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Abstract

The problem of Simultaneous Localisation And Mapping (SLAM) has been widely
researched and has been of particular interest in recent years, with robots and self-
driving cars becoming ubiquitous. SLAM solutions to date have aimed to produce
faster, more robust solutions that yield consistent maps by improving the filtering
algorithms used, introducing better sensors, more efficient map representations or
improved motion estimates.

Whilst performing well in simplified scenarios, many of these solutions per-
form poorly in challenging real life scenarios. It is therefore important to produce
SLAM solutions that can perform well even when using limited computational
resources and performing a quick exploration for time critical operations such as
Urban Search And Rescue missions.

In order to address this problem this thesis proposes the construction of infor-
mative Bayesian priors to improve performance without adding to the computa-
tional complexity of the SLAM algorithm. Indoors occupancy grid SLAM is used
as a case study to demonstrate this concept and architectural drawings are used
as a source of prior information. The use of prior information to improve the per-
formance of robotics systems has been successful in applications such as visual
odometry, self-driving car navigation and object recognition. However, none of
these solutions leverage prior information to construct Bayesian priors that can be
used in recursive map estimation.

This thesis addresses this problem and proposes a novel method to process
architectural drawings and floor plans to extract structural information. A study
is then conducted to identify optimal prior values of occupancy to assign to ex-
tracted walls and empty space. A novel approach is proposed to assess the qual-
ity of maps produced using different priors and a multi-objective optimisation
is used to identify Pareto optimal values. The proposed informative priors are
found to perform better than the commonly used non-informative prior, yielding
an increase of over 20% in the F2 metric, without adding to the computational
complexity of the SLAM algorithm.
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Chapter 1

Introduction

Robots operating in indoors environments such as hospitals, homes and rescue
missions are becoming more common, leading to a growing demand for accurate
robot navigation, localisation and mapping within known or unknown environ-
ments. A robot exploring an environment needs to have access to a map to be
able to localise itself and keep track of its position. Moreover, in order to be able
to map an unknown environment a robot needs to be able to accurately deter-
mine its pose at each time instant. If there is only partial or no knowledge of the
area to be explored the robot needs to be able to localise itself and map its en-
vironment simultaneously. This problem, commonly referred to as Simultaneous
Localisation And Mapping (SLAM), has been addressed in numerous ways over
the years [47, 50]. The majority of commonly used solutions employ recursive
Bayesian estimation to iteratively produce map and robot pose estimates. There is
a vast literature of different SLAM approaches producing solutions improving dif-
ferent aspects of SLAM such as map consistency, map representation and sensors
or filtering methods [53, 73, 132, 135].

Theoretical solutions to the SLAM problem often require infinite computa-
tional resources or linear robot dynamics, which are unrealistic requirements for
real world applications. Simplifications such as using finite sets of samples to rep-
resent distributions [18] or linearising non-linear robot dynamics [82] are thus re-
quired to make such theoretical solutions applicable to real life problems. SLAM
solutions proposed to date have managed to reduce computational complexity
through the use of more efficient representations and to increase map and locali-
sation accuracy [18, 21, 82]. However, since robots running SLAM algorithms need
to be able to perform reliably in real life challenging scenarios, a focus on improv-
ing metrics without taking into consideration how such improvements translate to
advantages in real world implementations is not sufficient. Whilst SLAM concepts
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2 1.1. Motivation

have been theoretically tested and perform well under controlled conditions and
assumptions, real world implementations often do not meet such requirements,
leading to poor performance in real life scenarios [111–113].

An application that has been very challenging to date for robots running SLAM
is Urban Search And Rescue (USAR). Robots tested in real life rescue missions
have performed poorly compared to their performance in simplified environ-
ments, failing to provide significant assistance to rescue personnel [13, 64, 83,
88, 111, 112, 114]. In order to be valuable in such scenarios robots need to be able
to perform well even if computational resources are limited and sensor readings
are unreliable, for example due to smoke interfering with laser range scanners.
As robotics solutions become more and more common there is a need to produce
systems that leverage all available information to perform well without requiring
a number of environmental conditions to hold true. It is also important to design
systems that do not require great increases in computational complexity to yield
accurate pose and map estimates. This thesis builds on this premise to produce
an improvement to current SLAM methods that yields better performance with-
out increasing computational complexity or requiring any environment simplifi-
cations. It proposes the use of available prior information to construct informative
Bayesian priors for SLAM, incurring only a one-off computational cost to construct
such priors.

1.1 Motivation

There are a number of demanding real life applications where reliable SLAM so-
lutions are necessary to ensure effective robot operation. Safety critical missions
present a greater challenge, with robots operating in environments that may be
more difficult to traverse, map, navigate and explore. The scenario that motivates
the research presented in this thesis is USAR but the applications of this research
are not limited to search and rescue. We use this environment as an example
of a very challenging real life scenario in which producing more accurate maps
without adding computational costs can be very beneficial.

The USAR environment is difficult and dangerous for human rescuers to ex-
plore and navigate [58, 76]. Rubble, collapse, smoke and untraversable areas
are only a few of the potential difficulties rescuers face while operating in such
an environment. In order to make such missions safer and reduce the risks to
first responders the robotics community has proposed the deployment of robots
to explore and map post-disaster areas and help locate and extract survivors
[38, 106, 107, 113, 130, 142, 150].
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Whilst progress has been made in the area of USAR robots, with many ad-
vances in terms of mechanical design, sensors and algorithms used for navigation,
localisation and mapping, there are many remaining challenges [13, 64, 88, 112,
114]. One of the key challenges that is of interest in this thesis is accurate mapping
of the disaster area, which can be particularly valuable in the case of buildings that
have partially collapsed as a result of an earthquake, flood, mudslide or an explo-
sion. In such a scenario producing an accurate map of the post-disaster area can
help first responders plan safer and more efficient rescue missions by avoiding
collapsed sections and planning safe, short routes to extract survivors.

So far, the performance of robots running SLAM algorithms in real life USAR
missions has been disappointing, failing to provide valuable help to first respon-
ders [111–113]. This poor performance in real life environments can be attributed
to unrealistic simplifications such as assuming accurate and reliable sensor data
[53], using linearisations to simplify complex, non-linear robot dynamics [82] or
assuming ample computational resources to achieve an accurate solution [135].

In order to be useful in a rescue mission SLAM systems need to meet the
following criteria:

• Produce a usable map even if exploration time is limited for time-critical
missions

• Produce a useful map even in scenarios where sensor readings are not reli-
able (laser range scanners can be unreliable if there is smoke in the environ-
ment, for example)

• Produce a useful map even if less accurate sensors are used

• Produce a useful map even if limited computational resources are available

Focusing on these proposed criteria will lead to solutions that aim to perform
well in real life challenging applications and prioritise functional over mathemati-
cally elegant solutions.

1.2 The role of priors in SLAM

Bayesian methods dominate the estimation algorithms used in Simultaneous Lo-
calisation and Mapping (SLAM) [50], yet there has been very little research to
date into how to effectively construct the Bayesian map prior using available in-
formation. This is the case even though the use of priors is a key distinguishing
feature of Bayesian estimation, with the prior used in the majority of occupancy-
based SLAM solutions being non-informative, assuming each location in the map
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is equally likely to be empty or occupied. The lack of attention given to the map
prior can be contrasted to the enormous wealth of raw prior information that is
readily available and untapped for most mapping and localisation scenarios, such
as architectural drawings for buildings, city maps for the urban environment, ge-
ographical surveys for the wider outdoor environment and even pipe network
maps for the underground environment. There exists an important and unsolved
problem, therefore, in how to optimally synthesize raw prior information into a
form that is suitable for robot navigation.

A number of robotics applications have benefited from the use of available
prior information to improve performance in real life situations. Prior informa-
tion is used to improve navigation, localisation and mapping of self-driving cars
or to improve the performance of odometry predictions [12, 24, 63, 101]. Prior
information can also be used to define a known set of landmarks or landmark
locations in SLAM [123, 124]. Unlike these methods which use raw prior infor-
mation to impose constraints, this thesis proposes a method to process raw prior
information and construct an informative prior map that can be updated using a
recursive Bayesian mapping method.

Using prior information is very valuable to ensure systems perform well in
real life, safety critical applications such as self-driving cars, where robust perfor-
mance is favoured over generality or mathematical elegance. A similar approach
is proposed in this thesis for robots running SLAM algorithms in safety critical
applications such as USAR. A non-informative prior map is commonly chosen in
an attempt to provide a solution that does not depend on having access to prior
information. However, for most real life situations, sources of prior information
are available. Refraining from using prior information simply to produce a more
general solution does not result in a system that can perform well in challenging
real life scenarios. Conversely, incorporating prior information can improve per-
formance and provide a more robust system in case of sensor failure, for example.

Given the Bayesian formulation of the majority of state-of-the-art SLAM solu-
tions informative Bayesian priors can be used to yield a number of advantages:

• In recursive map estimation they can produce more accurate maps if a time
constrained exploration is performed

• They can provide information about unexplored areas

• They can help provide information about the environment even in case of
sensor failure or malfunction

• They do not add to the cost of running the SLAM algorithm itself and can
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be incorporated to any SLAM implementation that uses recursive Bayesian
mapping

This thesis uses indoors occupancy grid SLAM as a case study to explore this
concept but the methods used could also be extended to an outdoors scenario.

1.3 Research aims and scope

The main aim of this thesis is to propose a method to improve SLAM performance
in challenging real life scenarios in which current state-of-the-art solutions strug-
gle. The motivating example has been USAR due to the great number of challenges
it presents in terms of sensor reading accuracy, available computational resources
and exploration time but also the great potential to save lives if robotics solutions
perform as required. Given the potential advantages of using SLAM priors we
aim to produce informative priors that can improve map accuracy in such envi-
ronments. In order to be useful to first responders the map produced needs to
be accurate in terms of representing the environment in a way that is legible and
easy to understand by non-expert human responders.

Unlike many SLAM approaches in the literature that provide feature-based
maps to be used by robots to localise or plan routes [40, 74, 77, 116], our focus is
not localisation but mapping, and our end user a human and not a robot. Given
this definition the map representation of choice is occupancy grid maps that re-
semble floor plans and are easier for rescuers to understand. Even when using
an occupancy grid map representation, however, modern systems often produce
a final map that is not always easy to interpret by a non-expert. Although many
of the maps produced using state-of-the-art occupancy grid SLAM methods yield
maps that look impressive to non-experts at first sight, very few of them can be
used reliably to understand an indoors environment. Unexplained artifacts, lines
at an angle or missing segments can correspond to mapping errors or, in the case
of a USAR operation, to collapsed areas.

Mapping errors are more common in a USAR environment. Dust can inter-
fere with range sensors, poor light can make visual feature detection impossible.
Mapping errors caused by such phenomena might not be important in some ap-
plications but in a safety critical mission it is imperative to convey accurate infor-
mation even if sensors perform unreliably. Another problem faced in time-critical
missions is limited exploration time. An incomplete exploration can lead to an
unintelligible map that effectively provides no information to first responders.
Moreover, computational resources may be limited due to limited onboard pro-
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cessing power and insufficient bandwidth in communication channels may limit
the amount of information that can be sent to a remote computer for processing.

The above challenges highlight the need for a SLAM solution tailored to this
type of challenging scenario. Given this scope, our research aim is to use infor-
mative priors to produce a SLAM solution which, compared to the same solution
using a non-informative prior

• Yields a more accurate map: an accurate map is defined as one that agrees
with the ground truth, correctly detecting wall sections

• Provides information about unexplored areas: information about walls in
unexplored areas needs to be provided

• Yields a more accurate map throughout the exploration: accuracy needs to
be reached and maintained throughout the exploration

• Maintains improved accuracy when using a small number of sensor read-
ings: accuracy is improved even if few sensor readings are used

• Computational cost associated with such improvements is minimised: im-
proved accuracy should not incur great computational cost increases

Using these aims, we define the following goals for this scenario. In terms of
the final map produced, we aim to improve accuracy compared to that produced
using a non-informative prior in four ways

• Overall accuracy: the map needs to correctly represent the environment.
This consists of two aspects

– Detecting as many of the walls as possible

– Ensuring that detected occupied space corresponds to true occupied
space

• Accuracy of unexplored areas: this is the same as the accuracy goal but
applies to unexplored areas; this will be reflected in the overall accuracy but
is also worth examining separately

• Accuracy vs number of scans: accuracy needs to be achieved even for a
smaller number of scans

• Accuracy vs exploration time: map accuracy needs to reach and maintain a
high value as early as possible during exploration
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A detailed explanation of performance metrics that measure the extent to
which these goals are met is given in Chapters 4 (accuracy measured using preci-
sion and recall) and 5 (accuracy measured using the evolution of the F2 metric with
time and for different numbers of scans). Improved accuracy as defined above is
always relative to that achieved using a non-informative prior. The maximum
achievable accuracy in a given scenario will depend on factors such as sensor ac-
curacy, grid resolution and chosen SLAM algorithm implementation and as such
no absolute accuracy value goals are defined.

1.4 Proposed approach

In order to construct an informative Bayesian prior map a source of prior infor-
mation needs to be identified and the information needs to be processed to be
placed in a prior format. Road network maps or aerial photographs can be used
for outdoors applications and architectural drawings and floor plans can be used
for indoors applications.

Indoors mapping is used as a case study to demonstrate this concept and ar-
chitectural drawings and floor plans are used as a source of prior information. An
occupancy grid FastSLAM implementation [109] is chosen to allow for the study
of recursive mapping without the need to address localisation. Occupancy grids
represent the area to be explored by a grid of cells each associated with a proba-
bility of occupancy. They are the map representation chosen in this thesis because
the incorporation and visualisation of prior information is relatively straightfor-
ward. The map at time k = 0 is the Bayesian prior constructed based on available
information and if no information is available a priori a non-informative Bayesian
prior is used.

The main aim of this thesis is to propose a method to construct optimised
informative indoors priors. Therefore the main focus is an algorithm to process
the drawings, extract relevant information and convert it into an appropriate prior
format through the optimisation of prior parameters.

The benefits of using such priors are tested through a mapping implementa-
tion that assumes robot poses are accurate and known a priori. This assumption
allows for a more comprehensive study of possible prior parameters and their ef-
fects. Given the separation of localisation and mapping in FastSLAM the results
obtained in this thesis are also applicable to SLAM systems in which poses are
not known and are estimated using methods such as Monte Carlo localisation. An
occupancy grid FastSLAM implementation is used to test the proposed priors in
experiments using a real robot to experimentally validate simulation results.
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1.5 Contributions

The main contribution of this thesis is a method to construct a Bayesian prior for
recursive probabilistic mapping using available prior information. The contribu-
tions of this thesis are as follows:

• An analysis of the role of priors in occupancy grid SLAM and desirable prior
properties.

• Given the shortcomings of existing architectural and floor plan processing
methods a novel method for door and wall detection in architectural draw-
ings and floor plans is proposed in Chapter 3. This method is tailored to
the goal of correctly extracting wall locations and is found to outperform the
commonly used dilation method to determine wall locations. The proposed
method is found to yield good qualitative and quantitative performance
across all drawings, unlike the dilation method which does not generalise
well for different types of drawings.

• Due to this focus on wall detection, existing methods used to assess the
quality of information extracted from architectural drawings and floor plans
are found to be ill-suited to this application. A novel approach to assess the
quality of extracted structural information from an architectural drawing is
proposed in Chapter 3, viewing the assessment as a binary classification
problem, aiming to correctly classify walls and empty space.

• The problem of assessing map quality is challenging and there is no uni-
versally accepted method to do so, with the majority of proposed methods
being tailored to the application or the SLAM algorithm used. Given this
limitation a novel approach is proposed in Chapter 3 to assess the quality
of occupancy grid maps. The problem of robot mapping is formulated as a
binary classification of all cells of an occupancy grid as empty or occupied
space.

• The extracted structural information then needs to be placed in a suitable
format in order to construct a prior map. A method to convert structural
information extracted from an architectural drawing to an occupancy grid
prior is proposed in Chapter 4 and design variables to be determined are
identified.

• Due to the novelty of the proposed approach there have been no studies to
assess how prior values assigned to structural information extracted from an
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architectural drawing or floor plan affect the quality of the map. Chapter 4
addresses this gap in the literature and conducts a study of how prior values
of occupancy assigned to detected walls and empty space affect map quality.

• The development of an overall algorithm to construct optimised Bayesian
priors using an architectural drawing or floor plan is presented in Chapter 5,
proposing prior values that yield good qualitative performance across all
drawings. Using such priors results in more accurate maps without adding
to the computational cost of running the SLAM algorithm.

• A qualitative comparison of maps produced using a non-informative prior
and those produced using the proposed informative prior is conducted in
Chapter 5 in order to explore the potential benefits of using an informative
prior. The proposed method is found to outperform the commonly used
non-informative prior and yield qualitatively good maps even if a coarse
grid is used or an incomplete exploration is performed.

• A quantitative benchmarking of maps produced using a non-informative
and the proposed informative prior is conducted in Chapter 5 to quantify
the benefits of using the proposed approach. Maps produced using the pro-
posed informative prior are found to outperform those produced using a
non-informative prior.

• An experimental validation of using the proposed prior in SLAM is pre-
sented in Chapter 6, with results showing improved performance over using
the non-informative prior. The proposed prior is found to perform better
both in a qualitative and in a quantitative sense and to provide information
about unexplored areas that makes it easier for human users to interpret the
map.

1.6 Thesis overview

Chapter 2 presents an overview of the USAR environment and highlights the
advantages of using robots to map and explore post-disaster areas and assist
with rescue missions. The remaining challenges such an environment presents
to robotics solutions are presented and indoors SLAM is identified as the focus
of this thesis. An overview of SLAM solutions used to date as well as state-of-
the-art solutions are presented. A gap in the literature is identified in the area of
constructing optimised informative SLAM priors to improve performance and the
significance of priors in recursive Bayesian SLAM is highlighted.
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Chapter 3 explores architectural drawings and floor plans as a source of prior
information for indoors SLAM. A novel method to process such drawings and
extract structural information is proposed, as well as a method to quantitatively
assess the quality of the extracted information. The problem is presented as a
binary classification of all pixels in the drawing, with each pixel belonging to
either walls or empty space. Recall, precision and false positive rate can then
be used as performance metrics. Results show this method yields a precision
of at least 98%, recall of at least 61% and a false positive lower than 0.09 % for
all drawings tested. Results are also benchmarked against those obtained using
dilation to detect walls and the proposed approach is found to generalise better,
yielding good performance across all drawings.

Chapter 4 conducts a study of possible prior values of occupancy to assign
to detected walls and empty space in an architectural drawing. An occupancy
grid mapping simulator for Matlab is proposed and presented in order to test the
benefits of using different prior values. Possible combinations of prior values to
assign to detected walls and empty space are then tested using this simulator. A
novel approach to assess map quality is proposed, viewing the assessment as a
binary classification of all map pixels as being walls or empty space. A precision-
recall analysis is then used to assess performance. The objectives of optimising
precision and recall are found to be conflicting and multi-objective optimisation is
used to find Pareto optimal prior values. Shortlisted Pareto optimal values yield
significantly improved qualitative results compared to values that optimise a sin-
gle objective. Finally, the Pareto optimal shortlisted values are tested to determine
values that yield good qualitative performance across all drawings. A k-means
clustering algorithm is used to identify clusters within the prior value solutions
and a cluster containing prior values that yield good qualitative performance for
all drawings is identified. Values within that cluster are then tested to identify the
prior values that yield the best qualitative performance.

Chapter 5 tests the benefits of using an informative prior, both in a qualitative
and quantitative sense and the effects the quality of the extracted prior informa-
tion has on the final map are examined. The proposed informative priors yield im-
proved performance compared to maps produced using a non-informative prior,
resulting in an increase of over 20% in the F2 metric. Using informative priors
is also found to outperform using non-informative priors where a computation-
ally efficient solution is required, yielding an accurate map even if an incomplete
exploration is performed or the sensors used become unreliable.

Chapter 6 presents the occupancy grid FastSLAM implementation used to ob-
tain experimental results. An overview of sensor and motion models used is given.
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Larger scale experimental results obtained using a turtlebot mounted with a Kinect
sensor are presented. The results obtained using the proposed prior are compared
to those obtained using a non-informative prior and the proposed prior is found to
perform better, further confirming the results obtained in Chapter 5. Experiments
are also conducted to test how localisation accuracy is affected by the quality of
the prior map. A drawing as-is is compared to using the extracted prior. Localisa-
tion quality using the drawing as-is is found to be poorer, and significantly worse
as exploration progresses, confirming the advantages of extracting walls to create
a prior.



Chapter 2

Robot mapping and localisation
for USAR

The use of robots in USAR missions has been of great interest in recent years
due to disasters such as the terrorist attack of 9/11, the Katrina hurricane, the
earthquakes in Nepal and the Fukushima-related disasters in Japan [111–113].
In such scenarios the risks to first responders can be minimised by deploying
a robot or team of robots to explore and map the post-disaster area and locate
and even extract survivors. Despite their potential to be very valuable, robots
deployed in real life rescue missions have been for the most part disappointing
[13, 64, 83, 88, 111, 112, 114]. Using a robot to produce accurate maps quickly
and efficiently remains an unsolved problem, with most state-of-the-art solutions
performing well in simulated or greatly simplified environments but struggling to
meet the speed, reliability and accuracy requirements of real life missions. This
chapter presents existing solutions, highlights their shortcomings and identifies
gaps in the literature that make current solutions insufficiently accurate and effi-
cient for rescue missions.

This chapter is structured as follows. Section 2.1 gives an overview of USAR
operations and the value robots can add to rescue missions, identifying remaining
challenges for robot systems used in USAR. The area of SLAM is identified as a
particularly significant challenge and an overview of SLAM solutions found in the
literature is given in Section 2.2. Advances and established methods in the areas
of different sensors, map representations and filtering algorithms as well as state-
of-the-art solutions are identified. Finally the effect of the Bayesian priors used in
SLAM is discussed and their role in occupancy grid SLAM, the focus of this thesis,
is presented in Section 2.3.

12
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2.1 Robotics solutions for USAR

Robots are commonly used in tasks that are too dull, dirty, difficult or dangerous
for humans to perform. USAR operations are an example of such a task since
they take place in environments that are very challenging for rescuers to explore
and navigate. Rubble and potential collapse, smoke and fire, chemical, biologi-
cal or nuclear contamination make these operations extremely dangerous to first
responders who need to venture into post-disaster areas without knowing what
to expect. Deploying a robot equipped with sensors to explore the area and pro-
duce a map for first responders to use, or assist with rescue missions is therefore
a solution that has been proposed by the robotics community to help make rescue
missions safer and more efficient [38, 106, 113, 142, 150].

2.1.1 The USAR environment and operations

USAR [58] operations have received a lot of media attention in recent years due
to disasters such as the terrorist attack at the World Trade Centre, the Katrina
hurricane, the earthquakes in Nepal and the Fukushima-related disasters in Japan.
Responding efficiently and effectively after such disasters occur requires complex
rescue operations that minimise risks to first responders [76]. The post-disaster
areas present a number of difficulties, dangers and hazards and operations need
to be carefully planned to ensure efficient, quick and safe rescue of survivors.
Given the safety-critical nature of these operations, improving their efficiency and
reducing risks to the lives of first responders has been of great interest, with many
researchers proposing robotics solutions to assist with such missions [38, 106, 107,
113, 130, 142, 150].

The environment

The USAR environment is very difficult and often dangerous for rescuers to ex-
plore and navigate [58]. Partial or total building collapse can result in structurally
unsafe partially collapsed areas or piles of rubble that are difficult to explore and
access. An example of such a disaster area after the 2015 earthquakes in Nepal
is shown in Figure 2.1, which highlights the varying levels of possible building
collapse. Fully collapsed sections are difficult to explore and partially collapsed
buildings can be unsafe to enter and can contain smoke, dust and structurally
unstable sections. Another common disaster is fire in buildings, where the smoke
and heat can disorient rescuers and cause breathing problems or injure them. Im-
mediate response is required to rescue victims that may be injured or unconscious
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Figure 2.1: Partially and fully collapsed sections of buildings after the 2015 Nepal
earthquake. Fully collapsed areas are very difficult to explore and partially col-
lapsed areas can be structurally unstable and thus unsafe (image reproduced from
[49] under the Creative Commons license).

[144]. Finally, buildings that have suffered chemical, nuclear or biological contam-
ination may need to be explored [113]. Such buildings present great dangers to
the health of responders and no human teams can be safely deployed to explore
them.

The operation

The guidelines for rescue operations vary between countries and thus there is
no universally adopted search and rescue procedure. Rescue handbooks such as
[133] for Australia and [102] for the UK describe the structure of such operations.
According to a study of Australian rescue operations [64], the main aim is to
locate and rescue victims as fast as possible and without excessive risk to the lives
of rescue personnel. The operation also needs to be efficient, minimising the setup
time required. Time is more critical in situations where the disaster area changes
very rapidly such as fire [144] and less critical in operations where the scene is less
likely to change significantly such as building collapse.
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The need for robots

Search and rescue environments present numerous hazards and difficulties to hu-
man responders. Difficult or no access, potential building collapse, extreme heat,
radiation or poisonous gases are only a few of the difficulties rescue personnel may
face. Rescue operations can thus greatly benefit from integrating robotics solutions
that help assess damage, map and record video of areas that are inaccessible or
dangerous to humans or trained canines. In recent years robots designed and/or
programmed by various universities have been deployed in rescue operations such
as the World Trade Centre [111], the mudslides in La Conchita, California in 2005
[112] and the Fukushima contaminated areas [113].

2.1.2 Progress achieved and remaining challenges

Robotics research for USAR has had a few successes in recent years. Robot so-
lutions that can navigate challenging terrain have been designed [38], with some
using more suitable tracks or wheels [113], others using innovative designs such
as a snake-like structure to navigate areas that are difficult to access [154] and
some using aerial vehicles [26] or even teams of different robots [107, 130]. Robot
localisation and mapping is a topic that has been the focus of much recent research
and advances are being made in terms of map quality [106, 142, 150], localisation
accuracy [37, 54] and system scalability and robustness [98].

However there are many remaining challenges which can be grouped into the
following categories [13, 64, 83, 88, 111, 112, 114]:

• Robot design (mechanical): different robot designs to tackle challenging
terrain and hazardous environments

• Sensors: more durable/suitable sensors that provide more accurate data for
mapping, localisation and exploration

• Communications: more reliable data transmission

• Autonomy/user interface: achieving higher levels of autonomy and making
the proposed system user friendly/easy to use by non-experts and rescuers

• Robot localisation and mapping: different ways to localise robots within
the environment and produce a map of the post-disaster area

The focus of this thesis is accurate mapping and localisation, particularly in
challenging real life scenarios such as USAR and partially collapsed buildings.
A robot exploring a partially collapsed building can produce a map to be used
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by rescue personnel to plan more efficient and safer missions, access casualties
and survivors and minise risks to first responders. Accuracy is important because
mapping errors may be misinterpreted as structural damage and mislead rescuers.

2.1.3 Robot localisation and mapping

Attempts have been made to produce maps of disaster areas but most of them have
struggled with real life challenging environments. After the World Trade Centre
terrorist attack roving robots were used to search for victims, paths through rubble
that could be quicker to excavate and hazardous materials and perform structural
inspection [88, 111]. The inside of the buildings was dark and covered with thick
dust and mud which caused problems with navigation [88, 111] and the post-
disaster area lacked easily distinguishable landmarks or recognisable locations
which made mapping using cameras difficult.

