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ABSTRACT

The aim of this research was to investigate the nature of the out-of-the-loop (OoTL)

phenomenon in highly automated driving (HAD), and its effect on driver behaviour

before, during, and after the transition from automated to manual control. The work

addressed questions relating to how automation affects drivers’ (i) performance in

transition situations requiring control- and tactical-level responses, (ii) their behaviour

in automation compared to in manual driving, (iii-iv) their visual attention distribution

before and during the transition, as well as (v) their perceptual-motor performance

after resuming control. A series of experiments were developed to take drivers progres-

sively further OoTL for short periods during HAD, by varying drivers’ secondary task

engagement and the amount of visual information from the system and environment

available to them. Once the manipulations ended, drivers were invited to determine a

need to resume control in critical and non-critical vehicle following situations. Results

showed that, overall, drivers looked around more during HAD, compared to manual

driving, and had poorer vehicle control in critical transition situations. Generally, the

further OoTL drivers were during HAD, the more dispersed their visual attention.

However, within three seconds of the manipulations ending, the differences between

the conditions resolved, and in many cases, this was before drivers resumed control.

Differences between the OoTL manipulations emerged once again in terms of the

timing of drivers’ initial response (take-over time) in critical events, where the fur-

ther OoTL drivers were the longer it took them to resume control, but there was no

difference in the quality of the subsequent vehicle control. Results suggest that any

information presented to drivers during automation should be placed near the centre

of the road and that kinematically early avoidance response may be more important

for safety than short take-over times. This thesis concludes with a general conceptu-

alisation of the relationship between a number of driver and vehicle/environment

factors that influence driver performance in the transition.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Introduction

Vehicles with increasing degrees of automated capabilities will become ubiquitous

in the coming decades, with vehicle manufacturers, technology start-ups, and giants

alike having demonstrated interest and progress in the race to higher levels of ve-

hicle automation. Indeed, many large vehicle manufacturers are already equipping

production vehicles with lane keeping systems (Lincoln, 2014; Acura, 2014), traffic

jam assistance (BMW, 2013) and highway steering assistance (Toyota, 2013; Volvo,

2013), and some manufacturers have committed to bringing the first generation of

self-driving vehicles to market by the end of the decade.

Vehicle automation is proposed to have a number of benefits, including an increase

in the flow and capacity of the road network (Kesting, 2008; Ntousakis, 2015), a wide

range of economic benefits (Fagnant and Kockelman, 2013), an increase in shared

mobility (Fagnant, 2013), and a reduction in energy consumption (Anderson et al.,

2014). Human error is thought to be a contributing factor to over 93% of road accidents

(Treat et al., 1979; Sabey and Taylor, 1980), and a further assumed benefit of vehicle

automation is that, by relieving the human driver of parts of the driving task, human

error would be suppressed, reducing road traffic accidents. Yet, this claimed benefit

is potentially a red herring. Human error typically arises out of poor human-system

interaction, because of a combination of active failures (e.g. drivers failing to detect a

hazard) and latent conditions (e.g. the human-machine interface is designed poorly;

Reason, 1990). Vehicle automation is in its infancy, and it will be some time yet until

all human responsibility for, and interaction with, the driving task is supplanted,

1
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highlighting the paradox that automated systems will still be joint cognitive systems

between man and machine (Bibby et al., 1975; Bainbridge, 1983). Therefore, while

such interactions exist, so too does the possibility of human error and the importance

of human factors.

To realise the full potential for vehicle automation for improving road safety, it is

necessary to scrutinise how automation impacts on drivers’ cognitive and physical

abilities to interact safely and appropriately with the driving task (Parasuraman et

al. 2000; Merat and Lee, 2012). A primary example of such an interaction is the

resumption of manual control when the automated driving system either fails or

reaches some functional limit, otherwise known as ’the transition’.

Indeed, there is a growing concern within the human factors community regarding

the potential adverse effects of automation on drivers’ return-to-manual performance.

Studies have speculated that a number of psychological factors are pertinent to

understanding the effect of vehicle automation on driver behaviour, including trust

(Lee and See, 2004; Hergeth et al., 2016), locus of control (Stanton and Young, 2005),

complacency (Bagheri and Jamieson, 2004; Parasuraman and Manzey, 2010), mental

models (Moray, 1990; Sarter et al., 2007; Flemisch et al., 2012), driver state (Rauch

et al., 2009; Neubauer et al., 2012; Jamson et al., 2013), mental workload (MWL; De

Waard, 1996; Collet et al., 2003), and situation awareness (SA; Endsley, 1995a; Merat

and Jamson, 2009; Kircher et al., 2014).

There have been some attempts to manage these issues during automation and the

transition through, for example, adaptive automation disengagement systems (Merat

et al., 2014) and haptic shared control (Abbink et al., 2012; Mars et al., 2014). Others

have used uncertainty warning alerts (Beller et al., 2013; Lorenz et al., 2014) and

multimodal human-machine interface (HMI) designs (Pavilinsky and De Winter, 2016).

However, the effectiveness of these interaction designs is limited to the automated

system and traffic scenarios in which the interactions are observed, all of which impose

varying levels of mental workload.

Human factors research has developed a multitude of models to describe the

driving task from the perspective of the driver. These can be divided into functional

models and descriptive models. Functional models represent performance via various

concepts such as motivation, information processing, and risk, and emphasise drivers’

cognitive abilities, which give them greater predictive power, yet limit their descriptive
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depth. In contrast, descriptive models attempt to describe some or all aspects of

the driving task with respect to the driver’s role but are limited in their ability to

predict performance. The following section will focus on functional models of human

information processing to outline how this thesis conceptualises human performance

for the driving task, while the subsequent section will focus on descriptive models to

draw attention to the role of the driver in the driving task, and how this related to

vehicle automation.

1.2 Understanding human performance

Information processing is the combination of psychological and motor processes that

humans use to perform tasks. Implied in information processing theories is the concept

of a limited processing capacity (e.g., Broadbent, 1958; Kahneman, 1973; Posner, 1978;

Wickens, 1984). Kahneman (1973) specifies the metaphor of a single undifferentiated

capacity from which mental resources are available for task performance, and proposed

a serial processing model. On the other hand, Wickens (1984) introduced the idea of

a multiple processing model, drawing a clear distinction between the metaphors of

capacity and resource, defining capacity as the maximum or upper limit of processing

capability, while resources represent the mental effort supplied to improve processing

efficiency. Another critical assumption is that this capacity may also change according

to whether the operator is fatigued or distracted, as using mental resources requires

effort, and this is limited (cf. Malleable Resource Theory; Young and Stanton, 2002;

Young and Stanton, 2004).

Wickens’ (1984) information processing model builds on single resource theories

(Kahneman, 1973; Norman and Bobrow, 1975), and presents a qualitative account of

the different psychological processes involved in how humans interact with systems.

The model incorporates these processes into a series of processing stages or mental

operations to characterise the flow of information humans require when performing a

task. This involves perceiving sensations, transforming data and choosing actions in

response. Processing requires mental resources at each stage (see Figure 1.1). This is

discussed further in Section 1.4.4.

Based on Wickens’ (1984) model, information from the environment is first pro-

cessed by our senses and is held briefly in the short term sensory story (STSS). What
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Figure 1.1: A model of human information processing (redrawn from Wickens et

al., 2015, pg. 4).

is selected for sensory input is driven by attention (Yantis, 1998), either bottom-up

(exogenous, stimulus-driven, or passive) or top-down (or endogenous or goal-driven or

active). In the context of driving, information is most often selected and attended to

overtly by directing the eye to its spatial location, demonstrating a close link between

attention and eye movements (Posner, 1980; Crundall and Underwood, 1998).

Selected information from the STSS is then passed to stages of perception, where

the stimulus is identified, or recognised using past experiences that are stored in the

long-term memory, and it’s meaning derived. This stage is processed automatically,

requires little or no attention, and is driven by both sensory inputs and long-term

memory. Following recognition, information is passed to response-selection and

response-execution processes, where its implications for action are assessed, including

the choice of a response. Otherwise known as cognition, this stage is distinguished

from perception by the amount of time required to process information, as well as the

mental effort involved.

As with most closed-loop feedback systems, this information processing system is

in dynamic interaction with the external world and is driven by feedback signals and

attention, which are essential for efficient human-automation interaction.

Questions have been raised regarding the efficacy of the information processing

model, especially regarding its inability to explain and predict performance in low

task-demand situations, such as monotonous driving (Senders, 1997). Nevertheless,
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it still stands as a useful, simple, framework for interpreting human performance in

both simple and complex tasks.

With an understanding of how people process information to perform a task,

the following section will focus on descriptive models of driving and the role of the

human driver within the driving task.

1.3 Models of the driving task

Rasmussen’s (1983, 1986) model of human behaviour in complex system control

conceptualises tasks on the different levels of action selection and execution requiring

the interaction between an operator and a task. The model categorises performance

on three levels, namely skill-based, rule-based, and knowledge-based performance.

To take driving as an example, at the skill-based level a driver uses sensorimotor

skills to process information in the form of space-time signals, such as vehicle handling

around corners or driving along familiar routes. This represents automatic processing

without conscious control. At the rule-based level, a driver processes information in

the road environment (e.g. road regulations), which is then applied by feed-forward

control. This represents conscious control. Cognitive functioning at the knowledge-based

level involves drivers utilising mental models of the current roadway environment

and vehicle state, integrated with their goals, to make decisions regarding navigation.

Michon (1985) conceptualised the three levels in Rasmussen’s model regarding the

skills and control of driving tasks and defined them according to the time involved in

performing the task as well as the level of attentional control (Reason, 1987) given to

the (sub-)task. At the lowest level, (control level) tasks involve the controlling of the

vehicle’s lateral and longitudinal position on the road through braking and steering.

This level of a task occurs through automatic action patterns and within a time frame

of milliseconds. The intermediate level (manoeuvring level) involves tactical decisions

and manoeuvres by drivers to local situations, to achieve predetermined sub-goals,

such as following distance, overtaking, speed, etc. These tasks occur in a matter of

seconds. The advanced level (strategic level) involves drivers making and following

goals of driving, such as navigating to a destination and also developing specific

driving sub-goals, such as selecting a route. These generally take much longer to plan



6 1.3 MODELS OF THE DRIVING TASK

Table 1.1: Matrix of driving tasks according to Rasmussen and Michon (Hale et

al., 1990).

Planning Manoeuvre Control

Knowledge Navigating in strange town Controlling a skid on icy roads Learner on first on first lesson

Rule Choice between familiar routes Passing other cars Driving an unfamiliar car

Skill Home/work travel Negotiating familiar junctions Roadholding round corners

and execute.

Hale et al. (1990) mapped Rasmussen’s performance levels to Michon’s levels of

driving behaviour, to specify the dynamic interaction among driver behaviour activities

at different levels of the driving task (Table 1.1). Weller et al. (2006) presented a similar

model (Figure 1.2), with performance levels according to Rasmussen (1986) shown

on the left and the hierarchical control levels, according to Michon (1985), shown on

the right. Ward (2000) argues that, within this framework, driving is modelled as a

cascade system that includes input, output, feedback, and feed-forward processes. As

a feedback process, driving goals at the strategic level cascade down and influence

the behavioural responses at the tactical level, which in turn influence action-specific

behaviours at the operational level (Ward, 2000). The feed-forward processes relate

these levels to a hierarchical structure such that particular actions at the operational

level make up those behaviours at the tactical level, and those behaviours are used

to achieve the goals of driving, for example, arriving at a destination (Ward, 2000).

However, it can be argued that automation removes or reduces drivers’ feed-forward

control of the driving task, which may, in turn, impair their ability to anticipate events

on the road. Yet to what extent this impacts on performance in the transition to

manual control at the different levels of driving, is still unclear.

By deconstructing the driving task into its constituent sub-tasks, we can better

understand how changes to the relationship between the driver and the vehicle might

affect the performance of the driving task as a whole. However, much of the focus in

the literature has been on understanding the impact of automating various aspects of

the driving task on, how, whether, and when, drivers regain control-level performance.

Equally important is understanding how it affects drivers’ recovery of adequate

performance on the tactical and strategic levels.

These models consider the driving task as a three-way interaction between three
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Figure 1.2: Combination of performance levels according to Rasmussen (1986)

and the hierarchical control levels according to Michon (1985), reproduced from

Weller et al. (2006).

agents, the driver, the vehicle, and the environment. However, it can be argued that

an automated driving system is an additional agent introduced into these interactions.

Changing the structure of the driving task in this way requires a reassessment of

the driving model. While there have been multiple models seeking to describe the

driving task itself, and others that integrate ACC (see Boer and Hoedemaeker, 1998),

little objective research has been undertaken to establish the underlying cognitive

mechanisms and mental models that drivers use to operate a highly automated vehicle,

and how these mechanisms and models may be subject to decay. This is not altogether

surprising as developing an accurate mental model of the dynamics of a system

becomes increasingly difficult the more variables, and therefore interactions between

them, are present within a system (Matthews et al., 2004). To understand the effects

of automation on performance, the following section considers how humans interact

with automation, both generally and in the context of the driving task.
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1.4 Automation

In a contemporary sense, automation refers to

"the mechanisation and integration of the sensing of environmental variables (by artificial

sensors), data processing and decision making (by computers); mechanical action (by

motors or devices that apply forces to the environment), and/or "information action"

by communication of processed information to people." (Sheridan and Parasuraman,

2005).

Applied to driving, the above describes how an automated driving system can perform

some or all of the tasks or sub-tasks. Whereas in manual driving all sensing and

control is carried out by the human, in current automated vehicles, drivers and their

automated driving systems actively cooperate to achieve the primary task of driving,

the success of which requires maintenance of a shared situation representation/awareness

(cf. Christoffersen and Woods, 2002; Hoc, 2000; Stanton, 2016), "appropriate" reliance

on the automated driving system (Lee and See, 2004), and transparency between the

automated driving system and the human driver (Lyons, 2013). Strictly from the

driver’s perspective, this new and central role requires supervisory control1, where the

driver issues instructions with respect to the driving goals, which are then carried

out by the automated driving system. Of course, the degree to which continuous

supervision is required depends entirely on the capabilities and ’intelligence’ of that

particular system and the driver’s experience with it.

1.4.1 Automated driving

The concept of automated driving was first presented in a 1925 New York Times

article (New York Times, 1925), and was included in General Motors’ vision of the

future at the 1939 New York World’s Fair (Geddes, 1940), and after realised in the

GM Firebird Concept III, featuring automated steering (Electronic Chauffeurs, 1959).

Many examples of the early concepts of automated vehicle concepts relied upon

connection to some pre-existing road infrastructure (Guang Lu and Tomizuka, 2002).

However, the 1980s and 1990s saw projects focused on developing the hardware and

1Elsewhere referred to as human meta-control (Sheridan, 1960) and human supervisory control (Moray,

1986; Sheridan, 1992a, Sheridan and Verplank, 1978)
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software capabilities to enable automated vehicles to operate independently of any

infrastructure. These included Autonomous Land Vehicle (ALV) (Schefter, 1985), which

was funded by the Defense Advanced Research Projects Agency (DARPA), Vehicle for

Autonomous mobility thRough computer vision (VaMoRs) (Dieckmanns, 1989), Program

for European Traffic with Highest Efficiency and Unprecedented Safety (PROMETHEUS)

(Williams and Preston, 1987), and The Carnegie Mellon University Navigation Laboratory

(NAVLAB) (Goto and Stentz, 1987; Thorpe et al., 1991). However, some projects were

still fully infrastructure dependent, for example, Automated Highway Systems (AHS),

run by the PATH Program at The University of California, Berkeley (Shladover, 2006).

These projects were followed by three Challenges set by the DARPA: Grand Challenge

I in 2004, Grand Challenge II in 2005 (Buehler et al., 2007) and the Urban Challenge in

2007 (Buehler et al., 2009), which gave rise to a number of vehicles that were tested on

public roads, including Leonie (Wille et al., 2010), AutoNOMOS (Rojo et al., 2007), and

the Google Car (Markoff, 2010).

More recently, there have been a number of projects that have focused on the

human factors issues related to vehicle automation, while also implementing and

evaluating automated functions in vehicles, including CityMobil (Toffetti et al., 2009),

Automated Driving Applications & Technologies for Intelligent Vehicles (AdaptIVe) (Langen-

berg et al., 2014), Highly Automated Vehicles for Intelligent Transport (HAVEit) (Hoeger et

al., 2008), Designing Dynamic Distributed Cooperative Human-Machine Systems (D3CoS)

(Zimmermann and Bengler, 2013), and Kooperatives hochautomatisiertes Fahren, Coopera-

tive Highly Automated Driving (KoHAF) (ZENTEC GmbH, 2015).

1.4.2 Levels of automation

Over the years, several attempts have been made to create taxonomies or scales of the

degrees of automation (DoA), otherwise referred to as levels of automation (LoA).

Early versions, such as the widely used taxonomy presented by Sheridan and Verplank

(1978, Table 1.2), are more general and typically account for the locus of control (human

or automation) and how information is presented to the human. Parasuraman et al.

(2000) later adapted the Sheridan and Verplank taxonomy to account for four stages

of information processing (perception, analysis, decision-making, and execution) for

each level of human-automation interaction. Contextualising a classification in this

way allowed it to be used not only as a descriptor of human-automation interaction
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but also as a tool to choose appropriate LoAs for the relevant task. More application-

specific taxonomies include Riley’s (1989) model, which is applied to a mixed-initiative

human-machine system, and Endsley and Kaber’s (1999) model, which accounts for

levels of human-automation interaction in real-time control tasks.

Table 1.2: Sheridan and Verplank’s (1978) Levels of Automation.

Description

1 Human does the whole job up to the point of turning it over to the computer to implement.

2 Computer helps by determining the options.

3 Computer helps to determine options and suggests one, which human need not follow.

4 Computer selects action and human may or may not do it.

5 Computer selects action and implements it if human approves.

6 Computer selects action, informs human in plenty of time to stop it.

7 Computer does whole job and necessarily tells human what it did.

8 Computer does whole job and tells human what it did only if human explicitly asks.

9 Computer does whole job and decides what the human should be told.

10 Computer does whole job if it decides it should be done, and if so, tells human, if it decides that the

human should be told.

With the development of technologies bringing automated capabilities to the

driving task, attempts have been made to understand human-automation interaction

within the driving context. For example, Carsten and Nilsson (2001) sought to

categorise different Advanced Driver Assistance Systems (ADAS) based on their

functionality and proposed four broad categories: (1) systems that provide information,

(2) systems that provide warnings or feedback, (3) systems that partly intervene,

and (4) systems that facilitate autonomous driving. While specific to ADAS, such

broad categories limit the value of Carsten and Nilsson’s categorisation. Flemisch

et al. (2008) provide a slightly different perspective, viewing the levels of driving

automation by the extent to which the human or the system has vehicle control,

as opposed to task-specific elements. In a similar approach, the German Federal

Highway Research Institute (BASt) working group on automated vehicles developed a

categorisation of automated driving functions (Gasser and Westhoff, 2012) as part of

the work considering the Vienna Convention and German laws and regulations that

may be a barrier for introducing automated vehicles in Germany. The BASt expert

group identified five LoAs based on the degree of automation: full automation, high
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automation, partial automation, driver assistance, and driver only.

In parallel efforts, the National Highway Traffic Safety Administration (NHTSA,

2013) and The Society of Automotive Engineers (SAE, 2014) also developed classifi-

cations of driving automation. Similar to the BASt taxonomy in many respects, the

NHTSA and SAE definitions describe, at each level of automation, what aspects of the

primary driving task are performed by the human or the system (i.e. lateral control,

longitudinal control, and monitoring), such that as the LoA increases, so does the role

of the driver, shifting from a primary controller to a passive supervisor. However,

recently the SAE LoAs (Figure 1.3) went further to explicitly delegate responsibility

for monitoring the driving task and the road environment, with the driver being

responsible for the lower levels (L0, L1, L2) and the system being responsible for the

higher levels (L3, L4, L5). The SAE distinction rightly implies an automated driving

system should have the capability to monitor the driving environment before it should

be allowed to assume control of significant aspects of vehicle control.

This type of categorisation use by SAE has been criticised for implying a hierarchy

of the technology, while its natural evolution is not likely to follow this exact path,

which creates false expectations amongst policymakers, the press, and the public

(Templeton, 2014). Nevertheless, the SAE levels of automation have since become the

most widely cited vehicle automation taxonomy, and to standardise and aid clarity

and consistency, the U.S. Department of Transportation (2016) adopted the updated

2016 SAE LoA definitions (SAE, 2016) in their Federal policy for automated vehicles.

For these reasons, this thesis will adopt the SAE (2016) nomenclature.

At SAE Level 2 (L2, Partial Automation) and Level 3 (L3, Conditional Automation),

the primary controllers of the driving task, longitudinal and lateral control, are

automated via Adaptive Cruise Control (ACC) and Lane-Keeping Systems (LKS),

respectively. This minimises the psychomotor aspect of control and modifies the

cognitive element (Kircher et al., 2014), which fundamentally changes the role of

the human in the driving task. In L2 systems, the emphasis on drivers’ attention is

shifted towards monitoring the driving task. In L3, drivers are not expected to monitor

driving task but are expected to be available to make decisions and solve problems

related to the driving task. In both systems, drivers are expected to be available to

resume manual control should the system reach some limit. In the following section,

we consider how this interaction most commonly manifests in HAD: the transitions of
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control.

Figure 1.3: Description of Levels of Driving Automation for On-Road Vehicles

Emphasising (A) Execution of steering and acceleration/ deceleration, (B) Moni-

toring of driving environment, (C) Fallback performance of dynamic driving task,

and (D) System capability (SAE International, 2016).

1.4.3 Transitions of control

Regarding vehicle automation, the term "transition" has been used in the literature to

refer to either the activation or deactivation of an automated driving function (Gold

et al., 2013), a change in the level of automation (Merat et al., 2014), a transfer of

responsibility (Saffarian et al., 2012), or the period between the changing from one

vehicle control state to another (Flemisch et al., 2012). The term transition has also

been used interchangeably in the literature with handover, handoff, and take-over.

In this thesis, the transition is defined as, the process and period of transferring

responsibility of, and control over, some or all aspects of a driving task, between a human

driver and an automated driving system.

While the SAE LoAs show the transitions that could occur between different levels
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of control (Figure 1.3), it is equally important to consider a framework delineating the

principles of the transfer of control, which has been the subject of a number recent

publications (cf. McCall et al., 2016; Lu et al., 2016). Here, we will focus on an ontology

developed by Flemisch et al. (2008), outlining three basic principles of transitions.

Figure 1.4: All possible transitions occurring between operator and automation at

different levels of automation, with green arrows showing the transitions between

manual control and highly automated driving, and the blue arrows indicating the

transitions between manual control and fully automated driving (Flemisch et al.,

2008).

The first principle relates to the direction in which a transition can occur, with

Figure 1.4 showing control can be transferred from the driver towards the automated

system, e.g. driver activating Adaptive Cruise Control, or transferred from the

automated system towards the driver, e.g. system deactivation of a Lane Keeping

System due to missing lane markings.

The second principle refers to who initiates the transition, the driver or the

automated system. A driver-initiated transition, also referred to by Goodrich and Boer

(1999) as a discretionary transition, might occur when the driver wants to take control

because they feel their ability is rated as more expedient and safer. A system-initiated

transition, otherwise referred to as a mandatory transition, is where the system has

reached its limits either due, for example, to automation failure, road blockage, severe

weather conditions, or sudden manoeuvres by another vehicle (Saffarian et al., 2012).

However, there are also instances where system-initiated transition may be triggered

in non-failure situations, for example, at the end of a programmed route.

The third principle considers who has control at the start of the transition and who

is the recipient of the transition request.
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Table 1.3: Transition of control from human to automation (redrawn from Martens

et al., 2007).

Hi→ A H→ Ai Hi← A H← Ai

Who has "it"? Human Human Automation Automation

Who should get "it"? Automation Automation Human Human

Who initiates transition? Human Automation Human Automation

As part of the CityMobil project, Martens et al. (2007) proposed an ontology

outlining the four different classes of transitions. The ontology is summarised in

Table 1.3, with "H" referring to the Human and "A" to the Automation system. The

underlined letters in the table specify who is in control, with the arrows representing

the direction in which the transition is occurring, and the "i" defining which agent is

initiating the transition.

Under baseline driving circumstances, drivers who are in safe manual control of a

vehicle are assumed to have adequate levels of SA. In such a scenario, a driver-initiated

transition from manual driving to HAD (Hi→ A and H→ Ai) would be less complex

from a human factors perspective, as the driver can choose whether to initiate, accept,

or reject the transition request. Therefore, driver-initiated transitions are less likely to

present a significant threat to safety than a transition HAD to manual control. The

exception to this is if drivers assume that an attempted HAD activation is successful

when it is not, and they mistakenly relinquish physical control.

In transitions from HAD to manual (Hi ← A and H ← Ai), however, Endsley

and Kiris (1995) argue that a system should have to consider driver state before

relinquishing control, as drivers cannot be relied upon to guarantee they are sufficiently

aware of the situation to ensure safe return-to-manual driving. Should the system be

equipped with a driver monitoring system, the decision to relinquish driving control

would have to be based on some empirical data of drivers’ capacity and behaviour, in

such conditions. For example, if the pattern of drivers’ visual attention in the lead up

to a transition shows that they were completely disengaged from the driving task, then

a take-over-request could be delayed until drivers’ attention is back on the driving

task. Otherwise, the vehicle may initiate a minimum risk manoeuvre, bringing the

vehicle to a safe position on the road. At present, this data does not exist. Therefore,

it is further motivation to investigate drivers’ capabilities and limitations in a research
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setting.

1.4.4 Human-automation interaction

Automation creates a trade-off between performance benefits and performance costs

(Bainbridge, 1983; Sheridan, 2002). As seen in the aviation domain, as the degree of

automation increases, there is an increased risk that performance following return

to manual control will be degraded (Endsley and Kiris, 1995). A meta-analysis

investigating the impact of degrees of automation (DoA) on human performance

concluded that humans are much more vulnerable to automation "failures" when the

DoA moves across the critical boundary from information acquisition and analysis to

selecting and executing a particular action (Onnasch et al., 2013). However, these are

conclusions drawn from observations of automation in control process tasks, such as

traffic control tasks and unmanned aerial vehicle routeing tasks, and it remains to be

seen if this relationship exists for vehicle automation.

Nevertheless, this apparent trade-off puts forward the paradoxical recommenda-

tion that, with increasing DoA, it is increasingly important that drivers are to some

extent kept "in-the-loop", via decision and action selection as well as action implemen-

tation (Merat and Jamson, 2008). However, this argument is at odds with the espoused

benefits of full automation, which would see drivers relieved of not only the driving

task but also of managing or supervising vehicle automation. Also, classical vigilance

studies (Mackworth, 1950) have shown that it is virtually impossible for an individual

to maintain constant attention towards a source of information that does not often

change, to monitor for any system changes, requests, or errors (Bainbridge, 1983).

This limitation manifests as interaction errors and accidents, which have motivated

much of the research on human-automation interaction (Wiener and Curry, 1980).

Mental workload and performance in the transition

One way to conceptualise performance in the transition is to consider it within the

framework of mental workload (MWL) theory (Figure 1.5; De Waard, 1996), which

follows the inverted-U function of the Yerkes-Dodson (1908) principle of optimal

arousal. Mental workload is defined as "the reaction to demand", and "the proportion of

capacity that is allocated for task performance" (De Waard, 1996). The model holds that
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Figure 1.5: Workload and performance in six regions (De Waard, 1996).

conditions of extremely low task demand and under-stimulation (region D) will lead

to decreased attention and diminished cortical arousal (Grandjean, 1979), which will

result in low-performance efficiency. Performance is optimal in region A2, where the

operator can easily cope with the task demand without changes to task performance.

In regions A1 and A3, performance is not affected, but the operator has to increase

effort to match task-demands. However, when task demands become too great, and

task-related effort cannot be maintained, performance will decline (region B) until

the high task-demand causes operator overload or fatigue, shown in region C, which

results in low-performance efficiency (Hancock and Verwey, 1997).

Though the MWL model has been discredited on many fronts in terms of its

ability to predict performance impairments (Matthews et al., 2000), task demand is

a critical factor in the development of active and passive fatigue states, the latter of

which would most likely be induced should significant aspects of the driving task be

automated (De Winter et al., 2014). To illustrate the role of MWL on performance in

the transition, let us consider an example from aviation.

The challenges presented by automation in aviation are in some ways analogous

to those emerging in vehicle automation. For many years, aircraft have contained

components that support the pilot by automating entire sub-tasks, including auto-

throttle, anti-skid braking systems and flight management systems. Compared to

ground vehicles, these can be likened to traction control, anti-lock braking system
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(ABS) and forward collision warning systems (FCW). These systems are mainly

aimed at supporting the safety intentions of the operator. However, it is the automated

systems that assume some level of control over the aircraft that have created challenges

regarding human-automation interaction, and not only concerning mode confusion

and incorrect mental models of the automated system. Automating these aspects of

the flying task does not necessarily reduce pilot workload, it simply transfers it to

other tasks such as monitoring the system for errors (Parasuraman et al., 1996). During

periods where workload demands are quite low, such as routine in-flight operations,

pilots’ monitoring behaviour has been shown to degrade (Sumwalt et al., 2002). This

becomes most critical when a pilot is expected to rapidly direct 100% attentional effort

to a task, due to a time-critical situation, such as during descent and final approach

or if an automated system malfunctions or reaches a system limit. Here, the sudden

increase in workload (moving from region A3 to B to C, in Figure 1.5), results in a

concomitant decrease in performance, which manifests as poor decision-making or

taking unsafe actions.

