the model that maximizes the complete data

likelihood, and as a result it prefers the model that spreadsapart the data. But

the CLC criterion does not consider the influence of parameter dimension on the

model’s generality. Moreover, the prior distribution of other parameters is also

neglected. Therefore, a new criterion, Equal Weight Penalty Criterion (EWPC)

will be developed to overcome these drawbacks and make the model selection

fits the UBM better.

5.2.2 Equal Weight Penalty Criterion (EWPC)

When there are extra components included in a mixture model,they may have

little data to support the existence of the components (Uedaand Nakano, 1998)

or share close position with other components (Hofmann and Buhmann, 1997).

In the first case, these components have a low mixing parameter wj ≈ 0; in the

second case, they have similar weight parameters in the mixture (Ueda et al.,

2000). The first kind of extra components can be removed by thecriteria that pe-

nalizes the model parameter dimension (the number of parameters in the model)

or removes these components withwj ≈ 0. In the new criterion a penalty term

based on the KL divergence of the prior and posterior distribution ofw is adopted

to overcome the second situation.

The conjugate prior of the multinomial distribution is the prior distribution

of w, p0(w). w follows a Dirichlet distributionDir(δ1, · · · , δM) (Bernardo and

Smith, 1994), where parameterδ controls the shape of the distribution.p0(w) is
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set according to Equation 5.13:

p0(w|δ) = Dir(w|δ) ∝ wδ−1
1 · · ·wδ−1

j · · ·wδ−1
M (5.13)

The change ofp0(w)with different values ofδ in a one dimensional case is shown

in Figure 5.1. It can be seen that whenδ < 1 the distribution has a concave shape
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Figure 5.1: Dirichlet prior with different negative parameter.

and thatw has a high probability when it is near 0 or 1. Whenδ approaches 1 the

distribution becomes flatter; and whenδ > 1 the distribution has a convex shape

reaching its highest value atw = 0.5. The Dirichlet distribution ofw with less

than 1 makes the existence of the components unstable and they must ‘compete

to survive’. By controlling the value ofδ, different prior distributions forp0(w)

can be obtained. Assuming a concave distribution forp0(w) with δ < 1, the

prior favoursw with value near 0 or 1. The KL divergence measures the differ-
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ence between the prior distribution and the posterior distribution. If the posterior

distribution has a flat distribution,DKL(pw|z, p0) (defined later in Equation 5.17)

becomes large and the model will be penalized more. The competition between

components is fierce and among two components that share the same data space;

only one will win and the other will be removed. If a flatter Dirichlet distribution

is applied top0(w), more components are allowed in the mixture model.

The new criterion measures the KL divergence betweenp(w|Z) andp0(w)

with respect top(w|Z), and is labelled asDKL(pw|z, p0). Settingδ′ = δ−1, then

the prior distribution ofw follows

p0(w) =

M
∏

j=1

wδ
′

j /A1

A1 =
Γ(δ)M

Γ(Mδ)
(5.14)

whereΓ is the Gamma function. The distribution ofp(Z|w) follows:

p(Z|w) ∝ w
∑N

i=1
zi
1

1 · · ·w
∑N

i=1
zij

j · · ·w
∑N

i=1
ziM

M (5.15)

Sincep(w|Z) ∝ p0(w)p(Z|w),

p(w|Z) =

M
∏

j=1

w
∑N

i=1
zij+δ

′

j /A2

A2 =
Γ(
∑N

i=1 z
i
1 + δ) · · ·Γ(

∑N
i=1 z

i
M + δ)

Γ(N +Mδ)
(5.16)
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Submitting Equation 5.14 and Equation 5.16 intoDKL(pw|z, p0),

DKL(pw|z, p0) = Ep(w|Z){log(pw|Z)− log(p0(w))}

=
M
∑

j=1

(
N
∑

i=1

zij log(ŵj)) + logA

A = A1/A2 =
Γ(δ)MΓ(N +Mδ)

Γ(
∑N

i=1 z
i
1 + δ) · · ·Γ(

∑N
i=1 z

i
M + δ)Γ(Mδ)

(5.17)

whereEp(w|Z){· · · } is the expected value of{· · · } with respect to the probability

density functionp(w|Z). Using the absolute value of Equation 5.17 asPe, the

extra components will be removed from the model. However, the influence of the

data size and the number of parameters also need to be taken into consideration.

BIC criterion (defined in Equation 2.8) selects the appropriate model complexity

depending on both data size and parameter dimension (the number of parameters

used in the model). Applying BIC to approximateL(X|λM), the new criterion

becomes:

EWPCM = − log p(X|λ̂M) + Pe(M, λ̂M)

= − log p(X|λ̂M) + |
1

2
M logN +DKL(pw|z, p0)|

= − log p(X|λ̂M) +
1

2
M logN + |

M
∑

j=1

(
N
∑

i=1

zij log(ŵj)) + logA|

= − log p(X|λ̂M) +
1

2
M logN + |

M
∑

j=1

(Nŵj) log ŵj + logA|

M̂ = argmin
M

EWPCM (5.18)

Two examples are used to show the performance of the new criterion. In

the first example, 1000 samples are generated from a four component bivariate

GMM. They are referred to as dataset1 below, and the samples and their genera-

tion model is illustrated in the sub-figure (a) of Figure 5.2.All the components

100



have different means and are located close to each other. Oneof them has a low

variance and a low mixing proportion. GMMs are trained basedon dataset1 us-

ing the EM algorithm. The range of the model complexity is1 ≤ M ≤ 10, and

the EWPC is applied to select the optimum component number that minimizes

EWPCM . A random initialization of GMM with 10 components is shown in

Figure 5.2 (b). Figure 5.2 (c)-(f) shows the GMM selected by the EWPC with

different settings for parameterδ.

It can be seen from Figure 5.2 that whenδ = 0.3 andδ = 0.5, the EWPC

selects the correct model for the dataset. As the value ofδ increases, the criterion

allows more components to be contained in the model. Whenδ = 0.1, the

smallest component fails the competition and the larger component occupies its

space. If the dataset is well separated in the space, the EWPCselects the true

generated model no matter what the value ofδ. This will be illustrated in the

next example.

In the second example, 1000 samples are generated from a different four-

component bivariate GMM. This time they are well separated from each other.

They are referred to as dataset2 below, and the samples and their generated model

are illustrated in the Figure 5.3 (a). It can been in the figurethat the same model

is selected by different settings ofδ. Therefore, the EWPC will control the com-

ponent number by the parameter setting only when the data distribution is am-

biguous or overlapped.

When applying the new criterion to select the model complexity, EWPCM

(represented by Equation 5.18) needs to be calculated for a range ofM , from

Mmin toMmax. It is time consuming becausêλM needs to be estimated for each

M . Although to obtain ˆλM−1 by EM, the model can be initialized by removing

the component with least likelihood in̂λM , but the algorithm is still inefficient.

Another problem that will be encountered by the new criterion is due to EM.
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(a)The experimental dataset and the
true mixture model. The data is de-
noted by gray points and the model is
represented by the ellipse.
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(b)Random initialization with 10 mix-
tures.
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(c)The model selected by the EWPC,
setδ = 0.1. It has 3 mixtures.
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(d)The model selected by the EWPC,
setδ = 0.3. It has 4 mixtures.
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(e)The model selected by the EWPC,
setδ = 0.5. It has 4 mixtures.
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(f)The model selected by the EWPC,
setδ = 0.8. It has 5 mixtures.

Figure 5.2: Fitting a GMM to dataset1 according to EWPC
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(a)The experimental dataset and the
true mixture model. The data is de-
noted by gray points and the model is
represented by the ellipse.
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(b)Random initialization with 10 mix-
tures.
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(c)The model selected by the new cri-
terion, setδ = 0.1. It has 4 mixtures
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(d)The model selected by the new cri-
terion, setδ = 0.3. It has 4 mixtures
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(e)The model selected by the new cri-
terion, setδ = 0.5. It has 4 mixtures
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(f)The model selected by the new cri-
terion, setδ = 0.8. It has 4 mixtures

Figure 5.3: Fitting a GMM to dataset2 according to EWPC
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EM has two main drawbacks. First, it is sensitive to the initialization; second,

it may converge to the boundary of the parameter space (Kloppenburg and Ta-

van, 1997) (Meinicke and Ritter, 2001). Thus to select the initialization model

complexity,Mmax is difficult to compute. Using highMmax results in a heavy

computational burden, and will increase the risk of components converging to

the space boundary (Rose, 1998). On the other hand, using lowMmax the model

cannot well fit the features.

To overcome these problems, the criterion developed in (Figueiredo and Jain,

2002) will be integrated into the EWPC. It is based on Laplace’s Method of

Approximation, which will be introduced in the next section.

5.2.3 Laplace’s Method of Approximation

The marginal distribution of dataset X can be described by Equation 5.19, given

model complexityM :

p(X|M) =

∫

p(X, λM)dλM

=

∫

exp{log p(X, λM)}dλM (5.19)

Using second-order Taylor series to approximatep(X, λM) atλM = λ̃M ,

log p(X, λM) ≈ log p(X, λ̃M)−
1

2
(λM − λ̃M)TH(λ̃M)(λM − λ̃M) (5.20)

whereλ̃M denotes the posterior mode ofλM satisfying∂ log p(X, λ̃M)/∂λM =

0. H(λ̃M) is the negative Hessian matrix oflog p(X, λM) evaluated atλM = λ̃M .

104



Substituting the expansion described by Equation 5.20 intoEquation 5.19,

p(X|M) = exp{log p(X, λ̃M)}

∫

exp{−
1

2
(λM − λ̃M)TH(λ̃M)(λM − λ̃M)}dλM

= p(X, λ̃M)(2π)
1

2
D̄|H(λ̃M)|−

1

2

(5.21)

Therefore, from Equation 5.21, the marginal log likelihoodcan be approximated

as

log p(X|M) ≈ log p(X|λ̃M) + log p(λ̃M)−
1

2
log|H(λ̃M)|+

1

2
D̄log(2π)

(5.22)

Usually, the ML estimateλ̂M , is used instead of the posterior modẽλM . Since

the negative Hessian matrix is the negative of the square matrix of second-order

partial derivatives of all parameters,H(λ̂M) is equal to the observed information

matrix I(λ̂M |X), which is the negative of the second derivative of the logarithm

of the likelihood function based on observations in datasetX. Then Equation

5.22 can be approximated by

log p(X|M) ≈ logP (X|λ̂M) + log p(λ̂M)−
1

2
log |I(λ̂M |X)|+

1

2
D̄log(2π)

(5.23)

The BIC criterion is derived by replacinglog |I(λ̂M |X)| asM logN , as de-

scribed by Equation 2.8.M logN is the number of parameters in the GMM.

1
2
D̄log(2π) is a constant term and when the size ofX increases, this term will

become considerably small compared with other terms. So it is treated as an o(1)

term (a term that converges to 0 when data size is large) and ignored in BIC.

Figueiredo and Jain (2002) integrated the model selection criterion in the

likelihood function, so the model complexity can be optimized gradually using
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EM. It approximates|I(λ̂M |X)| using the complete data information matrix with

a block diagonal structure (Titterington et al., 1991) (McLachlan and Peel, 1997):

Ic = N blockdiag{w1I
(1)(µ1,Σ1), · · · , wMI

(1)(µM ,ΣM),Λ} (5.24)

where|Λ| = (w1w2 · · ·wM)−1.

blockdiag refers to a block diagonal matrix, which is a square diagonalma-

trix in which the diagonal elements are square matrices of any size, and the

off-diagonal elements are 0.

