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naviglio senza timone o bussola, che mai ha certezza dove si vada.”

(”Those who love practice without theory are like the sailor who boards ship without a
rudder and compass and never know where they are going.”)

Leonardo da Vinci





Abstract

The present research work is dedicated to the development, implementation and vali-
dation of a unified finite element methodology based on the combination of gradient
elasticity and the Theory of Critical Distances, for the static and high-cycle fatigue as-
sessment of notched engineering components. The proposed methodology, developed for
plane, axisymmetric and three-dimensional problems, takes full advantage of both the
TCD’s accuracy in estimating static and high-cycle fatigue strength of notched compo-
nents and of the computational efficiency of gradient elasticity in determining non-local
stress fields whose distribution fully depends on the value of the adopted length scale
parameter. In particular, the developed methodology, due to the ability of gradient elas-
ticity to smooth stress fields in the vicinity of notch tips, has the great advantage of
allowing accurate and reliable static and fatigue assessments of notched components by
directly considering the relevant gradient-enriched stresses at the hot-spot on the sur-
face of the component, in contrast to existing conventional approaches that require the
knowledge of the failure location into the material a priori. This advantage, together with
the fact that the proposed methodology can be easily implemented in commercial finite
element software, makes the developed methodology a powerful and easy-to-use tool for
the static and fatigue design/assessment of notched components. The developed method-
ology is accompanied by an accurate investigation of the best integration rules to be used
as well as a comprehensive convergence study both in absence and presence of cracks,
leading to a practical guideline on optimum element size. The proposed gradient-enriched
methodology has been validated against a large number of problems involving notched
components subject to both static and fatigue loading, covering a wide range of materials,
geometries and loading conditions, clearly showing its accuracy and versatility. The devel-
oped gradient-enriched methodology has also been extended to the study of the dynamic
behaviour of visco-elastic materials subject to vibration.
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Chapter 1

Introduction

1.1 Problem statement

Due to ethical, environmental and economical reasons, engineers and designers are con-
stantly facing the challenge of designing structures with increasing levels of safety and
reliability by reducing at the same time costs (in terms of materials, production and
maintenance), energy usage and polluting emissions. In order to achieve this goal, modern
engineering structures/components tend to present slender and more complex geometries,
often characterised by the presence of geometrical features producing stress concentrations
that make structures potentially more vulnerable (if not properly designed and assessed)
to both static and fatigue loading.

From the engineering point of view, the mechanical behaviour of materials is tradi-
tionally described through continuum mechanics models such as the conventional linear-
elasticity theory that in the following of this thesis will be referred to as classical elasticity.
These models allow an accurate description of complex variations of relevant state vari-
ables such as stress, strain and energy, but they are not able to take into account the
effect of the microstructure on the macroscopic behaviour of a given material.

The simplicity of classical elasticity along with its accuracy in studying simple, tra-
ditional engineering structures, made it the favourite theory amongst engineers. Further-
more, its popularity increased even more with the advent of finite element (FE) software,
since classical elasticity is easily implementable in a FE framework and computationally
efficient. However, as previously mentioned, modern engineering components have com-
plex geometries and classical elasticity is not always able to accurately describe all the
problems introduced by these new geometries. For example, when dealing with engineering
components presenting notches it is still common practice to use standard linear-elastic
FE analyses due to their simplicity. Nevertheless, in this scenario, linear-elastic FE anal-
yses result in high levels of conservatism (that increase with the sharpness of the stress
riser), leading to oversized structures that obviously are against the aforementioned eco-
nomic and environmental principles.

Furthermore, classical elasticity presents other limitations; in particular, it fails in
capturing size effects and produces strain and stress singularities in correspondence of
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Fig. 1.1. Family tree of the main non-local theories.

dislocation lines and crack tips.
The aforementioned limitations of classical elasticity are mainly due to the fact that

it considers materials as homogeneous continua, without considering the influence of the
microstructure. It is clear then, that different theories need to be used in order to properly
design and assess new engineering components and in particular a multiscale approach
(able to take into account the different material behaviours at different size scales) would
be extremely beneficial.

In the literature, a series of theories including information about the material mi-
crostructure have been proposed to overcome the limitations of classical elasticity. All
these theories belong to the well-known family of non-local theories that consider the
behaviour at any point of a given body depending also on the state of all the other points
within a certain distance from the considered location.

Non-local theories, as schematically shown in Fig. 1.1, can be subdivided into two
main sub-families:

• integral-based non-local theories where the governing equations contain inte-
grals of relevant state variables accompanied by weighting functions depending on
an internal characteristic length;

• gradient-based non-local theories where the constitutive equations of classical
elasticity are enriched through higher-order gradients of relevant state variables,
pre-multiplied by one or more intrinsic length parameters.
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Amongst the integral-based non-local theories, the most famous is the one proposed by
Eringen in 1972 [48, 49] (see Chapter 3). Also the Theory of Critical Distances (TCD),
originally proposed to study the fatigue failure of notched metallic components, can be
considered an integral-based non-local theory, and in particular, as will be explained in
Chapter 3, it can be obtained from Eringen’s theory through an appropriate definition of
the weight function.

Regarding the gradient-based non-local theories, although their father can be con-
sidered Cauchy, who in the early 1850s proposed to enrich the equations of classical
elasticity with higher-order spatial gradients to study more accurately the behaviour of
discrete lattice models [35–37], they saw a significant development mainly thanks to the
Cosserat brothers first, at the beginning of the 20th century [40], and Mindlin then, in
the 1960s [95]. While in Mindlin’s theory both kinetic and deformation energy density
are defined also in terms of micro-strains, Cosserat theory includes three micro-rotations
other than the usual three displacement components into the governing equations. Note
that for the purpose of the present work, focused on stress/strength analysis, micropolar
theories such as Cosserat theory are not of significant interest and therefore they will not
be considered.

Starting from Mindlin’s theory, in the last two decades of the 20th century, simpler
Laplacian-based theories characterised by just one intrinsic length parameter have been
proposed. In particular, the two worth mentioning are the gradient-type Eringen the-
ory [50] and the Aifantis theory of gradient elasticity [3] (or GradEla as Aifantis himself
prefers to call it). One of the main issues related to these theories (which is also the
main reason why they have not found great success in practical applications yet) is that
they require the solution of either fourth-order partial differential equations (p.d.e.) in
one variable, which requires higher continuity, or second-order p.d.e. in two or more vari-
ables, which leads to a so-called ”mixed formulation” (see §3.2.3 for a more in-depth
discussion of the implementational intricacies). In both cases the implementation in fi-
nite element frameworks is non-trivial. In this context, the main advantage of GradEla
over the gradient-type Eringen theory is that in 1993 it has been further modified by Ru
and Aifantis [108], who proposed an operator split allowing the solution of the system
of fourth-order p.d.e. as an un-coupled sequence of two systems of second-order p.d.e.,
decreasing the continuity requirements from C1 to C0 and therefore making the finite ele-
ment implementation of the theory easier.

Despite the ability of the Ru-Aifantis theory to overcome the aforementioned lim-
itations of classical elasticity and its relatively easy implementability into a finite ele-
ment framework, as far as the author is aware, no unified gradient-enriched finite element
methodology based on the aforementioned theory have been proposed yet. Nevertheless, a
unified gradient elastic finite element methodology that, overcoming the aforementioned
limitation of classical elasticity, allows more accurate static and fatigue assessments of
engineering components presenting stress concentration features would be extremely ben-
eficial.

The present thesis, as described in the next section, aims to fill this gap by proposing
and validating a comprehensive gradient-enriched finite element methodology for plane,
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axisymmetric and three-dimensional problems, able to accurately assess notched compo-
nents.

1.2 Aim and objectives

The aim of the present research work is to propose a unified gradient elastic finite ele-
ment methodology for the static and high-cycle fatigue assessment of notched engineering
components, with the ambition of bringing gradient elasticity from a more mathemati-
cal dimension to engineering applications. In particular, the proposed methodology will
provide engineers with an accurate and easy-to-use tool that allows to overcome the afore-
mentioned deficiencies of classical elasticity with limited additional computational efforts
respect to traditional approaches.

Based on the considerations described in the previous section, the natural choice was
to base the proposed methodology on the Ru-Aifantis theory. However, TCD’s accuracy
in estimating static and high-cycle fatigue strength of notched components as well as its
similarities with the Ru-Aifantis theory, led to the conclusion that the best option would
have been to combine the Ru-Aifantis theory and the TCD into a unique finite element
framework, in order to take advantage of the qualities of both the theories.

In particular the following objectives were set:

• Development and implementation of the gradient-elastic finite element methodol-
ogy for both linear and quadratic plane (triangles and quadrilaterals), axisymmetric
(triangles and quadrilaterals) and three-dimensional (tetrahedrons and bricks) ele-
ments.

• Identification of the most suitable integration rules for each implemented element.

• Convergence study of the implemented elements in the absence of cracks.

• Convergence study of the implemented elements in the presence of cracks and for-
mulation of optimum element size recommendations.

• Application of the proposed methodology to simple plane, axisymmetric and three-
dimensional problems to show its ability to remove stress singularities.

• Evaluation of the accuracy and reliability of the proposed methodology in estimating
both static and high-cycle fatigue strength of notched components. This evaluation
was carried out by analysing with the proposed methodology a wide range of exper-
imental results obtained by testing notched components subject to both static and
high-cycle fatigue loading. In particular, a wide range of geometries, materials and
loading conditions were investigated.

Finally, in addition to the main objectives listed above a more explorative objective was
set, that is the extension of the proposed gradient-elastic finite element methodology to
visco-elastic problems.
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1.3 Thesis outline

The present thesis is organised as follows. Chapter 2 provides the theoretical background
of the main problem that this thesis aims to address, i.e. the accurate and effective static
and fatigue assessment on notched components. In particular, the fundamental aspects
of traditional static assessment as well as fatigue and fracture mechanics are described,
with particular emphasis on two theories that represents two key-aspects of the present
research work, namely the Modified Wöhler Curve Method (MWCM) and the Theory of
Critical Distances (TCD). Chapter 3, in turn, consists of a concise overview of a class of
methodologies (non-local theories) able to efficiently address the aforementioned problem.
In particular, it briefly retraces the key events in the history of gradient elasticity, from its
origins to its modern developments. Particular attention has been paid to the Ru-Aifantis
theory [3, 108], which represents the basis of the present research work. Comprehensive
discussions about the boundary conditions as well as the identification of the length scale
parameter characterising the Ru-Aifnatis theory are also provided. Chapter 4 represents
the ”bridge” amongst GradEla, the TCD and the MWCM. In particular, it explains how
the length scale parameters characterising GradEla and the TCD can be efficiently related
and how, taking advantage of this relation, GradEla can be effectively applied to static
and both uniaxial and multiaxial (incorporating also the MWCM) fatigue problems.

Chapter 5 is the core of the present thesis, where the Ru-Aifantis theory is im-
plemented in an effective C0 finite element methodology for plane, axisymmetric and
three-dimensional problems. An accurate discussion about the best integration rules to
be used as well as a comprehensive convergence study are also provided. In particular, an
extensive error estimation has been performed by analysing benchmark problems with-
out cracks, followed by a convergence study of problems characterised by the presence of
cracks, which allowed the formulation of recommendations on optimum element size. The
ability of the developed methodology to remove stress singularities is also demonstrated
through a series of plane, axisymmetric and three-dimensional examples containing ge-
ometrical singularities such as sharp cracks and 90° corners. The next three chapters
contain different applications of the gradient-enriched methodology developed in Chap-
ter 5, demonstrating its accuracy, reliability and versatility.

In Chapter 6 the proposed methodology is applied to estimate the static and the
high-cycle fatigue strength of notched components subject to various loading conditions.
In these two chapters a wide range of geometry (plates, bars, U-nothes, V-notches, fil-
lets,etc.) and materials (metals and polymers) have been investigated. In Chapter 7,
instead, the proposed methodology is used to estimate the high-cycle fatigue strength of
notched plain concrete.

Finally, the following chapter has a more explorative nature and it aims to show the
versatility of the proposed gradient-enriched methodology investigating new possible ap-
plications in order to expand its spectrum of applicability. In particular, in Chapter 8 the
gradient elastic methodology presented in Chapter 5 is extended to visco-elastic problems
with the main aim of accurately describing the dynamic behaviour of visco-elastic mate-
rials subject to vibrations, by taking into account the effect of both microstructure and
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viscosity. This might lead, for example, to ambitious future applications in bio-mechanics,
such as the study of bone regeneration in presence of vibrations.

1.4 Journal publications to date

The research work presented in this thesis has led to the following international journal
publications, as also stated in the heading of the relevant chapter title pages:

• Bagni, C., and Askes, H. Unified finite element methodology for gradient elasticity.
Computers and Structures 160 (2015), 100–110.

• Bagni, C., Gitman, I., and Askes, H. A micro-inertia gradient visco-elastic motiva-
tion for proportional damping. Journal of Sound and Vibration 347 (2015), 115–125.

• Jadallah, O., Bagni, C., Askes, H., and Susmel, L. Microstructural length scale
parameters to model the high-cycle fatigue behaviour of notched plain concrete.
International Journal of Fatigue 82 (2016), 708–720.

• Bagni, C., Askes, H., and Susmel, L. Gradient elasticity: a transformative stress
analysis tool to design notched components against uniaxial/multiaxial high-cycle
fatigue. Fatigue and Fracture of Engineering Materials and Structures 39(8) (2016),
1012–1029.

• Bagni, C., Askes, H., and Aifantis, E. C. Gradient-enriched finite element method-
ology for axisymmetric problems. Acta Mechanica (2017).



Chapter 2

Fracture and fatigue

In service engineering materials can be subject to a wide range of loading both static
and dynamic. The main task of an engineer is to properly design and assess engineering
components in order to ensure a good level of safety as well as cost effectiveness. The
situation becomes even more delicate if we consider that real engineering components
often present complex shapes, characterised by stress concentrators that facilitate the
initiation of cracks. Both static and fatigue assessments of engineering components are
therefore important tasks to carry out when designing any sort of structures in order to
avoid catastrophic failures.

2.1 Static assessment

The static mechanical characterisation of metals is usually performed through uniaxial
tensile tests, which allow to build the well-known stress-strain (or σ−ε) curves (Fig. 2.1).
These curves are characterised by a first linear elastic branch, whose slope represents the
Young’s modulus, E, that in multi-dimensional problems is accompanied by other two
material constants, namely the shear modulus, G, and the Poisson’s ratio, ν (only two of
these three material constants are independent (see for example [155])). This first linear
elastic branch is followed by a more or less pronounced plateau, in correspondence of the
yield stress, σy, that represents the transition from linear elastic to plastic behaviour. This
third plastic region, as shown in Fig. 2.1a can assume two different shapes. The difference
between the two curves is related to a phenomenon called necking (Fig. 2.2), consisting
in a significant reduction of the cross-sectional area of the specimen when subject to high
stress values. In particular the red curve, also called engineering σ − ε curve is obtained
by plotting the so-called engineering stress, determined dividing the applied load by the
initial cross-sectional area (before necking). The blue one, instead, also called true σ − ε
curve is obtained by plotting the so-called true stress, determined as the ratio between
the applied load and the actual cross-sectional area.

Although the engineering σ−ε curves are not able to accurately describe the mechan-
ical behaviour of materials in case of non-homogeneous deformations, they have the great
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Fig. 2.1. Stress-strain curve: (a) engineering (red) and true (blue) stress-strain curve, (b) defi-
nition of σUTS and σy.

Fig. 2.2. Metal specimen pre (a) and post (b) necking.

advantage that they can be easily determined without the need of keeping track of the
actual cross-sectional dimensions.

Considering now the engineering σ− ε curve (Fig. 2.1b), it is possible to identify two
characteristic stress values, usually considered as limit stresses, σL, to be used as reference
values in the static assessments. In particular, σy is the previously defined yield stress,
while σUTS is the ultimate tensile strength, corresponding to the maximum value of the
engineering stress. Traditional static assessment approaches generally consider σy as limit
stress for ductile materials and σUTS for brittle materials.

The previous concepts are valid only in the case of either uniform stress state or brittle
material. In fact, when dealing with ductile materials subject to non-uniform stress state
the previous assessment approach is often too conservative.

Consider for example the case of a beam made of a ductile material under pure bend-
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ing (producing a linear distribution of the normal stress on the cross-section of the beam)
and assume to reach σy in correspondence of the most stressed fibres. If the load is further
increased, the beam does not fail thanks to a phenomenon known as stress redistribution.
According to this, the stress in the yielded fibres remain constant and the load increment
is taken by the other fibres still in the elastic state. Due to this, a portion of fibres next to
the yielded ones reaches σy. By constantly increasing the applied load, due to the stress
redistribution, the portion of yielded material in the beam progressively increases until
the beam fails when the whole cross-section is subject to a stress equal to σy.

A similar but more delicate situation is the case of components presenting notches,
leading to local stress concentrations. Let us consider a body made of a homogeneous,
isotropic, linear-elastic material, presenting stress concentration features, such as the one
shown in Fig. 2.3a. For simple geometries it is always possible to distinguish two different
reference nominal stresses (Fig. 2.3a):

• gross nominal stress, σgross: referred to the gross cross-section;

• net nominal stress, σnet: referred to the net cross-section.

As it is well known, the profile of the first linear-elastic principal stress in a component
like the one of Fig. 2.3a, shows a peak value, σep, in correspondence of the notch tip
(Fig. 2.3b). The stress field then decreases along the notch bisector, moving towards the
centre of the specimen, reaching eventually σnet if the net section is sufficiently wide.

In 1974, Peterson [104], based on the aforementioned quantities, defined the so-called
stress concentration factor, Kt, as the ratio between the linear-elastic peak stress and the
relevant nominal stress:

Kt,gross =
σep
σgross

(2.1)

Kt,net =
σep
σnet

(2.2)

It is worth highlighting that Kt depends only on the shape of the considered compo-
nent and not on its size.

When dealing with notched components, due to the nature of the problem to be ad-
dressed, it is usual practice to refer to the net nominal stress, σnet. Hence, in the following
of this chapter, for notational simplicity, we will refer to the net stress concentration factor
Kt,net, with the general notation Kt.

If the considered material is brittle, the static assessment is traditionally performed
considering the elastic peak stress:

σep = σnetKt ≤ σL (2.3)

since the material does not become plastic and therefore the peak stress does not redis-
tribute.
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Fig. 2.3. Notched specimen: definition of gross, σgross, and net, σnet, nominal stress (a) and
elastic peak stress σep (b).

