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Abstract

The coloured noise formalism has long formed an important generalisation of the white

noise limit assumed in many Langevin equations. The Langevin equation most typically

applied to magnetic systems, namely the Landau-Lifshitz-Gilbert (LLG) equation makes

use of the white noise approximation. The correct extension of the LLG model to the

coloured noise is the Landau-Lifshitz-Miyazaki-Seki pair of Langevin equations. This pair

of Langevin equations correctly incorporates a correlated damping term into the equa-

tion of motion, constituting a realisation of the Fluctuation-Dissipation theorem for the

coloured noise in the magnetic system.

We undertake numerical investigation of the properties of systems of noninteracting

magnetic moments evolving under the LLMS model. In particular, we apply the model

to superparamagnetic spins. We investigate the escape rate for such spins and find that

departure from uncorrelated behaviour occurs as the system time approaches the bath

correlation time, and we see that the relevant system time for the superparamagnetic par-

ticles is the Larmor precession time at the bottom of the well, leading us to conclude that

materials with higher magnetic anisotropy constitute better candidates for the exhibition

of non-Markovian properties.

We also model non-Markovian spin dynamics by modifying the commonly used dis-

crete orientation approximation from a Markovian rate equation to a Generalised Master

Equation (GME), where the interwell transition rates are promoted to memory kernels.

This model makes the qualitative prediction of a frequency-dependent diamagnetic sus-

ceptibility, as well as a biexponential decay profile of the magnetisation. The predictions

of the GME are compared to the results of LLMS simulations, where we find a similar

diamagnetic phase transition and biexponential behaviour.

iii





Contents

Abstract iii

Contents v

List of figures viii

Acknowledgements xi

Declaration xiii

1 Introduction 1

1.1 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Types of Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Superparamagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Stochastic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Coloured Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Langevin & Fokker-Planck Equations 7

2.1 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Langevin Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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Chapter 1

Introduction

1.1 MAGNETISM

In principle, the origins of all magnetic phenomena are inherently quantum mechanical.

Magnetism provides a direct example of the physical manifestation of the inherent spin

of fundamental particles, and of the Pauli exclusion principle, both of which are direct

consequences of quantum mechanics. To see how these quantum considerations manifest

themselves, we consider a simple two-body system, for example a pair of Hydrogen atoms,

featuring a spin degree of freedom

Ψ(r1, r2)s1,s2 =
1√
2

(
ψ1(rA)ψ2(rB)− ψ2(rA)ψ1(rB)

)
(1.1)

⊗ 1√
2

(
| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2

)
.

The total state of the system is the tensor product of the position-space degrees of

freedom and the spin of the Hydrogen nucleus. In general, the ground-state wavefunc-

tion may be symmetrical or antisymmetrical with respect to particle interchange. The

important point is then, that upon interchanging the labels of the two atoms, the overall

wavefunction must remain antisymmetric, according to the Pauli principle. The spin part

of the wavefunction must compensate for the spatial symmetry of the wavefunction in

position space.

Depending on which solution of the Hamiltonian is more energetically favourable, then,

we will have two possible states of the system: one in which the atomic spins are aligned,

and another in which they are oppositely oriented. It is this very property which is

the origin of the exchange interaction in solids, The possibility for the spins to become

correlated over multiple spin sites owing to this interaction, which in energetic terms is

1



Chapter 1: Introduction 1.2 Types of Magnetism

extremely strong, is what leads to the formation in some systems systems of a coherent

spin direction over the whole sample.

1.2 TYPES OF MAGNETISM

We will briefly mention some of the most common forms of magnetism. Diamagnetism

is the tendency of a material to be opposed to or repelled by an external magnetic field,

and is essentially attributable to the Lorentz force of the magnetic field acting upon the

electrons of a material. An important example of diamagnetic behaviour is that exhibited

by superconductors, which are said to be perfect or superdiamagnets, under which a

superconductor completely expels almost all magnetic flux, leading to a magnetic field

which is very close to zero and a susceptibility χc = −1.

Ferromagnets are one of the most well-known forms of magnetism. They are materials

which consist of numerous aligned magnetic domains with the same spin orientation. Such

materials tend to exhibit a macroscopic observable magnetic moment even in the absence

of an applied magnetic field, since the presence of a magnetocrystalline anisotropy term

causes the spins to preferentially align in a single direction.

Paramagnets are materials in which the constituent atomic magnetic moments tend

to align in an applied field, due to the presence of unpaired electrons in the material

which are free to do so. An important type of material with a similar behaviour, but on a

much larger scale, are the experimentally and technologically relevant superparamagnetic

particles.

1.3 SUPERPARAMAGNETISM

Superparamagnetic materials consist of nanoscale, single-domain non-interacting magnetic

grains, typically dispersed in a non-magnetic medium, with diameters on the order of

10nm. The defining feature of such superparamagnetic materials, is that they are able

to sustain a spontaneous magnetic moment across the constituent individual magnetic

grains, and it is therefore the case that superparamagnetism is exhibited at temperatures

well below the Curie temperature, T < Tc, of the grains. [1] [2]

Superparamagnets are integral to many relevant areas of modern technology. Super-

paramagnetic iron oxide nanoparticles in particular have found applications as nanoscale

drug carriers [2] [3]. A particularly promising application of superparamagnetism is in the

2



Chapter 1: Introduction 1.4 Stochastic Equations

medical field, where they form an integral part of the magnetic hyperthermia technique for

cancer treatment, which utilises the fact that they can transform electromagnetic energy

from an external high-frequency magnetic field into thermodynamical heat, providing an

effective method for shrinking cancerous tumours [4] [5] [6].

The properties of magnetic materials have been modeled at a number of different lev-

els, and utilising a variety of distinct approaches, which is in part because the behaviour

of magnetic materials varies greatly depending on the time and length-scale we are con-

sidering, ranging from the smallest lengthscales where the more fundamental quantum

mechanical models are used, providing more fundamental understanding of the physics

but coming with a vast simplification of the physics, to first-principles models such as

Density Functional Theory (DFT), which solves approximately the ground state proper-

ties of a quantum Hamiltonian.

At a larger lengthscale, materials can be modeled using atomistic spin dynamics [7],

where we have a large ensemble of atomic magnetic moments interacting via classical

forces augmented by a stochastic term which incorporates the action of the thermal bath.

At even larger length scales, magnetic properties have been modeled using the contin-

uum micromagnetic approach, this ignores the discrete nature of the underlying atomistic

structure of a material and solves for the spatial magnetisation distribution by incorpo-

rating magnetic energy terms, such as exchange and Zeeman energy, into the classical

Hamiltonian and solving for the magnetisation profile. [8]

1.4 STOCHASTIC EQUATIONS

The superparamagnetic problem is generally approached in a similar fashion to the atom-

istic case, where we do not typically need to consider interactions between the moments

since the spins are usually noninteracting. The incorporation of thermal terms usually

results in a Langevin equation. This is essentially a classical equation of motion where

random thermal forces are included as a type of diffusion process.

Langevin equations are a type of stochastic differential equation. Such equations gener-

ally, and the Langevin equations in particular form a deep and involved area of study unto

themselves, with their formal development and interpretation involving extensive math-

ematical investigation. Stochastic differential equations have a variety of uses in model-

ing many real-world systems, including modeling the prices of financial instruments [9],

chemical reactions [10], in neurobiology as a means of modeling the firing of individual

3



Chapter 1: Introduction 1.5 Coloured Noise

neurons [11], in analysing weather patterns [12] and in understanding fMRI data [13], [14].

A key underlying assumption to the implementation of Langevin dynamics is that of

the separation of timescales between the system and the thermal bath. The Langevin

equation was originally motivated by the need to understand the motion of small particles

suspended in a fluid or a gas, which is influenced by the random thermal motion of the

surrounding medium. The thermal fluctuations occur on a much shorter timescale than the

slow motion of the Brownian particle. [15] This difference in the relevant timescales causes

a very large number of particle-gas interactions to occur over the slow timescale of the

immersed particle. This results in the white noise property for the stochastic term in the

differential equation of motion, which essentially amounts to the fact that the stochastic

term is completely uncorrelated at different times. However, it is not always possible to

assume that this is generally the case. Departure from the white noise limit is generally

incorporated by the introduction of a so-called coloured noise..

1.5 COLOURED NOISE

The archetypal example of a coloured noise, and one of the most commonly used and

simplest forms, is the Ornstein-Uhlenbeck (OU) process [16] [17]. In contrast to the

simple white noise process which is characterised only by its strength, the OU process

is described by both the amplitude of the noise and by the characteristic timescale over

which the noise is correlated.

Coloured noises have been extensively studied in the context of noisy dynamical flows,

and in particular in the context of the Kramers thermal escape problem [18]. An interesting

feature of the coloured noise is that increasing correlation time is generally associated

with an increase in the escape time of the system. The long-time escape properties are

of particular interest to the physics of superparamagnets, where any advancement in our

understanding of the escape problem and of the underlying physics is liable to better our

understanding of the thermal stability of the spins, and in particular may lead to methods

by which we can more easily increase the spin lifetime, or perform manipulation more

easily of the spin degree of freedom for just such a bound state.

An important aspect of the incorporation of a coloured noise term into a general

Langevin equation is the realisation of the Fluctuation-Dissipation Theorem (FDT) [19]

[20]. This amounts to the inclusion of the correct damping term to balance the random

thermal forces in equilibrium. Without modifying the damping in this manner, the system

4
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cannot equilibriate. The extension for the case of a magnetic Langevin system has been

termed the Landau-Lifshitz-Miyazaki-Seki model. It is an important generalization of the

Langevin theoretical approach and is especially timely in relation to recent advances in

ultrafast laser processes involving femtosecond laser processes. Following the pioneering

work of Beaurepaire et. al. [21] demonstrating ultrafast demagnetization of Ni, more recent

work has shown extremely complex and subtle behavior during laser driven processes

including thermally driven magnetization switching [22, 23] in which the magnetization

is reversed by the action of a thermal pulse in the absence of an applied field. Ultrafast

experiments rely on the rapid thermally driven relaxation of the spin system, modelled in

refs. [22,23] using a white noise thermostat, however it has been shown [24] that correlated

noise can significantly slow down the relaxation processes.

5





Chapter 2

Langevin & Fokker-Planck

Equations

In this chapter we will give a brief introduction to the theory behind the Langevin and

Fokker-Planck equations, models which are widely used in physics and are particularly

relevant for the study of the properties of superparamagnetic nanoparticles.

2.1 STOCHASTIC PROCESSES

Stochastic processes are an important tool for modelling a wide variety of non-equilibrium

statistical processes, and are of particular interest in the study of Langevin equations.

A stochastic variable is a quantity X which is defined by the set of possible values x it

may have, and the probability distribution to possess a value drawn from that set, P (X).

In general the distribution can be continuous or discrete, and adheres to the standard

normalisation condition,
∫
P (x)dx = 1. The most general range of stochastic processes

are defined with respect to the moments and cumulants of the distribution, although we

are generally concerned specifically with the types of processes which are Gaussian, with

a continuous probability density [25], [26]

P (x) =
1

2πσ2
exp

(
− (x− µ2

2σ2

)
, (2.1)

where µ is the average value and σ is the variance. The moments of a distribution are

given as

µm = 〈Xn〉 =

∫
dxxmPx(x). (2.2)

The Gaussian distribution is unique in that it is completely specified by its first and

7
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second moments. Gaussian distributions are one of the most commonly used stochas-

tic processes in physical applications, which amounts to assuming that the higher-order

cumulants of the relevant process are negligible.

2.1.1 Markov Processes

Markov processes are the subset of stochastic processes which are memory-less in the sense

they are local in time. For the one-dimensional process, (X(t) : t ≥ 0), we will denote the

joint probability distribution as P (X1, t1 : X2t2), giving the probability that the process

takes the values X1 at t1 and X2 at t2, while the conditional probability is P (X1, t1|X2, t2),

which is the probability that X(t1) = X1 given that X(t2) = X2. A system obeying The

Markov property follows the constraint that

P (X1, t1|X2, t2 : X3, t3) = P (X1, t1|X2, t2), (2.3)

such that the conditional probability to find the process with a certain value at a certain

time requires only knowledge of the previous value, but no knowledge is needed of the

sequence of transitions taken by the system to reach that state, in other words, it does

not depend on the path taken.

2.1.2 Fokker-Planck Equation

The Fokker-Planck equation is the equation for the time-evolution of the probability distri-

bution of a system subject to a stochastic process. It follows for an extremely broad class

of processes, in fact any system which satisfies the Markov property. We will make use of

the Chapman-Kolmogorov equation, which is the integral form of the Markov property,

P (X3, t3|X1, t1) =

∫
P (X3, t3|X2, t2)P (X2, t2|X1, t1)dx2. (2.4)

Additionally, we assume that the Markov process is time-invariant such that

P (X(t1 + s)) = P (X(t1)). (2.5)

The Fokker-Planck equation follows by taking the integral [27],

I =

∫ ∞
−∞

h(Y )
∂p(Y, t|X)

∂t
dY, (2.6)

where h(Y ) is an arbitrary smooth function with compact support. Rewriting the deriva-

tive as the limit,∫ ∞
−∞

h(Y )
∂p(Y, t|X)

∂t
dY = lim

δt→0

∫ ∞
∞

h(Y )
(p(Y, t+ ∆t|X)− p(Y, t|X)

∆t

)
dY, (2.7)

8
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Applying the Chapman-Kolmogorov identity on the right-hand side where Z corresponds

to the intermediate state of the stochastic variable,

lim
δt→0

1

∆t

(∫ ∞
∞

h(Y )

∫ ∞
∞

p(Y,∆t|Z)p(Z, t|X)dZdY −
∫ ∞
∞

h(Y )p(Y, t|X)dY
)
, (2.8)

Due to the fact that p is a probability density, the integral over all values of the stochastic

process is 1, after changing the limits of integration in the first term and allowing T to

approach Z in the second term, the right-hand side becomes

lim
δt→0

1

∆t

(∫ ∞
∞

p(Z, t|X)

∫ ∞
∞

p(Y,∆t|Z)(h(Y )− h(Z))dY dZ
)
, (2.9)

Since the function h(Y ) is smooth we can expand it in a Taylor series around the

neighbouring value Z, and the integral becomes

lim
δt→0

1

∆t

(∫ ∞
∞

p(Z, t|X)

∫ ∞
∞

p(Y,∆t|Z)

∞∑
n=1

h(n)(Z)
(Y − Z)2

n!

)
dY dZ. (2.10)

This is known as the Kramers-Moyal expansion. Defining the function

Dn(Z) =
1

n!

1

∆t

∫ ∞
−∞

(Y − Z) ∗ np(Y,∆t|Z)dY, (2.11)

so that the integral becomes

I =

∫ ∞
−∞

h(Y )
∂p(Y, t|X)

∂t
dY =

∫ ∞
−∞

p(Z, t|X)
∞∑
n=1

σ(n)(Z)h(n)(Z)dZ, (2.12)

by iterated integration of parts and assuming the integrands are equal,

∂p(X, t)

∂t
=

∞∑
n=1

−
( ∂

∂Z

)
[D(n)(Z)p(Z, t|X)]. (2.13)

We arrive at the Fokker-Planck by assuming that the higher-order terms in the Kramers-

Moyal expansion, D(i) = 0 for i ≥ 3, and so we haveD(1)(X) = h(X) andD(2)(X) = σ(X),

the integral becomes to the lowest two orders of the Taylor series

∂p(X, t)

∂t
=

∂

∂X
(h(X)p(X, t))− ∂2

∂X2
(σ(X)p(X, t)), (2.14)

which is the Fokker-Planck equation in the single stochastic variable. For a multidimen-

sional stochastic process, the Fokker-Planck equation is generalised

∂p(X, t)

∂t
=

N∑
i=1

− ∂

∂Xi
(h(X)p(X, t))−

N∑
i=1

N∑
j=1

∂2

∂XiXj
(σ(X)p(X, t)). (2.15)

9



Chapter 2: Langevin & Fokker-Planck Equations 2.2 Langevin Equations

2.2 LANGEVIN EQUATIONS

Stochastic differential equations in general, and Langevin equations in particular, are

invaluable tools used widely in physics and maths, with applications as far ranging as

population dynamics, protein kinetics, turbulence, and are widely also used in finance and

engineering. Such equations are characterised by the presence of a stochastic term in the

expression for the dynamical evolution of the system, a fact which makes their continuity

and differentiation properties of particular mathematical interest. [28] [29]

The Langevin equation is a key tool of non-equilibrium statistical mechanics which we

will make extensive use of in this work. Under the Langevin approach, the interaction of

the slowly-varying system degrees of freedom with a much faster bath are approximated

by a stochastic term. The Langevin equation for a system variable x may be written in

the form

ẋ = f(x) + g(x)η(t), (2.16)

where x is typically some quantity of physical interest, such as the spin of an atomistic

magnetic moment or nanoparticle. The derivative is comprised of a deterministic drift

component f(x), and a coupling of the dynamical motion to the stochastic process η(t)

which incorporate the random motion of the thermal bath into the dynamics. The function

g(x) couples the variable to the stochastic term, for a general function this results in a

multiplicative noise, while for the specific case of g(x) constant, the noise is called additive.

For a Langevin equation, the stochastic variable η(t) is completely defined with refer-

ence to it’s second moment while the ensemble average is 0,

〈η(t)〉 = 0 〈η(t)η(s) = 2Dδ(t− s), (2.17)

hence the process is Gaussian, in the sense that it is completely specified by it’s second

moment, and stationary since the joint probability distribution does not change when the

process is shifted in time.

The Langevin equation is essentially a consequence of the central limit theorem, ac-

cording to which the average of any suitably large number of independent, identically-

distributed numbers approaches a Gaussian distribution. On the timescale of the resolved

subsystem, the effect of the faster bath degrees of freedom approaches a Gaussian due to

the number of interactions that occur on the much slower timescale of the system. Knowl-

edge of the detailed dynamics of the fast degrees of freedom is then unnecessary and we

10
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only need knowledge of the variance of the thermal noise, D, which is generally inferred

by thermal considerations.

Formally the noise term appearing in the Langevin equation is the derivative of the

continuous-time Wiener process, as the integral of the Wiener process over a finite time

interval are independent and Gaussian distributed, We may generate an appropriate white

noise with the correct autocorrelation function by using the expression

η =
√
DΓ, (2.18)

where Γ are Gaussian-distributed numbers of mean zero and variance 1, which may be

generated by a number of different numerical algorithms such as the Box-Muller technique.

2.2.1 Itô-Stratonovich Dilemma

In order to solve for the time-dependence of the system variable x(t) in the Langevin

equation it is necessary that we perform integration over the stochastic partial differential

equation [30]

x(t+ τ) = x(t) +

∫ t+τ

t
f(x(t′))dt′ +

∫ t+τ

t
g(x(t′))η(t′)dt′, (2.19)

It is not sufficient to perform such integration using the standard Riemann integral of

a function over a finite interval, owing to the presence of the integral over the white

noise tern, which differs in that the end result of such an integration depends crucially

on the assumptions made about the interval over which we perform said integration at

intermediate steps, a problem which is called the Itô-Stratonovich dilemma. We first

consider the noise integral

W (t) =

∫ t

0
η(t′)dt′, (2.20)

which is the non-stationary Wiener process with moments which are trivially related to

the noise autocorrelation, 〈W (t)〉 = 0, 〈W (t)2〉 = 2Dt. The increments of the Wiener

process are Gaussian such that

ω(τ) = W (t+ τ)−W (t) =

∫ t+τ

t
η(t′)dt′, (2.21)

with dW = Ẇdt = η(t)dt being the Wiener process. Rewriting the integral in terms of

the Wiener process as the Stieltjes integral,

x(t+ τ) = x(t) +

∫ t+τ

t
f(x(t′))dt′ +

∫ t+τ

t
g(x(t′))dW (t′), (2.22)

11
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where dW = Ẇ t = η(t)dt.

If both the diffusion term g(x, t) and the noise dW (t) were continuous, then in the

limit of small ∆t, the right-hand side would be f(x, t)dW (t)dt′. However, the noise term

is by definition discontinuous, and there is an ambiguity in choosing the time at which

to evaluate the diffusion function. It is in choosing an intervening time to evaluate the

function that we choose an interpretation for the stochastic integral. We may generally

write the integral over the Wiener process as

A =

∫ T

0
Φ
[
ω(τ ′), τ ′

]
dW (τ ′), (2.23)

The Itô interpretation explicitly evaluates this integral as

AI = lim
∆→0

N−1∑
i=0

Φ
[
ω(τi), τi

]
,
[
ω(τi+1)− ω(τi)

]
, (2.24)

where ∆ = max(τi+1− τi). The multiplicative part of the integral is evaluated at τi, while

the increment of the Wiener process is independent of this diffusive function. Stratonovich

defined the integral as the limit of a different sum as [31]

AS = lim
∆→0

N−1∑
i=0

Φ
[ω(τi) + ω(τi+1

2
,
τi + τi+1

2

][
ω(τi+1)− ω(τi)

]
. (2.25)

In the Stratonovich interpretation, the Φ function is evaluated in a symmetrical way be-

tween the interval (τi, τi+1). We see, then, that the Itô interpretation is ”non-anticipating”,

since the function is evaluated only at the beginning of the interval. This generally leads

to the implication that the variable being integrated and the stochastic term are uncor-

related, 〈x(t)η(t)〉 = 0. Under the Stratonovich interpretation, this is not the case and

〈x(t)η(t)〉 6= 0. This can be seen as the more realistic physical assumption, since the white

noises terms occurring in a Langevin equation are not idealised white noises but are the

limit of a physical process with some correlation time. The mathematical process of taking

such a limit will generally imply a correlation between the variable x and η.

2.2.2 Heun Method

We will employ the Heun method as the numerical algorithm by which we evaluate stochas-

tic PDE’s in the remainder of this work. The Heun method is a predictor-corrector method

which invokes the Stratonovich interpretation and so is generally preferable for physical

applications. The method first evaluates the integral using a simple Euler step, which is

12
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then fed back into the initial state to make a more accurate integration. The scheme takes

the form [32] [33]

x(t+ ∆t) = x(t) +
1

2

[
∂x(t)

∂t
+
∂xe(t+ ∆t)

∂t

]
∆t, (2.26)

xe(t+ ∆t) = x(t) +
∂x(t)

∂t
∆t. (2.27)

When implementing this method in magnetic Langevin equations, the spin-dependent

effective fields must be updated for the prediction and correction steps, while the stochastic

term for both steps remains the same as we are integrating over the same instance of the

Wiener process.. Additionally, the scheme is non-conservative in the spin, which means

that the spin magnitude must be renormalised at each step in the simulation. The Heun

method also has the advantage that it treats the stochastic and deterministic parts of the

stochastic PDE in an essentially symmetric fashion, facilitating the implementation of the

algorithm.