Square matricesw1I
(1)(µ1,Σ1), · · · , wMI

(1)(µM ,ΣM) andΛ are on the

diagonal ofblockdiag{w1I
(1)(µ1,Σ1), · · · , wMI

(1)(µM ,ΣM), V } and the blocks

off the diagonal are zero matrices.I(1)(µi,Σi) is the observed information matrix

with respect to componenti’s parametersµi andΣi given a single observation.

Therefore the value of|Ic| is defined as Equation 5.25:

log |I(λ̂M |X)| =

M
∑

j=1

Ω(µ,Σ) logNwj −

M
∑

j=1

logwj +

M
∑

j=1

log |I(1)(µj,Σj)|

(5.25)

whereΩ(µ,Σ) represents the number of parameters in a Gaussian component.

Assume parameters of different components are independent, and the mixing pa-

rameters are independent of the Gaussian parameters, the standard non-informative

Jeffrey’s prior of the parameters is adopted as Equation 5.26:

p(λ̂M) = p(w, µ,Σ) = p(w1) · · ·p(wM)

M
∏

j=1

p(µj,Σj)

∝ (w1w2 · · ·wM)−1/2

M
∏

j=1

(|I(1)(µ1,Σ1)|)
1/2 (5.26)
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Therefore,

log p(λ̂M) = log p(w, µ,Σ) = −1/2

M
∑

j=1

logwj + 1/2

M
∑

j=1

log I(1)(µj,Σj)

(5.27)

Substituting Equation 5.25 and 5.27 into 5.23, then

log p(X|M) ≈ logL(λ̂M )−
1

2
Ω(µ,Σ)

M
∑

j=1

log(Nwj) +
1

2
D̄log(2π) (5.28)

Neglecting the last term (because it is an o(1) term), Equation 5.28 becomes:

log p(X|M) ≈ logL(λ̂M)−
1

2
Ω(µ,Σ)

M
∑

j=1

logwj −
1

2
Ω(µ,Σ) logN (5.29)

Then the model complexity selection criterion is describedas:

M̂ = argmin
M

log p(X|M) (5.30)

This criterion has an intuitively appealing interpretation. For each compo-

nent, the expected number of data points generated from it isNwj . According to

BIC, the model complexity is penalized byΩ(µ,Σ) log(Nwj). Thus the criterion

check for each component is whether there is sufficient evidence for its existence

according to BIC. This criterion can be integrated into the EM algorithm, which

selects the model complexity automatically during model training. In the next

section, the EM algorithm will be introduced briefly.

5.2.4 EM algorithm for GMM parameter estimation

The EM algorithm (Dempster et al., 1977) is a general method of obtaining

the maximum-likelihood estimation of the parameters of an underlying distri-
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bution from a given incomplete data set. There are two main types of incomplete

dataset. The first occurs when the data loses parts of values due to problem re-

striction or observation process. The second assumes the existence of additional

hidden parameters to simplify the optimizing of the likelihood function that is

analytically intractable. The EM algorithm can also be applied to find a MAP

estimate of the parameters, where MAP is a mode of the parameter’s posterior

distribution. (McLachlan and Peel, 1997).

For parameter estimation in the GMM, the indicator parameter Z is applied

as the latent set of parameters (McLanchlan and Basford, 1988) (McLachlan and

Peel, 1997).Z has been introduced in Section 5.2.1 and it shows from which

component of the GMM an observation originates. Since the values ofZ are

unknown in the parameter estimation process, the EM algorithm replaces them

by their expected value conditioned by observations ofX; and then obtains the

parametersλM = {µi,Σi, wi} by maximizing theLc(X,Z|λM). This procedure

includes an E-step and an M-step and these two steps will be run iteratively until

the stop criterion is met.

The EM algorithm can be described as follows:

• initialize: Initialize theλM = {µi,Σi, wi} asλ1M = {µ1
i ,Σ

1
i , w

1
i }.

• In the E-step: At thetth iteration, assumeτ ij (described by Equation 5.12)

denotes the expected value ofzij given the value obtained at the last iteration

t − 1, then the complete data log likelihood conditioned onλt−1 can be

presented as Equation 5.31:

Q(λM , λ
t−1
M ) =

N
∑

i=1

M
∑

j=1

τ ij (logwi + log g(xi|µj,Σj)) (5.31)

• In the M Step: Take the derivative of Equation 5.31 with respect towj , µj,

andΣj respectively, and the optimum values that maximize Equation 5.31
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will be obtained. It follows that

λtM = argmax
λM

Q(λM , λ
t−1
M ) (5.32)

where

wtj =

N
∑

i=1

τ ij/N

µtj =
N
∑

i=1

τ ijxi/
N
∑

i=1

τ ij

Σtj =

N
∑

i=1

τ ij(xi − µj)(xi − µj)
T/

N
∑

i=1

τ ij (5.33)

for j = 1 toM .

• Stop criterion: The E-step and M-stem will be operated iteratively until the

log likelihood of the observationsL(X|λM) increases no further.

5.2.5 Integrating the model complexity selection in the EM

Figueiredo and Jain had integrated an EM algorithm into their criterion, which

will find the MAP estimate of parameters, and at the same time removes extra

components in the GMM (Figueiredo and Jain, 2002).

Integrating the second term of Equation 5.29,−1
2
Ω(µ,Σ) log(wj), into the

Q(λM , λ
t−1
M ) defined by Equation 5.31 in order to maximize it with respect towi

results in Equation 5.34:

∂
[

∑N
i=1 τ

i
j logwi −

1
2
Ω(µ,Σ) log(wj)

]

∂wj
= 0 (5.34)
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where
∑M

j=1wj = 1. Therefore in iterationt, wj will be updated by

wtj =
max{0,

∑N
i=1 τ

i
j −

1
2
Ω(µ,Σ)}

∑M
t=1 max{0,

∑N
i=1 τ

i
t −

1
2
Ω(µ,Σ)}

(5.35)

instead of what has been described in Equation 5.33. The component with a

weight less than1
2
Ω(µ,Σ) will be removed automatically from the model. The

term 1
2
Ω(µ,Σ) is only a part of the criterion described in Equation 5.29, sothe

selection of the model complexity still needs to go through every possibleM .

However, allowing the weight of parts of the components to reduce to zero and

removing them automatically in EM training will greatly accelerate the UBM

training.

The performance of the EM depends heavily on initialization. Since EM is a

localized algorithm, if its initial values fail to cover some of the data space that

space may never be covered by the model. To initialize the model with enough

components to cover all of the data space is a way to solve the problem, but it

will cause a singularity of the covariance matrix. Whenwj approaches 0, the

corresponding covariance matrix may become arbitrarily close to singular. If the

number of components assumed is much larger than what is optimal, this tends

to happen frequently. However, by removing thejth component oncewj is less

thanΩ(µ,Σ), this will be avoided.

To integrate this model selection criterion into EWPC, Equation 5.29 is ap-

plied to approximate the termlogL(λ̂M)− 1
2
Ω(M) logN in Equation 5.18. Then

EWPC becomes

EWPCM = − logL(λ̂M) +
1

2
Ω(µ,Σ)

M
∑

j=1

logNwj + |
M
∑

j=1

(Nŵj) log ŵj + logA|

(5.36)

When training the speaker model or the UBM with the EM, the model selec-
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tion procedure is first run automatically in EM by updatingwj using Equation

5.35. Then EWPC of the model is calculated as described in Equation 5.36. The

components with the smallest likelihood will be removed from the model and

the EM training is run again. Finally, the model whose EWPC issmallest will

be picked as the optimal model. The performance of the proposed EWPC-based

model complexity selection mechanism is illustrated in Figure 5.4. In this ex-

ample, 1000 samples are generated from a four-component bivariate GMM with

plenty of overlap. They are referred to as dataset3 below, and the samples and

their generation model is illustrated in the Figure 5.4 (a).In Figure 5.4 (b), the

random initialization with ten-components is shown. It automatically shrinks to

a six-component model in Figure 5.4 (c). The optimal model selected by this

criterion is shown in Figure 5.4 (d). EWPC can also select thecorrect model

when0.3 ≤ δ ≤ 0.6, as illustrated in Figure 5.4 (e). However, in Figure 5.4 (f),

(setδ ≤ 0.2) EWPC prefers the model with fewer component.

5.3 Efficient sample size UBM adaptation

In a speaker diarization system, where segments are clustered according to the

speakers, a model is built for each segment by adapting them from the UBM. It

has been shown in section 3.4 that short segments cannot cover all the subspace

of a particular speaker. Although the UBM can be used to help understand the

subspace structure, it may reduce the inter-speaker variance if there is not enough

data for adaptation. Therefore, in this section, an adaptation method is proposed

to remove automatically the components that the data in the segments does not

support well.

Mean-only adaptation is applied to the task and the resulting segment model

has the same model complexity as the UBM. However, if little data in the seg-
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(a)The experimental dataset and the
true mixture model. The data is de-
noted by gray points and the model is
represented by the ellipse.
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(b)Random initialization with 10 mix-
tures.
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(c)The evolution of the criterion of
Figueiredo. After the first iteration
with 10 component initialization
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(d)The model selected by the criterion
of Figueiredo.
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(e)The model selected by EWPC, set
δ = 0.6
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(f)The model selected by the new cri-
terion, setδ = 0.2

Figure 5.4: Fitting GMM to the dataset3 based on the criterion of Figueiredo and
Jain (2002) and EWPC.
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ment is assigned to a component of the UBM, in the adapted model, the mean

value of the component will be dominated by the one from the UBM. It may

cause the dissimilarity between the models of two segments to be reduced. In

this section, a new UBM adaptation method is described. Boththe mean adap-

tation and the weight adaptation is applied so that the component in the UBM

with little data assigned to it will disappear in the segmentmodels. The new

adaptation method is based on the criterion of Figueiredo and Jain (2002), which

has been described in the last section.

The weight adaptation for a segment from a UBM follows the same formula

as Equation 5.35. It is described by Equation 5.37

w̃i =
max{0,

∑N
i=1 τ

i
j − Ω(µ,Σ)}

∑M
t=1max{0,

∑N
i=1 τ

i
t − Ω(µ,Σ)/2}

(5.37)

whereτ ij is the posterior of componentj given the dataxi from the segment to

be adapted. If less thanΩ(µ,Σ)/2 data is assigned to the component, it will not

appear in the segment’s model. This weight adaptation can beexplained if one of

the components becomes too weak, meaning that it is not supported by enough

data, it will be removed.Ω(M)/2 is the threshold to judge if the effective sample

size generated from the component is enough (Figueiredo andJain, 2002).

Then the component’s mean will be adapted only for these components whose

weight parameter is not zero.

µ̃i =
ρiµ

ubm
i +

∑N
j=1 τjixj

ρi +
∑N

j=1 τji
if w(j) 6= 0 (5.38)

whereρi is used to control how the UBM’s mean affects the adapted mean.
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Chapter 6

Experiment and Discussions

In Chapter 3, the characteristics of meetings and those aspects that affect the

speaker diarization system were identified. Potential solutions to the system’s

shortcomings were suggested and developed into new algorithms in Chapter 4

and Chapter 5. In this chapter, experiments will be conducted to evaluate the

effectiveness of these novel strategies when they are adopted in the speaker di-

arization of single channel recorded meetings. In Section 6.1, the meetings used

to evaluate the performance of the new algorithms will be introduced. In Section

6.2, the difference between the baseline system and the new system consisting

of the new strategies will be presented. In Sections 6.3 through 6.6, the perfor-

mance of all of the novel strategies derived in this thesis will then be evaluated

against the baseline system. In Section 6.7, the overall results will be discussed,

and finally, possible conclusions will be drawn.

