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Abstract
A homogeneous structure is a countable (finite or countably infinite) first order structure

such that every isomorphism between finitely generated substructures extends to an

automorphism of the whole structure. Examples of homogeneous structures include

any countable set, the pentagon graph, the random graph, and the linear ordering of the

rationals. Countably infinite homogeneous structures are precisely the Fraı̈ssé limits of

amalgamation classes of finitely generated structures. Homogeneous structures and their

automorphism groups constitute the main theme of the thesis.

The automorphism group of a countably infinite structure becomes a Polish group when

endowed with the pointwise convergence topology. Thus, using Baire Category one

can formulate the following notions. A Polish group has generic automorphisms if it

contains a comeagre conjugacy class. A Polish group has ample generics if it has a

comeagre diagonal conjugacy class in every dimension. To study automorphism groups

of homogeneous structures as topological groups, we examine combinatorial properties

of the corresponding amalgamation classes such as the extension property for partial

automorphisms (EPPA), the amalgamation property with automorphisms (APA), and the

weak amalgamation property. We also explain how these combinatorial properties yield

the aforementioned topological properties in the context of homogeneous structures.

The main results of this thesis are the following. In Chapter 3 we show that any free

amalgamation class over a finite relational language has Gaifman clique faithful coherent

EPPA. Consequently, the automorphism group of the corresponding free homogeneous

structure contains a dense locally finite subgroup, and admits ample generics and the small

index property. In Chapter 4 we show that the universal bowtie-free countably infinite

graph admits generic automorphisms. In Chapter 5 we prove that Philip Hall’s universal

locally finite group admits ample generics. In Chapter 6 we show that the universal

homogeneous ordered graph does not have locally generic automorphisms. Moreover

we prove that the universal homogeneous tournament has ample generics if and only if

the class of finite tournaments has EPPA.
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Notation and Terminology

‘Countable’ means finite or countably infinite.

The symbol L always denotes a countable first order language.

Most of the time, M,N are countably infinite L-structures, while A,B,C are finite

L-structures. As a usual practice we use the same symbol to denote both the structure and

its underlying set. We write ā ∈M when ā = (a1, . . . , an) is an n-tuple of elements ofM

for some n ∈ ω. The theory of a structure M is denoted by Th(M). The automorphism

group of M is denoted by Aut(M). A common practice we do is to put G = Aut(M).

The set of all partial automorphisms of M is denoted by Part(M).

Suppose that G is a group acting on a set M and let ā ∈ M . Then Gā denotes the

pointwise stabiliser of ā in G. Similarly, if A ⊆M then GA or StabG(A) is the pointwise

stabiliser of A in G. Furthermore, OrbG(ā) or āG denote the orbit of ā in Mn under the

action of G. The set of all orbits of G in Mn is denoted by Mn/G. If g1, . . . , gn ∈ G,

then 〈g1, . . . , gn〉 is the subgroup generated by g1, . . . , gn.

A graph is a set with an irreflexive symmetric binary relation, denoted by E which stands

for ‘edge’. Trees are connected graphs with no cycles. Forests are graphs with no cycles.

We sometimes denote an edge {u, v} of a graph simply by uv.

EPPA is an abbreviation for the Extension Property for Partial Automorphisms (Definition

1.5.1). While APA stands for the Amalgamation Property with Automorphisms

(Definition 2.1.1).
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Chapter 1

Introduction

Homogeneous structures are mathematical structures characterised by the property that

local isomorphisms extend to global automorphisms. This work belongs to the research

area of homogeneous structures and their automorphism groups, which in its turn belongs

to model theory, a branch of mathematical logic. Model theory aims to understand

and classify mathematical structures and their definable subsets in terms of the logical

formulas satisfied in those structures. Examples of such structures are groups, fields,

vector spaces, graphs, and linear orders. The term ‘model’ stands for a structure which

models or satisfies a collection of properties expressed using a formal language, mainly

a first order language. The term ‘model theory’ was first proposed by Alfred Tarski in

1954, and adopted by Abraham Robinson in 1956. Core topics in model theory include

homogeneity and categoricity, stability theory and its generalisations, o-minimality, and

quantifier elimination. Furthermore, model theory has applications in diverse fields such

as algebraic/Diophantine geometry, real/complex analysis, and number theory.

Classification is not the only theme in model theory. Another common activity

in the field is the art of constructing structures to be models of a given set of

logical sentences. Model theoretic constructions encompass Henkin constructions,

ultraproducts, Ehrenfeucht-Mostowski constructions, Fraı̈ssé constructions, and

Hrushovski constructions. In this thesis we adopt the Fraı̈ssé construction, as it is a



Chapter 1. Introduction

powerful method of building homogeneous structures as we shall see in this chapter.

The area of homogeneous structures was initiated by the work of Roland Fraı̈ssé in

the early 1950s. It has evolved into a rich area connecting together several research

branches in mathematics such as model theory, combinatorics, permutation group theory,

descriptive set theory, topological dynamics, and theoretical computer science. Early

results in the subject include the construction of 2ℵ0 homogeneous directed graphs

by Henson in 1972, the classification of finite homogeneous graphs by Gardiner, and

independently by Golfand and Klin, in 1976, and the classification of countably infinite

homogeneous graphs by Lachlan and Woodrow in 1980. For further knowledge about the

pioneers, results, themes, and an overview of the subject, and its connection with other

areas we advise the reader to consult Macpherson’s survey [55].

Regarding the structure of the thesis, we discuss in this chapter Fraı̈ssé’s Theorem, and

give a brief overview of some of the fields intertwined with the subject of homogeneous

structures while paving the road to state the results of the thesis at the end of this

chapter. In Chapter 2 we convey the details of how the extension property for partial

automorphisms together with the amalgamation property with automorphisms form a

sufficient condition for the existence of ample generics for homogeneous structures.

We also present the Kechris-Rosendal characterisation of ample generics in the context

of homogeneous structures, and finally motivate the importance of ample generics by

discussing a handful of their group-theoretic consequences.

In Chapter 3 we focus on free homogeneous structures, those structures which arise

as Fraı̈ssé limits of free amalgamation classes. In Chapter 4 we study an instance of

Cherlin-Shelah-Shi [15] universal graphs, namely the universal bowtie-free graph. In

Chapter 5 we are concerned with the class of finite groups and their Fraı̈ssé limit. In

Chapter 6 we use the weak amalgamation property to investigate linear orders, ordered

graphs, and tournaments. We conclude with Chapter 7 by presenting a list of open

questions related to the thesis.

This chapter is entirely a review, and it has no new results.
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Chapter 1. Introduction

1.1 Basic Model Theory

This section is based on Hodges [38], Marker [60], and Tent-Ziegler [74].

A first order language L is a set of symbols. Such symbols come in three kinds:

constant symbols ci, function symbols fj , and relation symbols Rk. So in general,

L = {ci : i ∈ I} ∪ {fj : j ∈ J} ∪ {Rk : k ∈ K} for some indexing sets I, J,K.

Each function and relation symbol is associated with a nonzero natural number called

the arity of the symbol. An L-structure M is a set, which is also denoted by M , that

has interpretations for the symbols of L. More precisely, every constant symbol c ∈ L

is interpreted as a distinguished element cM of M , every function symbol f ∈ L with

arity n is interpreted as a function fM : Mn → M , and finally every relation symbol

R ∈ L of arity m is interpreted as an m-ary relation RM on M , that is, as a subset of

Mm. All first order languages contain a binary relation symbol ‘=’ which is interpreted

as equality. A language is called relational if it has no constant or function symbols. We

write M =
(
M, (ci)i∈I , (fj)j∈J , (Rk)k∈K

)
when M is an L-structure. A vast number

of mathematical objects, like graphs, ordered structures, groups, rings, and fields, can

be described as L-structures for an appropriate language L. In this thesis we work with

countable languages.

Definition 1.1.1. Let M and N be L-structures. An L-embedding φ : M → N is an

injective map such that,

(i) for every c ∈ L we have that φ(cM) = cN ;

(ii) for every f ∈ L and any ā ∈M we have that φ(fM(ā)) = fN(φ(ā));

(iii) for every R ∈ L and any ā ∈M we have that ā ∈ RM if and only if φ(ā) ∈ RN .

An L-isomorphism is a bijective L-embedding. Let M and N be L-structures. An

automorphism ofM is an L-isomorphism fromM onto itself. We sayM is a substructure

of N if M ⊆ N , and the inclusion map is an L-embedding. We abuse notation and

write M ⊆ N when M is a substructure of N . Suppose that A is a subset of M . The

substructure of M generated by A is the unique smallest substructure of M containing

3



Chapter 1. Introduction

A. If M itself is generated by finitely many of its elements we say that M is a finitely

generated structure. A structure is locally finite if every finitely generated substructure is

finite.

We use the language L to study and describe properties of L-structures using

the notions of L-sentences and L-formulas. An L-formula [60, Definition 1.1.5]

is a well-formed string of symbols from L together with the following symbols:

comma, parentheses, infinitely many variable symbols x, y, z, x1, x2, x3, . . ., propositional

connectives: negation ¬, conjunction ∧, disjunction ∨, implication →, the existential

quantifier ∃, and the universal quantifier ∀. The term “first order” means that the variables

range over the elements of a structure. Those formulas with no free variables, that is,

every variable is quantified, are called L-sentences. We write φ(x1, . . . , xn) for a formula

φ whose free variables are among x1, . . . , xn. A formula without quantifiers is called a

quantifier free formula.

Suppose thatM is an L-structure, (a1, . . . , an) ∈Mn, and φ(x1, . . . , xn) is an L-formula.

We write M |= φ(a1, . . . , an) to say that the formula φ is true in M when the free

variable xi is interpreted by the element ai ∈ M . This interplay between structures

and formulas can be made rigorous via Tarski’s definition of truth—see [60, Definition

1.1.6]. Chang-Keisler [10] write “The truth definition is the bridge connecting the formal

language with its interpretation by means of models.” Every L-sentence σ is either true or

false inM . WhenM |= σ, we sayM models or satisfies σ. Let T be a set of L-sentences.

We write M |= T if for all σ ∈ T we have that M |= σ, and say that M is a model of T .

We say T is consistent if it has a model. More generally, a set p(x̄) of L-formulas in free

variables x̄ is said to be consistent if there are an L-structure M and a tuple ā ∈ M such

that for every φ ∈ p we have M |= φ(ā). We write T |= σ if every model of T is a model

of σ. An L-theory is a consistent set of L-sentences. A theory T is complete if for any

L-sentence σ either σ ∈ T or ¬σ ∈ T . We now state one of the fundamental theorems

of model theory of first order languages due to Gödel (1930) and Malcev (1936), see [74,

Theorem 2.2.1].

4
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Theorem 1.1.2 (Compactness Theorem). Suppose that T is a set of L-sentences. If every

finite subset of T has a model then T has a model.

Definition 1.1.3. Let L be a first order language.

• A theory T has quantifier elimination if for every formula φ(x̄) there is a quantifier

free formula φ∗(x̄) such that T |= ∀x̄
(
φ(x̄)↔ φ∗(x̄)

)
.

• A universal formula is an L-formula ψ(ȳ) of the form ∀x̄φ(x̄, ȳ) where φ is a

quantifier free formula. Similarly, an existential formula has the form ∃x̄φ(x̄, ȳ)

where φ is quantifier free.

• Let T be an L-theory. We say that a set of L-sentences Γ axiomatises T if for any

L-structure M , we have that M |= T if and only if M |= Γ. We say that T is a

universal theory if it is axiomatised by a set of universal sentences.

• A class K of L-structures is elementary if there is a theory T such that M ∈ K if

and only if M |= T for every L-structure M .

Let M be an L-structure, and A ⊆ M . For every a ∈ A, let ca denote a new constant

symbol. We define LA := L ∪ {ca : a ∈ A}; the new language obtained by adding the

new constant symbols to the original language. The complete theory of an L-structure M

denoted by Th(M) is the set of all L-sentences true in M . More generally, we define

ThA(M) = {σ ∈ LA-sentences : M |= σ}.

The set ThM(M) is called the elementary diagram of M . We say that N is an elementary

extension of M , and write M � N , if M is a substructure of N and N |= ThM(M).

Definition 1.1.4. LetM be an L-structure, and letA ⊆M . We say that a subsetX ⊆Mn

is A-definable if there is an LA-formula φ(x̄) such that X = {b̄ ∈Mn : M |= φ(b̄)}.

We now introduce the notion of a type. In the same way a theory describes a model using

L-sentences, a type uses L-formulas to describe elements of a model of a theory.

Definition 1.1.5. Let M be an L-structure, and A ⊆ M . We define an n-type over A

in M to be a set p(x̄) of LA-formulas in the free variables x̄ = (x1, ..., xn) such that

p(x̄) ∪ ThA(M) is consistent.

5
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An n-type p(x̄) over A in M is called a complete n-type if for every LA-formula φ(x̄),

we have either φ ∈ p or ¬φ ∈ p. We denote by SMn (A) the set of all complete

n-types over A in M . For a tuple ā ∈ M , the type of ā over A in M is the set

tpM(ā/A) = {φ(x̄) ∈ LA-formulas : M |= φ(ā)}. We write tpM(ā) for tpM(ā/∅),

and clearly we have that tpM(ā/A) ∈ SMn (A). We say that ā ∈ Mn realises p(x̄) if

M |= φ(ā) for every φ(x̄) ∈ p. And we say M omits p if no ā ∈ Mn realises p. A

type may not be realised in a specific L-structure M , however it will be realised in an

elementary extension of M .

Proposition 1.1.6. [60, Proposition 4.1.3] Let p(x̄) be an n-type overA inM . Then, there

is an elementary extension N of M which realises p.

Alternatively, we may start with an L-theory T , and define an n-type of T to be a set

p(x̄) of L-formulas such that p(x̄) ∪ T is consistent. A type p(x̄) of T is complete if for

every L-formula φ(x̄), we have either φ ∈ p or ¬φ ∈ p. We let Sn(T ) denotes the set of

all complete n-types of T . Note that for a complete L-theory T , a model M |= T , and

A ⊆M we have that Sn
(
ThA(M)

)
= SMn (A).

Definition 1.1.7. Let p be an n-type of an L-theory T . We say p is isolated if there

is an L-formula φ(x̄) such that T |= ∃x̄φ(x̄) and for every ψ(x̄) ∈ p(x̄) we have that

T |= ∀x̄(φ(x̄)→ ψ(x̄)).

The set SMn (A) can be made into a topological space when endowed with the Stone

topology, and thus called the Stone space of types. The Stone topology is generated by

the basic open sets [φ] where φ(x̄) is an LA-formula and [φ] = {p ∈ SMn (A) : φ ∈ p}.

Since each p ∈ SMn (A) is a complete type, the complement of [φ] is [¬φ], and thus [φ] is a

clopen subset. It can be shown that an L-formula φ isolates a complete type p if and only

if [φ] = {p}. So to say that p is isolated is equivalent to saying that the singleton {p} is

an open set in the Stone topology, hence the name isolated.

Lemma 1.1.8. [60, Lemma 4.1.8] The Stone space SMn (A) is a compact Hausdorff totally

disconnected topological space.

6



Chapter 1. Introduction

1.2 Homogeneity and Omega-categoricity

The main references of this section are Macpherson et al. [5, Chapter 14], Hodges [38,

Chapter 6], Evans [25], and Macpherson [55].

We will present a method of constructing countably infinite structures from certain classes

of finite structures. In 1954, Roland Fraı̈ssé introduced a technique of constructing the

rationals as a linear order from the class of all finite linear orders in infinitely many steps.

His technique is known as Fraı̈ssé’s construction, and it constitutes the main method of

construction in the thesis. In this section, L is a countable first order language. We now

define what it means for a structure to be homogeneous.

Definition 1.2.1. Let M be an L-structure. We say that M is homogeneous if M is

countable and every isomorphism between finitely generated substructures of M extends

to an automorphism of M .

Definition 1.2.2. Let M an L-structure. The age of M , denoted by Age(M), is the class

of all finitely generated structures which can be embedded in M .

Let C be a class of finitely generated L-structures. We say that C has the hereditary

property (HP) if whenever B ∈ C and A is a finitely generated substructure of B, then

A ∈ C. We say that C has the joint embedding property (JEP) if whenever A1, A2 ∈ C,

then there is B ∈ C such that A1 and A2 both embed into B. The age of any L-structure

satisfies both HP and JEP. Conversely, a countable class of finitely generated L-structures

with HP and JEP is the age of some countable structure [38, Theorem 6.1.1].

The next property, the amalgamation property, was formulated by Fraı̈ssé, and it turned

out that it has an important role to play in model theory. In [38, Chapter 5] Wilfrid Hodges

writes “The idea of amalgamation is very powerful, and I have used it whenever I can.”

We say that C has the amalgamation property (AP) if for all A,B1, B2 ∈ C and

embeddings α1 : A → B1 and α2 : A → B2 there exists C ∈ C with embeddings

β1 : B1 → C and β2 : B2 → C such that β1α1 = β2α2.

7
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B1

β1

  
A

α1

>>

α2   

C

B2

β2

>>

The amalgamation property of a class C guarantees that for all A,B1, B2 in C as above,

there is a structure C, called the amalgam of B1 and B2 over A, which is also in the class

C that contains a copy ofB1 and a copy ofB2 in a way that the part ofB1 isomorphic to A

is glued with the corresponding part ofB2 as shown below in Figure 1.1. The embeddings

α1 and α2 are like the arms of a maestro directing which vertex of B1 is to be glued with

which vertex of B2.

Figure 1.1: The amalgam C of B1 and B2 over A.

We note that when the language in hand is relational, every finitely generated structure is

finite. We also may assume that the domain of the amalgam C is β1(B1) ∪ β2(B2), and

so in this case we have that: max
{
|B1|, |B2|

}
≤ |C| ≤ (|B1|+ |B2| − |A|).

Definition 1.2.3. We call a class C of finitely generated L-structures an amalgamation

class if it contains countably many isomorphism types, closed under isomorphism, and

has the hereditary property, the joint embedding property, and the amalgamation property.

We now introduce a stronger version of the amalgamation property which will play an

important role in Chapter 3.

8
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Class of structures Language HP JEP AP

1 Finite graphs {E} Yes Yes Yes

2 Finite trees {E} No Yes Yes

3 Finite forests {E} Yes Yes No

4 Finite ./-free graphs {E} Yes Yes No

5 Special ./-free graphs {E} No Yes Yes

6 Finite linear orders {<} Yes Yes Yes

7 Finite groups {1, ·, −1} Yes Yes Yes

8 Finite fields {0, 1,+,−, ·, −1} Yes No Yes

Table 1.1: Examples of classes of finite structures and their properties. For graphs and

linear orders see Examples 14(f) and 14(e) in [5], respectively. For ./-free graphs see

Chapter 4, and for groups see Chapter 5.

Definition 1.2.4. Suppose that L is a relational language. Given finite L-structures

A,B1, B2 with A ⊆ B1 and A ⊆ B2, the free amalgam of B1 and B2 over A is the

structureC whose domain is the disjoint union ofB1 andB2 overA, and for every relation

symbol R ∈ L we define RC := RB1 ∪RB2 .

We say that a class C of structures over a fixed relational language has the free

amalgamation property if C is closed under free amalgams. Moreover C is called a free

amalgamation class if it is closed under substructures and isomorphism, and has both the

joint embedding property and the free amalgamation property. Lastly, a homogeneous

structure whose age is a free amalgamation class is called a free homogeneous structure.

We now introduce Fraı̈ssé’s Theorem, which is one of the pillars on which the thesis rests.

Accordingly, the reader may find its proof in Appendix A.

Theorem 1.2.5 (Fraı̈ssé’s Theorem [28]). Suppose that C is an amalgamation class of

finitely generated L-structures. Then there is a unique, up to isomorphism, homogeneous

L-structure M such that Age(M) = C. Conversely, if N is a homogeneous L-structure

then Age(N) is an amalgamation class.

9
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So Fraı̈ssé’s Theorem provides a one to one correspondence between homogeneous

structures and amalgamation classes. Given an amalgamation class C, the unique

homogeneous structure whose age is C is called the Fraı̈ssé limit of C.

Remark 1.2.6. In Appendix A, Lemma A.2 shows that a structureM being homogeneous

is equivalent to the following property: whenever we have that A ⊆ B in Age(M) and

an embedding f : A → M , then there is an embedding g : B → M extending f . In the

thesis we refer to this property by the phrase ‘by homogeneity’.

Class C of structures Fraı̈ssé limit of C

Finite sets The trivial structure (N,=)

Finite linear orders The rationals (Q, <)

Finite graphs The random graph

Finite Boolean algebras The countable atomless Boolean algebra

Finite metric spaces with rational distances The rational Urysohn metric space

Finite groups Philip Hall’s locally finite universal group

Table 1.2: Examples of Fraı̈ssé limits

Note 1.2.7 (Classification results (I)). For the classification of countably infinite

homogeneous graphs see Lachlan-Woodrow [51], for countable homogeneous partial

orders see Schmerl [67], and for countably infinite homogeneous directed graphs see

Cherlin [18].

We next introduce the notion of ω-categoricity and its connection with homogeneity.

Definition 1.2.8. A complete L-theory T is called ω-categorical if T has a unique

countably infinite model, up to isomorphism. An L-structure M is ω-categorical if its

theory is ω-categorical.

By a theorem of Cantor [5, Theorem 9.3], any model of cardinality ℵ0 of the theory of

dense linear orders without endpoints is isomorphic to (Q, <). Thus Th(Q, <) is an

ω-categorical theory.

10
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Definition 1.2.9. [5, Definition 9.6] A group G acting on a set Ω is called oligomorphic

on Ω if for every n ∈ ω, the group G has finitely many orbits in its induced action on Ωn.

In Section 1.3, we will treat automorphism groups as permutation groups. A structure M

whose automorphism group is oligomorphic on its underlying set suggests that there are

only a few different shapes of n-element subsets of M , as described by Peter Cameron in

[7]. We now introduce a theorem which constitutes a bridge connecting together model

theory and permutation group theory.

Theorem 1.2.10 (Ryll-Nardzewski, Engeler, Svenonius, 1959). Let M be a countably

infinite L-structure, and let T = Th(M). Then the following are equivalent:

(i) The structure M is ω-categorical.

(ii) For all n ∈ N, every n-type of T is isolated.

(iii) For all n ∈ N, Sn(T ) is finite.

(iv) The automorphism group Aut(M) is oligomorphic on M .

(v) For all n ∈ N, there are finitely many formulas φ(x1, . . . , xn) up to equivalence

modulo T .

Consult [38, Theorem 6.3.1] for a proof of Ryll-Nardzewski’s Theorem. The proof

leads to the corollary below which demonstrates a bidirectional translation between the

language of model theory and the language of permutation group theory.

Corollary 1.2.11 ([25]). Suppose that M is a countably infinite ω-categorical structure.

Put G = Aut(M). Then the following hold.

(i) For any ā, b̄ ∈Mn, we have that OrbG(ā) = OrbG(b̄) if and only if tp(ā) = tp(b̄).

(ii) Let A ⊆ M be finite. Then a subset ∆ ⊆ Mn is A-definable if and only if ∆ is the

union of GA-orbits on Mn.

Corollary 1.2.12. [38, Corollary 6.3.2] Suppose that T is an ω-categorical theory, and

M |= T . Then M is locally finite. Additionally, there is a function f : N→ N such that

for each n ∈ N, if A ⊆M is a substructure generated by n elements, then |A| ≤ f(n).

11
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A structure which satisfies the ‘additionally’ part of the corollary above is said to be

uniformly locally finite.

Theorem 1.2.13. [38, Corollary 6.4.2] Suppose L is a finite first order language and M

is a countably infinite L-structure. Then the following are equivalent:

(i) M is homogeneous and uniformly locally finite.

(ii) Th(M) is ω-categorical and has quantifier elimination.

In particular, any homogeneous structure over a finite relational language is ω-categorical

and its theory has quantifier elimination (QE).

Proposition 1.2.14. [55, Proposition 3.1.6] Suppose that M is an ω-categorical structure

over a relational language. Then M is homogeneous if and only if Th(M) has QE.

Example 1.2.15. Philip Hall’s universal group is an example of a homogeneous locally

finite group which is not ω-categorical, and so not uniformly locally finite. See Chapter 5

for more details.

Note 1.2.16 (Classification results (II)). For the classification of finite homogeneous

groups see Cherlin-Felgner [12]. For partial classification results regarding countable

homogeneous soluble groups see Cherlin-Felgner [11] and Saracino-Wood [66]. Groups

of nilpotency class 2 and exponent 4 are uniformly locally finite. Saracino and Wood

showed that there exist continuum many countable homogeneous (and so ω-categorical)

groups of nilpotency class 2 and exponent 4.

Chapter 3 contains examples of homogeneous structures over finite relational languages.

Droste and Macpherson [24, Theorem 1.4] used Fraı̈ssé construction to prove that there

are continuum many nonisomorphic countably infinite ω-categorical universal graphs

which are not homogeneous. Also the universal bowtie-free graph of Chapter 4 is

an ω-categorical structure which is not homogeneous. We conclude by noting that

examples of homogeneous and ω-categorical structures are ubiquitous in Evans [25] and

Macpherson [55].