Localisation and mapping improvements proposed to date aim to produce
faster, more robust solutions that yield consistent maps. This focus on improved
performance has lead to solutions that perform well in simulated or simplified
environments but struggle in complex real life environments such as USAR [13,
64, 83, 88, 93, 111, 114, 130]. Accurate, real time SLAM for indoors USAR scenarios
such as partially collapsed buildings remains an unsolved problem. In order to
be useful in USAR, SLAM-produced maps need to be more accurate and account
for any out-of-the ordinary observations whilst also ensuring computational effi-
ciency.

The localisation and mapping requirements for USAR applications can be sum-
marised as [64, 88, 111, 112, 147]:

• High computational efficiency

• High accuracy and reliability

• High accuracy for time-limited/incomplete exploration

• Good readability of map by rescue personnel

It is therefore important to produce more SLAM solutions that focus on good
performance with limited resources in challenging environments in order to make
robots useful contributors rather than cumbersome observers to USAR missions.
The SLAM problem [50] and advances made as well as their relevance to USAR
are discussed in the next section.
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2.2 Simultaneous Localisation And Mapping

Robots used in real life environments such as USAR need to be able to map their
environment and at the same time localise themselves within it. This section
presents this problem commonly referred to as Simultaneous Localisation And
Mapping (SLAM) and lists commonly used solutions as well as remaining chal-
lenges.

2.2.1 Problem statement

SLAM is the problem of placing a robot in an environment and having it produce
a map of the area and keep track of its location within that environment simulta-
neously [50]. In order to achieve this task the robot needs to have access to a map
to be able to determine its location but it also needs to be able to track its location
within the environment at each time instant to be able to map its surroundings
correctly.

The structure of the SLAM problem, Figure 2.2, can be broken down into the
following elements. Sensors are used to detect objects to produce a map of the area
and a motion model or odometer is used to predict the robot’s pose. However, sen-
sor data are not always accurate and they cannot always be interpreted correctly
and motion models are imperfect and cannot predict errors due to phenomena
such as wheel slipping. In order to address these problems a SLAM filtering al-
gorithm based on probabilistic estimation is used, and the noisy robot pose and
map estimates are updated recursively. In the Bayesian formulation of SLAM a
prior can also be used to incorporate any information about the environment that
is available a priori.

As shown in Figure 2.2 the problem of robot SLAM can be broken down to a
number of sub-problems, namely [50]:

• A choice of sensors

• A choice of a map representation

• A choice of a motion model for the robot

• A choice of a filtering algorithm that combines pose and map data to solve
the SLAM problem

2.2.2 Environment representation and robot sensors

The robot environment is the indoors or outdoors space that the robot navigates
or operates within. Data collected by sensors mounted on the robot can be used
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Figure 2.2: The structure of the SLAM problem: sensor data, prior information
and motion model predictions are input to the SLAM algorithm that recursively
maps the environment and localises the robot within it.

to construct and update a map of this environment. Depending on the sensors the
robot uses there are a number of possible map representations that are commonly
used in the literature [19, 29].

An overview of possible map representations can be seen in Figure 2.3. These
can be grouped as follows:

• Metric maps can be feature-based or occupancy-based

– Feature-based maps contain the location of a number of unique and/or
easily distinguishable features

– Occupancy maps look more like floor plans of the explored area, iden-
tifying occupied and unoccupied space in the environment

• Topological maps give an overview of areas of interest and their relative
positions without giving any metric information

Most of these representations are used to produce 2D maps but can also be
extended to 3D representations.

Feature-based maps

This type of map represents the environment as a collection of locations of se-
lected features or landmarks. An example of such a map can be seen in Fig-
ure 2.4. Cameras are commonly used to detect uniquely identifiable visual fea-
tures within the environment using feature detectors such as Random Sample
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Figure 2.3: Different map representations: Depending on the choice of map rep-
resentation different sensors and SLAM algorithms may be used (landmark map
image was produced using the FastSLAM Matlab code found in [141]).
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Figure 2.4: Example of a feature-based map: the true robot trajectory is shown
in blue, true landmark positions are drawn as green stars, predicted landmark
positions as red dots, the true robot position as the green arrow and the predicted
position as the red arrow. This figure was produced using the FastSLAM Matlab
code found in [141]. Cameras can be used to identify features and estimate their
distance from the robot.

Consensus (RANSAC) [55]. There are many SLAM implementations using vision
and visual feature extraction [40, 41, 74, 77, 116] and an overview of visual SLAM
methods can be found in [95]. Distance sensors can also be used to detect features
such as walls by searching for linear sections in the environment, for example
[96, 122, 148]. Using distance sensors to detect walls as features is less common,
however, and most feature-based systems tend to use cameras.

The main advantage of this type of representation is its sparsity, since only a
limited number of features and their locations need to be maintained. However,
selecting a sufficient number of uniquely identifiable features and being able to
correctly detect them using on-board cameras is a difficult problem. Selecting suit-
able features is non-trivial since many environments such as offices do not always
contain a sufficient number of uniquely identifiable landmarks. Even if there are
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Figure 2.5: Example of an occupancy map: the environment is split up into square
cells and a probability of occupancy is updated for each; white squares have a high
probability of being empty, black squares a low probability of being empty and
grey squares are equally likely to be occupied or unoccupied.

enough unique landmarks within the environment the problem of robustly and
reliably identifying them, often called the data association problem [20], remains
unsolved. Feature-based maps are often chosen for the exploration and mapping
of outdoors environments since their sparsity is advantageous when mapping a
very large area [97, 104].

Occupancy maps

Occupancy grid maps aim to distinguish between empty and occupied space
within the environment [51]. In order to do so the area to be explored is split
into a grid of squares as shown in Figure 2.5. Each square is assigned a prior
probability of occupancy, typically 0.5. Assigning such a prior probability indi-
cates that there is no available information about the environment a priori since
each square is assigned a prior probability of 0.5 signifying it is equally likely to
be occupied or unoccupied. As new sensor data is collected the occupancy value
of each square is recursively updated to incorporate this data.

This type of representation is most commonly used to represent data collected
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by robots mounted with distance sensors such as ultrasound or laser range finders
and many implementations of SLAM using this approach have been proposed
[53, 63, 67, 69, 106, 121, 152]. An example of an occupancy grid map can be seen
in Figure 2.5, where white areas have a high probability of being unoccupied,
black areas a low probability of being unoccupied and grey areas have not been
explored (so are equally likely to be unoccupied or occupied).

This representation has a number of advantages [108, 136]. Information is
collected and represented for all map locations with an explicit representation
of empty space. This representation also allows for different models of sensor
uncertainty to be used when updating occupancy values [136]. For indoors envi-
ronments this is an intuitive map representation for human responders to use to
plan USAR missions, for example, since it greatly resembles a floor plan.

However, this representation has a number of limitations. Depending on the
size of the area to be mapped and the chosen grid resolution it can be computa-
tionally costly, having to update and maintain occupancy values for a large num-
ber of grid cells. A finer grid results in better map quality, however, so there is a
trade-off between map accuracy and computational complexity. DP SLAM aims to
address this issue by using a tree representation to efficiently store map data but
assumes very accurate sensors [53], an unrealistic assumption for real-life appli-
cations. Moreover, if the model for sensor uncertainty used to update occupancy
values is incorrect the map produced could be inaccurate [136].

Topological maps

This type of map does not rely on metric measurements but rather represents the
environment in terms of locations of interest and paths connecting these. Graphs
are commonly used to represent such maps as shown in Figure 2.6, with each
node corresponding to a different room and each edge showing what other rooms
are accessible from that node. Information is collected using robot sensors and the
most likely graph configuration given sensor readings is calculated offline after all
data are collected [34, 56].

The advantage of such a map is that it gives an overview of locations and
traversable paths and can be used for route planning and optimisation. The com-
monly used graph representation also allows the use of standard graph optimisa-
tion techniques. This type of map can be useful in terms of giving an overview of
the structure of large indoors environments. However, this method cannot be used
to produce a map while the robot is exploring since all data needs to be collected
before the map can be constructed. It also provides no information about the
structure of each node (or room in the case of the map in Figure 2.6). It does not
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Figure 2.6: Example of a topological map: the environment is split up into areas
A-H and the relevant graph can be drawn. Graph nodes represent different rooms
in the environment and graph edges represent possible routes between different
rooms. Weights can also be assigned to each edge to indicate how far rooms are
from one another.

provide a full physical representation and is thus ill-suited to applications where
a detailed mapping of an area is required such as USAR.

Hybrid maps

Each map representation has a number of advantages, with different representa-
tions being better suited to different applications. Some research has combined
these methods to produce solutions that leverage the strengths of different meth-
ods.

A hybrid topological and metric map is proposed in [150] for use in indoors
environments containing ruins, such as partially collapsed buildings. A topolog-
ical map provides an overview of the building structure such as the number of
rooms and accessibility of each room, an occupancy map is used to detect obsta-
cles and features are used to identify different locations. The system has not been
benchmarked against solutions using different map representations and so quan-
tifiable advantages have not been identified. Another topological-metric hybrid
solution [91] uses a graph to plan the overall mission and a metric occupancy map
to localise within each node of the topological map.

A combination of feature and occupancy SLAM is proposed in [155] in which
a robot switches between a feature-based and an occupancy-based map depend-
ing on whether it is navigating outdoors or indoors. A reinforcement learning
approach is used to train the map type selection algorithm and therefore this ap-
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proach can suffer from problems such as overfitting and performance is dependent
on the training set of choice.

Whilst hybrid maps allow the use of the most appropriate representation for
each task they also have an increased computational cost since a number of dif-
ferent representations need to be maintained and the difficult task of choosing an
optimal representation for each location/task needs to be performed.

2D and 3D

All the map representations described above can be extended to 3D and produc-
ing 3D maps has been a topic of interest in the field. An array of laser range
scanners [75, 79] or a rotating laser range scanner [151] can be used to provide
3D information. Depth cameras (time-of-flight or stereo vision) [73, 132] and the
Microsoft Kinect sensor [72] can also be used to provide 3D data. 3D mapping can
also be achieved using flying robots mounted with distance sensors [130]. These
systems use representations such as object point clouds to provide 3D maps of the
environment. 3D mapping is computationally more expensive and accurate 3D
mapping remains an unsolved problem.

2.2.3 Filtering algorithms

Different types of filters can be used in SLAM to produce estimates of robot pose
and landmark locations/occupancy maps. There are two important elements to
this problem: the update of the robot pose and the update of the map/landmark
locations [50].

In order to predict the robot’s pose a model of robot dynamics can be used to
take a control input and a starting pose for the robot and produce an estimate of
the robot pose, xk, at the next time step. Alternatively odometry measurements
can be used to predict the robot’s pose xk but, in order to simplify the explanation
of different methods, we will assume that all predictions use a robot dynamics
model. Both odometry predictions and model predictions are inaccurate: models
cannot perfectly model all real-world effects and events such as wheel slipping
can cause erroneous odometry readings.

Similarly, a model of what landmark/occupancy values are observed, based on
the robot’s pose and the set of landmarks/the map up to that point, can be used.
A perfect mapping between sensor readings and landmarks in the map/map lo-
cations cannot be guaranteed due to feature detector inaccuracies.

Given the robot dynamics and observation model the aim is to produce an esti-
mate from the noisy motion model and use that to update landmark locations/the
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map. The map can then be used to improve pose estimates. Thus estimates of
robot poses and landmarks/ the map as well as the uncertainty associated with
each prediction can be produced recursively. There are a number of different fil-
ters that are commonly used in the literature to perform this estimation and some
of the most popular choices are presented in the following sections.

Probabilistic formulation

SLAM performs a probabilistic estimation to determine the robot’s pose and a
map of the environment given sensor readings, control inputs and the robot’s
initial pose. Formally, it aims to compute the joint posterior of the robot’s pose xk

and the map m [50]

p(xk, m|Z0:k, U0:k, x0) (2.1)

for all times k, where xk is the state vector describing the robot’s pose, m is the
map of the environment (or a selection of landmarks for feature-based SLAM), Z0:k

is the complete set of sensor observations, U0:k the history of control inputs from
time 0 to time k and x0 is the robot pose at time k = 0. The aim is to estimate the
robot pose for all times k and the map of the environment given sensor readings,
control inputs and a starting pose. SLAM is solved recursively, producing map
and pose estimates at each time step.

The joint posterior in (2.1) can be written

p(xk, m|Z0:k, U0:k, x0) = p(zk|xk, m)
p(xk, m|Z0:k−1, U0:k, x0)

p(zk|Z0:k−1, U0:k)
(2.2)

with the step shown in Equation 2.2 commonly referred to as the measurement
update that incorporates observation data zk and

p(xk, m|Z0:k−1, U0:k, x0) =
∫

p(xk|xk−1, uk)× p(xk−1, m|Z0:k, U0:k, x0)dxk−1 (2.3)

is the time update, incorporating new pose information.
In order to be able to perform these two updates p(zk|xk, m) and p(xk|xk−1, uk)

need to be known. This however is not the case for real life operations and an
estimator needs to be used to perform the measurement and time updates. There
are two types of methods commonly used to perform this approximation. A pa-
rameterised model of p(zk|xk, m) and p(xk|xk−1, uk) can be used and Kalman or
Information filter based methods fall into that category. However, such meth-
ods require linearisations to produce linear robot dynamics and assume Gaussian
noise, but neither of these assumptions is realistic for real world systems. Another
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set of solutions employ a particle filter to approximate these two distributions by
a set of samples. This type of solution does not have any linearity or Gaussian-
ity requirements but good performance depends on the number and quality of
samples.

These two types of methods are explored in following sections, presenting
Kalman, Information and Particle filters. The merits and drawbacks of each
method are presented, highlighting remaining challenges.

Kalman filters

Kalman filters use a state-space model representation with additive Gaussian noise
[50] to approximate Equation 2.2. They recursively process noisy data to produce
estimates of the system state that minimise the error covariance.

The update for the pose estimate, xk, modeled as the sum of the robot dynamics
and Gaussian noise, is defined as

xk = f (xk−1, uk) + wk (2.4)

where f () models the robot dynamics, xk is the robot pose at time k, uk the
control input at time k and wk additive, zero mean uncorrelated Gaussian motion
disturbances with covariance Qk.

Similarly, observation values zk are updated using an observation model and
additive Gaussian noise

zk = h(xk, m) + vk (2.5)

where zk are the sensor observations at time k, h() is the observation model
(what the observation is likely to be given the map/landmarks and robot posi-
tions), xk the robot pose at time k, m the set of known landmarks or the map up to
that time and vk is additive, zero mean uncorrelated Gaussian observation noise
with covariance Rk [50].

The standard Kalman filter assumes f () and h() are linear functions which
is, however, not the case in most real-world robotics applications. In order to
overcome this problem a Taylor series linearisation of the equations about the
location of the detected landmarks can be performed, producing the Extended
Kalman Filter solution (EKF). Performing this linearisation leads to inaccuracies,
however [48], since the Taylor series only yields an approximation.

A number of studies of the consistency and convergence of EKF SLAM have
been conducted [21, 82]. These indicate that estimates produced are very opti-
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mistic once the true uncertainty in vehicle heading exceeds a limit. This failure
is difficult to detect without having access to ground-truth data and commonly
used solutions such as adding stabilising noise are not effective. An approach that
uses Jacobians of the state and measurement models that are evaluated using the
first estimates of all landmark positions and robot poses to improve consistency is
proposed in [80] and is shown to yield a performance close to the ideal EKF based
on simulation results.

Another disadvantage of Kalman Filter-based solutions is their computational
complexity which grows with O(n2), where n is the number of landmarks in the
map m. There are a number of methods that help reduce computational costs dis-
cussed in [20] but improvements can often lead to a loss of accuracy. An approach
that aims to reduce computational complexity of feature-based EKF SLAM by re-
ducing the number of maintained landmarks is presented in [46]. This reduction
is claimed not to affect map consistency and efficiency if appropriate landmarks
are chosen. A number of criteria for choosing which landmarks to maintain are
presented but a poor choice of landmarks can lead to poor performance.

Divide and Conquer SLAM [125] is another method that aims to reduce com-
putational costs per step from O(n2) to O(n) but also improve the consistency of
the predicted state. Instead of building a sequence of local maps of a large environ-
ment and then sequentially joining them together as is often done in the literature,
it joins local maps in a binary tree fashion. This is a more compact representation
that manages to reduce the computational complexity of mapping large environ-
ments while seemingly also yielding good consistency. The results presented have
not been tested experimentally, however, and simplifications required to use this
system in a real-world scenario may affect performance.

Kalman-based approaches do not account for the possibility of systematic bias
errors that can lead to divergence. An EKF-based approach that uses neural net-
works to predict the uncertainty of the system due to a poor choice of model or
extreme non-linearities is presented in [33]. This approach produces a filter that
can theoretically adapt to changes in the environment or false model assumptions.
No results of using this approach in a real system are presented, however, and if
an unbiased vehicle model is used this method presents no advantages over using
a simple EKF.

Finally, the performance of the filter depends greatly on the choice of the co-
variance matrices Q and R for the pose and observation noise distributions. These
values can be chosen empirically by assigning a larger observation covariance
and smaller position covariance for a system that can predict position well but is
equipped with sensors that are more prone to errors, for example. This sensitivity



28 2.2. Simultaneous Localisation And Mapping

to parameter choice means that an unsuitable choice of parameters can delay or
prevent convergence.

A neurofuzzy-based adaptive Kalman filtering algorithm has been proposed
which attempts to estimate the elements of the R matrix of the EKF algorithm at
each sampling instant when a measurement update step is carried out. It thus
aims to avoid consistency problems caused by inappropriate choices of the Q and
R matrices. An improvement is observed over the traditional EKF for a simulated
environment but complexity is added in order to estimate the R value [30].

An alternative linearisation to the EKF is the one produced by the Unscented
Kalman Filter (UKF) which uses a weighted statistical linear regression process
[81, 86]. Feature-based UKF SLAM has been used in large-scale outdoors envi-
ronments [104] showing an improvement in consistency and accuracy in terms of
prediction errors and uncertainty [81]. However, testing this method in real-world
large-scale environments can be very computationally expensive if a large number
of features is maintained and updated. A visual SLAM UKF implementation is
presented in [77], where a Square Root UKF is used that helps avoid computa-
tionally costly mathematical manipulations [146]. This implementation manages
to reduce the computational complexity of the UKF from O(n3) to O(n2).

Information filters

Information filters are subject to the same underlying principles as Kalman filters.
The key difference between the two is how they represent Gaussian belief: while
Kalman filters represent Gaussians by their moments (mean, covariance), Infor-
mation filters represent them in their canonical parametrisation [134]. They use
the information matrix defined as Ω = Σ−1 and the information vector defined as
ξ = Σ−1µ , where Σ is the covariance and µ is the mean of the Gaussian.

The main advantages of this representation are improved numerical stability
and the ability to represent global uncertainty easily (simply set Ω = 0 rather
than Σ = ∞). This filter can be computationally expensive since matrix inver-
sions are needed to compute the information matrix and vector and it is therefore
considered inferior to the Kalman filter for high dimensional spaces [134].

The Sparse Extended Information Filter [140] is a computationally efficient
version of the Information filter that exploits the structure of the SLAM problem
to represent maps through local, web-like networks of features allowing updates to
be performed in constant time, irrespective of the number of features in the map.
Given its computational savings this type of approach is well-suited to outdoors
[97] and multi-robot exploration [137] and is used to update feature-based maps.
This approach, however, produces error estimates that are overconfident when
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expressed in the global reference frame according to [149] where an improved
SEIF is proposed to address this problem.

Particle filters

Particle filters use samples to represent the posterior distribution instead of the
parameterised representation used in Kalman and Information filters. They do
not calculate the full posterior but use sets of samples to approximate it. As the
number of particles approaches infinity this representation becomes equivalent to
the actual posterior [135]. This means that the particle filter can approximate any
distribution and does not require linear robot dynamics or Gaussian distributions.
The sampling method used is Sequential Importance Sampling (SIS), a Monte
Carlo method, as discussed in [15].

Using this method xk is represented by a set of samples or particles sampled
from

x[n]k ∼ p(x[n]k |x
[n]
k−1, uk) (2.6)

for the nth particle, which can be used to perform the time update, Equa-
tion 2.3. In particle filtering p(zk|xk, m), used to perform the measurement update
(Equation 2.2) is called the importance factor or weight

w[n]
k = p(zk|x

[n]
k , m) (2.7)

The particle filtering algorithm works as follows [135]. Particles are first ini-
tialised by sampling from the prior pose distribution p(x0) (a more detailed dis-
cussion of how a prior is chosen will be presented in Section 2.3). Particles are
then produced by sampling from the motion model, Equation 2.6. This set of
particles constitutes the proposal distribution, χ̄k. These are then weighted using
weights proportional to w[n]

k , Equation 2.7, to produce estimates of the posterior
distribution χk as required, Equation 2.2. New particles are sampled from the
set of weighted particles and these represent the approximation of the required
posterior. A graphical explanation of the particle filter process can be seen in Fig-
ure 2.7 and a detailed mathematical derivation of the particle filter equations can
be found in [15].

This method has a number of advantages. Unlike the Kalman filter-based solu-
tions there is no need to assume linear relationships between inputs and states or
Gaussan noise. It is also suited to both landmark and occupancy map representa-
tions without any need to process range sensor data to place them in a landmark
format.

Particle filtering has a number of drawbacks, however, including degeneracy
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Figure 2.7: The particle filter process: Samples are taken from the motion model
and relevant weights are determined. The map is then updated using that infor-
mation and new particles are sampled from the set of weighted particles.

[15, 50] whereby all but one particle have negligible weights after a few iterations.
One way of avoiding degeneracy is resampling: whenever degeneracy is observed
particles associated with small weights are eliminated. This method, however,
leads to particles with high weights being selected many times which leads to a
loss of diversity in the final sample [18]. A discussion of more sampling meth-
ods can be found in [15]. Another drawback of using this method is the trade-
off between increased accuracy and computational complexity determined by the
number of particles used, since the more particles used the better the prediction
accuracy but also the greater the computational cost.

Research such as [66] and [25] mathematically manipulates the proposal distri-
bution to produce better samples. In [66] the proposal distribution is conditioned
on the previous position and control input as well as the most recent observa-
tion to reduce estimation uncertainty. Selective re-sampling is also used to avoid
particle depletion. The work presented in [25] takes samples from a proposal dis-
tribution conditioned on the whole trajectory rather than simply the state at the
previous time step.

Others aim to improve the sampling method used. The research presented
in [156] uses Tabu search to choose samples, aiming to avoid particle degeneracy
and reduce the number of particles used. A different approach described in [27]
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Figure 2.8: The FastSLAM solution: each particle holds estimates for all features
in the map and each feature estimate is updated using a Kalman filter.

uses rejection sampling to reduce the estimation error. Finally, research such as
[35] uses information from the innovation error to modify the number of particles
used and thus improve performance.

FastSLAM A particle filter based method proposed to address the computational
complexity drawbacks of particle filter SLAM is FastSLAM [110]. FastSLAM per-
forms Rao-Blackwellization to decompose the SLAM problem into a robot local-
ization problem and a collection of landmark/map estimation problems that are
conditioned on the robot pose estimate

p(X0:k, m|Z0:k, U0:k, x0)

= p(m|X0:k, Z0:k)p(X0:k|Z0:k, U0:k, x0)
(2.8)

In this case the aim is to compute the joint posterior of the map and the robot
trajectory X0:k rather than the single pose xk. That is because landmarks con-
ditioned on the trajectory are independent, allowing the factorisation in Equa-
tion 2.8. The particle filter can then be used to sample from the motion model
and produce the proposal distribution but now the estimates for the landmark
locations (conditioned on the robot trajectory estimate) are performed separately.

Since the pose and map estimates can be performed separately using Rao-
Blackwellization, a Monte Carlo Localisation (MCL) algorithm [139] can be im-
plemented to produce pose estimates and calculate p(X0:k|Z0:k, U0:k, x0). Then the
mapping or landmark position estimate can be performed using an appropriate
method. The particle filter can be implemented using both a feature-based and
an occupancy grid map representation. Examples of the most commonly used
versions of each are given below.
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Landmark-based If a landmark-based map is updated then a Kalman filter is
used for each of the N landmarks in the map to predict their position, Figure 2.8.
This method would appear to be computationally expensive since N×M Kalman
filters need to be maintained, where M is the number of particles used. How-
ever, a compact tree representation can be used to store updates that can lead to
computational complexity that is logarithmic in the number of landmarks in the
map-a vast improvement from the quadratic cost of Kalman filter-based solutions
[110].

Occupancy-based In this case an occupancy map is updated for each particle
[66, 69, 131]. Maintaining M maps (a map per particle) can also be computation-
ally expensive. This issue is addressed by the commonly used DP SLAM which
uses a tree structure to store maps efficiently and reduce computational complex-
ity to a worst case of log-quadratic [53]. DP SLAM 2.0 relaxes the assumptions of
a perfect laser range sensor made by DP SLAM to produce a solution that works
better using real sensors [52].

Finally, a number of variations such as Unscented FastSLAM [87] look at im-
proving the sampling method for the proposal distribution to avoid the problems
of degeneracy and improve performance.

The filtering algorithm used throughout this thesis is occupancy grid Fast-
SLAM. Occupancy grid SLAM uses an occupancy grid map representation which
allows prior information to be easily incorporated. DP SLAM does not maintain a
grid map updated using the occupancy grid mapping algorithm [51] but instead
updates and maintains a tree of occupancy values for all particles based on sensor
readings rather than an iterative update process for each square. Gmapping [66]
can be used in conjuction with DP SLAM to leverage the improved motion model
of gmapping that incorporates sensor information to improve motion model pre-
dictions and the computational efficiency of DP SLAM. These two do not have
to be combined, however and the map can be updated using the occupancy grid
mapping algorithm as discussed in [51] to allow the inclusion of prior information.

Smoothing or pose graph approaches

The filtering methods described in this section all process then discard sensor and
odometry data, which means data cannot be revisited when constructing a map
[138]. A category of methods that aim to overcome this issue are smoothing or
pose graph techniques. These are performed offline, storing all collected data and
only performing mapping at the end of exploration [99].
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The posterior of this formulation, the full SLAM problem, is represented as
a sparse graph. This graph is subject to a number of nonlinear quadratic con-
straints and optimising these constraints yields a maximum likelihood map and a
corresponding set of robot poses [99].

A commonly implemented offline technique is Graph SLAM [99], which uses
sparse constraint graphs representing soft constraints extracted from the data. The
map and robot path are obtained by using these constraints to produce a globally
consistent estimate. The constraints are commonly nonlinear so they are linearised
resulting in a least squares problem which can be solved using common optimisa-
tion techniques.

A different method to optimise graph-based nonlinear error functions is pre-
sented in [94] as g2o, a general framework for graph optimisation that can be used
for offline SLAM methods. This framework can be applied to any non-linear least
squares problem represented as a graph and presents an approach that reduces
the computational requirements of previous approaches. It yields improved re-
sults by exploiting the graph sparsity and using a new error function, allowing
these techniques to be used for 2D as well as 3D graph-based SLAM.