6.1 Meeting corpus selection

In Chapter 3, fifteen meetings from the AMI corpus were studied to examine the

shortcomings of the baseline system in terms of various meeting characteristics.

These meetings were also used to select the optimum value forthe parameters of
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the speaker diarization system, such as the segment lengthsof SAD and SCD (in

Chapter 3) and the combination parameterα and threshold of SCD (in Chapter

4). In this chapter, we use the same meetings to select other parameters appearing

in both the baseline system and the new system. They will be referred to as the

“development set” in the rest of the thesis. Because the characteristics detection

and parameter selection of all meetings are based on the development set, they

are presumed to obtain better results when the new speaker diarization system is

applied.

To test the stability of the new strategies and the chosen parameters, we

should use other meetings to test the system to check the consistency of the re-

sults. Those meetings, which are collectively termed the “evaluation set”, should

be different from the development set. Therefore, another 30 meetings from the

AMI corpus are selected as the evaluation set. They are of different types and are

recorded in the Edinburgh Room and the IDIAP Room. None of these meetings

is affected by irresolvable recording problems, which in most cases were due

to equipment failure. Only single-channel recordings obtained by mixing lapel

recordings are used in the evaluation set, based on the same reasoning of devel-

opment set selection described in Section 3.1. Because the AMI corpus includes

very limited types of meetings and the range of speaker numbers in these meet-

ings is narrow (from 3 to 5), meetings from another corpus should be selected

to increase the diversity of the evaluation set. Therefore,meetings from the ISL

Meeting Corpus Part I (ISL-MC1) are included in the evaluation set.

The ISL Meeting Corpus Part I (ISL-MC1) is the first publishedsubset of

the ISL Meeting Corpus (112 meetings). It contains 18 meetings collected at

the Interactive Systems Laboratories (ISL) at Carnegie Mellon University. All

meetings were recorded in an open-plan office, with background noises similar

to a quiet cubicle office environment. Each participant worea lapel microphone,
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and the meetings were recorded directly onto a hard disk at 16kHz as WAV files.

For each meeting, all channels were provided in separate files, as well as a single

WAV file containing a mix of all channels tracks. Three meetings, m053, m054

and m057, could not be used in our experiment because of recording problems

(some speakers are off microphone). One of the meetings (m039) is recorded in

two parts, m039a and m039b. Because our research focus is on single-channel

recordings, 16 mixed-channel meeting audios are used in ourexperiments. The

durations of the ISL-MC1 meetings range from 8 to 64 minutes,and the average

is 34 minutes. Four types of meetings are included in the ISLMC1: project

meetings, discussion, chatting and game playing. Among them, project meetings

are natural meetings that occur in the real world, whereas discussion, chatting

and game playing are artificial meetings that were designed for the purpose of

data collection. The number of speakers appearing in the meetings of the ISL-

MC1 ranges from 3 to 9, a wider range than in the meetings of theAMI corpus.

A detailed description of ISL-MC1 can be found in (Burger et al., 2002).

The DER, which is the main metric for measuring the performance of the

speaker diarization systems, was introduced in Section 2.7. The DER first finds

an optimal one to one mapping between the speakers detected by the speaker

diarization system and the real speakers. This mapping should minimise the total

fraction of time that is attributed to an incorrect source. As introduced in Section

2.8, incorrect attributions occur in three different cases. In this chapter, when

speech is rated as non-speech, the resulting error rate is denotedEMISS. The

error rate caused by rating non-speech as speech is denotedEFA. When speech

is attributed to the wrong speaker, the error rate is denotedEspkr. Equations 2.17,

2.18 and 2.16 described the method to calculateEMISS, EFA andEspkr. DER is

used to represent the total error rate, which is the sum ofEMISS,EFA andEspkr.

When multiple speakers talk at the same time, the speech can be assigned to any

116



of them without increasing the DER.

The real speakers and the time stamps of their dialogue are provided in the

reference document of the corresponding corpus, which is called the transcrip-

tion. In the AMI corpus, forced alignments are used as the transcription, and they

can be downloaded at http://corpus.amiproject.org/download. In the ICL corpus,

the meetings are transcribed by hand. Compared to forced alignments, hand tran-

scription extends the durations when multiple speakers speak at the same time

and is unreliable for detecting short silence segments or the boundary between

speech and non-speech. Table 6.1 summarises the data used inthe experiment in

this chapter. For a complete list of the individual files, refer to Appendix A.

Development set Evaluation set
Corpus AMI AMI ICL
Number of meetings 15 30 16
Range of speaker numbers 3-4 3-4 3-9
Number of room types 2 2 1
Number of meeting types 3 3 4

Table 6.1: Meetings used in experiments in this chapter

6.2 Differences between the baseline system and the

new system

The baseline system described in Section 2.8 contains four phases: Speaker Ac-

tivity Detection (SAD), Speaker Change Detection (SCD), clustering, and post

processing. In the new system, new algorithms are proposed for all phases to

improve system performance. In Chapter 3, 12 MFCCs + energy are used as

acoustic feature vectors to detect speech/non-speech characteristics in the SAD

phase, and 19 MFCCs + energy are used in the other parts. In this chapter, 19

MFCCs + energy feature vectors are used throughout all phases to maintain con-
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sistency.

In the SAD phase, the baseline system applies a model-based speech detec-

tion method to remove the non-speech segments in the audio. All meetings in the

development set are used to train the speech and non-speech models. A single

Gaussian model is used as the non-speech model, and an eight-component GMM

is used as the speech model. Meetings are segmented into small segments with

lengths of 0.4 seconds; these segments are then clustered asspeech or non-speech

based on the GMM models. The number of components used in the GMMs and

the segment length are determined by the analysis in Section3.2.1.

By Experiment 3.1, we have seen that more components should be incor-

porated in the GMM when the NLR value is high. Furthermore, ifthe speech

and non-speech segments from a meeting are used to train the GMM, better per-

formance will be obtained (Experiment 3.2). Based on these conclusions, a new

SAD algorithm is proposed. The new algorithm has two steps: the first step is the

same as that used in the baseline system; in the second step, the detected speech

and non-speech segments are used to adjust the GMMs. If the NLR is higher than

a certain threshold, the number of components used in the non-speech GMM will

be increased. Then, the new GMMs will be used to detect speechand non-speech

segments. The performance of the new SAD algorithm will be discussed in 6.3.

In the SCD phase, the KL2-based speaker segmentation strategy is used in the

baseline system as described in Section 2.8. The new SCD algorithm, which is

based on FDA analysis, will be applied in the new system. Bothalgorithms were

described in Chapter 4, as well as all values of the parameters. The threshold

value of the new algorithm was determined in Section 4.2, andthe threshold

value of the baseline KL2-based algorithm was determined inSection 4.3. Their

performance will be compared in Section 6.4.

In the clustering phase, the detected speech sections between speaker change
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points produced by the SCD steps are then used to train the speaker models.

The Gaussian model is used to initialise potential speaker models, such that each

potential speaker model is trained by a speech section. These potential speaker

models will then be clustered based on their similarity. In the baseline system,

∆BIC (defined in Equation 2.9) is used as the measurement of similarity. The

pair of potential speaker models with the lowest∆BIC values are merged into

one, and a new GMM are trained on all the sections assigned to them. In the

new GMM, the number of components is the sum of the model complexities

of the two GMMs being merged. The merging process terminateswhen the

remaining potential speaker number is below a certain threshold. Then, every

speech section detected between speaker change points willbe re-assigned to

the remaining potential speaker model with the highest probability.

The post-processing phase includes three steps: UBM building, model adap-

tation and speaker clustering. In the baseline system, a GMMwith 128 com-

ponents is trained by all the speech in the meeting as the UBM.Then mean-

only adaptation is used to derive the speaker models of all remaining potential

speakers from the UBM. The CLR is used as the similarity measure between the

UBM-adapted speaker models, and the pair of potential speaker models with the

largest CLR value are merged. The whole process is terminated when the CLR

between all the pairs of potential speakers is below a certain threshold. Again,

all speech sections lying between detected speaker change points are re-assigned

to the remaining potential speakers. Finally, the non-speech segments detected

in the SAD, the speech sections and their corresponding speakers are output by

the system as final results.

In the new system, a new model complexity decision criterion, EWPC, is ap-

plied to determine the model complexity of the potential speaker models and the

UBM. The EWPC is described in Chapter 5; it controls the modelcomplexity us-
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ing KL-divergence in such a way that fewer components are allowed in a poten-

tial speaker model, whereas more components are allowed in the UBM. The CLR

similarity measure is used to select the candidate pair of potential speakers to be

merged instead of∆BIC. In addition, a mean and weight adaptation method

(also described in Chapter 5) is applied to derive potentialspeaker models from

the UBM. The performance of the new model complexity decision scheme and

the new adaptation method will be given in Section 6.5.

In Figure 6.1, both the baseline system (Figure 6.1 (a)) and the new system

(Figure 6.1 (b)) are described, with their differences highlighted in red. Other

than the new algorithms labelled in red in Figure 6.1, a new termination scheme,

which is based on the Normalized Cuts (NC), will be introduced in Section 6.6.

The structure of the new system integrating the new termination scheme will also

be illustrated in Section 6.6.

6.3 The performance of the new SAD algorithm

In this section, the new SAD algorithm will be described in detail, and its per-

formance will be compared to the SAD process in the baseline system. The aim

of the new algorithm is to integrate the information detected in the first round of

speech/non-speech classification into a second round to improve the classifica-

tion models.

First, we determine the model complexity of the non-speech GMM in the sec-

ond round depending on the NLR detected in the first round. Based on the data

analysis in Section 3.5, when the NLR is lower than 40%, the one-component

GMM is sufficient to model the non-speech segments. When the NLR becomes

higher, more components (2-3) should be included in the GMM.In Experiment

3.1, every recording extracted and used to determine the appropriate model com-
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Figure 6.1: The basline system, new system and their difference.
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plexity for the non-speech GMM had the same length, which suggests that the

NLR is proportional to the length of the noise. Therefore, the optimum model

complexity value could be affected by either the NLR or the length of the noise.

In the experiment described in this section, the meeting length varies from meet-

ing to meeting, so the NLR and the length of the noise are no longer correlated.

As a result, we must decide how to adjust the model complexity, whether ac-

cording to the NLR or to the length of the noise. Because it canbe observed

in Figure 3.3 that the MISS error rate and the FA error rate change in opposite

directions, it is better to adjust the model complexity based on the NLR, which

represents the relationship between the non-speech lengthand the speech length.

We here introduce the parameterβ to control for the number of components used

in the non-speech GMM: the model complexity is equal to the rounding value of

β ∗NLR.

Second, we adjust the speech and non-speech models using thenewly de-

tected information. If the model complexity of the non-speech model does not

need to be increased, it will be adapted towards the detectednon-speech in the

first round. Mean-only adaptation is applied to derive both the speech and the

non-speech models in the second round. The mean values of thenew models are

updated following Equation 6.1.

µnewi =
ρµoldi +

∑N
j=1 τjixj

ρ+
∑N

j=1 τji
(6.1)

whereµnewi is the mean value of theith component of the model after mean

only adaptation, withµoldi as its counterpart before the adaptation.xj is the

jth feature vector of the detected speech (or non-speech);τji = p(xj|µ
old
i ) is

the post probability ofxj given the model before the adaptation; andρ is the

parameter to balance the influence of the training material and the newly detected

information. Because we want the classification models to beadapted towards
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the target meeting without losing the ability to cover a variety of sound types, the

value ofρ is set to 0.5. If the non-speech model complexity must be increased

in the second round, it will first be re-trained using the original training material

with the redefined model complexity and then adapted towardsthe detected non-

speech using the same adaptation strategy described in Equation 6.1.

