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Abstract 

Pulverised coal-fired power generation technologies are important for meeting the 

electricity consumption worldwide, especially for the developing countries. 

Changing fuels (coal blending, co-combustion, new fuels, etc.) is common practice 

in the power stations, which may result in the change of ash deposition 

behaviours. Ash deposition issues can reduce the heat transfer and have a 

negative effect on the long-term operation of the combustion systems. Therefore, 

prediction of ash deposition behaviours is significant for the efficient operation of 

boilers. In this thesis, new ash deposition prediction models based on particle 

impaction and sticking behaviours, ash melting behaviour and multi-slagging 

routes have been developed in order to understand ash deposit formation and 

predict the slagging propensities through using Computational Fluid Dynamics 

(CFD) methods and ash deposition indices. 

Regarding the CFD methods, an ash deposition model has been proposed to 

predict the ash deposit formation on an uncooled probe for the co-combustion of 

South African coal and palm kernel expeller in an entrained flow reactor. A new 

revised particle impaction sub-model has been developed in order to minimize 

the numerical related errors without excessive meshing. The molten fraction 

model obtained from the chemical equilibrium calculations was employed to 

predict the particle sticking behaviour. The simulation results show that the 

revised particle impaction model is suitable to accurately resolve particle 

impaction without using a prohibitive meshing size. Particle impaction and 

sticking properties dictate the ash deposit formation.  

In addition, a CFD-based dynamic ash deposition model has been developed to 

predict the slagging formation on a cooled probe under high furnace temperatures 
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of Zhundong lignite (rich in alkali and alkaline earth metal elements) combustion 

in a pilot-scale furnace. The developed model is based on the inertia impaction, 

the thermophoresis and the direct alkali vapour condensation and incorporates 

the influence of the heat transfer rate. The results show that particle deposition 

from the inertia impaction and the thermophoresis dictates ash deposit formation 

under high furnace temperatures. The deposition caused by the direct alkali 

vapour condensation is less significant. As deposition time increases, particle 

impaction efficiency decreases and sticking efficiency increases due to the 

thermophoresis and the local temperature conditions. In addition, the ash 

deposition characteristics are influenced under different furnace temperatures, 

due to the changes in the particle impaction and sticking behaviours.  

Further, a new method for building the ash deposition indice has been proposed 

to predict the slagging propensities of coals/blends combustion in utility boilers. 

The method is based on the initial slagging routes and the sintered/slagging route. 

Two types of initial slagging routes are considered, namely (i) pyrite-induced 

initial slagging on the furnace wall, and (ii) fouling caused by the alkaline/alkali 

components condensing in the convection section. In addition, the 

sintered/slagging route is considered by the liquids temperature, which represents 

the melting potential of the main ash composition and is calculated using the 

chemical equilibrium methods. The partial least square regression (PLSR) 

technique, coupled with a cross validation method, is employed to obtain the 

correlation for the ash deposition indice. The results obtained show that the 

developed indice yields a higher success rate in classifying the overall slagging 

potential in boilers than some of the typical slagging indices. In addition, both 

SiO2 and Al2O3 can reduce the slagging potential, but the drop in slagging 

propensity is more significant by adding Al2O3 compared to SiO2. 
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𝑅𝑅𝑁𝑁  viscosity-based slagging indice 

(𝑅𝑅𝑅𝑅𝑜𝑜𝑅𝑅𝑖𝑖𝑎𝑎) total thermal resistance coefficient, (m2-k)/W 
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𝑠𝑠  path length, m 

𝑆𝑆𝑐𝑐  Schmidt number 

𝑆𝑆ℎ  Sherwood number 

𝑆𝑆𝑚𝑚  momentum source term, N/m3 

𝑆𝑆𝐼𝐼𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆,ℎ  residual sum of squares according to the cross-validation method 

𝑆𝑆𝑠𝑠  species source term, kg/(m3-s) 

𝑆𝑆𝑆𝑆𝑆𝑆,ℎ  residual sum of squares according to all data sets 
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Chapter 1: Introduction 

Summary 

This chapter introduces the motivation for this research. The status of energy 

consumption and the coal-fired power generation technologies are discussed 

in Section 1.1. Ash related problems (including slagging and fouling), which 

are significant operational constraints in the power plants, are presented in 

Section 1.2. The formation mechanisms of the ash deposition and its 

prediction methods are introduced in Sections 1.3 and 1.4. Finally, the aims, 

novelty and the scope of this thesis are outlined in Section 1.5. 

1.1 The role of coal in energy  

 Energy consumption 

Energy is a significant foundation of human resources and social development, 

and it is the lifeblood of the economy, which promotes the rapid development of 

human history. In general, as the world population and the world economy 

continue to expand, there is no doubt that the demand for world energy will 

continue to increase. Figure 1-1 shows how the world energy usage has been 

increasing in the last decades, from the BP Statistical Review of World Energy 

2016 [1]. Also, The BP Energy Outlook projects that the global energy 

consumption will rise by 41% by 2035 [2].  

According to the Statistical Review shown in Figure 1-1, fossil fuels accounted 

for 86.0% of the world primary energy consumption by fuel in 2015, and in the 

UK, they accounted for 81.8%. Fossil fuels, which include coal, natural gas and 
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oil, are widely employed because of their world-wide availability and high energy 

density, especially in generating electricity. However, the fractional sum of non-

carbon-emitting sources of energies (including the renewable energies, the 

hydroelectricity and the nuclear energy) only accounted for 14.0% of the world 

primary energy consumption in 2015. Despite the significant growth in the use of 

renewable energy, the fraction has remained almost constant during the past two 

decades as shown in Figure 1-2 [1, 3]. This is because the security, stability and 

capacity of supply are important issues that need to be considered for the 

utilisation of these non-carbon-emitting sources of energies [4].  

 

Figure 1-1 World energy usage based on different types of fuel (Million tonnes 
oil equivalent, Mtoe) [1]. 

In terms of coal, its share accounted for approximately 29.2% of the total global 

primary energy in 2015, as shown in Figure 1-2. Also, it should be noted that the 

global coal consumption decreased by 1.8% in 2015 compared to the 10-year 

average annual growth rate of 2.9% [1]. This is mainly attributed to the flattening 

of the Chinese consumption and the reducing consumption in the North America 

(-12.1%) and Europe & Eurasia (-2.7%) [1]. However, the coal consumption in 

India showed the world's largest increase from 388.7 Mtoe in 2014 to 407.2 Mtoe 

in 2015, along with the increased economic and social development in India. In 
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addition, it should be noted that China, India and the US play the major roles 

in the world's coal consumption, which accounted for approximately 50.0%, 10.6% 

and 10.3% of the total world's coal consumption, respectively.  
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Figure 1-2 Variation in the share of the global primary energy over the last few 
decades [1]. 

According to the International Energy Outlook 2016 by the US Energy 

Information Administration, coal will remain the second largest energy source in 

the world until 2030 [5]. The World Energy Outlook 2016, by the International 

Energy Agency, estimates that the world coal demand increases to 5915 Mtce in 

2040 under the new policies scenario, which increases by approximately 4.1% of 

the world coal demand in 2014 [6]. The new policies scenario takes account of the 

broad policy commitments and plans announced by countries, including national 

pledges to reduce greenhouse gas (GHG) emissions and plans to phase out fossil-

energy subsidies [6, 7]. Therefore, it is irreversible that coal will still be one of 

the major energy sources worldwide in the near future, especially for the 

developing countries, although there are the shale revolution in North America 

and the climate and environmental issues. It should be noted that, currently, 

Carbon Capture and Storage (CCS) technologies, including the post-combustion 

carbon capture technology, oxy-combustion and the integrated gasification 
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combined-cycle (IGCC), are under development worldwide in order to utilise coal 

in a decarbonising manner [3]. 

 Electricity generation 

Coal utilisation mainly consists of two aspects, thermal coal (also referred to as 

steam coal) and coking coal (also referred to as metallurgical coal). Thermal coal 

is primarily used for the electricity generation and the production of steam and 

direct heat; coking coal is primarily used to produce coal coke in steel production 

[5]. According to International Energy Outlook 2016, 59% of the world coal 

consumption was used for electricity generation in 2012 [5]. The coal share of the 

electricity generation was 75% for China and 72% for India in 2012 [5]. Therefore, 

coal-fired power generation plays a significant role in electricity generation 

worldwide, especially in developing countries. 

Coal-fired power generation technologies mainly include: the grate combustion, 

the fluidised bed combustion and the pulverised fuel combustion. In the grate 

firing, air flows upwards though grates and the fuel bed, and the solid fuel is 

combusted on the grates. The grate combustion requires only minor fuel handling 

and coal with high moisture and ash content and a varying particle size can be 

used [8]. However, the utilisation of the grate combustion is limited by its small 

scale and low energy conversion efficiency of about 20-22% [8]. In terms of the 

fluidised bed combustion, the solid fuel is suspended by upward-blowing jets of 

air during the combustion process. This results in a turbulent mixing of gas and 

solid fuel, which enhances the chemical reactions and heat transfer [8]. An 

advantage of the fluidised bed combustion is the fuel flexibility. In terms of the 

pulverised fuel combustion, the solid fuel is finely grounded and pneumatically 

injected into a furnace through burners. The combustion temperature in 

pulverised fuel combustion is some 500-600 K higher than that in the fluidised 

bed combustion [9]. In addition, the particle size is much smaller in the pulverised 
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fuel combustion (< 100      μm) than that in the fluidised bed combustion (< 2000        μm) 

[9]. Pulverised coal combustion technology has enabled the large-scale electricity 

production for industries and utilities worldwide. The energy conversion efficiency 

in a subcritical pulverised coal power plant can reach about 40% when the high 

quality coal is fired and the efficiency is even possible to reach up to higher than 

50% for supercritical/ultra-supercritical steam conditions [8]. Currently, 

pulverized coal combustion is the most common technology in the world to 

generate power, accounting for over 90% of the coal-fired capacity [8, 10].  

1.2 Ash deposition issues 

Ash deposition issues are common problems in the operation of coal-fired boilers. 

Slagging and fouling, caused by the ash deposition, are the main reasons for boiler 

unscheduled shutdowns [11]. Generally, ash deposition can be divided into two 

classes: slagging, which is located in boilers section which has a higher 

temperature for more melt formation; fouling, which is, however, located on the 

convective surface that has a lower temperature. The ash deposition not only 

impedes the efficient heat transfer in the super-heat exchangers and then reduces 

the overall thermal efficiency of the boiler, but also could harm the stable 

operation caused by serious slagging [11]. Additionally, the boiler may fall into 

corrosion risk due to a further consequence of the deposition. All these scenarios 

result in the reduced boiler efficiency, the reduced availability and the high 

maintenance costs [12]. On the other hand, the ash deposition properties of the 

fired solid fuels are important determinants for the boiler design. Slagging is a 

major factor in determining the size of the boiler furnaces for a given output of 

steam; fouling dictates the spacing and the location of the tube banks of 

superheaters and reheaters in the convection section of boilers [9]. In addition, 

both slagging and fouling determine the placing and operation of the sootblowers 

in order to maintain the long-term efficient boiler operation. The chemical and 
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physical properties of the fly ash leaving the furnace are a major determinant in 

deciding the emission-control systems. Therefore, ash deposition characteristics 

play a significant role in deciding the fuel selection, the boiler design and the 

furnace operation [9]. 

Figure 1-3 shows images of the ash deposits found in boilers [11]. Slagging deposits 

generate in the hottest sections (radiation sections) and therefore, slagging 

deposits are partially or completely molten and they have a high sintering degree 

and dense structure, which results in difficulties in cleaning by sootblowers [11]. 

However, fouling deposits generate in boilerss where convection is the dominant 

heat transfer process, rather than radiation [11]. Due to the difference of the flue 

gas temperature (FGT) in the convection section, fouling deposits can be further 

divided into the high temperature fouling and the low temperature fouling. High 

temperature fouling is defined by the partially fused and sintered deposits found 

in the FGT ranged from 900 oC to 1300 oC; the low temperature fouling is defined 

by the loose and slightly sintered deposits found in the FGT ranging from 300 

oC to 900 oC [8]. In addition, deposits have a layered structure due to the change 

of the deposit surface conditions, especially those found in the slagging deposits 

and the high temperature fouling. For the slagging deposits, the initial layer, 

which is enriched with Fe species, is caused by the pyrite particle due to its large 

density and low melting temperature [13, 14]. Also, the small particles and the 

vapour condensation can be significant factors in determining the formation of 

the initial ash deposition layer. As a result, the surface temperature of the deposit 

increases to a point that can facilitate the melting and enhance the sintering to 

form a slag/sintered layer. 
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Figure 1-3 Images of deposits found on the boiler wall and the superheater [11]. 

1.3 Ash deposit formation 

 Inorganic constituents of coal 

Understanding the inorganic constituents of coal is the basis in understanding 

and predicting the ash deposition behaviours since the inorganic constituents 

dictate the ash properties (ash fusion, ash sintering and ash viscosity). The 

inorganic constituents in coal are commonly given as oxides of the relevant metals 

by employing a standard bulk chemical ash analysis [15]. These inorganic 

constituents are in the forms of the crystalline and the amorphous phases. 

Depending on the association of minerals with fuel, the inorganic constituents 

can be divided into three groups [15, 16]: (i) the discrete mineral particles, (ii) 

the organically-bound cations, and (iii) the water-soluble salts. The discrete 

mineral particles can be further divided into (i) the excluded minerals, which are 

individual mineral grains and (ii) the included minerals, which are inherent in 

the organic matrix, but not chemically bound with the fuel matrix. Excluded 

minerals are formed in coal from the extraneous sources during the geologic 

process or during mining [17]. The main excluded minerals contain silicates 

(which consist of quartz, kaolinite, illite, muscovite, montmorillonite, etc.), and 

carbonates (which consist of siderite, calcite, dolomite and ankerite). The 
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organically-bound inorganics are metals (mainly alkali/alkaline cations) and non-

metals (sulphur, phosphorous and chlorine) bound with the organic functional 

groups (such as chelates and carboxylic acids). The most common metals of the 

water-soluble salts are alkali/alkaline. 

These inorganic constituents experience different chemical and physical 

transformations during coal combustion, as shown in Figure 1-4 [18]. The 

excluded minerals may experience a slightly lower temperature than the flame 

temperature, particle fragmentation, chemical reactions and fusion. Also, the 

excluded minerals dictate the characteristics of the resultant ash residue [9, 14, 

18]. Excluded pyrite plays a significant role in the initial selective slagging on the 

water wall in the furnace [13]. The included minerals may experience a high flame 

temperature and a reducing environment and they may undergo a degree of 

coalescence due to the association with other mineral matter in the coal particles 

[18]. The coalescence of dissimilar minerals can form the low melting temperature 

eutectics, such as Fe-Al-Si and Ca-Al-Si eutectic systems, which aggravate the 

slagging issues [18]. The inorganic constituents in both the organically-bound 

inorganics and the water-soluble salts may be released into the gas phases and 

generate the alkali/alkaline vapours, which can cause the fouling issues. On the 

other hand, the clay minerals are possible to capture the alkali/alkaline metals 

to reduce their release into the gas phases [19, 20]. 

Silicates are the most abundant minerals in coal, which account for between 60 

and 90 percent of the total minerals in coal [9]. The excluded silicates may 

undergo phase transformation from the crystalline to the amorphous and form 

the bottom ash, but they are difficult to generate the melting phase due to their 

high fusion temperature. On the other hand, the included silicates are possible to 

react with the basic components related minerals (Fe, Ca, Mg, Na etc.) to 

generate the low melting point eutectics. 

8 
 



Chapter 1 

 

Figure 1-4 The behaviour of the major basic elements in combustion systems 
[21]. 

Fe occurs primarily as pyrite for US and UK coals [22]. However, Fe is more 

likely to occur as siderite and clay minerals for the coals from Australia, South 

Africa, India and Indonesia [22]. It was found that pyrite (especially the 

extraneous pyrite) plays a major role in forming the initial slagging layer when 

burning US coals in boilers [13, 23]. This is because it is easier for pyrite to arrive 

at the furnace wall surface due to its high density and spherical shape [24, 25]. 

In addition, pyrite could generate molten phases under lower temperature and 

under a reducing atmosphere [13, 23]. In terms of siderite, it is possible to react 

with the silicates to generate the low melting point eutectics, which results in a 

higher slagging propensity [22]. 

Alkaline metals (Ca and Mg) occur primarily as (i) calcite and dolomite for 

bituminous coals, and as (ii) the organically-bound cations for low rank coals [21]. 

A systematic change from organically bound calcium to calcite is observed with 

increasing the coal rank [21, 26]. The ash deposition caused by the Ca 
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constituents can be attributed to (i) the CaO fume, which can react with SO2 in 

the gas phase to generate the CaSO4 and form the initial ash deposition layer, 

and (ii) the Ca-Al-Si eutectics with a low melting point, which can increase the 

sticking possibility of the ash deposition process. 

Alkali metals (Na and Mg) occur primarily as halite, illite, and the organically-

bound cations [21, 27]. The organically-bound Na is more likely to occur in lower 

rank coals [21]. Chlorine content can indicate the fraction of Na content as halite 

[27].  It is regarded that the halite and the organically-bound Na are more likely 

to be released into the gas phase and form the alkali vapours, which may either 

condense on the deposit surface or be partly captured by the silicates [21]. The 

illite is likely to remain within the silicates and form molten slag phases [21]. 

 Ash properties 

1.3.2.1 Ash fusion 

Ash fusion is the melting behaviour of coal ash under high temperatures. It is 

often characterised by the ash fusion temperatures (AFTs) which include the 

initial deformation temperature (IDT), soften temperature (ST), hemisphere 

temperature (HT) and flow temperature (FT), as shown in Figure 1-5. The IDT 

is taken to be when the rounding of the tip of an ash cone, where the ash first 

melts and may become sticky; the ST is the temperature at which the height of 

the ash cone equals the width of the ash cone; the HT is when the cone height is 

half of the cone width; FT is when the ash cone's shape has disappeared and the 

ash starts to flow [28]. It is regarded that AFTs can indicate the mineral 

transformation behaviours in boilers. Therefore, using AFTs is a simple method 

to predict the ash deposition propensities in boilers [28-31]: IDT can indicate the 

temperature where the slight deposition occurs; ST is the indication of serious 

slagging on the furnace wall and fouling on the superheater surface; FT shows 
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the slag with a liquid behaviour. Generally, it is regarded that the higher is the 

ST, the more difficult is it for the coal to form the ash deposition in boilers. 

 

Figure 1-5 Sketch map for the ash fusion temperature test [32]. 

1.3.2.2 Ash sintering 

Ash sintering is commonly employed to describe particle-to-particle 

agglomeration behaviour under heat treatment, including the strength 

development and the densification, and the shrinkage of coal ash [33]. Therefore, 

the ash sintering is significant to understand the strength development of deposits 

formed in boilers. Since coal ash particles are partly melting and have a 

viscoelastic state during combustion, it is generally regarded that the diffusion 

mechanism during coal ash sintering is the viscous flow [34].  

It is important to explain the differences between ash sintering and ash fusion. 

From the aspect of the definition, ash sintering represents the bonding or welding 

of adjacent particles under the influence of excess surface tension. However, ash 

fusion represents the melt formation during the mineral transformation. Ash 

sintering can occur without ash fusion, although ash sintering can be significantly 

promoted by the ash fusion. Ash sintering and ash fusion often work together to 

make deposits with a high strength, which increase the difficulty to remove the 

deposits by sootblowers in boilers.  

In addition to investigating the strength development caused by ash sintering, 

there is a great interest in investigating the onset of the initial sintering. It is 
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regarded that the IDT can somewhat represent the onset of the initial sintering 

[28]. However, it is found that there exist large discrepancies in measuring IDT, 

and this may be as large as 400 oC between the same coal samples [12, 28]. 

Therefore, using the IDT is inaccurate in identifying the onset of the initial 

sintering. According to the Frenkel sintering theory, sintering commences with a 

deformation of the particles and particle-to particle bounding, which can lead to 

the closure of pores and the contraction of the sintered sample [9, 12, 35]. This 

can further result in a decrease in both the porosity and the dimension of the 

sintered sample, and in an increase in the strength of the sintered sample. For 

coal ash sample, it is often regarded that the initial sintering is attributed to the 

onset of melt formation [36-38]. In order to accurately measure the onset of the 

initial sintering, many methods have been developed to investigate the initial 

sintering temperature (Ts). These methods attempt to measure the physical 

properties of the coal ash samples that undergo a sudden change, as shown in 

Figure 1-6. These physical properties include the electrical conductance, the 

resistance, the compression strength, the rate of displacement of ash pellets, and 

the pressure drop passing through the ash pellets. 
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Figure 1-6 Schematic diagram to measure initial sintering temperature (Ts) of 
coal ashes using the different techniques. 
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It should be noted that the initial sintering temperature is very significant for 

fluidized bed combustion/gasification since their operation temperature is close 

to the initial sintering temperature and much lower than the soften temperature. 

Therefore, it is regarded that the initial sintering temperature can be employed 

to estimate the ash deposition propensity and help determine the operation 

temperature for the fluidized bed combustion/gasification. Currently, it is very 

interesting to investigate the influence of the ash composition, the gas atmosphere 

and the pressure on the initial sintering temperature [37-43]. 

1.3.2.3 Ash viscosity 

Ash viscosity is one of the most significant parameters of coal ash under high 

temperature, which can be employed to determine the operation of the wet-

bottom combustor/gasifier and to predict the ash deposition propensity. 

Generally, the viscosity of coal ash decreases with increasing the temperature. 

The temperature of the critical viscosity (Tcv) represents the temperature where 

the viscosity of the coal ash changes on cooling from that of a Newtonian fluid 

to that of a Bingham p1astic [44], which also corresponds to the temperature 

where the viscosity abruptly increases on cooling [45], as shown in Figure 1-7. 

For a wet-bottom combustor/gasifier, there is a suitable viscosity range (ash 

viscosity cannot be either too high or too low) to operate the reactor in a cost-

effective manner [45]. However, for a pulverised coal combustor, it is often 

regarded that coal ash with lower viscosity may represent a higher slagging 

propensity. Furthermore, viscosity is a significant parameter to determine the 

sticking efficiency of the particles after they impact the deposit surface. In terms 

of the elastic-plastic deformations of the impacting particles and deposit surface, 

the viscosity of a droplet dictates the extent to which the droplet is deformed on 

collision, and therefore the contact area of the droplet with the deposit surface is 

established [46]. The larger the contact area developed during impact, the larger 
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is the probability that the droplet will stick [46]. Assuming that the droplet does 

not breakup, the final contact area is expected to decrease with an increase in 

the viscosity [46]. 

The viscosity of coal ash under high temperatures is dictated by the coal ash 

composition. According to the influence of the ash composition on the viscosity, 

coal ash composition can be divided into three groups [47]: (i) glass formers (e.g. 

SiO2); (ii) amphoteric oxides (e.g. Al2O3); (iii) modifier oxides (alkali/alkaline 

oxides and FeO, etc.). It is often regarded that the viscosity is increased with 

increasing the concentration of glass formers; the viscosity is decreased with 

increasing the concentration of glass formers; however, the viscosity can be either 

increased or decreased with increasing the concentration of amphoteric oxides. 

For coal ash, the viscosity is increased with increasing the concentration of Al2O3 

because there exist modifier oxides (alkali/alkaline oxides and FeO, etc.) [45].  
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Figure 1-7 Viscosity of coal ash as a function of temperature, Tcv (temperature 
of the critical viscosity) [48]. 

Many prediction models have been developed based on the ash composition in 

order to estimate the viscosity of coal ash since it is very expensive and difficult 

to experimentally measure the viscosity [45]. Generally, as shown in Table 1-1, 

these viscosity prediction models can be divided into two groups, (i) models for 
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completely molten silicates, which are mainly based on the ash composition of 

the coal ash, and (ii) models for liquid-solid mixtures, which are based on the 

composition of the liquid phase and the solid phase by using thermodynamic 

methods. It should be noted that these viscosity prediction models are suitable 

for silicate as the major ash composition, however they maybe not suitable for 

solid fuel ash with a high amount of alkali/alkaline metals [49]. Furthermore, it 

is noted that the viscosity prediction models for completely molten silicates are 

often employed to estimate the viscosity of the impacting ash particles in CFD 

based ash deposition models [25, 50]. However, it maybe not suitable to employ 

these viscosity models for completely molten silicates to estimate the viscosity of 

the impacting ash particles. This is because the impacting ash particles are 

probably not completely molten, but liquid-solid mixtures. This is because that 

their particle temperatures are much lower than the melting point. 

Table 1-11 Some typical viscosity prediction models of coal ash [45, 51-55]. 

Viscosity model Equations 

completely 
molten 

Urbain-model, 
Kalmanovitch-
model 

𝛽𝛽 = 𝐶𝐶1𝑇𝑇𝑅𝑅𝑥𝑥𝑡𝑡(
103𝐶𝐶2

𝑇𝑇
) (1-1) 

Watt & 
Fereday-model log(𝛽𝛽) =

𝐶𝐶3 ∙ 107

(𝑇𝑇 − 423)2 + 𝐶𝐶4 (1-2) 

liquid-solid 
mixtures 

Einstein-model 
𝛽𝛽𝑠𝑠
𝛽𝛽𝑎𝑎

= 1 + 2.5𝑉𝑉𝑠𝑠𝑜𝑜𝑎𝑎𝜂𝜂𝑑𝑑 (1-3) 

Roscoe-model 
𝛽𝛽𝑠𝑠
𝛽𝛽𝑎𝑎

= (1 − 𝑉𝑉𝑠𝑠𝑜𝑜𝑎𝑎𝜂𝜂𝑑𝑑)−5/2 (1-4) 

Song-model 
�
�
�
�
�𝛽𝛽𝑠𝑠

𝛽𝛽𝑎𝑎
= 1 + 1.158𝑉𝑉𝑠𝑠𝑜𝑜𝑎𝑎𝜂𝜂𝑑𝑑                               𝜂𝜂𝑓𝑓 𝑉𝑉𝑠𝑠𝑜𝑜𝑎𝑎𝜂𝜂𝑑𝑑 < 10%

ln �
𝛽𝛽𝑠𝑠
𝛽𝛽𝑎𝑎�

= 𝐶𝐶5 ∙ ln �1 +
𝑉𝑉𝑠𝑠𝑜𝑜𝑎𝑎𝜂𝜂𝑑𝑑
0.77 � 𝑖𝑖𝑖𝑖 10% ≤ 𝑉𝑉𝑠𝑠𝑜𝑜𝑎𝑎𝜂𝜂𝑑𝑑 ≤ 40%

 (1-5) 

      1 𝛽𝛽 represents the viscosity, 𝛽𝛽𝑠𝑠 and 𝛽𝛽𝑎𝑎 represents the viscosity of the slag and 
the liquid phase in the slag, respectively, 𝑇𝑇 represents the temperature (K), 
𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, 𝐶𝐶4 and 𝐶𝐶5 represent the coefficients based on the ash composition, 
and 𝛿𝛿𝑠𝑠 represents the volume fraction of solid phase in the slag. 
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Chapter 1 

 Ash deposit formation 

Pulverised coal particles are injected with the entrained air from the burner into 

the flame region of the boiler [12]. The particles heat up (at a rate 105-106 K/s) 

and the moisture is evaporated, which is caused by the radiation and mixing with 

hot gases [12, 56]. After the evaporation, the light gases and tars release 

(devolatilisation) and these organic species react with oxygen (volatile 

combustion), followed by the char combustion [57]. Simultaneously, the ionically 

or organically bound inorganic species (e.g. alkali/alkaline metals, Cl, S, and P) 

are released into the gas phase and generate the inorganic vapours at the stages 

of both the devolatilisation and the char combustion [12]. It should be noted that 

a part of the inorganic vapours may be captured by the SiO2 and Al2O3. The 

remaining uncaptured inorganic vapours condense on other ash particles and 

directly condense on the cool deposition surface. The homogeneous nucleation of 

the inorganic vapours gives rise to the fume particles (aerosols or sub-micron ash 

particles) [58]. The remaining unvaporised inorganic species undergo a series of 

overlapping physical and chemical processes (e.g. phase transformations, 

fragmentation, melting and coalescence), which results in the formation of the 

larger fly ash compared to the sub-micro ash particles [12, 58]. Therefore, fly ash 

particles often has a bi-modal particle size distribution [12, 58].  

Fly ash particles must be transported to the deposition surfaces in order to 

generate the ash deposition. Generally, there may be at least five mechanisms of 

ash particles transferring to the deposition surfaces, namely inertia impaction, 

thermophoresis, condensation, diffusion and chemical reactions, as shown in 

Figure 1-8 [59-61]. Inertia impaction and thermophoresis involve the solid 

particles, whereas the condensation and chemical reactions affect the gas phase. 

Diffusion can have an effect on the transport of the solid and gaseous phases near 

the heating surface but have a stronger effect on the movement of the sub-
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micrometre particles [59]. On the other hand, deposits formed by diffusion and 

thermophoresis are evenly distributed around the tube, while the deposit formed, 

due to inertial impaction, will be formed only on the upstream tube side with a 

mountain-like-shaped upstream deposit [59]. 

 

Figure 1-8 Mechanisms of the deposit transport onto the deposit surface [59-61]. 

The inertial impaction is regarded as the dominant mechanism for the ash deposit 

formation within boilers [24, 61, 62], especially under conditions with a high 

deposit surface temperature. The particles impact on the surface only when they 

have sufficient inertia to traverse the gas stream lines [24]. The impaction 

efficiency (defined as the possibility of the particle to impact on the surface) is 

dictated by the particle properties (size and density), gas flow properties 

(viscosity and velocity), and the target geometry (tube diameter and shape). 

Generally, the particle Stokes number (defined as the ratio of the characteristic 

time of a particle to a characteristic time of the flow or of an obstacle) can be 

employed to describe the particle impaction efficiency. When the particle Stokes 

number is small, the particle impaction efficiency is very small and close to zero; 

with a further increase in Stokes number, the particle impaction efficiency sharply 

increases and eventually approaches unity. In the burner region, where the 
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temperature is very high, there is little or no condensation of the vapour species, 

and therefore it is assumed that the inertial impaction is the major pathway [11, 

25]. Additionally, the deposition of large fly ash particles is mainly determined 

by the inertial impaction. 

Thermophoresis is a significant mechanism for small particles due to a 

temperature gradient [59]. The thermophoretic force results from the collision of 

fluid molecules with higher average kinetic energy on the hot side of the 

suspended particles to the molecules with lower average kinetic energy on the 

cold side of the particles [59]. The thermophoretic force acts in the opposite 

direction of the temperature gradient. Further, thermophoresis is quite significant, 

especially at the initial deposition stage and this is due to the low deposit surface 

temperature. With the deposit growth, due to an increase in the deposit surface 

temperature, the influence of the thermophoresis on the arrival rate of the small 

particles is decreased. 

Condensation is the mechanism by which alkali/alkaline vapours are collected on 

the deposit surfaces [24]. The condensation rate is dictated by the amount of the 

metal vapourised species in the coal and the temperature condition in the furnace. 

Generally, coal with higher concentration of the metal vapourised species is easier 

to give rise to the condensation and high furnace temperature can enhance the 

vaporisation ability of the metal species in the coal [24, 59, 63]. This process is 

key during the initial stages of the deposit formation on the fouling surfaces where 

temperatures are too low to form the melt. It has been identified that there are 

three different methods of condensation [24, 59]: (i) The direct heterogeneous 

condensation of vapour on the deposition surfaces by traverse the boundary layer; 

(ii) The homogeneous nucleation of vapours resulting in the formation of fume 

particles and these particles are possible to be deposited on the surface by the 

thermophoresis; (iii) The vapours  condense  on  other  particles in the boundary 
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layer. Therefore, condensation can be an important fouling mechanism for low 

rank coals with a high potential for generating large amount of condensable 

species. 

Diffusion is the mechanism of the transport of vapours and small particles 

towards a solid surface by a local concentration gradient [24, 59]. In the case of 

Fick's diffusion, molecules move towards a solid surface due to a concentration 

gradient. On the other hand, it is possible that eddy diffusion drives the small 

particles to impact at the deposit surface by the turbulent eddies [24].  

Chemical reactions involve the heterogeneous reactions of the gas phases with 

the deposit. The main significant chemical reactions are alkali/alkaline 

absorption, oxidation and sulphation [24, 59, 64]. They not only increase the mass 

of the deposit, but also may produce an increase in the strength due to the 

recrystallization and solidification processes [24, 59]. 

It should be noted that the latter four mechanisms are regarded as near wall 

effects and they are less significant compared to the inertial impaction [65-67]. 

However, thermophoresis is important for small particles at the early stage of the 

deposit formation when the deposition surface temperature is much lower than 

the gas temperature in the mainstream. Also, condensation is important for 

fouling formation in the convection section of boilers.  

After being transported to the deposition surfaces, fly ash particles either rebound 

from the surfaces or stick to the surfaces depending on the sticking efficiency. 