Another approach that uses factor graphs is Georgia Tech Smoothing And
Mapping (GTSAM) [45]. Factor graphs are a different representation of Bayes
networks for a Hidden Markov Model (HMM), leveraging the fact that measure-
ments are known. Thus the factor graph only represents the unknown variables
connected to factors that contain probabilistic information about them, derived
from the Markov chain or the observation model [45]. A Maximum A-Posteriori
(MAP) inference is performed to maximise the value of the factor graph. The fac-
tor graph specifies the posterior over the entire trajectory of the robot, rather than
just the last pose, making this is a smoothing approach. This approach can be
used in pose SLAM, landmark-based SLAM and structure from motion but is not
well suited to occupancy grid SLAM.

These approaches are not well suited to occupancy grid map representations;
as such, they are not the implementation of choice for this thesis.

Commonly used approaches and remaining challenges

The Bayesian formulation of SLAM was introduced in the 1990s. The SLAM fil-
tering algorithms that are commonly used today and are considered established,
state-of-the-art solutions presented in Section 2.2.3 were proposed in the early
2000s, with FastSLAM [110] first introduced in 2002 and DP SLAM [52] intro-
duced in 2004. Since then most research into robot localisation and mapping has
focused on minor improvements in terms of more efficient sampling, exploring
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newer sensors such as the Microsoft Kinect [72], exploring 3D mapping [130] and
improving performance for robots exploring dynamic or cluttered environments
[78].

SLAM is commonly considered a theoretically solved problem but SLAM solu-
tions do not work reliably in changing, challenging real-world environments. The
focus of localisation and mapping applications has recently shifted to self-driving
cars [68, 120]. Some of the methods used for self-driving car navigation build on
the field’s established techniques [37, 115, 129] but no detailed technical papers on
how such cars operate have been published due to the commercial nature of such
applications.

Commonly used SLAM implementations can be found on the OpenSLAM
website and as ROS (Robot Operating System) [3] modules. The occupancy grid-
based SLAM solutions in these sources are DP-SLAM [52], gmapping [66], Grid-
SLAM [69] and Hector SLAM [90] for 2D occupancy grid maps and OctoSLAM
[57] for 3D maps. SLAM code available on OpenSLAM can be outdated and much
of it is not maintained.

Gmapping is the most commonly used occupancy grid SLAM implementation
in ROS. This implementation assumes grid squares can either be occupied, unoc-
cupied or unknown and uses sensor data to update occupancy values. It thus only
needs to maintain information about explored areas as they get explored. These
assumptions may apply to expensive sensors or in environments where sensors
can perform reliably. They cannot be trusted as much, however, if inexpensive, in-
accurate sensors are used or if the robot operates in an environment where sensors
can perform unreliably such as USAR post-disaster areas. It is therefore important
not to rely on the latest sensor reading to update occupancy values. Similarly, DP
SLAM assumes perfect sensors, relaxing this assumption for DP SLAM 2.0.

In order for robots to be valuable in challenging real life applications they
need to be able to perform reliably even if low-cost sensors are used or sensor
data becomes unreliable. That is why this thesis proposes the use of optimised
Bayesian priors to incorporate available prior information to the SLAM algorithm.
Using this information to construct a Bayesian prior for recursive mapping reduces
the reliance on sensor data and allows improved map quality without the need to
alter the SLAM algorithm used. The proposed priors can be used for any SLAM
implementation that uses a probabilistic recursive algorithm to update occupancy
maps.
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2.3 SLAM priors

In the solutions presented in the literature to date SLAM improvements have been
attempted by proposing new filtering methods, sensors or map representations.
Little research has been conducted, however, in terms of studying how mean-
ingful priors can improve performance. This thesis addresses this problem by
proposing a method to construct informative priors that improve the performance
of SLAM without increasing computational complexity. Unlike other research that
uses prior information in feature-based SLAM, often to constrain landmark loca-
tions, this thesis proposes a method to construct an informative Bayesian prior for
occupancy grid based implementations. It explores this concept by presenting a
case study for indoors occupancy grid SLAM.

2.3.1 Prior information in robotics

The use of prior information to improve the performance of robotics systems has
been suggested for a number of systems that operate in real life challenging en-
vironments. Priors are used to improve navigation, localisation and mapping of
self-driving cars such as using experience to improve localisation [101] and us-
ing 3D semantic priors to interpret traffic lights [24]. They are also often used to
improve the performance of odometry predictions. In visual odometry implemen-
tations [12] a relative pose prior can be constructed by tracking feature movements
between frames to improve pose prediction accuracy. The use of prior knowledge
of motion preferences has also been proposed to improve the quality of Bayesian
occupancy filtering in dynamic environments [63].

Prior knowledge is incorporated in some implementations of feature-based
SLAM where the landmarks in the environment are known [28]. This knowledge
simplifies the problem and converts it into matching detected features to the list
of a priori known landmarks. In order to avoid having to maintain a large lookup
list, implementations such as [153] use only a few known landmarks as points of
reference to correct predictions. Skeletal SLAM [108] uses prior information about
the shape of a building to construct more accurate occupancy grid maps.

Other implementations constrain the possible location of landmarks in Graph-
SLAM [124] using prior information. As a result, the observed position error is
reduced whilst maintaining the same or improved consistency compared to the
no-prior solution [42]. A method to incorporate prior information into outdoors
EKF-based SLAM is presented in [123] yielding improved performance. An im-
plementation that uses aerial images to extract prior information and improve
the performance of outdoors SLAM by inserting correspondences between stereo
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and 3D range sensor data and the aerial images as constraints into a graph-based
SLAM implementation is presented in [89] and is found to improve map consis-
tency.

In all of the above cases using prior information was found to be beneficial and
yield improved performance. Prior information has mostly been used to facilitate
feature, object or pose identification. However, none of these implementations
have attempted to use this prior information to construct a Bayesian prior map.
Using all available information to produce more realistic and more accurate maps
without adding to the computational cost of the SLAM algorithm can make a
significant contribution towards useful SLAM solutions for USAR, achieving the
requirements detailed in Section 2.1.3. The concept of using available prior infor-
mation to construct informative Bayesian priors for SLAM is an area that has not
been researched and is addressed in this thesis.

2.3.2 Bayesian priors in SLAM

SLAM performs a Bayesian estimation to determine the robot’s pose and a map of
the environment given sensor readings, control inputs and the robot’s initial pose.
Formally, it aims to compute the joint posterior of the robot’s pose xk and the map
m [50]

p(xk, m|Z0:k, U0:k, x0) ∝ L× p(m) (2.9)

for all times k, where xk is the state vector describing the robot’s pose, m is the
map of the environment (or a selection of landmarks for feature-based SLAM),
p(m) is the prior map, Z0:k are the sensor observations, U0:k the history of control
inputs, x0 is the robot pose at time k = 0 and L is given by

L =
p(zk, xk|m)

p(xk, m)

p(xk, m|Z0:k−1, U0:k, x0)

p(zk|Z0:k−1, U0:k)
(2.10)

Since the joint posterior in (2.9) can be written

p(xk, m|Z0:k, U0:k, x0) =

p(zk|xk, m)
p(xk, m|Z0:k−1, U0:k, x0)

p(zk|Z0:k−1, U0:k)

=
p(zk, xk|m)

p(xk, m)
p(m)

p(xk, m|Z0:k−1, U0:k, x0)

p(zk|Z0:k−1, U0:k)

∝ L× p(m)

(2.11)

indicating that the joint posterior is proportional to the prior probability p(m) and
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as such a choice of an optimal prior p(m) can lead to a more accurate estimate of
the joint posterior.

In the majority of indoors SLAM solutions the environment to be explored is
assumed to be unknown [50, 53, 109] and an uninformative prior p(m) is assigned.
Some researchers aim to produce solutions that do not depend on having prior
knowledge of the environment [20]. Others claim that access to detailed architec-
tural drawings or other sources of prior information for outdoors implementations
may be difficult [93]. The hypothesis examined in this thesis is that constructing
and using appropriate informative priors can improve the performance of exist-
ing SLAM algorithms. In order to test this hypothesis indoors occupancy grid
FastSLAM is the case study investigated in this thesis.

2.3.3 Occupancy grid FastSLAM priors

In occupancy grid FastSLAM [109] the process of updating pose estimates and
updating the map can be performed separately as shown in Equation 2.8. Map-
ping is performed using the occupancy grid map algorithm [51] and the predicted
poses. This SLAM format allows for an analysis of the mapping algorithm where
prior information is incorporated through the use of a matrix of prior probabilities
for each grid cell, p(m).

The occupancy grid mapping algorithm [51] splits the environment into a grid
of cells and a prior probability is assigned to each cell. Cells are assumed to be
independent in order to update the probability of occupancy of each grid cell. This
assumption allows the factorisation

p(m|X0:k, Z0:k) = ∏
i

p(mi|X0:k, Z0:k) (2.12)

where i = 1, ..., N and N is the total number of grid cells, making this an easier
estimation since updating the probability for each cell given the robot pose and
sensor readings is merely an update of the probability of occupancy of that cell.
As the robot moves through the environment the probabilities of occupancy of
cells that are within the field of vision of the robot sensors are updated.

The probability that a cell mi is occupied given the observation history is given
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by

p(mi|Z0:k) =
p(zk|mi, Z0:k−1)p(mi|Z0:k−1)

p(zk|Z0:k−1)

= p(zk|mi)
p(mi|Z0:k−1)

p(zk|Z0:k−1)

=
p(mi|zk)p(zk)

p(mi)

p(mi|Z0:k−1)

p(zk|Z0:k−1)

(2.13)

Placing Equation 2.13 in the odds form we get

odds(mi|Z0:k) =
p(mi|Z0:k)

p(¬mi|Z0:k)

=
p(mi|zk)p(mi|Z1:k−1)p(¬mi)

p(¬mi|zk)p(¬mi|Z1:k−1)p(mi)

= odds(mi|zk)odds(mi|Z1:k−1)(odds(mi))
−1

(2.14)

where p(mi) is the prior probability of occupancy of the ith grid cell, odds(mi|zk)

represents the inverse sensor model and odds(mi|Z1:k−1) is the odds at the previ-
ous time step. Taking the logarithm of Equation 2.14, the log odds representation
of Equation 2.14 is

lk,i = InverseSensorModel(mi, xk, zk) + lk−1,i − l0,i (2.15)

with
lk,i = log

p(mi|Z1:k, x1:k)

1− p(mi|Z1:k, x1:k)
(2.16)

Research has been conducted to identify suitable or preferable sensor models
such as [136] and [157].

The Bayesian priors for each cell, p(mi) are incorporated through l0,i, the log
odds prior for the ith cell. When there is no available prior information a non-
informative Bayesian prior is assigned to all grid cells, p(mi) = 0.5, i = 1, ..., N.

In real life time-critical applications using an appropriately constructed prior
can lead to a more accurate map even after a few time steps. Incorporating prior
information does not add to the computational cost of running SLAM and only
incurs a one-off cost of extracting prior information and constructing a prior. Since
the posterior is proportional to the prior map, Equation 2.9, constructing an op-
timised prior map p(m) can improve performance, especially for time critical ap-
plications where the environment needs to be explored quickly, making the effect
of the prior more significant. Therefore this thesis proposes the use of architec-
tural drawings to extract structural information and construct optimised indoors



Chapter 2. Robot mapping and localisation for USAR 39

Bayesian priors.

2.3.4 Ideal prior properties

The way in which occupancy grid prior information is incorporated into occu-
pancy grid SLAM was discussed in the previous section. This section aims to
explore desirable prior values.

The log odds representation is used to update the occupancy of each grid cell,
plotted in Figure 2.9. A negative log odds value corresponds to a probability of
occupancy below 0.5 and a positive log odds to a probability of occupancy above
0.5:

l(p) =


= 0, p = 0.5

> 0, p > 0.5

< 0, p < 0.5

(2.17)

where p is the probability of occupancy and l(p) the corresponding log odds,
showing the relationship between the log odds value and the probability of occu-
pancy it corresponds to. There are three elements that affect the updated value of
occupancy: the previous occupancy, the prior and the inverse sensor model.

The log odds representation is used with the initialisation of lk,i = l0,i. Using
Equation 2.15, this leads to the update rule

l1,i = InverseSensorModel(mi, x1, z1)

l2,i = 2× InverseSensorModel(mi, x1, z1)− l0,i

...

lk,i = k× InverseSensorModel(mi, x1, z1)− (k− 1)× l0,i

(2.18)

for the ith cell at the kth iteration, when observing the same cell i times. There-
fore the value of the updated occupancy depends on the relationship between the
inverse sensor model and the prior, l0,i. Using Equation 2.19, to obtain a larger fi-
nal map probability for empty cells we need lk,i > 0 corresponding to a probability
of occupancy pk

mi
> 0.5, Figure 2.9. Therefore we would ideally wantlspace

k,i > 0

lwall
k,i < 0

(2.19)

lk,i > 0 would require

InverseSensorModel(mi, xk, zk) > l0,i (2.20)
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Figure 2.9: The log odds plot for probability values 0-1. In the region 0.2-0.8
the log odds show linear behaviour, whereas for values outside that range the
resulting log odds value increases rapidly.

and lk,i < 0 requires

InverseSensorModel(mi, xk, zk) < l0,i (2.21)

for a large k. Therefore the probability assigned by the sensor model to de-
tected free space should be greater than the prior value assigned to empty space
and the value assigned to detected occupied space by the sensor model should be
smaller than the prior. psensor

f ree > pspace

psensor
occupied < pwall

(2.22)

Depending on the sensor model used appropriate prior values should be bounded
accordingly.

The log odds curve has two asymptotes near p values of 1 and 0 as expected,
where it reaches infinity. Regions near the asymptotes should be avoided to ensure
incorrectly assigned priors can be corrected and values smaller than 0.1 or greater
than 0.9 should not be used where possible. The behaviour of the log odds is
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nearly linear for 0.2 ≤ pprior ≤ 0.8. Therefore, where the inverse sensor model
values allow it, prior values within that range should be chosen. Prior probabilities
near 0.5 correspond to l(p) = 0, in which case the inverse sensor model dominates
the update.

The effects of different prior values are examined in a quantitative manner in
Section 4.4.

2.3.5 Prior information requirements for USAR

There are a number of possible approaches to constructing the prior map p(m),
with a non-informative prior which assigns 0.5 to all cells being the most common.
Another approach that does not require detailed knowledge of the environment is
to assign a prior value between 0 and 1 to all grid cells.

Using a value p(mi) ∈ (0, 1) for all grid cells requires knowledge of how clut-
tered an environment is expected to be. Lower prior values such as 0.3 can be
assigned to all grid squares for environments that are expected to be very clut-
tered and higher ones such as 0.8 for environments that are expected to be empty.
Most environments contain significantly more empty space than walls and so it is
preferable to assign a higher value if no detailed information is available. Assign-
ing the same prior probability to all cells using information about the environment
to decide which value in the range (0, 1) is most suitable fails to provide informa-
tion about unexplored areas.

A more rigorous approach would be to use available sources of raw prior
information such as architectural drawings and floor plans to extract the location
of elements such as walls. A first attempt would be to use a drawing as-is and
assign a low prior value to all black pixels and a high prior value to all light pixels.
For non-black-and-white drawings this approach can yield poor results since a
binarisation would be required. Deciding on a threshold is non-trivial since walls
can be represented using both grey and black lines. One way to overcome this
would be to assign high prior values to all white pixels in the image and low ones
to all non-white pixels. This approach, however, could lead to a great number of
artifacts, especially for low quality images.

The main requirement when constructing a prior map for a robot deployed in
a USAR mission is to ensure all information about wall locations is as accurate
as possible. If a wall is missed in the prior map the information provided will
be no worse than that provided by a non-informative prior. If, however, walls are
expected where there are none confusion can ensue, with human rescuers being
unable to easily and correctly interpret the map. This is especially important if
parts of the map are unexplored and the prior map is used to provide information
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about those areas. Therefore including correctly identified walls in the prior is
more important than including all walls.

Given the above requirements, a method that extracts walls ensuring a very
low number of false positives and a high precision would be required for a USAR-
type scenario. A novel method to process such drawings and extract structural
information is presented in the next chapter, where relevant metrics are used to
ensure the high precision and low false positive requirement.

2.4 Summary

This chapter has presented the USAR environment and the value robots can add
to rescue missions, identifying remaining challenges. The focus of this thesis is
Simultaneous Localisation And Mapping (SLAM), one of the key remaining chal-
lenges. Whilst many solutions for SLAM have been proposed throughout the years
the majority of solutions perform poorly in challenging real life scenarios such as
USAR operations. Attempts have been made to improve performance through
use of better sensors, filtering algorithms and map representations. Hardly any
research has been conducted, however, to explore the benefits of different SLAM
priors.

A main shortcoming of existing methods is that they often overestimate sen-
sor accuracy in difficult real life scenarios or available computational resources
and hence produce solutions that struggle in applications such as USAR. Using
available prior information to improve the performance and reliability of robotics
systems is common in the literature but no study of how constructing an appro-
priate contextual Bayesian prior has been conducted to date. This is a gap in the
literature that is addressed by this thesis, aiming to produce a computationally ef-
ficient SLAM solution that produces accurate maps. In order to extract priors for
indoors SLAM this thesis proposes the use of architectural drawings or floor plans
and a novel method to process such drawings is presented in the next chapter.



Chapter 3

Using architectural drawings to
extract prior information

The potential benefits of constructing an informative Bayesian prior using informa-
tion about the environment that is available a priori were discussed in the previous
chapter, highlighting the potential for improved performance without adding to
the computational cost of the SLAM algorithm. There is, however, a one-off cost
associated with extracting prior information and converting it to a prior format.
This chapter addresses the problem of processing images containing prior infor-
mation to extract structurally relevant elements that can then be used to construct
Bayesian priors.

In order to construct informative contextual priors and test potential perfor-
mance improvements a source of prior information needs to be identified. This
can be an image such as an architectural drawing or floor plan for indoors SLAM
or an aerial photograph or road network map for outdoors SLAM. Architectural
drawings or floor plans are produced for all buildings, with standardisation reg-
ulations such as Building Information Management (BIM) [7] requiring digitised
architectural drawings to be produced and be readily available for all buildings.
Moreover, such drawings contain structural information such as the location of
doors, walls and windows in the building and are drawn to scale, making them a
very suitable choice for a source of prior information for indoors SLAM.

For indoors environments a floor plan or architectural drawing can be used as
a source of prior information, with occupied sections corresponding to walls and
unoccupied sections to empty space. Similarly, for an outdoors environment the
source of prior information can be a road map, with empty space corresponding
to roads and occupied space corresponding to non-traversable areas.

This thesis focuses on the use of architectural drawings as a source of informa-
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tion and so this chapter presents a method to extract structural information from
them that can be used to construct a prior map. Using a drawing without pro-
cessing can lead to poor localisation quality and provide misleading or incomplete
information about unexplored or partially mapped areas.

This chapter presents a novel strategy to process architectural drawings and
floor plans using a simple set of geometric tests to extract structural information.
Unlike the processing strategies found in the literature it prioritises wall detection;
detected walls can then be used to construct SLAM priors. A set of criteria by
which the quality of constructed prior maps can be assessed is also proposed.
Once this information has been extracted it can be placed in an appropriate prior
map format as will be discussed in Chapter 4. The research presented in this
chapter was published in the proceedings of the 6th International Conference on
Automation, Robotics and Applications (ICARA) 2015 [59].

The contributions of this chapter are as follows:

• A novel method for door and wall detection in architectural drawings and
floor plans

• A novel method to automatically produce indoors maps that can be used for
robot localisation

• A method to assess the quality of structural information extracted from ar-
chitectural drawings by formulating the image processing problem as a bi-
nary classification of pixels as walls or empty space

This chapter is organised as follows. Section 3.1 defines the types of drawings
examined as well as the benefits of using such drawings as a source of prior in-
formation and presents an overview of methods used in the literature to process
such drawings. These methods are found to be ill-suited to extracting structural
information to construct informative priors, identifying a gap in the drawing pro-
cessing literature. Section 3.2 details the requirements for a drawing processing
algorithm used to extract prior structural information. Section 3.3 details the pro-
posed novel algorithm that uses geometric constraints to detect doors in the image
and uses their relation to walls to detect building walls. A novel approach to per-
formance assessment is also presented, viewing the problem of wall detection as
a binary classification of image pixels as belonging to either walls or empty space.
Finally, Section 3.4 presents the results of using the proposed drawing processing
algorithm, with the proposed method yielding a precision of at least 98%, recall
of at least 61% and a false positive lower than 0.09 % for a set of representative
drawings. Section 3.4 also benchmarks the proposed approach against a com-
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monly used wall detection method, dilation, and the proposed approach is found
to yield good results across all drawings unlike dilation.

3.1 Architectural drawing background

The types of drawings considered in this thesis are presented in this section and
their suitability as a source of prior information is discussed. An overview of
drawing processing methods commonly used in the literature is also given, high-
lighting the shortcomings of currently used methods and the need for a drawing
processing algorithm that is more suited to prior construction.

3.1.1 Architectural drawings as a source of prior information

Architectural drawings or floor plans within this thesis are defined as 2D, hand or
computer drawn top-down drawings of buildings, containing structural informa-
tion, suggested furniture and annotating text. Architectural drawings are drawn
to scale and contain more detail than floor plans, annotations and more strictly
defined symbols and representations, Figure 3.1(a). Floor plans on the other hand
often contain more suggested furniture and room labelling and do not always con-
tain details such as different representations for different wall types or materials
used, for example, Figure 3.1(b).

Architectural drawings and floor plans are an ideal choice for a source of in-
doors prior information since they contain structural information about the build-
ing such as the location of walls, doors and windows and are drawn to scale,
providing information about the size of the environment. This structural infor-
mation can be used to construct a prior map of the environment. Moreover, such
drawings are produced for all buildings and are available for most buildings. With
the introduction of BIM in 2012, storing drawings of all buildings [7] in the UK
is becoming a requirement, making access to digitised drawings easier and more
commonplace. Finally, there are no other sources of prior information for indoors
environments that can provide structural information drawn to scale that are also
readily available, making such drawings a suitable source of prior information.

Given the large amount of information contained in such drawings there is a
need to process them to differentiate between types of information such as wall
locations, door locations and annotating text, for example, and extract information
that can be used to construct an appropriate prior map. Indoors SLAM maps
commonly depict structural information, most commonly wall locations, and thus
architectural drawings need to be processed to extract wall locations.
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(a)

(b)

Figure 3.1: Examples of an architectural drawing (a) and a floor plan (b). The ar-
chitectural drawing contains more detail when it comes to walls and stairs whereas
the floor plan contains more suggested furniture.
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Architectural drawings are commonly produced using specialist software but
they are reproduced, distributed and accessed as images which need to be pro-
cessed to differentiate between different types of symbols and features. Image
processing, computer vision and machine learning techniques have therefore been
employed to extract information from architectural drawings and floor plans, as
discussed in the next subsection. These algorithms were developed for 2D to 3D
drawing conversion [100, 119], better interpretation of hand-drawn symbols [31]
or drawing archiving [10].

3.1.2 The need to process drawings and extract information

When using an architectural drawing or floor plan as a source of raw prior infor-
mation a method needs to be devised to convert the information in the drawing
to a prior format. In an occupancy grid map representation we can use the ar-
chitectural drawing to assign an informative value to each grid cell instead of
assigning 0.5 to all grid cells. We can assign a lower prior probability to areas that
correspond to occupied space in the drawing and a high probability to areas that
correspond to empty space.

Given the prior is only a starting point for recursive mapping a natural first
step is to examine whether a drawing needs to be processed at all, or whether the
raw drawing can be used as-is to assign low prior probabilities to dark pixels in
the drawing and high prior probabilities to white areas in the drawing. In order
to do so greyscale or coloured drawings need to be binarised, so some processing
is required for all non black-and-white drawings.

The binarised map is used to localise the robot. Using the drawing as-is can
lead to localisation errors, especially when the drawing contains large annotating
text or lines. It is therefore important to provide a map that is as accurate a repre-
sentation of the building’s structure as possible. The proposed method to extract
walls and empty space can also be used to automatically construct indoors maps
for robot localisation and experiments using a drawing as-is and using extracted
walls and empty space are presented in Chapter 6.

The prior map also provides information about partially mapped or unex-
plored areas and this information needs to be as easy to understand and inter-
pret as possible. Annotating lines in the prior drawing that appear in a partially
mapped room may be wrongly assumed to correspond to walls or in-built furni-
ture and mislead rescuers, for example.

Extracting walls and empty space from drawings could be performed by hand
by a human operator. Using an automated method like the one we propose has a
number of advantages, however. Performing the extraction automatically:
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• Frees up time for first responders to perform other tasks

• Avoids mistakes by human operators under pressure

• Does not require users to know the format and conventions used in architec-
tural drawings

The following section explores existing automatic drawing processing solu-
tions.

3.1.3 Architectural drawing processing background

Floor plans for buildings such as hospitals and offices are generally available and
can be used to construct indoors SLAM priors. Whilst they contain useful in-
formation such as the location of the building’s walls they also contain text and
suggested furniture. They thus need to be processed to extract structural informa-
tion in order to construct useful priors.

Processing drawings to extract information has been of interest in recent years
due to the introduction of BIM [7] standards which require 3D models as well as
2D drawings to be available for buildings. 2D drawings of older buildings will
thus need to be processed to produce 3D models. A number of image processing,
computer vision and machine learning techniques have also been used to extract
information from architectural drawings, for use in applications such as electronic
archiving of data.

Some research such as [9] uses image processing and computer vision tech-
niques like Canny Edge detection or the Hough Transform to detect symbols in
architectural drawings. This type of approach does not generalise well, however,
since there are no universal symbols for elements such as doors, Figure 3.2, and no
standardisation of drawing rules [17]. Rule-based approaches as well as machine
learning techniques have also been used to detect hand drawn symbols [16, 85, 92].
In [118] neural networks are trained to recognise commonly occurring feature
shapes. These require a representative set of drawings to train the machine learn-
ing algorithm but such a set is hard to obtain given the wide variety of possible
symbol representations [17].

A different approach followed by [10, 11, 100] proposes the use of image pro-
cessing techniques like dilation and erosion to distinguish between thick and thin
lines in the image. Different line thicknesses are then associated with different
drawing features. This technique often performs poorly since drawings use vary-
ing line thicknesses for elements in the image, especially in the case of floor plans
where wall and door thickness does not need to be drawn to scale. The drawings
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Figure 3.2: Different door representations used in floorplan creating software from
the floorplanner.com website showing a examples of possible door representa-
tions.

used in [10] and [100] have been produced by the same architectural office which
causes further concerns about how well their method can generalise.

An alternative representation of drawing information is proposed in [100, 119],
where the information in the image is vectorised and polyline information ob-
tained after vectorisation is used to detect walls. The aim of this research is 3D
reconstruction using a 2D drawing and as such the results presented are 2D to 3D
conversions, making it difficult to evaluate the merit of this approach in terms of
reliable 2D feature extraction.

Some attempts have also been made to create networks of constraints to inter-
pret architectural drawings after vectorising them. One of them aims to recognise
all possible symbols by allowing users to define and update a dictionary of pos-
sible symbols [8]. This type of method depends greatly on the quality of the
vectorisation and needs to be updated constantly to include new symbols.

Interpretation of hand-drawn symbols in real time, as they are being drawn,
is proposed in [31], whereby a maximum likelihood analysis is used to determine
which symbol is most likely being drawn. Existing databases of symbols are used
to attempt to match the symbol drawn to a symbol in the database. This ap-
proach depends greatly on the examples included in the database and assumes
that symbols are being drawn one after the other, focusing on processing individ-
ual symbols rather than the overall drawing.