The 15 meetings of the development set are used to determine the value of the

parameterβ for the new SAD algorithm. The variation of the speech/non-speech

detection error rate as a function ofβ is illustrated in Figure 6.2. In Section 3.5,

more components must be included in the non-speech GMM when the NLR is

higher than 40%, which suggests that the value ofβ should be 5. However, the

optimum value ofβ that minimises the sum of theEMISS andEFA is much larger

than 5 when the value ofβ is determined by whole meetings. This may occur

for two reasons: first, the meetings are much longer than the 10 minute audio

segments used in Section 3.5, and therefore contain more non-speech; second,

sometimes the non-speech segments detected in the first round are shorter than

the actual non-speech segments in the meetings. It can be observed in Figure 6.2

that the sum of theEMISS andEFA achieves its minimum value whenβ = 12.

Choosing 12 as the optimum value ofβ, the model complexity of the non-speech

GMM is equal to 2 when 17% non-speech has been detected in the first round,

and 3 when 25.5% non-speech has been detected. We set the minimum value of

the non-speech model complexity to 1 and the maximum value to5 in the new

SAD algorithm.

To examine the performance of the new SAD algorithm, we substitute the

new SAD algorithm for its counterpart in the baseline systemand compare this

new system to the baseline system. The baseline system is denoted asSys 0 and

the system using the new SAD algorithm is denoted asSys sad. The perfor-

mance of both the baseline system and the system with the new SAD algorithm
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Figure 6.2: HowEMISS andEFA vary withβ

is displayed in Figure 6.3.EMISS,EFA, andEspkr, the components of the DER,

are shown in the three sub-figures of Figure 6.3, respectively. Figure 6.3(a) il-

lustrates the mean value and the standard deviation ofEMISS. Using the new

SAD algorithm leads to a decrease in the mean value ofEMISS in the evaluation

set and an increase in the development set. Because the speech and non-speech

of the development set have been included in the training material, to adjust the

corresponding GMMs towards the detection information in the development set

may not be as beneficial as in the evaluation set. Because the meetings from

the ISL corpus in the evaluation set are more likely to have a different sound

environment from those in the development set, the new algorithm shows the

greatest improvement on them. Moreover, the new SAD algorithm allows more

components to be included in the non-speech GMM of some meetings, which

may increase the value ofEMISS, as shown in Figures 3.3 and 6.2.

Figure 6.3(b) illustrates the mean value and the standard deviation of the

EFA. For the development set and the evaluation set from the AMI corpus, the
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mean value ofEFA decreases and the standard deviation narrows. For the eval-

uation set from the ISL corpus, the decrease is not as clear. The meetings from

the ISL obtain higherEFA values, as detected both by theSys 0 andSys sad.

This may be because the transcription of the ISL corpus is manually produced

and is inaccurate. Figure 6.3(c) illustrates the mean valueand the standard devi-

ation of theEspkr . The mean value of the Espkr decreases slightly in the system

with the new SAD algorithm. However, taking the standard deviation into con-

sideration, the decrease in theEspkr value is not fully supported. This is not a

surprise because these errors are not directly caused by thespeech /non-speech

detection. However, theEspkr value may be affected by the SAD step because

if non-speech components are not completely removed from the meetings, they

may contaminate the speaker models. The mean value of theEMISS, EFA, and

Espkr are shown in Table 6.2 for the development set and the evaluation set.

Meeting SAD Emiss(%) Efa(%) Espkr(%) DER(%)
Development set Sys 0 0.96% 3.41% 14.24% 18.61%
Development set Sys sad 1.00% 1.00% 13.82% 15.82%
Evaluation set (AMI) Sys 0 1.48% 3.14% 14.27% 18.89%
Evaluation set (AMI) Sys sad 1.41% 1.29% 13.79% 16.49%
Evaluation set (ISL) Sys 0 1.14% 6.57% 13.64% 21.35%
Evaluation set (ISL) Sys sad 0.84% 6.38% 13.22% 20.44%

Table 6.2: Performance of the baseline SAD algorithm and thenew SAD algo-
rithm

In Chapter 3, we concluded that increasing the model complexity of the non-

speech GMMs when the NLR is high will decrease theEFA, based on Experi-

ment 3.1. Indeed, the mean value of theEFA does show a decrease when the new

SAD algorithm is applied. We display theEMISS andEFA of speaker diariza-

tion systems with different SAD algorithms in Figure 6.4, toshow the influence

of the NLR on the system performance. TheEMISS of the development set is

shown in Figure 6.4(a), and theEFA of the development set is shown in Figure
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6.4(b). The new SAD algorithm obtains lowerEFA than the baseline SAD al-

gorithm, and the difference between the performance of the baseline SAD and

the new SAD increases when the NLR increases. Correspondingly, theEMISS

of some meetings increases, as predicted in Experiment 3.1.In Figure 6.4(c)

and (d), similar results are observed, except that the increase of theEMISS and

the decrease of theEFA are not always consistent with the NLR. This may be

because the meetings with high NLR detected in the first roundmay not be the

meetings with actual high NLR values. In Figure 6.4(e) and (f), no correlation

could be observed between the error rate and the NLR. Again, this may be caused

by the inaccurate transcription of the ISL meetings. Alternatively, as observed

from Figure 6.4(e) and (f), the NLR of meetings in the ISL corpus is much lower

than that of the meetings in the AMI corpus; therefore, the model complexities

of the non-speech GMM of most meetings are unchanged.

6.4 The performance of the new SCD

The new SCD algorithm has been described in detail in Chapter4, and in this

section, we examine its performance when integrated into the speaker diarization

system. Two speaker diarization systems are used to comparethe performance

of the two SCD algorithms: (1) the baseline system with the new SAD analysed

in Section 6.3 and the old SCD and (2) the baseline system withthe new SAD

and the new SCD. The first one is denoted as “Sys sad” and the second one is

denoted as “Sys scd”. By performing this comparison, the influence of different

SAD algorithms can be removed. The performance is shown in Figure 6.5 and

the specific values of the mean and standard deviation are displayed in Table 6.3.

In Figure 6.5, it can be observed that the new SCD algorithm obtains the lower

mean value of the DER in all sets of meetings. However, the standard deviation
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128



shows no difference. We observed in Section 4.3 that the new SCD algorithm

misses fewer speaker changes and detects fewer false changepoints than the

SCD algorithm. However, better performance in the SCD step cannot ensure

an improvement of the entire system because the results of the SCD only serve

as initialisation material for the potential speaker modeltraining. An inefficient

training method may affect the performance of the entire system. Although in

the conclusion of Chapter 3 the new SCD algorithm is suggested to improve the

system performance when there are more short turns, no evidence for this can be

found in the experiment. The reason could be either that the performance of the

new SCD algorithm is not connected to the number of short turns in a meeting

or that the result of the SCD steps has a limited influence on the whole system.
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Meeting SCD Emiss(%) Efa(%) Espkr(%) DER(%)
Development set Sys sad 1.00% 1.00% 13.82% 15.82%
Development set Sys scd 1.00% 1.00% 11.60% 13.60%
Evaluation set (AMI) Sys sad 1.41% 1.29% 13.79% 16.49%
Evaluation set (AMI) Sys scd 1.41% 1.29% 11.26% 13.96%
Evaluation set (ISL) Sys sad 0.84% 6.38% 13.22% 20.44%
Evaluation set (ISL) Sys scd 0.84% 6.38% 11.30% 18.52%

Table 6.3: Performance of the baseline SCD algorithm and thenew SCD algo-
rithm

6.5 The performance of the new model complex-

ity selection algorithm and the mean adapta-

tion method

In Chapter 5, three new algorithms were proposed to improve the model training

in speaker diarization systems. First, a new criterion was developed to determine

the model complexity in Section 5.2.2. Second, a new EM algorithm, with the

model complexity selection scheme integrated into it, was introduced in Section

5.2.5. Third, a weight and mean adaptation method was described in Section 5.3.

In this section, the performance of a combination of these three new algorithms

will be analysed.

In the clustering step of the speaker diarization systems, the speech sections

lying between speaker change points are merged according tothe similarity of

the potential speaker models trained by these sections. In the post-processing

step, the UBM is trained, and these potential speaker modelsare adapted from the

UBM. Therefore, it is essential to train efficient models with appropriate model

complexity to ensure the success of the speaker diarizationsystems. If too many

components are used to model small training sets, the model will suffer from

over-fitting. However, with too few components to representdata characteristics,

the model will fail to discriminate. In Section 5.2.2, a new model complexity de-
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termination criterion, EWPC, was developed to determine the model complexity

for both the potential speaker models and the UBM. The EWPC determines the

model complexity for a GMM by selecting the one with highest penalised like-

lihood. The penalty term contains two parts, one part based on the parameter

dimension and data size and the other based on the KL divergence between the

prior and posterior distributions of the mixing parameter.The second part can

be controlled byδ, which is the distribution parameter of the prior distribution

of the mixing parameterw. The higher the value ofδ, the more components will

be included in the model. Therefore, by settingδ low (δ = 0.2) for the poten-

tial speaker models and settingδ high (δ = 0.8) for the UBM, fewer components

could be included in the GMM for the speaker models to reduce the intra-speaker

variance, whereas more components could preserved in the UBM to represent the

inter-speaker variance.

A standard EM algorithm is usually used to train the GMMs. It cannot guar-

antee to achieve a local maximum, and it is sensitive to the initialisation of the

parameters. To overcome the problem that the EM algorithm issensitive to the

initialisation parameter, the complexity-integrated EM algorithm proposed by

Figueiredo (2002) that was introduced in Section 5.2.5 willbe used to train the

model. By integrating a model complexity penalty term into the EM algorithm,

it initialises the EM training with a large number of components and then re-

moves them if there is insufficient evidence to support theirexistence during the

training.

In the post processing, the UBM is adopted to derive the speaker models.

When the training data for a single speaker is insufficient, the speaker models

derived from the UBM will capture more speaker characteristics and have a bet-

ter presented structure. However, if the training data belonging to a speaker are

too short, the resulting speaker model characteristics will be dominated by the
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UBM and make it hard to discriminate it from other speakers. In Section 5.3, a

new UBM adaptation algorithm was proposed, which adapted both the weight

and the mean of the UBM. The components in the UBM that are not supported

by the speaker data are removed, and their weights are re-assigned among the

remaining components.

In the new speaker diarization system, after the SAD step andSCD step, po-

tential speaker models will be trained using the detected speech sections between

the speaker change points. The average speaker turn length is approximately 1.5

seconds, as displayed in Figure 3.5. In addition, the parameters of the SCD al-

gorithm are adjusted to minimise the missed speaker changes, which will cause

more false speaker changes to be detected and cause the average detected turn

length to be less than the real average turn length. Therefore, most of the detected

speech sections lying between speaker change points are short (shorter than two

seconds), so a single full-covariance Gaussian model is trained for these sections.

If long sections are detected (longer than 5 seconds), the model complexityMini

is determined by Equation 6.2:

Mini = round(Ns/100) (6.2)

whereNs is the number of feature vectors in a speech section. A speechsection

with 100 feature vectors is equivalent to two seconds long. AFull-covariance

Gaussian is used in the GMMs. When the potential speaker models have been

initialised for all speech sections, the similarity between all pairs of models will

be measured. CLR (defined by Equation 6.3) is used to measure the similarity.