If the material is ductile, instead, the static assessment is usually carried out consid-
ering directly σnet, without taking into account Kt:

σnet ≤ σL (2.4)

This is because when σep becomes higher than σy, the material starts behaving plastically
and stress redistribution occurs (dashed stress profile in Fig. 2.4), leading to a uniform
stress distribution, σnet = σy, (dash-dotted line in Fig. 2.4) at failure condition (see for
example [24]). Therefore, as long as σnet < σy the net section is not fully plastic and
part of it can still resist a load increase. The brittle and ductile cases discussed above,
however, represent just the two extremes of a broad range of material behaviours. A large
number of real materials, in fact, show intermediate behaviours (for example quasi-brittle
materials) and in these cases a careful selection of the most suitable model to describe
the behaviour of the considered material is needed.

In the previous analysis, only simple unaxial stress state have been considered. How-
ever, engineering components are often subject to complex multiaxial stress states that
need to be compared to the simple stress states characteristic of the experimental tests
used for the mechanical characterisation of engineering materials.

For this purpose, different failure criteria were proposed in the past to determine
an equivalent stress directly comparable with the limit stress in the static assessments.
Amongst these criteria two deserve particular attention:

• Tresca criterion: the failure of the considered material is attributed to the maxi-
mum shear stress. The equivalent stress proposed by Tresca reads:

σT = max{|σ1 − σ2| , |σ1 − σ3| , |σ2 − σ3|} (2.5)
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Fig. 2.4. Variation of the stress state in a notched ductile material for increasing applied load.

• Von Mises criterion: the failure of the considered material is attributed not to
the total deformation work, but to the portion of deformation energy not associated
to the hydrostatic stress state (changes in volume). The equivalent stress proposed
by Von Mises reads:

σVM =

√
1

2
[(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2] (2.6)

where σ1 ≥ σ2 ≥ σ3 are the three principal stresses.
To conclude this section, it is worth mentioning that the main issue related to the

static assessment of notched components is that for complex geometries and loading con-
ditions, the determination of the nominal net stress is not a trivial task and, furthermore,
obtaining it from FE results requires complicated post-processing. Therefore, adopting
traditional assessment techniques, one option is to solve the given problem through a sim-
ple linear elastic FE analysis, which leads however to unphysically high local peak stresses,
potentially resulting in oversized structures. A second option, instead, in particular for
ductile materials, would be to adopt elasto-plastic FE analyses that are much more com-
plex and expensive. It is clear then, that traditional techniques do not allow accurate and
simple assessments of real engineering components and that different approaches need to
be used (as we will see in the following of this chapter, the same applies also to fatigue
problems).

2.2 Fatigue assessment

When engineering materials are subject to cyclic loadings, they undergo a weakening
phenomenon well-known under the name fatigue. Due to fatigue, engineering components
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Fig. 2.5. Definition of the quantities characterising cyclic loading.

can fail even if subject to time-variable loads whose maximum value is well below the
static strength of the considered material. The dangerous aspect about fatigue is the fact
that fatigue failures can be unexpected, e.g. when showing no evident precursory signs,
such as large scale deformations.

2.2.1 Constant amplitude cyclic loading

Before analysing the fatigue problem in more detail, it is worth introducing the concept
of cyclic loading and the quantities defining time-variable signals.

By definition, a cyclic loading is the recurrence of a given load cycle, defined as a series
of successive states, whose initial and final values are identical (Fig. 2.5). A cyclic load is
characterised by different quantities, that will be defined in the following of this section.
For sake of simplicity, let’s consider the body shown in Fig. 2.6 subject to a system of
periodical external forces creating, at the generic point P, a uniaxial sinusoidal stress state
defined as:

σ(t) = σm + σa sin(ωt) (2.7)

where subscripts a and m denote, respectively, the amplitude and the mean value of the
relevant stress component, ω is the angular frequency and t is time. It is worth specifying
at this point that, even if for simplicity a sinusoidal path has been considered, what follows
holds true independently of the shape of the signal as long as the load is cyclic.

From Fig. 2.5 it is easy to observe that the maximum and minimum value of the
periodic stress component can be defined as:

σmax = σm + σa (2.8)

σmin = σm − σa (2.9)
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Fig. 2.6. Generic body subject to an external system of forces.

or alternatively σa and σm can be expressed as follows:

σa =
σmax − σmin

2
(2.10)

σm =
σmax + σmin

2
(2.11)

while the stress range is given by:

∆σ = σmax − σmin = 2σa (2.12)

Finally another important parameter to take into account when dealing with fatigue
problems is the so-called load ratio R defined as:

R =
σmin
σmax

=
σm − σa
σm + σa

(2.13)

Considering Eq. (2.13) along with Eqs. (2.8) and (2.9), providing that σmax > 0,
it is possible to say that cyclic loading characterised by a load ratio R = −1 (fully-
reversed loading) have zero mean stress (Fig. 2.7a), while cyclic load histories with R > −1
(Fig. 2.7b) are characterised by positive (traction) mean stress values and, of course, for
R < −1 (Fig. 2.7c) the mean stress results to be negative (compression).

The uniaxial case just considered is clearly the simplest situation; however, real struc-
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Fig. 2.7. Cyclic loading characterised by different values of R.

tures can be subject to more complex multiaxial stress states where the considered com-
ponent is subject to different stress components acting in different directions, that in the
most general case can be defined as:

σ(t) =

 σx(t) τxy(t) τxz(t)
τxy(t) σy(t) τyz(t)
τxz(t) τyz(t) σz(t)

 (2.14)

where each of the stress components is considered to vary independently.
Since to perform an accurate assessment of the fatigue behaviour of engineering compo-

nents subject to multiaxial cyclic loading the simultaneous effect of each stress component
must be properly considered, it is clear that this represents undoubtedly the most complex
scenario to deal with in practical situations. The multiaxial high-cycle fatigue problem
will be analysed in more detail in §2.2.4.

2.2.2 Fatigue in metals

From a microscopic point of view, it is well-known that metals are made of crystals (also
called grains), that are ideally considered as groups of atoms linked together by inter-
atomic forces and arranged in order to minimise the potential energy of each single grain.
However, real metallic crystals are not perfect, but they contain different types of defects;
in particular, dislocations are the defects presenting the strongest influence on the overall
behaviour of grains subject to stress or strain states. A dislocation can be considered, from
a continuum point of view, as an additional half plane of atoms, resulting in a distortion
of the atoms’ arrangement in the crystal [12], see for example Fig. 2.8.

As explained in [123], when crystals are subject to cyclic stress/strain states, dis-
locations can move along the so-called easy glide directions on the correspondent easy
glide plane. In particular, the dislocations’ motion is caused by cyclic shear forces acting
on the aforementioned easy glide plane, resulting in plastic deformations of the grains
and the formation of the so-called persistent slip bands (PSBs). The formation of these
PSBs results in irregular grain profiles, characterised by alternating peaks and valleys
(Fig. 2.9), where the most pronounced intrusions as well as the interfaces between PSBs
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Fig. 2.8. Dislocation and re-arrangement of the atoms.

and the grain matrix represent the most critical locations for micro-cracks initiation, due
to micro-stress concentration phenomena, which then propagate within the crystal as a
result of plastic de-cohesion of the slip bands.

Even if this is a simplistic description of the much more complex reality, it can be still
considered as a good representation of the basic mechanisms resulting in the initiation of
micro-cracks in real fatigued grains.

2.2.3 Basics of uniaxial fatigue assessment

After this brief overview about cyclic loading and the microscopic mechanisms resulting
in the initiation and propagation of fatigue cracks in metals, it is possible to address more
in depth the fatigue problem starting from the simpler case of engineering components
subject to cyclic uniaxial stress states.

For this purpose, it is worth considering the standard plain specimen shown in Fig. 2.10a
subject to fully-reversed (R = −1) axial loading. It is well-known that the specimen will
break due to fatigue after a certain number of cycles, which depends on the material
fatigue properties as well as the amplitude of the applied cyclic loading. The fatigue per-
formance of a material can be schematically represented by the so-called Wöhler curve
(or S-N curve), obtained by testing several specimens subject to various stress amplitudes
and plotting in a bi-logarithmic diagram the amplitude of the applied stress, σa, against
the correspondent number of cycles to failure, Nf (Fig. 2.10b). Obviously, fatigue results,
due to their experimental nature, are affected by a physiological scattering that makes
necessary an accurate statistical post-processing of the experimental data in order to de-
fine the most appropriate fatigue curve.

Before mathematically defining the Wöhler curve, it is worth introducing the concepts
of fatigue limit and endurance limit. In particular, ferrous metals tested in laboratory show
the fatigue behaviour schematically represented in Fig. 2.11a, characterised by a plateau
in correspondence of a certain stress amplitude σ0, called fatigue limit, that correspond to
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Fig. 2.9. PSBs resulting in irregular grain profile and potential micro-crack initiation locations.

Fig. 2.10. Plain specimen subject to cyclic axial loading (a) and Wöhler curve obtained from
experimental results (b).
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Fig. 2.11. Typical Wöhler curves for ferrous (a) and non-ferrous (b) metals.

the threshold value of stress amplitude, below which the fatigue life of the considered com-
ponent is theoretically infinite. Non-ferrous metals, instead, must always be designed for
finite fatigue life, due to the fact that it is impossible to define a fatigue limit, since their
fatigue behaviour (Fig. 2.11b) does not exhibit any plateau. In this case, it is common
practice to consider a so-called endurance limit, σA, corresponding to the stress amplitude
determined at a certain number of cycles to failure in the high-cycle regime, NA, ranging
between 106 and 108.

However, the Wöhler curves, for all ferrous metals as well as most of the materials
not exhibiting any fatigue limit, can be defined by the following mathematical expression
(Wöhler equation):

σkaNf = constant (2.15)

where k is the negative inverse slope, as shown in Fig. 2.11.
Since in a bi-logarithmic diagram the fatigue experimental results can be accurately

approximated by straight lines, the Wöhler curves are commonly obtained by means of
a least squares linear regression, along with the assumption that the number of cycles to
failure is characterised by a log-normal distribution at any stress amplitude level [110]. For
a probability of survival PS = 50% the linear regression equation allowing the estimation
of the S-N curve from experimental results reads as follows:

log(Nf ) = C0 + C1 log(σa) (2.16)

where C0 and C1 are two constants that, according to the least squares linear regression,
are defined as follows [85]:
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C1 =

n∑
i=1

(xi − xm)(yi − ym)

n∑
i=1

(xi − xm)2

(2.17)

C0 = ym − C1xm (2.18)

where

xm =

n∑
i=1

xi

n
(2.19)

ym =

n∑
i=1

yi

n
(2.20)

while xi and yi are the logarithms of, respectively, the stress amplitude, log(σa,i), and the
corresponding number of cycles to failure, log(Nf,i), for the i-th tested specimen (with
i = 1, . . . , n).
Comparing now Eq. (2.16) with Eq. (2.15) it is easy to find that the negative inverse
slope, k, and the endurance limit, σA, (the same holds true in terms of fatigue limit) of
the considered S-N curve having PS = 50% can be defined, respectively, as:

k = −C1 (2.21)

σA =

(
10C0

NA

)1/k

(2.22)

Finally, the design fatigue curve having a given probability of survival PS = P% different
from 50%, can be defined as [85]:

log(Nf ) = C0 + C1 log(σa)− q · s (2.23)

and at the endurance limit:

log(NA) = C0 + C1 log(σA,P%)− q · s (2.24)
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Substituting C0 and C1, obtained from Eqs. (2.21) and (2.22), into Eq. (2.24) the en-
durance limit of the fatigue curve having PS = P% takes the following form:

σA,P% = σA

[
NA

10log(NA)+q·s

]1/k

(2.25)

where q is a coefficient that varies according to probability of survival, number of tested
specimens as well as confidence level [85], whereas s is the sample standard error of the
n experimental results, defined as:

s =

√√√√√√
n∑
i=1

[yi − y(xi)]
2

n− 2
=

√√√√√√
n∑
i=1

{
log(Nf,i)− log

[
NA

(
σA
σa,i

)k]}2

n− 2
(2.26)

2.2.3.1 Factors affecting the fatigue behaviour of metals

Standard S-N curves, as those discussed above, are generally obtained by testing in labo-
ratory conditions (controlled environment) and under fully-reversed loading, small, plain
specimens whose surface has been previously polished, in order to remove any superficial
defect. Clearly, this situation is quite far from real in-service conditions: real components
are usually bigger than the specimens generally used in tests, they are often characterised
by rough surfaces and they can be subject to any kind of loading at completely different
environmental conditions. Furthermore, due to their complex geometry they are often
characterised by stress concentration features (e.g. notches). It is also worth highlighting,
at this point, that the fatigue behaviour of metals, is strongly influenced by several fac-
tors (amongst which surface finishing, size effect, load type, mean stress effect, geometrical
characteristics, etc.) that can significantly reduce the fatigue strength of a given material.

It is clear now that, when performing fatigue assessments of real engineering com-
ponents, great attention must be paid to all these factors. In particular, due to their
significant detrimental effects, two of the aforementioned factors will be discussed more
in depth in the following of this section: mean stress effect and notch effect.

2.2.3.1.1 Mean stress effect

As explained in [123], positive mean stresses, or in other words, tensile superimposed
static stresses, have a detrimental effect on the fatigue behaviour of metals. In particular,
by increasing the load ratio R, the Wöhler curve of a given material shifts downwards,
meaning a decrease of the material endurance limit.

As shown in Fig. 2.12, different metals can have a completely different sensitivity to
the presence of mean stresses. This is the reason why, in the past, several rules have been
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proposed for accurately taking into account the mean stress effect; most of these can be
summarised, as proposed by Marin [90], by the following equation:

(
σ0

σ0,R=−1

)n
+

(
f
σx,m
σUTS

)m
= 1 (2.27)

where σ0,R=−1 represents the fatigue limit determined under fully-reversed loading con-
ditions, σUTS is the ultimate tensile strength, while n, m and f are constants defining
different rules:

• Goodman’s relationship: n = m = f = 1;

• Gerber’s parabola: n = f = 1 and m = 2;

• Dietman’s parabola: n = 2 and m = f = 1;

• elliptical relationship: n = m = 2 and f = 1.

Obviously, the best way to determine the effect of superimposed static tensile stresses on
a specific metal is by running appropriate experimental tests. However, when this is not
possible a conservative choice is to use Goodman’s relationship.

2.2.3.1.2 Notch effect

Stress concentration phenomena have a strong damaging effect on the overall behaviour
of engineering components, resulting in an important reduction of the fatigue strength.
This is why fatigue in notched components has been a central problem in the last century.
Today, thanks to the comprehensive studies carried out in the past, we can count on
a wide range of criteria able to accurately account for the detrimental effect of stress
concentrators on components subject to cyclic loading.

It is worth remembering at this point, as already mentioned in §2.1, that the notation
Kt refers to the net stress concentration factor Kt,net, defined in Eq. (2.2).

As previously mentioned, the detrimental effect of notches produces a reduction of
the fatigue strength of the considered material, resulting in the dashed Wöhler curve of
Fig. 2.13. Therefore, the aforementioned damaging effect can be measured, as proposed
by Peterson [103], by means of the so-called fatigue strength reduction factor, Kf :

Kf =
σ0

σ0n

(2.28)

where σ0n is the notch fatigue limit, determined under the same experimental and loading
conditions used for the evaluation of σ0. Even if for sake of simplicity the fatigue limits
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Fig. 2.12. Mean stress effect description provided by the different relationships under uniaxial
fatigue loading (experimental data taken from [56]).

Fig. 2.13. Effect of notches on the Wöhler curve and definition of the fatigue strength reduction
factor, Kf .
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have been considered, this holds true also in terms of endurance limits.
Obviously, the most precise estimations of Kf are obtained by running appropriate

tests. However, experiments can be expensive and time consuming and several times they
do not represent a feasible solution. For this reason different formulas for an accurate
estimation of Kf have been proposed; in particular, as presented by Peterson [103] Kf

can be estimated through the following equation:

Kf = 1 + q(Kt − 1) (2.29)

where q is the so-called notch sensitivity factor ranging between 0 and 1. In particular,
Neuber [98] proposed to estimate q through the following expression:

q =
1

1 +
√

aN
rn

(2.30)

where aN is a constant depending on the ultimate tensile strength, σUTS, while rn is the
notch root radius, which is considered to be the most significant parameter defining the
linear-elastic stress field in the vicinity of the notch.

The following year, Peterson [103] suggested an alternative formula to calculate q:

q =
1

1 + aP
rn

(2.31)

where aP is again a constant depending on σUTS.
Regarding the determination of the two aforementioned constants, aN and aP , Dowl-

ing [44] proposed to use the following empirical relations, respectively:

aN = 10−
σUTS−134

586 [mm] (2.32)

aP = 0.0254

(
2079

σUTS

)1.8

[mm] (2.33)

2.2.3.2 Fatigue under torsional cyclic loading

Similarly to the case of cyclic uniaxial loading, the fatigue behaviour of engineering mate-
rials subject to torsional loading can be represented by Wöhler diagrams, like the one in
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Fig. 2.14. Wöhler curve for torsional cyclic loading.

Fig. 2.14, where the amplitude of the shear stress is plotted against the number of cycle
to failure, Nf . The aforementioned fatigue curves can be determined through statistical
techniques, similar to those presented in the first part of this section and it is always pos-
sible to define a torsional plain fatigue limit, τ0, at N0 cycles to failure (or alternatively,
a torsional plain endurance limit, τA, at NA cycles to failure), for a chosen probability of
survival Ps.

The fatigue behaviour of engineering materials subject to cyclic torsional loading, as
it happens under uniaxial loading, is significantly influenced by several factors such as
microstructure, surface finishing, size and geometry of the component, etc. However, even
if these factors should be accurately taken into account when designing and assessing real
components against fatigue, as mentioned in [123] no comprehensive investigations have
been carried out in order to evaluate the effect of all the aforementioned factors on the tor-
sional fatigue behaviour of engineering materials. This is why for practical reasons, even if
not rigorously accurate, it is common practise to address the torsional problem using the
same information valid for the uniaxial case. Also the torsional plain fatigue limit, τ0, if
it cannot be determined through appropriate tests, can be approximatively calculated, as
suggested in [123] and according to the experimental investigations performed by Fukuda
and Nisitani [57], from its uniaxial counterpart, σ0, through Von Mises’s criterion:

τ0 =
σ0√

3
(2.34)

Finally, in contrast to the case of uniaxial loading, it has been shown [42, 111] that
the effect of superimposed static torsional stresses on the fatigue behaviour of engineering
materials is generally very small and can be neglected, as long as the maximum torsional
stress, τmax, is lower than the material torsional yield stress, τy. This leads to significant
advantages when the multiaxial fatigue assessment is performed by using certain criteria.
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Fig. 2.15. Multiaxial fatigue behaviour of ductile (a, b) and brittle (c, d) materials according
to Gough [65] (experimental data taken from [123]). Solid lines represent Eq. (2.35) (a, b) and
Eq. (2.36) (c, d).