In all of the above methods the main aim is to extract information and present it
in a human-friendly format. This has led to a natural emphasis on extracting draw-
ing features that are not necessarily structurally relevant, such as room-labelling
text. Conversely, these algorithms do not prioritise features such as walls, which
are essential for robot navigation. These methods are therefore not well suited to
constructing SLAM priors, motivating the need for a drawing processing method
that prioritises accurate wall detection across different types of drawings and sym-
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bol representations.

3.2 Problem formulation

The main applications of processing architectural drawings and floor plans to
extract information are 2D to 3D drawing conversion and archiving. In all these
cases the problem has been viewed as a pattern processing one, aiming to identify
selected symbols as accurately as possible. The information extracted has been
converted into a human-friendly format and metrics used to assess performance
take this focus into account. If the extracted information is to be used to construct
a SLAM prior, however, it needs to be converted to a robot-friendly format. When
extracting information to construct a SLAM prior and a map to be used for robot
localisation the main priority is identifying wall locations. Walls give the outline
of the building and can be easily incorporated into a robot-friendly format such
as an occupancy grid map.

The main challenges faced when trying to process an architectural drawing or
floor plan are [17, 32]:

• Great variability between drawings produced by different architects or using
different software [158]

• Large number of possible representations for elements such as doors (Fig-
ure 3.2)

• Intractable number of acceptable designs

• Lack of strictly defined drawing rules

Unlike other types of drawings the design rules in architectural drawings are
numerous and can often be bypassed as long as the building drawn meets health
and safety regulations. For example, door sizes are not restricted as long as the
doors are easy to move through and furniture can fit through them [32].

The problem addressed in this chapter is how to process any architectural
drawing or floor plan to extract useful structural information for robot navigation
that can be converted into a SLAM prior format.

The key requirements are:

1. A method that performs well for any floor plan or drawing: there are no uni-
versal symbols for elements such as doors and a number of slightly different
representations can be used [17, 32]
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2. Detecting walls: simply assigning dark pixels as walls causes false positives
such as text to be used as wall points

3. Converting detected walls to a SLAM prior: the chosen map representation
needs to translate well from drawing to SLAM prior

4. Determining an appropriate set of criteria to assess the quality of the ex-
tracted prior information

Given this problem description the chosen approach should make use of exist-
ing information about symbols and drawing rules without tailoring the solution
to a certain architect’s drawing preferences and style. However, it should also
avoid a method that would require building a constantly growing and eventually
intractable dictionary of potential symbols. The approach proposed in this thesis
uses simple rules to detect families of features leveraging the geometric character-
istics of commonly used symbols to produce a drawing independent algorithm.

3.3 Proposed approach

This section presents a novel approach to process architectural drawings and floor
plans and extract structural information that can be used to construct prior maps.
Unlike the approaches proposed in the literature it prioritises the accurate detec-
tion of walls whilst also ensuring the method used performs well for different
drawing styles. A novel approach to assess drawing recognition quality is pre-
sented, viewing the problem of accurate wall detection as a binary classification
of all pixels in the image as wall or empty space points.

3.3.1 Drawing processing

In order to decide on an appropriate processing algorithm a target robot map rep-
resentation needs to be chosen and occupancy grid maps [51] are chosen for this
thesis. Occupancy grids are chosen because the incorporation and visualisation
of prior information is relatively straightforward. The map at time k = 0 is the
Bayesian prior constructed based on available information and if no information
is available a priori a non-informative Bayesian prior is used.

Converting information from the drawings to a prior occupancy map requires
assigning low probabilities to grid cells corresponding to occupied space in the
drawing and high probabilities to cells corresponding to empty space in the draw-
ing. A crude prior map could be produced by assigning a high probability to all
dark pixels in the drawing and a low probability to white pixels. This however
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Figure 3.3: An example of an architectural drawing (this is the drawing for one of
the Engineering buildings at the University of Sheffield) containing stairs, doors,
annotating text and dimension lines.

can be misleading since not all dark pixels correspond to occupied space and not
all white pixels correspond to unoccupied space (Figures 3.3 and 3.4). Dark pixels
could correspond to annotating text or suggested furniture and white pixels could
be part of windows or stairs. Therefore when processing a black-and-white or
binarised drawing to extract information that will be used to construct a SLAM
prior the aim is to detect dark pixels that correspond to walls.

A number of different types of structural elements are commonly observed
in architectural drawings and floor plans. In this thesis these will be referred to
as drawing features. Such features include doors, walls, windows, stairs and in-
built furniture. Each type of feature can be represented in many different ways
depending on the type of drawing, the software used to draw it, the level of detail
included, the architect’s style and preferences and the type of feature (for example
foldable, sliding and double doors are all represented differently, Figure 3.2).

The features that provide the most information about the building outline and
occupied and unoccupied space are walls. Walls are less likely to change than
features such as suggested furniture and must be present in all buildings unlike
stairs, for example, which are optional. Whilst they contain the most informa-
tion about the building, however, walls are one of the features with the fewest
distinguishing attributes.
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Figure 3.4: Categories of pixels found in a binary image of an architectural
drawing-not all dark pixels correspond to occupied space since dark pixels could
correspond to annotating text; not all white pixels correspond to empty space
since they could be part of a feature such as stairs.

Walls are represented as dark lines in the majority of drawings but have no
other distinct geometric features. Trying to detect walls by methods such as
searching for thicker lines in the image, for example, does not work for all draw-
ings and floor plans because in some drawings all elements are represented using
lines of the same thickness. However, despite the fact that walls are difficult to
detect reliably, they have defined relations to other elements that may be easier
to detect. For example, doors have distinctive geometric characteristics which can
be used to detect them and they need to be attached to a wall. Leveraging this
relationship, doors and their relation to walls can be used to deduce wall locations.

Doors are one of the most distinct features found in an architectural drawing.
There are a number of different symbols used depending on the type of door
represented (double, foldable and sliding are a few examples). Minor differences
may also exist between representations used by different architectural firms. A
number of door symbols may be seen in Figure 3.5(a) [17]. These are commonly
recognised in the literature by using the Hough transform to find the arc that is
drawn for most door types [9, 118]. This approach does not generalise well for
all types of doors because it does not account for those that do not include an
arc (such as foldable doors) and it can also perform quite poorly for low quality
images where a clear arc is not visible (Figure 3.6).
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Figure 3.5: (a) Symbols for different types of doors (reproduced from [17]) (b)
The majority of door types can be approximated as isosceles triangles (drawn in
orange).

Instead of using a template matching approach such as the generalised Hough
transform [23], the proposed algorithm uses the geometric characteristics of the
door symbols to facilitate drawing independent detection. The key idea behind
this algorithm is that all doors can be approximated by isosceles triangles defined
by three vertices and (usually) two edges/connected sides (Figure 3.5(b)). The
proposed detection strategy searches for triangles in the image (as defined by
their vertices) that fulfill the isosceles triangle criteria (at least two equal sides or
at least two equal angles).

The advantages of this method are:

• It generalises well for different drawings, door representations and door
types

• It avoids using complex template matching or shape detecting methods that
can perform poorly for low quality images.

In order to find vertices of potential triangles the Harris Corners algorithm [70]
is used to locate corners in the image. For each pixel in the image this algorithm
calculates the change in intensity in a given direction

I2
n =

nT∇I∇ITn
nTn

(3.1)

where n is the direction considered and I(x, y) is the intensity of the pixel at
location (x, y). I2

n is then smoothed by convolution with a Gaussian kernel giving
Cn(x, y)

Cn(x, y) =
nT An
nTn

(3.2)
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(a) (b)

Figure 3.6: An example of corners not detected very accurately for a lower reso-
lution image: some of the corners are misaligned which will lead to an inaccurate
fitted triangle: (a) Corners detected using the Harris corner algorithm shown as
red stars, (b) Triangle fitted to detected corners/vertices shown in orange.

where A are the smoothed values of ∇I∇I. Using eigenvalue theory the upper
and lower bound of Cn(x, y) are given by the eigenvalues of A. If A has two large
distinct eigenvalues then a corner is detected [70].

These vertices detected using Harris Corners are then processed to find all
unique three corner combinations that make up a shortlist of potential triangles
and hence potential doors. The following tests are then performed on each poten-
tial door in the shortlist:

1. Check geometry: door side lengths and angles need to fulfill the isosceles
triangle requirement

2. Check connectivity: doors need to have two pairs of connected vertices (a
pair of vertices is considered connected if starting from one vertex the other
can be reached following only dark pixels)

Geometry test

A potential triangle is defined as △ABC, with vertices A, B, C and sides AB, BC,
CA. For a potential triangle to be isosceles at least one set of sides must be equal
(this could be equivalently tested by checking whether there is at least one pair of
equal angles)

{AB = BC ∪ BC = CA ∪ AB = CA} ̸= ∅ (3.3)

Due to poor image quality the location of detected corners/potential vertices is
not always accurate, as shown in Figure 3.6. Therefore this condition is relaxed
to testing for at least two approximately equal sides by rounding up calculated
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triangle side lengths before searching for equal sides

{AB ≈ BC ∪ BC ≈ CA ∪ AB ≈ CA} ̸= ∅ (3.4)

After rounding, if no equal sides are found one final test is performed to look
for possible isosceles triangles in a very low quality image. If the ratio of any two
sides is greater than 0.9 then these are considered roughly equal and the potential
triangle passes the sides test

{
AB
BC

> 0.9∪ BC
CA

> 0.9∪ AB
CA

> 0.9,
BC
AB

> 0.9∪ CA
BC

> 0.9∪ CA
AB

> 0.9
}
̸= ∅

(3.5)

The value of 0.9 was empirically determined to yield good results. Values
greater than 0.9 were found to result in virtually the same shortlist as the test in
Equation 3.4. Values smaller than 0.9 were found to relax the equal sides condition
too much, resulting in a large number of false positives.

The largest out of the three triangle angles, ∠ABC, ∠BCA and ∠CAB, anglemax,
is also tested. If it is too large then the three vertices may correspond to three
collinear points, if it is two small then two of the vertices may be so close they
are effectively the same point. If the angle is very large or very small the approxi-
mated triangle is also unlikely to correspond to a door. The largest triangle angle
is bounded between 60 ≤ anglemax ≤ 100 since empirically, based on the com-
monly used door symbols, Figure 3.5, that is an appropriate range for commonly
observed door types. Increasing the upper bound leads to three point combina-
tions that are nearly collinear -and thus do not correspond to potential doors-
being shortlisted; decreasing the lower limit leads to triangles that have two ver-
tices that are very close to each other being shortlisted which are also unlikely to
correspond to doors.

Connectivity test

After the geometric tests are completed a connectivity test is performed on the
shortlisted potential doors. In order to pass this test at least two sets of the ver-
tices of the approximated triangle △ABC need to be connected. Two vertices are
considered to be connected if starting at one of them the other can be reached
following consecutive black pixels. The details of the connectivity check for two
vertices are as follows. A vertex is chosen as the starting point with coordinates
(xo, yo). The aim is then to attempt to reach a destination vertex, (xd, yd) by at-
tempting to follow only dark pixels. Starting at (xo, yo) neighbouring pixels are
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tested. If one dark pixel is found it is chosen as the next pixel to move to and
if more than one dark pixels are found a further test is performed to determine
which is closest to (xd, yd). If the destination is reached by following such dark
pixels then the origin/destination vertex set passes the connectivity test.

The relative position of (xo, yo) and (xd, yd) is used to determine which neigh-
bouring pixels to test at each iteration. A different set of pixels is tested depend-
ing on whether the destination pixel, (xd, yd) is to the left or right of (xo, yo) and
whether it is lower or higher in the image than (xd, yd). The origin of the coordi-
nate system used in the image is set to be the topmost leftmost point, signifying
that pixels to the right of the image have larger x coordinate values than those fur-
ther left and pixels higher in the image have lower y values than those towards the
bottom of the image. Depending on the location of the destination vertex relative
to the origin vertex different neighbouring pixels are tested.

If the destination vertex, (xd, yd), is further up and further right than (xo, yo)

the coordinates of the next three pixels to test are given by

Pn = {(xc + 1, yc), (xc, yc − 1), (xc + 1, yc − 1)} i f {xo < xd ∩ yo > yd} (3.6)

If the destination vertex, (xd, yd), is further up and further left than (xo, yo) the
coordinates of the next three pixels to test are given by

Pn = {(xc − 1, yc), (xc, yc − 1), (xc − 1, yc − 1)} i f {xo > xd ∩ yo > yd} (3.7)

If the destination vertex, (xd, yd), is further down and further right than (xo, yo)

the coordinates of the next three pixels to test are given by

Pn = {(xc + 1, yc), (xc, yc + 1), (xc + 1, yc + 1)} i f {xo < xd ∩ yo < yd} (3.8)

Finally, if the destination vertex, (xd, yd), is further down and further left than
(xo, yo) the coordinates of the next three pixels to test are given by

Pn = {(xc − 1, yc), (xc, yc + 1), (xc − 1, yc + 1)} i f {xo > xd ∩ yo < yd} (3.9)

(xc, yc) are the coordinates of the current pixel and Pn is the set of neighbouring
pixels to be examined. These are determined depending on the relative location of
the destination to the origin as described mathematically in Equations 3.6, 3.7, 3.8
and 3.9 and visualised in Figure 3.7. These neighbouring points Pn are chosen to
ensure that the direction of movement is the direction of the target (the target could
be reached through a long convoluted route but that would not give information
about the door of interest).
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Algorithm 3.1 Connectivity check

(xc, yc) ← (xo, yo)
I((xc, yc)) ← dark
DestinationReached← no
Connected← yes
while DestinationReached == no AND I((xc, yc)) == dark AND Connected← yes do

Pn ← FindNeighbours
nd ← FindDark(Pn)
if nd == 0 then Connected← no
else if nd == 1 then (xc, yc) ← (xdark

N , ydark
N )

else
for i=1:3 do

di ←
√
(xi

N − xdt)2 + (yi
N − yd)2

end for
(xc, yc) ← (xmin(di)

N , ymin(di)
N )

end if
end while

In order to select which of the shortlisted three neighbouring pixels Pn to move
to next the intensities of the three neighbouring pixels, I(Pn), are examined to
determine how many out of the neighbours Pn are dark:

• If nd = 0: the two vertices fail the connectivity test

• If nd = 1: the dark pixel is chosen as the new current pixel , (xc, yc)

• If nd > 1: further testing is required

where 0 ≤ nd ≤ 3 is the number of dark pixels out of the set Pn.
If nd > 1 then the next point to move to out of the possible Pn is determined by

testing which of the points in Pn is closest to the destination vertex (xd, yd). The
Euclidean distance between each of the neighbouring pixels (xi

N , yi
N), i = 0, ..., 3

and the destination vertex (xd, yd)

di =
√
(xi

N − xd)2 + (yi
N − yd)2 (3.10)

is used to determine which of the three neighbouring pixels will be the pixel
to move to and the pixel (xi

N , yi
N) that is the closest to the destination vertex, the

pixel with the smallest di, is chosen. The overall algorithm used to perform the
connectivity test is shown in Algorithm 3.1.

False positives removal

After the connectivity tests are completed the shortlist of doors is passed through
two final tests to remove any false positives detected in feature rich areas such as
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{xo < xd ∩ yo < yd} {xo > xd ∩ yo < yd} {xo < xd ∩ yo > yd} {xo > xd ∩ yo > yd}
(a) (b) (c) (d)

(e)

Figure 3.7: Choosing pixels to move to starting at grey pixel, (xc, yc): depending
on destination vertex location the pixels to examine are highlighted in blue: (a)
down and right, (b) down and left, (c) up and right and d) up and left; (e) shows
an example of an origin and destination pair.
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stairs:

1. Check intensity of pixels within the triangle: the percentage of dark pixels
needs to be smaller than 40% (this value was tested for drawings with very
different representations and was found to yield good results)

2. Remove repeated/overlapping doors: If the areas of the approximated trian-
gles overlap more than 30% (this value was deduced empirically) then only
one of them is maintained

3. Check no door points are on the outer walls: common false positives such as
stairs tend to have vertices on outer walls; outer walls are detected separately
and hence no information is lost by discarding such potential doors

The thresholds for the above checks were determined as follows. When check-
ing the intensity of the pixels within the triangle the aim is to remove triangles that
contain many black pixels and could correspond to false positives at feature-rich
areas such as stairs. The threshold should thus be a small number, ideally. Setting
a low value such as 10% was found to yield many false negatives, with true doors
being missed. This was due to corners not being detected at the exact locations
of vertices, especially in the case of lower quality images. This resulted in fitted
triangles that contain some dark pixels in the fitted triangle. This number was
thus increased until a value was found that avoided missing many true doors but
also did not result in many false positives.

A number of values were tested to determine an appropriate threshold for the
acceptable percentage overlap between triangles. The threshold should ideally
be low- a percentage of overlap of 50% would indicate two triangles effectively
corresponding to the same door. In practice, this value was found to be high and
result in many duplicates not being detected and was gradually decreased until a
threshold that removed the majority of duplicates for all images tested was found,
30%.

In order to detect the outer walls the Harris corners closest to the image bound-
aries are first shortlisted

Cedge =
{
(xC

min, yC
min), (xC

min, yC
max), (xC

max, yC
min), (xC

max, yC
max)

}
(3.11)

where xC
min is the x coordinate of the leftmost detected corner, xC

max that of the
rightmost detected corner and yC

min, yC
max are the lowest and highest y coordinates

of detected corners.
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The intensities of the pixels along the horizontal and vertical directions are
then tested to find dark pixels along those lines. These are then stored as outer
wall points

Wallsout = (x, y) ∈
{

Hpoints ∪Vpoints
}

(3.12)

with

Hpoints =
{
(x, y)|xC

min ≤ x ≤ xC
max, y =

{
yC

min, yC
max

}
, I(x, y) = 0

}
(3.13)

Vpoints =
{
(x, y)|yC

min ≤ y ≤ yC
max, x =

{
xC

min, xC
max

}
, I(x, y) = 0

}
(3.14)

where Hpoints are the points along the horizontal direction and Vpoints those
along the vertical direction and I(x, y) the intensity of a pixel with coordinates
(x, y), with I(x, y) = 0 identifying dark pixels in a binarised image.

This outer wall detection is performed to remove false positives; the detected
outer walls are amended when walls in the image are detected as described in the
next section.

Wall detection

The next step after determining the final door shortlist is to detect walls attached to
the doors to construct the desired occupancy grid prior. Walls are the main feature
needed to construct an occupancy grid map prior since they give the outline of the
building and must be present for all buildings.

First of all, the outer walls are detected as described in the previous section and
added to the list of wall points, W. Thus W is intialised as Wallsout, Equation 3.12.
Each detected door is then examined to find walls attached to it.

For each door the pair of vertices that failed the connectivity test (Agorithm 3.1),
(white door side, AB in Figure 3.8) are used. Each shortlisted door has two pairs
of connected vertices. The vertices that are not connected are the ones that are
attached to walls, Figure 3.8. Using these two vertices a similar method to the one
used to find outer walls is used to find wall points.

The aim of the algorithm is to start from vertex Vo (A in the case of Figure 3.8)
and keep following lines of dark pixels perpendicular or parallel to AB until a
white pixel is found/the end of a wall is reached.

The orientation of the door symbol is first determined by checking whether
the unconnected vertices are aligned horizontally or vertically
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Figure 3.8: Find walls by starting at vertex A and finding the first dark pixel along
AB then follow all dark pixels along that line until a white pixel is reached. Then
check directions perpendicular to AB until no more dark pixels are found, then
pixels perpendicular to that direction and so on until vertex B or the end of the
image is reached.

Orientation =

h i f | xVd − xVo |>| yVd − yVo |

v i f | xVd − xVo |<| yVd − yVo |
(3.15)

In order to determine whether the door’s unconnected side is vertical with
Orientation=v, or horizontal with Orientation=h, the difference between the x and
y coordinates of each origin and destination pair are compared. The vertices are
unlikely to be perfectly aligned vertically or horizontally and so the absolute dif-
ference between the x coordinates is compared to the absolute difference between
the y coordinates of the origin and destination vertices. If the discrepancy in x
coordinates is greater than that in y coordinates the door orientation is horizontal,
h, and if the opposite is true it is vertical, v, Equation 3.15. If the absolute differ-
ences are found to be equal the door is not used to find walls. This is because this
system assumes that doors are either vertically or horizontally aligned (or nearly
vertically or horizontally aligned). Doors at an angle are less common and they
are deemed to be beyond the scope of this thesis.

After the orientation of the door is determined, pixels parallel and perpendic-
ular to the segment VoVd, corresponding to AB in Figure 3.8, are examined and
dark pixels along those directions are stored as wall points.

In order to explain how the wall detection algorithm works, the origin vertex
Vo = A in the horizontal door of Figure 3.8 will be used. Starting at Vo and
because Orientation = h pixels along the line parallel to AB are examined. Only
pixels with 0 < xi < xVo and 0 ≤ yi ≤ ymax are tested, namely pixels that are
to the left of A and within the image boundaries, with ymax being the image y
dimension. The x bounds are chosen because xA < xB in this case so there will be
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Algorithm 3.2 Drawing Processing Algorithm
Find Harris corners
Find all unique three corner combinations
for all potential doors do

if side test successful AND connectivity test successful then
save door

end if
end for
Detect outer walls
Remove doors on outer walls
Remove doors with dark points in triangle
Find walls

no wall points for xA < x < xB.

In a horizontal sweep the following points are added to the detected walls, W

{(x, y) ∈ ([0, xVs), [0, ymax]), I(x, y) = 0, I(x− 1, y) = 0, I(x, y− 1) = 0} , x < xVs (3.16)

{(x, y) ∈ ((xVs , xmax], [0, ymax]), I(x,y) = 0, I(x− 1, y) = 0, I(x, y− 1) = 0} , x > xVs

(3.17)

where (xmax and ymax) are the image x and y dimensions, xVs the starting point
of the sweep and I(x, y) the intensity of the pixel at location (x, y). I(x− 1, y) = 0
means that the previous horizontal pixel was black and I(x, y− 1) = 0 means that
the previous vertical pixel was black to ensure we stop saving wall points once a
white section is reached).

Similarly in a vertical sweep

{(x, y) ∈ ([0, xmax], [0, yVs)), I(x, y) = 0, I(x− 1, y) = 0, I(x, y− 1) = 0} , y < yVs (3.18)

{(x, y) ∈ ([0, xmax], (yVs , ymax]), I(x,y) = 0, I(x− 1, y) = 0, I(x, y− 1) = 0} , y > yVs

(3.19)

The horizontal and vertical sweeps are performed in succession, starting with
the appropriate sweep depending on door orientation and performing a sweep in
each direction twice. The test is performed twice to avoid constantly detecting the
same walls: two sweeps in each direction should be enough to detect the room the
door is attached to.

The overall algorithm used to process the drawings is shown in Algorithm 3.2
and each algorithm step is shown in Figure 3.9. Detected walls can be translated
directly to the occupancy grid map format by assigning a low probability of being
unoccupied to all detected wall points. This algorithm has a computational cost
of O(n3) where n is the number of Harris Corners detected in the image and it is
dominated by the cost of finding the possible combinations nCr = n!

r(n−r)! of r = 3
out of n detected Harris corners.
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(a) (b)

(c) (d)

(e)

Figure 3.9: The proposed algorithm to detect walls in a floor plan or architectural
drawing. (a) Input drawing; (b) Corners detected using the Harris Corners algo-
rithm, setting the number of corners to be detected to 200; (c) Shortlisted doors;
(d) Walls detected (green lines) following the shortlisted doors (orange triangles),
with most walls being identified correctly despite some false positive doors; (e)
Algorithm output.
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3.3.2 Assessing drawing quality

In order to assess the performance of the drawing processing algorithm presented
in Section 3.3.1 a quantitative method to assess the quality of the extracted in-
formation is required. The quality of extracted information is often assessed by
calculating the percentage of features detected correctly or by using similar met-
rics originally designed to assess the quality of recognised symbols in mechanical
drawings [126]. Such approaches, however, are a poor way of determining how
suitable a constructed prior map is since they focus on per-symbol recognition
accuracy and not accuracy of wall detection, which is the focus of this chapter.

A set of criteria to assess the suitability of extracted structural information to
construct an occupancy prior are proposed as follows

1. Correctly detecting walls is the main system requirement and hence should
be the primary performance metric

2. Missing a wall is less of a problem than detecting a false positive since a
SLAM system can fill-in missing walls whereas false positives may restrict
areas the robot is deployed in

3. Detecting stairs or in-built furniture as walls should not be penalised: these
are strictly not wall locations but they behave similarly since they cannot be
traversed or moved

Given the above criteria a novel approach is proposed to assess the quality of
the extracted information: the recognition is formulated as a classification prob-
lem. Each pixel in the image can be classified as belonging to one of the categories
seen in Figure 3.4. This way of assessing performance can be mapped to the aims
of constructing occupancy grid priors, separating regions in the grid as occupied
or unoccupied. The algorithm proposed in Section 3.3 focuses on wall detection
and so the generalised problem formulation is converted to a binary classification
problem. This simplification provides an assessment of how successful the system
is in terms of correctly classifying pixels as being occupied or unoccupied, which
is the main performance criterion for accurate prior construction. This approach
can be extended and used for other systems that aim to detect other features in
the image such as stairs for example.

Viewing the proposed recognition algorithm as an algorithm to detect walls in
the image, clutter and text are considered to be true negatives; walls and windows
are considered to be true positives and doors, stairs and in-built furniture are
considered to be a “don’t care state” (the system is not penalised for detecting
them as positives or negatives) as shown in Figure 3.10. Doors, stairs and inbuilt
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Binary Image

White Pixels

Black Pixels

Empty space

Walls, windows

Empty space
(letters/hashlines/furniture)

"don’t care"
(doors/stairs/inbuilt furniture)

Figure 3.10: Simplified classification problem: white points in the image, clutter
and text are considered to be true negatives; walls and windows are considered
to be true positives and doors, stairs and in-built furniture are considered to be a
"don’t care state" (the system is not penalised for detecting them as positives or
negatives).

furniture may be classified as occupied or unoccupied space and neither of these
decisions will be deemed a false positive. Classifying them as occupied is strictly
not false since they represent obstacles in the real world or areas a robot could not
access but, conversely, they are not true walls. If the original algorithm is extended
to include clutter and stair detection the classification evaluation can be expanded
to include more possible classes but this is outside the scope of this thesis.

The extracted walls and empty space image contains the following informa-
tion. Set Im represents the entire image, set TW the true walls and set DW the
detected walls. Set Im − TW represents the actual negatives, TW

∩
DW repre-

sents the true positives, TW − TW
∩

DW the false negatives and DW − TW
∩

DW
the false positives in the image. Three metrics commonly used for classification
evaluation are used to assess performance [39]:

• Precision =
TruePositives

WallsDetected
=

TW
∩

DW
DW

• Recall(Sensitivity) =
TruePositives
ActualWalls

=
TW

∩
DW

TW

• False positive rate =
FalsePositives

ActualNegatives
=

DW − TW
∩

DW
Im− TW

Precision calculates the percentage of pixels correctly identified as walls out of
all the pixels detected as walls. Recall is the percentage of wall pixels identified
correctly out of all walls in the image. The false positive rate signifies the percent-
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age of misclassified empty space pixels out of all pixels corresponding to empty
space.