The sticking efficiency includes the stickiness of both the ash particles and 

deposition surfaces. The stickiness is determined by the temperature, viscosity, 

melt fraction, surface tension and kinetic energy. Also, the properties are 

employed as the threshold criterion for ash particles to be sticky. After the ash 

particles deposit on the surfaces, the deposits could detach from the surfaces or 

19 
 



Chapter 1 

build-up on the surfaces. The mechanism of detachment describes the stability 

of the sticking particles at the surface. 

Currently, low-NOx emission reduction methods are often employed in boilers to 

control the NOx emission level by using low NOx burners. It is regarded that 

low-NOx burners may increase the furnace slagging because the new design can 

lead to an increase in local reducing conditions and flame impingement on the 

rear wall [12, 68]. However, some researchers have found that the retrofitting of 

low NOx burners may not lead to a detrimental effect on boiler slagging [68]. 

This is because low NOx burners can reduce the heat flux in the burner belt and 

the peak flame temperature, which may reduce the slagging problems [68]. 

Therefore, these two combined effects dictate whether or not the low-NOx 

burners can aggravate the slagging issue in boilers. The other consideration for 

the new boiler design is the supercritical and ultra-supercritical steam cycle 

boilers, which have higher thermal efficiency than subcritical steam cycle boilers. 

The former boilers have higher surface temperature of the superheaters than the 

latter boilers (100-200 oC higher), which may result in a higher melting and 

sintering behaviour of ash deposition on the superheaters [69]. 

1.4 Prediction of ash deposit formation 

Ash deposition is a significant factor in determining the operation and 

performance of the combustion processes. This is because the ash deposition not 

only causes heat transfer inhibition, but also could trigger the unscheduled 

shutdown of the combustion systems [11, 25]. Therefore, it is necessary to study 

and predict the ash deposition characteristics when the new fuels are applied, in 

order to maintain the long-term efficient operation of boilers and reduce the 

maintenance costs.  
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The ash deposit formation is very complicated for solid fuel combustion in drop 

tube furnaces and boilers. The ash deposition is determined according to the 

temperature-time history of fuel particles, which involves several processes (fuel 

combustion, heat transfer, particle transportation, particle impaction and 

sticking, deposit growth, etc.) [11, 65]. CFD is an important simulation 

technology in resolving the solid fuel combustion in boilers and typically a 

commercial CFD code (Ansys Fluent) can be employed to deal with these 

problems [4]. Ansys Fluent employs the finite volume method to discretize the 

fluid domain enclosed by the combustor into a huge number of cells and solves 

the transport equations for the mass, momentum and energy balances [4]. The 

continuum gas phase is solved in an Eulerian frame while the motion of the 

discrete phase of the coal particles is predicted in the form of a Larganian frame 

[4, 70]. At the same time, the in-house developed ash deposition models can be 

incorporated into the software using the User Defined Functions and Memories. 

On the other hand, for engineering purposes, there is a demand to develop a 

relative simple and practical method that can quickly and easily predict the ash 

deposition propensities for engineers without much CFD knowledge. Therefore, 

it is still significant to develop a reliable ash deposition indice which is useful to 

understand the ash deposition propensity of the new fuels or fuel blending for 

boilers. 

1.5 Thesis structure 

 Research aims and novelty 

The research aims of this research are as follow: 

• To develop ash deposition models through CFD methods to study the 

particle impaction and sticking behaviour. Therefore, an in-depth 

understanding and more accurate prediction of the ash deposit formation 
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process can be obtained. In order to resolve the inaccurate prediction of 

particle impaction efficiency when a coarse mesh is employed, a sub-model 

for the particle impaction is to be proposed in the ash deposition model. 

In addition, a dynamic ash deposition model is to be developed based on 

the multiple ash deposition mechanisms and incorporating the influence 

of the heat transfer rate in order to predict the time-dependent ash 

deposition behaviour. 

• To develop a novel approach for building an ash deposition indice in order 

to improve the prediction of the overall slagging propensity for real 

boilers. The method is based on the multi-slagging routes in boilers and 

the ash deposition indice could provide a relative simple and practical 

strategy to predict the ash deposition propensity through the ash 

chemistry aspect. 

The novelty of this research is as follows: 

 A steady state CFD model that simulates particle impaction and sticking has 

been developed for predicting the ash deposition characteristics on an 

uncooled deposition probe and the CFD model is validated by the co-

combustion of South African coal and palm kernel expeller in an entrained 

flow reactor. A new revised particle impaction model has been developed and 

accomplished, using an impaction correction factor, in order to minimize the 

numerical related errors without excessive meshing.  

 A dynamic CFD model, which is based on the inertia impaction, the 

thermophoresis and the direct alkali vapour condensation and incorporates 

the influence of the heat transfer rate, has been developed for predicting the 

ash deposit formation on a cooled deposition probe and the CFD model is 

validated for the Zhundong lignite in a pilot scale coal-fired furnace. 
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 A new method to develop the ash deposition indice, which is based on the 

initial slagging routes and the sintered/slagging route, has been developed 

and used for predicting the ash deposition propensities of coal combustion in 

utility boilers supported by the data collected from power stations. The 

partial least square regression (PLSR) technique, coupled with a cross 

validation method, is employed to obtain the correlation for the ash 

deposition indice. 

 Scope and limitation of the thesis 

The first part of the research work in this thesis is mainly focus on predicting the 

ash deposit formation on an uncooled deposition probe for the co-combustion of 

South African coal and palm kernel expeller through a steady CFD model. The 

revised particle impaction model is suitable to deal with the inaccurate particle 

impaction in a cross flow. The particle sticking model has been developed for the 

palm kernel expeller. For other types of biomass, calcium, potassium, or silicon 

may be the major ash components rather than phosphorus, which can lead to the 

change of the ash chemistry and the particle sticking model. Therefore, the 

particle sticking model needs further development for the ash deposition model. 

The second part of the research work in this thesis is mainly concerned with 

predicting the time-dependent ash deposit formation process on a cooled 

deposition probe for lignite combustion through a dynamic CFD model. The 

depositing particles are assumed to be completely ash particles due to the ash 

deposition probe is not close to the flame region and therefore the combustion 

process is not considered in the present model. However, when coal particles are 

not fully combusted, CFD model needs to include the combustion model to 

predict the ash deposition behaviour. In addition, this study has employed the 

typical porosity sub-model and the experimental data to predict the deposit 

porosity and thermal conductivity. However, it is still needed to validate the 
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porosity and thermal conductivity prediction model for other fuels. This is 

because these two deposit properties may be influenced by the ash chemistry 

when the solid fuels are changed. 

The third part of the research work in this thesis takes into consideration 

developing a method to build an ash deposition indice for real boilers based on 

multi-slagging routes. Iron and sulphur in US coals are assumed in the form of 

pyrite. This kind of assumption is suitable for US coals. However, siderite may 

be the dominant iron-bearing mineral for many other coals, such as South African 

and Australian coals. In addition, the ash deposition indice is developed through 

the ash chemistry and the combustion conditions in boilers are not considered. 

However, the combustion conditions may vary for different boilers, which may 

affect the slagging propensities. Therefore, it is better to employ the direct 

mineral information of coal and incorporate the combustion condition in boilers 

to further develop the model and build an ash deposition indice. 

 Outline of the thesis 

 In Chapter 1, a general introduction to the motivation for the ash deposition 

prediction is presented. In Chapter 2, a detailed literature review on the ash 

deposition prediction models is presented, which involves CFD methods and 

the ash deposition indice.  

 In Chapter 3, the experimental facilities and data, which are used in the 

subsequent chapters, are described.  

 Chapter 4 presents the numerical results and discussion on the steady CFD 

prediction of ash deposition behaviours on an uncooled deposition probe. Also, 

a detailed introduction of the ash deposition model, which is determined by 

the revised particle impaction model and particle sticking model, is presented. 
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 In Chapter 5, the numerical results and discussion on the dynamic CFD-based 

ash deposition prediction on a cooled deposition probe are presented. A 

detailed introduction of the ash deposition model, which takes account of the 

inertia impaction, the thermophoresis and the direct alkali vapour 

condensation, is presented. 

 Chapter 6 presents the numerical results and discussion on the prediction of 

overall slagging propensities in boilers through the developed ash deposition 

indice. The developed indice is compared with some of the typical ash 

deposition indices. In addition, using the ratio SiO2/Al2O3 to predict the 

melting behaviours and slagging potential is discussed. A detailed 

introduction of the mathematical model, in order to develop the ash 

deposition indice, is presented. 

  In Chapter 7, the key findings and conclusions are presented and some 

suggestions for the possible future prospects of this thesis are discussed.  
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Chapter 2: Literature review 

Summary 

This chapter reviews key aspects of the prediction methods of ash deposition. 

The main strategies and challenges in predicting the ash deposition by using 

the CFD methods and the ash deposition indices are presented. In addition, 

the current research status of these prediction models is introduced. 

2.1 Overview of ash deposition prediction 

The predicting ash deposition behaviour is significant in order to optimise the 

operation of boiler parameters and maintain a long-term operation of boilers when 

new fuels or coal blends are to be burnt in boilers. Also, an in-depth 

understanding of the major deposition pathways during the ash deposit formation 

for a known easy slagging coal is important to provide guidelines for the efficient 

utilisation of the easy slagging coal. Many methods have been developed to 

predict and understand the ash deposition behaviour for solid fuel combustions. 

Generally, they can be divided into two major groups: (i) CFD methods, which 

predict ash deposition behaviour through calculating the temperature-time 

history of coal particles in combustors (including particle combustion, particle 

transportation, particle impaction and particle sticking and rebounding); (ii) ash 

deposition indices, which are commonly based on the fuel properties (ash fusion, 

ash sintering, ash viscosity, inorganic constituents, ash content, etc.) to predict 

the ash deposition behaviour in combustors. 
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2.2 CFD methods 

CFD methods solve the temperature-time history of fuel particles in order to 

predict the ash deposit formation through determining the arrival rate of particle 

impacting the deposition surfaces and the sticking efficiency of these arrival 

particles [11]. Therefore, CFD predictions of ash deposit formation involve [65] 

calculating the particle trajectories and particle impaction and sticking processes, 

in addition to solving typical combustion behaviour, such as the gas flow, energy 

conservation and heat transfer, and combustion (devolatilisation, char 

combustion, volatile combustion, etc.).  

 Governing equations  

Coal combustion is typically modelled as a dilute two-phase reacting flow [71], 

which has the following characteristics [72]: (i) the gas phase is the continuous 

phase and the coal particles are the discrete phase; (ii) the concentration of the 

discrete phase is dilute which means that fluid-flow in coal combustion belongs 

to the particle-laden flow. 

The Euler and Lagrange methods are often employed to deal with flow field of 

the gas phase and the solid phase, respectively [71]. Further, the interaction 

between the gas phase and the solid phase is calculated using the particle-source-

in-cell method [70, 71]. 

The conservative forms of the governing equations of the gas phase are 

summarised as follows [73]: continuity equation (Equation (2-1)), momentum 

(Equations (2-2)), energy equation (Equation (2-3)), and species equation 

(Equation (2-4)). 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅

+ 𝛁𝛁 ∙ (𝜕𝜕𝒖𝒖𝒊𝒊) = 0 (2-1) 
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𝜕𝜕𝜕𝜕𝒖𝒖𝒊𝒊
𝜕𝜕𝑅𝑅

+ 𝛁𝛁 ∙ �𝜕𝜕𝒖𝒖𝒊𝒊𝒖𝒖𝒋𝒋� = 𝛁𝛁 ∙ (μ𝛁𝛁𝒖𝒖𝒊𝒊) −
𝜕𝜕𝑡𝑡
𝜕𝜕𝑥𝑥𝜂𝜂

+ 𝑆𝑆𝑚𝑚𝜂𝜂 (2-2) 

𝜕𝜕𝜕𝜕ℎ
𝜕𝜕𝑅𝑅

+ 𝜵𝜵 ∙ (𝜕𝜕𝒖𝒖ℎ𝑅𝑅) = 𝜵𝜵 ∙ �
𝜇𝜇
𝐼𝐼𝑖𝑖

𝜵𝜵ℎ𝑅𝑅� + 𝑆𝑆𝑇𝑇 (2-3) 

𝜕𝜕𝜕𝜕𝑐𝑐𝑠𝑠
𝜕𝜕𝑅𝑅

+ 𝛁𝛁 ∙ (𝜕𝜕𝑐𝑐𝑠𝑠𝒖𝒖) = 𝛁𝛁 ∙ (𝐷𝐷𝑠𝑠𝛁𝛁(ρ𝑐𝑐𝑠𝑠)) + 𝑆𝑆𝑠𝑠 (2-4) 

where 𝑆𝑆𝑚𝑚 , 𝑆𝑆𝑇𝑇 and 𝑆𝑆𝑠𝑠 are the momentum, energy and species source terms 

respectively, 𝐷𝐷𝑠𝑠 is the diffusion coefficient, ρ is the fliud density, 𝑐𝑐𝑠𝑠 is the volume 

concentration, 𝒖𝒖 is the velocity vector, ℎ𝑅𝑅 is the total enthalpy, 𝐼𝐼𝑖𝑖 is Prandtl 

number, 𝜇𝜇 is the dynamic viscosity, 𝑡𝑡 and 𝑇𝑇 are the fluid pressure and fluid 

temperature respectively. Generally, in the above governing equations of the gas 

phase: the left hand side of the equations are the terms of the rate of change and 

the convective terms; the right hand side of the equations are the diffusive and 

the source terms. 

The fluid flow in real boilers is dictated by the turbulence. Currently, the 

Reynolds Averaged Navier–Stokes (RANS) approach, which solves the time-

averaged equations of fluid flow by decomposing the instantaneous quantity into 

time-mean and fluctuating quantities, is the most common practice for predicting 

the fluid flow in boilers in a steady state [11]. There exist many different 

turbulence models for RANS, including the Spalart Allmaras model (one-equation 

model), k-" model (two-equation model), k-! model (two-equation model) and 

Reynolds stress model (seven-equation model). Choosing a suitable turbulence 

model should be relevant with a detailed analysis of the numerical solvers and 

the numerical errors associated with them [11]. It is regarded that, in determining 

the high accurate numerical predictions of a turbulent flow, the quality of the 

grid and the numerical solver maybe more significant than the RANS model itself 

[11]. 
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 Radiative heat transfer 

The radiative heat transfer could account for approximately 90% of the total heat 

transfer in radiation section of boilers and furnaces [72]. In CFD, the radiation is 

modelled by dealing with the radiative transfer equation (RTE). For an absorbing, 

emitting and scattering medium, the RTE at position 𝑖𝑖� in the direction 𝑠𝑠� is given 

by [70]: 

𝑑𝑑𝐼𝐼(𝑖𝑖�, 𝑠𝑠�)
𝑑𝑑𝑠𝑠

= 𝑖𝑖𝑖𝑖2 𝜎𝜎𝑇𝑇4

𝜋𝜋
− (𝑖𝑖 + 𝜎𝜎𝑠𝑠)𝐼𝐼𝑖𝑖𝑖𝑖𝑑𝑑(𝑖𝑖�, 𝑠𝑠�) +

𝜎𝜎𝑠𝑠
4𝜋𝜋 � 𝐼𝐼𝑖𝑖𝑖𝑖𝑑𝑑(𝑖𝑖�, 𝑠𝑠�′)𝜙𝜙(𝑠𝑠�∙ 𝑠𝑠�′)

4𝜋𝜋

0

𝑑𝑑𝛺𝛺′ (2-5) 

where 𝐼𝐼𝑖𝑖𝑖𝑖𝑑𝑑  and 𝜙𝜙  are the radiation intensity and phase function, 𝑠𝑠�′  is the 

scattering direction vector, 𝑠𝑠 is the path length, 𝑖𝑖, 𝑖𝑖 and 𝜎𝜎𝑠𝑠 are the absorption 

coefficient, refractive index and scattering coefficient respectively, 𝛺𝛺′ is the solid 

angle. As shown in Equation (2-5), the left hand side of the equation is the term 

for the rate of change of the radiation intensity, which is a function of position 

and direction; the first term on the right hand side of the equation is the 

augmentation of radiation intensity due to the in-emission from the medium; the 

second term on the right hand side of the equation is the attenuation of the 

radiation intensity due to the out-absorption and out-scattering by the medium; 

the last term on the right hand side of the equation is the augmentation of the 

radiation intensity due to the in-scattering from other directions [74]. It is noted 

that the differention and integration are included in the equation. Hence, it is 

difficult to directly solve the RTE. Taking into account the computation expense 

and prediction accuracy, the discrete ordinates method (DO) is often employed 

to simplify and solve the RTE [70, 71]. 

The DO model assumes that the RTE can be solved by a finite number of discrete 

solid angles which are associated with the direction 𝑠𝑠 [70]: each octant of the 

angular space 4𝜋𝜋 is discretized into 𝜃𝜃  𝑑𝑑𝜂𝜂𝑎𝑎𝜂𝜂𝑠𝑠𝜂𝜂𝑜𝑜𝑖𝑖𝑠𝑠 × 𝜑𝜑 𝑑𝑑𝜂𝜂𝑎𝑎𝜂𝜂𝑠𝑠𝜂𝜂𝑜𝑜𝑖𝑖𝑠𝑠 solid angles; and 
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the integrals over the directions in the Equation (2-5) can be replaced by the 

numerical quadrature; 𝜃𝜃 and 𝜑𝜑 are the polar and azimuthal angles, respectively. 

Therefore, the integration term in the Equation (2-5) can be approximated by a 

summation term and the direction number is equal to 8 × 𝜃𝜃  𝑑𝑑𝜂𝜂𝑎𝑎𝜂𝜂𝑠𝑠𝜂𝜂𝑜𝑜𝑖𝑖𝑠𝑠 ×

𝜑𝜑 𝑑𝑑𝜂𝜂𝑎𝑎𝜂𝜂𝑠𝑠𝜂𝜂𝑜𝑜𝑖𝑖𝑠𝑠  in three-dimensional calculations. Increasing the discretization of 

𝜃𝜃  𝑑𝑑𝜂𝜂𝑎𝑎𝜂𝜂𝑠𝑠𝜂𝜂𝑜𝑜𝑖𝑖𝑠𝑠 and 𝜑𝜑 𝑑𝑑𝜂𝜂𝑎𝑎𝜂𝜂𝑠𝑠𝜂𝜂𝑜𝑜𝑖𝑖𝑠𝑠 will achieve more reliable results. However, this may 

substantially add to the cost of the computation. 

In order to solve the above RTE, the radiation characteristics of the gases are 

required. The weighted-sum-of-gray-gases model (WSGGM), which assumes the 

flue gas is composed of a transparent gas and several gray gases [71], is often 

employed to calculate the radiation characteristics [70]. WSGGM predicts the 

total gas emissivity based on the temperature dependent polynomials and the 

absorption coefficient for a particular pressure and path length [57]. 

 Combustion models 

Modelling the combustion of coal particles mainly contain four steps, evaporation, 

devolatilisation, volatile combustion and char combustion. Evaporation refers to 

the release of moisture in coal particles into the gas phase; Devolatilisation refers 

to the release of the organic compounds into the gas phase from the volatile in 

coal particles; Volatile combustion refers to the combustion of the released 

organic compounds in the gas phases; Char combustion refers to the combustion 

of coal particles after the evaporation and the devolatilisation. Therefore, in CFD 

modellings, four different models should be employed to describe the rates of 

these four steps. Many efforts have been focused on developing a more accurate 

devolatilisation model, volatile combustion model and char combustion model 

[57].  
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2.2.3.1 Devolatilisation 

The kinetics and yields of devolatilisation are strongly governed by the 

temperature history (holding time, heating rate, and peak temperature) [57]. 

Additionally, the ambient gas composition can affect the devolatilisation. 

In the single kinetic rate model, the volatiles are released at the rate that is first-

order dependent on the amount of remaining volatiles  [75]: 

𝐶𝐶𝑜𝑜𝑖𝑖𝑎𝑎 𝑠𝑠→ (1 − 𝑋𝑋)𝑖𝑖𝑅𝑅𝑠𝑠𝜂𝜂𝑑𝑑𝑢𝑢𝑅𝑅 + 𝑋𝑋𝑎𝑎𝑜𝑜𝑎𝑎𝑖𝑖𝑅𝑅𝜂𝜂𝑎𝑎𝑅𝑅𝑠𝑠 (2-6) 

−
𝑑𝑑𝑚𝑚𝑡𝑡

𝑑𝑑𝑅𝑅
= k[𝑚𝑚𝑡𝑡 − (1 − 𝑓𝑓𝑎𝑎,0)(1 − 𝑓𝑓𝑤𝑤,0)𝑚𝑚𝑡𝑡,0] (2-7) 

𝑠𝑠 = A𝑅𝑅−(𝐸𝐸/𝑅𝑅𝑇𝑇𝑡𝑡) (2-8) 

where 𝑋𝑋 is the volatile fraction, 𝑚𝑚𝑡𝑡,0 and 𝑚𝑚𝑡𝑡 are the initial and current particle 

mass respectively, 𝑓𝑓𝑤𝑤,0 and 𝑓𝑓𝑎𝑎,0 are the mass fractions of the initial moisture and 

volatiles in the particle respectively, 𝑠𝑠 is the kinetic rate, A is the pre-exponential 

factor, 𝐸𝐸 is the activation energy, 𝑅𝑅 is the the ideal gas constant and 𝑇𝑇𝑡𝑡 is the 

particle temperature. 

2.2.3.2 Char combustion 

Char combustion involves the produce of CO and further CO2 from the reactions 

of char with oxygen. The kinetic of char combustion is complex. According to 

the processes in the char combustion, the factors that control the reaction rates 

can be either the chemical adsorption and desorption or the diffusion. On the 

other hand, compared to the reaction rate of devolatilisation, that of char 

combustion is low. In pulverized-fuel flames, the char burn-out time is 1 s and 

the time for devolatilisation to take place is of the order of 0.1 s  [72]. In addition, 

for typical temperature conditions (greater than about 100K), the char 

combustion will most likely be under the diffusion limited combustion region and 
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the intermediate combustion region between the chemically and diffusion limited 

combustion regions [76]. 

The Smith's intrinsic model, which is one of the most popular char combustion 

models, is employed in this study. In the Smith's intrinsic model [70, 77]: the 

oxygen order of the surface reaction is unity; the overall reaction rate is a function 

of the particle temperature, chemical reaction rate, surface area and oxygen 

concentration and diffusivity: 

R𝑐𝑐 = η
𝑑𝑑𝑡𝑡

6
𝜕𝜕𝑡𝑡𝐴𝐴𝑔𝑔𝑠𝑠𝜂𝜂 (2-9) 

where 

η𝑅𝑅𝑓𝑓𝑓𝑓 = 3
∅2 (∅𝑐𝑐𝑜𝑜𝑅𝑅ℎ∅ − 1) (2-10) 

𝑠𝑠𝜂𝜂 = A𝜂𝜂𝑅𝑅−(𝐸𝐸𝜂𝜂/𝑅𝑅𝑇𝑇) 
(2-11) 

Further, R𝑐𝑐, η𝑅𝑅𝑓𝑓𝑓𝑓 and 𝑠𝑠𝜂𝜂 are the reaction rate, the effectiveness factor and the 

intrinsic reactivity, respectively, 𝐴𝐴𝑔𝑔 is the specific internal surface area of the 

char particle, ∅ is the Thiele modulus which is a function of  the effective 

diffusion coefficient and the density of the oxidant in the bulk gas, and 𝐸𝐸𝜂𝜂 and 

A𝜂𝜂 are the activation energy and the pre-exponential factor, respectively. 

2.2.3.3 Volatile combustion 

Volatile combustion is dictated by the reaction of volatile products with oxygen 

to produce gas species (CO, H2O, and CO2). Global mechanisms are often 

employed to represent the reactions during volatile combustion. A two-step 

reaction of volatile combustion can be described as follows: 

𝐶𝐶𝑥𝑥𝐻𝐻𝐶𝐶𝑂𝑂𝐶𝐶 +
2𝑥𝑥 + 𝐶𝐶 − 2𝐶𝐶

4
𝑂𝑂2 → 𝑥𝑥𝐶𝐶𝑂𝑂 +

𝐶𝐶
2

𝐻𝐻2𝑂𝑂 2-12 
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𝐶𝐶𝑂𝑂 + 1
2

𝑂𝑂2 → 𝐶𝐶𝑂𝑂2 2-13 

The eddy dissipation model (EDM) is commonly employed to model the 

turbulence-chemistry interaction model caused by the volatile combustion [57, 

70]. In the EDM, which assumes that chemical reactions are infinitely fast, 

volatile combustions are not governed by reaction rates but by the turbulent 

mixing when the flow is fully turbulent [78-80]. Two turbulent mixing rates are 

computed in the EDM based on the Magnussen–Hjertager expression [70, 78, 79]: 

the first is the reactant mixing rate and the second is the product mixing rate. 

The net rate of production is determined by the smaller of the two turbulent 

mixing rates [12]: 

 Particle trajectory and particle impaction 

Accurate prediction of particle trajectories and particle impaction, which 

determines the arrival rate of particles onto the deposition surface, is a 

prerequisite to predict the ash deposit formation. In terms of solid fuel 

combustion, particle transport modelling is determined by the Discrete Phase 

Model (DPM) using an Eulerian-Lagrangian approach [70]. In the DPM, the 

trajectory of the combusting particles is predicted by the equations of motion for 

the particles; The motion equation integrates the velocity of these particles, which 

is dictated by the force balance on the combusting particles [70]. Also, the particle 

trajectory is influenced by the fluctuating velocity of the gas phase in a turbulent 

flow. This can be predicted by using the stochastic tracking model (also known 

as the discrete random walk model) [70].  

It should be noted that when an ash particle approaches the deposition surface 

in a boiler, there may exist three different orientations to the fluid streams [11]: 

(i) cross-flow when the deposition surface is the heat exchanger in the convection 

section of the boiler; (ii) flow moving along the deposition surface when the 
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surface is the water wall; (iii) recirculating flow when the surface is burner 

eyebrows. In deposition experiments from either a lab-scale combustor or a pilot 

scale combustor, the deposition probe is often inserted into the cross section of 

the furnace to collect the deposits. Therefore, ash deposit formation in a cross-

flow is investigated during the deposition experiments. 

For particle impaction on a pipe in a cross-flow, Israel et al. [81] developed a 

correlation to predict the particle impaction efficiency based on the particle 

Stokes number. The correlation, which is often employed to estimate the particle 

impaction efficiency (𝜂𝜂𝜂𝜂𝑐𝑐) caused by the inertia force for the pulverised coal 

combustion system [24, 82, 83], is defined as follows [81]: 

𝜂𝜂𝜂𝜂𝑐𝑐 = [1 + 𝑏𝑏(𝑆𝑆𝑅𝑅 − 𝑖𝑖)−1 + 𝑐𝑐(𝑆𝑆𝑅𝑅 − 𝑖𝑖)−2 + 𝑑𝑑(𝑆𝑆𝑅𝑅 − 𝑖𝑖)−3] (2-14) 

𝑆𝑆𝑅𝑅 = (𝜕𝜕𝑡𝑡𝑑𝑑𝑡𝑡
2𝑈𝑈𝑡𝑡) (9𝜇𝜇𝑔𝑔𝑑𝑑𝑐𝑐)⁄  (2-15) 

where 𝑆𝑆𝑅𝑅 is the particle Stokes number, 𝑑𝑑𝑐𝑐 is the diameter of the deposition probe, 

the values of 𝑖𝑖, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 are 0.125, 1.25, -0.014 and 0.508×10-4, respectively 

[81]. 

Currently, from the publications related to the CFD prediction of ash deposition 

for solid fuel combustion, only some of the articles presented the particle 

impaction results. Only employing the final ash deposition results is not enough 

to be confident with the prediction of the particle deposition behaviours. However, 

only when both the particle impaction and particle sticking are reasonablely 

predicted then one can be confident in the prediction of ash deposition results 

since the final ash deposition results can be adjusted through the sticking model, 

even though an improper prediction of the particle impaction occurs [11, 84]. 
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Wacławiak et al. [85] investigated ash deposit formation through a CFD 

simulation and the particle impaction efficiency results were presented. For 

particles with a small Stokes number, much larger particle impaction efficiency 

is predicted in the CFD results than that through the useful correlation by Israel 

et al. [81], as shown in Figure 2-1. Since only inertia impaction is considered in 

the particle transportation mechanism, there should not exist the high particle 

impaction efficiency for small particles, which may be caused by the improper 

mesh employed in the CFD study [84]. 
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Figure 2-1 Comparison of the particle impaction efficiency between the CFD 
results and the correlation results as a function of the particle Stokes number 

[85]. 

Weber et al. [84] investigated the requirements for accurately calculating the 

particle impaction (particle arrival rate) on a probe in a cross-flow. The authors 

pointed out three different scenarios in the CFD prediction of particle impaction 

when only considering the inertia impaction, as shown in Figure 2-2. In order to 

achieve the accurate CFD-predictions of the particle impaction, the flow-field in 

the vicinity of the impaction surface needs to be accurately resolved by using a 

properly located fine grid. The fine grid should be applied in the vicinity region 

of the impaction surface in order to reach this aim. Therefore, a mesh independent 

study, which is evaluated by using the gas properties (gas temperature and gas 

velocity) in the bulk region of combustors [25, 50, 62], is not suitable for 
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determining a suitable mesh in order to resolve the particle impaction near the 

deposition surface. Furthermore, it is difficult to meet the mesh requirements to 

predict the particle impaction for an industrial boiler [84]. 

 

Figure 2-2 Three scenarios in predicting the impaction efficiency for particles 
approaching a probe by using CFD methods[11, 84]: the points are results by 

using the correlation of particle impaction efficiency. 

 Particle sticking 

After the particles impact on the walls or surfaces of the boilers, not all the 

impacting particles can stick on the surfaces. The sticking efficiency, which is 

defined as the ratio of the impacting particles that can deposit on the surface to 

the total impacting particles, is dictated by both the physical properties of the 

impacting particles themselves and the physical properties of the deposition 

surfaces. Generally, the sticking efficiency can be determined based on such as 

the viscosity, the kinetic energy and the molten degree of the fly ash particles 

[86].  

2.2.5.1 Viscosity based sticking model 

The viscosity based sticking model was firstly introduced by Walsh et al. [46]. 

The sticking efficiency (𝜂𝜂𝑠𝑠𝑅𝑅𝜂𝜂𝑐𝑐𝑠𝑠) of the particles is defined as follows: 

𝜂𝜂𝑠𝑠𝑅𝑅𝜂𝜂𝑐𝑐𝑠𝑠(𝑇𝑇) = �
𝛽𝛽𝑖𝑖𝑅𝑅𝑓𝑓 𝛽𝛽⁄   𝜂𝜂𝑓𝑓 𝛽𝛽 > 𝛽𝛽𝑖𝑖𝑅𝑅𝑓𝑓
1        𝜂𝜂𝑓𝑓 𝛽𝛽 ≤ 𝛽𝛽𝑖𝑖𝑅𝑅𝑓𝑓

 (2-16) 
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where 𝑇𝑇  is the particle temperature, 𝛽𝛽𝑖𝑖𝑅𝑅𝑓𝑓  is the reference viscosity, 𝛽𝛽  is the 

viscosity of the particles.  

In order to employ this sticking model, the value of the reference viscosity needs 

to be assigned and the ash viscosity needs to be estimated. The reference viscosity 

was chosen as 8 Pa·s and a viscosity model for completely molten silicates was 

employed [46]. It should be noted that the chosen value for the reference viscosity 

is difficult since the value ranges within 8–108 Pa⋅s [62, 86], as shown in Table 

2-1. This makes the viscosity based sticking model strongly sensitive to the 

reference viscosity and may contribute to an inaccurate stickiness prediction. In 

addition, in terms of the ash deposition scenario under a temperature much lower 

than the particle melting temperature, predicting the ash viscosity is challenging 

since ash particles are not completely molten, but rather liquid-solid mixtures. 

Furthermore, for some cases when high AAEM coals or biomass with high 

amounts of alkali/alkaline phases in the inorganic components are firing, it is 

difficult to predict the ash viscosity though current viscosity models [49]. 

Table 2-1 The reference viscosity used in the sticking models.  

Work Combustor and fuel Reference 
viscosity 

Walsh et al. [46] Pilot scale furnace; Bituminous US coal. 8 Pa⋅s 

Srinivasachar et al. 
[87] Lab scale furnace; Bituminous US coal. 105 Pa⋅s 

Huang et al. [82] Lab scale furnace; Bituminous US coal. 104 Pa⋅s 

Wang et al. [65] 
Both pilot-scale and utility-scale 
combustion facilities; subbituminous 
and lignite US coal. 