12
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1.3 Infinite Permutation Groups and Topology

The content of this section is based on Macpherson et al. [5, Chapter 2 and 6] and

Cameron [7, Chapter 2].

The theory of infinite permutation groups is one of the newer branches of group theory,

and it has established connections with model theory as we will see shortly. Let Ω be a

finite or infinite set. A permutation on Ω is a bijection from Ω onto itself. The set of all

permutations on Ω forms a group under function composition, called the symmetric group

on Ω and denoted by Sym(Ω). A permutation group on Ω is a subgroup of Sym(Ω). An

infinite permutation group is a permutation group on an infinite set. Permutation groups

on Ω are precisely those groups which act faithfully on Ω. Any group can be seen as a

permutation group on its underlying set by Cayley’s Theorem.

Every permutation can be written as a product of disjoint finite or infinite cycles uniquely

up to order of cycles and cyclic permutation of finite cycles. Given h ∈ Sym(Ω), the cycle

type of h is the sequence ℵk00 1k1 2k2 . . . nkn . . ., where each kn ∈ ω + 1, k0 is the number

of infinite cycles in h, and kn is the number of finite cycles of length n > 0 in h. Two

permutations g, h ∈ Sym(Ω) are conjugate in Sym(Ω) if and only if they have the same

cycle type. As our interest hovers around homogeneous structures and their automorphism

groups, we focus on the case when Ω is countably infinite, and consequently replace it

with the set of natural numbers N. We note that |Sym(N)| = 2ℵ0 . Consult [5, Theorem

6.1] for a proof. We may assume that the underlying set of any countably infinite structure

M is the set of natural numbers. Thus Aut(M) ≤ Sym(N) is a permutation group on a

countably infinite set.

Conversely, given a permutation group G ≤ Sym(N) we may define a structure M on the

set N, called the canonical relational structure associated withG, such thatG ≤ Aut(M)

and for every n ∈ ω we have that G and Aut(M) have the same orbits on Mn. The

language of M is L = {Rn
i : n ∈ ω, i < kn} where Rn

i is an n-ary relation symbol, and

kn ≤ ℵ0 is the number of orbits of G on Nn. The symbols are interpreted as the orbits,

13
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where Rn
0 , R

n
1 , R

n
2 , . . . is a list of all the orbits of G on Nn. The canonical structure is

homogeneous over an infinite relational language in the sense defined in Section 1.2.

Our aim is to enrich permutation groups on a countably infinite set with a topology.

Following [45, Section 9A], a topological group G is a group endowed with a topology

such that both the group multiplication from G × G → G and the inversion map from

G → G are continuous maps. Consequently, the actions of left and right multiplication

of any topological group G on itself are homeomorphisms of G. If a subgroup of a

topological group is open, then all of its cosets are open as well. A distinguished subclass

of topological groups is the class of Polish groups. Recall that a topological space is

separable if it contains a countable dense subset.

Definition 1.3.1. [45, Definition 9.2]

A Polish space is a topological space whose topology is separable and completely

metrisable. A Polish group is a topological group whose topology is Polish.

Example 1.3.2. [45, Section 9B] Examples of Polish groups.

(i) Any countable group with the discrete topology.

(ii) The additive group of real numbers (R,+) and the multiplicative group of nonzero

real numbers (R×, ·) with the usual topology.

(iii) The Cantor group 2ω, the unrestricted Cartesian product of ω many copies of the

cyclic group of order 2 each endowed with the discrete topology.

We note that every uncountable Polish space has the cardinality of the continuum.

We will see more examples now. Let G ≤ Sym(N). For a finite tuple ā ∈ Nn, the

pointwise stabiliser of ā in G is the subgroup Gā = {g ∈ G : g(ā) = ā}. We endow G

with the topology generated by basic open sets of the form:

G(ā, b̄) =
{
g ∈ G : g(ā) = b̄

}
where ā, b̄ ∈ Nn, and n ∈ ω.

Notice thatG(ā, b̄) = hGā for any h ∈ G such that h(ā) = b̄. So the basis of this topology

consists of all cosets of pointwise stabilisers of finite tuples. This topology makes G into
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a topological group whose topology is separable. An instance of particular interest is

G = Aut(M) for some countably infinite first order structure M . In this case and in the

spirit of extending partial automorphisms (Section 1.5), the basic open set G(ā, b̄) may

be described as the set of automorphisms of M extending the finite partial automorphism

φ : ā→ b̄.

The topology on Sym(N) is also completely metrisable. Hence Sym(N) is a Polish

group. The topology on Sym(N) is induced by the following complete metric

d : Sym(N) × Sym(N) → [0, 1]. For any f, g ∈ Sym(N), the distance between f

and g is defined to be:

d(f, g) =

0, if f = g;

1/2n, if n = min{m ∈ N : f(m) 6= g(m) or f−1(m) 6= g−1(m)}.

So the closer g and h are to each other, the longer is the initial segment of N on which they

agree. The reason to involve f−1 and g−1 in the definition above is to make d a complete

metric on Sym(N). With respect to this metric, a sequence (gn)n∈ω of permutations

converges to a permutation g if and only if for every x ∈ N there is N ∈ N such that for

all n ≥ N we have that gn(x) = g(x). That is why this topology is called the pointwise

convergence topology.

We collect below some folkloric facts about subgroups of Sym(N). See [7, Section 2.4].

Theorem 1.3.3. The following hold.

(i) Suppose that G ≤ Sym(N). Then G is closed if and only if G = Aut(M) for some

countably infinite first order structure M .

(ii) Suppose that G ≤ Sym(N). Then a subgroup H of G is open in G if and only if for

some finite tuple ā ∈ N we have Gā ≤ H .

(iii) (Cameron) Suppose that M is a countably infinite ω-categorical structure. Let

G = Aut(M). Then any open subgroup of G is contained in finitely many

subgroups of G.
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(iv) Suppose that G is a Polish group, and H ≤ G. Then H is a Polish group if and

only if H is closed in G.

(v) Aut(M) is a Polish group, for any countably infinite first order structure M .

(vi) Let M be countably infinite first order structure, and put G = Aut(M). Then

|G| ≤ ℵ0 if and only if for some finite tuple ā ∈Mn we have that Gā is the identity.

(vii) Let G ≤ Sym(N). A subgroup H ≤ G is dense in G if and only if H has the same

orbits on Nn as G for all n ∈ ω. That is, for all g ∈ G and ā ∈ Nn there is h ∈ H

such that h(ā) = g(ā).

(viii) Any open subgroup of a topological group is also closed.

(ix) Any closed subgroup of a topological group with finite index is open.

For the forward direction of statement (i), the canonical structure associated with G will

do. For the proof of (iii) see [39, Lemma 2.4], and of (iv) see [2, Proposition 1.2.1].

1.4 Generic Automorphisms

Let X be a topological space, and U ⊆ X be an open subset. We say a subset D ⊆ X is

dense inU ifD intersects nontrivially every nonempty open subset ofU . A subsetN ⊆ X

is nowhere dense if N is not dense in any open subset U ⊆ X . Thus, a subset N ⊆ X is

nowhere dense if and only if every nonempty open subset U ⊆ X has a nonempty open

subset V ⊆ U such that N ∩ V = ∅ if and only if X \ N contains a dense open subset

if and only if the closure of N has an empty interior. In other words, a nowhere dense

subset is characterised as a set which is “full of holes” as described by Oxtoby in [63,

Chapter 1]. It follows that the class of nowhere dense subsets of some topological space

is closed under subsets, taking closure, and finite unions. However, a countable union

of nowhere dense sets is not necessarily nowhere dense. For example, in the real line R

with the standard topology we can write the set of rationals Q as a countable union of

singletons, but Q is dense in R nevertheless.

The last observation motivates the following definition introduced by Baire in 1899. A
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set M ⊆ X is called meagre if it can be written as a countable union of nowhere dense

sets. A meagre set is said to be of first category, and a set which is not meagre is said to

be of second category. The complement of a meagre set is called comeagre. Note that

a set is comeagre if and only if it contains a countable intersection of dense open sets.

An important fact about comeagre sets in complete metric spaces is given by the Baire

Category Theorem—see [45, Theorem 8.4].

Theorem 1.4.1 (The Baire Category Theorem). Suppose X is a complete metric space.

Then every comeagre subset of X is dense in X . Equivalently, every nonempty open set

of X is non-meagre.

The class of comeagre subsets of a complete metric space does not contain the empty set,

and is closed under supersets and countable intersection. Thus, the class of comeagre sets

forms a δ-filter, and comeagreness gives a notion of largeness.

We will make use of the notion of comeagreness in our setting of automorphism groups

of countably infinite structures. Suppose that L is a countable first order language. Let

M be a countably infinite L-structure. We have seen before that its automorphism group

Aut(M) is a Polish group, and therefore the Baire Category Theorem holds for Aut(M).

We now introduce one of the main definitions of the thesis.

Definition 1.4.2 (Truss [78]). Let M be a countably infinite L-structure. We say that M

has generic automorphisms if Aut(M) has a comeagre conjugacy class.

An automorphism of M whose conjugacy class is comeagre is called a generic

automorphism. When two elements of Aut(M) are conjugate, they look alike in the

sense that their action on M is the same up to relabelling the elements of M . Thus if

M has generic automorphisms, it means that there exists a large set of automorphisms of

M which look alike. By the Baire Category Theorem, Aut(M) may have at most one

comeagre conjugacy class.

In [78] Truss provides a sufficient condition for the existence of generic automorphisms,

and proves that the countably infinite set, the rationals (Q, <), the random graph, and
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other countable universal homogeneous edge-coloured graphs (with countably many

colours) all have generic automorphisms. Furthermore, he gives an explicit description of

generic elements in these cases. For example, in the first case an element g ∈ Sym(N) is

generic if and only if g has cycle type (ℵ0)0 1ℵ0 2ℵ0 . . . nℵ0 . . .. That is, generic elements

of Sym(N) are those which have no infinite cycles and infinitely many finite cycles of

length n for every nonzero n ∈ ω.

Next, we mention some group-theoretic consequences of generic automorphisms.

Proposition 1.4.3. [55, Proposition 4.2.12] Suppose that a Polish group G has a

comeagre conjugacy class D. Then,

(i) G = D2 = {gh : g, h ∈ D}.

(ii) Every element of G is a commutator, so G = G′.

Proposition 1.4.4. [55, Prop. 4.2.12(i)] Let G be an uncountable Polish group with a

comeagre conjugacy class C. ThenG has no proper normal subgroup of countable index.

Proof. Suppose for a contradiction that N is a proper normal subgroup of G of countable

index. If C ∩ N 6= ∅, then by normality of N we have C ⊆ N . So N is comeagre.

Let g ∈ G \ N , then gN is a comeagre coset disjoint from N , contradicting that the

intersection of two comeagre sets is comeagre. If C ∩ N = ∅, then N is meagre. So

is every coset of N . Thus G being a countable union of meagre sets is meagre. This

contradicts the Baire Category Theorem as any Polish space is non-meagre. �

We next present some situations where generic automorphisms do not exist.

Example 1.4.5 (A structure without generic automorphisms). Let L = {E} where E is a

binary relation symbol. Let M be a countably infinite L-structure where E is interpreted

as an equivalence relation on M with two infinite equivalence classes. Then,

H := {g ∈ Aut(M) : g fixes both classes setwise} / Aut(M)

is a proper normal subgroup of G := Aut(M) of index 2. So by Proposition 1.4.4, the

structure M does not have generic automorphisms. Nevertheless, after naming a point
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b ∈M we get that Gb = Aut(M,E, b) ≤ G is isomorphic to Sym(N)×Sym(N), and the

new structure has generic automorphisms.

Example 1.4.6 (Example 5.6 in [78]. Another structure without generic automorphisms).

Let N := (Q,Cyc) where Cyc is a ternary relation symbol interpreted as the cyclic order

on the rationals. That is, for all x, y, z ∈ Q we have that N |= Cyc(x, y, z) if and only

if Q |= (x ≤ y ≤ z) ∨ (y ≤ z ≤ x) ∨ (z ≤ x ≤ y). Intuitively, for distinct x, y, z,

the statement N |= Cyc(x, y, z) means that you can walk on the line of rationals from

left to right, starting at x, passing through y, and finishing at z, with the condition of

arriving to each of x, y, z exactly once and with the ability to jump from +∞ back to

−∞. See [5, Section 11.3.3] for more details. Now suppose that G = Aut(N) has a

dense conjugacy class D. First, suppose there is g ∈ D extending a transposition (r s)

for some distinct r, s ∈ Q. Then every conjugate of g also extends some transposition.

Consequently, no element of D may have a fixed point. Thus, G(1)∩D = ∅ contradicting

the denseness of D. Otherwise, no element of D extends a transposition. But in this case

we have D ∩ {g ∈ G : g(1, 2) = (2, 1)} = ∅, again a contradiction. If we, however,

consider an expansion of N by naming some element a ∈ N , then its automorphism

group Ga = Aut(N,Cyc, a) ≤ G is isomorphic to Aut(Q, <), and so the expansion has

generic automorphisms.

In the previous two examples we had groups without generic automorphisms but contain

open subgroups (Gb andGa) with generic automorphisms. This observation motivates the

following definition. For a group G and g ∈ G, the conjugacy class of g is denoted by gG.

Definition 1.4.7 (Truss [78]). Let M be a countably infinite structure and put

G := Aut(M). Then an automorphism g ∈ G is called locally generic if there is some

nonempty open subset U ⊆ G such that gG ∩ U is comeagre in U .

Towards a generalisation of the notion of generic automorphisms, recall that for a nonzero

natural number n, the action of a group G by diagonal conjugation on the product Gn is

given by:

g · (h1, . . . , hn) = (gh1g
−1, . . . , ghng

−1).
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Moreover, the product of countably many complete metric spaces is a complete metric

space [73, Proposition 2.1.31]. Thus, if G is a Polish group, then Gn equipped with the

product topology is a Polish space. So comeagre subsets of Gn are dense.

Definition 1.4.8. Let M be a countably infinite L-structure, and put G = Aut(M). We

say that M has n-generic automorphisms if G has a comeagre orbit on Gn in its action by

diagonal conjugation.

A tuple ḡ ∈ Gn whose diagonal conjugacy class is comeagre is called a generic element of

Gn. We already know that the rationals (Q, <) has 1-generic automorphisms. However,

by an unpublished note of Hodkinson or by [76, Theorem 2.4], the structure (Q, <) does

not have 2-generic automorphisms. The work of Hodges, Hodkinson, Lascar, and Shelah

in [39], and its continuation by Kechris and Rosendal in [47] has introduced the following

definition. It is the chief definition of the thesis.

Definition 1.4.9. Let M be a countably infinite L-structure, and put G = Aut(M). We

say that M has ample generics if M has n-generic automorphisms for each n > 0.

The term ample generics is short for ample homogeneous generic automorphisms. The

notion of ample generics makes sense for Polish groups in general. A Polish group G

has ample generics if for each n > 0, the diagonal conjugation action of G on Gn has a

comeagre orbit. Chapter 2 treats the notion of ample generics in more detail.

1.5 The Extension Property for Partial Automorphisms

In this section we will introduce part of the combinatorial flavour of the subject of

homogeneous structures. Let L be a fixed countable first order language. Suppose that A

is an L-structure. A partial automorphism of A is an L-isomorphism p : U → V where

U, V are substructures of A. If U, V are finite, we say p is a finite partial automorphism.

When U = A = V then p ∈ Aut(A), and in this case we may call p a total automorphism

for emphasis. We denote by Part(A) the set of all partial automorphisms of A.
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In general, a partial automorphism of a finite structure may defy being extended to a

total automorphism. Gardiner [30] and independently Golfand and Klin [31] proved the

classification theorem of finite homogeneous graphs, which states that an exhaustive list

of finite homogeneous graphs is the following:

1. The pentagon C5.

2. The line graph L(K3,3) of the complete bipartite graph K3,3.

3. Any disjoint union of finitely many copies of the complete graph Kn.

4. Any finite complete multipartite graph with all parts have the same size. This is the

complement of (3).

So any finite graph G outside the list above admits a partial automorphism which does

not extend to an automorphism of G. But what will happen if we allow to extend partial

automorphisms of G to automorphisms of a bigger finite graph which contain G as an

induced subgraph? Hrushovski gave a positive answer as we will see shortly.

Definition 1.5.1 (The Extension Property for Partial Automorphisms). A class C of finite

L-structures is said to have the extension property for partial automorphisms (EPPA) if

for every A ∈ C, there exists B ∈ C containing A as a substructure such that every partial

automorphism of A extends to an automorphism of B.

Said differently, C has EPPA if for every A ∈ C, there exist B ∈ C and a map

φ : Part(A) → Aut(B) such that A ⊆ B and for every p ∈ Part(A) we have that

p ⊆ φ(p). Note that we require the extension B to belong to the class C.

Definition 1.5.2. Suppose that A is an L-structure. An extension B of A is called an

EPPA-extension if every partial automorphism of A extends to an automorphism of B.

Definition 1.5.1 coincides with [40, Definition 8] and [35]. It is a stronger version of the

notion of EPPA as defined in [36, p. 1986] which we call here weak EPPA.

Definition 1.5.3. [36, p. 1986] A class C of finite and infinite L-structures has weak EPPA

if for all finite A ∈ C whenever A has a (possibly infinite) EPPA-extension in C, then A

has a finite EPPA-extension also in C.

21



Chapter 1. Introduction

Note that in the realm of homogeneous structures the two notions are equivalent. More

precisely, suppose that C is an amalgamation class of finite structures, andM is its Fraı̈ssé

limit. Then C has EPPA if and only if C ∪ {M} has weak EPPA.

Fact 1.5.4. ([35, Section 6]). Suppose that C is a class of finite structures with EPPA and

the joint embedding property. Then C has the amalgamation property.

It is easy to see that the class of all finite sets (with no structure) has EPPA. In 1992,

Hrushovski [41] showed that the class of all finite graphs has EPPA. The Hrushovski

Property is a synonym for EPPA in literature. In [39], Hrushovski’s result was used to

establish the small index property (Definition 2.3.1) for the random graph. The proof

of Hrushovski has a group-theoretic flavour. More recently, Herwig and Lascar [36,

Section 4.1] provided a shorter simple combinatorial proof for Hrushovski’s result. We

will present their proof here for the amusement of the reader.

First we need some notation. Suppose that E is a finite set and n ≥ 1. By Γ(E, n) we

mean the graph whose vertex set is the set of subsets of E containing exactly n elements.

The edge relation is defined by setting two distinct vertices adjacent if their intersection

is nonempty. The advantage of this construction is that every permutation of E induces

an automorphism of Γ(E, n), and all vertices have the same degree.

We also need a helpful observation. Every finite graph A can be embedded in a graph of

uniform degree. To see this, let n ≥ 3 be the least odd number greater than or equal to

the maximum degree of vertices of A. To every vertex v ∈ A with degree strictly less

than n, add n − deg(v) new neighbours to v. We may assume that the number of new

vertices is even, for if it were odd we may consider one of them to belong to A and add

n− 1 new neighbours to it. At this point, all the vertices of A have degree n and the new

vertices u1, u2, . . . , u2k have degree 1. Take 2k-many copies of the complete graph Kn.

Let {ei1, ei2, . . . , ein} be an enumeration of the ith copy. Identify each ei1 with ui, and for

each 1 ≤ i ≤ k and 2 ≤ j ≤ n, add an edge between e2i−1
j and e2i

j . Now every vertex has

degree n, and we are done.

Theorem 1.5.5 ([36], [41]). The class of all finite graphs has EPPA.
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Proof. Suppose thatA is a finite graph. By the above, we may assume thatA is of uniform

degree n ≥ 3. Let E be the set of edges of A. Then A embeds in the graph Γ(E, n) by

sending a vertex v of A to the set of edges incident with v. This map is injective as n > 1.

The graph Γ(E, n) is an EPPA-extension of A. For suppose that p ∈ Part(A). Then p

induces a permutation φ on E defined in two steps. First, as A is of uniform degree, we

may fix for each u ∈ dom(p) a bijection ju from the set of neighbours of u to the set

of neighbours of p(u) such that ju agrees with p. For each e = {u, v} in E such that

u ∈ dom(p) define φ(e) = {p(u), ju(v)}.

Second, complete φ to a permutation of E in any fashion. Because for each vertex

u ∈ dom(p), the permutation φ sends the edges incident with u to those incident of

p(u), the automorphism of Γ(E, n) induced by φ extends p. �

Herwig and Lascar used the idea of the proof above to show the following generalisation.

Theorem 1.5.6. [36, Corollary 4.13] Let L be a finite relational language. Then the class

of all finite L-structures has EPPA.

More examples of classes which have EPPA include the class of all Kn-free graphs [35,

Theorem 2], where Kn is the complete graph on n vertices; likewise, the class of all finite

directed graphs omitting a fixed (possibly infinite) family of tournaments [35, Corollary

13], also see [34]. Such results are extended to any free amalgamation class in Chapter 3.

We now present another EPPA related result in [36]. Let L be a relational first order

language, and let A, B be L-structures. A homomorphism h : A → B is a map such

that for every R ∈ L and ā ∈ A, if A |= R(ā), then B |= R(h(ā)). Suppose that F is

a family of L-structures called the forbidden structures. We say a structure A is F-free

under homomorphisms if there is no structure F ∈ F and homomorphism h : F → A.

Theorem 1.5.7. [36, Theorem 3.2] Let L be a finite relational language and F a finite set

of finite L-structures. Then the class of all finite and infinite structures which are F-free

(under homomorphisms) has weak EPPA.
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Remark 1.5.8. There are other notions of F-freeness. In Chapter 3 we work with classes

which are F-free under embeddings, and in Chapter 4 we work with classes of graphs

which are F-free under injective homomorphisms (monomorphisms).

Solecki used the theorem above to show that the class of all finite metric spaces has EPPA

[70, Theorem 2.1], that is, every finite metric space A embeds in a finite metric space B

such that every partial isometry of A extends to an isometry of B. We now introduce a

strengthening of EPPA due to Solecki [71].

Definition 1.5.9 (Coherent maps).

• Let X be a set and P be a family of partial bijections between subsets of X .

A triple (f, g, h) from P is called a coherent triple if dom(f) = dom(h),

range(f) = dom(g), range(g) = range(h) and h = g ◦ f .

• Let X and Y be sets, and P and Q be families of partial bijections between

subsets of X and between subsets of Y , respectively. A function φ : P → Q

is called a coherent map if for each coherent triple (f, g, h) from P , its image(
φ(f), φ(g), φ(h)

)
in Q is coherent.

Definition 1.5.10 (Coherent EPPA). A class C of finite L-structures is said to have

coherent EPPA if for every A ∈ C, there exist B ∈ C and a coherent map

φ : Part(A) → Aut(B) such that A ⊆ B and every p ∈ Part(A) extends to

φ(p) ∈ Aut(B).

That is, the map φ in the definition above satisfies the following property: for all

f, g, h ∈ Part(A) if h = gh, then φ(h) = φ(g)φ(h). Thus the slogan for coherent

EPPA is “the extension of the composition is the composition of the extensions”. Solecki

has strengthened a theorem by Herwig-Lascar to the following theorem, which we will

utilise in Chapter 3.

Theorem 1.5.11. [71, Theorem 3.1] Let L be a finite relational language. The class of

all finite L-structures has coherent EPPA.
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We motivate the notion of EPPA by describing the role it plays in several research areas.

The property EPPA constitutes a main ingredient of a technique developed in [39] which

is used in the thesis to establish the existence of ample generics for some homogeneous

structures. This technique and many interesting group-theoretic consequences which

follow from ample generics are covered in Chapter 2.

Herwig and Lascar [36] revealed interesting relations between EPPA and results related

to the profinite topology on free groups. The profinite topology on a group is the topology

whose basic open subsets are cosets of subgroups of finite index. Ribes and Zalesskii

generalised a classical result due to M. Hall [32, Theorem 3.4] to the following.

Theorem 1.5.12 (Ribes-Zalesskii [65]). Let Fn be the free group on n generators.

Suppose that H1, H2, . . . , Hk are finitely generated subgroups of Fn. Then their product

H1H2 . . . Hk = {h1h2 . . . hk : hi ∈ Hi} is closed under the profinite topology.

Herwig and Lascar showed in [36, Section 2.1] that the Ribes-Zalesskii theorem implies

that the class of finite graphs has EPPA [41]. In the converse direction, they showed

in [36, Section 3.1] that EPPA for the class of n-partitioned cycle-free graphs implies the

Ribes-Zalesskii theorem. Furthermore, using Theorem 1.5.7 above they proved a property

[36, Theorem 3.3] of the profinite topology generalising the Ribes-Zalesskii theorem.

Such property was of interest to Almeida and Delgado—see [1].

On another route, Hodkinson and Otto [40] provided, via EPPA, a new simple proof of

the ‘finite model property’ for the ‘clique guarded fragment’ of first order logic.

EPPA has more implications for the automorphism group of a homogeneous structure.