2.2.4 Multiaxial high-cycle fatigue

The observations made in §2.2.3 are valid for components subject to uniaxial cyclic load-
ing. However, in situations of practical interest, engineering components are often subject
to complex systems of cyclic loads, producing multiaxial stress states at elements’ hot-
spots, where the hot-spot is defined as the point at a certain distance from the stress riser
tip (to avoid plastic behaviour of the material) experiencing the maximum relevant stress.
Hence, in order to accurately address the multiaxial fatigue assessment of structural com-
ponents, appropriate engineering tools are needed.

According to Gough [65] fatigue limit conditions for steels (that he defined ’ductile’),
subject to in-phase bending and torsion, can be expressed by the following relation (solid
line in Figs. 2.15a and b):
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σx,a
σ0

)2

+

(
τxy,a
τ0

)2

= 1 (2.35)

representing an ellipse quadrant. On the other hand, fatigue limit conditions of what he
defined ’brittle’ cast iron can be described by an arc of ellipse as follows (solid line in
Figs. 2.15c and d):

(
τxy,a
τ0

)2

+

(
σx,a
σ0

)2(
σ0

τ0

− 1

)
+

(
σx,a
σ0

)(
2− σ0

τ0

)
= 1 (2.36)

One of the most difficult aspects to appropriately take into consideration, when deal-
ing with multiaxial problems, is the degree of non-proportionality of the considered stress
state, produced by out-of-phase loadings. For a better understanding of this concept, it
is worth considering the example presented in [160], where hollow cylinders are subject
to two different loading systems producing the same maximum and minimum principal
stresses at any time instant (Fig. 2.16). In particular, Case a corresponds to a hollow
cylinder subject to fully-reversed axial stress and phase-shifted torsion (out-of-phase an-
gle δxy = 90°), whereas Case b consists of an identical hollow cylinder under in-phase
pulsating internal and axial pressures. From Fig. 2.16 it is possible to observe that while
in Case b the angle θ, between the first principal stress direction and the x-axis, remains
constantly equal to zero during the load cycle (first principal stress direction coincides
with the x-axis), in Case a θ varies in time. Hence, it is easy to understand that out-of-
phase loadings produce non-proportional stress states characterised by principal stresses
whose directions change during the load history.

Furthermore, it is worth mentioning that, as observed by Sonsino [114], engineering
materials behave differently in presence of non-proportional stress states. In particular,
while for some materials the presence of out-of-phase loadings has a damaging effect,
for others it can have either a neutral or even a beneficial effect on the overall fatigue
behaviour. This is due to the fact that fatigue damage is strongly influenced by the
interaction between the ductility of the material and the periodic variation of the max-
imum principal stress directions [114, 115]. Therefore, it is evident that the effects of
non-proportional loadings on the fatigue behaviour of a given material can be properly
evaluated only through suitable experimental tests.

2.2.5 The Modified Wöhler Curve Method

The Modified Wöhler Curve Method (MWCM) [119] is a bi-parametric approach belong-
ing to the family of the critical plane approaches. The MWCM is based on the idea that
by modelling the nucleation as well as the initial propagation stage of micro/meso fatigue
cracks, it is possible to accurately estimate the fatigue damage extent in homogeneous,
isotropic materials under cyclic loading.
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Fig. 2.16. Effect of out-of-phase angle, δxy, on the orientation, θ, of the first principal axis
(example taken from [160]).
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Fig. 2.17. Cylindrical specimen under combined axial and torsional loading.

As already mentioned in §2.2.2, shear stress is the main cause for the dislocations’ mo-
tion, resulting in the formation of PSBs. In particular, as stated in [123], the MWCM is
based on the assumption that, in the medium/high-cycle fatigue regime, both nucleation
and initial propagation phenomena are driven by the shear stress damaging the process
zone. Hence, for materials subject to multiaxial cyclic loadings, at the hot-spot, the plane
experiencing the maximum fatigue damage (critical plane) is the one subject to the maxi-
mum shear stress amplitude, τa. However, shear stresses are not the only ones influencing
crack formation and propagation. In particular, it has been shown that stress components
normal to the crack initiation plane play also an important role in crack nucleation and
propagation [112] as well as PSBs development [128]. In fact, it can be easily understood
that normal compressive stresses have a beneficial effect, reducing, due to friction, the
crack growth rate as well as the laminar movement of PSBs. On the contrary, normal ten-
sile stresses have a detrimental effect favouring crack opening (and therefore propagation)
and PSBs flow. Hence, as shown by Findley [51] and Matake [91], mean stress effects can
be accurately considered by means of the maximum normal stress σn,max (sum of both
alternating and static superimposed normal stresses) related to the critical plane.

As described in §2.2.4 the fatigue behaviour of engineering materials subject to mul-
tiaxial loading is strongly influenced by the degree of non-proportionality of the applied
loads. In order to accurately estimate the fatigue strength of a given material, the MWCM
accounts for the aforementioned degree of non-proportionality through the following stress
ratio [119]:

ρs =
σn,max
τa

(2.37)

which also allows to take into consideration the effects of non-zero mean stresses. Finally,
it is worth remembering that σn,max and τa are relative to the critical plane.

The characteristics of the stress ratio, ρs, can be highlighted by considering the
problem presented in Fig. 2.17, consisting of a cylindrical specimen subject to combined
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tension and torsion. For simplicity reasons, the generic point O, on the surface of the
specimen, is considered to be subject to the following periodic bi-axial stress field:

σ(t) =

 σx(t) τxy(t) 0
τxy(t) 0 0

0 0 0

 (2.38)

with the stress components defined as:

σx(t) = σx,m + σx,a sin(ωt) (2.39)

τxy(t) = τxy,m + τxy,a sin(ωt− δxy,x) (2.40)

Considering the particular uniaxial case when τxy is equal to zero during the entire
load history, it is easy to determine the expression for the stress ratio ρs under uniaxial
fatigue loading. In particular, the stress components, determined with respect to the
critical plane, can be expressed as:

τa =
σx,a
2

=
σx,max

4
(1−R) (2.41)

σn,max = σn,a + σn,m =
σx,a
2

+
σx,m

2
=
σx,a + σx,m

2
=
σx,max

2
(2.42)

where σn,a and σn,m are, respectively, the amplitude and the mean value of the stress
component normal to the critical plane. By substituting Eqs. (2.41) and (2.42) into Eq.
(2.37) the following expression for ρs is obtained:

ρs =
σn,max
τa

=
2

1−R
(2.43)

From Eq. (2.43) it is possible to observe that, in case of uniaxial fatigue loading, ρs in-
creases with the load ratio, R, tending to infinity for R approaching unity, while under
fully-reversed loading ρs = 1.

Under pure torsional fatigue loading, instead, since the effect of non-zero mean tor-
sional stresses on the fatigue behaviour of the considered material can be neglected in the
high-cycle fatigue regime (see §2.2.3.2), ρs is not influenced by the presence of superim-
posed static shear stresses and it is invariably equal to zero. This is due to the fact that
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under pure torsional loading τa = τxy,a , while σn,max = 0.
Furthermore, by testing the same cylindrical specimen, shown in Fig. 2.17, under com-

bined tension and torsion shifted by different out-of-phase angles, δxy,x, it has been shown
that ρs is able to account not only for the mean-stress effect but also for the degree of
non-proportionality of the applied loading [123].

The stress ratio, ρs, can be re-written in terms of an amplitude-related stress ratio,
ρs,a, and a mean value-related stress ratio, ρs,m, as follows [121]:

ρs = ρs,a + ρs,m =
σn,a
τa

+
σn,m
τa

(2.44)

In particular, as shown in [123], ρs,m is sensitive only to the mean value of the stress
component normal to the critical plane, whereas ρs,a allows to account for the degree of
non-proportionality of the applied loading.

In order to more accurately take into consideration the damaging effect of non-zero
mean stresses normal to the critical plane, Susmel [121] proposed to define the following
effective stress ratio ρeff:

ρeff =
σn,a
τa

+
mσn,m
τa

(2.45)

where m is considered to be a material property to be determined experimentally, called
mean stress sensitivity index, able to properly define the portion of σn,m effectively con-
tributing to the initiation and propagation phenomena.

This idea comes from Kaufman and Topper’s findings [80] that when σn,m exceeds a
certain threshold value, an increase of the aforementioned stress does not produce any
further detrimental effect on the fatigue strength of the considered material. This can be
easily explained considering that as soon as σn,m is greater than the aforementioned ma-
terial limit, micro/meso cracks can be assumed to be fully opened and therefore the shear
stresses are completely transmitted to the crack tip, resulting in Mode II propagation.

The mean stress sensitivity index, m, is assumed to vary in the range 0− 1. In partic-
ular m = 0 indicates that the considered material is not sensitive to superimposed static
stresses acting perpendicularly to the critical plane, while a value of m equal to unity
implies that the considered material is fully sensitive to the presence of non-zero mean
stresses normal to the critical plane.

2.2.5.1 Modified Wöhler curves

The MWCM is based on the assumption that fatigue strength can be accurately estimated
in terms of τa, on condition that the fatigue curves are conveniently corrected through
the effective critical plane stress ratio, ρeff, in order to take into account the degree of
multiaxiality of the stress state at the hot-spot.

As described in [123], the aforementioned corrected curves, usually called modified
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Fig. 2.18. Modified Wöhler curves and dependence on the critical plane stress ratio, ρeff.

Wöhler curves, consist in a log-log diagram plotting the shear stress amplitude acting on
the critical plane, τa, versus the number of cycle to failure, Nf (Fig. 2.18). Furthermore,
it has been shown (see [123] and references reported therein) that, for conventional engi-
neering materials, the reference shear stress amplitude (either fatigue or endurance limit),
τRef (ρeff), decreases as ρeff increases (Fig. 2.18). In particular, from Fig. 2.18 it is clear
that, as also highlighted by Susmel and Lazzarin [128], a plain component is in fatigue
limit conditions if the following inequality is satisfied:

τa ≤ τRef (ρeff) (2.46)

Finally, the modified Wöhler diagrams can be accurately estimated, once both τRef
and the negative inverse slope kτ are correctly related to ρeff and these relations prop-
erly calibrated through suitable experimental tests. By running an extensive experimental
investigation, Susmel and co-workers [83, 119, 128, 129] proposed to perform the afore-
mentioned calibrations through simple linear laws, which can be summarised as follows:

τRef (ρeff) = α · ρeff + β (2.47)

kτ (ρeff) = a · ρeff + b (2.48)

where α, β, a and b are material constants to be estimated experimentally.
In particular, as reported in [123], the two parameters α and β can be expressed in
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function of the corresponding fully-reversed uniaxial, σ0, and torsional, τ0, fatigue limits
as follows:

α =
σ0

2
− τ0 (2.49)

β = τ0 (2.50)

and by substituting Eqs. (2.49) and (2.50) into Eq. (2.46), the fatigue limit condition can
be reformulated as [121]:

τeq = τa +
(
τ0 −

σ0

2

)
ρeff ≤ τ0 (2.51)

where τeq can be considered as an equivalent shear stress.

2.2.5.2 Validity of the Modified Wöhler Curve Method

Before concluding this section about the Modified Wöhler Curve Method, one last inter-
esting aspect which deserves to be discussed is the range of applicability of the present
method. The MWCM as formalised above is valid as long as the fatigue damaging process
is driven by the amplitude of the shear stress referred to the critical plane (Mode II).
As suggested in [123], when the stress component acting normally to the critical plane is
much larger than the aforementioned shear stress amplitude, or in other words when ρeff

is larger than a certain limit value ρlim defined as [83, 140]:

ρlim =
τ0

2τ0 − σ0

(2.52)

the mechanisms leading to fatigue failure is not pure Mode II anymore. In these cases,
the MWCM has been seen to produce excessively conservative results [140], making its
use no longer appropriate. In order to overcome this issue and make the MWCM suitable
to address also those problems characterised by high values of ρeff, Susmel [121] proposed
to use Eq. (2.46) by setting ρeff = ρlim when ρeff > ρlim.

2.3 Linear Elastic Fracture Mechanics

In the previous sections, the fatigue behaviour of components presenting stress risers char-
acterised by finite root radii, rn, has been analysed. However, for root radii approaching
zero, linear elastic analyses produce stresses and, as a consequence of that, stress concen-
tration factors tending to infinity in the vicinity of the stress concentrator tip. In case of
stress risers with rn = 0 (cracks), or in other words when singular stress fields are involved,
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Fig. 2.19. Fundamental loading modes.

the previously described approach is thus no longer applicable and alternative techniques
must be followed in order to address the fatigue assessment in the aforementioned cases,
without renouncing the obvious advantages of using linear elasticity.

One possibility is to adopt an approach, that could be defined as field approach, where
the stress field in a small region around the tip of the stress riser is considered, in con-
trast to the approach presented in § 2.2.3 (which can be defined as point approach), that
is based on the peak stress experienced at the tip. The engineering field based on this
approach is well-known as Linear Elastic Fracture Mechanics (LEFM).

Before analysing the stress field in the neighbourhood of a crack tip, it is worth men-
tioning that a crack can be subject to three different loading modes, as shown in Fig. 2.19:
Mode I (opening mode), Mode II (in-plane shear mode) and Mode III (anti-plane shear
mode).

According to Irwin [78, 141], the stress field in the vicinity of the tip of a crack loaded
in Mode I can be expressed by the following relations (plane stress):

σxx =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
(2.53)

σyy =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
(2.54)

τxy =
KI√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
(2.55)

and for plane strain:

σzz = ν (σxx + σyy) (2.56)
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Fig. 2.20. Infinite plate with central crack subject to static tensile loading.

where KI is the so-called Stress Intensity Factor (SIF) under Mode I, while r and θ are
the polar coordinates of a generic point in the neighbourhood of the crack tip, as defined
in Fig. 2.20. It is worth highlighting that the SIF is not a material property and provides
information about the severity of the stress field in the neighbourhood of the crack tip.
Furthermore, the SIF has unit of Nm−3/2, in contrast to the stress concentration factor
Kt that is dimensionless. Eqs. (2.53 – 2.55) are valid only under all of the following
conditions [8, 24]:

• Plane problems (either plane stress or plane strain)

• r < 1
10
a, where a represents half the crack length. This means that the distance

from the crack tip must not be too large, since the stress field far from the crack
tip tends to a constant value while the one described by Irwin’s equations keeps
changing with the same law

• σg ≤ 0.6σy, where σg is the nominal gross stress and σy the yield stress of the
material being assessed. This is to ensure that the plastic zone ahead of the crack
tip is sufficiently small.

In a similar manner, the stress field in the vicinity of the crack tip can be related to
the correspondent SIFs and polar coordinates also for Mode II and Mode III (see for
example [141]).

The Stress Intensity Factor, KI , is a parameter which gives an idea of the severity of
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the stress field and for an infinite plate with a central crack (Fig. 2.20) it can be defined
as follows:

KI = σg
√
πa (2.57)

while for a generic geometry Eq. (2.57) must be corrected through a shape factor F
as [141]:

KI = Fσg
√
πa (2.58)

2.3.1 Validity of Linear Elastic Fracture Mechanics

From Eq. (2.58) it is easy to understand that, for a given geometry, KI increases as
the gross nominal stress, σg, increases. Consider now to increase σg up to a value σf
in correspondence of which the considered specimen fails statically. In this situation it
is possible to define a new quantity, called fracture toughness, which is nothing but the
value of the SIF at failure conditions:

KIC = Fσf
√
πa (2.59)

From Eqs. (2.58) and (2.59), it can be noted that while KI is characteristic of the
problem under consideration and in particular of the stress field in the vicinity of the
crack tip of the component being assessed, KIC is a material property.

As can be seen from Eq. (2.59), if the length of the crack decreases the stress, σf ,
needed to statically break the considered component increases. However, for very small
cracks, whose length is lower than a critical value a0, LEFM leads to the wrong prediction
that a specimen with a small crack will fail in correspondence of a stress value higher
than the ultimate tensile stress, σUTS.

This consideration highlights the fact that LEFM is suitable only for the design of
bodies containing cracks longer than a critical value defined as:

a0 =
1

π

(
KIC

σUTS

)2

(2.60)

If a < a0, instead, the design must be performed according to continuum mechanics, ne-
glecting the presence of cracks. This is due to the fact that, in these cases, cracks are so
small that the material yields before failing due to the presence of cracks.
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Fig. 2.21. Infinite plate with central crack subject to cyclic tensile loading.

2.3.2 Linear Elastic Fracture Mechanics to describe the fatigue
behaviour of cracked bodies

Consider the cracked plate of Fig. 2.21 subject to cyclic uniaxial loading. The stress field
in the neighbourhood of the crack tip can be defined by re-writing Eqs. (2.53 – 2.55) in
terms of range quantities as

∆σxx =
∆KI√

2πr
cos

θ

2

(
1− sin

θ

2
sin

3θ

2

)
(2.61)

∆σyy =
∆KI√

2πr
cos

θ

2

(
1 + sin

θ

2
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2

)
(2.62)

∆τxy =
∆KI√

2πr
sin

θ

2
cos

θ

2
cos

3θ

2
(2.63)

where ∆KI = F∆σg
√
πa is the SIF range.

From Eqs. (2.61 – 2.63) it is evident that ∆KI is representative of the whole stress
state acting in the vicinity of the crack tip, making it an effective tool to address crack
growth problems. Considering again the problem presented in Fig. 2.21, and assuming
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Fig. 2.22. Crack growth curve.

that both the initial semi-length of the crack, ai and the range of the applied load allow
crack propagation, it is possible to build the graph in Fig. 2.22 that shows how the semi-
length of the crack, a, evolve with the number of cycle, n. In particular it is possible
to observe that the semi-length of the crack increases as the number of cycles increases,
with a profile that depends on the range of the applied loading, until it reaches a critical
value, af , in correspondence of which the static failure of the sample occurs under the
maximum value of the applied nominal stress, σg,max. Furthermore, from Fig. 2.22 it is
easy to determine the crack growth rate, da

dn
, after a given number of cycles to failure, as

the slope of the tangent to the curve in correspondence of the wanted number of cycles.
The crack growth rate, da

dn
, and the SIF range, ∆KI , can be related in the well-known

fatigue crack growth rate curve, also known as Paris diagram (Fig. 2.23). Classically, this
diagram is subdivided in three regions [24, 123]):

• Region I, when ∆KI is lower than a certain threshold value of the SIF range,
∆Kth. This situation occurs when an engineering component is subject to a low
gross nominal stress range, ∆σg, under which the crack propagation rate is null (no
propagation). It is also worth pointing out that ∆Kth is a material property to be
determined by following one of the procedures specified in the relevant codes (see
for example [23]). In this region the cracking behaviour of the considered material
depends on different factors, such as microstructure, environmental conditions and
mean stress, but not on the thickness of the specimen used to evaluate ∆Kth.

• Region II, where crack propagation takes place. In this region the crack growth
rate curve is defined by the well-known Paris law:

da

dn
= C (∆KI)

m (2.64)



2.3. LINEAR ELASTIC FRACTURE MECHANICS 59

Fig. 2.23. Paris diagram.

where C and m are material constants to be determined through appropriate exper-
imental tests and whose values depend on the load ratio R. In this region, also the
thickness of the specimen used to evaluate ∆Kth influences the cracking behaviour
of the material being assessed.