CLR(X1, X2) =
1

n1

log
p(X1|λ2)

p(X1|λ1)
+

1

n2

log
p(X2|λ1)

p(X2|λ2)
(6.3)

whereX1 andX2 are speech sections assigned to a pair of potential speaker
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modelsλ1 andλ2, respectively, andn1 andn2 are the number of feature vectors

included in the sections. The pair of potential speaker models with the largest

CLR are merged. The speech sections assigned to the originaltwo potential

speakers are assigned to the new potential speaker model, and the model will

be retrained by these speech sections. Using the combination the two original

potential speaker models as the initialisation, with half the weight value of the

components, the new model is retrained using the new EM algorithm. The new

EM algorithm automatically removes the extra components inthe GMM. The

remaining model complexity of the GMM is reduced by one, and the training

process is repeated until the remaining model complexity isless than any of the

original two potential speaker models. Then, the GMM with the model com-

plexity that minimises the EWPC is chosen as the new potential speaker model

(with δ = 0.2). The merging process terminates when the number of remaining

potential speakers is less than a given threshold.

Because, in post processing, the potential speaker models will be updated by

adaptation from the UBM, it is better to begin when the data assigned to every

cluster are long enough to support the adaptation. During the adaptation, each

component in the UBM will be adjusted towards a particular potential speaker.

If there are not enough data assigned to a cluster, its adapted model will be

dominated by the characteristics of the UBM instead of its own characteristics.

As a result, the post-processing should begin when all of theclusters have enough

data.

Meetings have different numbers of speakers, and their utterances are of dif-

ferent lengths. Moreover, some meetings have one or severaldominant speakers

so that the other speakers occupy only a small proportion of the overall audio

stream. Hence, it is difficult to decide when there are enoughdata in a cluster

to start the adaptation. However, the number of potential speakers remaining in
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the process can be used to start the post-processing. Because in the AMI corpus

the range of speaker numbers is 3-4 and in the ISL corpus the range of speaker

numbers is 3-8, we choose 20 as the threshold for the remaining number of po-

tential speakers to enter the post-processing step. This value is larger than the

actual number of speakers in the meetings and at the same timeleaves room

for adjusting the speaker model. In post-processing, the UBM is trained by a

method similar to the way the potential speaker models are trained, except that

the UBM is initialised by a combination of all of the potential speaker models,

with the weight value averaged over all of them, and the lowest model com-

plexity of the UBM is the upper limit of the model complexity of all individual

potential speaker models. Then, the entire potential speaker models need to be

re-trained by adapting the UBM towards the speech sections assigned to each

potential speaker, using the weight and mean adaptation method. Then, the simi-

larity between each pair of new potential speaker models, which is adapted from

the UBM, will be measured by a slightly changed version of theCLR, defined in

Equation 6.4:

CLR(X1, X2) =
1

n1

log
p(X2|λ1)

p(X1|λubm)
+

1

n2

log
p(X1|λ2)

p(X2|λubm)
(6.4)

whereλubm represents the UBM model. The pair of the potential speakerswith

the largest CLR will be merged, and the new potential speakermodel will be

re-adapted from the UBM, using our new weight and mean adaptation. The

merging process will terminate when the CLR measurements between all pairs

of the remaining potential speakers are below a certain threshold.

In the baseline system, a simple model complexity selectionscheme and a

common EM algorithm are applied. All of the potential speaker models are ini-

tialised as a single Gaussian model. The model complexity ofthe new potential
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speaker model is the sum of the original two models, and the UBM has 128 full

covariance components. To compare the three new algorithmsproposed in Chap-

ter 5, we compare the new system illustrated in Figure 6.1 with a revised baseline

system, whose original SAD and SCD steps are replaced by the new SAD and

SCD algorithms explained in Section 6.3 and 6.4, respectively. In the experiment

in this section, the revised version of the baseline system will be denoted “Sys0”.

The three new algorithms proposed in Chapter 5 are related toeach other.

The new EM algorithm integrates the parameter dimension anddata size part of

the penalty term into the EWPC and can automatically remove extra components

from the GMM. This will accelerate the model complexity selection process,

which will pick the GMM with the lowest EWPC value from among all possible

model complexity values. The component-removing scheme isintegrated into

the weight and mean adaptation strategy in a similar way as itwas integrated into

the EM algorithm. Therefore, instead of evaluating the individual performance

of the three new algorithms, we check the performance of their combination. As

a result, the entire new system, which will be referred to as “Sysnew” in the rest

of the section, will be applied in the performance analysis in the section.

In addition to our new algorithms, many other model trainingalgorithms

and model complexity selection criteria have been implemented to improve the

performance of the speaker diarization system. In (Angueraet al., 2006a), the

number of components used in the potential speaker models iscorrelated with the

quantity of training data. The CCR will be used to decide the initial number of

components used for each potential speaker model. The number of components

used in a cluster is defined by Equation 6.5:

Mini = round(
Nj

CCR
) (6.5)

whereNj is the number of features. CCR=7 is the value recommended in (Miro,
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2006). This algorithm is called the CCR model selection criterion in the rest of

this section.

An incremental method to train the GMM is described in the HTKtoolkit

(Young et al., 2005). In this method, a Gaussian model is constructed for the

whole training data set. The Gaussian model is then split into two, and the

GMMs are trained. The splitting process continues until thegiven model com-

plexity has been achieved. In this way, the position of each component will be

better modelled. This algorithm is called “incremental training” in the rest of

this section.

Cross validation EM (CVEM) is an algorithm to adjust the positions of a

fixed number of components (Anguera et al., 2007). During theEM training,

the feature vectors are split intoP parallel partitions, and a GMM is trained on

each partition of the data. In the E-step, the expected conditional probability

of the hidden variables of all of the GMMs will be calculated based on their

corresponding partitions. Then, in the M-step, for each GMM, the data and

hidden parameter of other partitions will be used to cross maximise the GMMs.

The parameterP of the CVEM is recommended to be set to 35 in (Miro, 2006).

This algorithm is called “CVEM training” in the rest of this section.

To compare the performance of these model complexity selection algorithm

and model training algorithms to our new algorithm, two morespeaker diariza-

tion systems are built. All of them using the new SAD step and SCD asS0

andSnew. CCR model selection criterion is used in both systems to determine

the model complexity. Incremental training is applied to one of the systems for

model training of both potential speaker models and the UBM.CVEM training

is used in another system, only for the UBM training since theshort speech sec-

tions are not suitable to be split into many partitions. The system with CCR

model selection criterion and incremental training will bereferred to as “Sys1”
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in the rest of the section, and the system with CCR model selection criterion and

CVEM training will be referred to as “Sys2”. The other part of theSys1 and

Sys2 are the same as the baseline system.

The performance of allSys0, Sys1, Sys2 andSysnew, is displayed in Figure

6.6. It can be observed that for the development set, both themean value of DER

and the standard deviation are lower inSysnew than inSys0, Sys1, Sys2. For

the two evaluation sets, the mean DER ofSysnew decreases, but the standard

deviation is slightly higher. This may be due to the fact thatthe new algorithms

are more sensitive to the threshold of the CLR. In all other systems, the model

complexity of the adapted potential speaker models is fixed to 128, which is

also the fixed model complexity of the UBM. In theSysnew system, however,

the model complexity of the UBM changes from meeting to meeting, and the

model complexity of the adapted potential speaker models isalso non-fixed. The

higher flexibility of the new algorithm makes it more likely to be affected by the

value of the parameter. In the other two systems,Sys1 andSys2, the mean value

of the DER shows no obvious reduction. This may be due to the complexity

selection criterion of the CCR model. Determining the modelcomplexity based

on the quantity of training data may cause excessive components to be included

in the GMMs, especially when the speech sections assigned toit are long. The

standard deviation of theSys2’s DER is wide. This may be because the CVEM

model training algorithm is sensitive to the parameterP , which is the number of

split partitions used to train the UBM. The specific mean values of the DER of

these speaker diarization systems are shown in Table 6.4.

In Chapter 3, it was suggested that the new model complexity selection cri-

terion copes better when the speech length in a meeting is longer or the number

of speakers is higher. Therefore, we show how the speech length and the number

of speakers affect the DER of theSys0 andSysnew in Figure 6.7 and 6.8.
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Figure 6.6: Performance of the speaker diarization systemsSys0, Sys1, Sys2,
andSysnew.

Meeting System Emiss(%) Efa(%) Espkr(%) DER(%)
Development set Sys0 1.00% 1.00% 11.60% 13.60%
Development set Sys1 1.00% 1.00% 10.28% 12.28%
Development set Sys2 1.00% 1.00% 9.88% 11.88%
Development set Sysnew 1.00% 1.00% 7.24% 9.24%
Evaluation set (AMI) Sys0 1.41% 1.29% 11.26% 13.96%
Evaluation set (AMI) Sys1 1.41% 1.29% 11.17% 13.87%
Evaluation set (AMI) Sys2 1.41% 1.29% 10.59% 13.29%
Evaluation set (AMI) Sysnew 1.41% 1.29% 7.80% 10.50%
Evaluation set (ISL) Sys0 0.84% 6.38% 11.30% 18.52%
Evaluation set (ISL) Sys1 0.84% 6.38% 11.58% 19.00%
Evaluation set (ISL) Sys2 0.84% 6.38% 11.22% 18.44%
Evaluation set (ISL) Sysnew 0.84% 6.38% 8.30% 15.48%

Table 6.4: Performance of the speaker diarization systemSys0, Sys1, Sys2, and
Sysnew
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Figure 6.7 (a), (b) and (c) shows the DER of the meetings in alldata sets as

functions of the speech. For almost all of the meetings,Sysnew obtains the best

performance. However, in contrast to the assumption in Chapter 3, there is no

evidence that the new system has a greater advantage when dealing with long

meetings with long speech lengths. In Chapter 3, it is observed that feature vec-

tors from different speakers split the feature space into many small sub-spaces

when the speech length is higher; therefore, the assumptionthat using more com-

ponents in the UBM to model the inter-speaker variability will improve the sys-

tem performance was made. However, a UBM that is more capableof modelling

the inter-speaker variability does not necessarily lead tomore accurate potential

speaker models. Moreover, the sensitivity to the CLR threshold may also have

an effect on the outcomes, since the trend that the difference between theSys0

andSysnew increases can be observed in the development set.

In Figure 6.8(a), the DER values of the meetings from the AMI corpus are

displayed against the number of speakers. In either case, the DER decreases

whenSysnew is used. The decrease is clearer when the number of speakers is

3. What is worth noting is that whenSys0 is used, the system performs worse

when the speaker number is 3, and whenSysnew is used, the system performs

worse when the speaker number is 4. Among all of the meetings,only five of

them have three speakers, and all of the others contain four speakers. It is hard

to tell whether the difference in the DER is due to the individual cases. Figure

6.8(b) displays the DER of the meetings from the ISL corpus. It can be observed

thatSysnew performs better when the speaker number is higher.
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Figure 6.7: How DER changes with the Speech length.
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6.6 Normalized Cuts applied to clustering

In Figure 6.8, it can be observed that the standard deviationof the DER from the

evaluation set is high. This may be because the performance of the new system

depends strongly on the value of the CLR threshold to determine when to termi-

nate the merging process of the potential speakers. Moreover, the CLR threshold

based termination strategy is a local solution rather than aglobal solution. In

the new system, the timing to end the process is based on the similarity between

the closest pair of potential speaker models, regardless ofthe overall similarity

between all of the potential speaker models. The choice of a wrong time to ter-

minate the merging will not only cause speech sections to be wrongly assigned

but also lead to errors in the estimation of the speaker number. Therefore, in this

section I will develop a new method to terminate the potential speaker merging

without a threshold, taking the similarity among all potential speaker models into

consideration.