If the age of a homogeneous structure has coherent EPPA, then its automorphism group

contains a dense locally finite subgroup—see Chapter 3. Bhattacharjee and Macpherson

[4] used coherent EPPA for the class of finite graphs to show that the automorphism

group of the random graph contains a dense locally finite subgroup. Vershik [79] asks

whether the automorphism group of the rational Urysohn metric space has a dense locally

finite subgroup. Solecki in an unpublished note answered Vershik’s question positively.
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Conversely, if M is a locally finite homogeneous structure, and Aut(M) contains a

dense locally finite subgroup, then Age(M) has EPPA—see Proposition 3.3.5 and [47,

Proposition 6.4]. Before finishing, we give a situation where EPPA fails to hold.

Definition 1.5.13. [38, p. 285] A complete theory T has the strict order property (SOP)

if there is a formula ϕ(x̄, ȳ), where both x̄, ȳ are tuples of length n of free variables, such

that for any model M |= T , the formula ϕ defines a partial order on Mn which contains

arbitrarily long finite chains.

For example Th(Q, <) has SOP witnessed by the formula x < y.

Proposition 1.5.14. Suppose that M is a homogeneous ω-categorical structure such that

Th(M) has SOP. Then Age(M) does not have EPPA.

Proof. By SOP there is a definable (irreflexive) partial order < on Mn with arbitrarily

long finite chains. By ω-categoricity there are finitely many n-types of Th(M), say k

many. We can find a chain ā1 < ā2 < . . . < āk < āk+1 in Mn. By the pigeonhole

principle, there are i, j such that 1 ≤ i < j ≤ k + 1 and tp(āi) = tp(āj), and so the

map p : āi → āj is a partial automorphism. For the sake of contradiction, suppose that

Age(M) has EPPA, and consider A = (āi ∪ āj) which belongs to Age(M). By EPPA

there is finite B ∈ Age(M) containing A such that p extends to some f ∈ Aut(B). By

homogeneity, we may assume thatA ⊆ B ⊆M . But now we have infinitely many distinct

elements āi < āj < f(āj) < f 2(āj) < . . . all in B, contradicting its finiteness. �
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1.6 Main Results

In Chapter 3 we focus on free amalgamation classes. We use the work of Hodkinson

and Otto on Gaifman clique faithful EPPA (Definition 3.1.3), and Solecki’s strengthening

(Theorem 1.5.11) of a theorem by Herwig and Lascar, to show the following result for

free homogeneous structures.

Theorem. Suppose that C is a free amalgamation class over a finite relational language.

Let M be the Fraı̈ssé limit of C. Then C has Gaifman clique faithful coherent EPPA.

Consequently, Aut(M) contains a dense locally finite subgroup, and has ample generics

and the small index property.

The proof of the theorem above in fact shows that if M is a homogeneous structure such

that Age(M) has coherent EPPA, then Aut(M) contains a dense locally finite subgroup.

In Chapter 4 we work with the class of finite bowtie-free graphs. It is not an amalgamation

class, however, it contains a cofinal subclass which has the free amalgamation property.

Accordingly, we use a variant of the Fraı̈ssé construction to construct a countably infinite

universal bowtie-free graph isomorphic to the one studied by Cherlin-Shelah-Shi [15].

Using an argument of Ivanov, we show that working in this cofinal subclass we can

extend a single partial automorphism to a total automorphism. We prove that this universal

bowtie-free graph is not finitely homogenisable. Furthermore, we show the following.

Theorem. The universal bowtie-free graph admits generic automorphisms.

Results of Philip Hall show that the class of finite groups has EPPA. In Chapter 5 we

strengthen this by showing that the class of finite groups has coherent EPPA. Hall also

showed that there is a countably infinite homogeneous locally finite group embedding

every finite group. We proceed in the chapter by showing that the class of finite groups

has the amalgamation property with automorphisms (Definition 2.1.1), where the main

tool used is the amalgamated free product of groups. This yields the following.
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Theorem. Philip Hall’s universal locally finite group admits ample generics.

In Chapter 6 we use the weak amalgamation property (Definition 2.2.4) as a tool to

study classes of finite structures equipped with partial automorphisms. In particular,

we consider linear orders, ordered graphs, and tournaments. We give another proof

of Hodkinson’s result that the countable dense linear ordering does not have 2-generic

automorphisms. Furthermore we show the following.

Theorem. The universal homogeneous ordered graph does not have locally generic

automorphisms.

Theorem. The universal homogeneous tournament has ample generics if and only if the

class of finite tournaments has EPPA.
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Chapter 2

Ample Generics

This chapter examines when ample generics exist in the context of homogeneous

structures. In the first section, we present a technique to establish the existence of ample

generics for homogeneous structures due to Hodges-Hodkinson-Lascar-Shelah [39]. In

the second section, we give the Kechris-Rosendal characterisation [47] of the existence

of ample generics. Finally, in the third section we discuss several group-theoretic

consequences of ample generics. Recall that a Polish group G has ample generics if

for each n > 0, the diagonal conjugation action of G has a comeagre orbit on Gn. A

countably infinite structure M has ample generics if Aut(M) has ample generics—see

Definition 1.4.9.

2.1 Existence of Ample Generics

Hodges, Hodkinson, Lascar, and Sheleh showed in [39] that the automorphism group

of the random graph and the automorphism group of any ω-stable ω-categorical structure

have the small index property (Definition 2.3.1). They provide a criterion for the existence

of ample generics, and use ample generics to establish the small index property. We

present here the details of their technique in the context of homogeneous structures. The

approach is based on EPPA and the following strengthening of the amalgamation property.
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Definition 2.1.1. We say that a class C of finite structures has the amalgamation property

with automorphisms (APA) if whenever A,B1, B2 ∈ C with embeddings α1 : A → B1

and α2 : A → B2, then there is a structure C ∈ C with embeddings β1 : B1 → C and

β2 : B2 → C such that β1α1 = β2α2 and whenever f ∈ Aut(B1) and g ∈ Aut(B2)

such that fα1(A) = α1(A), gα2(A) = α2(A), and for every a ∈ A we have that

α−1
1 fα1(a) = α−1

2 gα2(a), then there exists h ∈ Aut(C) which extends β1fβ
−1
1 ∪β2gβ

−1
2 .

The definition above stems from [39, Definition 2.8]. The amalgamation property with

automorphisms says that the structureC above is not only amalgamating structuresB1 and

B2 overA, but also has the advantage that any automorphism ofB1 and any automorphism

of B2 which agree on A extend simultaneously to an automorphism of C. The aim is to

show that if the age of a homogeneous structureM has EPPA and APA, thenM has ample

generics. Towards that end, we need a technical definition which determines the desired

diagonal conjugacy class as in the definition of ample generics. We will show that the set

Γ in the definition below is what we are looking for.

Definition 2.1.2. Let M be a homogeneous structure. Put G = Aut(M) and fix some

nonzero n ∈ ω.

• A tuple (g1, . . . , gn) ∈ Gn satisfies condition (I) if for all a ∈ M , the orbit of a

under the group 〈g1, . . . , gn〉 is finite.

• A tuple (g1, . . . , gn) ∈ Gn satisfies condition (II) if whenever A ⊆ B ⊆ M are

both finite, and f1, . . . , fn ∈ Aut(B) are such that fi(A) = A and fi�A = gi�A

for all i, then there is B̃ ⊆ M with A ⊆ B̃, and gi(B̃) = B̃, and an isomorphism

α : B̃ → B such that α(a) = a for each a ∈ A, and α gi�B̃ α
−1 = fi on B for all i.

• Define ΓI =
{
ḡ ∈ Gn : ḡ satisfies condition (I)

}
.

• Define ΓII =
{
ḡ ∈ Gn : ḡ satisfies condition (II)

}
.

• Define Γ =
{
ḡ ∈ Gn : ḡ satisfies conditions (I) and (II)

}
.

See [39, Definition 2.2] for conditions (I) and (II).

The proof of the following lemma originates from the proof of [35, Proposition 7].

30



Chapter 2. Ample Generics

Lemma 2.1.3. Suppose thatM is a homogeneous structure such that Age(M) has EPPA.

Let G = Aut(M). Then the subset ΓI ⊆ Gn is comeagre for all nonzero n ∈ ω.

Proof. We assume M is a relational structure. Fix a nonzero n ∈ ω. For a ∈M , define

Γa =
{

(g1, . . . , gn) ∈ Gn : a〈g1,...,gn〉 is finite
}
.

We will show that Γa is both open and dense. First, we show that it is open, so let

(g1, . . . , gn) ∈ Γa, and put H = 〈g1, . . . , gn〉. Consider the finite subset A = aH ⊆ M ,

and observe that (g1, . . . , gn) ∈ g1GA × . . .× gnGA ⊆ Γa. Therefore, Γa is open.

Now to show that Γa is dense, take any basic open set, say ∆ = h1GA1 × . . . × hnGAn ,

where hi ∈ G and Ai ⊆ M finite for all 1 ≤ i ≤ n. Let

p1 := h1�A1
, . . . , pn := hn�An

be finite partial automorphisms on M . Define the finite

substructure A = {a} ∪
(⋃n

i=1 Ai
)
∪
(⋃n

i=1 pi(Ai)
)
. Using EPPA, we obtain a finite

structure B such that A ⊆ B and every pi extends to an automorphism p̂i of B. By

homogeneity of M , we can find an isomorphic copy B̃ of B in M such that A ⊆ B̃, and

every p̂i extends to an automorphism gi ∈ G. As a ∈ B̃, we have that a〈g1,...,gn〉 is finite

and so (g1, . . . , gn) ∈ Γa ∩∆. Therefore, ΓI =
⋂
a∈M

Γa is a comeagre set. �

Lemma 2.1.4. Suppose that M is a homogeneous structure such that Age(M) has EPPA

and APA. LetG = Aut(M). Then the subset ΓII ⊆ Gn is comeagre for all nonzero n ∈ ω.

Proof. We assume M is a relational structure. Let n ∈ ω be nonzero. Fix finite

A ⊆ B ⊆ M , and f̄ = (f1, . . . , fn) where fi ∈ Aut(B) with fi(A) = A. Define

the subset ΓBA(f̄) ⊆ Gn as follows:

A tuple (g1, . . . , gn) ∈ ΓBA(f̄) if and only if whenever gi�A = fi�A for all i, then there

exists B̃ ⊆M with A ⊆ B̃ and an isomorphism α : B̃ → B fixing A pointwise such that

αgiα
−1 = fi for all i.

We will show that ΓBA(f̄) is both dense and open. Take an element (g1, . . . , gn) ∈ ΓBA(f̄).

If gi�A = fi�A then there is B̃ as above, otherwise take B̃ = B, and observe that

(g1, . . . , gn) ∈ g1GB̃ × . . .× gnGB̃ ⊆ ΓBA(f̄). So ΓBA(f̄) is an open set.
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For density, let ∆ be any basic nonempty open set. By applying EPPA in a similar fashion

as in the previous lemma, we may assume that ∆ = h1GC × . . . × hnGC where hi ∈ G

and C ⊆M is some finite substructure containing A such that pi := hi�C ∈ Aut(C).

Suppose that there is some i such that 1 ≤ i ≤ n and fi does not agree with pi on A.

Then any extensions (g1, . . . , gn) ∈ Gn of (p1, . . . , pn) will be in ∆ ∩ ΓBA(f̄). Otherwise,

fi�A = pi�A. Now, by APA there is an amalgam D of B and C over A such that for

all i there is δi ∈ Aut(D) with fi ∪ pi ⊆ δi. By homogeneity we may assume that

C ⊆ D ⊆M , and here D contains a copy of B.

For each 1 ≤ i ≤ n, let gi ∈ Aut(M) be an extension of δi. Then (g1, . . . , gn) ∈ Gn

belongs to ∆ ∩ ΓBA(f̄). Thus, ΓBA(f̄) meets every nonempty open set. Thus

ΓII =
⋂{

ΓBA(f̄) : A ⊆ B ⊆M finite, fi ∈ Aut(B), fi(A) = A
}

is comeagre. �

Theorem 2.1.5. Suppose that M is a homogeneous structure such that Age(M) has both

EPPA and APA. Then M has ample generics.

Proof. Let G = Aut(M). We will show that for every nonzero n ∈ ω, the subset Γ ⊆ Gn

is comeagre and contained in a single diagonal conjugacy class. By the previous two

lemmas we have that Γ = ΓI ∩ΓII ⊆ Gn is comeagre for all nonzero n ∈ ω. It remains to

show that Γ ⊆ Gn is contained in a single orbit of the action ofG by diagonal conjugation

on Gn. Fix a nonzero n ∈ ω, and take any two tuples (f1, . . . , fn) and (g1, . . . , gn) in

Γ ⊆ Gn. That is, both tuples satisfy conditions (I) and (II). We will show they are

conjugate by a back-and-forth argument. We will build a chain α0 ⊆ α1 ⊆ α2 ⊆ . . . of

finite partial isomorphisms ofM , where αk : B̃k → Bk, such that αk◦gi�B̃k
◦α−1

k = fi�Bk

for all 1 ≤ i ≤ n and M =
⋃
k∈ω

B̃k =
⋃
k∈ω

Bk.

Fix an enumeration {a0, a1, a2, . . .} of the domain of M . Start with B0 = a
〈f1,...,fn〉
0 which

is finite by condition (I). Applying condition (II) for (g1, . . . , gn) with A = ∅ and B0, we

obtain B̃0 ⊆ M with an isomorphism α0 : B̃0 → B0 such that α0 ◦ gi�B̃0
◦ α−1

0 = fi�B0

for all i.
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Next, let m ∈ ω be the least such that am /∈ B0, and let B1 = B0 ∪ a〈f1,...,fn〉m . By

condition (I), B1 is finite. By homogeneity, α0 extends to some α̂0 ∈ Aut(M), and

so there is a copy C1 = α̂−1
0 (B1) of B1 such that B̃0 ⊆ C1. Applying condition (II)

for (g1, . . . , gn), B̃0 ⊆ C1, and f ′i := (α̂−1
0 ◦ fi ◦ α̂0)�C1

∈ Aut(C1), we obtain a

substructure B̃1 ⊆ M with B̃0 ⊆ B̃1 and an isomorphism β : B̃1 → C1 such that

β(b) = b for any b ∈ B̃0 and β ◦ gi�B̃1
◦ β−1 = f ′i for all i. Now, define α1 : B̃1 → B1

to be α1 = α̂0 ◦ β. It remains to check that α1 works as desired: we have that

α1 ◦ gi�B̃1
◦ α−1

1 = (α̂0 ◦ β) ◦ gi�B̃1
◦ (β−1 ◦ α̂−1

0 ) = α̂0 ◦ f ′i ◦ α̂−1
0 = fi�B1

for all i,

and α0 ⊆ α1 as well.

Next, letm ∈ ω be the least such that am /∈ B̃1, and let B̃2 = B̃1∪a〈g1,...,gn〉m . By condition

(I), we have that B̃2 is finite. Using condition (II) for (f1, . . . , fn) in a similar fashion

as in the previous step we obtain a finite structure B2 containing B1 and an isomorphism

α2 : B̃2 → B2, such that α1 ⊆ α2, and α2 ◦ gi�B̃2
◦ α−1

2 = fi�B2
for all i.

Continuing in this pattern, by adding new points to Bk when k is odd, and to B̃k

when k is even, we will build an automorphism α ∈ Aut(M) where α =
⋃
i∈ω

αi

such that (αg1α
−1, . . . , αgnα

−1) = (f1, . . . , fn). Therefore, the tuples (f1, . . . , fn) and

(g1, . . . , gn) are conjugate. Therefore, Gn contains a comeagre diagonal conjugacy class,

establishing that the structure M has ample generics. �

2.2 Characterisation of Ample Generics

Kechris and Rosendal characterised the existence of ample generics for homogeneous

structures in terms of JEP and the ‘weak amalgamation property’ for classes of finite

structures equipped with partial automorphisms. Here we present these properties and

some of the main results in [47]. We also explain their connection with EPPA and APA.

Definition 2.2.1. Suppose that L is a countable first order language, and C is an

amalgamation class of finite L-structures. Let n ∈ ω. An n-system over C is a tuple

33



Chapter 2. Ample Generics

〈A, p1, . . . , pn〉 where A ∈ C and each pi is a partial automorphism of A. Denote by Cn

the class of all n-systems over C.

There is a natural notion of embedding between elements of Cn.

Definition 2.2.2. Suppose that S = 〈A, p1, . . . , pn〉 and T = 〈B, f1, . . . , fn〉 are

n-systems over C. An embedding from S to T is an L-embedding φ : A → B such that

for all 1 ≤ i ≤ n we have that φ(dom(pi)) ⊆ dom(fi), and φ(range(pi)) ⊆ range(fi),

and φ ◦ pi ⊆ fi ◦ φ.

We say that Cn has the joint embedding property if whenever S1, S2 ∈ Cn there is T ∈ Cn

which embeds both S1 and S2. Similarly, we may define the amalgamation property

for Cn. The joint embedding property characterises when the automorphism group of a

homogeneous structure admits a dense diagonal conjugacy class.

Theorem 2.2.3. [47, Theorem 2.11] Let C be an amalgamation class andM be its Fraı̈ssé

limit. Put G = Aut(M). Then the following are equivalent:

(i) Gn admits a dense diagonal conjugacy class.

(ii) Cn has the joint embedding property.

Suppose that C is an amalgamation class and M is its Fraı̈ssé limit. Truss [78, Theorem

2.1] showed that if C1 has the joint embedding property and contains a cofinal subclass

which has the amalgamation property, then M has generic automorphisms. In the

converse direction, he showed [78, Theorem 2.2] that if M has generic automorphisms,

then C1 has the joint embedding property. He then asked whether the existence of

generic automorphisms is equivalent to some condition in terms of the joint embedding

property and the amalgamation property of C1. Kechris and Rosendal answered the

question by discovering a weaker version of the amalgamation property, using which

they characterised when comeagre diagonal conjugacy classes exist. We also mention

that Ivanov also proved a theorem [43, Theorem 1.2] in the direction of answering

Truss’ question in the context of ω-categorical structures where he used the term ‘almost

amalgamation property’ for the weak amalgamation property.
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Definition 2.2.4. We say that the class of n-systems Cn has the weak amalgamation

property if for every system S ∈ Cn there is some Ŝ ∈ Cn and embedding ι : S → Ŝ

such that whenever T1, T2 ∈ Cn with embeddings α1 : Ŝ → T1 and α2 : Ŝ → T2, there is

R ∈ Cn with embeddings β1 : T1 → R and β2 : T2 → R such that β1α1ι = β2α2ι.

T1

β1

��
S

α1ι
//

α2ι //

ι // Ŝ

α1

??

α2 ��

R

T2

β2

??

The weak amalgamation property as demonstrated above states that R amalgamates T1

and T2 over S, rather than Ŝ. Clearly, the amalgamation property implies the weak

amalgamation property. Because once we have the amalgamation property, then in the

definition above, for any S ∈ Cn we can take Ŝ = S and take R to be the amalgam of T1

and T2 over S.

Theorem 2.2.5. [47, Theorem 6.2] Let C be an amalgamation class of finite structures

and M be its Fraı̈ssé limit. Then the following are equivalent:

(i) M admits n-generic automorphisms.

(ii) Cn has the joint embedding property and the weak amalgamation property.

There is a distinguished subclass of the class of n-systems over C. An n-system

〈A, f1, . . . , fn〉 is called complete if each fi ∈ Aut(A). Let C̄n denotes the class of

all complete n-systems.

Lemma 2.2.6. Suppose that C is an amalgamation class. Then,

(i) The class C has APA if and only if the class C̄n of complete n-systems has the

amalgamation property for all n ∈ ω.

(ii) If C has EPPA and APA, then Cn has the weak amalgamation property for all n ∈ ω.
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Proof. (i) The forward direction is clear. For the reverse direction, assume that the class

C̄n of complete n-systems has the amalgamation property for all n ∈ ω. For simplicity we

will assume that the embeddings are the inclusion maps, so suppose that A,B1, B2 ∈ C

with A ⊆ B1 and A ⊆ B2. List all triples
(
pi, fi, gi

)k
i=1

such that pi ∈ Aut(A),

fi ∈ Aut(B1), gi ∈ Aut(B2), and fi�A = pi = gi�A. Now, S = 〈A, p1, . . . , pk〉,

T1 = 〈B1, f1, . . . , fk〉, and T2 = 〈B2, g1, . . . , gk〉 are complete k-systems such that S

embeds in both T1 and T2. By assumption, the class C̄k has the amalgamation property.

Thus, there is a complete k-system 〈C, h1, . . . , hk〉 such that B1 ⊆ C, B2 ⊆ C,

A ⊆ B1 ∩ B2 ⊆ C, and fi ∪ gi ⊆ hi for all 1 ≤ i ≤ k. As each hi ∈ Aut(C), this

shows that the class C has APA.

(ii) Fix n ∈ ω. By EPPA, the subclass C̄n of complete n-systems is cofinal (with respect

to embeddings of n-systems) in the class Cn. Let S ∈ Cn. By cofinality of C̄n, there is a

complete n-system and embedding ι : S → Ŝ. Suppose that T1, T2 ∈ Cn with embeddings

α1 : Ŝ → T1 and α2 : Ŝ → T2. By cofinality again, there are complete n-systems T̂1 and

T̂2 with embeddings ι1 : T1 → T̂1 and ι2 : T2 → T̂2. By the above and APA, we have that

C̄n has the amalgamation property. Thus, there is R ∈ Cn with embeddings β1 : T̂1 → R

and β2 : T̂2 → R such that β1(ι1α1) = β2(ι2α2). Therefore, the class Cn has the weak

amalgamation property. �

Kechris-Rosendal defined an automorphism g ∈ Aut(M) to be locally generic if its

conjugacy class is non-meagre. We note below that this condition is equivalent to the

one defined by Truss (Definition 1.4.7).

Fact 2.2.7. Let H be a Polish group, and let g ∈ H . Then the following are equivalent:

(i) The conjugacy class gH is non-meagre in H .

(ii) There is a nonempty open subset U ⊆ H such that gH ∩ U is comeagre in U .

Proof. Suppose that gH is non-meagre in H . Recall that a subset of a topological space is

Gδ if it is a countable intersection of open sets. We invoke a result of Effros-Marker-Sami

(see [2]) which states that any non-meagre orbit of a Polish group acting continuously on
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a Polish space is in fact Gδ. Thus gH is a Gδ set, say gH =
⋂
n∈ω

Vn where each Vn is open.

As gH is non-meagre, it is not nowhere dense, and so it is dense in some nonempty open

U ⊆ H . Therefore, gH ∩ U =
⋂
n∈ω

(Vn ∩ U) being dense Gδ in U is comeagre in U .

Conversely, if gH is meagre in H . Then gH =
⋃
n∈ω

An where each An is nowhere dense.

Let U ⊆ H be a nonempty open subset, then An ∩ U is nowhere dense in U for each

n ∈ ω, and so gH ∩ U =
⋃
n∈ω

(An ∩ U) is meagre in U . �

Towards a characterisation of the existence of locally generic automorphisms we have the

following notion.

Definition 2.2.8 ([47]). Let C be an amalgamation class. We say that C1 satisfies the

local weak amalgamation property if there is a 1-system S ∈ C1 such that the weak

amalgamation property holds for the subclass of all T ∈ C1 into which S embeds.

Theorem 2.2.9. [47, Theorem 3.7] Let C be an amalgamation class and M be its Fraı̈ssé

limit. Put G = Aut(M). Then the following are equivalent:

(i) M has a locally generic automorphism.

(ii) C1 satisfies the local weak amalgamation property.

Hodges-Hodkinson-Lascar-Shelah [39] is a core motivating paper for the thesis. To state

one of their results we need the following definition.

Definition 2.2.10. Let T be a complete theory in a countable language. We say that T is

ω-stable if for all M |= T , and A ⊆M with |A| = ℵ0, we have that |SMn (A)| = ℵ0.

Example 2.2.11 (Corollary of [39]). Suppose that M is a countably infinite ω-stable

ω-categorical structure. Then Aut(M) has an open subgroup with ample generics.

Example 2.2.12. The following structures have ample generics.

• The random graph [39], [41].

• The homogeneous Kn-free graph [35].

• The rational Urysohn metric space [70].
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• Free homogeneous structures over finite relational languages [Chapter 3].

• Philip Hall’s locally finite universal group [Chapter 5].

2.3 Consequences of the Existence of Ample Generics

The main references are Macpherson [55, Sections 5.2, 5.5] and Kechris-Rosendal [47].

We motivate the study of ample generics by presenting a number of group-theoretic

consequences of their existence. Ample generics are considered a powerful tool to

establish the small index property, uncountable cofinality, the Bergman property, Serre’s

property (FA), and automatic continuity. We begin our discussion with the first one.

Suppose that G is a Polish group, and H ≤ G is an open subgroup. Then H has

a countable index. For if the index of H were uncountable, then G is the union of

uncountably many pairwise disjoint nonempty open sets. So any dense subset of G is

uncountable, but this contradicts that G is separable. The converse statement deserves to

be a definition in its own right.

Definition 2.3.1. A Polish group has the small index property (SIP) if every subgroup of

small index (< 2ℵ0) is open. A countably infinite structure has SIP if its automorphism

group has SIP.

Thus if M is a countably infinite structure with the small index property, then

H ≤ G = Aut(M) is open if and only if H has small index. As open sets of G are

unions of cosets of basic open subgroups, we have in this situation that the group-theoretic

structure of G determines the topology on G.

