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Abstract

System Identification (SID) is an important area of structural dynamics and is con-

cerned with constructing a functional relationship between the inputs and the out-

puts of a system. Furthermore, it estimates the parameters that the studied system

depends upon. This aspect of structural dynamics has been studied for many years

and computational methods have been developed in order to deal with the system

identification of real structures, with the aim of getting a better understanding of

their dynamic behaviour.

The most straightforward classification of structures is into structures that behave

linearly and structures that behave nonlinearly. Even so, one needs to keep in

mind that no structure is indefinitely linear. During its service, a structure can

behave nonlinearly at any given point, under the right working and environmental

conditions.

A key challenge in applying SID to real systems is in handling the uncertainty

inherent in the process. Uncertainty arises from various sources such as modelling

error and measurement error (noisy data), resulting in uncertainty in the parameter

estimates. One of the ways in which one can deal with uncertainty is by adopting

a probabilistic framework. In this way one admits the limitations in the process of

SID through providing probability distributions over the models and parameters of

interest, rather than a simple ’best estimate’.

Throughout this work a Bayesian probabilistic framework is adopted as it covers the

uncertainty issue without over-fitting(it provides the simplest, least complex solu-

tions to the issue at hand). Of great interest when working within a Bayesian frame-

work are Markov Chain Monte Carlo(MCMC) sampling methods. Of relevance to

this research are the Metropolis-Hastings(MH) algorithm and the Reversible Jump

Markov Chain Monte Carlo(RJMCMC) algorithm.

Markov Chain Monte Carlo(MCMC) methods and algorithms have been extensively

investigated for linear dynamical systems. One of the advantages of these methods

being used in a Bayesian framework is that they handle uncertainty in a principled

way. In recent years, increasing attention has been paid to the role nonlinearity

plays in engineering problems. As a result, there is an increasing focus on develop-

ing computational tools that may be applied to nonlinear systems as well as linear
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systems, with the objective that they should provide reliable results at reasonable

computational costs. The application of MCMC methods in nonlinear system iden-

tification(NLSID) has focused on parameter estimation. However, often enough, the

model form of systems is assumed known which is not the case in many contexts(such

as NLSID when the nonlinearity is hard to identify and model, or Structural Health

Monitoring when the damage extent or number of damage sites is unknown).

The current thesis is concerned with the development of computational tools for

performing System Identification in the context of structural dynamics, for both

linear and nonlinear systems.

The research presented within this work will demonstrate how the Reversible Jump

Markov Chain Monte Carlo algorithm, within a Bayesian framework, can be used

in the area of SID in a structural dynamics context for doing both parameter esti-

mation and model selection. The performance of the RJMCMC algorithm will be

benchmarked throughout against the MH algorithm. Several numerical case studies

will be introduced to demonstrate how the RJMCMC algorithm may be applied in

linear and nonlinear SID; and one numerical case study to demonstrate application

to a SHM problem. These will be followed by experimental case studies to evaluate

linear and nonlinear SID performance for a real structure.
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Chapter 1

Introduction

System identification is of great importance in the context of structural dynamics.

The aim of system identification is to robustly characterise a real structure using

mathematical models and experimental data, in order to predict its dynamic be-

haviour. This process breaks into two main areas: identification of the model struc-

ture and estimation of parameters that cannot be directly measured. Possessing

knowledge about the dynamic behaviour of a structure is helpful in the engineering

world as one can determine for example the excitation a structure can withstand

before damage or failure occurs or the maximum displacement a structure can with-

stand,etc.

1.1 Motivation

The dynamics of a structure tells one about its operational requirements and limita-

tions. Structural dynamics engineers, in research as well as industry, are interested

in understanding dynamical behaviour in order to improve existing structures or

make new, more efficient, reliable ones.

In order to understand the dynamic behaviour of structures, one needs to start

small. The path to knowledge is done in steps, starting with an idea or concept,

followed up by simulations and applications on simulated scenarios and only then

experimental structures or demonstrators.

1



1.2. AIMS AND OBJECTIVES 2

Bayesian Inference as a probabilistic framework has found particular success when

applied in the field of System Identification (SID). In particular, in doing parameter

estimation on both linear and nonlinear systems. Even so, it is considered to be a

relatively new approach that still gives way to many discussions in the engineering

community.

Uncertainty is one of the reasons why one is inclined to use a probabilistic framework

in studying a systems ’definition’, i.e. the modelling and estimating of parameters.

Bayesian Inference is a natural choice when wanting robust models within a frame-

work that penalises overfitting.

When dealing with a variety of models and parameters that could have complex

geometrically defined probability distributions, the Bayesian approach is helped by

Markov Chain Monte Carlo (MCMC) sampling algorithm. MCMC sampling meth-

ods are yet another powerful computational tool in SID.

Another issue when doing SID is choosing a model for the structure of study. There

could be a number of models to choose from with varying number of parameters.

Applying a Bayesian approach together with traditional MCMC algorithms is not

necessarily enough when it comes to moving between models of varying dimension.

The best that can be done is to apply such algorithms to each candidate model in

turn, then asses the ’evidence’ for adopting the respective models. This leads to a

desire for a computational tool that could do model selection by ’jumping’ between

models of varying dimension. One such algorithm, that can jump between spaces of

varying dimensions, is the Reversible Jump Markov Chain Monte Carlo (RJMCMC)

algorithm [34].

1.2 Aims and Objectives

Driven by the necessity of new computational tools for doing nonlinear system iden-

tification in the context of dynamical systems, the aim of this thesis is to concentrate

on one particular MCMC algorithm, RJMCMC, in order to introduce and demon-

strate the capabilities of a comparatively new and untapped MCMC method which,

employed within a Bayesian framework, can do simultaneous parameter estimation

and model selection for both linear and nonlinear structural systems.
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A set of objectives were decided upon, in order to meet the desired aim:

• Introduce the RJMCMC method to be used in the context of structural dy-

namics in order to do system identification of linear and nonlinear structures

in a probabilistic framework, by simultaneously providing estimates of the pa-

rameters of a system and selecting a robust model to best fit the available data

set;

• Adapt and apply the RJMCMC algorithm on a series of numerical case studies

of SDOF(single degree of freedom) and MDOF(multi-degree of freedom) sce-

narios in order to evaluate its capabilities for performing system identification

of linear and nonlinear structures;

• Adapt and apply the RJMCMC algorithm on experimental case studies in

order to emphasize its capabilities of simultaneously do parameter estimation

and model selection for both linear and nonlinear systems;

• Discuss the RJMCMC method in the context of SID of dynamical systems by

underlining its advantages and considering its drawbacks;

1.3 SID, Bayesian Inference and MCMC methods

There are many ways in which one can define the problem of identifying a system.

Most of them are closely related to how one classifies the issue at hand. It is gener-

ally accepted that system identification is split into two main problems: parameter

estimation and model selection. However, at a closer look, identifying a system is

an even more complex issue. Starting from the system of interest, one needs to

specify if this is a theoretical system(is it based on simulations) or an experimental

one [1]. In the case of a theoretical system, the structure is always known while in

an experimental system the structure might be unknown as well. The theoretical

system is based on a description of the structure that obeys the laws of physics and

that will be expressed in a mathematical format, depending on a set of parameters

that usually have physical meaning. On the other hand, when it comes to an ex-

perimental system, one is dealing with a real structure, surrounded by unknowns

and uncertainties. The modelling problem is dependant on what type of structure

it is; whether the model form is known or unknown; and whether it is parametric or

non-parametric identifiable(i.e. the model represented by parameters with physical
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meaning, or is it defined by purely statistical parameters with no physical interpre-

tation). The experimental modelling is based on having some sort of information or

data from a structure, i.e. input and output data and modelling what happens in

between them [1].

If one chooses to go even further down the ladder of classifications, one will find that

the identification problem can be sorted according to what kind of modelling one

chooses and that in itself it depends on the chosen approach between the theoretical

modelling and the experimental modelling. There are three main classes:

• white box models;

• grey box models;

• black box models;

True white box modelling can only belong to the theoretical modelling class as it

assumes that the physical laws that surround the system are known and also are the

parameters. In the case where one knows the physical laws but not the parameters or

the model structure of the system and deals with measurable input-output signals,

the problem can be placed in the grey box model class. The final class, black box

modelling, is based entirely on measured data. In this case, data from the real

system is employed in identifying the model. In this case, it is assumed that only

the input-output signals are known because they are measurable,with no further

assumptions made on the form of the model. Such models have limited predictive

capabilities [1].

An important aspect that needs to be understood is that there is no such thing

as a full and complete identification of a system. The structures and systems are

identified only to a certain extent, taking into consideration only the instant in time

they were analysed at and the excitation they were put under in that instant in

time. A structure can be put under a range of excitations differing from what the

user might think it is going to experience in use. In real life those ranges can be

exceeded and most times that is when one deals with nonlinear effects.

When conducting system identification, one’s aim is to use measured data in order

to compute or refine the mathematical model of a real system. SID can be conducted

in three main ways[2]:

• modal parameter identification;
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• structural-model parameter identification;

• control-model identification.

For the purpose of this research, interest is focused on the second method of con-

ducting SID, that of structural-model parameter identification. In order for the

identification process to be conducted, one makes use of data that includes informa-

tion on input and output, where input refers to the excitation introduced into the

system/structure and output refers to the measured response of the system/structure

after the excitation was applied(examples: displacement, velocity, acceleration). Ar-

guably the greatest challenge faced when applying SID is uncertainty. Uncertainty

could arise from either unknown,ignored or/and compressed information. This in-

formation can be either from the studied system itself, conducted experiments or

processing errors. Examples of situations where one can encounter uncertainty are

when modelling the system, due to the differences between the model and reality,

during the estimation process due to the fact that one or more parameters are un-

known or during the measuring of the data due to noise. Uncertainty is usually

categorised under either aleatoric uncertainty or epistemic uncertainty [4]. Epis-

temic uncertainty or otherwise called systematic uncertainty can arise for example,

from applying modelling approximations in order to conserve simplicity [5], [6]. Sys-

tematic errors in measurement procedures fall under the same category of epistemic

uncertainty. Variation of model parameters may in itself lead to epistemic uncer-

tainty. When modelling through computational methods, one could assume fixed

values for parameters when in reality, during the physical experiment the parameter

values are most likely varying under changing vibration ranges. Engineers tend to

concentrate on reducing epistemic uncertainty. The second category of uncertainty,

aleatoric uncertainty, is also known as statistical uncertainty. This category contains

all uncertainties that cannot be reduced. Aleatoric uncertainties could be present

due to limitations in used machinery or data acquisition systems. An example of

aleatoric uncertainty would be noise. When the noise level cannot be controlled any

further, it falls under aleatoric uncertainty. Engineers tend to accept the aleatoric

uncertainty as it is due to lack of possibilities of reducing it [7]. The sources of

uncertainty are many and differ from one case to another. Some of the main sources

of uncertainty are:

• Parameter uncertainty - looking at the issue of parameter estimation from a

Bayesian point of view, leads to a high dependency between the resulting es-

timates and the data used. The uncertainty arises from having problems with



1.3. SID, BAYESIAN INFERENCE AND MCMC METHODS 6

the collected data, such as the data containing not enough necessary informa-

tion to describe the dynamic behaviour of the structure or even something as

basic as insufficient data points [4];

• Model uncertainty - models are used to mathematically approximate relation-

ships between inputs and outputs. They are decided by a user and as such,

uncertainties occur. Models are put together by using parameters that the

user believes the functional is dependent on. Parameters bring their own un-

certainty into the model. Moreover, the user might not always know the exact

dependency of responses of a system on parameters, for which extra research

would need to be conducted (i.e. sensitivity analysis);

• Experimental uncertainty - the gathered data cannot be known precisely.

There are sources of noise in an experimental setting, either from cables, rat-

tling from bolts, etc. There are also instrumental uncertainties from the equip-

ment used, measurement error, all of which need to be taken into account.

Whatever the provenance, uncertainty can affect the results of system identification,

sometimes invalidating them [3]. For this reason, rather than attempting to know

exactly what the parameters of a system are or how the system is mathematically

modeled, one is trying to provide a probabilistic estimation of the parameters of

interest and an approximation of the real system through a mathematical model.

1.3.1 System Identification Applications in Structural Dy-

namics: Linear system, Nonlinear system and Damage

Identification

A general linear system that is also linear in parameters is commonly represented

as:

Mÿ(t) + Cẏ(t) +Ky(t) = F (t) (1.1)

where M , C and K are the mass, damping coefficient and stiffness matrices respec-

tively, ÿ(t) is acceleration, ẏ(t) is velocity and y(t) displacement and F (t) is the

introduced excitation or forcing.
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Systems are commonly considered to be either linear or nonlinear in nature, and the

way a system is classified will dictate the SID approach that may be applied to it.

System identification of linear systems has been well dealt with in the past by using

the principle of superposition, reciprocity and homogeneity [8]. When it comes to

nonlinear systems, these principles and rules fail. For example, in a nonlinear sys-

tem, there is no guarantee that by interchanging the positions of measuring input

and output will result in the same frequency response function(FRF). For superposi-

tion, it cannot be assumed that the sum of inputs into a nonlinear system is the sum

of their individual outputs. This makes nonlinearity hard to deal with. Typically, in

the engineering industry, one considers structures to be linear or behaving linearly

because there are well developed tools that can deal with linear problems. Most

real structures though have a degree of nonlinearity in their behaviour. Some com-

mon examples of nonlinearity are friction, contacts and stiffening/softening effects.

Nonlinearity is increasingly being considered as part of the reason why structures

fail. For this reason, researchers try to find more ways in which one can understand

nonlinearity. Not taking into account the nonlinearity in a structure can lead to er-

rors in the prediction of its dynamic behaviour. Using those results in the modelling

procedure can have catastrophic outcomes. There are many examples of failures in

engineering because the dynamic behaviour of real structures was wrongly predicted

due to the use of a linear model for nonlinear behaviour. A famous example would

be the Tacoma Narrows bridge which failed due to aeroelastic flutter, a nonlinear

phenomena that was not accounted for during design [9]. Unexpected vibration

regime was at the core of NASA Helios Prototype’s failure [10]. The structural

design of the Helios UAV(Unmanned Aerial Vehicle) was not able to withstand pro-

longed turbulence which lead to the solar powered electric aircraft’s disintegration.

Yet another example of unexpected dynamic behaviour is the excessive environmen-

tal induced vibration of the Dongting Lake bridge in China [11]. The structural

design of the Dongting Lake bridge relies on cables which, in practice, are subjected

to high vibrational regimes during periods of intense wind and rain. These inputs

were not accounted for during design. In order to suppress these unwanted effects, a

retro-fitted MR(Magnetorheological) damping system was necessary. From the in-

dustrial point of view, understanding nonlinearity has beneficial potential through

improved design, reduction of unexpected failures or reduction in need for inspection.

A general nonlinear system will look like:
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Mÿ(t) + Cẏ(t) +Ky(t) + βf(y, ẏ) = F (t) (1.2)

where the new introduced term βf(y, ẏ) represents the nonlinear functional that

is dependent on displacement and velocity. The identification process now involves

the nonlinearity which means that the first step would be to characterise the non-

linearity, followed by finding its functional form and determining its parameters, β.

Some examples of characterised nonlinearities are either related to the displacement,

such as bilinear stiffness or cubic stiffness or related to the velocity, eg. quadratic

damping, Coulomb friction or even a combination of the two [8]. Because the non-

linearities have many different reasons for appearing, often one can get stuck at the

first step of characterising the nonlinearity, i.e. identifying what type of nonlinearity

is present and where it is located. Even if one manages to characterise it, modelling

the nonlinearity is also very difficult. There are developed methods to identify non-

linearity but the issue is that they do not apply to all types of nonlinearity. There

is no developed general method valid for any type of nonlinearity present in a struc-

ture. Because of its complexity and due to the fact that linear rules, as the principle

of superposition, do not apply to nonlinear system, one is restricted to study only

a small number of degrees of freedom which is quite irrelevant in real engineering

problems where structures are made out of a high number of degrees of freedom.

The approach followed in the present thesis is off-line identification, which in simple

terms means that the data was gathered from the structure under certain excitation

conditions and then processed on a computer. The opposite to this approach is online

identification which means that the identification process is run as the gathering of

the data is happening.

Probably as important as system identification is the detection, characterization

and location of damage in dynamical structures. While knowing a structures dy-

namic behaviour helps in determining its usage limitations, detecting damage in a

structure can prevent those limits being reached or structure failure. A great deal

of interest has been paid to treating the damage identification task as one of model

updating with both deterministic and non-deterministic updating methods having

been extensively investigated.
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1.3.2 Bayesian Inference

Unfortunately, for all areas of structural dynamics the quantification of uncertainty is

a constantly occurring problem. If one thinks about the experimental modelling, one

could get uncertainty from both input and output signals. One of the most attractive

ways of dealing with uncertainty is by treating the issue from a probabilistic point

of view. In this sense the end user is presented with an area of possible solutions.

This is naturally presented through probability distributions. Even more so, there

is particular interest in the methods that come with Bayesian inference. There

has been substantial research focus on using a Bayesian framework for probabilistic

analysis due to the fact that it prevents overfitting [12]. This means that in the

process of model selection within SID, a Bayesian analysis will provide a robust and

the least complex model as a solution. Bayesian inference has its roots in Bayes’

theorem which will be seen again and fully discussed in following chapters.

In a general sense, Bayes’ theorem may be expressed as:

P (A|B,C) =
P (B|A,C)P (A|C)

P (B)
(1.3)

The Bayes’ theorem makes sense as:

• the posterior distribution, P (A|B,C), of the variables of interest(A);

• the conditional probability distribution, P (A|C), of A given the event C hap-

pened;

• the likelihood, P (B|A,C), of the event B happening given A exists and event

C happened;

• the probability, P (B), of the event B happening or existing.

In a system identification scenario, the events in Bayes’ theorem would be expressed

as A = θ, where θ is the vector of parameters, B = M , where M is the set of

possible models and C = D, where D is the available data.

Of particular interest, especially for the purpose of this thesis, is how one gets the

probability distributions of interest. Firstly, it is needed to know that the inter-

est lays in getting the posterior probability distribution of parameters and models,
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depending on the task at hand. Now, probability distributions come in various

forms and complexities and for the most complex geometries, one cannot just sim-

ply evaluate their respective integrals due to them becoming mathematically in-

tractable. When that is the case, a possible solution is using the Markov Chain

Monte Carlo(MCMC) sampling algorithms. These methods gained popularity in

being used within a Bayesian framework due to the fact that they allow sampling

from complex probability distributions.

These mathematical computational tools are used for both parameter estimation

and model selection issues. Many of them work only in special cases, others can

only be employed for the parameter estimation issue,etc. There are only a few that

are either built or can be modified for dealing with both parameter estimation and

model selection.

One such algorithm is the Reversible Jump Markov Chain Monte Carlo(RJMCMC).

This algorithm gained attention for its capabilities of doing simultaneously param-

eter estimation and model selection on linear as well as nonlinear systems.

The RJMCMC algorithm is based on sampling from the joint probability of both

parameters and models, as expressed in equation (1.4). In this case, one needs to

know the prior probability distribution of models as well (let one consider that M is

the set of possible models). For clarity, there are others MCMC sampling algorithms

that can perform model selection but it is applied as an ’add on’ to doing parameter

estimation. Basically, a by-product of identifying the estimates of parameters is an

evaluation of the evidence for the model. This provides one with an indication of the

preferred model to best fit the data, once parameter estimation has been conducted

on each individual model first.

P (A,M |C) =
P (C|A,M)P (A|C)P (M |C)

P (C)
(1.4)

The present thesis aims to show how the algorithm presents itself as a novel tool for

nonlinear system identification as well as other areas of structural dynamics, such

as structural health monitoring.
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1.4 Scope and Outline of thesis

This section provides short summaries for the chapters of this thesis. The thesis is

structured so that the reader gets a flavour of both the system identification and

structural health monitoring research done simultaneously, research that gets united

through the Reversible Jump Markov Chain Monte Carlo algorithm.

Chapter 1 provides an introduction to structural dynamics in the areas of System

Identification together with an overview of what methods were chosen to deal with

the issue of SID. The motivation for this research is given, followed by the outline

of the thesis.

Chapter 2 provides the background and a brief critical analysis of work that has

been done in System Identification by employing a Bayesian framework so far, work

that motivated the present thesis and also includes the literature review of the most

relevant previous studies.

Chapter 3 is concerned with covering the theory of the Bayesian probabilistic

framework and the Markov Chain Monte Carlo(MCMC) sampling methods. It

provides a description of MCMC algorithms and how they fit into the Bayesian

framework as well as a more in depth description of Bayesian Inference.

Chapter 4 provides a detailed description of all principles of the Reversible Jump

Markov Chain Monte Carlo(RJMCMC) algorithm and how it may be applied in a

structural dynamics context.

Chapter 5 contains a series of numerical case studies. This section of the the-

sis introduces and provides the results of the numerical case studies for applying

RJMCMC in SID and SHM.

Chapter 6 provides the results of applying the RJMCMC algorithm on experimen-

tal data.

Chapter 7 summarises the thesis and provides conclusions and discussions on the

topics of the thesis. This is followed by the Appendix section where the relevant

derivations are presented.
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Chapter 2

Background to System

Identification - Literature

Review

Chapter 2 covers the relevant background in system identification, specifically tar-

geted on doing SID within a Bayesian framework by using the Markov Chain Monte

Carlo sampling algorithms. There is extensive literature available for structural dy-

namics and for the existing methods of doing SID in the dynamical context. Some

of the relevant ones will be reviewed in the present chapter. The literature review

is conducted with the aim of presenting the work done so far in Bayesian SID for

parameter estimation and model selection, with the aim of emphasising the need for

the RJMCMC computational method. Some of the relevant work done in structural

dynamics within the context of system identification using Bayesian inference and

MCMC sampling methods is summarised next.

2.1 Structural Dynamics and MCMC Sampling

Methods

MCMC sampling methods have been widely used in most research areas. Their wide

application makes them even more attractive to researchers. Until 1990, MCMC al-

13
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gorithms were employed mainly in the areas of chemistry and physics. After 1990,

the algorithms were introduced into statistical mathematics which provided an op-

portunity for them to be used in other research areas such as signal processing,

structural dynamics, etc. [13].

Bayesian inference became popular as a probabilistic framework due to its capability

of making use of prior knowledge but mainly due to the fact that it allows a study of

uncertainty. Its most recent use in the area of structural dynamics had a boom when

the MCMC sampling algorithms surfaced. The sampling necessary in getting the

posterior probability distribution within a Bayesian framework became achievable

with the MCMC methods.

As the present work is concerned with using MCMC methods in the context of struc-

tural dynamics, a review of work done in this particular area will be detailed further.

Bayesian inference has been employed with MCMC sampling methods in many rel-

evant works. One particular work of high importance is conducted by Beck et al. in

[14]. In fact, the contributions of Beck and co-workers to the field of Bayesian SID

cannot be overstated due to their high implication in using MCMC algorithms with

Bayesian Inference; however, it is not the intention to present a detailed overview

of their work here. Beck et al. [14] proposed using MCMC methods in order to get

”regions of concentration” of the posterior probability distribution as explained by

Bayes theorem. In order to do so, they applied the MH algorithm to a locally iden-

tifiable model (multiple optimum parameter vectors) and to a locally unidentifiable

model (continuum of optimum parameter vectors). In order to improve convergence

of the algorithm, a version of Simulated Annealing was applied. As expected, paper

[14] provides a discussion on uncertainty and reliability and possible ways of over-

coming it. The algorithm introduced in [14] offered good results in SID when used

on two models, but without a proper concentration of resources on the problem of

model selection.