Similarly, should an driver who is disengaged from the driving task, be required to

resume manual control from HAD, the mental demand for redirecting attention to both

the cognitive and physical aspects of the driving task may also to lead to overload,

especially for inexperienced or untrained drivers (Merat et al., 2012). Moreover,

expecting a driver to monitor the automated system for long periods of time, while

not being in control of the vehicle, can also lead to mental overload should the driver

be unexpectedly required to attend to the driving task. Research in the aviation

domain has also shown that the longer and more frequent a pilot uses automation,

the more impaired their manual flight skills become (Wiener, 1988). The United States

Federal Aviation Administration (FAA) acknowledged this in a recent Safety Alert

For Operators (SAFO), discussing the findings of analysis done on flight operations,

that there was an increase in manual handling errors (FAA, 2013). The report states,

"continuous use of auto flight systems could lead to a degradation of a pilot’s ability to quickly

recover the aircraft from an undesired state". The SAFO recommended that operators

incorporate "emphasis of manual flight operations into both line operations and training". It

should not be taken lightly that the aviation industry is expressing such grave concern

over the effects of automation, especially as pilots are typically more highly skilled,

with more experience and operate in less complex environments than average drivers
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of ground vehicles.

However, a strict interpretation of performance from an MWL perspective assumes

a set workload requirement during a transition, where in practice it is more dynamic.

For example, traffic situations tend to change quite quickly. Therefore, there may be

instances where drivers are asked to resume manual control, but as soon as doing

so, any subsequent change in the road and traffic scenario may be associated with an

increase or decrease in MWL for the driver. Therefore, it is also important to consider

the effect of MWL in the transition in concert with the characteristics of both the

transition and what drivers are doing before period of the transition.

While tasks requiring moderate MWL have traditionally been encouraged, to

ward off the deleterious effects of underload and overload on attention (Hancock

and Verwey, 1987; Schömig et al., 2015), in the context of transitions it is not clear

whether this is sufficient to ensure a safe transition to manual driving, especially as

task characteristics vary in terms of their stimulus attributes, conceptual criteria, goal

states (what to do), and action rules (how to do it). It is clearly important, therefore, to

understand the effect of different driver activities during automation on their ability

to safely resume manual control. The following sections consider some factors known

and hypothesised to influence drivers’ performance in the transition.

1.5 Driver-based factors influencing performance in

the transition

There is a range of factors contributing to the aetiology of automation-related inter-

action errors and accidents, including insufficient or inappropriate system feedback,

misunderstanding of automation, and over-reliance on automation (Billings, 1997;

Parasuraman and Byrne, 2003; Parasuraman and Riley, 1997). In addition, a number

of inter-related psychological factors have been linked to drivers’ capacity to interact

safely with automated driving systems, including trust, mental models, situation

awareness, and the out-of-the-loop problem (Young and Stanton, 2002; Merat and

Jamson, 2009; Kircher et al., 2014; De Winter et al., 2015; Seppelt and Victor, 2016).

These will be discussed below.
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1.5.1 Trust

Automation trust can be described as "the attitude that an agent will help achieve an

individual’s goals in a situation characterised by uncertainty and vulnerability" (Lee and

See, 2004, p. 51). Trust is an important factor determining the success of human-

automation interaction, as it shapes users’ willingness to rely on automation (Lee and

See, 2004). However, it is equally important that users’ develop appropriate reliance,

as levels of trust that do not match the capabilities of the system, i.e. over trust or

distrust, may lead to misuse or disuse, which are detrimental to safety (Parasuraman

and Riley, 1997).

In their dynamic model of automation trust and reliance, Lee and See (2004)

propose that trust is formed through a dynamic interaction between the automation,

interface, operator and context, which is guided by three important elements: First,

that trust and reliance are part of a closed-loop feedback process, where a user’s

trust in automation is guided by their reliance on it, and the user’s reliance on the

automation is in turn guided by their trust in it. The second element proposes that

whether or not this trust translates into actual reliance depends on contextual factors

such as user workload and effort to engage. Third, developing appropriate trust is

highly dependent on how users’ interpret information about the automation, and,

therefore, the content and format of information displays are crucial to calibrating

trust.

1.5.2 Mental models

For an operator to have effective control over any process, they must possess a mental

model of that system (Johnson-Laird, 1980; Norman, 1983, Moray, 1990). A mental

model is an operator’s memory of a system, which is used to predict how or whether

that system will respond to different control inputs and environmental changes (Klein

and Crandall, 1995). The highest levels of situation awareness (Endsley, 1995a; see

Section 1.5.3) are achieved when the controller can anticipate the future state of the

system (Endsley and Kiris, 1995), and the accuracy of a mental model is related to

their experience and training with that system, while its weakness may be caused by

inconsistent system behaviours.
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With the introduction of semi-automated driving systems, vehicle control and

responsibility are shared between two agents, a driver and vehicle. A driver’s mental

model of that system’s functionality will inform their decision about whether or not to

intervene in particular situations. Should a driver’s mental model be inconsistent with

the actual system model, he/she may either intervene unnecessarily or worse, he/she

may fail to intervene when it is necessary (Stanton and Young, 2000; Pauwelussen and

Feenstra, 2011).

Therefore, mental models will play a crucial role in drivers’ problem solving,

judgement, decision making and abilities to plan and act, during their interactions

with an automated driving system (Beggiato and Krems, 2013). It is of utmost

importance, therefore, that drivers can develop appropriate models of the system’s

functionalities because both inappropriate intervention and active failure to intervene

present a risk to safety (Sarter and Woods, 1995).

1.5.3 Situation awareness

Situation awareness (SA) is considered one of the most important of human factors

constructs that are predictive of performance and safety (Parasuraman et a., 2008).

Humans are highly adaptable, able to solve complex problems, and have a superior

sensory system, making them highly capable drivers that can navigate effectively

(Fletcher, 2008). However, for a human to fulfil these competencies in a driving context

depends first and foremost on their awareness and understanding of the situation and

environment.

What is situation awareness?

Several attempts have been made to develop a concise definition of SA, with Endlsey’s

(1988) being the most commonly cited:

"Situation awareness is the perception of the elements in the environment within a volume

of time and space, the comprehension of their meaning, and the projection of their status

in the near future."

Endsley (1995a) elaborated on this statement to define SA on three levels: Level 1 SA

(perception) involves being aware of various elements of information in the environment
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Figure 1.6: Endlsey’s model of SA. This is a synthesis of versions she has given

in several sources, notably Endsley (1995a) and Endsley et al. (2000), in Jin, 2008.

relevant to successful task performance, such as the size, colour, location and speed

of objects. Level 2 SA (comprehension) refers to the ability to interpret the meaning,

context and significance of that information, and is integrally linked to Level 1 SA.

The third stage, Level 3 SA (prediction), refers to an ability to predict the future state

or configuration of the environmental conditions, interpreted through Level 1 and

Level 2 SA (Endsley, 1995a; Figure 1.6). SA does not only imply a driver knows what

is going on, but that they know what is going on with elements in the environment

specific to the driving task.

The levels of SA are hierarchically dependent, which means, for example, that a lack

of visual cues and proprioceptive information at (Level 1 SA) will result in inaccurate

meaning/sense making and prediction (Level 3 SA) (Ward, 2000). Conversely, an

inaccurate prediction of future situations (Level 3 SA) can lead to a misinterpretation

of the environmental context (Level 2 SA), which can lead to a false interpretation of

specific elements in the environment (Level 1 SA). Therefore, in the same way, that the

driving task requires both sufficient feed-forward and feedback elements to support

task performance, and goal attainment, so sufficient SA on all three levels is necessary

(Ward, 2000).
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Assessing situation awareness

SA has been investigated in numerous domains, to investigate human performance,

including military aviation (Endsley, 1995b), air traffic control (Endsley and Kiris, 1995),

military operations (Matthews et al., 2000), driving (Walker et al., 2004) and the process

industry (Hogg et al., 1995). Most researchers (e.g. Fracker, 1991; Sarter and Woods,

1995; Wickens, 1992) divide the measures for SA into three broad categories: (a) explicit,

(b) implicit, (c) and subjective measures. Explicit measures require individuals to report

material in memory, either retrospectively or concurrently, including freeze techniques,

such as the well-known Situation Awareness Global Assessment Technique (SAGAT;

Endsley, 1995b), which has been shown to have predictive validity. For example, in the

aviation domain, Endsley (1990) showed that SAGAT scores were indicative of pilot

performance in a simulation. Implicit measures utilise task performance to infer SA,

which makes them objective and unobtrusive, but are limited in that poor performance

may be as a result of factors other than low SA. Using subjective measures, such as

the Situation Awareness Rating Technique (SART; Taylor, 1989), SA is assessed by

self-assessment or by an observer. For example, Endsley et al. (2000) measured SA via

real-time probes in an air traffic control task and found some relationship between

SART and other SA measures but not SAGAT. While subjective measures are practical

and easy to implement, they cannot be compared across raters, and scores may be

skewed based on how good or bad operators perceived their task performance.

Despite the popularity of SA in the academic literature, there are some questions

regarding its utility and scientific validity (Flach, 1995), with some accusing SA

models of being limited by linear, information-processing theory, and providing a

false distinction between cause and effect (Chiappe et al., 2011). Dekker and Hollnagel

(2004), for example, described SA as a "folk model", lacking substance and offering

no useful explanation of how failures arise, while Sarter and Woods (1995) note that

precise definitions of SA are context-dependent, which limits its usefulness as a general

theoretical concept. Endsley (2015) recently argued that many of these criticisms have

arisen out of misconceptions or misunderstandings of the original Endsley (1995a)

model. For example, Endsley (2015) argues that many researchers (e.g. Sorensen et al.,

2010; Salmon et al., 2012; Dekker and Lutzhoft, 2004) incorrectly state that the levels

of SA in Endsley model, are linear, where they, in fact, represent ascending levels of

SA. She went on to rebut these and other ’fallacies’ by referring to a strong body of
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empirical work supporting SA as a diagnostic tool for different humans states, and as

a useful prescriptive model. Next, we consider research focused on the assessment of

SA in HAD.

Situation awareness in HAD

In a critical review of the literature, De Winter et al. (2014) argued there is a close link

between HAD and SA, based on studies of drivers’ eye movements, tests of object

detection, engaging in tasks unrelated to driving, and responses to critical incidents.

With regards to eye movements and tests of object detection and comprehension,

there is an assumption that if a driver is scanning the road environment, they will

have better SA. For engaging in tasks unrelated to driving, there is an assumption

that increased engagement in these tasks will mean lower SA, while for responses to

critical incidences, there is an assumption that the better the responses, the better the

SA.

Eye movements In terms of drivers’ eye movements, a few studies (e.g. Carsten et

al., 2012; Damböck et al., 2013) have found that, compared to manual driving, drivers

in HAD were overwhelmingly less likely to monitor the road, especially the centre

of the visual field, where accidents are more likely to occur. Carsten et al. (2012), for

example, found that, for the 24 drivers who did not focus on the DVD player during

HAD, their visual attention was concentrated on the central region of the road only

53% of the time, compared to 72% in manual driving. While these results do not

necessarily allow us to conclude specifically on maintenance or loss of SA, they do

give some indication that drivers under automation are more inclined to lose SA for

the driving task/environment during HAD, only because they are not monitoring the

driving task. Moreover, it is well established that the more visual attention is paid to

the road scene so the potential for higher SA increases (Green, 1999; Chaparro et al.,

1999), therefore, it follows that the reverse would also be true. However, few studies

have examined eye gaze behaviour for drivers with varying levels of engagement

with the driving task during HAD, which is pertinent given the range of different

tasks/activities that drivers could engage with during automation.

One example is that of Merat et al. (2014), who analysed drivers’ reaction times

after automation disengaged automatically if they were not looking at the road centre
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for longer than 10 s. The authors found that there was a 10-15 s lag time between

when automation disengaged and drivers’ resuming of control. In another driving

simulator study, Gold et al. (2013) showed that, in-between a take-over request and

resumption of control, drivers tended to fixate on side mirrors, which suggests that

this time is used regain SA before resuming control. Lorenz et al. (2014) reporting that

drivers are quick to direct visual attention to the road scene but struggle to instantly

understand the situation. However, the precise eye movement patterns underlying the

process of SA recovery in the transition for drivers with varying levels of SA is not

clear, and deserve further investigation.

Tests of object detection There are conflicting conclusions regarding the impact

of vehicle automation on driver SA when based on tests of object detection. For

the most part, these discrepancies can be attributed to differences in methodological

approaches and interpretation of SA results. For instance, in their meta-analysis of SA

and HAD, with tests of object detection and comprehension, De Winter et al. (2014)

analysed studies by Davis et al. (2008) and McDowell et al. (2008) and concluded

that HAD can result in improved SA compared to manual driving, as drivers in HAD

were able to detect more targets in the road scene. It is curious, though, that the

authors drew this conclusion for SA in HAD, as the studies were on military convoy

drivers that had to detect targets in the road scene, and not anything pertaining to the

environment related to the driving task. It is incorrect to conclude on SA if the task

used to measure it does not in any way form part of what is being investigated in the

first place. The object detection task was not related to performance in the driving

task and, therefore, it is tenuous to assume that maintaining SA in one task implies a

maintained SA in another. Other studies have come to different conclusions on SA.

Biondi et al. (2014) used a surprise recognition memory task developed by Strayer

et al. (2003), to assess the impact of automation on SA during a drive, which is an

explicit retrospective measure of SA. Using a between-subjects design, the authors found

that drivers in HAD were able to recall fewer detailed features in the environment

than those in the manual driving group. This is an interesting means to probe SA

without imposing additional workload during the task. Its utility is limited, however,

as participants may intentionally memorise features in the road scene if they suspect

they might be asked about these at a point in the future. Moreover, it is difficult to

draw conclusions on task-specific SA with a metric designed to assess general SA.
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Non-driving related activities There is a consensus in the literature that HAD

encourages higher uptake of non-driving related activities, compared to manual

driving. Carsten et al. (2012) report that, during HAD, drivers were more likely to use

a DVD player than during manual driving (32.5% vs 2.6% of the time) and also more

likely to use the radio (54.1% vs. 41.4% of the time) and even read a magazine (9%

of the time). This is confirmed by other studies, with Llaneras et al. (2013) finding

that, during HAD, half of the participants texted or emailed during a 1.5h-2h drive.

The authors found that participants engaged in a number of other tasks during HAD

including eating, reaching for an item in the rear compartment, dialling and talking on

the cell phone. The fact that drivers chose to partake in tasks unrelated to driving does

not necessarily reflect the extent to which SA has been lost, or indeed that they have

impaired SA at all. As with measures of eye movements, it simply gives an indication

of the extent to which SA could possibly be lost. A further limitation of this method is

that the authors do not link the type of reaction to any safety or performance-related

outcomes, which would be useful to form a holistic view of the importance of SA to

performance in the transition.

Reactions to critical events Measuring drivers’ reactions to critical events while

in HAD has become a standard methodology for the assessment of the impact of HAD

on performance. As part of the CityMobil project, Merat and Jamson (2008) examined

driver reactions to a number of ’critical’ incidents, including merger from the left,

an oncoming car turning across the vehicle path, the presence of traffic lights, and

the presence of a parked car. Drivers’ responses in manual driving were compared

to those in HAD, where a critical incident triggered automation disengagement and

the driver was expected to respond. The authors used a measure of ’anticipation’,

defined as drivers’ ability to predict and understand the behaviour of traffic during

these critical events, to conclude on drivers’ SA. Anticipation was measured as the

difference in time between the lead car’s brake lights coming into sight and when

drivers depressed their brake pedal. Results showed that, for the three longitudinal

critical events, drivers in the automated driving condition braked on average 1.5 s

later than in the manual driving condition. In the lateral critical event (parked car),

28 of the 38 drivers in the automated driving condition braked after the collision

warning alarm was emitted. One possible explanation is that drivers were less aware

of the unfolding events. However, the authors suggest it may also be because drivers
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over-relied on the automated system, concluding that the use of an automated driving

system may reduce drivers’ situational awareness and may also cause drivers to

become complacent behind the wheel.

While it is possible to make inferences about the state of drivers’ SA, there are

a number of factors in the design of these critical events which can influence how

drivers react. These include the time budget within which a driver is required to

resume control, the road and traffic scenario and the way in which automation status

and take-over request is communicated, and are discussed in Section 1.6.

1.5.4 The out-of-the-loop problem

A key underlying factor contributing to the issues outlined above is the out-of-the-

loop (OoTL) performance problem (Kaber and Endsley, 2003). According to Kienle

et al. (2009), a driver is considered OoTL when they are "not immediately aware of

the vehicle and the road traffic situation because they are not actively monitoring, making

decisions or providing input to the driving task". Therefore, OoTL refers to a state

where an operator loses awareness of the system state and external situation due

to limited human-system interaction (Endsley and Kiris, 1996). This is typified by

a reduced ability for an operator to re-enter the system control loop and resume

manual control. In this sense, OoTL pertains more to the state of the system than the

state of other elements in the environment, which is the focus of SA. However, these

are not mutually exclusive. In the first instance, humans are poor supervisors and

therefore not efficient at detecting system errors (Parasuraman and Riley, 2007). Also,

in the event of an automation failure, the time it would take to re-orient an OoTL

operator to both the system state and the task at hand would most likely result in

either a diminished effectiveness of the task or even a total failure to complete the task

(Kaber and Endsley, 2003). The concept of an OoTL state offers an insight into the

performance consequences of automation. However, it does not incorporate aspects

related to automation-induced complacency and automation bias, which plays a key

role in the development of the OoTL state (Parasuraman and Manzey, 2010).
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1.5.5 Complacency and automation bias

Parasuraman and Manzey (2010) describe complacency as an attention allocation

strategy, where automated tasks are neglected in favour of manual tasks, and which is

comprised of trust, confidence, reliance, and safety-related complacency (Parasuraman

et al., 1992). Automation bias, however, refers to omission or commission errors made

by operators, essentially a tendency towards over-reliance on automation (Parasura-

man and Manzey, 2010). These phenomena highlight issues with imperfect automation

and help explain why drivers might experience difficulties when automation does not

function as it should. To better understand these regarding performance consequences,

Parasuraman and Manzey (2010) developed an integrated model of complacency and

automation bias (Figure 1.7).404 June 2010 - Human Factors
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Figure 1.7: An integrated model of complacency and automation bias (Parasura-

man and Manzey, 2010).

The model consists of three critical features: 1) it distinguishes between two

aspects of complacency and automation bias, referred to as "complacency potential"

and "attentional bias" in information processing (Singh et al. 1993a, 1993b), 2) the

differentiation between automation-induced attentional phenomena and its possible

performance consequences, and 3) two feedback loops reflecting the dynamic and

adaptive nature of complacency and automation bias (Manzey and Bahner, 2005).

The authors conceive complacency potential as a tendency to react in a less attentive

manner when interacting with a particular automated system, which is influenced
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by system properties (e.g. perceived reliability and consistency) and also individual

characteristics of the operator (e.g. attitudes and personality). These factors are

thought to have a much stronger influence over complacency when task load is

high and, therefore, related to attentional bias (task prioritisation and allocation of

attentional resources). These two phenomena lead to the loss of SA, which manifests

as a performance consequence should automation fail, but has no direct performance

consequence if automation functions normally (Parasuraman and Manzey, 2010).

The presence of positive and negative feedback loops in the model implies that

performance consequences are not due to a lack of appropriate system competency or

knowledge. While the model does account for the influence of an individuals’ state

on attentional bias, the authors provide no explanation for how different operator

and motivational states might affect performance consequences. So while the model

provides a coherent account of the role of complacency and attention bias in the loss

of SA, and, therefore ,performance consequences, it is limited in its ability to account

for the exact role of drivers’ engagement with the driving task, nor does the original

description of the OoTL phenomenon, described in the previous section. A possible

solution to this shortfall is to combine these concepts to form a view of interaction

regarding different levels of engagement with the driving task.

For instance, Banks and Stanton (2014) used previous work on human-automation

interaction to theorise four states of engagement with a driving task, across a combi-

nation of in/out-of-the-loop and active/passive states (Table 1.4). While plausible, the

authors provide no empirical results to validate these different states concerning HAD.

They also only refer to driver state regarding the driving task and make no mention of

the impact of arousal on these states. For instance, the Out-of-the-loop & Passive state

does not distinguish between a driver who is cognitively engaged in a non-driving

related task and one who is mind-wandering. Moreover, tasks vary widely regarding

their cognitive, visual, and auditory loads. Therefore, if interacting with automated

driving systems could give rise to these different states of engagement, then it is vital

to establish exactly what these are and what their implications are for a drivers’ ability

to resume control. This is key to developing appropriate strategies for ensuring drivers

safely and efficiently re-engage in manual driving. For example, human-machine

systems that emphasise either situation-relevant information or haptic vehicle control

support during the transition, or both.
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Table 1.4: States of engagement with a driving task (Banks and Stanton, 2014).

In-the-loop Out-of-the-loop

Active The driver is in full control of the vehicle and

actively engaged in the driving task.

The driver is in full control of the vehicle but

showing characteristics of being out-of-the-loop

e.g. driving without attention.

Passive The driver is no longer in control of the vehicle

but remains vigilant to the driving task.

The driver is no longer in control of the vehicle

and becomes desensitised to the driving task.

1.6 Vehicle/Environment-based factors influencing

performance in the transition

There are a number of vehicle/environment-based factors shown to influence driver

performance in the transition, including the transition time budget, the design of the

HMI, and the road and traffic situation.

1.6.1 Time budget

A primary area of interest in the study of transitions in HAD in recent years is the

time it takes for drivers to resume manual control given a particular time budget or

lead time (e.g. Damböck et al., 2012; Gold et al., 2013; Naujoks et al., 2014; Zeeb et

al., 2015; Payre et al., 2016). Damböck et al. (2012) was the first to systematically vary

the time budget available to drivers following a take-over request. Comparing time

budgets of 4 s, 5 s, 6 s, and 8 s, the authors found that, compared to when in manual

control, drivers crashed significantly more frequently in all time budget conditions

except for the 8 s condition. Gold et al. (2013) examined driver behaviour following

an auditory take-over request at either 5 s or 7 s time-to-collisions, with a stationary

vehicle in the lane ahead. Results were compared to a baseline group that performed

the same task but in manual driving. The Gold et al. study provides a detailed account

of behavioural responses to different take-over times (see Figure 1.8). Drivers with a

shorter time budget (5 s) were able to react faster in all considered variables compared

to drivers given a longer time budget (7 s), but they tended to have fewer glances

at the rear and side mirrors before a lane change and were also less likely to use an

indicator. Therefore, drivers who were given a 5 s time budget showed more erratic
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Figure 1.8: Reaction sequences in the Gold et al. (2014) study.

behaviour following a take-over.

Using a similar rear-end near-crash situation, van den Beukel and van der Voort

(2013) found that, when given time budgets of 1.5 s and 2.8 s, drivers in in 47.5% and

12.5% of cases, respectively, were unable to avoid colliding with a braking lead vehicle.

Zeeb et al. (2015) found similar crash rates, where 45% of drivers who were given a

time budget of 4.9 s crashed with a lead vehicle, and where 15% of drivers given a

6.6 s time budget, crashed. These studies clearly demonstrate that, in time-pressured

take-over scenarios, drivers struggle to resume vehicle control and resolve the critically

of the situation.

However, the motivation of focusing on driver responses given different time

budgets arises from a need to define operational and technical parameters for the

design of automated driving systems, which, as pointed out by Larsson (2013),

provides only a narrow view of how drivers interact with their automated driving

system. This is especially true considering that some other external factors in the

transition scenario vary between studies. This limits our understanding of deeper

behavioural adaptations brought about by such system interactions, and, therefore,

how they should be designed to ensure safe and efficient interactions.
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1.6.2 Human-Machine Interface (HMI)

The Human-Machine Interface (HMI) is used to provide system feedback to users,

which is argued to be important for appropriate human-automation interactions

(Norman, 1990). Incorrect or insufficient system feedback could result in drivers

developing inaccurate mental models, which could lead to errors in decision or action

(Sarter and Woods, 1995). To ensure that feedback is both correct and sufficient,

Norman (1990) proposed a set of four design criteria for automation HMIs, as follows:

"Appropriate design should (1) assume the existence of error, (2) it should continually provide

feedback, (3) it should continually interact with operators in an effective manner, and (4) it

should allow for the worst of situations" (Norman, 1990).

The design of feedback and warning systems for automated vehicles typically

communicate information in range of modalities (for a review, see Manca et al., 2015),

sequences (Radlmayr et al., 2014), and with various meanings (Lorenz et al., 2014;

Beller et al., 2013).

The nature of the HMI has been shown to have some mediating effect on per-

formance in the transition. For example, concerning modality, Naujoks et al. (2014)

assessed driver performance following ’visual’ and ’visual + auditory’ take-over re-

quests in three different traffic scenarios. Reaction time, measured as hands on the

steering wheel, was significantly higher for the ’visual’ group compared to the ’visual +

auditory’ group (6.19 s vs. 2.29 s). Similarly, both maximum lateral position and SDLP

were significantly higher for the ’visual’ group compared to the ’visual + auditory’

(0.84 m vs. 0.43 m and 0.30 m vs. 0.15 m, respectively). Differences between modality

conditions were more pronounced the more difficult the traffic scenario. Lee et al.

(2002) found that an auditory warning elicited significantly shorter braking times,

irrespective of whether participants were distracted or not.

Petermeijer et al. (2015) investigated the usefulness of vibrotactile stimuli embed-

ded in drivers’ seats to elicit faster take-over time. The authors found that, when the

vibrations were presented in a static pattern, steering wheel touch and steering input

reaction times were approximately 200 ms faster than when presented in a dynamic

pattern, which indicated a directional cue for a lane change manoeuvre However,

the study did not include a non-vibrotactile condition against which to evaluate the

usefulness of vibrotactile warnings.
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Lorenz et al. (2014) investigated two augmented reality (AR) concepts for warnings

and information during the transition. An "AR red" concept projected a restricted

corridor directly onto the road scene, showing the driver where they must not steer

through, while an "AR green" concept displayed a safe corridor showing the driver

where they can steer through, and a control condition provided no AR information.

There was no difference between the two concepts regarding take-over time. However,

drivers in the "AR green" concept had better vehicle control, as measured by steering

trajectories, and longitudinal and lateral accelerations.

In a driving simulator study, Beller et al. (2013) used symbols of automation

uncertainty in an attempt to improve driver-automation interaction. The authors

compared the use of automation uncertainty versus no uncertainty information in

high and low automation reliability conditions and found that displaying automation

uncertainty increased time-to-collision in the case of automation failure. These studies

confirmed the importance of system feedback during the transition in improving not

only performance but also acceptance of and trust in the automated system.

1.6.3 Road and traffic scenario

There are some road and traffic situations that have been investigated in studies of

the transition and typically reflect actual or predicted limitations or boundaries, of

an automated driving system. These include situations where the vehicle is reaching

a target destination, surrounding vehicles or road works obstruct intended journey

path, technical/sensor failure, and a system limitation in dealing with unaccounted

for road and traffic scenarios, such as an accident or absence of road infrastructure

supporting the automation.

Radlmayr et al. (2014) investigated the effect of varying traffic situations and

non-driving related tasks on the process and quality of a system-initiated take-over.

The experiment was conducted in a high-fidelity simulator and used the standardised

visual Surrogate Reference Task (SuRT) and the cognitive n-back task to simulate

the non-driving related tasks. The study included four traffic situations each with

a time budget of 7 s: In situation No. 1, an obstacle appeared in the middle lane,

while the right and left lane were blocked by vehicles at the time of the take-over

request (TOR). In situation No. 2, an obstacle appeared in the right lane while no other
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vehicles were present during the situation. In situation No. 3, the obstacle appeared

on the left lane. Situation No. 4 closely resembled No. 1, except that the two adjacent

lanes were not blocked. The authors used a range of dependent variables to infer

quality of the transition. These included take-over time, longitudinal acceleration,

time to collision (TTC), the total number of collisions during take-over, results from

a Detection Response Task (DRT) and the subjective rating. The authors concluded

that traffic scenario and traffic density had a substantial effect on take-over quality

in a highway setting. Similarly, Kircher et al. (2014) found that drivers’ response

times were moderated by whether the driver was pre-warned and by the type of

scenario. Traffic density has been shown to influence how long drivers need to regain

situation awareness and resume control (Jamson et al., 2013; Gold et al., 2016). These

suggest that performance in the transition is dependent on the complexity of the

traffic scenario. However, Naujoks et al. (2014) found no effect of traffic scenarios in a

take-over event.

1.7 Summary and key research gaps

Impaired performance during in human-automation interaction is typically attributed

to the out-of-the-loop (OoTL) phenomenon (Endsley and Kiris, 1995). However, depending

on the context, the term "loop" has been used to refer to one of a range of factors,

including varying degrees of physical control, cognitive control, awareness, and feed-

back. Moreover, it may be concluded that some of the key gaps in our knowledge on

how drivers interact with automated driving systems can be defined in the following

broad terms:

• With the appeal of automation to free drivers’ attention in the vehicle, the

research community has focused on understanding the impact of engagement

in one or two non-driving related secondary tasks at a time, on behaviour and

performance. However, given the importance of SA to safe human-automation

interaction, it is notable that little research has compared the effects of a range of

conditions that systematically vary the impact of drivers’ SA during automation

to investigate drivers’ performance during the resumption of manual control.

• A common approach in assessing driver behaviour during automation is to
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employ metrics traditionally used in the study of manual driving, which, as

discussed in the following chapters, often fall short of what is necessary to

quantify not only how drivers interact with automation, but also the quality

of that interaction. It may be concluded that there has been no consistently

applied objective measure of the quality of performance after the transition.

SAE International (2014, p. 7) states that performance is taken to be "the timely,

safe, and correct performance of the dynamic driving task for the prevailing circum-

stances", yet quite how studies define this is either scarcely reported, and varies

widely. Some studies have focused on take-over time as a measure (Gold et al.,

2014), while others have considered minimum time to collision (TTC; Gold et

al., 2013), minimum time headway (Merat and Jamson, 2009), and maximum

accelerations (Zeeb et al., 2016; Hergeth et al., 2016). However, take-over time

and other response-time based measures do not detail the quality of vehicle

control following the transition, and while this can be described in part by TTC

and vehicle-based measures, their interpretation is somewhat constrained by

the kinematics of the scenario. Therefore, a deeper understanding of how these

performance measures should be interpreted in the context of the transition is

required.