2.2.3 Ornstein-Uhlenbeck Noise

The simplest generalisation of the white noise limit to coloured noise is the Ornstein-

Uhlenbeck process. For the white noise process with autocorrelation function 〈ξ(t)ξ(s)〉 =

2Dδ(t − s), the corresponding Ornstein-Uhlenbeck process introduces a single timescale

over which the noise is exponentially correlated with its values at earlier times. The noise

is then itself driven by a Langevin equation [34] [35]

dξ(t)

dt
=

1

τc

(
− ξ(t) +

√
2DΓ(t)

)
, (2.28)

where Γ(t) is drawn from a Gaussian distribution of unit variance, and is again interpreted

as the time-derivative of the scalar Wiener process. The solutions to this equation take

the form

ξ(t) =

√
2D

τc

∫ t

−∞
dt′K(t− t′)Γ(t′), (2.29)

where K(t) = e−t/τc . We may solve for the autocorrelation of this new noise explicitly

〈ξ(t)ξ(s)〉 =
2D

τ2
c

∫ t

−∞
dt′
∫ s

−∞
ds′K(t− t′)K(s− s′)〈Γ(t′)Γ(s′)〉. (2.30)

As Γ(t) is itself a Gaussian process of unit variance, it has an autocorrelation of the

form 〈Γ(t)Γ(s)〉 = δ(t − s), inserting this and first performing the integral over t′ as this

is assumed to be the earlier time, we get

〈ξ(t)ξ(s)〉 =
2D

τ2
c

e−(t+s)/τc

∫ s

−∞
ds′e2s′/τc , (2.31)
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upon evaluating the second integral gives us a factor of τc2 , finally giving the autocorrelation

〈ξ(t)ξ(s)〉 =
D

τc
e−(t−s)/τc , (2.32)

Additionally, we may take the zero correlation time limit of this correlation function to

see

lim
τc→0

(D
τc
e−(t−s)/τc

)
= 2Dδ(t− s), (2.33)

due to the fact that 1
2τc
e−t/τc = δ(t) as τc approaches 0. The overall picture for the

Ornstein-Uhlenbeck process is then clear. To insert simple correlated noise into a Langevin

equation, we replace the noise term by another variable which is itself the solution of a

Langevin equation of the form equation 2.28. This Langevin equation is driven by a white

noise of the same magnitude as the original white noise. It has an autocorrelation as

in equation 2.32, and the zero correlation time limit of this is, again, itself the original

delta-correlated white noise.

2.2.4 Separation of Timescales

The important factor in considering whether the white noise approximation is valid is

the ratio of the timescales of the system and the bath, which allows us to directly verify

whether the timescales are genuinely widely separated. To quantify this we must make

some estimate of the timescale of the system dynamics. To illustrate this, we consider the

motion of a damped simple 1-D oscillator under the influence of a potential U(x) [36].

mẍ+mγẋ = −dU(x)

dx
+ ξ(x). (2.34)

Dividing through by mγ and taking the limit of large γ so the inertial part disappears,

this takes the form

ẋ =
1

τs
(−dU(x)

dx
+ ξ(x)), (2.35)

where we now have a characteristic system time τs = 1
mγ . Rescaling the time variable

t′ = t/τs, the autocorrelation for the Ornstein-Uhlenbeck noise becomes

〈ξ(t′)ξ(t′′)〉 =
τs
τn
De−(t′−t′′) τs

τn . (2.36)

Defining the dimensionless variable τ = τn/τs, this becomes simply

〈ξ(t)ξ(t′)〉 =
D

τ
e−(t−t′)/τ). (2.37)
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We observe that in this simple case as τ → 0, i.e., τs > τn the uncorrelated white noise

behaviour is recovered, while in the limit τ →∞ the Ornstein-Uhlenbeck process produces

distinct behaviour to the white noise case.

The type of Langevin equation described above originated in the study of Brownian

motion, the motion of small particles suspended in a liquid or gas. In such systems, the

characteristic frequency of the motion of the suspended particle is assumed to be much

lower than that of the particles comprising the bath. This approximation amounts to the

assumption of the separation of timescales.

2.2.5 Frequency Spectra of Noise Autocorrelation

The Fourier transform of the white noise autocorrelation, Eq. ?? is given by

F (ω) =

∫
dτ〈ξ(t)ξ(t+ τ)〉 exp (iωτ) (2.38)

= D

∫
dτδ(τ) exp(iωτ) = 2D. (2.39)

There is no frequency dependence for the white noise. In contrast, if we take a coloured

noise with 〈ξ(t)ξ(t+ τ)〉 = D
τc

exp (− t
τc

), with a corresponding Fourier transform

F (ω) =
Dτ−2

ω2 + τ−2
c
. (2.40)

This is a Lorentzian function which preferentially occupies lower frequencies, proportional

to the correlation time. Processes such as the Ornstein-Uhlenbeck noise are labelled

coloured noise processes, as they do not occupy all frequencies equally, in analogy to

the spectrum of visible light.

Hence, we may think of the white noise term used in Langevin equations as the small

correlation time limit of a the Ornstein-Uhlenbeck process. Since the white noise approx-

imation relies on the wide separation of the system and bath timescales, it is necessary to

explicitly incorporate the effects of coloured noise in the instance that the system is now

slow on the timescale of the bath.

2.2.6 Fluctuation-Dissipation Theorem

To see how Langevin equations are implemented in non-equilibrium systems, we will con-

sider one such simple system, and in addition to this we will relate the statistical properties

of the system to its equilibrium properties, in a result which is termed the fluctuation-

dissipation theorem [36]. We will consider the one-dimensional motion of a spherical
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particle in a fluid medium of viscosity η. Newton’s equation of motion for the particle is

m
dv

dt
= Ftotal(t), (2.41)

and Ftotal(t) is the total force the particle is subjected to at the time t. This force is, in

principle, known if all of the positions and momenta of the surrounding medium are known.

However, even if such an approach were possible it is generally not feasible to simulate

such a large system computationally The force the particle is subjected to is composed

of both a frictional component, which opposes the direction of motion of the particle and

impedes it with a magnitude that is proportional to the velocity of the particle as well as

a fluctuating thermal component. The friction coefficient is related to the viscosity of the

medium via Stokes’ Law, ξ = 6πηa. The equation of motion for the particle subject to

this friction is then

m
dv

dt
= −ξv. (2.42)

This is a simple, linear first-order differential equation with trivial solution

v(t) = e−ξ/mv(0) (2.43)

A particle immersed in a viscous medium would eventually have its velocity drop to 0 in the

long-time limit if the dissipative force were the only force it was subjected to. However,

this is not actually the case because the mean square velocity at thermal equilibrium

is non-zero, 〈v2〉eq = kBT/m, and so we must consider an extra force in addition to the

damping term. The correct term to add to account for the non-zero velocity at equilibrium

is the fluctuating thermal term, giving an equation of motion

m
dv

dt
= −ξv + F (t). (2.44)

This is the Langevin equation for the particle. The total force originating from the inter-

action with the bath has been partitioned into a thermal part and a dissipative response

part. The moments of the force dictate that it is a white noise

〈F (t)〉 = 0, (2.45)

〈F (t)F (s)〉 = 2Dδ(t− s), (2.46)

hence there is no net velocity subjected by the medium to the particle, yet the magnitude

of the force varies in such a way as to come into equilibrium with the dissipative part.
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In the presence of the thermal force, the solution for the particle velocity versus time

takes the form

v(t) = e−ξt/mv(0) +

∫ t

0
dt′e−ξ(t−s)/mF (s)/m, (2.47)

We know that at equilibrium, the mean-square velocity is constrained by the temperature,

and does not decay to zero. Hence, the parts of the integral on the RHS must meet this

criteria when we evaluate the mean-square velocity from this expression. The decaying

dissipative part contributes a term e−2ξt/mv(0)2 which tends to zero at long times. The

first noise term contributes

2v(0)e−ξt/m
∫ t

0
dse−ξ(t−s)/mF (t)/m. (2.48)

This term involves taking an average in the limit of long time of the thermal noise, which

is equivalent to the first moment which we have defined to be 0. The final term involving

two thermal fields is∫ t

0
dt′e−ξ(t−t

′)/mF (t′)/m

∫ s

0
ds′e−ξ(s−s

′)/mF (s′)/m. (2.49)

This term involves the average over time of the product of the noise term, which we may

replace with the explicit value of the autocorrelation. Hence, this may be reduced to∫ t

0
dt′e−ξ(t−t

′)/m

∫ s

0
ds′e−ξ(s−s

′)/m2Dδ(t′ − s′)/m2. (2.50)

Performing the integration over one time dummy variable results in a change of variables,

hence the expression for the mean square velocity becomes

〈v(t)2〉 = e−2ξtv(0)2 +
D

ξm
(1− e−2ξt/m). (2.51)

In the long-time limit, the exponential terms tend to zero and the rms velocity ap-

proaches the equilibrium value, D/ξm. This fact directly leads to the fluctuation-dissipation

theorem,

D = ξkBT, (2.52)

For the case of a particle in a viscous medium, the fluctuation-dissipation theorem relates

the strength of the fluctuating random noise force to the magnitude of the dissipation. This

relationship holds more generally for systems described by Langevin equations, and simply

amounts to an equilibrium condition, whereby at a specified temperature the dissipative

contributions which would drive the system to a completely dead state must be matched

in magnitude by the thermal forces which keep the system alive.
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2.2.7 Fokker-Planck Equation of the Langevin Equation

The foundation of much of non-equilibrium statistical mechanics is the Liouville equation,

and the Fokker-Planck equation for a Langevin equation can be seen as the generalisation

of the Liouville equation to a classical particle undergoing a noisy evolution leading to a

distribution of possible trajectories for the same initial conditions. For motion in a phase

space governed by Hamilton’s equations of classical motion,

∂q

∂t
=
∂H(p,q)

∂p

∂p

∂t
= −∂H(p,q)

∂q
, (2.53)

where q,p are the canonical coordinates and momenta of the system, the values of which

span the phase space and thereby completely specify its state. H(p,q) is the Hamilto-

nian function, which completely determines the dynamical evolution through Hamilton’s

equation. [37]

The Liouville equation calculates averages of the classical motion for a probabilistic

distribution of values in the phase space, represented as the phase space distribution

function f(p,q, t). The time derivative of this probability density takes the form of a

conservation law whereby the probability at a phase space coordinate is compensated

exactly by the divergence of a probability current, hence

∂f

∂t
= − ∂

∂q
·
(dq
dt

f
)
− ∂

∂p
·
(dp
dt

f
)
, (2.54)

and with Hamilton’s equations this becomes

∂f

∂t
= −∂H

∂p
· ∂f

∂q
+
∂H
∂p
· ∂f

∂p
= −Lf , (2.55)

where the Liouville operator is defined as ∂H
∂p ·

∂
∂q + ∂H

∂p ·
∂
∂p , and the probability density

at a time t given the distribution at an initial time f (p,q, t) is found from the formal

operator solution,

f (p,q, t) = e−tLf (p,q, 0). (2.56)

The Fokker-Planck equation corresponding to a Langevin equation is an extension of

the Liouville equation in the sense that that the classical position and conjugate momenta

coordinates are now the stochastic variables of the Langevin equation. For a general

Langevin equation for a set of stochastic variables x = xi, we have the generic Langevin

equation

dxi
dt

= vi(x1, x2, ..) + Fi(t)→
dx

dt
= v(x) + F(t), (2.57)
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where Fi is a set of Gaussian white noises with the standard autocorrelation 〈F(t)F(s)〉 =

2Dδ(t − s). We then look for the probability distribution of the values of x at time t,

p(x, t), for which we must take the average of this distribution over all possible realisations

of the noise term. We again have a conserved probability
∫
f(x, t) = 1 at all times, t, and

so we anticipate that the derivative in the stochastic case is also given by the divergence

of a flux, such that
∂f

∂t
+

∂

∂x
·
(dx
dt

)
= 0. (2.58)

The time-derivative of the stochastic variables is given by the Langevin equation such

that,
∂f (x, t)

∂t
= − ∂

∂x
·
(
v(x)f(x, t) + F(t)f (x, t)

)
. (2.59)

Writing the noise-free evolution by defining an analogous operator to the Liouville opera-

tor,

LΦ =
∂

∂x
(v(x)f(x, t)), (2.60)

and the noise-free part has an analogous formal solution,

f (x, t) = e−tLf (x, 0). (2.61)

In the presence of the noise term, the derivative is

∂f

∂t
= −Lf − ∂

∂x
· F(t)f , (2.62)

which upon integration gives

f (x, t) = e−tLf (x, 0)−
∫ t

0
dse−(t−s) ∂

∂x
· F(s)f(a, t). (2.63)

Putting this expression back into the time derivative of the probability distribution,

∂

∂t
f (x, t) = −Lf (x, t) +

∂

∂x
·F(t)f (x, 0) +

∂

∂x
·F(t)

∫ t

0
dse−(t−s)L ∂

∂x
·F(s)f (x, t). (2.64)

The time evolution now follows from taking the average over the noise. The term pro-

portional to f (x, 0) is independent of the noise and so averages to 0. By using the delta-

correlated property of the white noise and inserting it into the equation, we have for the

resulting noise-averaged distribution function, f̂

∂

∂t
f̂ (x, t) = − ∂

∂x
· v(x)f̂ (x, t) +

∂

∂x
·D · ∂

∂x
f̂ (x, t), (2.65)

which is the equation for the time-evolution in the absence of the noise term with an

additional part that accounts for the average effect of the noise over all trajectories. We

19



Chapter 2: Langevin & Fokker-Planck Equations 2.3 Generalized Langevin Equations

have a drift vector arising from the deterministic dynamical evolution, and a diffusion

tensor which is physically related to the random thermal force. An important point to

note is that we have performed the integral over the noise term in the diffusive component

of this derivation, and hence have implicitly invoked the Stratonovich interpretation. In

general the Itô interpretation will give ruse to a different expression for the Fokker-Planck

equation. For additive noise the Fokker-Planck under the two interpretations coincide,

while the Stratonovich FPE has an additional drift component when compared to the Itô

integral for a general multiplicative noise.

We note that, more generally, the Langevin equation for a set of stochastic variables

may depend on all of the noise variables such that,

dxi
dt

= f(xi) + gi,j(x)ηj(t), (2.66)

The Fokker-Planck equation in this case is,

∂P (x, t)

∂t
= −

[∑
i

∂

∂xi
fi(x) +D

∂2

∂xi∂xj
gi,j(x)

]
P (x, t). (2.67)

2.3 GENERALIZED LANGEVIN EQUATIONS

The Generalized Langevin equation is an extension of the Langevin equation. of particular

use in the molecular non-equilibrium dynamics of open systems [38], and in the fractional

Langevin equation which may be used to describe systems that exhibit fractional diffusion

[39]. It may be derived on extremely general grounds, from the bilinear coupling of a

system to a bath of harmonic oscillators. For example, for the problem of a mechanical

motion of a particle, the GLE is

q̇ = −∇V (q)−
∫ t

0
γ(t− s)q̇(s) + F (t). (2.68)

In fact we may see the GLE as the more accurate approximation to the underlying com-

plex dynamics of the system, with the traditional Langevin equation being the long-time

approximation to some more complex memory kernel, applicable in the case that the

bath correlation time is much longer than the characteristic time of the system. In par-

ticular, the GLE has a similar property to the Langevin equation, by which there is a

non-Markovian fluctuation-dissipation theorem between the time-dependent friction and

damping terms,

〈F (t)F (s)〉 = β−1γ(t− s). (2.69)
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a result which is also known as Kubo’s second fluctuation-dissipation theorem [40]. This

statement implies the physical fact that the dissipative and thermal fields balancing each

other on a per-frequency basis at equilibrium.
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Langevin Spin Dynamics

For the remainder of this thesis, we will be concerned with the the modelling of superpara-

magnetism using Langevin equations, and in particular in the case where the timescale

of the bath and of the magnetic system are not widely separated. Superparamagnetism

may be viewed as single-domain ferromagnetic particles. Their properties are particularly

interesting to the magnetic recording industry, where the theoretical basis of all mag-

netic storage media relies on the use of superparamagnetic grains which have a remanent

magentisation on a timescale long enough to facilitate the storage of data. [41]

It is therefore of immense physical and theoretical importance to understand the de-

tailed physics of the superparamagnetic state, especially as it relates to the escape problem

over long timescales for such particles, and to understand the theoretical basis underlying

the assumptions and approximation employed.

Superparamagnetism occurs when the size of a particle composed of magnetically or-

dered atoms becomes small enough such that the energy needed to divide into randomly-

oriented magnetic subdomains becomes less than the energy required to become a single,

large magnetic domain. [42] [43] The overall moment of the ensemble is then represented

by a single moment of magnitude

µs = µatN, (3.1)

where µat is the atomic magnetic moment and N is the number of constituent atomic

magnetic moments. Owing to the particularly large size of this superparamagnetic mo-

ments, the spin is typically able to exhibit rigidity to thermal effects over much longer

timescales than might be expected. This rigidity is evident in the decay profile of the

magnetisation, which to a first approximation is given by an Arrhenius law where the
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magnetisation decays over a characteristic timescale,

M(t) = M0e
−t/τ . (3.2)

The experimentally-observed properties of strongly depends on the characteristic mea-

suring time, τm, of the experimental technique employed to observe the properties of

the system, in comparison to the intrinsic time of switching over the energy barrier τ .

When the experimental time τm >> τ , the relaxation is much faster than the observa-

tion timescales and the nanoparticle reach thermal equilibrium and so the particles are

considered to be in the superparamagnetic regime. In the case there the experimental

time is significantly slower than the barrier timescale, τ >> τm, the system relaxes very

slowly and the quasistatic ordered magnetisation can be observed. This regime is called

the blocked regime. [44]

Figure 3.1: Behaviour of superparamagnetic moments above and below the blocking tem-

perature. Left: For τm much smaller than the relaxation time, a well-defined tate is

observed, this is the blocked state. Right: For τm much larger than the elaxation time,

the large fluctuations of the magnetisation over the measurement timescale lead to a mea-

sured time-averaged magnetisation of zero. Reproduced from [45]

.

Crucially, the timescale of interwell transition depends on the temperature of the par-

ticles, and so we can infer that there is an associated temperature TB, called the blocking

temperature, which divides the system between both regimes and depends on the measure-
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ment time of the experiment. The blocking temperature is measurable for and depends

on the various different experimental methods, such as AC susceptibility measurements

and SQUID magnetometry. [44] The state of the spins above and below the blocking

temperature is depicted in Figue 3.1.

We will now detail how the Langevin formalism is applied to general arrays of magnetic

moments, and to the problem of superparamagnetism in particular.

3.1 LANDAU-LIFSHITZ-GILBERT

The picture we have for the superparamagnet is then that of a large, single magnetic

moment interacting with some thermal bath. The interaction of the superparamagnet with

the bath will naturally give rise to both a fluctuating thermal term and a damping. Hence,

a Langevin model may be applied to the system. The Langevin equation which is generally

used to model superparamagnetic and other systems of spins such as atomic ensembles, is

the Landau-Lifshitz-Gilbert equation. The equation is not a simple generalisation of the

equation for the mechanical problem, and great care must be taken in the construction

of both the damping term, and for the the thermal force, as a simple additive noise term

will be nonconservative in the spin.

3.1.1 Landau-Lifshitz Equation

The development of the LLG equation started with the work of Landau & Lifshitz [46], [47],

who argued that the correct equation of motion for a classical spin vector in an external

magnetic field took a simple precessional form

∂S

∂t
= −γ(S×H), (3.3)

where γ = 1.76 × 1011s−1T−1m is the gyromagnetic ratio which gives the ratio of the

magnetic moment to the angular momentum, and the vector S = µ/µs is a unit vector in

the direction of the magnetic moment. The field H consists of both the externally applied

field, and for a superparamagnet we have various effective field terms which are derived

from the terms in the Hamiltonian which are proportional to the spin as,

H = − 1

µs

∂H
∂S

, (3.4)

where we call H the spin Hamiltonian, since it only consists of terms pertaining to the

magnetic degree of freedom of the system.
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In this way much of the physics pertaining to the detailed interaction of the spin with

the environemt are incorporated into the Landau-Lifshitz formalism. Typically, the spin

Hamiltonian incorporates numerous physical processes, including exchange, anisotropy,

dipole-dipole interaction, and various other effects. The typical spin Hamiltonian then

takes the form.

H = Hexc +Hani +Happ +Hdd. (3.5)

Many sources for the relevant parameters of the above Hamiltonian are given in density

units as they generally arrived at from the assumption of a continuum model of a block

material. Such material parameters are simply related to the parameters employed in

the Langevin equation by the volume we assume for the nanoparticle. Hence we have a

nanoparticle magnetic moment of µs = MsV , where Ms is the spontaneous magnetisation

and V is the particle volume. Similarly, the anisotropy term contain a magnetic anisotropy

energy density which also trivially gives the desired nanoparticle anisotropy energy as

ku = KzV ., where Kz is the anisotropy energy density and ku is the energy term used in

simulations.

3.1.2 Magnetic Anisotropy

The anisotropy term of the spin Hamiltonian implements the directional dependence of

the energy of the magnetic moment. A number of different forms of anisotropy occur

in magnetic systems, including the uniaxial form which results in a single preferential

direction of alignment, or easy-axis, for the spin, and biaxial anisotropy, which may be

suitable, for example, im the case of spheroidal nanoparticle where there is an angle

between the axis of symmetry of the particle and the easy-axis. [48]

The simplest form of anisotropy, and the one which will generally be considered here,

is the uniaxial anisotropy where we have a single preferred direction, the easy axis, e. The

uniaxial anisotropy contributes the following term to the spin Hamiltonian,

Hani = −ku(S · e)2, (3.6)

where ku is magnetic energy of the nanoparticle. Performing the derivative with respect

to the spin results in a field which is proportional to the projection of the spin onto the

easy-axis,

H = − 1

µs

∂

∂S
H =

2ku
µs

(S · e). (3.7)
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We will assume that the z-axis is the easy-axis of the anisotropy in our simulations, such

that the components of the contribution to the effective field of the anisotropy takes the

simple form,

Hz = HkSz (3.8)

where the anisotropy field magnitude is

Hk =
2Ku

Ms
=

2ku
µs

. (3.9)

When the spin and the field align in the same direction, there is no precessional motion

since the dynamical rate of change is proportional to the cross product of the spin and

field. In this way the easy-axis represents the minimum of the spin energy.