The mean values of the components in the potential speaker GMMs that were

adapted from the UBM are thought to be a reliable representation of speaker

characteristics (Tsai et al., 2005) (Tsai et al., 2007). Thepotential speaker mod-

els created by mean-only adaptation have the same number of components and

during the adaptation process, all of the components in the GMM are forced to

follow the order of the UBM. Therefore, by conjoining all themean vectors of

the components in the GMM one by one, a large feature vector isformed for

each cluster (dimension of the acoustic features * number ofcomponents in the

GMM). The normalized inner product can be used to measure thesimilarity be-

tween these super-vectors. The normalized inner product oftwo vectorsvi and
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vj will be defined as in Equation 6.6:

S(vi, vj) =
< vi, vj >

||vj||||vj||
(6.6)

Using the inner-product of the super-vectors to measure thesimilarity be-

tween potential speaker models, a merging process termination scheme based

on the ratio of the intra-speaker variability and inter-speaker variability can be

developed using Normalized Cuts (NC). NC ((Shi and Malik, 2000)) was first

proposed for two-class graph partitions, which measure thenormalized dissimi-

larity between two disjoint sets. Assuming that two data sets A and B satisfy the

conditionsA
⋃

B = V andA
⋂

B = ⊘, their dissimilarity can be measured by

Ncut(A,B):

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(6.7)

wherecut(A,B) is the total dissimilarity fromA toB andassoc(A, V ) is the to-

tal connection fromA to V . Assume thatdwij denotes the dissimilarity between

vi andvj ; thencut(A,B) andassoc(A, V )) are given by Equations 6.8 and 6.9:

cut(A,B) =
∑

i∈A,j∈B

dwij (6.8)

assoc(A, V ) =
∑

i∈A,j∈V

dwij (6.9)

where a lower value ofdwij indicates a greater distance betweeni andj. Be-

causecut(A,B) = assoc(A, V )−assoc(A,A),Ncut is directly proportional to

the total inter-class dissimilarity and inversely proportional to the total intra-class
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dissimilarity. Extending the definition of the NC to the multi-class situation:

Ncutk =
cut(A1, V −A1)

assoc(A1, V )
+
cut(A2, V − A2)

assoc(A2, V )
+ · · ·

cut(Ak, V − Ak)

assoc(Ak, V )

(6.10)

whereA1 · · ·Ak are disjoint sets andA1

⋃

A2

⋃

· · ·
⋃

Ak = V andk is the

number of the remaining potential speakers.

Ncutk can be used to select the appropriate number of speakers. Because

there are always fewer than ten people attending a meeting, the merging pro-

cess will run without stopping to check until ten clusters are left. After each

merging step, theNcutk value should be calculated, until there is only one re-

maining cluster. The partition whoseNcutk achieves the minimum value will be

selected by the system as the final result. Because the dissimilarity measuredwij

is proportional to the distance betweeni j, the inverse value ofS(vi, vj) will be

used in Equation 6.8 and 6.9 as a dissimilarity measure. Because the potential

speaker models adapted from the UBM by weight and mean adaptation have dif-

ferent numbers of components, the super-vectors of these models have different

dimensions andS(vi, vj) is not computable. Therefore, mean only adaptation

will be applied to adapt the potential speaker models from the UBM so that the

super-vectors of all potential speaker models have the samemodel complexity

and the inner product of these super-vectors is computable.

Using the NC to terminate the potential speaker merging process, a detailed

structure of the new system, which is labelled as “Sysnew2”, is illustrated in Fig-

ure 6.10. The parts ofSysnew2 that are different fromSysnew are labelled in red.

The performance ofSysnew2 will be illustrated in Figure 6.9, compared to the

new system,Sysnew. It can be observed from Figure 6.9 that the standard devia-

tion of theSysnew2 narrows on the evaluation set from the AMI corpus compared

to Sysnew, without a dramatic change in the mean value of the DER ofSysnew.
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This may be because when replacing the weight and mean adaptation with the

mean only adaptation for the potential speaker adaptation from the UBM, the ac-

curacy of the potential speaker models decreases. However,using the NC-based

merging termination scheme, which has no threshold value toadjust to construct

global optimum solution, will improve the steadiness of thespeaker diarization

system. For the evaluation set from the ISL, the mean value ofthe DER de-

creases, and the standard deviation narrows. Because the meetings from the ISL

have a wider range of speaker numbers, terminating the merging process at the

right time is more essential to the system performance for these meetings. The

specific mean values of the DER forSysnew andSysnew2 are listed in Table 6.5.
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Meeting System Emiss(%) Efa(%) Espkr(%) DER(%)
Development set Sysnew 1.00% 1.00% 7.24% 9.24%
Development set Sysnew2 1.00% 1.00% 8.33% 10.33%
Evaluation set (AMI) Sysnew 1.41% 1.29% 7.80% 10.50%
Evaluation set (AMI) Sysnew2 1.41% 1.29% 7.29% 9.99%
Evaluation set (ISL) Sysnew 0.84% 6.38% 8.30% 15.48%
Evaluation set (ISL) Sysnew2 0.84% 6.38% 6.48% 13.70%

Table 6.5: Performance of the NC-based merging terminationscheme

6.7 Overall Experiments and Analysis of Results

In this chapter, the new algorithms derived in earlier chapters have been inte-

grated into the new system and their performance presented and discussed. Here

I summarise these new algorithms as follows:

1. a new model-based SAD algorithm that contains two rounds and the speech

and non-speech models in the second round will be adjusted according to

the detected information from the first round;

2. a new SCD algorithm that is based on the FDA analysis;

3. a new model complexity selection criterion, the EWPC, that allocates lower

model complexity for potential speaker models to reduce theinfluence of

intra-speaker variability, while allocating higher modelcomplexity for the

UBM to capture more inter-speaker variability;

4. a new EM algorithm that integrates the data size penalty term of the EWPC

to accelerate the removal of extra components in the GMM automatically in

the training process;

5. a weight and mean adaptation algorithm to adapt models from the UBM for

potential speakers;

6. a new NC-based merging process termination scheme to decide when the

remaining potential speakers will be output by the system asfinal results.
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Among all of the new algorithms, the performance of (1), (2) and (6) is

compared, respectively, with the new algorithms. The algorithms (3)-(5) are

combined in application and their performance is analysed together. The per-

formance levels of all new algorithms are displayed in a row in Figure 6.11 and

compared with the baseline system. In Figure 6.11, the baseline system is de-

notedSysold. The system that is similar to the baseline system, except for its

application of the new SAD algorithm instead of its counterpart in the baseline

system, is denotedSyssad. The system that uses the new SAD algorithm in the

SAD step, the new SCD algorithm in the SCD step, and keeps the other algo-

rithms the same as those of the baseline system is calledSysscd in Figure 6.11.

The new systems described in Figure 6.10 and in Figure 6.1 arereferred to as

Sysnew andSysnew2, respectively. In Figure 6.11, it can be observed that each

new algorithm improves the performance of the speaker diarization systems by

decreasing the mean of the DER, except when using the NC-based merging ter-

mination scheme on the development set. In addition, the standard deviation of

the systems’ performance is wide, except when integrating the NC-based merg-

ing termination scheme in all datasets.

It has been stated in Section 6.3 that using the new SAD algorithm will de-

crease the value ofEFA, especially when the NLR of the meetings is high. There

are some exceptions because the disproportionateness of the NLR and the non-

speech length in the meetings may reduce the efficiency of thenew algorithm, or

the NLR of the detected non-speech in the first round may not beconsistent with

the NLR of the whole meeting. As explained in Section 6.4, because the standard

deviation is wide, it is difficult to measure the efficiency ofthe new SCD algo-

rithm. However, because the SCD step is an early step in the whole system, the

advantages of the new SCD algorithm may accumulate, and better performance

is observed when it is combined with the new algorithms (3)-(5). Integrating the
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new algorithms (1)-(5) into the baseline speaker diarization system, we obtain

the new system described in Section 6.2. The combination of the new algorithms

(3)-(5) provides the largest contribution to the performance of the system, com-

pared to the prior system in Figure 6.11. However, the new system is sensitive to

the CLR threshold because the success of the new system heavily depends on the

model accuracy, as discussed in Section 6.5. In Chapter 3, better performance is

expected when using new model complexity selection criterion, especially when

the speech length is long and the speaker number is high. According to the ex-

perimental results, no evidence supports the assertion that the new system has

a greater advantage when dealing with meetings with long speech lengths. For

the evaluation set from the ISL corpus, the new algorithms (3)-(5) improve the

system performance when the speaker number becomes higher.However, the

same results cannot be found for the evaluation set from the AMI.

In Section 6.6, a new NC-based potential speaker merging termination scheme

is developed. This new scheme is without threshold and makesthe decision

based on the global information. The new speaker diarization system (illustrated

in Figure 6.10) that includes the NC-based termination scheme is steadier. In Ta-

ble 6.6, the mean values of the DER of all systems and the system improvements

are listed. “Improvement vs prior” measures the decrease inthe DER of each

system compared to its prior system, in the order shown in Figure 6.11. ‘Im-

provement vs baseline’ measures the decrease in the DER of each system com-

pared to the baseline system. The DER of all meetings obtained usingSysold,

Syssad, Sysscd, Sysnew andSysnew2 are specified in Appendix A.
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Figure 6.11: The performance of all systems

Meeting System DER(%) Improvement Improvement
vs prior vs baseline

Development set Sysold 18.61% 0% 0%
Development set Syssad 15.82% 2.79% 2.79%
Development set Sysscd 13.60% 2.22% 5.01%
Development set Sysnew 9.24% 4.36% 9.37%
Development set Sysnew2 10.33% -0.17% 9.20%
Evaluation set (AMI) Sysold 18.89% 0% 0%
Evaluation set (AMI) Syssad 16.49% 2.40% 2.40%
Evaluation set (AMI) Sysscd 13.96% 2.53% 4.93%
Evaluation set (AMI) Sysnew 10.50% 3.46% 8.39%
Evaluation set (AMI) Sysnew2 9.99% 0.51% 8.90%
Evaluation set (ISL) Sysold 21.35% 0% 0%
Evaluation set (ISL) Syssad 20.44% 0.91% 0.91%
Evaluation set (ISL) Sysscd 18.52% 1.92% 2.83%
Evaluation set (ISL) Sysnew 15.48% 3.04% 5.87%
Evaluation set (ISL) Sysnew2 13.70% 1.18% 7.01%

Table 6.6: Summary of average DER for all new algorithms
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, I have investigated the shortcomings of the existing speaker di-

arization systems and examined the meeting characteristics that may cause these

problems by focusing on the SAD, SCD and the construction of the UBM steps

of the speaker diarization system (Chapter 3). Based on the problems discovered

in Chapter 3, four new technologies for speaker diarizationprocessing, includ-

ing an SAD algorithm, a change point detector, a model complexity criterion

and a weight and mean model adaptation technique, were investigated in this

thesis. Those technologies significantly improve the performance of the speaker

diarization system, especially when combined. In addition, the new EM algo-

rithm proposed in (Figueiredo and Jain, 2002) was introduced to accelerate the

training of the model, and the NC (Shi and Malik, 2000) was introduced to deter-

mine when to terminate the potential speaker merging process. Although these

algorithms were not developed in this thesis, this is the first time that they have

been applied to speaker diarization. The performance of these new algorithms

was examined and compared to the baseline system in Chapter 6. The detailed

conclusions of each step and performance of new systems are summarised as
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follows:

SAD: It was discovered that more components should be incorporated for

better performance when the NLR value is higher. Moreover, the performance

of the SAD process improves if the audio material used to train the speech/non-

speech GMM and the test audio material used to test the performance of the

GMMs are from the same meeting. Based on these observations,a new SAD

algorithm was proposed in Section 6.3 Compared to the SAD algorithm in the

baseline system, the new algorithm reduces both theEMISS and theEFA values,

especially when theEFA of the NLR is high. When the new SAD algorithm

was employed to replace its counterpart in the baseline system, the mean value

of EMISS was increased from 0.96% to 1.00% percentage points, and themean

value ofEFA was reduced from 3.41% to 1.00% in the development set. The

same trend was observed in the evaluation set from the AMI corpus, where the

mean value ofEMISS decreased from 1.48% to 1.41% and the mean value of

EFA decreased from 3.14% to 1.29%. For the evaluation set from the ISL, the

mean value ofEMISS decreased from 1.14% to 6.57%, and the mean value of

theEFA decreased from 6.57% to 6.38%. The mean value of the DER decreased

18.61% to 15.82%, from 18.89% to 16.49% and 21.35% to 20.44%,respectively,

for the three datasets.