Clearly, these issues have contributed to the research community’s inability to

concur on a definition of an out-of-the-loop driver, how this state is assessed and

classified, and what behavioural response profiles reflect an efficient and safe tran-

sition to manual control. If we can understand the nature of the OoTL performance

problem, and how this interacts with SA, we will be better able to predict performance

breakdowns in different situations, which will inform the design of more human-

centered automated driving systems that augment drivers’ capabilities and mitigate

their limitations.
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1.8 Research questions and thesis overview

The aim of this thesis is to investigate the nature of the out-of-the-loop phenomenon

in highly automated driving, and its effect on driver behaviour during automated

driving and the transition from automated to manual control. In particular, the thesis

seeks to address the following questions:

1. How does automation affect drivers’ performance in transition situations re-

quiring control- and tactical-level responses?

2. How does automation affect drivers’ behaviour in automation compared to

manual driving?

3. What is the pattern of drivers’ visual attention distribution during automa-

tion?

4. How does automation affect drivers’ visual attention distribution in the tran-

sition?

5. How does automation affect drivers’ perceptual-motor performance during

and immediately after the transition?

To induce a range of OoTL states during HAD, drivers were exposed to various

OoTL manipulations. These manipulations varied regarding drivers’ secondary task

engagement as well as the amount of visual information available to drivers from the

system and road environment.

As outlined in Figure 1.9, the overall structure of the study takes the form of seven

chapters.
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Figure 1.9: Thesis structure.
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resumption of control
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• Chapter two reports on a study that sought to establish a realistic highway use-

case for studying human-automation interaction, as well as a methodology to

probe drivers’ ability to respond to critical road events following the resumption

of control from automation. To vary driver workload during the transition while

maintaining the same use-case, drivers were given directional cues for a lane

change manoeuvre, based on the colour of the lead vehicle.

• Chapter three details the refinement of the use-case, and reports on the develop-

ment of a series of experimental conditions designed to induce varying degrees

of driver engagement and interaction with the driving task (OoTL manipula-

tions). Using analysis of eye gaze dispersion, it goes on to discuss how each

condition affects driver information needs during automation and the transition

of control.

• Chapter four presents the analysis of driver eye-gaze dispersion during automa-

tion and in the transition, to assess the effect of the OoTL manipulations on

visual attention allocation, comparing results to manual driving.

• Chapter five presents the analysis of driver eye-fixations to assess driver visual

attention allocation before and during the transition and finds a different pattern

of visual attention distribution for drivers who crash compared to those who do

not.

• Chapter six reports on an analysis of drivers’ perceptual-motor performance

during critical events in automated driving and finds that drivers respond to the

kinematic urgency of the scenario.

• Chapter seven summarises and discusses the work presented in this thesis, and

provides some questions and directions for further work.
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CHAPTER 2

ENGAGING WITH HIGHLY AUTOMATED

DRIVING: TO BE OR NOT TO BE IN THE LOOP?

ABSTRACT This desktop driving simulator study investigated the effect of

engagement in a reading task during vehicle automation on drivers’ ability to

resume manual control and successfully avoid an impending collision. To avoid

collision with the stationary vehicle, drivers were required to regain control of

the automated vehicle and change lane. The decision-making element of this

lane change was manipulated by asking drivers to move into the lane they saw

fit (left or right) or to use the colour of the stationary vehicle as a rule (blue -

left, red - right). Drivers’ reaction to the stationary vehicle in manual control

was compared to two automation conditions: (i) when drivers were engaged

and observing the road during automation, and (ii) when they were reading a

piece of text on an iPad during automation. Overall, findings suggest that drivers

experiencing automation were slower to identify the potential collision scenario,

but once identified the collision was evaded more erratically and at a faster pace

than when drivers were in manual control of the vehicle. Short (1-minute) periods

of automation used in this study did not appear to impede drivers’ ability to

complete simple operational and tactical-level driving tasks, following a system

initiated take-over request. Results suggest that until there is an effective strategy

to help drivers regain SA during resumption of control from Highly Automated

Driving, they should be encouraged to remain in the driving loop.

2.1 Introduction

The promise of ’driverless vehicles’ is slowly being realised, with testing under way by

a number of major manufactures who have committed to bringing the first generation
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of such systems to market by 2020 (Merat et al., 2014). Current Advanced Driver

Assistance Systems (ADAS), such as Adaptive Cruise Control (ACC), still require the

driver to be in the control loop. These Level 1, function-specific automation systems

(see SAE, 2014), are evolving into Level 2, combined-function automation and on to

more intelligent Level 3, limited self-driving automation, or Highly Automated Driving

(HAD), which will see necessary driver intervention only in certain situations that

cannot be managed by the system. The concern from a human factors perspective is

that this limited driver-state interaction may take drivers out-of-the-loop (OoTL), which

Endsley and Kiris (1996) argue is a state induced by limited human-system interaction,

causing an operator to lose awareness of the system state. The deleterious performance

effects of the OoTL state have led some from cognate disciplines (Parasuraman and

Riley, 2007) to suggest that HAD should be designed such that drivers are kept engaged

and in the-loop for best performance and able to resume control of automation when

system limitations are reached (Merat and Lee, 2012; de Waard et al., 1999), while

others have argued that drivers should not be expected to continuously monitor the

road (Jacoby and Schuster, 1997).

These opposing views may be due in part to the lack of a clear definition of what

constitutes an OoTL state. Also, it is not currently clear what the ’loop’ refers to, an

information processing control loop (attentive to the driving task) or a sensory-motor

control loop (vehicle control), or both. Previous investigations into drivers’ ability

to respond to Level 2 automation failures have explored the effects of workload and

situation awareness (Jamson et al., 2013; Merat et al., 2012) and time budgets for

resuming control (Gold and Bengler, 2014; Damböck et al., 2012), but none have

compared the above distinction, or considered possible effects of different degrees

of driver engagement with the driving task during HAD. It is important to have a

sound theoretical basis for the OoTL concept, as it is frequently referred to in studies

on HAD to explain drivers’ ability to safely resume control from automation.

Another concern is the impact of scenario difficulty on drivers’ return-to-manual

performance, following system disengagement. With a few exceptions (e.g. Kircher,

Larsson and Hultgren, 2013), studies have tended to examine take-overs for scenar-

ios requiring operational-level responses, which are driving tasks that only require

immediate longitudinal and lateral control by the driver (see Michon’s levels of

driving tasks, Michon, 1985). Given that the system limits which enforce a manual
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take-over are likely to be derived from more difficult scenarios than just those at

an operational-level (e.g. road works, exiting a busy motor way), it is relevant to

examine how drivers respond to higher, more tactical-level scenarios, which involve

an element of rule-based decision making processing. However, there is only a very

limited understanding of drivers’ behavioural response to these levels in the context

of HAD. The objective of this study was therefore to investigate the effect of varying

degrees of engagement with the driving task, on behavioural responses to a potential

collision scenario, introducing rule-based scenarios of varying workload to assess

whether there were any behavioural differences between operational and tactical-level

driving tasks. As a result, two hypotheses are evaluated: (a) the further drivers are

disengaged from the driving task the worse their ability to respond appropriately to a

potential collision scenario; (b) the greater the workload imposed on the driver during

automation disengagement the worse their ability to resume control.

2.2 Methodology

2.2.1 Participants

Following approval from the University of Leeds Research Ethics Committee, 16

participants (8 male) between the ages of 19 and 26 (M = 21, SD = 1.54) were recruited

via the driving simulator database and were paid £10 for taking part. No other

particular criteria were used for recruiting participants, but they were required to have

had a driving licence for at least one year and drive at least 500 miles per year.

2.2.2 Apparatus

This study was performed using the University of Leeds portable simulator (Figure

2.1, which was operated on a HP Z400 workstation running Windows 7, using custom

made software. The visual simulation imagery was displayed on a Samsung 40"

wide-screen 1920x1080 monitor, rendered at 60 Hz. Vehicle control inputs were via a

Logitech G27 dual-motor force feedback steering wheel and pedals.

During manual driving, participants were entirely responsible for the manipulation

of standard longitudinal (accelerator and brake pedals) and lateral (steering wheel)
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Figure 2.1: Driving simulator set-up. Central display unit (inset) indicated

automation status. A ’beep’ tone alerted drivers when automation was turned

on/off.

Figure 2.2: Schematic representation of the driving scenario.

controls. During HAD, the longitudinal controller was effectively an ACC with a

default target speed of 67mph (108 km/h) with target headway fixed at 1.5 seconds,

which could not be adjusted by the driver. The lateral controller resembled a Lane

Keeping System (LKS) and, on activation, attempted to maintain the vehicle in the

centre of the current lane occupied. HAD was activated and deactivated automatically

by the simulation. Drivers were notified of changes to automation state with a

non-intrusive ’beep’ tone.
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2.2.3 Design and Procedure

A within-subjects 3x3 repeated-measures design was used, with all participants

completing all conditions. The independent variables were Drive (manual, engaged

automated, distracted automated) and Load (no rule, congruent rule, incongruent

rule).

Upon arrival, participants were briefed on the requirements of the study and

their ethical rights. After completion of informed consent, participants were given

the opportunity to practice manual driving and HAD within a free-flowing 3-lane

motorway. Drivers were asked to ensure safe operation of the vehicle, including timely

take-over from HAD, if necessary.

In the experimental session, drivers initiated a trial by depressing the accelerator

pedal. All trials began in manual driving behind a lead vehicle travelling in the middle

lane at 67mph (108km/h). As shown in Figure 2.2, after 30 seconds of manual driving,

one of three 60 second conditions was presented in a counter-balanced order: In the

manual condition, drivers had full manual control of the vehicle. This corresponded

to an Active & In-the-loop state. In the engaged automation condition, participants

observed the driving scene but took their hands away from the steering wheel and

foot off the accelerator pedal while the automation was active. This aligned with a

Passive & In-the-loop state. In the distracted automation condition, drivers were asked

to read aloud a selection of text that was displayed on an iPad located to the bottom

left of the steering wheel (Figure 2.1). This trial was designed to induce a Passive &

Out-of-the-loop state.

After this 60 second period, the lead vehicle changed lane (to the right or left) to

reveal a stationary vehicle obstructing the middle lane. Participants were instructed

to change lane to avoid colliding with this stranded vehicle. When automation was

activated, this manoeuvre of the lead vehicle coincided with the deactivation of

automation. Four ’ghost’ trials were also randomly assigned during the experiment,

where a stranded vehicle did not exist in the middle lane.

To induce different loads after the lead vehicle changed lanes, drivers’ lane

changing manoeuvre was governed by one of three rules. In the no rule condi-

tion, participants were free to choose the direction of travel to avoid collision with the

stranded vehicle. This only entailed a control element and was therefore considered
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Figure 2.3: Representation of the congruous and incongruous rule conditions.

an operational-level driving task. In the congruous and incongruous rule conditions,

participants were required to change lane in a particular direction, depending on

the colour of the stationary vehicle (green = left, red = right). These were therefore

considered to be tactical-level driving tasks. In the congruous rule condition, the direc-

tion in which the lead vehicle changed lane was the same as the direction instructed

by the rule, while in the incongruous rule condition the opposite was true (Figure

2.3). After passing the stranded vehicle, manual driving continued for a further 30

seconds, after which the driving scene faded out and the trial was over. The next

trial then began as soon as drivers depressed the accelerator pedal. All participants

completed the trials involving the no rule condition first, followed by those involving

the two rule conditions. This was to ensure that the rules for the congruous and

incongruous rule conditions did not confuse participants during the no rule condition.

Based on estimations of future sensor ranges, and results from previous studies (Gold

and Bengler, 2014; Damböck et al., 2012) the Time To Collision (TTC) between the

stationary vehicle and the simulator vehicle was 6.5 seconds. In order to control for

TTC in manual driving, drivers were required to maintain a set headway of 42m,

using chevron markings on the roadway as a guide. Participants completed 18 trials

in total and the time taken to complete the experiment was around 1.5 hours.

A number of dependent variables were used to study performance; maximum

lateral and longitudinal acceleration, time to first steer and time to lane change. A

distribution of how drivers reacted to avoid the collision: steering, braking, steering

and braking, was also noted. Measures of maximum lateral and longitudinal accelera-

tion were taken from when the stationary vehicle was revealed, until the end of the

trial, and were used as indicators of stability of control. Time to first steer considered

the time from when the stationary vehicle was revealed, until the first steering input
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greater than 2◦ was applied. Time to lane change refers to the time from when the

stationary vehicle was revealed until all four corners of a driver’s vehicle were in an

adjacent lane.

2.3 Results and Discussion

A 3x3 repeated measures Analysis of Variance (ANOVA) was conducted on maximum

lateral and longitudinal acceleration comparing the values in the three Drives (manual,

engaged automation, and distracted automation) and at the three Load levels (no

rule, congruous rule and incongruous rule). Results showed a significant main effect

of Drive on maximum lateral acceleration [F(2,14) =15.71, P<.001, η2
p= .51; Figure

2.4] and post-hoc Bonferroni tests showed higher maximum lateral accelerations

for both engaged automation and distracted automation drives, compared to the

manual drive (p=.008 and p<.001, respectively). Vehicle control, as revealed by lateral

acceleration, was, therefore, more erratic the further drivers were out-of-the-loop.

Comparison between automation drives was not significant. There were no main

effects of maximum longitudinal acceleration and also no interaction effects.

Figure 2.4: Maximum lateral acceleration for Drive (Error bars = SE, * = significant

difference between conditions).

To observe how drivers responded to a potential collision, time to first steer and

time to lane change were subjected to a 3x3 ANOVA, with the same factors as above.

There was a significant effect of Drive on time to first steer [F(2,14) =9.98, p=.001, η2
p=

.39; Figure 2.5] with post-hoc Bonferroni tests showing that, compared to manual
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Table 2.1: Brake and Steer combinations for Drive.

Manual Engaged Automation Distracted Automation

Steer Only 72.9 % 81.25 % 70.8 %

Steer and Brake 27.1 % 18.75 % 29.2 %

driving, drivers took significantly longer to generate their first steering manoeuvre

during both engaged automation (p=.002) and distracted automation (p=.037). There

was no significant effect of Load and there was also no interaction effect present

between Drive and Load on time to first steer.

Figure 2.5: Time to first steer for Drive (Error bars = SE, * = significant difference

between conditions).

The effect of Drive on time to lane change approached significance [F(2,14) =3.60,

p=.058, η2
p= .19; Figure 2.6]. There was no significant effect of Load on time to lane

change was no interaction between Drive and Load. Taken together, these results

suggest that, regardless of whether they were distracted or not, automation delayed

drivers’ first steering input. However, when observing the scene during automation,

drivers’ response to the collision seems to have been more calculated and more under

their control, taking time to steer to the adjacent lane, with less lateral acceleration.

When engaged in the reading task, drivers seem to have simply responded to the

beep denoting the disengagement of automation, changing lane quickly and more

erratically, as indicated by their maximum lateral deviation.
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Figure 2.6: Time to lane change for Drive (Error bars = SE, * = significant difference

between conditions).

This difference in tactic between engaged and distracted automation is also shown

in the steering and braking behaviour (Table 2.1), where similar results were seen

between engaged automation and manual driving, different to that of distracted

automation. Whilst in 70.8% and 72.9% of cases in the manual and distracted automa-

tion drives participants avoided the obstacle by only steering into the next lane, for

engaged automation the proportion of cases where participants steered increased to

81.28%. Chi square tests revealed that these differences were not significant, however.

There were no collisions with the stationary vehicle across all trials. In terms of

decision-making behaviour based on the condition rules, for the no rule condition,

in 95.83% of cases drivers chose to follow the lead vehicle to avoid a collision, in line

with similar findings by Malaterre et al. (1988). Drivers managed to adhere to the

rule in 100% and 98% of cases for the congruent and incongruent rule conditions,

respectively.

2.4 Conclusions

There has been a great deal of interest regarding how to safely re-engage drivers in

manual driving following a period of HAD (Merat et al., 2014), with the out-of-the-

loop phenomenon cited as a primary contributor to impaired performance. The main

objective of the current study was to investigate the behavioural differences that might

exist between different levels of engagement with a driving task, and whether and to
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what extent these interact with operational and tactical-level driving tasks (Michon,

1985).

Apart from drivers braking less often in the engaged automation than in distracted

automation and manual conditions, which showed similar response profiles, our

results showed that there was no difference between the manual and engaged automa-

tion conditions, across all variables. Though, since the trials were rather stereotypical,

it is likely that, with repeated exposure, drivers increasingly learned how to deal

with the critical events. However, as found in previous studies (Merat et al., 2012),

compared to manual driving, drivers’ response was significantly slower following

brief 1-minute periods of automated driving, even during engaged automation, where

drivers were focused on the road scene immediately prior to the critical event. In

addition, automation seems also to have impacted on the speed and quality of lane

changes, with lane changes completed at a faster rate once initiated, and also with

significantly higher maximal lateral accelerations for both automation conditions,

compared to manual. This demonstrates that the key factor affecting the response

is whether the driver is actively engaged in vehicle control (i.e., an active part of the

sensory-motor control loop).

The OoTL concept seems, therefore, to encompass a strong element of physical

control, with the effects of cognitive control possibly a more subtle addition. Certainly,

the possible priming of the repeated-measures design suggests that any observed

effects of being out of the cognitive control loop are conservative and, therefore,

deserve more focused investigation. To assist in this, future studies on HAD making

reference to the OoTL phenomenon should attempt to distinguish which loop is being

addressed. Our results show that what is most important is whether the driver is

in vehicle control and that this aspect should form the basis for any strategies to

re-engage the driver in manual control. Nevertheless, humans are poor supervisors

(Parasuraman and Riley, 2007) and therefore aspects of information processing control

in HAD needs to be scrutinised by further studies to establish whether the observed

behaviour is valid for more difficult scenarios, under shorter TTCs and after longer

periods of HAD. Finally, in the same way that steering entropy has benefited our

understanding of driver distraction, there is a pressing need to develop an objective

measure of the quality and safety of a take-over, rather than relying on a series of

reaction times, which would fall short of capturing the difficulty inherent in more
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strategic-level driving tasks.
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CHAPTER 3

DRIVER INATTENTION AND VEHICLE

AUTOMATION: HOW DOES ENGAGEMENT

AFFECT RESUMPTION OF CONTROL?

ABSTRACT This driving simulator study, conducted as part of the EC-funded

AdaptIVe project, investigated the effect of level of distraction during automation

(Level 2 SAE) on drivers’ ability to assess automation uncertainty and react to

a potential collision scenario. Drivers’ attention to the road was varied during

automation in one of two driving screen manipulation conditions: occlusion

by light fog and occlusion by heavy fog. Vehicle-based measures, drivers’ eye

movements and response profiles to events after an automation uncertainty

period were measured during a highly automated drive containing one of these

manipulations, and compared to manual driving. In two of seven uncertainty

events, a lead vehicle braked, causing a critical situation. Drivers’ reactions to these

critical events were compared in a between-subjects design, where the driving

scene was manipulated for 1.5 minutes. Results showed that, during automation,

drivers’ response profile to a potential collision scenario was less controlled and

more aggressive immediately after the transition, compared to when they were

in manual control. With respect to screen manipulation in particular, drivers in

the heavy fog condition collided with the lead vehicle more often and also had a

lower minimum headway compared to those in the light fog condition.
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3.1 Introduction

The emergence of vehicle automation presents a radical shift in the way that drivers

interact with their vehicles and the driving task itself. Extensive research has been

carried out on the human factors issues relating to lower levels (SAE Level 1 and 2)

of vehicle automation (such as Adaptive Cruise Control (ACC); for a review see De

Winter et al. 2014). However, investigating the human factors implications of higher

levels of automation up to SAE Level 5 have been somewhat constrained by the fact

that the development and implementation of this technology are still some way off.

It is argued that as automation advances, it will increasingly relieve drivers of the

moment-to-moment demands of driving (Lee, 2013). However, as these systems will

likely be fallible for some time to come the driver will, on occasions, be required to

intervene and resume control from automation.

Understanding the factors that influence driver distraction is underpinned by a

strong theoretical orientation with multiple definitions. Amongst these, Lee et al.’s

(2008, p. 38) is widely used: "Driver distraction is a diversion of attention away from

activities critical for safe driving towards a competing activity." A key assumption here

is the competition for attentional resources between the driving task and another -

secondary - activity. For the early generations of automation (Level 1-3; SAE, 2014),

however, the "activities critical for safe driving" will be some combination of the driver

monitoring the environment and being the fall-back operator. However, increasing

automation is likely to encourage driver engagement in secondary tasks, because

drivers are no longer required to participate in the driving task at all times (Merat

and Lee, 2012). Indeed, previous work conducted in our laboratories has found

that during Highly Automated Driving (HAD), drivers are more likely to engage in

tasks unrelated to driving (Carsten et al., 2012). The nature of this distraction during

automation can be both driver-initiated and stimulus-oriented, whilst drivers are

also susceptible to stimulus-independent thought or mind-wandering. Such shifts

in attention can interfere with processing of or reaction to safety-critical events and

stimuli, such as roadway hazards (Li et al., 2012). As the level of vehicle automation

increases, drivers are likely to further disengage from driving and may, for example,

fail to recognise and act upon a hazard when faced with a take-over-request (TOR,

Gold et al., 2013).
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Therefore, less effective driving performance during the transition is likely unless

drivers are given the correct information for resumption of control in an appropriate

and timely manner. For example, drivers’ reaction time to critical events can be

markedly reduced during distraction with a secondary task (Merat et al., 2012).

Driver distraction research has traditionally employed a dual-task paradigm to explain

performance via competition for attentional resources where driving is the primary

task (Strayer and Johnston, 2001). During automation, however, the driver is not

in control of the vehicle, which means that a dual-task paradigm is not possible

in the study of transitions. Therefore, to study the effects of stimulus-independent

thought that may occur before, during and/or after a transition, there is need for the

development of a suitable methodology to establish what mechanisms contribute to

how a driver might go from being engaged with the driving task during automation

to being disengaged, or prone to mind-wandering, a process also referred to as passive

fatigue (see Neubauer, Langheim, Matthews and Saxby, 2011). It is also important to

establish whether and how the effect of such states can be easily measured.

Many of the studies on transitions have rather loosely attributed less effective

driving after return-to-manual control to phenomena such as out-of-the-loop (OoTL)

or having lost situation awareness (SA). Unhelpfully, however, there is some confusion

around the distinction between the OoTL state and SA in terms of what the two

concepts encompass; for example, whether they engage specific attentional domains

or whether they are somewhat analogous. From a purely theoretical perspective,

Endsley (1995) suggests a loss of SA is related to elements within the environment

while being OoTL is specifically linked to elements of the automation status itself. To

further complicate the matter, there is some debate around the usefulness or validity

of each concept (Carsten and Vanderhaegen, 2015). One could draw a distinction

between attentional aspects and physical aspects of control. For example, in a recent

driving simulator study, we attempted to isolate the effects of the attentional and

physical aspects of driving on a driver’s ability to resume manual control and respond

to an impending collision scenario after 60 s of automation (Louw, Merat, and Jamson,

2015). In the first automation condition, participants were asked to keep their eyes on

the road, while in the second they were distracted by a secondary task (reading on a

PDA, which forced their visual attention away from the driving scene).

To assess the physical aspect of resuming control, we compared driver responses
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in both automation conditions to a manual condition. Our results showed that simply

having to regain physical control is an important factor in these contexts, but the

extent to which cognitive disengagement alone influences performance is yet to be

established. It seems, therefore, that the difference between a driver who has lost SA

and a driver who is OoTL is that the latter state also accounts for the effect of not being

in physical control of performance. In addition, the definition of the OoTL concept

is more descriptive about how the loss of SA arises. Endsley (1995) argues that the

passive monitoring of automation, as a result of not being in physical control, leads

to decreased vigilance and a lower understanding, which leads to a loss of SA. Our

proposed schematic representation of the OoTL phenomenon, shown in Figure 3.1,

suggests that the loss of physical control and the loss of SA can arise independently

as a result of vehicle automation and can lead to less effective return-to-manual

performance. Importantly, the loss of physical control can also act on SA, which can

result in less effective performance.

Vehicle 
Automation

Loss of 
Situation 

Awareness

Loss of 
Physical 
control

Impaired 
Performance

Driver

Figure 3.1: Schematic representation of the out-of-the-loop (OoTL) phenomenon

Based on studies of OoTL problems in human-automation-interaction in cognate

domains, such as aviation (Molloy and Parasuraman, 1996), it can be argued that the

further drivers are removed from the driving loop, the worse their return-to-manual

performance. This stresses the need to investigate the effect of automation as a

distraction, and in particular how stimulus-independent thought brought about by

automation affects drivers resumption of manual control. However, while investigating

the effects of stimulus-oriented thought simply requires engagement in a secondary

task, inducing stimulus-independent thought is more challenging. Therefore, the

main aim of this study was to develop a means of simulating various degrees of
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the driver OoTL states during HAD. To do this, we worked back from Endsley’s

(1995) definition of SA and OoTL state. We argued that simply adding lateral and

longitudinal assistance (Level2/3 automation) induced the physical aspect of being

OoTL. To induce loss of SA, we progressively limited the driver’s ability to perceive

information about the status of the automated system and the driving environment

itself, by overlaying a fog-like occlusion screen onto the driving scene. We reasoned

that, by partially blocking the road scene (light fog, see below), drivers would be

somewhat aware of their surroundings, whilst blocking the road scene completely

(heavy fog) would completely remove drivers’ awareness of their surroundings.

With a few notable exceptions (e.g. Beller et al., 2014), most previous studies

on transitions (e.g. Gold and Bengler, 2014; Hergeth et al., 2015) have investigated

responses to take-over-requests (TOR) brought on by an automation system’s failure or

limitation. These studies have mostly incorporated mandatory transitions (Goodrich

and Boer, 1999) or TORs, which effectively instruct the driver to resume control. It is

likely, therefore, that such methods simply assess drivers’ ability to react to an alarm or

take over message. Although investigating how drivers perform when they take back

control is an important consideration, the ability to process information and make

decisions in the face of an automated system with limited capabilities is also valuable.

Therefore, in this study, we used the concept of automation uncertainty (or system

limitation) not only to improve understanding of the driver-automation-interaction,

but also as a means of assessing whether drivers could recognise the unfolding of a

potentially critical event (which is an important element of SA). We argue that the

more drivers were taken OoTL, the worse their ability to recognise and respond to

road-related hazards.

While the driver’s role in monitoring the system varies according to the level

of automation, the driver is largely removed from vehicle control when automation

increases beyond SAE level 2 (SAE, 2014). Jamson et al. (2013) suggest that this

then limits the usefulness of many of the metrics traditionally used to assess driver

behaviour, such as Standard Deviation of Lateral Position (SDLP). There is, therefore,

a need to develop a set of objective, formative measures of the quality and safety

implications of the transition (Louw et al., 2015), rather than relying on system-

dependant evaluative measures. Therefore, another aim of this study was to consider

alternative measures to assess the transition to manual control from automation.
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3.2 Methods

3.2.1 Participants

Following approval from the University of Leeds Research Ethics Committee, 30

participants (20 male) between the ages of 22 and 69 (M=39.2, SD=14.45) were recruited

via the driving simulator database and were paid £20 for taking part. Participants had

normal or corrected-to-normal vision, were required to have had a driving licence for

at least five years (M=20.17 SD=15.26) and drive at least twice a week (mean annual

mileage was 8,616 miles).

3.2.2 Design and Procedure

Materials

The experiment was conducted in the University of Leeds Driving Simulator, which

consists of a Jaguar S-type cab with all driver controls operational. The vehicle is

housed within a 4m spherical projection dome and has a 300◦ field-of-view projec-

tion system. A v4.5 Seeing Machines faceLAB eye-tracker was used to record eye

movements at 60Hz.

Design

A repeated measures mixed design was used for this study, with a between-participant

factor of Condition (no fog, light fog, heavy fog, heavy fog + task) and within-

participant factors of Drive (manual, automated) and Event (critical event 1, critical

event 2).

The experimental session consisted of two drives (manual and automated) lasting

about 20 minutes each, and to alleviate symptoms of fatigue, participants were given

a short break between drives. Participants drove exactly the same road in both drives,

but a screen manipulation was applied to the automated drive only. The order of drives

was counterbalanced across participants, with half of the participants performing the

manual drive first and the automated drive second, or vice versa. As shown in Figure

3.2, within each drive there were seven discrete events, each lasting approximately
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150s. Events 1,3,4,5 and 7 were non-critical while events 2 and 6 were critical. During

the non-critical events, the lead vehicle would either speed up or change lane while in

the critical events the lead vehicle would brake, resulting in an impending collision

scenario (2,6). The time-to-collision (TTC) at the point of the lead vehicle braking was

5s.

To induce the OoTL state during the automated drives we employed two screen

manipulation techniques. In the light fog condition, a translucent grey filter was

overlaid onto the road scene. Here, drivers were able to distinguish elements of

the road environment and movements of the surrounding vehicles, the aim of the

manipulation was to simulate a process whereby limited visual attention was directed

towards the screen, for example when drivers are engaged in reading an email but

partly aware of the driving scene in their peripheral vision. In the heavy fog condition,

an opaque grey filter overlaid the road scene. This manipulation effectively blocked

all visual information from the road environment. For both manipulations, drivers

were also unable to see the HMI which portrayed the status of the automated system.

Light FogHeavy Fog

30s

Automation On

Lead vehicle action
Uncertainty Alert

EVENT START

Lead vehicleEgo vehicle

Screen Manipulation On

90s

≈30s

EVENT END
Screen Manipulation Off

Non-critical Critical

1 2 3 4 5 6 7

≈ 20 mins

≈150s

No Fog Light FogHeavy Fog
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Figure 3.2: Schematic representation of each discrete event, with events two and

six shown as critical.