MCMC sampling algorithms within a Bayesian framework have been used for doing

parameter estimation for nonlinear systems in the past, but not directly model

selection. One example of such work is by K. Worden et al. [15]. The authors

discussed the use of the MH algorithm on two models, a ’Bouc-Wen’ hysteresis

model and a nonlinear model of Duffing type. The algorithm was used for the issue of

parameter estimation and the Deviance Information Criterion was employed in order

to conduct model selection. This can prove time consuming and computationally
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expensive. A discussion on the correlation of the parameters was conducted. Even

though extremely relevant in doing nonlinear system identification, the work done

in [15] does not cover doing model selection through MCMC methods.

In [16] the author provides a straightforward overview of the importance of Bayesian

probabilistic framework in structural dynamics. The MCMC sampling algorithms

are promoted for doing both parameter estimation and model selection in a robust

way. Another added benefit of using the Bayesian framework is as explained in

[16], the fact that it can be used not only with MCMC methods but also Laplace’s

method. The paper does not include a particular application of Bayesian inference

but nonetheless is a powerful work in promoting the use of the Bayesian framework

and MCMC sampling algorithms.

A more thorough work is presented in [17]. The contribution explains doing model

selection and updating between classes of hysteretic models using a fairly new

MCMC algorithm, the Transitional Markov Chain Monte Carlo method, which was

firstly introduced by Chen et al. in [18]. A good description is provided regarding

globally identifiable, locally identifiable and unidentifiable models. The TMCMC

method is illustrated using simulated seismic data. The advantage of using the

TMCMC algorithm is that one can do model selection by comparing the evidence

of the models considered. A drawback to the approach is that the computational

cost increases considerably once one has to consider more than two models. Also, it

requires post-processing of the data.

In [19], the authors propose using the Gibbs sampler as a starting point for do-

ing model selection. The models considered are of varying dimension, multiple

changepoint models and non-nested models. The authors make use of such called

pseudopriors, which are considered problematic in literature due to the drawback of

being associated with slow convergence of the Markov chains. Conditional proba-

bility distributions need to be defined due to the fact that the authors chose to use

the Gibbs sampler.

A thorough explanation of the Metropolis-Hastings algorithm in particular is given

in [20]. The authors’ purpose in their paper is to provide a tutorial on one of

the most popular MCMC sampling algorithms. A discussion on its drawbacks,

the irreversibility of the Markov chains and the choice of proposal is conducted.

Proposals are crucial in MCMC sampling algorithms. They decide where the chain



2.1. STRUCTURAL DYNAMICS AND MCMC SAMPLING METHODS 16

goes next. A bad proposal can lead to an inappropriate acceptance rate (too high

or too low). In [21], Grazian et al. are treating the issue of slow convergence and

low acceptance ratio in the Metropolis-Hastings algorithm. The proposed method

is making use of the concept of delayed acceptance of the proposed samples and it is

promoted as an improved MH algorithm that can deal with ”Big Data”. It follows

that in [21] the concentration is on estimating parameters and not selection between

model classes.

A few examples of using MCMC sampling methods and Bayesian inference for non-

linear system identification can be found in [22–27].

In [22] the author applied two different MCMC sampling algorithms, the Simulated

Annealing method and the Hybrid Monte Carlo on a SDOF nonlinear system, with

the nonlinearity coming in the form of Coulomb damping. The paper is presented

as a tutorial on a simulated case, with the concluding remarks that the Simulated

Annealing method is more appropriate in that particular scenario. On the other

hand, the Simulated Annealing method on its own is incapable of exploring large

parameter spaces and it is a clear drawback to this method.

In [23], the authors of this particular work used real data in order to conduct SID

on nonlinear systems with nonlinearities of friction and stiffness.

Simulated annealing and data annealing are two often encountered algorithms in

the MCMC literature, some examples being [24] and [25]. The purpose of Simu-

lated Annealing is to make sure that a Markov Chain does not get stuck in a local

maximum region. Green [24] uses the Shannon entropy to gradually introduce data

into the algorithm in order to provide a smooth transition from the prior probability

distribution of parameters to the posterior distribution of parameters. The method

is successfully applied in doing system identification on nonlinear dynamical systems

and it is illustrated using simulated data. In [26],it is proposed to do system identi-

fication of nonlinear dynamical systems using what is known as ’highly informative

training data’. The Shannon entropy is used to decide the amount of information the

data contains. The method is employed on a simulated 3-DOF mass-spring-damper

system. The paper outlines one of the issues of this method, the assumption that

there exists only one set of parameters that is suitable. Both studies discussed above

have applied the approaches proposed on experimental data. In [27], Green et al.

conduct an overview of employing MCMC sampling algorithm within a Bayesian

framework for doing nonlinear system identification. The work presented in [27] is
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a tutorial and concentrates on the advantages of Bayesian inference and MCMC

methods.

The most recent work in the area of nonlinear system identification of dynamical

structures, at the moment of writing, is by Noël and Kerschen, [28]. The paper

is a review of the progress done in the last decade in nonlinear system identifica-

tion, in the context of structural dynamics, aiming only at parameter estimation

issues. Clearly a drawback is the lack of a review on model selection methods as

well. The methods of restoring force surface (RFS), nonlinear normal modes(NNM),

bifurcation theory are applied on experimental data gathered from a SmallSat space-

craft that displays nonlinear behaviour. The clearance and stiffness coefficients are

considered for parameter estimation and the results for each method are presented

accordingly.

The following section is concerned with the RJMCMC algorithm which was intro-

duced in 1995 by Peter J. Green in paper [34]. The author introduced the RJMCMC

algorithm as an extension to the MH algorithm with the added benefit of being able

to do parameter estimation and model selection at the same time. In order to do so,

Green proved that the Markov chain created by his algorithm obeys the principle of

detailed balance while jumping between different parameter spaces. Another work

by the same author [35], explains the RJMCMC algorithm in further detail.

2.2 General Research and RJMCMC

Having [34] as a starting point, many researchers adapted the RJMCMC algorithm.

An example of such work is [37] where the authors chose to use the Gibbs sampler

rather than the MH algorithm at the core of the RJMCMC algorithm (the method

was used on logistic and simulated regression problems).

The RJMCMC algorithm found its use on NARMAX(Nonlinear Autoregressive

Moving Average with eXogenous input models) models as well [36]. The authors

of [36] used the algorithm in order to present a comparison between the forward

regression method and the RJMCMC, with the latter having several benefits.

Nuclear physicists have taken the opportunity to employ the RJMCMC algorithm

as an alternative to linear and nonlinear least squares techniques [31]. The in-
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terest of the authors of [31] was to use MCMC methods in order to quantify the

isotopic content of radioactive material. The methods proved successful in nuclear

spectroscopy but the authors brought to attention the fact that when it comes to

MCMC algorithms, the processing time can become an issue.

The RJMCMC algorithm was employed heavily in the biology field. Issues such as

recombination rates in biological processes are relevant for the biological community

and the RJMCMC method proved effective in treating these sort of challenges [32].

In the area of signal processing, Andrieu et al analysed the RJMCMC’s capabilities

in doing model selection [39] and estimation of sinusoids corrupted by noise [38].

As expected, the RJMCMC algorithm has been used in computer science problems

too. In [40], the authors use the RJMCMC method on gathered data of bicycles

positioned in a rack over several days. This is conducted as a problem of image

processing for recognizing a series of events, such as the bicycles being put on the

rack or removed from it. The authors of [40] define a series of events in order to

show how they are connected. Simulated annealing is employed in order to give the

Maximum a Posteriori over a series of explanations.

In experimental work one always encounters noisy data. With this in mind, the

authors of [41] developed an approach to getting sinusoids out of noisy data by

employing the RJMCMC algorithm, with the natural frequencies as parameters

to be estimated. Their aim was to separate frequencies that were too close to each

other, with concluding remarks that the algorithm demonstrated convergence issues.

Remarkable work is presented by Yeh et al. in [42]. The authors of [42] introduce

a new algorithm called Locally Annealed RJMCMC(LARJ-MCMC) in the area of

graphical layout models. This is done with the scope of exploring the probable space

more efficiently. The new algorithm is applied on two examples, the placement of

chairs and tables in a coffee shop and golf courses arrangements on basis of difficulty

levels and boundaries. The drawback of the work presented in [42] is that the authors

considered only forward modelling and not inverse modelling as well.

A particularly relevant literature contribution is found in [43]. In the article the

author conducts a critical overview of the progress done with the RJMCMC algo-

rithm, 10 years after it was firstly introduced. The conversation is kept mainly on

two issues, that of efficient chains and automation of the method. The author also

discusses a number of available softwares to implement the RJMCMC algorithm.
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However, the article was published in 2005 and at the present moment the advances

in RJMCMC surpass 21 years since its development. Even so, there exist no au-

tomation yet of the method, while the efficiency in chain progression was slightly

approached by combining the RJMCMC algorithm with other MCMC methods,

such as it was done in [42].

In Chapter 6 of [44], the developer of the RJMCMC algorithm addresses some

of the issues that arise when using the RJMCMC method. The first important

aspect to remember from [44] is that the automation of the RJMCMC algorithm

is so far unattainable due to the computational costs required and the amount

of programming necessary. As in previous contributions from the same author,

some examples of using the RJMCMC method are given, on a small regression

problem and change point analysis cases. The author makes some reference to other

contributions that treated in fairness the proposal choice issue. Even though this

particular contribution does not bring any new or innovative improvements to the

RJMCMC algorithm, nevertheless is a valuable overview of the method’s capabilities

and drawbacks.

The issue of Markov chains convergence is discussed by Brooks et al. in [45]. The

authors of [45] firstly explain the RJMCMC algorithm and give an example of its

usage on a graphical gaussian problem. Even more relevant is the fact that they

consider a previous method that attempted to explain the convergence of Markov

chains, method developed by Gelman and Rubin dated back to 1992 [46]. The

novelty of their approach is that they study the Markov chains convergence by

looking at the variance within chains and within models, while Gelman and Rubin

only looked at it from the perspective of variance between chains. This is done by

parallel simulations, basically starting off chains at different positions. As Peter J.

Green suspected, the problem of convergence is much more complicated to delve

into; fact that appears in the conclusions of [45].

A fair conclusion from all the previous literature review is that there is still much

more space for research in structural dynamics when it comes to MCMC sampling

algorithms and the RJMCMC method in particular.

There is interest sparking in other MCMC sampling algorithms that could be promis-

ing for doing both parameter estimation and model selection. One such algorithm

is the Approximate Bayesian Computation(ABC) method. The ABC algorithm is

thoroughly explained in [47]. The authors of the paper present a tutorial on the ABC
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method that fully comprises of the explanation of the algorithm, its capabilities and

drawbacks by using it on simulated examples in all its variations, ABC - particle

filtering, ABC - partial rejection control, ABC - population Monte Carlo sampling

, ABC - sequential Monte Carlo sampling and ABC - MH sampling. One thing all

these methods have in common is the fact that through the ABC algorithm, one

does not need to evaluate the likelihood function. The likelihood function is seen in

broad terms as the probability of the data. And this is where the important draw-

back of the method comes into place - the ABC algorithm works best on simulated

scenarios, those where real data is not available. Now, when doing SID one normally

finds that the data is available through testing and that the identification process

makes use of that data in order to approximate a model and its parameters. For

this reason, the examples provided in [47] are applications on a binomial function

and an exponential one.

However, in [48], one can find yet another variation of the ABC method, ABC by

Subset Simulation(ABC-SubSim). The Subset Simulation approach was first de-

veloped in [49] and it works with nested regions of the probability of iterest. In

the [49] contribution, the authors used the SubSim method together with a modi-

fied Metropolis algorithm(MMA) in order to study failure probabilities that are too

small to be studied by normal probability sampling algorithms. This is done by the

use of conditional probability distributions. The MMA sampling algorithm gives

higher acceptance rates for the samples, which is a positive point but creates time

dependance between samples, which is a clear drawback. The idea behind MMA

is that for a vector of a high number of parameters to be sampled(i.e. more than

103 parameters), the sampling procedure happens in turns for each parameter of

the vector rather than for the vector of parameters as a block. Going back to the

contributions of [48], the SubSim method is put together with the ABC algorithm

to do parameter estimation and discuss doing model selection, as a by-product of

the parameter estimation. The newly introduced method, ABC-SubSim is a combi-

nation of ABC with MMA doing sampling on small probabilities distributions. The

algorithm is applied on simulated scenarios of a moving average model and a linear

oscillator. The concluding remarks are that ABC-SubSim brings improvements to

other variations of the ABC algorithm but the model selection issue is still unad-

dressed. Also, the algorithm is once again, applied to simulated cases as once noisy

data is considered (i.e. experimental data), the algorithm’s efficiency drops.

The usage of the MCMC sampling algorithms and respectively, the RJMCMC al-

gorithm spread into other areas of structural dynamics as well. Of particular im-
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portance, due to the work conducted by the author of the present thesis, is the

applications of the RJMCMC algorithm encountered in structural health monitor-

ing(SHM). The next section addresses the literature review of past work conducted

in applying MCMC methods in SHM.

2.3 SHM Literature Review

Damage detection is an important aspect in today’s industrial world as efficient

and reliable ways of using mechanical, civil, aerospace structures are sought. By

detecting damage in a structure one has as an end purpose increasing the life span

of otherwise expensive to replace parts. There are several contexts in which damage

detection is conducted:

• SHM

• CM(Condition monitoring)

• HUMS(Health and usage monitoring system)

• DP(Damage Prognosis)

• SPC(Statistical Process Control)

• NDT(Nondestructive testing)

[66]

The focus of this thesis for Structural Health Monitoring is on combining Bayesian

inference with SHM in order to conduct damage detection by using the RJMCMC

algorithm. This is considered in order to show the vast applications of the RJMCMC

algorithm in structural dynamics. The aim is to provide a method that can identify

and also quantify damage in a structure.

Damage detection is a widely considered area in research and the methods to deal

with identification and characterisation of damages or defects are numerous. Prob-

ably the simplest case of damage and the most popular in damage detection is crack

in a beam. This type of damage is popular in industrial applications. Methods

of assessing damage vary. Nondestructive evaluation techniques are mostly desired.

Users tend to model cracks in beams through massless rotational springs [50]. Modal
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analysis(i.e. natural frequencies and mode shapes) is used as well to determine cracks

position, location and size [51], [52]. Finite element analysis can be quite useful in

modelling cracks in structures and the extent of damage to very fine tuning. This is

mostly desirable if the user wants to construct a continuous model. Functions can

be used in order to define the crack [53]. Damages due to fatigue are prevalent in

engineering structures. One way of analysis of maximum damage a structure can

take is by using surrogate models, such as Kriging surrogate models [54]. In [54] the

authors identify the cracks location and size using stochastic particle swarm opti-

mization and use them as input for the surrogate models that have as output modal

frequencies. Evolutionary algorithms, such as Bees algorithm have been used in the

past to do multiple crack detection [55]. Experimental investigations are important

as they give one a view of what is happening to damaged structures under a range

of vibration regimes [56]. A highly important effect of some cracks in structures is

induced nonlinerity and studies exist on these effects with applications in SHM such

as [57].

2.3.1 MCMC Sampling Methods

There are applications of the Bayesian framework in SHM, in contributions such

as [68]. The authors of [68] conducted a study in order to identify damage in a

component by using Bayesian inference. The damage was detected by using the

probabilities of model parameters, which were obtained through several trails of

data gathering and probability theory. An alarm function was defined such as if the

probabilities of certain parameters(such as stiffness) were under the alarm function

value, that indicated damage in the structure. The drawback to this approach is that

it does not quantify the damage(i.e. location, type etc.)and undamaged case data is

required. In [69], the focus was on damage growth in an aircraft structure, using the

Paris law model. The authors provided a comparison between Bayesian inference as

a tool for identifying damage growth parameters and nonlinear regression method

with the same purpose. They concluded that even though Bayesian inference is

attractive due to its capabilities of quantifying uncertainties, once the number of

parameters increases, the nonlinear regression method becomes desirable due to

lower computational cost. The method proved successful in identifying parameters

of damage growth models.

The authors of [70] focused on doing damage detection for a thin plate with a single
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crack. The plate was subjected to free vibration and the experimental gathered data

was used to identify the single crack present in the plate. The model of the plate

was produced using Finite Element(FE) analysis. Bayesian inference together with

the population-based MCMC method were applied in order to produce estimates

of the crack location, position and orientation. The method proved successful and

it emphasized the advantage of not needing undamaged data from the plate. The

drawback to the procedure introduced in [70] is that one needs to be confident that

the FE model was defined correctly(i.e. geometry, boundary conditions, material

properties,etc.).

Multiple degrees of freedom analysis exist in areas such as civil engineering where

progressive damage is of more interest. In [58], by using a Bayesian framework

together with the adaptive MH algorithm, the authors managed to quantify the

uncertainty inherent in the progress of damage in a 7-story full-scale building. An

FE model of the building is also introduced. Hierarchical Bayesian Model Updating

and RJMCMC have also been used as of recently in civil engineering applications

[59],[60].

2.3.2 RJMCMC

The RJMCMC has been used for damage detection scenarios previously. In [71] two

cases of component degradation were considered. The first scenario included degra-

dation due to reparations or aging of the component. The parameters considered in

the case study were failure rate and the time at which the changes in failure rate

happened. The second scenario included degradation due to fatigue and it followed

the Paris-Erdogan law for crack growth. The parameters taken into consideration

for the second case study were mean and standard deviation of multiplicative noise

model and time at which changes in the mean and standard deviation happened.

In both cases the RJMCMC method proved successful in identifying the studied

parameters, considering the varying number of change points. Though relevant, the

work done in [71] fails to characterise the damage inherent in the component, either

due to machining, fatigue or life span reduction.

In [73] the focus is only on detecting damage due to fatigue of components. The

study was carried on a rectangular component with a middle crack. There were

two models for crack growth considered, the Paris model and the small time scale
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model. The RJMCMC algorithm was applied to do model selection between the

two models of fatigue crack growth and to identify the parameters characterising

each crack growth model, rather than parameters characterising the crack or damage

itself. The authors of [73] dealt with model updating and averaging as well, which

proved to be straightforward. The main advantage of the method applied was that

only one simulation with the RJMCMC was necessary in order to get the parameters

of interest. No characterisation of the damage was provided as it was considered

part of prior knowledge. One of the most recent publications on the usage of the

RJMCMC method in damage detection is [74]. The authors of [74] used headphones

as tools for identifying possible dents in submerged structures with the end purpose

of efficiently predicting the loads from buckling. The RJMCMC method was used

due to the fact that the dents number is unknown. In this study the focus was on

characterizing the dents through the identified parameters as well: dent amplitude,

dent vertical and horizontal location.

2.4 Summary

The current chapter was aimed at presenting the past work done in structural dy-

namics by employing Bayesian system identification. The work done previously

tends to concentrate on the problem of parameter estimation, with some MCMC

algorithms being more effective or computationally faster than others. For the is-

sue of model selection, there is still a need for algorithms that can move between

spaces of varying dimensions. In the considered previous work, the model selec-

tion was approached by using criterions such as Bayesian information criterion or

Akaike information criterion. The lack of a computational tool that is able to do

both parameter estimation and model selection has driven the need to introduce

the RJMCMC algorithm in the area of SID of dynamical structures. The follow-

ing chapter will deal with the theory of Bayesian inference and MCMC sampling

algorithms in order to set up the scene for the RJMCMC algorithm.



Chapter 3

Bayesian Inference

Chapter 3 covers the theory behind Bayesian inference, why is it being used, its

advantages in dealing with uncertainty as well as its important connection to Markov

Chain Monte Carlo sampling algorithms. This leads to the other purpose of the

present chapter, introducing Markov Chain Monte Carlo algorithms. Some relevant

or most used algorithms are explained briefly, while the main attention is kept

on the Metropolis-Hastings method, which is at the core of the Reversible Jump

Markov Chain Monte Carlo algorithm. Each MCMC sampling algorithm has its

advantages and disadvantages, which will be discussed below. The idea of using

MCMC sampling algorithms in doing system identification for dynamical systems

is not a new one. Various MCMC methods have been used in structural dynamics,

within a Bayesian framework, to do parameter estimation, just a few examples being

[24], [25], [48]. It is important to have a basic knowledge of what the other MCMC

methods can do so that their limitations could be exposed and the need for the

RJMCMC algorithm in structural dynamics emphasised.

3.1 Introduction

The need for using Bayesian inference and probabilistic frameworks in general, came

from the existence of uncertainty. Uncertainty could arise from either unknown, ig-

nored and/or compressed information. This information can be either from the

studied system itself, conducted experiments or processing errors. Examples of situ-

25
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ations where one can encounter uncertainty are during the process of mathematically

modelling the system, due to the differences between the approximated model and

reality, during the estimation process due to the fact that one or more parame-

ters are unknown and there could be a range of possible values. A very common

source of uncertainty is encountered during data recording due to noise present in

the equipment, cables, sensors, etc. Whatever the provenance, uncertainty can af-

fect the results of system identification, sometimes invalidating them [3]. For this

reason, rather than attempting to know exactly what parameters describe a system

or precisely know how the system is mathematically modelled, one is trying to pro-

vide a probabilistic estimation of the parameters of interest and an approximation

of the real system through a robust (and as simplified as possible) mathematical

model. This is translated into a probabilistic approach,where parameter estimates

are expressed as probability distributions instead of crisp ’best estimates’[77]. There

are two main views when one addresses probability theory [12]:

• Frequentist view;

• Bayesian view.

As the name implies, the frequentist approach is based on the frequency of outcomes.

It does not take into account anything that happened before the event of study.

Frequentists tend to concentrate on the variability of the data. Their main concern

is the probability of the data given the considered event happening. In this scenario

the data is not fixed but rather the parameters are considered constant. Another

probabilistic approach is Bayesian Inference, which is the approach used in the

present work. Unlike the frequentist view, the Bayesian approach is concerned

with the probability of the studied event happening given the set of data that is

considered fixed. Bayesian Inference is based on degrees of belief, which means that

when constructing the probability of an event happening, one takes into account

any prior information about that event. The dispute between the two probabilistic

approaches is still without a conclusion. As the present thesis is focused on using

a Bayesian approach, the rest of this chapter will concentrate on the advantages of

using a Bayesian framework.
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3.2 Main Bayesian Concepts

The first document related to Bayesian inference are dated back to the year 1763

when the publication ’An Essay Towards Solving a Problem in the Doctrine of

Chances’[61] surfaced, after the death of its author, the Reverend Thomas Bayes.

The term ’Bayesian’ came into its correct usage sometime in the 1900s when statis-

ticians started to employ it within the context of probability approaches that make

use of degrees of belief. In order to understand how Bayes theory works, let one

assume that we have two events, event A and event B. It is considered that the

reader is familiar with the basics of probability theory. For more in detail informa-

tion the reader is referred to [63]. In the below equations P (A|B) and P (B|A) are

referred to as marginal probabilities while P (A,B) and P (B,A) are referred to as

conditional probabilities. As it is known that:

P (A|B) =
P (A,B)

P (B)
(3.1)

and that

P (B|A) =
P (B,A)

P (A)
(3.2)

given that

P (A,B) = P (B,A) (3.3)

one can easily conclude that

P (B|A) =
P (A|B)P (B)

P (A)
(3.4)

Equation 3.4 is know as Bayes’ theorem, even though the current form of this equa-

tion was introduced by Laplace (in discrete form) and not by Bayes himself [62]. In

simpler terms, Bayes’ theorem tells one that the posterior probability distribution

of event B happening (given event A) is equal to the likelihood of event A (given

event B) multiplied by the probability of event B (as it is prior known), divided by
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the probability of event A. Bayes’ theorem is valid for more than two events as well.