3.4 Results and discussion

The algorithm presented in Section 3.3.1 was used to process representative draw-
ings and the performance assessment method proposed in Section 3.3.2 was used
to assess performance and qualitative and quantitative results are presented in this
section.

3.4.1 Image test set selection

Five representative images were selected to assess performance. Two floor plans
were selected, one with dimension labelling and inbuilt furniture in light grey
(Figure 3.11(a)) and a floor plan with multiple suggested furniture and details
(Figure 3.11(b)). Three sections of an architectural drawing of a University of
Sheffield Engineering building were also selected. Figure 3.12(a) contains stairs
which are a common source of false positives as well as double doors which are
more challenging to detect. Figure 3.12(b) presents a relatively straightforward
drawing section and Figure 3.12(c) is most challenging containing stairs, double
doors, labelling and a door at an angle. This set of drawings was chosen to test
the performance of the algorithm since it covers a wide range of symbols, repre-
sentations and formats.

3.4.2 Qualitative drawing processing results

Results produced for drawings discussed in the previous section are shown in Fig-
ures 3.13 and 3.14. The proposed algorithm performs well for drawings with few
features such as doors and not much clutter, Figure 3.14 (a) and (b). Performance
is worse for Figure 3.14 (c) because there are many more features but also some
of the doors are more difficult to detect (such as the door that is at an angle). The
detected walls (seen in green, middle column of Figures 3.13 and 3.14) and the
algorithm’s output, the extracted walls (rightmost columns Figures 3.13 and 3.14),
are accurate despite occasionally detecting some false positive doors or missing
some of them. However because of the way the algorithm works more accurate
door detection does lead to more accurate wall detection.

A point to consider is that the number of detected doors depends on the cor-
ners detected in the image. For images where walls are represented with thicker
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(a) (b)

Figure 3.11: Image test set floor plans. Drawing (a) contains labelling, thin and
thick lines, stairs, double doors and inbuilt furniture, drawing (b) contains sug-
gested furniture and details.

lines than doors all corners may be detected at wall intersections since such cor-
ners will appear stronger [70]. In order to avoid this problem the input drawing
can be segmented into smaller sub-images containing fewer features to ensure no
doors are missed. A divide and conquer strategy can then be used to detect doors
more accurately in each segmented image and the extracted walls for each sub-
image can be collated to produce the final extracted walls. This approach can yield
computational savings because a smaller number of Harris corners would need to
be detected per sub-image without missing corners around features of interest.

The method of using dilation to differentiate between thinner and thicker lines
in the image and thus differentiate between walls and other structural elements
[10, 11, 100], as discussed in Section 3.1, was implemented in order to compare
its performance to that of the proposed approach. Dilation detects pixels in the
boundaries of objects in the image [145]. In order to detect such boundaries the
intensity of each pixel i at location (xi, yi) and a region of its neighbours, as de-
termined by a structuring element, are compared. The largest intensity value is
selected as the dilated value for position (xi, yi). The structuring element chosen
determines the shape of the region of neighbours that is examined.

The Matlab implementation of Dilation was used, dilating the image using a
square as a structuring element object, with two different possible square sides
presented in the results. A square was chosen since walls, the elements we aim to
detect, are rectangular. Two different square sizes were used to examine the effect
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(a)

(b)

(c)

Figure 3.12: Image test set architectural drawing sections of one of the University
of Sheffield’s Engineering buildings. (a) contains stairs and double doors, (b) is a
more straightforward drawing to process and (c) presents a number of difficulties
including text, stairs, labelling and a door at an angle.
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(a) (b) (c)

(d) (e) (f)

Figure 3.13: Results of drawing processing, with each row showing the process
for a different floor plan. (a) and (d) are the input drawings, (b) and (e) show
the extracted information, with detected doors shown as orange triangles and
detected walls shown in green, (c) and (f) are the algorithm’s output for each case.

of the size of each structural element.

The drawings in the left column, (a) and (c) in Figure 3.15 use a square element
object of side 2, while the right column, (b) and (d), use a square side of 4. The left
column contains too much information, failing to eliminate doors and suggested
furniture, especially in the case of the floor plan shown in (c). Conversely, using
a larger square side of 4 leads to most information being eliminated in the case
of the architectural drawing in (b) and windows being displayed as doors in (d).
Neither square side performs well, with smaller sides making virtually no differ-
ence and larger sides eliminating information. Moreover there is no square value
that performs well for both drawings: floor plans with varying line widths for
different elements may respond well to larger square sizes but a larger square size
is likely to lead to very few wall points being correctly identified in architectural
drawings.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.14: Results of drawing processing, with each row showing the process for
a different architectural drawing section. (a), (d) and (g) are the input drawings,
(b),(e) and (h) show the extracted information, with detected doors shown as or-
ange triangles and detected walls shown in green, (c), (f) and (i) are the algorithm’s
output for each case.
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(a) (b)

(c) (d)

square side 2 square side 4

Figure 3.15: Extracted walls using dilation and a square as a structuring element
object for an architectural drawing, (a), (b) and for a floor plan, (c), (d). The left
column, (a) and (c), use a square element object of side 2, while the right column,
(b) and (d), use a square side of 4.
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3.4.3 Quantitative assessment

The metrics described in Section 3.3.2 were chosen to give a measure of how ac-
curate the system is in terms of detecting true walls but also the fraction of the
actual walls it detects. The ground truth (true walls, true negatives) was extracted
by hand and compared to the detected walls. The values of these metrics for each
of the drawings presented in the results section are shown in Table 3.1.

Drawing Precision % Recall % False positive rate %
Figure 3.11a 98.97 94.46 0.04
Figure 3.11b 99.23 69.96 0.09
Figure 3.12a 99.51 91.13 0.05
Figure 3.12b 99.88 66.17 0.01
Figure 3.12c 98.70 61.28 0.12

Table 3.1: Precision, recall and false positive rate calculated for the information
extracted each of the drawings in Section 3.4.1 using the algorithm proposed in
Section 3.3.1.

As can be seen in Table 3.1 drawings for which results are very good in terms
of a qualitative analysis such as Figure 3.11(b) and Figure 3.12(b) get quite low
scores in terms of recall. That is partly due to the fact that, for drawings with
thick walls, some pixels along the wall thickness may not be detected. This does
not reduce the quality of the prior constructed since the innermost lines defining
the outer walls of a building constrain the environment the robot can move in very
accurately.

In terms of precision the system performs very well for all drawings, so the
number of false positive wall points is very low. Finally the false positive rate is
very low for all drawings: some walls may be missed but the system manages to
make very accurate predictions of wall locations.

The results obtained using the proposed method to detect walls were also com-
pared to the results obtained using dilation as described in the qualitative results.
As shown in Figure 3.16, the proposed approach outperforms using dilation for
both square sizes used. In some cases using dilation with an appropriate square
size can yield improved recall, such as in Figure 3.16(b) and (e) for a square side
of 2, or a smaller false positive rate in Figure 3.16(c) for both square sizes and
for a square side of 2 for (b) and (e). This however is not true across all draw-
ings, further confirming the fact that this method does not generalise well for all
drawings.

These results indicate that the proposed algorithm fulfills the defined applica-
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Figure 3.16: A quantitative comparison of the precision, recall and false positive
rates of the walls extracted using the proposed approach and the commonly used
dilation method for two different square sizes for five different drawings. (a)
results for drawing (a), Figure 3.13; (b) results for drawing (b), Figure 3.13; (c)
results for drawing (a), Figure 3.14; (d) results for drawing (b), Figure 3.14; (e)
results for drawing (g), Figure 3.14.
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tion specific criteria well, yielding a high precision for all drawings tested, mean-
ing very few of the detected wall pixels are false positives.

3.5 Concluding remarks

A novel system to process floor plans and architectural drawings and extract
SLAM prior information using a set of geometric constraints and tests was pro-
posed in this chapter. Unlike existing methods the proposed algorithm prioritises
wall detection, since walls are structural elements that are present in all buildings
and determine the building outline. A set of criteria and metrics to assess the qual-
ity of the extracted prior information was also proposed, viewing the problem of
wall detection as a binary classification of image pixels as belonging to either walls
or empty space. Current performance is good for drawings that do not contain
many features and the set criteria are met, with tested drawings yielding a preci-
sion of over 98%, recall of over 61% and false positive rates lower than 0.09%. The
extracted wall locations can be used by a robot to localise in the indoors environ-
ment. In order to be used as a mapping prior, however, they need to be processed
and placed into a Bayesian prior format as discussed in the next chapter.



Chapter 4

Identifying optimised prior values

Improving SLAM performance by constructing and using meaningful priors can
be very beneficial for time and safety critical applications such as USAR missions.
Using an optimal prior can yield improved performance without increasing the
computational complexity of the SLAM algorithm itself. There is only a one-off
cost of O(n3) associated with extracting appropriate structural information and
constructing a prior map, but that can be performed offline.

The main contribution of this chapter is a study of possible contextual Bayesian
indoors mapping priors. Building on the work presented in Chapter 3, different
possible prior values are tested and maps produced are compared to those pro-
duced using a generic, non-informative prior that assigns equal prior probabilities
to all locations (as is typically done in the literature). Prior values for detected
walls and empty space in the architectural drawing or floor plan that optimise
precision and recall are thus identified and optimised informative priors are con-
structed. The work presented in this Chapter is published in the International
Journal of Robotics Research [60].

The contributions of this chapter are as follows:

• A new occupancy grid mapping simulator for Matlab that allows the study
of the effects of different prior maps

• A study of how prior values of occupancy assigned to detected walls and
empty space affect map quality

• Identifying optimised prior values to assign to empty and occupied space
locations detected in the architectural drawing

76
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4.1 Background

SLAM aims to have a robot equipped with sensors explore and map an envi-
ronment whilst simultaneously localising itself within it. The robot uses sensors
to perceive the environment, a motion model or odometer to predict robot mo-
tion and it can also use a prior to incorporate information about the environment
[50]. Numerous solutions to the SLAM problem have been proposed over the
years [47, 50] each trying to improve performance by improving a different aspect.
However, very little research has been conducted in the area of constructing and
using Bayesian priors to improve performance.

This chapter addresses this problem by proposing a method to construct con-
textual priors that improve the performance of SLAM without increasing compu-
tational complexity. It explores this concept by presenting a case study for indoors
SLAM optimised prior construction, Figure 4.1.

First the probabilistic formulation of SLAM is given, highlighting the role
of the prior map. The implementation of choice, FastSLAM [109], is then pre-
sented, showing the separation of the localisation and mapping tasks using Rao-
Blackwellization. This separation allows a study of mapping without the need to
focus on performing localisation. Occupancy grid FastSLAM is then presented,
highlighting the incorporation of prior information through the occupancy grid
mapping algorithm. Occupancy grids represent the area to be explored by a grid
of cells each associated with a probability of occupancy. They are the map repre-
sentation chosen in this thesis because the incorporation and visualisation of prior
information is relatively straightforward. The map at time k = 0 is the Bayesian
prior constructed based on available information and if no information is available
a priori a non-informative Bayesian prior is used, assigning a prior probability of
0.5 to all grid squares. Information extracted from architectural drawings or floor
plans using the method proposed in Chapter 3 is leveraged in this chapter to
construct optimised Bayesian priors that can improve map accuracy.

4.1.1 Probabilistic formulation

SLAM performs a Bayesian estimation to determine the robot’s pose and a map of
the environment given sensor readings, control inputs and the robot’s initial pose.
Formally, it aims to compute the joint posterior of the robot’s pose xk and the map
m [50]

p(xk, m|Z0:k, U0:k, x0) ∝ L× p(m) (4.1)
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Figure 4.1: The structure of the SLAM problem: sensor data, prior information
and motion model predictions are input to the SLAM algorithm that recursively
maps the environment and localises the robot within it; architectural drawings
and floor plans can be used to extract prior information.
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for all times k, where xk is the state vector describing the robot’s pose, m is the
map of the environment (or a selection of landmarks for feature-based SLAM),
p(m) is the prior map, Z0:k are the sensor observations, U0:k the history of control
inputs, x0 is the robot pose at time k = 0. L is given by

L =
p(zk, xk|m)

p(xk, m)

p(xk, m|Z0:k−1, U0:k, x0)

p(zk|Z0:k−1, U0:k)
(4.2)

since the joint posterior in (4.1) can be written

p(xk, m|Z0:k, U0:k, x0) =

p(zk|xk, m)
p(xk, m|Z0:k−1, U0:k, x0)

p(zk|Z0:k−1, U0:k)

=
p(zk, xk|m)

p(xk, m)
p(m)

p(xk, m|Z0:k−1, U0:k, x0)

p(zk|Z0:k−1, U0:k)

∝ L× p(m)

(4.3)

indicating that the joint posterior is proportional to the prior probability p(m).
Therefore a choice of an optimal prior p(m) can lead to a more accurate estimate
of the joint posterior.

The aim is to estimate the robot pose for all times k and the map of the en-
vironment given sensor readings, control inputs and a starting pose. SLAM is
solved recursively, producing map and pose estimates at each time step. Typically
an uninformative prior is used, setting p(mi) = 0.5, i = 1, ..., N, where N is the
number of grid cells and mi is the ith cell, to indicate that all cells have an equal
probability of being occupied or unoccupied. Given the recursive nature of SLAM,
using an informative prior map can help reach more accurate solutions after fewer
iterations.

In the probabilistic formulation of SLAM the tasks of localisation and mapping
cannot be viewed separately. FastSLAM uses Rao-Blackwellization to separate lo-
calisation and mapping as discussed in the following section. Therefore FastSLAM
allows the study of the effects of a prior map without the need to address locali-
sation.

4.1.2 FastSLAM formulation

Solutions such as FastSLAM [109], DP SLAM [52, 53] and gmapping [66, 67] use
particle filters to produce recursive estimates of robot pose and a map of the envi-
ronment. FastSLAM uses Rao-Blackwellization to decompose the SLAM problem
into a robot localisation problem and a collection of landmark/map estimation
problems that are conditioned on the robot trajectory estimate [50, 109]
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p(X0:k, m|Z0:k, U0:k, x0)

= p(m|X0:k, Z0:k)p(X0:k|Z0:k, U0:k, x0)
(4.4)

This separation of localisation and mapping allows the study of mapping pri-
ors without the need to explore localisation and is thus the implementation used
in this thesis.

The aim is to compute the joint posterior of the map and the complete robot
trajectory X0:k rather than the single pose xk. This is due to the fact that landmarks
conditioned on the trajectory are independent, allowing the factorisation shown
in Equation 4.4. The particle filter can be used to sample from the motion model
and produce the proposal distribution but now the estimates for the landmark
locations/the map (conditioned on the robot trajectory estimate) are performed
separately.

If a landmark representation is used the location of each landmark can be
estimated using a Kalman filter per feature per particle [109]. If an occupancy
grid representation is used an occupancy grid map is updated for each particle.

Since the pose and map estimates can be performed separately using Rao-
Blackwellization, in occupancy grid SLAM a Monte Carlo Localisation (MCL)
algorithm [139] can be implemented to produce pose estimates and calculate
p(X0:k|Z0:k, U0:k, x0). Then the occupancy grid mapping algorithm can be used
to calculate p(m|X0:k, Z0:k). The starting pose x0 is considered to be known for the
purposes of this thesis and so prior information about the environment can only
be incorporated into p(m|X0:k, Z0:k) through the Bayesian prior p(m).

Occupancy grid FastSLAM which uses the occupancy grid mapping algorithm
to compute p(m|X0:k, Z0:k) is presented in the next section.

4.1.3 Occupancy grid FastSLAM

The occupancy grid FastSLAM algorithm is used in this thesis, implementing the
occupancy grid mapping algorithm [51] to update the probabilities of occupancy
of each grid cell in the environment. This representation is chosen since the prior
map p(m) is the map used at time k = 0 which is then recursively updated as oc-
cupancy measurements are taken for map cells as the robot explores the environ-
ment. In occupancy grid FastSLAM [109] the process of updating pose estimates
and updating the map can be performed separately as shown in Equation 4.4. This
SLAM format allows for an analysis of the mapping algorithm where prior infor-
mation is incorporated through the use of a matrix of prior probabilities, p(m).

The occupancy grid mapping algorithm [51] splits the environment to be mapped
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into a grid of cells and a prior probability is assigned to each cell. Cells are as-
sumed to be independent in order to update the probability of occupancy of each
grid cell. This assumption allows the factorisation

p(m|X0:k, Z0:k) = ∏
i

p(mi|X0:k, Z0:k) (4.5)

where i = 1, ..., N is the current grid cell and N the total number of grid cells.
Updating the probability for each cell given the robot pose and sensor readings is
then merely an update of the probability of occupancy of that cell. As the robot
moves through the environment the probabilities of occupancy of cells that are
within the field of view of the robot sensors are updated.

The probability that a cell mi is occupied given the observation history is given
by

p(mi|Z0:k) =
p(zk|mi, Z0:k−1)p(mi|Z0:k−1)

p(zk|Z0:k−1)
(4.6)

which can be written as

p(mi|Z0:k) = p(zk|mi)
p(mi|Z0:k−1)

p(zk|Z0:k−1)
(4.7)

using the static world assumption which states that past sensor readings are
conditionally independent given knowledge of the map m [136]. Thus Equa-
tion 4.6 can be written as

p(mi|Z0:k) =
p(mi|zk)p(zk)

p(mi)

p(mi|Z0:k−1)

p(zk|Z0:k−1)
(4.8)

using p(zk|mi) =
p(mi|zk)p(zk)

p(mi)
.

Placing Equation 4.8 in the odds form we get

odds(mi|Z0:k) =
p(mi|Z0:k)

p(¬mi|Z0:k)

=
p(mi|zk)p(mi|Z1:k−1)p(¬mi)

p(¬mi|zk)p(¬mi|Z1:k−1)p(mi)

(4.9)

Therefore
odds(mi|Z0:k) =

odds(mi|zk)odds(mi|Z1:k−1)(odds(mi))
−1

(4.10)

Where p(mi) is the prior probability of occupancy of the ith grid cell,
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odds(mi|Z1:k−1) is the odds at the previous time step and odds(mi|zk) represents
the inverse sensor model. Taking the logarithm of Equation 4.9, the log odds
representation of Equation 4.9 is

lk,i = InverseSensorModel(mi, xk, zk) + lk−1,i − l0,i (4.11)

with
lk,i = log

p(mi|Z1:k, x1:k)

1− p(mi|Z1:k, x1:k)
(4.12)

Research has been conducted to identify suitable or preferable sensor models
such as [136] and [157].

The Bayesian priors for each cell, p(mi) are incorporated through l0,i, the log
odds prior for a given cell. When there is no available prior information a non-
informative Bayesian prior is assigned to all grid cells, p(mi) = 0.5, i = 1, ..., N.
Most researchers use such a prior in order to produce solutions that do not depend
on having prior knowledge of the environment [50]. Others claim that access to
information like detailed architectural drawings may be difficult [93]. Information
such as floor plans for buildings like hospitals and offices is generally available,
however, and can be used to extract useful information and construct SLAM priors
as described in Chapter 3.

Incorporating prior information does not add to the computational cost of
running SLAM and only incurs a one-off cost of extracting prior information and
constructing a prior. Since the posterior is proportional to the prior map (Equa-
tion 4.3) and given the recursive nature of SLAM, constructing an informative
prior map p(m) can help produce a more accurate map even if a quick explo-
ration is performed. In the case of a quick exploration each grid cell may only
be scanned once or twice, making the effect of the prior more significant. This is
especially useful for time critical applications where the environment needs to be
explored quickly such as USAR missions.

4.2 Problem formulation

Using the setup described in the previous section this chapter proposes a method
to shortlist optimised prior maps, p(m), leveraging the information extracted from
an architectural drawing or floor plan with a method such as the one proposed in
Chapter 3.

Once wall locations have been extracted from an architectural drawing, prior
occupancy values p(mi) need to be assigned to each grid cell mi accordingly. Three
parameters have to be chosen:
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• Prior probability assigned to detected walls

• Prior probability assigned to detected empty space

• Occupancy grid cell size (grid resolution)

Each grid cell mi is assigned a Bayesian prior probability p(mi) as discussed in
Section 4.1.3. The following notation will be used throughout the rest of this thesis.
A high probability assigned to a grid cell will mean the cell has a high probability
of being empty. Conversely, a low probability will signify a low probability that a
cell is empty. If wall locations are known, cells that are located where walls were
detected can be assigned lower prior probabilities, p(mwall

i ) < 0.5, and cells lo-
cated where empty space was detected can be assigned higher prior probabilities,
p(mspace

i ) > 0.5. For brevity these two probabilities will be written pwall and pspace,
where pwall is the prior probability assigned to grid cells that correspond to loca-
tions of detected walls in the architectural drawing and pspace the prior probability
assigned to cells corresponding to detected empty space in the drawing. This no-
tation can be used since all grid cells mi that correspond to occupied locations will
be assigned a prior probability of pwall and those that correspond to empty space
a prior probability pspace.

The alignment of grid cells and detected walls depends on the occupancy grid
cell size. In all the results presented an appropriate grid cell size that yields a rea-
sonable compromise between accuracy and computational complexity was chosen
for all drawings used. The effects of using priors when coarser grids are used is
discussed in the results section.

The problem addressed in this chapter is therefore a study of different pos-
sible combinations of (pwall , pspace) to determine the pair or pairs of values that
optimise the chosen performance metrics described in the next section. Therefore,
the design parameters to determine are

0 ≤ pwall ≤ 1 and 0 ≤ pspace ≤ 1 (4.13)

In order to assess the effects of using different prior parameter pairs (pwall , pspace)

a measure of quantitative performance is proposed in the next section.

4.3 Quantitative performance assessment

A number of different approaches have been proposed to assess map quality but
there is no established method to do so [36, 65, 84, 103, 105]. A novel approach
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to assess the quality of maps produced using a mapping algorithm is proposed in
this section, using a classification problem formulation.

4.3.1 Robot map evaluation background

The lack of a widely accepted and recognised method to assess performance
makes it difficult to compare the results of different methods used by different
researchers and research groups. Some attempts have been made, however, to
quantitatively assess maps, presented below.

Consistency Map consistency is a measure of map performance but, according
to [105], there is no consistent notion of consistency and determining whether or
not a SLAM map is consistent is still an open problem. Global consistency is often
used to mean that the map produced agrees with the ground truth whereas local
consistency refers to correctly aligning sensor scans locally. A measure for global
consistency is proposed in [105] which uses the mismatch in the sensor data but
this framework is tailored to SLAM using 2D laser sensors and can struggle in
dynamic environments.

Accuracy Assessing map accuracy using a quantitative measure of performance
has been proposed in [84]. The metric used is dependent on the difference between
the ground truth and the produced map at a number of defined control points in
the map and the localisation error at those points.

Occupancy grid maps A number of methods have been proposed to assess the
quality of occupancy grid maps. Some methods such as [36] compute a correla-
tion between the produced map and ground truth. A problem with this approach
is that a misalignment between the true environment and the map can lead to a
very low score but also calculating correlations can be computationally expensive.
Another method, Map Score [103], is based on the probability that two maps rep-
resent the same world and checks the agreement between the two. However, this
type of approach tends to be biased towards free cells since maps contain much
more free space than occupied areas. Finally, as discussed in [65], the percentage
of free and occupied cells identified correctly can be used to measure performance.

Maps in simulated environments Some papers have proposed metrics to eval-
uate the performance of teams taking part in robot competitions. A set of metrics
to assess performance of robots competing in RoboCup search and rescue is pro-
posed in [22]. The authors claim these metrics could be used to evaluate USAR
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robots operating in a real environment, however the aims and objectives of the
competition may not necessarily be priorities in a real life operation. For example,
the time the system takes to run and power consumed are factors that are not
taken into account in the performance metric.

These methods are either tailored to a specific application and hence cannot be
easily used in this case, too computationally expensive or depend on localisation
accuracy. Given these limitations a new approach is proposed in the next section
that addresses these problems.

4.3.2 Proposed approach

In this chapter a metric that is easy to evaluate is proposed, that gives an indica-
tion of how successful the system is in detecting occupied and empty space in the
environment. This leads naturally to a classification problem formulation, classi-
fying each pixel in the image as belonging to one of two categories: occupied or
empty space.

The use of the percentage of free and occupied cells identified correctly is pro-
posed as a performance metric in [65]. The novelty of the proposed approach is
the formulation of the assessment of the quality of an occupancy grid map as a
classification problem where the aim is to correctly classify pixels as correspond-
ing to occupied or unoccupied space. Therefore a precision-recall analysis can be
used to evaluate the quality of the produced maps. Occupied locations in the envi-
ronment can then be defined as true positives and empty space as true negatives.
Any other objects detected can then be defined as false positives.

The chosen metrics are therefore detailed as follows [39]

Precision (pre) =
TruePositives

DetectedOccupiedSpace
=

TP
TP + FP

Recall (rec) =
TruePositives

ActualOccupiedSpace
=

TP
TP + FN

with
TP = number of true positives = walls
FP = number of false positives = empty space mapped as walls
FN = number of false negatives = walls mapped as empty space

Precision represents the percentage of correctly detected walls and recall repre-
sents the number of walls correctly detected out of all walls in the drawing. These
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metrics were chosen because between them they represent the two most impor-
tant aspects of the final map. A high precision is necessary to ensure the detected
occupied space actually corresponds to walls. A high recall is also required to
ensure that the system has managed to correctly map the majority of walls in the
environment.

The false positive rate ( f pr) metric used in Chapter 3 is not used in this case
because a high precision was found to yield a low false positive rate. The false
positive rate is defined as

False positive rate ( f pr) =
FalsePositives

ActualNegatives
=

FP
TN + FP

where TN is the number of true negatives, true empty space in the envi-
ronment. In most environments TN >> FP even for a poor mapping system,
since most buildings are made up mostly of empty space/non-walls, resulting in
low f pr values. False positive rate values observed during testing were typically
< 20% even for very low grid resolutions. Moreover, a higher precision was found
to result in a lower f pr and vice versa. This is not surprising given

f pr =
FP

TN + FP
=

1
TN
FP

+ 1
and pre =

TP
TP + FP

with a low FP resulting in a higher precision and lower false positive rate.

Following these assessment criteria, each point in the robot map is tested
against the true environment to determine whether it has been classified correctly.
A simple way to perform this comparison in practice is to find the difference
between the true environment image and the produced map to identify false pos-
itives and false negatives and thus calculate the above metrics. This difference
between the ground truth, I, and the final map, m, is defined as

d = I −m (4.14)

Then TP and TN are determined from I and FP is calculated using

FP = {d, f or d ≥ 0.8} (4.15)

This signifies a wall was detected where there is an empty space since for
di ≥ 0.8 we have

di = Ii −mi ≥ 0.8⇒ Ii ≥ mi + 0.8 (4.16)

for the ith location.
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Moreover, since mi ≥ 0

0 ≤ Ii ≤ 1⇒ 0 < mi + 0.8 ≤ 1⇔ −0.8 < mi ≤ 0.2 (4.17)

but since 0 ≤ mi ≤ 1, Equation 4.17 becomes

0 ≤ mi ≤ 0.2 (4.18)

signifying this location was mapped as a wall. The value 0.8 was empirically
determined to yield realistic results: increasing this value would require very con-
fident empty space detection which is an unrealistic requirement and decreasing
it was found to reduce the separation between detected walls values and detected
empty space values, making the assessment more prone to errors. This is a sim-
ple but effective and computationally inexpensive method to assess quantitative
performance.