Example 2.3.2. Countably infinite structures with the small index property.

• The trivial structure (N,=) [68], [20].

• The countable dense linear ordering (Q, <) [77].

• Any countable 2-homogeneous tree [22].
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• Any ω-categorical abelian group [27].

• Any countable ω-stable ω-categorical structure [39].

• The random graph [39].

The small index property was one of the first motives behind developing the technique of

ample generics as is apparent from the title of [39]. By the work of Hodges, Hodkinson,

Lascar, and Shelah in [39, Theorem 5.3], and Kechris and Rosendal in [47] we have the

following result.

Theorem 2.3.3. [47, Theorem 6.9] Suppose thatG is a Polish group with ample generics.

Then G has the small index property.

The converse of the above theorem is not always true as shown by the following example.

Example 2.3.4. We have seen earlier that (Q, <) does not have 2-generic automorphisms,

and so does not have ample generics. Nevertheless, Aut(Q, <) has the small index

property as shown by Truss [77].

Example 2.3.5. [55, p. 1613, 1616] We give an example by Cherlin and Hrushovski

of an ω-categorical structure without the small index property, and hence without ample

generics. Consider the infinite first order language L = {En : n ∈ ω}, where En is a

2n-ary relation symbol. Let C be the class of all finite L-structures in which each En is

interpreted as an equivalence relation on n-tuples of distinct elements, and having at most

two equivalence classes. One can check that C is an amalgamation class. Let M be its

Fraı̈ssé limit. The L-structure M is ω-categorical, for M is homogeneous and for every

n ∈ ω there are only finitely many isomorphism types of substructures ofM of size n. Let

G = Aut(M), and F ≤ G be the subgroup of all automorphisms of M which fix setwise

each equivalence class of En for each n ∈ ω. It can be shown that F is closed and normal

inG and the quotient groupG/F is isomorphic to the group 2ω (the unrestricted Cartesian

product of ω many copies of the cyclic group of order 2). Moreover, the quotient G/F ,

and hence G, has 22ℵ0 subgroups of index 2. However, by Theorem 1.3.3(ii)-(iii), there

are at most ℵ0 many open subgroups of G. Thus, G has non-open subgroups of index 2.
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The construction in the example above was used by Evans and Hewitt [26, Lemma 3.1]

to show that any separable profinite group is a homomorphic image of the automorphism

group of some ω-categorical structure. Another group-theoretic condition related to ample

generics is the cofinality of a group.

Definition 2.3.6. Let G be a group which is not finitely generated. The cofinality of G

is the smallest cardinal κ such that G can be written as a union of a chain of length κ of

proper subgroups.

Kechris and Rosendal generalised results of [39] and showed that a Polish group

with ample generics cannot be written as a union of a countable chain of non-open

subgroups—see [47, Theorem 6.12]. Combined with Cameron’s result [39, Lemma 2.4]

that any open subgroup of the automorphism group of an ω-categorical structure is only

contained in finitely many subgroups, we obtain the following.

Theorem 2.3.7 ([47]). Suppose that M is a countably infinite ω-categorical structure

with ample generics. Then Aut(M) has uncountable cofinality.

Bergman [3] showed that Sym(N) has the Bergman property (see below). Kechris and

Rosendal found that the existence of ample generics has ties to the Bergman property,

and they extended Bergman’s result to a stronger property and to a larger class of

automorphism groups of first order structures.

Definition 2.3.8. Let G be a group which is not finitely generated.

(i) We say that G has the Bergman property if whenever G = 〈U〉 for U ⊆ G and

1 ∈ U = U−1, then there is k ∈ ω such that G = Uk := {u1 . . . uk : ui ∈ U}.

(ii) Let k ∈ ω. We say that G has the k-Bergman property if for any countable chain

(Un)n∈ω of subsets of G such that G =
⋃
n∈ω

Un, there is n ∈ ω such that G = Uk
n .

Theorem 2.3.9. [47, Theorem 6.19] Suppose that M is a countably infinite ω-categorical

structure with ample generics. Then Aut(M) has the 21-Bergman property.
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For more on the cofinality, ‘strong cofinality’, and the Bergman property for certain

permutation groups see Droste-Göbel [21, Proposition 2.2], Droste-Holland [23], and

Macpherson-Neumann [56].

We conclude this section with Serre’s property (FA). A tree is a connected graph with no

cycles. A group G acts without inversions on a tree T if G acts by automorphisms on T

and for all g ∈ G there is no edge uv of T such that g(u, v) = (v, u).

Definition 2.3.10 ([69]). A group G has property (FA) if whenever G acts on a tree T

without inversions, then there is a vertex v ∈ T such that for all g ∈ G we have that

g(v) = v, that is to say, G has a global fixed point.

A free product with amalgamation G = G1 ?A G2 (Definition 5.2.3) is trivial if G = G1

or G = G2. Serre [69] proved that an uncountable group G has property (FA) if and only

if all of the following conditions hold:

(i) G is not a non-trivial free product with amalgamation.

(ii) Z is not a homomorphic image of G.

(iii) G has uncountable cofinality.

Theorem 2.3.11 (Macpherson-Thomas [54]). Suppose that G is a Polish group with a

comeagre conjugacy class. Then G is not a non-trivial free product with amalgamation.

Moreover, if G is a Polish group with a comeagre conjugacy class, then by Theorem 1.4.4

we have that Z is not a homomorphic image of G. Thus, using Theorem 2.3.7 above we

fulfil the conditions characterising property (FA) and obtain the following.

Theorem 2.3.12. [47, Corollary 1.9] Suppose thatM is a countably infinite ω-categorical

structure with ample generics. Then Aut(M) has property (FA) .
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Chapter 3

Free Homogeneous Structures

The central object of study in this chapter is a free homogeneous first order structure

over a finite relational language. Recall that a relational structure is homogeneous if it

is countable and every partial isomorphism between any two of its finite substructures

extends to a total automorphism. Moreover, it is called free homogeneous if its age has

the free amalgamation property, which will be examined in Section 3.2. We collect the

main results of this chapter in the following statement.

Theorem. Any free amalgamation class over a finite relational language has

Gaifman clique faithful coherent EPPA. Consequently, the automorphism group of the

corresponding free homogeneous structure contains a dense locally finite subgroup, and

has ample generics and the small index property.

One example of a free homogeneous structure is the random graph; it is the unique

homogeneous countably infinite graph which embeds all finite graphs. Bhattacharjee and

Macpherson showed that the automorphism group of the random graph has a dense locally

finite subgroup, and they asked whether it is possible to generalise their [4, Lemma 1.2]

about extending partial automorphisms of finite graphs. Here, we generalise their result

to the case of free amalgamation classes—see Theorem 3.2.8.

The construction of the dense locally finite subgroup of Aut(M) in the main theorem
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above relies on the extension property for partial automorphisms (EPPA)—Definition

1.5.1; more accurately, on coherent EPPA (Definition 1.5.10), where in addition

to extending finite partial isomorphisms, coherent EPPA has the advantage that the

composition of the extensions of any two partial automorphisms is the extension of the

composition of the original partial automorphisms. The desired subgroup of Aut(M)

is dense with respect to the pointwise convergence topology. Recall that a subset

Γ ⊆ Aut(M) is dense if and only if for every g ∈ Aut(M) and every finite A ⊆ M

there is an h ∈ Γ such that g�A = h�A. For more information on Aut(M) as a topological

group see Section 1.3.

Let L be a finite relational language. In Section 3.1 we strengthen [40, Theorem 9] by

proving that the class of all finite L-structures has Gaifman clique faithful coherent EPPA.

In Section 3.2 we extend this result to free amalgamation classes over L. Finally, in

Section 3.3 we use coherent EPPA to construct a dense locally finite subgroup of the

automorphism group of a free homogeneous structure. We obtain ample generics and the

small index property for free homogeneous structures as well.

3.1 Extending Partial Automorphisms

An adaptation by Solecki to the proof of Herwig-Lascar [36, Corollary 4.13] leads to the

following result.

Theorem 3.1.1. [71, Theorem 3.1] Let L be a finite relational language. The class of all

finite L-structures has coherent EPPA.

Hodkinson and Otto [40] proved a Gaifman clique constrained strengthening of EPPA

building on the work of Herwig and Lascar. In this section we show that the strengthened

EPPA they proved can be made coherent when more conditions are demanded in their

construction.

Definition 3.1.2 ([40]). Let L be a relational language, and A be an L-structure.
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• The Gaifman graph of A, denoted by Gaif(A), is the graph whose vertex set is

the domain of A, and whose edge relation is defined as: two vertices u, v ∈ A are

adjacent if and only if there is an n-ary relation R ∈ L and (a1, a2, . . . , an) ∈ A

such that u, v ∈ {a1, a2, . . . , an} and A |= R(a1, a2, . . . , an).

• A substructure Q ⊆ A is a Gaifman clique if it is a clique in Gaif(A).

Suppose that C is an EPPA-extension of some L-structure A. Consider the substructure

B ⊆ C whose underlying set is B =
⋃
{g(A) : g ∈ Aut(C)}. Then, B is also an

EPPA-extension of A, and additionally has the property that every point b ∈ B can be

sent to A by some g ∈ Aut(B). We call such extension a point faithful EPPA-extension.

Can we do more in terms of faithfulness?

Definition 3.1.3. [40, Definition 8] A class C of finiteL-structures is said to have Gaifman

clique faithful EPPA if for every A ∈ C, there exists an EPPA-extension B ∈ C of A such

that for every Gaifman clique Q ⊆ B there is g ∈ Aut(B) such that g(Q) ⊆ A.

Theorem 3.1.4 (Hodkinson-Otto [40]). Let L be a finite relational language. The class

of all finite L-structures has Gaifman clique faithful EPPA.

Our aim in this section is to show that the extension procedure for partial automorphisms

given in the proof of the theorem above can be made coherent. We follow the terminology

and ideas presented in [40]. The proof of Theorem 3.1.4 goes as follows: start with

any finite L-structure A, obtain an EPPA-extension B of A, say by Theorem 1.5.6. The

obstacle at this point for Gaifman clique faithfulness would be if some cliques inB cannot

be sent to A by an automorphism of B. In Hodkinson’s terminology, call such cliques

“false cliques”. Then using B construct a structure C extending A which preserves EPPA

and in which all false cliques are destroyed.

We now present the details and adapt the construction to fulfil our aim, namely to show

that the class of all finite L-structures has Gaifman clique faithful coherent EPPA.

Fix a finite L-structure A.
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LetB ⊇ A be a coherent EPPA-extension guaranteed by Theorem 3.1.1. IfA = B we are

done, so suppose that A 6= B. A subset u ⊆ B is called large if there is no g ∈ Aut(B)

such that g(u) ⊆ A. Otherwise, the subset u is called small. Define,

U := {u ⊆ B | u is large}.

Notice that false cliques and the domain of B are large sets, and the image of a large set

under an automorphism of B is also large. Given a finite set X , by [X] we denote the set

{0, 1, 2, . . . , |X| − 1} ⊆ N.

Definition 3.1.5 ([40]). Let b ∈ B. A map χb : U → [B] is called a b-valuation if for

all u ∈ U it satisfies: (i) χb(u) = 0 if and only if b /∈ u, and (ii) 1 ≤ χb(u) < |u| if

otherwise.

The domain of the extension C of A given by Theorem 3.1.4 is,

C :=
{

(b, χb) | b ∈ B, χb is a b-valuation
}
.

Note. When we write (b, χb) ∈ C, we mean that b ∈ B and χb is some b-valuation. For

the same b ∈ B, there will in general be many different b-valuations denoted by χb.

Definition 3.1.6 ([40]). A subset S ⊆ C is called generic if for any two distinct points

(a, χa), (b, χb) ∈ S:

• a 6= b, and

• for all u ∈ U , if both a, b ∈ u, then χa(u) 6= χb(u).

Note that if S ⊆ C is generic, then any subset of S is generic. Define the projection map:

π : C → B where π(b, χb) = b.

Fact 3.1.7 ([40]). If S ⊆ C is generic, then π(S) is a small subset of B.

Proof. Let S ⊆ C be a generic subset, and suppose that u := π(S) ⊆ B is large. As

S is generic, π�S : S → u is a bijection. We now define a map θ : u → [u] \ {0} by
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setting θ(b) = χb(u) where b ∈ u and π−1(b) = (b, χb) ∈ S. Again, as S is generic, θ is

injective, but this contradicts that |u| = |[u]|. �

We now make C into an L-structure in a way that all the π-fibres in C of large subsets of

B are forbidden from being cliques in C. This is where all false cliques are killed.

For every n-ary relation symbol R ∈ L and n-tuple
(
(b1, χ1), (b2, χ2), . . . , (bn, χn)

)
∈ C,

define C |= R
(
(b1, χ1), (b2, χ2), . . . , (bn, χn)

)
if and only if

(i) the set {(b1, χ1), (b2, χ2), . . . , (bn, χn)} is a generic subset of C, and

(ii) B |= R(b1, b2, . . . , bn).

Note. From this point onward in this section, the structures A,B, and C above are fixed.

We include the proof of the following proposition for the convenience of the reader.

Proposition 3.1.8 ([40]). The original structure A embeds in C.

Proof. We will define an embedding ν : A → C as follows. Any large subset u ∈ U

is not a subset of A. Otherwise the identity automorphism of B violates that u is a large

subset. Thus, |u ∩ A| < |u|. For each u ∈ U fix an enumeration of

u ∩ A = {au1 , au2 , . . . , aun}

where n < |u|. Now for each a ∈ A we define an a-valuation χa : U → N.

χa(u) =

 0, if a /∈ u,

i such that a = aui , if a ∈ u.

Now for each a ∈ A we define ν(a) = (a, χa). The set ν(A) is a generic subset of C, and

it follows that ν : A→ C is an L-embedding. �

Below we will just use A for both structures A ⊆ B and ν(A) ⊆ C, as it is clear from the

context which one we mean. Also keep in mind that A is a generic subset of C.
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Definition 3.1.9. Let p ∈ Part(C) be a partial automorphism of C, and let g ∈ Aut(B).

We say that p is g-compatible if π ◦ p = g ◦ π, that is, for all (b, χb) ∈ dom(p) we have

that p(b, χb) =
(
g(b), χg(b)

)
, where χg(b) is some g(b)-valuation.

We use the freedom of choice given in [40] in constructing the extension p̂ of the

lemma below to make additional constraints, namely the ordering, in their construction

which will be needed later on to make the extension procedure of partial automorphisms

coherent.

Lemma 3.1.10. Suppose that g ∈ Aut(B), and let p ∈ Part(C) be a g-compatible partial

automorphism with generic domain and range. Then p extends to some g-compatible

p̂ ∈ Aut(C).

Proof. As dom(p) is a generic set, for any b ∈ π(dom(p)) there is only one b-valuation

χb such that (b, χb) ∈ dom(p). So we can write (b, χb) for elements of dom(p)

without ambiguity. Similarly, as range(p) is generic and p is g-compatible, we write

p(b, χb) = (g(b), χg(b)), where χg(b) is some g(b)-valuation determined by the map p.

Fix a large set u ∈ U . We will define a permutation θpu of the set [u] = {0, 1, 2, . . . , |u|−1}

which fixes 0. First, for every element (b, χb) ∈ dom(p), where its image under p is

p(b, χb) = (g(b), χg(b)), define:

θpu
(
χb(u)

)
:= χg(b)

(
g(u)

)
.

After that, by using the well-ordering of the natural numbers extend θpu to a

total permutation of the set [u], fixing 0, by sending elements from the subset

[u] \
{
χb(u) : (b, χb) ∈ dom(p)

}
to the subset [u] \

{
χg(b)(g(u)) : (b, χb) ∈ dom(p)

}
in

an order-preserving manner.

For each u ∈ U , define the corresponding permutation θpu of the set [u]. Now we are ready

to define the extension p̂ on C. Let (c, χc) ∈ C be any point. Define,

p̂(c, χc) :=
(
g(c), χg(c)

)
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where χg(c) is a g(c)-valuation given by:

χg(c)
(
g(u)

)
:= θpu

(
χc(u)

)
for each u ∈ U .

By definition, p̂ is g-compatible. Now we check that p̂ extends p. So let

(b, χb) ∈ dom(p) and let its image be p(b, χb) = (g(b), χg(b)). Suppose that

p̂(b, χb) =
(
g(b), ψg(b)

)
where ψg(b) is a g(b)-valuation given by the definition above.

Then ψg(b)
(
g(u)

)
= θpu

(
χb(u)

)
= χg(b)

(
g(u)

)
for each u ∈ U . Thus ψg(b) = χg(b), and so

p̂�dom(p) = p.

We check that p̂ is bijective. Suppose that p̂(b, χb) = p̂(c, χc) for some

(b, χb), (c, χc) ∈ C. Then (g(b), χg(b)) = (g(c), χg(c)) as given above. So g(b) = g(c),

and by injectivity of g we get that b = c. We also have that χg(b) = χg(c). So

χb(u) = (θpu)
−1(χg(b)(g(u)) = (θpu)

−1(χg(c)(g(u)) = χc(u) for each u ∈ U . Thus p̂

is injective. Now for surjectivity, suppose that we are given (b, χb) ∈ C. Let c := g−1(b)

and define a c-valuation χc as follows χc(u) := (θpu)
−1(χb(g(u))) for each u ∈ U . Then

p̂(c, χc) = (b, χb).

Finally, p̂ preserves generic subsets ofC, that is, S ⊆ C is generic if and only if p̂(S) ⊆ C

is generic. To see this, let S ⊆ C be a generic set. We will show that p̂(S) is generic.

Choose two distinct points p̂(a, χa) = (g(a), χg(a)) and p̂(b, χb) = (g(b), χg(b)) in p̂(S),

where (a, χa), (b, χb) ∈ S. As p̂ is bijective, (a, χa), (b, χb) are distinct, and as S is

generic, a 6= b. As g is bijective, g(a) 6= g(b). For the second point in the definition of

genericity, suppose that u ∈ U and g(a), g(b) ∈ g(u). As S is generic, χa(u) 6= χb(u).

So χg(a)(g(u)) = θpu(χa(u)) 6= θpu(χb(u)) = χg(b)(g(u)).

The observation above together with that p̂ is g-compatible and the definition of the

structure on C above yields that p̂ ∈ Aut(C). �

Notation. We would like to fix some notation. Let g ∈ Aut(B), and p ∈ Part(C)

be g-compatible partial automorphism with generic domain and range. For u ∈ U ,

we denote by θpu the permutation of the set [u], fixing 0, as constructed in the proof

of Lemma 3.1.10 above. That is, for every point (b, χb) ∈ dom(p) and its image
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p(b, χb) = (g(b), χg(b)), define θpu
(
χb(u)

)
= χg(b)

(
g(u)

)
. And then extend it to the rest of

[u] in an order-preserving way.

Lemma 3.1.11 ([40]). Let p ∈ Part(A), then p extends to an automorphism p̂ ∈ Aut(C)

where p̂ is the automorphism defined in the proof of Lemma 3.1.10.

Proof. Let p ∈ Part(A) ⊆ Part(C). By Theorem 3.1.1, the partial automorphism p has

an extension g ∈ Aut(B), and clearly p is g-compatible. As A is a generic subset of C,

we have that both dom(p), range(p) ⊆ A are also generic subsets. Now, apply Lemma

3.1.10 on p to get a g-compatible extension p̂ ∈ Aut(C). �

It is in the proof of the next lemma where we really use that B is a coherent

EPPA-extension of A as given by Theorem 3.1.1.

Lemma 3.1.12. The map from Part(A) → Aut(C) as defined in Lemma 3.1.11 which

sends p 7→ p̂ is coherent.

Proof. We will show that the image of a coherent triple in Part(A) is a coherent triple in

Aut(C) under the map p 7→ p̂ defined in Lemma 3.1.11. Suppose that p2, p1, q ∈ Part(A),

and (p2, p1, q) is a coherent triple. That is, dom(p2) = dom(q), range(p2) = dom(p1),

range(p1) = range(q), and q = p1 ◦ p2. Recall that A is a substructure of both B

and C. By Theorem 3.1.1 there are g2, g1, h ∈ Aut(B) extending p2, p1, q, respectively.

Moreover, (g2, g1, h) constitutes a coherent triple, that is, h = g1 ◦ g2. Notice that p2 is

g2-compatible, p1 is g1-compatible, and q is h-compatible. Now let p̂2, p̂1, q̂ ∈ Aut(C)

be the g2-compatible, g1-compatible, and h-compatible extensions of p2, p1, q ∈ Part(A),

respectively, as constructed in Lemma 3.1.11 above. We will show that q̂ = p̂1 ◦ p̂2.

Now let (b, χb), (c, χc) ∈ C be any two points. Here, χb is some b-valuation, and χc is

some c-valuation. By the construction of p̂2 and p̂1 we get that,

p̂2(b, χb) =
(
g2(b), χg2(b)

)
where χg2(b)

(
g2(u)

)
= θp2u

(
χb(u)

)
for u ∈ U ,

and

p̂1(c, χc) =
(
g1(c), χg1(c)

)
where χg1(c)

(
g1(v)

)
= θp1v

(
χc(v)

)
for v ∈ U .
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On the one hand, we want to find the value of p̂1

(
p̂2(b, χb)

)
. So using the above by taking

c = g2(b), χc = χg2(b) and v = g2(u) we get the following:

p̂1

(
p̂2(b, χb)

)
= p̂1

(
g2(b), χg2(b)

)
=
(
g1g2(b), χg1(g2(b))

)
=
(
h(b), χh(b)

)
where for each u ∈ U we have that,

χh(b)

(
h(u)

)
= χg1(g2(b))

(
g1g2(u)

)
= θp1g2(u)

(
χg2(b)

(
g2(u)

))
= θp1g2(u) ◦ θ

p2
u

(
χb(u)

)
.

On the other hand, we have that

q̂(b, χb) =
(
h(b), ψh(b)

)
where

ψh(b)

(
h(u)

)
= θqu

(
χb(u)

)
for u ∈ U .

Therefore, we reach our desired result if we show that χh(b) = ψh(b), which follows from

showing that

θqu
(
χb(u)

)
= θp1g2(u) ◦ θ

p2
u

(
χb(u)

)
for any (b, χb) ∈ C and u ∈ U . Recall that θqu, θ

p1
g2(u), θ

p2
u are all permutations of the set

[u] = {0, 1, 2, . . . , |u| − 1}, all fixing 0.

Fix any (b, χb) ∈ C and u ∈ U . Let m = χb(u) ∈ [u]. Recall that dom(p2) = dom(q),

range(p2) = dom(p1), range(p1) = range(q) are all generic sets as they are subsets of

the generic set A ⊆ C, and so we can write their elements in the form (c, χc) without

ambiguity, where χc is some c-valuation.

Case 1. Suppose that m = χc(u) for some (c, χc) ∈ dom(p2) = dom(q).

The point p2(c, χc) =
(
g2(c), χg2(c)

)
belongs to range(p2) = dom(p1) and so

p1 ◦ p2(c, χc) = p1

(
g2(c), χg2(c)

)
=
(
g1g2(c), χg1g2(c)

)
=
(
h(c), χh(c)

)
, where χh(c) is

an h(c)-valuation (see the diagrams below). Using this information and the way θp1g2(u)

and θp2u were constructed, we get that,

θp1g2(u) ◦ θ
p2
u (m) = θp1g2(u) ◦ θ

p2
u (χc(u)) = θp1g2(u)

(
χg2(c)(g2(u))

)
= χg1g2(c)(g1g2(u)) = χh(c)(h(u)).
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As q = p1 ◦ p2 we have q(c, χc) = p1 ◦ p2(c, χc) =
(
h(c), χh(c)

)
, and so by construction

of θqu we get,

θqu(m) = θqu(χc(u)) = χh(c)(h(u)).

Therefore, θp1g2(u) ◦ θp2u (m) = θqu(m) when m = χc(u) for some (c, χc) ∈ dom(p2).

The following commutative diagrams illustrates the above computations:

(g2(c), χg2(c))
�

p1

((
(c, χc)

1

p2
88

�
q

// (h(c), χh(c))

and

χg2(c)(g2(u))
� θ

p1
g2(u)

''
m = χc(u)

/

θ
p2
u

77

�
θqu

// χh(c)(h(u)).

Case 2. Suppose that m 6= χc(u) for all (c, χc) ∈ dom(p2) = dom(q).

In this case, the permutation θp2u was defined in an order-preserving way. So suppose

that m ∈ [u] = {0, 1, . . . , |u| − 1} is the ith element such that m 6= χc(u) for all

(c, χc) ∈ dom(p2). Then n := θp2u (m) is the ith element of [u] such that n 6= χg2(c)(g2(u))

for all (c, χc) ∈ dom(p2). Note that [g2(u)] = [u] as g2 is a bijection, meaning that

θp1g2(u) is also a permutation of the set [u]. Finally, as range(p2) = dom(p1) we get that

k := θp1g2(u) ◦ θp2u (m) = θp1g2(u)(n) is the ith element of [u] such that k 6= χh(c)(h(u)) for all

(c, χc) ∈ dom(p2).