Procedure

Upon arrival, participants were briefed on the description of the study and were asked

to sign a consent form, with an opportunity to ask any questions, if required. They

were then given the opportunity to practice manual driving and Highly Automated

Driving (HAD) within a free-flowing 3-lane motorway. During the practice session,
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participants were talked through the various aspects of the vehicle HMI (Figure 3.3)

were shown how to engage and disengage the automation, and were also shown the

screen manipulation they would encounter during the experimental automated drive.

The road contained ambient traffic, but participants did not experience the critical

events during the practice drives.

Figure 3.3: Example of the in-vehicle HMI with the FCW symbol on the left and

the Automation Status Symbol on the right.

In terms of automation uncertainty, participants were told that, should the automa-

tion become uncertain during the drive (see below for how this was portrayed), they

should monitor the driving environment and determine for themselves whether or

not to intervene. Participants were instructed to drive in lane 2 of the motorway for

the duration of the drive but were permitted to change lane in critical situations, and

were told to move back into lane 2 as soon as possible. Drivers were asked to obey the

normal rules of the road and to ensure safe operation of the vehicle.

To engage the highly automated driving system, participants pressed a button

on the steering wheel. To disengage automation, participants would either press the

same button, turn the steering wheel more than 2◦ or press the brake pedal. During

the automated drive, participants were asked to move to the centre of the middle lane

as soon as convenient and then activate automated driving as soon as it was available

(see Figure 3.2) which typically occurred 30 s after the drive began. If drivers did not

engage automation, after 60 s the system engaged automatically. The activation of

automation constituted the start of an event. After 30 s of automated driving, one of

two 90 s screen manipulations began. It is important to note that the vehicle dynamics,

as well as all auditory cues, remained active during the screen manipulations. To

ensure drivers were able to disengage from the driving task during automation

without experiencing a high level of fatigue, we chose a screen manipulation duration



CHAPTER 3. DRIVER INATTENTION AND VEHICLE AUTOMATION 75

of 90 s. After each screen manipulation, the presence of a lead vehicle triggered an

uncertainty scenario. At this point, the screen manipulation concluded, the driving

scene was again visible, and simultaneously the automation status changed from

"Engaged" to "Uncertain". Drivers were notified of this change by an auditory ’beep’

and the automation status symbol, which was now visible, changed from green to

flashing yellow. The driver was then expected to monitor the situation and intervene

if necessary. After 3 s, the lead vehicle would make one of three manoeuvres: In

the non-critical event (1,3,4,6) the lead vehicle either moved out of lane 2 or sped up,

while in the critical events (2,6) the lead vehicle braked sharply with a maximum

deceleration of 5.0 m/s2.

Human-Machine Interface (HMI)

The status of the vehicle’s automated system was indicated by the colour of a steering

wheel symbol that was located on the left panel of the central display unit (See Figure

3.3). There were four possible combinations of this status, as outlined in Table 3.1. Any

change to the automation state, whether driver- or system-initiated, was accompanied

by a non-intrusive ’beep’ tone.

In addition to the automation status, a Forward Collision Warning (FCW) symbol

was included in the left panel of the central display unit Figure (3.3). Active only

when automation was engaged, this system provided a visual approximation of the

headway of the lead vehicle in seconds. A continuous alarm alerted drivers of an

imminent collision whenever TTC with the lead vehicle was below a threshold of 2 s.

To further deprive drivers of system information during automation, the automation

status (steering wheel) and the FCW status were also hidden. However, participants

were able to reveal the HMI at any point by pulling the left indicator stick towards

them. This action illuminated the HMI for 2 s. Participants were able to do this as

often as they wanted.
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Table 3.1: Description of the automation status HMI.

Steering Wheel

Colour

Automation status Description

Grey Unavailable Indicates that automation is not available to be engaged by the driver.

Appears during the first 30 s of the automated drive and when the vehi-

cle is not in the middle of the middle lane.

Flashing green Available Indicates that the driver is able to engage automation. Appears when

the vehicle is in the middle of the middle lane.

Green Engaged Indicates that the vehicle is being controlled by the automated system,

which manages gentle manoeuvres and is not designed to respond to

critical and unexpected incidents.

Flashing yellow Uncertain Indicates that the automated system, while currently functioning nor-

mally, thinks that in the near future there may be a situation on the road

that it cannot deal with and, therefore, requires the driver to monitor the

road and intervene where necessary.

Red Disengaged Indicates that the automation is temporarily unavailable. Appears im-

mediately after automation is disengaged.

3.3 Results and Discussion

In this experiment, we attempted to simulate the feeling of being OoTL during HAD

by limiting system and environmental information, and examined drivers’ assessment

of the criticality of automation uncertainty warnings and their ability to respond to

critical situations. We hypothesised that as drivers are further removed from the

loop their ability to assess and respond to critical situations would be degraded.

Additionally, we expected that drivers’ ability to recognise and respond to these

critical situations would be worse in automation, compared to manual driving and

that response in heavy fog conditions would be worse than light fog, which has some

visibility of the driving environment.

3.3.1 Validating the OoTL state

To assess the validity of the screen manipulation technique for inducing a state of

being OOTL, we considered drivers’ visual attention to the road scene and driving

task by observing its distribution across five spatial regions as illustrated in Figure 3.4,
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similar to a technique used by Hughes and Cole (1988) and Carsten et al. (2012). We

used Percentage Road Centre (PRC; Victor, 2005) all seven events, and during both

manual and automated driving. PRC was defined as the mode of gaze fixations that

fell within the road centre area, a 6◦ circular region within a 60 s moving window.

As described in Carsten et al. (2012), the left region covered fixations to the centre

console (e.g., radio controls) as well as the left side mirror, door window, and passing

traffic in the adjacent lane. The right region covered the right side mirror, door

window, and passing traffic in the adjacent lane. The bottom region covered mainly

the dashboard, where the speedometer, automation HMI, and a variety of gauges

were located. The top region covered mainly the sky. We reasoned that automation

would reduce drivers’ attention to the road and, therefore, reduce PRC values in the

central region, in particular.

Figure 3.4: Visual attention regions (Carsten et al., 2012).

To understand what information may be useful to drivers when they are required

to re-engage in the driving task, we also calculated the point of first gaze fixation

after each screen manipulation ended in the two automation conditions. Finally, we

counted the frequency of occasions drivers used the indicator stick to glimpse at the

HMI, in order to understand whether and to what extent drivers were engaging with

the driving task during the periods of screen manipulation when automation was on.

3.3.2 Distribution of visual attention

The drivers’ gaze behaviour was analysed across Screen Manipulation conditions.

PRC during periods of Screen Manipulation for all seven periods of automation was
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compared using a one-way Analysis of Variance (ANOVA), with Drive (automation,

manual) as a within-subjects factor. Figure 3.5 shows that when compared to those in

the heavy fog condition, participants in the light fog condition, fixated on the road

ahead (depicted by the Centre bar) significantly more often than any other visible

sections of the driving environment (F(1,26) = 31.984, p<.001, η2
p = .417). These can be

compared to the central PRC values in the manual drive, which were 73.77% for the

light fog group and 73.50% for the heavy fog group. By the same token, for the same

period, less fixations were observed towards the bottom of the screen (including the

dashboard area) (F(1,26) = 4.792, p=.001, η2
p= .363) and the left and right of the screen

(including the side mirrors) (F(1,26) = 4.480, p=.044, η2
p= .147).

Figure 3.5: Percentage Road Centre during Light Fog and Heavy Fog automation

drives. Error bars = SEM. * indicates significant difference.

3.3.3 Engagement with the system

Data were analysed using a mixed-design ANOVA with a within-subjects factor of

Events (7) and a between-subject factor of Condition (light f og, heavy f og). Mauchly’s

test indicated that the assumption of sphericity had been violated (χ2(20) = 151.86, p <

.001), and therefore degrees of freedom were corrected using Greenhouse-Geisser

estimates of sphericity (ε =0.26). There was a main effect of Events [F(1.557, 42.027) =

5.185, p=.015, η2
p.161], where drivers glimpsed at the automation status less often as

the drive progressed over the seven events (Figure 3.6). This suggests that, over time,

participants were more disengaged from the driving task, possibly either because they



CHAPTER 3. DRIVER INATTENTION AND VEHICLE AUTOMATION 79

trusted the system more or because the system status was always the same when they

checked. There was no main effect of Condition, however, which indicates that drivers’

engagement was not influenced by whether or not they could see what was happening

in the road environment during light fog versus heavy fog conditions. There were

also no significant interactions between Condition and Event.

0

0.5

1

1.5

2

2.5

3

3.5

Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7

A
v
e
ra

g
e
 g

la
n

c
e
s
 a

t 
a
u

to
m

a
ti

o
n

 s
ta

tu
s

Light Fog

Heavy Fog

Figure 3.6: Average number of ’peeks’ at the hidden automation status throughout

the light fog and heavy fog automated drives.

3.3.4 First gaze fixation

When the screen manipulation was turned off, more of the participants driving in the

light fog condition looked at the road centre first (M=76.53% vs. M=66.67%) compared

to the central display area, which contained the dashboard (M=8.16% vs. M=15.24%).

However, a chi-squared test indicated that these differences were not statistically

significant.

3.3.5 Driver response to critical events

Driver response measures during the critical events included automation disengage-

ment time, a count of the process by which participants disengaged automation, as

well as how many lane changes and collisions were experienced.

Automation disengagement time was analysed with a mixed-design ANOVA, with

Event (critical event 1, critical event 2) as a within-subjects factor and Condition (light
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Table 3.2: Disengagement methods for all cases in the critical and non-critical

events.

Critical Events (2,6) Non-Critical Events (1,3,4,5)

Light Fog Heavy Fog Light Fog Heavy Fog

Brake 18/30 23/30 2/60 8/60

Steer 9/30 7/30 9/60 6/60

Button 3/30 0/30 4/60 0/60

Automation Remained Engaged 0/30 0/30 45/60 46/60

fog, heavy fog) as a between-subjects factor. Chi-squared tests were conducted on lane

change and collision counts.

There was no effect of Condition on automation disengagement time [F(1,27) =

.991, p=.328, η2
p= .034], suggesting that being OoTL prior to the critical event did not

impede drivers’ ability to react to the lead vehicle braking. There was also no effect of

Event and no interactions between Event and Condition. However, as argued earlier,

drivers’ disengagement times might be considered less informative than whether and

how they reacted. Results from Table 3.2 show that, for the non-critical events, in

both the light fog and heavy fog conditions, automation was only disengaged in a

quarter of cases, while for the critical events automation was disengaged in all 60 cases.

Importantly, only 8 of these critical event disengagements occurred before the lead

vehicle braked, suggesting that, during the automation uncertainty even drivers were

able to regain sufficient SA to recognise the criticality of the situation (lead vehicle

braking, reduced TTC and the likelihood of a collision). Drivers were not explicitly

told how the system would behave in a critical situation, which suggests that when

drivers do not know the limitations of their automated systems, they trust their own

abilities over those of the system or they could be suspicious until they trust it.

To assess associations for lane changes, a chi-squared analysis was conducted.

Table 3.3 shows that, drivers made fewer lane changes in the automation condition

compared to manual. However, even though drivers were able to recognise the

criticality of the event following automation, they were still unable to avoid a collision,

with a chi-squared test revealing that significantly more collisions with the lead vehicle

occurred in the automation than manual drives (p=.01). During automation, however,

there was a marked increase in collisions when the heavy fog manipulation was on,
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Table 3.3: Lane Changes and collision counts (in brackets).

Automation Manual

Critical Event 1 Critical Event 2 Critical Event 1 Critical Event 2

Light Fog 7 (2) 10 (1) 11 (1) 12 (0)

Heavy Fog 9 (7) 9 (3) 11 (2) 11 (1)

compared to the light fog condition, with the trend more prominent in the first critical

event. These results suggest that, compared to manual driving, automation reduced

drivers’ ability to avoid a collision, and particularly so when drivers were further out

of the loop in the heavy fog condition.

3.3.6 Vehicle measures

To examine driver’s overall vehicle control during the transition in critical events (2,6),

longitudinal driving performance was measured using maximum deceleration from

the point of resumption of manual control to the end of the critical event, which was

10 seconds after the lead vehicle’s brake light illuminated. Taken in the same time

frame, lateral driving performance was measured using maximum lateral acceleration,

which has also been used previously as a measure of vehicle control (Gold et al.,

2014; Louw et al., 2015). Minimum distance headway was also calculated and was a

measure of how close a driver came to the rear of the lead vehicle.

A mixed-design ANOVA was conducted on Drive (automation, manual) and Event

(critical event 1, critical event 2) as within-subjects factors and Condition (light fog,

heavy fog) as a between-subjects factor, for maximum lateral acceleration, maximum

deceleration and minimum headway.

Maximum lateral acceleration

Maximum lateral acceleration was significantly higher in the automated drives, com-

pared to the manual drives (M=1.99m/s2; SE=0.19 m/s2, vs. M=1.13 m/s2; SE=0.12

m/s2) [F(1,28) = 9.382, p=.005, η2
p= .251), suggesting that following re-entry into

manual control drivers displayed less stable vehicle control in response to a potential

collision scenario, compared to manual driving. However, there was no effect of

Condition or Event and also no interactions.
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Maximum deceleration

There was also a significant effect of Drive on maximum deceleration [F(1,25)=13.774,

p=.001, η2
p=.355], with participants reducing their speed at a higher rate in the au-

tomated drive (M=-5.94 m/s2; SE=0.45 m/s2, vs. M=-4.25 m/s2; SE=0.46 m/s2). As

shown in Figure 3.7, this effect was qualified by the interaction between Drive and

Condition, [F(1,28)=9.382, p=.005, η2
p=.251], where the difference in maximum deceler-

ation between the automation and manual drives was significantly greater in the light

fog condition. There was no effect of Condition or Event and no other interactions.

Figure 3.7: Maximum deceleration for the two Drives and for the two Conditions.

Error bars = SEM.

Headway

There was a main effect of Drive on minimum headway [F(1,28)=7.343, p=.011, η2
p=

.208], being significantly shorter in the automated drive (M=15.31m, SE=2.72) than

in the manual drive (M=22.75m, SE=3.47m). The result of this lower headway is

also demonstrated by the higher collision count in the automated drives (Table 3).

There was an effect of Condition for headway [F(1,28) = 5.679, p=.024, η2
p= .169], with

drivers in the heavy fog condition having a significantly shorter headway (M=12.96,

SE=2.63m) compared to the light fog condition (M=17.66m, SE=2.81m), but this result

needs to be interpreted cautiously because of the inter-group variance in headway in

this between-subjects design. This is further supported by the differences in collision

counts between the light fog and heavy fog conditions. There was a significant

effect of Event for headway [F(1,28)=10.513, p=.003, η2
p=.273] with shorter headway
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in the second critical event (M=15.27m, SE=2.98m), compared to the first (M=22.75m,

SE=3.20m).

3.4 Summary and Conclusions

Previous studies on the human factors of the transition from HAD to manual driving

have attributed less effective return-to-manual performance to the rather poorly

understood human OoTL problem. To investigate the relative contribution of the

driver OoTL state to driving performance during this transition, the current study

attempted to simulate the driver OoTL state, and to examine whether it affected

drivers’ ability to recognise and respond to a critical situation.

We hypothesised that, by limiting system and environmental information during

automation and prior to an automation uncertainty event, drivers would have a

reduced ability to recognise and respond to a critical scenario. Eye glance data showed

that during automation, when the screen was manipulated by a heavy fog condition,

drivers were less engaged with the driving task and reduced their attention to the

road centre. However, drivers were able to determine the criticality of the impending

collision (critical events), disengaging automation after the lead vehicle braked in

all but 8 of 60 cases. Yet, simply recognising the hazard did not seem sufficient, as

drivers collided with the lead vehicle in 13 of 60 critical event cases. Drivers seemed

to be more out of the loop in the heavy fog condition, with more collisions after this

manipulation than the light fog condition (although differences were not significantly

different).

In the study reported by Beller et al. (2013), communicating automation uncertainty

was found to improve driver-automation interaction, such as an improved time to

collision in the case of automation failure. They also report higher trust ratings and

increased acceptance of the system. This study extends the work of Beller et al. (2013)

by investigating the effect of such uncertainty on a higher range of vehicle control

measures.

We found that when drivers were not in physical control of the vehicle and had an

artificially reduced situation awareness during automated driving, their response to

an impending collision after an uncertainty message in critical events involved greater
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maximum deceleration and higher maximum lateral accelerations, whilst they also

maintained a shorter headway with the lead vehicle, when results were compared to

manual driving performance. The response profile of drivers to a potential collision

scenario was, therefore, less controlled and more aggressive immediately after the

transition. Given that the uncertainty alarm was not a take-over-request but rather a

request to monitor the system and intervene if they deemed necessary, it is difficult

to accurately assess response time to an event. Nevertheless, taken together these

differences suggest that following automation, drivers have a diminished capacity to

respond as they would under normal manual control. Apart from the higher collision

count in the heavy fog automation drive, driver response after the transition was

found to be similar between the two screen manipulation conditions. However, it is

not currently clear whether this lack of difference between the two levels of screen

manipulation, aimed at taking drivers further OoTL, was an inappropriate application

of the methodology, or whether the vehicle-based measures used to test this hypothesis

were not robust enough to highlight any possible differences.

One of the challenges of using the screen manipulation technique to induce the

OoTL state is that drivers are likely aware that they are losing information. In reality,

when drivers are OoTL as a result of a distracting non-driving task or, indeed, vehicle

automation, they may not know the extent to which they are OoTL. Therefore, the

technique used in this study, may well be underestimating the effects of being OoTL in

automation, on a driver’s ability to respond in critical situations. In addition, as Dekker

(2004) points out, the loss of situation awareness or deficient situation awareness is

explained by reference to an "ideal", potential state of situation awareness, where

one notices things that turn out to be critical. In the context of vehicle automation,

this "ideal" is likely closely linked to drivers’ understanding of the functionality

and behaviour of the automated system. Before higher levels of vehicle automation

become ubiquitous it is important for us to understand how drivers interact with their

vehicle’s automation system in dynamic environments, such that the design of these

systems augment the limitations of the driver in this new context. Future studies on

driver-automation interaction should, therefore, strive to integrate deeper context and

meaning into the design of experiments and scenarios.

It is also pertinent to acknowledge that the measures used may be more meaningful

when analysed according to the nature of the driver’s response to a critical event.
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For example, measures of lateral acceleration will be different for those who steer

compared to those who only brake. Further studies are currently in progress in our

laboratories to investigate these ideas in more detail by comparing the results from

this study with other types of screen manipulation including the use of distracting

tasks.
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CHAPTER 4

ARE YOU IN THE LOOP? USING GAZE

DISPERSION TO UNDERSTAND DRIVER

VISUAL ATTENTION DURING VEHICLE

AUTOMATION

ABSTRACT This driving simulator study, conducted as part of the EC-

funded AdaptIVe project, assessed drivers’ visual attention distribution during

automation and on approach to a critical event, and whether such attention

changes following repeated exposure to an impending collision. Measures of

drivers’ horizontal and vertical gaze dispersion during both conventional and

automated (SAE Level 2) driving were compared on approach to such critical

events. Using a between-participant design, 60 drivers (15 in each group) expe-

rienced automation with one of four screen manipulations: 1) no manipulation,

2) manipulation by light fog, 3) manipulation by heavy fog, and 4) manipulation

by heavy fog with a secondary task, which were used to induce varying levels

of engagement with the driving task. Results showed that, during automation,

drivers’ horizontal gaze was generally more dispersed than that observed during

manual driving. Drivers clearly looked around more when their view of the

driving scene was completely blocked by an opaque screen in the heavy fog

condition. By contrast, horizontal gaze dispersion was (unsurprisingly) more con-

centrated when drivers performed a visual secondary task, which was overlaid on

the opaque screen. However, once they ceased and an uncertainty alert captures

drivers’ attention towards an impending incident, a similar gaze pattern is seen

for all drivers, with no carry-over effects observed after the screen manipulations.

This pattern was also seen for this period of manual driving. Results showed that

drivers’ understanding of the automated system increased as time progressed

89
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and that scenarios that encourage driver gaze towards the road centre are more

likely to increase situation awareness during high levels of automation.
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4.1 Introduction

The past decade has seen a rapid development of vehicles equipped with Advanced

Driver Assistance Systems (ADAS), culminating in multiple vehicle manufacturers

releasing first-generation automated driving functionalities such as Lane Keeping

Assist (LKA) and Adaptive Cruise Control (Level 2, partial automation; SAE, 2014).

These include the Volvo XC90 (Volvo Cars, 2015), Tesla Model S (Tesla Motors, 2015),

and Infinity Q50 (Infinity, 2015). While vehicle automation promises a number of

social and individual benefits, including increased mobility (Rosenbloom, 2012), safety

and efficiency (Anderson et al., 2014), it also shifts the driver’s role, from that of

an active operator to that of a passive supervisor (Merat et al., 2012). Some authors

have suggested that this supervisory role takes drivers "out-of-the-loop" (OoTL) and

impairs their ability to manage critical situations when performance after automation

failure/limitations is compared to manual driving (Rudwin-Brown and Parker, 2004;

Gold et al., 2013; Strand et al., 2014; Merat et al., 2014). While the origin of this OoTL

concept is based on the effect of automation on performance within other domains

(Weiner and Curry, 1980; Bainbridge, 1987; Norman and Orlady, 1989; Endsley and

Kiris, 1995; Rasmussen and Rouse, 2013), the term is not yet currently well-defined

when addressing the impact of vehicle automation on driving performance. Yet, from

a human factors and road safety perspective, it is important to investigate the nature

and consequences of this OoTL state and understand, for example, how it influences

drivers’ distribution of attention during high levels of automation, or how it affects

their ability to resume control from automation in an appropriate and timely manner,

should a system limit be reached. This paper, therefore, describes a driving simulator

study that attempted to simulate the OoTL concept in vehicle automation and reports

on the distribution of drivers’ visual attention during SAE level 2 automation as a

means of assessing this methodology.

According to Kienle et al. (2009), a driver is considered OoTL when they are

"not immediately aware of the vehicle and the road traffic situation because they are not

actively monitoring, making decisions or providing input to the driving task". Norman

(1990) attributes causality not to automation per se but rather to a lack of continual

feedback. The concept seems, therefore, to include two elements; one, which relates

to the awareness of elements in the environment, and another, which relates to the
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awareness of elements regarding vehicle status and its automated system(s).

Seeking to expand on the mechanisms underlying the OoTL problem, Louw et al.

(2015) presented a schematic representation of this concept, which proposes that, as a

result of vehicle automation, drivers are removed from a physical control loop, because

they are no longer physically interacting with the vehicle’s mechanisms such as the

steering wheel and pedals (see also Stanton and Young, 1998). Drivers can also be

removed from a ’cognitive control loop’ and lose situation awareness, either because

they are looking away from the driving scene during automation and interacting with

a distracting task, or due to boredom/mind-wandering (Lerner et al., 2015). Clearly,

both loops are important for contributing to safe driving performance, since, for

instance, physical neuromuscular control gives drivers feedback of steering torque and

helps contribute to corrections of heading errors (Pick and Cole, 2006), whilst good

situation awareness contributes to effective attentional control and decision-making

and improves hazard perception, for instance, in response to critical events (Endsley,

2006; Horswill and McKenna, 2004). Accordingly, Louw et al. (2015) hypothesise

that reductions in either or both aspects of control, brought about by automation,

can contribute to less effective return-to-manual performance, but that not being in

physical control can also act to impair situation awareness, which consequently can

reduce driving performance.

To further investigate this concept, the current study sought to induce a range

of OoTL states by removing driving-relevant information during automation and

explored whether these affected drivers’ ability to regain situation awareness in

response to a potentially critical event. Based on the Kienle et al. (2009) definition,

being in the loop involves three distinct elements: drivers must (i) be aware of

the vehicle (ii) be aware of the road traffic situation and (iii) make decisions or

provide input to the driving task (when resuming control). We, therefore, designed

a study where we examined how drivers’ ability to respond to potentially critical

situations which followed a system-initiated automation disengagement, was affected

by the systematic removal of the three elements mentioned above, thereby inducing

an artificial OoTL state. This was achieved by developing a screen manipulation

technique, introduced in Louw et al. (2015) and Louw et al. (2016), which uses a

fog-like display to vary the degree of visual information available to drivers during

automation, both in terms of the dashboard displays in the vehicle and also the road



CHAPTER 4. ARE YOU IN THE LOOP? 93

environment itself (see Figure 2, and Methods section for a more detailed outline).

This approach broadly resembles a visual occlusion technique, first used by Senders

et al. (1967) to model driver behaviour based on information theory, and then others

to quantify the visual demand of in-vehicle information systems (Foley, 2008).

Extended durations of automated driving have been shown to take drivers further

OoTL (Körber et al., 2015). However, here, we were simply interested in assessing

whether removing driving-relevant information, with short periods of such screen

manipulations, would take drivers OoTL, and what the effects of such manipulations

would be on drivers’ visual attention. Of course, one simple method for taking drivers

OoTL (both physical and cognitive) is to allow interaction with a secondary task during

automation. However, our rationale for using screen manipulations was to reduce

the complications associated with the physical demand of engaging in a secondary

task (Zeeb, Buchner, and Schrauf, 2015), which can take drivers’ head, hands and eyes

away from the driving scene (Carsten, Lai, Barnard, Jamson, and Merat, 2012; Louw,

Merat, and Jamson, 2015) and adds considerable individual variability during the

return to manual control.

Traditionally, analysis of drivers’ performance in the transition period from au-

tomation to manual control has relied on the use of vehicle-based metrics and reaction

time measures, following a mandatory resumption of control from a failing or limited

automation system (Gold, Damböck, Lorenz, and Bengler, 2013; Louw et al., 2015;

Merat and Jamson, 2008). However, while it is relevant to establish the minimum time

required for drivers to resume control of the vehicle after automation disengagement

(termed a take-over-response or TOR; see Beller et al., 2014; and Helldin et al., 2013),

we argue that such instructions to resume control may simply be in response to alarms

and experimenter commands, and not a reflection of drivers’ recognition of, and ability

to manage, an emerging critical situation. This argument is supported by Gold and

colleagues’ finding that while a relatively rapid resumption of control from automation

is possible, where the first braking input can be as fast as 2.06 s, and steering input

is around 2.27 s, it is at the cost of safe vehicle control (Gold et al., 2013). Therefore,

our aim was to investigate drivers’ assessment of the environment following a period

of screen manipulation using an uncertainty alert, which declared the automation

might not be able to handle the unfolding situation, and investigated how each screen

manipulation condition affected drivers’ ability to evaluate the criticality of events
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and decide whether resumption of control was necessary. We also assessed whether

repeated exposure to such events influenced drivers’ visual attention.

To assess drivers’ attention to the driving scene and vehicle controls during, before

and after each screen manipulation, we considered their visual attention to different

areas of interest, using eye gaze dispersion. Psychophysiological research using eye

gaze data has been a popular method for measuring drivers’ attention allocation

(Posner, 1980), situation awareness (Gugerty, 2011; Gartenberg et al., 2013) and hazard

perception (Endsley and Jones, 2004; Horswill and McKenna, 2004). However, while

gaze concentration has been used successfully in manual driving to distinguish

between the effects of visual and cognitive load (Engström et al., 2005), it has been

scarcely applied in automated driving (see for example Damböck et al., 2013, who

report greater horizontal gaze dispersion for highly automated driving as compared

to manual driving). A review of the literature by de Winter, Happee, Martens, and

Stanton (2014), found that drivers in highly automated driving gaze on the road less

often than when in manual control, which therefore could result in lower workload,

but also poor situation awareness. However, most of the studies reviewed by de

Winter et al. (2014) have used fixation-based Percentage Road Centre (PRC) measures

(e.g. Carsten et al., 2012), rather than raw gaze data. According to Wang et al. (2014),

fixation-based PRC is less sensitive to demand-induced changes in visual behaviour

than measures of gaze-based PRC and gaze dispersion. Therefore, in this study,

we chose to explore the use of horizontal and vertical gaze dispersion as a means

of evaluating drivers’ OoTL state during automated driving, as well as during the

resumption of control from automation. The screen manipulation technique was used

to induce varying levels of the OoTL state, by systematically removing information

from drivers during automation. The study then considered the following questions:

1. What gaze pattern do drivers exhibit during each of the different screen manip-

ulation conditions?

2. When resumption of manual control is required, is drivers’ visual attention

to the scene and vehicle controls affected differently by the different screen

manipulations?

3. Can we infer drivers are taken out of the loop by the screen manipulations, and

does this depend on the particular manipulations applied?
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4. Does drivers’ visual attention change after repeated exposure to the same events?

4.2 Methods

4.2.1 Participants

Following approval from the University of Leeds Research Ethics Committee (Refer-

ence Number: LTTRAN-054), four groups of 15 drivers were recruited via the driving

simulator database and were paid £20 for taking part in the experiment. The average

age of the participants was 36.16 ±12.38 years, and out of 60 participants, 32 were

male. Average mean annual mileage was 8290.46 ±6723.08 miles. Participants had

normal or corrected-to-normal vision, were required to have had a driving licence for

at least one year (M = 16.22, SD = 12.92) and drive at least twice a week. Data from

one participant was excluded from the analysis due to abnormal values from their

eye-tracking data (±3 SD from the mean).

4.2.2 Design and Procedure

Materials

The experiment was conducted in the University of Leeds Driving Simulator, which

consists of a Jaguar S-type cab with all driver controls operational. The vehicle is

housed within a 4m spherical projection dome and has a 300◦ field-of-view projec-

tion system. A v4.5 Seeing Machines faceLAB eye-tracker was used to record eye

movements at 60Hz.