• Region III, where the crack propagation rate increases drastically, eventually re-
sulting in the static breakage of the component for ∆KI = KIC (vertical asymptote).
In this region the environmental conditions have a limited influence, except for the
temperature.

2.3.3 Applicability of Linear Elastic Fracture Mechanics to fa-
tigue problems

Similarly to the static case, also in the presence of fatigue loading it is possible to identify a
critical crack length below which LEFM produces incorrect and non-conservative results.

At the threshold condition for crack propagation, ∆Kth can be defined as:

∆Kth = F∆σ0n

√
πa (2.65)

leading to:

∆σ0n =
∆Kth

F
√
πa

(2.66)

where ∆σ0n represents the nominal fatigue limit range or, in other words, the value of the
stress range below which a cracked specimen has infinite fatigue life.

From Eq. (2.66), it is possible to observe that for decreasing crack lengths, ∆σ0n
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Fig. 2.24. Applicability of LEFM to fatigue problems.

increases and eventually, as also schematically shown in Fig. 2.24, for cracks shorter than a
critical length, LC , ∆σ0n becomes larger than the fatigue limit, ∆σ0, of the plain material.
This consideration makes it clear that for crack lengths smaller than a critical distance,
LC , defined as

LC =
1

π

(
∆Kth

F∆σ0

)2

(2.67)

LEFM leads to a wrong interpretation of the problem. This is due to the fact that when a <
LC the crack is so small that the considered material does not fail for the propagation of
the existing crack, but for nucleation and propagation of fatigue cracks. Hence, to conclude
this section, while for a > LC LEFM is able to accurately describe the fatigue behaviour
of cracked bodies, when a < LC the problem has to be addressed by applying continuum
mechanics. However, experimental evidence showed that for values of a ≈ LC neither
continuum mechanics nor LEFM produce accurate results. This has been attributed to the
fact that when the crack length approaches LC the propagation phenomenon is strongly
influenced by the local plasticity as well as the morphology of the material in the vicinity
of the crack tip. In order to properly address this problem, Miller [94] proposed to study
the behaviour of cracks with length approaching LC by using elasto-plastic analyses. On
the other hand, El-Haddad and co-workers [47] proposed to address this problem by using
LEFM along with the following relationship:

∆σ0 =
∆Kth√
π(a+ LC)

(2.68)

In other words, according to El-Haddad and co-workers the fatigue behaviour of short
cracks with length approaching LC can be estimated through LEFM by considering an
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imaginary crack of length (a+LC). However, despite the accurate estimates produced by
this method, as pointed-out by Taylor [148] it is difficult to find a physical justification
for Eq. (2.68).

2.4 The Theory of Critical Distances

As defined by Taylor [148], the Theory of Critical Distances (TCD) represents a family
of methods, all characterised by the use of linear elastic analysis and a constant material
characteristic length, commonly called critical distance L.

The TCD was originally proposed by two researchers: Neuber [98] in Germany and
Peterson [103] in the United States. Both interested in the estimation of fatigue failure of
notched metallic components, they proposed two slightly different critical distance meth-
ods.

Neuber started from the idea that classic continuum mechanics is not able to ac-
curately describe the elastic stress field in areas characterised by high stress gradients,
producing unphysically high stress values. To overcome this problem, he proposed to use
as representative value σeff the average of the stresses, calculated according to classical
elasticity, over a certain length dL from the notch tip (Fig. 2.25c), inventing the now called
Line Method (LM):

σeff =
1

dL

dL∫
0

σ(r)dr (2.69)

where σ(r) and r are, respectively, the relevant linear elastic stress and the distance along
the focus path, with the focus path defined as the straight line starting at the point of
maximum stress (on the surface of the notch) and perpendicular to the surface at that
point.

Peterson [103] instead, knowing Neuber’s research work, decided to solve the same
problem by adopting an even simpler approach. Instead of assuming a line-averaged stress,
Peterson proposed to consider as reference quantity σeff , the linear elastic stress at a point
distant dP from the specimen surface along the focus path (Fig. 2.25b):

σeff = σ(dP ) (2.70)

This represents the simplest version of the TCD and today is known as Point Method
(PM).

Another important aspect to highlight is that the TCD considers cracked/notched
specimens in their failure condition when

σeff = σ0 (2.71)
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Fig. 2.25. Schematic representation of the different versions of the TCD: local reference system
(a), Point Method (b), Line Method (c) and Area Method (d).

where σ0 is the un-notched material strength, which has to be determined through ap-
propriate experiments [148].

As explained in [148], the TCD can be easily related to LEFM. As described in §2.3,
in sharp crack problems brittle fracture happens when the SIF, KI (for simplicity Mode I
problem is considered, however, the same holds true also for Mode II and III problems),
equals the fracture toughness, KIC . In particular, considering the infinite plate with cen-
tral crack shown in Fig. 2.20, according to Eq. (2.59) the failure stress σf can be expressed
as:

σf =
KIC√
πa

(2.72)

Furthermore, in the considered problem the stress of interest is σ(r) = σyy(r) and
according to Eqs. (2.54) and (2.57) along the crack bisector (θ = 0 in Fig. 2.25a) at
failure conditions it assumes the following expression:

σ(r) = σyy(r) = σf

√
a

2r
(2.73)

Substituting Eqs. (2.72) and (2.73) into Eq. (2.70), and remembering condition (2.71),
distance dP can be defined as:

dP =
1

2π

(
KIC

σ0

)2

(2.74)

Considering now the LM (Eq. (2.69)) and following the same procedure previously
used for the PM (Eq. (2.70)), distance dL can be expressed as:



2.4. THE THEORY OF CRITICAL DISTANCES 63

dL =
2

π

(
KIC

σ0

)2

(2.75)

If the traditional expression for the critical distance L is assumed (see for exam-
ple [148]):

L =
1

π

(
KIC

σ0

)2

(2.76)

it can be easily observed that both the PM and the LM can be expressed in terms of the
same characteristic length; in particular, dP = L/2 and dL = 2L. Therefore, Eqs. (2.70)
and (2.69) can be, respectively, re-written as:

σeff = σ(L/2) (2.77)

σeff =
1

2L

2L∫
0

σ(r)dr (2.78)

Based on Sheppard’s intuition, two other versions of the TCD have been proposed. In
particular, in 1999 Taylor [146] proposed the so-called Area Method (AM) that consists
in calculating the effective stress, σeff, by averaging the relevant stress over a semi-circular
area of radius rA and centred at point of maximum stress as shown in Fig. 2.25d, leading
to the following expression:

σeff =
4

πr2
A

π/2∫
0

rA∫
0

σ(r, θ)rdrdθ (2.79)

Taylor [146] proposed to assume rA = L highlighting, however, the fact that this as-
sumption leads to slightly conservative estimates of the inherent strength of the material.
In a later work, Bellett and co-workers [31] found that to have exact correspondence be-
tween σeff, calculated according to Eq. (2.79), and σ0 the radius of the semi-circular area
must be rA = 1.32L.

Finally, the fourth version of the TCD, commonly called Volume Method (VM), was
proposed in 2005 by Bellett and co-workers [31] and it consists in calculating σeff by aver-
aging the relevant stress over an hemispherical volume of radius rV = 1.54L and centred
in the point of maximum stress.

For completeness, it is worth specifying that all the equations presented in this section
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Fig. 2.26. Procedure to experimentally determine critical distance L.

for static problems hold true also for fatigue problems, provided that all the static quanti-
ties are replaced by the respective cyclic counterparts. In particular, the critical distance
in fatigue problems is defined as:

L =
1

π

(
∆Kth

∆σ0

)2

(2.80)

Alternatively, L can be experimentally determined by following the PM-based procedure
presented in Fig. 2.26.

2.5 Final considerations

Concluding this chapter it is possible to state that several approaches are available to
safely perform the static and fatigue assessment of cracked/notched components. Most of
these methods have the great advantage of allowing the aforementioned static and fatigue
assessments by means of classical linear elastic analyses, taking also into consideration sev-
eral factors such as notch and mean stress effects, multiaxiality and non-proportionality
of the loads, etc.

However, even if the possibility to use classical elastic analyses is undoubtedly a great
advantage (avoiding the need of more complex elasto-plastic analyses), it presents also im-
portant drawbacks. In particular, it is well known that classical elasticity produces either
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local stress singularities in correspondence of crack tips or unphysically high local stress
concentrations at notch tips. Due to this, the aforementioned assessment approaches are
characterised by high levels of conservatism (increasing with the sharpness of the stress
concentration feature) resulting in oversized structures and therefore not complying with
the environmental and economic principles described in Chapter 1.

In order to overcome the limitations of classical elasticity, as already mentioned in
Chapter 1, several non-local theories were proposed in the past. In particular, amongst
these the Theory of Critical Distances (that, as described in §3.2.1, can be easily obtained
from the non-local integral-based Eringen theory [48, 49]) has been extensively applied
to the static and fatigue assessment of cracked/notched components producing accurate
results. However, also the TCD presents some disadvantages, in particular it requires the
knowledge of the failure location inside the assessed component a priori. Furthermore,
in the case of complex components the determination of the effective stress σeff requires
complex and time consuming post-processing.

The research work presented in this thesis aims to solve all the aforementioned is-
sues by proposing a novel finite element methodology, based on a non-local elastic theory
known with the name of Ru-Aifantis theory (see §3.2.2). This methodology, easily im-
plementable in any commercial software, allows straightforward and accurate static and
fatigue assessments of notched components overcoming the limitations of classical elastic-
ity (by effectively taking into account the effect of the microstructure through an internal
length parameter) and avoiding the need of knowing the failure location inside the anal-
ysed component a priori.





Chapter 3

Gradient elasticity and the
Ru-Aifantis theory

Nowadays, most of the fundamental engineering problems are addressed through classi-
cal continuum theories. Even if these theories have been originally devised to describe
phenomena visible to the naked eye, they have been used to characterise a wider range
of problems, from dislocations (atomistic scale) to planetary sciences (astronomic scale).
Furthermore, classical elasticity has also been used to study micro- and nano-deformation
problems.

However, experimental observations made it evident that classical continuum mechan-
ics theories do not allow a precise and reliable description of micro- and nano-deformation
phenomena. One of the most evident problems related to the use of classical continuum
theories is the description of strain and stress fields in correspondence of stress concen-
tration features and dislocation lines. In particular, classical elasticity produces singular
strain/stress values in the vicinity of sharp crack tips as well as unphysically high stress
level in the neighbourhood of stress concentration features such as notches. Furthermore,
classical continuum mechanics theories fail in the description of size effects, even if their
influence increases for decreasing size of the component being assessed.

The aforementioned limits of classical continuum theories can be ascribed to the
absence of an intrinsic material length parameter (representative of the underlying mi-
crostructure of the considered material) in the constitutive laws. One possible solution
to the deficiencies described above is to introduce, into the standard elastic constitutive
equations, high-order gradients of relevant state variables (e.g. strains or stresses) mul-
tiplied by internal length parameters, representative of microstructural features of the
considered material [14].

The idea of enriching the classical elastic constitutive relations with higher order gra-
dients dates back to the early 1850s. Cauchy [35–37], during his studies of discrete lattice
models, had the intuition of introducing higher order spatial gradients into the standard
elastic equations. This new approach, where the size of the elementary volume was intro-
duced as an additional constitutive parameter, allowed a more accurate description of the
behaviour of discrete lattice models.

The objectives of these early studies were completely different form those of the fol-
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lowing 20th century. In particular, while Cauchy’s studies were aimed to describe and
understand specific physical phenomena, in the 20th century researchers focused their
efforts in formulating complete mathematical theories. A great contribution to the ex-
pansion of this research field came from the Cosserat brothers at the beginning of the
1900s [40]. However, the proposed theories were too complex to attract the attention of
the engineering community and, as a result of this, the aforementioned research area re-
mained mostly dormant until the 1960s when a significant number of studies started to
appear. Part of these works aimed to extend the Cosserat theory into comprehensive and
complex gradient theories, characterised by a large number of higher-order gradients. Ow-
ing to their complexity as well as their extremely large number of parameters, which need
to be quantified, these theories found very limited practical applications. Nevertheless,
amongst the 1960s studies, Mindlin’s theory [95] deserves particular consideration.

3.1 Mindlin’s theory

In 1964 Mindlin [95] proposed a linear elastic theory, containing microstructural infor-
mation. In particular, he included in his theory the concept of unit cell, which can be
considered as a microscopic feature of the material being assessed, for example a grain
in the case of metals or a particle for a polymer. If the unit cell is considered rigid, the
Cosserat theory [40] is retrieved.

Mindlin assumed that each particle of a given material of volume V is associated
to a micro-volume V ′ in which it is possible to identify micro-quantities such as micro-
displacements u

′
i and micro-deformations ψij, different from their macroscopic counter-

parts.
Based on this assumption, he defined the kinetic energy density T in terms of both

micro- and macro-quantities as:

T =
1

2
ρu̇iu̇i +

1

2
ρ`2

1ψ̇ijψ̇ij (3.1)

where ρ is the material mass density (considered to be the same at both scale levels), `1

is an intrinsic length parameter, dependent on the size of the unit cell, while ui are the
macro-displacements. Superimposed dots represent time derivatives.

Furthermore, considering the same assumption, Mindlin proposed to express also the
deformation energy density W in terms of both micro- and macro-quantities, resulting in
the following definition:

W =
1

2
Cijklεijεkl +

1

2
Bijklγijγkl +

1

2
Aijklmnκijkκlmn +Dijklmγijκklm+

+ Fijklmκijkεlm +Gijklγijεkl

(3.2)
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where εij = 1
2

(ui,j + uj,i) is the macroscopic strain tensor, κijk = ψjk,i is the micro-
deformation gradient, while γij = ui,j − ψij represents the relative deformation, that
is the difference between macro- and micro-deformations. Regarding the tensors Cijkl,
Bijkl, Aijklmn, Dijklm, Fijklm and Gijkl, they contains 903 independent coefficients over a
total number of 1764 [95]. This figure drastically decreases to 18 in the case of isotropic
materials, since Dijklm and Fijklm must be equal to zero (there are no odd-rank isotropic
tensors), while the fourth-order tensors and the sixth-order tensor are linear, homogeneous
functions of, respectively, three independent products of two Kronecker deltas, δij, and
fifteen independent products of three Kronecker deltas:

Cijkl = λδijδkl + µ1δikδjl + µ2δilδjk (3.3)

Bijkl = b1δijδkl + b2δikδjl + b3δilδjk (3.4)

Gijkl = g1δijδkl + g2δikδjl + g3δilδjk (3.5)

Aijklmn = a1δijδklδmn + a2δijδkmδnl + a3δijδknδlm+

+ a4δjkδilδmn + a5δjkδimδnl + a6δjkδinδlm+

+ a7δkiδjlδmn + a8δkiδjmδnl + a9δkiδjnδlm+

+ a10δilδjmδkn + a11δjlδkmδin + a12δklδimδjn+

+ a13δilδjnδkm + a14δjlδknδim + a15δklδinδjm

(3.6)

Furthermore, the aforementioned tensors are characterised by the following relations:

Cijkl = Cklij = Cjikl; Bijkl = Bklij; Gijkl = Gijlk; Aijklmn = Almnijk (3.7)

leading to the following conditions:

µ1 = µ2 = µ; g2 = g3; a1 = a6; a2 = a9; a5 = a7; a11 = a12 (3.8)

leaving, as mentioned above, 18 independent coefficients. The deformation energy density
W can be, therefore, re-written in the following simplified form:
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W =
1

2
λεiiεjj + µεijεij +

1

2
b1γiiγjj +

1

2
b2γijγij +

1

2
b3γijγji + g1γiiεjj+

+ g2 (γij + γji) εij + a1κiikκkjj + a2κiikκjkj +
1

2
a3κiikκjjk +

1

2
a4κijjκikk+

+ a5κijjκkik +
1

2
a8κijiκkjk +

1

2
a10κijkκijk + a11κijkκjki +

1

2
a13κijkκikj+

+
1

2
a14κijkκjik +

1

2
a15κijkκkji

(3.9)

where λ and µ are the usual Lamé constants.
However, even if the number of coefficients to be quantified significantly decreases

for isotropic materials, it still remains quite substantial, resulting in an excessive effort,
from a practical point of view, for the estimation of the aforementioned coefficients. For
this reason, Mindlin proposed even simpler, although less general, versions of his theory.
In particular, he expressed the micro-deformation gradient κijk in terms of a gradient
function κ̃ijk only, the 18 components of which are independent linear combination of the
second-gradient of the macro-displacements, uk,ij. This enables the deformation energy
density W to be expressed in terms of macro-displacements only. Mindlin [95] proposed
three simplified version of his theory that differ for the definition of κ̃ijk and he called
Form I, II and III:

• Form I: κ̃ijk is defined as the second-gradient of the macro-displacements, that is
κ̃ijk = uk,ij = κ̃jik.

• Form II: κ̃ijk is defined as κ̃ijk = κ̂ijk + κ̂jki − κ̂kij, where κ̂ijk is the first gradient
of the macro-strain, i.e. κ̂ijk = εjk,i = 1

2
(uk,ij + uj,ik) = κ̂ikj.

• Form III: this version address the problem differently respect to the previous two
Forms. In particular, as also explained in [14], the effects of the micro-deformations
are separated into two components: the gradient of the macro-rotations κ̄ij ≡
ejlmεmi,l = 1

2
ejlmum,il (ejlm is the so-called Levi-Civita permutation tensor) and the

symmetric part of the second gradient of the macro-displacements ¯̄κijk = 1
3
(uk,ij +

uj,ki + ui,jk).