3.1.3 Damping

Given the precessional Landau-Lifshitz equation and the physically relevant spin energy

terms, we have a purely deterministic formalism for the time-evolution of the spin system.

However, the spin-bath interaction will result in dissipation of energy from the system to

the bath over time. Hence, it is necessary to incorporate the correct form of damping

into the precessional motion. We may arrive at the desired form of damping from the

formalism of classical mechanics.

We first express the precessional equations of motion, Eqn. 3.3, as the equations of

motion arising from the Euler-Lagrange equation for the corresponding Lagrangian, [49]

d

dt

δL[S, Ṡ]

δṠ
− δL[S, Ṡ]

δS
= 0, (3.10)

where L = 1
2(I1(Ω2

1 + Ω2
2) + I3Ω2

3) − V (θ, φ), where Ωi are the angular velocities and Ii

are the moments of inertia [50], and the spin components are taken to be generalised

coordinates in analogy with the classical mechanics of particles. The most general method

of incorporating damping into classical equations of motion is to introduce a Rayleigh

dissipation functional into the Lagrangian or Hamiltonian of the system [51]. Such a

dissipation functional takes the form,

R =
1

2

∑
i,j

∫ ∫ [∂Si(r, t)

dt
·Λi,j(r, r

′) · ∂Sj(r
′, t)

dt

]
drdr′, (3.11)

where i, j label the spin components, and the equations of motion are now derived from

d

dt

δL[S, Ṡ]

δṠ
− δL[S, Ṡ]

δS
+
δR
δṠ

= 0. (3.12)
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The dissipation is incorporated via the dissipation tensor, Λi.j(r, r
′) which may in general

be a nonlocal function. To a first approximation it is satisfactory to assume that this is

simply a constant, Λi,j(r, r
′) = Λδi,j in this fashion we arrive at Gilbert’s expression for

the motion of a damped spin,

dS

dt
= γS×

(
H− α

γ

dS

dt

)
. (3.13)

Where α = Λ [52] [53]. This equation consists of the conservative, precessional part

proportional to H and the dissipative spin-dependent field, −α
γ
dS
dt . The dissipation is then

similar to the viscous force proportional to the time derivative of the canonical coordinates

for a particle. This equation of motion for a spin with the simple form of damping is called

the Landau-Lifshitz-Gilbert equation. The LLG equation has a close relationship to other

physical systems, such as the motion of vortex filaments and σ-models in particle physics,

and is also of interest on a purely mathematical basis due to it’s differential geometric

properties. [54]

3.1.4 Landau-Lifshitz Form of the LLG

Landau & Lifshitz proposed an alternative phenomenological form of damping by intro-

ducing a torque in addition to the precessional motion which pushes the magnetisation in

the direction of the applied field. This leads to an equation for the spin [55],

dS

dt
= −γ(S×H)− λS× (S×H). (3.14)

It is possible and desirable to equate these two forms of the precessional dynamics, as

the Landau-Lifshitz form of the LLG is more suitable for direct numerical simulation. We

proceed to multiply the LLG equation in the Gilbert form, Eq. 3.13, across by the cross

product of the magnetisation component,

S× dS

dt
= −γS× (S×H).+ αS× (S× dS

dt
)) (3.15)

From the vector identity, a× b× c = b(a · c)− c(a · b), and the identity dS
dt · S = 0, since

the spin magnitude is conserved, we arrive at

S× dS

dt
= −γS× (S×H) + α

dS

dt
, (3.16)

since the spin magnitude |S| = 1 since it is a unit vector. Upon replacing for this expression

in Gilbert’s equation, Eqn. 3.13, we have

dS

dt
= γS×H− γαS× (S×H)− α2dS

dt
, (3.17)
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which we can trivially re-express by taking the derivative term to the left-hand side,

resulting in the Gilbert equation in the Landau-Lifshitz form, [56]

dS

dt
= − γ

1 + α2
(S×H)− γα

(1 + α2)
S× (S×H). (3.18)

3.1.5 Thermal Fields

To incorporate thermal fluctuations into this model, Brown took the equation of motion

for the spin with Gilbert damping and modified it to a Langevin equation by augmenting it

with a random thermal field which is incorporated in addition to the effective field [57] [58].

The LLG equation then becomes,

dS

dt
= − γ

1 + α2
(S× (H + Hth))− γα

(1 + α2)
S× (S×H + Hth), (3.19)

where the random field Hth(t) is stochastic variable with the white noise properties and

D = αkBT
γµs

,

〈Hth(t)〉 = 0, (3.20)

〈Hth,i(t)Hth,j(t
′)〉 =

2αkBT

γµs
δi,kδ(t− t′), (3.21)

where i, j label the Cartesian basis vectors. The fact that the thermal contribution is

introduced as a fluctuating magnetic field around which the spin precesses automatically

leads to conservation of the spin magnitude, while the presence of the same α in the

damping and thermal terms is the realisation of the fluctuation-dissipation theorem for

the magnetic system.

3.1.6 Fokker-Planck Equation for the LLG

An important consequence of the LLG Langevin equation is that it enables us to derive

the Fokker-Planck equation for the probability distribution of the spin orientation. To

do this we compare the LLG to the generic Langevin equation, and separate the terms

so that we have a deterministic drift vector, f(S) , and the the thermal diffusion tensor

proportional to the white noise, gi,j(S)ηi((t). For the LLG equation of the form,

dS

dt
= − γ

1 + α2

[
S× (H + η)

]
− α γ

1 + α2

[
S×

[
S× (H + η)

]]
. (3.22)

We then define the following vector,

Ai(S, t) = − γ

1 + α2

[
(S×H)i + α(S× (S×H))i

]
(3.23)
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, and the tensor

Bik(S, t) =
γ

1 + α2

[
−
∑
j

εijkSj + α(δikS
2 − SiSk)

]
. (3.24)

Then the Fokker-Planck equation for the LLG takes the form.

∂P

∂t
= −

∑
i

∂

∂Si

[
Ai + q

∑
jk

Bjk
∂Bik
∂Sj

]
P +

∑
ij

∂2

∂Si∂Sj

[
q
∑
k

BikBjk

]
P, (3.25)

Where the unknown constant q has yet to be determined. The second part of the drift

term may be evaluated by noting that

∑
j

∂Bjk
∂Sj

= − 2αγ

1 + α2
, (3.26)

Hence ∑
k

Bik(
∑
j

∂Bjk
∂Sj

) = 0, (3.27)

and so this part is identically zero and disappears. The diffusive term is evaluated by

again using the identity Eqn. 3.26,

−q
∑
jk

BikBjk
∂

∂Sj
= q

α2γ2

(1 + α2)2
S2

[
S ×

[
S × ∂

∂S

]]
i

. (3.28)

which may be simplified by identifying the Néel time, which is the characteristic dif-

fusion time in the absence of a potential, a fact that can be seen simply by setting the

potential terms to 0 in the Langevin and Fokker-Planck equations.

1

τN
=

2qα2γ2

(1 + α2)2
(3.29)

The constant q is then found by identifying the stationary distribution in the absence of

a potential with the equilibrium distribution, P0(S) ∝ e−βH(S). this makes the Néel time

1

τN
=

2αγ

(1 + α2)

kBT

µs
. (3.30)

This equilibrium condition also relates the coefficient of the correlation function to the

diffusion coefficient. The final expression for the Fokker-Planck equation is then

∂P (S, t)

∂t
= − ∂

∂S

[
− γ

1 + α2
(S ×H) +α(S ×S ×H) +

1

2τN
(S ×S × ∂

∂S
)

]
P (S, t). (3.31)
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3.1.7 Fokker-Planck Equation: Functional Derivation

We note that we can also arrive at this expression via functional techniques. We may use

the LLG in the K ubo form, in which the thermal field appears only in the precessional

part and not in the damping. While the Langevin equations are different, the FPE is

identical [59], as we will see.

dS

dt
= − γ

(1 + α2)

[
S × (H + η)

]
−− γα

(1 + α2)

[
S × (S ×H)

]
. (3.32)

The probability distribution for the noise is

F
[
η(t)

]
=

1

Zη
exp

[
− 1

D

∫ ∞
−∞

dτη2(τ)
]
, (3.33)

where Zη =
∫
DηF is the noise partition function and Dη denotes the measure in the

functional integration over all realisations of the noise field η. The average of any functional

of the noise may be expressed by reference to the noise distribution in a similar manner

to the expected value of a continuous random variable as

〈A[η]〉η =

∫
DηA[η]F [η], (3.34)

Since δηi(s)
δηj(s)

= δijδ(t− s) we may trivially arrive at the correlation function for the noise.

If we define the distribution function for the spin with reference to an occupation function

as follows

f(S, t) = 〈π(S, t)〉η, (3.35)

where the occupation is

π(S, t) = δ(S −−→s ), (3.36)

hence we average this function over all possible realisations of the noise function. Since

π̇ = − ∂π
∂S · s we may then relate the expression for the distribution to the equation of

motion,

∂f

∂t
=

1

1 + α2

∂

∂S

[
(S ×H) + S × (S ×H)

]
P (S, t) + S × 〈η(t)π(t, [η])〉η. (3.37)

The standard Fokker-Planck expression is then recovered by calculating the expectation

as

〈η(t)π(t, [η])〉η = − D

1 + α2
S × ∂f

∂S
. (3.38)
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3.2 LANDAU-LIFSHITZ-MIYAZAKI-SEKI

The Landau-Lifshitz-Miyazaki-Seki equation is the correct implementation of coloured

noise into the magnetisation dynamics. In fact, it is the generalised master equation for

the magnetic system when the memory kernel is chosen as K(t) = e−t/τc [60]

3.2.1 Miyazaki-Seki Derivation

The original Miyazaki-Seki derivation assumes a single classical spin, which interacts with

some thermally fluctuating isotropic medium, in the presence of an externally applied

magnetic field, in this case assumed to lie along the z-axis.

The local magnetic field exerted upon the spin is initially taken to be

H = H0 + η (3.39)

where η is the local thermally fluctuating part of the field, and the field H0 consists of

both the external applied magnetic field and the mean local magnetic field induced by the

external field, H0 = (1+χ′)Hext, where the term proportional to χ′ is the field induced by

the average magnetisation of the surrounding medium. The fluctuating thermal magnetic

field is then assumed to have a single characteristic relaxation time,

d

dt
η = − 1

τc
η + R, (3.40)

with the white noise taken to have autocorrelation

〈Ri(t)Rj(s)〉 =
2

τc
χkBTδijδ(t− s), (3.41)

where i, j label the Cartesian basis coordinates. χ is the susceptibility of the local magnetic

field induced by the spin at the site. This expression for the thermal field has an Ornstein-

Uhlenbeck Fokker-Planck equation, since dη
dt = f(η) + g(η)R(t), where f(η) = − 1

τc
and

g(η) = 1. The corresponding Fokker-Planck equation is

∂P (η, t)

∂t
=

1

τc

[ ∂
∂η
· η
]
P (η, t) +

kBTχ

τc

[ ∂
∂η
· ∂
∂η

]
P (η, t). (3.42)

The FPE is subject to the stationarity condition that

Pst(η) = exp (− 1

2χkBT
η2), (3.43)

where the energy required to produced the magnetic field is η2

2χ .
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The above FPE for the Ornstein-Uhlenbeck field alone is then amended to account

for the spin-fie;d interaction by considering the energy between the spin and the magnetic

field. The energy induced by the field and the deviation of the spin from it’s equilibrium

value due to the field interaction is given by

U(S, η) =
1

2χ
η2 − η · S (3.44)

The time-evolution of the joint probability distribution is then taken to be

∂

∂t
P (S, η, t) = − ∂

∂S
· ṠP (S, η, t)−− ∂

∂η
· η̇P (S, η, t), (3.45)

where the probability flux in each variable is related to it’s time-evolution. The first term is

the flow due to the spin which is given simply by the precession around the corresponding

local magnetic field. The second term, which is the flow in the space of the magnetic field

has a contribution due to the potential energy interaction between the field and the spin

and a diffusional part corresponding to the driving random field.

η̇P (S, η, t) = −ξ ∂U
∂η

P (S, η, t)− kBTχ

τc

∂

∂η
P (S, η, t), (3.46)

where ξ is a mobility which is taken to be ξ = χ
τc

. As

∂U

∂η
=
η

χ
− S. (3.47)

then the Fokker-Planck equation for the combined spin-field system is given by

∂

∂t
P (S, η, t) =

∂

∂S
·

[
γS × (H + η)

]
P (S, η, t)

+
1

τc

∂

∂η
·

[
η − χS

]
P (S, η, t)

+
kBTχ

τc

∂

∂η
·

[
∂

∂η

]
P (S, η, t). (3.48)

Corresponding to this Fokker-Planck equation is a pair of Langevin equations in the

variables S and η, with the diffusion term occurring in the field part of the Langevin

equation giving rise to the Gaussian driving white noise for the pair of equations.

d

dt
S = S ×

(
H + η

)
, (3.49)

d

dt
η = − 1

τc
(η − χS) +R, (3.50)

with the fluctuation-dissipation of the field R given by Eqn. 3.41.
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3.2.2 Spin-only LLMS

To arrive at an expression for the LLMS in terms of the spin-only, we may solve for the

noise in a similar way as we did for the Ornstein-Uhlenbeck noise given above [60],

dη

dt
= − 1

τc

(
η(t)− χS(t)

)
+R, (3.51)

where we note that in comparison we have the additional term coupling to the spin. We

will write the noise autocorrelation in the form 〈R(t)R(t′)〉 = 2χkBTτc
δ(t − t′). and so

D = χkBT
µs

. We then have

η(t) =
χ

τc

∫ t

−∞
dt′K(t− t′)S(t′) +

√
2D

τc

∫ t

−∞
dt′K(t− t′)Γ(t), (3.52)

where we still have both a damping and a thermally-driven term. Following [24], we

integrate the first term by parts to arrive at

η(t) =

√
2D

τc

∫ t

−∞
dt′K(t− t′)Γ(t)− χ

∫ t

−∞
dt′K(t− t′)dS(t′)

dt′
, (3.53)

and by inserting this into the precessional equation for the spin, we get the spin-only form

for the LLMS equation

dS

dt
= γS(t)×

(
H + η̄ − χ

∫ t

−∞
dt′K(t− t′)dS(t′)

dt′

)
, (3.54)

where we now label the thermal fluctuations by η̄(t).

η̄(t) =

√
2D

τc

∫ t

−∞
dt′K(t− t′)Γ(t′). (3.55)

Proceeding in the same way as for the Ornstein-Uhlenbeck noise, the autocorrelation

for this thermal field is

〈η̄(t)η̄(t′)〉 = DK(t− t′) =
χkBT

µs
K(t− t′) =

β−1

µs
χK(t− t′), (3.56)

Recognising χK(t − t′) as the damping term, we see that this is a representation of the

Fluctuation-Dissipation theorem for the coloured noise, where the additional factor of µs

arises from the spin normalisation. Taking the zero correlation time limit,

lim
τc→0
〈η̄(t)η̄(t′)〉 = 2Dτcδ(t− t′). (3.57)

We note that the LLMS thus derived from the physical consideration of the spin-field

interaction is not immediately comparable with the typical expression for the Ornstein-

Uhlenbeck coloured noise, owing to the fact that the 1/τc term has been implicitly absorbed
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in the white noise term. If we rescale the driving noise such that Q(t) = τcR(t), we then

have a pair of Langevin equations

dS

dt
= γ(S × (H + η)), (3.58)

while the noise evolves as,

dη

dt
= − 1

τc

(
η(t)− χS(t) +Q

)
. (3.59)

The autocorrelation of the white noise is

〈Q(t)Q(t′)〉 =
2χτckBT

µs
δ(t− t′) = 2Dδ(t− t′), (3.60)

with D = χτckBT
µs

, while the limit of the autocorrelation of the thermal term in the spin-

only expression is now,

lim
τc→0
〈Q̄(t)Q̄(t′)〉 =

D

τc
δ(t− t′), (3.61)

which is directly comparable to the Ornstein-Uhlenbeck form of the coloured noise. The

expression of the LLMS in terms of the bath variable Q has the additional benefit that

[Q] = T and so we can interpret Q as the thermal magnetic field contribution to the

evolution of the bath field.

Finally, we may see that the limit of the LLMS equation for vanishing correlation time

is the LLG equation. For small correlation times we can then take the Taylor expansion

about the time t in t′, so that the damping term becomes,∫ t

−∞
K(t− t′)dS(t′)

dt′
dt′ =

[ ∫ t

−∞
K(t′)dt′

]dS(t)

dt
+ ... (3.62)

Hence the spin and memory kernel decouple in the small correlation time limit, and

the Langevin equation becomes

dS

dt
= γS(t)×

(
H + η̄ −

[
χ

∫ t

−∞
dt′K(t− t′)

]dS(t)

dt

)
, (3.63)

After performing the integration over t′, the damping is

χ

∫ t

−∞
dt′e−(t−t′)/τc = χτc. (3.64)

and by direct comparison of the damping terms in this expression and in Gilbert’s

equation we have the relationship of the phenomenological damping to the LLMS param-

eters α = χγτc. We note also that this expression can be seen if we identify the driving
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white noise in the bath field of the LLMS with the thermal magnetic fields of the LLG.

〈Q(t)Q(t′)〉 =
2χτckBT

µs
δ(t− t′)

=
2αkBT

γµs
δ(t− t′)

= 〈Hth(t)Hth(t′)〉

(3.65)

under the assumption that α = γχτc.

3.2.3 Mori-Embedding

Finally, we note that the above procedure of reducing the full LLMS equation to the spin-

only LLMS is a specific instance of the Mori-embedding procedure, for writing an effective

Langevin equation for a resolved set of variables from some full set of variables [61] [62].

If we define a general phase space X over a vector field f , which is partitioned into

two parts as

X = X1 ×X2 (3.66)

B(X) is the space of observables on the phase space, X, and φ : R → B(X) denotes a

path on the space of observables describing the time-evolution of an observable subject to

the condition that φ0 = φ(0). The time-derivative is defined as

φ̇ = Lφ (3.67)

where L is the Liouville operator associated to the vector space f . Typically, the Mori-

Zwanzig procedure may describe the reduction of the dynamics on some very large phase

space to a much smaller restricted space, but in the case of the LLMS we eliminate only

the magnetic field’s degrees of freedom. We define the projection operator on the space of

observables as

P : B(X)→ B(X) (3.68)

The projection operator has the property that for any element of the full space, ψ ∈ B(X),

the projection Pψ(x1, x2) depends only on the restricted space x1, and the standard projec-

tion operator property that P 2 = P . The Mori-Zwanzig procedure gives the corresponding

equations of motion for the projected observable on the restricted subspace. We define in

addition to the project on operator it’s complement Q = I − P , with P + Q = I. The

projected equation of motion is

Pφ̇ = PLφ (3.69)

= PLPφ+ PLQφ (3.70)
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with a similar expression for the complement

Qφ̇ = QLPφ+QLQφ (3.71)

If we write η = Qφ, this equation is

η̇ = QLη +QLPφ (3.72)

which has solution

η(t) = etQLη(t) +

∫ t

0
e(t−s)QLQLPφ(s)ds (3.73)

which is

Qφ(t) = etQLQφ(t) +

∫ t

0
e(t−s)QLQLPφ(s)ds (3.74)

Replacing for Qφ in the time evolution of our resolved variable, we then have,

Pφ̇(t) = PLPφ(t) + PL

[
etQLQφ(0)

∫ t

0
e(t−s)QLQLPφ(s)

]
(3.75)

= PLPφ(t) + PL

∫ t

0
e(t−s)QLQLPφ(s) + PLetQLQφ(0) (3.76)

Finally, if we write the projected operator as ξ = Pφ, the equation of motion for the

restricted dynamics becomes

ξ(t) = PLξ(t) + PL

∫ t

0
e(t−s)QLQLξ(s) + PLetQLQφ(0) (3.77)

with the general result that the reduced dynamics take the form of a Markovian, deter-

ministic part, a memory function over the previous dynamics of the resolved variable, and

the noise whose precise time-evolution depends on some unknown, typically microscopic

degrees of freedom.
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3.3 SIMULATIONS
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Figure 3.2: P (θ) vs θ, from numerical simulations at various σ, using Left: the LLG

Langevin equation and Right the LLMS Langevin equation with τcγHk = 2.

To verify both the physical validity of the Langevin models outlined in this chapter, and to

verify that our own implementation thereof is accurate and consistent with the analytical

theory, we perform some initial simulations for a superparamagnetic moment at different

temperatures. For a moment with only magnetic anisotropy and no external field, the
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Hamiltonian of the system is simply

E(θ) = −kusin2(θ) (3.78)

The correct probability distribution for the spin at equilibrium is then

P (θ) ∝ sin(θ)e−E(θ)/kBT = sin θ exp(
−kusin2θ

kBT
). (3.79)

where θ is the angle between the spin and the easy-axis and the factor of sin θ arises from

normalising the probability distribution on the sphere.

We perform numerical integration of the LLG and the LLMS employing the Heun

scheme. For the LLG, the thermal magnetic field at timestep i is generated from

Hth(ti) =

√
2αkBT

γµs∆t
Γi (3.80)

and similarly, the random field for the LLMS noise is

R(ti) =

√
2χkBT

τc∆t
Γi (3.81)

where the numbers Γi are drawn from a random Gaussian distribution using the Box-

Muller technique.

For the integration of the LLMS equation, it is often more numerically stable to inte-

grate the equation by re-expressing it in terms of a new noise variable, η̄ = η − χS

dS

dt
= γS× (H + η̂) (3.82)

dη̂

dt
= −χγS× (H + η̂)− 1

τc
η̂ + R (3.83)

To calculate the Boltzmann distribution ,we initialise the spin along the easy-axis

direction, then allow the spin to evolve for 108 steps after equilibriation and evaluate the

probability distribution by recording the number of steps the spin spends at each angle

to the easy-axis. We vary the value of the reduced barrier height parameter, σ = ku
kBT

,

by varying the temperature of the bath. The results of the calculations are presented in

Figure 3.2, showing good agreement between the Boltzmann distribution and the results

of the simulations. This confirms our implementation of the LLG algorithm and verifies

that the LLMS reproduces the correct behaviour at equilibrium, as anticipated from the

representation of the fluctuation-dissipation for the system, and as seen in previous work

using the equation [24].
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Chapter 4

Debye Susceptibility: The Effect

of Coloured Noise

4.1 INTRODUCTION

The magnetic susceptibility of a material, whether a fine magnetic particle or a more

complex array of magnetic moments such as a ferromagnet, is one of the most important

measures of its magnetic properties. The AC susceptibility is a complex-valued propor-

tionality function relating the induced AC magnetic moment exhibited by a material in

response to an applied AC magnetic field.