As shown in the results section, constructed priors were tested in a simulation
which assumes perfect knowledge of the robot’s location so over or underesti-
mating these values if the map and ground truth images are misaligned is not a
problem. Therefore this method of comparing the map to ground truth to find the
number of true/false positives/negatives is used to test the performance of maps
produced using different priors.

If tests are conducted on a point-by-point basis coarse grids can be unjustly
penalised. This would result in an area of misclassified points that are actually
not strictly a classification error, just a limitation of an unsuitable grid resolution.
In order to avoid penalising a system with an unsuitably coarse grid resolution,
maps that perform well quantitatively are also tested qualitatively to ensure overall
good performance.

While testing different prior maps for different drawings it was observed that
the objectives of maximising precision and maximinsing recall are conflicting.
Therefore selecting optimal prior values to maximise both objectives is not triv-
ial and a multi-objective optimisation is proposed to determine optimised prior
values.

4.4 Contextual prior optimisation

Using the method described in Chapter 3 walls and empty space can be detected.
Prior values of occupancy then need to be assigned to each grid square. In order to
determine which (pwall , pspace) pair yields optimal performance a multi-objective
optimisation can then be performed to determine values that yield both maximum
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precision and maximum recall.

In order to test how the values for (pwall , pspace) that yield maximum precision
and recall compare in a qualitative sense, maps can be constructed using the prior
(pwall , pspace) values yielding maximum precision and recall. These can then be
tested to assess the qualitative performance of maps produced using these prior
values. If requirements for each metric are conflicting a multi-objective optimisa-
tion can be performed to determine pairs π = (pwall , pspace) that yield both high
precision and high recall. Having both precision and recall > 40% was empiri-
cally determined to be an acceptable threshold. Given the multi-objective nature
of the problem, having both precision and recall higher than 50% may not always
be achievable; 40% was found to be the highest percentage that could be achieved
by both recall and precision. This threshold was chosen to avoid discarding all
solutions in case of an incomplete exploration or a coarser grid representation.

This multi-objective problem can be formulated as

min
π

F(π) = [ fpre(π) frec(π)]

subject to C =


0.1 ≤ π ≤ 1

fpre(π) < 2.5

frec(π) < 2.5

(4.19)

where π = (pwall , pspace), fpre(π) = 1
pre and frec(π) = 1

rec (so fpre(π), frec(π) <

2.5 ⇔ pre, rec > 40%). The value range [0.1, 1] was chosen for the probabilities
π = (pwall , pspace) to avoid probability values too close to 0 that would lead to
numerical instabilities.

In order to perform this multi-objective optimisation a Pareto-based method
was chosen since the relative importance of the objectives is unclear [62]. In this
minimisation problem a decision vector π̂ with π̂ ∈ C is Pareto optimal if there
is no other π ∈ C for which fi(π) ≤ fi(π̂), ∀i and at least one fi(π) < fi(π̂) for
i = 1, ..., k where k is the number of functions in F(π). In this case the decision
vector π̂ is said to Pareto-dominate vector π. If only the second condition is met
the solution is considered weakly Pareto optimal. The multi-objective optimisation
solver used aims to find a subset of Pareto optimal solutions which is referred to
as the Pareto front [62], Figure 4.2.

The concept of Pareto dominance is applied in order to use a genetic algorithm
to solve this multi-objective problem. First the objective function is evaluated for
each individual in the population Π. Non-dominated individuals, Πnond are then
found and removed from the population. This process is repeated until all non-
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Figure 4.2: An example of a Pareto optimal front, for the problem of minimising
objectives 1 and 2. Pareto optimal values π̂ dominate the rest of the π values.
Solutions to the right of the Pareto front are dominated and solutions to the left of
the front are unattainable.

dominated individuals Πnond have been identified. A controlled elitist genetic
algorithm [43] (a variant of NSGA-II [44]) was chosen since it is computationally
cheaper than other genetic algorithms and is able to identify a set of solutions that
has improved spread and better convergence near the true Pareto front [44].

For a solution p the number of solutions that dominate it, np, and the number
of solutions that are dominated by it, dp, are calculated. Solutions with np = 0 are
non-dominated for this set, and values with low np among their neighbours are
also shortlisted [44]. A random parent population P0 is used to initialise the ge-
netic algorithm and the population is sorted based on non-domination. Solutions
are thus assigned a rank based on their non-domination value, with lower values
signifying better performance and a rank of 1 being optimal. The aim is then to
minimise rank to shortlist non-dominated solutions.

In order to maintain diversity in the population of shortlisted values a distance
measure between the current solution and its neighbours is used, as described in
[44]. This measure assesses how crowded a solution is based on how many close
neighbours it has and allows the removal of solutions that fall in very crowded
areas. This method thus avoids having a large number of solutions all clustered
close together.

In order to obtain recall and precision variables and perform the multi-objective
optimisation a simulation environment was devised as detailed in the next section.
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4.5 Simulation setup

A simulation was used to produce maps using different (pwall , pspace) pairs. A
simulation allows the testing of a large number of possible prior values to assign
to (pwall , pspace). Thus the multi-objective optimisation can be performed without
the need to obtain mapping results for different buildings and different building
drawings using a robot which would be very time consuming. The drawing test
set, simulation used and assumptions made are discussed in this section.

4.5.1 SLAM code and datasets background

Simulated vs real data

A number of SLAM data sets are available and commonly used to test different
SLAM algorithms [2, 143]. These datasets provide raw sensor and odometry data
collected by exploring buildings or outdoor areas that can be used to test different
SLAM algorithms. Distance sensor data and odometry values for indoors envi-
ronments are required in this thesis, limiting the number of appropriate available
datasets. Moreover, the number of available indoors datasets using distance sen-
sors is small, limiting the variety of possible architectural drawings and floor plans
that can be used as a source of prior information and requiring the appropriate
plans to be obtained. Conversely, generating appropriate data sets for a sufficient
and diverse number of building and drawing combinations would be challenging
and very time-consuming and is thus outside the scope of this thesis. In order to
be able to explore a number of diverse and representative drawings from which to
extract prior information a simulated environment is chosen to explore the bene-
fits of using informative Bayesian priors for indoors environments.

Existing SLAM software

The most commonly used ROS [3] module that uses an occupancy map repre-
sentation is an implementation of gmapping that uses a tree structure to update
values of occupancy and assumes each square can be empty, occupied or unknown
[61]. Instead of using a recursive probabilistic method to update continuous val-
ues of occupancy, binary occupancy values are updated based on sensor readings.
Therefore this type of representation does not lend itself to a study of the effects
of using informative priors.

OpenSLAM [2] also provides some occupancy grid SLAM implementations
including a version of gmapping [66], an implementation of DP-SLAM [53] and
an implementation of GridSLAM [69]. The DP-SLAM implementation presents
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the same limitations as the gmapping implementation, using a tree structure to
store binary values of occupancy for explored squares only. Finally, the GridSLAM
code uses outdated libraries and would require much restructuring to produce a
working version, making producing a full working version of this code a project
diverging from the main aims of the thesis.

Given the shortcomings of available SLAM code that is suitable to test the pro-
posed approach an occupancy grid mapping simulator for Matlab was produced.
This simulator does not address the localisation aspect of SLAM but assumes
known robot poses. Given the separation of the localisation and mapping tasks
in FastSLAM, however, as discussed in Section 4.1.2 this was considered sufficient
to test the effects of different prior values assigned to detected walls and empty
space in drawings. This approach allows for the study of a large number of differ-
ent prior value (pwall , pspace) pairs for a number of different drawings and simu-
lated environments. Using Matlab also facilitates the analysis of obtained results
using standardised and easily available libraries. Finally, the simulator produced
can also be used as an educational tool to help visualise the effects of recursive
probabilistic mapping and the effects of using different prior maps.

4.5.2 Proposed approach

Given the limitations of existing SLAM code, a simulator was produced to study
the effects of using informative priors. Simulated sensor data were used to allow
a study of the effects of using priors extracted from different drawings, yielding a
diverse set of case studies.

Drawing test set selection

A number of different drawings were tested using the simulation environment de-
scribed later in this section. A version of each drawing containing only structural
information was created by hand and used as the ground truth. Representative
drawings and relevant results are presented in this chapter. Two floor plans, draw-
ings (a) and (b) Figure 4.3, are presented. These were chosen as a representative
sample of common elements and configurations found in architectural drawings
and floor plans. Drawings (a), (b) and (c) in Figure 4.4, are sections of an archi-
tectural drawing of a University of Sheffield Engineering building. These sections
were chosen because they are a representative sample of different outlines and
commonly observed elements. Drawing (b) contains only doors and wall seg-
ments making it an easy drawing to process and drawings (a) and (c) are quite
challenging to process, containing stairs, text, walls of varying width and, in the
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(a) (b)

Figure 4.3: Image test set floor plans. Drawing (a) contains labelling, thin and thick
lines, stairs, double doors and inbuilt furniture, drawing (b) contains suggested
furniture and details.

case of drawing (c), a door at an angle.

Occupancy grid mapping simulation

In order to test the effects of using informative priors on map quality, a simulation
environment was created in Matlab. In this simulation the robot pose is assumed
to be known and accurate. Given the separation of localisation and mapping us-
ing Rao-Blackwellization performed in FastSLAM (Section 4.1.3), mapping can be
studied separately by providing deterministic pose values instead of using Monte
Carlo localisation to produce pose estimates. Mathematically, instead of using
Equation 4.4 and producing estimates of both the map and trajectory for each
particle we assume p(X0:k|Z0:k, U0:k, x0) is known and hence only one map needs
to be updated by determining p(m|X0:k, Z0:k) using the occupancy grid mapping
algorithm [51].

A robot is modeled as a point moving through space and the robot posse xk at
each time step k is assumed to be known and accurate, given by

xk = (x, y, θ) (4.20)

where (x, y) give the robot position in Cartesian coordinates and θ the robot

orientation. Four possible θ values are modeled, θ = [0,
π

2
, π,

3π

4
]. An s × 3

array is passed into the simulator, where s is the number of (x, y, θ) readings. No
motion model is used to construct these since they are assumed to be known-
and perfect. Enough s readings to obtain distance sensor readings that cover the
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(a) (b) (c)

Figure 4.4: Image test set architectural drawing sections of one of the University
of Sheffield’s Engineering buildings. (a) contains stairs and double doors, (b) is a
more straightforward drawing to process and (c) presents a number of difficulties
including text, stairs, labelling and a door at an angle.

building explored in each case were used (not all collections of s readings used
to update the map correspond to complete trajectories). This is effectively down-
sampling the amount of motion and distance data points used to update the map.
The simulated distance sensor is a Microsoft Kinect sensor with a conical field of
view defined by an angle ϕ and range r.

A value of ϕ = π/6 was used in all simulations. The drawings used are not all
drawn to the same scale and so the value of r in pixels was set by using the size of
doors as a way to determine scale and ensure consistency between drawings. The
value of r was set to be the same as the length of the door side in each drawing,
setting it to 20 pixels for the architectural drawings and 40 pixels for the floor
plans.

At each time step, cells that fall within the field of view of the sensor are
determined. This is achieved by calculating the equations of two lines and arc that
make up the sensor cone for the robot’s current pose and finding cells that fall
within the cone defined by these three curves.

The occupancy grid mapping algorithm [51] is used to update the log odds of
occupancy lk,i for each grid cell within the field of view of the sensor at each time
step (Section 4.1.3). The probabilities of occupancy can be retrieved from lk,i using

p(mi|Z1:k, x1:k) = 1− 1
1 + exp(lk,i)

(4.21)

The following inverse sensor model was used, based on [127]. For each grid
cell mi, within the field of view
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InverseSensorModel(mi, xk, zk) =
0.9, npixels<z

i = npixels
i

0.1, npixels>z
i = npixels

i

npixels<z
i

npixels
i

, 0 < npixels<z
i < npixels

i

(4.22)

with npixels<z
i being the number of map pixels for a cell i that fall between the

robot and the location of the detected obstacle, z; npixels>z
i the number of map

pixels for a cell i that are located beyond the detected object or at the location of
the detected object; and npixels

i the number of map pixels in cell i. For an accurate
sensor, cells for which all map pixels correspond to detected empty space are
assigned a value of 0.9, those that correspond to detected objects a value of 0.1
and those that contain both empty space and objects are assigned a value equal to
the percentage of pixels corresponding to detected objects.

When prior information is available p(mi) can be assigned a different prior
value based on whether a wall or empty space was detected for grid cell i during
the drawing processing stage as discussed in Chapter 3. The results obtained using
this simulator and performing multi-objective optimisation to determine optimal
prior values (pwall , pspace) are presented in the next section.

The main functionalities of the simulator are as follows:

• The trajectory of the robot as defined by an array of (x, y, θ) values can be
input by the user or loaded from a file

• An uninformative or an informative prior can be used

• Grid resolution, sensor range and field of view and prior values assigned to
walls and empty space in the prior map can all all be easily adjusted

• The map is displayed as the robot explores the environment, allowing visu-
alisation of results

• Calculation of precision and recall metrics for the final map

• The development of an overall algorithm to construct optimised Bayesian
priors using an architectural drawing or floor plan that result in more accu-
rate maps without adding to the computational cost of running the SLAM
algorithm



Chapter 4. Identifying optimised prior values 95

4.6 Results and discussion

This section presents the results obtained using the simulator presented in Sec-
tion 4.5.2, testing different prior values to assign to detected walls, pwall , and to
detected empty space, pspace. The results of the multi-objective optimisation per-
formed to determine the (pwall , pspace) pair that yields optimised precision and
recall are also presented.

In order to evaluate the effect of different priors different combinations of prior
values (pwall , pspace) were examined. The simplest way of assigning (pwall , pspace) is
to assign pspace = 1 and pwall = 0. However, there are a number of problems with
this approach. Firstly, assigning a 1 or a 0 causes numerical instabilities when
log odds are used to update the occupancy grid map. Secondly, starting from
very confident initial predictions makes it more difficult for the system to correct
a prior value based on sensor data. In order to avoid any numerical instabilities
all priors tested were multiplied by a factor of 0.9 and 0 was not included in the
set of prior values tested.

Given these limitations the values tested for (pwall , pspace) were in the range of
[0.1, 1]. A set of discrete values were tested within this range, spaced 0.1 apart.
This set of discrete values was chosen to reduce the computation required to test
all possible combinations of (pwall , pspace) within this range. Continuous values of
precision and recall were then obtained using linear interpolation, with the spac-
ing of 0.1 between data points being sufficiently small to allow for interpolation to
yield reasonable results.

Figure 4.5 shows the precision and recall colour maps for all representative
drawings. These figures indicate that the objectives of maximising precision and
maximising recall are conflicting for this problem, with regions of high precision
(yellow areas) corresponding to regions of low recall (blue areas) and vice versa.

In the precision plots of Figure 4.5B we observe higher values for pwall = 0.2.
That is because 0.2 is the lowest probability value for which the log odds value
is in the linear section of the log odds plot, Figure 2.9. Therefore it is the lowest
value we can assign to detected walls that avoids the region close to the asymptote
near 0.

Figure 4.6(c) shows colourmaps of the precision and recall metrics for possible
combinations of pwall and pspace for a representative drawing, Figure 4.6(a). Linear
interpolation was used to produce continuous metric values. Figure 4.6(b) shows
the final maps produced using the prior values that yield optimal precision and
those that yield optimal recall.

A higher precision ensures that it is unlikely free space will be incorrectly
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Figure 4.5: Interpolated precision and recall colour maps for the five drawings,
with rows 1 and 2 being floor plans and rows 3,4 and 5 being sections of an
architectural drawing. Regions of high precision, shown in yellow, correspond
to regions of low recall, shown in blue, and vice versa. This indicates that the
objectives of maximising precision and maximising recall are conflicting and thus
a multi-objective optimisation is required to identify optimal prior parameters.
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Optimal precision
Optimal recall

pwall = 0.1, pspace = 0.3

pwall = pspace = 1

(a) Original architectural drawing (b) Maps produced using a prior that maximises a single objective

(c) Precision and recall metrics
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(d) Multi-objective optimisation: Pareto front (e) Map produced using prior optimising conflicting objectives

Figure 4.6: Multi-objective optimisation overview: (a) is the architectural draw-
ing used to extract prior information; (b) shows the maps produced using prior
values that yield maximum precision and maximum recall, neither of which is
qualitatively optimal; (c) shows the pre and rec colour maps for all combina-
tions of (pwall , pspace) between 0.1 and 1 and the Pareto optimal solutions as black
points; (d) shows the Pareto front produced by the multi-objective otpimisation
and (e) shows the map produced using the Pareto optimal proposed prior values
pwall = 0.2, pspace = 0.9.
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identified as occupied and a higher recall ensures that the building structure is
detected. Figure 4.6(c) highlights the fact that the aims of having high precision
and also maintaining a high recall are conflicting. This problem of determining a
suitable pair of (pwall , pspace) that ensures high precision and high recall (> 40%
was empirically determined to be an appropriate threshold, as was explained in
Section 4.4) is therefore a multi-objective optimisation problem.

The Pareto front for a representative drawing, Figure 4.6(a), can be seen in
Figure 4.6(c) and the final map produced using one of the Pareto optimal prior
values is shown in Figure 4.6(e). This drawing was chosen because, due to the level
of detail including labelling, walls at an angle and multiple rooms, it highlights
the qualitative difference in performance between Figure 4.6(b) and Figure 4.6(e).

The map shown in Figure 4.6(e) avoids detecting thicker walls or missing doors
as can happen using the prior values that optimise recall, Figure 4.6(b), and also
avoids missing most of the walls as is done using the prior values that yield max-
imum precision, Figure 4.6(b).

Figure 4.5 shows the precision and recall colour maps for all representative
drawings. The shape of the colour maps for precision and recall does not vary
greatly between drawings, other than the fact that the region of values that yield
good performance is larger/smaller for different drawings. Small differences are
observed, such as the higher recall values observed for drawing (b) for pwall values
between 0.1 and 0.3. However, there are enough similarities in these results to
indicate that a globally optimal region of (pwall , pspace) values that result in high
precision can be identified.

The locations of maximum precision for three different grid resolutions are
shown in Table 4.1. Different grid resolutions are tested to examine whether prior
values that maximise precision and recall vary greatly with grid cell size. Max-
imum values are consistently observed for pwall values between 0.1 and 0.3 and
pspace = 0.3 regardless of the drawing and grid resolution with the exception of
drawing (a) for a 10x10 grid cell.

The values that yield optimal recall can be seen in Table 4.2. These values are
in most cases what one would intuitively expect to be optimal: a high value for
pspace and a lower value for pwall . For the architectural drawing sections, optimised
values were found to be pspace = 1 with pwall between 0.1 and 1.

As shown in Tables 4.1 and 4.2 the values that yield maximum precision do
not correspond to values that yield maximum recall and vice versa, confirming the
fact that the problem of maximising both precision and recall is a multi-objective
optimisation problem.

Multi-objective optimisation using the controlled elitist genetic algorithm [43]
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Grid cell 3x3
Drawing Max pre % (pwall , pspace)

a 98.49 (0.3, 0.3)
b 99.42 (0.3, 0.3)
c 91.77 (0.3, 0.3)
d 95.56 (0.1, 0.3)
e 93.77 (0.3, 0.3)

Grid cell 5x5
a 75.00 (0.3, 0.3)
b 95.36 (0.3, 0.3)
c 79.00 (0.3, 0.3)
d 84.94 (0.1, 0.3)
e 90.51 (0.1, 0.3)

Grid cell 10x10
a 48.00 (0.5, 0.6)
b 89.14 (0.1, 0.3)
c 77.42 (0.1:0.2, 0.3:05)
d 92.06 (0.1, 0.3)
e 92.68 (0.1, 0.3)

Table 4.1: Prior parameter values (pwall , pspace) that result in maximum precision
and the corresponding maximum precision values calculated and for each of the
drawings in Figure 4.5.

(a variant of NSGA-II [44]) discussed in Section 4.4 was preformed for all five
drawings. A (pwall , pspace) value within the shortlisted Pareto optimal values for
each drawing needs to be selected by examining the qualitative performance of
different solutions. Tailoring the chosen prior parameters to the type of drawing
used is impractical for real life applications and, ideally, a globally optimal value
or range of values should be identified to ensure good results for any type of
drawing.

Figure 4.5 shows the precision and recall interpolated colour maps for the five
drawings used to generate the Pareto fronts in Figure 4.7. Figure 4.7 shows the
Pareto optimal fronts [117] for all drawings and floor plans. There is a region
where the Pareto optimal fronts for all drawings overlap, meaning there are opti-
mal sets of (pwall , pspace) values that yield good performance regardless of the type
of drawing used. Only solutions that fall within set C as defined in Section 4.4
are of interest. These solutions need to be examined in a qualitative manner to
determine which (pwall , pspace) pair yield good performance for all drawings.

The subset of common Pareto optimal values that yield good qualitative per-
formance is examined in the next section.
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Grid cell 3x3
Drawing Max rec % (pwall , pspace)

a 80.08 (1,0.2)
b 82.77 (0.2,0.1:0.2)
c 69.43 (0.1, 1)
d 82.70 (0.7:1, 1)
e 83.05 (0.5:1, 1)

Grid cell 5x5
a 66.09 (1,1)
b 79.71 (0.2,0.2)
c 72.05 (1, 1)
d 86.00 (0.4:1, 1)
e 88.68 (0.9:1, 1)

Grid cell 10x10
a 66.53 (1, 1)
b 73.42 (0.2, 1)
c 86.91 (1, 1)
d 91.69 (0.4:0.9, 1)
e 95.41 (0.2, 1)

Table 4.2: Prior parameter values (pwall , pspace) that result in maximum recall and
the corresponding maximum recall calculated for each of the drawings in Fig-
ure 4.5.

4.6.1 Identifying globally optimal prior parameters

A number of Pareto optimal (pwall , pspace) pairs were identified for each drawing.
Determining a different optimal pair for each drawing is impractical because, in
a real life application, pre-testing the effects of different priors against a ground
truth is not a realistic proposition. It is therefore important to determine values
that yield good qualitative results that can be generalised across different draw-
ings.

As shown in Figure 4.7 there are a number of Pareto optimal values that are
common to all drawings. In order to further explore similarities, all Pareto optimal
solutions can be viewed as a single dataset. These different values can then be
analysed using a clustering algorithm to detect any clusters in the data. This will
simplify the search for values that yield good qualitative results by allowing us to
examine only a representative set of values from each cluster.

The k-means method [14, 71] was used in order to detect clusters in the data.
This clustering algorithm is widely used and well documented, and a library per-
forming k-means classification is available in Matlab.

The set of observations P = (p1, p2, ..., pn), where pj is the jth (pwall , pspace) pair
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Figure 4.7: Pareto fronts for the representative floor plans and architectural draw-
ings. There are a number of common solutions with precision and recall > 40%
, meaning there is an optimal set of (pwall , pspace) that meets the requirements for
all drawings.

and n the number of Pareto optimal pairs across all drawings is defined. Given
this set, k-means aims to partition these observations into M clusters, with M
being defined a priori. The assigned clusters are chosen to minimise

arg min
S

M

∑
i=1

∑
P∈Si

∥ P− µi ∥2 (4.23)

where S is the set of cluster points, with Si being the set of points for cluster i
and µi the mean of the ithe cluster.

Cluster means µ are initalised randomly. Given an initial set of means, µ1, ..., µM

the algorithm alternates between the following steps until the cluster assignments
no longer change and it converges.

The first step is often called the assignment step. At each time step k each
observation is assigned to the cluster for which it minimises Equation 4.23

S(k)
i = {pc :∥ pc − µ

(k)
i ∥

2≤∥ pc − µ
(k)
j ∥

2 ∀j, 1 ≤ j ≤ M} (4.24)

with each current obsevation, pc being assigned to only one cluster, S(k), even if it
meets the minimum distance requirement for more than one cluster.

The second step is the update step, in which new cluster means are computed
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using

µk+1
i =

1

|S(k)
i |

∑
pj∈S(k)

i

pj (4.25)

The k-means variation used in this chapter is the Matlab implementation of
k-means++ [14]. This variation uses an alternative method to initialise cluster
means. The first mean µ1 is selected at random from the observation set P. Then
the distances between each remaining observation pi and µ1 are computed.

The next mean, µ2 is selected at random from P with probability

π2 =
d2(pi, µ1)

∑n
j=1 d2(pj, µ1)

(4.26)

where d(pi, µ1) is the distance between observation pi and µ1.

To determine the remaining means, µj, j = 2, ..., M the distances from each
observation to each mean are computed and each observation is assigned to its
closest mean. Then for each observation pi, i = 1, ..., n the mean µj is selected at
random form P with probability proportional to the distance between the µj and
the mean closest to µj

πj =
d2(pi, µl)

∑n
h:ph∈Cl

d2(ph, µl)
(4.27)

where Cl is the set of all observations closest to mean µl and l = 1, ..., j− 1.

This process is repeated until all M means are chosen.

4.6.2 Optimised prior construction

In order to analyse the Pareto optimal values, all shortlisted (pwall , pspace) pairs
were plotted as shown in Figure 4.8(a). The k-means algorithm was then used
to detect clusters within that data. The number of clusters was defined as M =

3. Values 2 ≤ M ≤ 4 were also tested but the resulting clusters were either
fragmenting the data too much for M > 3 or not separating the data enough for
M < 3. The results of running the clustering algorithm are shown in Figure 4.8(b).

In order to identify an optimal cluster of solutions, representatives from each
cluster were tested in terms of qualitative performance. Solutions that fall in Clus-
ter 1, the purple cluster in Figure 4.8(b) have low values of both pwall and pspace

with 0.1 ≤ pwall ≤ 0.3 and 0.2 ≤ pspace ≤ 0.6. The maximum precision solutions
as shown in Table 4.1 lie within this cluster. Therefore this cluster of solutions
tends to favour precision, resulting in maps that often contain very few correctly
detected wall segments, yielding qualitatively poor results. Maps produced using
(pwall , pspace) pairs from Cluster 1 are shown in Figure 4.9, indicating poor map
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prior values assigned to detected walls
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Figure 4.8: Pareto optimal solutions for all drawings presented as a single data set.
(a) Graph showing all the solutions presented in Figure 4.7 in one plot to examine
where Pareto optimal solutions lie in the pspace vs pwalls plot, (b) Clusters detected
within Pareto optimal solutions using the k-means clustering algorithm.
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map measurement points along trajectory

pwall = pspace = 0.3
(a)

pwall = 0.2, pspace = 0.3
(b)

pwall = 0.2, pspace = 0.6
(c)

Figure 4.9: Final maps produced using values of (pwall , pspace) from Cluster 1, the
purple cluster in Figure 4.8(b), which correspond to high precision solutions for
architectural drawings, (a) and (b), and for a floor plan, (c). The blue points in
the right hand column correspond to the (x, y) points where measurements were
taken; these do not correspond to complete trajectories since, thanks to the perfect
knowledge of the robot’s pose, we can use non-continuous measurement points.
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quality.
Solutions in Cluster 2, the light blue cluster in Figure 4.8(b), have high values

of both pwall and pspace, with 0.5 ≤ pwall ≤ 1 and 0.48 ≤ pspace ≤ 1. Solutions
within this cluster correspond to the region where maximum recall solutions are
observed, as shown in Table 4.2. These solutions tend to detect most of the build-
ing walls but also often incorrectly map empty space as occupied as shown in
Figure 4.11.