Design

A repeated measures mixed design was used for this study, with a between-participant

factor of Screen Manipulation (no fog, light fog, heavy fog, heavy fog + task) and

within-participant factors of Drive Type (manual, automated) and Event Number (1-6).

The experimental session consisted of two drives for each group (manual, auto-

mated) which lasted about 20 minutes each, and participants experienced a short

break between drives, to alleviate the symptoms of fatigue. Participants drove the
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No Fog Heavy FogLight Fog Heavy Fog + Task

Lead vehicle

ba c d f ge

Non-critical

Critical a f g

Manual Driving

1 2 3 4 5 6

≈150 s

1 2 3 4 5 6

≈150 s

d

Automated Drive ≈20 min Manual Drive ≈20 min

Lead vehicleEgo vehicleEgo vehicle

Figure 4.1: Schematic representation of each discrete event in the automated (left)

and manual (right) drives. (a) to (g) represent various phases of the drive, as

follows: (a) Event start, (b) Automation on, (c) Screen Manipulation on, (d) Drone

moves into lane, (e) Screen Manipulations off + uncertainty alert, (f) Drone action,

(g) Event end.

same road in both drives, but the screen manipulation was only used during the

automated drives. For each Screen Manipulation group, the order of drives was coun-

terbalanced across participants, with half of the participants performing the manual

drive first and the automated drive second, and vice versa. As shown in Figure 1,

within each automation and manual drive, there were six discrete car-following events,

each lasting approximately 150 s. Our main aim here was to study drivers’ response

to critical events after they were taken OoTL with a screen manipulation. However,

to assess situation awareness after the uncertainty events (see below), and to reduce

priming, each drive contained only two critical events (events 2 and 6), interspersed

with four non-critical events (events 1, 3, 4 and 5). During the non-critical events, the

lead vehicle would either speed up or change lane, while during the critical events

the lead vehicle decelerated at a rate of 5 m/s2, resulting in an impending collision

scenario. The time-to-collision (TTC) at the start of this deceleration was 3 s.

As outlined in the Introduction, to induce varying levels of the OoTL state during

the automated drives, we employed four screen manipulation techniques (Figure

4.2). In the no fog condition, there was no manipulation of the road scene, and

drivers could observed all aspects of the road and traffic environment. In the light

fog condition, a translucent grey filter superimposed the road scene. The aim of this

manipulation was to simulate a process whereby drivers were able to distinguish

only basic elements of the road environment and the movement of vehicles in the

immediate vicinity. In the heavy fog condition, an opaque grey filter overlaid the road

scene. This manipulation sought to effectively blocked all visual information from the
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(a) No Fog (b) Light Fog

(c) Heavy Fog (d) Heavy Fog + Task

Figure 4.2: Example of a drivers’ view in the a) no fog, b) light fog, c) heavy fog,

and d) heavy fog + task conditions.

road environment such that drivers were unaware of the traffic conditions. During

the heavy fog + task condition the road was blocked with the same opaque grey

filter used in the heavy fog condition but overlaid with a series of visually presented

secondary tasks. Here, participants were required to complete a number of multiple-

choice questions involving visuo-spatial shape-matching, general knowledge, and

moderately challenging mathematics, which were sourced from various web-based IQ

tests and were presented in a random order. All responses to this task were verbal. The

aim of this manipulation was to assess how engagement in a secondary task affected

performance, but since we were keen not to remove drivers’ eyes and head away from

the screen (keeping physical position as similar as possible to the other experiments)

the secondary task was displayed on the driving scene, akin to a Head-Up Display.

Participants were told that they would not be penalised for incorrect answers, but that

their response would be recorded. We hypothesised that less visual information about

the scene would take drivers further OoTL and that drivers, therefore, would be most

OoTL during the heavy fog condition, followed by light fog and no fog conditions.
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Procedure

Upon arrival, participants were briefed on the description of the study and were asked

to sign a consent form, with an opportunity to ask any questions, if required. They

were then given the opportunity to practice manual driving and Highly Automated

Driving (HAD) within a free-flowing 3-lane motorway. During the practice session,

participants were talked through the various aspects of the vehicle HMI Figure 4.3

were shown how to engage and disengage the automation and were also shown the

screen manipulation they would encounter during the experimental automated drive.

The road contained ambient traffic, but participants did not experience the critical

events during the practice drives.

Regarding automation uncertainty, participants were told that should the automa-

tion become uncertain during the drive (see below for how this was portrayed) they

should monitor the driving environment and determine for themselves whether or not

to intervene. Participants were instructed to drive in the middle lane of the three-lane

motorway for the duration of the drive (automation was only possible in this lane) but

were permitted to change lane in critical situations, and were told to move back into

the middle lane as soon as possible. Drivers were asked to obey the standard rules of

the road and to ensure safe operation of the vehicle.

To engage the highly automated driving system, participants pressed a button

on the steering wheel. To disengage automation, participants would either press the

same button, turn the steering wheel more than 2◦ or press the brake pedal. During

the automated drive, participants were asked to move to the centre of the middle

lane as soon as convenient and then activate automated driving as soon as it was

available. If drivers did not engage automation, the system engaged automatically

after 5 s. The activation of automation constituted the start of an event. After 30 s of

automated driving, one of four 90 s screen manipulations began. It is important to

note that the vehicle dynamics, as well as all auditory cues, remained active during

the screen manipulations. After each screen manipulation, the presence of a lead

vehicle triggered an uncertainty scenario (for both critical and non-critical events). At

this point, the screen manipulation concluded, the driving scene was again visible,

and the automation status changed from "Engaged" to "Uncertain". Drivers were

notified of this change by a short duration auditory tone (1000Hz, lasting 0.2 s), and
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the automation status symbol, which was now visible, changed from green to flashing

yellow. The driver was expected to monitor the driving situation and intervene, if

necessary. After 3 s, the lead vehicle completed one of three manoeuvres: In the

non-critical event (1, 3, 4, 5) the lead vehicle either moved out of lane 2 or sped up,

while in the critical events (2, 6) the lead vehicle braked sharply with a maximum

deceleration of 5.0 m/s2.

Human-Machine Interface (HMI)

The status of the vehicle’s automated system was indicated by the colour of a steering

wheel symbol that was located on the left panel of the central display unit (Figure

4.3). During the automated drives, the steering wheel symbol was solid green when

automation was engaged, flashing yellow when it was uncertain and solid grey

when it was unavailable. Any change to the automation state, whether driver- or

system-initiated, was accompanied by the same non-intrusive auditory tone described

above.

Figure 4.3: An example of the in-vehicle HMI with the Forward Collision Warning

symbol on the left and the Automation Status Symbol on the right (flashing green

in this example).

In addition to the automation status, a Forward Collision Warning (FCW) symbol

was included in the left panel of the central display unit. Active only when automation

was engaged, this system provided a visual approximation of the headway of the lead

vehicle in seconds. In the automated drives, a continuous alarm alerted drivers of an

imminent collision whenever TTC with the lead vehicle was below a 2 s threshold.

However, this only occurred during the critical events. To further deprive drivers of

system information during automation, the automation status (steering wheel) and
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the FCW were also hidden during the screen manipulation conditions. However,

participants were able to reveal the HMI at any point by pulling the left indicator stick

towards them. This action illuminated the HMI for 2 s. Participants were able to move

this stick as often as they wished.

Research aim

Gaze dispersion was used to assess how drivers’ visual attention was distributed in

each of the four screen manipulation conditions and to study how visual attention

to the vehicle and driving scene was affected by vehicle automation in each screen

manipulation condition. We hypothesised that less visual information about the scene

would take drivers further OoTL and that therefore drivers were most OoTL during

the heavy fog condition, followed by light fog and no fog. To take drivers one stage

further OoTL from the heavy fog condition, we distracted drivers by introducing a

secondary task on the heavy fog screen. This was done in preference to using an

in-vehicle display as we were keen not to dramatically change the position of the

drivers’ eyes, head and hand compared to the other conditions.

4.2.3 Statistical analyses

All data were analysed with IBM SPSS v21 (IBM Corp., 2012). Shapiro Wilk’s test

showed that not all estimates were normally distributed. As the data were moderately

positively skewed, square root transformations were used for analyses (Tabachnick and

Fidell, 2007). ANOVA results reported below are on the transformed responses, while

the graphs represent estimates in the original units, to facilitate interpretation (Neter

et al., 1990). An α-value of .05 was used as the criterion for statistical significance and

partial eta-squared was computed as effect size statistics. Degrees of freedom were

Greenhouse-Geiser corrected when Mauchly’s test showed a violation of sphericity.

Unless otherwise stated, variances of the data were homogenous, as assessed by

Levene’s test of equality of error variances (Field, 2009). Similarly, covariances of the

data were homogenous, as assessed by Box’s test of equality of covariance matrices,

unless otherwise stated. LSD pairwise comparisons (α = .05) were used to determine

the difference between levels of Screen Manipulation and Event Number.

As highlighted in the Introduction, we used drivers’ gaze dispersion to establish
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Table 4.1: Time windows used for statistical analyses.

Time 
Window

Start End Rationale Comparisons

1 Automation On 
(b)

Screen 
Manipulation On 
(c)

Assess visual 
attention during 
uninterrupted 
driving

2 X 6 X 4 ANOVA: Drive Type (automated, manual ) and Event Number 
(1-6) as within-participant factors and Screen Manipulation (No Fog, 
Light Fog, Heavy Fog, Heavy Fog + Task ) as a between-participant 
factor

2
Screen 
Manipulation 
On (c)

Drone Moves 
Into Lane (d)

Assess the effect of 
the screen 
manipulations on 
visual attention

6 X 4 ANOVA: Event Number (1-6) as within-participant factors and 
Screen Manipulation (No Fog, Light Fog, Heavy Fog, Heavy Fog + 
Task ) as a between-participant factor

3 Drone Moves 
Into Lane (d)

Screen 
Manipulation Off 
(e)

Not used for 
analysis

-

2 X 6 X 4 ANOVA: Drive Type (automated, manual ) and Event Number 
(1-6) as within-participant factors and Screen Manipulation (No Fog, 
Light Fog, Heavy Fog, Heavy Fog + Task ) as a between-participant 
factor

6 X 4 ANOVA: Event Number (1-6) as within-participant factors and 
Screen Manipulation (No Fog, Light Fog, Heavy Fog, Heavy Fog + 
Task ) as a between-participant factor

5 Lead Vehicle 
Action (f)

Lead Vehicle 
Action (f) + 3 s

Assess the effect of a 
lead vehicle braking 
on visual attention

2 X 4 ANOVA: Critical Event (2, 6)  as within-participant factors and 
Screen Manipulation (No Fog, Light Fog, Heavy Fog, Heavy Fog + 
Task ) as a between-participant factor

4
Screen 
Manipulation 
Off (e)

Lead Vehicle 
Action (f)

Assess the carry-
over effect of the 
screen 
manipulations on 
visual attention 

how visual attention was distributed before and during each of the different screen

manipulations. In addition, to understand how each manipulation affected this

dispersion on approach to the six events, we considered how gaze dispersion varied

just after the screen manipulations. To compare across the groups, we, therefore,

divided each event into five Time Windows (TW), as in Figure 4.4. The rationale for

these divisions and analyses are summarised in Table 4.1. Full statistical results are

included in Table 4.2.

No Fog Heavy FogLight Fog Heavy Fog + Task

Lead vehicle

21 3 4 6 7
1     Event Start

2     Automation On   

3     Occlusions On

4     Drone Moves Into Lane

5     Occlusions Off/Uncertainty Alert

6     Lead Vehicle Action

5

7 Event End

Ego 
vehicle

Non-critical Critical

1 2 3 4 5 6

≈150s

~30s

1

~100s

2
~8s

3

~3s

4

~3s

5
Time 

Windows:

ba c d f ge

~30s

1

~100s

2

~8s

3

~3s

4

~3s

5

Time 

Windows:

Lead vehicleEgo vehicle

Figure 4.4: Schematic representation of the Time Windows used for the analyses.

(a) to (g) represent various phases of the drive, as follows: (a) Event start, (b)

Automation on, (c) Screen Manipulation on, (d) Drone moves into lane, (e) Screen

Manipulations off + uncertainty alert, (f) Drone action, (g) Event end.
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4.3 Results and Discussion

4.3.1 Gaze patterns during uninterrupted driving

Time Window 1 (TW1) was the only period in the automated drive where all drivers

were able to see the road environment, which therefore allowed a comparison of

performance with manual driving, and provided a reference point for the four screen

manipulation conditions. For SD of Gaze Yaw, a three-way ANOVA showed a signifi-

cant effect of Drive Type, where horizontal scanning was higher during automated

driving compared to manual driving (M = 8.35◦, SEM = .39◦ vs. M = 6.92◦, SEM

= .29◦, respectively; Table 4.2). Our results are in line with findings from Damböck

et al. (2013) and multiple other studies, which have used gaze PRC (de Winter et

al., 2014) and find higher horizontal scanning by drivers during automation. This

pattern of increased horizontal scanning can be seen in Figure 4.5(a)-4.5(b), which

shows an example of density contour plots of gaze dispersion for the automated and

manual drives during TW1, on approach to a non-critical event (Event 5). Analyses

of variance did not find a significant effect of Screen Manipulation or Event Number

for SD of Gaze Yaw, or any significant interactions. The primary plots illustrate a 40◦

vertical and horizontal field of view, where darker areas represent more concentrated

gaze areas, while the histograms depict two-dimensional views of horizontal gaze

concentration and the histograms to the right depict two-dimensional views of vertical

gaze concentrations.

For SD of Gaze Pitch, a three-way ANOVA revealed no effect of Screen Manipula-

tion or Drive Type (Table 4.2). There was a significant effect of Event Number for SD

of Gaze Pitch, with Figure 4.6 showing that there was a gradual decrease across the

experiment for both drives. However, the significant interaction of Drive Type and

Event Number, also shown in Figure 4.6, suggests that the effect of Event Number is

mainly due to the automated drives, as post-hoc tests showed that vertical gaze was

significantly more dispersed in Event 1 compared to Events 2-5 (p<.001). This higher

SD of Gaze Pitch for the first Event in automation was likely due to a familiarisation

period, as drivers tried to assess their environment, looking ahead at the driving

scene and back at the vehicle dashboard, which is then significantly reduced after

the first Event. Also, whereas in the automated drive SD of Gaze Pitch continues to



CHAPTER 4. ARE YOU IN THE LOOP? 103

(a) Automated drives

(b) Manual drives

Figure 4.5: Example density contour plots of gaze dispersion in Time Window 1

(from "Automation On" to "Screen Manipulation On") for Event 5.
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fluctuate over the course of the six events, in the manual drive the decrease is relatively

consistent, which is likely due to the fact that, across all time windows, the manual

drive was far less interrupted. Therefore, drivers seem to be looking between the

lead vehicle and dashboard less during automation, perhaps attempting to assess the

environment they do not control. In manual driving, drivers divided their attention

between the lead vehicle and dashboard more, which could be because they were

asked to maintain a speed of 70mph.

The slight increase in SD of Gaze Pitch in Event 3 for both the automated and

manual drives is likely due to drivers’ propensity to engage further in the driving task

and glance more regularly between the road and vehicle console after experiencing

the first critical event (Event 2).
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Figure 4.6: Mean SD of Gaze Pitch in Time Window 1 (from "Automation On" to

"Screen Manipulation On") for each Event Number for the automated and manual

drives.

4.3.2 Gaze patterns during the screen manipulations

Time Window 2 (TW2) represents the period where the various screen manipulations

were applied during the automated drives. Here, we expected changes to visual

attention distribution as a result of these manipulations, and as a direct consequence

of the degree of visual information available to drivers. To provide an overview of gaze

distribution for the four Screen Manipulation conditions, Figure 4.7(a) to Figure 4.8(b)

displays density contour plots for all participants during TW2 for each Manipulation.

Whereas these figures show raw gaze distribution, analysis was conducted on the
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mean standard deviation of gaze (e.g., Figure 4.9). Therefore, while the patterns in

Figure 4.9 loosely correspond to the patterns in Figure 4.7(a) to Figure 4.8(b), the latter

are intended only as a visual guide.

A two-way ANOVA was conducted on the SD of Gaze Yaw to assess the effect of

each screen manipulation during automation (Table 4.2). Results showed a significant

main effect of Screen Manipulation, as shown in Figure 4.9. Post-hoc analyses revealed

this was due to the different horizontal scanning pattern of drivers during the No

Fog and Heavy Fog + Task conditions (p < .05). This reduction of horizontal gaze

because of the secondary task engagement is not surprising and cannot in itself be

used as a direct indication of how much drivers were OoTL. Figure 4.9 also shows

similar horizontal scanning when drivers were able to see the driving scene in the

No Fog condition and when the scene was fully occluded during the Heavy Fog

condition. There was no effect of Event Number (p = .664) for SD of Gaze Yaw and

no interaction between Event Number and Screen Manipulation, suggesting that the

screen manipulations had a consistent effect on horizontal scanning throughout the

six Events for all screen manipulations (p = .92).

A two-way ANOVA for SD of Gaze Pitch also showed a main effect of Screen

Manipulation, with the greatest vertical gaze dispersion seen for drivers in the Heavy

Fog condition. Post-hoc analyses found significant differences between this condition

and all other screen manipulation conditions (Figure 4.10), suggesting that when

drivers were taken OoTL by not being able to see the the road, their primary vertical

gaze activity focused on looking between the road ahead and the vehicle dashboard,

presumably awaiting the end of the screen manipulation. There was also a main

effect of Event Number for SD of Gaze Pitch. As can be seen in Figure 4.11, pairwise

comparisons revealed that this effect was due to an increased concentration of vertical

scanning after Event 1, which is significantly higher than all but the last Event (p<.05).

As with TW1, the higher SD of Gaze Pitch for Event 1 is likely due to a familiarisation

period by drivers, at the start of the drive. There was no interaction between Event

Number and Screen Manipulation for SD of Gaze Pitch.
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(a) No Fog

(b) Light Fog

Figure 4.7: Density contour plots of gaze for the No Fog and Light Fog groups in

Time Window 2 (from "Screen Manipulation On" to "Drone Moves into Lane") for

all events in the automated drive.
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(a) Heavy Fog

(b) Heavy Fog + Task

Figure 4.8: Density contour plots of gaze for the Heavy Fog and Heavy Fog +

Task groups in Time Window 2 (from "Screen Manipulation On" to "Drone Moves

into Lane") for all events in the automated drive.
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Figure 4.9: Mean SD of Yaw during Time Window 2 (from "Screen Manipulation

On" to "Drone Moves into Lane") for each of the four automated drives (*p<.05).
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Figure 4.10: Mean SD of Pitch during Time Window 2 (from "Screen Manipulation

On" to "Drone Moves into Lane") for each of the four automated drives (*p<.05,

**p<.001).
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Figure 4.11: SD of Gaze Pitch across all events in the automated drive for Time

Window 2 (from "Screen Manipulation On" to "Drone Moves into Lane"). Asterisks

indicate that, for SD of Gaze Pitch in the automated drive, Event 1 is significantly

different to Events 2-5 (*p<.05).

4.3.3 Gaze patterns pre-screen manipulations

Time Window 3 (TW3) constituted an 8 s period where the manipulations in TW2

continued in the automated drives, but where surrounding vehicles began to move

into place to trigger an uncertainty event. TW3 was excluded from the analyses, since

drivers’ eye movements were likely to be affected by the movement of surrounding

vehicles when the road scene was visible.

4.3.4 Gaze patterns post-screen manipulations

Time Window 4 (TW4) constituted a 3 s period from the end of the screen manipula-

tions (which coincided with the start of the uncertainty alert in automation) up to the

moment before the lead vehicle either braked, changed lane, or sped up. This period

allowed for the assessment of drivers’ gaze patterns during a Situation Awareness

Recovery period (SAR; Gartenburg et al., 2013), defined as the process of restoring

SA after SA has been reduced. A 3-way ANOVA revealed no differences between the

automated and manual drives for either SD of Gaze Yaw (p = .130) or SD of Gaze Pitch

(p = .160), suggesting that regardless of the screen manipulation, drivers recovered

quite quickly, at least as indicated by their visual attention to the road ahead.

To investigate any carry-over effects of the four screen manipulations on gaze
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patterns, a 2-way ANOVA was conducted on SD of Gaze Yaw and Pitch for the

automated drives only. Results showed that horizontal and vertical gaze dispersion

was the same for all Screen Manipulations, in the three seconds immediately after

screen manipulation was removed. These results suggest that when drivers’ attention

was captured by the uncertainty alert, their visual attention to the road ahead was

not affected by the previous screen manipulation. Therefore, regardless of the degree

of visual information available to drivers during each screen manipulation the same

pattern of horizontal and vertical gaze scanning was observed in preparation for

response to the lead vehicle.

Analyses of variance also showed that while there was no effect of Event Number

for SD of Gaze Yaw in the automated drives (p = .450), there was a significant effect of

Event Number for SD of Gaze Pitch (p < .05). Patterns were similar to that seen during

Time Windows 1 and 2 and likely due to drivers’ familiarisation with the driving

scenarios, after Event 1.

4.3.5 Gaze patterns post-Brake light

Time Window 5 (TW5) constituted a 3 s period after first onset of the lead vehicle’s

brake light. Only gaze patterns for the two Critical Events were considered for

this analyses, as these events required direct intervention by drivers, which would

otherwise result in a collision.

A 3-way ANOVA showed that, there was no effect of Drive Type (p = .225) or

Screen Manipulation (p = .067) on SD of Gaze Yaw (Table 4.2). There was, however, a

significant difference in horizontal scanning between the two critical events, with lower

SD of Gaze Yaw in the first (M = 5.26◦, SEM = .403◦) compared to the second (M = 6.30◦,

SEM = .51◦) critical event. The ANOVA also revealed a significant interaction between

Drive Type and Event Number for SD of Gaze Yaw. Although horizontal scanning

was relatively high for both events in the manual conditions, in the automated drive it

increased from 4.03◦ (SEM = .47◦) in Critical Event 1 to 6.83◦ (SEM = .51◦) in Critical

Event 2 (Figure 4.12). This suggests a learning effect in the automated drives, where

drivers understood the significance of a potential collision in the first critical event

and scanned the environment and particularly the adjacent lane more extensively

on approach to the second critical event to prepare for a suitable response, such as
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changing lane. Clearly, the same degree of horizontal scanning occurred for both

Events in manual driver, when drivers were in control of the vehicle and responsible

for lane changing.

For SD of Gaze Pitch, there was no effect of Drive Type (p = .064) or Screen

Manipulation (p = .095), suggesting that drivers’ vertical gaze distributions just before

response to the braking lead vehicle were the same in the manual and automated

drives and across the four conditions. There was also no effect of Event Number for

SD of Gaze Pitch, suggesting that the screen manipulations did not have a carry-over

effect on vertical gaze patterns, once the lead vehicle braked in the Critical Incidents.
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Figure 4.12: Mean SD of Gaze Yaw for Critical Event 1 and Critical Event 2 in

the Automated and Manual drives, for Time Window 5 (from "Drone Action" to

"Event End".)
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Table 4.2: Results for ANOVAs conducted for each Time Window for SD of Gaze

Yaw and SD of Gaze Pitch.
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4.4 Conclusions

Previous studies have suggested that drivers’ inability to respond effectively to critical

scenarios following limitations or failures of highly automated driving (SAE Level 2)

is because they are ’out-of-the-loop’ (OoTL). In these studies, when performance in

automated driving is compared to manual driving, reaction time to critical incidents

is slower, sometimes leading to crashes, and drivers are generally less aware of their

surroundings, presumably taking some time to reorient their attention to the driving

scene after automation is disengaged. However, there is currently no consensus as to

what constitutes an OoTL driver, how this state is measured, and what information

drivers use to remain engaged with the driving task. To address these issues, we

manipulated the simulated driving scene in a series of conditions, by removing driving-

relevant visual information for short periods, and investigating driver behaviour and

gaze patterns before, during and after such manipulations. Drivers’ visual attention to

unfolding critical and non-critical events after such manipulations were also studied

and findings were compared to driving with manual control.

Results showed that, during automation, drivers’ vertical gaze was most dispersed

when the road scene and dashboard were completely occluded during automation

(heavy fog condition). Here, drivers systematically moved their gaze between the road

ahead and the vehicle dashboard, presumably in preparation for the resumption of

control. Horizontal gaze dispersion was also highest in this drive. In contrast, and

against our expectations, when the road scene was partially occluded during the light

fog condition, drivers’ gaze was almost entirely on the road centre, and they seemed

to ignore the vehicle HMI. Therefore, by withholding only some information, drivers

were seen to remain more engaged in the driving task, compared to if all information

was removed. Focus of gaze towards the road scene and infrequent gaze towards the

HMI was also high when a secondary task was present on the driving scene during

automation.

These gaze dispersion patterns provide some understanding of what information

drivers use to keep themselves engaged in the driving task during automation, and

what information they use to keep in the loop when they have access to only some

driving-relevant information. In other words, when they can see the scene for them-

selves, drivers distribute their gaze towards a larger area of the driving scene and
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surrounding environment, presumably, because they can easily see any unfolding

events and believe they can rapidly resume control from automation, if required.

Perhaps they can afford to trust the automation more in this condition as resumption

of control is easier, in the event of a failure. When this information is completely

removed, attention is also spread horizontally across the driving scene but also heavily

between the vehicle HMI and the road. This increase in vertical gaze, especially, is

likely to allow drivers access to maximum information from all relevant sources, for

resumption of control. Taken together, these results may suggest that, if relevant

vehicle information is presented in the dashboard area, then vertical dispersion of

gaze is likely to be higher when drivers are OoTL.

When the road scene was only partially visible, drivers clearly believed visual

attention was best placed towards the area of the likely incident, the road centre,

and that less valuable information was available from the HMI. Here, drivers prob-

ably trusted the automated system least and wished to rely on their own skills for

resumption of control. Finally, when required to engage in a secondary task, drivers

prioritised this task, perhaps to the detriment of driving, also taking their attention

away from the HMI - when the road scene was not visible.

Perhaps fortunately, this study revealed that regardless of these screen manipu-

lations, when an uncertainty alert captures drivers’ attention towards an impending

incident, a similar gaze pattern is seen for all drivers, with no carry-over effects

observed after the screen manipulations, and similar gaze patterns also seen for this

period of manual driving. Therefore, while these short periods of screen manipulation

may well disperse drivers’ visual attention away from the road centre, they do not

have a long lasting effect on visual attention to the point of danger, when response is

required before a potentially critical event.

While the focus of this paper was to induce varying degrees of being OoTL and

assess their concomitant effect on drivers’ gaze dispersion, the effect of such gaze

patterns on ensuing performance is perhaps worth considering. Although not reported

here, an analysis of driving performance suggests that those screen manipulations

which caused the most gaze dispersion (no fog and heavy fog) were followed by the

highest number of collisions (Louw et al., 2016). These results illustrate, therefore, that

scenarios that encourage driver gaze towards the road centre are likely to bring drivers

back into the loop more efficiently by facilitating better situation awareness/hazard
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perception during the transfer of control from highly automated driving. Although

further work is required to validate this proposal, these findings suggest that any

information presented to drivers during automation should be placed near the centre

of the road, akin to a Head Up Display. Clearly, the interaction between presenting

such information towards the road centre during automation, and the consequent

effect on driver distraction, needs further investigation.

An encouraging finding from these studies was that, regardless of screen ma-

nipulation, drivers’ understanding of the automated system and uncertainty events

increased as time progressed. This was illustrated by observations in vertical gaze

dispersion, which was significantly reduced after the first event. There was also an

increase in horizontal dispersion of gaze upon approach to the second critical event in

automation; suggesting drivers prepared themselves, for instance by looking towards

the adjacent lane before a lane change, to avoid collision with the lead vehicle.

It is important to note that the manipulations used in this study do not provide

a complete assessment of the OoTL state. As disengagement from the driving task

was involuntary and experimenter-induced, the effects are likely underestimated.

Under normal automated driving conditions, drivers’ withdrawal of attention, and

therefore disengagement from feedback of driving relevant information, is generally

self-induced and voluntary. Maintaining consistent and voluntary disengagement

from all aspects of the driving task in a controlled setting highlights a key challenge

in attempting to investigate the OoTL state. Moreover, gaze dispersion is only one of

several measures that should be examined to investigate whether automation unduly

impedes drivers’ abilities to regain full cognitive and physical control. Therefore,

natural progressions of this work are to analyse how drivers’ visually process road

hazards in critical takeover scenarios, and to establish how well calibrated drivers’

vehicle control is to the criticality of an unfolding scenario, following a takeover.

Future studies should also consider the effect of longer periods of placing drivers

OoTL on such measures, as well as HMI solutions that provide informative, yet

non-intrusive system feedback.
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CHAPTER 5

WERE THEY IN THE LOOP DURING

AUTOMATED DRIVING? LINKS BETWEEN

VISUAL ATTENTION AND CRASH POTENTIAL

ABSTRACT A proposed advantage of vehicle automation is that it relieves drivers

from the moment-to-moment demands of driving, to engage in other, non-driving

related, tasks. However, it is important to gain an understanding of drivers’

capacity to resume manual control, should such a need arise. As automation

removes vehicle control-based measures as a performance indicator, other metrics

must be explored. This driving simulator study, conducted under the EC-funded

AdaptIVe project, assessed drivers’ gaze fixations during partially-automated

(SAE Level 2) driving, on approach to critical and non-critical events. Using

a between-participant design, 75 drivers experienced automation with one of

five out-of-the-loop (OoTL) manipulations, which used different levels of screen

visibility and secondary tasks to induce varying levels of engagement with the

driving task: 1) no manipulation, 2) manipulation by light fog, 3) manipulation

by heavy fog, 4) manipulation by heavy fog plus a visual task, 5) no manipulation

plus an n-back task. The OoTL manipulations influenced drivers’ first point of

gaze fixation after they were asked to attend to an evolving event. Differences

resolved within one second and visual attention allocation adapted with repeated

events, yet crash outcome was not different between OoTL manipulation groups.