A chief advantage of AC susceptibility experiments is that they may yield information

regarding a material which the static DC susceptibility, that is, the susceptibility in a

constant applied field, does not, owing to the dynamical nature of the response. It may

give us insight into a variety of systems including superparamagnets as well as spin glasses,

superspin glasses, quasi 2D ferromagnets and various other systems. In particular, the

dynamical susceptibility has implications for the relaxational and absorption properties

of a system as well as the phase, where for a ferromagnetic system the susceptibility will

diverge near the Curie temperature of the phase transition. Importantly, it is also related

to the magnetic correlation function through the Fluctuation-Dissipation theorem. [63] [64]

In AC susceptibility experiments, an AC magnetic field is applied to the sample and

measurements are taken of the resulting magnetic moment. In general the response of the

magnetic moment may be linear or nonlinear, depending on the strength of the externally

applied field. We will generally be concerned with the linear response regime, for which
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the Fourier transform of the magnetisation in the presence of a weak applied field is

M(ω) =
dM

dH
·H0 sin(ωt) = χ(ω) ·H0 sin(ωt), (4.1)

Hence the susceptibility is the slope of the M(H) curve. By trivially rearranging Eq. 4.1,

we see that we may also think of it as the proportionality constant between the Fourier

expansion coefficient of the magnetisation M(ω) and the corresponding Fourier coefficient

of the applied magnetic field, H(ω) = H0 cos(ωt),

χ(ω) = M(ω)/H(ω). (4.2)

The static limit of this dynamical quantity, χ(0) = M(0)/H(0), is the DC magnetic

susceptibility.

In the context of superparamagnetism the dynamical susceptibility is particularly in-

teresting. In the noninteracting Néel theory, the blocking temperature is related to the

measurement time of the experiment, τm, via

TB =
∆E

ln(τ0/τm)kB
, (4.3)

where ∆E is the energy barrier and τ0 is the attempt frequency. The measurement time

is of the order of 1 − 100s for DC measurements, and is the inverse of the measurement

frequency for AC measurements. For superparamagnets, the AC susceptibility gives ex-

perimental insight into the behaviour for different values of the measurement time τm by

varying the measurement frequency.

In the following we shall investigate the complex susceptibility of superparamagnetic

particles using two models, via direct numerical simulation of the Landau-Lifshitz-Gilbert

Langevin equation, and the related phenomenological rate equation known as the discrete

orientation model which is the low temperature approximation to the full Langevin dynam-

ics, as well as the effect of correlations on the susceptibility spectrum in their respective

non-Markovian extensions.

4.1.1 Linear Response Theory

The response of a generic magnetic moment to an AC applied field falls into two regimes,

with the response being linear for smaller applied fields, while at larger fields it enters

the nonlinear regime. We are only interested in the smaller applied fields in this work, in

which case the response of the moment is amenable to treatment via the linear response
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theory [40] [65], according to which the relationship between the input to a system, f(t),

which may in general be some perturbing force, and the output x(t), is expressed not just

in terms of the current value of the applied force but as a weighted integral over previous

values of the input function

x(t) =

∫ t

−∞
dt′F (t− t′)h(t′) + . . . , (4.4)

where F (t − t′) is the linear response function. The linear response is simply the lowest-

order term in the full Volterra expansion for the response, and in the case of large applied

force these terms cannot be ignored as higher-order terms must be taken into account.

Supposing now that we have a single-domain superparamagnetic particle under the

influence of an oscillating external magnetic field, where at t = 0 the field is first applied

to the particle, inducing a magnetic moment, m(t). The response function of the moment

to the applied field is χ(t), a complex function corresponding to in and out of phase com-

ponents [66]. The magnetic field as a function of time is H(t), such that the infinitesimal

change in the spin over an infinitesimal time, δt,

δm(t) ∝ H(t′)δt′a(t− t′). (4.5)

If we assume the AC field is applied along the z-axis, such that H = (0, 0, Hz cos(ωt),

then the projection of the magnetic moment on to the magnetisation axis, mz, at a time

t is the integral over such infinitesimal changes to the moment in response to the external

field

mz(t) =

∫ t

0

dHz(t
′)

dt
a(t− t′)dt′, (4.6)

which may be evaluated using integration by parts

mz(t) = Hz(t
′)a(t− t′)

∣∣∣t
t′=0
−
∫ t

0
Hz(t

′)
d

dt′
a(t− t′)dt′, (4.7)

If we assume the condition that the magnetic field vanishes for t < 0 initially such that

H(0) = 0, and that there is no instantaneous response so that a(0) = 0, then the first

term disappears and the expression for the response in the linear regime becomes

mz(t) =

∫ t

0
Hz(t− t′)

da(t′)

dt′
dt′. (4.8)

Now assuming that the external magnetic field takes the form H(t) = Hzcos(ωt) such

that the x and y components of the field are 0. Then the z-component of the spin vs time

takes the form

mz =

∫ t

0
Hz cos(ω(t− t′))da(t′)

dt′
dt′. (4.9)
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which is

mz(t) = Hz cos(ωt)

∫ t

0
cos(ω(t′))

da(t′)

dt′
dt+Hz sin(ωt)

∫ t

0
sin(ω(t′))

da(t′)

dt′
dt, (4.10)

after a large amount of time has elapsed such that t′ →∞, the derivatives of the response

function are negligibly small and the expression for the spin becomes

mz(t) = Hzχ1(ω) cos(ωt) +Hzχ2(ω) sin(ωt), (4.11)

where the susceptibilities are defined as

χ1(ω) =

∫ ∞
0

da(t′)

dt′
cos(ωt′)dt′, (4.12)

χ2(ω) =

∫ ∞
0

da(t′)

dt′
sin(ωt′)dt′. (4.13)

The complex susceptibility is defined by the in and out of phase components such that

χ(ω) = χ1(ω) + iχ2(ω). (4.14)

Comparing this definition of the susceptibility to the expression for the magnetisation

vs time, we see that we can evaluate the susceptibility numerically for a specified fre-

quency by evaluating the component of the Fourier transform of the spin response of the

corresponding frequency.

4.1.2 Dispersion & Absorption

Using complex notation, the spin and field may be written as

H(t) = Re
[
H0e

iωt
]

m(t) = Re
[
m(ω)eiωt

]
. (4.15)

As we have seen, in the linear regime the frequency-dependent Fourier transform compo-

nent takes the form m(ω) = χ(ω)h(ω) = (χ1(ω) + iχ2(ω))h. The in and out of phase

components of the susceptibility in that they are closely related to the dispersion and

absorption of the magnetic system. Taking the time derivative of the spin [67]

dm

dt
= Re[iωm(ω)eiωt], (4.16)

and then expressing the spin as

m(t) = Re[(χ1(ωt)− iχ2(ωt)]H0e
iωt (4.17)

= Re[χ1(ωt)− iχ2]H0(cos(ωt) + i sin(ωt))

= H0(χ1(ω) cos(ωt) + χ2(ω) sin(ωt)).
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The total power absorbed by the system over a field cycle T = 2πn is

P =
1

T

∫ T

0
H(t)

dm

dt
dt (4.18)

=
1

T

∫ T

0

(H0e
iωt +H∗0e

−iωt

2

)( im(ω)eiωt − iωm∗(ω)e−iωt

2

)
=

1

4T
T [iωH∗0m(ω)− iωH0m

∗(ω)]

=
1

2
Re[−iωH0m

∗(ω)]

=
ω

2
Re[−iH0(χ1(ω) + χ2(ω))H∗0 ]

=
ω|h|2

2
Re(−iχ1(ω) + χ2(ω))

=
ω|h|2

2
χ2(ω).

Hence we see that the out of phase component is related to the total power absorbed

by the magnetic system due to interaction with the field. Similarly, a Debye relaxation

process with a single relaxation time is related to the in-phase susceptibility through the

Casimir-Du Pre equations [68],

χ(ω) =
χT − χS
1 + iωτ

+ χS , (4.19)

where χT,S are the isothermal and adiabatic susceptibilities, respectively, defined as

χS =
(∂M
∂H

)
S

= χ1(ω), (4.20)

χT =
(∂M
∂H

)
T

= χ1(0). (4.21)

4.1.3 Kramers-Kronig Relation

The Kramers-Kronig relation connects the real and the imaginary parts of any complex

function which is analytic in the upper-half of the complex plane. For the susceptibilities,

it takes the form [69]

χ1(ω)− χ(∞) =
1

π
P
∫ ∞
∞

χ2(ω′)

ω′ − ω
dω′, (4.22)

χ2(ω) = − 1

π
P
∫ ∞
∞

χ1(ω′)− χ∞
ω′ − ω

dω′. (4.23)

where P denotes the principal value of the integral, which gives us a physical relation-

ship between the absorption and dispersion. These relations imply that knowledge of

the dissipative part of the response completely specifies the reactive response and vice

versa. In general this is not sufficient for reconstructing physical response since it requires
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knowledge of the susceptibility over the entire range (−∞,∞), although for many systems

it is sufficient to assume that the spectrum is symmetric around ω = 0, such that the

positive-frequency components imply the values for negative frequencies.

4.1.4 Fluctuation-Dissipation Theorem

The Fluctuation-Dissipation theorem for an ensemble of spins is reflected in the relation-

ship between the spin-spin correlation function and the dissipative part of the response

function. The magnetic correlation function is the spatial and temporal Fourier transform

of the spin-spin autocorrelation, and is a quantity which is experimentally accessible via

neutron scattering experiments. For a general system it takes the form

Sij(q, ω) =
1

2π

∫
dte−iωt〈Si(−q, 0) · Sj(q, t)〉, (4.24)

where the spatial Fourier transform is defined as

Si(q, t) =
1√
N

∑
i

e−iq·rnSαn (t), (4.25)

where i, j = x, y, z label different Cartesian directions and the sum n is over discrete spin

sites. The magnetic correlation function may be simplified to

Sα(q, t) =
1√
2π

∑
i

∫
dte−iωte−iq·ri〈Sα0 (t) · Sβi (t)〉. (4.26)

The Fluctuation-Dissipation theorem is then seen in the relationship between the out

of phase susceptibility and the symmetric spin-spin correlation function,

Sij(q, ω) =
1

π

1

g2µ2
B

kBT

ω
χ̄ij(q, ω), (4.27)

where χ̄ is the symmetric tensor of absorption, which is defined in terms of the out-of-phase

susceptibility as

χ̄ij(q, ω) =
1

2

(
χij2 + χij2 (q, ω)

)
, (4.28)

The most important implication of the Fluctuation-Dissipation theorem in the context

of our numerical simulations is that it relates the average power absorbed by the spin

system in its interaction with the bath to the complex part of the susceptibility and to

the spin-spin correlation function as,

Pavg(q, ω) = ωχαα2 (q, ω) =
πg2µ2

B

kBT
ω2Sαα(q, ω). (4.29)
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Hence in general we anticipate that the out-of-phase susceptibility should be a positive

quantity for all frequencies whether we are implementing a Markovian or non-Markovian

model. While the non-Markovian extensions to the models considered may alter the

detailed dynamical and relaxational properties of the spin-bath system, we anticipate that

the thermodynamic equilibrium properties should be the same.

4.2 DISCRETE ORIENTATION APPROXIMATION

The discrete orientation approximation is an approximation to the full dynamics of super-

paramagnetic relaxation, valid in the case that the constraining energy barriers are large

in comparison to the thermal energy scale, σ > 1, but is less than some critical value such

that interwell transitions would be inhibited altogether. [70] In this case, the magnetisa-

tion M does not assume a continuous angular distribution but is instead restricted only

to certain stable orientations which correspond to local minima of the spin Hamiltonian.

In this case, we assume the system may be modelled according to a rate equation,

according to which the spin occupies the labelled energy minima with probability ni,

where each integer i corresponds to a given fixed orientation. Transitions between these

minima occur according to characteristic rates determined by the energy barriers of the

system. The rate of change of the population in a given orientation then assumes a rate

equation of the form,

ṅi =
∑
j 6=i

(κjini − κjinj), (4.30)

where κij is the transition probability or escape rate out of orientation i into the orien-

tation j, with individual well populations evolving at a rate that is proportional to the

population in each well and the fixed transition rate between the wells, which is deter-

mined thermodynamically. The dynamics is then specified by N such rate equations for

the N stable orientations. As the total probability of the spin occupying any well is always

subject to the normalisation condition
∑N

i=0 ni = 1, the sum of the individual rates must

then balance out,
∑N

i=0 ṅi = 0, hence there is a redundancy in the description and we

need only consider N − 1 rate equations as the time-evolution of the other populations

will always imply the Nth.

For a uniaxial single-domain particle with magnetic field applied parallel to its easy

axis, the free energy, [71], is

E/KV = 1− 2hx− x2, (4.31)
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with K the anisotropy constant, V the particle volume, and the reduced field h = H/HK

where H = H(t) is the time dependent applied magnetic field, and HK = 2K/Ms is

the anisotropy field. Further, Ms is the saturation magnetization of the particle, and

x = cosϑ, where ϑ is the angle spanned by the magnetization vector and the applied field.

At |h| < 1 the system has two local minima located at x = ±1, and thermally activated

transitions between these two minima take place with rates κ12 = κ1→2 and κ21 = κ2→1.

Neglecting all intrawell processes [72–74], the thermally activated dynamics of the system

are then given by the discrete orientation rate equation. [71, 75] for the occupation prob-

abilities n1 and n2, Hence, there are only two stable orientations corresponding to the

easy-axis directions. The rate equations are then

ṅi = −κ12n1 + κ21n2 ṅ2 = κ12n1 − κ21n2. (4.32)

Utllising the probability normalisation, n2 = 1− n1, they become

ṅ1 = −(κ21 + κ21)n1 + κ21 ṅ2 = −(κ21 + κ21)n2 + κ12. (4.33)

The total magnetisation, given as the difference in the population of the two wells,

follows from the individual rate equations, and in fact completely specifies the behaviour

as only one rate equation is necessary for such a system. The magnetisation evolves as

dm

dt
=
d(n1 − n2)

dt
= −(κ12 + κ21)m(t) + (κ21 − κ12). (4.34)

Then the population of both wells and the overall magnetisation m = n1 − n2, approach

their equilibrium value with a simple exponential rate, e−(κ12+κ21)t = e−Γt, with the rever-

sal characterised by the escape frequency Γ = κ12 +κ21, implying a reversal time τ = Γ−1.

The model is also applicable to the case of a transverse applied field, where the escape

time and rate are related as τ = (2Γ)−1, and for more complex potentials, such as biaxial

anisotropy with two saddle points [70].

For the uniaxial spin energy the transition rates are implied by the energetics at the well

which lie parallel and anti-parallel to the applied field, thus κ12 = f0 exp[−σ(1 +h)2], and

κ21 = f0 exp[−σ(1− h)2] where f0 is the prefactor, usually taken to be a constant [70,76]

and σ = KV/kBT where kB is the Boltzmann constant and T the ambient temperature.

4.2.1 Debye Formulas

The Debye formulas determine the initial AC response of a general two level, equilibrium

system to an applied AC perturbation. The general theory is immediately applicable to
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the dynamic magnetic susceptibility [77] [78]. The Debye formulas may be derived from

the Markovian master equation, where we make the assumption of an oscillatory AC-field

applied along the z-axis, of the form

h(t) = h0 cosωt, (4.35)

where 0 < h0 � 1 is a small field amplitude, and ω is the frequency of oscillation of

the field. This field enters the master equation via the transition rates, κij , with the

corresponding susceptibility being derived by solving the magnetisation as a function of

time. We first expand the expressions for the individual transition rates to first order in

h0,

κ12 = f0 exp [−σ(1 + h)2] = f0 exp [−σ(1 + 2h0 cos(ωt))] (4.36)

κ21 = f0 exp [−σ(1− h)2] = f0 exp [−σ(1− 2h0 cos(ωt))].

We then calculate the relevant rates occurring in Eq. 4.57 for the total magnetisation,

κ12 + κ21 = f0 exp [−σ(1 + 2h0cos(ωt))] + f0 exp [−σ(1− 2h0cos(ωt))] (4.37)

= f0e
−σ
[

exp (2h0 cos(ωt)) + exp (−2h0 cos(ωt))
]

= f0e
−σ
[
1 + 2h0 cos(ωt) + 1− 2h0 cos(ωt)

]
= 2f0e

−σ,

where we have expanded the exponential factors to the first order in h0, and we will

henceforth define Γ = 2f0e
−σ.

Similarly, the difference of the rates found in Eq. 4.57 is evaluated as

κ12 + κ21 = f0 exp [−σ(1 + 2h0cos(ωt))]− f0 exp [−σ(1− 2h0cos(ωt))] (4.38)

= f0e
−σ
[

exp (2h0 cos(ωt))− exp (−2h0 cos(ωt))
]

= f0e
−σ
[
1 + 2h0 cos(ωt)− 1 + 2h0 cos(ωt)

]
= 2Γh0 cos(ωt).

The magnetisation in the presence of the oscillating field then evolves according to

dm

dt
= −Γm(t) + 2Γh0 cos(ωt). (4.39)

Hence we have a simple first-order differential equation for the total magnetisation. This

is solved by the choice of integrating factor, e−Γt, yielding for the formal solution of

magnetisation vs time,

m(t) =
2h0Γ2

Γ2 + ω2
cos(ωt) +

2h0Γω

Γ2 + ω2
sin(ω) + Ce−Γt +O(h2

0), (4.40)
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and as we are interested in the long-time behaviour, we ignore the exponential term and

the time-evolution of the magnetisation in the steady state is

m(t) = h0

[
2q

Γ2

ω2 + Γ2
cos(ωt) + 2q

ωΓ

ω2 + Γ2
sin(ωt)

]
= h0(χ1 cosωt+ χ2 sinωt) +O(h2

0),

(4.41)

where we identify the in-phase and out-of-phase components of the magnetic response

with their corresponding Debye susceptibilities,

χ1(ω) = 2σ
Γ2

ω2 + Γ2
(4.42)

χ2(ω) = 2σ
ωΓ

ω2 + Γ2
(4.43)

It should be noted that we use only O(h0) terms of the relaxation rates whose precise

form is thus irrelevant. For this reason Debye susceptibilities, Eq. 4.42 and Eq. 4.43, are

quite general and hold also for other physical quantities, such as electric susceptibility [77].

The Debye formulas are thus derived from the assumption of a Markovian master

equation. It is interesting, then, to consider the effects of the non-Markovian extension of

such rate equations on these well-understood Debye formulas. This provides an important

generalization of the Debye formulas and a point of comparison with the non-Markovian

LLMS model.

4.3 NUMERICAL CALCULATION OF AC SUSCEPTIBILITY

In order to calculate the susceptibility from numerical Langevin equations we could,

naively, thermalise the spins in zero magnetic field before evolving them in the pres-

ence of a magnetic field with some arbitrary complicated time profile, and calculate the

susceptibility as the ratio of the Fourier transforms of the field and spin according to Eq.

4.2, However, such a problem is ill-posed problem in the Hadamard sense, which means

that we need data with extremely small statistical error in order to obtain dependable

information on the spectrum of the susceptibility, χ(ω).

However, it is both computationally cheaper and more convenient to calculate the

response on a component by component basis for an applied field with a single well-defined

frequency of oscillation,

Hz = h0 cos(ωt). (4.44)

The system is first initialised along the positive z-axis, Sz = 1, and is simulated until

equilibrium. a magnetic field with a magnitude that oscillates at a single well-defined
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frequency is then applied to the equilibriated system, and the real and complex compo-

nents of the susceptibility are calculated via the Sine and Cosine Fourier transform of the

magnetic response, respectively,

χ1(ω) =
1

h0

1

N

N∑
i=1

〈Sz〉 cos(ωt), (4.45)

χ2(ω) =
1

h0

1

N

N∑
i=1

〈Sz〉 sin(ωt), (4.46)

where N is the total number of steps taken in calculating the susceptibility, and 〈Sz〉 is the

average z-component of the magnetisation for the ensemble of spins. It is important that

the total number of steps is taken such that the spin is subjected to an integer number of

field cycles, N = 2πNc/ω∆t, and we generally use a value of N ≥ 1000.

To ensure that the response is in the linear regime the calculations are repeated for

various values of the field amplitude, h0, and when the obtained values do not depend

on the amplitude, we are in the linear regime. We choose values of h0 which are as large

as possible while still remaining within the linear response regime, in order to minimise

statistical errors. The simulation is then repeated sufficiently many times so as to resolve

all of the salient features of the magnetic response.

4.3.1 Statistical Errors

When computing the dynamic response, statistical errors occur in the calculated quantities

as we are averaging stochastic data for a finite number of isolated spins at a finite num-

ber of time intervals, resulting in a set of statistically independent measurements of the

computation, Nm, calculated over a cycle of the oscillating field. We may see the correct

way to reduce such systematic errors by following ref [79]. Generically such measurements

over a single field cycle can be expressed as

Qn =

∫
n
dtf [m1(t), ...,mN (t)]g(t), (4.47)

where N is the number of spins being simulated, and g(t) is a sinusoidal function of time.

In the case that g is taken as the cosine or sine of the oscillating field amplitude, we have

the sine and cosine Fourier transform giving rise to the in and out of phase components

of the susceptibility. The exact result is then the average of the Nm outcomes,

q =
1

Nm

Nm∑
n=1

Qn. (4.48)
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To increase the accuracy of such ensemble averages we might initially consider to

increase the number of spins in the ensemble or increase the number of field oscillations

over which the average is computed. The lth order cumulants of the quantities q and Q

have the relationship

κl(q) = N−(l−1)
m κl(Q). (4.49)

For large numbers of measurements the q distribution becomes Gaussian to a good ap-

proximation due to the central limit theorem. Hence the result of a measurement lies

in the interval (q +
√
κ2(q), q −

√
κ2(q)), and the statistical error of the measurement is

2
√
κ2(q). The relative fluctuation is then simply given as

δq

q
=

√
κ2(q)

q
=

1√
Nm

δQ

Q
=

1√
Nm

√
κ2(Q)

Q
. (4.50)

The above considerations imply that to increase accuracy and decrease the relative

fluctuation δq
q , it is not efficient to simply increase the number of measurements either by

increasing the total time of the computation or the number of spins in the simulation, as

in both cases the error only decreases by a factor of
√
Nm.