Given the shortcomings of points in Clusters 1 and 2 the (pwall , pspace) pair that
yields the best qualitative performance lies in Cluster 3, the green cluster. The
values in the green cluster are those that intuitively would be expected to perform
well: a low pwall and a high pspace, with 0.18 ≤ pwall ≤ 0.21 and 0.58 ≤ pspace ≤
1. In order to simplify the search, values with one decimal point accuracy were
examined, with the possible solutions to investigate being the pairs

Shortlist =

pwall = 0.2, 0.6 ≤ pspace ≤ 1

0.4 ≤ pwall ≤ 0.5, 0.7 ≤ pspace ≤ 0.8
(4.28)

The maps produced using each of these pairs were compared in terms of visual
quality and the best (pwall , pspace) combination out of the green cluster points in
terms of qualitative performance was found to be pwall = 0.2, pspace = 0.9. These
results lead to the conclusion that using a prior is beneficial and starting values
of pwall = 0.2, pspace = 0.9 yield good qualitative results. The following chapter
conducts a qualitative and quantitative comparison of maps produced using this
proposed informative prior and an the commonly used non-informative prior.

4.7 Concluding remarks

This chapter presented a method to shortlist Pareto optimal values to assign to
indoors occupancy grid mapping priors. Priors were constructed using structural
information extracted from architectural drawings and floor plans by assigning
appropriate prior probabilities to detected wall and empty space locations. A
precision-recall analysis was used to assess quantitative performance and a multi-
objective optimisation was used to shortlist Pareto optimal solutions. Both types
of drawings were found to have a similar region of (pwall , pspace) that yields good
performance metrics. A method to construct such informative Bayesian priors for
any drawing by processing the Pareto optimal values shortlisted in this chapter to
identify a (pwall , pspace) pair that yields good performance across all drawings was
also presented.

The next chapter benchmarks the maps produced using the proposed informa-
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pwall = 0.2, pspace = 0.6 pwall = 0.2, pspace = 0.7 pwall = 0.2, pspace = 0.8

(a) (b) (c)

pwall = 0.2, pspace = 0.9 pwall = 0.2, pspace = 1 pwall = 0.4, pspace = 0.7

(d) (e) (f)

pwall = 0.4, pspace = 0.8 pwall = 0.5, pspace = 0.7 pwall = 0.5, pspace = 0.8

(g) (h) (i)

Figure 4.10: Maps produced using the different Pareto optimal (pwall , pspace) pairs
found in the green cluster of Figure 4.8(b), with the map shown in (d) yielding the
best visual results, with pwall = 0.2, pspace = 0.9 being the proposed informative
prior values.
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pwall = pspace = 1 pwall = pspace = 0.9

(a) (b)

Figure 4.11: Final maps produced using values of (pwall , pspace) from Cluster 2, the
light blue cluster in Figure 4.8(b), which correspond to high recall solutions, for
two architectural drawings, (a) and (b).

tive prior against those produced using a non-informative prior both in simulation
and using experimental results.



Chapter 5

Constructing and using optimised
informative priors

The use of a non-informative prior is common practice in the occupancy grid
SLAM literature, with most researchers using such a prior in order to produce
solutions that do not depend on having prior knowledge of the environment [50].
There have thus been no studies of the benefits of using an informative prior. This
chapter benchmarks the globally optimal prior values, (pwall , pspace), against the
non-informative prior. Maps produced using the proposed informative prior are
compared to those constructed using a non-informative prior in both a quantitative
and a qualitative sense. A summary of the simulation and experimental results
presented in this chapter is published in the International Journal of Robotics
Research [60].

The contributions of this chapter are as follows:

• A qualitative comparison of maps produced using a non-informative prior
and those produced using the proposed informative prior

• A quantitative benchmarking of maps produced using a non-informative
prior and those produced using the proposed informative prior

• A presentation of the benefits of using an informative prior in challenging
real life scenarios

• An experimental validation of simulation results

This chapter is organised as follows. Section 5.1 discusses how the benefits
of using an informative over a non-informative prior are assessed. Section 5.2
presents qualitative and quantitative results of this comparison, with the proposed
informative prior yielding an increase in the F2 metric of at least 20%. Section 5.3

108
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shows experimental results using real sensor data collected using a Kinect and
processed using the proposed Matlab code, highlightling areas where using a prior
can yield improved performance.

5.1 Assessing the benefits of using informative priors over
uninformative ones

Once a (pwall , pspace) pair that performs well for all drawings has been identified,
the benefits of using this proposed informative prior need to be studied. In order
to compare the performance of using the informative and the non-informative
priors in a qualitative sense, maps produced using each type of prior are compared
for the following cases:

• Different grid resolutions

• Different drawings

• Thorough as well as quick exploration of the environment

Assessing performance quantitatively is more challenging given the conflicting
goals of optimising precision and recall. Given the multi-objective nature of the
optimisation, merely comparing the values of precision and recall for maps pro-
duced using the informative and non-informative prior does not provide enough
information. In order to overcome this problem the Fβ metric [128] is used to al-
low a comparison of the precision and recall combination rather than individual
values for each drawing

Fβ = (1 + β2)× precision× recall
(β2 × precision) + recall

(5.1)

where β determines whether precision or recall is favoured. For applications
where a high recall is considered to be more important than high precision β > 1
is chosen and β < 1 is chosen if precision is favoured over recall. The F0.5, F1

and F2 measures are commonly used. The F1 measure is the harmonic mean of
precision and recall, F0.5 favours precision over recall and F2 favours recall over
precision. Measures for β < 0.5 or β > 2 are less common since they greatly
favour one metric over the other.

In this thesis the F2 measure is used

F2 = 5× precision× recall
(4× precision) + recall

(5.2)
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optimal precision optimal recall measurement points

pwall = pspace = 0.3 pwall = pspace = 1 input drawing

(a) (b) (c)

pwall = pspace = 0.3 pwall = pspace = 1 input drawing

(d) (e) (f)

Figure 5.1: Final maps produced using values of (pwall , pspace) that optimise preci-
sion (a), (d) and values that optimise recall (b), (e) for an architectural drawing, (a),
(b) and a floor plan, (d), (e). The blue points in the right hand column correspond
to the (x, y) points where measurements were taken; these do not correspond to
complete trajectories since, thanks to the perfect knowledge of the robot’s pose,
we can use non-continuous measurement points.

This measure favours recall over precision, Equation 5.2. Recall is favoured
over precision since it represents the percentage of correctly detected walls and
thus affects the map outline more, Figure 5.1.

5.2 Simulation results and discussion

The maps produced using the proposed informative prior and a non-informative
prior are shown in this section. The two approaches are also compared in a quan-
titative sense using the F2 metric. A study is also conducted to examine how the
quality of the prior map affects the quality of the final map produced. The benefits
of using a prior map if a quick exploration of the environment is required are also
presented. Finally, the benefits of using an informative prior over methods that do
not use probabilistic recursive map estimation are presented.

The trajectory poses used to update the map are presented in each case, show-
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ing the locations at which sensor measurements were captured. These are not
always complete trajectories, since enough measurements to map the majority of

the environment were used. Given our simulator only models θ = [0,
π

2
, π,

3π

2
],

whenever the robot moves in a vertical line in the map, alternating sensor mea-
surements at θ = 0 and θ = π are taken as the robot moves. Similarly, whenever
the robot moves in horizontal lines in the map alternating measurements at θ =

π

2
and θ =

3π

2
are taken.

In more detail, the angle θ at which measurements are taken is determined as
follows. When the robot moves in a vertical line in the image, xi = xi+1

θ =

θ = 0, f or i mod 2 = 0

π, f or i mod 2 = 1
(5.3)

when the robot moves in a horizontal line along the image, yi = yi+1

θ =

π/2, f or i mod 2 = 0

3π/2, f or i mod 2 = 1
(5.4)

for each time step i.

5.2.1 Qualitative comparison

An overview of the different priors and resulting maps using the same exploration
path for two different grid resolutions are shown in Figure 5.2. Using a non-
informative prior is found to produce maps that miss building walls, especially
when a coarse grid is used. Conversely, using an informative prior yields maps
of better quality, not missing any wall sections, even for a coarser grid. Results
for the remaining drawings for three different grid resolutions are presented in
Figures 5.3-5.6. The points along the robot trajectory used to update the map are
shown in Figures 5.3-5.6(d). The area covered by the sensors can be deduced by
looking at the left hand column of Figures 5.3-5.6, in which unexplored areas are
shown in grey.

Using the proposed informative prior yields improved maps for all drawings,
detecting the majority of wall sections even when coarser grids are used. Therefore
if computationally cheaper mapping is required due to limited available process-
ing power a coarser grid and informative prior can be used.

This optimised prior also allows for improved performance when a robot per-
forms a quick and/or incomplete exploration of the environment, leading to un-
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Input drawing Processing Output Optimal prior

Mapping 5x5 grid square 10x10 grid square

detected walls
    (green)

detected doors
    (orange)

Coarser grid

FINAL MAP

pwall=0.2
pspace=0.9

(b) Proposed method: using proposed informative prior

Non-informative prior

Mapping 5x5 grid square 10x10 grid square

pwall=0.5
pspace=0.5

Assume no prior information

(a) Commonly used method: using non-informative prior

Coarser grid

FINAL MAP

Figure 5.2: Comparison of map produced using the proposed informative prior
and that produced using the non-informative prior. (a) The process of processing
and converting a drawing to an optimised prior and the map produced using this
prior for two different grid resolutions, (b) The non-informative prior and the map
produced using it for two different resolutions.
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non-informative informative
grid cell 3x3

grid cell 5x5

grid cell 10x10

pwall = pspace = 0.5 pwall = 0.2, pspace = 0.9

(a) (b)

(c) (d)

Figure 5.3: Final maps produced using a non-informative prior (column (a)) and
using the proposed informative prior (column (b)) for three different grid resolu-
tions, with the input drawing shown in (c) using measurements taken at positions
shown as blue points in (d).
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non-informative informative
grid cell 3x3

grid cell 5x5

grid cell 10x10

pwall = pspace = 0.5 pwall = 0.2, pspace = 0.9

(a) (b)

(c) (d)

Figure 5.4: Final maps produced using a non-informative prior (column (a)) and
using the proposed informative prior (column (b)) for three different grid resolu-
tions, with the input drawing shown in (c) using measurements taken at positions
shown as blue points in (d).



Chapter 5. Constructing and using optimised informative priors 115

non-informative informative
grid cell 3x3

grid cell 5x5

grid cell 10x10

pwall = pspace = 0.5 pwall = 0.2, pspace = 0.9

(a) (b)

(c) (d)

Figure 5.5: Final maps produced using a non-informative prior (column (a)) and
using the proposed informative prior (column (b)) for three different grid resolu-
tions, with the input drawing shown in (c) using measurements taken at positions
shown as blue points in (d).
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non-informative informative
grid cell 3x3

grid cell 5x5

grid cell 10x10

pwall = pspace = 0.5 pwall = 0.2, pspace = 0.9

(a) (b)

(c) (d)

Figure 5.6: Final maps produced using a non-informative prior (column (a)) and
using the proposed informative prior (column (b)) for three different grid resolu-
tions, with the input drawing shown in (c) using measurements taken at positions
shown as blue points in (d).
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non-informative informative

pwall = pspace = 0.5 pwall = 0.2, pspace = 0.9

(a) (b)

(c) (d)

Figure 5.7: Final maps produced using a non-informative prior, (a) and (c) and
using the proposed informative prior, (b) and (d) for an incomplete exploration of
the environment using an architectural drawing ((a), (b)) and a floor plan ((c), (d))
to extract prior information.
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explored areas or areas scanned only once or twice, making the effect of the prior
more significant. This type of exploration may be required if a robot is deployed
in a time-critical mission such as USAR. In the mapping example presented in
Figures 5.7(a) and (b) the robot has not fully explored the environment. In such
a case using an informative prior has the added benefit of providing information
about building sections even if areas are unexplored, with the non-informative
prior, Figure 5.7(a), yielding a significantly worse map than the informative prior
Figure 5.7(b).

In the mapping example shown in Figures 5.7(c) and (d) the robot has explored
one room fully but has obtained few scans for the remaining rooms. Using a prior
provides information about remaining rooms and overall building structure and
helps make sense of sensor readings, Figure 5.7(d). The map produced using
the non-informative prior, Figure 5.7(c), provides very little information about the
building and is difficult to interpret. The number of rooms and overall building
structure cannot be deduced, making the map ill-suited for use in safety critical
missions.

Mathematically, this superior performance can be attributed to the fact that
when each cell is scanned by the distance sensor only a few times or not at all
the prior plays an important role. Looking at the grid cell update as described
in the occupancy grid mapping algorithm presented in Chapter 4 the log odds of
occupancy of each grid cell i is updated using

lk,i = InverseSensorModel(mi, xk, zk) + lk−1,i − l0,i (5.5)

At time k = 0, lk,i = l0,i. If a certain square is not scanned by the sensor the
log odds of occupancy for that square is its prior value l0,i. If only one or a small
number of scans are performed then the effect of the prior is more significant.
Therefore if a quick and computationally cheaper exploration is required the pro-
posed optimised prior yields significantly better maps in terms of visual quality,
identifying the majority of building walls.

The overall approach proposed in this thesis to process an architectural draw-
ing or floor plan, extract structural information and use it to construct an opti-
mised prior that can be used to produce accurate recursively updated maps is
shown in Figure 5.2.

5.2.2 Quantitative comparison

The F2 metric was calculated for maps produced using an informative and uninfor-
mative prior for all drawings. As shown in Figure 5.8 using an informative prior
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Figure 5.8: Quantitative comparison of the maps produced using an informative
and a non-informative prior using the F2 metric.

yields an increase in the F2 measure of at least 20% over the uninformative prior
for all five drawings. It is also worth examining the importance of the prior as the
robot explores the environment, shown in Figure 5.9 for the drawing of Figure 5.2.
The red line depicts the evolution of the F2 metric for the map produced using the
proposed informative prior from time k = 0 until the end of the exploration. The
blue line shows the same for the map produced using the non-informative prior.

This figure further highlights the advantages of using an informative prior: if
a quick exploration is required, using an informative prior can produce a map
with a higher F2, while the map produced using the non-informative prior may
never reach a high F2 value. Given that realistic SLAM applications such as USAR
or commercial robots need to be able to explore their environment quickly and
efficiently, using an informative prior can help produce better quality maps faster,
without adding to the computational cost of running the SLAM algorithm.

5.2.3 Effects of prior map quality on final map

While benchmarking the proposed informative prior against the non-informative
prior it is worth examining how the quality of the extracted prior affects perfor-
mance and whether it is still worth using a prior even if the quality of extracted
information is poor. In order to test this, different qualities of priors were tested.
An example is presented in Figure 5.10, showing the maps produced in the right
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Figure 5.9: A comparison of the F2 metric at each time step as the environment
is explored using an informative and a non-informative prior for the drawing in
Figure 5.2. The map produced using an informative prior starts at a high F2 value
and maintains a high F2 metric throughout.

hand column using the priors in the left column. The first two priors (a) and (c) are
incomplete, missing large parts of the building structure. The prior in (e) contains
an extra wall that is not present in the environment. In all these cases the map
produced is superior in terms of qualitative performance to the map produced
using the uninformative prior.

This result also indicates that, even if the algorithm used to extract prior in-
formation does not perform well or if sections of the environment are altered,
the proposed method still performs well, yielding an improvement over the non-
informative prior.

5.3 Experimental results

In order to experimentally validate the results obtained in this chapter and high-
light potential problems of real sensors, simulated sensor data were substituted for
data collected using a Kinect sensor mounted on a turtlebot [4], Figure 5.11. These
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prior final map

(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Final maps produced using incorrect or incomplete prior maps. (a) A
prior missing building sections, (c) a prior that is missing a large number of build-
ing walls and (e) a map that contains a wall that is not present in the environment
and (b), (d) and (f) maps produced using the priors (a),(c) and (e) respectively.
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results bring the majority of situations discussed in this chapter together, demon-
strating areas in which sensor readings are unreliable, an incomplete exploration
or a limited number of sensor readings.

The overarching assumption that the robot pose is known was maintained and
the simulator presented in Section 4.5.2 was used to analyse real Kinect data. The
Kinect’s field of view is a cone with a horizontal field of view of 58◦, a minimum
range of 40 cm and a maximum range of 3 m [5, 6].

The Kinect sensor yields 480 × 640 pixel distance images, with each image
pixel being assigned a distance value. These had to be converted to 2D distance
readings, as required for 2D mapping. This conversion was performed by aver-
aging distance values along a 20× 640 pixel strip across the image, at a height
determined by the height of walls in the environment, Figure 5.12. This averaging
was performed to avoid calculating a range estimate based on a very thin strip,
which could result in a small sensor error yielding a large 2D measurement error.
This method approximates a 2D sensor that is not always accurate, with accuracy
depending on its distance from different wall heights and the quality of distance
data across the distance image. This model allows for a study of the benefits of
using a prior when a lower quality sensor is used.

The possible pose angles modeled in the simulator, θ, are the same as for the

simulated data, only modeling angles θ = [0,
π

2
, π,

3π

2
]. This simplification

allows us to explore the potential benefits of using a prior when a complete explo-
ration of the environment would be computationally expensive.

A simulated building with three rooms was used as the environment to be
explored, using a Sheffield Robotics arena with dimensions 3×4 m, Figure 5.11(a).
Three rooms were modeled because, due to the minimum range of the Kinect
sensor, a more complex environment would require a larger arena. Prior infor-
mation extracted from a drawing was assumed to be very accurate, as shown
in Figure 5.13(a). The trajectory followed is show in Figure 5.13(b), highlighting
points where distance measurements were taken (in blue) and the measurements
(in red).

The (x, y) position of the turtlebot in the course was measured by hand using
a measuring tape. The heading θ was also determined by hand, by setting the
turtlebot such that the Kinect sensor was parallel to one of the course walls at all
times, making it easier to set up (a rectangular object such as a box was used to
ensure the turtlebot was parallel to the course walls for each measurement point).
Using this method we recorded the robot’s (x, y, θ) pose for each measurement
point, along with the corresponding distance measurements, z.

The multi-objective optimisation proposed in Section 4.4 was repeated using



Chapter 5. Constructing and using optimised informative priors 123

(a)

(b)

Figure 5.11: The experimental setup used to obtain real sensor readings: a turtle-
bot running ROS and mounted with a Kinect sensor was used to collect distance
readings at known robot poses. (a) 4 × 3 m simulated building, with three rooms;
(b) turlebot mounted wth Kinect sensor.
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(a)

(b)

Figure 5.12: An example of a photo and corresponding distance image obtained
using the Kinect sensor, (a) RGB image and (b) corresponding distance image.
Darker pixels in (b) correspond to objects nearby and lighter pixels correspond to
objects further away. The blue strip overlaid on the distance image shows the strip
of pixels used to perform averaging to obtain 2D distance readings.
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(a) (b)

Figure 5.13: (a) The accurate prior map of the building, assuming walls were
detected correctly. The proposed informative prior values were assigned to walls
and empty space, with pwalls = 0.2 and pspace = 0.9 ; (b) Trajectory points where
measurements were taken shown as blue stars with robot heading indicated by
the blue line, obstacles detected shown in red.

the real Kinect data collected during the experiment. The following model was
used, based on [127]

InverseSensorModel(mi, xk, zk) =
0.9, npixels<z

i = npixels
i

0.1, npixels>z
i = npixels

i

npixels<z
i

npixels
i

, 0 < npixels<z
i < npixels

i

(5.6)

with npixels<z
i being the number of map pixels for a cell i that fall between the

robot and the location of the detected obstacle, z; npixels>z
i the number of map

pixels for a cell i that are located beyond the detected object or at the location of
the detected object; and npixels

i the number of map pixels in cell i. For an accurate
sensor, cells for which all map pixels correspond to detected empty space are
assigned a value of 0.9, those that correspond to detected objects a value of 0.1
and those that contain both empty space and objects are assigned a value equal to
the percentage of pixels corresponding to detected objects.
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A very narrow range of optimal (pwall , pspace) was observed, which mostly
agree with the results obtained in simulation, yielding opimised values of pwall =

0.2 and pspace = 1. These values are multiplied by a factor of 0.9 before they are
used in the prior map to avoid values too close to 1. A less accurate sensor model
assigning 0.8 to detected empty space and 0.2 to detected walls was also tested,
yielding optimised values pwall = 0.4 and pspace = 0.75.

Final maps produced using the non-informative and the proposed informative
prior for two different grid resolutions are shown in Figure 5.14 for an exploration
that collects 3 sensor readings for each robot pose. The maps produced using the
non-informative prior and the informative prior for an exploration that collects
only 1 sensor reading for each pose are shown in Figure 5.18.

When a finer grid is used, Figure 5.14(a), using a prior makes less of a differ-
ence. However, it still yields improved performance in terms of detecting outer
walls such as the right and bottom outer walls. When a coarser grid is used, Fig-
ure 5.14(b), the proposed prior results in some of the outer and inner walls being
detected, whereas the map produced using the non-informative prior effectively
provides no information. Areas where using the informative prior yields visibly
better performance, areas 1-4 in Figure 5.15, are shown in Figures 5.16 and 5.17.
Finally, neither approach can correct well for erroneous sensor readings, such as
the blocky inner wall and non-existent obstacles detected in the the top right room.
This further highlights potential benefits of using the prior: if an informative prior
is used areas that are very different from what was expected in the prior can be
tested further to determine whether they correspond to errors, clutter or collapse,
in the case of USAR.

If a quick exploration is performed, using only a single sensor reading to up-
date the map for each pose, the proposed prior helps detect outer walls more accu-
rately, Figure 5.18(a) and Figure 5.18(b). In areas where there are sensor readings
that are overlapping, such as the inner middle wall and the bottom half of the left
outer wall, the difference between the two maps is smaller as would be expected.
When a coarser grid is used, Figure 5.18(c) and Figure 5.18(d), the proposed prior
yields a map that has correctly identified some of the inner and outer walls de-
spite the coarser grid used and the single sensor reading used to update the map,
Figure 5.18(d). Conversely, the map produced using the non-informative prior has
failed to identify any internal or outer walls, Figure 5.18(c). Areas where using
the informative prior yields visibly better performance, areas 1-4 in Figure 5.15,
are shown in Figures 5.19 and 5.20.

The evolution of the F2 metric with time is plotted for the map produced using
the informative prior and that produced using the non-informative prior for a
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non-informative proposed

(a) (b)

(c) (d)

Figure 5.14: Final maps produced using the non-informative prior, (a), (c) and
maps produced using the proposed informative prior, (b), (d), using 3 sensor read-
ings per robot pose. Maps (a) and (b) were produced using a finer grid, with a
grid cell side of 2, and (c) and (d) were produced using a coarser grid, with a grid
cell side of 3. In maps (a) and (c) grey areas such as the top right and bottom
left in (c), correspond to a probability of 0.5 providing no information about the
environment.
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Figure 5.15: Locations 1-4 are areas in the environment in which using the pro-
posed informative prior yields visibly better results.

grid square of side 2 for 3 sensor readings per robot pose, Figure 5.21(a) and for 1
sensor reading per pose, Figure 5.21(b). In this case the F2 for the map using the
proposed informative prior starts at a very high value because for these results
we use a perfectly extracted prior. Therefore as sensor readings are obtained and
sensor reading errors are incorporated the F2 value drops. Even in such a scenario,
however, the F2 value obtained using the informative prior is consistently higher
than that obtained using the non-informative prior. These results also demonstrate
how using an accurate prior could help overcome problems caused by sensor
reading errors. If the sensor readings greatly deviate from the prior the prior
value could be favoured over the sensor reading to produce a more accurate map.

It is also worth noting that in both Figure 5.21(a) and (b) using the informative
prior yields a final F2 metric around 0.4 whereas in the case of a quick exploration,
Figure 5.21(b), the non-informative prior only manages to achieve an F2 of only
0.2. Therefore if a quick exploration is required for a safety critical mission using
the proposed informative prior can be very beneficial. .

5.4 Concluding remarks

In this chapter the benefits of using an informative prior were explored, both
in a qualitative and a quantitative sense, highlighting the benefits of using an
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non-informative informative

Figure 5.16: Zoomed-in areas in the final map produced using a grid square of
side 2 and using 3 sensor readings per robot pose at locations 1-4, Figure 5.15. The
left column shows sections of the map produced using the non-informative prior
and the right column maps produced using the proposed informative prior. Grey
areas in the left column correspond to a probability of occupancy of 0.5, providing
no information about the environment.
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non-informative informative

Figure 5.17: Zoomed-in areas in the final map produced using a grid square of
side 3 and using 3 sensor readings per robot pose at locations 1-4, Figure 5.15. The
left column shows sections of the map produced using the non-informative prior
and the right column maps produced using the proposed informative prior. Grey
areas in the left column correspond to a probability of occupancy of 0.5, providing
no information about the environment.
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non-informative proposed

(a) (b)

(c) (d)

Figure 5.18: Final maps produced using the non-informative prior, (a), (c) and
maps produced using the proposed informative prior, (b), (d), using 1 sensor read-
ing per robot pose. Maps (a) and (b) were produced using a finer grid, with a grid
cell side of 2, and (c) and (d) were produced using a coarser grid, with a grid
cell side of 3. In maps (a) and (c) grey areas such as the top right and bottom
left in (c) correspond to a probability of 0.5, providing no information about the
environment.
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non-informative informative

Figure 5.19: Zoomed-in areas in the final map produced using a grid square of
side 2 and using 1 sensor reading per robot pose at locations 1-4, Figure 5.15. The
left column shows sections of the map produced using the non-informative prior
and the right column maps produced using the proposed informative prior. Grey
areas in the left column correspond to a probability of occupancy of 0.5, providing
no information about the environment.
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non-informative informative

Figure 5.20: Zoomed-in areas in the final map produced using a grid square of
side 3 and using 1 sensor reading per robot pose at locations 1-4, Figure 5.15. The
left column shows sections of the map produced using the non-informative prior
and the right column maps produced using the proposed informative prior. Grey
areas in the left column correspond to a probability of occupancy of 0.5, providing
no information about the environment.
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Figure 5.21: A comparison of the F2 metric at each time step as the environment
is explored using an informative and a non-informative prior, using data collected
with the Kinect sensor for a grid square of side 2. (a) 3 sensor readings per pose
and (b) 1 sensor reading per pose. The map produced using an informative prior
starts at a very high F2 value because we assume a perfectly extracted prior and
maintains a higher F2 metric throughout.
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informative prior. The proposed informative prior was found to yield an increase
in the F2 metric of over 20% compared to the non-informative prior. The use of
informative priors was also found to have a number of other benefits. It provides
information about unexplored areas if a fast exploration of the environment is
required. It also provides information about the environment in case of sensor
malfunction, errors or failure, producing more robust solutions for challenging
environments such as USAR.



Chapter 6

Using optimised priors in SLAM

The previous chapter investigated how constructing and using optimised occu-
pancy grid priors can lead to an improvement in occupancy grid map quality.
So far we have assumed perfect knowledge of the robot’s poses, testing only the
effects of the priors on map quality. This chapter removes this assumption and
explores how such priors can be integrated to existing SLAM solutions that esti-
mate poses based on noisy odometry data. Experimental results obtained using
the proposed informative prior are presented and compared to those obtained us-
ing a non-informative prior, confirming the improved performance when using
an informative prior. The results presented in this chapter are published in the
International Journal of Robotics Research [60].