Drivers who crashed in the first critical event showed an inconsistent pattern of

eye fixations towards the road centre on approach to the event, while those who

did not demonstrated a more stable pattern. Automated driving systems should

be able to direct drivers’ attention to hazards no less than 6 seconds in advance of

an adverse outcome.
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5.1 Introduction

The first generation of partially-automated vehicles (SAE Level 2; SAE, 2014) is already

on our roads. The Volvo XC90, for example, combines Lane Keeping Assist (LKA)

and Adaptive Cruise Control (ACC) in ’IntelliSafe Autopilot’ mode (Volvo Cars, 2016).

However, drivers are still required to supervise the system and resume control, for

instance due to system limitations. Studies suggest that prolonged monitoring of

an automated system can take drivers out of the loop (Merat et al., 2014), inducing

passive fatigue (Desmond and Hancock, 2001), thereby reducing drivers’ attentional

capacity (Desmond and Matthews, 1997) and ability to detect, evaluate and respond

to critical events thus increasing the likelihood of crashes (Endsley, 1995; Hollnagel

and Woods, 2005; de Winter et al., 2015). Concomitantly, drivers may choose to

engage in non-driving related activities (Carsten et al., 2012), which distract from

the supposed primary task of monitoring the vehicle. Therefore, passive fatigue and

task disengagement are two factors that may hamper drivers’ ability to safely resume

control from an automated system in driving (Neubauer et al., 2014; Merat et al.,

2012).

Previously, in a series of studies designed to investigate this concept, we used

various OoTL manipulation techniques, including altering drivers’ visibility of the road

scene during automation while they completed visual and non-visual tasks, thereby

varying drivers’ level of awareness and engagement in the driving task (Louw et al.,

2015; Louw and Merat, 2017). We found a differential effect of OoTL manipulation on

the standard deviation of horizontal gaze position, where drivers looked around more

when their view of the driving scene was completely blocked, and horizontal gaze was

more concentrated when drivers performed a visual secondary task presented on the

road scene, but these differences actually resolved within three seconds after removal

of the OoTL manipulation. However, while gaze dispersion provides an overview of

drivers’ visual attention, it is not as informative as point and duration of eye fixations

for identifying the focus of drivers’ visual attention. That is, where and for how long

drivers are fixating in the driving scene or car cabin.

Previous studies have shown that sudden changes to the road environment capture

drivers’ attention, resulting in reduced visual scanning of the scene and increased

fixations towards changes therein (Chapman and Underwood, 1998; Velichkovsky
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et al., 2002) which link directly to an increase in crashes (Crundall, Shenton, and

Underwood, 2004). Therefore, this study considered drivers’ eye fixations in the

seconds after removal of the OoTL manipulations, to assess how each manipulation

affected the pattern of visual attention allocation, and whether this was predictive of

drivers’ ability to avoid crashes in critical scenarios. Finally, although many studies

have considered driver behaviour after take-over from automation in response to a

take-over request (Gold et al., 2013; Louw, Merat, and Jamson, 2015) we introduced an

’uncertainty alert’ in this study to portray potential system limitation, which required

drivers to assess the need to resume manual control, allowing us to evaluate drivers’

trust in the system, assessing their visual attention on approach to each of the six

events.

5.2 Methods

5.2.1 Participants

75 drivers (41 male), aged 21-69 years (M=36.16, SD=12.38) were recruited via the

participant database of the fully motion-based University of Leeds Driving Simulator

(UoLDS) and were reimbursed £20 for partaking. Participants had normal or corrected-

to-normal vision, an average annual mileage of 8290.46 (SD=6723.08), a full driving

licence for at least three years (M=16.22, SD=12.92), and drove at least twice a week.

5.2.2 Design and Procedure

Materials

The experiment was conducted in the UoLDS, which consists of a Jaguar S-type cab

housed in a 4m spherical projection dome with a 300◦ field-of-view projection system.

A v4.5 Seeing Machines faceLAB eye-tracker was used to record eye movements at

60Hz.
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Design

A 5 X 2 repeated measures mixed design was used, with OoTL Manipulation (No

Fog, Light Fog, Heavy Fog, Heavy Fog+Quiz, No Fog+n-back) as between-participant

factor and Event Number (1-6) as within-participant factor. The automated drive

lasted about 20 minutes and encompassed six discrete car-following events, within a

free-flowing three-lane motorway with ambient traffic. As shown in Figure 6.3, the

drive contained two critical events (2,6), where the lead vehicle decelerated at a rate

of 5.0 m/s2 with a 3 s time-to-collision (TTC), and four non-critical events (1,3,4,5),

where the lead vehicle either sped up or changed lane. Crash with the lead vehicle

was inevitable in the critical events, if drivers failed to resume control. Participants

completed two experimental drives, a manual drive and an automated drive, which

were counterbalanced across participants. As this paper is focused on comparing the

effect of different types of OoTL manipulation on performance in automation, results

from the manual drive are not included.

Lead vehicle

a Automation On   

b OOTL  Manipulations On

OOTL Manipulations Off/
Uncertainty Alert On

d Lead Vehicle Action

Non-critical Critical

1 2 3 4 5 6

≈150s

a b dc

Ego vehicle No Fog

Heavy Fog

Light Fog

Heavy Fog + Quiz

No Fog + n-back100 s 3 s 3 s

c

Figure 5.1: Schematic representation of each discrete event in the experimental

drive. (a) to (d) represent various phases of the drive.

Automated Driving System

The partially-automated driving (PAD) system was only available when the vehicle

was travelling between 65 and 75 mph in the middle lane. The system was engaged

via a button on the steering wheel and disengaged by either pressing the same button,

turning the steering wheel more than 2◦, or depressing the brake pedal. If participants



CHAPTER 5. WERE THEY IN THE LOOP? 125

did not engage automation, the system engaged automatically after 5 s. Once engaged,

the system assumed lateral and longitudinal control and adjusted the vehicle’s speed

to maintain 70mph.

Automation status was indicated by the colour of a steering wheel symbol located in

the vehicle’s central display unit. It was solid grey when automation was unavailable,

flashed green when available, and appeared solid green when active. A flashing yellow

symbol indicated automation was ’uncertain’, and drivers were expected to monitor

the roadway and intervene if they deemed necessary (see Louw and Merat (2017)

for further details of the HMI). If the driver deactivated the automation, the symbol

appeared solid red for 2 s. Automation activation and deactivation was accompanied

by an auditory tone (1000Hz, 0.2 s). A forward crash warning symbol included to the

left of the automation status symbol gave drivers a visual estimate of the lead vehicle

headway and a continuous alarm sounded if drivers reached a 2 s TTC.

OoTL Manipulations

To vary the level by which drivers were aware of, and engaged with, the driving

task during automation, we applied one of five OoTL manipulation techniques to

briefly alter their vision of the road scene. In the No Fog condition, the road scene

was not manipulated in any way. In the Light Fog condition, a translucent grey

filter superimposed the road scene, allowing drivers to perceive elements in the road

environment in the immediate vicinity, but not further afield. This manipulation aimed

to simulate situations where drivers’ primary focus towards the OoTL is partially

hindered due to interaction with other non-driving related tasks. In the Heavy Fog

condition, an opaque grey filter overlaid the road scene, blocking all visual information

from the road environment, with the aim of simulating situations where the driver is

completely looking away from the road scene and is unaware of the traffic conditions.

In the Heavy Fog+Quiz condition, a visually presented secondary task was overlaid

on the opaque grey OoTL, and participants were required to provide verbal answers to

a series of multiple-choice questions relating to visuospatial shape-matching, general

knowledge questions, and moderately challenging mathematics. These questions

were sourced from various web-based IQ tests and were used to assess how a visual

secondary task affected performance. In the No Fog+n-back task condition, there was

no OoTL manipulation, and participants completed the verbal response delayed digit
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recall task (n-back; Mehler et al., 2011; Kirchner, 1958) during automation. Participants

were presented with a sequence of single digit numbers and were expected to repeat

out loud the last number presented. This was used to assess how engagement in

a non-visual task during automation would affect eye-movements, resumption of

control and crash avoidance.

Procedure

Upon arrival, participants read a handout with details of the experiment. After

signing consent, participants completed a 15-minute familiarisation drive, consisting

of non-critical events only. This began with a short manual drive. Once familiar with

the simulator controls, participants practised activating/deactivating the automation,

were shown how the HMI communicated automation states, and experienced the

OoTL manipulations. Participants then completed the two experimental drives.

Data Analysis

Data were analysed with SPSS V.21 (IBM, Armonk, NY, USA). A α-value of .05

was used as the criterion for statistical significance and partial eta-squared (η2
p) was

computed as an effect size statistic. Least Significance Difference (LSD) pairwise

comparisons (α= .05) were used to determine the difference between levels of OoTL

Manipulation and Event Number.

5.3 Results and Discussion

Our aim was to explore drivers’ visual attention during the resumption of control

from PAD, after experiencing different OoTL manipulations designed to vary drivers’

awareness of, and engagement with, the road scene. The following research questions

were addressed: (i) how does each OoTL Manipulation affect the location of drivers’

first fixation after the uncertainty event, (ii) how are drivers’ fixations distributed

over time, and (iii) what is the relationship between fixations during the uncertainty

alerts and crash frequency. Fixations were calculated based on a 200 ms threshold

with a standard deviation of gaze position below 1◦. Fixation location was based on

five spatial areas of interest (AOIs) anchored by the road centre region, which was
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defined as the mode of gaze fixations that fell within a 6◦ circular region of the road

centre area (See Percent Road Centre (PRC; Harbluk, Noy, and Eizenman, 2002; Victor,

Harbluk, and Engström, 2005). The Top, Left, Bottom and Right regions of this AOI

account for an equal division of the remainder of the road scene (for details see Louw

et al., 2014).

5.3.1 Where do drivers look first?

Our results show that the OoTL manipulations influenced the AOI region first fixated

by participants after the manipulations ceased (Figure 5.2). To assess how dispersed

the groups’ fixations were between the AOIs for each group and across all events, we

calculated a dispersion index (D; Hammond, Householder, Castellan, 1970), defined

as, "the ratio of the number of pairs in the data which are found to be different to

the maximum number of such pairs, given the total number of observations" (Schafer,

1980). This produces a value from zero to one, where zero indicates the observations

are concentrated in one category and one indicates the observations are distributed

evenly among the categories:

D =
(k(N2 −∑k

i=1 N2
i )

(N2(k− 1))
(5.1)

Where k = the number of categories,

N = number of observations,

Ni = number of observations in the ith category.

Since some fixations coincided with the start of the uncertainty event, only those

starting 200 ms after the cessation of the OoTL manipulations were analysed. In the

Heavy Fog + Quiz and No Fog + n-back group fewer drivers fixated on the central

region immediately after the screen was removed, and the dispersion index shows

there was more variance in these groups compared to others. The high number of

fixations on the top region for the No Fog + Quiz group is likely due to the location

of the Quiz on the screen enveloping both the central and top regions. The high

number of fixations on the top region for the No Fog + n-back was also expected, as

drivers who are engaged in a non-visual cognitive task have been shown to have a
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higher vertical gaze angle compared to a baseline drive (Kountouriotis and Merat,

2016). Fixations between participants were least dispersed in the Light Fog and Heavy

Fog condition, with the majority of first fixations located in the central region. These

results suggest that, irrespective of screen visibility, performing a secondary task

during automation caused more variation in drivers’ first fixation, when they were

required to re-engage in the driving task.
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Figure 5.2: Location of participants’ first fixation after the OoTL manipulations

ceased, for all events.

5.3.2 Effect of OoTL Manipulations on fixations

To understand how drivers distribute their visual attention while the automated

system was in an ’uncertain’ state, an index of PRC was calculated for three 1 s time

windows, immediately after the OoTL manipulations ended. These were compared

using a three-way ANOVA, with Event Number (1-6) and Time (1s-3s) as within-

participant factors and OoTL Manipulation (5 Conditions) as between-participant

factor.

Results showed an effect of Event Number (F(5,350)=3.179, p<.01, η2
p=.043), where,

as shown in Figure 5.3(a), drivers’ visual attention distribution changed with successive

events. Post-hoc comparisons revealed that PRC scores for Events 1 and 3 were

significantly different. There was also an effect of Time (F(2,140)=10.329, p<.001,

η2
p=.129), and Figure 5.3(b) shows that PRC scores rose significantly from the first

to the second and third second after the OoTL manipulations ended. There was an
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interaction of Event Number and Time (F(10,700)=19.162, p<.01, η2
p=.215). However,

post-hoc comparisons failed to show any meaningful patterns. Consistent with our

previous results (Louw et al., 2015), there was no effect of OoTL Manipulation on

fixations to the road centre in the first three seconds, however there was an interaction

of Time and OoTL Manipulation (F(8,140)=2.772, p<.05, η2
p=.137). To investigate

this interaction, two-way ANOVAs were conducted for each of the three seconds,

with OoTL Manipulation as between-participant factor and Event Number as within-

participant factor. A main effect of OoTL Manipulation was observed only for the

first second (F(4,70)=2.997, p<.05, η2
p=.146). Post-hoc comparisons showed that during

the first second, PRC scores were significantly lower in the Heavy Fog and Heavy

Fog+Quiz group compared to the others. This indicates that drivers were scanning

the environment more after not having seen the road beforehand, but at the expense

of focusing on the lead vehicle.
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Figure 5.3: Average Percent Road Centre frequency after the uncertainty alert, for

(a) each of the six events, and (b) for the first three seconds after the uncertainty

alert (right) * p<.05, ** p<.001.

5.3.3 Fixations in the Critical Events

The number of crashes in Critical Event 1 (CE1) and Critical Event 2 (CE2), did not

differ significantly between the Conditions (CE1, p=.073; CE2, p=.064), as calculated by

2 chi-squared tests (Table 5.1). This suggests that crash propensity may not necessarily

be linked to drivers’ first point of fixation. To test for a relationship between fixations

during the uncertainty alerts and crash frequency, PRC scores were calculated for six

1 s periods after the OoTL manipulations ceased. We compared PRC scores in CE1

using a two-way ANOVA, with Time Window (1s-6s) as within-participant factor and
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Table 5.1: Crash counts out of 15 cases for Critical Event 1 (CE1) and Critical

Event 2 (CE2) for each group in the automated drive.

Critical Event 1 Critical Event 2

No Crash Crash No Crash Crash

No Fog (N=15) 10 5 15 0

No Fog + n-back (N=15) 11 4 15 0

Light Fog (N=15) 14 1 14 1

Heavy Fog + Quiz (N=15) 13 2 15 0

Heavy Fog (N=15) 8 7 12 3

Total 56 19 71 4

Event Outcome (crash/no crash) as between-participant factor. We focused on CE1

as there were only four crashes in CE2. Not included in the analysis but important

to note is that in the second before the OoTL manipulations ceased there was no

difference in PRC scores between participants (Figure 5.4), therefore any changes in

PRC can be attributed to drivers’ strategies for coming back into the loop.

There was a significant effect of Time Window (F(5,325)=5.287, p<.01, η2
p=.075),

where post-hoc comparisons revealed significantly higher PRC scores in the third

to sixth second, and immediately after the brake light, compared to that of the

first second. There was no effect of Event Outcome (p=.526), however there was a

significant interaction between Time Window and Event Outcome (F(5,325)=5.125,

p<.01, η2
p=.073), where PRC scores over time were clearly different for the event

outcome groups (Figure 5.4). This is highlighted by results from independent sample

t-tests comparing PRC scores between the Event Outcome groups for each of the six

1 s Time Windows. For the crash group, only 51% of total fixations in the first two

seconds were on the road centre region, which compares to 70.5% and 84% in the same

periods for those who did not crash, the latter being significantly different (t(73)=3.14,

p<.01). However, in the third second, the crash group’s PRC score rose to 97%, which

was significantly higher compared to the no crash group at 71.3% (t(73)=2.238, p <.05).
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Figure 5.4: Percent Road Centre scores in Critical Event 1 for the crash (N=19)

and no crash group (N=54) for seven 1 s time windows from the second before the

OoTL manipulations ceased. Those who did not crash in Critical Event 2 (N=71)

are also shown. *p<.05, **p<.01 (applies to comparisons for Critical Event 1).

In terms of preparation to respond to the hazard, it seems that drivers who crashed,

left it too late. They maintained a high PRC score during the fourth and fifth second

before dropping in the sixth possibly reflecting a late attempt at avoiding a crash.

This was in contrast to the no crash group, whose PRC score rose gradually over the

same period. Therefore, drivers with a more consistent frequency of eye fixations

towards the point of the potential hazard (the road centre) and were more likely to

avoid a crash than those who were late to fixate on the potential hazard. The PRC

pattern for the crash group could be a result of these drivers either succumbing to

an ’automation surprise’ (Hollnagel and Woods, 2005) leading to increased cognitive

demand (Engström, Johansson, and Ostlund, 2005), or over-trusting the system to

handle the hazard (Lee and See, 2004), which led to them not feeling the need to

distribute their attention in preparation for a response until it was too late. As a

comparison, Figure 5.4 shows that the PRC trend for non-colliders in CE1 is remarkably

similar to that of the 71 non-colliders in CE2.



CHAPTER 5. WERE THEY IN THE LOOP? 133

5.4 Conclusions

The aim of this study was to investigate drivers’ visual attention patterns during the

resumption of manual control from PAD and whether these link to crash potential.

Following Louw and Merat (2017), we hypothesised that drivers who crashed would

have different patterns of visual attention towards the road centre, compared with

those who did not. OoTL manipulations influenced drivers’ first point of gaze fixation

after they ceased, yet these differences resolved within 2 s, and there was also no

association between OoTL manipulation and crash outcome. Key to bringing a driver

back into the loop who then responds appropriately is directing their attention as early

as possible towards the hazard that may lead to an automation disengagement. This

avoids indecisive eye scanning and improves information acquisition and processing,

which supports better decision-making and action execution (Parasuraman, Sheridan,

and Wickens, 2000).

As vehicle automation evolves from SAE Level 2 to SAE Level 3, so the decisions

that drivers will have to take regarding their involvement in the driving task will shift

from being about when to intervene to whether to intervene. Considering that we

do not have a well-defined understanding of drivers’ competence to resume control

safely, previous studies argued that drivers should remain engaged with the driving

task during automation to intervene quickly if necessary. This justifiably conservative

recommendation results in drivers not being relieved of the workload that automated

driving promises, highlighting a familiar irony of automation (Bainbridge, 1983). This

paper provides two recommendations that might help realise the potential for PAD to

reduce workload: (1) automated driving systems needs to be able to direct drivers’

attention towards the cause of a system limitation at least 6 s in advance of an adverse

outcome and (2) drivers need to possess an accurate and confident understanding of

their role and the capabilities of their PAD systems (Vlasic and Boudette, 2016). These

are especially relevant for time-critical situations and where drivers are ultimately

responsible for safety. A possible limitation of this study is that the automated drive

duration used may not have been long enough to induce the out-of-the-loop states.

Therefore, and with a view to developing a more complete understanding of drivers’

capacity to resume control, a natural progression of this work is to investigate links

between longer durations out of the loop, visual attention, takeover times, vehicle
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control and crash outcome.

What is already known on this subject

1. In the coming decades, the driving task will become increasingly automated.

Irrespective of the level of automation, drivers will likely engage in non-driving-

related tasks, which may impede their ability to avoid crashes if they are expected

to resume manual control, should the vehicle reach a limitation.

2. Little is known about drivers’ visual attention during such instances, yet this is es-

pecially important as automation renders traditional metrics of driver behaviour

inadequate.

3. The design of safe automated driving systems can and should be informed

by a clear understanding of how drivers’ visual attention is distributed in the

moments after they are expected to resume control.

What this study adds

1. This research improves and expands upon previous research by comparing

how varying levels of drivers’ awareness of, and engagement with, a partially

automated driving system influences their visual attention distribution during

critical and non-critical road events.

2. A detailed insight into drivers’ eye fixation behaviour in these events is presented,

and differences in visual attention patterns between those who crashed and

those who did not is shown.

3. Our results suggest it is imperative that automated driving systems are able to

direct drivers’ attention no less than 6 s in advance to the cause of a manual

take-over request, especially if this is a traffic threat that may lead to a crash.

This is a conservative estimate, however, with the threshold likely to rise with

increasing road and traffic complexity.
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CHAPTER 6

COMING BACK INTO THE LOOP: DRIVERS’

PERCEPTUAL-MOTOR PERFORMANCE IN

CRITICAL EVENTS AFTER AUTOMATED

DRIVING

ABSTRACT This driving simulator study, conducted as part of the EU

AdaptIVe project, investigated drivers’ performance in critical traffic events, dur-

ing the resumption of control from an automated driving system. Prior to the

critical events, using a between-participant design, 75 drivers were exposed to

various screen manipulations that varied the amount of available visual infor-

mation from the road environment and automation state, which aimed to take

them progressively further ’out-of-the-loop’ (OoTL). The current paper presents

analysis of the timing, type, and rate of drivers’ collision avoidance response, also

investigating how these were influenced by the criticality of the unfolding situa-

tion. Results showed that the amount of visual information available to drivers

during automation impacted on how quickly they resumed manual control, with

less information associated with slower take-over times, however, this did not

influence the timing of when drivers began a collision avoidance manoeuvre.

Instead, the observed behaviour is in line with recent accounts emphasising the

role of scenario kinematics in the timing of driver avoidance response. When

considering collision incidents in particular, avoidance manoeuvres were initiated

when the situation criticality exceeded an Inverse Time To Collision value of ≈ 0.3

s−1. Our results suggest that take-over time and timing and quality of avoidance

response appear to be largely independent, and while long take-over time did not

predict collision outcome, kinematically late initiation of avoidance did. Hence,

system design should focus on achieving kinematically early avoidance initiation,

141
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rather than short take-over times.



CHAPTER 6. COMING BACK INTO THE LOOP 143

6.1 Introduction

The advent of automated vehicles promises a number of benefits, including an increase

in the flow and capacity of the road network (Kesting et al., 2008, Ntousakis et

al., 2015), a wide range of economic benefits (Fagnant and Kockelman, 2015), an

increase in shared mobility (Fagnant and Kockelman, 2015), and a reduction in energy

consumption (Anderson et al., 2014). Many of these forecasts have received a great

deal of attention in recent years, including those predicting that vehicle automation

will result in a reduction in road traffic accidents (Bertoncello and Wee, 2015).

The aim of partial (SAE, 2016; Level 2; L2) automated driving systems is to relieve

drivers of the moment-to-moment demands of the control (lateral and longitudinal),

yet not supervision, of the driving task. In conditional (SAE Level 3; L3) automated

driving systems, drivers are able to relinquish both control and supervision of the

driving task. However, drivers are still expected to be responsible for the safety of

the vehicle when operating these systems, and should be available to resume manual

control, should the system reach some limit, for example, due to poorly marked lane

boundaries. During automated driving, drivers may shift their attention away from

information relevant to the driving task, for example, the traffic environment or the

status of the automated driving system, to one of a range of non-driving related

activities (Carsten et al., 2012). This shift in attention potentially impairs drivers’

ability to perceive, comprehend, and predict events in the road scene, diminishing

their situation awareness (SA) (Endsley, 1995, De Winter et al., 2014). A key human

factors concern regarding L2 and L3 systems is that drivers with deteriorated SA may

be ill-prepared to regain the attention and motor-control necessary to safely navigate

the vehicle, if a system limit is reached and manual intervention (or ’take-over’) is

required; an issue often referred to as the out-of-the-loop (OoTL) performance problem

(Endsley and Kiris, 1995).

There is evidence to suggest that the non-driving related task drivers engage in

during automation may affect how quickly and safely they can resume control (Gold

et al., 2013; Zeeb et al., 2015; Radlmayr et al., 2014; Merat et al., 2014; Louw et al., 2015),

though there is little consensus. For instance, Merat et al. (2012) compared drivers’

responses to critical incident scenarios, while engaging in a verbal "20 Questions

Task" (TQT). Compared to when drivers were not engaging in the TQT, the TQT had
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no effect on how long it took drivers to start the lane change, but it did affect their

ability to quickly reduce the vehicle’s speed to a safe level. In contrast, Neubauer et al.

(2012) found that drivers engaging in a mobile phone conversation during a take-over,

had shorter brake reaction times to a lead vehicle, compared to those who were not

engaging in a mobile phone conversation. This lack of consensus is not surprising as

studies have employed different experimental traffic scenarios (Naujoks et al., 2014,

Radlmayr et al., 2014), with varying time-budgets (Gold et al., 2013; Damböck et al.,

2012; van den Beukel and van der Voort, 2013), and human-machine interfaces (HMI),

and in simulators of varying degrees of fidelity. As non-driving related tasks demand

different levels of drivers’ visual attention, it is important to compare the effect of a

range of tasks.

In this study, conducted as part of the EU AdaptIVe project, we aimed to systemati-

cally take drives OoTL, by applying a number of screen manipulations that, to varying

degrees, limited the amount of system and environmental information available to

drivers during automation, before presenting critical and non-critical take-over events.

During these events, instead of a ’take-over request’, we used an ’uncertainty’ alert,

which required drivers to monitor the road scene and determine whether there was a

need to resume control from automation. These manipulations were introduced by

Louw et al. (2015, 2016) and Louw and Merat (2017), and are detailed further below.

Previously, we showed that, during automated driving, drivers’ eye-gaze concentration

was differentially affected by the OoTL manipulations (Louw and Merat, 2017), as was

the location of drivers’ first eye-fixations in the road scene, after the manipulations

ceased (Louw et al., 2016). However, these differences resolved within 2 s of the

manipulations ceasing. While these studies have illustrated how vehicle automation

affects drivers’ visual attention when ’coming back into the loop’, precisely whether

and how the degree of visual information available to drivers during automation

affects their perceptual-motor performance during the take-over is not clear, nor is

what constitutes ’good’ performance, in this context. This study aimed to investigate

these issues.

A number of measures and metrics have been used to study drivers’ performance

in the take-over, including take-over time from automation (Damboöck et al., 2014;

Gold et al., 2014), minimum Time To Collision (TTC; Gold et al., 2013, Louw et al.,

2015), reaction time to an obstacle (Neubauer et al., 2012), minimum time headway
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to an obstacle (Merat and Jamson, 2009; Merat et al., 2014; Louw et al., 2015), and

maximum accelerations during vehicle control in the transition (Zeeb et al., 2015;

Hergeth et al., 2016). In particular, take-over time has been used most widely to judge

driver performance during the resumption of control (for a review see Eriksson and

Stanton, 2017). However, we have previously argued that take-over time may not be

the most appropriate indicator of drivers’ preparedness for, or appreciation of the

unfolding situation (Louw et al., 2015), as drivers could simply be reacting to take-over

requests (TOR) from the system. Indeed, as reported in studies on braking behaviours

in manual driving, there exists a driver-related delay between initial brake application

and full emergency braking (Ising et al., 2012; Hirose et al., 2008; Perron et al., 2001;

Kiesewetter et al., 1999; Yoshida et al., 1998). Therefore, the current study analysed,

not only drivers’ take-over time, but also, the time it takes for them to react to a threat

in the road environment.

There is also a need to understand whether, and how, automation affects the quality

of drivers’ vehicle control following a take-over, as drivers do not mitigate all risk just

by resuming control or initiating a manoeuvre. While the quality of vehicle control

can be described, in part, by vehicle-based measures, such as lateral acceleration or

standard deviation of lane position (SDLP), their interpretation is often constrained to

the particular scenario under investigation. To provide scenario-independent measures

of vehicle control, and thus take-over quality, a possible solution is to analyse drivers’

responses in relation to the kinematics of an unfolding situation. Inverse Time To

Collision (invTTC), for example, is a measure that accounts for the visual looming

effect of a braking lead vehicle (Lee, 1976; Summala et al., 1998; Groeger, 2000; Kiefer

et al., 2003, 2005), and is an important crash risk indicator (Kondoh et al., 2008).

Victor et al. (2015) and Markkula et al. (2016) used this measure to show that

a majority of drivers involved in naturalistic crash and near-crash scenarios during

manual driving, reacted within 1 s of the kinematic urgency of the scenario, reaching

values of invTTC ≈ 0.2 s−1, which suggests that the timing and response rate of drivers’

initial response appears to be anchored to the criticality of the unfolding event. Based

on their findings, Markkula et al. (2016) proposed that how drivers make use of and

act on visual looming information from a lead vehicle in manual driving may also

explain drivers’ response processes when suddenly brought back into the control

loop in automated driving. If not being in physical vehicle control due to automation
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causes a mismatch between drivers’ internal model of a vehicle’s dynamics and the

actual vehicle dynamics (Macadam, 2003; Russell et al., 2016), then their ability to

respond in manner that is appropriate for the criticality of the situation in hand may

be impaired (cf. Fajen and Devaney, 2006; Fajen, 2008; Markkula et al., 2016).

The current study sought to evaluate this hypothesis, by analysing the timing and

rate of drivers’ responses (i.e. how fast they move brake pedal and steering wheel) in

relation to the kinematics of the unfolding situation, and how this interacts with the

degree of visual information available to drivers pre-take-over.

We hypothesised that drivers deprived of all visual information from the system

and road environment would be furthest OoTL and, therefore, take-over control later

and have the least consistent perceptual-motor control, than those who performed

visual and non-visual tasks pre-take-over. However, drivers who had access to all

visual information during automation were hypothesised to be the most in the loop

and would, therefore, take-over control the earliest and have the most consistent

perceptual-motor control during the transition.

6.2 Methods

6.2.1 Participants

Following ethical approval from the University of Leeds Research Ethics Committee

(Reference Number: LTTRAN-054, seventy-five drivers (41 male), aged 21-69 years

(M=36, SD=12) were recruited via the participant database of the University of Leeds

Driving Simulator (UoLDS) and were reimbursed £20 for participation. Participants

had normal or corrected-to-normal vision. Their average annual mileage was 8290

miles (SD=6723), and all participants had held a full driving licence for at least three

years (M=16, SD=12) and drove at least twice a week.