The expression for the field-cycle averaged values is similar to the calculation of thermal

equilibrium quantities only over some arbitrary timescale rather than one which is related

to the cycles of the external field. For such an equilibrium system we have the relationship

∂

∂H
〈mz〉 =

1

kBT
[〈m2

z〉 − 〈mz〉2], (4.51)

which holds regardless of the magnitude of the external field H. The total magnetization

in the field direction is then the time-average of the moment per spin,

Mz,n =

∫
n
dt
mz(t)

tmN
, (4.52)

then the statistical error in the spin magnitude calculation is

δMz

Mz
=

1√
tmN

√
kBT∂Mz/∂H

Mz
(4.53)

which again implies that enlarging either the time or the number of spins is inefficient

to increase accuracy. However, the quantity
√
kBT∂Mz/∂H and hence the statistical

error decreases with increasing H for very general functional dependence of the spin on

the applied field. Hence, to increase accuracy of calculations of the susceptibility, we

will apply the largest probing field possible without departing from the linear response

regime such that m ∝ χH. This procedure optimizes calculations by reducing the quantity

δM/M .
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Figure 4.1: Static susceptibility vs reduced barrier height as predicted by the Debye

equations, and from numerical simulations for a Co nanoparticle utilising the Landau-

Lifshitz-Gilbert model.

4.3.2 Longitudinal Response vs Temperature

To verify that our procedure for calculating the susceptibilities is adequate, we first cal-

culate the temperature-dependence of the susceptibility of a superparamagnetic particle

using the LLG-Langevin equation, allowing us to compare the predictions of the discrete

orientation model to the numerical evaluation of the susceptibilities.

We consider an ensemble of non-interacting nanoparticles represented as single-domain

magnetic moments, with material parameters chosen so as to be comparable to a Co

nanoparticle. The external constant bias field is taken to be 0 for all spins in the sample,

while the anisotropy axes are assumed to be parallel for all spins in the ensemble, with the

oscillating field again taken to be parallel to the anisotropy axis, allowing us to investigate

the linear parallel susceptibility of the spins.

The material parameters are taken such that for a particle with a volume of V =

8 × 10−24m3 and anisotropy energy density Ke = 4.2 × 105J/m, the anisotropy is then

ku = 3.36× 10−18J with a magnetic moment of µs = 1.12× 10−17J/T . The temperature

and damping parameters are taken such that σ = 2 and α = 0.5. An ensemble of 10, 000

spins were used for the simulations.

Figure 4.1 depicts the variation of the static (χ1(0) = χ0) component of the Debye

susceptibility, and the static magnetic susceptibility for the Co nanoparticle calculated

from numerical simulations of the LLG equation, for values of the reduced barrier height
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Figure 4.2: χ1 vs σ from Top: LLG simulations for a Co nanoparticle and Bottom:

Debye susceptibility from the analytical master equation.

σ > 1, such that the spin energy is confined to stable easy-axis directions of the anisotropy,

allowing direct comparison of the models. The Debye equations predict a simple linear

dependence χ0 = 2σ of the static susceptibility. For σ < 4 the numerical simulations

reproduce such a dependence. At higher σ, transitions between the stable orientations are

inhibited altogether, such that the spin is restricted to a single direction, giving a constant

magnetisation and hence χ0 for increasing σ.

In Figure 4.2, we compare the barrier height dependence of the in-phase component

of the response. The numerical simulations are compared to Debye susceptibilities for a

system with a transition rate of Γ = 1s−1. The response breaks down into two regimes,

corresponding to T > TB and T < TB. At low temperatures, the longitudinal relaxation

time, τ||, is much larger than the dynamical measurement time, which is simply related

to the field frequency, τm = 2π/ω. Hence, overbarrier transitions between the wells occur
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with vanishingly small probability, even for a large number of field cycles, and the response

at low T is then almost entirely due to rotation of the moments near the bottom of the

well. The intrawell modes are very fast, so that the spin adjusts almost instantaneously

to the field, leading to a small and mostly in-phase response to the field.
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Figure 4.3: χ2 vs σ from Top: LLG simulations for a Co nanoparticle and Bottom:

Debye susceptibility from the analytical master equation.

As T increases, the spins start to be able to overcome the barrier with some small

probability over the course of a number of field cycles at an ω-dependent value of the

temperature. This leads to a sharp increase in the response, however the thermally-

activated response is not very large at these temperatures, which implies a larger lag

between the spin and the field and hence much of the response is out of phase in this

region. As T continues to increase the overbarrier rotations occur more frequently, and

the in-phase response increases dramatically. This continues until the overbarrier process

occurs at a much higher frequency than the frequency of the oscillating field, resulting in a
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frequency-dependent peak in the response which corresponds to the blocking temperature,

TB, for the particles. In the limit of very high temperatures, the response tends to 0 as

the thermal dynamics start to dominate over the response to the field.

We can see that both models reproduce this qualitative behaviour, with the character-

istic peak of the in-phase response becoming larger and shifting to lower temperatures as

the frequency of the field decreases, and both models predicting that the in-phase response

converges and diminishes in the limit of higher temperatures. The qualitative dependence

for the out of phase component, χ2(ω), shown in Figure 4.3 is also similar with the larger

out-of-phase response occurring at intermediate temperatures. Overall, it is evident that

the Debye model is readily comparable to the simulations of the stochastic LLG equation.

4.4 AC SUSCEPTIBILITY FOR NON-MARKOVIAN SYSTEMS

Having considered the response in the Markovian case for both the full Langevin dynamics

and the discrete orientation approximation, we may now extend both models by allowing

the dynamics to depend not just on the present state of the system but also on its recent

history.

4.4.1 Generalised Master Equation

The standard extension of the Master Equation formalism given in Equation 4.30, to

incorporate non-Markovian behaviour is the Generalized Master Equation, under which

the simple transition rates are promoted to integro-differential expressions over recent well

populations, using a set of memory kernels,

Ṗi(t) = AijPj → Ṗ(t) =

∫ t

0
M(t− s)P(s), (4.54)

where P is a vector of state populations, A is a matrix of their transition rates, κij , and

M(t) is an i × j matrix of memory kernel functions. Rate equations of this form have

been widely applied in both the context of open quantum systems, where the vector P

is composed of probability amplitudes, and in classical statistical mechanical problems,

such as transport and relaxation phenomena, in superradiance and laser processes [80],

and in the context of continuous-time random walks. The non-Markovian extension to the

discrete orientation model is then most generally expressed as

ṅi =
[∑
j 6=i

∫ ∞
0

Mij(t− s)ni(s)ds−
∫ ∞

0
Mji(t− s)nj(s)ds

]
. (4.55)
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We will make the simplifying assumption that the the form of the memory is generic

between wells, with the individual rates again determined by the energetics of the system.

The set of memory kernels are then drastically simplified such that

Mij(t− s) = κij(s)K(t− s), (4.56)

where now we need only consider the single memory kernel K(t). In the context of the

discrete orientation model,

dm

dt
= −

∫ t

0
K(t− s)[κ12(s) + κ21(s)]m(s)ds+

∫ t

0
K(t− s)[κ12(s)− κ21(s)]ds, (4.57)

where we now have an integro-differential expression for the rate of change of the mag-

netisation.

We will now assume that the memory kernel K(t) is completely specified by a single

characteristic correlation time, and has the exponential form [60,81]

K(t) =
e−t/Θ

Θ
→ δ(t) as Θ→ 0, (4.58)

where Θ is the memory time. We stress here that this time is not necessarily the same as

the quantity that appears in the coloured noise expression.

We may now utilise the Generalized Master Equation approach to evaluate the Debye

susceptibilities for such a damped system by applying the oscillatory field. The transition

rates, to first order in h0, again take the form of Eqs 4.38 and 4.39, and the time-evolution

of the magnetisation is now composed of two convolution integrals

dm

dt
= −Γ

∫ t

0
K(t− s)m(s)ds+ 2Γh0

∫ t

0
K(t− s) cos(ωs)ds, (4.59)

which is readily solved by first taking the Laplace transform.

rm(r)−m0 = −ΓK̄(r)m(r) + 2Γh0K̄(r) ¯cos(ωt), (4.60)

where have made use of the convolution theorem, r is the frequency-space variable and the

notation f̄ = L[f(t)](r) denotes the application of the Laplace transform to the function

f(t). For simplicity we will assume the initial magnetisation m0 = 0, as we are interested in

the long-time, steady-state result, which is in fact independent of the initial magnetisation.

Applying the Laplace transform to the constituent functions,

L[K(t)](r) =
1

1 + rΘ
L[cos(ωt)](r) =

r

r2 + ω2
. (4.61)

We arrive at the expression for the Laplace transform of the magnetisation,
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Figure 4.4: The in-phase component of the AC susceptibility versus the frequency ω of

the probing field. The rate is assumed to be Γ = 1 Hz. For non-zero correlation time,

there is a frequency dependent phase transition to diamagnetic behaviour.

m(r) =
[ 2Γh0

Γ + r + r2Θ

][ r

r2 + ω2

]
. (4.62)

By taking the inverse Laplace transform we arrive at the long time, steady state solu-

tion in which the exponentially decaying components of the response tend to zero, which

has the form

m(t) =
Γ−Θω2

Γ2 − 2ΓΘω2 + Θ2ω4 + ω2
cos(ωt) +

Γω

Γ2 − 2ΓΘω2 + Θ2ω4 + ω2
sin(ωt), (4.63)

which is similar to the ordinary master equation, with susceptibilities modified due to

the non-zero correlation time of the states. The in-phase and out-of-phase susceptibilities

become,

χ1(ω) = 8σñ↑↑
Γ(Γ− ω2Θ)

ω2 + (Γ− ω2Θ)2
, (4.64)

χ2(ω) = 8σñ↑↑
ωΓ

ω2 + (Γ− ω2Θ)2
. (4.65)

The in-phase susceptibility, χ1(ω), is plotted in Fig. 4.4. The most salient feature of the

in-phase component is the fact that it becomes negative at sufficiently large frequencies

for any Θ > 0, passes through a local minimum, and only then rapidly approaches its
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Figure 4.5: The out-of-phase components of the ac susceptibility, χ2, versus the frequency

ω of the probing field. The rate Γ = 1 Hz

asymptotic zero value from below. This means that the particle is paramagnetic at low

frequencies, but diamagnetic at high frequencies. In the diamagnetic phase of the response

the particle is apparently slowed down by the medium in which it finds itself, and cannot

follow the rapidly oscillating field. One can therefore expect to find the frequency induced

diamagnetism in particles suspended in viscous fluids. However, the effect has previously

been observed experimentally in single crystals by Rhyee et al. [82] Theoretically the effect

can be so strong that it would render the magnetic permeability negative [83].

The out-of-phase component, χ2(ω), is shown in Figure 4.5. It is interesting in that its

peak grows significantly higher and narrower with increasing memory time, which implies

that memory enhances energy losses and heating of the sample in a narrow frequency

interval. This behavior is required from particles used to treat cancer by magnetic particle

hyperthermia [84].

4.5 AC SUSCEPTIBILITY IN THE LLMS

The LLMS pair of Langevin equations provide an alternative way to introduce memory

into our model of superparamagnetic spins via the frequency-dependent damping and noise
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spectrum. We evaluate the in and out of phase components using the same method as

in the LLG. In these simulations we choose the spin-bath coupling χ = α/τcγ, such that

α = 0.5 in the corresponding uncorrelated system where τ = τcγHk << 1.
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Figure 4.6: The variation of the real part of the susceptibility with the frequency, nor-

malised by the Larmor frequency, (ω′ = ω/γHk) for various values of τ = (γHk)
−1Θ.

Figure 4.6 depicts the variation of the in-phase component of the magnetic response

vs frequency calculated from LLMS simulations for various values of the correlation time.

The LLG and LLMS simulations converge on the same value of χ1(0) = χ0 for the static

susceptibility as frequency decreases. For low frequencies there is only a weak dependence

of χ1 on τ . However,for intermediate frequencies there is a monotonic decrease of χ1 with

τ . The effect of the correlation time is to decrease the in-phase response of the spin across

the range of frequencies for ω′ < 1. This is a qualitatively similar behaviour to the change

in the response in the non-Markovian extension of the master equation, where we again

attribute the decrease in the response to the delay of the spin response to the oscillation

of the magnetic field magnitude.

Figure 4.7 shows the variation of χ1 at higher values of ω′ > 1, for values of the cor-

relation time τ = 0.1, 0.2, 0.3. This shows that the susceptibility in the LLMS becomes

negative for a similar range of frequencies to the analytical prediction of the master equa-
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Figure 4.7: The variation of the real part of the susceptibility with the frequency, nor-

malised by the Larmor frequency, (ω′ = ω/γHk) for various values of τ = (γHk)
−1Θ, in

the vicinity of the diamagnetic phase transition, for τ = 0.1, 0.2, 0.3

tion and confirming that the negative susceptibility arises from a phase change induced by

the slowing down of the response of the particle by the medium. For both models we note

that with increasing correlation time, the transition to diamagnetic behaviour occurs at

lower frequencies. In both cases, at low frequencies the timescale of the field oscillation is

much longer than the correlation time, hence the field is less able to ”resolve” the effects

of the memory kernel.

We also note a qualitative similarity in the cross-over in the variation of χ1 with

frequency, in agreement with the analytical predictions, an indication that the different

models imply similar physics. Figure 4.8 shows the variation of the susceptibility for higher

values of the correlation time.

Finally, Figure 4.9, shows the variation of χ2 with frequency. The behaviour is similar

to the master equation for τ < 1, with the magnitude of the peak increasing implying

increased heating of the sample. At higher correlation times, the magnitude of the peak

decreases implying that it then becomes more difficult to heat the sample, while still

shifting the peak to lower frequencies. We note that as we increase the magnitude of

the correlation time, the transition rate between the wells, Γ from the LLMS simulations
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Figure 4.8: The variation of the real part of the susceptibility with the frequency, nor-

malised by the Larmor frequency, ω′ = ω/γHk) for various values of τ = (γHk)
−1Θ, in

the vicinity of the diamagnetic phase transition, for τ = 1, 2, 5.

tends to decrease, while for the master equation it is explicitly held constant. We attribute

the difference between the two models to this fact, in that at long correlation times the

decreasing escape rate will cause the peak to decrease more than the increasing correlations

causes it to increase.

4.5.1 Longitudinal Susceptibility vs. Temperature

As an additional point of comparison between the LLMS and the generalised master equa-

tion, we present the variation of the real part of the susceptibility with the inverse barrier

parameter, σ, in Figure 4.10. This gives us additional physical intuition regarding the dia-

magnetic susceptibility, where we see that both models predict similar high temperature

behaviour. The picture for σ < 1 is then very similar to the Markovian case, where the

spin is easily able to follow the direction of the oscillating field, and the response decreases

as the increasing effect of temperature causes the spin to randomise. There is again a

peak in the susceptibility, and if we interpret this as the blocking temperature we can see

that both models predict an increase in the blocking temperature as the correlation time
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Figure 4.9: The variation of the imaginary part of the susceptibility with the frequency,

normalised by the Larmor frequency, ω′ = ω/γHk) for various values of τ = (γHk)
−1Θ.

increases.

Finally, an interesting point to note is that, for Θ > Γ/4 in the master equation, the

susceptibility may be negative across the entire temperature range, as evidenced by the

Θ = 0.5 curve in Figure 4.10. We do not see such behaviour in the LLMS. We again

attribute this distinction to the fact that the escape rate decreases for any fixed χ in the

LLMS, a property which we generally expect rate processes to adhere to for increasing

correlation time, [85], while the fixed master equation rate allows the correlation time to

exceed the escape time.

4.5.2 Critical Behaviour

We finally consider the critical frequency for the transition to diamagnetic behaviour. From

Equ. 4.64 the transition to diamagnetic behavior occurs at the frequency ω2
c = Γ/Θ ∝ τ−1

and so we estimate that

Θ = f0 exp−(KV/kT )/ω2
c , (4.66)

relating the measurable critical frequency to the correlation time Θ. In Figure 5.13 we

show the correlation time dependence as exhibited by the LLMS and see that the low-τ
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Figure 4.10: The in-phase susceptibility, χ1 vs σ for ω′ = 1, Left: from LLMS simulations

and Right: from the generalised master equation.

behaviour coincides qualitatively with the master equation. Overall, the behavior pre-

dicted by the LLMS approach shows non-monotonic behavior with an increase for large

Θ. We anticipate that this departure is again due to the assumption of a fixed transition

rate, Γ, between the wells in the master equation expression.

4.5.3 Interacting Media

So far we have only considered noninteracting ensembles of superparamagnetic spins. It is

possible to consider an exactly solvable model system of two identical superparamagnetic

particles with parallel easy axes [71,86]. The particles interact with each other via dipolar

coupling, giving rise to two metastable magnetically ordered states and a magnetically

neutral state, ↑↑, ↑↓ + ↓↑, and ↓↓. The mutual coupling is determined by the bond angle,

β, between the easy axes and is ferromagnetic if β is zero, β = 0, and antiferromagetic if

β = π/2. The thermally driven dynamics of the particle pair, at the small applied fields of

interest to the linear response regime, are described by the three level master equation [71]

ṅ1 = −(2κ12 + κ21)n1 − κ21n3 + κ21, (4.67)

ṅ3 = −κ23n1 − (2κ32 + κ23)n3 + κ23, (4.68)

where again we made use of the probability conservation n1 + n2 + n3 = 1. The two

particle occupation probabilities are n1 = n↑↑, n2 = n↑↓+↓↑, and n3 = n↓↓. n2 corre-

sponds to the demagnetized state, and the reduced magnetization is again the difference

of the oppositely-oriented magnetised states, m = 2(n1 − n3). The rates of the thermally
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activated transitions between the individual minima, κij = κi→j , are given by the formula

κij = f0e
−σQij , (4.69)

where the transition amplitudes are again derived from the energetics of the system.

Q12 = h2
c + ερ+ 2h(2− hc), (4.70)

Q21 = h2
c − 2hhc, (4.71)

Q23 = h2
c + 2hhc, (4.72)

Q32 = h2
c + ερ− 2h(2− hc). (4.73)

Where we have the dipolar strength, ρ which varies with the distance between the pair

of interacting spins as ρ = M2
s V/2KR

3, where R is the distance between the particles,

the critical applied field hc which and a normalisation factor ε. For ferromagnetic spins

the bond angle β = 0, then the critical field h2
c = (1 − ρ)(1 − 3ρ) and ε = 8, while for

antiferromagnetic coupling, β = π/2 we have h2
c = (1− ρ)(1 + 3ρ) and ε = −4.
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The rate of change of the magnetisation is then

dm

dt
=

d

dt
(n1 − n3) = −(2κ12 + κ21 − κ23)n1 − (κ21 − 2κ32 + κ23)n3 + (κ21 − κ23) (4.74)

The individual rates occurring in Eq. 4.74 are then explicitly solved to first order in the

applied field, h0, as

κ12 = f0e
−σ(h2

c+ερ)
(

1− 2h0 cos(ωt)(2− hc)
)
, (4.75)

κ21 = f0e
−σh2

c

(
1 + 2qhch0 cos(ωt)

)
(4.76)

κ23 = f0e
−σh2

c

(
1− 2qhch0 cos(ωt)

)
, (4.77)

κ32 = f0e
−σ(h2

c+ερ)
(

1 + 2h0 cos(ωt)(2− hc)
)
. (4.78)

Upon inserting the rates into the time derivative of the magnetisation, Eq. 4.74 and

introducing the rate now as Γ = 2f0e
−σ(h2

c+ερ) , may be reduced to an expression in

terms of the overall magnetisation due to the fact that the expansion is first order in the

transition rates, as

dm

dt
= −Γm(t) + 2Γh0 cos(ωt), (4.79)

which has the same form as the problem in the absence of interactions and hence implies

the same magnetisation and susceptibilities, only with the rate Γ modified due to the

interaction of the spin pair.

Introducing now memory into Eq. 4.74 by again promoting the transition amplitudes

to memory kernels, the individual equations become,

ṅ1 = −(2κ12 + κ21)n1 − κ21n3 + κ21 (4.80)

→ −
∫ t

0
K(t− s)[(2κ12(s) + κ21(s))]n1(s)

−
∫ t

0
K(t− s)κ21(s)n3(s)

+

∫ t

0
K(t− s)κ21(s),

ṅ3 = −κ23n1 − (2κ32 + κ23)n3 + κ23 (4.81)

→ −
∫ t

0
K(t− s)κ23(s)n1(s)

−
∫ t

0
K(t− s)[(2κ32(s) + κ23(s))]n3(s)

+

∫ t

0
K(t− s)κ23(s),
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and implying magnetisation evolves as

ṁ = −
∫ t

0
K(t− s)

[
2κ12(s) + κ21(s)− κ23(s)

]
n1(s)ds (4.82)

−
∫ t

0
K(t− s)

[
κ21(s)− 2κ32(s)− κ23(s)

]
n3(s)ds

+

∫ t

0
K(t− s)

[
κ21(s)− κ23(s)

]
ds

= −Γ

∫ t

0
K(t− s)m(s)ds+ 2Γh0

∫ t

0
K(t− s) cos(ωs)ds,

which is again identical to the noninteracting case with the modified Γ, a result which also

follows from the uncorrelated form as the memory kernel simply multiplies all of the rates

occurring in the rate equations for both the individual wells and the overall magnetisation.

We then obtain again the formulas (9) and (10), but with Γ = 2f0e
−σ(h2

c+ερ). The

prefactor is however altered from simply 2q to become

ñ↑↑ = lim
t→∞

n1(t) =
1

2(1 + e−ερ)
(4.83)

in zero field. The formal equivalence results for interacting and noninteracting spins follows

from the fact that in the first order of h0 Eq. (11) and (12) yield a single rate equation for

the reduced magnetization m. This property follows from the symmetry of the interacting

system, and is preserved also if a mean field theory is employed. However, it could not

hold for more complex, strongly coupled particle assemblies whose response is thus not of

the Debye type [87].

We may note that ferromagnetic coupling with ε > 0 reduces the rate Γ and facilitates

the onset of the diamagnetic state, while antiferromagnetic coupling, which favors the

creation of magnetically neutral demagnetized states, has the opposite effect.

In Figure 4.12 we depict the susceptibility found from numerical simulation of the

Miyazaki-Seki equation with pairs of weakly interacting ferromagnetically and antiferro-

magnetically coupled spins, unnormalised in this case by the static susceptibility χ0 so

as to allow ready comparison between the magnitude of the effects. The simulations are

performed by evolving pairs of spins with an explicit ferromagnetic coupling term in the

spin Hamiltonian given by

HJ = −J(Si · Sj). (4.84)

As in the noninteracting case the ensemble of particles are brought into equilibrium,

and the susceptibility is then evaluated in the usual fashion. For weak ferromagnetic
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Figure 4.12: χ1 vs ω′ with exchange coupled pairs of nanoparticles.

coupling J ′ = J/σ <≈ 1 the diamagnetic response increases slightly for intermediate fre-

quencies, and similarly decreases for antiferromagnetic coupling J ′ = −1, in both cases

coinciding with the noninteracting case for very high frequencies. At larger ferromagnetic

and antiferromagnetic couplings the diamagnetic effect decreases. We note that the in-

terwell transition rate decreases with increasing ferromagnetic coupling, so we generally

anticipate that the memory effect ought to become weaker as the characteristic time of the

system becomes longer and longer relative to the memory, similar to the high σ behaviour.