Let one look at a slightly different scenario now. One has now three events, event

A, event B and event C and the interest is in finding the probability P (B,A|C),i.e.

the joint probability of events B and A given that event C happened. In the same

way as before,

P (A,B|C) =
P (A,B,C)

P (C)
(3.5)

and that

P (C|A,B) =
P (C,A,B)

P (A,B)
(3.6)

as

P (A,B,C) = P (C,A,B) (3.7)

one can conclude that

P (A,B|C) =
P (C|A,B)P (A,B)

P (C)
(3.8)

Using equation 3.1 one can replace P (A,B) in equation 3.8 such that it now becomes

P (A,B|C) =
P (C|A,B)P (A|B)P (B)

P (C)
(3.9)

One of the most important aspects when using a Bayesian framework rather than

other probabilistic approaches is the use of a prior distribution [67]. Priors, defined in

equations (3.4) and (3.9) as P (B), represent the knowledge one has about the event

one is studying[78]. This knowledge could be expressed as a Uniform distribution in

some cases (imposing limits on the values a certain event can take) or maybe as other

type of probability distributions (a commonly encountered used probability for priors

is the Normal distribution which will be discussed in more detail further on). It is

considered that the more a posterior probability distribution (expressed in equations

(3.4) and (3.9) as P (B|A) and P (A,B|C) ) of interest is dependent on the prior, the
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less robust it becomes. Priors though, work hand in hand with the likelihood (defined

in equations (3.4) and (3.9) as P (A|B) and P (C|A,B)P (A|B)). What controls the

likelihood is the amount of data (i.e. events A and C in equations (3.4) and (3.9))

one has and how ’informative’ that data is. In simpler words, the more ’informative’

data one has, the more weight the likelihood will have in Bayesian inference and so

it follows that the less control the prior has on the end result [67]. Another aspect

of Bayesian inference is the so called evidence term (represented in equations (3.4)

and (3.9) as P (A) and P (C)). Due to the fact that one is following a probabilistic

framework, one needs to ensure that the posterior distributions integrate to 1 [63].

In the case of discrete events, that would mean a summation of the numerator of

equations (3.4) and (3.9), while in the case of continuous events it would translate to

the integral of the numerator. The integrals are often enough found to be intractable

which led to the usage of estimating algorithms that are further explained in this

chapter.

Now that Bayes’ theorem was defined, let us concentrate on the advantages of using

a Bayesian framework:

• Bayesian inference makes use of prior knowledge in order to help speed up the

process of getting the posterior probability of interest;

• Within a Bayesian framework the data is considered fixed while the param-

eters are considered not to be constant. This provides estimations over the

parameters through the form of probability distributions rather than exact

values;

• Though sometimes governed by intractable integrals and posterior distribu-

tions with complex geometries, the Bayesian framework can use Markov Chain

Monte Carlo sampling algorithms to deal with the issue;

• Bayesian inference is also capable to provide confidence intervals and deal with

uncertainty;

• In engineering one wants efficient but simple solutions - Bayesian inference

prevents overfitting.

• Bayesian inference follows the Occam’s principle - it favors mathematical sim-

plicity.

For the past decade or so,Bayesian inference started coming into its own rights in
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the field of research, proving itself to be more and more the chosen approach in

scenarios where uncertainty accountability is crucial. The author of this thesis aims

to demonstrate that a Bayesian framework is a reliable and efficient choice when

dealing with SID of dynamical structures.

One of the reasons why Bayesian inference became so popular is due to the fact that

MCMC sampling methods came into light and the mathematical difficulties that

occurred until that point(such as intractable integrals), finally found a solution.

This is not to say that other estimation methods did not exist until the discov-

ery of MCMC sampling algorithms. Some examples of estimation methods used

in Bayesian inference are least-squares and Newton-Raphson; these two methods in

particular, concentrate on finding a maximum estimate locally,such that they are

more concerned with the likelihood [67].

For the purpose of the present work, the author found MCMC sampling methods

effective and as such, the next part of this chapter will cover background on MCMC

sampling methods.

3.3 Bayesian Inference and Markov Chain Monte

Carlo

As mentioned in the previous section of the current chapter, in order to get the

posterior probability distribution of interest using Bayes’ theorem, one can make

use of a number of estimating methods. Once the likelihood, prior distribution and

evidence term are estimated, one can get the posterior distribution of interest.

Let now one concentrate on the evidence term in Bayes’ theorem, that being the

denominator in equations (3.4) and (3.9). The evidence term, also known as the

normalising constant is relevant when one is dealing with more than one event. It

is being used to provide evidence on the events of study so that one can easily

choose the best event to represent the known data-this is known as the Bayes factor

which is the ratio of evidences of two different events. The normalising constant can

sometimes be hard to calculate, especially when it comes to continuous events - in

that case, the evidence term is often enough an intractable integral.
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It is found in literature that one of the used methods in estimating the evidence

term in Bayes’ theorem is Laplace’s method [12], [72].

The Laplace method provides an approximation for the evidence term. In order to

do that, it uses Taylor-expansion and mathematical concepts, to get to the final

form [12]:

Zp = P ∗(x0)

√
(2π)k

det(T )
(3.10)

where Zp is the evidence term, P ∗ is the unnormalised probability density of interest,

x0 is the maximum value of the probability distribution, k is the dimension of space

x of all values under the probability distribution P ∗ and T is the matrix of 2nd

order derivative of −ln(P ∗) at the maximum value x0 (for the full derivation of the

Laplace method, see Appendix). The issues that arise with the Laplace method are

mostly concerned with the fact that through all of the approximations, the Zp term

becomes basis-dependent(Zp becomes dependent on any transformation of x) when

dealing with real events it should be basis independent. Of course this means that

one needs to be careful when choosing the basis. Another relevant problem when

using Laplace method is that it approximates the probability of interest to be a

Gaussian shaped probability distribution which is often enough not true.

Even though good in the process of estimating, due to its drawbacks which can be

found in [72], the Laplace method can be replaced by MCMC sampling algorithms.

The MCMC methods can express the evidence as a basis-independent term. First

of all, let one define what Markov Chain Monte Carlo sampling algorithms are;

MCMC sampling algorithms are computational tools that use random variables and

Markov chains in order to provide samples from a probability distribution of interest.

In order to create a Markov chain one needs a starting point (or more precisely a

probability distribution at the starting point) and a function that helps transition

from the current point’s probability distribution to the next one. This chain starts

randomly moving within the considered space and it depends only on the previous

point. Another way of calling this type of chain is ’memoryless’.

There are two problems that MCMC methods aim to solve [12]:

• Provide samples from probability distributions of interest
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• Estimate expectations of functions under the studied probability distribution

Each of the MCMC sampling algorithm can either deal with one of the aspects

of system identification or both. Examples of known MCMC sampling algorithms

are : Importance Sampling, Gibbs Sampling, Rejection Sampling, Slice Sampling,

Metropolis-Hastings algorithm and many other variations of these. Let one learn

more about each of these sampling algorithms, its advantages and disadvantages to

better understand the author’s choice of using the Metropolis-Hastings algorithm in

the present work. The Beta distribution, represented in Figure 3.1, will be used

as a demonstrator for explaining how the MCMC sampling algorithms work.

Figure 3.1: Beta Distribution with a = 2 and b = 3

The beta distribution is a known probability distribution defined by shape parame-

ters a and b [77]. Let one concentrate on some MCMC sampling methods.
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3.3.1 Importance Sampling

Importance Sampling is an MCMC algorithm that tries to asses the importance of

each sample. The algorithm assigns different weights to each sample in the Markov

chain and by comparing those weights it decides where to go next. Importance Sam-

pling deals with expectations of functions under a certain probability distribution -

for the purpose of exemplifying the method, let one say the probability distribution

is the beta distribution defined earlier. This means that it covers only the second

issue that MCMC sampling algorithms, in general, are trying to assess [12]. This

can already be seen as a disadvantage.

The name of the method comes from the fact that each point in the estimation

process is checked first for importance by using a weighting system.

Let one assume the following scenario:

There is a Beta Distribution(see Figure 3.1) defined by the following equation:

β(µ | a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µ(a−1)(1− µ)(b−1) (3.11)

where a = 2 and b = 3 are Beta distribution shape parameters arbitrarily chosen

and Γ(a + b), Γ(a) and Γ(b) are gamma functions of the shape parameters and are

defined as:

Γ(a+ b) = (a+ b− 1)! (3.12)

Γ(a) = (a− 1)! (3.13)

Γ(b) = (b− 1)! (3.14)

for a and b integers.

The variable of interest is µ.

Let one assume that the Beta distribution is the target distribution of interest to
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a proportionality factor due to the fact that the target probability distribution of

interest has a complex geometry. Now one defines a polynomial function(represented

in Figure 3.2 in black), for which one is trying to get the expectation of, under the

Beta distribution defined previously.

µ3 + µ2 + 4µ+ 0.2 = y (3.15)

By using the Importance Sampling algorithm approach, one will need a new extra

distribution, let one say a Gaussian distribution(represented in Figure 3.2 in red)

of mean m = 0.4 and standard deviation σ = 0.2 (as defined in the equation below),

such that the Beta distribution(represented in Figure 3.2 in blue) of interest is

enveloped by the new defined distribution.

N(µ|m,σ) =
1√
2πσ

e
−(µ−m)2

2σ2 (3.16)

The weight for each sample is calculated by doing the ratio of the value of Beta

density for that sample and the value of Gaussian density for that sample. With

the help of this ratio one calculates the expectation of the function under the Beta

distribution for that sample. The process keeps repeating for whatever number of

iterations is decided on by the user.

As mentioned before, the Importance sampling algorithm only covers the expectation

of functions and not the sampling. One issue with this sampling method is that the

new proposed distribution(in the example above a Gaussian distribution) needs to

completely envelope the target distribution(i.e. the Beta distribution in the example

above). As one can observe in Figure 3.2, this is one example when the Gaussian

distribution was defined incorrectly in the sense that it does not envelope the Beta

distribution.

Another issue that comes across is the fact that this sampling method will not work

in many dimensions as it can be expensive time wise and the weight factors can vary

too much,making it unreliable.
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Figure 3.2: Beta Distribution, Gaussian Distribution and Polynomial
Function

3.3.2 Gibbs Sampling

Gibbs sampling is another MCMC method commonly found in literature. Gibbs

algorithm is concerned with providing samples from joint distributions. In order

for the Gibbs sampling methods to be applied, one needs to have a minimum of

two probability distributions of interest and to construct the proposal density as the

conditional probability distribution of the joint distributions. Again, it is useful to

know the probability distributions of interest to a certain extent of proportionality,

due to the fact that it prevents the Markov chain getting ’stuck’ in low probability

regions.

Let one illustrate the Gibbs sampling procedure by employing the use of a multivari-

ate Beta distribution. In the context of two or higher dimensional space, the Beta

distribution can be approximated as a Dirichlet distribution with the probability

density function:

f(µ | α) =

∏K
i=1 µ

(αi−1)
i

B(α)
(3.17)

where µ is the vector of variables of interest, α is the distribution’s control vector

parameter, K is the number of variables and B(α) is a function defined by:
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B(α) =

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)
(3.18)

with the Γ function defined as previously.

The Dirichlet distribution can be a little mathematically heavy but the only purpose

of it in this chapter is to be used as a demonstrator so no intense knowledge about

it is required.

So, as mentioned before, the Gibbs sampling algorithm can only be employed when

the vector of variables µ contains at least two variables, in other words, when K = 2.

Let one assume that in the present scenario K = 2 so that µ = {µ(1), µ(2)} is a

vector of two variables. In this case, the proposals for the new variables will be

taken as follows, µ(1)∗ from the conditional probability P (µ(1) | µ(2)) and µ(2)∗ from

the conditional probability P (µ(2) | µ(1)).

One of the disadvantages of the Gibbs method is the possibility of a slow convergence

of the Markov chain to the posterior distribution of interest due to the fact that

the moves proposed are based on a random walk. This on the other hand can be

addressed by using methods of ’controlling’ random walks, methods that can be

found in [12] but are not further discussed in this thesis. A drawback could be

considered the fact that it only works for high dimensional spaces but at the same

time there are other methods (such as Metropolis-Hastings) that can be employed

in singular dimensional space effectively.

3.3.3 Rejection Sampling

Moving forward through the MCMC sampling methods, one has the Rejection sam-

pling algorithm as yet another possibility for Bayesian Inference.

The Rejection sampling method is quite straightforward and mathematically ap-

proachable in the same sense as the Importance sampling method discussed earlier.

As with the Importance sampling, the Rejection sampling algorithm works with a

proposal that needs to be known to be quite close to the targeted distribution of

interest. Unfortunately, this is hard to achieve when one has no idea about the

posterior distribution.
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For a better understanding, let one assume that one is dealing with the same Beta

distribution described in the Importance sampling section so that the probability

distribution of interest is as in Figure 3.1, to a proportionality extent. In the

context of Rejection sampling, the user has to find a proposal distribution such that

by multiplying the density function of that distribution by a known factor, let one

call it j, the obtained density function completely envelopes the target probability

distribution function, i.e. the Beta distribution - the process can be visualised in

Figure 3.3.

Figure 3.3: Beta Distribution and Proposal Distribution in red

Now, this is clearly a drawback as it is difficult to define an appropriate multiplica-

tion factor j. Also, when one goes into higher dimensions, the algorithm falls short

in convergence as the rejection rate of the samples would be very high. This makes

the algorithm inefficient. For the stated reasons, the Rejection sampling algorithm

will be consider no more in this thesis.

3.3.4 Metropolis-Hastings Algorithm

The author would like at this point to emphasis the importance of this following

sampling algorithm, the Metropolis-Hastings(MH) sampling method, for the work

presented in this thesis.

Similar to the Gibbs sampling, the MH method relies on creating a Markov chain

of samples through a random walk, with the end purpose of providing the user with
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samples from the posterior probability distribution of interest.

One of the advantages of using the MH algorithm in comparison with other MCMC

methods is the fact that the proposal density can be anything the user chooses, in

the sense that it does not have to be similar to the target distribution of interest as

was described before.

The MH algorithm can be used in both low and high dimensional spaces. The

following is the pseudo-code for the MH implementation in the work done by the

author:

Algorithm 1 MH Algorithm

1: for n = 1 : N do
2: Get u from U [0, 1] −generates a random number from an uniform
distribution;

3: if u ≤ αMH then
4: Update to proposed value of µ;
5: else
6: Reiterate current value of µ;
7: end if
8: end for

The random value u decides where the new proposed state will be, causing a random

walk. The acceptance probability, αMH is a statistically defined measure of whether

the new proposed state should be accepted into the chain of samples or not. The

acceptance probability depends on the target and proposed probability distributions.

It is common for the chain of samples or Markov chain to be allowed a burn-in period.

This means a period for the chain to settle to the desired mean. To this extent, a

number of first samples will be discarded usually from the probability distribution.

It comes down to the educated decision of the user what amount of samples will be

discarded. Thinning is another procedure chosen by the user for reasons such as to

save computational space [75]. This basically means that only every nn
th

sample will

be saved to create the chain of samples to build the posterior distribution. Generally

this is done in order to avoid autocorrelation in the Markov chain. Again, it comes

down to the user to decide if thinning of the chain is a good approach.

Figure 3.4 illustrates the use of the MH algorithm by sampling from a Gaussian

distribution defined by parameters m = 0 and σ = 1 (samples of which are repre-

sented in blue), using a Gaussian distribution of mean m = 0 and standard deviation

σ = 1 as a proposal(i.e. Gaussian distribution represented in red).
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Figure 3.4: MH algorithm applied on a Gaussian Distribution - samples
from target distribution and theoretical distribution in red

It is only fair to talk a bit about its disadvantages as well. The convergence of the

algorithm to the distribution of interest can be slow due to the fact that, as with

the Gibbs sampling, it employs a random walk with samples dependent on each

other. This means that the algorithm can be run for some time in order to reach

independent samples, which is what one is looking for.

The author’s particular interest in the MH sampling algorithm comes from the

fact that its usage is popular in problems of system identification in the context of

structural dynamics. The popularity of the MH algorithm is due to the fact that the

evidence term can be ignored in the sampling process and also due to the fact that

the proposal PDF can have any form the user chooses. Within system identification,

the MH algorithm is used in doing parameter estimation.

In his paper [34], Green made an observation about the MH algorithm. When

confronted with the issue of model selection, the Markov chain loses detailed balance

(explained in the following chapter) as it is incapable of moving between spaces of

varying dimensions.
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This sparked the author’s interest in the RJMCMC algorithm, as an alternative to

other methods of conducting model selection as the RJMCMC algorithm proved to

be capable of doing parameter estimation and model selection simultaneously while

obeying the principle of detailed balance as required in order for the Markov chain

to be able to provide samples. The RJMCMC algorithm will be explained in full

detail in Chapter 4.

3.3.5 Slice Sampling

Yet another MCMC sampling algorithm is the Slice sampling method. Rather than

an algorithm in its own rights, the Slice sampling method improves the random

walk present in the MH algorithm or the Gibbs sampling algorithm by employing a

self-adjusting step size during the walk. The step size is considered a parameter to

be constantly updated.

The Slice sampling algorithm concentrates more on the Markov chain in itself in

order to reduce randomness in steps. In the case of a MH algorithm, an interval is

decided upon, between the current sample,µ and the proposed sample,µ′. A sample

is drawn from the uniform distribution of the chosen interval. The probability of

the new drawn sample is compared against a random variable generated from a

uniform distribution between 0 and the proportional value of P (µ). If the condition

is satisfied, then the proposed value is accepted, otherwise, a new interval is chosen.

There are much more comprehensive reviews of the MCMC sampling algorithms in

literature such as [76] but for the purpose of this present thesis what was presented

so far will suffice.

3.4 Summary

In this chapter the basic theory behind Bayesian Inference was presented. Bayesian

Inference is a probabilistic framework used in dealing with uncertainty. One of its

main advantages is that it penalises complexity. In the context of doing SID in

structural dynamics, one is interested in robust models with appropriately approxi-

mated parameters. System identification can be considered successful if the results

obtained in processing are in accordance with the data used and also if the mod-
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elling can be applied in a generalised scenario. It was also covered in this chapter

the importance of MCMC sampling algorithms in doing Bayesian Inference. Some

of the most important methods were briefly introduced to the reader, while the main

attention was kept on the MH algorithm, due to the fact that it is at the core of the

RJMCMC method which is what this thesis is concentrated with.

The following chapter, Chapter 4, provides the introduction and in depth descrip-

tion of the RJMCMC algorithm, as employed in system identification of dynamical

structures.
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Chapter 4

Reversible Jump Markov Chain

Monte Carlo

Chapter 4 is concerned with presenting the background and theory for the Re-

versible Jump Markov Chain Monte Carlo algorithm, as used in the context of SID

in structural dynamics. The RJMCMC method in itself was developed in 1995 [34].

At that moment in time, it was seen as a general computational tool to be used in

mathematical statistics. The contribution of this present chapter is to update and

apply the original ideas of the RJMCMC algorithm for dynamical systems. In order

to do that, the algorithm had to be reconsidered mathematically and adapted to the

SID framework. Concepts such as detailed balance, dimension matching and map-

pings, are defined and derived to fit with the specific problems of SID of dynamical

systems.

4.1 Transdimensional Markov Chain Monte Carlo

methods

The RJMCMC algorithm can be considered as part of a bigger class of transdimen-

sional algorithms. This simply means that these particular algorithms are capable

of making transitions between spaces of different dimensions. It cannot be stressed

enough that there is a gap, in methods and algorithms in structural dynamics, that

are capable of doing both parameter estimation and model selection in a probabilis-

43
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tic manner. It is known that there exist criterions to decide on which model, from a

group of possible models, best approximates a structure such as BIC(Bayesian Infor-

mation Criterion) or AIC(Akaike Information Criterion). These criterions though,

do not provide a probability distribution over the group of models. Even more so,

the transdimensional methods are designed to move between spaces of varying di-

mensions in order to do parameter estimation with the added benefit of providing

estimates over the model space. These methods aim to tackle issues such as SID in

more effective ways.

The TMCMC method [44] does parameter estimation for a model with an extra

outcome, that of the evidence term. If one remembers from Chapter 3, the evidence

term is useful in that it provides a means for doing selection between models, in the

case one is dealing with competing models. In simpler terms, if one has two models

to choose from for the same system, one could conduct a TMCMC methods analysis

on each model, get the evidence term individually, compare the evidence terms and

that would tell the user which model to choose for the studied system. One other

algorithm as such is the Transdimensional Transformation Markov Chain Monte

Carlo(TTMCMC)[64]. The TTMCMC is an extension to the Transdimensional

Markov Chain Monte Carlo(TMCMC) algorithm. It is reasonable to conclude that

this approach can get computationally expensive, especially if one deals with more

that two models. On the other hand, the TTMCMC algorithm is trying to do the

model selection process live. That is, as the parameters for each model are assessed,

the evidence term for each individual model is updated and compared to the other

models.

There are a few algorithms in literature that can at least provide the means to do

model selection such as the ABC method [48]. In the same sense as the TMCMC

method, the algorithms provide as an extra outcome the evidence term.

4.2 Reversible Jump Markov Chain Monte Carlo

Going back to the RJMCMC method, this particular algorithm has the necessary

computational tools to do parameter estimation and model selection ’in one go’,

in the sense that it considers the model indicator as an added parameter to be

identified. It this sense, the probability distribution over the models indicators will

indicate which model is more appropriate to choose for the studied system.
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Now, there are on-going conversations in the statistical world about the efficiency

of such an algorithm. Some of the raised problems are the acceptance rates of

dimension-changing samples [64], the computational time required to get indepen-

dent samples, the construction of proposal distributions [65], etc. The reader of this

thesis needs to be aware at this moment in time that the RJMCMC algorithm is

introduced, to the best knowledge of the author, for the first time by the author

in the context of structural dynamics with the purpose of doing SID. This is the

key contribution of the thesis. As such, the work of the author with the RJMCMC

algorithm is proven as an efficient and a strong computational tool for nonlinear

system identification.

Historically, the RJMCMC algorithm was firstly introduced by Peter J Green in 1995

in the context of statistical mathematics [34]. The fact that the method is quite

mathematically heavy made it less popular for usage in other areas of research.

Even so, the RJMCMC algorithm penetrated mostly the biological world where it

was used for various research [32].

As it is already understood, the main advantage of the RJMCMC algorithm is that

it can move between spaces of varying dimension while simultaneously providing

estimates of the parameters the spaces depend on.

Let one think what that means for dynamical systems. In the context of structural

dynamics, it is possible that there are multiple models, let one denote them by

M = {M (1),M (2), ...,M (l), ...,M (L)}, that may explain the physical behaviour of

the experimental system of interest. Even if the models are of the same dimension,

they could be differently parameterized. If one takes into consideration that the

models might be of different dimensions as well, the issue is amplified. So what

one needs is a computational tool for low DOF systems to deal with the selection

of models in order to answer the question of which robust model best represents

the data of a system. Furthermore, in the context of nonlinear SID in structural

dynamics, the question is, if there exists a computational tool to be able to do SID

for low DOF systems, would it be useable when nonlinearity is present.
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4.3 Theory of Reversible Jump Markov Chain Monte

Carlo

With Reversible Jump MCMC one can address parameter estimation and model

selection simultaneously. The way the algorithm works is that it can move/’jump’

between parameter spaces of different dimension. The vector set of parameters is

not fixed to each model; it can vary in both length and values. Reversible Jump

MCMC is capable of ’jumping’ from one model to the other and select the most

likely model while generating parameter samples for that particular type of system.