105 Pa⋅s 

Wieland et al. [86] Lab scale furnace; El Cerrejon coal and 
Pittsburgh No.8 coal. 104 Pa⋅s 

Rushdi et al. [88] Pilot-scale furnace; Australian 
bituminous coals. 108 Pa⋅s 

Degereji et al. [50] Pilot-scale furnace; Australian 
bituminous coals. 108 Pa⋅s 
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2.2.5.2 Kinetic energy thresholding sticking model 

The kinetic energy thresholding sticking model, which is based on the Johnson–

Kendall–Roberts (JKR) theory, takes into consideration the kinetic energy of the 

particles and the surface energy of both the particle and the impacted surface. It 

is regarded that if the dissipated energy due to the impaction is larger than the 

particle's kinetic energy, then the particle will not rebound from the surface [11, 

89]. Based on this assumption, a critical velocity, 𝑉𝑉𝑐𝑐𝑖𝑖 , can be determined as 

follows [89, 90]: 

𝑉𝑉𝑐𝑐𝑖𝑖 = �2𝐾𝐾 𝑑𝑑𝑡𝑡𝑅𝑅2⁄ �
10 7⁄  (2-17) 

𝐾𝐾 = 0.51�5𝜋𝜋2(𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑡𝑡) (4𝜕𝜕𝑡𝑡
3 2⁄ )⁄ �

2 5⁄
 (2-18) 

𝑠𝑠𝑠𝑠 = (1 − 𝜈𝜈𝑠𝑠
2) (𝜋𝜋𝐸𝐸𝑠𝑠)⁄  (2-19) 

𝑠𝑠𝑡𝑡 = (1 − 𝜈𝜈𝑡𝑡
2) (𝜋𝜋𝐸𝐸𝑡𝑡)⁄  (2-20) 

where 𝐾𝐾 is the effective stiffness parameter, 𝜈𝜈𝑠𝑠 and 𝜈𝜈𝑡𝑡 are the Poisson's ratios of 

the surface and particle, respectively, 𝐸𝐸𝑠𝑠 and 𝐸𝐸𝑡𝑡 are the Young's modulus of the 

surface and the particle, respectively, 𝑑𝑑𝑡𝑡 and 𝜕𝜕𝑡𝑡 are the diameter and the density 

of particle, 𝑅𝑅 (=0.9) is the kinematic restitution coefficient [89].  It is assumed 

that 𝐸𝐸𝑠𝑠=𝐸𝐸𝑡𝑡 . In addition, the correlation of 𝐸𝐸𝑡𝑡  is a function of the particle 

temperature and the particle diameter. The sticking condition is usually defined 

as that the particle velocity is not larger than the critical velocity [11, 89].  

It should be noted that, in order to employ this sticking model, a fitting process 

is required to obtain the correlation of 𝐸𝐸𝑡𝑡, which is a function of the particle 

temperature and the particle diameter, by matching the experimental data with 

the simulation results [89]. In addition, the adhesion work and the Young's 

modulus are influenced by the material. Currently, the information of these two 
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parameters for coal ash with high alkali/alkaline metals and biomass ash are rare, 

which increases the difficulty employing the kinetic energy thresholding sticking 

model. 

2.2.5.3 Molten degree based sticking model 

The molten degree based sticking model regards that the sticking efficiency of 

the particles is dictated by the melting ability of the ash particles and the deposit 

on the deposition surface. The melting ability is usually evaluated by the ash 

fusion experiments and the melting curves based on the thermodynamic 

calculations. 

For the ash fusion experiment determination, there are two different methods: (i) 

this is based on the AFTs, and (ii) the other is based on the height of ash samples 

during the ash fusion experiments. The sticking efficiency can be defined as 

follows: 

𝜂𝜂𝑠𝑠𝑅𝑅𝜂𝜂𝑐𝑐𝑠𝑠(𝑇𝑇) = �
(𝐹𝐹𝑇𝑇 − 𝑇𝑇𝑡𝑡) (𝐹𝐹𝑇𝑇 − 𝐼𝐼𝐷𝐷𝑇𝑇)⁄         (𝜂𝜂)
(ℎ𝑚𝑚𝑖𝑖𝑥𝑥 − ℎ𝑇𝑇) (ℎ𝑚𝑚𝑖𝑖𝑥𝑥 − ℎ𝑚𝑚𝜂𝜂𝑖𝑖)⁄  (𝜂𝜂𝜂𝜂) (2-21) 

where 𝐹𝐹𝑇𝑇 , 𝐼𝐼𝐷𝐷𝑇𝑇 , and 𝑇𝑇𝑡𝑡  are the fluid temperature, initial deformation 

temperature and the particle temperature, respectively, ℎ𝑚𝑚𝑖𝑖𝑥𝑥, ℎ𝑚𝑚𝜂𝜂𝑖𝑖 and ℎ𝑇𝑇 are the 

maximum height of the ash sample, the minimum height of the ash sample and 

the height of the ash sample under the particle temperature. It should be noted 

that particle melting and particle deposition occurs at a temperature much lower 

than the 𝐼𝐼𝐷𝐷𝑇𝑇 and the maximum height [63]. Therefore, this kind of sticking 

model may not be suitable for particle deposition under a lower furnace 

temperature. 

In terms of the melting curves based criteria, the sticking efficiency can be 

directly represented by the molten fraction [86]. The molten fraction can be 

determined by the thermodynamic equilibrium calculations. It is regarded that 
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[86]: (i) compared to the viscosity based sticking model, the melt fraction based 

sticking model can predict the ash deposition in a higher temperature range, and 

(ii) compared to the ash fusion experiment based sticking model, the melt fraction 

based sticking model can predict the ash deposition under lower temperature.  

 Ash deposition growth and shedding 

The ash deposition rate is a combined result of the deposition build-up rate and 

the deposit shedding rate. At the initial stage of ash deposition, vapour 

condensation and sticky particles are deposited on the clean heat exchangers. In 

the radiation section of the boilers, condensation is less significant due to the 

high furnace temperature. The deposit temperature increases with the deposit 

growth. This results in a higher particle temperature and may increase the 

particle sticking efficiency. In addition, the melt phases may generate on the 

deposit and enhance the sintering degree of the deposit. With the further deposit 

growth, the deposit may be removed by the shedding, which is caused by the 

erosion, liquid flow at the deposit surface, gravity shedding, etc. [59]. In addition, 

the deposit characteristics (porosity, heat conductivity, emissivity, etc.) change 

with the ash deposition growth. Due to the formation of the melt phases and the 

increase of the sintering degree, it is commonly regarded that the porosity can 

decrease and the heat conductivity can increase with the deposition growth [91]. 

 Current research on the CFD prediction of ash 

deposition 

Generally, the CFD methods for predicting the ash deposition behaviour can be 

divided into two groups, the steady simulation and the dynamic simulation. In 

terms of the steady simulation based CFD methods (as shown in Table 2-2), it 

is assumed that both the ash deposition rate and the deposit characteristics are 

not dependent on the deposit growth. However, in terms of the dynamic 

simulation based CFD methods (as shown in Table 2-3), it is regarded that both 
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the deposition rate and the deposit characteristics are dependent on the 

deposition growth. Therefore, the steady state based CFD methods are more 

suitable for the deposit formation on an uncooled deposition probe, although 

some researches have improperly employed the steady state based CFD methods 

to simulate the ash deposition on cooled heat exchangers [50, 62, 92]. This is 

because the deposit surface temperature is close to the furnace temperature under 

this condition and the influence of deposit surface temperature on the particle 

deposition behaviour cannot change significantly with the deposit growth. In 

addition, the dynamic simulation based CFD methods are more suitable for the 

deposit formation on a cooled deposition probe. This is because the deposit 

surface temperature changes with the deposition growth, which results in both 

the deposition rate and the deposit characteristics changing with the deposit 

growth. 

Table 2-2 Steady state based CFD simulations of ash deposit formation for 
solid fuel combustion. 

Work Combustor/Deposition regions Ash deposition model 

Huang et al. 
[82] (1995) 

Lab-scale and pilot-scale 
combustors; 
superheaters. 

Thermophoresis and 
inertial impaction; viscosity 
based sticking model. 

Mueller et al. 
[93] (2003) 

Boilers; 
heat exchanger surfaces. 

Inertial impaction; melt 
based sticking model. 

Degereji et al. 
[50] (2012) 

Pilot-scale furnace; 
burner region and furnace wall. 

Inertial impaction; viscosity 
based sticking model and 
particle momentum 
rebounding model. 

Taha et al. 
[62] (2013) 

Boiler; furnace walls and 
superheaters. 

Inertial impaction; viscosity 
based sticking model. 

Garba et al. 
[25] (2013) 

Lab-scale furnace; 
uncooled deposition probe. 

Thermophoresis and 
inertial impaction; viscosity 
and melt based sticking 
model. 

Wieland et al. 
[86] (2013) 

Lab-scale furnace; 
deposition probe. 

Only inertia impaction; 
Viscosity and melt fraction 
based sticking model 

42 
 



Chapter 2 

2.2.7.1 Steady state models 

Huang et al. [82] predicted the ash deposit formation on superheaters in a drop 

tube furnace and a pilot-scale pulverized coal combustor. Both thermophoresis 

and inertia impaction were considered to be responsible for the transportation of 

the ash particles. Particle impaction efficiency was predicted based on the useful 

correlation by Israel et al. [81]; Particle sticking efficiency was predicted based 

on the viscosity based sticking model. It was found that particles with higher 

density are more prone to impact on the deposition surface than particles with 

smaller density; The furnace temperature, which can affect the particle 

temperature, is a significant factor in determining the ash deposit formation; 

Both the ash yield and the ash composition have a strong influence on the 

deposition rate and deposition characteristics.  

Muller et al. [93] predicted the ash deposit formation in a biomass fired fluidised 

bed boiler. (i) Inertia impaction was considered for the particle transportation; 

(ii) Particle impaction efficiency was assumed to be unity, which represents the 

worst scenario for particle impaction; (iii) Particle sticking model was developed 

based on the melting behaviour of biomass ash combined with advanced fuel 

analysis (chemical fractionation analysis and chemical equilibrium calculations). 

Qualitative agreement was obtained between the predicted results and the 

experimental data for the deposition region. 

Degereji et al. [50] predicted the ash deposit formation in an Australian Coal 

Industries Research Laboratories (ACIRL) furnace. A two-dimensional mesh was 

employed and the mesh independent study was based on comparing the gas 

temperature and gas velocity in the mainstream. (i) Inertia impaction was 

considered for the particle transportation; (ii) No special treatment was employed 

to the particle impaction; (iii) Particle sticking was predicted based on the 

viscosity based model and particle momentum rebounding model. Qualitative 
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agreement was obtained between the predicted results and the experimental data 

for the deposition rate. 

Taha et al. [62] predicted the ash deposit formation for co-combustion in a 

tangentially fired utility boiler. A three-dimensional mesh was employed and the 

mesh independent study was based on comparing the gas temperature along the 

boiler height. (i) Inertia impaction was considered for the particle transportation; 

(ii) No special treatment was employed to the particle impaction; (iii) Particle 

sticking was predicted based on the viscosity based model. It was observed that 

the slagging on the furnace wall increase with increasing the biomass co-firing 

ratio, but the wall slagging may reduce at 40% co-firing ratio due to the 

incomplete combustion of the biomass. Also, the flame height, which has a strong 

influence on the particle temperature, increases due to the high volatile 

concentration in the biomass. 

Garba et al. [25] predicted the ash deposit formation for co-combustion on an 

uncooled deposition probe in a drop tube furnace. A three-dimensional mesh was 

employed and a mesh independent study was based on comparing the gas 

temperature and gas velocity in the mainstream. (i) Both thermophoresis and 

inertia impaction were considered to be responsible for the transportation of the 

ash particles; (ii) No special treatment was employed to the particle impaction; 

(iii) Particle sticking was considered separately for coal and biomass. The 

viscosity based sticking model was employed for coal and melting curve based 

sticking model was employed for biomass. Qualitative agreement was obtained 

between the predicted results and the experimental data for the deposition rate. 

Wieland et al. [86] compared the performance of different sticking models on 

predicting the ash deposition behaviour for coal combustion in a drop tube 

furnace. In the particle sticking model, different empirical viscosity models were 

tested to predict the particle viscosity; different melting criteria were tested to 
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predict the particle melting behaviours. It was found that the viscosity based 

model is very sensitive to the reference viscosity; the ash fusion criteria was not 

reasonable for the Pittsburgh No. 8 coal. However, the melting curve based on 

chemical equilibrium calculations may bring the most promising results, since the 

melt fraction of the ash particles is considered. 

Weber et al. [84] investigated the requirements for accurate prediction of particle 

impaction by using the RANS-based CFD methods. It was found that extremely 

fine mesh is required near the deposition surface to accurate predict the flow-field 

and particle impaction. Therefore, a mesh, which is developed based on the gas 

properties in the mainstream, may not be suitable to resolve the particle 

impaction near the deposition surface. However, this mesh requirement is difficult 

to be satisfied in the simulation of an industrial boiler [11, 84]. 

2.2.7.2 Dynamic models 

Richards et al. [94] and Wang et al. [65] have predicted the slagging formation 

on the furnace wall. The deposit properties were defined to be dependent on the 

solid fraction and liquid fraction in the deposit. The deposit surface temperature, 

which is dependent on the deposit growth, is determined by predicting the heat 

transfer rate though the deposit. It was observed that the deposit surface 

temperature sharply increases at the initial stage and then slowly increases at the 

later stage, which is dictated by the variances of the heat conductivity and the 

heat flux. The deposit porosity gradually reduces due to the generation of the 

liquid phase in the deposit. 
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Table 2-3 Dynamic CFD simulations of ash deposit formation for solid fuel 
combustion. 

Work Combustor/Deposition 
regions Ash deposition model 

Richards et 
al. [94](1993) 

Pilot-scale combustors; 
Furnace wall. 

Only inertial impaction; Viscosity 
based sticking model; Heat 
transfer rate through the deposit.  

Wang et al. 
[65] (1997) 

Pilot-scale combustors; 
Furnace wall. 

Only inertial impaction; Viscosity 
based sticking model. Heat 
transfer rate through the deposit. 

Kaer et al. 
[91] (2006) 

Straw-fired grate 
boilers; 
Superheaters and tube 
banks. 

Thermophoresis and inertial 
impaction; melt fraction based 
sticking model; Heat transfer rate 
through the deposit. 

Li et al. [95, 
96] (2009 and 
2013) 

Kraft recovery boiler; 
Superheaters. 

Thermophoresis and inertial 
impaction; Force balance based 
sticking model; Heat transfer rate 
through the deposit. 

Wacławiak et 
al. [85] (2012) 

Boiler; Superheaters. 
Only inertial impaction; Force 
balance based sticking model; 
dynamic mesh. 

Kaer et al. [91] developed a dynamic ash deposit model for straw combustion in 

a grate boiler. The inertia impaction, thermophoresis, and turbulent eddies were 

considered to be responsible for the transportation of the ash particles. 

Qualitative agreements were obtained between the predicted results and the 

experimental data for identifying the slagging regions in the boilers. Li et al. [95, 

96] employed a dynamic slagging model to predict the ash deposit formation for 

a heat recovery boiler to investigate the deposit growth and its influence on the 

heat transfer rate through the heat exchanger tube. Wacławiak et al. [85] 

developed a slagging prediction model to investigate the slagging growth on the 

heat exchanger tube banks. Also, a dynamic mesh was employed to predict the 

shape of the deposit with the deposit growth. 

2.3 Ash deposition indices 

The ash deposition indices are often based on the physical and chemical 

properties, such as AFTs (ash fusion temperatures), sintering properties, 
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viscosity, ash composition, and melt fraction. These indices are not only simple 

and easy to compute, but also can provide a reasonable accuracy for specified 

coals. Therefore, it has a wide range of applications in engineering. In order to 

improve the accuracy of these traditional indices, several synthetical slagging 

indices have been developed based on these single indices.  

 AFT indices 

AFTs based indices are very common practice for ash deposition prediction. It is 

often regarded that IDT corresponds to the temperature where the less sintered 

ash deposition commences and ST corresponds to the temperature where serious 

slagging/fouling issues occur [97, 98]. Therefore, the furnace exit gas temperature 

(FEGT) should be lower than the ST in order to avoid the ash deposition issues. 

In addition, for wet bottom combustors/gasifiers, the ST and FT are important 

parameters to choose the operation temperature in order to avoid slag block.  

• ST >1350 oC represents a low slagging potential; ST <1350 oC represents a 

medium or high slagging potential [99]. 

• (HTM+4IDTM)/52, this indice is more suitable for lignite or coal with an ash 

content (CaO+MgO>Fe2O3) [22]: the indice >1343 oC, low slagging potential; 

1232-1343 oC, medium slagging potential; 1149-1232 oC, high slagging 

potential; <1149 oC, severe slagging potential. 

It should be noted that AFT measurement is a subjective assessment, which may 

lead to an inaccurate result, especially for the IDT [12, 100]. In addition, AFTs 

only represent the overall melting behaviour of the ash composition and ignore 

the selective melting/evaporation behaviour of some basic components (Fe, 

     2  HTM represents the HT under the oxidising atmosphere and IDTM 
represents the IDT under the reducing atmosphere. 
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alkali/alkaline metals, etc.). Both disadvantages may reduce the accuracy of 

using AFTs to predict the ash deposition behaviour in real boilers. 

 Ash sintering 

Ash sintering is an indication of the severity of ash deposit formation in the 

convection section of boilers [97]. Two parameters (sintering strength and the 

initial sintering temperature) are proposed to represent the ash sintering 

properties and they are often employed to predict the ash deposition propensity 

[97]. It is often regarded that coal ash with higher sintering strength after heat 

treatment and lower initial sintering temperature can represent a higher ash 

deposition potential. 

• Sintering strength (SS) under 925 oC heat treatment [97]: the indice < 

6.89 MPa, low ash deposition potential; 6.98-34.47 MPa, medium ash 

deposition potential; 34.47-110.32 MPa, high ash deposition potential; 

>110.32 MPa, severe ash deposition potential. 

 Ash viscosity 

For a wet-bottom combustor/gasifier, there is a suitable viscosity range (ash 

viscosity cannot be either too high or too low) to maintain long-term operation 

in a cost-effective manner [45]. However, for a dry bottom combustor, it is often 

regarded that coal ash with lower viscosity may represent a higher slagging 

propensity. It is often employed by using the ash viscosity at a given temperature, 

the temperature at a given viscosity and the critical viscosity in order to predict 

the ash deposition behaviour. 

• 𝑅𝑅𝑁𝑁<0.05, low slagging potential; 0.05-0.15, medium to high slagging 

potential; >0.15, severe slagging potential. 𝑅𝑅𝑁𝑁 is defined as in [101]: 
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𝑅𝑅𝑁𝑁 = 2 ∙ (𝑇𝑇250 − 𝑇𝑇10000) (𝑇𝑇250 + 𝑇𝑇10000)⁄  (2-22) 

where, 𝑇𝑇250 and 𝑇𝑇10000 are the temperatures at which the viscosity is 250 and 

10000 Pa⋅s, respectively. It should be noted that the experimental measurement 

of the ash viscosity is difficult and expensive. Although many viscosity prediction 

models have been developed, these models may be more suitable for coal ash with 

silicate as the major ash composition. In addition, the ash viscosity only 

represents the overall ash behaviour and cannot represent the selective ash 

melting/evaporation behaviour. 

 Ash composition 

Since the ash behaviours are dictated by the ash composition, many ash 

deposition indices have been developed by using the ash composition, as defined 

in Equations (2-23) - (2-27). These indices attempt to correlate the concentration 

of some ash compositions with ash properties (ash melting, ash sintering, and ash 

viscosity). In addition, some indices incorporate the specific ash compositions to 

represent the selective ash deposition behaviours in boilers. 

• Silica ratio, 𝐼𝐼_𝑆𝑆𝜂𝜂, represents the weight fraction of SiO2 in the ash [102]. 

It can be used to correlate the ash viscosity under high temperature and 

estimate the ash deposition propensity. The higher values of 𝐼𝐼_𝑆𝑆𝜂𝜂 lead to 

lower ash deposition propensity. 𝐼𝐼_𝑆𝑆𝜂𝜂>0.72, low slagging potential; 0.65-

0.72, medium slagging potential; <0.72, high to severe slagging potential. 

• Basic/acid ratio, 𝐼𝐼𝐵𝐵/𝐴𝐴, represents the ratio of the total basic components 

to the total acid components [102]. It can be used to correlate the ash 

fusion temperature and the ash viscosity under high temperatures and 

estimate the ash deposition propensity [103]. The higher values of 𝐼𝐼𝐵𝐵/𝐴𝐴 

lead to higher ash deposition propensity. 𝐼𝐼𝐵𝐵/𝐴𝐴<0.2, low slagging potential; 

0.2-0.4, medium slagging potential; >0.4, high to severe slagging potential. 
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However, for lignitic ash, 𝐼𝐼𝐵𝐵/𝐴𝐴 <0.5, low slagging potential; 0.5-1.0, 

medium slagging potential; >1.0, high to severe slagging potential. 

• Slagging factor, 𝐼𝐼𝐵𝐵/𝐴𝐴 × 𝑆𝑆, is given by the result of the Basic/Acid ratio 

multiplied by the sulphur content [102]. This slagging indice is attributed 

to the contribution of both the pyrite induced slagging and the overall 

slagging behaviour. The higher is the value of 𝐼𝐼𝐵𝐵/𝐴𝐴 × 𝑆𝑆, the higher is the 

ash deposition propensity. 𝐼𝐼𝐵𝐵/𝐴𝐴 × 𝑆𝑆<0.6, low slagging potential; 0.6-2.0, 

medium slagging potential; 2.0-2.6, high slagging potential; >2.6, severe 

slagging potential. However, for bituminous ash, 𝐼𝐼𝐵𝐵/𝐴𝐴 × 𝑆𝑆  >2.0, severe 

slagging potential. 

• Iron oxide content in ash, 𝐼𝐼𝐹𝐹𝑅𝑅2𝑂𝑂3
, represents the pyrite induced slagging 

[102]. The higher the value of 𝐼𝐼𝐹𝐹𝑅𝑅2𝑂𝑂3
, the higher is the ash deposition 

propensity.  𝐼𝐼𝐹𝐹𝑅𝑅2𝑂𝑂3
<8, low slagging potential; 8-15, medium slagging 

potential; >15, high to severe slagging potential. 

• Iron oxide to calcium oxide ratio, 𝐼𝐼𝐹𝐹𝑅𝑅 𝐶𝐶𝑖𝑖⁄ , is correlated to the overall ash 

melting behaviour [102]. 𝐼𝐼𝐹𝐹𝑅𝑅 𝐶𝐶𝑖𝑖⁄ , <0.3 and >3.0, represent low to medium 

slagging potential; 0.3-3.0, represents high to severe slagging potential. 

• Silica to alumina ratio, 𝐼𝐼𝑆𝑆𝜂𝜂 𝐴𝐴𝑎𝑎⁄ , is correlated to the ash viscosity when the 

total amount of basic components is low [97, 102]. In addition, it is 

regarded that 𝐼𝐼𝑆𝑆𝜂𝜂 𝐴𝐴𝑎𝑎⁄  may decrease the ash fusion temperatures. Therefore, 

the higher the value of 𝐼𝐼𝑆𝑆𝜂𝜂 𝐴𝐴𝑎𝑎⁄ , the higher is the ash deposition 

propensity. 𝐼𝐼𝑆𝑆𝜂𝜂 𝐴𝐴𝑎𝑎⁄ <1.4, low slagging potential; 1.4-2.8, medium slagging 

potential; >2.8, high to severe slagging potential. 

𝐼𝐼_𝑆𝑆𝜂𝜂 =
𝑆𝑆𝜂𝜂𝑂𝑂2

(𝑆𝑆𝜂𝜂𝑂𝑂2 + 𝐹𝐹𝑅𝑅2𝑂𝑂3 + 𝐶𝐶𝑖𝑖𝑂𝑂 + 𝑀𝑀𝑔𝑔𝑂𝑂)
 (2-23) 
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𝐼𝐼𝐵𝐵/𝐴𝐴 =
(𝐹𝐹𝑅𝑅2𝑂𝑂3 + 𝐶𝐶𝑖𝑖𝑂𝑂 + 𝑀𝑀𝑔𝑔𝑂𝑂 + 𝐾𝐾2𝑂𝑂 + 𝑁𝑁𝑖𝑖2𝑂𝑂)

(𝑆𝑆𝜂𝜂𝑂𝑂2 + 𝑇𝑇𝜂𝜂𝑂𝑂2 + 𝐴𝐴𝑎𝑎2𝑂𝑂3)
 (2-24) 

𝐼𝐼𝐵𝐵/𝐴𝐴 × 𝑆𝑆 = 𝐼𝐼𝐵𝐵/𝐴𝐴 × %𝑆𝑆𝑢𝑢𝑎𝑎𝑡𝑡ℎ𝑢𝑢𝑖𝑖  (2-25) 

𝐼𝐼𝐹𝐹𝑅𝑅2𝑂𝑂3
= 𝐹𝐹𝑅𝑅2𝑂𝑂3 𝑐𝑐𝑜𝑜𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅 𝜂𝜂𝑖𝑖 𝑅𝑅ℎ𝑅𝑅 𝑖𝑖𝑠𝑠ℎ 

(2-26) 

𝐼𝐼𝐹𝐹𝑅𝑅 𝐶𝐶𝑖𝑖⁄ = 𝐹𝐹𝑅𝑅2𝑂𝑂3 𝐶𝐶𝑖𝑖𝑂𝑂⁄  (2-27) 

𝐼𝐼𝑆𝑆𝜂𝜂 𝐴𝐴𝑎𝑎⁄ = 𝑆𝑆𝜂𝜂𝑂𝑂2 𝐴𝐴𝑎𝑎2𝑂𝑂3⁄  (2-28) 

 Thermodynamic equilibrium 

Since it is quite difficult for both AFTs and the ash composition based indices to 

accurately estimate the whole melting behaviour of coal ash under a reasonable 

temperature range, thermodynamic equilibrium methods are often employed to 

calculate both the mineral reactions and the phase transformations of coal ash 

under high temperatures. The thermodynamic equilibrium is calculated based on 

the minimizing of the Gibbs free energy. The ideas of minimization of the Gibbs 

free energy are that [104]: (i) At constant pressure and temperature, compute the 

equilibrium components under the constraint that the Gibbs free energy is 

minimized; (ii) It is not necessary to compute the specific chemical reactions and 

this can avoid the understanding of the detailed reaction mechanisms. Therefore, 

the minimization of the Gibbs free energy is widely employed to compute the 

thermodynamic equilibrium in the coal ash/slag system. 

Van Dyk et al. [105-107] investigated mineral transformations (especially Ca-

containing minerals) and slagging properties for a fixed bed gasification reactor. 

Thermodynamic computation results indicated that anorthite (CaSi2Al2O8) forms 

within the gasification zone and all non-reacted Ca reacts with CO2 to form 

CaCO3 further down in the combustion zone [107]. In addition, the predicted 

results using Factsage was correlated with the high temperature X-ray diffraction 
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(HT-XRD) results [105]. Also, Factsage was employed to predict the composition 

of the slag and then the viscosity can be predicted after this [108]. 

Song et al. [53-55] studied the relationship of the liquidus temperatures and AFTs 

and the relationship of the liquid phase content and the critical viscosity 

temperature under different atmospheres by employing the thermodynamic 

equilibrium calculations. Reliable correlations can be acquired from their results 

and therefore the thermodynamic equilibrium calculation can be employed to 

forecast the ash viscosity. 

In addition to predicting the mineral transformation and viscosity, the melt 

fraction predicted from the thermodynamic equilibrium calculations is widely 

applied for directly comparing the slagging potential. Gilbe et al. [109] predicted 

the deposition tendencies for biomass by employing different methods, including 

AFTs, thermal-gravimetric analysis and differential thermal analysis 

(TGA/DTA), deposition indices, and chemical equilibrium calculations. It was 

found that the chemical equilibrium calculations can obtain relatively good 

agreements for the actual slagging tendencies from the combustion tests [109]. 

However, the authors also pointed out that the chemical equilibrium calculations 

must be further improved before quantitative results can be employed [109]. 

Öhman et al. [110] investigated the sintering tendencies of wood pellets (sawdust, 

logging residues and bark). Their results indicate that [110]: The slagging 

properties were relatively sensitive to the variations in the total ash content and 

ash forming elements; Good quantitative agreement between chemical 

equilibrium modelling and experimental results were obtained. 

It should be noted that the thermodynamic equilibrium is based on the 

assumption that all the reactions are able to reach equilibrium and all the 

reactants are well mixed. Therefore, in order to better understand the deposition 
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property and obtain better thermodynamic equilibrium calculations, it is essential 

to understand the ash forming compositions and the ways they are associated in 

the fuel as part of the organic structures, salts and minerals [111]. Chemical 

fractionation analysis (CFA) is often employed to investigate the modes of ash-

forming matter in coal [111]. The procedure of CFA normally involves a standard 

leaching process with a set of successively more severe chemical reagents, e.g. 

water→ammonium acetate solution→hydrochloric acid solution [112]. After the 

leaching, four factions can be obtained [112]: (i) the water-leachable components 

which are mainly the alkali metal salts and, the chlorine and sulphur based anions; 

(ii) the acetate-leachable components, such as materials in the form of cations 

and chelates; (iii) the acid-leachable components, such as the carbonates and 

sulphates; (iv) the solid residue, mainly silica, silicates and other acid-unleachable 

mineral species. In general, it is regarded that [112]: water and acetate-leachable 

components may be released into the gas phase, which may generate aerosols; 

the acid soluble and solid residue fractions may tend to form coarser fractions of 

the ashes. Therefore, it is suggested that, in the thermodynamic equilibrium 

computation, only the reactive fraction should be employed as input for the 

modelling, whereas the non-reactive fraction is regarded as being relatively inert 

[112]. 

Nutalapati et al. [113] studied the ash behaviours of wheat straw combustion by 

using CFA based thermodynamic equilibrium calculations. It was assumed, in 

addition to the reactive fraction, under high temperatures, a part of the non-

reactive fraction may be reactive. Two models have been introduced and 

compared in the computations [113]: (i) The first method is based on only CFA; 

(ii) The second method is based on not only CFA, but also secondary reactions 

(part of the non-reactive fraction, mainly silica). The results indicate that [113]: 

(i) The melt proportion from the first model is as low as about 5% and this 
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indicates that there is not a severe slagging problem; (ii) However, in the second 

model, the melt fraction increased with the increasing amount of non-reactive 

components and for 10% and 25% non-reactive fraction adding, the melt 

proportion is more than 15%, which indicates significant slagging problems. 

Additionally, the amount of potassium sequestered in the condensed phase 

increased with an increase in the non-reactive fraction in the high-temperature 

section [113]. In 5% of non-reactive fraction calculation, around 10–15% of total 

potassium is in the slag phase in the temperature range of 1600–1300 oC. The 

potassium concentration in the condensed phase increased to about 28–47% when 

the  non-reactive fraction increased to 25%[113]. 

 Current research on ash deposition indices 

Generally, using ash deposition indices in predicting the ash behaviours (melting, 

sintering and viscosity) includes the ash fusion/sintering experiments, ash 

composition and theoretical calculations. Recent studies not only employ the ash 

composition which is related to the ash deposition issues to develop the indice, 

but also use synthetical indices to predict the ash deposition issues. 

Gibb [68] developed a slagging indice (𝐼𝐼𝐶𝐶𝐶𝐶𝑆𝑆𝐸𝐸𝑀𝑀) based on computer controlled 

scanning electron microscopy (CCSEM) based mineral compositions in the coal. 

For UK coals, iron (derived from pyrite) and calcium (derived from calcite) are 

the major fluxing elements that contribute to the melt formation and affect the 

ash sintering and ash viscosity. Therefore, the slagging indice assumes that the 

slagging behaviour of UK coals is dictated by the degree of assimilation of these 

fluxing elements into the alurninosilicate glass. It was found that the predicted 

results by using this indice agreed well with the deposit structure for three coals 

combustion. It should be noted that the degree of the slagging severity is 

represented by the degree of the melting and sintering degree of the deposits. In 
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addition, the indice assumed that pure pyrite particles are less possible to cause 

ash deposition issues than the pyrite assimilated into the alurninosilicate glass. 

However, pure pyrite particles are very significant for the initial slagging 

formation on the furnace wall in boilers. This CCSEM based indice is yet to be 

validated with other real boilers. 

𝐼𝐼𝐶𝐶𝐶𝐶𝑆𝑆𝐸𝐸𝑀𝑀 = � �𝑚𝑚𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐𝑅𝑅𝜂𝜂𝑜𝑜𝑖𝑖 �𝐶𝐶𝑖𝑖𝑂𝑂 + 𝐹𝐹𝑅𝑅2𝑂𝑂3 �1 − 0.5
𝐹𝐹𝑅𝑅2𝑂𝑂3

𝐹𝐹𝑅𝑅2𝑂𝑂3 + 𝐴𝐴𝑎𝑎2𝑂𝑂3 + 𝑆𝑆𝜂𝜂𝑂𝑂2���
𝑖𝑖𝑎𝑎𝑎𝑎−𝑚𝑚𝜂𝜂𝑖𝑖−𝑜𝑜𝑐𝑐𝑐𝑐𝑢𝑢𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠

 
(2-29) 

Chen et al. [114] developed a synthetical slagging indice based on the Basic/Acid 

ratio, the silica to alumina ratio, AFTs and the silica ratio. This indice assumed 

that the overall melting propensity dictates the ash deposition behaviour. 