The three versions presented above, even if theoretically different, lead to the same equa-
tions of motion in terms of the macroscopic displacements. Considering for example Form
II, the deformation energy density takes the following simplified form:

Ŵ =
1

2
λ̃εiiεjj+ µ̃εijεij+ â1κ̂iikκ̂kjj+ â2κ̂ijjκ̂ikk+ â3κ̂iikκ̂jjk+ â4κ̂ijkκ̂ijk+ â5κ̂ijkκ̂kji (3.10)

where [95]
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λ̃+ 2µ̃ = λ+ 2µ− 8g2
2

3(b2 + b3)
− (3g1 + 2g2)2

3(3b1 + b2 + b3)

µ̃ = µ− 2g2
2

b2 + b3

â1 = f (a1, a2, a3, a5, a8, a11, a14, a15)

â2 = f (a1, a2, a3, a4, a5, a8, a10, a11, a13, a14, a15)

â3 = f (a2, a3, a8)

â4 = f (a10, a11, a13, a14, a15)

â5 = f (a10, a11, a13, a14, a15)

(3.11)

Mindlin [95], as also stated in [14], proposed the following simplified definition of the
kinetic energy density T :

T =
1

2
ρu̇iu̇i +

1

2
ρ`2

1u̇i,ju̇i,j (3.12)

The simplified deformation and kinetic energy density (i.e. Eqs. (3.10) and (3.12)) lead
to the following equations of motion:

(λ+ µ)uj,ij + µui,jj −
4â1 + â2 + 3â3 + 2â4 + 3â5

2
uj,ijkk−

− â3 + 2â4 + â5

2
ui,jjkk + bi = ρ

(
üi − `2

1üi,jj
) (3.13)

where bi are the body forces. Eq. (3.13) can be also written in the following form:

(λ+ µ)

(
1− `2

2

∂2

∂x2
k

)
uj,ij + µ

(
1− `2

3

∂2

∂x2
k

)
ui,jj + bi = ρ

(
1− `2

1

∂2

∂x2
j

)
üi (3.14)

where the two parameters `2 and `3 have the dimension of length and are defined by the
following expressions:

`2 =

√
4â1 + 4â2 + 3â3 + 2â4 + 3â5

2 (λ+ µ)

`3 =

√
â3 + 2â4 + â5

2µ

(3.15)
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From Eq. (3.14) it is clear that now only three material length parameters (`1, `2 and
`3) have to be quantified, making this simplified version of Mindlin theory much more
tractable, from a practical point of view, with respect to the original one. Furthermore,
from Eq. (3.14), as also pointed out in [14], it is possible to observe that, in both the
stiffness and inertia components, the higher-order terms are nothing but the Laplacian of
the corresponding lower-order terms.

As explained in [14], Laplace-type gradients are extremely versatile, since they appear
in many physical processes and microstructural reasons of gradient-based theories. In the
next section, more recent Laplacian-based non-local theories will be discussed in details.

3.2 Laplacian-based gradient theories and the Ru-

Aifantis theory

From the 1980s onward we witness a new series of much simpler gradient-based theories
characterised by few high-order terms, which obviously means a sensible reduction in the
number of additional constitutive parameters to validate experimentally. In particular,
Eringen’s and Aifantis’ theories deserve special attention and they will be discussed in
more details in the following of this chapter. The guiding principle of these theories was
to include only the high-order derivatives necessary to describe the physical phenomenon
of interest.

While for non-linear problems the use of numerical methods is necessary, in the case
of linear problem characterised by very simple geometries a willing person could solve it
analytically, with some mathematical efforts. Unfortunately the number of this kind of
problems is extremely low and for all other linear problems a numerical solution is needed.

For this reason, we are seeing a continuous increase in the use of numerical methods
for simulations, which makes the implementation of gradient elasticity of central impor-
tance. However, finite element implementations of these theories is not trivial due to the
more complex structure of the governing equations. Also for what concerns the imple-
mentation, we can find different schools of thought: on one hand some authors (see for
example [7, 102, 109, 161]) have focussed their efforts on implementing the more complete
theories of the 1960s, while on the other hands others have taken advantage of the sim-
plicity offered by the Aifantis theory, developing notably straightforward finite element
implementations [15, 18, 152].

3.2.1 Eringen theory

In 1983, Eringen [50] proposed an integral-based non-local elastic theory, where relevant
state variables are averaged over volume. In terms of stresses, Eringen’s theory postulates
that the non-local stress tensor σgij at a given point x of a body is the weighted average
of the local stress tensor σcij of all points x′ into the body volume. In the cases when the
effect of stresses in points different from x can be neglected, the standard local theory
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of elasticity is retrieved. In particular, for elastic, homogeneous and isotropic bodies, the
static equations of equilibrium are given by:

σgij,j + bi = 0 (3.16)

with the non-local stress tensor defined as:

σgij(x) =

∫
V

χ(|x′ − x|, ε)σcij(x′)dV (3.17)

where the non-local weight function χ(|x′−x|, ε) is related to an intrinsic internal length
a (for example grain distance) and an external characteristic length l (such as the crack
length) through the parameter ε defined as:

ε = e0
a

l
(3.18)

where e0 is a material constant.
As pointed out by Eringen [50], the non-local weight function χ must obey a number

of properties, in particular:

• χ reaches its maximum for x′ = x and decreases for increasing values of |x′ − x|.

• To ensure that classical elasticity condition is considered for vanishing values of a,
χ must take the shape of a Dirac delta function for ε→ 0:

lim
ε→0

χ(|x′ − x|, ε) = δ(|x′ − x|) (3.19)

• χ can be determined, for a considered material, by fitting dispersion curves of plane
waves with experimental ones or those characteristic of atomic lattice dynamics.
Several possible definitions of χ can be found in [50].

• If χ is taken as a Green’s function of a linear differential operator, the integral-based
non-local elastic theory described above is converted into a gradient-based non-local
elastic theory, with significant simplifications. In particular Eringen [50] proposed
to relate the non-local stress tensor σgij to its local counterpart σcij (or displacements
uk) through the following partial differential equation (p.d.e.):

σgij − `2
Eσ

g
ij,kk = σcij = Cijkluk,l (3.20)

where Cijkl is the constitutive tensor and `E is an internal length parameter.



74 CHAPTER 3. GRADIENT ELASTICITY AND THE RU-AIFANTIS THEORY

It is worth mentioning, as pointed out in [14], that both the mathematical procedure
needed to pass from Eq. (3.17) to Eq. (3.20) and the correspondent approximation error
depend on the definition of the non-local weight function χ.

Finally, one last interesting aspect emerging from a careful analysis of both the integral-
based Eringen theory (Eq. (3.17)) and the TCD described in §2.4, is that the different
versions of the TCD can be retrieved from the integral-based Eringen theory by appro-
priately defining the weight factor χ and in particular:

• the PM is obtained by considering χ = δ(L/2, r), where δ is the Dirac function;

• the LM, instead, corresponds to Eq. (3.17) when the weight factor is defined as a
combination of Heaviside functions: χ = H0(r)−H2L(r);

• while the AM is retrieved when the weight factor is taken as follows:

χ =

{
1 when 0 ≤ r ≤ rA

0 when r > rA
(3.21)

with −π/2 ≤ θ ≤ π/2. Similar considerations can be made for the VM where the
domain is now half a sphere of radius rA, instead of half a circle as for the AM.

3.2.2 Ru-Aifantis theory

At the beginning of the 1990s, Aifantis and coworkers, inspired by an earlier gradient-
plasticity model developed for the determination of shear bands width [1, 2], proposed to
enrich the constitutive relations of classical elasticity by means of the Laplacian of the
strain as [3, 6, 108]

σij = Cijkl(εkl − `2εkl,mm) (3.22)

where ` is a length scale parameter that, as suggested in [18] and references reported
therein, can be related to microstructural features of the considered material (e.g. inter-
particle distance for periodic lattices or representative volume element for heterogeneous
media). This gradient-elastic model, characterised by just one internal length parameter,
has the remarkable ability to remove singularities from the strain field in correspondence
of sharp crack tips as well as dislocation lines [4–6, 18, 68, 70, 71, 108].

The previous constitutive relations (Eq. (3.22)) along with the following kinematic
equations

εkl =
1

2
(uk,l + ul,k) (3.23)
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and the fact that for isotropic linear elastic materials Cijkl = λδijδkl + µδikδjl + µδilδjk
lead to the following equilibrium equations for homogeneous materials:

Cijkl(uk,jl − `2uk,jlmm) + bi = 0 (3.24)

From a numerical point of view the solution of Eq. (3.24) presents some difficulties,
making the Aifantis theory not very appealing for practical applications. In particular,
its finite element implementation is non-trivial, mainly due to the fact that the solution
of the fourth-order problem defined by Eq. (3.24) requires C1-continuous shape functions
(e.g. those of meshless methods, see for instance [13, 145]), instead of the standard C0-
continuous shape functions required by the second-order p.d.e. of classical elasticity.

At this point it is worth highlighting the fact that, as also explained in [14], Eq.
(3.24) represents the particular case of Mindlin’s theory (Eq. (3.14)) when the condition
`2 = `3 = ` is imposed. Having said that, the Aifantis theory could seem to be a mere
simplification of Mindlin’s theory, however the condition `2 = `3 = ` is the only one that
allows, as described next, to solve Eq. (3.24) as a decoupled sequence of two second-order
p.d.e. systems, with significant simplifications from the finite element implementation
point of view.

In particular, in 1993 Ru and Aifantis [108] observed that by changing the derivation
order, Eq. (3.24) can be written as:

Cijklu
c
k,jl + bi = 0 (3.25)

where the classical (or local) displacements uck are related to the gradient-enriched (or
non-local) counterpart ugk through the following relationship:

ugk − `
2ugk,mm = uck (3.26)

It is worth noticing that if Eq. (3.26) is substituted into Eq. (3.25) the original fourth-
order p.d.e. system (Eq. (3.24)) is obtained. However, both analytical and numerical
advantages of the Ru-Aifantis formulation compared to the original fourth-order theory
(Eq. 3.24) are evident. In fact, once the local displacements uck are determined through
classical elasticity (Eq. (3.25)), the non-local displacements ugk can be easily calculated by
solving the second-order Helmholtz equations given by Eq. (3.26), where just C0-continuity
is required for the discretisation of ugk.

As suggested in [18, 69, 70], Eq. (3.26) can be re-written in terms of strains through
simple differentiation as:

εgkl − `
2εgkl,mm = εckl (3.27)
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where εckl and εgkl are, respectively, the local and non-local strain tensor.
The strain-based Ru-Aifantis formulation consists in determining the non-local strain

tensor εgkl from Eq. (3.27), where εckl is determined through Eq. (3.23) once the local
displacements uck are known from the solution of Eq. (3.25).

As pointed out in [18], in the absence of external boundaries Eqs. (3.26) and (3.27)
are equivalent if the displacement field is sufficiently smooth and ` is constant throughout
the domain.

Finally, if the local and non-local stress tensors are defined, respectively, as σcij =
Cijklε

c
kl and σgij = Cijklε

g
kl, Eq. (3.27) can be re-written in terms of stresses, obtaining the

so-called stress-based Ru-Aifantis formulation (see also [14, 18] and references reported
therein):

σgij − `2σgij,mm = Cijklu
c
k,l (3.28)

The non-local stress tensor σgij can be easily calculated by solving Eq. (3.28), where uck
are again the local displacements obeying the equations of classical elasticity (Eq. (3.25)).

It is also worth mentioning two aspects:

• The different versions of the Ru-Aifantis theorem (i.e. Eqs. (3.26), (3.27) and (3.28))
requires different variationally consistent boundary conditions, as explained in §3.3.

• The negative sign in front of the higher-order terms is needed to guarantee unique-
ness and stability of the solution [19]. However, other formulations containing a
positive sign have been proposed in the literature to describe dispersion and wave
propagation in granular materials [38, 96, 117, 118]. A detailed comparison between
the two different formulations in both statics and dynamics can be found in [19].

3.2.3 Differences between Eringen and Ru-Aifantis theories

Even if Eqs. (3.20) and (3.28) describe the same gradient dependence, the Eringen and the
Ru-Aifantis theories present a fundamental difference resulting in important implications
on the numerical implementation of the two theories. In particular, in Eringen’s theory
the equilibrium equations are written in terms of non-local stresses σgij as:

σgij,j + bi = 0 (3.29)

Therefore Eq. (3.29) is coupled with Eq. (3.20) and their solution needs to be simultane-
ous, drastically reducing the possibilities of developing a straightforward implementation
of Eringen’s theory. For example, Askes and Gutiérrez [16] proposed a possible implemen-
tation of the Eringen theory similar to the one described in §3.2.1, with the only difference
that the unknown are displacements and non-local strains (instead of stresses). In their
work, Askes and Gutiérrez [16] showed that, in order to avoid oscillations, the displace-
ments must be interpolated with lower-order polynomials, compared to those needed for
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the non-local strains. However, the implementation of finite elements characterised by
different interpolation functions for displacements and stresses has been shown to be
rather complicated (see for instance [11, 34]) due to the inf-sup condition (also known as
Babuška-Brezzi condition) (see for example [74]).

In the Ru-Aifantis formulation, instead, the equilibrium is defined in terms of local
stresses σcij, which are directly related to the local displacements uci , allowing the solution
of the problem as a sequence of two decoupled sets of equations (Eq. (3.25) followed by Eq.
(3.28)), as described in §3.2.2. Obviously, this leads to an higher number of degrees of free-
dom per element. Nevertheless, the decoupled nature of Eqs. (3.25) and (3.28) reduces the
computational costs and allows a straightforward and effective numerical implementation
of the Ru-Aifantis formulation as shown in Chapter 5.

3.3 Boundary conditions

From §3.2.3 it is clear that the Ru-Aifantis formulation is more appealing than the Erin-
gen theory from the numerical implementation point of view. However, the definition of
the most suitable boundary conditions is a problem that needs to be properly addressed.

As described in §3.2.2, the Aifantis theory can be considered as either a system of
fourth-order p.d.e. (Eq. (3.24)) with the displacements as only unknown, or two decoupled
sets of second-order p.d.e. (Ru-Aifantis formulation), with displacements as unknowns of
the first set (Eq. (3.25)) and an additional variable for the second step (Eq. (3.26), (3.27)
or (3.28)).

As described in [18] the variationally consistent boundary conditions for the Aifan-
tis theory in its fourth-order format (Eq. (3.24)) are set in terms of displacements and
their first derivative in what concerns the essential boundary conditions. In particular the
standard essential boundary conditions read

ui = ūi (3.30)

where ūi are the displacements prescribed on the boundary. The higher-order essential
boundary conditions, instead, are defined as:

∂ui
∂xj

nj = η̄i (3.31)

where n is the outward normal vector to the boundary, while η̄i are the prescribed values
for the normal derivative of the displacements.

The natural boundary conditions, on the other hand, are written in terms of standard,
t, and higher-order, m, tractions as
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ti = nj

[
σij + nkτijk (δlm − nlnm)

∂nl
∂xm

]
− (δkm − nknm)

∂njτijk
∂xm

= t̄i (3.32)

mi = njnkτijk = m̄i (3.33)

where the higher-order stresses are defined as τijk = `2Cijklε
c
kl,m, whereas t̄i and m̄i are

the tractions prescribed on the boundary.
Since the field equations of the Ru-Aifantis theory differ from those of the fourth-order

Aifanits theory, also the correspondent boundary conditions are different. First of all, the
first step of all the different formulations of the staggered Ru-Aifantis formulation consists
in Eq. (3.25) and therefore they share the same standard boundary conditions in terms
of either displacements:

uci = ūci (3.34)

where ūci are the local displacements prescribed on the boundary, or standard tractions:

ti = njσ
c
ij = t̄i (3.35)

To analyse the higher-order boundary conditions accompanying the three different
formulations of the second step, instead, it is worth considering the weak form of the
second step: ∫

Ω

δs
(
sg − `2sg,ii

)
dΩ =

∫
Ω

δs scdΩ (3.36)

where s is a generic variable (either displacements, strains or stresses), δs is a test function
and Ω is the considered domain. After integration by parts, Eq. (3.36) reads:∫

Ω

δs sgdΩ +

∫
Ω

δs,i `
2sg,idΩ =

∫
Ω

δs scdΩ +

∮
Γ

δs `2nis
g
,idΓ (3.37)

where Γ is the boundary of the domain Ω.
From the second term on the right-hand side of Eq. (3.37) it is possible to observe that

the natural boundary conditions are expressed in terms of first derivatives of the relevant
gradient-enriched variables (either displacements, strains or stresses).

As shown in [18], the displacement-based Ru-Aifantis theory (Eq. (3.26)) is not able
to remove all singularities from the strain field of cracked specimens subject to Mode I
loading; hence this version of the Ru-Aifantis theory will not be discussed any further.

On the other hand, the Ru-Aifantis formulation applied in terms of strains is able to
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remove all singularities from the strain field. However, as shown in [18], this method is not
able to describe stiffness jumps such as those occurring at the interface of bi-materials.
This difference with respect to the original fourth-order Aifantis theory (Eq. (3.24)) is due
to the different higher-order boundary conditions. In fact, unlike the higher-order traction
m accompanying Eq. (3.24), the higher-order natural boundary conditions accompanying
Eq. (3.27) are expressed in terms of the first derivative of the gradient-enriched strains
and therefore no stiffness effects are considered.

The stress-based Ru-Aifantis theory (Eq. (3.28)), instead, is characterised by natural
boundary conditions of the dynamic type, i.e expressed in terms of (gradient-enriched)
stresses, similarly to those accompanying Eq. (3.24), allowing for the description of stiff-
ness jump phenomena [14, 18]:

nm`
2σgij,m = 0 (3.38)

This feature along with the ability to remove all singularities from the stress field make the
stress-based Ru-Aifnatis theory more versatile and therefore preferable to the displacements-
and strain-based versions.

3.4 Length scale parameters

One last aspect that needs to be discussed more in depth is the identification of the
internal length parameter `.

As mentioned in the incipit of this chapter, the intrinsic length parameter ` is usually
assumed to be somehow related to microstructural features of the material being assessed
and, in particular, to the size of the prevailing source of microstructural heterogeneity [14].
However, a clear and widely accepted identification of the length scale parameters remains
an open problem.

Some researchers proposed to relate the length scale to the size of the Representative
Volume Element (RVE), defined at a microscopic level as a cell large enough to allow a
statistically homogeneous response (see [14] for a synthetic yet exhaustive overview). In
particular, it has been found that the length scale ` can be related to the size of the RVE,
LRV E, through the following relation [61, 81]:

`2 =
1

12
L2
RV E (3.39)

As described in [14], other researchers proposed to derive the length scale parameters
as closed-form solutions from the constitutive properties of discrete periodic lattices or
composite materials.

In what concerns discrete lattices, the length scale parameters are generally a function
of the inter-particle distance (see for instance [92, 93]).

Studying the dispersive behaviour of laminated materials, instead, Fish and co-workers
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[39, 52, 53] proposed to define the intrinsic length parameters not only in terms of ge-
ometrical features such as volume fraction and unit cell size, but also of the properties
of the involved materials (Young’s modulus and mass density). The results of Fish and
co-workers have also been used to determine the length scale parameters of a dynamically
consistent gradient elastic model [32] as well as the micro-inertia gradient visco-elastic
methodology presented in Chapter 8 (see also [29]).

In 2013 Susmel and co-workers [127] mathematically derived an expression that re-
lates the length scale ` of the Ru-Aifantis formulation to two fatigue material properties
as described in Chapter 4. This relation, originally derived for cracked bodies subject to
fatigue loading, has also been successfully applied to notched components subject to both
static (Chapter 6.1) and fatigue (Chapters 6.2 and 7 as well as [28, 79]) loading.

Furthermore, in Chapter 7 an attempt to give ` a physical meaning is proposed (see
also [79]). In particular, in the context of plain concrete notched beams subject to fatigue
loading, the length scale ` has been taken equal to the average inter-aggregate distance,
leading to extremely accurate results. This encouraging results further support the idea
that ` must be directly related to geometrical features characterising the material mi-
crostructure.