4.6 MACROSPIN EXPRESSIONS

We may also arrive at the functional form for the LLG susceptibilities analytically, by

considering the macrospin expression for the time-evolution of the magnetisation, which

leads to the Landau-Lifshitz-Bloch (LLB) equation. We define the average of the spin

components over an ensemble of spins,

m = 〈 µ
µs
〉 = 〈S〉 =

∫
d3NNf(N, t). (4.85)

where f(N, t) is the probability distribution dictated by the LLG Fokker-Planck equation,

and N is a unit vector denoting the spin orientation. The equation of motion for the
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macrospin is [88],
dm

dt
= γm×H− ΛNm− γαS× (S×H). (4.86)

Importantly, this expression is not closed, in that it is not given in terms of the macrospin

only and contains terms proportional to the second moment of the spin distribution, 〈SiSj〉.

Assuming we have a distribution of spins subject to an applied field, then the distri-

bution function in the macrospin expression is explicitly

f(N) =
exp ξ0 ·N
Z(ξ0)

, (4.87)

where ξ = µsH
kBT

, then we may eliminate the second moment from the macrospin equation

of motion by solving for 〈SiSj〉, yielding

dm

dt
= γm×H− ΛN

(
1− m · ξ0

|ξm|

)
m− γα

(
1− m

ξ

)(m× (m×H)

m2
. (4.88)

For small deviations from equilibrium, then ξ ≈ ξ0 he applied magnetic field is H = kBTξ0
µs

,

and the magnetisation, m ≈m0 = B(ξ0)ξ0
ξ0

, where B(ξ) = coth(ξ)− 1/ξ is the Langevin

function, then we have the relationship

m−m0 ≈ B′(ξ0)(ξ0 − ξ). (4.89)

where B′ is the derivative of the Langevin function with respect to the spin. The longitu-

dinal part of the equation is simplified as

ΛN

(
1− m · ξ0

|ξm|

)
= Γ1

(
1− m ·m0

m2
m
)
, (4.90)

where the longitudinal rate is Γ1 = ΛN
ξB′B and the transverse term becomes

γαkBT

µs

(
1− m

ξ

) ξ0

B(ξ0)

(m× (m×m0)

m2
= Γ2

(m× (m×m0)

m2
(4.91)

where Γ2 = ΛN
2 ( ξ0

B(ξ0) − 1). The LLB equation is then

dm

dt
= γm×H− Γ1

(
1− m ·m0

m2

)
m− Γ2

(m× (m×m0)

m2
. (4.92)

This is the Landau-Lifshitz-Bloch equation for the ensemble of noninteracting para-

magnetic. We may derive an expression for the susceptibility of a macrospin evolving

according to the LLB equation. We assume that the applied field has only a z-component

of the form Hz = H0 cos(ωt). The equilibrium magnetisation then varies as

m0,z = B′(ξ0) cos(ωt), (4.93)
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with the x and y components identically zero. We then solve for the time evolution of the

z-component of the magnetisation,

dmz

dt
= γmz ×H − Γ1

(
1− m ·m0

m2

)
mz − Γ2

(mz × (mz ×m0)

m2
. (4.94)

Both terms involving m×m0 are 0 due to the assumption that the applied field lies along

the z direction. we then have

dmz

dt
= −Γ1

(
1− m ·m0

m2

)
mz. (4.95)

Assuming the spin lies only along the z-direction, this simplifies to

dmz

dt
= −Γ1

(
mz −m0

)
= −Γ1

(
mz −B′(ξ0) cos(ωt)

)
, (4.96)

which we recognise has a similar form to the master equation expression. The magnetisa-

tion as a function of time is

mz(t) = B′
( Γ2

Γ2 + ω2
cos(ωt) +

Γω

Γ2 + ω2
sin(ωt)

)
. (4.97)

Hence we identify the in and out of phase components of the magnetic susceptibility

for the ensemble of paramagnets evolving according to the LLG as

χ1(ω) = B′
Γ2

Γ2 + ω2
=

µs
kBT

dB

dH

Γ2

Γ2 + ω2
. (4.98)

and

χ2(ω) = B′
Γω

Γ2 + ω2
=

µs
kBT

dB

dH

Γω

Γ2 + ω2
/ (4.99)

4.6.1 LLMS Fokker-Planck Equation

A similar macrospin expression exists for the LLMS, in the restricted cases for which there

is an analytical expression of the Fokker-Planck equation in terms of the spin only. The full

Fokker-Planck equation for the LLMS is in terms of two variables, spin and the thermal

field. If we assume the narrowing limit such that γ
√
kBTχτc << 1, while still holding

that the spin system is correlated, such that τcγHk > 1, [60], additionally it is assumed

that we are in the high temperature limit, then the spin-bath coupling is rather weak,

and the fluctuating field remains first-order in χkBT/τc, and the noise and spin variables

are decoupled, 〈R(t)R(t′)S(t′)〉 ≈ 〈R(t)R(t′)〉〈S(t′)〉. In this case, the spin changes slowly

over the timescale of the thermal noise.
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In this limit, we may then perform a change of coordinates, into a frame that is rotating

with the Larmor frequency in some fixed applied external field, γH. The spin and the

noise terms in the corotating frame are,

Sc(t) = U(t) · S(t) ηc(t) = U(t) · η(t). (4.100)

where the transformation matrix is the exponential of the infinitesimal generator,

U(t) = exp(−Ωt) =


cos(γHt) − sin(γHt) 0

sin(γHt) cos(γHt) 0

0 0 1

 (4.101)

and the generator is

Ω =


0 γH 0

−γH 0 0

0 0 0

 / (4.102)

For an arbitrary vector A, we have that Ω · A = γ(A × H). The spin term in the

Miyazaki-Seki Langevin equation becomes, in the transformed coordinates,

dSc
dt

=
d

dt

(
exp(−Ωt) · S(t)

)
= −Ω · Sc(t) + U(t) · dS

dt
(4.103)

= γSc × ηc.

where the rotating term is compensated for by the change in coordinates. Similarly,

a rotational term is introduced into the time derivative of the noise field, which then

becomes
dηc
dt
− γη ×H− 1

τc
(ηc − χSc) + Rc. (4.104)

where Rc(t) = U(t) ·R(t) is the Wiener process in the corotating frame, which has the

same FDT as the non-transformed case.

We again formally solve for the magnetic field in the corotating frame as we did in the

original frame, with the field being given as

ηc(t) =
χ

τc

∫ t

−∞
dsΨ(t− s) · ηc(t) + R̄c(t). (4.105)

where

Ψ(t) = exp
(
− (Ω +

1

τc
) · S

)
. (4.106)

R̄c(t) =

∫ t

−∞
dsΨ(t− s) ·Rc(t). (4.107)

71



Chapter 4: Debye Susceptibility: The Effect of Coloured Noise 4.6 Macrospin Expressions

Implying a fluctuation-dissipation theorem for the bath field

〈R̄c(t)R̄c(s)〉 = Ψ(t− s)/ (4.108)

Owing to the weak spin-bath coupling, it is now valid to assume that τc is short

compared to the characteristic timescale of the spin. It is then valid to assume the spin

and memory kernel decouple, such that∫ t

−∞
dsΨ(t− s) · Sc(t) =

[ ∫ t

−∞
dsΨ(t− s)

]
· Sc(t) = Γ · Sc(t). (4.109)

The elements of the matrix Γ are then evaluated by explicitly taking the integral over time

as

Γ =


τc

1+(τcγH)2 − τ2
c γH

1+(τcγH)2 0

τ2
c γH

1+(τcγH)2
τc

1+(τcγH)2 0

0 0 τc

 . (4.110)

The equation of motion for the spin in the corotating frame is then

dSc
dt

= γSc ×
[ χ
τc

Γ · Sc + η̄c

]
, (4.111)

where the FDT for the bath field is now also approximated to lowest order as

〈η̄c(t)η̄c(s)〉 = 2Γδ(t− s). (4.112)

In the original frame of reference the equation of motion for the spin is

dS

dt
= γS ×

(
H + η̄ +

χ

τc
Γ · S

)
. (4.113)

The Fokker-Planck equation for this Langevin equation is,

df

dt
= − ∂

∂N

(
γ(1 + δ)[N×H] + γη̄2(N ·H)[N×H] (4.114)

− η̄1[N× [N×H]]
)
f

− ∂

∂N

(
D
[
N×

[
N× ∂

∂N

])
f

where δ = η̄2/(βµ0), η̄2 = η̄1τc, η̄1 = γα/κ, D = ΛN/(2κ) and κ = 1 + (γτcHk)
2.

4.6.2 Macrospin Expression for the LLMS

The Fokker-Planck for the low damping case has a similar form to the LLG, and the

corresponding macrospin expression takes the form

dm

dt
= γ′[m×H]−Λ ·m− Γ̄2

[m× [m×m0]

m2
], (4.115)
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where

Λ = Γ̄1

(
1− m ·m0

m2

)
I +


ΛN 0 0

0 ΛN 0

0 0 0

 , (4.116)

where Γ̄1 = Γ1/κ and Γ̄2 = Γ2/κ.

The overall effect of the correlations is to introduce coupling of the longitudinal re-

laxation to the transverse components. However, for the longitudinal susceptibility there

is no coupling since the applied field, anisotropy and magnetisation lie along the same

axis. The susceptibility is then functionally rhe same as the LLG macrospin, with the

renormalised constants,

χ1(ω) = B′
Γ̄2

1

Γ̄2
1 + ω2

=
µs
kBT

dB

dH

Γ̄2
1

Γ̄2
1 + ω2

, (4.117)

and

χ2(ω) = B′
Γ̄1ω

Γ̄2
1 + ω2

=
µs
kBT

dB

dH

Γ̄2
1ω

Γ̄2
1 + ω2

. (4.118)

A susceptibility of this form will always be positive as it is the same functionally

as the LLG susceptibility. We note that the results from both LLMS and the GME

predict positive susceptibility at high temperatures, σ < 1, which is the condition under

which the approximation to the LLMS Fokker-Planck equation was calculated and so the

analytical considerations from the macrospin expressions do qualitatively coincide with our

observed numerical results. The overall implication of this analysis, as well as the low-σ

behaviour from both the GME and LLMS models is that the diamagnetic susceptibiltiy is

a characteristic property of magnetic moments which are in the superparamagnetic regime,

and is not readily exhibited for the paramagnetic σ < 1 case.

4.7 CONCLUSIONS

We have presented analytical and numerical studies of the frequency-dependent suscepti-

bility of magnetic nanoparticles. From both the analytical and numerical models, we see

a consistent qualitative prediction that there is a frequency-induced diamagnetic response

above a critical frequency which is a function of the correlation time. In both models,

this effect may be enhanced by the presence of interparticle interactions. leading to the

possibility that interaction effects may be considered as a memory effect.

The effects of heat-bath correlations are not easy to investigate experimentally. Our

prediction of frequency-induced diamagnetic behavior represents an important prediction
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of a clear experimentally accessible signature of heat-bath correlations, with Equ. 4.66

giving a direct relationship between the correlation time and the critical frequency for

diamagnetic behaviour. Measurements of the correlation time would generate new under-

standing of the properties of thermal baths and their interaction with spin systems and

would be especially important in the understanding of ultrafast magnetization processes

as pointed out in ref. [24]
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Chapter 5

Thermally-Activated

Magnetisation Reversal

5.1 INTRODUCTION

The problem of escape from a metastable state occurs across a wide range of distinct physi-

cal phenomena. Study of the problem has contributed to and received major contributions

from fields as diverse as chemical kinetic reaction-rate theory, the theory of diffusion in

solids, electrical transport in semiconductors, and the dynamics of nonlinear optics, in

addition to many other fields. The unifying concept for many of these treatments is that

of the escape process as being induced by random forces in a manner similar to Brownian

motion, and, as we have seen, to the LLG treatment of magnetic spins. These relatively

weak random forces induce excitation over the characteristic energy barrier of the system

on a certain, relatively long timescale, wherein the system spends the majority of the time

in some local minimum, punctuated by rare barrier-crossing events to a neighbouring lo-

cal minimum of the problem. The energy barrier of the problem arises from the physical

Hamiltonian of the system, and so is reflected in the forces acting on the particle via the

external potential energy profile.

The classical treatment of such escape problems starts with Arrhenius’ treatment of

chemical reaction-rate data, from which he observed that the rate varies logarithmically

with the inverse temperature, β = (kBT )−1. This observation lead to the transition

state theory model of the escape problem, giving rise to the simple exponential Arrhenius
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behaviour for the rate

ΓTST = Ae−EB/kBT , (5.1)

where EB is the barrier height, the threshold energy for activation over the barrier. This is

the probability per unit time of the bound particle possessing sufficient energy to surmount

the internal barrier. The prefactor modifies the overall escape probability by accounting

for the frequency per unit time at which the bound particle is in a position to attempt to

escape the well, and hence is frequently termed the attempt frequency [89].

Arrhenius was motivated by the study of chemical reaction rates, and developed the

analogy between a chemical reaction and a one-dimensional particle escape problem, where

the reaction state is analogous to the position at the bottom of one potential well, xA,

and product state corresponding to the global potential minimum, xB, which the reaction

proceeding from xA to xB via the saddle point, xC which is the intermediate transition

state of the problem.

In a one-dimensional well, the Transition-State theory (TST), which essentially treats

the problem as if it were at all points at equilibrium, predicts that this prefactor is simply

the frequency of oscillation of the bound particle at the bottom of the well,

A =
ωA
2π
. (5.2)

The chief disadvantage of the TST approach to the escape problem is that it predicts

dynamical escape in the absence of any coupling to the bath, where the escape time does

not tend towards infinity with decreasing coupling but rather tends toward a constant rate.

The low damping behaviour may be corrected for by including a damping-proportional

correcton factor to the TST transition rate as

Γ = ΛΓTST = Λ
ωA
2π
e−EB/kBT . (5.3)

These nonequilibrium effects may be incorporated in the rate calculation by accounting

for the dynamical coupling to the bath which introduces such nonequilibrium effects into

the rate and correctly accounts for coupling to the bath and the weak damping behaviour

of the transition rate. Such an extension is the simple TST may be accounted for by

explicitly treating the problem from the Langevin equation,

p = mẋ ṗ(t) + βp(t) +
dV

dx
= F (t), (5.4)

where βp(t) is the systematic frictional drag force and the driving thermal force F (t) has

the appropriate statistics as dictated by the Fluctuation-Dissipation theorem, and the
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corresponding Klein-Kramers Fokker-Planck equation

∂p

∂t
= − p

m

∂p

∂t
+
∂V

∂x
+ β

∂

∂p

(
Wp+mkBT

∂W

∂p

)
. (5.5)

5.1.1 Thermally-Activated Magnetisation Reversal

The general theory of thermally-activated Kramer’s escape is of particular interest in the

context of fine single-domain superparamagnetic spins, wherein the constraining potential

of the escape problem is provided by the magnetic anisotropy of the particle. This is

the physical property which all magnetic recording devices take advantage of, where the

confinement of the spins by the anisotropy over long timescales leads to suitable media for

the storage of information. In the Arrhenius form, the relaxation time is

τ ∝ f−1
0 evK/(kBT ) = f−1

0 exp
∆Ecr
kBT

. (5.6)

In comparison to the Kramers escape expression, we see that the attempt frequency is

the frequency of Larmor gyromagnetic precession at the bottom of the well, and the spins

must overcome the anisotropic confining potential which is proportional to the volume of

the particle.

According to the Arrhenius law, we may engineer the escape time to be large enough

so that the escape time becomes very long by either increasing the volume of the particle

and thus increasing the magnetic anisotropy energy, or decreasing the temperature of the

particles. Thus, there is an approximate minimum particle radius or volume above which

the magnetic moment appears to be completely stable on the timescales of interest for

information storage. The reversal time, τR, for the magnetic system is defined similarly to

the mechanical problem, that is, it is the average time for the spin to liberate itself from

one minimum of the potential due to interaction with the thermal fluctuations of the heat

bath.

The spin Hamiltonian for the moment experiencing both an external applied field and

an in-built anisotropy takes the general form.

H = −dzS2
z − µs

−→
B · S. (5.7)

For the full three-dimensional problem, where there may be an arbitrary angle between

the externally applied field and the easy-axis of the anisotropy, the free energy takes the

explicit form

V (θ, φ) = σβ−1
(

sin2 θ − 2h(cosψ cos θ + sinψ sin θ cosφ)
)
, (5.8)
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where θ, φ are the spin components in spherical coordinates, where θ = cos−1(Sz) and

φ = tan−1(
Sy
Sx

) since the spin magnitude |S| =
√
S2
x + S2

y + S2
z = 1 is assumed to be

fixed. φ is the angle between the applied field and the easy axis. The potential has a

bistable character under the condition than the critical applied field value, h < hc(ψ) =

((cos2/3ψ + sin2/3ψ)−3/2 for applied fields below this value, in which case there is a local

and global minimum in the north and south polar regions, with an equatorial saddle point

between the two regions. An example of the sort of potential profile is show in Figure 5.1.

Figure 5.1: 3D Potential Profile for ψ = π
2 and h = 0.5. Figure taken from ref [48].

For the uniaxial problem, the applied field lies along the direction of the easy axis such

that ψ = 0, the free energy becomes

E = −dzsin2(θ) + bzcos(θ), (5.9)

where dz is the positive magnetic anisotropy constant and the easy-axis for the anisotropy

is taken to lie along the z-axis. Such a potential energy is a function only of the angle

between the moment and the z-axis.. With suitably chosen parameters, such that h =

(µSBz)/(2ku) < 1 and σ = ku/(kBT ) > 1, there is an energy barrier ∆E of the form

∆E = dz(1− h)2. (5.10)

The uniaxial potential as a function of θ is show in Figure 5.2.

5.1.2 Damping Regimes

Intermediate-to-High Damping (IHD)

in the IHD regime the spin distribution is approximately the Boltzmann distribution

almost everywhere within the well. The distribution only departs from the Boltzmann
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Figure 5.2: Potential energy vs angle for the uniaxial escape problem. Figure taken from

ref [90].

behaviour in a very small region near the barrier saddle point due to the motion of particles

across the barrier and into the opposite minima. However, the barrier is sufficiently limited

in spatial extent that it may be represented entirely in the potential profile as an inverted

parabola.

Very Low Damping (VLD)

The very low damping regimes involves particularly complex analysis. For the single-

domain ferromagnetic case, it has been treated extensively by Coffey, Kalmykov and col-

laborators, [91] [48], [92].

In the high damping regime, the moderate to high value of the friction ensures that

the energy of a spin undergoing precessional motion deep within a well is much smaller

than the barrier energy, with all spins quickly thermalising around the minimum of the

corresponding potential, before escaping through the action of the random thermal force

eventually giving the spin sufficient energy to escape. In contrast, in the low-damping

regime, the damping may become so small that the energy of the particles may exceed

the barrier energy purely through the librational motion at the bottom of the well, while

the energy lost along an escape trajectory decreases with the decreasing damping. In the

Kramers TST formalism the escape rate in the low damping is greatly overestimated as

the particles are assumed to be injected and initialised at the source point already having

sufficient energy to surpass the barrier, hence erroneously tending towards a constant

escape rate at small damping, the TST may only be applied if the energy dissipated

during a period of oscillation is greater than the thermal energy.

The net result of this is that the assumption the spins approach the barrier region with
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the Boltzmann distribution is completely invalid, the barrier region extends far beyond the

saddle point. The motion of the particles is now completely undissipative, with the motion

of a particle inside the well being almost entirely guided by the dynamical motion and is

very nearly Newtonian. The first two terms of the FPE vanish. The escape occurs when

the energy of the particle due to the precessional dynamical motion exceeds the energy

barrier, and escape occurs when the large amplitude almost conservative precessional

motion of the particle trajectory is along the critical path of the problem, which is the

energy requires to just escape the well. The low damping regime is inherently tied to the

concept of large oscillations of the spin within the well.

Intermediate Turnover Regime

The turnover regime is an approximately critically damped regime, in which neither the

escape directly via thermal bath energy nor the energy controlled diffusion dominate. The

Liouville term in the FPE does not disappear in this regime, which means you cannot

simply average out the phase dependence of the distribution function. This is ultimately

accounted for by constructing from the FPE an expression for the distribution function in

the barrier region with the energy and action as independent variables.

5.2 ESCAPE TIME FROM THE LLG

The LLG in spherical coordinates takes the form.

∂p(N, t)

∂t
+
∂Jφ
∂φ

+
∂Jθ
∂θ

= 0, (5.11)

which we note is the same form as the ordinary Cartesian coordinates, this follows from

the fact that the spherical coordinates similarly span the space available to the spin, so the

gradient takes the same functional form. We have then simply to evaluate the probability

currents in the transformed coordinates. using the relationship

N× ∂V

∂N
= −eφ

∂V

∂θ
+

eφ
sin(θ)

∂V

∂φ
, (5.12)

the currents become,

Jθ(N, t) = − αγ

(1 + α2Ms)

(∂V
∂θ
− 1

α sin θ

∂V

∂φ

)
P (N, t) +

1

2τN

∂P

∂θ
, (5.13)

Jφ(φ, t) = − αγ

(1 + α2Ms)

( 1

α

∂V

∂θ
+

1

sin θ

∂V

∂φ

)
P (N, t) +

1

2τN sin θ

∂P

∂φ
. (5.14)
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In the particular case of an axially-symmetric potential, the Fokker-Planck equation takes

a much simpler form, allowing us to evaluate the switching rate between wells explicitly,

resulting in an expression for the escape time which is valid for all values of the damping

parameter, α, whereas in the Klein-Kramers case the problem is always in terms of two

variables, the position and momentum and only has a one-dimensional form depending

on the damping regime. In comparison, for the magnetic relaxation problem, the three

regimes only appear in the nonaxially symmetric case and the FPE becomes truly two-

dimensional.