Now suppose that θqu(m) = k′, then by construction of θqu and as dom(p2) = dom(q) we

have that k′ is the ith element of [u] such that k′ 6= χh(c)(h(u)) for all (c, χc) ∈ dom(q).

Thus, k = k′, and so θp1g2(u)θ
p2
u (m) = θqu(m) when m 6= χc(u) for all (c, χc) ∈ dom(p2).
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Therefore, we have shown that θqu
(
χb(u)

)
= θp1g2(u) ◦ θp2u

(
χb(u)

)
for any (b, χb) ∈ C and

u ∈ U , implying that χh(b) = ψh(b) and so we get that p̂1 ◦ p̂2 = q̂. So the map p 7→ p̂

from Part(A) to Aut(C) is coherent. �

Theorem 3.1.13. Let L be a finite relational language. The class of all finite L-structures

has Gaifman clique faithful coherent EPPA.

Proof. Let A be a finite L-structure. By Theorem 3.1.1, there is an extension

B of A in which every element of Part(A) extends to an element of Aut(B)

such that the corresponding map is coherent. From B construct the L-structure

C =
{

(b, χb) | b ∈ B, χb is a b-valuation
}

as described above in this section. By 3.1.11

every element of Part(A) extends to an element of Aut(C). By [40] every clique in C is

the image of a clique in A under an automorphism of C. Furthermore, by Lemma 3.1.12,

the extension map from Part(A) to Aut(C) is coherent. �

3.2 Free Amalgamation Classes and Coherent EPPA

Our aim in this section is to apply the Gaifman clique faithful coherent EPPA result of

the previous section to free amalgamation classes. The relationship between these two

notions is that every free amalgamation class is a class which forbids a fixed family of

Gaifman cliques—see Lemma 3.2.7 below. Let L be a finite relational language, and let

C be a class of finite L-structures. Recall that C is called an amalgamation class if it is

closed under substructures and isomorphism, and has both the joint embedding property

and the amalgamation property—see Section 1.2.

Definition 3.2.1. Given finite L-structures A,B1, B2 with A ⊆ B1 and A ⊆ B2, the free

amalgam of B1 and B2 over A is the structure C whose domain is the disjoint union of

B1 and B2 over A, and for every relation symbol R ∈ L we define RC := RB1 ∪RB2 .

As a result we have the following two observations on the free amalgam C. First, when
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B1, B2 are viewed as subsets of C we have that B1∩B2 = A. Second, there is no relation

symbolR ∈ L and a tuple c̄ ∈ C such that c̄meets bothB1\A andB2\A, and C |= R(c̄).

Definition 3.2.2. A class C of structures over a fixed relational language has the free

amalgamation property if C is closed under taking free amalgams.

Note that the free amalgamation property implies the amalgamation property. The class

C is called a free amalgamation class if it is closed under substructures and isomorphism,

and has both the joint embedding property and the free amalgamation property. Lastly,

the Fraı̈ssé limit of a free amalgamation class is called a free homogeneous structure.

Example 3.2.3. The following are examples of free homogeneous structures.

1. The random graph [8].

2. The universal homogeneous Kn-free graph [55, Example 2.2.2].

3. The universal homogeneous directed graph.

4. The continuum many Henson digraphs [34].

5. The universal homogeneous k-hypergraph [75].

6. The universal homogeneous tetrahedron-free 3-hypergraph, where a tetrahedron is

a complete 3-hypergraph on four vertices [49, Definition 2.3].

7. The Fraı̈ssé limit of the class of all finite 3-hypergraphs such that every subset of

size 4 contains at most two 3-hyperedges.

In situations where we have a binary relation which is either transitive or total, one

expects free amalgamation to fail. For example the classes of all finite partial orders,

linear orders, tournaments, and structures with an equivalence relation do not have the

free amalgamation property. Here is another example.

Example 3.2.4 (An amalgamation class which is not free). A 3-hypergraph H is called

a two-graph if every subset of H of size 4 has an even number of 3-hyperedges—see

[55, Example 2.3.1.4]. Let C be the class of all finite two-graphs. An instance of free

amalgamation failure is the following: let B1 = {a, b}, B2 = {a, u, v} with hyperedge

54



Chapter 3. Free Homogeneous Structures

auv. Then the free amalgam of B1 and B2 over {a} is a 3-hypergraph of size 4 with

exactly one hyperedge, and so is not in C. However C has the amalgamation property.

One can show that by first taking the free amalgam, and then adding an extra hyperedge

in the right place to sets of size 4 with an odd number of hyperedges.

In the literature one can find a number of interesting results about a free homogeneous

structure M over a finite relational language. It was shown in Macpherson-Tent [57] that

if G = Aut(M) acts transitively on M and G 6= Sym(M) then G is a simple group.

Furthermore, if M is ω-categorical, then M has weak elimination of imaginaries. Ivanov

[44] proved that M has generic automorphisms. Consequently, by Theorem 2.3.11 we

have that G is not a non-trivial free product with amalgamation. For more results on free

homogeneous structures see [55].

Definition 3.2.5. Let L be a first order language, and F be a family of L-structures.

• We say a structure A is F-free under embeddings if there is no structure F ∈ F and

embedding g : F → A.

• Denote by Forbe(F) the class of all finite L-structures which are F-free under

embeddings.

Definition 3.2.6. Let C be a class of finite L-structures. A finite L-structure F is called

forbidden in C if F /∈ C. Moreover F is called minimal forbidden in C if F /∈ C and for

any v ∈ F we have that (F \ {v}) is in C.

One can observe that every finite structure F which is forbidden in C contains a minimal

forbidden substructure. For if F were not a minimal forbidden structure, there is a vertex

v ∈ F , such that F \ {v} is still forbidden in C. We keep repeating this process until we

find a substructure F ′ ⊆ F which is minimal forbidden.

Note that the class Forbe(F) has the hereditary property. Conversely, suppose that C is a

class of finite L-structures closed under isomorphism and having the hereditary property.

Let F be the family of all finite structures which are minimal forbidden in C. Then
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C = Forbe(F). To see this, first suppose that A ∈ Forbe(F) but A /∈ C. So A is

forbidden in C, and hence contains some minimal forbidden structure. This contradicts

that A is F-free. So Forbe(F) ⊆ C. For the other direction, supposing that A ∈ C but

A /∈ Forbe(F), there is some F ∈ F and an embedding g : F → A. As C has the

hereditary property, F ∈ C, contradicting F a forbidden structure. So C ⊆ Forbe(F).

Lemma 3.2.7. Suppose that C is a class of finite structures over a relational language L.

The class C is a free amalgamation class if and only if C = Forbe(F) for some family F

of Gaifman cliques.

Proof. Suppose that C is a free amalgamation class. By the above C = Forbe(F) whereF

is the family of all finite structures which are minimal forbidden in C. We claim that every

element Q ∈ F is a Gaifman clique. If not, then there are two elements u, v ∈ Q which

do not satisfy any relation of L. Let Qu = Q \ {u} and Qv = Q \ {v}. By minimality of

Q, both Qu and Qv belong to C. Moreover, Quv := Q \ {u, v} belongs to C too, as C has

the hereditary property. By the free amalgamation property of C, we get that Q which is

the free amalgam of Qu and Qv over Quv is in C, contradicting Q ∈ F . Therefore, every

Q ∈ F is a Gaifman clique.

For the reverse direction, suppose that C = Forbe(F) for some collection F of Gaifman

cliques. Let A,B1, B2 ∈ C such that A ⊆ B1 and A ⊆ B2. Let C be the free amalgam

of B1 and B2 over A. We claim that C ∈ C. If C were not in C, then there is a Gaifman

clique Q ∈ F and embedding g : Q → C. Moreover, there are two vertices u, v ∈ Q

with u ∈ B1 \ A and v ∈ B2 \ A. But u and v are related by some R ∈ L, contradicting

C a free amalgam. �

Theorem 3.2.8. Let C be a free amalgamation class of finite structures over a finite

relational language. Then C has Gaifman clique faithful coherent EPPA.

Proof. By Lemma 3.2.7, we have that C = Forbe(F) for some family F of Gaifman

cliques. Let A ∈ C, and consider the Gaifman clique faithful coherent EPPA-extension B

of A guaranteed by Theorem 3.1.13. We already know that every p ∈ Part(A) extends
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to some p̂ ∈ Aut(B), and the map p 7→ p̂ is coherent. It remains to show that B ∈ C.

Suppose for the sake of a contradiction that B /∈ C, then there is some Gaifman clique

Q ∈ F such that Q ⊆ B. By Gaifman clique faithfulness, there is g ∈ Aut(B) such

that g(Q) ⊆ A. This means A contains a forbidden structure, contradicting A ∈ C. Thus,

B ∈ C and we are done. �

We formulate, by means of the next definition and proposition, the technique we have

used above in a more general setting.

Definition 3.2.9. Let F be a family of finite L-structures. A class C of finite L-structures

is said to have F-faithful EPPA if for every A ∈ C, there exists an EPPA-extension B ∈ C

of A such that for every F ∈ F with F ⊆ B there is g ∈ Aut(B) such that g(F ) ⊆ A.

Proposition 3.2.10. Suppose that the class of all finite L-structures has F-faithful

(coherent) EPPA. Then the class Forbe(F) has (coherent) EPPA.

We now proceed towards the existence of ample generics for free homogeneous structures.

Note that any free amalgamation class C has APA—see Definition 2.1.1. For suppose that

A,B1, B2 ∈ C with A ⊆ B1 and A ⊆ B2. Let C ∈ C be the free amalgam of B1 and

B2 over A. Suppose that f ∈ Aut(B1) and g ∈ Aut(B2) such that f�A = g�A. Then

h := f ∪ g ∈ Aut(C). Thus, using Theorem 3.2.8 and Theorem 2.1.5 we obtain the

following.

Theorem 3.2.11. Suppose that M is a free homogeneous structure over a finite relational

language. Then M has ample generics.

Any homogeneous structure over a finite relational language is ω-categorical. Therefore,

based on the discussion contained in Section 2.3 we infer the following.

Corollary 3.2.12. Suppose that M is a free homogeneous structure over a finite

relational language. Then Aut(M) has the small index property, uncountable cofinality,

21-Bergman property, and Serre’s property (FA).
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Coherent EPPA gives rise to the following group-theoretic observation which we will use

in the next section. Suppose that B is a coherent EPPA-extension of A. So there is a

coherent map φ : Part(A) → Aut(B) such that p ⊆ φ(p) for all p ∈ Part(A). In

particular, the restriction φ : Aut(A)→ Aut(B) is a group embedding (monomorphism)

such that g ⊆ φ(g) for all g ∈ Aut(A). This observation is closely related to [4, Lemma

1.2] where A and B are finite graphs.

3.3 A Dense Locally Finite Subgroup

By now we know that free amalgamation classes have coherent EPPA. So what

implications does this fact have for the automorphism group G of a free homogeneous

structure? We will find out that G contains a dense locally finite subgroup.

The following lemma is a generalisation of [4, Lemma 1.2(i)].

Lemma 3.3.1. Let C be a free amalgamation class of finite L-structures. Let B ∈ C, and

b ∈ B. Put A = B \ {b}. Then there is a structure C ∈ C with B ⊆ C, and a group

embedding φ : Aut(A)→ Aut(C) such that g ⊆ φ(g) for each g ∈ Aut(A).

Proof. Put H := Aut(A). For each h ∈ H , let bh be a new element and Bh := A ∪ {bh}

be an L-structure such that χh := h ∪ (b, bh) : B → Bh is an isomorphism. Take the

free amalgam C of all (Bh : h ∈ H) over A. This yields C = A ∪ {bh : h ∈ H} and

C ∈ C. We identify B with B1A , and b with b1A , where 1A is the identity map on A, so

A ⊆ B ⊆ C.

We now define a group embedding φ : Aut(A) → Aut(C). For g ∈ H = Aut(A), we

define ĝ ∈ Aut(C) extending g as follows. For each a ∈ A, put ĝ(a) := g(a), and for

each bh ∈ {bh : h ∈ H}, put ĝ(bh) := bgh. Finally, define φ(g) := ĝ. It remains to check

that ĝ ∈ Aut(C). If h, h′ ∈ H are distinct, then by free amalgamation, bh, bh′ are not
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related by any relation of the language. Suppose that R ∈ L and ā ∈ A, then:

C |= R(bh, ā)⇔ Bh |= R(bh, ā)⇔ B |= R(b, h−1(ā))

⇔ Bgh |= R(bgh, g(ā))⇔ C |= R(bgh, g(ā))

⇔ C |= R(ĝ(bh), ĝ(ā)).

The second equivalence holds as χh : B → Bh is an isomorphism. The same argument

works for any permutation of the arguments of R ∈ L. �

Remark 3.3.2. We remark that Lemma 3.3.1 follows from coherent EPPA of free

amalgamation classes, however, the proof given above is direct. More generally, suppose

that C is a class of finite structures which has coherent EPPA. LetB ∈ C, andA = B\{b}

for some b ∈ B. Take a coherent EPPA-extension C ∈ C of B. Then the coherent

extension procedure gives a group embedding φ : Aut(A) → Aut(C) such that any

g ∈ Aut(A) extends to φ(g) ∈ Aut(C).

We are ready to prove a theorem about the automorphism group of a free homogeneous

structure, which generalises [4, Theorem 1.1].

Theorem 3.3.3. Suppose that C is a free amalgamation class over a finite relational

language, andM its Fraı̈ssé limit. Then Aut(M) contains a dense locally finite subgroup.

Proof. We will build a chain A0 ⊆ A1 ⊆ . . . ⊆ Ai ⊆ Ai+1 ⊆ . . . of finite

substructures of M such that M =
⋃
i∈ω Ai, and simultaneously we build a directed

system G0 → . . . → Gi
φi−→ Gi+1 → . . . of finite groups such that for each i ∈ ω we

have that Gi ≤ Aut(Ai) and the map φi : Gi → Gi+1 is a group embedding such that

φi(g) extends g for every g ∈ Gi. Then, the dense locally finite subgroup of Aut(M) will

be G = lim−→Gi, the direct limit of the directed sequence (Gi)i∈ω.

Enumerate the domain of M = {ai | i ∈ ω}, and let
{

(āi, b̄i) | i ∈ ω
}

be a list of all

pairs (ā, b̄) of finite sequences of M where ā = (a1, a2, . . . , an) and b̄ = (b1, b2, . . . , bn)

such that the map ai 7→ bi is an L-isomorphism. Here, the role of (āi, b̄i) is to ensure
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that the resultant subgroup G is dense in Aut(M). Start by putting A0 = {a0} and

G0 = Aut(A0). Suppose stage i has been completed and we have constructed a finite

substructure Ai ⊆ M and a group Gi ≤ Aut(Ai). We will proceed to construct stage

i+ 1 in three steps.

First step. We ensure that ai+1 ∈ Ai+1. Suppose that ai+1 /∈ Ai, and put

B = Ai ∪ {ai+1} ⊆ M . By Lemma 3.3.1, there is C ∈ C = Age(M) such that B ⊆ C,

and there is a group embedding φ : Gi → Aut(C) with φ(g) extending g for every

g ∈ Gi. By homogeneity of M we can think of C as a substructure of M containing B.

Put GC := φ(Gi) ≤ Aut(C). Otherwise, if ai+1 ∈ Ai, then put C = Ai and GC := Gi.

Second step. We ensure that āi ∪ b̄i ⊆ Ai+1. Starting with C and GC , and by

iteratively applying the first step, we construct a finite structure D ∈ C such that

C ⊆ D and D contains all the coordinates of the tuples āi and b̄i, and there is a group

embedding ψ : GC → Aut(D) such that ψ(g) extends g for every g ∈ GC . Put

GD := ψ(GC) ≤ Aut(D). At this point we have that Ai ⊆ C ⊆ D ⊆ M , and group

isomorphisms Gi
φ−→ GC ψ−→ GD.

Third step. We ensure that Gi+1 contains some element h with h(āi) = b̄i. By

Theorem 3.2.8 the class C has coherent EPPA. So starting with D ∈ C, we obtain a

finite structure Ai+1 ∈ C such that D ⊆ Ai+1, and every partial automorphism of D

extends to an automorphism of Ai+1. Thus, the partial automorphism āi → b̄i of D

extends to an automorphism h ∈ Aut(Ai+1). Moreover, as the process of extending

partial automorphisms given by Theorem 3.2.8 is coherent we get a group embedding

χ : GD → Aut(Ai+1) such that χ(g) extends g for every g ∈ GD. Finish by putting

Gi+1 := 〈χ(GD), h〉 ≤ Aut(Ai+1).

The first step above ensures that M =
⋃
i∈ω Ai. The second and third steps provide that

G = lim−→Gi is a dense subgroup of Aut(M). Finally, the finiteness of each Gi implies

that G is locally finite. �

By Remark 3.3.2, the proof of Theorem 3.3.3 gives the following result for homogeneous

structures.
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Theorem 3.3.4. Suppose that M is a homogeneous locally finite structure such that

Age(M) has coherent EPPA. Then Aut(M) contains a dense locally finite subgroup.

We have seen that coherent EPPA leads to the existence of a dense locally finite subgroup.

The following lemma treats the opposite direction, see [47, Proposition 6.4] for a more

general statement.

Proposition 3.3.5. Let M be a homogeneous relational structure. Suppose that Aut(M)

has a dense locally finite subgroup. Then Age(M) has EPPA.

Proof. Let Γ ≤ Aut(M) be a dense locally finite subgroup. Fix A ∈ Age(M).

We may assume that A ⊆ M . Let Part(A) = {p1, . . . , pn} be the set of all partial

automorphisms of A. By the homogeneity of M there are f1, . . . , fn ∈ Aut(M) such

that pi ⊆ fi. As Γ is dense, we may assume that each fi ∈ Γ. Consider the finite

subgroup H = 〈f1, . . . , fn〉 ≤ Γ, and define the finite substructure B =
⋃
h∈H h(A) of

M . Clearly, B ∈ Age(M). As H is a group we have h(B) = B for all h ∈ H , that is, B

is H-invariant. Therefore, each fi�B belongs to Aut(B) and extends pi. �

Corollary 3.3.6. Suppose that M is an ω-categorical structure such that G = Aut(M)

has a dense locally finite subgroup. Then Th(M) does not have the strict order property.

Proof. We may assume that M is homogeneous for we can pass to its Morleyisation (see

the proof of Theorem 4.2.8) without changing the automorphism group. By Proposition

3.3.5, we get that Age(M) has EPPA. By Proposition 1.5.14, Th(M) does not have the

strict order property. �

Example 3.3.7 (A class with EPPA but not APA). Consider a structure (M,E) where M

is a countably infinite set, and E is a binary relation symbol interpreted as an equivalence

relation with two equivalence classes, both infinite. Let (An, E) be a structure of size 2n

where E is interpreted as an equivalence relation with two equivalence classes, each of

size n. We may assume that An ⊆ An+1 ⊆ M for each n ∈ ω. Then M =
⋃
n∈ω

An. We

also have that H :=
⋃
n∈ω

Aut(An) is a dense locally finite subgroup of Aut(M). Thus,
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Proposition 3.3.5 implies that Age(M) has EPPA. However, by Example 1.4.5, M does

not have generic automorphisms, and so Age(M) does not have APA.

Remark 3.3.8. We think it might be possible to show that if M is a free homogeneous

structure, then Aut(M) contains a dense locally finite simple subgroup H , so

strengthening Theorem 3.3.3. The proposal is to construct H as in the proof of Theorem

3.3.3, so H =
⋃
i∈ω

Hi where Hi ≤ Hi+1 and Hi ≤ Aut(Ai) for some finite Ai ⊆ M , and

additionally ensure that each Hi is a simple group. So H , being a union of an increasing

sequence of simple groups, is itself a simple group. The candidate for Hi is Alt(n), the

alternating group of degree n, for some n ≥ 5. To achieve this, we need to check that we

may use alternating groups instead of symmetric groups in the proof of Herwig-Lascar

[36, Lemma 4.9] as such groups induce the desired automorphisms on the extension in

the definition of EPPA—see the note below Definition 4.6 in [36]. We also note that in

Section 3.1 the group acting on the structure C which ensures EPPA by Hodkinson-Otto

[40] is isomorphic to a subgroup of Aut(B) where the existence of B is guaranteed by

the aforementioned work of Herwig-Lascar.

Example 3.3.9. We give an example of a free amalgamation class which cannot be written

as a class which forbids a family of structures under homomorphisms, that is, in the

Herwig-Lascar sense—see Theorem 1.5.7. Let L be the language of 3-hypergraphs, that

is, L contains one ternary relation symbol R. A 3-hypergraph is an L-structure such that

R is interpreted as an irreflexive symmetric ternary relation. A 3-tuple which satisfiesR is

called a hyperedge. Let Q be a 3-hypergraph on four vertices with exactly 3 hyperedges.

Let C be the class of all finite 3-hypergraphs which forbidQ under embeddings. The class

C is a free amalgamation class, and so has EPPA by Theorem 3.2.8 above. Recall that a

tetrahedron T is a complete 3-hypergraph on four vertices, and note that T ∈ C. Now

suppose that there is a finite set of finite L-structures such that C is the class of all finite

structures which are F-free under homomorphisms. Then as Q /∈ C, there is F ∈ F

and a homomorphism h : F → Q. Let α : Q → T be a bijective map. Then α is

a homomorphism, and so αh : F → T is a homomorphism too. So T is not F-free,

contradicting that T ∈ C.
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Chapter 4

The Universal Bowtie-free Graph

The main research problem from which this chapter stems is the problem of existence of a

countably infinite universal graph which forbids finitely many finite graphs as subgraphs,

rather than just as induced subgraphs. The first examples of such universal graphs are

the random graph and the universal homogeneous Kn-free graph. We focus on the case

of a bowtie-free universal graph, where a bowtie (./) is the graph consisting of two

triangles glued at one common vertex. A bowtie-free universal graph was first proved

to exist by Komjáth [48], a result which was not attainable via the Fraı̈ssé amalgamation

technique at the time. Such an obstacle provided the motivation behind the combinatorial

theory developed by Cherlin, Shelah, and Shi [15] which established the existence of an

ω-categorical universal bowtie-free graph U./ and other universal graphs via the algebraic

closure operator. Their theory and the uniqueness of U./ is discussed in Section 4.1.

Hubička and Nešetřil [42] are also interested in bowtie-free graphs; they wrote that the

class of finite bowtie-free graphs “plays a key role in the context of both Ramsey theory

and model theory in the area related to universality and homogeneity. It is the interplay of

these two fields which makes this example interesting and important”. In Section 4.2 we

extend an amalgamation lemma in [42] regarding a cofinal subclass of the class of all finite

bowtie-free graphs. Consequently, via a variation of Fraı̈ssé’s amalgamation technique,

we obtain a universal bowtie-free graph isomorphic to U./. Moreover, we have:
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Theorem. The universal bowtie-free graph U./ admits generic automorphisms.

4.1 Universal Graphs with Forbidden Subgraphs

In this section we present the model theoretic approach developed in Cherlin-Shelah-Shi

[15] to the problem of existence of a universal graph with forbidden subgraphs. Let F be

a family of finite graphs, viewed as ‘forbidden’ graphs. A graph G is called F-free if no

graph in F is isomorphic to a (not necessarily induced) subgraph of G. It is F-free with

respect to injective homomorphisms in terms of Section 1.5. Denote by CF the class of

all countable (finite and countably infinite) F-free graphs. A graph G ∈ CF is universal

for CF if every graph in CF is isomorphic to an induced subgraph of G. For graphs G,H ,

by G ⊆ H we mean that G is an induced subgraph of H .

We collect below some positive and negative results regarding the existence of a countable

universal graph. We first describe a graph generalising the bowtie. Given a collection

Kn1 , Kn2 , . . . , Knk
of complete graphs, their bouquet Kn1 + Kn2 + . . . + Knk

is the

graph formed by taking the free amalgam of the given complete graphs over one common

vertex. The bouquet K3 + K3 is called the bowtie. Moreover, a graph is 2-connected if

it is connected, and remains connected after deleting any vertex together with the edges

incident with it.

Example 4.1.1.

(i) (Rado [64]). The class C∅ of all countable graphs has a universal element.

(ii) (Cherlin-Shi [16]). Suppose thatF is a finite set of cycles. Then there is a countable

universal F-free graph if and only if F = {C3, C5, C7, . . . , C2k+1} for some k ≥ 1.

(iii) (Komjáth [48]). There is a countable universal bowtie-free graph.

(iv) (Cherlin-Tallgren [17]). Let F = Km +Kn be a bouquet where m ≤ n. Then there

is a countable universal F -free graph if and only if 1 ≤ m ≤ 5 and (m,n) 6= (5, 5).

(v) (Komjáth [48]). Let m,n ≥ 3. If F = m · Kn, the bouquet of m-many copies of

Kn, then there is no F -free countable universal graph.
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(vi) (Cherlin-Komjáth [13]). There is no countable universal Cn-free graph for n ≥ 4.

Here Cn is a cycle of length n.

(vii) (Füredi-Komjáth [29]). If F is a finite, 2-connected, but not complete graph, then

there is no countable universal F -free graph.

We work with the language of graphs L = {E}. Denote by TF the theory of the class CF .