SCD: FDA-based measurements were introduced to examine the overlap be-

tween the data distributions of a pair of short segments. It was discovered that the

FDR, the error rate of the FDC, and the average distance from errors to the FDC

are all capable of determining whether a pair of short segments is from differ-

ent speakers or the same speaker. In Chapter 4, a new speaker change detection

algorithm was developed based on the combination of variousmeasurements of

the FDA. Compared to the SCD algorithm in the baseline system, the new algo-

rithm minimises the missing change error rate, while at the same time reducing
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the false change error rate and narrowing the standard deviation of the two types

of errors. In Section 6.4, the speaker diarization system with the new SCD al-

gorithm is compared to the speaker diarization system with the baseline SCD

algorithm. When using the new SCD algorithm, a decrease of the mean of the

DER is observed. In Section 3.4, I concluded that in the acoustic feature space,

inter-speaker variability is intertwined with phonetic variability; as a result, fea-

tures from different speakers split the feature space into many small sub-spaces.

In the development set, when both the new SAD algorithm and the new SCD

algorithm were employed in the baseline system, a reductionfrom 15.82% to

13.60% in the mean of the DER was observed compared to the system with only

the new SAD algorithm. The decrease in the mean of the DER was 16.49% to

13.96% for the evaluation set from the AMI corpus and from 20.44% to 18.52%

for the evaluation set from the ISL corpus.

Model Training : Depending on the analysis in Chapter 3, in the acoustic fea-

ture space, the inter-speaker variability is intertwined with the phonetic variabil-

ity; as a result, features from different speakers split thefeature space into many

small sub-spaces. The number of sub-spaces tends to increase with the length of

the speech and the number of speakers in a target meeting. A new model com-

plexity criterion was proposed in Chapter 5. By setting the parameterδ to differ-

ent values, the new criterion could reduce the model complexity to reduce intra-

speaker variability and allow more model complexity in the UBM to capture

more inter-speaker variability. Combining the new criterion with EM algorithm

developed by (Figueiredo and Jain, 2002) and a new weight andmean adapta-

tion algorithm, the new diarization system significantly decreased the mean of

the DER compared to the baseline system. However, the standard deviation of

the DER is still wide. No clear evidence supports the hypothesis that the new

criterion works better when the speech length is longer. Forthe evaluation set
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from the ISL corpus, the DER of the new system decreases when the speaker

number becomes higher.

In the new system, when the EWPC criterion, the new EM algorithm (Figueiredo

and Jain, 2002), and the weight and mean adaptation were all employed, the

mean of the DER decreased from 13.60% to 9.24% in the development set, from

13.96% to 10.50% in the evaluation set (AMI), and 18.52% to 15.48% in the

evaluation set (ISL), compared to the system with only the new SAD and SCD

algorithms.

Termination Scheme: In Section 6.6, a new NC-based potential speaker

merging termination scheme was developed to improve the steadiness of the new

speaker diarization system. This new scheme is threshold free and makes the de-

cision based on the global information. The new speaker diarization system con-

taining the NC-based termination scheme narrowed the standard deviation of the

DER, compared to the system with a local merging terminationsolution. When

the NC is applied as the termination strategy for the potential speaker merging

process and the stacks of the mean values of the potential speaker models are

used as super-vectors, the standard deviation of the DER decreases. Although

the mean of the DER increased from 9.24% to 10.33% for the development set,

it decreased from 10.50% to 9.99% and from 15.48% to 13.70% for the evalua-

tion sets (AMI) and (ISL).

The performance of the new systems: In contrast to the baseline system,

the new systems with or without the new termination scheme had better perfor-

mance. For the development set, the new system without the new termination

scheme decreased the mean value of the DER from 18.61% to 9.24%, making

an improvement of 9.37 percentage points; the new system with the new termi-

nation scheme decreased the mean value of the DER from 18.61%to 10.33%,

making an improvement of 9.20 percentage points. For the evaluation set (AMI),
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the new system without the new termination scheme decreasedthe mean value

of the DER from 18.89% to 10.50%, making an improvement of 8.39 percentage

points; the new system with the new termination scheme reduced the mean value

of the DER from 18.89% to 9.99%, making a 8.90 percentage point improve-

ment. For the evaluation set (ISL), the new system without the new termination

scheme decreased the mean value of the DER from 21.35% to 15.48%, making

an improvement of 5.86 percentage points; the new system with the new ter-

mination scheme reduced the mean value of the DER from 21.35%to 13.70%,

making an improvement of 7.01 percentage points. Among the three datasets,

the lowest mean value of the DER appears when using the new system without

the new termination scheme. The new system with the new termination scheme,

on the other hand, is steadier because the standard deviation of the two evalua-

tion datasets is narrower. Therefore, we conclude that bothsystems have their

own strengths.

7.2 Future work

An interesting area of recent work for speaker recognition is the use of latent

factor analysis to compensate for speaker variability (Tsai et al., 2007). These

methods adopt a GMM super-vector consisting of the stacked means of the GMM

that is mean-only adapted from the UBM. Because this super-vector is of a high

dimension (several hundreds or thousands dimension), SVM is seen to be a com-

petent clustering strategy based on super-vectors. SVM is apopular classification

strategy that clusters by projecting the data into a high dimension latent space.

The kernels of the projected data are calculated, and the SVMalgorithm clusters

the data based on the kernel matrix directly.

SVM has been used in both the speaker recognition task and thespeaker
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verification in recent years. Because a collection of the mean values of speaker

models adapted from the UBM can be used as a super-vector, andthey are more

discriminable between different speakers, adopting it forspeaker diarization will

reduce the influence of noise and speaker overlaps. SVM cluster data only de-

pend on some vectors being at the class boundary (support vectors). Thus, using

SVM avoids the need to detect the complicated intrinsic structure of the speaker

data. However, SVM is always executed in a supervised way, whereas speaker

diarization is an unsupervised task. Therefore, some modifications must be made

if adopting SVM to speaker diarization.

The NC has been used as a cluster number selection criterion in this thesis.

In graph theory, the optimum data partition can be obtained by minimising the

NC. To solve a standard eigensystem, the second smallest eigenvector carries a

clustering solution for a bi-cut. The other eigenvectors also carry different levels

of dissimilarities in a graph. Combining these eigen-vectors, the global solution

for clustering will be achieved, and the number of clusters may also be detected.

Introducing the NC theory into the speaker diarization process to determine the

speaker number appears to be an interesting future direction.

If, in speaker diarization, the speaker model can be sufficiently trained and

the influence of the noise and speaker overlaps can be clearlyremoved, as is

the case in speaker recognition research, the recognition rate will achieve a high

value. However, the speaker diarization process has time constraints on many

steps that make it difficult to identify speaker utterances of less than one second.

Therefore, even if the speaker models were sufficiently trained and the number

of speakers correctly detected, the performance of the speaker diarization will

still be restricted by false alarm errors and missed short speaker turns.
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Appendix A

Meeting characteristics and new

system performance

Table A.1 and A.2 and A.3 shows all meetings used in experiments in Chapter 6,

in terms of their type, number of speakers, the length of the speech in the meet-

ings, NLR, and whether it is used in the development set (D) orthe evaluation

set (E).

Table A.4 lists the abbreviations of the experimental systems and their de-

scription.

Tables A.5, A.6 and A.7, show the results of the seven strategies performed

on each of the meeting for the development and evaluation set.
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Name Room and Number of Speech Length NLR Development
Type Speakers (second) or Evaluation

EN2002a EN 4 1659.1 0.2338 D
EN2006a EN 3 1852.8 0.4780 D
EN2009c EN 3 2357.8 0.2183 D
ES2003a ES 4 548.8 0.5185 D
ES2009a ES 4 1077.1 0.2356 D
ES2016c ES 4 1381.5 0.4043 D
IB4001 IB 4 1174.1 0.3433 D
IB4002 IB 4 1128.4 0.4044 D
IB4005 IB 3 1596.1 0.2123 D
IN1001 IN 3 2694.2 0.2284 D
IN1002 IN 4 2011.1 0.1903 D
IN1005 IN 4 2208.0 0.2157 D
IS1001b IS 4 1454.5 0.3152 D
IS1006a IS 4 516.8 0.3896 D
IS1009a IS 4 552.8 0.3210 D

Table A.1: Meetings characteristics of development set
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Name Room and Number of Speech Length NLR Development
Type Speakers (second) or Evaluation

EN2002b EN 4 1303.3 0.2793 E
EN2002d EN 4 1671.2 0.2514 E
EN2006b EN 3 1597.5 0.4722 E
ES2002d ES 4 1877.9 0.2461 E
ES2003b ES 4 1539.4 0.2739 E
ES2003d ES 4 1665.1 0.2959 E
ES2004a ES 4 675.3 0.3607 E
ES2004d ES 4 1510.1 0.3252 E
ES2005b ES 4 1698.5 0.2681 E
ES2007a ES 4 684.3 0.4356 E
ES2007b ES 4 1127.3 0.3340 E
ES2007d ES 4 823.8 0.3456 E
ES2009b ES 4 1087.1 0.2436 E
ES2016b ES 4 1381.9 0.4294 E
ES2016d ES 4 913.1 0.4029 E
IB4004 IB 4 2032.0 0.1508 E
IB4011 IB 4 1892.7 0.2123 E
IN1007 IN 4 2039.2 0.1596 E
IN1008 IN 4 2636.3 0.2332 E
IN1009 IN 4 863.1 0.3117 E
IN1012 IN 4 2588.3 0.1719 E
IN1013 IN 4 2692.3 0.1513 E
IN1016 IN 4 3108.2 0.1452 E
IS1001c IS 4 978.6 0.3263 E
IS1002c IS 4 1580.2 0.2430 E
IS1002d IS 4 838.9 0.3354 E
IS1003c IS 4 1319.8 0.2865 E
IS1003d IS 4 1487.5 0.2957 E
IS1006b IS 4 1518.2 0.2988 E
IS1009b IS 4 1655.4 0.1903 E

Table A.2: Meetings characteristics of evaluation set fromAMI corpus
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Name Room and Number of Speech Length NLR Development
Type Speakers (second) or Evaluation

m035 Game 4 2318.3 0.1814 E
m036 Game 5 1698.2 0.0287 E
m038 Disc 5 472.9 0.0212 E
m039a Game 4 466.5 0.0998 E
m039b Game 4 440.1 0.0734 E
m042 Chat 4 785.6 0.0725 E
m043 Proj 5 468.7 0.0511 E
m045 Disc 5 2414.2 0.0239 E
m046 Disc 4 1932.1 0.1247 E
m048 Disc 3 2817.0 0.0862 E
m051 Game 5 1185.7 0.2061 E
m052 Game 5 1686.4 0.1149 E
m055 Disc 9 2960.6 0.1134 E
m061 Disc 5 3163.9 0.0302 E
m063 Proj 5 1724.5 0.0682 E
m064 Disc 4 2039.0 0.1326 E