In the set of models, M , the models will be arranged in the order of their complexity

for a better understanding; in this work it follows naturally that a more complex

model is defined as one constrained by more parameters. It should be noted that

the models do not need to be arranged in any particular order for the algorithm to

be applied but it is useful for the user to keep indices of each model considered.

As designed for the use in SID, there are three main moves in the RJMCMC method:

• Birth move - which implies that if the birth move condition is satisfied, the

algorithm moves to a model with an additional parameter;

• Death move - which implies that if the death move condition is satisfied, the

algorithm ’jumps’ to a model with one less parameter;

• Update move - which implies that if neither the birth move condition nor death

move condition were satisfied, the algorithm remains within the same model

and the use of the normal MH algorithm is employed, as presented before, for

parameter estimation.

It is relevant to know that the moves can be flexible in the sense that the algorithm

is not limited in any form to only three types of moves, as long as the Markov chain

is kept to obey detailed balance, the user can update it to however many moves are

useful.

The ’birth move’ means that if one is in a less complex model, one might want to

attempt a move to a more complex model - from a model defined by less parameters
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to a model defined by more parameters. The variables used in order to define the

probabilities below are defined as: l is an indicator of the current model, the variable

p adjusts the proportion of the update move in relation with the birth and death

moves, and the probabilities, P (l) and P (l+1), are prior probabilities of the models

at iteration l and l + 1 respectively, with the priors defined as in Chapter 3.

The birth move will be randomly attempted with probability bl, where :

bl = p×min

{
1,
P (l + 1)

P (l)

}
(4.1)

The ’death move’ implies that one is attempting to check a less complex model,

i.e. wanting to attempt moving from a model defined by more parameters to a

model defined by less parameters. The death move will be randomly attempted

with probability dl, where:

dl+1 = p×min

{
1,

P (l)

P (l + 1)

}
(4.2)

Lastly, the last move, the update is considered when none of the birth or death moves

are. In this case, the parameters in the current model will be updated according to

the MH algorithm. The update move will be randomly attempted with probability

ul,l+1. There is no need to actually define the probability for the update move due

to the fact that one only has three moves and that means that their probabilities

of happening need to add up to 1. This means that the probability of the update

move can be more easily defined as:

bl + dl+1 + ul,l+1 = 1 (4.3)

Now let one have a closer look at equations 4.1 and 4.2. A little bit of rearrangement

gives:

blP (l)

P (l + 1)
= p (4.4)
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and

dl+1P (l + 1)

P (l)
= p (4.5)

Putting the equations 4.4 and 4.5 together, one gets:

blP
2(l)

dl+1P 2(l + 1)
= 1 (4.6)

For a better understanding, let one define at this point in time a simplistic case

scenario.

It is assumed that one has a set of two candidate models for a dynamical SDOF

system,M = { M (1),M (2)} ,where model M (1) has one unknown, θ(1), while model

M (2) has two unknown parameters, {θ(2)1 , θ
(2)
2 }.

It is further assumed that the first model is described by the well-known SDOF

linear equation:

mÿ + cẏ + k(1)y = F (4.7)

The second model considered is a Duffing oscillator (the nonlinear system can be of

any form, but for this case it was chosen to be a Duffing oscillator), described by

the following SDOF nonlinear equation:

mÿ + cẏ + k(2)y + k
(2)
3 y3 = F (4.8)

where y ∈ D is the assumed gathered output data from the system that was sup-

posedly excited by F ∈ D. Figure 4.1 is a graphical representation of the two

competing models.

In the context of the two equations of motion and the models presented above, the

mass m is assumed known as well as the damping coefficient, c, while k(1) = θ
(1)
1

and k(2) = θ
(2)
1 , k

(2)
3 = θ

(2)
2 are the unknown parameters for each of the considered

models.
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Figure 4.1: (a) Linear system, (b) Nonlinear system

With this described scenario, one wants to do model selection and parameter esti-

mation for the system in question, considering that the only available information

about these is the assumed gathered data. The solution proposed is applying the

RJMCMC algorithm within a Bayesian framework. In order to do that, one needs

to go through the steps of understanding how this method is implemented.

To start off, an explanation of the RJMCMC method is provided through pseudo-

code, which can be found below.

The quantities αm, α′m, are the acceptance probabilities of the birth and death moves

respectively. These will be further explained and defined later on.

The generated random number um dictates what the proposed move will be. Within

each accepted move, the randomly generated numbers ub and ud dictate what the

proposed samples will be. This is an important aspect as one needs to remember

that the MH algorithm is based on a random walk. Another point to remember is

that for l = 1, there is no death move and for l = L, there is no birth move.

Now that one has a general idea of what happens within the RJMCMC algorithm,

one needs to delve into the details of it. The main two important ones are re-

specting the detailed balance of the Markov chain when moving between spaces of

varying dimensions and making the dimensions match so that the jump itself could

be possible.

With that in mind, remember the system and the two candidate models introduced

earlier: at this point in time , there are two models: M (1) which represents a SDOF
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Algorithm 2 RJMCMC Algorithm as implemented in SID of dynamical structures

for n = 1 : N do
2: Get um from U [0, 1] −generates a random number from an uniform
distribution;

if um ≤ b
(n)
l −birth move condition; then

4: −propose birth move
Generate ub from U [0, 1] −generates a random number from an

uniform distribution;
6: Evaluate αm (detailed below)

if ub ≤ αm then
8: −update to model l + 1 and update model parameters;

else
10: −stay in model l;

end if
12: else

if um ≤ (b
(n)
l + d

(n)
l+1) −death move condition; then

14: −propose death move
Get ud from U [0, 1]−generates a random number from an uniform

distribution;
16: Evaluate α′m (detailed below)

if ud ≤ α′m then
18: −go to model l − 1 and update model parameters;

else
20: −stay in model l;

end if
22: else

normal MH algorithm, model remains at l state, update
parameters only;

24: end if
end if

26: end for
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linear system that contains one unknown parameter - the linear stiffness k(1) that

is added in vector θ(1) and M (2) which represents a SDOF nonlinear system that

contains two unknown parameters - the linear stiffness k(2) and the cubic stiffness

k
(2)
3 , that are added in vector θ(2).

4.3.1 Detailed Balance

Firstly mentioned was the principle of detailed balance which must be respected

in order for MCMC methods to generate samples from the target probability den-

sity function(PDF). This is simpler to demonstrate for MH as the dimension space

remains the same. With RJMCMC it becomes harder to maintain because the di-

mension space varies. As such, the detailed balance principle will be first proved for

the MH algorithm in order to provide a base for the explanation on detailed balance

for the RJMCMC algorithm.

4.3.2 Detailed Balance and the MH algorithm

As mentioned previously, the most important aspect of MCMC methods is that

detailed balance is respected. In general terms, detailed balance states that at equi-

librium every process should be balanced out by its reverse process. In the context

of MH sampling, detailed balance ensures that ergodicity and a limiting distribution

are respected [34]. The purpose of this thesis is not to discuss statistical terms, so

that for the interested reader details on ergodicity and limiting distributions can be

found in [12].

So, let one look at the system defined but with the assumption that one already

knows that the gathered data is best approximated with the linear SDOF model.

That gives only one model to consider, M (1) and only one issue, that of parameter

estimation, θ(1). This simplifies things such that everything will happen only in

one space so there is no change in dimensions. One only needs to be able to move

between the current value of the parameter and the proposed value.

The following analysis will make use of the concept of mappings, which are func-

tionals, or simply put functions, that relate states between themselves [33].
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For this case, one will define the mapping h : θ(1) → θ(1)
′

which is the path from

θ(1) to θ(1)
′

with its inverse, h−1 being defined as the path from θ(1)
′

to θ(1).

Detailed balance states that, for the standard Metropolis-Hastings algorithm, for

a model M (1) that depends on one parameter, i.e. θ(1) = { k(1)} , the following

equation needs to hold.

π(θ(1))T (θ(1) → θ(1)
′
) = π(θ(1)

′
)T (θ(1)

′ → θ(1)) (4.9)

Equation (4.9) can be explained as: the target PDF,π(θ(1)), of the vector of pa-

rameters θ(1), multiplied by the transition function T (θ(1) → θ(1)
′
) between the

vector of parameters θ(1) and the new state θ(1)
′
, has to be equal to the target

PDF,π(θ(1)
′
), of the vector of parameters θ(1)

′
, multiplied by the transition func-

tion T (θ(1)
′ → θ(1)) between the new state of the vector of parameters θ(1)

′
and

the current state of parameters vector θ(1).

The transition function mentioned in equation (4.9) can also be written in the fol-

lowing form:

T (θ(1) → θ(1)
′
) = q(θ(1)|θ(1)′)α(θ(1) → θ(1)

′
) (4.10)

where q(θ(1)|θ(1)′) is the proposal density used in the sampling process. Considering

that equation (4.9) is valid for all paths available between the vectors:

∫
π(θ(1))T (θ(1) → θ(1)

′
) dθ(1) =

∫
π(θ(1)

′
)T (θ(1)

′ → θ(1)) dθ(1)
′

(4.11)

or

∫
π(θ(1))q(θ(1)

′|θ(1))α(θ(1) → θ(1)
′
) dθ(1) =

∫
π(θ(1)

′
)q(θ(1)|θ(1)′)α(θ(1)

′ → θ(1)) dθ(1)
′

(4.12)

If the considered model would have depended on more than one parameters, that

would simply mean that the integration needs to be expanded over the entire space

of parameters, which leads to multiple integration signs being employed as it will be
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shown later on.

Going back to equation 4.12, θ(1)
′

is simply sampled from a Gaussian distribution

centered around the current θ(1) and with variance decided by the user - that is the

proposal distribution. This means that:

dθ(1) = dθ(1)
′

(4.13)

There is no need in this case for a special functional that can map the two vector

of parameters. The two vectors, θ(1) and θ(1)
′

are part of the same space.

This basically concludes the proof of detailed balance in the case of the MH algo-

rithm. Of course, things can get a little bit more complicated when one is working

within a model that depends on more than one parameter but even so, the calcula-

tions required are straightforward as once again, the Markov chain is moving within

the same space.

The next step is to prove that detailed balance holds in the case of the RJMCMC al-

gorithm. In order to do that, the case of the two models introduced at the beginning

of the chapter is employed.

4.3.3 Detailed Balance and RJMCMC

Detailed balance, when it comes to RJMCMC, gets more complicated to evaluate

because the variables are part of a space of different dimension. This implies that

one cannot be sure that the space dimension of the right hand side is necessarily

equal to the space dimension of the left hand side. In most cases it is actually not.

As model M (1) has only one unknown parameter and model M (2) contains two

unknown parameters, one can easily spot a mismatch in dimensions. Due to the

fact that the dimensions do not match, jumping from one model to the other in

order to do model selection proves impossible when using the MH algorithm. What

one wants to do is be able to move between the two models in order to decide which

of them best fits the available data. In order for the forward and backward moves

to occur, the principle of detailed balance needs to be respected (at equilibrium

each process should be balanced out by its reverse process). As the dimensions
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of the two vectors of parameters for each of the two models do not match, the

process of jumping from M (1) to M (2) cannot be balanced out by its reverse process,

i.e. jumping from M (2) to M (1). An approach to solving the problem of matching

dimensions is by introducing a new parameter in model M (1). This newly introduced

parameter (λ) is a randomly generated number. At this point one needs to state the

relation between the two models, M (1) and M (2). This is done by using mappings

(functionals that can relate different states [33]). In order to move from M (1) to

M (2), the following mapping, h : R2 → R2, was introduced:

{
k(2)

k
(2)
3

}
=

[
0

µ

]
+

{
k(1)

λ

}
(4.14)

where µ is a chosen value that needs to be tuned in order for the algorithm to reach

a solution efficiently.

The inverse of the mapping is applied for a death move, i.e. for going from M (2) to

M (1).

The form of the mapping is not chosen randomly. Green [34] also mentions that

in order for the mapping to be used in jumping between spaces it needs to be

diffeomorphic. A diffeomorphic mapping means one that is differentiable and unique.

It is obvious that the created mapping is differentiable. One is left with proving that

the mapping is unique. According to the inverse function theorem, as long as the

Jacobian at whichever chosen point is nonzero, the mapping is said to be unique [33].

Furthermore, in this particular case, the determinant of the Jacobian is calculated

to be unity under all conditions. This concludes the mapping to be differentiable

and unique, i.e. diffeomorphic.

Now, having introduced a new parameter in M (1) and having proven the chosen

mapping to be diffeomorphic, one can endeavour to prove that the detailed balance

principle holds with the RJMCMC algorithm.

If one considers equation (4.12) in the case of the two models M (1) and M (2), one

has model M (1) depending on a vector of parameters θ(1) = {k(1), λ} (as the vector

of parameters was augmented with a a new parameter λ) and model M (2) depend-

ing on θ(2) = {k(2), k(2)3 } vector of parameters. Writing equation (4.12) using this

information:
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∫∫
π(θ(1))q(θ(2)|θ(1))α(θ(1) → θ(2)) dk(1)dλ =∫∫

π(θ(2))q(θ(1)|θ(2))α(θ(2) → θ(1)) dk(2)dk
(2)
3 (4.15)

Using the mapping introduced in equation (4.14) and the Jacobian matrix, the

relation between dk(1)dλ and dk(2)dk
(2)
3 can be expressed as:

dk(2)dk
(2)
3 =

∣∣∣∣∂ (k(2), k
(2)
3 )

∂ (k(1), λ)

∣∣∣∣dk(1)dλ (4.16)

where

∣∣∣∣∂ (k(2), k
(2)
3 )

∂ (k(1), k(2))

∣∣∣∣ = det

[
∂k(2)

∂k(1)
∂k(2)

∂λ

∂k
(2)
3

∂k(1)
∂k

(2)
3

∂λ

]
(4.17)

Calculating the determinant of the Jacobian, one can see that it is always equal to

1 in this case.

Putting everything together, gives the equation of detailed balance for the RJMCMC

algorithm:

π(θ(1))q(θ(2)|θ(1))α(θ(1) → θ(2)) = π(θ(2))q(θ(1)|θ(2))α(θ(2) → θ(1))

∣∣∣∣∂ (k(2), k
(2)
3 )

∂ (k(1), λ)

∣∣∣∣
(4.18)

At this point one has the following:

• one vector of parameters for M (1), θ(1) = {k(1)} ∈ Rn;

• one vector of parameters for M (2), θ(2) = {k(2), k(2)3 } ∈ Rn′ ;

• one vector of generated random numbers, from a known density g, to help

with the transition from θ(1) to θ(2), u ∈ Rr;

• one vector of generated random numbers, from a known density g′, to help

with the transition from θ(2) to θ(1), u′ ∈ Rr′ ;
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Using the mapping described in equation (4.14),one has h : Rn × Rr → Rn′ × Rr′ .

In order for the mapping h and its inverse to be diffeomorphic, then one needs to

ensure n+ r = n′+ r′ (dimension matching). In this particular case, one knows that

n = 1 and n′ = 2. The linear stiffness parameters, k(1) and k(2), of M (1) and M (2)

were kept the same. The only random number needed in order to jump from one

model to the other was λ, u = (λ), and it was used to move from M (1) to M (2).

According to the mapping h, no random numbers were necessary to move from M (2)

to M (1), so u′ = 0 . This translates into r = 1 and r′ = 0. Under these conditions,

the relation n+ r = n′ + r′ is met.

Now one is left with evaluating the acceptance probability of moves, one uses the

subscript m to indicate the move attempted such that: for m = 1, a birth move

is attempted, for m = 2 a death move is attempted, for m = 3 an update move is

attempted.

The acceptance probability for the birth move can be evaluated as follows:

αm(θ(1) → θ(2)) = min

{
1,

π(θ(2))jm(θ(2))

π(θ(1))jm(θ(1))g(λ)

}
(4.19)

where all the values are known or can be estimated and jm is the Jacobian that

was calculated to be equal to 1. The g(λ) term comes from the transition function,

T (θ(1) → θ(2)). The transition function can be also written as:

T (θ(1) → θ(2)) = g(λ)α(θ(1) → θ(2)) (4.20)

where g is a Gaussian PDF with mean 0. One can notice that the g′ PDF is not

represented in equation 4.19 for simplicity, as u′ = 0.

The term g(λ) can also be evaluated:

g(λ) =
1√

2πσ2
exp(
−λ2

2σ2
) (4.21)

where σ is the standard deviation and is arbitrarily chosen and tuned accordingly.

Another way of writing the acceptance probability for a birth move is:
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αm(θ(1) → θ(2)) = min { 1, rm} (4.22)

where rm is the ratio of move and is computed as:

rm =
π(θ(2))

π(θ(1))g(λ)
(4.23)

The acceptance probability of the death move can now be evaluated:

α′m(θ(2) → θ(1)) = min
{

1, r−1m
}

(4.24)

At this point one gets a better grasp of the concepts needed to understand the

RJMCMC algorithm and the mathematical tools for implementing it with either

real or simulated data.

4.4 Summary

The purpose of this chapter was to introduce and fully explain the RJMCMC algo-

rithm as used in the context of SID of dynamical structures. A theoretical SDOF

scenario was used in order to provide an example of where the RJMCMC method

might be useful. The main important aspects treated within this chapter were the

dimension matching issue of models with varying dimensions and the construction

of a suitable Markov chain that can move between space of varying dimension while

respecting the principle of detailed balance.

A full explanation of the principle of detailed balance was provided for both the MH

algorithm and the RJMCMC algorithm in order to show how they might differ.

The next chapter, Chapter 5 covers a series of numerical case studies were the au-

thor applied the RJMCMC algorithm in order to show its capabilities as a promising

tool in SID of dynamical structures, prior to the application of the RJMCMC algo-

rithm on real systems in Chapter 6.
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Chapter 5

RJMCMC on Numerical Case

Studies

Chapter 5 covers the numerical case studies where the RJMCMC was applied in

order to prove its effectiveness and capability in the context of system identifica-

tion within structural dynamics. This chapter covers four numerical case studies.

The first numerical case study considers a SDOF system for which two models are

available, one describing a liner system and one describing a nonlinear system. The

second numerical study is an extension to the first one in such that it considers a

MDOF system for which two competing models are available, the first describing

a linear MDOF system and the second describing a nonlinear MDOF system with

the same characterised type of nonlinearity as for the SDOF system. The third

numerical case study takes into account a MDOF structure for which two compet-

ing models exist, one linear model and a nonlinear model with a bilinear stiffness

element. The fourth numerical case study is an extension to the work done so far

toward SHM. The RJMCMC algorithm was applied as explained in Chapter 4.

The purpose of this work is to introduce the RJMCMC algorithm in the context

of structural dynamics. As with any other algorithm or computational tool, the

first step is to explain how it works, followed by examples of case studies. Firstly,

numerical case studies will be covered, where the data is simulated by a computer,

using software such as Matlab [79] for this particular case.
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5.1 RJMCMC on a Nonlinear Numerical Case

Study in System Identification - SDOF sys-

tem

In order to demonstrate the potential of the RJMCMC method, the author applied

it first on the case introduced in Chapter 4. Let one summarise the case study:

Assuming that one has a SDOF system for which two competing models exist as

represented in Figure 5.1 , a SDOF linear model and a SDOF nonlinear model of

Duffing type , conduct SID on that system by applying the RJMCMC algorithm.

Figure 5.1: (a) Linear system, (b) Nonlinear system with cubic stiffness

The mathematical model for the linear system is:

mÿ + cẏ + k(1)y = F (5.1)

while for the nonlinear system with a Duffing nonlinearity it takes the form:

mÿ + cẏ + k(2)y + k
(2)
3 y3 = F (5.2)

where m is the mass of the structure, k is the stiffness, c is the damping coefficient,

k3 is the cubic stiffness, ÿ is the absolute acceleration of the structure, ẏ is the

absolute velocity of the structure, y is the absolute displacement of the structure,

and finally F is the excitation.
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The objectives of the SDOF numerical case study are as follows:

• Apply the RJMCMC algorithm to do SID on a SDOF simulated dynamical

system;

• Show that the RJMCMC method can do parameter estimation of a SDOF

simulated linear dynamical system;

• Show that the RJMCMC method can do parameter estimation of a SDOF

simulated nonlinear dynamical system;

• Show that the RJMCMC method can select between a SDOF simulated lin-

ear model and a SDOF simulated nonlinear model accurately, simultaneously

estimating parameters;

The training data used was simulated as 2000 points of displacement signal with

artificial measurement noise and corresponding samples of excitation. Initially, the

data was simulated using equation (5.1) which means that one has data from a linear

model. This means that the algorithm should favor M (1) in the process of model

selection and should provide an estimation of the linear stiffness of M (1), k(1).

Both models, M (1) and M (2), were simulated applying a fixed-step fourth-order

Runge-Kutta method. The sampling frequency chosen was of fs = 100 Hz which

means a true step value of ht = 0.01 s. The values of the parameters for the exemplar

system were as follows: m = 0.5kg, c = 0.1Ns/m and k(1) = 50N/m. The values of

the mass, m, damping coefficient, c and linear stiffness, k(2) for the nonlinear model,

M (2) were kept the same and the cubic stiffness, k
(2)
3 was set as k

(2)
3 = 103N/m3.

The excitation used for both systems was a Gaussian white noise sequence of mean

0 and variance 100.

Model m(kg) k(N/m) c(Ns/m) k3(N/m
3) fs(Hz) ht(s)

M (1) 0.5 50 0.1 0 100 0.01

M (2) 0.5 50 0.1 1000 100 0.01

Table 5.1: True parameter values for M (1) and M (2)

After creating the training data, the RJMCMC algorithm was implemented to do
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the system identification of the structure. The priors for the two models were kept

equal which translates into the probability of proposing a birth being equal to the

probability of proposing a death, bl = dl = 0.25 at the current state l. This results

in the probability of proposing an update in the current model being ul = 0.5. The

number of iterations used was 10000 samples.

The posterior distributions for both models were created as separate functions that

included the likelihoods and the priors of the parameters. The priors were set as

lower and upper limits to the parameters. In the case of both models the linear

stiffness k was kept between 0 and 100. Limits of 100 and 104 were set for the

cubic stiffness,k
(2)
3 of model M (2). The proposal density was chosen to be a Gaus-

sian distribution and the width of the proposal was set to 0.5 with the possibility

of changing it in the tuning stage. The initial values of the parameters were set to

be close to the values of the parameters for the exemplar system (also called true

values). A burn in of 500 samples was chosen to allow the settling of the chains.

5.1.1 Results

It is only natural to first start with the training data simulated with the linear

system. In this case, one expects the RJMCMC algorithm to correctly identify

that the model to best represent the data should be the linear model. Under this

circumstances, the algorithm should also provide an estimate for the linear stiffness,

i.e. k(1). Figure 5.2 and Figure 5.3 demonstrate exactly that.