However, Tang [115] employed this synthetical indice to evaluate the slagging 

propensities for ten coal blends and found that the accuracy of the synthetical 

indice was only about 60%. 

McLennan et al. [22] developed the CCSEM based slagging indices, 𝐼𝐼𝐹𝐹𝑅𝑅−𝐶𝐶𝐶𝐶𝑆𝑆𝐸𝐸𝑀𝑀 

under oxidising and reducing atmospheres. The slagging indice took into 

consideration the ash deposition issues caused by the iron species in coal. It was 

regarded that the extent of the included iron minerals is significant for generating 

ash deposition under oxidizing conditions. In addition, both the excluded pyrite 

mineral and the included iron-containing minerals associated with clays were 

significant for generating ash deposition under reducing conditions. Therefore, 

this indice is only suitable for iron related ash deposition issues. This CCSEM 

based indice is yet to be validated with field observations in real boilers. The 

indices are shown as follows: 

Oxidising atmosphere: 
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𝐼𝐼𝐹𝐹𝑅𝑅−𝐶𝐶𝐶𝐶𝑆𝑆𝐸𝐸𝑀𝑀 = �(𝐹𝐹𝑅𝑅𝐶𝐶𝑂𝑂3 + 𝐹𝐹𝑅𝑅𝑆𝑆2 + 𝐹𝐹𝑅𝑅𝑆𝑆)𝑅𝑅𝑥𝑥𝑐𝑐𝑎𝑎 ∗ 𝐸𝐸(𝑇𝑇)𝑂𝑂𝑋𝑋 + 0.5

∗ (𝐹𝐹𝑅𝑅𝐶𝐶𝑂𝑂3 + 𝐹𝐹𝑅𝑅𝑆𝑆2 + 𝐹𝐹𝑅𝑅𝑆𝑆)𝜂𝜂𝑖𝑖𝑐𝑐𝑎𝑎 ∗ 𝐸𝐸(𝑇𝑇)𝑂𝑂𝑋𝑋 + 0.5

∗ (𝐹𝐹𝑅𝑅𝐶𝐶𝑂𝑂3 + 𝐹𝐹𝑅𝑅𝑆𝑆2 + 𝐹𝐹𝑅𝑅𝑆𝑆 + 𝑆𝑆𝜂𝜂𝑂𝑂2 − 𝐴𝐴𝑎𝑎2𝑂𝑂3)𝜂𝜂𝑖𝑖𝑐𝑐𝑎𝑎 ∗ 𝐷𝐷(𝑇𝑇)𝑂𝑂𝑋𝑋� 

(2-30) 

Reducing atmosphere: 

𝐼𝐼𝐹𝐹𝑅𝑅−𝐶𝐶𝐶𝐶𝑆𝑆𝐸𝐸𝑀𝑀 = �(𝐹𝐹𝑅𝑅𝐶𝐶𝑂𝑂3)𝑅𝑅𝑥𝑥𝑐𝑐𝑎𝑎 ∗ 𝐵𝐵(𝑇𝑇)𝑅𝑅𝐸𝐸𝐷𝐷 + (𝐹𝐹𝑅𝑅𝑆𝑆2 + 𝐹𝐹𝑅𝑅𝑆𝑆)𝑅𝑅𝑥𝑥𝑐𝑐𝑎𝑎 ∗ 𝐴𝐴(𝑇𝑇)𝑅𝑅𝐸𝐸𝐷𝐷 + 0.5

∗ (𝐹𝐹𝑅𝑅𝐶𝐶𝑂𝑂3)𝜂𝜂𝑖𝑖𝑐𝑐𝑎𝑎 ∗ 𝐵𝐵(𝑇𝑇)𝑅𝑅𝐸𝐸𝐷𝐷 + 0.5

∗ (𝐹𝐹𝑅𝑅𝑆𝑆2 + 𝐹𝐹𝑅𝑅𝑆𝑆)𝜂𝜂𝑖𝑖𝑐𝑐𝑎𝑎 ∗ 𝐴𝐴(𝑇𝑇)𝑅𝑅𝐸𝐸𝐷𝐷 + 0.5

∗ (𝐹𝐹𝑅𝑅𝐶𝐶𝑂𝑂3 + 𝐹𝐹𝑅𝑅𝑆𝑆2 + 𝐹𝐹𝑅𝑅𝑆𝑆 + 𝑆𝑆𝜂𝜂𝑂𝑂2 + 𝐴𝐴𝑎𝑎2𝑂𝑂3)𝜂𝜂𝑖𝑖𝑐𝑐𝑎𝑎 ∗ 𝐶𝐶(𝑇𝑇)𝑅𝑅𝐸𝐸𝐷𝐷� 

(2-31) 

where, 𝐴𝐴(𝑇𝑇)𝑅𝑅𝐸𝐸𝐷𝐷, 𝐵𝐵(𝑇𝑇)𝑅𝑅𝐸𝐸𝐷𝐷, 𝐶𝐶(𝑇𝑇)𝑅𝑅𝐸𝐸𝐷𝐷, 𝐷𝐷(𝑇𝑇)𝑂𝑂𝑋𝑋, and 𝐸𝐸(𝑇𝑇)𝑂𝑂𝑋𝑋 represent the sticking 

temperature of the related iron-containing ash phases (FeO-FeS, wustite, Fe-glass 

under reducing atmosphere, Fe-glass under oxidising atmosphere, and 

magnetite/hematite, respectively). 

Barroso et al. [102, 116] employed some conditional slagging indices to predict 

the slagging observations of coals/blends in an entrained flow reactor. The 

predicted results can be improved by incorporating the ash content and the 

aerodynamic diameter of fly ash into the conventional slagging indices. It should 

be noted that the slagging propensity is represented by the deposit mass in the 

experiments. In an entrained flow reactor, the gas velocity is as low as 

approximately 0.5 m/s, which may result in fewer particle rebounding after 

impaction than the high fluid velocity condition that occurs in real boilers. 

Therefore, the deposition propensity could increase in a higher particle impaction 

caused by a higher value of the aerodynamic diameter of particles. 

Lawrence et al. [100] and Degereji et al. [25, 50, 117] developed the slagging 

indices based on the overall ash behaviour (the ash sintering and the ash viscosity) 

and the energy based ash content. It should be noted that only considering the 
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overall ash behaviour can neglect the influence of selective fluxing elements on 

the ash deposit formation. 

2.4 Knowledge gap 

 CFD methods 

The CFD based ash deposition models have been developed based on resolving 

particle impaction and particle sticking. Both numerical methods and proper ash 

deposition sub-models are required to accurately predict these physical ash 

deposition mechanisms. 

2.4.1.1 Particle impaction 

It is regarded that the accurate predictions of the particle impaction is a 

prerequisite for predicting the ash deposit formation [84]. The impaction 

efficiency of the particles is usually assumed to be unity which represents the 

worst scenario in terms of the ash deposition rate [93, 118]. In practice the 

impaction efficiency can be much lower than this depending on the size, shape 

and density of the particles and the nature of the depositing surface. Weber et 

al. [84] investigated the requirements for accurate predictions of the impaction 

efficiency of fly ashes in a 2D geometry using the RANS- based CFD methods. It 

was concluded that only when the flow-field in the neighbourhood of the 

deposition surfaces is accurately resolved can accurate predictions of the particle 

impaction be obtained by using the RANS-based CFD methods, especially for 

small particles since their trajectories are strongly affected by the boundary layer 

development. Haugen et al. [119, 120] applied direct numerical simulation (DNS) 

to investigate the particle impaction behaviour on cylinders and superheater tube 

bundles in a crossflow in order to accurately resolve the boundary layers around 

the cylinders. It should be noted that in these models [84, 119, 120], an extremely 

fine grid for RANS or DNS is needed. However, it is very difficult to accurately 
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predict the particle impaction since an extremely fine grid is required in order to 

accurately resolve the flow field in the neighbourhood of the deposition surfaces 

[84]. This requirement is difficult to be satisfied in three-dimensional combustors, 

especially in real boilers. A coarse mesh near the deposition surface may cause 

inaccurate predictions of particle impaction, especially for small particles [84]. 

Currently, most of the publications have not taken into consideration this issue, 

which may result in an inaccurate prediction of the particle impaction behaviour. 

2.4.1.2 Particle sticking 

In addition to the particle impaction, the stickiness of the ash particles plays a 

critical role in the formation of ash deposit and related slagging and fouling. The 

stickiness of an ash particle can be determined based on such as the viscosity, 

kinetic energy and the degree of molten of fly ash particles. In terms of viscosity 

based sticking models, a reference viscosity is used to determine the stickiness. 

The value of the reference viscosity ranges within 8-108 Pa.s which makes the 

sticking model strongly sensitive to the reference viscosity and may contribute to 

an inaccurate stickiness prediction [62, 86]. In addition, the kinetic energy 

thresholding sticking model, based on the Johnson-Kendall-Roberts (JKR) theory 

[89, 90, 121], has been proposed which takes into account the kinetic energy of 

the particles and the surface energy of both the particles and the impacted 

surface. However, a fitting process was necessary to develop the effective Young's 

modulus versus the particle temperature and the particle diameter by matching 

the experimental data with the simulation results [89]. In addition, the biomass 

ash (e.g. palm kernel) and the coal ash (e.g. Zhundong lignite) have a high 

content of potassium/phosphorus and sodium/calcium, which increases the 

difficulty to predict the ash viscosity and the effective Young's modulus from the 

present modelling methodology.  
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2.4.1.3 Dynamic CFD model 

Currently, most of the publications employ the ‘steady state’ assumptions for the 

deposition rates to develop the sub-models in the CFD methods (for better 

describing the ash deposition behaviours [82, 89, 93, 122-125], for new fuels [25, 

62, 126-128], for the oxy-combustion condition [129], etc.). This kind of 

assumption is suitable for the ash deposit growth on the uncooled deposition tube 

where the deposit surface temperature is close to the furnace temperature, which 

results in the stable particle impaction and sticking. However, for real heat 

exchanger tubes (which are cooled in boilers), the deposit surface temperature on 

the tube could increase with the growth of the deposit. This may change the 

particle impaction and sticking behaviours and the contribution of the major 

deposition mechanisms on the overall ash deposition growth. Therefore, only a 

dynamic consideration of the ash deposition growth is suitable for a cooled tube. 

Recently, only a limited number of studies have investigated the ash deposition 

growth through a dynamic CFD simulation. Kaer et al. [91] developed a dynamic 

CFD model to predict the ash deposit formation and heat transfer rates and the 

paper focused on straw combustion and investigated the ash deposition rate 

caused by different deposition mechanisms. Wang et al. [65], Li et al. [96, 130], 

and Balakrishnan et al. [131] developed CFD models to predict the ash deposition 

growth and heat transfer rate for boilers. Their models mainly considered the slag 

layer growth where the inertial impaction mechanisms are the main contribution. 

Waclawiak et al. [85, 132] modelled the ash deposit growth in the convection 

section based on the inertial impaction mechanism. Garcia-Perez et al. [133] 

modelled the deposit growth of fume particles based on the thermophoretic force, 

Brownian motion and inertial impaction. In both the Waclawiak and Garcia-

Perez's models, they focused on predicting the deposit shape and weight. The 

energy conservation principles were neglected in their models, which cannot 

consider the influence of the increase of the deposit surface temperature on the 
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deposition behaviour.  In addition, the details of particle impaction and sticking 

behaviours during the deposition growth process are still not clear from these 

previous publications [65, 85, 91, 94-96, 132, 133]. 

 Ash deposition indices 

The ash deposition indices are widely used in engineering in order to predict the 

ash deposition propensity. Currently, many indices have been developed based 

on the ash chemistry and ash properties (ash melting, ash sintering and ash 

viscosity). Although there exist several publications on developing a slagging 

indice for coal combustion, most of these methods were developed either based 

on slagging observations in entrained flow reactors or by only considering the 

sintered/slagging route [22, 68, 102, 125, 134, 135]. Gibb et al. [68] developed a 

slagging indice based on the Computer Controlled Scanning Electron Microscopy 

(CCSEM) based mineral composition in the coal. This indice was developed based 

on the assumption that the degree of assimilation of iron and calcium into the 

aluminosilicate glass determines the ash deposition characteristics of the coal. 

This assumption neglects the influence of the initial slagging routes caused either 

by pyrite or by condensation. McLennan et al. [22] developed an iron-based 

slagging indice based on the included and excluded iron related minerals 

composition in the coal. However, this indice only considers the effect of iron 

related minerals on the slagging behaviour. Also, both of these two CCSEM 

slagging indices are yet to be validated with full-scale field observations in boilers 

[125]. In addition, Barroso et al. [102, 116] employed conventional slagging indices 

to predict the slagging potential of coals/blends in an entrained flow reactor. It 

was found that by incorporating the aerodynamic diameter of fly ash particles 

into the conventional slagging indices one can improve the prediction 

performance because the aerodynamic diameter is proportional to the particle 

Stokes number which determines the particle impaction efficiency [125, 136]. It 
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should be noted that the fluid velocity in the EFR is as low as approximately 0.5 

m/s [102, 116], which means that particles may not have enough kinetic energy 

to rebound from the deposition surface after impaction and hence deposition 

accumulation could increase with an increase in the aerodynamic diameter under 

this low velocity condition in the EFR [93]. However, the fluid velocity could be 

as high as 10-25 m/s in pulverised coal boilers and, for the particles with similar 

aerodynamic diameter, it is possible to have high enough kinetic energy 

(proportional to the square of the velocity, possible 202-502 times higher than in 

the EFR) to rebound from the deposition surface after impaction [9, 93]. 

Therefore, the conclusions from the low velocity conditions of the EFR may not 

be suitable for the real conditions in boilers.  

Moreover, for some of the existing typical slagging indices (B/A, B/A*Sulphur, 

Si value, etc.), the slagging prediction for the sintered/slagging route directly 

employs the mass fractions of ash components and assumes the same contribution 

of each basic or acid component to the slagging prediction. However, the 

sintered/slagging layer is not linearly related to the mass fraction of the basic or 

acid components [55, 137, 138]. Further, fuel ash content and heating values are 

important factors of ash deposit formation. A numerical slagging indice (NSI) has 

been developed to reflect these factors for both single coals and blends of coal 

and biomass [25, 117, 135]. The NSI has shown reasonable success in ranking the 

slagging potentials of some of the world trade coals. Nevertheless, in general, 

uncertainty still exists in the understanding of the contributions from different 

slagging routes and correlations between the existing coal slagging indices and 

the actual observations made in conventional boilers. Therefore, it is still very 

important to develop an ash deposition indice which can better represent the ash 

properties and the ash deposition routes in order to provide guidelines for real 

engineering applications. 
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Chapter 3: Experimental facilities 
and data 

Summary 

This chapter introduces the experimental facilities and data which are used 

to develop and validate the ash deposition prediction models. Ash deposit 

formation on an uncooled deposition probe for the co-combustion of South 

African coal and palm kernel expeller in an entrained flow reactor is applied 

to develop the steady CFD based ash deposition model, as described in Section 

3.1. Ash deposit formation on a cooled deposition probe for the Zhundong 

lignite combustion in a pilot scale coal-fired furnace is applied to develop the 

dynamic CFD based ash deposition model, as described in Section 3.2. The 

ash deposition observations in utility boilers are applied to develop the ash 

deposition indice, as described in Section 3.3. 

3.1 Ash deposition in an entrained flow reactor 

 Entrained Flow Reactor (EFR) 

Since it is expensive to directly undertake the ash deposition experiments in full 

scale boilers, many experimental works have been undertaken in lab-scale 

entrained flow reactors. In this section, an entrained flow reactor, which is located 

at Imperial College, London, is described and the experimental data has been 

published [139]. Since the time-temperature history of fuel particles is significant 

in determining the transformation of inorganic constituents of fuel particles, the 

time–temperature history of fuel particles is one of the key parameters for the 
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design and operation of the EFR tests (temperature and velocity conditions in 

the furnace) to achieve a similar condition for the ash deposit formation as in a 

power plant. This has been carefully designed and operated in the experiments 

where a fuel particle with the residence time of approximately three seconds has 

been achieved [139].  

Figure 3-1 shows a schematic geometry of the entrained flow reactor (EFR), 

which consists of four electrically heated furnaces with an inner diameter of 0.1 

m and a length of about 5 m. The deposition probe is inserted into the cross 

section of the furnace as shown in Figure 3-1 and the ratio of the project area of 

the probe to the cross area of the furnace is approximately 21.7%. Three heating 

elements, including molybdenum disilicide (MoSi2) for furnace 1, silicon carbide 

(SiC) for furnace 2 and two kanthal AF wire (FeCrAl alloy) for furnace 3 and 4, 

are employed to heat these furnaces and to provide a temperature gradient from 

1650 oC at the top to 1200 oC at the bottom as shown in Figure 3-1 [75]. The 

burner consists of a primary inlet through which the pulverized coal and the 

primary air are fed, and a secondary inlet for the heated air. The pulverized coal 

particles are fed into the burner through a vibratory hopper system with an 

accurate control for the vibration amplitude, in order to operate the feeding 

system without blocking and provide a continuous feed without the detectable 

size separation [140]. The pulverized coal particles are entrained in the primary 

air and the adjustments to the primary and secondary airs ensure that the 

pulverised coal particles are established in the central region of the furnace [140]. 

Therefore, turbulent flow mainly occurs near the burner region and laminar flow 

takes place in the downstream of the furnace [140]. On the other hand, the 

pulverised coal particles could have a residence time of approximately three 

seconds in the EFR and half a second is spent in the furnace 1 (1650 oC) so that 

the fuel particles would have a similar time-temperature history in EFR as those 

in real boilers. The bottom of the EFR is used to cool the flue gas and the fly 
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ashes by using the water-cooled stainless steel jacket. Fly ashes are then collected 

by a primary cyclone and a second smaller cyclone [140]. 

 

Figure 3-1 A schematic diagram of the geometry of the EFR based on [139, 
140]. 

 Ash deposition probe 

An ash deposition probe should be capable of reproducing the ash deposit 

formation on a heat exchanger tube in boilers. Therefore, before introducing the 

design of the probe, it is important to understand the ash deposit formation on 

a heat exchanger tube in boilers. Figure 3-2 shows a schematic diagram of the 

typical structure of the deposition layers formed on the front surface of a heat 

exchanger tube. The initial layer is typically formed due to the thermophoresis 

of small particles and the condensation of alkali vapour compounds, such as NaCl, 
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KCl, Na2SO4, and K2SO4 [141-149]. This initial layer is usually porous and has a 

low thermal conductivity. The lower surface temperature of the tube enhances 

the growth of the initial layer and as a result the surface temperature of the 

deposit will increase to a point that can facilitate the melt and sintering to form 

a slag/sintered layer. The further growth of the slag/sintered layer is then mainly 

dictated by the inertial impaction of larger fly ash particles. The slag/sintered 

layer has a higher thermal conductivity compared to the initial layer and this is 

because of its dense structure and the more melt being formed at the layer, and 

the grain size is also larger than that formed at the initial layer [146-149].  

 

Figure 3-2 Schematic diagram of the main formation of the different deposition 
layers on the front surface of the cylindrical probe. 

In the ash deposition experiments, an uncooled probe is used for collecting 

deposits and it is placed in the cross section of the furnace with a temperature 

about 1250 oC to simulate the deposit formation on the heat exchanger which is 

governed mainly by the cross-flow flue gas streams [84]. Therefore, the ash deposit 

formation is similar to that of the slag/sintered layer which is mainly dictated by 

the inertial impaction of the larger fly ash particles. The ash deposition probe is 

composed of the tube section and the sampling section, as shown in Figure 3-3. 

The tube section is used to hold the sampling section in the furnace and the 

Tube 

Slag/sintered layer: 
inertial impaction  
of larger particles 

Initial layer:    
thermophoresis of smaller 
particles or condensation 
of alkali vapours. 

Flue gas stream 

Temperature 
Low 

High 
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sampling section is used to collect the deposits. The sampling section of the 

uncooled ash deposition probe has an outer diameter of 17 mm and an inner 

diameter of 12.5 mm. The sampling section of the probe is made of mullite which 

has a similar surface composition to the coal ash [140]. In addition, mullite is 

resistant to the thermal shock which may affect the shedding of the deposits 

[140].  

 

Figure 3-3 A schematic diagram of the ash deposition probe and the 

dimensions (mm) [140]. 

 Case description 

A range of scenarios of co-firing coal and biomass fuels have been experimentally 

investigated with the Imperial College EFR, where ash depositions were collected 

and subsequently analysed. The experimental data for the co-combustion of palm 

kernel expeller (PKE) with South African coal (SAC) has been employed, namely 

the SAC are blended with 0, 20, 40 and 60 wt.% of the PKE. The same EFR 

operational conditions as indicated in Figure 3-1 were employed for all four cases 

investigated. The fuel flow rate of 0.014 g/s, the primary air flow rate of 0.067 

kg/s at 70 oC, and the secondary air flow of 1.167 kg/s at 300 oC [25] have been 

used for all the cases. Only the biomass additions were different to make PKE 0, 

20, 40 and 60 wt.% of the fuel flow rate. The EFR was operated at a relatively 

low Reynolds number of approximately 400 so that near laminar flow conditions 

take place in the reactor although low turbulence occurs near the burner region 

[140]. The particle size of the SAC used ranged between 1 μm and 95 μm with a 
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mean diameter of 50 μm and the particle size of the PKE ranged between 105 

μm and 355 μm, with a mean diameter of 130 μm [140, 150, 151]. Both the particle 

sizes are assumed to be spherical. The fuel properties, including proximate and 

ultimate analysis, as well as ash compositions, of both coal and PKE are 

summarized in Table 3-1 [139, 151, 152].  

Table 3-1 Coal and PKE properties used in the calculations [139, 151, 152]. 

Ash composition (wt.%) Proximate analysis (wt.%)(ar) 

 SAC PKE  SAC PKE 

SiO2 54.1 15.1 Volatiles 26.4 71.6 

Al2O3 33.5 3.2 Fixed carbon 60.2 28.4 

Fe2O3 3.1 5.3 Ash 12.1 4.2 

CaO 4.1 10.7 GCV(MJ/kg) 27.3 18.7 

MgO 1.3 12.0 Ultimate analysis (wt.%)(daf) 

K2O 0.7 9.7 C 70.0 44.2 

Na2O 0.1 0.3 H 3.9 7.0 

TiO2 1.7 0.1 O 7.3 46.2 

MnO 0.0 1.0 N 1.7 2.6 

P2O5 1.1 42.7 S 0.6 0.5 

As expected, PKE has much lower values of fixed carbon and ash content than 

the SAC but a higher volatile content. With regard to the ash composition, SAC 

is mainly composed of acid oxides (silicon and aluminium) whereas PKE is mainly 

composed of phosphorus, potassium and alkaline earth metals. Biomass with an 

ash rich in alkali metals and chlorine have shown a tendency to accelerate the 

process of deposition, slagging and fouling on the boiler surfaces [142-144]. The 

situation for phosphorus-rich biomass fuels is more complex and relatively few 

research works and data are available. In very general terms, high potassium and 

high phosphorus ashes tend to have a low fusion temperature and thus show a 

higher slagging tendency. However, depending on the overall compositions of the 
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fuel and ash, phosphorus can combine with the reactive alkali/alkaline species, 

e.g. potassium, calcium and magnesium, to form higher melting temperature 

phases [153, 154], and it can also influence the release of potassium during 

combustion, thus it can reduce the overall ash deposition tendency [153, 154]. In 

the experiments preformed at the EFR, an uncooled ceramic probe is employed 

and placed at the sample port 2 (which has a furnace temperature of 

approximately 1250 oC) to collect the ash deposits that represent a slag/sintered 

layer [139, 140, 155]. Therefore, in the current study, the initial layer is not 

modelled and the inertial impaction of particles is considered to be the main 

factor in controlling the ash deposition on the tube [25]. 

3.2 Ash deposition in a pilot-scale combustor 

 Pilot-scale combustor 

The 300 kWth combustion test facility is located at Zhejiang University, China 

and the experimental data has been published [148]. In order to reproduce the 

real combustion and the ash deposit formation on the water wall tube, the pilot-

scale combustor has two main properties [148]: (i) it is a self-sustained combustor 

in order to provide the heat for the furnace, and (ii) a cooled ash deposition probe 

is used for the deposition experiments and the CCD imaging system is applied to 

monitor the dynamic deposit growth process.  

Figure 3-4 shows a schematic diagram of the 300 kW combustion test facility 

[148]. It is consisted of (i) the coal feeding and preheating system, (ii) the 

combustion furnace with a swirling burner, (iii) the ash deposition sampling and 

imaging systems, and (iv) the post systems for flue gas and fly ash. The 

combustion furnace has an inner diameter of 0.35 m and a length of about 3.95 

m. The swirl burner consists of a primary inlet through which the pulverized coal 

and the primary air are fed, and a secondary inlet for the heated air to maintain 
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a stable flame. The quench system is applied to cool the flue gas and fly ash in 

order to avoid the system damage. The cyclone and the bag filter are applied to 

capture the fly ash in order to avoid its emissions. 

 

Figure 3-4 A schematic diagram of the 300 kWth combustion test facility [148]. 

 Ash deposit sampling and imaging system 

It is important to understand the dynamic ash deposition behaviour on cooled 

heat exchanger tubes in order to design a suitable cooled ash deposition probe. 

Figure 3-5 shows a schematic diagram of ash deposition formed on a cooled heat 

exchanger tube. Ash deposits are mainly generated by the fine and coarse fly ash 

particles and the alkali/alkaline vapour after coal combustion. Due to the low 

tube surface temperature, the deposition due to the thermophoretic force and the 

vapour condensation may play an important role in the ash deposit formation in 

the initial stage of the ash deposit formation [142, 156, 157]. The deposition 
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surface temperature could rapidly increase due to the deposit growth and due to 

the rapid decrease in the heat flux to the deposition tube in the initial stage.  

 

Figure 3-5 Schematic diagram of the main formation of the ash deposits on a 
cooled heat exchanger tube. 

With the increase in the deposition surface temperature, the melting potential of 

the deposition surface is enhanced, which causes the sintering and slagging 

formation, the vapour condensation disappears and the contribution of the 

thermophoretic deposition on the arrival rate of ash particles declines [158]. At 

this stage, the deposition caused by the inertial impaction of coarse particles is 

the main deposition mechanism. Due to the higher thermal conductivity and 

lower heat flux through the tube than those in the initial stage, the deposition 

surface temperature increases slowly and this results in the slow decrease in the 

heat flux through the deposition tube. With the deposit growth, the shedding of 

the deposit is enhanced by the erosion, liquid flow at the deposit surface, gravity 
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shedding, etc.[59]. When the shedding rate is similar to the deposition rate, the 

deposit growth could stop or fluctuate and then the deposit height becomes stable 

[59]. The cooled deposit sampling system consists of the oil cooling section and 

the sampling section is shown in Figure 3-6.  

 

Figure 3-6 (a) Actual image of the deposit sampling system; (b) Schematic 
figure of the deposit sampling system; (c) Section A-A of the deposit sampling 

section (mm) [146-149]. 

The deposition probe is positioned at the cross section of the furnace and the 

ratio of the projected area of the probe to the cross area of the furnace is 

approximately 14.6%. The cooling oil with a temperature 230 oC flows into the 

outer pipe, passes the sampling section, flows back to the cooling section, and 
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then flows out the inner pipe [148]. The flow rate of the cooling oil can be adjusted 

through a valve in order to control the surface temperature of the sampling 

section. The sampling section, which is made of stainless steel (similar material 

as for the water wall tubes), has an outer diameter of 40mm and a length of 76 

mm [148]. In addition, two K-type thermocouples are installed at the outer 

surface and inner surface of the sampling section in order to measure the outer 

surface temperature and inner surface temperature respectively [148]. By doing 

this, the heat flux, 𝑞𝑞, through the deposit and the sampling section tube can be 

determined by Equation (3-1). It is noted that, comparing to the uncooled ash 

deposition probe, the cooled ash deposition probe need a cooling system to control 

the surface temperature of the probe and thermocouples are often installed in the 

probe to monitor the variance of the probe inner/outer surface temperatures. 

𝑞𝑞 =
𝑠𝑠𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎(𝑅𝑅2 − 𝑅𝑅1)

𝑖𝑖𝑎𝑎𝑖𝑖(𝑖𝑖2
𝑖𝑖1

)
 (3-1) 

where 𝑠𝑠𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎  with a value of 48 W/(K*m) is the thermal conductivity of the 

stainless steel probe, 𝑅𝑅 and 𝑖𝑖 are the measured temperature by the thermocouples 

and the radius of probe, Digitals in the 𝑅𝑅 and 𝑖𝑖 (1 and 2) represent the properties 

for inner thermocouple and the outer thermocouple, respectively. 

In order to dynamically monitor the deposit growth, a CCD imaging system is 

applied, which consists of the CCD camera, the camera lens, the protective tube 

and the camera shield, as shown in Figure 3-7 [146-149]. The protective tube and 

camera shield are used to avoid the high temperatures and the fouling of the 

small particles on the camera lens. The process to determine the deposit growth 

is as follows [146-149]: (i) the deposit images are recorded by the CCD imaging 

system; (ii) the original images are processed to be 24-bit images through the 

Matlab software; (iii) the average deposit height can be determined from the pixel 

numbers of the edge images (deposit probe and the deposit thickness) through 
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the edge detection and the algorithm of Hough transform. In this study, the 

deposit thickness obtained from the CCD imaging system is used to compare with 

the CFD prediction results of the deposit thickness. The simple procedure of an 

ash deposition experiment in the furnace is as follows [146-149]: (i) Start up the 

furnace and operate the furnace to reach the stable status; (ii) Install both the 

CCD imaging system and the ash deposition sampling system; (iii) Record the 

ash deposit growth for about three hours; (iv) Collect the ash deposits on the 

probe and shut down the furnace. 

 

Figure 3-7 (a) Schematic diagram of the Charge Coupled Device (CCD) 
imaging system; (b) Photograph of the CCD imaging system [146-149]. 

 Case description 

The ash deposition data of Zhundong (ZD) lignite combustion in the combustion 

facility under three different furnace temperatures (1100 oC, 1270 oC, and 1320 

oC) has been employed. Table 3-2 shows the properties of the ZD coal, including 

the proximate and ultimate analysis, as well as the major ash composition of the 

ZD coal [148]. Table 3-3 shows the mineral compositions of the low temperature 

ZD coal ash [148]. The low temperature coal ash is prepared by ashing the finely 

ground coal at a temperature of 60-70 oC using the plasma asher [159]. 
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As expected, the ZD coal has a high volatile content and low-medium ash yield. 

The ash analysis is dominated by silicon (Si), calcium (Ca), sodium (Na), 

aluminium (Al), iron (Fe) and magnesium (Mg) oxides, accounting for almost 

96% of the total ash composition. In particular, the low temperature ash is rich 

in sodium (Halite) and calcium (Calcite and Anhydrite). Additionally, quartz and 

hematite are present in the ash sample. The ZD coal rich in Alkali and Alkaline 

Earth Metal (AAEM) has shown a high tendency to cause ash slagging, fouling 

and corrosion in the radiation and convection sections of the boilers [63, 69, 145]. 

It should be noted that the present research focuses on the deposition probes 

placed in the central region of the furnace. It is assumed that the discrete parcels 

of particles are uniformly distributed [85, 132, 133]. The flow rate of the ash 

particles of 1.153 g/s and the velocity of the flue gas and particles of 2.8 m/s 

have been used for all the three cases from the experiments [148]. The ash particle 

size is ranged between 1 μm and 60 μm with a mean diameter of 16 μm [148]. It 

should be noted that the prediction of the ash deposition behaviour is focused on 

the first two hours in this study, where the shedding is less important [148]. 

As expected, the ZD coal has a high volatile content and low-medium ash yield. 

The ash analysis is dominated by silicon (Si), calcium (Ca), sodium (Na), 

aluminium (Al), iron (Fe) and magnesium (Mg) oxides, accounting for almost 

96% of the total ash composition. In particular, the low temperature ash is rich 

in sodium (Halite) and calcium (Calcite and Anhydrite). Additionally, quartz and 

hematite are present in the ash sample. The ZD coal rich in Alkali and Alkaline 

Earth Metal (AAEM) has shown a high tendency to cause ash slagging, fouling 

and corrosion in the radiation and convection sections of the boilers [63, 69, 145]. 

It should be noted that the present research focuses on the deposition probes 

placed in the central region of the furnace. It is assumed that the discrete parcels 

of particles are uniformly distributed [85, 132, 133]. The flow rate of the ash 
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particles of 1.153 g/s and the velocity of the flue gas and particles of 2.8 m/s 

have been used for all the three cases from the experiments [148]. The ash particle 

size is ranged between 1 μm and 60 μm with a mean diameter of 16 μm [148]. It 

should be noted that the prediction of the ash deposition behaviour is focused on 

the first two hours in this study, where the shedding is less important [148]. 

Table 3-2 Fuel properties of the ZD coal [148]. 