The contributions of this chapter are:

• Experimental results of using SLAM with the proposed prior in a real in-
doors environment

• A comparison of results obtained using SLAM with an informative and a
non informative prior

• A comparison of localisation accuracy when using the proposed extracted
walls to construct a prior and using the drawing as-is

This chapter is organised as follows. Section 6.1 presents the algorithms im-
plemented to perform SLAM, including the algorithms used for localisation, the
motion and measurement models and the map update and inverse sensor model.
Section 6.2 presents the software implementation of algorithms detailed in Sec-
tion 6.1, relevant parameter values used and the experimental setup used to obtain
results. Section 6.3 presents experimental results, comparing performance when
using informative and non-informative priors, confirming that using the proposed

136
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Algorithm 6.1 Occupancy grid FastSLAM implementation
for k = 1 : Tend do

[xestimated
k , Particlesk] = Localise(Particlesk, uk, zk)

mk = UpdateOccupancyGridMap(zk, xestimated
k , mk−1)

end for

Algorithm 6.2 Localise(Particlesk, uk, zk)

Particlest = Particlest = ∅
for j=1:M do

x[j]k = SampleMotionModel(uk, x[j]k−1)

w[j]
k = MeasurementModel(zk, x[j]k , mj

k−1)

Particlesk = Particlesk + < x[j]k , w[j]
k >

end for
for j=1:M do

draw with probability ∝ w[j]
k

add < x[j]k > to Particlesk
end for
xestimated

k = mean(highest weighted particles)
return xestimated

k , Particlesk

prior yields improved results. It also compares the performance of localisation
when using the extracted walls to construct a prior and when using a map as-is,
with the extracted walls yielding significantly more accurate localisation results.

6.1 SLAM implementation

An occupancy grid FastSLAM implementation was used to obtain experimental
results, as shown in Algorithm 6.1. At each time step, for each particle, the motion
model is sampled and the measurement model is used to update particle weights.
Particles are then re-sampled and the mean of the highest weighted particles is
used to update the map. The map is updated using the occupancy grid mapping
algorithm.

Localisation is performed using Monte Carlo Localisation as described in [134]
and shown in Algorithm 6.2.

Motion model

This model assumes that the robot uses pure rotation and translation motions to
get from one location to another. This is shown in Algorithm 6.3 [134], where
the pose is xk−1 = (x y θ) and the control uk = (x̂k−1 x̂k) is a differentiable
set of two pose estimates obtained by robot’s odometer. In an odometry model,
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Figure 6.1: The odometry motion model assumes that the robot uses pure rota-
tion and translation motions to get from one location to another. It approximates
motion by a rotation, δrot1, then a translation, δtrans, and a second rotation, δrot2.

Algorithm 6.3 SampleMotionmodel(uk, x[j]k−1)

δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄

δtrans =
√
(ȳ′ − ȳ)2, (x̄′ − x̄)2

δ̂rot1 = δrot1 − sample(α1δ2
rot1 + α2δ2

trans)

δ̂trans = δtrans − sample(α3δ2
trans + α4δ2

rot1 + α4δ2
rot2)

δ̂rot2 = δrot2 − sample(α1δ2
rot2 + α2δ2

trans)

x′ = x + δ̂transcos(θ + δ̂rot1)
y′ = y + δ̂transsin(θ + δ̂rot1)
θ′ = θ + δ̂rot1 + δ̂rot2
return xk = (x′, y′, θ′)

motion is approximated by a rotation, δrot1, then a translation, δtrans, and a second
rotation, δrot2, Figure 6.1. Parameters α1-α4 are error parameters, corresponding to
rotational error due to rotational motion (α1), rotational error due to translational
motion (α2), translational error due to translation motion (α3) and translational
error due to rotational motion (α4) respectively.

Measurement model

A likelihood sensor field model was used, shown in Algorithm 6.4 [134], with
prob(dist, σhit) computing the probability of the distance under a zero mean Gaus-
sian with standard deviation σhit [134]. The measurement model models three
types of sensor noise:

• Measurement noise: modeled using a zero mean Gaussian, ϵσhit(dist), where
dist is the Euclidean distance between the measurement and the nearest ob-
stacle in the map, Algorithm 6.4

• Failures: modeled using a point-mass distribution at zmax



Chapter 6. Using optimised priors in SLAM 139

Algorithm 6.4 MeasurementModel(zk, x[j]k , mj
k−1)

q = 1
for all j do

if zj
k ̸= zmax then

xj
zk = x + xj,senscosθ − yj,senssinθ + zj

kcos(θ + θj,sens)

yj
zk = y + yj,senscosθ + xj,senssinθ + zj

kcos(θ + θj,sens)

dist = min x′, y′{
√
(xj

zk − x′)2 + (yj
zk − y′)2|(x′, y′) occupied in m}

q = q× (zhit × prob(dist, σhit) +
zrandom

zmax
)

end if
end for
return q

• Unexplained random measurements: modeled by a uniform distribution

Update occupancy grid map

The map was updated using the occupancy grid mapping algorithm, shown in
Algorithm 6.5, [134]. The inverse sensor model used was given by

InverseSensorModel(mi, xk, zk) =
p f ree, points < z

poccupied, z < points < pointmax

pprevious, points > pointmax

(6.1)

where points correspond to pixels in the map, z is the distance from the robot
at which an obstacle was found, pointmax is the furthest away point of a cell con-
taining the obstacle, p f ree the value assigned by the model to free cells and poccupied

the value assigned by the model to occupied cells, Figure 6.2.

6.2 Experimental setup

This section details the software used to implement the algorithms detailed in the
previous section as well as the hardware used and the environment explored.

6.2.1 Robot and environment

In this chapter the use of informative priors was evaluated in a large scale, realistic
experiment using a standard SLAM algorithm, FastSLAM for occupancy grids, as
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Figure 6.2: The inverse sensor model used assigns a probability p f ree to cells closer
than the detected obstacle, pprevious to those beyond the cell in which the obstacle
is detected and poccupied to the cell in which the obstacle lies.

Algorithm 6.5 UpdateOccupancyGridMap(zk, xestimated
k , mk−1)

for all cells mi do
if mi in perceptual field of zt then lk,i = InverseSensorModel(mi, xk, zk) + lk−1,i − l0,i
elselk,i = lk−1,i
end if

end for
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Figure 6.3: Initial turtlebot pose in large scale experiment: the blue dot indicates
its (x, y) position and the red arrow its heading, θ.

detailed in Algorithm 6.1. The experiment consisted of localising and mapping
through one floor of a University of Sheffield Engineering building consisting of
offices, with an approximate size of 10× 40 metres (400m2). The experiment was
realistic in the sense that rooms were cluttered with usual everyday material, and
were not emptied or altered to simplify the environment.

A turtlebot with an onboard Kinect sensor was used, as described in Chap-
ter 5. A floor plan of the building was obtained before exploration and walls were
extracted, obtaining a nearly perfectly extracted set of walls, Figure 6.4. The scale
of the drawing was used to set the resolution of the occupancy grid prior and to
determine the robot starting pose in map coordinates. A suitable starting pose
was chosen, placing the robot near stairs which a rescuer or operator would be
able to access. All the rescuer/operator would then need to do would be to up-
load the map, set the correct starting pose and set the robot there, then explore the
environment using tele-operation.

The turtlebot was placed at the location shown in Figure 6.3 facing the first
office on the bottom right corner of the floor plan. A tape measure was used to
determine the distance of the turtlebot from the stairs and the wall to the right
and the turtlebot heading was set ensuring the Kinect was parallel to the stairs.
Using the drawing scale the measured (x, y) starting pose was converted to map
coordinates.

6.2.2 fastSLAM algorithm software implementation

The fastSLAM algorithm detailed in Algorithm 6.1 was implemented using the
parameters shown in Table 6.1. The Matlab 2016b robotics toolbox was used for
this SLAM implementation [1]. The robotics toolbox provides a sensor and motion
model tailored to a turtlebot mounted with a Kinect sensor, making it a suitable
choice for development.

The toolbox was modified in three ways:
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Parameter Value
Resampling interval 1
Particle limits [1500 4500]
αi, i = 1...4 0.2
Measurement limits (m) [0 12]
zmax 2
Number of beams (ray model) 60
σhit 0.2
zrandom weight 0.05
p f ree 0.8
poccupied 0.2
pwall 0.27
pspace 0.72

Table 6.1: Model parameters used in SLAM implementation.

• The map was updated using a modified version of the inbuilt insertRay

method - see Updating the map section below

• The AMCL class robotics.MonteCarloLocalization method was modified-
the map was converted to a tunable property, allowing the use of the updated
map to localise at each time step

• The visual quality of the final map was improved - see Map visualisation
section below

An initial pose with zero covariance was provided, since the robot’s starting
pose was known.

Updating the map

Following the theoretical analysis of Section 2.3.4 and the multi-objective opti-
misation performed using experimental data, prior values of pwall = 0.27 and
pspace = 0.72 were assigned using this sensor model. This slightly lower pwall

value was found to perform better using this more sophisticated sensor model.
The Matlab toolbox leverages the fact that l(0.5) = 0 to remove the term −l0,i from
the calculation in

lk,i = InverseSensorModel(mi, xk, zk) + lk−1,i − l0,i (6.2)

The inbuilt method was modified to add back the term and allow an update
using prior values.
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A Floor plan

B Extracted walls

Figure 6.4: Large scale experimental results floor plan. A Building floor plan; B
Extracted walls and empty space.

Map visualisation

When using this approach, the maps contained gaps along the depth of walls since
occupied space is only marked where the obstacle is reached. Visually, this results
in walls being represented as rectangles that have dark sides but are white in the
middle. This visual quality issue was mitigated by increasing the number of black
pixels assigned to detected obstacles to take into account obstacle width.

6.3 Experimental results and discussion

Data was collected for two experimental runs, a nearly complete exploration and
a largely incomplete exploration, to highlight the benefits of using an informative
prior in each case. The results obtained using the prior map were compared to
those obtained using a non-informative prior. The floor plan was used for localisa-
tion for both the informative and the non-informative prior case to allow a direct
comparison of the effects of different priors on mapping without taking into ac-
count the effects of the prior on localisation quality. Not using the floor plan to
localise would lead to a less accurate map for the non-informative prior, which
highlights a further advantage of using the prior map: more accurate localisation
and the ability to start with a known, accurate x0.
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6.3.1 SLAM using informative and non-informative priors

The walls used to construct the prior map in this case, Figure 6.6A, are not per-
fectly extracted, with some of the doors appearing as wall sections on the sixth
room in the top row and the fifth room in the bottom row of offices. The final map
is unaffected by these small inaccuracies which are corrected during mapping.

Experiments were also run using a less accurate x0, using particles initialised
with a non-zero variance

Covariance =

∣∣∣∣∣∣∣
0.1 0 0
0 0.1 0
0 0 0.1

∣∣∣∣∣∣∣ (6.3)

The resulting maps were less accurate but still better than those produced
using a non-informative prior. For lower variance values the results were very
similar to those produced using a perfectly accurate x0. Assuming a known prior
pose is realistic since, given the extracted prior and a floor plan, an operator can
align the robot to a known location before starting exploration.

The results of these experiments are shown in Figure 6.6 following the explo-
ration path shown in Figure 6.5. Using the proposed prior yields a more accurate
map both in a qualitative and quantitative sense. The map produced using the
proposed prior yields an F2 value that is over 50% higher than that achieved using
the non-informative prior. It also yields more correctly mapped walls, demon-
strating the advantages of using the proposed prior over a non-informative one.
These results demonstrate an added benefit of using a prior map. If exploration
of the whole floor were not possible due to, for example, limited exploration time
in a time-critical mission or certain areas being inaccessible, the proposed prior
provides some information about unexplored areas. This may not be completely
accurate but it would allow a human operator or rescuer to better interpret the
mapped sections. The map shown in Figure 6.6B is less easy to interpret and it is
less clear what sections of the building the map areas correspond to.

In all cases there appears to be some noise in the map, particularly within the
detected rooms. That is due to the fact that the environment explored was a real
world, cluttered office building, containing furniture. Therefore objects detected
within the rooms mostly correspond to desks, chairs, bookcases and half-open
doors. Since our aim is to improve performance in real world environments we
did not aim to simplify the environment by only exploring long corridors (as is
often done in the literature) or emptying the rooms.

These results further confirm that using the proposed informative prior can
improve performance especially when a quick exploration is required, yielding
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Figure 6.5: Large scale complete exploration path followed produced by SLAM:
robot path in blue, edges of detected occupied segments shown in red crosses.

consistently better quantitative and qualitative results.

Incomplete exploration

Experiments were also run for an incomplete exploration of the environment as
shown in Figure 6.8, following the trajectory shown in Figure 6.7. These results
show further benefits of using the proposed prior, with the map proposed using
the non-informative prior giving little information about the building’s structure.

In a scenario where some of the rooms are inaccessible, using the proposed
prior provides information that makes it possible to interpret the map produced
by the robot and gives an idea of the structure of the building.

6.3.2 Localisation quality

Pure AMCL was run using sensor and odometry data collected for the full ex-
ploration and the floor plan as-is to localise. The results were compared to those
obtained using the extracted walls to localise, Figure 6.9. When using the plan as-
is the quality of the localisation is significantly reduced, producing an inaccurate
exploration path towards the end of exploration.

These results indicate that if the map is used to localise large lines in the draw-
ing corresponding to suggested furniture, labeling or dimensions could cause lo-
calisation errors. Even in this case, where discrepancies between the drawing as is
and the extracted prior are relatively small the quality of localisation drops over
time when using the drawings as-is. This further confirms that the floor plan
needs to be processed to extract walls before using it to construct a prior map.

6.4 State-of-the-art occupancy grid SLAM

State-of-the-art occupancy grid SLAM implementations do not incorporate prior
information to update an occupancy map. DP SLAM uses a sensor model and sen-
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A Extracted walls

B Map produced using a non-informative prior

C Map produced using the proposed informative prior

D Map produced using the proposed informative prior; x0 with a variance of 0.1
(less accurate initial pose)

E Evolution of F2 with time

Figure 6.6: Large scale experimental results. A Extracted walls and empty space;
B Map produced using a non-informative prior; C Map produced using the pro-
posed prior, successfully mapping more walls than using the non-informative
prior; D Map produced using the proposed informative prior and a slightly less
accurate x0; E Evolution of the F2 metric with time for an informative and non-
informative prior.
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Figure 6.7: Large scale complete exploration path followed produced by SLAM
for an incomplete exploration: robot path in blue, edges of detected occupied
segments shown in red.

sor data to update a value of occupancy, with unexplored areas being assigned an
unknown value and the prior playing no role in the update. This approach facili-
tates updating the tree structure that maintains the values of the occupancy grid.
The ROS module for gmapping, arguably one of the most commonly used SLAM
implementations that update an occupancy map, also uses this representation of
occupancy.

These implementations assume that modern sensors such as laser range scan-
ners are accurate and thus sensor readings can be used by recursively updating
values of occupancy using only sensor data. This approach has a number of draw-
backs, however:

• More accurate sensors tend to be more expensive

• Sensor errors due to reflective surfaces or moving objects cannot be corrected
easily

• Sensor failures or errors due to dust interfering with the sensor, for example,
cannot be corrected

• In case of sensor malfunction the robot has no information about its envi-
ronment

Incorporating the proposed prior achieves computational savings as well as
map quality improvements. Only one map is maintained, updated using the best
pose estimate at each time step. Since the initial pose is known and a prior map
of the environment is available to help localise more accurately, this approach
yields good results. Using the proposed prior has the added benefit of allowing
a visualisation of the building before and after mapping, using a recursive map
update which yields more accurate mapping results.

This analysis highlights the benefits of using a prior but also indicates a need
for more flexible systems that incorporate both prior information and sensor infor-
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A Extracted walls

B Map produced using a non-informative prior

C Map produced using the proposed informative prior

D Evolution of F2 with time

Figure 6.8: Large scale experimental results for an incomplete exploration. A
Extracted walls and empty space; B Map produced using a non-informative prior;
C Map produced using the proposed prior, successfully mapping more walls than
using the non-informative prior; D Evolution of the F2 metric with time for an
informative and non-informative prior.
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A Floor plan as-is

B Path produced by AMCL using floor plan as-is

C Path produced by AMCL using the extracted walls

Figure 6.9: Large scale experimental results using the floor plan as-is for the prior
map. A Floor plan as-s used with AMCL to produce the trajectory in B; B Robot
path produced by AMCL in blue, edges of detected occupied segments in red
using map as-is; C Robot path produced by AMCL in blue, edges of detected
occupied segments in red using extracted walls.
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mation, allowing them to rely on the source of information that is more accurate
to correct erroneous map updates

6.5 Concluding remarks

This chapter presented the SLAM implementation used, which incorporates an
informative prior map constructed using the analysis presented in this thesis. Real
world experiments were conducted using a turtlebot exploring a floor of an office
building and results obtained using the informative and non-informative priors
were presented. The maps produced using the proposed method were found
to outperform maps produced using a non-informative prior both in terms of
qualitative and quantitative performance. The importance of using extracted walls
to construct a prior was also highlighted, since it affects localisation quality.
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Conclusions and future work

7.1 Summary and conclusions

The vast number of available SLAM solutions require a number of simplifications
or conditions to hold true in order to perform well in real life applications. For ex-
ample, Kalman filter-based methods require linearisations of complex non-linear
robot dynamics and DP SLAM assumes accurate sensor readings. Such simplifi-
cations are not realistic, however, leading to poor performance in real life applica-
tions. A need to produce SLAM solutions that perform well even in challenging
scenarios, with limited computational resources or when a fast exploration is re-
quired in time-critical applications was thus identified, prioritising realistic over
mathematically elegant solutions.

In order to address this need, this thesis has explored the idea of using infor-
mative Bayesian priors to improve the performance of SLAM algorithms without
increasing the computational complexity of the SLAM algorithm. It presented in-
doors occupancy grid FastSLAM as a case study, with architectural drawings and
floor plans used as a source of prior information. The main aim was to propose
a method to construct an optimised Bayesian indoors prior map and demonstrate
how using such a prior can improve SLAM performance.

This thesis has proposed a framework for the construction of informative
Bayesian prior maps in SLAM to improve map quality, proposing a complete
method to produce optimised informative indoors mapping priors using archi-
tectural drawings and floor plans. The aim of this research is to help produce
SLAM solutions that perform better even when limited computational resources
are available, a quick exploration is required and/or unreliable or low cost sen-
sors are used. Using an informative prior only incurs a one-off cost to produce the
prior map but does not add to the computational cost of running the SLAM algo-
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rithm itself and can be used with any SLAM implementation that uses a recursive
occupancy grid mapping algorithm to update the map.

Prior relevant information had to be extracted from architectural drawings and
floor plans to construct such a prior. Whilst there are a number of methods com-
monly used to extract information from architectural drawings the application of
such research is drawing archiving or conversion of 2D drawings to 3D represen-
tations. Given this focus none of these methods prioritise wall detection and as
such are ill-suited to extract useful information for prior construction.

This gap in the literature was addressed by proposing a novel method to de-
tect doors and walls in architectural drawings and floor plans. A set of geometric
constraints and tests were performed to detect doors in the drawings by approxi-
mating doors by isosceles triangles. Walls were then detected leveraging the fact
that all doors are attached to walls. Drawing processing algorithms are commonly
assessed using methods such as calculating the percentage of features identified
correctly. This thesis formulated this assessment as a binary classification prob-
lem, testing whether each pixel in the input image was classified correctly as a
wall or empty space. Precision, recall and false positive rate were then used to
assess performance for representative drawings, yielding precision of at least 98%,
recall of at least 61% and a false positive rate lower than 0.09 % for all drawings.
These results indicate that the proposed method may not always detect all walls
in the image as indicated by the lower recall values but it very rarely detects walls
incorrectly, as indicated by the very high precision and low false positive rate.

A method to convert the walls extracted from drawings into Bayesian priors
was then devised. Occupancy grids were used as a map representation and an
occupancy grid mapping simulator was produced in Matlab to test the effects of
assigning different priors of occupancy to detected walls and empty space. A
new approach to assessing map quality was proposed, formulating the problem
as a classification of all map cells as being occupied or empty. This approach
allowed the use of common classification metrics, precision and recall, to analyse
performance.

The objectives of maximising recall and maximising precision were found to
be conflicting. A multi-objective optimisation genetic algorithm was thus used to
identify Pareto optimal prior values (pwall , pspace) to assign to detected walls and
empty space in the architectural drawing. This optimisation was performed for
representative drawings, including both floor plans and architectural drawings.
A number of Pareto optimal values common to all drawings were found to exist
and a further study was conducted to find (pwall , pspace) values that yield good
qualitative performance for all drawings.
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The Pareto Optimal (pwall , pspace) pairs for all drawings were processed as a
single dataset. A clustering algorithm was then used to identify clusters in the data
and facilitate the search for Pareto optimal prior values (pwall , pspace) that yield
good qualitative performance for all drawings. Three clusters were detected and
representative maps were tested for each cluster to identify the cluster with values
that yield good qualitative peformance. Once the cluster of solutions yielding the
best qualitative maps was identified values within that cluster were tested and the
values pwall = 0.2, pspace = 0.9 were found to yield the best maps qualitatively.
Therefore the values pwall = 0.2, pspace = 0.9 were proposed as informative prior
values to assign to detected walls and empty space in the prior map.

The potential benefits of using a prior map were then explored by benchmark-
ing maps produced using the proposed informative prior against the maps pro-
duced using an uninformative prior. The use of the proposed informative prior
was found to yield an increase in the F2 metric of over 20%. In terms of qualitative
performance the use of a prior map was found to yield improved performance in
the majority of cases, even when a coarser grid resolution was used. Finally, the
use of the proposed informative prior was found to yield improved performance
even if a quick exploration was performed or an incomplete or partially inaccurate
prior map was used.

The results obtained were confirmed experimentally using a turtlebot running
occupancy grid fastSLAM that incorporates the proposed priors. These results
confirm the results obtained in simulation and those obtained using a known
pose.

7.2 Future work

There are a number of possible extensions to the work presented in this thesis as
outlined in the following sections. Each section presents possible extensions to
different aspects of the research presented in each chapter.

Drawing processing

The drawing processing method proposed in Chapter 3 is a framework that allows
a conversion of information from a human-friendly format to a robot-friendly
format. In this thesis the main focus has been accurate wall detection, focusing
on detecting horizontal and vertical wall segments in the image. This framework
can then be extended to detect more complex wall configurations such as walls at
an angle or round buildings. Currently doors are detected but only to enable wall
detection. The current door detection algorithm can be improved by using a large
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dataset of possible door symbols to adjust existing door detection tests. Machine
learning techniques can be used to determine more accurate triangle angle ranges
that are accepted as true doors. This endeavour would require a large number of
diverse drawings to be used as a training set and could be facilitated by gaining
access to a database of digitised drawings.

Going beyond the existing algorithm, the features detected in the drawing can
be extended to include stair detection to identify exit routes. It can also be updated
to include suggested furniture detection which can be used to assign detected fur-
niture locations a higher prior value than detected walls but lower than detected
empty space. The drawing quality assessment method used can then be extended
to a classification of pixels in the image as belonging to more than two possible
classes. The prior value to assign to these could then be determined using the
optimisation method described in Chapter 4. Windows can be detected to identify
areas where laser range scanner readings may be unreliable or incorrect. Labelling
text and dimension lines can be used to extract information about the map scale
and thus facilitate the scaling between grid cells and real world dimensions.

Beyond SLAM priors Architectural drawings and floor plans contain a wealth
of information that can be used to improve indoors robot operation. This thesis
has explored the potential benefits of using extracted information to construct
SLAM priors. This information can also be used to improve the integration of
robots operating in indoors environments, helping robots localise more accurately.
Incorporating more information such as door and stair locations can help robots
integrate more smoothly into existing infrastructure, efficiently planning routes
to access given locations. Further processing of labeled drawings to determine
the location of certain rooms such as the location of a kitchen or living room, for
example, could allow a human user to ask a robot to access a given room. This
could be a useful feature for robots operating at homes such as robotic vacuum
cleaners or robots providing medical supplies in hospitals.

Determining optimised prior values

A more extensive study of different prior values to assign to walls and empty
space can be conducted using a larger set of drawings. Moreover, if features such
as suggested furniture are detected a study can be conducted to determine an op-
timised prior value to assign to them. Intuitively such areas should be assigned a
lower probability of being empty than detected empty space but a higher proba-
bility of being empty than detected walls.

The (pwall , pspace) values examined in this thesis are not continuous and linear
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interpolation is used to produce continuous values of precision and recall. A
higher order interpolation method could be used or more (pwall , pspace) pairs could
be collected. This is unlikely to greatly affect the final results but would be worth
testing.

A k-means clustering method is currently used to detect clusters in the Pareto
optimal solutions data for all drawings. A larger drawing dataset would provide
more data points and could thus result in more clusters being identified. A pos-
sible trend of different optimal prior parameters for different types of drawings
could then be explored.

Finally, performing the optimisation for different sensor models will highlight
optimal prior value choices for different sensors. The theoretical background es-
tablished in this thesis as well as the method outlined to perform this optimisation
can be used to test different sensor models and determine optimised prior values
for commonly used models.

3D priors

The work presented in this thesis has focused on 2D mapping and as such used 2D
drawings as a source of prior information. 3D models of buildings are becoming
more accessible as standards such as BIM become more common. Using such
models as a source of prior information, this work can be extended to create 3D
priors for point cloud maps. This extension is well suited to UAVs, which can be
used to perform 3D mapping.

Benefits of using informative priors in USAR missions

In order to convert these ideas to a system that can be used reliably in USAR an
extensive study of real buildings, drawings and sensor data would be required,
carefully selecting case studies that explore a variety of drawing representations
and building structures. Creating a ROS module that incorporates the proposed
optimised priors to gmapping and uses recursive probabilistic mapping rather
than tree representations would be a next step.

The benefits of using such priors could then be tested in scenarios where sen-
sors behave unreliably or fail. This method could also be tested using low-cost
sensors that are less accurate to study how using a prior can improve performance.
The obtained results would then need to be benchmarked against currently used
algorithms in challenging environments to quantify the benefits in terms of system
reliability, computational efficiency, system cost and map consistency.
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USAR specific extensions

In the USAR scenario the informative prior can also be used to produce maps
that are more helpful to first responders. Assuming a reasonably accurate prior,
building sections that differ greatly from their prior values can be highlighted as
potentially collapsed areas, enriching the information provided by the map.

Sensors can often produce incorrect readings due to smoke or dust, malfunc-
tion or even fail in USAR environments. If a sensor malfunction or failure is
detected the robot needs to disregard sensor readings until the sensor recovers.
Having available prior information would allow the incorporation of sensor data
only when the sensor is functioning correctly. Sensor faults could be detected if
sensor values deviate greatly from prior values for large sections of the building.

Outdoors environments

This thesis has explored the concept of constructing informative Bayesian priors
for indoors environments. An extension of this work would be to construct priors
using satellite images or aerial photographs as a source of prior information. These
could then be used to update maps produced by robots operating outdoors. This
approach can further be extended to UAVs operating outdoors.
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