Figure 5.2 shows the results of applying the RJMCMC algorithm for model se-

lection. What one can see is a bar chart of the number of iterations the algorithm

spent in M (1), the linear model and M (2), the nonlinear model. It is clear from this

visualisation that the RJMCMC algorithm strongly recommended the linear model

to represent the linear system, as expected. The RJMCMC method spent the least

time in M (2). The reason for this is the fact that the ’true’ data is not from a real

structure. The nonlinearity characterised in this example was designed to provide a

strong nonlinear effect which led to a significant enough difference between the two

sets of data.
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Figure 5.2: Acceptance frequency of Model 1 vs Model 2 - using linear
training data

Figure 5.3 illustrates the parameter estimation of the k(1) parameter for the linear

model. On the y axis one can find the frequency of the samples, while on the x axis

one can observe the values of the samples. The red line indicates the ’true’ value

of the parameter, as imposed by the user when creating the training data. The

RJMCMC successfully and accurately estimates it as being k(1) = 50N/m. Lower

in Figure 5.3, one can see the Markov chain of samples or where the chain travelled

to before reaching stationarity. With the numerical case study being simulated, the

starting point for the chains is chosen to be the ’true’ values of the parameter so

that the algorithm could find the estimate within a lower number of iterations.
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Figure 5.3: M (1) - parameter estimation of linear stiffness k(1)(blue),
most frequent value(red) and history of samples
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The results of identifying a linear system are truly satisfactory in this study but

the author was more concerned with the capabilities of the RJMCMC algorithm in

proving its capabilities in nonlinear SID. So let one quickly move toward the second

part of the SDOF study.

The second part of the study involves using the training data simulated with the

nonlinear system by using equation (5.2). In this case, one expects the RJMCMC

algorithm to correctly identify that the model to best represent the training data

is the nonlinear or Duffing type, M (2) model and to also properly estimate the two

unknown parameters, k(2) and k
(2)
3 . One needs to understand that these case study

are only numerical. The performance of the RJMCMC algorithm is expected to be

higher as no external noise is included, as it would be the case in an experimental

study. Figure 5.4 and 5.5 provide a visualisation of the results obtained in applying

the RJMCMC method.

In Figure 5.4 one can see again, a bar chart for the number of iterations spent

in each model. That clearly concludes that the RJMCMC algorithm showed a

strong inclination toward the nonlinear model, M (2) as hoped. Due to the fact that

the RJMCMC method is used within a Bayesian framework, it will try always to

penalise complexity. For this reason, it can be seen that the algorithm visited the

linear model several times. It was clear in the end though that the nonlinear model,

M (2), fitted the data provided.
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Figure 5.4: Acceptance frequency of Model 1 vs Model 2 - using nonlin-
ear training data

Figure 5.5 shows the frequency of samples for the two estimated parameters, k(2)

and k
(2)
3 , while the red lines indicate the ’true’ parameters as imposed by the user.

What this shows is that the RJMCMC algorithm is a powerful candidate in doing

SID in nonlinear system identification, an area that is still quite enigmatic for the

structural engineer.
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Figure 5.5: M (2) - parameter estimation of linear stiffness k(2) and non-

linear stiffness k
(2)
3 (blue) and most frequent values(red)

Due to the fact that the considered case was a simulation and the user was aware of

the ’true’ parameter values, the Markov chains were set to start the iteration process

at the ’true’ values in order to save computational time. This being mentioned, the

initial value are not required to be set near the ’true’ values of the parameters in

order for the algorithm to perform.

For a different perspective, let one have a look at the two sets of training data. In

Figure 5.6 one can observe the plots for the two sets of training data used. In blue

one has the linear training data set, in red the nonlinear training data set. It is

not surprising to observe that they illustrate different behaviour. One set of data is

generated using the linear SDOF model and the other set of data is generated using

the nonlinear SDOF model with a cubic stiffness.
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Figure 5.6: Linear vs Nonlinear training data sets

At a closer look though, in Figure 5.7, one can observe a reduced range of the two

sets of training data. Now, the observation that can be made is that actually, up

to data point 280, indicated on the plot, the data looks quite similar. This means,

that if the RJMCMC algorithm had only 280 data points to work with and the

training data would be from the nonlinear system, it would choose the less complex

model to represent it by, the linear one, because the behaviour represented through

that particular range of data is linear. This is what one expects to happen with

an appropriate computational method. What one requires in the end, is a robust

but simplest model for the system of study. At this point is where the Bayesian

approach proves its effectiveness in preventing overfitting.
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Figure 5.7: Linear vs Nonlinear training data sets-reduced range

For completion of the last objective, let one see what happens once more data is

fed into the RJMCMC algorithm. This analysis is illustrated through a bar chart

of Bayes factor in Figure 5.8. So, the training data used is from the nonlinear

system. Due to the similarity in the linear training data and nonlinear training

data up to the data point 280, one can see that the algorithm is choosing the linear

model to best represent the nonlinear training data. Immediately after data point

280 though, the algorithm is choosing the nonlinear model to best represent the

nonlinear training data. This is a very important analysis as it shows the sensitivity

of the RJMCMC algorithm to data sets, which is relevant in scenarios where the

main information one has about ones system is pure data.
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Figure 5.8: Bayes Factor comparison with increasing number of data
points used for training

In this case, the Bayes’ factor is obtained by dividing the likelihood of M (2) to the

likelihood of M (1), taking into account the training data. If the Bayes’ factor is

less than 0, then the linear model is accepted. Otherwise, the nonlinear model is

accepted.

The RJMCMC algorithm was applied so far on scenarios in which the system was

randomly excited. This does not mean that the algorithm can only be applied to

these type of system. With this in mind, the SDOF system was excited by a periodic

excitation as seen in Figure 5.9.
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Figure 5.9: SDOF Periodic Excitation signal

The scenario considered was as before, a system that can be defined by a linear

model, M (1), in which the parameter to be estimated is the linear stiffness, k(1) or

by a nonlinear model, M (2), in which the parameters to be estimated are the linear

stiffness, k
(2)
2 and the cubic stiffness, k

(2)
3 . All of the parameters used in generating

the training data were kept the same:

Model m(kg) k(N/m) c(Ns/m) k3(N/m
3)

M (1) 0.5 50 0.1 0

M (2) 0.5 50 0.1 1000

Table 5.2: True parameter values for M (1) and M (2)

The RJMCMC algorithm was applied first on the linear acceleration training data

to which artificial noise was applied, see Figure 5.10.
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Figure 5.10: Linear output data from SDOF system under periodic ex-
citation

A number of 5000 iterations were used. In Figure 5.11, the results of applying the

RJMCMC method by using the linear training data are presented. The top plot

in the figure represents the histogram of estimating the linear stiffness, k(1) while

the second plot represents the Markov chain. As it was expected, the algorithm

preferred the linear model to represent the data. This can be observed in the bar

chart in Figure 5.12.
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Figure 5.11: M (1) - parameter estimation of linear stiffness k(1)(blue),
most frequent value(red) and history of samples
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Figure 5.12: Acceptance frequency of Model 1 vs Model 2 - using linear
training data

The second step was to apply the RJMCMC algorithm on the nonlinear training

acceleration data set to which artificial noise was applied, see Figure 5.13.
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Figure 5.13: Nonlinear output data from SDOF system under periodic
excitation

Again, a number of 5000 iterations of the algorithm were used. Figure 5.14, Figure

5.15 and Figure 5.16 present the results of applying the method on the nonlinear

data.
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Figure 5.14: M (2) - parameter estimation of linear stiffness k
(2)
2 (blue),

most frequent value(red) and history of samples
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Figure 5.15: M (2) - parameter estimation of cubic stiffness k
(2)
3 (blue),

most frequent value(red) and history of samples
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Figure 5.16: Acceptance frequency of Model 1 vs Model 2 - using non-
linear training data

As expected, the RJMCMC method chose the nonlinear model to represent the

nonlinear data set. Both parameters, k
(2)
2 and k

(2)
3 , were estimated. This last test

was used in order to show that the RJMCMC algorithm can be used in nonlinear

system identification with both random and periodic excitation.

5.2 RJMCMC on a Nonlinear Numerical Case

Study in System Identification - Cubic Stiff-

ness

Now that a SDOF nonlinear SID case was covered, it follows that the second nu-

merical case study should be by increasing the number of degrees of freedom. It is

by now well understood that once a system has more than 1-DOFs, the process of

system identification can get a bit complicated. The computational time of running

the RJMCMC algorithm also increases when the number of parameters to be iden-
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tified increases. To such extent, for this case study, a choice was made to keep the

damping coefficient, c as an unknown as well in order to assess the time needed for

the algorithm to run.

For the MDOF case study, the following objectives were set:

• Apply the RJMCMC algorithm on a MDOF numerical case study in structural

dynamics;

• Show that the RJMCMC method can accurately estimate parameters for a

simulate linear MDOF system;

• Show that the RJMCMC method can accurately estimate parameters for a

simulated nonlinear MDOF system;

• Show that the RJMCMC method can accurately choose between a linear and

a nonlinear model for a simulated dynamical system;

• Asses the RJMCMC algorithm when the nonlinearity is moved between masses.

For this particular case study the author chose to look at a 3-DOFs system for

which two competing models exist, a linear model and a nonlinear model with a

cubic stiffness. The diagram of the linear system can be visualized in Figure 5.17

while the diagram for the nonlinear system can be visualised in Figure 5.18.

Figure 5.17: 3-DOFs Linear system
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Figure 5.18: 3-DOFs Nonlinear system

For the system introduced above, the mathematical expression for the equations of

motion for the linear model denoted M (1) is:


m1ÿ1 + 2cẏ1 − cẏ2 + 2ky1 − ky2 = F

m2ÿ2 − cẏ1 + 2cẏ2 − cẏ3 − ky1 + 2ky2 − ky3 = 0

m3ÿ3 − cẏ2 + cẏ3 − ky2 + ky3 = 0

(5.3)

wherem1, m2, m3 are the masses of levels 1, 2 and 3 (counting from the lowest level to

the highest level), ÿ1, ÿ2 and ÿ3 are the absolute accelerations of each corresponding

level , ẏ1, ẏ2 and ẏ3 are the absolute velocities of each corresponding level, y1, y2

and y3 are the absolute displacements of each corresponding level and finally F is

the excitation.

In a similar way, the equations of motion for the nonlinear model (denoted M (2))

that includes the cubic stiffness are:
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
m1ÿ1 + 2cẏ1 − cẏ2 + 2ky1 − ky2 + knl(y2 − y1)3 = F

m2ÿ2 − cẏ1 + 2cẏ2 − cẏ3 − ky1 + 2kz2 − kz3 − k3(y2 − y1)3 = 0

m3ÿ3 − cẏ2 + cẏ3 − ky2 + ky3 = 0

(5.4)

As before, k is linear stiffness, c is damping coefficient and the only addition com-

pared to the linear equations of motion is the k3 term which is the cubic stiffness

term.

The training data sets used were simulated, 2000 points of displacement signal with

artificial measurement noise and corresponding samples of excitation.

Both models, M (1) and M (2), were simulated, applying a fixed-step fourth-order

Runge-Kutta method. The sampling frequency chosen was of fs = 100 Hz corre-

sponding to a true step value of ht = 0.01 s. The values of the parameters for the

exemplar system were as follows: m1 = m2 = m3 = m = 5kg, c = 0.1Ns/m and

k(1) = 50N/m. The values of the mass, m, damping coefficient, c and linear stiffness,

k(2) for the nonlinear model, M (2) were kept the same and the cubic stiffness, k
(2)
3

was set as 1000N/m3. The excitation used for both systems was a Gaussian white

noise sequence of mean 0 and variance 1.

Model m(kg) k(1)/k(2)(N/m) c(Ns/m) k
(2)
3 (N/m3) fs(Hz) ht(s)

M (1) 0.5 50 0.1 0 100 0.01

M (2) 0.5 50 0.1 1000 100 0.01

Table 5.3: True parameter values for M (1) and M (2)

After creating the training data, the RJMCMC algorithm was implemented using

MATLAB to do the system identification of the 3-DOFs structure. The priors for

the two models were kept equal which translates into the probability of proposing a

birth move being equal to the probability of proposing a death move, bl = dl = 0.25

at the current state l. The probabilities of proposing a birth move and a death

move were kept the same so that there is no bias in the choice. These probabilities

need to be chosen according to the best knowledge of the user. This results in the

probability of proposing an update in the current model being ul = 0.5. The number
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of iterations used was 5000 samples.

The posterior distributions for both models were created as separate functions that

included the likelihoods and the priors of the parameters. The priors were set as

lower and upper limits to the parameters. In the case of both models the linear stiff-

ness k was kept between 0 and 100 and the damping coefficient c was kept between

0 and 10. Limits of 0 and 1100 were set for the cubic stiffness,k
(2)
3 of model M (2).

The proposal density was chosen to be a Gaussian distribution and the width of the

proposal was set to 0.1 for each parameter, with the possibility of changing it in the

tuning stage. The initial values of the parameters were set to be close to the values

of the parameters for the exemplar system (also called true values).

5.2.1 Results

As with the SDOF system, the starting point was using the linear training data

generated by the linear 3-DOFs system.
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Figure 5.19: Acceptance frequency of Model 1 vs Model 2 - using linear
training data

In Figure 5.19 one is presented with the results of the comparison of numbers of

samples spent in M (1) versus the number of samples spent in M (2). As expected,

the algorithm spent its time in the linear model, concluding without a doubt that

the linear model is the best choice in representing the linear system.

Figure 5.20 shows the estimates of the two parameters of interest, k(1) and c, with

the red line indicating the ’true’ values imposed by the user. Looking at the mean

values, one can conclude that even in the case of MDOF system identification the

RJMCMC algorithm proves its effectiveness.
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Figure 5.20: M (1) - parameter estimation of linear stiffness k(1) and
damping coefficient c(blue) and most frequent values(red)

It follows that the second part of the case study and the most relevant one was using

the algorithm with the nonlinear training data set.

In Figure 5.21 one can observe that the RJMCMC algorithm spent most of its

time in the second model, which proves its capabilities of doing SID for a MDOF

nonlinear system.
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Figure 5.21: Acceptance frequency of Model 1 vs Model 2 - using non-
linear training data

Figure 5.22 supports the success of using the RJMCMC method for SID of non-

linear systems by showing an accurate estimation of the parameters, with the red

line representing, as before, the ’true’ values proposed by the user.
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Figure 5.22: M (2) - parameter estimation of linear stiffness k(1), damping

coefficient c and cubic stiffness k
(2)
3 (blue) and most frequent values(red)

The results of applying the RJMCMC algorithm on the scenario discussed above

are tabulated as follows:

Model m(kg) k(1)/k(2)(N/m) c(Ns/m) k
(2)
3 (N/m3)

M (1) 0.5 50 0.1 0

M (2) 0.5 50 0.1 1000

Table 5.4: Most frequent parameter values for M (1) and M (2)

The expectation was for the RJMCMC algorithm to correctly choose the model

and identify its parameters according to the training data made available. That

expectation was met. The starting values for the Markov chains were the ’true’

parameter values already known by the user in order to save computational time.

In the case of a real system, those values will not be known a priori which translates

into a considerable increase in computational time before convergence of the Markov

chains into stationary chains. In this case no burn-in of the chains was necessary
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and no thinning of the chains was used as the computational time was in the range

of minutes(i.e. no time needed to be saved) and the number of samples was low(i.e.

no space needed to be saved).

A study was conducted to observe the RJMCMC algorithm when the nonlinearity

is moved between floors. Figure 5.23 shows the three sets of data generated for

each case of nonlinearity placement for all three levels of the simulated structure.

Figure 5.23: Data sets for nonlinear study

Initially, the cubic stiffness was placed between m1 and m2. The following results

are from the nonlinearity placed between m2 and m3. The RJMCMC algorithm was

applied on the newly generated data in order to do system identification.

Figure 5.24 and Figure 5.25 represent the results of applying the RJMCMC

algorithm on the nonlinear data with the nonlinearity between m1 and m2. The

first figure is a plot of the histograms for the three identified parameters, all three

centered around the true values of the parameters. The second figure is a plot of the

samples. A number of 100 samples were discarded in the burn-in stage in order to

account for the transition period. For this case, 10000 iterations were used as before

for the RJMCMC algorithm but the obtained results suggest that the algorithm
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could be ran for a higher number of iterations, but this comes at a time cost. M (2)

was chosen over M (1) by a ratio of 9997 to 5.

Figure 5.24: M (2) - parameter estimation of linear stiffness k(1), damping

coefficient c and cubic stiffness k
(2)
3 (blue) and most frequent values(red)
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Figure 5.25: M (2) - history of the samples of parameters

The last application was with the cubic stiffness between the base floor and m1.

The RJMCMC was applied on the nonlinear data and the results are presented

in Figure 5.26 and Figure 5.27. The histograms for the identified parameters

are plotted in Figure 5.26. It can be noticed that a higher number of iterations

could provide smoother results. For comparison purposes, the number of iterations

for the RJMCMC algorithm were kept the same throughout the three cases, 10000

iterations. A closer look at the chains in Figure 5.27 suggests that the proposal

density can be tuned further for an improved acceptance of samples. This raises the

issue of automation for the algorithm. Nonetheless, the RJMCMC identified that

M (2) is best suited to fit the data than M (1) by a ratio of 9998 to 4.



5.2. RJMCMC ON A NONLINEAR NUMERICAL CASE STUDY IN SYSTEM
IDENTIFICATION - CUBIC STIFFNESS 90

Figure 5.26: M (2) - parameter estimation of linear stiffness k(1), damping

coefficient c and cubic stiffness k
(2)
3 (blue) and most frequent values(red)
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Figure 5.27: M (2) - history of the samples of parameters

The following case study is ran on a similar structure, but with the nonlinearity

replaced for a bilinear stiffness. The sensitivity of the RJMCMC algorithm to the

change in stiffness is studied.

5.3 RJMCMC on a Nonlinear Numerical Case

Study - Bilinear Stiffness

Another MDOF numerical case study is introduced, this time with a nonlinearity

caused by a bilinear stiffness behaviour. This nonlinear scenario comes closer to the

experimental work conducted in Chapter 6 and as such it is relevant in the present

context. The aims and objectives were kept similar to the previous case study:

• Apply the RJMCMC algorithm on a MDOF numerical case study in structural

dynamics;

• Show that the RJMCMC method can accurately estimate parameters for a
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simulated linear MDOF system;

• Show that the RJMCMC method can accurately estimate parameters for a

simulated nonlinear MDOF system;

• Show that the RJMCMC method can accurately choose between a linear and

a nonlinear model for a simulated dynamical system;

• Asses the effects of using the RJMCMC algorithm at different stiffness values.

The studied scenario involves a 3-DOF structure for which two competing models are

considered. The structure can display linear and nonlinear behaviour represented

by a bilinear stiffness.

The linear behaviour is assigned a linear mathematical model for which the equations

of motion are:


m1ÿ1 + 2c

(1)
1 ẏ1 − c(1)1 ẏ2 + 2k

(1)
1 y1 − k(1)1 y2 = F

m2ÿ2 − c(1)1 ẏ1 + 2c
(1)
1 ẏ2 − c(1)1 ẏ3 − k(1)1 y1 + 2k

(1)
1 y2 − k(1)1 y3 = 0

m3ÿ3 − c(1)1 ẏ2 + c
(1)
1 ẏ3 − k(1)1 y2 + k

(1)
1 y3 = 0

(5.5)

The linear system is described by three lumped masses, m1, m2 and m3. Under

external forcing, displacements y1, y2 and y3 can be observed for each mass re-

spectively. The forcing is applied on the first lumped mass, m1 as seen in Figure

5.28.
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Figure 5.28: 3-DOFs Linear system

The nonlinear system is similar to the linear one, with the added element of a bilinear

stiffness between masses m1 and m2 as pictured in Figure 5.29.

Figure 5.29: 3-DOFs Nonlinear system

The nonlinear system is described by the following equations of motion:
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
m1ÿ1 + 2c

(2)
1 ẏ1 − c(2)1 ẏ2 + 2k

(2)
1 y1 − k(2)1 y2 − k(2)2 (y2 − y1) = F

m2ÿ2 − c(2)1 ẏ1 + 2c
(2)
1 ẏ2 − c(2)1 ẏ3 − k(2)1 y1 + 2k

(2)
1 y2 − k(2)1 y3 + k

(2)
2 (y2 − y1) = 0

m3ÿ3 − c(2)1 ẏ2 + c
(2)
1 ẏ3 − k(2)1 y2 + k

(2)
1 y3 = 0

(5.6)

where k
(2)
2 is the added stiffness and k

(2)
2 = 0 if (y2 − y1) < 0.

Training data is generated from both models in order to apply the RJMCMC al-

gorithm. For both systems, a sampling frequency fs = 100Hz was used, step size

ht = 0.01s. The used parameters were m1 = m2 = m3 = m = 5kg, k
(2)
1 = 50N/m,

c
(2)
1 = 0.1Ns/m and for the bilinear case, k

(2)
2 = 1000N/m.

Model m(kg) k
(1)
1 /k

(2)
1 (N/m) c

(1)
1 /c

(2)
1 (Ns/m) k

(2)
2 (N/m) fs(Hz) ht(s)

M (1) 5 50 0.1 0 100 0.01

M (2) 5 50 0.1 1000 100 0.01

Table 5.5: True parameter values for M (1) and M (2)

The RJMCMC algorithm was then applied. The probability of proposing a birth

move was kept equal to the probability of proposing a death move, bl = dl = 0.25 at

the current state l. The probabilities of proposing a birth move and a death move

were kept the same so that there is no bias in the choice of model. This resulted

in the probability of proposing an update in the current model being ul = 0.5. The

number of iterations used was 10000 samples.

The priors were chosen to be uniform distributions set as lower and upper limits to

the parameters. In the case of both models, the linear stiffness limits for k
(1)
1 and k

(2)
1

were kept between 0 and 100 and for the damping coefficients, c
(1)
1 and c

(2)
1 , between

0 and 10. Limits of 0 and 2000 were set for the bilinear stiffness,k
(2)
2 . The proposal

density was chosen to be a Gaussian distribution and the width of the proposal was

tuned by trial and error.
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5.3.1 Results

As with all the other case studies, the first step was to make sure the RJMCMC

algorithm is doing what is expected: parameter estimation and model selection

when the appropriate data is provided. To such extent, the RJMCMC algorithm

was applied on linear training data and nonlinear training data with the expectation

of it choosing the correct model and providing the parameters of interest. In this

case, for the linear model, the parameters to be identified were the stiffness, k
(1)
1 and

damping coefficient c
(1)
1 . For the nonlinear model, the parameters of interest were

the stiffness k
(2)
1 , damping coefficient c

(2)
1 and the second stiffness k

(2)
2 .

Figure 5.30 and Figure 5.31 represent the results of applying the RJMCMC algo-

rithm on the case when the linear data was made available. As expected, the linear

model is identified as the best to fit the data while the parameters are identified,

with the mean standing close to the true values, k
(1)
1 = 50N/m, c

(1)
1 = 0.1Ns/m.

Figure 5.30: RJMCMC results for model M (1), histogram of sam-
ples(blue) and most frequent values(red)
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Figure 5.31: RJMCMC results for M (1), history of samples

Figure 5.32 and Figure 5.33 show the results of applying the RJMCMC algorithm

by using the nonlinear training data produced. The model chosen is the second

model and the parameters of the second model are identified with mean values of

k
(2)
1 = 50N/m, c

(2)
1 = 0.1Ns/m and k

(2)
2 = 1000N/m.
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Figure 5.32: RJMCMC results for M (2), histogram of parameters(blue)
and most frequent values(red)
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Figure 5.33: RJMCMC results for M (2), history of samples

Once the RJMCMC algorithm proved to work as expected in extreme cases, a study

was conducted on the sensitivity of the RJMCMC method on the strength of the

nonlinear element. In this scenario, the extra stiffness, k
(2)
2 was varied.

The stiffness k
(2)
2 was given values of 0N/m, 5N/m, 10N/m, 25N/m and 50N/m.