Ash composition (wt.%) Proximate analysis (wt.%) 

SiO2 35.08 Volatiles (db) 32.79 

Al2O3 14.04 Fixed carbon (db) 52.91 

Fe2O3 6.07 Ash (db) 12.3 

CaO 27.78 HHV(MJ/kg) 54.01 

MgO 4.73 Ultimate analysis (wt.%) (db) 

K2O 0.48 C 64.07 

Na2O 8.31 H 3.58 

TiO2 0.71 O 19.22 

SO2 2.8 N 0.65 

Table 3-3 Mineral compositions of low temperature ash (wt%) [148]. 

Quartz (SiO2) Calcite (CaCO3) Halite (NaCl) Hematite (Fe2O3) Anhydrite (CaSO4) 

28.0 27.6 24.7 13.4 6.2 

3.3 Ash deposition data in utility boilers 

In order to develop and validate the new ash deposition indice, ash deposition 

data from 30 sets of coals/blends combustion in utility boilers are applied.       

Two representative cases of utility coals have been investigated: (i) Case 1 is the 

Eastern US bituminous coals/blends combusted in T-fired boilers; (ii) Case 2 is 

the Western US sub-bituminous or lignite coals/blends combusted in opposed-

wall boilers. Case 1 contains 13 sets of coal combustion data (including data for 
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6 sets of coal blends); Case 2 contains 17 sets of coal combustion data (including 

data for 10 sets of coal blends). The range of coals and ash properties for the 30 

sets of US coals/blends studies are presented in Table 3-4. Bituminous coals have 

a higher Fe2O3, SiO2 and Al2O3 contents compared to low rank coals but a lower 

content CaO and MgO contents. Both bituminous and sub-bituminous coals have 

low Na2O and K2O contents contrary to lignites that have higher levels of Na2O. 

Slagging observations in boilers are evaluated by using not only the field 

performance data in the radiation and convection sections based on FEGT, soot 

blowing frequency increase, heat transfer rate, etc., but also periodic visual 

examinations of the deposit strength/ease of removal. The degrees of the slagging 

observations, ranging from no slagging to severe slagging, are represented using 

the values from 0 to 1. The details of the ash properties and the slagging 

observations for the 30 sets of data are presented in Appendix A. Also the field 

slagging observations can be classified into four groups: low slagging < 0.4; 0.4 ≤ 

medium slagging ≤ 0.6; 0.6 < high slagging ≤ 0.9; severe slagging <0.9. 
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Table 3-4 Ash composition ranges for the US coals. 

 
Bituminous  

Low rank coal 

Sub-
bituminous 

lignite 

Min Max  Min Max Min Max 

SiO2 44.8 55.9  32.2 41.8 34.3 37.7 

Al2O3 20.5 28.7  16.4 22.5 16.7 18.2 

Fe2O3 6.2 22.1  4.0 14.7 5.3 5.6 

CaO 1.4 5.6  13.8 21.9 16.7 18.6 

MgO 0.7 1.4  2.8 6.5 3.7 4.0 

K2O 1.2 2.6  0.5 1.5 0.3 0.5 

Na2O 0.3 1.3  1.0 1.3 6.3 6.7 

Ash  content 7.5 10.6  4.9 6.6 3.9 4.6 

Sulphur 0.4 2.7  0.3 1.1 0.3 0.4 

LHV(MJ/kg) 26.4 30.3  20.6 24.3 20.6 21.6 
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Chapter 4: Steady CFD prediction 
of ash deposit formation in an 

entrained flow reactor 

Summary 

This chapter presents the methodology and the results of the steady CFD 

predictions of ash deposit formation for the co-combustion of South African 

coal (SAC) and palm kernel expeller (PKE) in an entrained flow reactor based 

on modelling particle impaction and sticking. The numerical related errors, 

caused by interception and the improper resolving of the flow-field within the 

boundary layer near the deposition surface, are investigated. In order to 

minimize the numerical related errors without excessive meshing, a new 

revised particle impaction model has been developed and accomplished using 

an impaction correction factor. The particle sticking is predicted based on the 

molten fraction results that have been obtained from the chemical equilibrium 

calculations using the chemical fractionation data in order to consider the 

short residence time of fly ash particles. The simulation results of the 

deposition efficiency show that a reasonable coarse mesh, coupled with the 

revised particle impaction model, is suitable to accurately resolve the particle 

impaction without using a prohibitive large meshing size.  

4.1 Introduction 

Co-combustion of biomass with coal has been used as a near term measure to 

reduce CO2 emission from coal fired power plants [160, 161]. Currently, co-firing 

79 
 



Chapter 4 

10-20% (thermal) biomass with coal has been widely used in power stations in 

the UK and Europe and a higher co-firing rate is also used. Further, some power 

stations, such as the Drax in the UK, are being converted to firing 100% biomass. 

With the recent announcement of the new EU targets of reducing gas emissions, 

fuel flexibility is likely to be one of the key factors influencing the operation of 

the power stations in the future, and the uses of various biomass and waste for 

power in the EU are expected to substantially increase. Currently most large 

scale power stations are using relatively clean biomass, such as wood pellets, and 

to some extent straw, olive stones and palm kernel expeller (PKE). An addition 

of up to about 10-20% biomass has only moderate effects on the ash deposition 

in the furnace. However, with an increased co-firing rate and the use of a wide 

range of biomass sources, ash related problems are ranking high on the list of 

significant operational constraints in co-firing power plants [62, 118]. Ash 

deposition reduces the efficiency of the heat transfer through the water walls and 

heat exchangers and causes corrosion of boiler tubes, which may lead to reduced 

generating capacity and unscheduled outages [65]. Therefore, an improved 

understanding of the ash deposition in firing various types of biomass is 

imperative for an efficient boiler operation and optimization in the future [162].  

The optimum biomass co-firing rate in coal-fired boilers has still been mainly 

determined by experiments up to now [62]. Computational Fluid Dynamics 

(CFD) has been widely used for solid fuel combustion simulations and various 

sub-models have been developed for predicting ash depositions in lab-scale test 

facilities as well as for full scale boilers [25, 50, 62, 65, 82, 118, 124, 162-166]. 

Considerable progress has been made in the last decades in developing ash 

deposition models for CFD simulations [62, 65, 84, 89, 93, 118, 167], and more 

detailed and accurate sub-models for combustion, fuel/ash particle transport, and 

sticking and deposition rate predictions have been developed [118, 167]. 

Typically, Lagrangian methods are employed to compute the trajectories of ash 
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particles, coupled with an Eularian method for the flow and gaseous phase 

reactions, where the inertial impaction of the particles is often considered as the 

only or main mechanism for ash deposit formation.  

This chapter aims to develop an improved ash deposition CFD model through (i) 

a new revised particle impaction model to minimize the numerical related errors 

with an affordable number of computational mesh, and (ii) an appropriate 

particle sticking model based on the ash chemistry and the particle momentum 

for the PKE where there is relatively a scarce amount of data available. The 

model developed has been tested using the experimental data from Imperial 

College's entrained flow reactor [139, 140], where PKE with the high level of 

phosphorus has been considered. 

4.2 Mathematical models 

 Combustion models 

The combustion of coal and biomass is modelled in a combined Eularian-

Lagrangian frame of reference where the volatile combustion is modelled in the 

Eularian frame of reference and the fuel/ash particles are tracked in a Lagrangian 

frame of reference. The single kinetic rate model was employed for the 

devolatilisations of the coal and biomass, where the rate of devolatilisation 

depends on both the temperature and the volatile content of the particles [160, 

168]. The values of the Arrhenius rate constants, pre-exponential factor and 

activation energy that have been previously used and validated are used [160, 

166, 168], as shown in Table 4-1. The combustion of the volatile gases was 

modelled using the Eddy Dissipation Model with a two-step global reaction 

mechanism [79]. Also it is assumed that the particle size remains constant, while 

the particle density reduces during the release of the volatile gases from the fuel 

particles [62, 168]. 
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Table 4-1 The combustion properties of SAC and PKE [57, 160, 163, 168-170]. 

Fuel 
Devolatilisation 

 
Char combustion 

A (1/s) Ea (J/kmol) Ai (kg/m2-s-Pa) Eai (J/kmol) 

SAC 3.8*1014 2.3*108  15.3 1.52*108 

PKE 6.13*1013 2.5*108  0.658 7.48*107 

Char combustion was modelled with the intrinsic char combustion model (see 

Section 2.2.3.2), which assumes that the order of the surface reaction is unity and 

that the surface reaction rate takes into consideration the effects of both the 

chemical reaction and bulk diffusion rates [160]. The same model constants were 

employed as [79, 153, 169], as shown in Table 4-1. In the Smith intrinsic model, 

the variation of the char particle size and density is related to the fractional 

degree of burnout, U, in terms of the burning mode, α , as follows [50, 169]: 

�𝑑𝑑𝑡𝑡 𝑑𝑑𝑡𝑡,0⁄ � = (1 − 𝑈𝑈)𝛼𝛼 (4-1) 

𝑈𝑈 = [1 − (𝑚𝑚𝑡𝑡 𝑚𝑚𝑡𝑡,0⁄ )] 
(4-2) 

where 𝑑𝑑𝑡𝑡  and 𝑚𝑚𝑡𝑡  are the char particle size and mass, respectively, and the 

subscript zero refers to the initial conditions (at the start of the char combustion). 

For the coal, the value of 𝛼𝛼 used was 0.25, and this corresponds to a decrease in 

both the particle size and density during combustion [50, 169]; for the biomass, 

it is believed that the particles would most likely maintain their original size 

during combustion, and therefore the value of zero was used for 𝛼𝛼, and this 

corresponds to a constant size but with a decreasing density of the particle during 

combustion [171]. 
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The trajectories of the coal and biomass particles are governed by the particle 

momentum equation, which is a balance of the drag, gravity, and other body 

forces as formulated in the following equation [50, 172]: 

𝑑𝑑𝑎𝑎�𝑡𝑡

𝑑𝑑𝑅𝑅
=

18𝜇𝜇𝑔𝑔

𝜕𝜕𝑡𝑡𝑑𝑑𝑡𝑡
2

𝐶𝐶𝐷𝐷𝑅𝑅𝑅𝑅𝑡𝑡

24 �𝑎𝑎�𝑔𝑔 − 𝑎𝑎�𝑡𝑡� +
𝑔𝑔�(𝜕𝜕𝑡𝑡 − 𝜕𝜕𝑔𝑔)

𝜕𝜕𝑡𝑡
+ 𝐹𝐹� 

(4-3) 

where 𝑎𝑎�, 𝜕𝜕, 𝜇𝜇 and 𝑑𝑑 are the velocity, density, viscosity and diameter of the 

particles, respectively; the subscripts 𝑡𝑡  and 𝑔𝑔  refer to the particle and gas, 

respectively, 𝐶𝐶𝐷𝐷 is the drag coefficient, and 𝐹𝐹� is the other body forces, such as 

the thermophoretic force, virtual mass force, etc. The thermophoretic force, which 

is caused by the temperature gradient in the gas stream close to a solid depositing 

surface may be neglected when modelling a heavily deposited surface such as the 

slag/sintered tube surface where a high surface temperature exists.  The virtual 

mass force, which is due to the acceleration of the fluid around the particle, may 

also be ignored when the density of the particle is much greater than the density 

of the fluid.  

The effect of fluid turbulence on the particle trajectories was considered by 

decomposing the instantaneous gas velocity, 𝑢𝑢�, into time-mean and fluctuating 

components 𝑢𝑢� and 𝑢𝑢′ and solved using the Discrete Random Walk (DRW) model. 

Assuming isotropic turbulence, the fluctuating component can be valuated using 

the turbulent kinetic energy, 𝑠𝑠𝑅𝑅 . It is assumed that the fluctuating velocity 

prevails for a time period equal to the life time of the fluid eddy that the particle 

is traversing [11]. The time, 𝜏𝜏, can be approximated by Equation (4-6) in terms 

of the turbulent kinetic energy and the dissipation rate 𝑠𝑠𝑅𝑅 and 𝜀𝜀𝑅𝑅, see Equation 

(4-6): 

𝑢𝑢� = 𝑢𝑢�+ 𝑢𝑢′ 
(4-4) 
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𝑢𝑢′ = 𝜍𝜍√𝑢𝑢�′2 = 𝜍𝜍√2𝑠𝑠𝑅𝑅 3⁄  
(4-5) 

𝜏𝜏 ≅ 𝐶𝐶𝐿𝐿(𝑠𝑠𝑅𝑅 𝜀𝜀𝑅𝑅⁄ ) 
(4-6) 

where 𝜍𝜍 is a normally distributed random number, and 𝐶𝐶𝐿𝐿  is the time scale 

constant. Since no local information on the velocity and pressure are available, 

the distribution of the impacting particles is used to validate the turbulent effect 

on particle dispersion modelling since the particle dispersion can affect the 

particle impaction flux distribution. With the DRW model, only a few particles 

impact on the middle section of the probe surface and particles mainly expand to 

impact on each side of the front surface of the probe, and some of the particles 

will impact on the furnace wall (as shown in Figure 4-1 and Figure 4-2). Without 

the DRW model, the particle impaction is located mainly in the middle section 

at the front surface of the probe; no particles will impact on the furnace wall (as 

shown in Figure 4-1 and Figure 4-2). In the experimental data, no deposits are 

formed on the furnace wall and the ash particles were restrained to remain in the 

central part of the furnace tube [139, 140], and this gives rise to the effect of 

particle turbulent dispersion being small in the experimental investigations. 

Therefore, the mean fluid flow velocity is considered in the particle tracking 

calculations and the effect of turbulent particle dispersion is neglected [62]. 

In order to better resolve the particle trajectories in the gas flow boundary layer, 

the boundary layer has to be modelled carefully [84] and the enhanced wall 

treatment was used. If the near-wall mesh is fine enough to resolve the fluid 

viscous sublayer, then the enhanced wall treatment can be similar to the 

traditional two-layer zonal model [173]. If a coarse mesh is used together with a 

wall-function, the accuracy of the near wall modelling will not significantly be 

reduced when the enhanced wall treatment is used, where a single wall law for 
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the entire wall region is generated by blending the linear (laminar) and the 

logarithmic laws of the wall [174]. 

 

Figure 4-1 Particle arrival rate on the deposition probe: A, with the DRW 
model; B without the DRW model. 
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Figure 4-2 Particle arrival rate on the furnace wall 1: A, with the DRW model; 
B without the DRW model. 

The energy balance equation of the particles, which are solved along the 

trajectories of the particles in order to obtain the corresponding particle 

temperatures, is given as follows [50, 160, 165]: 

𝑚𝑚𝑡𝑡𝑐𝑐𝑡𝑡
𝑑𝑑𝑇𝑇𝑡𝑡

𝑑𝑑𝑅𝑅
= ℎ𝐴𝐴𝑡𝑡�𝑇𝑇∞ − 𝑇𝑇𝑡𝑡� + 𝜀𝜀𝑡𝑡𝐴𝐴𝑡𝑡𝜎𝜎�𝜃𝜃𝑅𝑅

4 − 𝑇𝑇𝑡𝑡
4� − 𝑄𝑄𝑡𝑡 (4-7) 

where 𝑚𝑚𝑡𝑡, 𝑐𝑐𝑡𝑡, 𝑇𝑇𝑡𝑡, 𝐴𝐴𝑡𝑡, and 𝜀𝜀𝑡𝑡 are the mass, specific heat, temperature, surface area 

and emissivity of the particles, 𝑇𝑇∞  is the gas temperature, 𝜎𝜎 is the Stefan–

Boltzmann constant, and 𝜃𝜃𝑅𝑅 is the radiation temperature. 𝑄𝑄𝑡𝑡, which is the latent 

heat or the heat of reaction is determined by the following equations: 
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𝑄𝑄𝑡𝑡 =

��
�
�
��
� 0,

𝑑𝑑𝑚𝑚𝑡𝑡

𝑑𝑑𝑅𝑅
ℎ𝑓𝑓𝑔𝑔,

𝑓𝑓
𝑑𝑑𝑚𝑚𝑡𝑡

𝑑𝑑𝑅𝑅
𝐻𝐻𝑖𝑖,

 

if under the step of inert heating or cooling 

(4-8) 
if under the step of devolatilisation 

if under the step of char combustion 

where ℎ𝑓𝑓𝑔𝑔 is the latent heat, 𝑓𝑓 is the fraction of the heat absorbed by the particles, 

and 𝐻𝐻𝑖𝑖 is the heat of reaction released by the surface reaction. The radiative heat 

transfer was modelled using the Discrete Ordinates model and the gas absorption 

coefficient was calculated with the domain based weighted-sum-of-gray-gases 

model (WSGGM). 

 Revised particle impaction model 

Due to the influence of the gas flow, not all the particles carried by the gas stream 

will impact on the depositing surface. The amount of ash particles that may hit 

a depositing surface can be estimated by the particle impaction efficiency, which 

is defined as the percentage of particles of given size in the projected area of the 

deposition surface in the upstream gas flow that can impact on the deposition 

surface [84]. The impaction efficiency is dependent on the particle Stokes number, 

𝑆𝑆𝑅𝑅, that is defined as follows for particle impaction on a circular cylinder[24, 175]: 

𝑆𝑆𝑅𝑅 = (𝜕𝜕𝑡𝑡𝑑𝑑𝑡𝑡
2𝑢𝑢𝑡𝑡) (9𝜇𝜇𝑔𝑔𝐷𝐷)⁄  (4-9) 

where 𝜕𝜕𝑡𝑡, 𝑑𝑑𝑡𝑡, 𝑢𝑢𝑡𝑡, and 𝜇𝜇𝑔𝑔 are the particle density, particle diameter, bulk particle 

velocity and gas dynamic viscosity, respectively, and 𝐷𝐷 is the outer diameter of 

the deposition pipe. Particles with larger Stokes number are less likely to be 

affected by the gas flow and more likely to impact on the surface of the deposition 

pipe; however, particles with smaller Stokes number follow more closely to the 

fluid streamlines and are less likely to impact on the surface [48]. Therefore, 

accurately predicting the gas flow in the boundary layer near the deposition 

surface is very important for accurately predicting the particle impaction 
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efficiency, in particular for particles with a small Stokes number. However, this 

often requires an extremely fine computer mesh close to the deposition surface in 

order to resolve the flow boundary layer accurately and this is often prohibitively 

expensive computationally for modelling real combustors and industrial boilers. 

In the most cases, as seen in most publications, a reasonably coarse mesh is 

employed to satisfy the mesh independency requirement for the bulk of the gas 

flow. However, with this reasonably coarse mesh, the particle impacting efficiency 

is often over-estimated [12, 17], since the trajectory of small ash particles close to 

a deposition surface is very sensitive to the details of the boundary layer flow, 

leading to errors in the deposition rate prediction.  

Further, during the particle tracking in CFD, the particle is usually treated as a 

point in the computational domain and whether a particle hits a wall or not is 

determined by the position of the center of the particle without considering the 

effect of the size of the particle [84, 120]. However, in reality, a particle will hit 

the surface with a distance equal to the particle radius away from the centre of 

the particle [84, 120]. This interception effect of the particle size on the impaction 

efficiency can be described using the interception parameter, 𝑅𝑅𝑖𝑖 , defined as 

follows [84, 120]: 

𝑅𝑅𝜂𝜂 = 𝑑𝑑𝑡𝑡 𝐷𝐷𝑡𝑡𝑖𝑖𝑜𝑜𝑏𝑏𝑅𝑅⁄  
(4-10) 

where 𝑑𝑑𝑡𝑡  and 𝐷𝐷𝑡𝑡𝑖𝑖𝑜𝑜𝑏𝑏𝑅𝑅  are referred to the diameters of the particles and the 

deposition probe, respectively. Clearly the larger is the ratio of the particle 

diameter to the tube diameter, the larger is the interception. In order to remove 

the errors resulting from using a coarse computational mesh in the boundary 

layer and from the particle interceptions, an impaction correction factor, 𝐹𝐹𝜂𝜂, may 

be introduced which can be defined as the ratio of the real particle impaction 

efficiency and that predicted using a reasonably coarse computational mesh for a 
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particular particle stream, i.e. for the ith particle stream, 𝐹𝐹𝜂𝜂 = 𝐼𝐼𝑖𝑖𝑅𝑅𝑖𝑖𝑎𝑎,𝜂𝜂/𝐼𝐼𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑠𝑠𝑅𝑅,𝜂𝜂. The 

real impaction efficiency 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 can be estimated by using a small computational 

domain that only contains part of the furnace that is close to the superheat tubes 

where extremely fine meshing may be used.  The boundary conditions for flue 

gas and ash particle flows may be taken from the existing results obtained using 

the reasonably coarse computational mesh. If the interception parameter is also 

considered, then the impaction correction factor may be calculated using the 

following equation: 

𝐹𝐹𝜂𝜂 = (𝐼𝐼𝑓𝑓𝜂𝜂𝑖𝑖𝑅𝑅,𝜂𝜂 + 𝑅𝑅𝜂𝜂) 𝐼𝐼𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑠𝑠𝑅𝑅,𝜂𝜂⁄  
(4-11) 

where 𝐼𝐼𝑓𝑓𝜂𝜂𝑖𝑖𝑅𝑅,𝜂𝜂 is the predicted particle impaction efficiency from a well resolved 

boundary layer, 𝐼𝐼𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑠𝑠𝑅𝑅,𝜂𝜂 is the impaction efficiency from a reasonably coarse mesh, 

and 𝑅𝑅𝜂𝜂 is the interception parameter, of the 𝜂𝜂 th particle stream; This impaction 

correction factor can be used to correct the CFD predicted mass flux, i.e. the 

arrival rate of the particles to the deposition surface using a reasonably coarse 

computational mesh in the CFD simulation as illustrated in Figure 4-3. Therfore, 

a reasonably coarse computational mesh  can be used to predict the particle 

impaction efficiency through using the revised particle impaction mdoel. The 

overall effect of the interception parameter on the impaction efficiency, 𝑂𝑂𝐼𝐼𝐼𝐼, can 

be defined as follows: 

𝑂𝑂𝐼𝐼𝐼𝐼 = ��(𝑀𝑀𝐹𝐹𝜂𝜂 ∙ 𝑅𝑅𝜂𝜂)
𝑖𝑖

𝜂𝜂=1
� /𝜂𝜂𝑜𝑜 (4-12) 

where 𝑀𝑀𝐹𝐹𝜂𝜂  is the mass fraction of each particle stream, 𝜂𝜂𝑜𝑜  is the overall 

impaction efficiency which is defined as the ratio of the arrival rate of the particles 

to the mass flow of particles in the upstream flow. 
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Figure 4-3 Schematic of the methodology for the revised particle impaction 
model. 

In order to validate the proposed approach for improving the accuracy of the 

particle impaction efficiency calculations, particle impactions on a two-

dimensional cylinder have been simulated and compared with the results from 

the direct numerical simulation (DNS) reported by Haugen and Kragset [120]. 

Figure 4-4 shows the flow configuration and boundary conditions employed. A 

computational domain of 6D×12D is employed with the tube being placed in the 

centre of the domain. The tube diameter D=40mm. Gas (viscosity=4.6×10-5 Pa.s 

and density=0.245 kg/m3, which represent a stream of hot flue gas under 1500 K 

[84]) enters into the domain with a given free stream velocity, 𝑈𝑈0. Two velocities, 

𝑈𝑈0= 0.47 m/s and 7.91 m/s (corresponding to a Reynolds number, 𝑅𝑅𝑅𝑅𝑅𝑅, based on 

deposition tube diameter, approximately 100 and 1685, respectively) have been 

considered to represent the low velocity condition in a drop tube furnace and a 

high velocity condition in real boilers . In order to obtain the impaction efficiency 

with a well resolved boundary layer mesh, i.e. Ifine, RANS simulation with a fine 

mesh of approximately 400 nodes (𝑅𝑅𝑅𝑅𝑅𝑅 = 100) and 1600 nodes (𝑅𝑅𝑅𝑅𝑅𝑅 = 1685) on 

the tube circumference have been employed as suggested by [84, 120, 176].  
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Figure 4-4 The flow configuration and boundary conditions of the 2D 
computational domain. 
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Figure 4-5 The impaction correction factor and comparisons of the predicted 
particle impaction efficiency using a coarse mesh and the DNS, with and 

without particle impact correction when (a): 𝑅𝑅𝑅𝑅𝑅𝑅=100 and (b): 𝑅𝑅𝑅𝑅𝑅𝑅=1685 as a 
function of the Stokes number. 

Figure 4-5 compares the predicted particle impaction efficiencies with and 

without the corrections for the two cases investigated with the DNS results 

obtained from [120]. Reasonably coarse meshes with approximately 140 nodes 
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and 180 nodes on the circumference of the tube for the 𝑅𝑅𝑅𝑅𝑡𝑡 = 100 and 𝑅𝑅𝑅𝑅𝑡𝑡 = 

1685 cases, respectively, have been employed. Figure 4-5 shows that the 

impaction correction factor increases with increasing particle Stokes number and 

the value of the correction factor is approaching one when the Stokes number is 

greater than 1. Also, it can be found that applying the revised particle impaction 

model can substantially reduce the errors in the predicted particle impaction 

efficiency when a coarse mesh is used, compared with the results from the DNS. 

 Particle sticking model 

After the particles reach a deposition surface, not all the arriving particles will 

stick to the surface. If the particle, or the deposition surface, is sticky then the 

particle may deposit [164]. On the other hand, particles with high impact energy 

may rebound back into the gas flow after hitting the wall [93, 163]. The sticking 

efficiency of the impacting particles is defined as the ratio of the number of 

particulates depositing on the surfaces to the number of the particles impacting 

on the surfaces [162]. There are at least two factors that influence the particle 

sticking efficiency, namely, (i) whether a particle is sticking or not, and (ii) 

whether the particle will rebound back from the surface. In this work, the 

stickiness of the particles was determined by the degree of melting of the particle, 

i.e. the molten fraction of the particles [86] calculated based on the 

thermodynamic equilibrium of the particles. Since not all ash components can 

reach chemical equilibrium when arriving at the deposition surface, in particular 

for EFR test conditions [113], the chemical fractionation analysis data is 

employed from a stepwise leaching of the relevant fuels in order to consider the 

short residence time of the ash particles in the reactor [113]. The chemical 

thermodynamics software package FactSage 6.4 is employed to perform the 

thermodynamic equilibrium calculations based on the minimization of the Gibbs 

free energy from the system subject to the mass balance constraints [177, 178]. 
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In the thermodynamic equilibrium calculations, the gas composition N2, O2, CO2 

and H2O are taken from the CFD predictions and their amounts are dictated by 

the inlet air/fuel ratio. The reactants in the ash are obtained from the ash analysis 

shown in Table 3-1 and the chemical fractionation data from [179, 180] for both 

SAC and PKE as shown in Table 4-2. Potassium and sodium can be completely 

leached with chemicals such as water and acetate for PKE whereas only part of 

sodium can be leached for SAC. Phosphorus is more difficult to be leached for 

both PKE and SAC.  The amount of the non-reactive fraction of the inorganic 

mater in the ash particles which can reach equilibrium during combustion is 

difficult to determine through the experiments and this amount is typically in 

the range 0 to 25% depending on particle size, temperature and residence time, 

etc. [93, 113, 180-182]. Hence, a middle value of 10% was chosen [180]. For 

particles impacting a slagging/sintered surface, the value for the non-reactive 

fraction is less significant in predicting the overall sticking efficiency than 

impacting on a new tube surface.  

Table 4-2 Chemical fractionation (percentage) of ash components leached from 
fuels [179, 180]. 

 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 P2O5 

SAC 0 0 0 70 0 2 40 0 0 

PKE 1 0 0 5 3 100 100 0 3 

The calculations were performed for a temperature range between 1500 K and 

1750 K at a temperature interval 20 K and at atmospheric pressure. The possible 

products selected are the entire compound species (ideal gases and pure solids) 

from the ELEM, FToxid, FTsalt and FACTPS databases. The slag model chosen 

in the calculations was the 'SLAGC' with possible 2-phase immiscibility to 

consider the relative high amount of phosphorus in the ash [183, 184], which 

covers oxide liquid solutions of MgO, FeO, Na2O, SiO2, TiO2, Ti2O3, CaO, Al2O3, 
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etc., and phosphates as Na3(PO4), Ca3(PO4)2, Mg3(PO4)2, Fe3(PO4)2, K3PO4 and 

FePO4.  

As mentioned earlier, whether an impacting particle actually sticks or not 

depends on whether the particle rebounds from the deposition surface or not, and 

this depends on the deformation after the particle impacts on the surface and the 

momentum of the particles [25]. The particle energy balance model, developed by 

Mueller et al. [93] and Mao et al. [185], was employed to assess the excess energy , 

𝐸𝐸𝑥𝑥, which is the excess rebounding energy particles possess after impaction and 

can be calculated using the following empirical formula [93, 163, 185]: 

𝐸𝐸𝑥𝑥 =
𝐷𝐷𝑚𝑚

2

4
(1 − 𝑐𝑐𝑜𝑜𝑠𝑠𝛼𝛼𝑐𝑐) −

3𝐷𝐷𝑚𝑚
2.3

25
(1 − 𝑐𝑐𝑜𝑜𝑠𝑠𝛼𝛼𝑐𝑐)0.63 + 2

3𝐷𝐷𝑚𝑚
− 1 (4-13) 

where 𝐷𝐷𝑚𝑚 is the ratio of the maximum deformation in the particle diameter to 

the actual particle diameter, and 𝛼𝛼𝑐𝑐 is the static contact angle of the particle. 𝐷𝐷𝑚𝑚 

is related to the particle Weber number, 𝑊𝑊𝑅𝑅, and the Reynolds number, 𝑅𝑅𝑅𝑅, as 

follows: 

𝐷𝐷𝑚𝑚 = (12 + 𝑊𝑊𝑅𝑅)0.5 ∙ [3(1 − 𝑐𝑐𝑜𝑜𝑠𝑠𝛼𝛼𝑐𝑐) + 4(𝑊𝑊𝑅𝑅/𝑅𝑅𝑅𝑅0.5)]0.5 (4-14) 

𝑊𝑊𝑅𝑅 = (𝜕𝜕𝑡𝑡𝑈𝑈𝑖𝑖
2𝑑𝑑) 𝜎𝜎⁄  (4-15) 

𝑅𝑅𝑅𝑅 = (𝜕𝜕𝑡𝑡𝑈𝑈𝑖𝑖𝑑𝑑) 𝜇𝜇𝑡𝑡⁄  
(4-16) 

where 𝑈𝑈𝑖𝑖 is the impact velocity component normal to the impact surface, and 𝜎𝜎 

is the particle surface tension. If the excess energy of a particle is large enough, 

𝐸𝐸𝑥𝑥 > 0, the particle will rebound off the deposition surface, otherwise the particle 

will stick.  
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4.3 EFR CFD model set up and results 

 Model set up 

Since EFR was operated at a relatively low Reynolds number of approximately 

400, [140], the Transition SST turbulence model which is applicable to flows with 

the low Reynolds number, was chosen to simulate the gas flow [186]. The 

adiabatic condition has been employed at the surface of the deposition probe to 

consider its uncooled condition. The commercially available CFD software 

package ANSYS Fluent version 15.0 has been employed to perform the basic 

calculations of the coal and biomass combustion incorporating the User Defined 

Functions and Memories in order to model the ash deposition process with the 

revised particle impaction model and the particle sticking model. 

Six different meshes consisting of 0.5, 0.7, 1.1, 1.6, 2.0, and 3.3 million hexahedral 

cells generated from Ansys ICEM CFD 15.0, which have mesh qualities larger 

than 0.33 for the Orthogonal Quality and smaller than 0.67 for the Ortho Skew, 

have been employed to investigate the effect of the mesh on the CFD solutions. 

The meshes were refined in the vicinity of the probe and the injection region, as 

well as in the burner region, as shown in Figure 4-6. The residuals for the 

equations of continuity, momentum, species, and energy were about the 

magnitude of 10-4, 10-5, 10-6 and 10-7, respectively. Both the typical gas flow 

properties, such as the distributions of the gas temperature and the arrival rate 

of fly ash particles that impact the probe surface were examined. It was found 

that there is only little difference in the prediction results with the six different 

meshes, as shown in Figure 4-7. The independent solutions in the bulk of the 

EFR can be obtained using a mesh with no less than 0.7 M cells which may be 

regarded as a reasonably coarse mesh. However, mesh independency was not 

achieved for the predicted arrival rate of fly ash particles until a mesh with a cell 

number of over 1.6 M was used, as shown in Figure 4-8. It can be seen from 
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Figure 4-8, if the 0.7 M cell mesh is employed, then the arrival rate of the 

impacting particles would be overestimated by approximately 40% compared to 

the results obtained using 1.6 M cells. This is because a higher impaction 

efficiency is predicted for all the particles as shown in Figure 4-8. It should be 

noted that for industrial boilers, the gas flow is  highly turbulent (Re ≥ 100000) 

and a very thin flow boundary layer will be formed, thus achieving a grid 

independent solution for particle impaction is usually very difficult in a 3D 

geometry [84]. 