Finally, even if beyond the scope of this thesis, it is worth mentioning that another
group of studies can be found in the literature (for a comprehensive overview see [14]).
These works aim to numerically quantify the length scale parameters (through either ex-
perimental validations or nanoscale numerical simulations), instead of relating them to
geometrical or constitutive material properties as the previous formulations.
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Chapter 4

Combining Gradient elasticity, the
Theory of Critical Distances and the
Modified Wöhler Curve Method

It is widely accepted that the length scale parameter ` is related to the size of the dominant
source of microstructural heterogeneity [14]. However, examination of the state of the art
suggests that the scientific community has yet to agree on a commonly accepted strategy
suitable for estimating ` to use in situations of practical interest.

As to a possible way to determine length `, the previous chapters should make it
evident that gradient elasticity and the TCD share some important features. In particular,
both approaches post-process the relevant stress fields by coupling linear-elasticity with
an internal length scale parameter which is assumed to be an intrinsic material property.
By taking as a starting point these similarities, it was recently proven that length ` from
gradient elasticity can be directly linked to the TCD’s critical distance L as follows [127]:

` ≈ L

2
√

2
=

1

2
√

2π

(
∆Kth

∆σ0

)2

(4.1)

The above relationship was derived by considering a cracked plate subject to Mode I
cyclic loading and post-processing the stress field in the vicinity of the crack tip through
considerations based on local mechanics [127]. According to Eq. (4.1), length scale param-
eter ` can directly be estimated from the material plain fatigue limit range, ∆σ0, and the
threshold value of the stress intensity factor range, ∆Kth. Since both ∆σ0 and ∆Kth are
material properties, ` is an intrinsic characteristic length which is different for different
materials and different load ratios. By post-processing a large number of experimental
results taken from the literature, gradient elasticity, with ` defined as in Eq. (4.1), was
seen to be capable of accurately describing, at fatigue limit condition, the transition from
the short- to the long-crack regime [127]. Relation 4.1 holds true also for static problems,
with the only difference that the critical distance L is now defined by Eq. (2.76), leading
to:
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` ≈ L

2
√

2
=

1

2
√

2π

(
KIC

σ0

)2

(4.2)

In the light of the encouraging results obtained by considering cracked materials, the
next logical step in the development of this design approach is then verifying whether the
length ` estimated via Eq. (4.1) is suitable also for assessing high-cycle fatigue strength
in the presence of finite radius stress concentrators.

The way gradient elasticity determines the non-local stress fields according to the TCD
(i.e. when ` is directly derived from L through Eq. (4.1)) is explained in Fig. 4.1a. As
shown in Fig. 4.1a, gradient elasticity can simply be considered as an operator transfer-
ring the linear elastic stress state determined according to the PM onto the surface of
the notch itself (Fig. 4.1a). According to this idea, high-cycle fatigue strength of notched
components can be assessed by directly using the maximum gradient-enriched stress state
determined at the apex of the geometrical feature being assessed.

To use gradient elasticity consistently, the second problem to address is the definition
of appropriate reference un-notched fatigue (endurance) limits. Figs. 4.1b, c and d show
the stress distributions in a smooth cylindrical shaft loaded in cyclic tension-compression
(Fig. 4.1b), cyclic bending (Fig. 4.1c) and cyclic torsion (Fig. 4.1d). These three bars are
assumed to be made of the same metallic material, so that length scale ` is the same
independently of the type of applied load. In these sketches the symbols F0, M0 and
T0 are used to denote the amplitudes of the external forces and moments in the fatigue
(endurance) limit condition. As shown in Figs. 4.1c and d, the gradient-enriched fatigue
(endurance) limits on the surface of the shaft, σg0 and τ g

0 , are lower than the corresponding
ones, σ0 and τ0, calculated according to continuum mechanics. This can be ascribed to
the fact that in the presence of stress gradients the Ru-Aifantis formulation smooths the
local stress fields via length scale parameter `, irrespective of the source generating the
stress gradients themselves. Gradient elasticity produces the same stress fields as those
determined according to continuum mechanics, only in the absence of stress gradients as
it happens, for instance, under cyclic axial loading (Fig. 4.1b). Therefore, to be rigorous,
gradient elasticity should be used by adopting σg0 and τ g0 as reference un-notched fatigue
(endurance) limits [79]. However, it has to be said that, in general, under both cyclic
bending and torsion the difference between conventional and gradient-enriched fatigue
(endurance) limits is seen to be very little (on average, less than about 5%). This suggests
that σ0 and τ0 can still be used as reference fatigue strengths, provided that a little loss
of accuracy is acceptable when performing the high-cycle fatigue assessment.

Figs. 4.2a and b summarise the procedures which are suggested here as being followed
to design notched components against uniaxial and multiaxial high-cycle fatigue, respec-
tively.

For the sake of simplicity, attention can be initially focused on the simpler uniaxial
fatigue problem. Consider then the notch sketched in Fig. 4.2a which is assumed to be
subject to Mode I cyclic loading. According to the procedure summarised in Fig. 4.2a,
the range of the gradient-enriched stress at the notch tip, ∆σgy , has to be determined
by solving a linear gradient elasticity FE model with ` determined via Eq. (4.1). The
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Fig. 4.1. Gradient-enriched notch tip stress vs. PM effective stress (a); conventional and
gradient-enriched un-notched fatigue (endurance) limits under cyclic axial loading (b), cyclic
bending (c) and cyclic torsion (d).
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component being assessed is assumed to be at its fatigue (endurance) limit as long as the
following condition is assured:

∆σgy ≤ ∆σg0 (4.3)

At this point, it is worth pointing out that, as postulated by the TCD, under Mode
I cyclic loading both ∆σg0 and ` must be determined by post-processing experimental re-
sults generated under the same load ratio as the one characterising the load history that
is applied to the component being assessed.

Turning to the multiaxial fatigue case, consider now the notched component of
Fig. 4.2b which is assumed to be subject to a complex system of time-variable forces and
moments. By post-processing the results obtained from a gradient elasticity FE model,
the gradient-enriched linear-elastic stress state at the hot-spot can be expressed as follows
(Fig. 4.2b):

σg(t) =

 σgx(t) τ g
xy(t) τ gxz(t)

τ gxy(t) σg
y(t) τ gyz(t)

τ gxz(t) τ g
yz(t) σgz(t)

 (4.4)

where t is time. Due to the ability of the MWCM to directly take into account the effect
of non-zero mean stresses in both uniaxial and multiaxial fatigue [123], it is recommended
to use material fatigue properties determined under R = −1 to calculate ` according
to Eq. (4.1). This is to ensure a consistent use of the MWCM in the post-processing of
gradient-enriched stress tensor (4.4).

Turning back to the design procedure summarised in Fig. 4.2b, as soon as the stress
tensor from expression (4.4) is known at any instant of the assessed load history, the
maximum shear stress amplitude, τ ga , and the relevant stress components perpendicular
to the critical plane (i.e. σgn,m and σgn,a) can directly be calculated according to one of the
available methods (for more details see [123] and references reported therein). Gradient-
enriched stress components τ ga , σgn,m and σgn,a allow then the effective value of the critical
plane stress ratio, ρgeff, to be calculated as

ρgeff =
σgn,a +m · σgn,m

τ ga
(4.5)

Finally, the notched component being designed is assumed to be at its endurance limit as
long as the following condition is assured:

τ geq = τ ga −
(
σg0
2
− τ g0

)
ρgeff ≤ τ g0 with ρgeff = ρglim for ρgeff > ρglim (4.6)
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Fig. 4.2. In-field use of gradient elasticity to estimate notch fatigue (endurance) limits.
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where

ρglim =
τ g0

2τ g0 − σ
g
0

(4.7)

Regarding the design procedure suggested to address multiaxial fatigue problems
(Fig. 4.2b), under complex time-variable load histories, the gradient-enriched stress state
resulting from every applied force/moment can be computed separately. By so doing, the
total gradient-enriched stress tensor at the hot-spot, i.e. the material point experiencing
the largest value of τ geq calculated according to Eq. (4.6), can then be calculated a poste-
riori by employing the superposition principle. This can be done because the proposed
approach makes use of linear-elastic gradient-enriched stresses. Finally, this methodology
based on the superposition principle has to be used by paying attention to keep unchanged
the synchronism amongst the different forces and moments being assessed. This simple
and standard procedure allows the presence of superimposed static stresses as well as
the degree of non-proportionality of the applied load history to be accurately taken into
account during the design process as shown in Chapter 6.2. However, in order to be able
to apply these concepts to more general geometries, it is necessary to develop a finite
element framework. This will be discussed in detail in the next Chapter.



The present chapter is based on: C. Bagni and H. Askes. Unified finite element methodology for
gradient elasticity. Computers and Structures, 160:100–110, 2015 and C. Bagni, H. Askes and E. C.
Aifantis. Gradient-enriched finite element methodology for axisymmetric problems. Acta Mechanica,
2017

Chapter 5

Finite element implementation of the
Ru-Aifantis theory

In this chapter, the stress-based Ru-Aifantis theorem presented in §3.2.2 is implemented
in a finite element framework for plane stress/strain, axisymmetric and three-dimensional
problems. Considerations about the best integration rules to be adopted, a comprehensive
convergence study and recommendations about optimal element size are also provided.
Furthermore, the ability of the proposed methodology to remove singularities will be
shown through several examples. From now on matrix-vector notation is adopted, instead
of the index notation used in §3.2.2.

5.1 Plane stress and plane strain

In both plane stress and plane strain problems, the displacements field is fully defined
by the displacement components ux and uy in the two Cartesian directions x and y,

respectively. The continuum displacements u = [ux, uy]
T can be discretised and expressed

in terms of the nodal displacements d = [d1x, d1y, d2x, d2y, . . . ]
T through the relation

u = Nud (5.1)

where Nu is the matrix containing the traditional shape functionsNi (see for instance [164])
and can be written as:

Nu =

[
N1 0 N2 0 . . .
0 N1 0 N2 . . .

]
(5.2)

As explained in §3.2.2, the Ru-Aifantis theorem splits the original fourth-order par-
tial differential equations (p.d.e.) into two sets of second-order p.d.e., which allows the
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determination, in the first instance, of the local displacements uc by solving the p.d.e. of
classical elasticity:

LTCLuc + b = 0 (5.3)

where b are the body forces and C is the elasticity matrix, which, for isotropic materials,
in the case of plane stress problems takes the form

C =
E

1− ν2

 1 ν 0

ν 1 0

0 0 (1− ν)/2

 (5.4)

while in plane strain conditions

C =
E

(1 + ν)(1− 2ν)

 1− ν ν 0

ν 1− ν 0

0 0 (1− 2ν)/2

 (5.5)

where E and ν are the Young’s modulus and the Poisson’s ratio, respectively.
Moreover, the derivative operator L is defined as

L =


∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x

 (5.6)

Taking now the weak form of Eq. (5.3), followed by integration by parts and using the
finite element discretisation described above, Eq. (5.3) leads to

∫
Ω

BT
uCBudΩ dc ≡ Kdc = f (5.7)

where K =
∫

Ω
BT
uCBudΩ is the stiffness matrix, Bu = LNu is the strain-displacement

matrix, dc is the vector of the nodal local displacements and f is the force vector, that
collects the contributions of both the body forces and the external tractions.

Then, from the second set of equations (second step) it is possible to evaluate the



5.1. PLANE STRESS AND PLANE STRAIN 89

gradient-enriched stress field, by introducing the local displacements uc (obtained solving
Eq. (5.3)) as source term in

(σg − `2∇2σg) = CLuc (5.8)

where σg is the non-local (i.e. affected by the gradient enrichment) stress tensor and ∇2

is the Laplace operator defined as

∇2 ≡ ∇T∇ with ∇ =

{
∂
∂x

∂
∂y

}
(5.9)

Considering again the weak form of Eq. (5.8) and integrating by parts, we obtain

∫
Ω

[
wTσg + `2

(
∂wT

∂x

∂σg

∂x
+
∂wT

∂y

∂σg

∂y

)]
dΩ −

∮
Γ

wT `2 (n · ∇σg) dΓ =

=

∫
Ω

wTCLucdΩ

(5.10)

where n = [nx ny]
T contains the components of the normal vector to the boundary Γ and

w now contains three components.
In the case of plane stress all out-of-plane stress components are null; while in plane

strain conditions the stress normal to the plane xy is not zero, but the strain in the same
direction is zero by definition, which means that the aforementioned stress component
does not contribute to the internal work and, if needed, it can be easily calculated using
the three in-plane stress components.

Similar to the displacements, the continuum stress field σ = [σxx σyy σxy]
T can be dis-

cretised and expressed in terms of the nodal values s = [s1xx s1yy s1xy s2xx s2yy s2xy . . . ]
T

through the relation

σ = Nσs (5.11)

where Nσ is an expanded form of the shape function matrix Nu given in Eq. (5.2),
in order to accommodate all three stress components. The shape functions Nσ can in
principle be defined independently of Nu, however, since the same finite element mesh
can be used for both the first step, described above, and this second step, the same
shape functions, previously used for the discretisation of the displacements, can also be
adopted to discretise the stresses, making the solution of the problem much easier. This is
permitted because of the de-coupled nature of the proposed formulation (this would not
be possible for mixed formulations such as the Eringen theory presented in §3.2.1).

Finally, using the same shape functions Nσ to discretise the test function vector w
and recalling that uc = Nud

c, the resulting system of equations reads



90 CHAPTER 5. FINITE ELEMENT IMPLEMENTATION∫
Ω

[
NT
σNσ + `2

(
∂NT

σ

∂x

∂Nσ

∂x
+
∂NT

σ

∂y

∂Nσ

∂y

)]
dΩ sg =

∫
Ω

NT
σCBudΩ dc (5.12)

where sg is the vector of the nodal non-local stresses. As can be noted, in passing from
Eq. (5.10) to Eq. (5.12) the boundary integral

∮
Γ
δσgT `2 (n · ∇σg) dΓ has disappeared.

This is due to the fact that:

• if essential boundary conditions are used, σg is known (usually the condition σg =
σc is chosen), therefore δσg = 0;

• if natural boundary conditions are used, the condition n · ∇σg = 0 is chosen.

Hence, either way the boundary integral cancels.
It is worth highlighting at this point that the de-coupled Ru-Aifantis theorem does

not influence the field equations of the original fourth-order Aifantis theory (Eq. (3.24))
but influence the boundary conditions and therefore, it is not possible to exactly replicate
the original boundary conditions expressed by Eqs. (3.32) and (3.33). The boundary
conditions described above come directly from the boundary integral in Eq. (5.10). Finally,
homogeneous higher-order natural boundary conditions are taken because they are easier
to apply.

5.2 Axisymmetry

It is well known from the literature (see for example [164]) that in axisymmetric solids
subject to axisymmetric loading, displacements, strains and stresses are all independent
of the circumferential coordinate θ of the cylindrical coordinate system defined in Fig. 5.1.
This characteristic allows the study of this kind of problems by simply considering the
generic plane section of the solid along its axis of revolution z (shaded in Fig. 5.1), subject
to in-plane loading.

The displacement field is described by two components only, since the circumferential
component uθ = 0 for axisymmetry reasons, which are a function of the radial (r) and
axial (z) coordinates only:

u(r, z) = {ur(r, z) uz(r, z)}T (5.13)

In what concerns the strains, they can be collected in the strain vector

ε(r, z) = {εrr(r, z) εzz(r, z) εθθ(r, z) 2εrz(r, z)}T (5.14)

where (ignoring the spatial dependence for notational simplicity)
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Fig. 5.1. Axisymmetric solid: cylindrical coordinate system and generic plane section of the
solid to analyse.

εrr =
∂ur
∂r

, εzz =
∂uz
∂z

, εθθ =
ur
r
, 2εrz =

∂uz
∂r

+
∂ur
∂z

(5.15)

Finally, in the case of linear elastic materials, the stress field is linked to the strain
field through the following constitutive relation

σ =


σrr

σzz

σθθ

σrz

 = Cε =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0 1−2ν
2

 ε (5.16)

5.2.1 Non-axisymmetric loading

In the case of an axisymmetric solid subject to non-axisymmetric loads, the circumferential
component of the displacements uθ must be considered in addition to the radial and axial
components. As a consequence of this, all the strain and stress components may assume
non-zero values; in particular the strain field is described by the following vector (ignoring
the spatial dependence for notational simplicity)

ε = {εrr εzz εθθ 2εrz 2εrθ 2εzθ}T (5.17)

where in addition to Eq. (5.15) we have
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2εrθ =
1

r

(
∂ur
∂θ
− uθ

)
+
∂uθ
∂r

, 2εzθ =
∂uθ
∂z

+
1

r

∂uz
∂θ

(5.18)

and the stress vector is now defined as

σ =
{
σrr σzz σθθ σrz σrθ σzθ

}T
= C?ε =

=
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


ε

(5.19)

However, by re-defining the load and displacement components through Fourier series,
this problem can still be solved as a quasi-bidimensional problem (see for example [159,
165]).

5.2.2 Implementation aspects

In this section, a possible finite element implementation of the stress-based Ru-Aifantis
theory described in §3.2.2 is proposed for the analysis of axisymmetric solids subject to
both axisymmetric and non-axisymmetric loads.

5.2.2.1 Axisymmetric loads

The index notation used in §3.2.2 is valid in Cartesian coordinates, while axisymmetric
problems are usually addressed in cylindrical coordinates as in the following of the present
section. Therefore, in order to derive the finite element equations for axisymmetric prob-
lems unambiguously, we will now depart from the index notation used in §3.2.2, adopting
a matrix-vector notation. Furthermore, two potential energy functionals, one for each of
the two steps of the Ru-Aifantis theory, have been defined as follows

W1 =

∫
Ω

1

2
εcTCεc dΩ−

∫
Ω

ucTb dΩ−
∫

Γn

ucT t dΓn (5.20)

for the first step and
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W2 =

∫
Ω

1

2

[
σgTSσg + `2

(
∂σgT

∂r
S
∂σg

∂r
+
∂σgT

∂z
S
∂σg

∂z

)]
dΩ−

∫
Ω

σgTεc dΩ (5.21)

for the second, where εc is the local strain vector, C is the constitutive matrix, defined in
Eq. (5.16), S = C−1 is the compliance matrix, t is the vector of the prescribed traction
on the free portion Γn of the boundary.

Imposing the stationarity of the first functional, that is δW1 = 0, the usual global
system of standard elasticity equations is obtained:

Kdc − f = 0 (5.22)

where f =
∫

Ω
NT
ub dΩ +

∫
Γn

NT
u t dΓn the force vector.