Training data was generated with each considered value of k
(2)
2 using the nonlinear

model. The obtained displacements were compared to the generated linear training

data in order to observe the differences.
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Figure 5.34: Linear training data VS Nonlinear training data with k
(2)
2 =

0N/m

For the first test, the RJMCMC algorithm approximated M (1) to be the appropriate

model to represent the data over M (2), by a ratio 10001 to 1. This was to be expected

by looking at the data in Figure 5.34. The mean squared error is a measure used

to quantify the goodness of fit between sets of data, in this case between the two

sets of training data. The training data sets are following the same patterns and

the calculated mean squared errors are MSE = {0.0199, 0.0201, 0.0200}, for each of

the three levels respectively. The errors were calculated according to the following

equation:

MSE =

∑
(D − D̄)2

N
(5.7)

where D is the original training data, D̄ is the data obtained by changing the extra

stiffness parameter and N is the number of data points.

A good fit is when the MSE estimator is closer to 0 but anything less than 0.1 is
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considered a good enough fit [80].

The second value considered was k
(2)
2 = 5N/m. The comparison of the training data

is plotted in Figure 5.35.

Figure 5.35: Linear training data VS Nonlinear training data with k
(2)
2 =

5N/m

A slight difference between the patterns of the training data is already observed

around data point 800 in the displacement of the second level. What is of interest is if

the RJMCMC algorithm will pick that up. The algorithm was applied as before and

this time M (2) was preferred over M (1). This suggests that the RJMCMC algorithm

is sensitive to these changes. At the same time, it needs to be kept in mind that these

are numerical studies and in real structures, the sources of uncertainty are numerous.

The calculated mean squared errors are: MSE = {0.0354, 0.0459, 0.0313}.

For the case of k
(2)
2 = 10N/m the comparison of the data can be observed in Figure

5.36.
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Figure 5.36: Linear training data VS Nonlinear training data with k
(2)
2 =

10N/m

The RJMCMC algorithm was applied and M (2) was chosen as the best to represent

the data over M (1) by a ratio of 9998 to 4. The calculated mean squared errors are:

MSE = {0.0504, 0.0658, 0.0474}.

Figure 5.37 shows the comparison plots of the linear training data and the nonlinear

training data with k
(2)
2 = 25N/m.
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Figure 5.37: Linear training data VS Nonlinear training data with k
(2)
2 =

25N/m

The results from the RJMCMC algorithm showed that M (2) is still more appropriate

for the training data used than M (1) by a ratio of 9999 to 3. The calculated mean

squared errors between the linear training data and the nonlinear training data are:

MSE = {0.1235, 0.1673, 0.1252}.

The last nonlinear data set generated was with k
(2)
2 = 50N/m. The comparison plots

between the linear training data and the nonlinear training data with k
(2)
2 = 50N/m

are shown in Figure 5.38.
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Figure 5.38: Linear training data VS Nonlinear training data with k
(2)
2 =

50N/m

As expected, the RJMCMC chose M (2) over M (1) as the model to best repre-

sent the nonlinear training data by a ratio of 9997 to 5. For this case, MSE =

{0.1382, 0.1481, 0.2256}.

The present study showed that the RJMCMC algorithm is sensitive to the effects

of the nonlinearity as long as they can be observed. The method chose the linear

model to best represent the nonlinear data only in the case when the extra stiffness

was 0.

5.4 RJMCMC on a Numerical Case Study in Struc-

tural Health Monitoring

As a last example in numerical case studies, the author decided to apply the RJM-

CMC algorithm to a very simple and straightforward scenario in Structural Health

Monitoring(SHM), in order to emphasize even more how relevant the RJMCMC
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algorithm is in structural dynamics.

This study investigates the application of the RJMCMC algorithm to the problem of

locating, characterizing and assessing structural damage. A great deal of interest has

been paid to treating the damage identification task as one of model updating with

both deterministic and non-deterministic updating methods having been extensively

investigated. Among these frameworks, Bayesian Inference has found particular suc-

cess when applied in the fields of both System Identification and Structural Health

Monitoring (SHM). The advantages of using Bayesian Inference in SHM applica-

tions include its reliance upon prior knowledge, enabling beliefs regarding the state

of the structure, the bounds on its physical parameters and the likely damage sce-

narios encountered to be included in the estimation process. A further advantage

of adopting a Bayesian approach is that outcomes are presented as the posterior

probability distributions of the variables of interest. As the geometries of these pos-

terior probability distributions are generally complex it is typical for Markov Chain

Monte Carlo (MCMC) samplers to be employed in their estimation. However, while

MCMC methods offer an effective tool for estimation of damage parameters, they do

not directly lend themselves to the model selection problem. Having the ability to

consider multiple explanatory models simultaneously would offer new opportunities

for damage classification and identification of multi-site damage. Reversible Jump

Markov Chain Monte Carlo (RJMCMC) offers a potentially powerful extension of

standard MCMC methods. The first strength of the RJMCMC method is that it

addresses both parameter estimation and model selection simultaneously. As such,

RJMCMC returns not only the parameter estimates for each model but also pro-

vides a probabilistic indication of which model is most consistent with the data. The

second strength of RJMCMC is that it is sufficiently general that the models being

compared may contain different numbers of parameters. These characteristics open

up a number of potential approaches to the SHM problem. The damage classifica-

tion task may be approached by generating a set of alternative damage models, each

of which is a function of its own set of damage parameters (e.g. depth of crack, loca-

tion, orientation). In this case the method would provide the evidence for each class

of damage alongside the parameter estimates. Alternatively, the set of models may

comprise single and multiple damage scenarios. RJMCMC would return both the

likely number of damage locations and estimates of their parameters simultaneously,

addressing one of the more challenging tasks within model-based SHM.

So, in this case study, the RJMCMC algorithm is used to identify the likely number



5.4. RJMCMC ON A NUMERICAL CASE STUDY IN STRUCTURAL
HEALTH MONITORING 105

of damage locations as well as to assess the extent of damage.

A set of objectives were considered:

• Apply the RJMCMC on a simulated damage detection and identification nu-

merical case study;

• Show that the RJMCMC method can identify the location of damage as well

as characterise it;

• Show that the RJMCMC method can select between different damage scenar-

ios;

Now, going back to Chapter 4, the way the algorithm moves between the two

models is by using a mapping. For the purpose of this study, the defined mapping

function between models is h : <(n) −→ <(m), where n is the dimension of the

current model while m is the dimension of the proposed model. The form of the

mapping between M (1) and M (2) , which is a birth move, is presented in 5.8.


D

(2)
(1)

R
(2)
(1)

D
(2)
(2)

R
(2)
(2)

 =


0

0

a

b

+


D

(1)
(1)

R
(1)
(1)

λ

ε

 (5.8)

where D
(2)
(1) represents the first damage position in M (2), R

(2)
(1) represents the first

stiffness reduction in M (2), D
(2)
(2) represents the second damage position in M (2), R

(2)
(2)

represents the second stiffness reduction in M (2). D
(1)
(1) represents the first damage

position in M (1) and R
(1)
(1) represents the first stiffness reduction in M (1). λ and ε are

numbers chosen by the user to construct the mapping.

5.4.1 Results

For the purpose of the numerical case study emulators were developed for damage

scenarios of a simply supported beam.

The emulators were developed based on the results of a finite element (FE) model

of a simply supported beam implemented using MATFEM, a MATLAB-based FE

package. A 1m long aluminium beam was adopted with cross sectional dimensions of



5.4. RJMCMC ON A NUMERICAL CASE STUDY IN STRUCTURAL
HEALTH MONITORING 106

height by base, Youngs modulus E = 70GPa, density ρ = 2700kgm−3 and Poissons

ratio = 0.3. The beam was meshed as 100 Timoshenko beam elements. Damage

was introduced as a simple reduction in the Youngs modulus value of individual

elements at the damage location. This was implemented by pre-multiplying the

Youngs modulus value of the element by a damage parameter in the range [0,1],

where 1 represents damage at the element and 0 would represent complete removal.

It is acknowledged that this is a very simplistic means of introducing damage into

the model but nonetheless served the needs of the numerical case study. For the

purposes of training the emulator the damage location was taken as the midpoint

of the affected element i.e. damage at element 1 was taken to occur at 0.005m from

the end of the beam.

The developed FE model was executed using a full-factorial design of experiments

(DOE) for both the single site and two site damage scenarios. For the single site sce-

nario the damage multipliers considered were [0.4,0.6,0.8,1.0] at elements [5:10:95],

resulting in 40 model executions. For the two-site case the same set of damage mul-

tipliers were considered at all combinations of elements [5:10:95] (location 1) and

[6:10:96] (location 2) resulting in 1600 model executions. Choosing different elements

for damage locations 1 and 2 avoided the question of how to deal with ’overlapping’

damage at the same location. It should be noted that in more efficient DOE methods

including Latin hypercube sampling are available for practical applications where

the computational cost of executing the model may become significant.

The emulator used for illustration was a simple linear interpolant between the design

points. It is acknowledged that a linear interpolant is likely to give a less accurate

representation of the true behaviour between the design points than a more so-

phisticated alternative. However, this choice means the emulator cannot introduce

any confounding effects thus allowing the efficacy of the RJMCMC approach to be

judged in isolation. Two sets of emulators were trained, the first taking two parame-

ters and the second four parameters as inputs with each returning natural frequency

predictions for the first 20 modes as outputs.

In this particular case study the RJMCMC algorithm was applied on two emulators.

The first emulator was simulating a single site damage in a fixed beam while the

second emulator was simulating a two damage sites in the same simply supported

beam. In the first scenario the damage was a 30% reduction in stiffness at 0.09m

along the beam, see Figure 5.39. Second scenario included a 30% reduction in
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stiffness at 0.09m along the beam together with a 60% reduction at 0.57m along the

beam, see Figure 5.40. The natural frequencies at the first 20 modes were used as

data for the RJMCMC algorithm.

Figure 5.39: First damage location along the beam

Figure 5.40: First and second damage location along the beam

When using the data for the single site damage scenario, the RJMCMC algorithm

has successfully identified the first model to be the correct one as seen in Figure

5.41. In Figure 5.42 one can see the results of parameter estimation for M (1). The

RJMCMC method was employed using 10000 iterations. The proposal widths were

both adjusted to 0.001. The algorithm spent most time in the first case scenario as

8052 samples were from M (1) and only 1950 from M (2). A burn in of 500 samples
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was used.

Figure 5.41: Acceptance frequency of Model 1 VS Model 2
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Figure 5.42: Histogram of samples(blue), most frequent values(red) and
History of Samples

When using the data for the two site damage scenario, the RJMCMC algorithm

has successfully identified the second model to be the correct one as seen in Figure

5.43. In Figure 5.44 one can see the results of parameter estimation for M (2).

The RJMCMC method was employed using 20000 iterations, due to the fact that

the algorithm had to explore a bigger space. The proposal widths were adjusted to

0.0001, 0.0001 for the parameters of the first damage and 0.001 and 0.001 for the

parameters of the second damage. The algorithm spent most time in the first case

scenario as 19549 samples were from M (2) and only 453 from M (1). A burn in of
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500 samples was used again.

Figure 5.43: Acceptance frequency of Model 1 VS Model 2
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Figure 5.44: Histogram of samples(blue), most frequent values(red) and
History of Samples

The results show that the RJMCMC is efficient also when used on emulators in the

scope of damage detection.

The purpose of this initial work done on damage detection using RJMCMC algo-

rithm was for it to continue on an experimental example of a beam and later on

to be used for doing damage detection on the vertical beams of the rig built for

the experimental work done in Chapter 6. The time constraint did not allow for

further delving onto this path and as such, the numerical case study in SHM in

presented as part of work that should be done in the future.

5.5 Summary

This chapter covered applications of the RJMCMC algorithm on numerical case

study in nonlinear system identification and structural health monitoring in order

to demonstrate that the method is a powerful tool in structural dynamics.

The first case study involved a SDOF system for which two models were presented

- a linear model and a nonlinear model of Duffing type. The RJMCMC algorithm

successfully achieved system identification of the system, in both linear and nonlin-

ear situations. The algorithm was firstly applied on a set of linear simulated data
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for which two competing models were developed, a SDOF model and a nonlinear

SDOF model with a cubic stiffness nonlinearity. The RJMCMC methods correctly

identified the linear model as the model that provided the best fit for the considered

data, while also identifying its parameters. The second step was to apply the RJM-

CMC algorithm on a set of nonlinear data, simulated by using the second model

that has a cubic stiffness term. The RJMCMC method appropriately identified the

second model as the one that provided the best fit for the considered data, while

estimating its parameters. A short study on the influence of data points on the

RJMCMC algorithm was conducted. For this particular analysis, the two sets of

data, linear and nonlinear, were compared and the RJMCMC method was applied

in stages, by increasing the number of data points available. The algorithm proved

to have a high sensitivity to the amount of data it works with, such that, at the

first data point when the data sets were not following the same trend, the RJMCMC

method could correctly distinguish between the linear and the nonlinear model. The

last consideration for the SDOF system was to change the excitation forcing from

random excitation to periodic excitation for which the RJMCMC algorithm was

applied.

The second case study was mainly an extension of the first case study in the sense

that this time one had to deal with a MDOF system, more precisely a 3-DOFs

structure. As before, the RJMCMC algorithm proved successful in doing system

identification for each training data set. For the second numerical study the degrees

of freedom was increased and also the number of parameters to be identified was

increased. Data sets were generated from a linear 3-DOF model and then the RJM-

CMC algorithm was applied. The number of iterations had to be increased to allow

the Markov chains to settle. Nevertheless, the RJMCMC method correctly identified

that the linear model was more appropriate for the linear data set. It followed that

when the nonlinear data was generated and the RJMCMC algorithm was applied

to it, the method accurately chose the second model, with the cubic stiffness, as the

one that provides the best fit to the nonlinear data set. An observation was made

that as the degrees of freedom increase, so does the algorithms computational time

required to run, an expected consequence. A study was then conducted on how the

RJMCMC algorithm behaves when the cubic nonlinearity is moved between masses

so that results were presented when the nonlinearity was placed between the base

floor and m1, then m1 and m2 and respectively m2 and m3.

The third case study covered a 3-DOF structure for which two models were con-
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sidered, a linear model and a bilinear stiffness model. Training data was generated

by using a linear model and respectively the nonlinear model by including a bilin-

ear stiffness element between m1 and m2. The RJMCMC was employed in order

to identify the structure. When the algorithm had the nonlinear data available, it

correctly chose the nonlinear model to best fit the data and in the same way, it

chose the linear model to best fit the linear model. The parameters were estimated

accordingly. The identification process was followed by a study on how the nonlinear

element influences the choice of the RJMCMC algorithm when it comes down to the

model selection aspect.

The fourth case study was used to prove the power of the RJMCMC algorithm in

the area of structural dynamics. With that in mind, a study was conducted for

an emulated simply-supported beam with the conclusion that the algorithm was

effective in identifying the location of damage as well as the extent of it. The first

model of damage had a single site damage for which the first 20 natural frequencies

were considered, while the second model contained two sites for damage for which

the same amount of natural frequencies were taken into account. The RJMCMC

algorithm correctly identified the locations of the damage in the emulated beam,

as well as the number of damages and the amount of damage by estimating the

reduction in stiffness at damage location. There was no need for a baseline of an

undamaged emulated beam for the method to provide estimates of the parameters

of interest.

Chapter 6 will cover experimental case studies, where the RJMCMC algorithm

was brought closer to validation by being used on experimental data.
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Chapter 6

RJMCMC on Experimental

Studies

Chapter 6 covers the application of the RJMCMC algorithm on experimental case

studies. This work follows up the numerical case studies as a validation of the

method on real systems. Two case studies are considered for which an experimental

rig was built. For reasons explained within the chapter, the rig had to be redesigned

before the second case study due to the challenge of finding a truly linear baseline

structure. The first case study takes into consideration the variance of noise for

a MDOF real structure and its effect on the identification process. Two different

models are proposed for the same structure and the RJMCMC algorithm is employed

in order to select the appropriate model and estimate its parameters. The second

case study delves into the system identification of a real structure that is made

to behave linearly and nonlinearly. Sets of data are collected and the RJMCMC

algorithm is applied in order to identify the more appropriate model and provide

estimates of the parameters.

6.1 Introduction

In Chapter 5 one could see a few successful applications of the RJMCMC algorithm

on numerical case studies. The main theme of the thesis was kept, as such the first

two case studies presented were on nonlinear system identification. The last case

115
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study was in SHM in order to provide a further illustration of the capabilities of the

algorithm.

One could expect though, as the attention turns toward real systems, things become

more challenging. This chapter covers how the challenges of applying this powerful

algorithm, the RJMCMC, on experimental data were addressed and the full detailed

results of that work.

The overall objectives of this chapter are:

• Show the application of the RJMCMC algorithm on experimental data;

• Discuss arising challenges when dealing with experiments;

• Provide analysis of results and concluding remarks;

Section 6.2 covers the application of the RJMCMC method on a 3-DOF modelled

structure for which two competing models are considered. The difference in the

models are in the variance of the noise at each level. Section 6.3 discusses a case

study in which the RJMCMC algorithm is applied on a 2-DOF modelled structure

for which linear and nonlinear regimes are considered. The last section of this

chapter will cover summary, general discussions and conclusions.

6.2 RJMCMC on an Experimental Case Study in

System Identification - MDOF system

The rig used in the first experimental case study is presented below. At the end of

this section, reasons for replacing it are given.

The initial aim was to start with a linear MDOF system and to apply the RJMCMC

algorithm to it. The aims and objectives for this case study were set as follows:

• Gather experimental data from structure;

• Construct competing models for the studied structure based on noise variance;

• Identify parameters by employing the MH algorithm;

• Apply the RJMCMC on the two competing models to select the model to best
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represent the data;

• Analyse results;

Experimental time series data was gathered for the proposed structure at a single

excitation level, at four different outputs. The simplified model of the structure was

chosen as a base excitation 3DOF system for which the parameters were identified

using the MH algorithm. Two competing models were considered: for the first

model, the noise variance was assumed the same for all of the three levels; the

second model had individual noise variances for each level. Noise is a cause of

uncertainty in the process of system identification. Considering that the RJMCMC

algorithm is applied in a Bayesian framework, penalising model complexity is one

of the advantages. The expectation of this study was to see how much influence

does the noise variance modelling has on the overall modelling of the structure. It

was thought that a stronger case could be made for the first model to be considered

more appropriate, give its reduced complexity. However, the actual results allowed

more room for discussion.

Section 6.2.1 covers details on the structure used and the procedure of gather-

ing the data. This is followed in Section 6.2.2 by a simplified modelling of the

structure in equations of motion. In Section 6.2.3 and Section 6.2.5 the MH

algorithm is applied in order to estimate the model parameters and the results are

presented. Section 6.2.7 covers the application of the RJMCMC algorithm on the

two competing models. The case study is concluded with analysis of results and

discussion.

6.2.1 The Experimental Rig

This case study focuses on the RJMCMC algorithm applied on experimental time

data from an MDOF structure, in order to do SID of a linear dynamical system.

The structure used throughout is pictured in Figure 6.1.
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Figure 6.1: Experimental 4-DOFs Rig

The structure has 4 levels, with the lower level being considered the base(see Fig-

ure 6.2). Each main plate/level has an approximated weighted mass of 5.2 kg and

approximate dimensions of 35 x 25.5 x 2.5cm (LxWxH). Each upright beam con-

necting the 4 levels has an approximated weighted mass of 238 g and approximated

dimensions 55.5 x 2.5 x 0.6cm. Each square block used to connect the main plates

and the upright beam has an approximated weighted mass of 18 g and approximated

dimensions 2.5 x 2.5 x 1.3cm. For each block, 4 bolts were used with an approxi-

mated weighted mass of 10 g and of Viraj A2-70 grade. The structure was mounted

on a rail system which was bolted in and then clamped onto a testing table. In order

to introduce the excitation into the structure, a shaker with a force transducer was

connected to the base. The output of the structure was recorded as acceleration,

using 4 accelerometers positioned, as shown in Figure 6.1 right hand side, at the

middle of each main plate/level.

The data was gathered using a SCADAS-3 interface connected to a PC running

LMS Test.Lab software. 93184 data points were recorded at a sampling frequency

of fs = 1024 Hz. Random excitation was used throughout and recordings were taken

only under one excitation instance.
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6.2.2 Model

The following linear model was proposed:

Figure 6.2: 3-DOFs Linear system

for which the equations of motion were constructed as follows:


m1z̈1 + 2cż1 − cż2 + 2kz1 − kz2 = −m1ÿb

m2z̈2 − cż1 + 2cż2 − cż3 − kz1 + 2kz2 − kz3 = −m2ÿb

m3z̈3 − cż2 + cż3 − kz2 + kz3 = −m3ÿb

(6.1)

wherem1, m2, m3 are the masses of levels 2, 3 and 4 (counting from the lowest level to

the highest level), z̈1, z̈2 and z̈3 are the relative accelerations of each corresponding

level with respect to the base (for example, z̈1 = ÿ1 − ÿb), ż1, ż2 and ż3 are the

relative velocities of each corresponding level with respect to the base, z1, z2 and z3

are the relative displacements of each corresponding level with respect to the base

and finally ÿb is the acceleration of the base. The damping was kept the same for

each level such that c1 = c2 = c3 = c, as well as the stiffness, k1 = k2 = k3 = k.

This is likely to not be the case as the physical values will differ but the effect of it

can be potentially small so that a reduced calibration parameter set is considered.
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The model presented above is an obvious simplification of the true structure.

6.2.3 Metropolis-Hastings - on the experimental MDOF sys-

tem, one noise variance

The MH algorithm was applied on the 3-DOF system in order to identify the pa-

rameters: stiffness, k and damping coefficient, c; and also to estimate the standard

deviation of the noise, σ. For simplicity, the parameters were kept the same through-

out the model. The likelihood function was chosen such that the noise is considered

to be Gaussian with variance σ2.

Accounting for the transient response, the data used was of 5000 samples, data

points between 20000 and 25000, with a burn-in of 500 samples. The proposal

probabilities used were Gaussian with widths tabulated below. The number of

iterations was chosen to be 10000.

Parameters k(N/m) c(Ns/m) σ

Proposal widths 100 0.1 0.01

Table 6.1: Proposal widths for the parameters to be identified, M (1)

6.2.4 Results

Figure 6.3 and Figure 6.4 show the graphical results, histogram of samples of

parameters and the Markov chains of the samples.
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Figure 6.3: Histogram of Samples for M (1)(blue), most frequent val-
ues(red)

Figure 6.3 shows the frequency of the samples for all three parameters of interest,

stiffness, k, damping coefficient, c and standard deviation of noise, σ. It can be

observed that the most frequent values are k = 4.481 ∗ 105N/m, c = 21.5Ns/m and

σ = 0.85. In Figure 6.4 one can check the stationary Markov chains of the samples

for all three parameters. The plots show how the Markov chains efficiently explored

the space of each parameter.

Figure 6.4: History of Samples for M (1)
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Model k(N/m) c(Ns/m) σ

M (1) 448100 21.5 0.85

Table 6.2: MH estimated parameter values for M (1)

As a starting point, the mathematical model identified seems like a good fit. Noise

is one of the reasons for uncertainty being present in the identification process. As

discussed previously, the model was simplified to a single noise variance for the entire

system. The next step is to include the results of parameter estimation for each level

of the structure having its own noise standard deviation.

6.2.5 Metropolis-Hastings - on the experimental MDOF sys-

tem, three noise variances

The MH algorithm was applied on the 3-DOF system in order to identify the pa-

rameters: stiffness, k and damping coefficient, c; and also to estimate the standard

deviation of the noise at each level, σ
(2)
1 , σ

(2)
2 and σ

(2)
3 for the second considered

model, M (2). In order to avoid added complexity, the parameters were kept the

same throughout M (2).