 

Figure 4-6 Mesh details of the six difference cases investigated. 
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Figure 4-7 Gas temperature along the axis of the furnace using the six different 
meshes. 
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Figure 4-8 The arrival rate of fly ash particles that impact the probe surface as 
a function of the number of cells and the impaction efficiency of particles as a 

function of the particle Stokes number for 0.7M and 1.6M. 

In the particular case of the Imperial EFR, the particle impaction results obtained 

from, using the 1.6 M grid was taken as 𝐼𝐼𝑓𝑓𝜂𝜂𝑖𝑖𝑅𝑅 since they are mesh independent 

solutions for the particle impaction, and the particle impaction results from the 

0.7 M grid was taken as 𝐼𝐼𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖𝑠𝑠𝑅𝑅 since they are mesh independent solutions of the 

gas flows. For the case investigated, the interception parameter, R, is in the range 
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2.9×10-5 to 7.5×10-3 which give an overall effect on the particle collection efficiency, 

𝑂𝑂𝐼𝐼𝐼𝐼, in the range of 7-8% and therefore cannot be ignored.  

 Predicted impaction efficiency and sticking efficiency 

The modelling of the particle impaction and sticking is critical for predicting ash 

deposit formation and growth. Both the improper resolving of the gas flow within 

the boundary layer near the deposition surface and particle interception can affect 

the accuracy of the predicted particle impaction in the CFD modelling. Figure 

4-9 shows the calculated impaction correction factor 𝐹𝐹𝜂𝜂 and particle impaction 

efficiency as a function of the Stokes number of the coal and biomass particles 

employed in the EFR simulation for the four co-firing cases investigated. It can 

be found that the correction factor increases with an increase in the particle 

Stokes number. The value approaches unity when the Stokes number is greater 

than one and this is because the particles are mainly driven by their inertia and 

the imperfection in the prediction of the boundary flow field which is of secondary 

importance [84, 120]. However, particles with small Stokes number have a small 

value of the correction factor and this indicates that the numerical related errors 

are large when a coarse mesh was used and this is because the particle trajectories 

are strongly affected by the flow field within the boundary layer which needs to 

be accurately modelled [84, 119, 120]. The predicted impaction efficiencies for 

particles with a similar Stokes number are similar for different levels of the PKE 

addition, and in particular for low co-firing rates. This is because the air and fuel 

flow rates are almost the same for the four cases and this results in a similar flow 

distribution, including in the boundary layer flow.  
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Figure 4-9 The impaction correction factor and impaction efficiency of particles 
as a function of the particle Stokes number. 

Further, the figure shows that the Stokes number of most of the fuel particles is 

less than 1 and the maximum Stokes number is approximately 1.5, and this 

indicates the significance of the impaction correction factor in predicting the ash 

deposition rate. Figure 4-10 compares the results of the predicted overall 

impaction efficiencies both with and without applying the particle impaction 

correction. It can be observed that for all the cases, there is 30-50% over 

prediction in the overall impaction efficiency and this may be resulted if a coarse 

mesh is employed and no correction is made. Also the figure shows that on 

increasing the co-firing rates from 0-60%, the overall impaction efficiency 

increases from about 3.1% to 4.6%. This is due to the fact that the biomass 

particles have a higher value for the Stokes number than that of the coal particles 

due to the much larger particle size, and this results in a higher impaction 

efficiency than that of the SAC particles. 
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Figure 4-10 The overall impaction efficiency for SAC and for different levels of 
PKE with and without the revised particle impaction model. 

Figure 4-11 shows the predicted overall sticking efficiency (defined as the ratio of 

the overall mass flow rate of the deposited particles to the overall mass flow rate 

of the impacting particles) taking into account both the sticking efficiencies of 

the ash particles and the deposition surface for the four cases investigated. The 

figure shows that the overall sticking efficiency for the 60% PKE co-firing ratio 

is approximately 33%, which is the lowest of the four cases investigated. The 

overall sticking efficiencies are similar for the 20% and 40% ratio cases which lie 

in the range 53% to 56%. This is because the molten fraction increases on adding 

20% and 40% PKE co-firing ratio due to the larger amount of molten phases 

formed than in the case of 0% PKE co-firing ratio and then the sticking efficiency 

increases. However, the sticking efficiency decreases on adding 60% PKE. This is 

due to the formation of high temperature solid phases (such as Ca3(PO4)2, 

Mg3P2O8, AlPO4, and KAlSi2O6) with increasing the alkaline earth metals 

(calcium and magnesium) by further adding the PKE.  
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Figure 4-11 The overall sticking efficiency for SAC and for different levels of 
PKE. 

It was noted that the sticking efficiencies for particles were almost the same for 

all Stokes numbers, with only a slight increase with an increase in the Stokes 

number. This is because the particles were at the cooling stage at the end of the 

char combustion, the small particles cool earlier and more quickly and thus have 

a lower temperature and are less sticky than those of the larger particles [89].  

 Predicted ash deposition 

In the experiments reported in [139, 140], the deposition efficiency, which was 

determined by the mass percentage of the fuel ash that impacts on the projected 

surface area of the probe that was retained in the collected deposit, was employed 

to evaluate the deposition propensity. Figure 4-12 shows a quantitative 

comparison between the computed deposits (with and without the revised particle 

impaction model) and the experimental data in terms of the deposition efficiency. 

In general, the predicted deposition efficiency without the revised particle 

impaction model is much higher than both the experimental data and the results 

obtained with the revised particle impaction model. The predicted deposition 

efficiency with the revised particle impaction model varies between 6.1% to 9.5% 

for the four case investigated, which is in good agreement with the experimental 

data. Also the calculation results show that the deposition efficiency at the 60% 
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PKE co-firing ratio is lower than that at the 40% PKE co-firing ratio and the 

deposition efficiency is the highest for a co-firing ratio of 40% of PKE. The reason 

for this modelling outcome is due to the decreasing trend of the overall sticking 

efficiency at 60% PKE co-firing ratio. However, in the experimental data, the 

deposition efficiency with a value 8.5% at 60% PKE co-firing ratio is still slightly 

higher than that at the 40% PKE co-firing ratio which is 8.4%. The repeatability 

error for the measurement of the deposition efficiency can be up to 4.7% [139]. 

Therefore, the small disagreement in the deposition efficiency is acceptable 

between the predicted and experimental results [139, 187]. No obvious increase 

of deposition efficiency for co-combustion of PKE with South African coal was 

found when comparing with pure coal combustion both in the experimental 

results and the simulation results which is controlled by both the particle 

impaction and sticking. Higher sintering degree of the deposits for co-combustion 

cases was shown in the experiments. This is because the viscosity of the deposit 

was decreased with the decrease in SiO2 and increase in MgO, CaO and P2O5 in 

the ash composition by adding PKE [139]. 
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Figure 4-12 A comparison between the computed and the experimental data of 
the deposition efficiency for the SAC with different levels of PKE. 
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4.4 Conclusions 

An ash deposition model based on modelling the particle impaction and sticking 

has been developed for the modelling of ash deposition for co-combustion of coal 

and palm kernel. A revised particle impaction modelling approach is proposed in 

order to minimize the numerical related errors and avoid using an excessive mesh 

size. A particle impaction correction factor that takes account of both the effect 

of particle interception and errors in the particle impaction prediction when a 

coarse computational mesh is employed. The particle sticking is predicted based 

on the molten fraction of the particles obtained from the chemical equilibrium 

calculation using the chemical fractionation data of the fuels in order to consider 

the short residence time of the fly ash particles.  

The deposition efficiencies of co-firing SAC with PKE of four different ratios in 

the EFR have been calculated using the model and the results obtained have 

been compared with the experimental data obtained in the EFR. Reasonably 

good agreement was obtained and it is demonstrated that the proposed model 

can reduce the numerical related errors in the ash deposition prediction using a 

reasonable coarse computational mesh for the combustion process simulation. 

The results suggested that the overall impaction efficiency of the particles 

increase with an increase in the co-firing ratio of PKE, whilst the overall stickiness 

efficiency may depend on the relative amount of high- and low- melting point 

compounds that are formed and this is dictated by the ash composition of the 

fuels.    
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Chapter 5: Dynamic CFD 
prediction of ash deposition in a 

pilot-scale combustor 

Summary 

This chapter presents the dynamic ash deposition model and the results of 

the dynamic CFD predictions of the ash deposit formation for the Zhundong 

lignite combustion in a pilot-scale furnace. The dynamic CFD model is based 

on the inertia impaction, the thermophoresis and the direct alkali vapour 

condensation and incorporates the influence of the heat transfer rate. It is 

found that, particle deposition from the inertia impaction and the 

thermophoresis dictates the ash deposit formation under high furnace 

temperatures. The deposition caused by the direct alkali vapour condensation 

is less significant. As deposition time increases, particle impaction efficiency 

decreases and sticking efficiency increases due to the thermophoresis and the 

local temperature conditions, which result in the time-dependent behaviour of 

the deposition growth. In addition, the ash deposition characteristics are 

influenced under different furnace temperatures, due to the change in the 

particle impaction and sticking behaviours. The heat flux through the deposit 

can be larger under a higher furnace temperature.   

5.1 Introduction  

Zhundong (ZD) lignite, with a huge reserve forecast of 390 billion tons, could 

provide China with the coal consumption for many decades [63, 69, 145]. However, 
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due to the ZD lignite having a high content of Alkali and Alkaline Earth Metal 

(AAEM) elements [63, 69, 145], severe problems of ash slagging, fouling and 

corrosion are induced in the radiation and convection sections of the boilers [145, 

188]. This can raise significant practical issues, such as reducing the efficiency 

and lifetime of boilers. In recent years, many efforts have been paid to 

experimentally study the ash deposition behaviour of Zhundong lignite 

combustion in lab-scale [63, 69]/pilot-scale test facilities [146, 148, 189, 190] as 

well as for full scale boilers [145, 188]. The main reasons for the ash deposition 

problems of ZD lignite are concluded as: (i) high amount of basic components in 

the ZD lignite can increase the melting potential in the radiation and convection 

sections which cause the slagging formation [69, 146, 148, 189], and (ii) both the 

thermophoretic deposition of small particles and the condensation induced by the 

sodium related alkali vapours are responsible for the severe fouling phenomenon 

in the convection section of the boilers [63, 145, 189]. Although the main reasons 

that caused the severe ash deposition characteristics have been investigated, the 

deep understanding and the prediction of the particle impaction and sticking 

behaviours, and the importance of the individual ash deposition mechanism on 

the ash deposit formation/growth is still insufficient. 

This chapter aims to develop a dynamic CFD model to predict the ash deposit 

growth process for ZD lignite combustion in a pilot-scale furnace. Understanding 

the initial ash deposition behaviour on cooled tubes is significant to predict the 

deposition propensity. Therefore, this study focuses on predicting the influence 

of the main ash deposition mechanisms, namely the inertial impaction, the 

thermophoretic force and the direct vapour condensation, on the deposit rate and 

understanding of how the deposit growth will influence the heat transfer rate 

through the deposit to the cooled deposition probe. In addition to the effect of 

furnace temperatures on the deposit growth, the particle impaction and sticking 

behaviours with the deposit growth are studied in-depth and the importance of 
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the main ash deposition mechanisms on controlling the deposit growth is 

investigated. The model developed has been tested using the experimental data 

(including the deposit growth rate and the heat flux) from the Zhejiang 

University's pilot-scale furnace [148]. 

5.2 Mathematical models 

In order to describe the dynamic deposition growth of the ZD coal, efforts have 

been made on producing an accurate numerical description of the ash deposition 

mechanisms in controlling the deposit growth and its interactions with the 

thermal boundary at the deposit surface. To achieve this, several submodels have 

been developed and applied in the CFD framework. In this section, the 

momentum equation to solve the particle trajectories is introduced, followed by 

a description on the submodels for the thermophoresis and the sticking model of 

the particles and the deposition surface, as well as the direct alkali vapour 

condensation and the deposit properties. The solving strategy of the deposition 

growth model with the CFD framework is discussed at the end of this section. 

 Particle trajectories  

The arrival rate of the ash particles on the deposition surface is dictated by the 

particle trajectories. The particle trajectories are solved in a combined Eularian-

Lagrangian frame of reference where the gas phase is modelled in the Eularian 

frame of reference and the ash particles are tracked in a Lagrangian frame of 

reference [70]. The velocity of the particles is governed by the particle momentum 

equation, which is a balance of the drag, gravity, and other body forces as 

formulated in the following equation [70]: 

𝑑𝑑𝑎𝑎�𝑡𝑡

𝑑𝑑𝑅𝑅
=

18𝜇𝜇𝑔𝑔

𝜕𝜕𝑡𝑡𝑑𝑑𝑡𝑡
2

𝐶𝐶𝐷𝐷𝑅𝑅𝑅𝑅𝑡𝑡

24 �𝑎𝑎�𝑔𝑔 − 𝑎𝑎�𝑡𝑡� +
𝑔𝑔�(𝜕𝜕𝑡𝑡 − 𝜕𝜕𝑔𝑔)

𝜕𝜕𝑡𝑡
+ 𝐹𝐹� 

(5-1) 
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where 𝑎𝑎�, 𝜕𝜕, 𝜇𝜇 and 𝑑𝑑 are the velocity, density, viscosity and diameter of the 

particles, respectively; the subscripts 𝑡𝑡  and 𝑔𝑔  refer to the particle and gas, 

respectively, 𝐶𝐶𝐷𝐷 is the drag coefficient, and 𝐹𝐹� is the other forces, such as the 

thermophoretic force, the virtual mass force, the pressure gradient force, the 

Saffman's lift force, etc.  

In this chapter, both the gravitational force and the thermophoretic force are 

considered. The thermophoretic force, which is caused by the temperature 

gradient in the gas stream close to a cold deposition surface, needs to be 

considered when modelling the ash deposition on a cooled surface.  In this chapter, 

the thermophoretic force,  𝐹𝐹𝑅𝑅ℎ�, is considered by the correlations employed  by 

Tablot et al. [70, 84, 191]: 

𝐹𝐹𝑅𝑅ℎ� = −𝐶𝐶𝑅𝑅ℎ
𝑑𝑑𝑡𝑡𝜇𝜇𝑔𝑔

2

2𝜕𝜕𝑔𝑔𝑇𝑇𝑔𝑔𝑚𝑚𝑡𝑡
∇𝑇𝑇 (5-2) 

𝐶𝐶𝑅𝑅ℎ =
12𝜋𝜋𝐶𝐶𝑠𝑠(𝜏𝜏𝑔𝑔 𝜏𝜏𝑡𝑡⁄ + 𝐶𝐶𝑅𝑅𝐾𝐾𝑖𝑖)

(1 + 3𝐶𝐶𝑚𝑚𝐾𝐾𝑖𝑖)(1 + 2 𝜏𝜏𝑔𝑔 𝜏𝜏𝑡𝑡⁄ + 2𝐶𝐶𝑅𝑅𝐾𝐾𝑖𝑖)
 (5-3) 

where 𝐶𝐶𝑅𝑅ℎ is the thermophoretic coefficient, 𝑇𝑇𝑔𝑔 is the gas temperature, 𝑚𝑚𝑡𝑡 is the 

particle mass, ∇𝑇𝑇 is the temperature gradient in the gas phase, 𝐶𝐶𝑠𝑠 = 1.17, 𝐶𝐶𝑅𝑅 =

2.18, 𝐶𝐶𝑚𝑚 = 1.14,𝜏𝜏𝑔𝑔 is the fluid thermal conductivity, 𝜏𝜏𝑡𝑡 is the particle thermal 

conductivity, and 𝐾𝐾𝑖𝑖 is the Knudsen number. The virtual mass and pressure 

gradient forces, which are due to the acceleration of the fluid around the particle 

and the pressure gradient in the fluid, can be ignored when the density of the 

particle is much greater than the density of the fluid.  

The accuracy of predicting the arrival rate of the particles is determined not only 

by an accurate mathematical description of the physical mechanism, but also by 

an accurate numerical method. Previous studies have shown that an improper 

grid around the deposition surface can lead to an inaccurate prediction of the 
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particle arrival rate due to the inaccurate resolving of the flow-field within the 

boundary layer near the deposition surface [11, 125]. The accurate resolving of 

the flow boundary layer requires an extremely fine computational mesh close to 

the deposition surface. A revised particle impaction model has been developed in 

Chapter 4. It can be employed to better predict the arrival rate of the particles 

by resolving the particle impaction efficiency for both the drop tube furnaces and 

utility boilers without excessive meshing. 

The energy balance equation for the particles, which are solved along the 

trajectories of the particles in order to obtain the corresponding particle 

temperatures, is given as follows [70, 160, 165]: 

𝑚𝑚𝑡𝑡𝑐𝑐𝑡𝑡
𝑑𝑑𝑇𝑇𝑡𝑡

𝑑𝑑𝑅𝑅
= ℎ𝐴𝐴𝑡𝑡�𝑇𝑇∞ − 𝑇𝑇𝑡𝑡� + 𝜀𝜀𝑡𝑡𝐴𝐴𝑡𝑡𝜎𝜎�𝜃𝜃𝑅𝑅

4 − 𝑇𝑇𝑡𝑡
4� (5-4) 

where 𝑚𝑚𝑡𝑡, 𝑐𝑐𝑡𝑡, 𝑇𝑇𝑡𝑡, 𝐴𝐴𝑡𝑡, and 𝜀𝜀𝑡𝑡 are the mass, specific heat, temperature, surface area 

and emissivity of the particles, 𝑇𝑇∞  is the gas temperature, 𝜎𝜎 is the Stefan–

Boltzmann constant, and 𝜃𝜃𝑅𝑅 is the radiation temperature.  

 Dynamic ash deposition model 

The dynamic ash deposition model is composed of several sub-models in order to 

predict the particle sticking efficiency, deposition rate, and deposition properties. 

The sticking model is based on the molten fraction of the particles and deposit 

surface. The chemical equailibrium method is used to predict the molten fraction. 

The deposition rate is determined by the deposition caused by the inertia 

impaction, the thermophoretic force and the direct alkali vapour condensation.  

The deposit properties (porosity, thermal conductivity, deposition surface 

temperature, etc.) may change with the deposit growth. Previous research 

indicates that these changes may have the following characteristics: (i) the 

deposition surface temperature can increase and the heat flux through the deposit 
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can decrease; (ii) the physical structure of the deposit can change from a loose 

and porous structure to a dense and molten structure; (iii) hence, the porosity 

can reduce at the sintered/slag layer and the thermal conductivity can increase. 

The porosity is predicted based on the volume fraction of the liquid phase and 

solid phase in the deposit through the correlation proposed by [65, 91, 94]. 

Thermal conductivity of the deposit is estimated from previous experimental data 

presented by [192, 193]. The deposit surface temperature is determined by the 

total heat flux to the probe surface and the total thermal resistance coefficient 

caused by the deposit, probe and the cooling oil. The dynamic ash deposition 

model is accomplished through using the User Defined Functions and the details 

of the dynamic ash deposition model can be found in Appendix B. 

 Integration of the ash deposition model with the 

CFD framework  

The commercially available CFD software package ANSYS Fluent version 16.0 

has been employed to perform the basic calculations, incorporating the in-house 

developed User Defined Functions in order to model the ash deposition growth 

process. Mathematical submodels, such as the SST k-ω  model, Discrete Ordinate 

model and Discrete Phase Model (DPM), were used for modelling the turbulence, 

radiation heat transfer and particle trajectories. The present CFD model focuses 

on the deposition probes being placed in the central region of the furnace. A 2D 

geometry with a tube of diameter 40mm placed in the central region is considered 

as the computational domain. A fine mesh is generated around the deposition 

probe in order to resolve the flow-field within the boundary layer and minimize 

numerical inaccuracies in predicting the particle impaction efficiency. Figure 5-1 

shows a schematic diagram of the computational domain and the meshing scheme 

around the deposition probe. The size of the first cell around the tube is 

approximately 0.3 mm in order to position about four nodes within the boundary 
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layer displacement thickness [84]. Hence, an accurate prediction of both the 

particle impaction efficiency and the particle temperature can be achieved. The 

mesh consisted of approximately 4.4*104 quadrilateral cells that have qualities 

larger than 0.90 for the Orthogonal Quality and smaller than 0.10 for the Ortho 

Skew. The residuals for equations of continuity, momentum, and energy were 

about the magnitude of 10-5, 10-5, 10-4 and 10-8, respectively. 

 

Figure 5-1 Schematic diagram of the computational domain and the meshing 
scheme around the deposition tube. 

In this chapter, three cases with different furnace temperature have been 

investigated, namely, 1373 K, 1543 K and 1593 K. It is assumed that the discrete 

parcels of particles are uniformly distributed and the particles are injected 

through the inlet boundary condition [85, 132, 133]. The flow rate of the ash 

particles of 1.153 g/s  and the velocity of the flue gas (N2-0.758, CO2-0.166, O2-

0.05, H2O-0.026, mole fraction) and particles of 2.8 m/s have been used from the 

experiments [148]. The ash particle size ranges between 1 μm and 60 μm with a 

mean diameter of 16 μm and a spread parameter of 0.7 based on the Rosin-

Rammler distribution, which indirectly results from the original coal particle size 

distribution and the ash content [148, 169].  It should be noted that aerosols 
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generated from nucleation of the alkali vapour is neglected due to the high furnace 

temperature [63]. 

 

Figure 5-2 The algorithm of the ash deposition growth model integrated into 
the CFD framework (modified from [91, 130, 131]). 

Figure 5-2 shows a brief flow chart of the algorithm used to carry out the 

simulation of the ash deposition growth process. A similar quasi-transient 

calculation concept has also been used to integrate the deposition model with the 

CFD framework [91, 130, 131]. In a time step, CFD iterations are carried out to 

solve the gas flow, temperature and wall heat flux. Then the Lagrangian particle 

tracking and particle sticking procedures are performed to determine the particle 

deposition. The total deposition rate can be determined by the particle deposition 

and the direct alkali vapour condensation rate. Then the new deposit properties 

(porosity, thickness, thermal conductivity, total heat resistance, etc.) are 
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calculated, updated and stored in the User Defined Memories. In addition, a new 

deposition surface temperature is calculated based on the total heat flux and the 

total heat resistance from the updated deposit properties; the new deposition 

surface temperature is given to the wall boundary surface conditions by the User 

Defined Functions for the CFD calculation in the next time step and this process 

is continued until the end of the simulation. It should be noted that the 

simulation process starts with a clean deposition tube (deposition time=0) placed 

in the furnace and the initial surface temperature is predicted based on the total 

thermal resistance contributed from the probe itself and the cooling oil [95], as 

shown in Equations (5-12) and (5-13). In addition, the calculation ends within 

two hours of the deposition time, where the shedding is less important [148]. The 

time step size is dynamically determined by limiting the increase in the deposition 

surface temperature in a time step to be less than 1K in order to achieve a balance 

between the accuracy of the simulations and the expense of the computation time. 

Therefore, a time step size of 1 s was employed at the initial stage because the 

surface temperature increased at a high rate at this stage. The time step size 

gradually increased to 30s at the later stages because the increase in the 

deposition surface temperature became very small. 

5.3 Results and discussion 

 Ash deposit formation under different furnace 

temperatures 

The furnace temperature, which can influence the local temperature condition 

(the impacting particle temperature and the thermal boundary near the 

deposition surface), is a significant factor that controls the ash deposit formation. 

Therefore, it is important to investigate the ash deposition behaviour under 

different furnace temperatures by using the present deposition model. Figure 5-3 

shows a comparison of the heat flux between the predicted results and the 

113 
 



Chapter 5 

experimental data among the three different furnace temperatures as a function 

of the deposition time. It can be seen that the three curves show similar variance 

trends. Generally, it can be seen that the predictions are in reasonable agreement 

with the experimental data for the three cases. Also, it is noticed that higher 

furnace temperatures result in a higher heat flux.  

 

Figure 5-3 Comparison of the heat flux between the predicted results and the 
experimental data as a function of the deposition time for the three cases. 

Figure 5-4 shows a comparison of the overall particle impaction efficiency for the 

three different furnace temperatures as a function of the deposition time. It is 

noticed that the 1543 K case has a similar overall impaction efficiency compared 

to that of the 1593 K case. At the initial stage of deposit formation, the 1373 K 

case has a much higher overall impaction efficiency than both the 1543 K and 

1593 K cases at the same deposition time. This is because the deposition surface 
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temperature under a lower furnace temperature is much lower than that under a 

higher furnace temperature at the same deposition time, which can result in a 

larger thermal gradient near the deposit surface and a higher thermophoresis 

increase in the particle impaction efficiency. Figure 5-5 shows a comparison of 

the overall particle sticking efficiency for the three different furnace temperatures 

as a function of the deposition time. It can be observed that the sticking efficiency 

increases with an increase in the furnace temperature based on the present 

sticking model. The efficiency reaches the highest value in the later deposition 

stage, 0.25, 0.58 and 0.63 for 1373 K, 1543 K and 1593 K cases, respectively. 

Figure 5-6 shows a comparison of the accumulated deposition mass (normalized 

by the total accumulated deposition mass after two hours' deposition time for 

the 1593 K case) for the three different furnace temperatures as a function of 

deposition time. It is found that there is much more deposit mass accumulated 

under a higher furnace temperature. This is mainly because there is a much higher 

particle sticking efficiency under a higher furnace temperature as shown in Figure 

5-5. Figure 5-7 shows a comparison of the average deposit thickness of the three 

different furnace temperatures as a function of the deposition time. It is also 

found that the higher deposit thickness is accumulated under a higher furnace 

temperature. It should be noted that the detailed experimental deposit thickness 

results have been presented for the 1543 K case. Therefore, the comparison of 

deposit thickness between the predicted results and experimental data will been 

given in the Section 5.3.2.3. 

Therefore, the predicted results suggest that the heat flux through the deposit 

increases with increasing furnace temperature and this is confirmed by the 

experimental data. In addition, both the deposit mass and the deposit thickness 

are larger under a higher furnace temperature than those under a lower furnace 

temperature. This is because the particle sticking efficiency increases with an 

increase in the furnace temperature. Wu et al. [189]  also observed a higher 
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deposition rate under a higher furnace temperature in the radiation section for 

the Zhundong coal combustion in a pilot-scale combustion test. However, Zhou 

et al. [148] found that the stable deposit thickness (when the shedding rate is 

balanced with the deposition rate) under a lower furnace temperature is higher 

than that under a higher furnace temperature. This may be attributed to the 

combined effect of the deposition rate, shedding rate, and the deposit 

microstructure. 

 

Figure 5-4 Overall particle impaction efficiency as a function of the deposition 
time under different furnace temperatures. 

 

Figure 5-5 Overall particle sticking efficiency as a function of the deposition 
time under different furnace temperatures. 
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Figure 5-6 Relative accumulated total deposition mass as a function of the 
deposition time under different furnace temperatures. 

 

Figure 5-7 Average deposit thickness as a function of the deposition time under 
different furnace temperatures. 

 Predicted results of the baseline case (furnace 

temperature under 1543 K) 

5.3.2.1 Particle impaction efficiency and sticking efficiency 

The prediction of the particle impaction and sticking is critical for modelling the 

ash deposit formation because particle impaction and sticking determine the 

amount of the arrival particles which may stick on the deposition probe surface. 

Figure 5-8 shows the predicted overall particle impaction efficiency (defined as 

the overall mass flow rate of the particles impacting on the probe to the overall 

mass flow rate of particles in the projected surface area of the probe) and the 

deposition surface temperature as a function of the deposition time. It can be 
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found that, under the conditions without thermophoretic force and with only the 

inertia impaction, the overall particle impaction efficiency (𝜂𝜂𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖), which has a 

value ranged from 0.021 to 0.015, decreases with an increase in the first 30 

minutes and then it remains essentially unchanged. This is because the local 

condition near the deposition surface (velocity, gas viscosity, etc.) changes with 

the deposition growth. Under the condition with both the inertia impaction and 

thermophoretic force, the overall particle impaction efficiency (𝜂𝜂𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖+𝑅𝑅𝑡𝑡) shows 

a similar variance trend compared to 𝜂𝜂𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖. In addition, 𝜂𝜂𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖+𝑅𝑅𝑡𝑡 is larger 

than  𝜂𝜂𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖, ranging from 0.032 to 0.016. Also, Figure 5-9 shows that the 

difference of overall particle impaction efficiency between 𝜂𝜂𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖+𝑅𝑅𝑡𝑡 and 𝜂𝜂𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖 

gradually reduces with the increase in the deposition surface temperature. This 

is because the influence of the thermophoretic force on the particles, which is 

dictated by the thermal gradient near the deposit surface, is decreased as a result 

of the increase in the deposition surface temperature. 

 

Figure 5-8 The overall particle impaction efficiency and deposit surface 
temperature as a function of the deposition time. 
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Figure 5-9 The difference of overall particle impaction efficiency between 
𝜂𝜂𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖+𝑅𝑅𝑡𝑡 and 𝜂𝜂𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖 as a function of the deposition surface temperature. 

Therefore, the thermophorestic force contributes to the overall particle impaction 

efficiency by as much as 50% in the initial stage and nearly 10% at the later 

stage. Beckmann et al. [125] also found that the thermophoresis could increase 

the arrival rate of the particles by as much as 7-50% onto the cooled deposition 

tube. The amount of the increased overall particle impaction efficiency (or the 

arrival rate) by the thermophosis is determined by the particle size distribution 

and the thermal gradient in the vicinity of the deposition surface. 

In order to further study the influence of the thermophoresis on the individual 

particle impaction behaviour, the impaction efficiency of the particles as a 

function of the particle Stokes number is shown in Figure 5-10. It can be seen 

that, under the condition without thermophoretic force and with only the inertia 

impaction, the particle impaction efficiency (𝜂𝜂𝑡𝑡𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖) is very small and close to 

zero (smaller than 0.01) when the particle Stokes number is less than 0.1 and 

then the particle impaction efficiency sharply increases with an increase in Stokes 

number. This is because the particles with a larger Stokes number are less likely 

to be affected by the gas flow and more likely to impact on the deposition surface. 

However, particles with smaller Stokes number follow more closely to the fluid 

streamlines and they are less likely to impact on the surface [175]. Similar 

variations of the particle impaction efficiency by the inertia impaction is also 
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predicted in the references [84, 120, 158] using the RANS, LES and DNS based 

CFD methods. However, under the condition with both the inertia impaction and 

thermophoretic force, the particle impaction efficiency (𝜂𝜂𝑡𝑡𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖+𝑅𝑅𝑡𝑡) is larger than 

𝜂𝜂𝑡𝑡𝜂𝜂_𝜂𝜂𝑖𝑖𝑅𝑅𝑖𝑖𝑅𝑅𝜂𝜂𝑖𝑖, as shown in Figure 5-10. In addition, the influence of the thermophoresis 

on the increase in the efficiency is enhanced with a decrease in the deposition 

surface temperature, as shown in Figure 5-10. This results in a higher increase of 

overall impaction efficiency with a lower deposition surface temperature as shown 

in Figure 5-8 and Figure 5-9. 

Figure 5-11 shows the predicted overall particle sticking efficiency (defined as the 

ratio of the overall mass flow rate of the deposited particles to the overall mass 

flow rate of the impacting particles) and the deposit surface temperature as a 

function of the deposition time. It can be observed that the overall particle 

sticking efficiency gradually increases with an increase in the deposition time and 

then it remains essentially unchanged, ranging from 0.15 to 0.58, and a 

corresponding increase in the deposition surface temperature, then a nearly flat 

variance of the temperature. It is noticed that there is a transition of a sharp 

increase in the sticking efficiency and this occurs at nearly 25 mins deposition 

time, which corresponds to a deposition surface temperature of approximately 

1230 K, as shown by the red rectangle and the red arrow in Figure 5-11. This is 

because the deposit surface starts to melt at this temperature and becomes sticky 

according to the chemical equilibrium calculations. It is also noted that the 

sticking efficiencies for the particles increase with an increase in the Stokes 

number. This is because the ash particles were at the cooling stage when moving 

towards the cold deposition surface, the small particles cool earlier and more 

quickly and thus have a lower temperature [89].  
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Figure 5-10 The particle impaction efficiency as a function of the particle 
Stokes number under a low deposit surface temperature (620 K) and a high 

deposit surface temperature (1355 K). 

 

Figure 5-11 The overall particle sticking efficiency and deposit surface 
temperature as a function of the deposition time. 
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Figure 5-12 The relative accumulated ash deposition mass by different 
deposition mechanisms as a function of the deposition time. 

5.3.2.2 Deposition properties 

In order to understand the contribution of the deposition mechanisms (the inertia 

impaction and the thermophoresis, and the direct vaopur condensation) on the 
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deposition time) by the three deposition mechanisms as a function of the 

deposition time as shown in Figure 5-12. It is found that the relative accumulated 

deposition mass caused by both the inertia impaction and the thermophoresis 
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by the direct alkali vapour condensation is only accumulated in the initial stage 
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saturation vapour pressure of the alkali phase (NaCl) increases with a rise in the 

deposition surface temperature. When the saturation vapour pressure is high 

enough, the partial pressure of the alkali vapour (NaCl) cannot support the direct 

vapour condensation according to the direct alkali vapour condensation model 
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mass caused by the inertia impaction is almost four times as large as that by 

thermophoresis. The relative accumulated deposition mass caused by the direct 
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the inertia impaction. In addition, it can be seen that the relative accumulated 

deposition mass caused by the inertia impaction is almost eight times as large as 

that by thermophoresis. The relative accumulated deposition mass caused by the 

direct condensation is the smallest, which is hundred times smaller than that 

caused by the inertia impaction. In addition, the contribution of the direct 

condensation (defined as the ratio of the accumulated deposition mass by the 

direct condensation to the total accumulated deposition mass) only accounts for 

approximately 2% in the initial stage and 0.1% in the final stage. 