In the quasi-stationary case, the probability flux per unit time is approximately zero,

hence we have ·p = 0 and the axial current term may be taken as 0, ∂J/∂φ = 0, since the

potential is only a function of θ. The total current through any point along the coordinate

θ is then a fixed flow, such that

J = 2πJθ sin θ (5.15)

we then have

∂P

∂θ
+
∂V

∂θ
P = e−V

∂

∂θ
(eV P ) = − 2τN

π sin θ
. (5.16)

The probability as a function of θ is then

P (θ) = −τNJ
π

e−V (θ)

∫ θm

θ!

eV (θ′)

sin θ′
dθ′. (5.17)

The total number of particles inside the well follows as the integral of the probability that

a particle is inside the well, where we define θm as the boundary angle denoting that a

particle resides in the well, hence [57],

Ni = 2π

∫ θ0

θi

P sin θdθ = −2τNJ

∫ θ0

θi

e−V (θ) sin θ

∫ θ

θ0

eV (θ)

sin θ
dθ′dθ. (5.18)

The escape rate from the well then follows as the ratio of the number of particles in the

well to the flux out of the well, simply giving us

τ(θi) = Ni/J = −2τN

∫ θ0

θi

e−V (θ) sin θ

∫ θ

θ0

eV (θ)

sin θ
dθ′dθ, (5.19)

which becomes

τ(θi) = 2τN

∫ θ0

θI

eV (θ′)

sin θ′

∫ θI

θ′
e−V (θ) sin θdθ′dθ. (5.20)

after integration by parts. The rate may then be evaluated by making the assumption

that the particles are tightly bound within the well, which follows in the high barrier limit,

so that the integral over θ need only be taken over a very small range of angles near the
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minimum. The inner integral is then analytically solvable using the method of steepest

descents, [57] [70],∫
e−V (θ) sin θdθ ≈

∫ ∞
0

θ exp
(
− (V (0) + V ′′θθ(0)

θ2

2
)
)

=
e−V (0)

V ′′θθ(0)
, (5.21)

where we take the integral to infinity since we have already made the assumption that the

particles are located near the centre of the well. Since we are near the barrier we may

approximate the exact potential by taking the Taylor series for the potential,

V (θ) ≈ V (θ0)− |V ′′θθ|(θ − θ0)2/2. (5.22)

And so the outer integral is evaluated as∫
e−V (θ) sin θdθ ≈

√
πe−V (θ0)

sin θ0

√
2|V ′′θθ|(θ0)

. (5.23)

In the high-barrier limit, the escape time for the uniaxial case is then

τ =
τN

V ′′θθ(0)

√
2π√

|V ′′θθ(θ0)|
eV (θ0)−V (0)

sin θ0
. (5.24)

By using the potential corresponding to an applied field and an anisotropy term, the

escape time becomes for a superparamagnetic in the uniaxial case,

τ =
τN
√
π

σ3/2(1− h2)

(
(1 + h)e−σ(1+h)2

+ (1− h)e−σ(1−h)2
)
, (5.25)

and in the limit of no applied field,

τ =
τN
√
πeσ

2σ3/2
. (5.26)

5.3 NUMERICAL SIMULATION

To investigate the thermally-activated escape time numerically, we initialise an ensemble

of spins in the local minimum of the potential, which is antiparallel to the applied field.

The spin is then time-evolved according to the relevant Langevin equation, LLMS or LLG,

until the particle is considered to have escaped the well when some switching condition is

considered to have been met, for example, Sz < m0 = 0. This is then iterated until an

ensemble average has been taken, and the average of this escape time for each individual

particle is then taken as the escape time for the ensemble.

Figure 5.3 depicts the damping dependence of the escape time as predicted by the one-

dimensional TST and from numerical simulations using this method and the LLG and
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Figure 5.3: Analytical prediction for escape time and results of numerical simulations

using the LLG and the LLMS for small correlation times, σ = 7.5.

the LLMS Langevin equations. The results of our simulations show excellent agreement

with the analytical expression, showing the characteristic α
1+α2 dependence for both the

LLG and the uncorrelated LLMS. These results serve as an important validation, both of

the implementation of the LLG Langevin equation, and demonstrates that the LLMS for

small correlation times converges on the behaviour of the LLG.

5.3.1 System Time τs vs. τc Characteristic Bath Time

For the uniaxial escape problem the external field in the LLMS will consist of an external

applied part and an anisotropy

H = Ha +H0 (5.27)

the magnitude of the anisotropy field depends on the orientation of the spin and is

given by Ha = 2ku
µs

−→
Sz · −→z = Hk

−→
Sz · −→z where −→z is the direction of easy magnetisation and

ku is the anisotropy energy. We will assume the uniaxial case, where the external field is

applied along the same direction as the easy axis, both fields only have components in the

z-direction.

To get an idea of the order of magnitude of the system time of a spin bound to an

energy minimum by such an anisotropy potential, we note that the anisotropy field varies
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with the projection of the spin on to the easy-axis as

Ha = Hk(Sz · z)−→z = Hk cos(θ)−→z , (5.28)

Therefore, the largest field magnitude and consequently the fastest timescale of the problem

is set by the value for which the anisotropy is at its largest, which is when the spin and

the easy-axis precisely coalign. For any other orientation, the field will be smaller and the

timescale of oscillation hence slower. Taking then a constant external applied field of this

maximum magnitude, Hk, for a spin with at an arbitrary angle to the z-axis, the spin-only

Langevin equation in the correlated case becomes

dS

dt
= γS(t)×

(
Hk
−→z + η̄ − χ

∫ t

−∞
dt′K(t− t′)dS(t′)

dt′

)
, (5.29)

if we define the system time for the spin as τs = (γHk)
−1 then

dS

dt
=

1

τs
S(t)×

(−→z +H−1
k η̄ −H−1

k χ

∫ t

−∞
dt′K(t− t′)dS(t′)

dt′

)
(5.30)
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Figure 5.4: Escape time in the LLMS normalised by the uncorrelated LLG escape time

for different values of the correlation time τ = τcγHk and for simulations with parameters

comparable to a Co and and SmCo nanoparticle.

We may scale time in the Langevin equation so that the system time is removed by

taking r = t/τs. Then we have

dS

dr
= S(r)×−→z + S(r)×

(
H−1
k η̄(r) +H−1

k χ

∫ r′

−∞
dr′e−(r−r′) τs

τc
dS(r′)

dr′

)
(5.31)
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The autocorrelation of the noise is similarly transformed to become

〈η̄(r)η̄(r′)〉 =
τs
τc
D̄e−(r−r′) τs

τc =
D̄

τ
e−(r−r′)/τ (5.32)

where τs/τc = τ and D̄ = D/τs = χτkBT/µs. We can then write the coupling as χ̄ =

χ/Hk, and we absorb the Hk factor into the diffusion constant for the thermal field. Since

the thermal fields are given by η̄(r) =
√

2D
τ

∫ r
−∞K(r − r′)Γ(r′), the diffusion constant

becomes

D̄ =
χτkBT

µsH2
k

=
χ̄τkBT

2ku
=
χ̄τ

2σ
(5.33)

where σ = ku/kBT . The final expression for the Langevin equation is then

dS(r)

dt
= S(r)×

(−→z + η̄ − χ̄
∫ r

−∞
dr′K(r − r′)dS(r′)

dr′

)
(5.34)

In the case that τ � 1 and τc � τs, we see that the memory kernels appearing in the

noise and damping terms are reduced to delta functions. Additionally the bath coupling

and the strength of the thermal fluctuations are reduced by the anisotropy field, so that

in the event of a very large anisotropy the precessional dynamics of the spin dominate the

thermal and damping parts. The condition that τc & (γHk)
−1 is the one that we would

expect to dictate whether the effect of correlations are relevant in the system dynamics.

Figure 5.4 depicts the escape time from LLMS simulations vs the correlation time,

both normalised by the Larmor frequency and the escape time normalised to the uncorre-

lated LLG escape. The results of these simulations are in agreement with the expectation

that the Larmor precession sets the characteristic time of the system. For both sets of

parameters, we see that the escape rate departs from the LLG escape rate only once the

correlation time is on the order of the Larmor time, approximately 1×10−13s and 1×10−12

for the Co and SmCo respectively. In general, the higher anisotropy particle exhibits cor-

related behaviour at lower correlation times. As we anticipate that the bath correlation

time will usually be of approximately the same order for different superparamagnets con-

sidered, we then anticipate that the higher anisotropy particles will be the more promising

candidates when it comes to exhibiting non-Markovian behaviour.

5.4 INITIAL & SWITCHING CONDITIONS

When evaluating the escape time via the types of Langevin equations considered here, it is

important to note that there is a degree of arbitrariness involved in the precise evaluation

of the time to surmount the energy barrier. As we have stated, the general procedure
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is to first initialise the spins in one of the energy minima of the problem. We must do

so according to some initial condition. Naively, one might assume Sz,init = 1 for all of

the spins of the problem where the positive z-direction lies antiparallel to the applied

field direction. The precise choice of initial condition is an important technical point in

the numerical investigation of the escape time from Langevin simulations, as point out in

ref. [93] by Kalmykov et al.

Similarly, we must also choose some characteristic value of the magnetisation by which

we judge that the spin has departed from the initial minimum and now resides in the

opposite well. The amount of time, τ , taken for the spin to surpass the critical value

mz < m0 gives the escape time for that spin from the initial minimum. However, this

choice of the switching condition m0 influences the final calculated escape time, as, for

example, if the switching condition is taken to be the exact saddle point such that it

lies along the separatrix, then there is an equal chance for the spin to enter either well.

Hence, such a choice of switching condition will generally result in a smaller evaluation

of the escape time when compared to an initialisation that lies deep within the well, with

different choices of the switching condition giving results which may differ from each other

by a factor of between 1 and 2 in the IHD regime, and may be much higher in the low

damping regime.
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Figure 5.5: Escape time vs damping, α, for initial condition Sz − 1 and drawn from the

Boltzmann distribution from LLG simulations.
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We must also consider the choice of initial conditions when performing simulations

using the LLG and LLMS equations. With the choice of initial condition Sz,init = 1 for

all spins in the ensemble, we present the damping-dependence of the escape time for such

an initial condition in Figure 5.6, for a reduced barrier height σ = 15, h = 0.42, and an

angle between the applied field and easy-axis of ψ = π/4. In the intermediate-to-high

damping regime, α > 1, the numerical results from the LLG and the analytical prediction

of the TST agree, and the escape time increases with increasing damping. The results of

our simulations mirror those presented in ref [93], reiterating the need for great care to

be taken in the simulation of the escape problem for weak damping. However, in the low

damping regime the Langevin simulations show both a completely different qualitative

dependence from the universal turnover and the lower-bound which is set by the TST

theory, where the initial condition leads to a very fast dynamical transition between the

wells without ever approaching the saddle point due to strong precession in the initial

configuration.

In the IHD regime, the distribution function for the spin is everywhere the Boltzmann

distribution at the bottom of the wells, with a slight deviation very close to the separatrix

between the two wells. The higher damping and larger range of validity of the thermal

distribution causes spins initialised along the z-axis to quickly assume the correct distri-

bution in the well on a much shorter timescale than the timescale over which dynamical

rotational escape can occur. For α < 1 it is not longer certain that the spin approaching

the barrier region from the depth of the well has the Boltzmann form, the damping and

interaction with the bath is so weak that the time it takes to correctly equilibriate within

the well is longer than the dynamical time over which barrier rotations may occur.

It is then generally necessary to explicitly choose different initial conditions for the spins

in the wells, such that they are initialised according to the correct Boltzmann distribution

inside the well, according to

P (θ, φ) = sin θe−E(θ,φ)/kBT (5.35)

The results of LLG simulations using this initialisation are also shown in Figure 5.6,

which now produce good agreement with the TST and turnover formulas. We find a

qualitatively similar difference between the low-damping behaviour in the LLMS escape

rate calculations performed with both initial conditions, which we present in figure 5.5.

We interpret the difference between both sets of data to be due to the same reason as for

the LLG.
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Figure 5.6: Escape time vs damping, α, for initial condition Sz − 1 and drawn from the

Boltzmann distribution from LLMS simulations.

In general, the numerical evaluation of the switching time in the low damping regime

depends crucially on the choice of initial and switching condition for both the LLG and

LLMS equations. Hence, we will in general perform LLMS simulations with the initial

condition also chosen according to the corresponding Boltzmann distribution, in order to

give our calculations full generality and avoid any possible issues due to the thermalisation

of the spins about the mimina.

5.5 LLMS: DAMPING DEPENDENCE OF THE ESCAPE TIME

100

1000

10000

100000

0.01 0.1 1 10

t k
r 

γ
 H

k

α

LLG

τ = 5

τ = 10

1.0E+02

1.0E+03

1.0E+04

0.001 0.01 0.1 1

t k
r 

γ
 H

k

χ

τ = 5

τ = 10

Figure 5.7: Escape time from the LLMS and LLG in the uniaxial case, σ = 7.5.
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An important point of comparison between the LLMS and the LLG is the behaviour of

the escape time as we vary the damping parameter of the system. An ambiguity arises in

this discussion, as the LLG has a single simple phenomenological parameter determining

the strength of the coupling of the spin and the thermal bath. In contrast, the LLMS

is characterised by a pair of parameters, the characteristic correlation time of the bath

and the strength of the coupling between the bath and the spin. In the Markovian limit,

these parameters are related as α = γτcχ, as we have seen, however the phenomenological

coupling α is not necessarily meaningful in the correlated problem, with the relation simply

dictating how the parameters must be related in order for both descriptions to produce

the same physical results.

Figure 5.7 shows the damping from LLG numerical simulations and from the LLMS

with τ = 2, 5 for the uniaxial problem with the reduced field h = 0.3. We also show the

spin-bath coupling χ dependence for the LLMS simulations. These simulations have a few

important implications for the Miyazaki-Seki model. Firstly, we see that the high and low

damping regimes are preserved. Presumably the behaviour in both regimes is still as a

result of the temperature-controlled and energy controlled diffusion regimes for the high

and low damping, respectively.

As we increase the correlation time τc, the minimum value of the escape time gener-

ally increases, with the position of the minimum shifting to higher α as the correlation

time increases. This is somewhat of an artifact of the usage of α rather than χ. In the

right-hand side of the Figure, we show that behaviour vs the spin-bath coupling. The

escape time again generally increases for the same value of χ with increasing correlation

time, τc, although the exact damping-dependence and minimum appears to vary with the

correlation time.
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Figure 5.8: Escape time from the LLMS and LLG for ψ = π/4, σ = 15.

Figure 5.8 repeats the simulations for the non-uniaxial case, in which there is an applied

field of magnitude h = 0.3, reduced barrier height σ = 7. The behaviour of the escape

time is in general the same, with the escape time increasing in the low and high damping

limit, and a precise damping dependence which is similar to the τkr ∝ α
1+α2 behaviour

seen from analytical consideration and LLG numerical simulations.

5.6 ESCAPE TIME: TEMPERATURE DEPENDENCE
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Figure 5.9: Escape time, τγHk vs reduced barrier height, σ, from LLG numerical simula-

tions.. Left: :ow damping (α = 0.01), Right high damping (α = 1).

Figure 5.9 shows the behaviour of the escape time from LLG simulations vs the reduced

barrier height for both the high and low damping regimes and with different values of the

reduced field, h. The most salient feature of these graph is that the behaviour of the escape

time tends towards the Arrhenius exponential behaviour for larger σ > 5, as shown by
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the linear appearance of the dependence. This behaviour manifests itself in all damping

regimes and at all value of the field sufficient to constitute an escape problem.
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Figure 5.10: Escape time, τγHk vs reduced barrier height, σ, from LLMS numerical

simulations, with a significant correlation time of τ = 2. Left: :ow damping (α = 0.01),

Right high damping (α = 1).

Figure 5.10 repeats this analysis for LLMS simulations where we have used a correlation

time that is sufficiently high that the system departs from the LLG model. These show

that when the barrier is sufficiently the escape time again takes the familiar Arrhenius

form, for both high and low damping and for all valid field magnitudes.

Finally, it is of interest to compare the temperature dependence of the two models

directly. In the high damping case, we see that the escape rates begin to converge as the

temperature tends towards 0. This result makes sense intuitively, as the transition rate

between the wells becomes much longer than the bath correlation time, we would expect

the detailed dynamics of the spin within the well to become less relevant.

The temperature dependence in the low damping regime is much more interesting.

At low damping, the LLMS and LLG appear not to converge even at the larger barrier

heights considered here, either converging very slowly as a function of σ or never actually

coinciding on the same escape time. We attribute this difference to the difference in

damping regimes and the physically distinct mechanisms involved in the escape process

in the two regimes. The high damping regime is again reliant on thermal fluctuations to

liberate the bound spin, as the thermal fluctuations become less relevant at higher σ, the

two models begin to converge. In contrast, in the energy-controlled diffusion regime is

characterised by the almost Newtonian motion of the particle in the well. In the highly

correlated case, the simple damping is replaced with a frequency-dependent damping, an
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Figure 5.11: Escape time, τγHk vs reduced barrier height, σ, from LLMS and LLG

simulations. Top Left: Low damping, h = 0.2, Top Right: Low damping, h = 0.3.

Bottom Left: High damping, h = 0.2, Bottom Right: High damping, h = 0.3.

effect which seems to increase the overall effective damping and inhibit the escape rate

between the wells by decreasing the rate at which the spin is able to attain a trajectory

with sufficient energy to leave the well.
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5.7 ANGULAR VARIATION
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Figure 5.12: γHkτc vs applied field angle, Ψ, for correlation times τ = 2, 4 and from the

LLG. The memory effect is stronger for intermediate angles where the relaxation time is

smaller.

Figure 5.12 shows the angular dependence of the escape rate for a system with σ = 15,

h = 0.2 and α = 0.1 between the LLG and the LLMS with τ = 2, 4. The increase of the

correlation time causes an increase to the escape rate at all angles, however it is interesting

to note that the escape time appears to increase much faster at intermediate angles than

in the uniaxial or completely transverse cases. The minimum of the escape rate is for both

models, and at all values of the correlation time, near the angle ψ = π/4. It may then be

the case that correlation time has greatest effect at and around this angle as the escape

time is at it’s lowest and hence the escape time is closer to the dynamical time range on

which the correlations are relevant.
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5.8 RATE EQUATIONS FOR THERMALLY-ACTIVATED MAGNETISATION

REVERSAL

5.8.1 Master Equation

For an arbitrary spin Hamiltonian with N minima of the potential, the rate equation

describing the dynamics of the transitions between these minima is again,

dni
dt

= Aij(t)nj(t) (5.36)

where ni is a probability vector representing the probability that the system is in one of

a discrete set of states, and i, j ∈ N label those discrete states.

In the uniaxial case, the spin orientations are assumed to be restricted only to the 2

minima of the potential energy dictated by the spin Hamiltonian. For uniaxial escape with

a constant external applied field, we then have constant transition rates between the wells,

in contrast to the time-varying potential for the susceptibility problem. The transition

matrix elements are then,

Aij =

 −κ12 κ21

κ12 −κ21

 (5.37)

Where κ1→2 = κ12 = f0 exp(−σ(1 + h)2) and κ2→1 = κ21 = f0 exp(−σ(1− h)2). The time

evolution of the population of the state n1 is again given as

dn1

dt
= −κ12n1 + κ21n2 = (κ12 + κ21)n1 + κ21 (5.38)

We can now write the derivative of the magnetisation as,

dm

dt
= −Am(t) +B (5.39)

where A = κ12+κ21 and B = κ21−κ12. This is the same form as the rate for the individual

wells, Eq. 5.38, with the individual rate κ12 replaced by B. For an initial magnetisation

m0 = n1(t = 0)− n2(t = 0), the magnetisation as a function of time is exponential,

m(t) =
e−At(Am0 −B)

A
+
B

A
(5.40)

which tends to the value
B

A
=
κ21 − κ12

κ12 + κ21
(5.41)

in the long-time limit, the steady state magnetisation corresponding to the difference in

the transition rates between the wells, if κ2→1 > κ1→2, the transition rate into well 1 is
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greater than the rate out, then we have a positive magnetisation, as expected. We note

that we can also solve this equation by Laplace transform, as this will give us some basis

for comparison to the non-Markovian case. The Laplace transform of Eq. 5.40 for the

initial magnetisation m0 is

ωm(ω)−m0 = −Am(ω) +
B

ω
(5.42)

Giving a frequency-space expression for the magnetisation,

m(ω) =
m0

ω +A
+

B

Aω + ω2
(5.43)

the inverse transform of which is again the exponentially decaying solution of Eq. 5.40.

5.8.2 Relaxation: Generalised Master Equation

We may again study the behaviour of the rate equations by extending the transition rates

in Eq. 5.36 to a set of memory kernels, resulting in an integro-differential expression for

the rate of change of the well populations,

dni
dt

=

∫ ∞
0

Mij(t− τ)n(τ)dτ (5.44)

And the transition rates are simplified to

Mij(t) =
e−t/Θ

Θ
Aij = K(t)Aij (5.45)

where Aij are the same constant transition rates considered in the Markovian master

equations, now modified by a simple exponential kernel over the recent population of the

well. The integro-differential expression for the magnetisation then becomes

dm

dt
= −A

∫ ∞
0

K(t− τ)m(τ)dτ +B

∫ ∞
0

K(t− τ)dτ (5.46)

Where we note that for the exponential kernel, K(t) = e−t/Θ

Θ , the uncorrelated form of the

master equation is recovered in the limit of vanishing correlation time, limΘ→0K(t) = δ(t).

The Laplace transform of this equation is

ωm(ω)−m0 = −AK(ω)m(ω) +
B

ω
K(ω) (5.47)

where K(ω) = L(K(t)) is the Laplace transform of the memory kernel, which we note

now multiplies all of the terms in comparison to the Markovian case in Eq. 5.42. The

transform of the kernel is

K(ω) =
Θ−1

ω + Θ−1
=

1

1 + Θω
(5.48)
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we then have

m(ω) =
B
ωK(ω) +m0

ω +AK(ω)
(5.49)

After inserting the expression for the Laplace transform of the kernel we find

m(ω) =
B
ω +m0(1 + Θω)

Θω2 + ω +A
(5.50)

5.8.3 Solution from Formal Expression

We may also arrive at this expression by utilising a formal expression, derived in Appendix

1, relating the solutions of the Markovian master equation to the master equation with a

specified memory kernel [94],

m(ω) =
1

K(ω)
f(

ω

K(ω)
) (5.51)

where f(ω) is the uncorrelated solution, which we have noted previously takes the form

m0
ω+A + B

Aω+ω2 . Inserting the Laplace transform of the memory kernel into this expression

we have

m(ω) = (1 + Θω)
( m0

ω(1 + Θω) +A
(5.52)

+
B

Aω(1 + Θω) + ω2(1 + Θω)2

)
=

B
ω +m0(1 + Θω)

Θω2 + ω +A

which agrees with the expression derived from the explicit Laplace transform. Upon taking

the Θ→ 0 limit, the two terms proportional to Θ drop out and we have the uncorrelated

expression for m(ω).