Repeating the same procedure for the second functional W2 leads to

∫
Ω

NT
σNσ + `2

(
∂NT

σ

∂r

∂Nσ

∂r
+
∂NT

σ

∂z

∂Nσ

∂z

)
dΩ sg =

∫
Ω

NT
σCBu dΩ dc (5.23)

where Nσ is an expanded version of the shape function matrix Nu given in Eq. (5.2), in
order to accommodate all four non-local stress components, so that σg = Nσs

g.
Next, solving Eq. (5.22) for dc, and using the result as source term in Eq. (5.23), the

nodal values of the gradient-enriched stresses sg can be easily obtained.

5.2.2.2 Non-axisymmetric loads

The finite element equations for the case of axisymmetric solids subject to non-axisymmetric
loads can be determined by following the same process described in § 5.2.2.1. Regarding
the first step of the Ru-Aifantis theory, the functional defined by Eq.(5.20) can be consid-
ered by taking into account that now the constitutive matrix is C? defined in Eq. (5.19)
and the displacements (including now also the circumferential component) are described
by means of Fourier series as

uc =
m∑
h=0

Θs
hNud

c,s
h +

m∑
h=0

Θa
hNud

c,a
h (5.24)

with

Θs
h =


cos(hθ) 0 0

0 cos(hθ) 0

0 0 sin(hθ)

 and Θa
h =


sin(hθ) 0 0

0 sin(hθ) 0

0 0 cos(hθ)

 (5.25)
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where h is the order of the harmonic, while the superscripts s and a indicate, respectively,
the symmetric and anti-symmetric components of the displacements (and of the loads)
with respect to the θ = 0 axis.

The local strains are defined as follows

εc =



εcrr

εczz

εcθθ

εcrz

εcrθ

εczθ


= Luc =



∂
∂r

0 0

0 ∂
∂z

0

1
r

0 1
r
∂
∂θ

∂
∂z

∂
∂r

0

1
r
∂
∂θ

0 ∂
∂r
− 1

r

0 1
r
∂
∂θ

∂
∂z




ucr

ucz

ucθ

 (5.26)

and substituting Eq. (5.24) into Eq. (5.26)

εc =
m∑
h=0

Bs
u,hd

c,s
h +

m∑
h=0

Ba
u,hd

c,a
h (5.27)

where Bs
u,h = LΘs

hNu and Ba
u,h = LΘa

hNu are the two strain-displacement matrices for
symmetric and antisymmetric displacements/loads, respectively.

After these considerations, the first step of the Ru-Aifantis theory still consists in Eq.
(5.22), with the difference that now also the nodal forces are expressed in terms of Fourier
series as

f =


fr

fz

fθ

 =



m∑
h=0

f sr,h cos(hθ) +
m∑
h=0

far,h sin(hθ)

m∑
h=0

f sz,h cos(hθ) +
m∑
h=0

faz,h sin(hθ)

m∑
h=0

f sθ,h sin(hθ) +
m∑
h=0

faθ,h cos(hθ)


(5.28)

and the stiffness matrix is defined as

K =
m∑
h=0

m∑
l=0

khl (5.29)

where khl is the stiffness contribution of the hth and lth harmonics, given by
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khl =

∫
V

BT
u,hC

?Bu,ldV =

∫
V

[
BsT
u,h

BaT
u,h

]
C?
[
Bs
u,l Ba

u,l

]
dV =

=

∫
V

[
BsT
u,hC

?Bs
u,l BsT

u,hC
?Ba

u,l

BaT
u,hC

?Bs
u,l BaT

u,hC
?Ba

u,l

]
dV

(5.30)

Considering that dV = rdrdzdθ = rdθdA, it can be easily demonstrated that

∫
A

2π∫
0

BsT
u,hC

?Ba
u,l rdθdA =

∫
A

2π∫
0

BaT
u,hC

?Bs
u,l rdθdA = [0] (5.31)

which means that the symmetric and anti-symmetric terms are decoupled, as it should
be, given the orthogonality of the Fourier series. Furthermore, it can also be proven that

∫
A

2π∫
0

BsT
u,hC

?Bs
u,l rdθdA =

∫
A

2π∫
0

BaT
u,hC

?Ba
u,l rdθdA = [0] when h 6= l (5.32)

Hence, the off-diagonal terms of the global stiffness matrix K are all null and each har-
monic can be treated separately, allowing application of the principle of superposition to
determine the final result.

In what concerns the second step of the Ru-Aifantis theory, considering for simplicity
only the symmetric components, defining the following functional

W̃2 =

∫
V

1

2

{(
Θs
σ,hσ

g,s
h

)T
S?
(
Θs
σ,hσ

g,s
h

)
+

+ `2

[(
Θs
σ,h

∂σg,sh
∂r

)T
S?
(

Θs
σ,h

∂σg,sh
∂r

)
+

(
Θs
σ,h

∂σg,sh
∂z

)T
S?
(

Θs
σ,h

∂σg,sh
∂z

)
+

+
1

r

∂

∂θ

(
Θs
σ,hσ

g,s
h

)T
S?

1

r

∂

∂θ

(
Θs
σ,hσ

g,s
h

)]}
dV −

∫
V

(
Θs
σ,hσ

g,s
h

)T
εc,sh dV

(5.33)

where S? = C?−1, while Θs
σ,h is defined as (see for example [159])
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Θs
σ,h =



cos(hθ) 0 0 0 0 0

0 cos(hθ) 0 0 0 0

0 0 cos(hθ) 0 0 0

0 0 0 cos(hθ) 0 0

0 0 0 0 sin(hθ) 0

0 0 0 0 0 sin(hθ)


(5.34)

and imposing the stationarity of W̃2, that is δW̃2 = 0, the following solving system of
equations is obtained

∫
V

[
NT
σΘsT

σ,hΘ
s
σ,hNσ + `2

(
∂NT

σ

∂r
ΘsT
σ,hΘ

s
σ,h

∂Nσ

∂r
+
∂NT

σ

∂z
ΘsT
σ,hΘ

s
σ,h

∂Nσ

∂z
+

+
1

r2
NT
σ

∂ΘsT
σ,h

∂θ

∂Θs
σ,h

∂θ
Nσ

)]
dV sg,sh =

∫
V

NT
σΘsT

σ,hC
?Bs

u,hdV dc,sh

(5.35)

which can be numerically solved for the non-local stress sg,sh . The same system must also
be solved for the anti-symmetric components (if needed). Finally, once the solutions for
all the necessary harmonics are calculated, the global solution can be determined through
superposition of the effects.

5.3 Three-dimensional problems

The displacements field in a three-dimensional problem is fully defined by the displacement
components ux, uy and uz in the three Cartesian directions x, y and z, respectively. The

continuum displacements u = [ux, uy, uz]
T can be discretised and expressed in terms of the

nodal displacements d = [d1x, d1y, d1z, d2x, d2y, , d2z . . . ]
T , as previously described in §5.1,

through the usual shape functions Ni (see for instance [164]), collected in the following
matrix:

Nu =

 N1 0 0 N2 0 0 . . .

0 N1 0 0 N2 0 . . .

0 0 N1 0 0 N2 . . .

 (5.36)

The nodal local displacements dc can be determined by solving Eq. (5.7), where now
the constitutive matrix C takes the same form of C? in Eq. (5.19), while the derivative
operator L is defined as
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L =


∂
∂x

0 0 ∂
∂y

∂
∂z

0

0 ∂
∂y

0 ∂
∂x

0 ∂
∂z

0 0 ∂
∂z

0 ∂
∂x

∂
∂y


T

(5.37)

The nodal non-local stresses sg, instead, can be determined, knowing the local dis-
placements dc from the previous step, by solving the following second set of equations
(second step):

∫
Ω

[
NT
σNσ + `2

(
∂NT

σ

∂x

∂Nσ

∂x
+
∂NT

σ

∂y

∂Nσ

∂y
+
∂NT

σ

∂z

∂Nσ

∂z

)]
dΩ sg =

=

∫
Ω

NT
σCBudΩ dc

(5.38)

obtained by following the same procedure used in §5.1 to derive Eq. (5.12), where the
derivative operator ∇ is now defined as

∇ =
{
∂
∂x

∂
∂y

∂
∂z

}T
(5.39)

In Eq. (5.38) the boundary integral has been dropped for the same reasons pointed
out in §5.1.

5.4 Numerical integration

To solve the two steps of the Ru-Aifantis theory, the Gauss quadrature rule has been
adopted.

Since the first step of the Ru-Aifantis theory consists in the solution of the second-order
p.d.e. of classical elasticity (5.7), for the numerical integration of the stiffness matrix K,
the usual number of integration points is used for each kind of implemented elements, as
summarised in Table 5.1. It is noted that for the bi-quadratic serendipity quadrilateral and
the tri-quadratic serendipity brick elements, under-integration is adopted. This allowed
to save computational time as well as avoid potential stiffer behaviour of the elements
(sometimes occurring in fully-integrated elements).

At this point, the most interesting aspect to investigate is the integration rule to
use in the second step of the Ru-Aifantis theory and, in particular, for the numerical
solution of the integral in the left side of Eqs. (5.12), (5.23), (5.35) and (5.38). From the
implementational and computational point of view, the most desirable solution would be
to use the same integration rule used in the first step of the Ru-Aifantis theory.
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Table 5.1. Number of Gauss points used in the first step of the Ru-Aifantis theory.

Problem Element type Order Gauss Points

Plane stress/strain Triangles Linear 1
Quadratic 3

Quadrilaterals Bi-linear 2× 2
Bi-quadratic 2× 2

Axisymmetric Triangles Linear 1
Quadratic 3

Quadrilaterals Bi-linear 2× 2
Bi-quadratic 2× 2

Three-dimensional Tetrahedrons Linear 1
Quadratic 4

Bricks Tri-linear 2× 2× 2
Tri-quadratic 2× 2× 2

However, the applicability of such a solution is not obvious and would need to be
demonstrated. In fact, while for the first step of the Ru-Aifantis theory the order of the
stiffness matrix (which has to be integrated) is two times the order of the derivative of the
shape functions, in the second step the order of the integrand part (of the term in the left
side of Eqs. (5.12), (5.23), (5.35) and (5.38)) is two times the order of the shape functions
themselves; this means that for exact integration, higher order integration rules are needed
as listed in Table 5.2. Hence, in other words, the problem is to prove if it is possible to
under-integrate (i.e. use integration rules with a lower order than that necessary for the
exact integration) the left part of Eqs. (5.12), (5.23), (5.35) and (5.38) for both ` = 0 and
` 6= 0. Unfortunately, this is not always possible, as described afterwards.

The investigation has been carried out through a study of the eigenvalues of the
matrix M + `2F when ` 6= 0 and, obviously, of matrix M on its own when ` = 0, where
M =

∫
Ω

NT
σNσ dΩ is the first matrix term of the left integral in Eqs. (5.12), (5.23),

(5.35) and (5.38) similar to a mass matrix, while F is the second matrix term similar to
a diffusivity matrix. In particular, to avoid rank deficiencies all the eigenvalues must be
non-zero, which means that zero energy modes are not admitted.

From the performed studies it turned out that, when ` = 0, it is possible to use the
same integration rule only for the linear quadrilateral, tetrahedron and brick elements,
while for the other five types of elements higher order integration rules are needed (the
minimum number of integration points according to stability is given in Tab. 5.2, for each
kind of element). On the contrary, for ` 6= 0, thanks to the contribution of the matrix
F, it is possible to use the same integration rule, used in the first step, for every type of
finite element.
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Table 5.2. Number of Gauss points formally required in the second step of the Ru-Aifantis
theory.

Problem Element type Order Gauss Points

Plane stress/strain Triangles Linear 3
Quadratic 6 (degree of precision 4)

Quadrilaterals Bi-linear 2× 2
Bi-quadratic 3× 3

Axisymmetric Triangles Linear 3
Quadratic 6 (degree of precision 4)

Quadrilaterals Bi-linear 2× 2
Bi-quadratic 3× 3

Three-dimensional Tetrahedrons Linear 1
Quadratic 11

Bricks Tri-linear 2× 2× 2
Tri-quadratic 3× 3× 3

5.4.1 Shear locking

As well known, in the case of bending-dominant problems, especially for fully integrated
linear elements, the numerical solution of the problem can be affected by shear locking,
leading to an unphysically stiffer behaviour of the analysed component. To check the
occurrence of this phenomenon, the proposed methodology has been applied to model a
classical bending problem. The results of the aforementioned analysis have shown that
the numerical solution of the second step of the Ru-Aifantis theory is not affected by
locking effects, even in the case of fully integrated linear elements, while the usual selective
integration rules (for example under-integrating the part of the stiffness matrix related
to the shear strain and fully-integrating the part related to the normal strain) may be
applied for the first step (Eq. (5.7)).

5.4.2 Axisymmetric benchmark problem – Internally pressurised
hollow cylinder

The problem of a thick-walled hollow cylinder of inner radius a = 0.5 m, outer radius
b = 1.5 m and length L = 8 m, subject to an internal pressure pi = 10 MPa (Fig. 5.2) is
considered. The material is characterised by a Young’s modulus E = 1000 MPa, Poisson’s
ratio ν = 0.25 and the length scale ` = 0.1 m. In what concerns the boundary conditions,
for the first step (Eq. 5.22) the cylinder is simply supported in the axial direction at
both ends (Fig. 5.2), while for the second step (Eq. 5.23) homogeneous natural boundary
conditions are taken throughout, since, as also described in [14], this choice is the most
widely accepted amongst the scientific community when dealing with gradient elasticity.
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Fig. 5.2. Benchmark problem: geometry and boundary conditions.

For symmetry of the cylinder with respect to a plane normal to the z-axis only half of
the cross-section has been modelled using 16× 64 bi-linear and bi-quadratic quadrilateral
elements, or twice as many linear and quadratic triangular elements (note that for triangu-
lar elements the meshes are obtained by subdividing each quadrilateral in two triangles).
Since the displacements determined according to the proposed methodology correspond
to the classical elastic displacements, the numerical solution for the displacements has
been compared with the following analytical solution of classical elasticity known from
the literature [155]:

ur =
pia

2r

E (b2 − a2)

[
(1− 2ν)(1 + ν) +

(1 + ν)b2

r2

]
(5.40)

From Fig. 5.3 it can be observed that the numerical estimation of the radial displace-
ments ur (obtained by using bi-quadratic quadrilateral elements) perfectly matches the
corresponding analytical counterpart. Similar results have also been obtained with all the
other implemented elements.

Regarding the stresses, instead, the gradient-enriched stress fields numerically obtained
by applying the developed methodology must be compared to suitable gradient-enriched
analytical solutions. After a thorough literature review, the analytical solution proposed
by Gao and Park [58] was chosen as reference solution, since it was the only one addressing
the considered problem in a similar fashion as the proposed methodology. However, this
choice presents some limitations. In particular, the analytical solution proposed by Gao
and Park [58] is obtained through a displacement-based formulation, while the method-
ology presented in §5.2 is stress-based, this leading to different boundary conditions. In
particular, the displacement-based formulation used by Gao and Park [58] requires just
two higher-order boundary conditions (in particular they set homogeneous natural bound-
ary conditions of the radial stress at the inner and outer surfaces) while the stress-based
methodology proposed in §5.2 requires a larger number of higer-order boundary condi-
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tions (homogeneous natural boundary conditions of all the stress components at the inner
and outer surfaces have been taken). Furthermore, while in the proposed methodology
the stress components are de-coupled, in the analytical solution proposed by Gao and
Park [58] the stress components are coupled.

The aforementioned differences between the proposed methodology and the analytical
solution obtained by Gao and Park will lead to both qualitative and quantitative differ-
ences of the stress profiles. In particular, from Fig. 5.3 it can be observed that both the
numerical σgθθ and σgzz stress profiles present qualitative differences at the boundaries and
only quantitative differences inside the domain if compared to their analytical counter-
parts. This is mainly due to the different applied boundary conditions. Moreover, it can
be easily explained why σgzz obtained by applying the proposed methodology should be
constant. To do so, let us consider first the exact stress solutions of classical elasticity
known from the literature [155]:

σrr =
pia

2

b2 − a2

(
1− b2

r2

)
, σθθ =

pia
2

b2 − a2

(
1 +

b2

r2

)
, σzz = 2ν

pia
2

b2 − a2
(5.41)

In particular, it can be observed that σzz is constant along the radial coordinate and
therefore, due to the way the proposed methodology post-processes the stress fields,
the longitudinal stress component is not affected by any gradient enrichment, leading
to σgzz = σzz = const.

Only quantitative differences can be seen, instead, in the radial stress component.
This is mainly due to the fact that, as mentioned above, while in the analytical solution
proposed by Gao and Park the stress components are coupled, in the proposed method-
ology the stress components are de-coupled.

The fact that the results produced by the proposed methodology presents qualitative
differences respect to Gao and Park’s solution only at the boundaries (where different
conditions are imposed), while inside the domain the differences are only quantitative
and reasonably small, give confidence about the validity of the proposed methodology.

However, due to the aforementioned differences (although justified), the analytical
solution proposed by Gao and Park cannot be used as benchmark solution for the con-
vergence study performed in the following section where the reference solution will in-
stead be approximated through second-order Richardson’s extrapolation (see Appendix A
and [107]). At this point it is worth highlighting that, in general, convergence towards a
solution determined through Richardson’s extrapolation does not necessarily mean that
the numerical solution converges to the correct solution. However, since as previously dis-
cussed the comparison of the numerical solution produced by the proposed methodology
with the analytical solution proposed by Gao and Park give confidence about the validity
of the proposed methodology it is possible to reasonably assume that convergence to the
right solution occurs.
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Fig. 5.3. Comparison between the numerical solutions obtained with bi-quadratic quadrilateral
elements and their correspondent analytical counterparts. Similar results have also been obtained
with all the other implemented elements.
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5.5 Error estimation and convergence study

Now that the most suitable integration rules have been identified for each kind of finite
element, the attention can be focused on the error estimation of the new methodology. In
particular the convergence rate of the different finite elements has been studied for some
simple problems.

To determine the convergence rate, the L2-norm error defined as

‖e‖2 =
‖σe − σc‖
‖σe‖

(5.42)

where σe and σc are, respectively, the exact and calculated values of the stresses, has been
plotted against the number of degrees of freedom (nDoF).

From the theory [164] it is well known that the error on displacements is proportional
to the nDoF as

eu ' O(nDoF)−
p+1

k = O(nDoF)cr (5.43)

where p is the polynomial order and k = 2, 3 for 2D and 3D problems, respectively.
In what concerns the stresses, in the proposed methodology they are calculated from

Eq. (5.12), (5.23),(5.35) or (5.38) as primary variable, instead of secondary variable as it
happens in standard finite element methodologies, based on classical elasticity. For this
reason, the error in the stresses is still proportional to the nDoF, but with a different
rate respect to classical elasticity. In particular, for a Helmholtz equation like Eqs. (5.12),
(5.23),(5.35) and (5.38), the proportionality is given by [76]:

eσ ' O(nDoF)−
p+1

k = O(nDoF)cr (5.44)

From Eqs. (5.43) and (5.44), it is clear that the ‖e‖2 – nDoF curve in a bi-logarithmic
system of axes is a straight line, whose slope represents the convergence rate cr of the
numerical solution to the exact solution. The theoretical convergence rates are summarised
in Table 5.3.