Table A.3: Meetings characteristics of evaluation set fromISL corpus

System Notation System Description
Sysold Baseline system
Syssad Baseline system with

New SAD algorithm
Sysscd Baseline system with

New SAD algorithm
New SCD algorithm

Sysnew Baseline system with
New SAD algorithm
New SCD algorithm

Equal Weight Penalty Criterion
a new EM algorithm

Weight and mean adaptation
Sysnew2 Baseline system with

New SAD algorithm
New SCD algorithm

Equal Weight Penalty Criterion
a new EM algorithm

Normalized Cuts based termination scheme

Table A.4: Experimental systems abbreviations and description
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Name Sysold Syssad Sysscd Sysnew Sysnew2
EN2002a 0.2074 0.1589 0.1085 0.0863 0.0607
EN2006a 0.1529 0.1941 0.1246 0.0864 0.1178
EN2009c 0.1531 0.1854 0.1689 0.0927 0.1168
ES2003a 0.2447 0.1995 0.1760 0.0921 0.0946
ES2009a 0.1988 0.1804 0.1828 0.1382 0.1067
ES2016c 0.3115 0.3605 0.2097 0.1179 0.0906
IB4001 0.1066 0.0874 0.1137 0.0278 0.0856
IB4002 0.1236 0.1269 0.1006 0.0772 0.1157
IB4005 0.1690 0.1762 0.1176 0.1222 0.1033
IN1001 0.1802 0.1849 0.1752 0.0810 0.1026
IN1002 0.1781 0.1966 0.1382 0.0902 0.1155
IN1005 0.2443 0.2059 0.1504 0.1133 0.1113
IS1001b 0.1750 0.1335 0.1112 0.0793 0.1080
IS1006a 0.1530 0.1939 0.1327 0.1181 0.1201
IS1009a 0.1980 0.1498 0.1141 0.1261 0.1158

Table A.5: The DER of development set
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Name Sysold Syssad Sysscd Sysnew Sysnew2
EN2002b 0.1705 0.1573 0.1384 0.0818 0.0995
EN2002d 0.1696 0.1532 0.1653 0.0802 0.0975
EN2006b 0.2114 0.1814 0.1264 0.0583 0.1007
ES2002d 0.2079 0.1760 0.1747 0.1157 0.0789
ES2003b 0.2602 0.2336 0.2058 0.1349 0.1077
ES2003d 0.2539 0.2036 0.1279 0.0295 0.1134
ES2004a 0.1702 0.2133 0.1137 0.1384 0.1172
ES2004d 0.1410 0.1638 0.1806 0.1082 0.0843
ES2005b 0.1672 0.1746 0.1032 0.1638 0.1085
ES2007a 0.1405 0.1676 0.0996 0.0661 0.1011
ES2007b 0.1910 0.1687 0.1565 0.0763 0.1165
ES2007d 0.2048 0.1819 0.1368 0.1695 0.1104
ES2009b 0.2611 0.1543 0.1411 0.1609 0.1180
ES2016b 0.1882 0.2800 0.2479 0.1288 0.0959
ES2016d 0.0908 0.0824 0.0900 0.1149 0.1204
IB4004 0.2399 0.1869 0.0868 0.0353 0.0540
IB4011 0.1812 0.0848 0.1281 0.0171 0.0883
IN1007 0.1476 0.2200 0.1014 0.1384 0.0721
IN1008 0.1911 0.2150 0.1230 0.0410 0.0909
IN1009 0.1756 0.1826 0.1496 0.0269 0.1128
IN1012 0.1650 0.1554 0.1228 0.1063 0.1165
IN1013 0.1694 0.1540 0.1137 0.1571 0.1104
IN1016 0.2027 0.1800 0.1291 0.0438 0.1180
IS1001c 0.2376 0.1509 0.1914 0.1804 0.0962
IS1002c 0.1936 0.2325 0.1469 0.1474 0.0959
IS1002d 0.2214 0.2299 0.1653 0.1037 0.1204
IS1003c 0.1555 0.1524 0.1460 0.1933 0.0953
IS1003d 0.1899 0.2102 0.1627 0.1257 0.1075
IS1006b 0.1896 0.1351 0.1516 0.1565 0.1224
IS1009b 0.1892 0.2010 0.1226 0.1853 0.1137

Table A.6: The DER of evaluation set from AMI corpus
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Name Sysold Syssad Sysscd Sysnew Sysnew2
m035 0.2169 0.2190 0.2336 0.1823 0.1390
m036 0.1872 0.1541 0.1377 0.0921 0.1481
m038 0.2036 0.1932 0.1811 0.1422 0.1392
m039a 0.2005 0.2028 0.1724 0.1583 0.1192
m039b 0.2083 0.1961 0.1434 0.1266 0.1278
m042 0.2467 0.2052 0.1617 0.0984 0.1345
m043 0.1814 0.1531 0.1579 0.1811 0.1661
m045 0.2400 0.1787 0.1820 0.1645 0.1200
m046 0.2307 0.2251 0.2113 0.1728 0.1525
m048 0.2165 0.2121 0.1944 0.0982 0.1324
m051 0.1841 0.1802 0.1966 0.1318 0.1162
m052 0.2392 0.2031 0.1565 0.1654 0.1314
m055 0.2302 0.2281 0.2075 0.1982 0.1353
m061 0.1973 0.1972 0.2304 0.2566 0.1081
m063 0.2130 0.1875 0.1836 0.1469 0.1408
m064 0.1905 0.2037 0.2433 0.2326 0.1208

Table A.7: The DER of evaluation set from ISL corpus
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Glossary of Acronyms

AMI Augmented Multi-party Interaction
ASNR Average Speech to Noise Ratio
BIC Bayesian Information Criterion
CCR Cluster Complexity Ratio
CLC Classification Likelihood Criterion
CLR Cross Log-likelihood Ratio
CVEM Cross Validation EM
DCT Discrete Cosine Transform
DER Diarization Error Rate
EHMM Evolutive Hidden Markov Model
EM Expectation-Maximization
EWPC Equal Weight Penalty Criterion
FA False Alarm
FDA Fisher linear Discriminant Analysis
FDR Fisher linear Descriminant Ratio
FDC Fisher Descriminant Classifier
FFT Fast Fourier Transform
GMM Gaussian Mixture Model
HMM Hidden Markov Model
HTK Hidden Markov Model Toolkit
ISL Interactive Systems Laboratories
KL2 Kullback Divergency 2
MAP Maximum A Posterior
MFCC Mel-Frequency Cepstrum Coefficients
MISS Missing speech error rate
ML Maximum Likelihood
MST Minimum Spanning Tree
NC Normalized Cuts
NGMM Non-speech GMM
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NIST-RT National Institute of Standards and Technolog-Rich Transcripti
NLR Noise Length Ratio
SAD Speech Activity Detection
SCD Speaker Change Detection
SGMM Speech GMM
SVM Support Vector Machine
UBM Universal Background Model
VQ Vector Quantization
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Experimental Systems

Abbreviations

System Notation System Description

Sys0 or Sysold Baseline system
Syssad Baseline system with

New SAD algorithm
Sysscd Baseline system with

New SAD algorithm
New SCD algorithm

Sys1 Baseline system with
New SAD algorithm
New SCD algorithm

Cluster Complexity Ratio criterion
Incremental training

Sys2 Baseline system with
New SAD algorithm
New SCD algorithm

Equal Weight Penalty Criterion
Cross-validation EM

Sysnew Baseline system with
New SAD algorithm
New SCD algorithm

Equal Weight Penalty Criterion
a new EM algorithm

Weight and mean adaptation
Sysnew2 Baseline system with

New SAD algorithm
New SCD algorithm

Equal Weight Penalty Criterion
a new EM algorithm

Normalized Cuts based termination scheme
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Glossary of Symbols

fmel Mel-scale frequency
fc Centre frequency
e(n) Energy vector of thenth frame
o(t) Thetth discrete signal in a frame
T Number of feature vectors in a frame
Dhat Dimension of a feature vectors
x A feature vector
X A sequence of feature vector
N Number of feature vectors in a sequence
µi Mean of theith component in the GMM
Σi Covariance Matrix of theith component in the GMM
wi Weight of theith component in the GMM
M Number of components in the GMM / model complexity
λ Collection of all parameters in the GMM
gi(x) Probability of the appearance ofx given theith component
p(x|λ) Conditional probability of the appearance ofx given parameterλ
p(X|λ) Conditional probability of the appearance ofX given parameterλ
λspeech Collection of all parameters in the speech GMM
λnon−speech Collection of all parameters in the non-speech GMM
k̂ Selected acoustics cluster forx
BIC(M) BIC score of model whose model complexity isM
∆BIC BIC score difference
L(X|M) log likelihood ofX given the model whose model complexity isM
∆M Model complexity difference
φ Constant parameter in the BIC
DKL(P1||P2) KL divergence between distributionP1 andP2

tr(Σ) Trace of covariace matrixΣ
K Number of speakers in a meeting
µubmi Mean of the componenti in the UBM
µ̃i Adapted mean of the componenti in the speaker model
ρ Fixed relevance factor for mean adaptation
τji posterior probability UBM componenti givenxj
CLR(X1, X2) Cross log-likelihood ratio ofX1 andX2
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EMISS Missed speech error rate
EFA False alarm error rate
Espkr Wrong speaker error rate
ψ Weight of a hyperplane in high dimension space
b Bias of the hyperplane in high dimension space
Jf(ψ) FDR when data is projected onto the hyperplane< ψ∗, x > +b = 0
ψ∗ Weight of the hyperplane that maximizes the FDR
α Balance control parameter in the speaker change detection
λM Collection of all GMM parameters when the model complexity isM
λ̂M Maximum likelihood estimate ofλM
M̂ Maximum likelihood estimate ofM
Pe(M, λ̂M) Penalty term based on parametersλM and model complexityM
IC(λ̂M ,M) Model complexity selection criterion
Z Latent indicator variables
p(Z|λM) Probability ofZ given parametersλM
p(X|Z, λM) Conditional probability ofX givenZ and parametersλM
p(X,Z|λM) Joint probability ofX andZ given parametersλM
Lc(X,Z|λM) Complete joint log-likelihood ofX andZ given paramtersλM
ECM(X|λM) Entropy ofZ
τ ij Posterior probability of thejth component givenxi
p0(w) Prior probability ofw
δ Parameter of the multinomial distribution
Dir Dirichlet distribution
Γ Γ(δ) =

∫∞

0
e−tdt

pw|z Posterior distribution ofw
DKL(pw|z, p0) KL divergence betweenpw|z andp0
λ̃M Posterior mode ofλM
H(λ̃M) Hessian matrix with respect toλM
I(λ̂M |X) Observed information matrix with respect toλM givenX
blockdiag Block diagonal matrix
I(1)(µi,Σi) Observed information matrix given a single observation
Λ Λ = (

∏M
j=1wj)

−1

Ω(µ,Σ Number of parameters in a Gaussian component
Λt−1
M ΛM computed in the(t− 1)th iteration

ΛtM ΛM computed in thetth iteration
Q(λM , λ

t−1
M ) Lc(X|Z, λtM) whenZ is computed usingΛt−1

M

ĩ Adapted weight of the componenti in the speaker model
β Parameter that controls model complexity in the non-speechGMM
vi Theith vector
S(vi, vj) The normalized inner product of two vectors
Ncut(A,B) The normalized dissimilarity between disjoint setsA andB
cut(A,B) The total dissimilarity fromA toB
V A

⋃

B = V
assoc(A, V ) The total connection fromA to V
dwij The dissimilarity betweenVi andVj
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