5.8.4 Relaxation

Finally we solve for the time-dependence of the magnetisation by taking the inverse Laplace

transform,

m(t) = L−1
[ B
ω +m0(1 + Θω)

Θω2 + ω +A

]
=
φ(t)(Am0 −B)

A
+
B

A
(5.53)

we note that this bears a strong resemblance to the Markovian expression, Eq. 5.40, with

the exponential being replaced by the function φ(t), which is

φ(t) =
1

2β

(
(β − 1)e−t(1+β)/2Θ + (β + 1)e−t(1−β)/2Θ

)
(5.54)
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where β =
√

1− 4AΘ. We note that in the limit t → ∞, the limiting value of the

magnetisation is again B
A . To see that this agrees with the uncorrelated solution for small

correlation times, we may expand β in Θ for small Θ, hence β = 1−2AΘ. The exponential

factors become

1 + β

2Θ
=

2AΘ

2Θ
= A (5.55)

and

1− β
2Θ

=
2− 2AΘ

2Θ
=

1

Θ
−A (5.56)

The time-evolution function is then,

φ(t) =
β − 1

2β
e−t/2ΘeAt +

(β + 1)

2β
e−At (5.57)

=
2AΘ

1− 2AΘ
e−t/2ΘeAt +

1

2

(
1 +

1

1− 2AΘ

)
e−At

Taking the small correlation time limit of the factors multiplying each exponential term,

lim
Θ→0

[ 2AΘ

1− 2AΘ

]
= 0 (5.58)

lim
Θ→0

[1

2

(
1 +

1

1− 2AΘ

)]
= 1

As Θ → 0, only the exponentially-decaying term in the magnetisation survives, φ(t) =

e−At → m(t) = e−At(Am0−B)
A + B

A , so the small correlation time limit of the spin evolution

agrees with the non Markovian master equation.

Finally, we note that the solution for the magnetisation breaks down into two regimes.

First, we note that the expression for β depends only on the product of the correlation

time, Θ, and the rate A, and not on their specific individual values. We may then discuss

the behaviour of the model in terms of only the ratio parameter R = AΘ = Θ/A−1, which

gives the ratio of the well correlation time to the escape time. Rewriting the expression

for the spin vs time,

m(t) =
(Am0 −B)

A

(
(e−t/2Θ([eβt/2Θ − e−βt/2Θ]/2β (5.59)

+ [e−βt/2Θ + eβt/2Θ]/2)
)

+
B

A

which may be simplified in terms of hyperbolic trigonometric functions,

m(t) =
(Am0 −B)

A

(
e−t/2Θ(

sinh(βt/2Θ)

β
+ cosh(βt/2Θ))

)
+
B

A
(5.60)

=
(Am0 −B)

A

(
e−t/2Θ

[sinh(
√

1− 4Rt/2Θ)√
1− 4R

]
+ cosh(

√
1− 4Rt/2Θ))

)
+
B

A
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Figure 5.13: n1(t) vs t, for R = 0.5, 1, 2, under the initial condition n1 = 1, with transition

rates κ12 = 1, κ21 = 0. The population of particles in the individual wells may assume

negative values at these correlation times.

For smaller R < 1
4 , we have a real value of β =

√
1− 4R, and the time-dependence

of the spin corresponds to Eq. 5.61. In Figure 5.13, we plot the time-evolution for

values of R < 1
4 with a correlation time of Θ = 1s and m0 = 1. Once the correlation

time is some sizable fraction of the escape time, the behaviour begins to depart from

the simple exponential behaviour predicted in the Markovian system. At early times the

magnetisation decays more slowly than the exponential decay and at later times it decays

more quickly, while the timescale over which the decay occurs, A, remains the same. The

overall effect of the increasing correlation time is to cause a slower decay at earlier times

and decaying more rapidly at later times, an effect which corresponds in the shift of the

decay process to lower frequencies.

In the case that R > 1
4 , we have an imaginary argument to sinh and cosh, we then

have an expression for m(t)

m(t) =
(Am0 −B)

A

(
e−t/2Θ(

sin(bt/2Θ)

b
+ cos(bt/2Θ))

)
+
B

A
(5.61)

where b =
√

4R− 1. We note that the solutions take the form of damped oscillations

which tends toward the equilibrium value of the magnetisation. However, these solutions

may cause the occupation in individual wells to become less than 0, as shown in Figure

5.14. It is not obvious whether or not the interpretation of the probability to find a particle
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Figure 5.14: n1(t) vs t, for R = 0.5, 1, 2, under the initial condition n1 = 1, with transition

rates κ12 = 1, κ21 = 0. The population of particles in the individual wells may assume

negative values at these correlation times.

in a well should be modified in order to interpret the generalised master equation for very

high Θ, as the total magnetisation stays in the bounds (−1, 1) for all values of Θ.

However, it may be that such solutions are unphysical, as for longer correlation times

the generalised master equation will overestimate the population in each well and generate

a time evolution which will continue to reduce the population of a well, even when that

well is presently empty. We also note that it is not obvious what it would even mean

for the correlation time of the well population to exceed or be on the order of the overall

escape time, as this would imply that the timescale over which the spin population is

correlated exceeds the overall escape time for the system, which is itself determined by

changes in the individual well populations.

Regardless of the meaning of these solutions to the non-Markovian rate equation, we

note that in the implementation of correlations in the Langevin equation via the lLMS,

increasing correlation time is generally accompanied by an increase in the transition rate

between the wells, as seen in the escape rate calculations, and so we expect that the value

of the rate parameter is fixed to be quite low by this fact and R < 1/4 in general.
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5.9 RELAXATION: LLMS SIMULATIONS

We may now compare the predictions of the generalised rate equation to numerical simula-

tions of the LLMS. Any comparison between the two approaches is by nature qualitative,

as the master equation approach assumes some fixed escape rate A = 2f0e
−q with a corre-

lation time for the well population relative to this rate. In contrast, the LLMS approach

results in changes in this escape rate for variations in the damping and correlation time.

There is no way to incorporate the effect of damping into the master equation models, in

contrast to the LLG and LLMS where damping is an important input parameter which

effects the observed rates and other properties of the system.
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Figure 5.15: Total spin vs time for SmCo with reduced barrier height σ = 1.5, for different

values of the damping, with correlation time τ < 0.01 (LLG simulations).

Figure 5.15 depicts the spin vs time from the LLG with parameters chosen close to

those of a SmCo nanoparticle, with a magnetic moment µs = 6.4×10−18, anisotropy energy

ku = 2.16 × 10−16 and with different spin-bath couplings. The qualitative prediction of

the discrete orientation model is reflected in the exponential profile of the spin’s time-

evolution, e−At with the exact value of A varying with the damping. It is important that

in general the profile of the spin relaxation may be different from exponential, even in the

LLG, as the escape follows from the set of nonvanishing eigenvalues of the Fokker-Planck

operator corresponding to the system. However, it is frequently sufficient to consider
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only the inverse of the smallest nonvanishing eigenvalue. This is the case for the spin

Hamiltonians and parameters used here, as we see the behaviour is dominated by the

lowest eigenvalue and hence is exponential.
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Figure 5.16: Biexponential behaviour in the LLMS for τ = 1.6, σ = 1.5

As the correlation time increases and non-Markovian effects become more relevant,

this increasing escape rate is accompanied by a departure from the simple exponential

behaviour predicted by the master equation. Figure 5.16 depicts the time profile of the

magnitude of the spin for correlation time τ = 1.6 with a relatively low barrier height of

σ = 2. The LLMS simulations have a similar profile to that predicted by the generalised

master equation, with the distinctive biexponential behaviour causing the spin to decay

more slowly at earlier times and faster at later times in comparison to a naive exponential

using the Kramers escape time, e−t/tkr .

The qualitative agreement of both models implies that the correlation of the individual

well population occurs on some similar timescale to the increased escape time. However,

we stress that the master equation correlation time is distinct from the one that occurs

in the LLMS, with one representing the timescale over which the well populations are

correlated, while the LLMS correlation time reflects the frequency shift in the damping

and thermal spectrum for the Langevin equation.
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5.10 MEMORY KERNELS IN THE GENERALISED MASTER EQUATION

The memory kernels which occur in the generalised master equation are equivalent to

assuming a specific form of the waiting time distribution for the hopping probability in

the continuous-time-random-walks (CTRW) which underlie the original formulation of the

problem. The waiting time distributions refer to the probability that a walker in a CTRW

will still be at a given site after a certain duration of time has elapsed. If we think of the

2-well spin problem as a simple CTRW with 2 edges, then the assumption of a waiting

time distribution is the same as assuming a form of the time-dependence of the total spin.

The relationship between the memory kernel used in the GME and the distribution

takes the form

K∗(ω) =
ωψ∗(ω)

1− ψ∗(ω)
(5.62)

where the notation f∗(ω) denotes the Laplace transform of the time function f(t), K

is the memory kernel and ψ is the associated waiting time distribution.

5.10.1 Exponential Waiting Time

For an exponential waiting time and hence spin decay, ψ(t) = e−At, we have ψ∗(ω) = A
A+ω .

The resulting memory kernel is then

K∗(ω) =
ω A
A+ω

1− A
A+ω

=
Aω

ω
= A (5.63)

Hence the Laplace transform of the memory kernel corresponding to exponential decay

is a constant. The inverse Laplace transform, K(t) = L−1[A](t) = 2Aδ(t). So we see that

the assumption of exponential decay implies a δ-function memory kernel and hence an

ordinary Markovian master equation.

5.10.2 Biexponential Waiting Time

A general waiting-time distribution of the form,

ψ(t) = 2a
1√

λ2 − 4a
e−λt/2 sinh(

1

2
t
√
λ2 − 4a) (5.64)

under the condition that λ2 > 4a results in the memory kernel

K(t) = ae−λt (5.65)
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Hence the fact that the time profile of the magnetisation exhibits a biexponential form is

not too surprising, since the use of an exponential kernel is equivalent to assuming that

the waiting time distribution is the sum of two exponentials. The condition that λ2 > 4a

results in the limitation on the rate variable R < 1/4, as the CTRW will begin to exhibit

the type of unphysical behaviour that arises in the spin system from the argument to the

hyperbolic function turning negative.

5.11 CONCLUSIONS

We have implemented the LLMS Langevin equation to model the escape problem in the

context of superparamagnetic nanoparticle which are generally admissible for modelling

as a single large magnetic moment. In the low correlation time limit, we find that the

LLG and the LLMS predict the same damping dependence for the escape time, and that

both models agree with the analytical prediction of the escape time from Kramer’s theory.

In general, departure from white noise behaviour occurs when the bath correlation time

exceeds the characteristic time of the system. For a bound superparamagnetic nanoparti-

cle, we predict that the dynamical timescale of the system is set by the Larmor precession

time, hence we anticipate stronger correlations in systems with higher magnetic anisotropy

energy. We observe that the increase of the correlation time in the high and low damp-

ing limits persists in the correlated case, with increasing correlation time also generally

increasing the escape time, while the difference in the physics of the escape problem at

low and high damping predicting that the high damping escape converges on the LLG

escape time with increasing barrier height, while for low damping the predicted escape

rates differ.

Finally, at intermediate barrier height, σ > 1, we see that the LLMS predicts a char-

acteristic biexponential time profile for the spin dependence, indicative of a generalized

rate equation description of the well population dynamics.
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Conclusions & Further Work

6.1 NON-MARKOVIAN EFFECTS IN MAGNETIC SYSTEMS

In this work we have examined the effects of non-Markovian extensions to the models cur-

rently used to investigate the dynamics of magnetic moments. In particular, we relate our

numerical investigations to the possible implications for superparamagnetic nanoparticles,

and to the properties which could be seen to be indicative of the presence of coloured noise

in such systems.

6.1.1 System Time & Coloured Noise

The LLMS Langevin equation provides the more fundamental incorporation of non-Markovian

behaviour into the physics of magnetism, being a realisation of a generalized Langevin

equation with the appropriate fluctuation-dissipation theorem for a magnetic system, and

therefore should be applicable for any system of magnetic moments where it is the case

that the system timescale and the bath timescale are not widely separated and that the

system must be expected to equilibriate through the interaction with the bath. It is of

wide potential applicability, having already been applied outside the context of superpara-

magnetism in the context of atomistc spin dynamics. [24]

In general for coloured noise effects, we expect that the noise departs from Markovian

behaviour when the system and bath are on or near the same timescale. For the LLMS

specifically, the system timescale is related to the magnitude of the magnetic fields in

the Hamiltonian. The energy involved in these processes sets the timescale of the spins’

precessional motion, and so the effects of coloured noise are inherently linked for any

magnetic system to the Larmor precession frequency.
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The fact that the coloured noise effects become evident as the system time increases

implies that for any finite characteristic bath time, departure from the LLG will become

inevitable for sufficiently high applied fields. The need to understand the physical regimes

under which such departure will occur, and the precise differences in the physics predicted

by the LLG and the LLMS motivates much of this work. In general, it is beneficial

to understand the coloured noise regime as it is the more fundamental approach to the

thermal interactions of magnetic moments than the LLG.

6.1.2 Superparamagnets & Magnetic Anisotropy

In the context of superparamagnetic particles which are confined by magnetic anisotropy

energy to specific orientations due to the energy potential, we see that this timescale is

generally dictated by the Larmor precession time about the anisotropy field. This allows

us to predict that this relevant system timescale is set by the magnitude of the magnetic

anisotropy energy of the particle. This is borne out by explicit numerical investigations

using the LLMS, according to which both the qualitative properties in terms of the decay

profile, and the quantitative escape rate begin to depart from the LLG predictions when

the bath correlation time, τc ≥ (γHK)−1 exceeds a significant fraction of the inverse of

the Larmor precession time about the anisotropy field.

If we anticipate that the correlation time of the thermal bath for different nanoparticles

are at least of the same order of magnitude, then it also implies that spins with large

magnetic anisotropy energy will be more promising candidates for coloured noise effects.

6.2 COLOURED NOISE & THERMAL ESCAPE

In terms of the Kramers escape problem under the influence of coloured noise, the results

of our simulations have some important implications. Firstly, we see that there appears

to be a very similar structure to the damping-dependence for any fixed correlation time,

wherein there exists both a low-damping and a high-damping regime, The escape time

increases with the damping parameter, χ, in the limit of both decreasing and increasing

damping, with the minimum occurring at similar values of the damping with increasing

correlation time for similar values of the barrier height, applied field and angle between

the applied field and easy-axis. Additionally, for a fixed damping we see that the escape

time tends to increase with increasing correlation time.

An additional similarity between the coloured noise approach and the LLG is the
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observation that as the temperature decreases the escape rate tends toward the familiar

Arrhenius form. An interesting result with respect to the escape time is that, for a fixed

α, we see that the escape rate for high damping seems to converge on the LLG solution as

the inverse barrier parameter increases. This makes some sense intuitively, since we might

anticipate that the Markovian and non-Markovian models should make similar predictions

when the escape time becomes much larger than timescale over which the particle motion is

correlated. In contrast, and perhaps surprisingly, for low damping the simulations predict

there is a persistent difference in the escape rate even as the barrier height grows.

We stress that the precise implication of this is not readily apparent, as the LLG

phenomenological parameter α is only meaningful in the context of the LLMS when we

take the limit of vanishing correlation time, in which case the relationship α = γχτc

guarantees correspondence between the two models. In the case that we have genuinely

correlated bahaviour, γHk ≈ τc, we in fact have two parameters to quantify the nature of

the spin-bath coupling, both of which effect the escape rate of the system. We cannot, in

general, increase the correlation time and hold α fixed, since this will cause a corresponding

decrease in the spin-bath coupling. It is for this reason that plotting the escape time as a

function of the spin-bath coupling, χ, is the more natural way to investigate the damping

properties of the coloured noise system.

Overall, we anticipate that this difference in the escape at high barriers for the low

and high damping regimes is due to the difference in physics between the regimes, which

we anticipate is still an energy-controlled diffusion at low damping, and a direct thermal

escape at high damping. However, the physics of both regimes and their escape properties

in the correlated coloured noise regime merits further investigation, using both numerical

and analytical techniques.

6.3 GENERALISED MASTER EQUATION

The generalsed master equation provides an alternative means of incorporating non-

Markovian effects into the physics of superparamagnetic particles. Under this approach

the memory effect is reflected directly in correlation of the bath population over a char-

acteristic timescale, Θ. It is important to note that the correlation time thus represented

in the GME is quite distinct from the LLMS correlation time, where one is the correla-

tion between well populations, and the other is the timescale of correlation between spin

orientations.
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As is the case in its Markovian equivalent, the discrete orientation model can only

indirectly incorporate the effect of damping through the choice of interwell transition

rates, and thus the predictions of the model will generally be of a qualitative nature.

6.3.1 Frequency-Dependent Diamagnetic Susceptibility

An important prediction of the GME model is the observation of a negative in-phase sus-

ceptibility for sufficiently high frequencies at any fixed nonzero correlation time. LLMS

simulations make extremely qualitative predictions to the GME across a range of param-

eters. The observed transition from paramagnetic to diamagnetic behaviour occurs for

similar values of the frequency, ω ≈ γHk in both models, while the variation of the sus-

ceptibility with inverse barrier height is also extremely qualitatively similar and the profile

of the susceptibility for increasing correlation time is broadly similar between both mod-

els. This qualitative similarly leads us to anticipate that a frequency-dependent transition

to diamagnetic susceptibility could be an indication of the presence of coloured noise in

magnetic systems.

6.3.2 Biexponential Decay

A second qualitative prediction of the GME approach is the biexponential time profile of

the relaxation profile of the magnetisation for a superparamagnetic problem. On a physical

basis, this is not necessarily indicative of coloured noise in the way that the diamagnetic

susceptibility is, since from experimental observations a decay profile which differs from

the simple exponential behaviour could be attributed to the detailed energy structure of

the nanoparticles, whereby the spin relaxation is generally determined by the eigenvalues

of the Fokker-Planck operator, which is generally dominated by the lowest eigenvalue and

hence often results in a single exponential timescale for the decay, but could in general

result from a nontrivial energy dependence through the Fokker-Planck operator.

However, as we find that the LLMS predicts biexponential behaviour where similar

parameters in the LLG predict a decay which is largely dominated by the exponential

term, is interesting since it does provide another possible indication for those systems

which we would strongly anticipate to be dominated by a single decay time. It is also an

additional qualitative similarity between the non-Markovian master equation and coloured

noise approach.

When taken in the context of the negative susceptibility predicted by both models,
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it suggests that an interesting future direction of work may be to ascertain whether the

Fokker-Planck of the single spin is similar to the GME expression, at least for some range

of parameters.
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Abbreviations

AC Alternating Current

DC Direct Current

DFT Density Functional Theory

FMR Ferromagnetic Resonance

FPE Fokker-Planck Equation

GLE Generalised Langevin Equation

GME Generalised Master Equation

LLB Landau-Lifshitz-Bloch

LLG Landau-Lifshitz-Gilbert

LLMS Landau-Lifshitz-Miyazaki-Seki

OU Ornstein-Uhlenbeck
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[79] José Luis Garćıa-Palacios and Francisco J. Lázaro. Langevin-dynamics study of the

dynamical properties of small magnetic particles. Phys. Rev. B, 58(22):14937–14958,

dec 1998.

[80] R. Kiihne and P. Reineker. Nakajima-zwanzig’s generalized master equation: Eval-

uation of the kernel of the integro-differential equation. Z. Physik B, 31:105–110,

1978.

[81] M. M. Kosek-Dygas, B. J. Matkowsky, and Z. Schuss. Colored noise in dynamical

systems. SIAM Journal on Applied Mathematics, 48(2):425441, Apr 1988.

[82] Jong-Soo Rhyee, J. B. Peng, C. T. Lin, and S. M. Lee. Anisotropic magnetization and

dynamic susceptibility sign change in single-crystal na 0.85 Coo 2. Physical Review

B, 77(20), May 2008.

[83] V. G. Veselago. The electrodynamics of substances with simultaneously negative

values of ε and µ. Soviet Physics Uspekhi, 10:509–514, 1968.

119



References References

[84] R. Hergt, S. Dutz, R. Müller, and M. Zeisberger. J. Magn. Magn. Mat., 18:S2919–

S2934, 2008.

[85] M. M. Klosek-Dygas, B. J. Matkowsky, and Z. Schuss. Colored noise in activated rate

processes. Journal of Statistical Physics, 54(5-6):13091320, Mar 1989.

[86] Wenjie Chen, Shufeng Zhang, and H. Neal Bertram. Energy barriers for thermal re-

versal of interacting single domain particles. Journal of Applied Physics, 71(11):5579,

1992.

[87] P.E Jönsson, J.L Garcıa-Palacios, M.F Hansen, and P Nordblad. Relaxation in inter-

acting nanoparticle systems. Journal of Molecular Liquids, 114(1-3):131135, Septem-

ber 2004.

[88] U. Atxitia. Modeling of ultrafast laser-induced magnetization dynamics within the

Landau-Lifshitz-Bloch approach. PhD thesis, Universidad Autnoma de Madrid, 2012.

[89] Peter Hängg, Peter Talkner, and Michal Borkovec. Reaction-rate theory: fifty years

after kramers. Rev. Mod. Phys., 62(2):251341, Apr 1990.

[90] U. Nowak. Thermally activated reversal in magnetic nanostructures. In Annual

Reviews of Computational Physics IX. World Scientific, 2001.

[91] Yuri P. Kalmykov, William T. Coffey, Unai Atxitia, Oksana Chubykalo-Fesenko,

Pierre-Michel Djardin, and Roy W. Chantrell. Damping dependence of the reversal

time of the magnetization of single-domain ferromagnetic particles for the nel-brown

model: Langevin dynamics simulations versus analytic results. Physical Review B,

82(2), Jul 2010.

[92] P.M. Dejardin, D.S.F. Crothers, W.T. Coffey, and D.J McCarthy. Interpolation for-

mula between very low and intermediate-to-high damping kramers escape rates for

single-domain ferromagnetic particles. Phys. Rev. E., 63:021102, 2001.

[93] Yuri P. Kalmykov, William T. Coffey, Unai Atxitia, Oksana Chubykalo-Fesenko,

Pierre-Michel Djardin, and Roy W. Chantrell. Damping dependence of the reversal

time of the magnetization of single-domain ferromagnetic particles for the nel-brown

model: Langevin dynamics simulations versus analytic results. Physical Review B,

82(2), Jul 2010.

120



References References

[94] I. M. Sokolov. Thermodynamics and fractional Fokker-Planck equations. Phys. Rev.

E, 63(5), Apr 2001.

121