Therefore, the predicted results suggest that the main deposition mechanisms are 

the inertia impaction and the thermophoresis and the contribution by the direct 

vapour condensation is less significant. In addition, the experimental observations 

of the ash composition in the different layers of the deposit show that the sodium 

content among all the deposit layers is less than that in the original ash and the 

sodium content in the inner layer is larger than that in the outer layers for the 

studied furnace temperature [148], which is consistent with the predicted results 

related to the contribution of the alkali vapour condensation. Wu et al. [189] 

found that the particle depositions, rather than the vapour condensation, are the 

main ash deposition mechanisms in the radiation section for Zhundong coal 

combustion in a pilot-scale combustion test. Leppanen et al. [127] also found that 

the contribution of the direct alkali vapor condensation, which only contributes 

up to 0.01% of the total deposited mass, is insignificant by using a similar direct 

vapour condensation model to that employed in this study. 

However, it should be noticed that the vapour condensation is significant for ash 

deposit formation in the convection section which has a much lower furnace 

temperature than that in the radiation section. Under a lower furnace 

temperature, alkali vapour may behave under the following modes [61, 122, 127]: 

(i) nucleation to generate fume particles; (ii) condensation onto already existing 
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particles; and (iii) direct condensation onto the deposition surfaces. Fume 

particles can enhance the initial ash deposit formation on the cooled superheater 

surfaces by the thermophoretic force [63, 127]; the particle surfaces coated with 

condensed alkali phases could have a higher sticking possibility [122]. Li et al. 

[63] investigated the ash deposit formation of Zhundong coal combustion in a 

down-fired furnace and they found that the fume particles generated by indirect 

alkali vapour condensation could initiate the ash deposit formation under a 

furnace temperature of almost 1073 K and the bulk fly ash particles with a sticky 

surface possibly coated by the condensed alkali vapour phases further enhance 

the ash deposit formation.         

5.3.2.3 Heat transfer properties and deposition growth 

In order to understand the heat transfer abatement with the ash deposit 

formation and growth, the heat flux (including both the predicted results and the 

experimental results) through the deposit as a function of the deposition time is 

shown in Figure 5-13. Generally, it can be observed that the predictions are in 

reasonable agreement with the experimental data. The heat flux significantly 

decreases in the first half an hour and then slowly decreases in the later stages, 

which is consistent with the fact that the initial stage of the ash deposition is 

significant in the heat transfer abatement [65]. This is because the heat 

conductivity of the deposit is quite low in the initial stage due to its high porosity 

and low sintering degree [148, 192, 193], even though the accumulated deposit at 

this stage is not huge compared to that in the later stage, as shown in Figure 

5-12. The average deposit thickness (including both the predicted results and the 

experimental results) as a function of the deposition time is shown in Figure 5-14. 

It can be seen that the predicted deposit thickness shows a lower growth rate 

compared to the experimental data. This may be a result of the underestimation 

of the deposition rate, which can lead to a lower prediction of deposit growth 
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rate. Up to date, it is still a challenge to quantitatively predict the particle 

sticking efficiency, which needs a robust sticking model to take into consideration 

the particle melting behaviour (ash chemistry), particle kinetic energy (particle 

diameter and velocity) and material properties of the particle and deposit surface, 

which will be considered as future work.  

 

Figure 5-13 Comparison of the heat flux through the deposit between the 
predicted results and the experimental data as a function of the deposition 

time. 

 

Figure 5-14 Comparison of the average deposit thickness between the predicted 
results and the experimental data as a function of the deposition time. 
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A dynamic ash deposition model based on inertia impaction, thermophoresis and 
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conversation principles to include the effect of the heat transfer on the deposition 

growth. The particle impaction and sticking behaviours, which are dependent on 

the deposit growth, are investigated. Also, the ash deposition behaviour under 

different furnace temperatures is studied through the developed deposition model.  

The predicted results for the ash deposition behaviour and the heat flux through 

the deposition probe have been compared with the experimental data obtained 

in the pilot-scale furnace. Qualitative agreement is obtained for the heat flux and 

deposit thickness between the predicted results and experimental data. The 

results suggest that ash deposit formation is mainly dictated by the particle 

deposition from the inertia impaction and the thermophoresis under high furnace 

temperatures. The deposition caused by the direct alkali vapour condensation is 

less significant. The overall particle impaction efficiency decreases at the initial 

stage with the deposit growth and stabilised at higher deposition surface 

temperature. This is mainly due to the decrease in the effect of thermophoresis. 

The overall particle sticking efficiency increases with the deposit growth due to 

the increase in the local temperature conditions (particle temperature and the 

deposition surface temperature). The heat flux through the deposition probe 

significantly decreases at first and then slowly decreases as the deposit builds up. 

Also, it is noticed that both the particle impaction and stickiness control the ash 

deposit formation. Much higher sticking efficiency can result in a larger deposition 

rate under a higher furnace temperature, while the calculated overall particle 

impaction efficiency decreases at the initial stage. This is because the deposition 

surface temperature increases to a much higher level under higher furnace 

temperature and this results in a lower thermophoresis influence of the particle 

impaction.  
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Chapter 6: Development of an ash 
deposition indice for boilers 

Summary 

This chapter develops a method to build an indice to predict the overall 

slagging propensities for coals/blends combustion in utility boilers. The 

method is based on the initial slagging routes and the sintered/slagging route. 

Two types of initial slagging routes are considered, namely (i) pyrite-induced 

initial slagging on the furnace wall, and (ii) fouling caused by the 

alkaline/alkali components condensation in the convection section. The 

sintered/slagging route is considered by the liquids temperature (LT), which 

represents the melting potential of the main ash composition. The partial least 

square regression (PLSR) technique, coupled with a cross validation method, 

is employed to obtain the correlation for the ash deposition indice. The results 

obtained show that the developed indice yields a higher success rate in 

classifying the overall slagging/fouling potential in boilers than some of the 

typical slagging indices. The influence of the acid components (SiO2 and 

Al2O3) on the ash deposition prediction is investigated for guiding the mineral 

additives.  

6.1 Introduction 

Considerable progress has been made in the last decades in understanding the 

ash deposition mechanisms of various coals. For example, Eastern US coals, 

such as Illinois and Appalachian coals, have higher concentrations of Fe 
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components than Western US coals [136], and the initial slagging caused by 

the pyrite is one of the main issues related to slagging problems [14, 136, 195]. 

For low rank Western US coals, such as Wyoming and Montana coals, which 

have higher concentrations of alkaline/alkali components than Eastern US 

coals, fouling in the convection section is a serious problem [46, 196, 197]. 

Figure 6-1 shows the main ash deposition mechanisms for US coals in utility 

boilers [21, 27, 136]. Generally, it is regarded that ash deposition can be mainly 

dictated by three different routes: (i) Pyrite-induced initial slagging route 

generates from the pyrite particles due to its large density and low melting 

temperature under a reducing atmosphere on the furnace wall [13, 21, 197]; 

(ii) Fouling-induced initial slagging route generates from the condensation of 

alkali vapours and thermophertic deposition of aerosol/fume particles on the 

superheaters or economizers; (iii) The sintered/slagging route is triggered by 

the molten matrix generated from the major basic components reacting with 

clay and quartz, etc., and the reducing atmosphere can promote this process 

when a high Fe concentration is present in the coal [27, 136]. Furthermore, 

severe slagging in the furnace chamber could increase the furnace exit gas 

temperature (FEGT) and hence this may further aggravate the ash deposition 

in the convection section. Therefore, the severe ash deposition in boilers could 

be triggered by the three different routes and a successful ash deposition indice 

should be capable of predicting the deposit formation from these three 

formation routes. 
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Figure 6-1 Schematic of the ash deposition routes in boilers (modified from [21, 
27, 136]). 

This chapter takes a new approach to build an ash deposition indice for fuel 

slagging propensity analysis. The ash deposition indice takes into consideration 

the multi-ash deposition routes which exist in industrial boilers and the indice is 
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boilers. The sintered/slagging route is predicted by using the overall melting 

potential of the major ash components through the chemical equilibrium 
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alkaline/alkali components is predicted by using the amount of the related basic 

ash components; the known slagging observations for coal combustion in boilers 

are used as the training data to acquire the correlation of the slagging indice. The 

partial least square regression (PLSR) method, coupled with cross-validation, is 
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compared with the field observations for 30 sets of coals/blends combustion in 

boilers as presented in Appendix A. 

6.2 Mathematical models 

 Model assumptions 

(i) Both the Fe2O3 content and total sulphur content are employed to represent 

the pyrite content in the US coals, which can be used to represent the severity of 

the initial slagging route [13, 22]. Therefore, it is assumed that the pyrite-induced 

initial slagging route can be accounted for by the amount of the Fe2O3 content 

and the total sulphur content.  

(ii) The alkaline/alkali content is used to represent the initial slagging route (or 

fouling route) caused by the condensation of the vapour species because the 

alkaline/alkali content is directly related to the accumulation of the fouling 

potential [134] and the alkali content is proportional to the content of the alkali 

phases in the flue gases [19, 20].  

(iii) The SiO2+Al2O3 content is considered in the model. This is because the acid 

components could have dual effects on the slag formation: (a) The high amount 

of acid components could increase the melting point and the viscosity of the ash 

[26], which can decrease the sintered/slagging propensity; (b) The acid 

components could possibly capture the alkali/alkaline components to decrease 

the alkali evaporation into flue gas [19, 20] as well as pyrite to decrease the 

formation of high molten Fe2+-slag and Fe3+-slag [198, 199], that can in turn 

decrease the initial slagging routes. 

(iv) The melting capabilities of the major ash composition under 

oxidizing/reducing atmosphere are employed to represent the sintered/slagging 

route [86]. This assumption is employed for all types of coals. In order to evaluate 
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the melting capability, liquidus temperature (𝐿𝐿𝐿𝐿) is employed and predicted by 

using the chemical equilibrium calculations.  

(v) For those coals with Fe2O3 as the major basic oxide, the deposition is formed 

mainly in the radiant section with the slag rich in the iron content [21]. However, 

for the coals with alkaline/alkali constituents as the major fluxing mineral, serious 

ash deposition (fouling) is observed in the convection section [200]. Hence coal 

ash can be classified into two types, the lignitic and bituminous types of ash [102]. 

For lignitic type ash defined as the amount of either alkaline or alkali components 

being greater than the amount of Fe2O3, only the initial slagging route caused by 

the alkaline/alkali condensation is considered as the major initial slagging route. 

For bituminous type ash defined as the amount of Fe2O3 being greater than the 

amount of alkaline and alkali components, only the initial slagging route caused 

by the pyrite is considered as the major initial slagging route. 

Therefore, based on the above assumptions, the proposed method to build the 

ash deposition indice is developed as follows: for bituminous type coal, the 

liquidus temperatures under the oxidizing atmosphere and the reducing 

atmosphere (𝐿𝐿𝐿𝐿𝑜𝑜 and 𝐿𝐿𝐿𝐿𝑟𝑟), the SiO2+Al2O3 content, the Fe2O3 content and the 

total sulphur content can be employed as the independent variables; for lignitic 

type coal, the liquidus temperatures under oxidizing atmosphere and reducing 

atmosphere, the SiO2+Al2O3 content, and the alkaline/alkali content can be 

employed as the independent variables. The overall slagging/fouling observations 

can be employed as the dependent variable. The partial least square regression 

(PLSR) technique, coupled with a cross validation method, is employed to obtain 

the correlation for the indice. This is because (a) in this work, the data of slagging 

observations is limited and the independent variables in the method to build the 

ash deposition indice are highly correlated, and (b) the PLSR method is 

specifically designed to deal with multiple regression problems where the number 
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of observations is limited and the correlations between the independent variables 

are high [201]. 

 Prediction of the liquidus temperature 

The liquidus temperature is the temperature at which the first solid phase just 

starts to precipitate on the cooling of a slag-liquid oxide melt [138]. The 

temperature is predicted based on the major ash composition (Al2O3, SiO2, Fe2O3, 

CaO, and MgO) by using the chemical thermodynamics software FactSage 6.4 

[138]. The software is based on the minimization of the Gibbs free energy from 

the system subject to the mass balance constraints [177, 178]. 

The calculations were performed by using the equilibrium module together with 

the databases ELEM, FToxid, FTsalt and FACTPS. The slag model chosen in 

the calculations was the 'SLAGA' with possible 2-phase immiscibility [138]. Five 

major ash components (Al2O3, SiO2, Fe2O3, CaO, and MgO) were included in the 

calculations; for lignite, Na2O is also included due to its high amount; K2O is 

excluded due to its low amount in the ash; however, the other components (SO3 

and P2O5) were also neglected due to the fact that S and P are volatile under 

high temperatures observed near the liquidus temperature [138]. It was assumed 

that all Fe was in the Fe3+ state under the oxidizing atmosphere because a large 

portion of iron is in the Fe3+ state for oxidizing conditions [202] and both the 

Fe2+ and Fe3+ states were considered under the reducing atmosphere. 
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 PLSR and Cross-Validation 

The Partial Least-Squares Regression (PLSR) technique is a mathematical 

technique that generalizes and combines features from multiple regression and a 

principal component analysis [203, 204]. Therefore, PLSR is able to analyse data 

of larger and highly correlated multivariate systems and it has a higher prediction 

ability than those obtained with multiple regression [203, 205], which is suitable 

for the present work because of the high correlation coefficients among the 

independent variables (liquidus temperature, Fe2O3, and alkaline/alkali 

components). The one-at-a-time form of cross-validation method, which is a 

criterion to calculate the predicted error in the sum of the squares when leaving 

out a single observation, is often employed to determine the stopping criterion 

and the number of latent variables in the PLSR method [201, 203-205]. In this 

work, the algorithm of the PLSR, coupled with the cross-validation, is analysed 

and developed based on the Matlab platform as shown in Figure 6-2. For more 

details about the PLSR and cross-validation method, see [201, 203-208]. 

 

Figure 6-2 The algorithm for the PLSR coupled with cross-validation. 

First step, data preparation: create the centred 
and normalised predictor and response matrix. 

Second step, calculate the first set of 
components and the regression correlation.  

Third step, calculate the 𝜂𝜂𝑅𝑅ℎ set of components 
and the regression correlation.  

Fourth step, check the stopping 
criterion. 

𝑄𝑄ℎ
2 ≥ 0.0975 

Final step, calculate the final regression 
correlation between the original predictor and 
response data. 

No 
Yes, (𝜂𝜂 + 1) iteration 
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The first step is to create the predictor and response matrices, 𝑋𝑋 (∈ 𝑅𝑅𝑖𝑖×𝑡𝑡) and 𝑌𝑌 

(∈ 𝑅𝑅𝑖𝑖×1). Then these two matrices are centered and normalized, 𝐸𝐸0 = (𝜀𝜀𝜂𝜂𝑖𝑖)𝑖𝑖×𝑡𝑡 

and 𝐹𝐹0 = (𝑓𝑓𝜂𝜂)𝑖𝑖×1, respectively, which corresponds to giving the variables 𝑋𝑋 and 𝑌𝑌 

the same prior importance and weights in the analysis [201].  

The second step is to calculate the first set of components (weight vectors, score 

vectors and loading vectors), which is defined as follows [201, 203]: 

𝑂𝑂𝑏𝑏𝑖𝑖𝑅𝑅𝑐𝑐𝑅𝑅𝜂𝜂𝑎𝑎𝑅𝑅 𝑓𝑓𝑢𝑢𝑖𝑖𝑐𝑐𝑅𝑅𝜂𝜂𝑜𝑜𝑖𝑖: 𝜃𝜃1 = ‖‖𝐸𝐸0
𝑇𝑇𝐹𝐹0‖‖ → 𝑚𝑚𝑖𝑖𝑥𝑥 (6-1) 

 𝑤𝑤1 =
𝐸𝐸0

𝑇𝑇𝐹𝐹0

‖‖𝐸𝐸0
𝑇𝑇𝐹𝐹0‖‖

 (6-2) 

𝑅𝑅1 = 𝐸𝐸0𝑤𝑤1 (6-3) 

where 𝜃𝜃1is the objective function, 𝑤𝑤1 is the first weight vector of 𝐸𝐸0, and 𝑅𝑅1 is 

the first score vector of 𝐸𝐸0. The initial regression equation, which is used to 

predict 𝐸𝐸0 and 𝐹𝐹0 from  𝑅𝑅1, can be determined as follows [201, 203]: 

𝐸𝐸0 = 𝑅𝑅1(
𝐸𝐸0

𝑇𝑇𝑅𝑅1

‖𝑅𝑅1‖2)𝑇𝑇 + 𝐸𝐸1 (6-4) 

𝐹𝐹0 = 𝑅𝑅1(
𝐹𝐹0

𝑇𝑇𝑅𝑅1

‖𝑅𝑅1‖2)𝑇𝑇 + 𝐹𝐹1 (6-5) 

where 𝐸𝐸1 and 𝐹𝐹1 are the residual matrices.  

The third step, which is the iteration step, is to calculate the following set of 

components by using 𝐸𝐸𝜂𝜂 and 𝐹𝐹𝜂𝜂 to replace 𝐸𝐸𝜂𝜂−1 and 𝐹𝐹𝜂𝜂−1 and by repeating the 

calculating processes from Equation (6-1) to Equation (6-5). The Equations (6-4) 

and (6-5) are then transformed into the following [201, 203]: 
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𝐸𝐸0 = 𝑅𝑅1(
𝐸𝐸0

𝑇𝑇𝑅𝑅1

‖𝑅𝑅1‖2)𝑇𝑇 + ⋯ + 𝑅𝑅𝜂𝜂(
𝐸𝐸𝜂𝜂−1

𝑇𝑇 𝑅𝑅𝜂𝜂

‖𝑅𝑅𝜂𝜂‖2 )𝑇𝑇 + 𝐸𝐸𝜂𝜂 (6-6) 

𝐹𝐹0 = 𝑅𝑅1(
𝐹𝐹0

𝑇𝑇𝑅𝑅1

‖𝑅𝑅1‖2) + ⋯ + 𝑅𝑅𝜂𝜂(
𝐹𝐹𝜂𝜂−1

𝑇𝑇 𝑅𝑅𝜂𝜂

‖𝑅𝑅𝜂𝜂‖2 ) + 𝐹𝐹𝜂𝜂 (6-7) 

where 𝑅𝑅𝜂𝜂 is the score vector for 𝐸𝐸𝜂𝜂−1.  

The fourth step is to check the stopping criterion, determine the number of latent 

variables and acquire the final regression correlation. The stopping criterion is 

determined using the one-at-a-time form of the cross-validation method as follows 

[201, 203]: 

𝑄𝑄ℎ
2 = 1 −

𝑆𝑆𝐼𝐼𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆,ℎ

𝑆𝑆𝑆𝑆𝑆𝑆,ℎ−1
≥ 0.0975 (6-8) 

𝑆𝑆𝐼𝐼𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆,ℎ = �(𝐶𝐶𝜂𝜂 − 𝐶𝐶�ℎ(−𝜂𝜂))2
𝑖𝑖

𝜂𝜂=1
 (6-9) 

𝑆𝑆𝑆𝑆𝑆𝑆,ℎ = �(𝐶𝐶𝜂𝜂 − 𝐶𝐶�ℎ𝜂𝜂)2
𝑖𝑖

𝜂𝜂=1
 (6-10) 

where 𝑆𝑆𝐼𝐼𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆,ℎ and 𝑆𝑆𝑆𝑆𝑆𝑆,ℎ are the residual sum of squares according to the cross-

validation method and according to all data sets, respectively, 𝐶𝐶𝜂𝜂 is the actual 

value of the dependent variable in the 𝜂𝜂𝑅𝑅ℎ subset, and 𝐶𝐶�ℎ(−𝜂𝜂)  and 𝐶𝐶�ℎ𝜂𝜂  are the 

predicted values of the dependent variable in the 𝜂𝜂𝑅𝑅ℎ subset according to the one-

at-a-time form of cross-validation method and according to all data sets, 

respectively. If 𝑄𝑄ℎ
2 ≥ 0.0975, then the iteration is continued because adding the 

new set of components can make a clear contribution to the prediction 

performance. If 𝑄𝑄ℎ
2 < 0.0975 at the ℎ𝑅𝑅ℎ iteration, then the iteration is stopped. 

In the final step, the results are as follows [201, 203]: 
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𝐹𝐹0 = (
𝐹𝐹0

𝑇𝑇𝑅𝑅1

‖𝑅𝑅1‖2)𝐸𝐸0𝑤𝑤1
∗ + ⋯ + (

𝐹𝐹ℎ−1
𝑇𝑇 𝑅𝑅ℎ

‖𝑅𝑅ℎ‖2 )𝐸𝐸0𝑤𝑤ℎ
∗ (6-11) 

𝑓𝑓∗ = �(𝛼𝛼𝜂𝜂𝜀𝜀𝜂𝜂

𝑡𝑡

𝜂𝜂=1
) (6-12) 

𝛼𝛼𝑖𝑖 = �(
𝐹𝐹ℎ−1

𝑇𝑇 𝑅𝑅ℎ

‖𝑅𝑅ℎ‖2 )𝑤𝑤ℎ𝑖𝑖
∗

𝑡𝑡

ℎ=1
 (6-13) 

𝑤𝑤ℎ
∗ = �(𝐼𝐼 − 𝑤𝑤𝜂𝜂(

𝐸𝐸𝜂𝜂−1
𝑇𝑇 𝑅𝑅𝜂𝜂

‖𝑅𝑅𝜂𝜂‖2 )𝑇𝑇)𝑤𝑤ℎ

ℎ−1

𝜂𝜂=1
 (6-14) 

where 𝑓𝑓∗  is the predicted value of the centered and normalized dependent 

variable,  𝐼𝐼 is the identity matrix with size 𝑖𝑖 × 𝑖𝑖, and 𝑤𝑤ℎ𝑖𝑖
∗  is the 𝑖𝑖𝑅𝑅ℎ element of 

𝑤𝑤ℎ
∗ . The final results are obtained by preforming the anti-operation of 

normalization. 

6.3 Results and discussion 

 Validation of the sintered/slagging route  

The proposed ash deposition indice uses (i) the amount of the corresponding ash 

composition to represent the initial slagging routes, and (ii) employ the liquidus 

temperature to predict the overall melting potential and to represent the 

sintered/slagging route. Although it is known that the liquidus temperature can 

be used to predict the ash fusion temperature [138, 209], it is still significant to 

validate using the liquidus temperature to represent the sintered/slagging route 

before employing the parameter.  

Slagging experiments in an entrained flow reactor (EFR), which are available in 

the published literature [102, 116], are chosen in this investigation. The 

experiments were undertaken by using a deposition probe with a high surface 

temperature that is placed in the cross section and at the bottom of the EFR to 
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simulate a steady state of deposit formation on the heat exchanger which are 

governed mainly by the cross-flow flue gas streams [84, 102, 116]. Under the 

condition that the probe has a high surface temperature, condensation and 

thermophertic deposition is less important than the inertial impaction and hence 

the sintered/slagging routes are the main mechanisms under this condition [68]. 

The EFR operates with a furnace temperature of approximately 1300 oC and with 

an oxidizing atmosphere at the bottom [102, 116]. The slagging propensity is 

represented by using the energy-based growth rate (GRE), which is calculated as 

the mass of deposit divided by the product of the low heating value and the mass 

of the coal burned in the test [102, 116]. The relative repeatability error of the 

GRE can be up to approximately 20% in the test [102, 116]. Four different kinds 

of coals and their blending (ranging from anthracite to bituminous, sub-

bituminous and lignite) were used [102, 116]. More details related to the 

experimental work can be found in [102, 116]. 

In order to compare the predicted slagging propensity by the liquidius 

temperature with the experimental slagging observation, it should be noted that 

one type of sub-butiminous coal in the original experiments were excluded in this 

study due to its much larger aerodynamic mean diameter than the other four 

types of coals used in this study [116]. Figure 6-3 shows the predicted results of 

the slagging propensity (represented by the slagging ranking, which is defined by 

the ranking of the GRE from low to high among the 10 cases) through using the 

liquidus temperature. The prediction results are in very good agreement with the 

experimental data, which means that it is suitable to employ the liquidus 

temperature to represent the sintered/slagging routes. This is because the 

liquidus temperature can indicate the melting potential of the main ash 

composition and the melting potential determines the sticking process in the 

sintered/slagging routes. 
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 Figure 6-3 Comparison of the slagging propensity between the predicted 
ranking and experimental ranking. 

 Application to boilers 

Two representative cases of utility coals have been investigated: (i) Case 1 is the 

Eastern US bituminous coals/blends combusted in T-fired boilers; (ii) Case 2 is 

the Western US sub-bituminous or lignite coals/blends combusted in opposed-

wall boilers. In this section, the results of the newly developed slagging indice 

predictions for the two cases are analysed. 

Case 1 contains 13 sets of coal combustion data (including data for 6 sets of coal 

blends); Case 2 contains 17 sets of coal combustion data (including data for 10 

sets of coal blends). The range of coals and ash properties for the 30 sets of US 

coals/blends studies are presented in Appendix A. Bituminous coals have a higher 

Fe2O3, SiO2 and Al2O3 contents compared to low rank coals but a lower content 

CaO and MgO contents. Both bituminous and sub-bituminous coals have low 

Na2O and K2O contents contrary to lignites that have higher levels of Na2O. 

Slagging observations in boilers are evaluated by using not only the field 

performance data in the radiation and convection sections based on FEGT, soot 

blowing frequency increase, heat transfer rate, etc., but also periodic visual 

examinations of the deposit strength/ease of removal. The degrees of the slagging 

observations, ranging from no slagging to severe slagging, are represented using 
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the values from 0 to 1. Also the field slagging observations can be classified into 

four groups: low slagging ˂ 0.4; 0.4 ≤ medium slagging ≤ 0.6; 0.6 ˂ high slagging 

≤ 0.9; severe slagging ˂ 0.9. 

Based on the ash compositions listed in Appendix A, the ash deposition indice 

for the bituminous type is calculated in Case 1 and the ash deposition indice for 

the lignitic type is calculated in Case 2. The training data, which cover fuels of 

low, medium and high slagging propensities, contain less than half of the total 

data set and therefore the testing data contain more than half of the total data 

set. The obtained linear correlations of the ash deposition indice, 𝐼𝐼_𝑑𝑑 , by 

performing the PLSR and Cross-Validation calculations are as follows: 

Case1: 𝐼𝐼_𝑑𝑑 = 4.75 + 10−4 × (−11.1 ∗ 𝐿𝐿𝑇𝑇𝑜𝑜 − 7.85 ∗ 𝐿𝐿𝑇𝑇𝑖𝑖) − 2.06 ×

10−2 ∗ (𝑆𝑆𝜂𝜂𝑂𝑂2 + 𝐴𝐴𝑎𝑎2𝑂𝑂3) + 10−2 × (2.06 ∗ 𝐹𝐹𝑅𝑅2𝑂𝑂3 + 10.2 ∗ 𝑆𝑆𝑢𝑢𝑎𝑎𝑓𝑓𝑢𝑢𝑖𝑖) (6-15) 

Case2: 𝐼𝐼_𝑑𝑑 = 2.19 + 10−4 × (−5.79 ∗ 𝐿𝐿𝑇𝑇𝑜𝑜 − 3.42 ∗ 𝐿𝐿𝑇𝑇𝑖𝑖) − 6.31 ×

10−3 ∗ (𝑆𝑆𝜂𝜂𝑂𝑂2 + 𝐴𝐴𝑎𝑎2𝑂𝑂3) + 3.53 × 10−3 ∗ (𝐶𝐶𝑖𝑖𝑂𝑂 + 𝑀𝑀𝑔𝑔𝑂𝑂) + 7 × 10−3 ∗
(𝑁𝑁𝑖𝑖2𝑂𝑂 + 𝐾𝐾2𝑂𝑂) 

(6-16) 

For both cases, the liquidus temperature and 𝑆𝑆𝜂𝜂𝑂𝑂2 + 𝐴𝐴𝑎𝑎2𝑂𝑂3  have negative 

coefficients, which implies that the predicted slagging observation will decrease 

with an increase in the liquidus temperature and 𝑆𝑆𝜂𝜂𝑂𝑂2 + 𝐴𝐴𝑎𝑎2𝑂𝑂3. However, the 

parameters related to the initial slagging routes (𝐹𝐹𝑅𝑅2𝑂𝑂3, 𝑆𝑆𝑢𝑢𝑎𝑎𝑡𝑡ℎ𝑢𝑢𝑖𝑖, CaO+MgO and 

Na2O+K2O) have a positive coefficient which means that the predicted 

slagging/fouling observation increases with a higher content of these four 

parameters.  

Figure 6-4 shows a comparison of the predicted and experimental slagging 

observations and the prediction errors. It can be found that, (i) the predicted 

results are close to the experimental results for both the training data and testing 

data, and (ii) the slagging predictions of the coal blends do not largely deviate 
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from the slagging observations. It is difficult to obtain a very close agreement 

between the predictions and the experimental value of the slagging propensities. 

This is because the slagging indice is developed through an ash chemistry aspect 

and, the combustion condition in furnaces is ignored. It should be noted that, for 

Case 1, several predicted slagging values are larger than one, which represents 

the severe slagging issue. In addition, the uncertainty of the predictions may be 

attributed to the number in the training data set. In the calculations, the numbers 

from 5 to 9 have been tested. The predicted average relative errors range from 

16.8% to 19.3% for Case 1 and from 9.0% to 9.4% for Case 2, which indicates 

that the prediction performance may not be greatly affected by the number of 

the training data. Figure 6-5 illustrates a comparison between the predicted 

performance of the ash deposition indice, 𝐼𝐼_𝑑𝑑 in this study and some of the 

conventional slagging indices based on the ranked slagging observations. It can 

be observed that the ranking for the accuracy of the prediction performance from 

high to low is 𝐼𝐼_𝑑𝑑 > 𝐼𝐼_𝐹𝐹𝑅𝑅2𝑂𝑂3>𝐼𝐼_𝑆𝑆𝜂𝜂 = 𝐼𝐼_𝐵𝐵/𝐴𝐴 > 𝐼𝐼_𝐵𝐵/𝐴𝐴 × 𝑆𝑆 > 𝐼𝐼_𝑆𝑆𝜂𝜂/𝐴𝐴𝑎𝑎 for Case 1 

and 𝐼𝐼_𝑑𝑑  >𝐼𝐼_𝑆𝑆𝜂𝜂  >  𝐼𝐼_𝑆𝑆𝜂𝜂/𝐴𝐴𝑎𝑎  >  𝐼𝐼_𝐹𝐹𝑅𝑅2𝑂𝑂3 >  𝐼𝐼_𝐵𝐵/𝐴𝐴  >  𝐼𝐼_𝐵𝐵/𝐴𝐴 × 𝑆𝑆  for Case 2, where 

𝐼𝐼_𝐹𝐹𝑅𝑅2𝑂𝑂3, 𝐼𝐼_𝑆𝑆𝜂𝜂, 𝐼𝐼_𝐵𝐵/𝐴𝐴, 𝐼𝐼_𝐵𝐵/𝐴𝐴 × 𝑆𝑆 and 𝐼𝐼_𝑆𝑆𝜂𝜂/𝐴𝐴𝑎𝑎 represent the slagging indice of 

𝐹𝐹𝑅𝑅2𝑂𝑂3 content, 𝑆𝑆𝜂𝜂𝑂𝑂2/(𝑆𝑆𝜂𝜂𝑂𝑂2 + 𝐹𝐹𝑅𝑅2𝑂𝑂3 + 𝐶𝐶𝑖𝑖𝑂𝑂 + 𝑀𝑀𝑔𝑔𝑂𝑂) , 𝐵𝐵𝑖𝑖𝑠𝑠𝜂𝜂𝑐𝑐 𝑐𝑐𝑜𝑜𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅 𝐴𝐴𝑐𝑐𝜂𝜂𝑑𝑑 𝑐𝑐𝑜𝑜𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅⁄ , 

𝐼𝐼_𝐵𝐵/𝐴𝐴 ×  𝑠𝑠𝑢𝑢𝑎𝑎𝑓𝑓𝑢𝑢𝑖𝑖 𝑐𝑐𝑜𝑜𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅 and 𝑆𝑆𝜂𝜂𝑂𝑂2/𝐴𝐴𝑎𝑎2𝑂𝑂3 [102, 116]. It was found that 11 out of 13 

coals with an accuracy of 85% and 15 out of the 17 coals with an accuracy of 

88% evaluated in Cases 1 & 2, respectively, were accurately predicted for slagging 

propensity by the proposed indice, 𝐼𝐼_𝑑𝑑. In contrast, conventional slagging indices 

have limited success rates, ranging from 1 to 7 for Case 1 (out of 13) with 

accuracies ranging from 8% to 54% and 0 to 12 for Case 2 (out of 17) with 

accuracies ranging from 0% to 71%. Therefore, the indice built by considering 

multi-slagging routes yields a higher success rate in classifying the overall 

slagging/fouling potential in boilers than that of the typical slagging indices. 
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Figure 6-4 Comparison of the slagging propensity between the predicted and 
experimental values and the prediction errors. 
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Figure 6-5 Comparison of the prediction performance among the 𝐼𝐼_𝑑𝑑 and five 

slagging indices. 