That is, the theory TF is the set of all L-sentences true in all members of CF . Note that

TF is a universal theory. Recall Definition 1.1.3.

Definition 4.1.2. [15, Definition 2]

(i) Let H be a graph, and G ⊆ H an induced subgraph. We say that G is existentially

closed in H if for every existential sentence ∃x̄φ(x̄) with parameters from G we

have that if H |= ∃x̄φ(x̄) then G |= ∃x̄φ(x̄).

(ii) A graph G ∈ CF is existentially closed in CF if G is existentially closed in every

graph H ∈ CF containing G.

(iii) Denote by EF the class of all existentially closed graphs in CF . And let T ecF be the

theory of the class EF .

Remark 4.1.3. A graph G ⊆ H being existentially closed in H is equivalent to the

following condition: if A ⊆ B are finite graphs such that A ⊆ G and B ⊆ H then there

is an embedding f : B → G such that f�A is the identity.

The notions above are not special for graphs. For example, the existentially closed

elements in the class of fields are the algebraically closed fields. The existentially closed

elements in the class of ordered fields are the real closed fields. Dense linear orders are

existentially closed in the class of linear orders. Existentially closed first order structures

appear in model theory in Abraham Robinson’s work on model complete theories—see

[59, Chapter 3], [10, Section 3.5], and [37]. A theory T is said to be model complete if

whenever M,N |= T and M ⊆ N , then M � N . Robinson’s Test [59, Theorem 3.2.1]

states that the following are equivalent for an L-theory T :

(i) T is model complete.
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(ii) Whenever M,N |= T with M ⊆ N , then M is existentially closed in N .

(iii) Every L-formula is equivalent to an existential formula modulo T .

(iv) Every L-formula is equivalent to a universal formula modulo T .

Suppose that K is an elementary class (Definition 1.1.3) of L-structures which is closed

under unions of chains. Then every element M ∈ K can be extended to an element

M̄ ∈ K which is existentially closed in K [10, Lemma 3.5.7]. Let E(K) be the subclass

of all existentially closed structures in K. Then E(K) may not be an elementary class.

Eklof and Sabbagh proved that the class of existentially closed groups is not elementary

[59, Theorem 3.5.7].

Proposition 4.1.4. [10, Proposition 3.5.15] Let K be an elementary class of L-structures

closed under unions of chains. Let T := Th(K) and T ec := Th(E(K)). Then T ec is

model complete if and only if E(K) is elementary.

We get back to our setting of graphs. Cherlin, Shelah, and Shi proved the following which

in view of the proposition above shows that T ecF is model complete when F is finite.

Theorem 4.1.5. [15, Theorem 1] Let F be a finite family of finite graphs. Then a

countable graph G ∈ EF if and only if G |= T ecF . Moreover, if every F ∈ F is connected,

then T ecF is a complete theory.

Example 4.1.6. [15, Example 4] Let F = {S3} where S3 is a star of degree 3, that is, a

graph of 4 vertices where one vertex is adjacent to the other three, and there are no more

edges. Then TF is the theory of graphs in which every vertex has degree at most 2. And

T ecF is the theory of graphs in which every vertex has degree 2, and which contain infinitely

many cycles Cn for each n ≥ 3. Let Z be the 2-way infinite path, that is, vertices are the

integers, and every n is adjacent to n+ 1. Then a countable model of T ecF is characterised

up to isomorphism by the number of its connected components isomorphic to Z. Let

Gk |= T ecF be the countable model with k-many components isomorphic to Z. Then

EF = {Gk : k ∈ ω + 1}. Moreover Gω ∈ CF is a universal F-free graph. Remember that

the members of CF and EF are countable.
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Definition 4.1.7. Suppose that M is an L-structure, and let A ⊆ M . The algebraic

closure aclM(A) of A in M is the union of all finite A-definable subsets of M .

Theorem 4.1.8. [15, Theorem 3] Let F be a finite family of connected finite graphs. Then

the following are equivalent.

(i) The theory T ecF is ω-categorical.

(ii) For any finite A ⊆M |= T ecF , we have that aclM(A) is finite.

Proposition 4.1.9. [15, Proposition 1] Let G ∈ E./ be a countable existentially closed

bowtie-free graph, and let A ⊆ G be finite. Then | aclG(A)| ≤ 4|A|.

As every graph G ∈ CF embeds in some graph Ḡ ∈ EF , we have that CF contains a

universal element if and only if EF contains a universal element. Therefore, by the last two

theorems and proposition above we have that E./ = {G graph : G |= T ec./ and |G| = ℵ0}

contains exactly one element; an ω-categorical existentially closed universal bowtie-free

graph. We denote this universal bowtie-free graph by U./.

4.2 Bowtie-free Graphs

Let L = {E} be the language of graphs. Recall that a bowtie (./) is the graph formed by

freely amalgamating two triangles over one common vertex. A graph is called bowtie-free

if it has no (not necessarily induced) subgraph isomorphic to the bowtie. Also C./ is the

class of all countable bowtie-free graphs. Let C0
./ denotes the class of all finite bowtie-free

graphs. Notice that a graph is bowtie-free if and only if it has no induced subgraph

isomorphic to a graph B where ./ ⊆ B ⊆ K5. So in view of Definition 3.2.5, we have

that C0
./ = Forbe(F) for F = {B graph : ./ ⊆ B ⊆ K5} ∪ {A1, A2} where A1, A2 are

L-structures such that A1 = {a} with E(a, a), and A2 = {a, b} with a 6= b and with

E(x, y) holding if and only if x = a and y = b.

Following Hubička and Nešetřil in [42], a chimney is the free amalgam of two or more

triangles over one common edge. Moreover, we expand this terminology as follows. We
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call the vertices of the common edge base vertices, and the rest we call them tip vertices.

We also call the number of tip vertices the height of the chimney. Any chimney contains

exactly two base vertices, and at least two tip vertices.

Fact 4.2.1 ([15], [42]). Suppose that G is a finite connected bowtie-free graph such that

every edge is contained in some triangle. If K4 ⊆ G, then G = K4. Otherwise, G is a

chimney or a triangle.

Definition 4.2.2. A bowtie-free graph is called special if every vertex is contained either

in a K4 or in a chimney.

Figure 4.1: A special bowtie-free graph. Any solid edge lies in some triangle, while a

dashed edge does not.

The definition of special bowtie-free graphs is due to [42], though they call them ‘good’

instead. Let Csp./ denotes the class of all finite special bowtie-free graphs. It should be

noted that every vertex of a special bowtie-free graph lies in a triangle, and a triangle is

bowtie-free, but not special.

Fact 4.2.3 ([42]). Let G be a special bowtie-free graph. By deleting all the edges of G

which do not lie in any triangle, we obtain a disjoint union of copies of K4 and chimneys.

Therefore, any finite special bowtie-free graph can be constructed in two stages. First,

take a disjoint union of finitely many graphs H1, H2, . . . , Hn where each one is either a
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chimney or copy of K4. Second, to add an extra edge e = {u, v}, we must have that

u ∈ Hi, v ∈ Hj for distinct i, j, and ensure that the edge e will not create a new triangle;

otherwise a bowtie will appear.

Clearly the class C0
./ of finite bowtie-free graphs has the joint embedding property.

However C0
./ does not have the amalgamation property as shown in the figure below.

Hence, owing to Fact 1.5.4 we deduce that C0
./ does not have EPPA. Nevertheless C0

./

contains a cofinal subclass with the free amalgamation property.

Figure 4.2: Any amalgam of the diagram above contains a bowtie.

Lemma 4.2.4 ([42]). The subclass Csp./ of special bowtie-free graphs is cofinal in the

class C0
./ of finite bowtie-free graphs. That is, any finite bowtie-free graph is an induced

subgraph of a special bowtie-free graph.

Proof. Let G be a bowtie-free graph. Suppose v ∈ G is a vertex that is neither contained

in aK4 nor in a chimney. If v is not contained in a triangle, then add a new copy ofK4 and

identify v with one of its vertices. Otherwise, v is part of a triangle, say vxz, of G. In this

case, add a new vertex u together with edges uv, ux, and uz, making vxzu isomorphic to

a K4. One can show that neither of these two actions will introduce a bowtie. Repeat this

process until a special bowtie-free graph has been constructed. �

The following proposition is of a more general form than [42, Lemma 3.1] where special

bowtie-free graphs are amalgamated over their induced subgraph on bases of chimneys

and copies of K4.
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Proposition 4.2.5. The class Csp./ of all finite special bowtie-free graphs has the free

amalgamation property.

Proof. Suppose A,B1, B2 are finite special bowtie-free graphs such that A ⊆ B1 and

A ⊆ B2. Let C be the free amalgam of B1 and B2 over A. We will show that C ∈ Csp./ .

By free amalgamation, any triangle in C either lives entirely in B1 or entirely in B2. For

the sake of contradiction, suppose C has a bowtie T = {a, b, c, u, v} as a subgraph where

c is the common vertex of degree four, and abc and cuv are triangles. As B1 and B2 are

bowtie-free, we have that T is neither contained in B1 nor in B2. First, the vertex c must

be in A, otherwise one of the triangles abc or cuv will meet both B1 \ A and B2 \ A.

Second, as the two triangles cannot both be in B1 nor both in B2, suppose without loss of

generality that abc lives in B1 with a ∈ B1 \ A, and cuv lives in B2 with u ∈ B2 \ A.

By the hypothesis, A is a special bowtie-free graph, so the vertex c is either contained in

a K4 of A, or in a chimney of A. Supposing the former, then the triangle abc together

with any triangle in A which contains c but not b in the K4 will form a bowtie inside B1,

contradicting that B1 is bowtie-free. So c must be contained in a chimney M of A. There

are six possibilities in this situation, based on whether c is a tip or a base vertex of M . All

lead to a contradiction.

Case 1: Suppose that c is a tip vertex of M , and b ∈ M . Then b must be a base vertex of

M as it is connected to c, and so the triangle abc with any triangle of M not containing c

will form a bowtie in B1, a contradiction.

Case 2: Suppose that c is a tip vertex of M , and b /∈ M . Then the triangle abc with the

triangle in M containing c form a bowtie in B1, a contradiction.

Case 3: Suppose that c is a base vertex of M and b /∈ M . Then the triangle abc together

with any triangle in M will form a bowtie in B1, a contradiction.

Case 4: Suppose that c is a base vertex of M and b is a tip vertex of M . Then the triangle

abc with another triangle of M not containing b will form a bowtie in B1, a contradiction.
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Case 5: Suppose that b, c are the base vertices of M , and v /∈ M . Then the triangle cuv

together with any triangle of M will form a bowtie in B2, a contradiction.

Case 6: Suppose that b, c are the base vertices ofM , and v ∈M . So v must be a tip vertex

of M . In this case, the triangle cuv together with a triangle of M not containing v will

form a bowtie in B2, a contradiction.

Hence, the free amalgam C is bowtie-free. Now we show C is special. Any vertex v ∈ C

is either in B1 or B2. Say v ∈ B1. As B1 is special, the vertex v lies either in a K4 or in a

chimney of B1. If v were in a K4 of B1, then it will be in the same K4 in C. Otherwise,

if v were in a chimney of B1, then v will be in chimney of C, possibly of greater height,

containing the original chimney. Therefore C is a special bowtie-free graph. �

Now we apply an argument by Ivanov [44, Theorem 3.1] to obtain the following result on

extending partial automorphisms. We call such argument the ‘necklace argument’.

Proposition 4.2.6. Suppose that G ∈ Csp./ is a finite special bowtie-free graph, and

(p : U → V ) ∈ Part(G) with U, V ∈ Csp./ . Then there is K ∈ Csp./ such that G ⊆ K

and p extends to some f ∈ Aut(K).

Proof. By the previous proposition, Csp./ has the free amalgamation property. The idea

of constructing the desired graph K is to form a ‘necklace’ whose beads are isomorphic

copies of G, and in which the range of p in one bead is amalgamated with the domain of p

in the consecutive bead. Start with the triple G0 := G,U0 := U, p0 := p. Let (G1, U1, p1)

be a new copy of (G0, U0, p0). Take the free amalgam G0 ∪ G1 ∈ Csp./ of G0 and G1

identifying p0(U0) with U1. One can check that in G0 ∪ G1, the maps p0, p1 agree on

U0 ∩ U1. So using the isomorphism between G0 and G1 we can extend p0 ∪ p1 to a map

g1 : G0 → G1 in Part(G0 ∪G1).

Let (G2, U2, p2) be a new copy of (G1, U1, p1). Form the free amalgamG0∪G1∪G2 in Csp./
of G0 ∪ G1 and G2 identifying p1(U1) with U2. Using the isomorphism between G1 and

G2, extend the map p0∪p1∪p2 to a map g2 : G0∪G1 → G1∪G2 in Part(G0∪G1∪G2).
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We continue this construction until we reach n ∈ ω such that the length of any

complete cycle of p divides n, and n is strictly greater than the length of any partial

cycle of p. At this point, we have that Ḡ = G0 ∪ . . . ∪ Gn in Csp./ and a map

g := gn : G0 ∪ . . . ∪ Gn−1 → G1 ∪ . . . ∪ Gn in Part(Ḡ) extending p0 ∪ . . . ∪ pn.

By the choice of n, we have that (i) for all a ∈ G0 ∩Gn we have that gn(a) = a, and (ii)

G0 ∩ Gn = G1 ∩ Gn = {a ∈ U0 : gk(a) = a for some k > 0}. Point (i) implies that

p0 and pn agree on U0 ∩ Un. Point (ii) says that G0 ∩ Gn = G1 ∩ Gn contains exactly

the points which are in complete cycles of p. At this point, half of the necklace has been

constructed.

Claim. The induced subgraph on G0 ∪Gn ⊆ Ḡ belongs to Csp./ .

Proof of the claim. As G0 ∪ Gn is the free amalgam of G0 and Gn over G0 ∩ Gn, and

both G0, Gn ∈ Csp./ , it is enough to show that G0 ∩ Gn ∈ Csp./ . By point (ii) we have that

v ∈ G0 ∩ Gn if and only if v belongs to a complete cycle of p. Fix some v ∈ G0 ∩ Gn,

then there is a complete k-cycle, say (v = v0, v1, v2, . . . , vk−1) where vi = pi(v) and

v = pk(v) for some k < ω and 0 ≤ i < k. As v0 ∈ U and U ∈ Csp./ , there are two cases.

First case: v0 ∈ Q0 ⊆ U = dom(p) where Q0
∼= K4. Because range(p) = V ∈ Csp./ as

well, there are (not necessarily distinct) copies Q0, Q1, . . . , Qk−1 of K4 such that vi ∈ Qi,

and each Qi ⊆ U , and p(Qi) = Qi+1 where addition is performed modulo k. This means

all vertices in Q0 ∪Q1 ∪ . . . ∪Qk−1 are in complete cycles of p. So v ∈ Q0 ⊆ G0 ∩Gn.

Second case: v ∈ M ⊆ U where M is a chimney. We may assume that M is a maximal

such chimney. Then similarly as in the first case, we get that all the vertices in M belong

to complete cycles of p. So v ∈M ⊆ G0∩Gn. So every vertex in G0∩Gn either belongs

to aK4 or a chimney which is contained inG0∩Gn. ThusG0∩Gn is a special bowtie-free

graph, and so is G0 ∪Gn, establishing the claim.

Take a new copy H̄ = H0∪H1∪. . .∪Hn of Ḡ, and let h : H0∪. . .∪Hn−1 → H1∪. . .∪Hn

be the corresponding copy of g. Here H̄ is the other half of the necklace. Let

β := gn�G0
: G0 → Gn be the isomorphism induced by gn. Using β and the isomorphism

between Ḡ and H̄ , construct the free amalgam K ∈ Csp./ of Ḡ and H̄ over G0 ∪Gn where
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G0 is identified with Hn, and Gn is identified with H0. Let f := g ∪ h. Points (i) and (ii)

guarantee that, under this identification, the restriction of g to G0 ∪ Gn agrees with the

restriction of h to H0 ∪Hn. So f is a well-defined map, and moreover, f is a permutation

of K. Finally, as g ∈ Part(Ḡ) and h ∈ Part(H̄) agree on dom(g)∩dom(h) in K, and K

is a free amalgam of Ḡ and H̄ , we have that f = g ∪ h ∈ Aut(K), and clearly f extends

p. �

So, the class Csp./ of all finite special bowtie-free graphs has the free amalgamation

property. Moreover, the class Csp./ is closed under disjoint unions, and so it has the

joint embedding property. However Csp./ is not closed under induced subgraphs. In this

situation, we can apply a slight variation of Fraı̈ssé’s Theorem which does not require

the class of finite structures in hand to have the hereditary property. More precisely, we

apply Kueker-Laskowski [50, Theorem 1.5] to the ‘smooth class’ (Csp./ ,⊆) and obtain the

following.

Theorem 4.2.7. There is a unique, up to isomorphism, graph U./ such that:

(i) The graph U./ =
⋃
i∈ω

Gi where Gi ∈ Csp./ and Gi ⊆ Gi+1 for all i ∈ ω.

(ii) Every H ∈ Csp./ embeds into U./.

(iii) Every finite isomorphism f : G → H where G,H ∈ Csp./ and G,H ⊆ U./ extends

to an automorphism of U./.

We know that Csp./ is cofinal in Co./. Consequently, by Kueker-Laskowski [50, Lemma

2.4], U./ of Theorem 4.2.7 above is an existentially closed model of the universal theory

T./, that is, U./ ∈ E./. By Cherlin-Shelah-Shi [15] the theory of existentially closed

bowtie-free graphs is ω-categorical. Therefore, the graph U./ is isomorphic to the

ω-categorical universal countable bowtie-free graph introduced at the end of the previous

section.

We aim now to describe the algebraic closure of a finite induced subgraph of the universal

bowtie-free graph U./. In [15], an edge in U./ is called a special edge if it lies in two

triangles of U./. It was shown in [15, Proposition 1] that: (i) Every triangle in U./
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contains a special edge. (ii) If a vertex v ∈ U./ lies in a triangle T , but not in a special

edge of T , then v lies in unique triangle. (iii) If a vertex v ∈ U./ lies in two special edges

then v lies in some Q ∼= K4, and thus any triangle containing v is contained in Q. It was

shown further that for a finite induced subgraph A ⊆ U./,

aclU./(A) = A ∪ ∪
{
e ∈ U./ special edge : e lies in a triangle T with T ∩ A 6= ∅

}
(†)

In (†) and below, we identify an edge e with the corresponding set of the two vertices

incident with e.

As U./ is existentially closed, one can see that every vertex v ∈ U./ lies in some triangle.

By (i) and (iii) every triangle T in U./ either contains exactly one special edge or contains

three special edges. In the former case, (ii) implies that T lies in a chimney. In the latter

case, T lies in some K4. So to sum up, every vertex and every triangle in U./ lies in a

chimney or a K4. Also note that in a chimney, there is only one special edge, namely the

edge between the two base vertices. And in a K4 all edges are special edges.

Suppose that v ∈ U./. By the above v could be one of three types: it belongs to a K4, a tip

vertex of a chimney, or a base vertex of a chimney. Owing to (†) we have the following. If

v ∈ Q ∼= K4 then aclU./(v) = Q. Otherwise v lies in a chimney. If v is a tip vertex, then

aclU./(v) is the unique triangle containing v. If v is a base vertex, then aclU./(v) is the

unique special edge containing v. Moreover, it follows from (†) that the algebraic closure

is disintegrated, that is, the algebraic closure of a set is the union of the algebraic closure

of its singletons. Therefore, for a finite A ⊆ U./ we have that aclU./(A) is either a base of

a chimney, a triangle in a chimney, a special bowtie-free graph, or a union of sets of these

types.

Theorem 4.2.8. The universal bowtie-free graph U./ admits generic automorphisms.

Proof. We want to show that Aut(U./) contains a comeagre conjugacy class via

the Kechris-Rosendal characterisation—Theorem 2.2.5. To do so we pass to the

Morleyisation Ũ./ of U./. Here Ũ./ is an expansion of U./ in the language

L̃ = {Rφ : φ L-formula} where L is the language of graphs, and Rφ is a relation symbol
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of arity equal to the number of free variables in φ. Moreover, the new relation symbols

are interpreted as: Ũ./ |= Rφ(ā) if and only if U./ |= φ(ā) for all ā ∈ U./. It turns out

that Aut(Ũ./) = Aut(U./), and Th( Ũ./) has quantifier elimination [38, Theorem 2.6.5].

Thus, by Proposition 1.2.14 we have that Ũ./ is a homogeneous L̃-structure.

We now show that the class of 1-systems over the amalgamation class Age(Ũ./) has the

weak amalgamation property. So let A ∈ Age(Ũ./) and (p : U → V ) ∈ Part(A). We

may assume that A ⊆ Ũ./. By homogeneity of Ũ./, the partial automorphism p extends

to some f ∈ Aut(Ũ./). Let Ā = aclŨ./(A), and Ū = aclŨ./(U) and V̄ = aclŨ./(V ).

Note that Ū , V̄ ⊆ Ā. By the discussion prior to this theorem, we may assume (after

first increasing the universe of Ā slightly if necessary) that the reducts of Ā, Ū , V̄ to

L are special bowtie-free graphs. Moreover, the restriction of f on Ū gives a partial

automorphism (p̄ : Ū → V̄ ) ∈ Part(Ā). By applying the necklace argument (Proposition

4.2.6) to the graph reduct of Ā and p̄ ∈ Part(Ā), we obtain a special bowtie-free graph

K with g ∈ Aut(K) such that Ā�L ⊆ K and p̄ ⊆ g. By Theorem 4.2.7(ii), we have that

Ā�L ⊆ K ⊆ U./. Let K̄ ∈ Age(Ũ./) be the expansion of K to L̃, that is, equip K with

the induced structure when it is viewed as a subset of Ũ./.

Now suppose that 〈B̄1, h1〉 and 〈B̄2, h2〉 are two 1-systems over Age(Ũ./) extending

〈K̄, g〉. By the previous paragraph we may assume that the reducts B1, B2 of B̄1, B̄2,

respectively, to L are special bowtie-free graphs, and also we may assume that

h1 ∈ Aut(B1) and h2 ∈ Aut(B2). LetC be the free amalgam ofB1 andB2 overK, which

is also a bowtie-free graph. So C ∈ Age(U./) by Theorem 4.2.7(ii). Let C̄ ∈ Age(Ũ./) be

the expansion of C to L̃, that is, equip C with the induced structure from Ũ./. Then the

1-system 〈C̄, h1∪h2〉 amalgamates 〈B̄1, h1〉 and 〈B̄2, h2〉 over 〈K̄, g〉, and so over 〈A, p〉.

Therefore, the class of all 1-systems over Age(Ũ./) has the weak amalgamation property.

As the class of special bowtie-free graphs is closed under disjoint unions, we can use an

argument similar to the one in the previous paragraph by taking K̄ to be empty and replace

the free amalgam by a disjoint union to show that the class of all 1-systems over Age(Ũ./)

has the joint embedding property. Therefore, by Theorem 2.2.5, the automorphism group
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Aut(Ũ./) = Aut(U./) contains a comeagre conjugacy class. That is, the universal

bowtie-free graph U./ has generic automorphisms. �

In the first paragraph of the proof above, we passed to a homogeneous expansion of U./
using the Morleyisation technique. To do so we expanded the language of graphs to

an infinite relational language. We conclude this chapter by showing that the universal

bowtie-free graph is not homogeneous over a finite relational language using an idea in

an example in Cherlin-Lachlan [14, p. 819].

Definition 4.2.9. [19, Definition 1.6] Let L be a finite relational language, and M be a

countably infinite L-structure. We say that M is finitely homogenisable if there is a finite

relational language L̃ ⊇ L and an L̃-structure M̃ such that M̃ is an expansion of M , and

M̃ is homogeneous, and Aut(M) = Aut(M̃).

Remark 4.2.10. Let L be a finite relational language with maximum arity k, and ā, b̄

be finite L-structures of same size. Then if every k-subtuple of ā is isomorphic to its

corresponding k-subtuple of b̄ then ā is isomorphic to b̄.

Lemma 4.2.11. The universal bowtie-free graph U./ is not finitely homogenisable.

Proof. Suppose U./ is finitely homogenisable. Let L = {E} be the language of

graphs, and L̃ be the finite relational language of the homogeneous expansion Ũ./ of

U./. Let k be the maximum arity of the symbols in L̃. For 1 ≤ i ≤ k + 1 take

distinct chimneys Hi ⊆ U./ each of height 2 and with base vertices {ai, bi} such that

a1Ea2∧a2Ea3∧ . . .∧akEak+1∧ak+1Ea1 and b1Eb2∧b2Eb3∧ . . .∧bkEbk+1∧bk+1Eb1.

Let ti be a tip vertex of Hi, so tiaibi is a triangle in Hi. Let Ĥk+1 ⊆ U./ be a new distinct

chimney of height 2 and with base vertices {âk+1, b̂k+1} and a tip vertex t̂k+1 such that

akEâk+1 ∧ âk+1Eb1 and bkEb̂k+1 ∧ b̂k+1Ea1. See the figure below.

Consider the two (k + 1)-tuples ū = (t1, t2, . . . , tk, tk+1) and v̄ = (t1, t2, . . . , tk, t̂k+1).