As before, accounting for the transient response, the data used was of 5000 samples,

data points between 20000 and 25000. Again, the proposal probabilities used were

Gaussian with widths presented in the table below. The number of iterations was

chosen to be 10000.

Parameters k(N/m) c(Ns/m) σ
(2)
1 σ

(2)
2 σ

(2)
3

Proposal widths 100 0.1 0.01 0.01 0.01

Table 6.3: Proposal widths for the parameters to be identified, M (2)

6.2.6 Results

Figure 6.5 and Figure 6.6 show the graphical results of applying the MH algorithm

on the second proposed model, M (2).
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Figure 6.5: Histogram of Samples for M (2)(blue), most frequent val-
ues(red)

Figure 6.5 shows the frequency of the samples for the two parameters of interest,

stiffness, k, damping coefficient, c and for the standard deviations of noise at each

floor, σ
(2)
1 , σ

(2)
2 and σ

(2)
3 . The most frequent values are k = 4.470 ∗ 105N/m, c =

24Ns/m; σ
(2)
1 = 0.9, σ

(2)
2 = 0.9 and σ

(2)
3 = 0.9. In Figure 6.6 one can observe the

Markov chains of the samples for all considered parameters. The plots show how

the Markov chains efficiently explored the space of each parameter.

Figure 6.6: History of Samples for M (2)
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Model k(N/m) c(Ns/m) σ
(2)
1 σ

(2)
2 σ

(2)
3

M (2) 448100 21.5 0.9 0.9 0.9

Table 6.4: MH estimated parameter values for M (2)

The MH algorithm was firstly applied on each considered model in order to get

estimates for the parameters and to check that the models are set up in logical

manner. The limitations of the MH algorithm create the need for the application of

the RJMCMC method.

Due to the fact that the three-noise-standard-deviation model might be overly com-

plex, the selection between the two models, M (1) and M (2) in a Bayesian context

in considered;as this is not possible with the MH algorithm, the RJMCMC method

will be used. Although the mathematical approximation of the real structure is

simplified,the proposed approach gives robust results still.

Motivated by this aspect, the next section introduces the Reversible Jump Markov

Chain Monte Carlo algorithm applied on the 3-DOF model with one variance of

noise for the whole system and a 3-DOF model with three different variances of

noise for each respective level of the system.

6.2.7 RJMCMC - on the experimental MDOF system

In this section, one is confronted with two models for the rig or the 3-DOF system.

The first model has a noise variance for the entire system and the second model is

defined with three different noise variances,σ
(2)
1 , σ

(2)
2 and σ

(2)
3 , one for each of the

measured 3-DOF’s respectively.

In order to approximate the best model that fits the data and also to estimate the

parameters characterising the models, the RJMCMC algorithm was employed.

The RJMCMC algorithm was used to do model selection and parameter estimation

on the 3-DOF experimental dynamical system. Equal prior probabilities, P (M (1)) =

P (M (2)) = 0.5 were given to the first model, M (1), characterised by parameters

θ = {k(1), c(1), σ(1), λ, ε} and the second model, M (2), characterised by the vector of

parameters

θ′ = {k(2), c(2), σ(2)
1 , σ

(2)
2 , σ

(2)
3 }.
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A number of 25000 data points were necessary to account for the effects of the

transient response. The RJMCMC employed 10000 iterations. The proposals used

were of Gaussian type with widths tabulated below for both M (1) and M (2).

Parameters k(N/m) c(Ns/m) σ σ
(2)
1 σ

(2)
2 σ

(2)
3

Proposal widths 100 0.1 0.01 0.01 0.01 0.01

Table 6.5: Proposal widths for the parameters to be identified, M (1) and
M (2)

Starting values for the Markov chains were approximated through numerical calcu-

lations from the information gathered about the structure in the laboratory.

6.2.8 Results

Figures 6.7 and 6.8 illustrate the histograms and Markov chains for M (2), which

was the model selected by the RJMCMC algorithm as being more appropriate to

represent the studied data.

Figure 6.7: Histogram of Samples M (2)(blue), most frequent values(red)
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Figure 6.8: History of Samples M (2)

Model k2(N/m) c2(Ns/m) σ
(2)
1 σ

(2)
2 σ

(2)
3

M (2) 468500 23.4 0.876 0.99 0.72

Table 6.6: RJMCMC parameter values for M (2)

For comparison reasons, the results for M (1) are illustrated below, Figures 6.9

and 6.10. It is straightforward to see that the RJMCMC algorithm did not spend

enough time in M (1) which resulted in non-stationary Markov chains, in the sense

that little credibility could be given to the parameter estimates.
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Figure 6.9: Histogram of Samples M (1)(blue), most frequent values(red)
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Figure 6.10: History of Samples M (1)

The aim of the case study was to show the application of the RJMCMC algorithm in

order to identify an experimental structure. For this purpose, two competing models

were considered. The complexity of the linear model was increased by considering

the effects of the noise variance:

• M (1) - identify parameters, k, c and include one noise variance for all levels,

σ
(1)
1 ;

• M (2) - identify parameters, k, c and include noise variances for each individual

level, σ
(2)
1 ,σ

(2)
2 and σ

(2)
3 ;

The RJMCMC algorithm chose M (2) to best fit the data set. It is difficult to know

what to expect in a situation where there is no clear evidence for which model might

be appropriate. The noise is a cause of uncertainty and its influence on the overall

modelling of a structure has relevance. The change in noise variance is so subtle

that it can be a reason why there are no conclusive results on which model should be

preferred. In order to benchmark, to an extent, the estimates provided by RJMCMC,

comparison was made to TMCMC. According to the TMCMC(Transitional Markov
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Chain Monte Carlo) algorithm, M (1) is preferred which can be explained by the

Bayesian influence in penalising complexity. On the other hand, the RJMCMC

method chose M (2) which can be explained as a more accurate description and

a potential better understanding of why the uncertainty brought in by noise is

important.

6.2.9 Analysis of parameters estimates

In order to check the results of the RJMCMC algorithm, Monte Carlo simulations

were run using samples of parameters of both models. Confidence bounds of 97%

were used. The following figures, Figures 6.11, 6.12 and 6.13, represent the

bounds for each of the three levels,respectively. In order to visualise the results

better, reduced ranges of the full data sets are provided due to the large number

of data points. What this particular study revealed was that there existed little to

no difference between the two models representing the data. However, in order to

further explain the results obtained, another MCMC algorithm, the TMCMC [18],

was applied on the two models, making use of the same set of data. Even though

the approximations and estimations of the parameters were almost identical, the

evidence terms of the posterior distributions for the two models suggested that M (1)

rather than M (2) is the model preferred.
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Figure 6.11: MC Simulation Results Level 1, red line M (2), black line
M (1)

Figure 6.12: MC Simulation Results Level 2, red line M (2), black line
M (1)
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Figure 6.13: MC Simulation Results Level 3, red line M (2), black line
M (1)

6.2.10 Limitations of experimental rig

It was observed at the end of this study that the tests done on the experimental

rig lacked a vigourous linearity proof. The author decided to take on the challenge

and after several experiments it was discovered that the structure was not behaving

linearly, not even under low excitations conditions (from 0.1 Volts to 0.9 Volts). The

rig was displaying hardening effects on the first and second modes, and softening

effects on the third mode. The rig was taken apart in order to analyse each compo-

nent individually and what was found was that the railing system was causing the

nonlinear effects in the results. The point of the bearing was to offer a frictionless

sliding of the base but instead was causing too much friction to be ignored. For vi-

sualisation purposes, the following figures present some of the results of the analysis

conducted.



6.2. RJMCMC ON AN EXPERIMENTAL CASE STUDY IN SYSTEM
IDENTIFICATION - MDOF SYSTEM 132

Figure 6.14: Initial rig design, FRF of 2nd level of the new rig under low
excitations, full range
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Figure 6.15: Initial rig design, FRF of 2nd level of the new rig under low
excitations, reduced range
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Figure 6.16: Initial rig design, FRF of 2nd level of the rig, 1st mode
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Figure 6.17: Initial rig design, FRF of 2nd level of the rig, 2nd mode

In Figure 6.14 and Figure 6.15 one can observe the FRF for the 2nd level of

the initial rig design. This is plotted in order of increasing excitation level, from

0.1 Volts to 0.9 Volts. For a linear system, under low excitations especially, there

should be no shift in the natural frequencies. However, what can be seen in the

zoomed in version is that there is a noticeable shift in the frequency responses. The

next two figures, Figure 6.16 and Figure 6.17 give a look at the first two modes

under the mentioned excitation range. Looking closely, almost a softening effect can

be observed in the second mode (the first mode is lost in the noise). For the second

mode the situation is more serious with a 1.34% decrease in natural frequency as

the excitation level is slowly increased.
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Figure 6.18: a) Initial Rig b) Improved Rig

Naturally, the next step included redesigning the rig. The same type of experimental

work was conducted in order to check that this time, the improved rig was behaving

linearly when expected to. The results are included for visualisation for the same

case as for the initial designed rig.
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Figure 6.19: Improved rig design, FRF of 2nd level of the new rig under
low excitations, full range
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Figure 6.20: Improved rig design, FRF of 2nd level of the new rig under
low excitations, reduced range
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Figure 6.21: Improved rig design, FRF of 2nd level of the rig, 1st mode
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Figure 6.22: Improved rig design, FRF of 2nd level of the rig, 2nd mode

In Figure 6.18 one can observe the FRF for the chosen 2nd level of the improved

rig design. This rig was designed to be bolted onto the testing table, eliminating the

railing system element. This is plotted in order of increasing excitation level, from

0.1 Volts to 0.9 Volts as before. The improvement can be immediately observed.

Looking closely, in Figure 6.19 the first mode is constant throughout the increase

in excitation level, while the second one sees a difference of 0.27% and the third

mode had a difference error of only 0.16%.

After the rig was tested for linearity, a more rigourous approach was taken and the

initial idea of identifying noise variance using the RJMCMC method was put aside.

With this in mine, the improved rig was tested and a linear and a nonlinear model

were built so that the parameters could be identified before applying the RJMCMC

algorithm.
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6.3 RJMCMC on an Experimental Case Study

in Nonlinear System Identification - MDOF

system

This present experimental case study is concerned with applying the RJMCMC al-

gorithm on experimental time data from an MDOF structure, in order to do system

identification of a nonlinear dynamical system.

The rig used in the second experimental case study is introduced. The aims and

objectives for this case study were set as follows:

• Gather experimental data from structure;

• Construct competing models for the studied structure based on linear and

nonlinear behaviour of bilinear stiffness type;

• Identify parameters for each considered model by employing the MH algorithm;

• Apply the RJMCMC on competing models under linear and nonlinear dynamic

behaviour to do system identification;

• Analyse results;

Experimental time series data was gathered for the proposed structure at a single

excitation level, at four different outputs. The simplified model of the structure was

chosen as a base excitation, 2-DOF system for which the parameters were identi-

fied using the MH algorithm. Competing models were considered: the first model

was characterised by two stiffness parameters for each DOF, k
(1)
1 and k

(1)
2 and two

damping coefficients, c
(1)
1 and c

(1)
2 for each DOF, respectively ; two nonlinear models

were considered: the first characterised by an extra stiffness parameter, compared

to M (1), in order to account for the bilinear stiffness behaviour and the second hav-

ing two extra parameters, the added stiffness and the distance parameter d, which

represents the distance between the two blocks.Once again, a Bayesian framework

has the advantage of penalising model complexity.

The expectation of this study was to see how the RJMCMC algorithm performs in

doing system identification on a real structure. It was expected for the RJMCMC
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method to choose the linear model, M (1) when linear behaviour was observed and

the nonlinear model, M (2) when nonlinear behaviour was present, according to the

data set used.

Section 6.3.1 covers details on the structure used and the procedure of gathering

the data. This is followed in Section 6.3.4 by a simplified mathematical modelling

of the structure. In Section 6.3.5 and Section 6.3.6 the MH algorithm is applied

in order to estimate the model parameters and the results are presented. Section

6.3.11 covers the application of the RJMCMC algorithm on the two competing

models. The case study is concluded with analysis of results and discussion.

6.3.1 Experimental structure

The structure used is a 3-DOF rig pictured in Figure 6.22.

Figure 6.23: Experimental 3-DOFs Rig with nonlinear element in place

The re-designed structure has 3 levels, with the lower level being considered the base

as before. Each main plate/level has a weighted mass of 6.1082 kg and dimensions 35
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x 25.5 x 2.5cm (LxWxh). Each upright beam connecting the 3 levels has a weighted

mass of 238 g and dimensions 55.5 x 2.5 x 0.6cm. Each square block used to connect

the main plates and the upright beam has a weighted mass of 18 g and dimensions

2.5 x 2.5 x 1.3cm. For each block, 4 bolts were used with a weighted mass of 10

g and of Viraj A2-70 grade. The structure was bolted in and then clamped onto

a testing table. In order to introduce the excitation into the structure, a shaker

with a force transducer was connected to the base. The output of the structure was

recorded as acceleration, using 3 accelerometers positioned, as in Figure 6.22 right

hand side(blue cables), at the middle of each main plate/level.

The data was gathered once again using a SCADAS-3 interface connected to a PC

running LMS Test.Lab software. 186368 data points were recorded at a sampling

frequency of 1024 Hz in the form of time domain acceleration readings. Random

excitation was used in this particular case study as well.

6.3.2 Test sequence

Three different sets of data were acquired in order to conduct system identification

on this case study. The first set of data was gathered,186368 data points, under

random excitation, with the two blocks apart from each other,i.e. with no contact.

A sampling frequency of fs = 1024 Hz was decided upon.

The second set of data was gathered under random excitation, with the two blocks

in full contact. The same number of data points was gathered, under the same

sampling conditions.

The third set of data was gather under random excitation, with the two blocks

having an offset of d = 0.1 mm. This allowed for the blocks to be in and out of

contact.

All three different cases were modelled differently, according to the dynamics dis-

played:

• For the first set of data, the linear base acceleration 2-DOF model,M (1), was
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used: m1z̈1 + (c1 + c2)ż1 − c2ż2 + (k1 + k2)z1 − k2z2 = −m1ÿb

m2z̈2 − c2ż1 + c2ż2 − k2z1 + k2z2 = −m2ÿb
(6.2)

• For the second set of data, the linear base acceleration 2-DOF model,M ′(1),

was used: m1z̈1 + (c1 + c2)ż1 − c2ż2 + (k1 + k′2)z1 − k′2z2 = −m1ÿb

m2z̈2 − c2ż1 + c2ż2 − k′2z1 + k′2z2 = −m2ÿb
(6.3)

where k′2 = k2 + kL is the new stiffness that represents the addition of k2 and

the additional stiffness inflicted by the contacting blocks, kL.

• For the third set of data, a bilinear stiffness model is proposed,M (2), to account

for the in and out of contact behaviour of the blocks. The model is dependent

on the set offset, d: m1z̈1 + (c1 + c2)ż1 − c2ż2 + (k1 + kx)z1 − kxz2 = −m1ÿb

m2z̈2 − c2ż1 + c2ż2 − kxz1 + kxz2 = −m2ÿb
(6.4)

where kx = k2, for z2 − z1 > d and kx = k′2, for z2 − z1 ≤ d.

Figure 6.24 displays the bilinear stiffness behaviour for force, F against displace-

ment, z.
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Figure 6.24: Bilinear stiffness behaviour

6.3.3 Data points considerations

The first step was to apply the algorithm on the data gathered under linear be-

haviour. Due to the fact that the amount of data was too high, a smaller amount of

6000 data points was decided upon such that they represent the dynamic behaviour.

The power spectral density was generated for the case of using the whole data set

of 186368 data points and only 6000 data points, between data points 180000 and

186000 and they were plotted against each other for the 2-DOF. The range of data

points were chosen so that it accounts for the transient response. The PSD plots

for the nonlinear behaviour data set are shown in Figure 6.25 and Figure 6.26.
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Figure 6.25: PSD First DOF Nonlinear Data
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Figure 6.26: PSD Second DOF Nonlinear Data

The PSD for the linear behaviour data set are shown in Figure 6.27 and Figure

6.28. It can be seen that even though the PSD of the smaller number of data points

is lower in amplitude, it does follow the same natural frequencies, i.e. the same

dynamic trend.



6.3. RJMCMC ON AN EXPERIMENTAL CASE STUDY IN NONLINEAR
SYSTEM IDENTIFICATION - MDOF SYSTEM 148

Figure 6.27: PSD Second DOF Linear Data
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Figure 6.28: PSD Second DOF Linear Data

The role of the PSDs was to check how many data points are needed such that the

dynamic behaviour is captured but the computational time of running the algorithm

is reduced. This was due to the large amount of data available. A trade off was

reached with using 6000 data points out of the 186368 data points available; the

6000 data points were chosen between 180000 and 186000 in order to account for

the transient response as well.

6.3.4 Mathematical model for the linear system

The following mathematical model was proposed for the linear 2-DOF system rep-

resented in Figure 6.29:

 m1z̈1 + (c1 + c2)ż1 − c2ż2 + (k1 + k2)z1 − k2z2 = −m1ÿb

m2z̈2 − c2ż1 + c2ż2 − k2z1 + k2z2 = −m2ÿb
(6.5)
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where m1, m2 are the masses of levels 2, 3 (counting from the lowest level to the

highest level), z̈1, z̈2 are the relative accelerations of each corresponding level with

respect to the base (as before), it follows that ż1, ż2 are the relative velocities of each

corresponding level with respect to the base, z1, z2 are the relative displacements of

each corresponding level with respect to the base and finally ÿb is the acceleration

of the base.

Figure 6.29: 2-DOFs Linear system

The following section covers parameter estimation for the linear model using the

MH algorithm.

6.3.5 MH parameter estimation of the linear system

The first step in identifying the parameters by using MCMC sampling algorithms

was to find an approximation of the starting point for the sampling procedure. It is

straightforward to get approximations of the masses of the three levels. The masses

were simply weighed with a precision scale that gave values of m1 = 6.6450kg and

m2 = 6.7713kg. Bear in mind that the model used was base excited so the mass of

the lowest level did not form part of the identification process. Knowing the ma-

terial of the rig, which was aluminium, and assuming that the stiffness was mainly

provided by the vertical beams made it possible to calculate the stiffness coefficient

by employing cantilever beams linear springs formulas. As there are so many con-
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ditions of loading, the approach did not seem feasible and instead SADE software

was ran on the gathered data to get an approximation of the parameters, including

damping coefficients. SADE stands for Self-Adaptive Differential Evolution algo-

rithm and is a method that applies stochastic search techniques in order to identify

or adapt parameters in the case of system identification [81]. Running SADE on a

big data set can be computationally time consuming as it can sometimes take days

to reach convergence to a solution. In this particular work, due to the problems

encountered previously with the rig, the purpose of using SADE was robustness and

also to provide starting points for the chains of parameters for the MH algorithm.

The same base acceleration model described in the above equations of motion was

used to get these results that can be observed in the table below. It made sense

for the masses not to be identified as it saved computational time. The model was

checked with these new parameters by doing a forward run.

Model k1(N/m) k2(N/m) c1(Ns/m) c2(Ns/m)

M (1) 477330 442600 62.9771 16.1845

Table 6.7: SADE parameter values for M (1)

6.3.6 Results

In Figure 6.30 and Figure 6.31 one can see the results of the forward run of the

base acceleration model with parameters identified through SADE method for the

first and second levels respectively. A reduced range of data points is presented due

to the large set of data available. However, this behaviour is representative of that

seen across the validation data set.
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Figure 6.30: Forward Run Results of SADE simulations, 1st level
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Figure 6.31: Forward Run Results of SADE simulations, 2nd level

The mean square error(MSE) was calculated using the following equation, in order

to study the fit of the model to the data.

MSE =

∑
(D − D̄)2

N
(6.6)

where D is the experimental data, D̄ is the simulated data and N is the number of

data points.

For the first level fitting, MSE = 0.0167 while for the second level data fitting,

MSE = 0.0216. These results indicate an excellent fit of the model with the iden-

tified parameters to the experimental data.

The results obtained through SADE simulations were further used in MH simulations

as Markov chains starting points in order to obtain estimates of the parameters. The

MCMC algorithms provide probability distributions over the parameters of interest,

covering a bigger area of possible solutions, with the extra benefit of accounting

uncertainty in the process of parameter estimation.
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In order to simplify the process of finding good proposals for all four parameters,

the MH algorithm was applied individually to each parameter first. This made the

process of finding appropriate proposal distributions considerably more efficient. By

identifying only one parameter at a time while the rest are kept as constants, the

appropriate proposal widths could be identified such that the Markov chains do not

spend too much time in areas of low acceptance.

In Figure 6.32 one can see the results of the final MH run on all four parameters

simultaneously. The number of necessary iterations was drastically reduced to only

1000 iterations in order to get convergence due to applying it first to each parameter

in turn.

Figure 6.32: Parameter Estimation - MH method results(blue), most
frequent values(red)

The same approach of calculating the MSE was followed after getting the estimate

of the parameters by using the mean value for each distribution. The mean values of

the parameters identified with the MH algorithm are displayed in the table below.

The mean squared error was calculated to be MSE = 0.0164 for the first level and

MSE = 0.0233 for the second level. This analysis showed that the parameters

estimated by the MH algorithm for the linear behaviour of the rig were appropriate

with the used model.

Model k1(N/m) k2(N/m) c1(Ns/m) c2(Ns/m)

M (1) 477500 442600 41.7 29

Table 6.8: MH parameter values for M (1)
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For comparison considerations, Figure 6.33 and Figure 6.34 are included of a

chosen range of data points for running the model forward with identified parameters

using the MH algorithm; approximately the same range of data points that were

captioned for the SADE simulations.

Figure 6.33: Forward Run Results of MH simulations, 1st level
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Figure 6.34: Forward Run Results of MH simulations, 2nd level

The SADE algorithm and the MH method gave different results for the damping

coefficients. This is not considered to have significant relevance for the studied rig

and for the modelling approach chosen, which can be observed by looking at the

forward model runs plots when using the parameters identified with SADE algorithm

and the parameters identified with the MH method. Even though there is quite a

difference in the damping coefficients values, both models fit the data with low error.

6.3.7 Mathematical model for the nonlinear system

The nonlinear system is graphically represented in Figure 6.35:
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Figure 6.35: 2-DOFs Nonlinear system

The bilinear stiffness model is considered,M (2), to account for the in and out of

contact behaviour of the blocks. The model is dependent on the set offset, d:

 m1z̈1 + (c1 + c2)ż1 − c2ż2 + (k1 + kx)z1 − kxz2 = −m1ÿb

m2z̈2 − c2ż1 + c2ż2 − kxz1 + kxz2 = −m2ÿb
(6.7)

where kx = k2, for z2 − z1 > d and kx = k′2, for z2 − z1 ≤ d.

6.3.8 MH parameters estimation on the nonlinear system

The MH algorithm was then applied to the nonlinear system using the experi-

mentally gathered data. The number of data points used was, as decided, 6000

data points, between 180000 and 186000. The second model is characterised by 6

parameters,k
(2)
1 (N/m), k

(2)
2 (N/m), k

′(2)
2 (N/m), c

(2)
1 (Ns/m), c

(2)
2 (Ns/m), d(m), for

which the proposal widths are tabulated below. 10000 iterations for the MH algo-

rithm were used in this study.
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Parameters k
(2)
1 (N/m) k

(2)
2 (N/m) k

′(2)
2 (N/m) c

(2)
1 (Ns/m) c

(2)
2 (Ns/m) d(m)

Proposal widths 1000 1000 10000 1 1 10−6

Table 6.9: Proposal widths for the parameters to be identified, M (2)

The next section covers the results of doing parameter estimation on M (2), using

the MH algorithm.