6.2.2 Materials

The experiment was conducted in the fully motion-based UoLDS, which consists of a

Jaguar S-type cab housed in a 4m spherical projection dome with a 300◦ field-of-view

projection system. A v4.5 Seeing Machines faceLAB eye-tracker was used to record
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eye movements at 60Hz.

6.2.3 OoTL Manipulations

To vary the degree to which drivers had access to visual information from the system

and road environment during automation, we applied one of five OoTL manipulation

techniques, which have been described previously in Louw et al. (2015, 2016) and

Louw and Merat (2017), but are repeated in Table 6.1 and shown in Figure 6.1. As

outlined in Figure 6.1, it was anticipated that drivers in the No Fog conditions would

be the most in the loop and drivers in the Heavy Fog + Task condition would the most

out of the loop (See Table 6.1).

Figure 6.1: An example of drivers’ view in the (a) no fog, no fog + n-back, (b)

light fog, (c) heavy fog, and (d) heavy fog + task conditions..

6.2.4 Automated driving system

The automated driving system was only available when the vehicle was travelling

between 65 and 75 mph in the centre of the middle lane. Drivers could engage the

system by pressing a button on the steering wheel. When automation was engaged,

and drivers’ hands and feet were off the controls, automation could be disengaged by

either pressing a button on the steering wheel, turning the steering wheel more than

2◦, or depressing the brake pedal. If participants did not engage automation within

5 s of maintaining the vehicle position in the centre of the middle lane, the system
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Table 6.1: Description of the OoTL conditions.

Condition Description Motivation/Aim

No Fog The road scene was not manipulated in any way. This served as a baseline condition, where

drivers had access to all visual information

from the system and road environment dur-

ing automation.

No Fog + n-back The road scene was not manipulated in any way, but

participants completed the 1-back task (Mehler et

al., 2011) during automation, where they heard a se-

quence of single digit numbers and were expected

to repeat out loud the last number presented.

The aim was to simulate situations where

drivers had access to all visual information

from the system and road, but they were en-

gaged in a non-visual task.

Light Fog A translucent grey filter was superimposed on the

road scene.

The aim was to give drivers the opportunity

to perceive elements in the immediate vicin-

ity of the road environment but not further

afield, and to hinder their ability to accu-

rately predict how road events might unfold

in the future.

Heavy Fog An opaque grey filter overlaid the road scene block-

ing all visual information from the road environ-

ment.

The aim was to simulate situations where

drivers are completely looking away from

the road scene and are unaware of the traf-

fic conditions but not engaged in any other

activity.

Heavy Fog + Task An opaque grey filter overlaid the road scene block-

ing all visual information from the road environ-

ment. A visually presented secondary task was pro-

jected onto the front scene, which involved a series

of web-based multiple-choice IQ test questions re-

quiring verbal answers. Questions related to visuo-

spatial shape-matching, general knowledge ques-

tions, and moderately challenging mathematics.

The aim was to simulate situations where

drivers are not attending to visual informa-

tion from the system or road environment,

due to interaction with a visual secondary

task.
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Figure 6.2: An example of the in-vehicle HMI with the Forward Collision Warning

symbol on the left and the Automation Status Symbol on the right (flashing green

in this example).

engaged automatically. Once engaged, the system assumed lateral and longitudinal

control and adjusted the vehicle’s speed to maintain 70 mph.

6.2.5 Human-machine interface

The human-machine interface (HMI) used for automation status related to the colour

of a steering wheel symbol located in the vehicle’s central display unit (Figure 6.2).

This was solid grey when automation was unavailable, flashed green when available,

and appeared solid green when active. For each event (see below), at the end of the

OoTL manipulations, instead of a take-over request, drivers were presented with an

’uncertainty alert’. This was indicated by a flashing yellow symbol, which invited

drivers to monitor the roadway and intervene, if they deemed necessary. If the driver

deactivated the automation, the symbol appeared solid red for 2 s. Automation

activation and deactivation were accompanied by an auditory tone (1000Hz, 0.2 s). A

Forward Collision Warning (FCW) symbol included to the left of the automation status

symbol gave drivers a visual estimate of the lead vehicle headway and a continuous

alarm sounded if drivers reached an acceleration-based time-to-collision (TTC) of 2 s.

6.2.6 Experimental and Scenario Design

Five groups of 15 participants each were recruited for this study. All participants

conducted an automated and manual (without the OoTL manipulations) drive, which

were counterbalanced across participants. However, given the scope of this paper,
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only results of performance during the automated drive is included here. A 5 X 2

repeated measures mixed design was used, with OoTL Manipulation (No Fog, Light

Fog, Heavy Fog, Heavy Fog+Quiz, No Fog+n-back) as a between-participant factor

and Event Number (1-6) as a within-participant factor.

Each experimental drive lasted about 20 minutes and encompassed six discrete car-

following events, within a free-flowing three-lane motorway, with ambient traffic. As

shown in Figure 6.3, each drive contained two critical events (2,6) and four non-critical

events (1,3,4,5). For all events, 7 s before the uncertainty alert, a vehicle entered the

lane ahead, from the right. In the critical events, after 3 s of the OoTL manipulations

ending, the lead vehicle decelerated at a rate of 5.0 m/s2. This resulted in a collision

if, after 3 s from the lead vehicle brake onset, there was no driver action. In the

non-critical events, after 3 s of the OoTL manipulations ending, the lead vehicle either

sped up or changed lane to the left, nullifying the event criticality.

Lead  vehicle

Non-critical Critical

1 2 3 4 5 6

≈150s

a b dc

Ego vehicle

100 s 3 s 3 s30 s

Event:

Figure 6.3: Schematic representation of each discrete event in the experimental

drive. (a) to (d) represent various phases of the drive, where (a) denotes automation

being engaged, (b) denotes the start of the OoTL manipulations, (c) denotes the

end of the OoTL manipulations and the start of the uncertainty alert, and (d)

denotes the start of the lead vehicle braking in the critical event.

6.2.7 Procedure

Upon arrival, participants read a hand-out which contained details of the experiment,

but which did not include information on the critical situations. After signing the

consent form, participants completed a 15-minute familiarisation drive, consisting of
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non-critical events only. This began with a short manual drive. Once familiar with

the simulator controls, participants practised activating/deactivating the automation,

were shown how the HMI communicated automation states, and experienced the

OoTL manipulations. Participants then completed the experimental drive described

in the previous section.

6.2.8 Analysis of drivers’ perceptual-motor performance

Reaction time measures

Two metrics were adopted for quantifying timing measures during the take-over

process: The first was take-over time (ttake−over), which was defined as a measure of

the time between the end of the OoTL manipulations and a driver’s disengagement

of the automated driving system (by either pressing a button on a steering wheel,

turning the steering wheel more than 2◦, or depressing the brake pedal). We also

computed action time (taction), which was defined as the time from the end of the

OoTL manipulation, to when the driver started a significant deceleration or steering

action that was clearly intended to mitigate the impending crash.

During our studies, we have found that, in many cases, drivers touched the steering

wheel but did not initiate an evasive steering action, and similarly, they often pressed

the brake pedal but did not engage in an evasive braking action. Therefore, we looked

for a clear steering or braking action and then searched for the starting point of this

committed action. We developed a MATLAB (version R2015b, MathWorks) tool to

allow the experimenter to judge when the driver committed to their response action.

The following steps were taken to analyse taction for the braking and steering responses:

1. The brake pedal signal and steering wheel signal were each filtered with a 1st

order low-pass Butterworth filter, with a cut-off frequency of 0.05 Hz for braking,

and 0.1 Hz for steering.

2. (a) For braking, the first local maximum brake pedal sample greater than 4 was

identified (Red diamond marker in Figure 6.4). The brake pedal sample

represented a unit-less value of brake effort, on a scale of 0 to 450.

(b) For steering, the local maxima and minima values with an amplitude

threshold of ±2.5◦ were first identified, as per Schmidt et al. (2014). Then,
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Figure 6.4: Example plot from the analysis of a brake signal, to determine taction.

Longitudinal acceleration values are multiplied by 10 for illustration purposes.

the global maximum steering wheel angle amplitude prior to the lane

change manoeuvre was identified (Red diamond marker in Figure 6.5).

3. To identify the start point of the manoeuvre (taction), two criteria were used.

First, we identified the end of the plateau in brake or steering signal before

the point identified above, such that there was less than a 0.0005 difference in

values between consecutive samples (Red square markers in Figures 6.4 and

6.5). Second, to ensure accuracy, each start point was manually confirmed on

a case-by-case basis, based on changes to the vehicle’s speed and longitudinal

acceleration, for braking, and the vehicle’s offset and lateral acceleration, for

steering. Minor adjustments to the location of the start points were made where

necessary.

4. taction was calculated as the time from the end of the OoTL screen manipulations

(Figure 6.3) to the time corresponding to the start point identified in the previous

step.

Vehicle control

To determine the quality of drivers’ vehicle control after resuming control, we consid-

ered whether drivers were able to scale the rate of their collision avoidance response
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Figure 6.5: Example plot from the analysis of a steering signal, to determine taction.

Lateral acceleration and vehicle offset values are multiplied by 10 for illustration

purposes.

to the event criticality. For this, we calculated and correlated two different measures.

The first measure was Inverse Time To Collision (invTTC; Kiefer et al., 2003, 2005)

at taction, and was used to quantify the criticality of the unfolding event at the point

drivers began their collision avoidance manoeuvre. invTTC was calculated as relative

speed divided by distance gap between the ego and lead vehicle, which takes the lead

vehicle deceleration into account.

The second measure was the maximum derivative (Dmax) of the control input that

drivers used to avoid the collision, and was used to assess the rate and force of

drivers’ response to the critical event (Green circle marker in Figure 6.4 and Figure

6.5). Dmax was taken from the time period between the response onset (taction) and

the maximum value of the respective control input. If drivers changed lane, then

steering wheel angle was used, and if they braked, then brake pedal position was

used. If drivers braked then steered, then steering wheel angle was used. For both

steering avoidance (Markkula et al., 2014) and braking avoidance (Markkula et al.,

2016), drivers scale the rate of their avoidance manoeuvre (i.e. Dmax), to looming, as

measured by invTTC. By correlating invTTC at taction and Dmax, we aimed to assess

(i) whether similar situation-adaptive control behaviour would be present just after

a take-over from automated driving, and if so, (ii) whether it would be affected by
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the OoTL manipulations. Specifically, as suggested in the Introduction, that drivers

who had access to less visual information during automation, would generally have a

more scattered correlation between invTTC at taction and Dmax.

As braking and steering inputs are measured in different units, they could not be

analysed as a single data set, without first being transformed. To achieve this, separate

regression equations were calculated for the steering and braking responses between

invTTC and taction. Next, the Dmax values of the braking responses were transformed

such that the intercept and slope of the regression equation was the same as that of

the steering responses, allowing for the comparison of braking and steering responses.

Statistical analyses

The data were not normally distributed. Therefore, Kendall’s non-parametric rank

correlation test was used on the correlations throughout, which is preferred over

Spearman’s test, when using smaller sample sizes (Field, 2009). Kendall’s coefficient of

determination τ, was used here as a measure of goodness of fit. This was calculated

using the cor.test R function in the ’MASS’ package using the "kendall" method

(Venables and Ripley, 2002). For illustration purposes, the approximate slopes and

intercepts of the various factors were also calculated using robust linear regression,

using the rlm R function in the ’MASS’ package with default settings (Venables and

Ripley, 2002). To test for an effect of the OoTL manipulations on ttake−over and taction,

Kruskal-Wallis H tests were conducted using SPSS V.21 (IBM, Armonk, NY, USA).

Included in this study, based on 15 participants in each of the five OoTL manipu-

lation groups and two critical events per participant, there were 150 transition cases

considered for the analysis. However, twenty-six cases were excluded for various

reasons. In 13 cases, drivers avoided a collision by changing lane but, at the point

of automation disengagement, the initial steering wheel angle exceed ±5◦ (which

was possible because the steering wheel was not self-correcting) and there were no

subsequent salient steering inputs. This indicated the lane change was due to a slow

drift and the driver’s intentional response could not be determined confidently. In 11

cases, drivers steered while braking hard and thus skidded such that steering had no

effect. In 1 case, a driver did not respond at all, and in another the driver’s response

could not be determined using the method described above.



CHAPTER 6. COMING BACK INTO THE LOOP 155

6.3 Results and Discussion

The results from this study will be presented with the aid of two types of graphs:

the first graph relates to the timing of drivers’ response and shows take-over time

(x-axis, ttake−over) relative to action time (y-axis, taction), for example as illustrated in

Figure 6.6. If a data point falls on the dashed grey diagonal line, it indicates that

the driver began a collision avoidance manoeuvre at the same time as they resumed

control. The greater the distance along the y-axis between the data point and the

dashed diagonal line, the longer the time between when drivers resumed control and

initiated a manoeuvre. The red dashed lines on the x- and y-axes indicate the onset

of the vehicle brake light. The second graph relates to vehicle control and shows

Dmax (y-axis) relative to invTTC at the start of drivers’ response (x-axis), for example

as presented in Figure 6.7. This figure attempts to demonstrate the rate of drivers’

steering or braking input, during their collision avoidance manoeuvre, in relation to

the kinematic urgency faced by drivers when they began their manoeuvre (i.e. the

visual looming from the lead vehicle).

Results from a Kruskal-Wallis H test showed that, the lower the degree of visual

information available to drivers during automation (from left to right in Figure 6.6),

the slower they tended to take-over control (χ2(4) = 9.820, p <0.05), with mean rank

scores for ttake−over shown in Table 6.2. However, there was no difference between the

groups regarding when drivers began their collision avoidance manoeuvre (taction, p =

.784), which suggests that, the further OoTL drivers were, the higher the likelihood of

a simultaneous take-over and manoeuvre initiation.

Figure 6.6 also shows that drivers who had access to all visual information pre-

take-over (No Fog group), were most likely to resume control before the onset of

the lead vehicle braking, suggesting more anticipatory responses. However, when

drivers were either engaged in a non-driving related task and/or had some or all

visual information withheld from them pre-take-over, they were more likely to resume

control after the lead vehicle braked. These results suggest that the more OoTL drivers

were, the more they reacted to external traffic than to system information, following

the cessation of the OoTL manipulations.

Taking the situation kinematics into account, it is clear from Figure 6.7 that the

lower the degree of visual information available to drivers, the more likely they were
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Table 6.2: Mean (SD) of take-over time and action time for the five OoTL condi-

tions.

No Fog No Fog + n-

back

Light Fog Heavy Fog +

Task

Heavy Fog

ttake−over (s) 3.70 (1.22) 4.11 (1.07) 4.13 (1.11) 4.39 (1.03) 4.53 (.51)

Mean rank scores

for ttake−over

46.31 63.96 58.23 68.11 75.39

taction (s) 4.95 (0.91) 4.93 (0.99) 4.68 (0.72) 4.96 (1.02) 5.10 (.87)

to respond at invTTC of over 0.3 s−1. It is also evident that the majority of drivers

across the groups responded before the criticality of the situation reached a value

of invTTC ≈ 0.3 s−1. This is consistent with the findings of Victor et al. (2015) and

Markkula et al. (2016), who showed that, during manual driving, drivers reacted

within 1 s of the kinematic urgency of the scenario, reaching values of invTTC ≈ 0.2

s−1. Overall, as the situation became increasingly critical, drivers scaled the rate of

their avoidance response to the criticality of the situation, just as in manual driving,

both for braking (Markkula et al., 2016) and steering (Markkula et al., 2014). Tau values

shown in Figure 6.7 suggest that the rates of drivers’ responses were less scattered the

lower the degree of available visual information, which goes against our hypotheses.

We proposed that Tau may be a good measure of scatter, however, considering the

distribution of the data across the groups, Tau may not be the ideal measure, as it

is sensitive to how much of the invTTC range is covered. Therefore, larger data sets

with better coverage of the invTTC spectrum and/or more detailed analysis methods

might clarify this further. Qualitative inspection of the plots in Figure 6.7 suggest that

the general nature of the perceptual-motor scaling, in terms of slope and intercept,

was rather similar between the OoTL manipulations.

For all cases that resulted in a collision, drivers began their avoidance manoeuvre

when the situation criticality exceeded invTTC ≈ 0.3 s−1. However, this cannot fully

account for why drivers crashed in some cases, as in other cases drivers responded at

the same criticality and avoided a collision. Further explanation can be derived from

the type of response adopted by drivers after the take-over.

Results showed that, in the majority of cases, drivers mainly steered in response to

the lead vehicle (68/124), while in 36/124 cases drivers mainly braked, and in 20/124
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cases drivers braked then steered (Figure 6.8). This is consistent with findings of Gold

et al. (2013) and Blommer et al. (2017), who also found that a high proportion of

drivers steered in crash-imminent situations, following a take-over, despite the fact

that previous studies have shown braking to be the more common response in manual

driving (Adams, 1994). Figure 6.9 shows that drivers who braked after the situation

criticality reached invTTC ≈ 0.3 s−1, were unable to avoid a collision, despite clearly

scaling the rate of their brake response to the higher criticality of the situation. This

is not surprising, as it is a well known aspect of road vehicle dynamics that steering

collision avoidance remains a feasible option for a longer time than braking avoidance,

during the run-up to a potential collision (Rice and Dell’Amico, 1974; Lechner and

Malaterre, 2015).

Figure 6.8: Combined frequency of drivers’ responses in CE1 and CE2.
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Figure 6.9: Dmax of response relative to invTTC at taction for the three response

categories. Triangles show collisions and circles show non-collisions. The blue

lines are for illustration purposes only, showing the outcome of robust linear

regression.

In terms of actual number of collisions with the lead vehicle, Figure 6.10 shows

that all collisions occurred in Critical Event 1 (CE1). While there were five cases in

Critical Event 2 (CE2) where drivers responded after the criticality reached invTTC ≈

0.3 s−1, it is likely that the previous exposure might have helped these drivers make

the correct decision to apply steering. In none of the cases that resulted in collisions,

did drivers resume control or initiate a response before the onset of the lead vehicle

braking, which could indicate increased decision-making time to take-over control.

However, in 14 of the 108 non-collision, drivers resumed control (13 cases) or initiated

a response (1 case) before the onset of the lead vehicle braking, which could indicate

more anticipatory responses. Finally, Figure 6.10 shows that regressions were similar

between the CE1 and CE2, which suggests that drivers’ motor-control was largely

unaffected by whether they had previously experienced a critical event.
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Figure 6.10: Dmax of response relative to invTTC at taction for Critical Event 1 and

Critical Event 2. Triangles show collisions and circles show non-collisions. The

blue lines are for illustration purposes only, showing the outcome of robust linear

regression.

6.4 Conclusions

The analyses presented here provide some novel insights into the importance of visual

information for drivers’ perceptual-motor performance in critical situations during

the resumption of control from automation.

Previously, we reported that the OoTL manipulations influenced the location of

drivers’ first eye-fixations after the manipulations ended, but that the effects resolved

within 2 s (Louw et al., 2016). However, it was not clear whether the effect of the

manipulations ended there or if they had an effect on drivers’ perceptual-motor control.

One important finding from this study is that, despite there being no differences

regarding where drivers directed their visual attention, the less visual information

available to drivers during automation, the later they took over control.

We hypothesised that the more OoTL drivers were, the less consistent their

perceptual-motor performance. However, there was no difference between the groups

regarding how long it took drivers to begin a collision avoidance manoeuvre, or,

indeed, whether they would experience a collision. In addition, the subsequent

kinematic analysis showed that the degree of visual information available to drivers
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pre-take-over did not influence whether and how drivers scaled the rate of their

response to the situation criticality, at least not in any way that could be detected

with the present data and analyses. This suggests that the level of drivers’ situation

awareness during automation has an impact on the timing of their take-over (ttake−over),

but not necessarily on when they began a collision avoidance manoeuvre (taction) or

the quality of their subsequent vehicle control (Dmax). This brings into question the

usefulness of take-over time as a measure of ’good’ performance in the take-over.

Another finding is that the majority of drivers responded below invTTC ≈ 0.3 s−1,

which was common for cases that avoided a collision, while all cases that resulted in

a collision shared the following characteristics: First, for all collisions, drivers began

their evasive manoeuvre when the situation criticality was above invTTC ≈ 0.3 s−1.

Second, drivers who crashed braked instead of steering, or braking then steering. Third,

all collisions occurred in the first critical event, which is in line with previous findings

that drivers’ familiarisation with the event and experience with the system, results in

fewer interaction errors, and safer outcomes (Engström et al., 2010; Lee et al., 2002;

Benderius et al., 2014).

Taken together, our results suggest that it is important that, following a take-over,

drivers act on any threat as early as possible in the kinematic scenario. While in the

current study the usefulness of take-over time has been questioned, situations giving

rise to take-over event will likely vary widely, and what is important is that drivers

are able respond to system feedback in a timely manner. Therefore, the fact that

the OoTL manipulations influenced how quickly drivers disengaged the automated

driving systems has important HMI design implications for automated vehicles. For

instance, HMIs that emphasise situation-relevant information before the take-over

may facilitate safer take-over situations. With increasing situation criticality, drivers

clearly attempted to adjust the rate of their collision avoidance response. Despite this,

in many cases drivers were unsuccessful at avoiding a collision. This indicates that,

should a system-initiated take-over be required, automated driving systems must

support drivers during the transfer of physical vehicle control, by providing either

advanced warning or vehicle control that reduces the situation criticality, via, for

example, haptic shared control, Collision Mitigation by Braking (CMbB) or Emergency

Steer Assist (ESA). A supportive HMI could also encourage drivers who respond late

in the kinematic scenario to apply steering avoidance (the situation permitting, such
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as the one under investigation here).

The current study sets out some avenues for future work. For example, the

scattered gaze-fixations of colliders (Louw et al., 2016), possibly contributed to their

braking response starting late in the situation kinematics, and further work is required

to ratify this link, which, if found to be true, strengthens the argument for an HMI

that is able to direct drivers’ attention to relevant information. Furthermore, what

constitutes ’quality’ regarding driver performance in the transition will vary according

to the level of responsibility being transferred as well as the road traffic situation itself,

which motivates the need to evaluate a range of real-world take-over scenarios.

Finally, it is important to understand further how automation impacts on the

kinematic-dependencies of driver responses to critical events, as recent work by

Blommer et al. (2017) has shown that avoidance responses come later after a transition

out of automated driving than in manual driving. It remains an open question

whether or not drivers’ scaling of avoidance responses to kinematics also change

between manual and automated modes of driving.
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CHAPTER 7

FINAL DISCUSSION AND CONCLUSIONS

7.1 Final Discussion

This research was conducted as part of the Human Factors sub-project of the AdaptIVe

(Automated driving applications and technologies for Intelligent Vehicles) project,

co-funded by the European Union, under the 7th Framework Programme (AdaptIVe

Project, 2014). The overall goal of the AdaptIVe project was to develop various

automated driving functions for daily traffic, by dynamically adapting the level of

automation, to the situation and driver status.

The specific objective of the Human Factors sub-project was to develop high-

level use cases for test and development throughout the project and collect research

issues on the interaction of drivers with automated vehicles, that currently remain

unresolved. A further objective was to conduct experiments in different laboratory

settings, including dynamic driving simulators, and, if suitable, also instrumented

test vehicles, and based on the evaluated results create functional requirements and

decision strategies for collaboration between the human driver and the automated

driving system, in particular situations.

Thus, the focus of this thesis was on the assessment of the effect of vehicle

automation on the human driver and not of the technology underlying the automation.

The studies in this thesis were not designed to propose and evaluate prototypical

automated driving systems or human-machine interfaces (HMI) nor reflect precise

real-world use-cases.

The design of the experimental work was guided, on the one hand, by the desire

169
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to answer practical questions that arose from the literature regarding how drivers

interact with an automated driving system, and, on the other hand, the desire to better

understand the physical and cognitive/attentional aspects underlying the human

out-of-the-loop problem. The results obtained have allowed us to draw practical

conclusions regarding the effect of automation on driver behaviour, but also, more

fundamentally about the nature of the driver out-of-the-loop phenomenon in the

context of highly automated driving.

7.2 Review of experimental investigations

Five specific research questions were posed for investigation in Chapter 1, and the

series of papers reported in this thesis and discussed below have addressed these.

1. How does automation affect drivers’ performance in transition situations,

requiring control- and tactical-level responses?

2. How does automation affect drivers’ behaviour in automation, compared

to manual driving?

The literature on transitions in automated driving is dominated by experiments

assessing driver behaviour in scenarios requiring only control-level responses, i.e.

maintaining lane position, while relatively little has been conducted on how drivers

can handle scenarios that represent tactical and strategic levels of driving, as per

Michon (1985). This gap acted as the starting point to this research.

One of the challenges of comparing performance across control- and tactical-level

driving scenarios is that the dynamics of the scenarios (also referred to as ’kinematics’

in the literature) themselves are often dissimilar, for example, maintaining lane position

compared to deciding whether to brake or change lane to avoid a collision. Therefore,

it is hard to ascertain whether changes in driving performance are due to differences

in road and traffic layout, or drivers’ ability to navigate them. The study presented

in Chapter 2 overcame this shortfall by examining the effect of scenarios requiring

both control-level and tactical-level responses on driver behaviour, by introducing

different rule-based instructions for how to respond to the same situation (stationary

lead vehicle) during a transition. A secondary aim of this study was to assess whether
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any observed differences were due to either the physical or attentional aspects of not

being in control as a result of automation. Therefore, the experiment also required

drivers to either maintain visual attention towards the road centre throughout the

experimental drive, or to read from an iPad to the side of the steering wheel while

automated driving was active, and before requests for resumption of control.

Overall, findings showed that drivers experiencing automation in two conditions

(no distractions and distracted by reading task) performed worse when avoiding a

collision, compared to a manual condition, which was in line with previous findings

(Young and Stanton, 2007; Merat and Jamson, 2009; Merat et al., 2012). However, the

short (1-minute) periods of automation used in this study did not impede drivers’

ability to complete simple operational and tactical-level driving tasks, following a

system-initiated take-over request. That there were differences between the man-

ual drive and both automation drives, but not between the automation conditions

themselves, led to the hypothesis that the OoTL phenomenon encompasses a strong

element of physical control, with the effects of attention possibly a more subtle aspect.

However, the possible priming of the repeated-measures design suggests that any

observed effects of being out of the cognitive control loop were conservative. Therefore,

the particular contribution of the attentional aspect of the OoTL problem remained

unclear, and this provided impetus for the study presented in Chapter 3.

Chapter 3 investigated the attentional dimensions of the OoTL problem in the

transition. To achieve this, I artificially induced two driver OoTL states, by manipu-

lating the degree of visual information available to drivers during automation, both

regarding the dashboard displays in the vehicle and also the road environment. Based

on Endlsey’s (1995) definition of Situation Awareness (SA) and Kienle et al.’s (2009)

definition of an OoTL driver, I hypothesised that, by restricting drivers’ access to

system and environmental information during automation, and before an automation

uncertainty event, drivers would have a reduced ability to recognise and respond

to a critical scenario. In two conditions, drivers either had access to no system or

environmental information during automation (Heavy Fog condition), or only limited

visibility of environmental information (Light Fog condition), which was hypothesised

to take drivers OoTL, and help us understand whether the information drivers had ac-

cess to during automation would change how they interacted with automation during

and after the transition. To detect whether drivers were only taking back control in
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response to a take-over request, or responding to some system or environmental cue,

I introduced an ’uncertainty alert’ in place of the more common ’take-over request’.

This invited drivers to monitor the road rather than instructed them to resume control.

The results on vehicle control in Chapter 3 corroborated and extended those pre-

sented in Chapter 2, showing that drivers’ response profile to a potential collision

scenario was less controlled and resulted in more collisions in the critical events,

compared to when they were in manual control. However, there were no differences

between the two OoTL manipulation groups, which implied either that the amount of

visual information available to drivers was not as important as being in physical con-

trol, that the methodology was not appropriate, or that the vehicle-based measures, or

analysis thereof, used to test this hypothesis were robust to any underlying differences.

This is discussed further in Section 7.4. Yet, crash outcomes provided some indication

that, by withholding driving-relevant information, using the OoTL manipulations, I

was at least successful at taking drivers out-of-the-loop during automation, because

the Heavy Fog condition resulted in significantly more collisions than the Light Fog

condition, which, in turn, resulted in more collisions than the Manual condition. Re-

sults also showed that, with repeated exposure to the transition events, drivers became

less engaged in the driving task once automation was re-activated. However, this left

questions about the effect of non-driving related tasks, both visual and cognitive, and

whether these would support or augment drivers’ ability to safely resume manual

control. These concerns motivated the focus for papers presented in Chapters 4-6.

3. What is the pattern of drivers’ visual attention distribution during au-

tomation?

In Chapter 4, additional OoTL screen manipulation conditions were added, in-

cluding one which had no manipulations and one which removed all system and

environmental information as well as presenting drivers with a visual task. Driver

gaze dispersion in each condition was assessed, to determine what information from

the system and road environment drivers attend to during automated driving, given

the limits imposed on them by the OoTL manipulations.

Results showed that, during automation, drivers’ horizontal gaze was more dis-

persed than during manual driving, which is in line with findings of Carsten et al.

(2012) and Damböck et al. (2013). Both horizontal and vertical gaze dispersion were
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differentially affected by the OoTL manipulations, while they were active. However,

while these short 3 minute periods of OoTL manipulations seemed to have a noticeable

effect on drivers’ visual attention allocation, they did not appear to have a long-lasting

effect once they ceased, at least regarding gaze dispersion. However, quite how quickly

these differences subsided was unclear, and I concluded by tentatively proposing that

any information presented to drivers during automation should be placed near the

centre of the road scene and that other measures should be used to evaluate other

possible differences. The papers presented in subsequent chapters aimed to assess

this hypothesis by analysing the distribution of drivers’ fixations in the transition, as

well their perceptual-motor performance upon the resumption of manual control.