For every I ⊆ {1, 2, . . . , k} with |I| = k − 1, one can see that there is a finite

partial L-isomorphism f :
⋃
i∈I
Hi ∪ Hk+1 →

⋃
i∈I
Hi ∪ Ĥk+1 such that f(ti) = ti
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and f(tk+1) = t̂k+1. As the domain and range of f are special bowtie-free graphs,

by Theorem 4.2.7(iii), there is f̃ ∈ Aut(U./) = Aut(Ũ./) extending f . Thus, every

k-subtuple of ū is L̃-isomorphic to its corresponding subtuple of v. By the remark above,

ū, v̄ are L̃-isomorphic. By homogeneity of Ũ./ there is some h ∈ Aut(Ũ./) such that

h(ū) = v̄. Suppose without loss of generality that h fixes pointwise the bases of each Hi

for 1 ≤ i ≤ k. As h(tk+1) = t̂k+1, we have that h sends the base of Hk+1 to the base

of Ĥk+1, but both options h(ak+1, bk+1) = (âk+1, b̂k+1) and h(ak+1, bk+1) = (b̂k+1, âk+1)

give rise to a contradiction. �

Figure 4.3: The chimneys as in the proof above for k = 3.
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Chapter 5

Philip Hall’s Universal Locally Finite

Group

The mathematical object concerned in this chapter is Philip Hall’s universal locally

finite group; it is the Fraı̈ssé limit of the class of finite groups. Our main result is to

show that the class of finite groups has the amalgamation property with automorphisms

(Definition 2.1.1) and consequently we obtain the following result which was also proved

independently by Song [72].

Theorem. Philip Hall’s universal locally finite group admits ample generics.

5.1 The class of finite groups

We view groups as L-structures in the language L = {1, ·, −1}. In this language, the

notions of a subgroup and a substructure of a group coincide. The class of finite groups

contains countably many groups up to isomorphism, has the hereditary property, and the

joint embedding property (by taking direct products). Moreover, B. H. Neumann proved

that the class of finite groups has the amalgamation property. He called his amalgam of

groups a permutational product with an amalgamated subgroup.
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Proposition 5.1.1. (B. H. Neumann [62, Section 3]). The class of all finite groups has the

amalgamation property.

Proof. Suppose that A,G,H are finite groups such that A ≤ G and A ≤ H . Let

S = {s1, s2, . . . , sn} be a system of representatives of right cosets of A in G, and let

T = {t1, t2, . . . , tm} be a system of representatives of right cosets of A in H . Then every

g ∈ G can be written uniquely as g = asi for a ∈ A, and si ∈ S and in this case we

define [g]A = a and [g]S = si. Similarly, every h ∈ H can be written uniquely as h = ati

for a ∈ A and ti ∈ T , and here we define [h]A = a and [h]T = ti.

The amalgam ofG andH overA is the groupK = Sym(A×S×T ). To justify this claim

we first show that both groups G,H embed in K. We define an embedding φ : G → K

as φ(g) = φg where φg(a, s, t) = ([gas]A, [gas]S, t). It is not difficult to check that φ is

injective. We now show that φ is a homomorphism. Let g, l ∈ G. Then,

φgφl(a, s, t) = φg([las]
A, [las]S, t) = ([g[las]A[las]S]A, [g[las]A[las]S]S, t)

= ([glas]A, [glas]S, t) = φgl(a, s, t).

So φ(gl) = φ(g)φ(l).

Similarly, to embed H in K we define an embedding ψ : H → K as ψ(h) = ψh

where ψh(a, s, t) = ([hat]A, s, [hat]T ). It remains to show that φ(a) = ψ(a) for all

a ∈ A. So suppose that â ∈ A, then φâ(a, s, t) = ([âas]A, [âas]S, t) = (âa, s, t), and

ψâ(a, s, t) = ([âat]A, s, [âat]T ) = (âa, s, t). Note that we may also take the subgroup

P ≤ K generated by φ(G) and ψ(H) as the amalgam of G and H over A. �

So the class of finite groups is an amalgamation class. Therefore it has a Fraı̈ssé limit

called Philip Hall’s universal locally finite group.

Theorem 5.1.2 (Hall [33]). There exists a unique countably infinite locally finite group H

satisfying the following two properties:

(i) Every finite group can be embedded in H.
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(ii) Every isomorphism between finite subgroups of H extends to an inner

automorphism of H.

Moreover, the group H is a simple group, and contains as subgroups 2ℵ0 distinct copies

of each countably infinite locally finite group.

By (i) above, the group H embeds every finite cyclic group. So for every 0 < n < ω

there is hn ∈ H such that the order of hn is n. This implies that there are infinitely many

distinct 1-types of Th(H), namely tp(h1), tp(h2), . . .. So by Ryll-Nardzewski’s Theorem

we have that Th(H) is not ω-categorical. Accordingly, Hall’s group is a homogeneous

structure over a finite language which is not ω-categorical.

The strategy to show that Hall’s group has ample generics is by showing the its age, the

class of all finite groups, has EPPA and APA. This is sufficient by Theorem 2.1.5. EPPA

for finite groups was established by Hall [33, Lemma 1]. He showed that if G is a finite

group, then Sym(G) is an EPPA-extension of G, where G is embedded in Sym(G) by its

regular representation. Below, we build on Hall’s proof to obtain coherent EPPA for finite

groups.

Theorem 5.1.3. The class of all finite groups has coherent EPPA.

Proof. Let G be a finite group. Then the group Sym(G) is a coherent EPPA-extension

of G. Here G is seen as a subgroup of Sym(G) through its regular representation by

left multiplication. Fix for every subgroup H of G an ordered system SH of right coset

representatives.

Now suppose that H and K are subgroups of G and that f : H → K is an isomorphism.

Let m = |G : H| = |G : K|, and let SH = (h1, . . . , hm) be the fixed representatives of

right cosets of H in G, and SK = (k1, . . . , km) be the fixed representatives of right cosets

of K in G. Then G =
m⊔
i=1

Hhi =
m⊔
i=1

Kki. Now we can define a permutation φ : G → G

of the underlying set of G as follows. For g ∈ G write it uniquely as g = xhi for some

x ∈ H and hi ∈ SH , and define,

φ(g) = φ(xhi) := f(x)ki.
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Clearly, φ ∈ Sym(G). We now show that the automorphism induced by conjugation by φ

in Sym(G) extends f ∈ Part(Sym(G)). So we need to show that for any x ∈ H we have

that φxφ−1 = f(x) in Sym(G). So let u ∈ G, and suppose that u = yki for some y ∈ K

and representative ki ∈ SK , then

φxφ−1(u) = φxφ−1(yki) = φx(f−1(y)hi) = φ
(
(xf−1(y))hi

)
= f(xf−1(y))ki = f(x)(yki) = f(x)u.

Now we show that when we always use the ordered systems of coset representatives

we have fixed at the very beginning, the map from Part(G) → Aut(Sym(G)) as

defined above which sends f to the inner automorphism induced by φ is a coherent

map. So suppose that H,K,L ≤ G, and SH = (h1, . . . , hm), SK = (k1, . . . , km),

and SL = (l1, . . . , lm) are the fixed systems of right coset representatives of H,K,L,

respectively, in G.

Let f : H → K be an isomorphism, and using f , SH , SK define as above the permutation

φ ∈ Sym(G) such that conjugation by φ in Sym(G) extends f ∈ Part(Sym(G)). Let

j : K → L be another isomorphism. Similarly, using j, SK , SL define the permutation

ψ ∈ Sym(G) such that conjugation by ψ in Sym(G) extends j ∈ Part(Sym(G)). Now

consider the composition p = jf : H → L. Again, using p, SH , SL define γ ∈ Sym(G)

such that conjugation by γ extends p ∈ Part(Sym(G)).

We need to show that the inner automorphism of Sym(G) induced by ψφ is the same as

the one induced by γ. So take any δ ∈ Sym(G). We will show that ψφδφ−1ψ−1 = γδγ−1

in Sym(G). Pick any u ∈ G and suppose that u = zli for some z ∈ L and representative

li ∈ SL. Find some x ∈ H and representative hr ∈ SH such that δ(p−1(z))hi) = xhr.

Then,

ψφδφ−1ψ−1(u) = ψφδφ−1ψ−1(zli) = ψφδφ−1(j−1(z)ki) = ψφδ(f−1(j−1(z))hi)

= ψφδ(p−1(z))hi) = ψφ(xhr) = ψ(f(x)kr) = j(f(x))lr = p(x)lr.
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On the other hand,

γδγ−1(u) = γδγ−1(zli) = γδ(p−1(z)hi) = γ(xhr) = p(x)lr.

�

Remark 5.1.4. One can see that H is centreless, and so H ∼= Inn(H) ≤ Aut(H). Together

with Theorem 5.1.2 we get that Inn(H) is a dense locally finite simple normal subgroup

of Aut(H). Compare this observation with Theorem 3.3.4.

5.2 Free Products with Amalgamation

The material in this section is based on the following books Lyndon-Schupp [52],

Magnus-Karrass-Solitar [58], and Massey [61].

Our approach of establishing APA for finite groups is based on two important

mathematical objects in combinatorial group theory, namely the free product and the free

product with amalgamation in the category of groups. They are defined as groups which

satisfy certain universal properties, and thus they are unique up to isomorphism. Their

existence is established by writing down their presentations as groups. The aim of this

section is merely to present some details of such objects for the sake of using them in the

following section.

Definition 5.2.1 ([61]). Let H and K be groups. The free product of H and K is a group

H ?K together with homomorphisms ιH : H → H ?K and ιK : K → H ?K satisfying

the following universal property: for any group G and homomorphisms f : H → G and

g : K → G, there is a unique homomorphism ϕ : H ? K → G such that f = ϕιH and

g = ϕιK . That is, the following diagram commutes.

H

ιH ##

f

((
H ? K

∃!ϕ // G

K

ιK

;;

g

66
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The free product plays the role of the coproduct in the category of groups. The free

product H ? K exists and it is unique up to isomorphism. Suppose the group H has

the presentation H = 〈EH | RH〉, and K has the presentation K = 〈EK | RK〉,

where we also assume that EH and EK are disjoint. Then the free product is given by

H ?K = 〈EH ∪EK | RH ∪RK〉, and ιH , ιK are the inclusion maps, which turn out to be

monomorphisms. So we think of H and K as subgroups of H ? K.

To see this, consider the homomorphism ιH : H → H ? K given by ιH(h) = h for all

h ∈ EH , and the projection homomorphism πH : H ? K → H given by πH(h) = h for

all h ∈ EH , and πH(k) = 1H for all k ∈ EK . As πH ◦ ιH is the identity map on H , we

get that ιH is an injective homomorphism. Similarly, ιK is an injective homomorphism

as well. Furthermore, H ∩K = {1} in H ? K, where 1 is the empty word which is the

identity element of H ? K. For if x ∈ H ∩K, then πH(x) = 1H as x ∈ K. Since πH is

injective on H ≤ H ? K and x ∈ H , we must have that x = 1.

To see the universal property as stated in the definition above, note thatH?K is generated

by the generators of H and K. So putting ϕ(h) = f(h) for every h ∈ EH and

ϕ(k) = g(k) for every k ∈ EK defines the unique homomorphism ϕ : H ? K → G,

and we have that f = ϕιH and g = ϕιK as required.

To see vividly what the elements of H ? K look like, we recall the concept of a reduced

word. A word on the set H ∪K is just a finite sequence of elements of H ∪K. A word on

H∪K is called a reduced word if it is of the form h1k1h2k2 . . . hnkn where hi ∈ H\{1H},

ki ∈ K \ {1K}, and where h1, kn may or may not be present. Moreover, when n = 0,

this is understood to be the empty word 1. The following theorem [52, Chapter IV] makes

reduced words extremely useful.

Theorem 5.2.2 (The Normal Form Theorem for free products). Every element of H ? K

is equal to a unique reduced word. Moreover, if w = h1k1h2k2 . . . hnkn where n ≥ 1 is a

reduced word, then w is not equal to the identity element of H ? K.

By the Normal Form Theorem of free products we have a concrete description of the

group H ? K. Its underlying set is the set of all reduced words on H ∪K and the group
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multiplication is concatenation of reduced words followed by reduction. In this case, the

unique homomorphism ϕ : H ? K → G of the universal property is given by,

ϕ(h1k1 . . . hnkn) = f(h1)g(k1) . . . f(hn)g(kn),

where h1k1 . . . hnkn ∈ H ? K is a reduced word.

Now we introduce the other combinatorial group-theoretic object, which is a

generalisation of the free product of groups.

Definition 5.2.3. Let H and K be groups, and suppose that there is a group A together

with homomorphisms α : A → H and β : A→ K. The free product of H and

K with group A amalgamated is a group H ?A K together with homomorphisms

jH : H → H ?AK and jK : K → H ?AK such that jHα = jKβ, satisfying the following

universal property: for any group G and homomorphisms f : H → G and g : K → G

with fα = gβ, there is a unique homomorphism ψ : H ?A K → G such that f = ψjH

and g = ψjK . That is, the following diagram commutes.

H

jH $$

f

((
A

α

??

β ��

H ?A K
∃!ψ // G

K

jK
::

g

66

The amalgamated free product is the pushout in the category of groups, and it is the same

as the free product when the group A is the trivial group. The amalgamated free product

H ?A K exists and it is unique up to isomorphism. We will next describe how to obtain

H ?A K from H ? K.

Suppose we are given groups A,H,K together with homomorphisms α : A → H and

β : A→ K. Let H ? K be the free product H and K and ιH : H → H ? K and

ιK : K → H ? K be the inclusion maps. Denote by N the normal subgroup of H ? K

generated by the set {α(a)β(a−1) : a ∈ A} ⊆ H ? K. Then define,

H ?A K := (H ? K)/N.
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Therefore, H ?A K = 〈H ? K | {α(a)β(a−1) : a ∈ A}〉. Let π : H ? K → H ?A K

be the canonical projection map and let jH = πιH and jK = πιK (see the diagram

below). If a ∈ A, then we have that jHα(a) = πιHα(a) = πα(a) = α(a)N and

jKβ(a) = πιKβ(a) = πβ(a) = β(a)N . But since β(a−1)α(a) ∈ N , we have that

α(a)N = β(a)N , and so jHα = jKβ.

Now we show that H ?AK together with homomorphisms jH and jK satisfy the universal

property as stated above in the definition of the amalgamated free product. To see this,

let G be any group, and consider any homomorphisms f : H → G and g : K → G

such that fα = gβ. Using the universal property of the free product, we get a unique

homomorphism ϕ : H ? K → G such that f = ϕιH and g = ϕιK .

H

ιH ##

jH

&&

f

&&
A

α

??

β ��

× H ? K
π //

ϕ

77H ?A K
∃!ψ // G

K

ιK

;;

jK

>>

g

<<

Now we check that N ⊆ kerϕ. For this choose an arbitrary element α(a)β(a−1) of the

generating set of N , where a ∈ A. Now,

ϕ
(
α(a)β(a−1)

)
= ϕ

(
α(a)

)
ϕ
(
β(a−1)

)
= ϕιH

(
α(a)

)
ϕιK

(
β(a−1)

)
= fα(a) gβ(a−1) = fα(a) fα(a−1) = fα(aa−1) = fα(1A) = 1G.

Thus α(a)β(a−1) ∈ kerϕ, and so the generating set of N is contained in kerϕ. As kerϕ

is a normal subgroup, the whole of N is contained in kerϕ. Consequently, we can use

the universal property of the projection map π : H ? K → H ?A K to obtain a unique

homomorphism ψ : H ?A K → G such that ψπ = ϕ. More precisely, for a reduced word

h1k1 . . . hnkn ∈ H ? K we have that:

ψ(h1k1 . . . hnknN) = ψπ(h1k1 . . . hnkn) = ϕ(h1k1 . . . hnkn) = f(h1)g(k1) . . . f(hn)g(kn).
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One can check that ψ is well-defined, and so it remains to check that the diagram

commutes. But it does, for ψjH = ψπιH = ϕιH = f and ψjK = ψπιK = ϕιK = g.

Note 5.2.4. It is the above explicit description of ψ : H ?A K → G that we need for the

next section.

5.3 The Amalgamation Property with Automorphisms

In this section we show that Philip Hall’s universal locally finite group admits ample

generics. Recall that our strategy is based on Theorem 2.1.5. So our interest hovers

around the combinatorial properties EPPA and APA. We have seen in Theorem 5.1.3 that

the age of Hall’s group, the class of all finite groups, has EPPA. It is the time to establish

APA for finite groups.

Recall that to say that the class of finite groups has the amalgamation property with

automorphisms (APA) means the following: whenever A,H,K are finite groups with

embeddings (monomorphisms) α1 : A→ H and α2 : A→ K, then there is a finite group

L with embeddings β1 : H → L and β2 : K → L such that β1α1 = β2α2, and whenever

f ∈ Aut(H) and g ∈ Aut(K) such that fα1(A) = α1(A), gα2(A) = α2(A), and for

every a ∈ A we have that α−1
1 fα1(a) = α−1

2 gα2(a), then there exists h ∈ Aut(L) which

extends β1fβ
−1
1 ∪ β2gβ

−1
2 .

Our method to show APA for finite groups relies upon the universal property of the

amalgamated free product of groups discussed in the previous section.

Theorem 5.3.1. The class of finite groups has the amalgamation property with

automorphisms.

Proof. Suppose we are given finite groups A,H , and K, together with embeddings

α : A → H and β : A→ K. So H has a subgroup isomorphic to a subgroup of K.

Without loss of generality we may assume that H and K are disjoint sets. Suppose also
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that we have f ∈ Aut(H) with fα(A) = α(A) and g ∈ Aut(K) with gβ(A) = β(A)

such that α−1fα = β−1gβ. This just says that f and g induce the same automorphism on

the common subgroup A. Before we proceed recall that H ?A K = (H ? K)/N where

N E H ? K is the normal subgroup generated by the set {α(a)β(a−1) : a ∈ A}.

STEP 1. We apply the universal property of the amalgamated free product as illustrated

in its diagram above with G = H ?AK, and the embeddings f̂ , ĝ into G induced by f and

g, respectively. That is, f̂ : H → H ?A K where f̂(h) = f(h)N and ĝ : K → H ?A K

where ĝ(k) = g(k)N . By the universal property of H ?A K and Note 5.2.4 we get

a unique homomorphism ψ : H ?A K → H ?A K where for every reduced word

h1k1 . . . hnkn ∈ H ? K we have that:

ψ(h1k1 . . . hnknN) = f̂(h1)ĝ(k1) . . . f̂(hn)ĝ(kn) = f(h1)g(k1) . . . f(hn)g(kn)N.

We claim that ψ ∈ Aut(H ?A K). To this end, let χ : H ? K → H ? K be the unique

homomorphism determined by f ∈ Aut(H) and g ∈ Aut(K) using the universal property

ofH?K. By the previous section, χ(h1k1 . . . hnkn) = f(h1)g(k1) . . . f(hn)g(kn). Notice

that ψ(h1k1 . . . hnknN) = χ(h1k1 . . . hnkn)N . We will first show that χ ∈ Aut(H ? K).

Take any nonempty reduced word h1k1 . . . hnkn ∈ H ? K where n ≥ 1. It is easy to see

that χ is a surjective map, for χ
(
f−1(h1)g−1(k1) . . . f−1(hn)g−1(kn)

)
= h1k1 . . . hnkn as

required.

To see that χ is injective, we will show that kerχ = {1} where 1 is the

empty word. Let h1k1 . . . hnkn ∈ H ? K be a nonempty reduced word. As

f ∈ Aut(H) and g ∈ Aut(K), and hi, ki 6= 1, it follows that f(hi), g(ki) 6= 1, so

χ(h1k1 . . . hnkn) = f(h1)g(k1) . . . f(hn)g(kn) is also a nonempty reduced word.

Now we show that ψ ∈ Aut(H?AK). Take any elementwN ∈ H?AK wherew ∈ H?K

is a nonempty reduced word. Consider the element χ−1(w)N ∈ H ?A K, and observe

that ψ(χ−1(w)N) = χ
(
χ−1(w)

)
N = wN , showing that ψ is surjective.

To show that ψ is injective, we will show first that for every nonempty reduced word

w ∈ H ?K we have that w ∈ N if and only if χ(w) ∈ N . By the definition of the normal

88



Chapter 5. Philip Hall’s Universal Locally Finite Group

subgroup N E H ? K we have that w ∈ N if and only if w =
k∏
i=1

wiα(ai)β(a−1
i )w−1

i for

some k ∈ N, wi ∈ H ? K, ai ∈ A. In what follows bi := α−1fα(ai) which is also an

element of A. We also have by our assumptions on f and g that bi = β−1gβ(ai) as well.

So,

w ∈ N ⇔ w =
k∏
i=1

wiα(ai)β(a−1
i )w−1

i

⇔ χ(w) =
k∏
i=1

χ(wi)χ(α(ai))χ(β(a−1
i ))χ(w−1

i )

⇔ χ(w) =
k∏
i=1

χ(wi)f(α(ai))g(β(a−1
i ))χ(w−1

i )

⇔ χ(w) =
k∏
i=1

χ(wi)α
(
α−1fα(ai)

)
β
(
β−1gβ(a−1

i )
)
χ(w−1

i )

⇔ χ(w) =
k∏
i=1

χ(wi)α(bi)β(b−1
i )χ(w−1

i )

⇔ χ(w) ∈ N.

Notice that the injectivity of χ is needed to establish the second equivalence above.

Now suppose that wN ∈ kerψ. Thus, ψ(wN) = χ(w)N = N , which implies that

χ(w) ∈ N . By the above, w ∈ N , and so wN = N . This shows that kerψ = {N}, and

so ψ is injective.

STEP 2. Let Σ =
{

(fi, gi, ψi) : 1 ≤ i ≤ r
}

be the set of all triples as (f, g, ψ) above.

That is, all triples (fi, gi, ψi) where fi ∈ Aut(H) with fiα(A) = α(A) and gi ∈ Aut(K)

with giβ(A) = β(A) such that α−1fiα = β−1giβ. Moreover, ψi is the automorphism of

H ?A K that is obtained as above; it extends both fi and gi. Note that H ?A K almost

satisfies APA for H , K, and the common subgroup A. The only obstacle left is that in

general H ?A K is not a finite group.

STEP 3. Let Ψ := 〈ψi : 1 ≤ i ≤ r〉. We claim that Ψ ≤ Aut(H ?A K) is a finite

subgroup. To see this, note that every ψ ∈ Ψ is determined by a pair (f, g) where
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f ∈ 〈fi : 1 ≤ i ≤ r〉 ≤ Aut(H) and g ∈ 〈gi : 1 ≤ i ≤ r〉 ≤ Aut(K). As both

H and K are finite, the claim follows.

STEP 4. By Proposition 5.1.1, the class of finite groups has the amalgamation property,

and so there is a finite group P which embeds H and K such that H ∩K = A inside P ,

and we may assume harmlessly that P is generated byH andK. Thus, we get a surjective

homomorphism j : H ?A K → P . So we may think of the amalgam P as (H ?A K)/M

for some normal subgroup M E H ?AK of finite index. Note that j is injective on H ∪K

viewed as a subset of H ?A K.

STEP 5. Let Γ := (H ?A K) o Ψ, their semidirect product. As Γ/(H ?A K) ∼= Ψ, we

have that H ?A K ≤ Γ has finite index. As M ≤ H ?A K has finite index, M ≤ Γ is of

finite index. Define,

M̂ :=
⋂
γ∈Γ

γMγ−1.

Let µ : Γ → Sym(Γ/M) be the induced homomorphism by left multiplication, and note

that M̂ = kerµ. Therefore M̂ ≤ M ≤ H ?A K ≤ Γ = (H ?A K) o Ψ, and M̂ E Γ is a

normal subgroup of Γ of finite index. Moreover, as M̂ E Γ we have that M̂ is ψ-invariant,

that is, ψ(M̂) = M̂ , for every ψ ∈ Ψ. In particular, M̂ is ψi-invariant for all 1 ≤ i ≤ r.

STEP 6. Let L := (H ?A K)/M̂ , and note that L is a finite group. Let π : H ?A K → L

be the projection homomorphism. Moreover, as M̂ is ψi-invariant, for every 1 ≤ i ≤ r

the automorphism ψi ∈ Aut(H ?A K) induces an automorphism ψ̂i ∈ Aut(L) given by

ψ̂i(xM̂) = ψi(x)M̂ , for any x ∈ H ?A K.

STEP 7. We now argue that the group L is the desired finite group. We will show that L

amalgamates H and K over A via the map π. As M̂ = kerπ ⊆ ker j = M , there is a

unique homomorphism η : L → P such that j = ηπ. Here η is given by η(xM̂) = xM ,

for any x ∈ H ?A K.

H ?A K
π //

j
((

L

η

��
P
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Recall that the amalgamated free product H ?A K embeds H and K over A. As j is

injective on each of H and K, we have that π embeds both groups H and K in L.

It remains to show that every pair of automorphisms of H and K agreeing on A extends

simultaneously to an automorphism of L. So let (fi, gi, ψi) ∈ Σ, and h ∈ H ≤ H ?A K,

and k ∈ K ≤ H ?A K. Then

ψ̂i(π(h)) = ψ̂i(hM̂) = ψi(h)M̂ = fi(h)M̂ = π(fi(h)).