In addition, Figure 6-6 shows the predicted values using the new indice for Case 

1 and Case 2 defined in Equation (6-15) and (6-16) earlier versus the field slagging 

observations. It can be observed that the predicted value in the proposed ash 

deposition indice increases with the increasing value of the experimental slagging 
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observations, which indicates that both the initial slagging routes and the 

sintered/slagging route increase with the field slagging/fouling observations 

classification. This is because the coexistent dual slagging (alkali vapour induced 

slagging and the overall melting induced slagging) inevitably occurs in boilers 

and dictates the overall slagging behaviours [210]. In addition, due to the negative 

coefficients in the correlations of the developed slagging indices the predicted 

values (liquidus temperature and SiO2+Al2O3) are negative. 
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Figure 6-6 The predicted values in the proposed indice by the Liquidus 
temperature, SiO2+Al2O3, pyrite for Case 1, and alkali+alkaline for Case 2 

versus the field slagging observations. 

 Sensitivity of the method 

Adding mineral additives is common practice in order to control the slagging and 

fouling problems in boilers. Therefore, the influence of adding acid components 
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to coals that show higher deposition potential was investigated by using the 

developed ash deposition indices in order to test the sensitivity of the developed 

method. 

Either SiO2 or Al2O3 was added as an additive to three easy slagging/fouling US 

coals and the predicted values of the indice are plotted against the added SiO2 or 

Al2O3 content of the fuel and the ratio SiO2/Al2O3 as shown in Figure 6-7. The 

sensitivity study indicates that by adding either SiO2 or Al2O3 can reduce the 

predicted slagging potential. This is because the added acid components could 

reduce the melting potential due to the increase in the liquidus temperature. In 

addition, the acid components could capture the alkali/alkaline vapour phase to 

decrease the condensation potential. Also the analysis shows that the value of the 

predicted slagging potential decreases more rapidly by using Al2O3 than when 

adding SiO2. Van Dyk et al. [106] and Li et al. [211] also found that Al2O3 is more 

effective than SiO2 due to its higher ability to increase the ash fusion temperature 

than that of SiO2. However, the analysis shown in the right section of Figure 6-8, 

indicates an opposite trend corresponding to the ratio SiO2/Al2O3 when adding 

SiO2 compared to adding Al2O3. It is noticed that Song et al. [209] found that 

ash fusion temperatures (AFTs) are increased with increasing the ratio 

SiO2/Al2O3 from the fusion experiments and chemical equilibrium calculations. 

However, Liu et al. [46] found that AFTs are decreased with increasing the ratio 

SiO2/Al2O3 from the fusion experiments. This is because, see Ref. [209], the SiO2 

was added into the ash with a relatively low CaO content (approximately 15%) 

and adding the SiO2 can lead AFTs to move from the low temperature region 

into the high temperature region [209]; However, see [212], when the SiO2 is added 

into the ash with relatively high CaO content (approximately 40%) the added 

SiO2 can react with CaO to generate the low-melting anorthite and gehlenite and 

this leads the AFTs to move from a high temperature region to a low temperature 

region [212]. In this study, all the three coals with higher slagging propensity 
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have relatively low/medium CaO content (ranging from 2.9% to 21.8%) and 

adding either SiO2 or Al2O3 could increase the liquidus temperature from the 

chemical equilibrium calculations.  
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Figure 6-7 Values of the proposed indice as a function of the added SiO2 or 
Al2O3 mass fraction of the fuel and as a function of the ratio SiO2/Al2O3. 

In addition, further calculations, using chemical equilibrium methods, were 

undertaken to investigate the influence of the ratio SiO2/Al2O3 on the melting 

potential. In the calculations: (i) in addition to the three coals tested in this 

study, coal ashes from [209] and [212] were chosen; (ii) the ratio SiO2/Al2O3 is 

considered by changing the individual amounts of SiO2 and Al2O3 simultaneously, 

holding the total sum (SiO2 + Al2O3) as constant. Figure 6-8 shows the effect of 

the ratio SiO2/Al2O3 on the liquidus temperature. It can be observed that, 

basically, the liquidus temperature decreases with increasing the ratio SiO2/Al2O3 
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for all coal ashes, which means that ash fusion and slagging potential are 

increased with an increase in the ratio SiO2/Al2O3. This is because the Al2O3 

content increases with a decrease in the ratio SiO2/Al2O3 when the total amount 

of SiO2 and Al2O3 is not changed and the melting temperature could increase 

more rapidly with higher content of Al2O3. Careful consideration of all scenarios 

is required when using the parameter (ratio SiO2/Al2O3) to predict the melting 

behaviours and slagging potential. Both the ash composition of the original coal 

and the way in which the ratio SiO2/Al2O3 changes can influence the effect of the 

ratio SiO2/Al2O3 on the fusion and slagging potential. 
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Figure 6-8 Effect of the ratio SiO2/Al2O3 on the liquidus temperature. 

 Remarks on the implementation of the method 

In this chapter, a new method is developed based on the ash chemistry, without 

considering the complex particle transport and rebounding mechanisms, to build 

an ash deposition indice for firing US coals and their blends in boilers. The 

predicted results of the developed indice and five other existing slagging indices 

have been compared with the slagging observations for the 30 US coals/blends 

with a history of ash deposition issues. The indice built by using the proposed 

method yields a higher success rate in classifying the overall slagging/fouling 
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potential in boilers than those existing slagging indices. It is postulated that this 

method has a potential to be used as an alternative tool to build an ash deposition 

indice for industrial use with a better prediction performance compared to 

existing slagging indices. In addition, an advantage of this method is that the 

newly developed indice based on the known slagging/fouling history from 

multiple boiler units makes it more suitable for different boiler configurations and 

coal types, although some of the aspects regarding the ash chemistry need to be 

further investigated in order to improve the accuracy and extend the application 

range of the proposed method. Without addressing the specific conditions in a 

boiler, the performance of a predictive method could be less accurate [23]. The 

index reported in this study does not consider the combustion conditions 

explicitly in its formulation and this may be limited to the conditions observed 

in the units used to validate the index. Incorporating changes in combustion 

conditions could be an ideal path moving ahead to further improve the accuracy 

of this index.  

It should be noted that the initial slagging route caused by the pyrite is 

represented by the contents of Fe2O3 and sulphur for US coals since they are 

known to contain iron, predominantly in the form of pyrite [22]. The distribution 

of pyrite within the coal samples is important to predict the ash deposition 

behaviour. Excluded pyrite could generate molten phases under lower 

temperature and under a reducing atmosphere [13, 14, 21, 27]. High density and 

the spherical shape of the molten phases facilitate their arriving at the furnace 

wall surface [13]. The included pyrite may react with the clay or quartz minerals 

to generate the aluminosilicate slag [14, 22]. However, siderite may be the 

dominant iron-bearing mineral for many other coals, such as South African and 

Australian coals. Although some researchers considered that in addition to pyrite, 

its contribution to deposit formation [22, 68] needs further investigation. 

Furthermore, it should be noted that this study accounts for all of the 
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alkaline/alkali species as active contributors to condensation formation and this 

is primarily for low rank coals where the alkaline/alkali species are organically-

bound [23, 27]. However, not all of the alkaline/alkali components are considered 

as active forms, except for those leachable by water and weak acids [23, 113, 210]. 

Taking into consideration these factors could increase the accuracy of predicting 

deposit formation from alkali condensation. Also, it should be noted that the ash 

loading, which can affect the deposit accumulation in boilers [50], is not 

considered in the proposed slagging indice because there is no significant 

difference in the ash loading for the tested US coals. However, if there exists a 

great difference in the ash loading, the parameter should be considered in the 

prediction model and this can be done by using the value of the ash compositions/ 

ash loading to replace the existing value of the ash compositions [50, 136]. 

6.4 Conclusions 

A novel method to build an indice is developed and used for predicting the overall 

slagging/fouling potential of coal/blends combustion in boilers. The method 

couples the initial slagging route caused either by pyrite or by alkaline/alkali 

components and the sintered/slagging route. The initial slagging route is 

predicted based on the corresponding ash components and the sintered/slagging 

route is predicted based on the overall melting potential using the liquidus 

temperature calculated from chemical equilibrium methods. Utilizing the 

available slagging observation data from US coal fired boilers, PLSR coupled with 

the cross validation method was employed to develop the new ash deposition 

indice. 

It should be noted that both SiO2 and Al2O3 can reduce the slagging potential, 

but the drop in slagging propensity is more significant by adding Al2O3 compared 

to SiO2 as confirmed by the chemical equilibrium calculations. Finally, using the 
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ratio SiO2/Al2O3 alone to predict the melting behaviours and slagging potential 

of coals is inaccurate owing that the ratio SiO2/Al2O3 alone cannot dictate the 

overall melting behaviour. The proposed method has been validated against the 

field performance of slagging observations on 30 sets of US coals/blends 

combusted in utility boilers. The results obtained indicate that the developed 

indice shows a much higher success rate for ranking the overall slagging potential 

in boilers than the other five conventional slagging indices. 
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Chapter 7: Conclusions and future 
work 

In the first half of this century, pulverised coal-fired power generation 

technologies will play a significant role in satisfying the electricity demands 

worldwide, especially for the developing countries. Fuel flexibility (coal blending, 

co-combustion, new fuels, etc.) is one of the major factors in determining the 

operation of the power stations. However, changing fuels may lead to the change 

in the ash deposition behaviours. Ash deposit formation can reduce the heat 

transfer and it may even trigger the unscheduled shutdown of the combustion 

systems. Therefore, development of ash deposition prediction models is very 

significant and useful in order to maintain the fuel flexibility of the combustion 

systems and ensure an efficient operation and optimization of boilers. The work 

in this thesis has focused on developing models through using CFD methods and 

ash deposition indices in order to predict the ash deposit formation and its 

propensity. The summary of the conclusions is presented in Section 7.1 and the 

recommendations for future work are discussed in Section 7.2. 

7.1 Conclusions 

 Steady CFD prediction of ash deposit formation 

Predicting particle impaction and sticking behaviours is significant in order to 

accurately estimate the ash deposit formation in CFD methods. Accurate 

prediction of the particle impaction behaviour is a prerequisite step for predicting 

ash deposit formation and validating the accuracy of the particle sticking model. 

However, an extremely fine grid is needed to accurately predict the particle 
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impaction behaviour and this requirement is difficult to be satisfied in the 

simulation of an industrial boiler. In Chapter 4, a new ash deposition model has 

been developed which is based on the revised particle impaction model and 

particle sticking model.  

Reasonably good agreement was obtained between the predicted results and the 

experimental data and it is demonstrated that the proposed particle impaction 

model, which takes account of both the effect of particle interception and errors 

in the particle impaction prediction when a coarse computational mesh is 

employed, can reduce the numerical related errors in the ash deposition prediction 

using a reasonable coarse computational mesh for the combustion process 

simulation. In addition, through using the revised particle impaction model, 

particles with small Stokes numbers (especially less than one) require a significant 

correction to the particle impaction efficiency when a reasonably coarse mesh is 

employed. The impact correction factor approaches unity for particles with larger 

Stokes number (greater than one) and therefore using a relatively coarse mesh 

could be acceptable.  

The deposition rate is determined by both the particle impaction and sticking 

behaviours. With an increase in the co-firing ratio of the PKE, the deposition 

efficiency firstly increases in the co-firing ratio range 0% to 40% and then reduces 

at the co-firing ratio of 60%. This is because the overall impaction efficiency 

increases with increasing the co-firing ratio, whilst the overall stickiness efficiency 

reduces at the co-firing ratio of 60% because of the melting behaviours of the 

fuels.  

 Dynamic CFD prediction on ash deposit formation 

Ash deposit formation behaviour on a cooled ash deposition probe is time-

dependent. This is because the particle impaction and sticking behaviours are 

time-dependent during the ash deposit formation process. In addition, the 
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contribution of different ash deposition mechanisms on the deposit formation is 

dependent on the local thermal boundary conditions near the deposition surface. 

In Chapter 5, a dynamic ash deposition model has been developed. The developed 

dynamic ash deposition model is based on the inertia impaction, the 

thermophoresis and the direct alkali vapour condensation and incorporates the 

influence of the heat transfer rate.  

By using the dynamic ash deposition model, as the deposition time increases, the 

particle impaction efficiency decreases and the sticking efficiency increases due to 

the thermophoresis and the local temperature conditions. This suggests that small 

particles are more difficult to impact on the deposition surface in the later stages 

than in the early stages and the impacting particles are easier to stick on the 

deposition surface in the later stages than in the early stages.  

The main ash deposit formation is dictated by the inertia impaction and the 

thermophoresis under high furnace temperatures for the Zhundong lignite 

combustion while the deposition caused by the direct alkali vapour condensation 

is less significant. The heat flux through the deposition probe significantly 

decreases at first and then slowly decreases as the deposit builds up due to the 

variation of the deposit surface temperature and the deposit thermal conductivity. 

A higher furnace temperature can increase the deposition rate because of the 

higher particle sticking efficiency. In addition, the heat flux through the 

deposition probe is larger under a higher furnace temperature. 

 Slagging indice 

The ash deposition indice provides a relatively simple and practical method to 

estimate the ash deposition propensities for engineers without much CFD 

knowledge. It can be very useful to develop a method to build the ash deposition 

indice based on the multi-slagging routes and the overall slagging observation 

data directly from the utility boilers. In Chapter 6, a new method has been 
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developed for the ash deposition indice to predict the overall slagging propensities 

for coals/blends combustion in utility boilers.  

Based on the multi-slagging routes (the initial slagging routes and the 

sintered/slagging route), the developed indice yields a higher success rate in 

classifying the overall slagging/fouling potential in boilers than some of the 

typical slagging indices. Both SiO2 and Al2O3 can reduce the slagging potential, 

but the drop in slagging propensity is more significant by adding Al2O3 compared 

to SiO2. Using the ratio SiO2/Al2O3 alone to predict the melting behaviours and 

slagging potential of coals is inaccurate, and this is due to the ratio SiO2/Al2O3 

alone not being able to dictate the overall melting behaviour. 

7.2 Recommendations for future work 

 CFD methods 

(i) Currently, the ash deposition models have been applied for the lab-scale and 

pilot-scale combustors. Due to the lack of utility boiler data (boiler design, 

operational conditions, etc.), CFD simulation of ash deposit formation in boilers 

has not been investigated in this thesis. Currently, although there are some 

publications on modelling ash deposit formation in boilers, most of the particle 

sticking models cannot consider the multi conditions in the boilers. The gas flow 

and temperature conditions and particle states are very different between the 

radiation and the convection sections.  Therefore, a further development and 

validation of the ash deposition models for full-scale boilers is suggested. 

(ii) Biomass, which is a sustainable fuel, unlike fossil fuels, is regarded as being 

CO2-neurality. Therefore, the development of ash deposition models for biomass 

combustion is suggested. Biomass has significant different inorganic compositions 

than those in coal. Therefore, the biomass particle properties (particle size, ash 

composition, etc.) and the sticking process of biomass particles should be carefully 
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taken into consideration in order to develop the ash deposition model. Although 

the ash deposition model for co-combustion of South African coal (SAC) and 

palm kernel expeller and South African coal has been developed in the current 

studies, ash deposition models should be developed and validated for more 

biomass types. On the other hand, oxy-fuel combustion technology is regarded as 

a highly interesting option for CO2 capture among the different carbon capture 

technologies. Uncertainties still exist in the ash deposit formation due to the 

difference in the combustion conditions in oxy-fuel combustion (temperature, 

velocity, and gas atmosphere, etc.). Therefore, the current ash deposition models 

should be further developed to include these factors for oxy-fuel combustion. 

(iii) Currently, the dynamic ash deposition model neglects the shape of the 

deposit and its influence on the deposit boundary conditions. Also, the variance 

of the deposit shape may have an influence on the particle impaction and sticking 

behaviours. Therefore, the further development of the dynamic ash deposition 

model is suggested to include the change of deposit shape by using the dynamic 

meshing strategy.  

(iv) Ash deposit formation is dictated by the gas temperature and velocity, 

particle properties (particle diameter, density, velocity, and ash composition), 

and deposit surface condition (surface temperature and deposit properties). It is 

very interesting to build a connection and relationship between (i) the fly ash 

properties and gas properties, and (ii) the deposit properties based on the 

experimental work and the modelling work. Ideally, it can be very practical and 

useful to only use the information of the fly ash properties and the gas properties 

to predict the ash deposition properties without undertaking complicated 

deposition experiments.  

(v) Ash shedding is another significant physical phenomenon in the later stage of 

ash deposit formation. It can be caused by the liquid flow at the deposit surface, 
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erosion, gravity shedding, soot blowing, etc. It is very important to develop an 

ash shedding sub-model in the ash deposition model to determine the stable state 

of the ash deposit formation. 

 Ash deposition indice 

Currently, the ash deposition indice uses the overall ash composition and divides 

coal ash into two ash types in order to assume the occurrence of different ash 

compositions in the coal. Therefore, it is suggested to apply the direct mineral 

composition in coal (to replace the overall ash composition) to better represent 

the multi-slagging routes. On the other hand, the combustion conditions in boilers 

is neglected as well in the current ash deposition indice, which may affect the 

accuracy of the current indice. Therefore, adding the combustion conditions of 

the utility boilers (furnace temperature, energy input/boiler size, flue gas 

composition, etc.) into the current ash deposition indice is suggested. 
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Table A-1 Coal ash properties and slagging observations (* represents coal 

blending). 

data 
Sulphu
r (ar 
%) 

Ash (%) Slagging  
data SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O 

1 0.87 55.91 28.36 6.16 1.43 0.95 2.52 0.28 0.1 

2 0.44 55.48 24.02 6.47 3.94 0.67 1.22 1.28 0.1 

3 1.4 50.12 28.68 11.28 2.35 0.94 2.28 0.57 0.5 

4 1.25 53.14 23.01 13.06 2.25 1.01 2.6 1.13 0.7 

5 2.69 52.46 20.46 16.78 2.34 0.89 2.31 0.7 1 

6* 1.57 53.97 22.24 11.63 3.14 0.78 1.77 0.99 0.85 

7 2.38 46.08 22.83 14.97 5.56 1.09 1.55 0.98 1 

8 2.26 44.77 23.83 22.12 2.79 1 2.53 0.26 1 

9* 0.97 55.22 27.02 7.88 1.64 0.97 2.54 0.49 0 

10* 1.07 54.53 25.68 9.61 1.84 0.98 2.56 0.7 0.3 

11* 0.85 54.31 23.51 9.77 3.1 0.84 1.91 1.2 0.3 

12* 1.6 50.34 26.1 14.14 2.11 0.98 2.53 0.27 0.8 

13* 1.78 54.19 24.41 11.47 1.89 0.92 2.42 0.49 0.8 

14 0.35 36.05 8.32 5.46 15.42 3.99 0.73 7.16 0.85 

15 0.31 34.31 17.6 5.56 16.97 3.92 0.52 6.7 0.8 

16 0.38 36.53 18.24 5.59 16.73 3.74 0.42 7.26 0.65 

17 0.28 32.17 16.36 4.03 21.92 6.47 0.51 0.98 0.8 

18* 0.71 41.8 22.5 8.51 13.79 2.82 1.46 1.03 0.5 

19* 0.48 38.19 19.83 7.28 18.39 3.7 1.06 1.24 0.5 

20* 1.15 39.12 18.66 14.73 14.22 2.79 1.13 1.04 0.75 

21* 0.7 36.63 17.65 10.69 18.73 3.7 0.87 1.26 0.75 

22 0.36 35.88 17.14 5.27 18.55 3.92 0.46 6.61 0.75 

23 0.38 37.69 16.74 5.43 17.67 4 0.3 6.34 0.7 

24 0.25 34.4 17.1 5.9 21.8 5 0.5 1.6 0.85 

25* 0.65 40.97 21.89 8.23 14.85 3.02 1.37 1.07 0.5 

26* 0.59 40.1 21.24 7.93 15.96 3.23 1.27 1.13 0.5 

27* 0.54 39.17 20.55 7.62 17.14 3.46 1.17 1.18 0.5 

28* 1.03 38.54 18.43 13.79 15.27 3 1.07 1.09 0.75 

29* 0.92 37.94 18.18 12.81 16.36 3.22 1.01 1.14 0.75 

30* 0.81 37.3 17.92 11.77 17.51 3.46 0.94 1.2 0.75 
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Appendix B 

This appendix outlines the algorithm of the dynamic ash deposition model used 

in the User Defined Functions. It contains the submodels to predict the deposition 

rate and deposit properties, which provides the guideline to reproduce the 

dynamic ash deposition model. 

B1 Deposition rate 

The deposition rate is calculated by the deposition by the inertia impaction, the 

thermophoretic force and the direct alkali vapour condensation. Therefore, the 

deposition rate is the summation of the deposition of these deposition mechanisms 

[125, 127]: 

𝑑𝑑𝑅𝑅𝑑𝑑𝑅𝑅𝑡𝑡

𝑑𝑑𝑅𝑅
= 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝜂𝜂𝑎𝑎𝑖𝑖𝑎𝑎𝜂𝜂𝑠𝑠𝑅𝑅𝜂𝜂𝑐𝑐𝑠𝑠 + 𝐼𝐼𝑎𝑎 (B-1) 

where 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝜂𝜂𝑎𝑎𝑖𝑖𝑎𝑎 is the flow flux of the arrival ash particles due to the inertial 

impaction and thermophoretic force, 𝜂𝜂𝑠𝑠𝑅𝑅𝜂𝜂𝑐𝑐𝑠𝑠 is the sticking efficiency and 𝐼𝐼𝑎𝑎 is the 

vapour condensation mass flux.  

B1.1 Sticking efficiency 

The sticking efficiency, 𝜂𝜂𝑠𝑠𝑅𝑅𝜂𝜂𝑐𝑐𝑠𝑠, is determined by the melt fraction of the particles 

and the melt fraction of the deposit on the probe surface [91, 124]: 

𝜂𝜂𝑠𝑠𝑅𝑅𝜂𝜂𝑐𝑐𝑠𝑠 = 𝜂𝜂𝑡𝑡(𝑇𝑇𝑡𝑡) + (1 − 𝜂𝜂𝑡𝑡(𝑇𝑇𝑡𝑡))𝜂𝜂𝑠𝑠(𝑇𝑇𝑠𝑠) (B-2) 

where 𝜂𝜂𝑡𝑡(𝑇𝑇𝑡𝑡) is the melt fraction of the particles at the particle temperature (𝑇𝑇𝑡𝑡), 

and 𝜂𝜂𝑠𝑠(𝑇𝑇𝑠𝑠) is the melt fraction of the deposit on the probe at the deposit surface 

temperature (𝑇𝑇𝑠𝑠) . The melt fraction is determined by the thermodynamic 

equilibrium calculations based on the minimization of the Gibbs free energy from 

157 
 



Appendix B 

the system subject to the mass balance constraints [177, 178]. The 

thermodynamic software package FactSage 7.0 is employed to perform the 

thermodynamic equilibrium calculations. 

The calculations were performed for a temperature range between 500 K and 

1750 K at a temperature interval of 20 K and at atmospheric pressure. The ash 

composition determined by the mineral quantity analysis of the low temperature 

ash and the air composition were used as the reactants. Their amounts are 

dictated by the inlet air/fuel ratio. It should be noticed that, in order to calculate 

the melt fraction of the deposit, its ash composition may be different from that 

of the ash particles due to the direct condensation of the alkali phases. Therefore, 

the local ash composition of the deposit is determined by the deposit mass of the 

particle deposition and the direct alkali vapour condensation calculated from the 

CFD results. The possible products selected are the entire compound species 

(ideal gases and pure solids) from the ELEM, FToxid, FTsalt and FACTPS 

databases. The melt phases chosen in the calculations were the 'SLAGB' (covers 

liquid oxide solutions of SiO2, Fe2O3, Fe2(SO4)3 and, Na2O, Na2SO4, CaO, and 

CaSO4) and 'SALTB' (covers liquid salt solutions of NaCl, NaOH, CaCl2, 

Ca(OH)2, FeCl3, Fe(OH)3, etc.) with possible 2-phase immiscibility.  An example 

of the prediction results of melt fraction for the original coal ash is shown in 

Figure B-1. The predicted results of the melting behaviours of ash particles and 

deposits are incorporated into the ash deposition model in order to predict the 

melting behavior of particles and deposit surface. 
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Figure B-1 Melt fraction curve of the original coal ash as a function of 
temperature. 

B1.2 Condensation  

Based on the assumption that the alkali phase reactions are chemical equilibrium 

reactions because the furnace temperature is high enough for equilibrium to be 

reached quickly [127]. The vapour condensation mass flux, 𝐼𝐼𝑎𝑎, can be determined 

by the following equations [127, 194, 213, 214]: 

𝐼𝐼𝑎𝑎 = 𝑆𝑆ℎ(𝑇𝑇𝑔𝑔)
(𝐷𝐷𝑎𝑎(𝑇𝑇𝑔𝑔)𝐷𝐷𝑎𝑎(𝑇𝑇𝑠𝑠))1 2⁄

𝐷𝐷ℎ𝑅𝑅𝑔𝑔 �
𝑡𝑡𝑎𝑎(𝑇𝑇𝑔𝑔)

𝑇𝑇𝑔𝑔
−

𝑡𝑡𝑎𝑎,𝑠𝑠(𝑇𝑇𝑠𝑠)
𝑇𝑇𝑠𝑠 � 

(B-3) 

𝑆𝑆ℎ�𝑇𝑇𝑔𝑔� = 0.023𝑅𝑅𝑅𝑅0.8𝑆𝑆𝑐𝑐(𝑇𝑇𝑔𝑔)0.4 
(B-4) 

𝑆𝑆𝑐𝑐�𝑇𝑇𝑔𝑔� = 𝜇𝜇𝑔𝑔 (𝜕𝜕𝑔𝑔𝐷𝐷𝑎𝑎(𝑇𝑇𝑔𝑔))⁄  
(B-5) 

𝐷𝐷𝑎𝑎(𝑇𝑇) = 0.8 × 1.781 × 10−10 × 𝑇𝑇1.88 
(B-6) 

𝑡𝑡𝑎𝑎,𝑠𝑠(𝑇𝑇𝑠𝑠) = 105 × 10
(3.56682− 5200.904

𝑇𝑇𝑠𝑠−317.409)
 (B-7) 

where 𝑆𝑆ℎ�𝑇𝑇𝑔𝑔� is the Sherwood number, 𝑆𝑆𝑐𝑐(𝑇𝑇𝑔𝑔) is the Schmidt number, 𝑅𝑅𝑅𝑅 is the 

Reynold number, 𝐷𝐷𝑎𝑎(𝑇𝑇) is the vapour diffusivity at the flue gas temperature (𝑇𝑇𝑔𝑔) 
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or deposit surface temperature (𝑇𝑇𝑠𝑠), 𝑡𝑡𝑎𝑎(𝑇𝑇𝑔𝑔) is the partial pressure of the alkali 

vapour, 𝑡𝑡𝑎𝑎,𝑠𝑠(𝑇𝑇𝑠𝑠) is the saturation vapour pressure, 𝐷𝐷ℎ is the hydraulic diameter 

of the flow channel (0.35m, equal to the inner diameter of the furnace), and 𝑅𝑅𝑔𝑔 

(142.3 J/(kg*K)) is the specific gas constant. In this study, only the alkali vapour 

of sodium chloride (NaCl) is considered since NaCl is the major alkali vapour 

phase species of ZD lignite studied according to the chemical equilibrium 

calculation. HCl is considered in the gas species in order to predict the alkali 

vapour composition during the chemical equilibrium calculations. 

B2 Deposition properties 

The deposit properties (porosity, thermal conductivity, deposit thickness, 

deposition surface temperature, etc.) could change with the deposit growth. 

A correlation based on the temperature and deposit composition is employed to 

calculate the deposit porosity as follows [65, 91, 94]: 

𝜀𝜀𝑑𝑑𝑅𝑅𝑡𝑡𝑜𝑜𝑠𝑠𝜂𝜂𝑅𝑅 = 1 − �(1 − 𝜀𝜀0) +
𝑉𝑉𝑎𝑎𝜂𝜂𝑞𝑞

𝑉𝑉𝑠𝑠𝑜𝑜𝑎𝑎𝜂𝜂𝑑𝑑
(1 − 𝜀𝜀0)� 

(B-8) 

where 𝜀𝜀𝑑𝑑𝑅𝑅𝑡𝑡𝑜𝑜𝑠𝑠𝜂𝜂𝑅𝑅 is the deposit porosity, 𝜀𝜀0 with a value of 0.8 is the initial deposit 

porosity, 𝑉𝑉𝑎𝑎𝜂𝜂𝑞𝑞 is the volume of the liquid phase, and 𝑉𝑉𝑠𝑠𝑜𝑜𝑎𝑎𝜂𝜂𝑑𝑑 is the volume of the 

solid phase. Calculation of the volume fraction of the liquid phase and solid phase 

is performed by using chemical equilibrium methods and then estimating the 

density of the liquid phase as a function of the chemistry using the method 

described by Mills et al. [215]. 

For the initial layer, the thermal conductivity is given a value of 0.14 W/m-k 

[192, 193] and then the measured thermal conductivity from [148] is employed in 

this study, which shows that the thermal conductivity will increase with the 

deposit growth. 
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The deposit thickness, 𝐿𝐿𝑑𝑑𝑅𝑅𝑡𝑡𝑜𝑜𝑠𝑠𝜂𝜂𝑅𝑅, can be described as follows: 

𝑑𝑑𝐿𝐿𝑑𝑑𝑅𝑅𝑡𝑡𝑜𝑜𝑠𝑠𝜂𝜂𝑅𝑅

𝑑𝑑𝑅𝑅
=

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝜂𝜂𝑎𝑎𝑖𝑖𝑎𝑎𝜂𝜂𝑠𝑠𝑅𝑅𝜂𝜂𝑐𝑐𝑠𝑠 + 𝐼𝐼𝑎𝑎
𝜕𝜕𝑡𝑡(1 − 𝜀𝜀𝑑𝑑𝑅𝑅𝑡𝑡𝑜𝑜𝑠𝑠𝜂𝜂𝑅𝑅)

 (B-9) 

The deposit surface temperature, 𝑇𝑇𝑑𝑑𝑠𝑠, can be calculated based on the total heat 

flux to the wall  (𝑞𝑞𝑅𝑅𝑜𝑜𝑅𝑅𝑖𝑖𝑎𝑎) predicted from the CFD calculations, the deposit thickness 

(𝐿𝐿𝑑𝑑𝑅𝑅𝑡𝑡𝑜𝑜𝑠𝑠𝜂𝜂𝑅𝑅) and the thermal resistance coefficient (𝑅𝑅𝑅𝑅𝑜𝑜𝑅𝑅𝑖𝑖𝑎𝑎) are as follows [91, 95]: 

𝑇𝑇𝑑𝑑𝑠𝑠 = 𝑞𝑞𝑅𝑅𝑜𝑜𝑅𝑅𝑖𝑖𝑎𝑎𝑅𝑅𝑅𝑅𝑜𝑜𝑅𝑅𝑖𝑖𝑎𝑎 + 𝑇𝑇𝑜𝑜𝜂𝜂𝑎𝑎 (B-10) 

𝑅𝑅𝑅𝑅𝑜𝑜𝑅𝑅𝑖𝑖𝑎𝑎 =
𝐿𝐿𝑑𝑑𝑅𝑅𝑡𝑡𝑜𝑜𝑠𝑠𝜂𝜂𝑅𝑅

𝑠𝑠𝑑𝑑𝑅𝑅𝑡𝑡𝑜𝑜𝑠𝑠𝜂𝜂𝑅𝑅
+

𝐿𝐿𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎
𝑠𝑠𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎

+ 1
ℎ𝑜𝑜𝜂𝜂𝑎𝑎

 (B-11) 

where 𝑠𝑠𝑑𝑑𝑅𝑅𝑡𝑡𝑜𝑜𝑠𝑠𝜂𝜂𝑅𝑅 is the thermal conductivity of the deposit, 𝑇𝑇𝑜𝑜𝜂𝜂𝑎𝑎 with a value of 503 

K is the temperature of the cooling oil, 𝐿𝐿𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎 with a value of 0.0065 m and  𝑠𝑠𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎  

with a value of 48 W/(K*m) are the thickness and the thermal conductivity of 

the stainless steel probe, respectively, and ℎ𝑜𝑜𝜂𝜂𝑎𝑎  with a value of 3590 W/(m2*K) 

is the heat transfer coefficient of the cooling oil.  
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