4. How does automation affect drivers’ visual attention distribution during

and immediately after the transition?

Chapter 6 showed the OoTL manipulations influenced drivers’ first point of gaze

fixation after they were asked to attend to an evolving event. Differences resolved

within one second, and visual attention allocation adapted with repeated events, yet

the crash outcome was not different between OoTL manipulation groups. Interestingly,

drivers who crashed in the first critical event had a lower number of eye fixations

towards the road centre before brake light onset and a higher number following brake

light onset. However, those who did not crash demonstrated a more stable pattern,

fixating towards the road centre early on in the unfolding event, and sampling it

consistently as the situation unfolded. These findings led to the recommendation that

automated vehicle systems should warn drivers no less than 6 s before reaching a

system limit and that drivers should be aware that looking away from the road centre

for too long could be dangerous in Level 2 automated driving systems. The remaining

questions were whether the effect of the OoTL manipulations would manifest as

differences in vehicle control, and how best one might define and measure ’safe’

performance in the transition. For this, a kinematics-dependent analysis of drivers’

perceptual-motor performance (i.e. the timing and magnitude of drivers’ responses)

during approach to the two critical events, in automation was conducted.

5. How does automation affect drivers’ perceptual-motor performance in

the transition?
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Results in Chapter 6 indicated that the less visual information is available to

drivers during automation the longer their take-over time, but this did not predict

collision outcome, which was instead predicted by kinematically late initiation of

avoidance manoeuvring. Furthermore, results suggested that take-over time and the

timing and quality of avoidance appear to be largely independent phenomena and that

kinematically early avoidance response may be more important for safety than short

take-over times. These findings have clear implications for the design and placement

of in-vehicle infotainment systems in highly automated vehicles. Systems potentially

obstructing drivers’ view of unfolding events or important driving-related information

may negatively influence their ability to react promptly. These results offer suggestive

evidence that heads-up display (HUD) type interfaces should be avoided in Level 2

systems.

In summary, it is clear that the OoTL manipulations affected drivers’ eye gaze

dispersion during automation, as well as the uniformity of the location of drivers’

first fixations once the manipulations ended. However, within three seconds of the

manipulations ending, while drivers’ were evaluating the state of the environment

and automated driving system, the differences between the conditions resolved, and

in many cases, this was before drivers resumed control. Interestingly, differences

between the OoTL manipulations emerged once again regarding the timing of drivers’

initial response (take-over time). There was a significant difference in how long drivers

in the different conditions took to resume control, though there was no difference

in the quality of the subsequent vehicle control. Therefore, the OoTL manipulations

appeared to have some effect on when drivers chose to intervene, even while there

were no differences in the allocation of their visual attention. Clearly, this disconnect

between drivers’ visual attention and their perceptual-motor performance requires

more detailed investigation. HAD systems should, therefore, afford drivers additional

time and/or vehicle control support (e.g. haptic shared control) based on how

disengaged they were from the driving task, in the lead up to a take-over request. This

suggests that being in the loop or out of the loop cannot simply be a binary distinction.

Of course, there may be instances where drivers are fully in the loop or fully OoTL,

but in most cases, they will find themselves somewhere in between, and where along

that continuum will depend on a combination of factors, which are discussed in more

detail in Section 7.4.
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The relative contributions of the above results on driver performance in the transi-

tion are still unclear, but Section 7.4 lays a basis for future experiments to investigate

this further. What follows is a discussion of the merits of the methodologies and

analyses used in these studies.

7.3 Reflection on methodology and measures

Methodology used

A key limitation of the study presented in Chapter 2 was that drivers were perhaps

over-exposed to critical incidents, resulting in a learning effect and reducing the power

of following scenarios. While this shortcoming was addressed during the design of

the studies presented in Chapters 3-6, it could not be removed altogether. For instance,

only 25% of those cases in the automated drive resulting in a collision experienced the

manual drive first.

The screen methodologies used in Chapters 3-6 presented a novel means of in-

ducing the OoTL state and studying its effects on driver behaviour. However, it

is important to reflect on questions around its usefulness and validity. The first is

whether the manipulations were successful in taking drivers OoTL. Initial results

presented in Chapter 3, regarding glance behaviour to the HMI during automation,

provided some encouraging results about how engaged drivers were with the driving

task during automation, and as a consequence of the manipulations. These manipula-

tions were expanded in Chapter 4 and Chapter 6, and their effects on gaze behaviour

and gaze fixations were clear. For instance, Chapter 4 showed the manipulations had

a differential effect on gaze dispersion during automation, and Chapter 6 revealed the

manipulations influenced the location of drivers’ first fixation during the transition,

but also that these differences resolved within 2 s. After the resolution of these

differences, there was no substantial effect of the manipulations on visual attention

allocation or vehicle-based measures.

One explanation is that the OoTL manipulations themselves were not strong

enough, regarding the duration of exposure, to have any significant lingering be-

havioural effects on physical control. An alternative explanation is that the ma-

nipulations were successful, but that the measures used to assess perceptual-motor
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performance in the transition may not have captured any underlying differences.

However, it may also be that the recovery period (time between the uncertainty alert

and the brake light onset) was sufficient for drivers to recover SA, and so the effects of

the manipulations did not manifest as deficiencies in manual control.

A reviewer for the paper presented in Chapter 3, argued that using fog-like

manipulations do not practically represent an OoTL condition during real automated

driving conditions, as the typical OoTL state is more of a volunteer behaviour (e.g.,

distraction), while the fog conditions are more of a forced behaviour (i.e., information

is blocked). The reviewer went on to suggest that these two behaviour styles may

result in different focus points for drivers’ attention. It is important to note that the

OoTL manipulations were never intended to represent real-world settings. While

voluntary disengagement may exacerbate the OoTL state, the core factor contributing

to the development of the state itself is feedback, as argued by Endsley and Kiris,

(1995), Kienle et al. (2009), and Norman (1990). Therefore, whether feedback is limited

voluntarily or involuntarily, the end result will be similar. That the manipulations

cause limited feedback involuntarily, and that voluntary disengagement cannot be

controlled suggests that our data only underestimate the possible real-world effects.

Eye-tracking measures

A large proportion of the work conducted for this thesis involved the analysis of

drivers’ eye movements (e.g. Gold et al., 2013; Zeeb et al., 2015), and the faceLAB

eye-tracker used was not without its limitations.

The faceLAB eye-tracker uses a combination of image processing techniques in

conjunction with infra-red reflection on the iris, to localise the pupil of the user

and calculate the gaze focus point. The quality of the eye gaze data point being

collected (at 60 Hz) is graded based on the quality of the information available to

the system. While the faceLAB always endeavours to achieve the highest possible

gaze quality level, there are times where the tracking confidence is degraded, and

gaze estimates can only be extracted using video or, in the worst-case scenario, head

position. Given the importance of precision in my analysis, only data with the highest

gaze quality level was used. However, in some cases, this meant that if a particular

driver’s eye-tracking data were poor quality, then they would be under-represented
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in the dataset. Moreover, while this is a pragmatic approach to ensuring that only

high-quality eye-tracking data is used, the resulting analysis does not account for the

missing data and is therefore also at risk of over-representing the reported data. A

more transparent approach would have been to report the proportion of eye-tracking

data that was excluded from the analysis.

A further limitation of the system is that the faceLAB eye-tracker does not contain

a world-map of the driving scene, which made it difficult to assess the exact point

of drivers’ fixations in the environment. Therefore, the PRC technique was used to

evaluate the general allocation of drivers’ visual attention. In particular, the central

region of the areas of interest was used because that was the general location of the

lead vehicle. While this proved useful in separating colliders and non-colliders in

Chapter 5, there are still some concerns over the accuracy of this analysis method,

particularly since not containing a world map means that is it difficult to link gaze

points to moving objects. The 6◦ circular radius used, enveloped the rear-end of the

lead vehicle at the start of the uncertainty alert. However, as the lead vehicle braked it

would have expanded in the forward visual field, which meant that, at some point,

the circular region would not have captured the entirety of the rear of the lead vehicle.

Moreover, using the central region may have been more or less accurate depending

drivers’ deceleration rate and collision avoidance manoeuvre (brake or change lane).

Given the limitations of the faceLAB system, and the method of analysis used as a

compromise to these, a more accurate approach to determining whether drivers were

fixating on the lead vehicle may have been to adjust the radius of the central region

according to the size of the of lead vehicle (based on distance headway) in relation

to drivers’ position. Also, the time windows used could have been adjusted to only

include the period when the driver was in the middle lane.

As mentioned in previous chapters, the mapping of the areas of interest onto the

road scene was achieved by calculating the position of the central region, for each

participant. The middle of the central region was anchored to the x y coordinates

of the mode of each driver’s fixations (based on a 200 ms threshold with a standard

deviation of gaze position below 1◦) during a 90 s period of manual driving on a

straight road. In the PRC technique, this point is assumed to represent the centre of

the road. However, this method cannot ensure that the central region and the road

centre are perfectly aligned. A more exact method would have been to conduct a
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calibration session before testing, for each participant, where they are asked to fixate

on the road centre for a few moments. These fixations could then be used as a more

accurate reference point for a central region anchor point. It is also challenging to use

the faceLab eye-tracker to accurately link gaze points to static objects in the scene by

only using only the PRC technique because the position of static objects relative to

the location of the central area of interest varies between participants. Therefore, a

calibration session before testing, for each participant, could be expanded to include

reference points for other areas of interest in the cabin, for example, wing mirrors or

dashboard.

Driving simulator

There are a number advantages and disadvantages when using driving simulators

compared to real vehicles to examine driver performance. Simulators offer a con-

trollable virtual environment with the ability to expose drivers to dangerous driving

scenarios without putting them at risk (De Winter et al., 2012). Moreover, as there are

few real-world examples of Level 2 and Level 3 automated driving systems, simulators

are useful for mocking up these future systems. There is evidence to suggest that, for

manual driving, simulator measures are predictive of on-road performance (Allen et

al., 2007). However, it is unclear whether the same applies for how drivers would use

automated driving systems on the road, as behaviour in this context may be more

dependent on drivers’ experience with the system, which is hard to emulate in a

controlled testing environment.

The motion-based University of Leeds Driving Simulator provides a high degree

of physical, perceptual, and behavioural fidelity. However, there were some issues

encountered during the experimental testing. The first was that the simulator steering

wheel does not have the ability to self-correct while in automated driving mode, which

posed a problem when drivers attempted to resume manual control. For instance, if

there were a steering wheel offset and drivers disengaged automation by depressing

the brake pedal then the vehicle would adjust its trajectory to the steering wheel angle

as soon as automation disengaged. Alternatively, if there were a steering wheel offset

and drivers attempted disengage the automation by steering, then a proportion of

drivers’ subsequent steering action would have been to stabilise vehicle control. The

second issue was that the simulator does not have an automatic braking system, which



CHAPTER 7. FINAL DISCUSSION AND CONCLUSIONS 179

means that, in some cases, while drivers had the brake engaged in response to the lead

vehicle, they were unable to steer. These two limitations resulted in some cases being

excluded from the analysis, either because drivers were able to avoid a collision based

on a large initial steering wheel angle at the point of take-over, or because drivers

collided with the lead vehicle but not because of their own actions.

Performance measures

When analysing driver performance in automation, two approaches can be taken.

First, one can observe behaviour and compare performance against some pre-defined

estimates/measures. However, given that ’good’ performance in automation is a

relative unknown, at least regarding the traditional metrics, such as accelerations

and steering measures, this approach may be redundant. This analysis approach

was taken in Chapter 2 and Chapter 3, and its limitation was highlighted in both

instances, which spurred the work presented in Chapter 6. That is, not simply how

did drivers perform, i.e. what was their maximum lateral acceleration, but rather how

did drivers perform relative to some meaningful expectation, i.e. could drivers match

their response to the criticality of the event.

Second, once can use a well-known and accepted safety outcome, for example,

collision outcome, as was used in Chapter 5. However, collisions are rare, and their

frequency may equally be a reflection of system design, and experimental scenario

under investigation. Perhaps, a more accurate approach might have been to assess

a continuous safety outcome variable, such as minimum time to collision (minTTC)

for drivers who do not crash (Jonasson and Rootzén, 2014) and DeltaV for those who

do crash (Buzeman et al. 1998; Kusano and Gabler, 2010; Viano and Parentea, 2010).

minTTC and DeltaV are well-established scales of outcome severity for near crashes

and crashes, respectively. Such an approach would be useful to understand with

greater accuracy what measures contribute to an unsafe outcome, but also what is an

acceptable level of risk.

As argued in Chapter 6, although ttake−over and the associated taction provide a

general indication of drivers’ responsiveness, they do not necessarily provide a holistic

view of whether drivers were prepared to resume manual control. Regarding crash

outcome, our results seem to suggest drivers’ ability to match their response to the
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event criticality was not as significant as I had proposed initially, which questions the

weight placed on the recovery of physical vehicle control following the transition, by

previous studies (e.g. Russell et al., 2016). Perhaps, as is implied in the concern within

the aviation domain, that de-skilling of pilots’ manual control as a result of excessive

use of automation, is a longer-term adaptation (Wiener, 1988).

7.4 Contribution to the field and outlook

Investigating drivers’ behaviour in, and interaction with, automated vehicle systems

presents a challenge for human factors researchers. These can be confounded by some

factors relating to technological advancement, policy implementation, and legal and

ethical issues. The work presented in this thesis has contributed to an area suffering

from a paucity of research, and while there has been a recent surge in this field, there is

still a lack of consensus, on many of the most important human factors related issues.

The work presented in this thesis does not provide a comprehensive investigation into

all of these factors, and further work is required to build a consensus appreciating the

dependencies of all related factors, though an overview of my proposition is given in

Figure 7.1.

Figure 7.1 expands on the OoTL schematic presented in Chapter 3, to incorporate

findings from this thesis into a larger framework, considering both Driver and Vehi-

cle/Environment factors that are deemed to have an effect on driver performance in

the transition. Here, the argument is maintained that Situation awareness and Physical

control are the two key underlying factors to consider when investigating driver’s ca-

pabilities and limitations in the transition. These can, however, be influenced by some

Driver and Vehicle/Environment factors, which themselves may have interdependen-

cies. The following section presents a brief exposition on these. Note that this model

is not intended to represent or supplant a "joint" DVE (Driver-Vehicle-Environment)

cognitive system, such as those presented in (Carsten, 2007) or (Cacciabue et al.,

2013). Furthermore, the model does not account for all factors that will influence

performance in the transition.
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• Situation Kinematics
• Use-case

Figure 7.1: Studying the transition in highly automated driving.

7.4.1 Driver Factors

This thesis has mainly considered the Driver factors influencing driver performance

in the transition.

Physical control

First and foremost, automation decouples drivers from the Physical control loop

of the driving task. The successful re-coupling of drivers to the physical control

loop will depend on their Perceptual motor performance, which describes their

capacity to match the physical control response to the requirements of the situation,

as investigated in Chapter 6. This thesis has shown that L2 and L3 automated

driving systems will, under certain circumstances, negatively influence how drivers

can perceive and respond to unexpected events in automation. However, here and

elsewhere these findings are often interpreted with the assumption that Driving skill

and their Manual driving experience will remain intact. Future work should consider

how these may be vulnerable to decay through a lack of experience just as pilots’

manual flying skills have been shown to deteriorate following the prolonged use of

autopilot systems (Wiener, 1988). Indeed, evidence is emerging in support of driver

training, for specific scenarios in automation (Hergeth et al., 2016), but quite how such

programs can be designed to be most effective requires investigation.

An additional factor relating to drivers’ physical responses is their ability to

respond in a timely and safe manner (Reaction Time). While in this thesis, the
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usefulness of the take-over time measure (and Reaction time measures in general) has

been questioned, it is amongst only a few providing insight into drivers’ behaviour in

the transition, and, therefore, deserves regular attention. In parallel, however, future

work should build on work presented in this thesis, to develop new analyses for

establishing ’good’ performance in the transition. Whether or not drivers are engaged

in physical vehicle control will have some influence over how engaged they are in the

driving task (Carsten et al., 2012), which will also have an impact on drivers situation

awareness.

Situation Awareness

The second major Driver factor, as proposed in Chapter 3, is drivers’ Situation aware-

ness, which is defined as "the perception of the elements in the environment within a volume

of time and space, the comprehension of their meaning, and the projection of their status in

the near future" (Endsley, 1995). Within the context of transitions in highly automated

driving, there are a number of Psychological factors that may influence driver SA,

such as Driver state, for example, attentional control, stress, fatigue, and workload,

but also drivers’ Mental model of the system and their Trust in it.

While it was not a direct focus of this thesis, drivers’ Mental model of the systems

they are operating is clearly an important factor to consider. With no clear international

regulations governing the type or consistency of the systems used to enable automated

driving technologies, a vast array of systems and products available to consumers will

soon emerge, each with slight variations in their capabilities and operation. Therefore,

on the one hand, it is important that engineers and designers understand what their

users understand and are capable of, but on the contrary, it is essential that drivers are

educated about the capabilities and limitations of the system they are using (Hollnagel

and Woods, 2005).

Linked to Mental models, drivers’ Situation Awareness will also be mediated by

their Trust in the automated driving system, which has received some attention in

recent years (cf. Beukel and Voort, 2014; Gold, et al., 2015), and where over-trust has

been observed to have a negative effect in the context of system failures in automation

(Shen and Neyens, 2014). It is important that studies acknowledge and calibrate

the level of drivers’ trust in the automated driving systems with which they will be

interacting.
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Individual differences Finally, it is important to acknowledge that Individual differ-

ences may have an effect on both Situation awareness and Physical control. Individual

differences can relate to drivers’ Individual traits, for example, personality, demo-

graphics, and trust propensity. Also, drivers’ System Experience will have a mediating

effect on their Mental Model, but also regarding their physical control response when

resuming control, i.e. understanding what steering torque will help contribute to

corrections of heading errors. Certainly, there is evidence that behavioural adaptation

to support systems changes over time (Markkula et al., 2012), and recently evidence

has suggested the same for L2 and L3 automation (cf. Gold and Bengler, 2014; Beukel

and Voort, 2014; Carsten et al., 2012; Petermann-Stock et al., 2013). The studies

presented in this thesis capture behaviour and performance of drivers who have little

or no short-term or long-term exposure to these automated driving systems, yet, a

clear learning effect has been found in almost all scenarios considered. Not only is

it important to understand longer-term behavioural adaptations, but also how they

develop in more naturalistic settings. While a driving simulator provides a controlled

environment ideal for studying safety critical situations, it does not capture the com-

plexities of real-world driving, which the driver would be subject to, in naturalistic

settings.

7.4.2 Vehicle/Environment Factors

The Vehicle/Environment Factors relate to the road and traffic scenario factors and the

vehicle design factors that are hypothesised to have an effect on performance in the

transition, in terms of drivers’ ability to perceive, comprehend, and predict (situation

awareness) the unfolding event, but also their ability to react to it (perceptual-motor

performance).

Vehicle factors

Vehicle factors relate to the Human-machine interface, the Level of automation being

transitioned to or from, and the system’s Automated driving style.

The Human-Machine Interface (HMI) comprises of the interface design, which

determines the quality of system feedback it provides to drivers, as well as the

interaction design, which specifies interaction principles and how control is arbitrated,
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for instance the dynamic distribution of control proposed in the H-mode project

(Flemisch, 2003; Bengler and Flemisch, 2011). A number of HMI concepts to improve

driver performance in the transition have been evaluated in a range of settings (e.g.

Petermeijer et al., 2015, and see Manca et al., 2015 for a review), but this thesis has

shown that the information drivers have available to them during the transition is

an important aspect to consider. Therefore, further work will need to find more

driver-centric HMI solutions.

It follows that systems will vary regarding the degree to which they are able to

assume control of the driving task (Levels of automation). It is well established that

the extent to which a task is automated influences how users interact with that task,

therefore, it is important to consider how this behaviour influences performance in

the transition.

Automated driving style refers to the system-based principles of vehicle control,

for example, the trajectory and acceleration profile adopted by the automated driving

system. Future work should consider whether drivers prefer HAD control charac-

teristics that are human-like or not, as this may influence system acceptance and

use.

Environment factors

relate to the urgency of the unfolding situations, which may be affected by the Road

Type, for example, highway, rural, or sub(urban) roads, and Traffic scenario, for

instance, traffic density, or position relative to surrounding vehicles (especially visual

looming). Recent simulator studies have not found consensus on the effect of different

traffic situations on performance in the transition (Radlmayr et al., 2014; Naujoks et

al., 2014). However, many of these will require constant reassessment as new L2 and

L3 systems with different capabilities and characteristics are released to the market.

In comparison to studies of manual driving, investigations related to the tactical- and

strategic- levels of driver performance in the transition in automated driving are some-

what limited. Besides, and as outlined above, the experimental use-cases and HMI

used in these studies are as varied as their findings. Consequently, a clearer picture of

drivers’ capabilities and limitations in their interaction with vehicle automation can

be achieved by more similar methodologies. In addition to the above, it is important

to consider the kinematics of the situation under investigation Situation kinematics, as
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this may not only help compare results from studies with slightly different take-over

situations, but it also provides a means to analyse performance based on drivers’

response to some threat in the road environment. Finally, adverse Weather conditions

may also have some impact on drivers’ performance in the transition. For example,

rain can obscure the vision of onboard cameras and reduce the range and accuracy of

laser-based Lidar sensors, which would potentially trigger a high workload transition

scenario.

7.5 Final conclusion

The main theme throughout this work is that automation affects the cognitive (visual

attention) and physical (perceptual-motor) aspects of driver vehicle control in the

transition. Under some conditions, automation had a stronger effect on the cognitive

aspects, while in others the physical aspect dominated. As such, they should be

considered in concert to gain a holistic understanding of the effect of automation on

driver performance in the transition.
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Analysis & Prevention, 62, 102-109.

Kienle, M., Damböck, D., Kelsch, J., Flemisch, F., and Bengler, K. (2009). Towards an

H-Mode for highly automated vehicles: driving with side sticks. In Proceedings

of the First International Conference on Automotive User Interfaces and Interac-

tive Vehicular Applications (AutomotiveUI 2009), September 21-22 2009, Essen,

Germany, p. 19-23.

Kusano, K., and Gabler, H. (2010). Potential Occupant Injury Reduction in Pre-Crash

System Equipped Vehicles in the Striking Vehicle of Rear-End Crashes. Annals

of Advances in Automotive Medicine, 54, 203-214.

Manca, L., De Winter, J., and Happee, R. (2015). Visual displays for automated driving:

A survey. In Proceedings of the 7th International Conference on Automotive

User Interfaces and Interactive Vehicular Applications (AutoUI 2015) (pp. 1-5).

New York, NY: ACM.

Markkula, G., Benderius, O., Wolff, K., and Wahde, M. (2012). A review of near-

collision driver behavior models. Human Factors: The Journal of the Human

Factors and Ergonomics Society, 54(6), 1117-1143.

Merat, N. and Jamson, A. H. (2009). Is drivers’ situation awareness influenced by

a fully automated driving scenario? In D. de Waard, J. Godthelp, F. L. Kooi,

and K. A. Brookhuis (Eds.), Human factors, security and safety. Maastricht, the

Netherlands: Shaker Publishing.

Merat, N., Jamson, H., Lai, F. and Carsten, O. (2010). Automated driving, secondary

task performance and situation awareness. In D. de Waard, A. Axelsson, M.

Berglund, B. Peters, and C. Weikert (Eds.), Human Factors: A system view of

human, technology, and organisation (pp. 41-53). Maastricht, The Netherlands:

Shaker Publishing.

Michon, J. A. (1985). A critical view of driver behavior models: What do we know,

what should we do? In L. Evans and R. Schwing (Eds.), Human Behavior and

Traffic Safety. New York, NY, USA: Plenum Press.

Naujoks, F., Mai, C. and Neukum, A. (2014). The effect of urgency of take-over requests

during highly automated driving under distraction conditions. In T. Ahram, W.



188 7.6 REFERENCES

Karowski and T. Marek (Eds.), Proceedings of the 5th International Conference

on Applied Human Factors and Ergonomics AHFE 2014 (pp. 2099-2106). Krakau:

AHFE Conference.

Norman, D. A. (1990) The ’problem’ with automation: Inappropriate feedback and

interaction, not ’over-automation’. Philosophical Transactions of the Royal

Society of London, B 327.

Petermann-Stock, I., Hackenberg, L., Muhr, T., and Mergl, C. (2013). Wie lange

braucht der fahrer? eine analyse zu uübernahmezeiten aus verschiedenen

nebentätigkeiten waährend einer hochautomatisierten staufahrt. 6. Tagung

Fahrerassistenzsysteme. Munich, Germany, 6.

Petermeijer, S., De Winter, J. C., and Bengler, K. (2015). Vibrotactile displays: A survey

with a view on highly automated driving. IEEE Transactions on Intelligent

Transportation Systems, 1-11.

Radlmayr, J., Gold, C., Lorenz, L., Farid, M. and Benlger, K. (2014). How Traffic

Situations and Non-Driving Related Tasks Affect the Take-Over Quality in Highly

Automated Driving. In Proceedings of the Human Factors and Ergonomics

Society (HFES) 2014. Annual Meeting (Vol. 58, pp. 2063-2067).

Russell, H. E., Harbott, L. K., Nisky, I., Pan, S., Okamura, A. M., and Gerdes, J. C.

(2016). Motor learning affects car-to-driver handover in automated vehicles.

Science Robotics, 1(1), eaah5682.

Shen, S., and Neyens, D. M. (2014). Assessing drivers’ performance when automated

driver support systems fail with different levels of automation. Proceedings of

the Human Factors and Ergonomics Society Annual Meeting, 58(1), 2068-2072.

Viano, D.C., and Parenteau, C.S. (2010). Ejection and Severe Injury Risks by Crash

Type and Belt Use with a Focus on Rear Impacts. Traffic Injury Prevention, 11(1),

79-86.

Wiener, E. L. (1988). Cockpit automation. In E. L. Wiener and D. C. Nagal (Eds.),

Human Factors in Aviation (pp. 433-461). San Diego. CA: Academic Press, Inc.

Young, M. S., and Stanton, N. A. (2007). Back to the future: Brake reaction times for

manual and automated vehicles. Ergonomics, 50(1), 46-58.

Zeeb, K., Buchner, A., and Schrauf, M. (2015). What determines the take-over time? An

integrated model approach of driver take-over after automated driving. Accident



CHAPTER 7. FINAL DISCUSSION AND CONCLUSIONS 189

Analysis & Prevention, 88, 212-221.


	Acknowledgements
	Abstract
	Contents
	Figures
	Tables
	Abbreviations
	1 GENERAL INTRODUCTION
	1.1 Introduction
	1.2 Understanding human performance
	1.3 Models of the driving task
	1.4 Automation
	1.4.1 Automated driving
	1.4.2 Levels of automation
	1.4.3 Transitions of control
	1.4.4 Human-automation interaction

	1.5 Driver-based factors influencing performance in the transition
	1.5.1 Trust
	1.5.2 Mental models
	1.5.3 Situation awareness
	1.5.4 The out-of-the-loop problem
	1.5.5 Complacency and automation bias

	1.6 Vehicle/Environment-based factors influencing performance in the transition
	1.6.1 Time budget
	1.6.2 Human-Machine Interface (HMI)
	1.6.3 Road and traffic scenario

	1.7 Summary and key research gaps
	1.8 Research questions and thesis overview
	1.9 References

	2 TO BE OR NOT TO BE IN THE LOOP
	2.1 Introduction
	2.2 Methodology
	2.2.1 Participants
	2.2.2 Apparatus
	2.2.3 Design and Procedure

	2.3 Results and Discussion
	2.4 Conclusions
	2.5 References

	3 DRIVER INATTENTION AND VEHICLE AUTOMATION
	3.1 Introduction
	3.2 Methods
	3.2.1 Participants
	3.2.2 Design and Procedure

	3.3 Results and Discussion
	3.3.1 Validating the OoTL state
	3.3.2 Distribution of visual attention
	3.3.3 Engagement with the system
	3.3.4 First gaze fixation
	3.3.5 Driver response to critical events
	3.3.6 Vehicle measures

	3.4 Summary and Conclusions
	3.5 References

	4 ARE YOU IN THE LOOP?
	4.1 Introduction
	4.2 Methods
	4.2.1 Participants
	4.2.2 Design and Procedure
	4.2.3 Statistical analyses

	4.3 Results and Discussion
	4.3.1 Gaze patterns during uninterrupted driving
	4.3.2 Gaze patterns during the screen manipulations
	4.3.3 Gaze patterns pre-screen manipulations
	4.3.4 Gaze patterns post-screen manipulations
	4.3.5 Gaze patterns post-Brake light

	4.4 Conclusions
	4.5 Acknowledgements
	4.6 References

	5 WERE THEY IN THE LOOP?
	5.1 Introduction
	5.2 Methods
	5.2.1 Participants
	5.2.2 Design and Procedure

	5.3 Results and Discussion
	5.3.1 Where do drivers look first?
	5.3.2 Effect of OoTL Manipulations on fixations
	5.3.3 Fixations in the Critical Events

	5.4 Conclusions
	5.5 References

	6 COMING BACK INTO THE LOOP
	6.1 Introduction
	6.2 Methods
	6.2.1 Participants
	6.2.2 Materials
	6.2.3 OoTL Manipulations
	6.2.4 Automated driving system
	6.2.5 Human-machine interface
	6.2.6 Experimental and Scenario Design
	6.2.7 Procedure
	6.2.8 Analysis of drivers' perceptual-motor performance

	6.3 Results and Discussion
	6.4 Conclusions
	6.5 References

	7 FINAL DISCUSSION AND CONCLUSIONS
	7.1 Final Discussion
	7.2 Review of experimental investigations
	7.3 Reflection on methodology and measures
	7.4 Contribution to the field and outlook
	7.4.1 Driver Factors
	7.4.2 Vehicle/Environment Factors

	7.5 Final conclusion
	7.6 References