Similarly, we have that ψ̂i(π(k)) = π(gi(k)). So for every 1 ≤ i ≤ r we have that

ψ̂i ∈ Aut(L) extends the copy of fi ∪ gi in L. �

We have arrived now to the main result of this chapter.

Theorem 5.3.2. Philip Hall’s universal locally finite group admits ample generics.

Proof. By Theorem 5.1.3, the class of all finite groups has the extension property for

partial automorphisms, and by Theorem 5.3.1, it has the amalgamation property with

automorphisms. So applying Theorem 2.1.5 to Hall’s universal group H we obtain that H

admits ample generics. �
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Chapter 6

On the Weak Amalgamation Property

In this chapter we explore the significance of the weak amalgamation property (Definition

2.2.4) as a powerful tool to investigate the existence of generic automorphisms for

homogeneous structures. We consider three cases: linear orders, ordered graphs, and

tournaments. Recall that if C is an amalgamation class of finite L-structures and n ∈ ω,

then an n-system over C is a tuple 〈A, p1, . . . , pn〉 where A ∈ C and each pi ∈ Part(A).

The class of all n-systems over C is denoted by Cn.

6.1 Linear Orders

We use the weak amalgamation property to prove Hodkinson’s result (see Section 1.4)

that there is no generic pair of automorphisms of the countable dense linear ordering. We

hope that this method will adapt easily to other cases such as the universal homogeneous

partial order, and possibly give an answer to Question 10 in Chapter 7.

Lemma 6.1.1. Let C be the class of all finite linear orders. The class C2 of all 2-systems

over C does not have the weak amalgamation property. Consequently, (Q, <) does not

have 2-generic automorphisms.

Proof. Suppose that C2 has the weak amalgamation property. Let S = 〈A, p1, p2〉 ∈ C2
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where A = {a1, a2}, and a1 < a2, and p1(a1) = a2, and p2(a1) = a2. Then S has an

extension T = 〈B, f1, f2〉 such that any two extensions of T amalgamate over S.

Let b := max
{
η(a1) : η ∈ Word(f±1

1 , f±1
2 )
}

. Choose k ∈ ω minimal such that

b = gkgk−1 . . . g2g1(a1) where each gi ∈ {f1, f
−1
1 , f2, f

−1
2 }. By maximality of b and

minimality of k, we have that gk(b) is undefined. Moreover, there is no b′ ∈ dom(gk)

such that gk(b′) < b < b′. So it is possible to define gk on {b} such that b < gk(b).

We build an extension B̄ = B ∪ {b1, . . . , bn} such that b = b0 < b1 < . . . < bn−1 < bn,

and simultaneously extending f1, f2 by adding each element in {bi : 0 ≤ i < n} to

either dom(f1) ∪ dom(f−1
1 ) or dom(f2) ∪ dom(f−1

2 ), with n ∈ ω big enough such

that if f1(bn−1) = bn, say, then there is no b′ ∈ B such that b′ < bn < f2(b′) or

f2(b′) < bn < b′. That is, we have the freedom of choice to define f2 on {bn} such that

bn < f2(bn), or f2(bn) = bn, or f2(bn) < bn. Strictly speaking there are four possibilities,

namely f±1
1 , f±1

2 , for the map sending bn−1 to bn. Without loss of generality, assume that

f1(bn−1) = bn.

Now extend B̄ to C = B̄ ∪ {c} where bn < c. Let h2 := f2 ∪ {(bn, c)}. So

〈C, f1, h2〉 ∈ C2. Next, extend B̄ to D = B̄ ∪{d} where d < bn. Let h′2 = f2 ∪{(bn, d)}.

So 〈D, f1, h
′
2〉 ∈ C2. By the weak amalgamation property there is 〈G, φ1, φ2〉 ∈ C2

amalgamating 〈C, f1, h2〉 and 〈D, f1, h
′
2〉 over 〈A, p1, p2〉. Since there is a single word

w ∈ Word(f±1
1 , f±1

2 ) which takes a1 to bn, the corresponding two copies of bn in C and

D are identified in G. Therefore, c = h2(bn) = φ2(bn) = h′2(bn) = d, contradicting that

d < bn < c in G. �

6.2 Ordered Graphs

The language here is L = {E,<} where E,< are binary relation symbols. An ordered

graph G is an L-structure where E is interpreted as an irreflexive symmetric binary

relation on G, and < is interpreted as a total order on G. Note that neither E nor

< depends on the other. We also note that the class of all finite ordered graphs is an
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amalgamation class, and its Fraı̈ssé limit is called the universal homogeneous ordered

graph. By [a1, a2 . . . , an] we mean an incomplete n-cycle mapping ai to ai+1 for

1 ≤ i < n.

Proposition 6.2.1. Let C be the class of all finite ordered graphs. Then the class of

1-systems over C does not have the weak amalgamation property. Consequently, the

universal homogeneous ordered graph does not have generic automorphisms.

Proof. Suppose that C1 has the weak amalgamation property. Let S = 〈A, p〉 ∈ C1 where

A = {a0, a1} such that A |= ¬(a0Ea1) ∧ ¬(a1Ea0) ∧ (a0 < a1), and p ∈ Part(A) is

given by p(a0) = a1. Let T = 〈B, f〉 ∈ C1 be the extension of 〈A, p〉 guaranteed by the

weak amalgamation property such that any two extensions of T amalgamate over S.

Let [a−m, . . . , a−1, a0, a1, . . . , ak] be the maximal incomplete cycle of f extending p.

So a−m /∈ range(f) and ak /∈ dom(f). Define C := B ∪ {c} where c is a new

point, and define EC := EB ∪ {(a−m, c), (c, a−m)}. Put g := f ∪ {(ak, c)}. Extend

the total order of B to a total order on C by locating the new point c in the right

interval such that 〈C, g〉 ∈ C1. Similarly, define D := B ∪ {d} where d is a new

point, and define ED := EB. Put h := f ∪ {(ak, d)}. Extend the total order of

B to a total order on D such that 〈D, h〉 ∈ C1. Now, by the weak amalgamation

property there is 〈G, φ〉 ∈ C1 which amalgamates 〈C, g〉 and 〈D, h〉 over 〈A, p〉. We

may assume that C,D ⊆ G. Thus, p ⊆ [a−m, . . . , a−1, a0, a1, . . . , ak, c] ⊆ g ⊆ φ and

p ⊆ [a−m, . . . , a−1, a0, a1, . . . , ak, d] ⊆ h ⊆ φ. Therefore c = φ(ak) = d, which leads

us to identify the vertices c ∈ C and d ∈ D in G. As C is a substructure of G we have

that G |= E(a−m, c), and as D is a substructure of G we have that G |= ¬E(a−m, d),

contradicting c = d in G. �

Corollary 6.2.2. The universal homogeneous ordered graph Γ does not have locally

generic automorphisms.

Proof. Let C be the class of all finite ordered graphs. By Theorem 2.2.9, Γ has a

locally generic automorphism if and only if C1 satisfies the local weak amalgamation
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property. Suppose for the sake of contradiction that C1 satisfies the local weak

amalgamation property. Then there is a 1-system S = 〈A, p〉 ∈ C1 such that the subclass

K := {T ∈ C1 : S embeds in T} of C1 has the weak amalgamation property. Let

B := A ∪ {b0, b1} and set a < b0 < b1 where a := max(A), and there are no edges

betweenA and the bi and b0, b1 are non-adjacent. Moreover, define a partial automorphism

f ∈ Part(B) by setting f�A = p and f(b0) = b1. Now apply the argument in the proof

above to T = 〈B, f〉 ∈ K to deduce a contradiction. �

So the universal homogeneous ordered graph Γ is an example of a homogeneous structure

over a finite relational language without locally generic automorphisms. To the best of

our knowledge it is the first such example. However, as the class of all n-systems over

Age(Γ) has the joint embedding property for each n ∈ ω we have by Theorem 2.2.3 that

G = Aut(Γ) does have a dense diagonal conjugacy class in Gn for each n ∈ ω.

6.3 Tournaments

We work in the language of directed graphs, L = {→} where → is a binary relation

symbol. A directed graph or digraph D is an L-structure where → is interpreted as an

irreflexive anti-symmetric (x→ y implies y 6→ x) binary relation on D. A tournament is

a digraph (T,→) such that for any distinct vertices u, v ∈ T we have that either u→ v or

v → u. The class of all finite tournaments is an amalgamation class, and its Fraı̈ssé limit

is called the universal homogeneous tournament.

The fact that EPPA for tournaments is an open problem (see Chapter 7) forms an

obstacle to proving the existence or non-existence of ample generics for the universal

homogeneous tournament. Below we show that EPPA is a sufficient and necessary

condition for the universal tournament to have ample generics. Thus, we cannot bypass

the EPPA obstacle to prove or disprove the existence of ample generics for the universal

homogeneous tournament via the weak amalgamation property of the Kechris-Rosendal

characterisation.
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Proposition 6.3.1. The universal homogeneous tournament has ample generics if and

only if the class of finite tournaments has EPPA.

Proof. Let T be the universal homogeneous tournament. Suppose that T has ample

generics. Let C = Age(T), the class of all finite tournaments. Then by Kechris-Rosendal

characterisation we have that for each n ∈ ω, the class Cn of n-systems has the

weak amalgamation property. Suppose we are given a finite tournament A ∈ C.

Let Part(A) = {p1, p2, . . . , pn}. Then S := 〈A, p1, . . . , pn〉 ∈ Cn. By the weak

amalgamation property, there is T = 〈B, f1, . . . , fn〉 ∈ Cn extending S such that any

two extensions of T amalgamate over S. Define:

B0 :=
{
η(a) : a ∈ A and η ∈Word(f±1

1 , . . . , f±1
n )
}
.

Let V = 〈B0, f1�B0
, . . . , fn�B0

〉 ∈ Cn, and note that any two extensions of T which are

amalgamated over S are actually amalgamated over V . So B0 will always be contained

in the amalgam.

Claim. The substructure B0 ⊆ B is an EPPA-extension of A.

Proof of claim. By definition of B0, if b ∈ B0 ∩ dom(fi) where 1 ≤ i ≤ n, then

fi(b) ∈ B0. So it remains to show that B0 ⊆ dom(fi) for all i such that 1 ≤ i ≤ n.

It follows then that fi�B0
∈ Aut(B0) extending pi ∈ Part(A), and so B0 is an

EPPA-extension of A. Fix some f ∈ {f1, . . . , fn}, and let p be the corresponding pi.

Suppose that there is some b̂ ∈ B0 and b̂ /∈ dom(f).

Let l = [b1, b2, . . . , bk := b̂] be a maximal incomplete cycle of f (allowing the possibility

of k = 1), and note that each bj ∈ B0. By maximality, b1 /∈ range(f). We now define

two extensions of 〈B, f〉. Define C := B ∪ {c} where c is a new point. Make C into a

tournament as follows. For each u ∈ B, define:
u→ c, if u /∈ range(f)

u→ c, if u ∈ range(f) and f−1(u)→ bk

c→ u, if u ∈ range(f) and bk → f−1(u)
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Define g := f ∪ {(bk, c)}, then 〈C, g〉 ∈ C1, that is, g ∈ Part(C), because the structure

on C was defined such that v → bk if and only if f(v)→ c for every v ∈ dom(f). Next,

define D := B ∪ {d} where d is a new point. Make D into a tournament as follows. For

each u ∈ B, define: 
d→ u, if u /∈ range(f)

u→ d, if u ∈ range(f) and f−1(u)→ bk

d→ u, if u ∈ range(f) and bk → f−1(u)

Define h := f ∪ {(bk, d)}, and so 〈D, h〉 ∈ C1.

By the weak amalgamation property, there is 〈G, φ〉 ∈ C1 which amalgamates 〈C, g〉 and

〈D, h〉 over 〈A, p〉. We have arrived at a situation where the incomplete cycle l ⊆ B0 ⊆ G,

and l ⊆ g, h ⊆ φ. This forces c ∈ C to be identified with d ∈ D in G because

c = φ(bk) = d. Such identification gives a contradiction as b1 → c and d→ b1. Therefore,

B0 ⊆ dom(f) for all f ∈ {f1, . . . , fn}, proving the claim.

Conversely, suppose that the class of all finite tournaments C has EPPA. We want to show

that C has APA as well. It follows then that the universal homogeneous tournament has

ample generics by Theorem 2.1.5. So let A,B,C ∈ C be such that A ⊆ B and A ⊆ C.

Let D be the disjoint union of B and C over A, and make D into a tournament by setting

b → c for all b ∈ B \ A and c ∈ C \ A. Then D amalgamates B and C over A. Now

suppose that f ∈ Aut(B) and g ∈ Aut(C) such that f�A = g�A. Then their union

h := f ∪ g ∈ Aut(D). �

Remark. The proof above yields the following. The universal homogeneous

tournament has n-generic automorphisms if and only if for every finite tournament A

and f1, . . . fn ∈ Part(A) there is a tournament B such that A ⊆ B and each fi extends to

an automorphism of B.
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Chapter 7

Open Questions

We now present some future research questions related to the work in this thesis.

We have seen in Section 1.4 that the countable dense linear order (Q, <) admits

generic automorphisms, but it does not have 2-generic automorphisms. This observation

stimulates the following question.

Question 1. Is there for every n ∈ ω, a countably infinite structure which has n-generic

automorphisms, but not (n+ 1)-generic automorphisms?

In Section 3.2 we showed that any free amalgamation class over a finite relational

language has coherent EPPA. The proof uses a work of Herwig-Lascar, Hodkinson-Otto,

and Solecki.

Question 2. Can we prove (coherent) EPPA for free amalgamation classes using and

extending the necklace argument of Ivanov? See Proposition 4.2.6.

Question 3. Is there a class of finite structures which has EPPA, but not coherent EPPA?

The following is a strengthening of Proposition 3.3.5.

Question 4. If M is ω-categorical and Aut(M) has a dense locally finite subgroup, must

Age(M) have coherent EPPA?
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Question 5. Does the class of all finite two-graphs have EPPA? Does its Fraı̈ssé limit, the

universal homogeneous two-graph, have ample generics? See Example 3.2.4.

Question 6. Let M be the universal homogeneous directed graph not containing an

independent set of size 3. Does Age(M) have EPPA?

Question 7. Does the universal bowtie-free graph U./ of Chapter 4 have ample generics?

A tournament is a directed graph such that any pair of distinct vertices is connected by

exactly one directed edge. The class of all finite tournaments is an amalgamation class,

and so it has a Fraı̈ssé limit, called the universal homogeneous tournament. We note that

if T is a finite tournament, then Aut(T ) has an odd order, and so is a soluble group by

the Feit-Thompson Theorem. See [55, Remark 5.3.11] for more details on Aut(T ). A

long-standing open problem about finite tournaments is the following:

Question 8. Does the class of finite tournaments have EPPA?

Another question related to tournaments arose in a visit from Phillip Wesolek to Dugald

Macpherson in Leeds in February 2017. A group is called locally soluble if every finitely

generated subgroup is soluble.

Question 9. Is there a locally soluble oligomorphic permutation group?

If the class of finite tournaments has coherent EPPA, then the answer of the previous

question is yes. For by Theorem 3.3.4 the automorphism group of the universal

homogeneous tournament has a dense locally finite subgroup H . The group H is

constructed as a union of a chain of subgroups of automorphism groups of finite

tournaments (soluble groups), and so H would be an example of a locally soluble

oligomorphic group.

Remarks. (i) Macpherson [53] proved that if Ω is an infinite set and G ≤ Sym(Ω)

is soluble, then G has infinitely many orbits on Ω4. So we cannot hope for a soluble

oligomorphic group.
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(ii) Suppose that M is an ω-categorical structure. If there is a subset A ⊆ M of size 5

such that Alt(A) or Sym(A) is induced by {g ∈ Aut(M) : g(A) = A}, then Aut(M)

has no dense locally soluble subgroup as Alt(A) is insoluble.

We are interested in finding out whether EPPA is a necessary condition for the existence

of ample generics. We have seen that if M is a homogeneous ω-categorical structure such

that Th(M) has the strict order property, then Age(M) does not have EPPA.

Question 10. Is there a homogeneous ω-categorical structure with the strict order

property which admits ample generics?

Recall that the cofinality of a group which is not finitely generated is the least cardinality

of a chain of its proper subgroups whose union is the whole group. Macpherson-Neumann

[56, Section 5] considered covering a group with an arbitrary family of proper subgroups,

not necessarily a chain of proper subgroups, and they defined the subgroup covering

number of G to be the least cardinal λ such that there is a family of size λ of proper

subgroups whose union is G. So the subgroup covering number of any group is less than

or equal to its cofinality. One of their theorems shows that the subgroup covering number

of Sym(N) is uncountable. Motivated by their result, we ask the following:

Question 11. Does the automorphism group of an ω-categorical structure with ample

generics have an uncountable subgroup covering number?

Another line of research related to Fraı̈ssé Theory is the connection with structural

Ramsey theory and topological dynamics of automorphism groups of countable

structures. Following [55, Section 6.5], suppose that C is an amalgamation class of

finite L-structures, and let < be a new binary relation symbol added to the original

language. Define C< := {(A,<) linear order : A ∈ C}, and suppose that C< is an

amalgamation class. Then the Kechris-Pestov-Todorcevic correspondence ([46]) states

that the automorphism group of the Fraı̈ssé limit of C< is ‘extremely amenable’ if and

only if C< has the ‘Ramsey property’.

Question 12. Is there a formal connection between EPPA and the Ramsey property?
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We elaborate more on this question. On the one hand, if C is a free amalgamation

class, then C< has the Ramsey property—see [55, Theorem 6.5.3], and C has EPPA

by Chapter 3. On the other hand, Böttcher-Foniok [6] proved that each of Cameron’s

five amalgamation classes of permutations [9] is a Ramsey class. Here permutations

are viewed as L-structures where L = {<1, <2} and both symbols are interpreted as

linear orders. So an amalgamation class of permutations will have the form C<2 where

C = {(A,<1) : <1 is a linear order on A}. In this case, C<2 has the Ramsey property,

but C does not have EPPA. So suppose we have an amalgamation class C with further

assumptions. If C< has the Ramsey property, is it possible to derive EPPA for C?

Conversely, is it possible to show that C< has the Ramsey property if C has EPPA?
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A Proof of Fraı̈ssé’s Theorem

The material in this section stems from [5, Section 14.4] and [80, Proposition 2.3]. For

simplicity we work with a relational language L. Recall that a countable L-structure is

homogeneous if every finite partial automorphism extends to an automorphism.

Definition A.1. An L-structure M is weakly homogeneous if whenever A,B ∈ Age(M)

with A ⊆ B and f : A → M is an embedding, then there is an embedding g : B → M

which extends f .

Lemma A.2. A countable L-structure M is homogeneous if and only if it is weakly

homogeneous.

Proof. Suppose that M is a homogeneous structure. Let A,B ∈ Age(M) with A ⊆ B

and let f : A → M be an embedding. Let B′ ⊆ M be such that there is an isomorphism

α : B ∼= B′. By homogeneity, the finite partial automorphism fα−1 : α(A) → f(A)

extends to an automorphism h ∈ Aut(M). Then the embedding hα : B →M extends f .

So M is weakly homogeneous.

Now for the other direction suppose that M is weakly homogeneous. Let f : U → V be

an isomorphism between finite substructures of M . We will construct an automorphism

f̂ ∈ Aut(M) extending f . WriteM as a countable union of a chain of finite substructures

in two ways: M =
⋃
n∈N

Un where U0 = U and M =
⋃
n∈N

Vn where V0 = V .
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We proceed by alternating between even and odd steps to define an increasing chain of

embeddings
(
fn : n ∈ ω

)
as follows. Start with f0 := f .

At the even step (2n), we ensure that Un ⊆ dom(f̂). At this point, we have that

Un−1 ⊆ dom(f2n−1). We can find k ∈ N large enough so that (dom(f2n−1) ∪ Un) ⊆ Uk.

Since M is weakly homogeneous, there is an embedding f2n : Uk → M which extends

f2n−1. Clearly Un ⊆ dom(f2n) and f2n−1 ⊆ f2n.

At the odd step (2n + 1), we ensure that Vn ⊆ range(f̂). At this point we have that

Vn−1 ⊆ range(f2n). We can find k ∈ N large enough so that (range(f2n) ∪ Vn) ⊆ Vk.

Since M is weakly homogeneous, there is an embedding g : Vk →M which extends f−1
2n .

Now define f2n+1 := g−1. Clearly Vn ⊆ range(f2n+1) and f2n ⊆ f2n+1.

Finally f̂ :=
⋃
n∈N

fn is an automorphism of M extending f . So M is homogeneous. �

Theorem A.3 (Fraı̈ssé’s Theorem [28]). Suppose that C is an amalgamation class of

finite L-structures. Then there is a unique, up to isomorphism, homogeneous L-structure

M such that Age(M) = C. Conversely, if N is a homogeneous L-structure then Age(N)

is an amalgamation class.

Proof. Enumerate representatives of all the isomorphism types in C as A0, A1, A2, . . . .

The aim is to construct a chain M0 ⊆ M1 ⊆ M2 ⊆ . . . of structures Mn ∈ C such

that for all n ∈ ω we have that Mn has a substructure isomorphic to An, and whenever

i, j ≤ n, and α : Ai → Aj and f : Ai → Mn are embeddings, then there is an

embedding g : Aj → Mn+1 such that f = gα. Start by taking M0 = A0. Suppose

that some finite chain M0 ⊆ . . . ⊆ Mn has been constructed as required. Enumerate the

finitely many, say r many, pairs of embeddings
(
αk : Aki → Akj , fk : Aki → Mn

)r
k=1

with ki, kj ≤ n. Using the amalgamation property, we build inductively a chain

Mn = B0 ⊆ B1 ⊆ B2 ⊆ . . . ⊆ Br =: Mn+1 where for 1 ≤ k ≤ r, we have that

Bk is the amalgam of Bk−1 and Akj over Aki via the embeddings αk and fk. Using the

joint embedding property we may assume that Mn+1 contains a copy of An+1. It is not
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difficult to see that Mn+1 satisfies the desired requirements. Finally, put M =
⋃
n∈ω

Mn.

By construction and the hereditary property we get that Age(M) = C. Moreover M is

weakly homogeneous, and so by the Lemma A.2 above, the structure M is homogeneous.

We now show the uniqueness of M . Suppose that N is homogeneous L-structure such

that Age(M) = Age(N). Enumerate the elements of M as M = {mi : i ∈ ω} and the

elements of N as N = {ni : i ∈ ω}. We build up an isomorphism h : M → N by using

a back-and-forth argument.

Step 0: Let i ∈ ω be the least i such that {m0} ∼= {ni}. Define h0(m0) := ni.

Step 2i + 1: To ensure that dom(h) = M . Suppose that the partial isomorphism h2i

has been defined with dom(h2i) = {m′1,m′2 . . . ,m′k}. Let j ∈ ω be the least j such that

mj /∈ dom(h2i). We want to addmj to the domain. LetA = {m′1,m′2 . . . ,m′k,mj} ⊆M .

As Age(M) = Age(N), we can find an isomorphic copy {n′1, n′2 . . . , n′k, n′k+1} of A in

N . Thus, {n′1, n′2 . . . , n′k} ∼= {m′1,m′2 . . . ,m′k} ∼= {h2i(m
′
1), h2i(m

′
2) . . . , h2i(m

′
k)}. Let

g : {n′1, n′2 . . . , n′k} ∼= {h2i(m
′
1), h2i(m

′
2) . . . , h2i(m

′
k)} be the isomorphism above. As N

is homogeneous, there is ĝ ∈ Aut(N) extending g. Hence,

{m′1, . . . ,m′k,mj} ∼= {n′1, . . . , n′k, n′k+1} ∼= {h2i(m
′
1), . . . , h2i(m

′
k), ĝ(n′k+1)}.

Define h2i+1 := h2i ∪ {(mj, ĝ(n′k+1))}.

Step 2i + 2: To ensure that range(h) = N . Suppose that the partial isomorphism h2i+1

has been defined. Let j ∈ ω be the least j such that nj /∈ range(h2i+1). Using the

same strategy above, we can find a suitable preimage of nj and extend h2i+1 to h2i+2 with

nj ∈ range(h2i+2).

Finally, define h :=
⋃
i∈ω

hi. By construction dom(h) = M and range(h) = N , and so

h : M ∼= N .

It remains to show that last part of the theorem. So suppose that N is a homogeneous

L-structure. We show that Age(N) satisfies the amalgamation property. Suppose that

A,B1, B2 ∈ Age(N) with embeddings f1 : A → B1 and f2 : A → B2. We can assume
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without loss of generality thatA,B1, B2 are substructures ofN . SinceN is homogeneous,

there are α, β ∈ Aut(N) which extend f1, f2 respectively.

Define C := α−1(B1) ∪ β−1(B2), and let g1 = α−1|B1
and g2 = β−1|B2

. For any a ∈ A

we have that g1◦f1(a) = α−1◦α(a) = a = β−1◦β(a) = g2◦f2(a). Thus C amalgamates

B1 and B2 over A. �
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