6.3.9 Results

In Figure 6.36 and Figure 6.37 the histogram and the sampling history for the

parameters of M (2) are displayed.

Figure 6.36: MH histograms of parameter estimates, M (2)(blue) and
most frequent values(red)
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Figure 6.37: MH history of samples, M (2)

The means of the parameters value are tabulated below.

Model k
(2)
1 (N/m) k

(2)
2 (N/m) k

′(2)
2 (N/m) c

(2)
1 (Ns/m) c

(2)
2 (Ns/m) d(m)

M (2) 465000 510000 1340000 61.1 12.5 0.08x10−3

Table 6.10: MH parameter values for M (2)

The mean squared error was calculated to be MSE = 0.2082 for the first level and

MSE = 0.1045 for the second level. Comparison of data from the forward run of

the second model with the identified parameters can be observed in Figure 6.38

for the first level and Figure 6.39 for the second level.
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Figure 6.38: Forward Run Results of MH simulations, 1st level
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Figure 6.39: Forward Run Results of MH simulations, 2nd level

By firstly applying the MH algorithm on the linear and nonlinear systems considered,

the parameters of each model were identified. This provided a starting point for

applying the RJMCMC algorithm. The mean of the estimated parameters were

used as starting points for the Markov chains in the RJMCMC application.

6.3.10 Experimental Rig with nonlinear element

The nonlinear element was included in the rig by adding two impacting blocks.

Looking back at Figure 6.18, it can be noticed that there are two ’L’-shaped

blocks included between the two top floors of the structure, as seen in the closed-up

caption in Figure 6.40.
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Figure 6.40: Source of nonlinearity

The idea behind this particular design is that once the excitation is increased, the

’L’ blocks will start impacting each other. In order to control the distance between

the blocks, a micrometer was attached, as in Figure 6.41.
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Figure 6.41: Attached micrometer device

Due to the large area of the two blocks touching, under higher excitation the top two

floors coupled. In itself, an interesting case but beyond the purpose of this work.

The rig was further modified for added flexibility in the ’L’ blocks by thinning the

top ’L’ block and for less impact area by cutting down the bottom ’L’ block to a

rectangular one as seen in Figure 6.42. This provided a rig in which the nonlinearity

is controllable and is characterised as a bilinear stiffness effect.



6.3. RJMCMC ON AN EXPERIMENTAL CASE STUDY IN NONLINEAR
SYSTEM IDENTIFICATION - MDOF SYSTEM 164

Figure 6.42: Redesigned ’L’-shaped blocks

6.3.11 RJMCMC on the 2-DOF experimental structure -

first scenario

The parameters of the linear and nonlinear systems were identified by using the

MH algorithm in Section 6.3.5 and Section 6.3.8. The RJMCMC algorithm was

applied for two different scenarios. The first one included the linear model,M (1),

and the bilinear stiffness model,M (2). For this case, M (1) depends on 4 parameters

to be identified (M (1) = {k(1)1 , k
(1)
2 , c

(1)
1 , c

(1)
2 }), while the two masses, m1 and m2

are considered approximately known as they were weighed. The bilinear stiffness

model, M (2), is dependent on 5 parameters, again with the masses being considered

known(M (2) = {k(2)1 , k
(2)
2 , k

′(2)
2 , c

(2)
1 , c

(2)
2 }).
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6.3.12 Results

This time the RJMCMC method was applied for 25000 iterations, the starting pa-

rameters were updated after several runs of the MH algorithm. The proposals for

both models are presented in the table below.

Parameters k1(N/m) k2(N/m) k′2(N/m) c1(Ns/m) c2(Ns/m)

Proposal widths, M (1) 1000 1000 - 1 1

Proposal widths, M (2) 1000 1000 10000 1 1

Table 6.11: Proposal widths for the parameters to be identified, M (1)

and M (2)

Once the RJMCMC algorithm was applied on the linear data set, it was clear that

the confidence was in the linear model. As such, the algorithm spent no time in the

second model, the bilinear stiffness one. In Figure 6.43 it can be observed that the

parameters were estimated, with the stiffness parameters being more certain. The

same aspect can be observed in Figure 6.44. The Markov chains for the stiffness

parameters settled after only approximately 1000 iterations, while the Markov chains

for the damping parameters took more time to become stationary.

Figure 6.44: History of Samples for M (1)

As used so far, in Figure 6.45 the bar chart for the number of samples spent in the

two models is plotted.
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Figure 6.43: Histogram of Samples for M (1)(blue) and most frequent
values(red)

Figure 6.45: Acceptance frequency of M (1) vs M (2)
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The second step was to input the nonlinear data into the algorithm and identify it.

Unfortunately the RJMCMC method was choosing the first model as being the best

fit for the nonlinear data as well. The mean squared error was then calculated for the

both cases of using the nonlinear data with the linear model and the bilinear stiffness

model and the values were found to be the same: MSE = 0.4350 for the first level

and MSE = 0.2408 for the second level. While these low values indicate a good

fit, they prove the linear model to be a better fit for the nonlinear gathered data.

One of the advantages of using a Bayesian framework is that it penalises complexity,

which was the case in this scenario. This can mean that the nonlinearity introduced

was not strong enough or that the rig needs to be driven at higher excitation levels

where the nonlinearity can be more influential.

Model k1(N/m) k2(N/m) c1(Ns/m) c2(Ns/m)

M (1) 457000 451000 72.4 16.1

Table 6.12: RJMCMC parameter values for M (1)

In order to check the results, the BIC was calculated for using both the linear and

nonlinear model with the nonlinear data according to the formula:

BIC = −2 ln(L) + k ln(n) (6.8)

where L is the maximized likelihood function, k is the number of parameters to be

identified and n is the number of data points. The BIC is calculated for all the

models and then the lowest BIC value determines the preferred model. For the

nonlinear model the BIC = 1.3392e + 06 while for the linear model the BIC =

1.3392e + 06 which once again proves that the RJMCMC algorithm did the right

thing by penalising the complexity and choosing the linear model for the nonlinear

data set. According to the AIC measure, AIC = 1.3391e + 06 for the nonlinear

model and AIC = 1.3391e+ 06 for the linear one where the AIC is calculated as:

AIC = 2k − 2 ln(L) (6.9)

with k and L being defined as before. This time, the preferred model is the one

with the lowest AIC, again, the linear model.
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6.3.13 RJMCMC on the 2-DOF experimental structure -

second scenario

The second scenario involved applying the RJMCMC algorithm on the linear model,M (1)

and the bilinear stiffness model,M (2). For this case study the parameters to be iden-

tified were slightly changed such that the linear model M (1) stayed the same, while

the nonlinear model, M (2) had an additional parameter to be identified, d, the offset

for the two middle blocks so that M (2) = {k(2)1 , k
(2)
2 , k

′(2)
2 , c

(2)
1 , c

(2)
2 , d}.

As before, firstly the RJMCMC algorithm is used to identify the linear structure, so

that by being applied to the linear set of gathered data it provides estimates over

parameters and models. The method was employed with 25000 iterations once again.

The proposal densities were tuned accordingly. In Figure 6.46 the histogram for

the considered samples is plotted. For the two stiffness, k
(1)
1 and k

(1)
2 the maximum

peaks are very clearly marked, which can be observed in Figure 6.47, in the history

of the samples. The Markov chains are stationary almost throughout the 25000

iterations. For the damping coefficients, c
(1)
1 and c

(1)
2 , more time was required in

order for the chains to become stationary. For c
(1)
1 an increased number of iterations

would provide even better results.
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Figure 6.46: Histogram of Samples for M (1)(blue) and most frequent
values(red)
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Figure 6.47: History of Samples for M (1)

Model k1(N/m) k2(N/m) c1(Ns/m) c2(Ns/m)

M (1) 455000 450000 43.3 25.1

Table 6.13: RJMCMC parameter values for M (1)

A forward run of the model by using the estimated parameters, gave mean squared

errors between the generated data set and the gathered data set ofMSE = {0.0174, 0.0200},
for each DOF respectively. Figure 6.48 and Figure 6.49 show a small sample of

the generated data points against the experimental data points for each level re-

spectively.
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Figure 6.48: Data comparison plot, Level 1
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Figure 6.49: Data comparison plot, Level 2

The next step was to apply the RJMCMC on the second data set of gathered data,

the one representing the nonlinear behaviour. The situation stayed the same as

with the first approached scenario. The RJMCMC method chose the linear model,

M (1) to best fit the nonlinear data. Figure 6.50 shows the bar chart of number of

iterations spent in M (1) against number of iterations spent in M (2).
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Figure 6.50: Acceptance frequency of M (1) vs M (2)

As with the first scenario, when the RJMCMC was applied on what was believed

to be nonlinear data, the expectation was that the method would choose the second

model, M (2), to be the better fit. However, the algorithm preferred M (1) to best fit

the data. Firstly, this raises the issues of having appropriate models to represent

the dynamics in a structure. It is believed that the nonlinear model chosen for this

particular study did not best represent the present nonlinearity, at least not better

than the linear model. Secondly, when dealing with random excitation and a harsh

nonlinearity, such as the impacting beams considered, the nonlinearity is not always

apparent. Sometimes, periodic signals can be more appropriate in order to observe

the effect of the nonlinear element.

6.4 Summary

Chapter 6 covered the application of the RJMCMC algorithm on experimental

data in order to do system identification. The work was split into two main sec-
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tions. Section 6.2 concentrated on an initial design of a 4-DOF structure, modelled

as a 3-DOF system with base acceleration. Two competing models were developed

for the 3-DOF system, based on the noise variance of each DOF such that the first

model considered modelling the noise variance equally for each of the 3-DOFs and

the second model took into account different noise variance for each 3-DOFs. Each

value of the noise variance was identified together with the stiffness and damping

coefficient parameters. The MH algorithm was applied individually on each of the

considered models in order to identify the parameters. The limitations of the MH

algorithm means that it cannot do model selection. This was followed by the applica-

tion of the RJMCMC algorithm on both models in order to do system identification,

making use of the parameters identified with the MH method as a starting point

for the Markov chains. At the end of Section 6.2 the rig was re-designed for the

purpose of controlling the nonlinearity present, due to unexpected design issues.

Section 6.3 covered the application of the RJMCMC algorithm on a 3-DOF struc-

ture, modelled as a 2-DOF system with base acceleration, with the purpose of doing

linear and nonlinear system identification. The MH algorithm was first applied on

each of the considered models in order to give estimates for the parameters. These

estimates helped in further applying the RJMCMC algorithm. The application of

the RJMCMC algorithm followed two scenarios. The RJMCMC method correctly

identified the linear model as to best fit the linear data and simultaneously provided

parameter estimates in both scenarios. The RJMCMC method did not choose the

second model to best fit the nonlinear data due to the fact that the linear model

could fit the nonlinear data as well. As the first linear model is less complex, the

RJMCMC algorithm chose the first model in this case as well. Further analysis

by using model selection criterions such as BIC and AIC followed to support the

findings. Chapter 7 concludes the thesis and provides further discussion on the

findings presented in each chapter.



Chapter 7

Conclusions, Discussion and

Future Work

Chapter 7 finalises the present thesis. The aim of this thesis was to introduce and

apply a not so well known algorithm, the RJMCMC method, in system identification

of linear and nonlinear dynamical structures. Motivated by a lack of computational

tools that are capable to both probabilistically estimate parameters and select be-

tween models, the author proposed working with an MCMC sampling algorithm,

within Bayesian inference for advantages such as being capable of sampling from

complex distributions and a framework that addresses uncertainty. A set of objec-

tives were decided upon at the beginning of this work:

• Introduce the RJMCMC method to be used in the context of structural dy-

namics in order to do system identification of linear and nonlinear structures

in a probabilistic framework, by simultaneously providing estimates of the pa-

rameters of a system and selecting a robust model to best fit the available data

set;

• Adapt and apply the RJMCMC algorithm on a series of numerical case studies

of SDOF(single degree of freedom) and MDOF(multi-degree of freedom) sce-

narios in order to show its capabilities in doing system identification of linear

and nonlinear structures;

• Adapt and apply the RJMCMC algorithm on experimental case studies in

order to emphasize its capabilities of simultaneously do parameter estimation

175
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and model selection for both linear and nonlinear systems;

• Discuss the RJMCMC method in the context of SID of dynamical systems by

underlining its advantages and considering its drawbacks;

• Discuss the RJMCMC algorithm in comparison with other MCMC sampling

methods;

The objectives and their success will be analysed in the discussion section.

A summary of the contribution of each chapter is given and the objectives set at the

beginning of the thesis are discussed. The contribution to knowledge is emphasized

and plans for future work are proposed.

7.1 Thesis Summary

The thesis summary is presented in bullet point format as each individual chapter

has a thorough summary at the end of it, such that only the main ideas are stated

in the following paragraphs.

Chapter 1:

• The motivation for the thesis is stated;

• A thorough introduction to system identification, Bayesian inference and the

Markov Chain Monte Carlo sampling algorithms is given;

• The outline of the thesis is set.

Chapter 2:

• Background literature review is done for structural dynamics and using MCMC

sampling algorithms within a Bayesian framework;

• Background literature review is done for areas in which the RJMCMC algo-

rithm was employed;

• Literature review is conducted for using MCMC methods and the RJMCMC

algorithm in structural health monitoring.

Chapter 3:
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• The theory for Bayesian inference is presented;

• The proof for Bayes theorem is derived;

• A number of MCMC sampling algorithms are discussed.

Chapter 4:

• The theory for the RJMCMC algorithm is explained from a structural dynam-

ics point of view;

• Detailed balance is explained;

• Dimension matching is addressed;

• A theoretical example of system identification using the RJMCMC algorithm

is provided.

Chapter 5:

• Numerical case studies are considered in SID of dynamical system for applying

the RJMCMC algorithm;

• A SDOF structure for which a linear and a nonlinear model are simulated is

identified by using the RJMCMC method;

• A MDOF structure for which a linear and a nonlinear model are simulated is

identified by using the RJMCMC method;

• A simply supported beam case study in considered for damage identification

by using the RJMCMC algorithm.

Chapter 6:

• Experimental case studies are considered for SID of dynamical systems by

using the RJMCMC algorithm;

• A 4-DOF and then 3-DOF rig was built and redesigned for the purpose of

studying nonlinearity;

• A MDOF structure for which two scenarios for noise variance exist is identified

by using the RJMCMC method;

• A MDOF structure is considered within a linear regime and a nonlinear regime
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to be identified by emplying the use of the RJMCMC algorithm.

7.2 Discussion

The objectives for this thesis were introduced in Chapter 1. The RJMCMC al-

gorithm was introduced in structural dynamics for system identification of both

linear and nonlinear systems. It followed that the RJMCMC method was applied

on a range of increasingly challenging scenarios through numerical case studies for

both SDOF systems and MDOF systems with different types of nonlinearity (cubic

stiffness and bilinear stiffness). Up to this point, the objectives were met. The

advantages of using the RJMCMC algorithm are that it can do both parameter

estimation and model selection of linear and nonlinear systems. The time the algo-

rithm needs to run increases with the number of parameters it needs to estimate as

well as with the number of data points employed. It was shown that the number

of data points used can be decreased by analysing the data previously to applying

the RJMCMC method. It is expected that the RJMCMC algorithm will take more

time to run when the number of models it needs to decide from increases. The

RJMCMC algorithm can be used in numerical case studies as it was expected. It

provided the expected parameter estimates in the numerical case studies considered,

it was capable of selecting the expected model to best fit the employed data. The

decision to use the method comes down to the problem set up by the user but in

the situations presented in the numerical studies considered in the present work it

proved to work as desired. The application of the algorithm on experimental data

came with some drawbacks. Firstly, there is a clear requirement for an accurate

model. The RJMCMC method will keep choosing the least complex model when

made to decide between models that represent the collected data in the same way.

This was the case when the algorithm was applied on the experimental structure.

The hope was to include a nonlinearity so that the nonlinear model will fit the data

better than the linear one. Unfortunately, that was not the case as it is believed

that the nonlinearity was not captured accurately by the proposed nonlinear model.

This led to the algorithm choosing the linear model for nonlinear data as the fit was

similar, the calculated errors were the same and the first model was less complex. It

is expected for challenges to increase when trying to do system identification on real

structures and this was the case when the experimental case studies were consid-

ered. The RJMCMC algorithm should be applied on experimental data only when
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the models under consideration are accurate. When nonlinearity is present this issue

becomes more pressing.

The broad applicability of the RJMCMC algorithm makes it an attractive method.

As it was discussed in Chapter 2, RJMCMC algorithm was used in various areas of

research, from economics to nuclear physics or biology. Compared to other methods

that can do model selection, such as TMCMC algorithm or ABC method, the RJM-

CMC algorithm can do parameter estimation and model selection simultaneously

which is a considerable advantage. If set up properly, the RJMCMC algorithm has

an effective computational time run compared with the ABC method for example.

The RJMCMC algorithm is flexible in the sense that one is not limited to a certain

set of moves(in the present work three types of moves were used, birth move, death

move and update move) as it can be adapted to the user’s need. Another advantage

is that, as long as it is set up to obey the principle of detailed balance and the di-

mensions are matching, the RJMCMC method can be built around other sampling

algorithms, such as Gibbs Sampling; it is not necessary to use at its core the MH

algorithm. However, the fact that the width of the proposals for the parameters of

interest needs to be tuned according to each case is a drawback as it can potentially

be a time consuming task. This is the case with most MCMC sampling algorithm

though, which is why the attention right now should be toward automation. Also,

the acceptance of move between the considered models needs to improve before the

confidence in using the RJMCMC algorithm can increase. These issues need to

be addressed before the RJMCMC algorithm can become widely used in industrial

situations.

The next section is covering the contribution the work presented thus far has brought

to research.

7.3 Contributions to Knowledge

It should be well acknowledged by now that the area of nonlinear system identifi-

cation of dynamical structures is still lacking in well-developed computational tools

that can provide means of doing both parameter estimation and model selection.

This thesis aimed to address this lack in computational tools by introducing the

RJMCMC method, a powerful MCMC sampling algorithm that to the best of the

author’s knowledge has not yet been introduced in SID of dynamical systems up
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to the point of writing, a method that is capable of simultaneously addressing pa-

rameter estimation and model selection for both linear and nonlinear systems. The

method had to be broken down into its most important features in order to reassem-

ble it from a structural dynamics point of view. The application of the RJMCMC

algorithm was then demonstrated for a sequence of incrementally challenging cases.

It followed that the applications of the RJMCMC algorithm had to be built up,

starting from a SDOF structure for which two competing models were simulated (a

linear model and a nonlinear model with a cubic stiffness), the method successfully

fit the appropriate data sets to the corresponding models and provided probability

distributions over the parameter sets of each individual model accordingly. After

the success of the first numerical case study, a MDOF structure was considered, for

which two competing MDOF models were built, one linear and one nonlinear with

a nonlinearity of Duffing type. For this particular case study, the author considered

both an increase in degrees of freedom as well as an increase in number of parameters

to be identified. The RJMCMC algorithm demonstrated its capabilities by fitting

the expected data sets to the corresponding models and providing estimates over the

set of parameters to be identified. The last numerical case study considered was in

SHM, to do damage detection and identification, an area that still needs addressing

in future work. Nonetheless, the RJMCMC method is a capable tool to be further

explored in SHM. The next step in the process of the presented work was to build

a rig that could allow experiments in order to validate the RJMCMC algorithm

on real structures. This proved to be an intensive process and several design ideas

were considered before arriving at the one presented in Chapter 6. The first case

study included characterising the dynamic behaviour of the linear structure. What

followed was introducing elements into the rig that would allow it to behave non-

linearly under certain excitation regimes. The RJMCMC algorithm is being used in

a Bayesian framework, in part to penalise complexity. This advantage of utilising

Bayesian inference came through in the last case study where the method favoured

the linear model over the nonlinear model due to the nonlinearity not being strong

enough.

It is fair to conclude that the RJMCMC algorithm is a newly introduced powerful

tool in doing system identification of dynamical structures and the case studies

presented in this thesis have demonstrated aspects of its capabilities and its potential

applications.
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7.4 Plans for future work

The RJMCMC algorithm still has more to offer. With this in mind, the future work

into tapping the potential of this computational tool is already in progress. One of

the first issues to be addressed is that of exploring its capabilities when faced with

a more diverse set of nonlinear behaviour than that introduced in Chapter 6. This

will be done in a controlled setting and the results of this ongoing work will be pre-

sented in future journal papers. Another aspect that needs to be considered is that

of more efficient Markov chains. It is a known problem in the Bayesian community

that randomly generated Markov chains can take longer to reach stationarity than

ones with a controlled moving pattern. For this reason, many MCMC algorithm are

combined with Simulated Annealing, a computational method of creating Markov

chains that travel the probable space more effectively. The RJMCMC method it-

self could benefit from the addition of a Simulated Annealing schedule and more

thought and work needs to go into this aspect. In the case of the RJMCMC al-

gorithm, a more efficient acceptance of move from one model to another needs to

be dealt with as well, such that the method spends enough time in all spaces of

possible models. Furthermore, the MCMC sampling algorithms in general are still

in need for automation. The proposals are decided by making educated guesses

and that can be very time consuming. Yet another idea is to keep pursing using

the RJMCMC algorithm in SHM. The built available rig can be used for a number

of damage detection and identification purposes. The starting point would be the

simply-supported beam case study considered in Chapter 5.

The work done so far has shown that the RJMCMC algorithm is a capable new tool

to be used in nonlinear system identification of dynamical structures. The numerical

case studies and more importantly the experimental work set the RJMCMC method

as a powerful and capable algorithm.
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Appendix

In this section, the derivation of the Laplace method is presented, as it was intro-

duced in Chapter 3.

Laplace’s Method extended:

If there exists a probability density, P (x), over variables x, its un-normalised density

function will be denoted P ∗(x). The normalising constant for the un-normalised

density function is defined as:

ZP ≡
∫
P ∗(x)dx (7.1)

Let one assume that the probability density has a maximum value or peak at value

x0. Taylor-expanding the natural logarithm of the un-normalised density function

around this maximum values gives:

ln(P ∗(x)) ' ln(P ∗(x0))−
c(x− x0)2

2
+ ... (7.2)

where, c = −∂2 ln(P ∗(x))
∂x2

|x = x0.

Approximating P ∗(x) by an un-normalised Gaussian, one gets:

Q∗(x) ≡ P ∗(x0)exp(−
c(x− x0)2

2
) (7.3)

For the un-normalised Gaussian Q∗(x), the normalising constant will be calculated

by:

ZQ =

∫
Q∗(x)dx (7.4)

Replacing Q∗(x) from 7.3 into 7.4 gives:

ZQ =

∫
P ∗(x0)exp(−

c(x− x0)2

2
)dx (7.5)



Calculating the integral gives:

ZQ = P ∗(x0)

√
2π

c
(7.6)

For a space x of a fixed dimension k, the matrix of second order derivatives at the

maximum value is of the form:

Aij = −∂
2 ln(P ∗(x))

∂xixj
|x = x0 (7.7)

By Taylor expansion,

ln(P ∗(x)) ' ln(P ∗(x0))−
(x− x0)T

2
A(x− x0) + ... (7.8)

In this case, ZP becomes:

ZP ' ZQ = P ∗(x0)
1√

det A
2π

= P ∗(x0)

√
(2π)k

detA
(7.9)

The above approximation is also known in literature as the Saddle-Point Approxi-

mation.

*Note: The derivation was followed as explained in [12].
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