5.5.1 Plane elements – Internally pressurised hollow cylinder

To test the convergence rate of the bi-dimensional elements, a problem similar to the
one considered in §5.4.2 has been analysed (see Fig. 5.4 for geometry and loading condi-
tions). The geometrical and material parameters of the problem are b = 4 m, a = 1 m,
E = 1000 MPa, ν = 0.25 and ` = 0.1 m. An internal pressure pi = 10 MPa is applied.

Due to the symmetry of the problem only a quarter of the vessel has been modelled.
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Table 5.3. Theoretical convergence rates in the determination of the displacements (cr) and
stresses (cr).

Problem Order cr cr

Two-dimensional Linear -1 -1
(plane stress/strain and axisymmetric) Quadratic -3/2 -3/2

Three-dimensional Linear -2/3 -2/3
Quadratic -1 -1

Fig. 5.4. Cylinder subject to an internal pressure: geometry and loading conditions.
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Fig. 5.5. Cylinder subject to an internal pressure: employed meshes for linear (top-left) and
quadratic (bottom-left) triangular elements, bi-linear (top-right) and bi-quadratic (bottom-
right) quadrilateral elements.

The domain has been modelled with all four types of implemented 2D finite elements,
starting from a coarse mesh of 8× 8 elements and performing then a mesh refinement by
doubling the number of elements along each side until a mesh of 256 × 256 elements is
obtained. All the employed meshes are shown in Fig. 5.5.

The boundary conditions accompanying Eq. (5.7) are taken as homogeneous essential
so that the circumferential displacements uθ are null along the two axes of symmetry,
while those associated to Eq. (5.12) are chosen as homogeneous natural throughout, that
is n · ∇σg = 0.

To define the error, the numerical solutions obtained using the new methodology have
been compared with the reference solution approximated using second-order Richardson’s
extrapolation (see Appendix A and [107]).

In Fig. 5.6 the convergence behaviour of all the implemented bi-dimensional elements
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Fig. 5.6. Cylinder subject to an internal pressure: displacements error (left) and stresses error
(right) versus number of Degrees of Freedom. The slope of the straight lines represent the
convergence rate of the numerical solution to the exact solution.

is shown, for both displacements and stresses. It can be seen that the numerically ob-
tained convergence rates are in good agreement with the theoretical predictions given in
Table 5.3.

5.5.2 Plane elements – Cross-shape specimen

The second problem is the case of a cross-shape specimen subject to a uniform tensile
state at the end of the arms as shown in Fig. 5.7. The geometrical and material param-
eters of the problem are R = 1 m, L = 2 m, E = 1000 MPa, ν = 0.25 and ` = 0.1 m.
Distributed loads qx = qy = 1000 N/m are applied at the end of the arms.

Also in this case, for symmetry reasons, only a quarter of the specimens has been
modelled using all the different types of implemented finite elements, starting also in this
case with a coarse mesh as shown in Fig. 5.8. Afterwords, a mesh refinement has been
performed, running four other meshes obtained by doubling the number of element, in
both radial and circumferential directions, of the previous one.

The boundary conditions accompanying Eq. (5.7) are taken as homogeneous essential
so that the displacements in x-direction ux and in y-direction uy are null along the vertical
and horizontal axes of symmetry, respectively. In what concerns Eq. (5.12), instead, the
boundary conditions are chosen as homogeneous natural throughout, like in the previous
example.

To define the error, the numerical solutions obtained using the new methodology have
been compared with the reference solution obtained by applying second-order Richard-
sons extrapolation.

Fig. 5.9 shows the convergence behaviour of all the implemented bi-dimensional ele-
ments in the determination of both displacements and stresses. Again, this is in line with
the theoretical predictions.



5.5. ERROR ESTIMATION AND CONVERGENCE STUDY 107

Fig. 5.7. Cross-shape specimen: geometry and loading conditions.

5.5.3 Axisymmetric elements

Regarding the case of axisymmetric solids subject to axisymmetric loads, the thick-walled
hollow cylinder problem presented in §5.4 has been considered. The domain has been mod-
elled by using all the implemented elements , starting from a 4×16 mesh and refining the
mesh, by doubling the number of elements in both directions 4 times, up to a 64 × 256
mesh. The length parameter has been chosen as ` = 0.1 m.

Regarding the case of axisymmetric solids subject to non-axisymmetric loads, two dif-
ferent problems have been considered. The first one consists of a cylindrical bar of radius
R = 1 m and length L = 8 m, subject to a bending moment M = 106 Nm (Fig. 5.10 left);
while the second one consists of the same cylinder subject now to a torsional moment
T = 106 Nm (Fig. 5.10 right). In both cases, Young’s modulus E = 1000 MPa, Poisson’s
ratio ν = 0.25 and the length scale has been set as ` = 0.1 m.

For symmetry of the cylinder respect to a plane normal to the z-axis, in both cases,
only half of the cross-section has been modelled (Fig. 5.10). Also in this case all the im-
plemented elements have been used to discretise the domain, starting from a 4× 16 mesh
and performing the same mesh refinement described in the case of axisymmetric loads. In
what concerns the boundary conditions, in both problems, for the first step (Eq. (5.22)
with K defined by Eq. (5.29)), homogeneous essential boundary conditions have been im-
posed, so that uz = 0 (bending problem) and uz = uθ = 0 (torsional problem) along the
axis of symmetry (Fig. 5.10); while for the second step (Eq. (5.35)) homogeneous natural
boundary conditions have been chosen, as in the previous cases.

Also in this case, the error has been defined by comparing the numerical solution
obtained using the proposed methodology with the reference solution obtained through
second-order Richardson’s extrapolation.



108 CHAPTER 5. FINITE ELEMENT IMPLEMENTATION

Fig. 5.8. Cross-shape specimen: employed meshes for linear (top-left) and quadratic (bottom-
left) triangular elements, bi-linear (top-right) and bi-quadratic (bottom-right) quadrilateral el-
ements.
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Fig. 5.9. Cross-shape specimen: displacements error (left) and stresses error (right) versus
number of Degrees of Freedom. The slope of the straight lines represent the convergence rate.

Fig. 5.10. Cylindrical bars under pure bending (left) and pure torsion (right): geometry and
boundary conditions.

In Fig. 5.11 the L2-norm error is plotted against the nDoF in a bi-logarithmic system
for the three analysed problems, which shows that all the implemented elements pro-
duce numerical solutions characterised by convergence rates in good agreement with the
theoretical predictions also when applied to any kind of axisymmetric problem.

5.5.4 Three-dimensional elements – Internally pressurised hol-
low sphere

In what concerns the convergence rate of the three-dimensional elements, the problem of
a sphere subject to an internal pressure pi shown in Fig. 5.12 has been studied. The geo-
metrical and material parameters of the problem are b = 1 m, a = 0.5 m, E = 1000 MPa,
ν = 0.25 and ` = 0.1 m. An internal pressure pi = 10 MPa is applied.

Due to the symmetry of the problem only an eighth of the sphere has been modelled.
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Fig. 5.11. Stress error versus nDoF for plain cylindrical bars subject to uniaxial tensile
load (left), pure bending (centre) and pure torsion (right), modelled with under-integrated bi-
quadratic quadrilateral elements. The slope of the lines represents the convergence rate.

Fig. 5.12. Hollow sphere subject to an internal pressure: geometry and loading conditions (left),
initial mesh (right).

The domain has been modelled with all four types of implemented 3D finite elements,
starting from a coarse mesh, as shown in Fig. 5.12 for the tri-linear brick elements, and
performing then a uniform mesh refinement.

The boundary conditions related to Eq. (5.7) are taken as homogeneous essential so
that the circumferential displacements are null on the three planes of symmetry, while in
what concerns Eq. (5.38) they are chosen as homogeneous natural throughout, like in the
previous examples.

To define the error, the numerical solutions obtained using the new methodology
have again been compared with the reference solution obtained by applying second-order
Richardsons extrapolation.

Fig. 5.13 shows the convergence behaviour of all the implemented three-dimensional
elements in the determination of both displacements and stresses. It can be observed
that, overall, the numerical solutions converge to the associated exact solutions as the-
oretically expected, except for the quadratic tetrahedrons and the tri-quadratic bricks,
which appear to be slightly slower than theoretically predicted, in the determination of
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Fig. 5.13. Hollow sphere subject to an internal pressure: displacements error (left) and stresses
error (right) versus number of Degrees of Freedom. The slope of the straight lines represent the
convergence rate of the numerical solution to the exact solution.

the displacements.

5.6 Convergence in the presence of cracks

As mentioned in Chapter 3 one of the features of gradient elasticity is the ability to remove
singularities from the stress and strain fields as those emerging in correspondence of crack
tips. Problems characterised by the presence of cracks represent the most demanding case
from the convergence point of view and, as a consequence of this, also in terms of element
size in the vicinity of the crack tip. Hence, the study of the convergence behaviour of
the implemented gradient-enriched finite elements in the presence of cracks is of prime
importance.

The mode I fracture problem shown in Fig. 5.14 and presented in [14] has been anal-
ysed, using all the four implemented two-dimensional elements. The geometrical and ma-
terial parameters of the problem are L = 1 mm, E = 1000 MPa, ν = 0.25 and ` = 0.1 mm.
Prescribed displacements u = 0.01 mm are applied at the top and bottom edges. Due to
the symmetry only the top-right quarter has been modelled, with 4 × 4, 8 × 8, 16 × 16,
32×32 and 64×64 bi-linear and bi-quadratic quadrilateral elements and with the double
of linear and quadratic triangular elements (where the triangular mesh is obtained by
subdividing each quadrilateral element into two triangles).

Two different options are considered for the boundary conditions accompanying Eq.
(5.12):

• Option 1: essential, that is the non-local stress components are prescribed so that
σg = σc on free boundaries. In the present example: σgxx = 0 on the vertical edges,
σgyy = 0 on the face of the crack and σgxy = 0 everywhere.

• Option 2: homogeneous natural throughout, that is n · ∇σg = 0.
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Fig. 5.14. Mode I fracture problem: geometry and boundary conditions. The crack is represented
by the solid line.

To determine the convergence rate, the L2-norm error defined in §5.5 has been plotted
against the number of degrees of freedom (nDoF), as shown in Fig. 5.15.

From the theory [164] it is well known that in problems with singularities the error on
classical stresses is proportional to the nDoF as

eσ ' O(nDoF)−[min(λ,p)]/2 = O(nDoF)c̃r (5.45)

where λ = 0.5 for a nearly closed crack.
From Eq. (5.45), it is clear that the ‖e‖2 – nDoF curve in a bi-logarithmic system of

axes is still a straight line, whose slope represents the convergence rate c̃r of the numerical
solution to the exact solution, which in this case is c̃r = 0.25 for both linear and quadratic
elements.

To define the error, the numerical solutions obtained using the new methodology have
been compared with the reference solution approximated using second-order Richardson’s
extrapolation.

Fig. 5.15 shows that, in presence of singularities, both linear and quadratic elements
are characterised by approximatively the same convergence rate (in accordance with
Eq. (5.45)), but higher than the correspondent theoretical value defined in Eq. (5.45),
for what concerns the determination of the stresses. This higher convergence rate is due
to two main causes:

• removal of singularities from the numerical solution;

• gradient-enriched stresses calculated as primary variables, instead of secondary vari-
ables (as in standard classical elasticity-based finite element methodologies).
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Fig. 5.15. Mode I fracture problem: stresses error versus number of Degrees of Freedom for the
first (left) and the second (right) option of boundary conditions. The slope of the straight lines
represent the convergence rate of the numerical solution to the reference solution.

Furthermore, it can be observed that, while the application of the second option of the
boundary conditions leads to a uniform convergence rate equal to about 0.8, adopting
the first option all the elements are characterised by an initial convergence rate of about
0.3, reaching the same convergence rate obtained using the option 2 only for more refined
meshes.

In order to analyse the aforementioned aspects also for axisymmetric elements, three
different problems (Fig. 5.16) consisting of a cylindrical bar characterised by the presence
of a circumferential crack and subject, respectively, to axial load F = 106 N (axisymmet-
ric), bending moment M = 106 Nm and torque T = 106 Nm (non-axisymmetric loads)
have been studied. The cylinder has a radius R = 1 m, a length L = 8 m and the crack is
0.25 m deep. Material properties, boundary conditions and meshes are taken as in §5.5.3.

From Fig. 5.17 it is clear that also in the case of axisymmetric problems, when
singularities are involved, both linear and quadratic elements show approximatively the
same convergence rate in accordance with Eq. (5.45). Furthermore, the proposed gradient-
enriched methodology produces a significant improvement in terms of convergence rate;
in particular the solutions of the three analysed problems are all characterised by a con-
vergence rate almost three times higher than the corresponding theoretical value (typical
of standard finite element methodology based on classical elasticity). This higher conver-
gence rate can be ascribed to the same previously described factors.

Since, as mentioned before, the case of a sharp crack represents the most demanding
problem in terms of convergence, it is now possible to provide recommendations on opti-
mal element size. In particular, in Table 5.4 the ratio between the element size and the
length scale `, necessary to guarantee an error of about 5% or lower, is summarised for
the different elements.

The recommendations provided in Table 5.4 have a very important meaning from the
commercial point of view, because they show that, applying the proposed methodology,
a relatively coarse mesh is enough to obtain a solution affected by an acceptable error,
with evident benefits in terms of computational cost.
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Fig. 5.16. Cracked cylindrical bars under uniaxial tensile load (left), pure bending (centre) and
pure torsion (right).

Fig. 5.17. Stress error versus nDoF for cracked cylindrical bars subject to uniaxial tensile
load (left), pure bending (centre) and pure torsion (right), modelled with under-integrated bi-
quadratic quadrilateral elements. The slope of the lines represents the convergence rate.

Table 5.4. Recommended optimal element size to guarantee an error of 5% or lower.

Boundary Conditions Elements Order Element size/`

Option 1 (essential b.c.) Triangles Linear 1/3
Quadratic 1/4

Quadrilaterals Bi-linear 1/3
Bi-quadratic 1/3

Option 2 (natural b.c.) Triangles Linear 1
Quadratic 5/2

Quadrilaterals Bi-linear 3/2
Bi-quadratic 5/2
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5.7 Removal of singularities

Once the new methodology was fully implemented, it has been applied to plane, axisym-
metric and three-dimensional problems, in order to show the ability of the methodology
in removing singularities.

5.7.1 Mode I fracture

The mode I fracture problem described in §5.6 has been analysed, using all the four im-
plemented two-dimensional elements, in order to check the quality of the results.

In Fig. 5.18 σxx and σyy profiles along the x-axis, obtained applying both the options
on the boundaries conditions described in §5.6, are plotted and compared. It can be seen
that the application of the different boundary conditions produces almost no variations
for σxx and moderate effects on σyy in terms of maximum values. To explain this, it must
be realised that along the face of the crack (y = 0), no boundary conditions are applied
on σgxx in both Option 1 and 2; σgyy, instead, is forced to be null in Option 1, while it is
left free in Option 2. At this point it is worth reminding that, in the proposed method-
ology, gradient enriched stresses are not determined by solving equilibrium equations but
reaction-diffusivity equations (5.8) and therefore they are not meant to be equilibrated.
Furthermore, as already discussed at the end of §5.1, the boundary conditions accompany-
ing the proposed methodology cannot exactly replicate those accompanying the original
fourth-order Aifantis theory (Eqs. (3.32) and (3.33)). At the light of these aspects, both
Option 1 and Option 2 are appropriate. However, while Option 2 represents the most
convenient choice for the boundary conditions, Option 1 by equilibrating the non-local
stresses with externally applied tractions (σgyy are forced to be zero on the crack faces)
produces more realistic and easy to interpret results.
The aforementioned differences can be also observed from the stress fields reported in
Figs. 5.19, 5.20, 5.21 and 5.22 (top and middle rows). From the bottom row of the same
figures, instead, it can be noticed that also the non-local shear stress σgxy is affected by
the different options on the boundary conditions (in particular in the neighbourhood of
the crack), since Option 1 forces σgxy to be zero along the whole boundary, while σgxy is
free everywhere according to Option 2.

Comparing Figs. 5.19, 5.20, 5.21 and 5.22, it is also possible to observe that the
corresponding gradient-enriched stress fields obtained by using the different types of im-
plemented finite elements (under the same boundary conditions) match perfectly.

However, the most significant aspect is that, introducing a gradient enrichment, the
singularities in the stress field are removed. In fact, as shown in Fig. 5.23, applying classi-
cal elasticity the solution does not converge to a finite value upon mesh refinement and an
unbounded peak is detected at the crack tip, while by introducing a gradient enrichment
in the governing equations and refining the mesh, the solution converges towards a unique
and finite value.
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Fig. 5.18. Mode I fracture problem: comparison of the σxx (left) and σyy (right) values for
y = 0, obtained employing the different kind of finite elements and both the options for the
boundary conditions.

5.7.2 Cracked cylindrical bars

The singularity removal can be easily shown also for the axisymmetric elements by con-
sidering the problems presented in §5.6 and comparing the stress profiles obtained by
applying the proposed methodology with those produced by classical elasticity. Fig. 5.24,
in fact, shows that while the classical elastic stress fields are characterised by an un-
bounded peak in correspondence of the crack tip, the gradient-enriched ones converge to
a unique finite solution upon mesh refinement (the stress profiles presented in Fig. 5.24
were obtained by using bi-quadratic quadrilateral elements, similar results are produced
by all the other implemented elements).

5.7.3 Beams-column joint

Finally, in order to show the ability of the proposed methodology to remove the singulari-
ties also in three-dimensional problems, the problem shown in Fig. 5.25 has been studied.
The geometrical and material properties of the problem are L = 2.4 m, a = 0.4 m, E =
1000 MPa, ν = 0.25 and ` = 0.03 m. Prescribed surface distributed loads q = 105 N/m2

are applied at the free end of the two beams, while the column is fully restrained at its
base. The boundary conditions associated to Eq. (5.38) are chosen as homogeneous natural
throughout, that is n · ∇σg = 0. The domain has been modelled using 128 (Fig. 5.25),
1024, 8192 and 65536 linear brick elements.

In Fig. 5.26 the normal stress σxx and the shear stress σxy obtained by applying both
classical elasticity (` = 0.00 m) and gradient elasticity (` = 0.03 m) are plotted along a
vertical edge of the column (x = 0.4 m, y = 0.4 m, 0.0 m ≤ z ≤ 2.4 m, red solid line in
Fig. 5.25), while in Fig. 5.27 the normal stress σxx is plotted along the beam in y-direction
(x = 0.2 m, 0.0 m ≤ y ≤ 2.4 m, z = 2.0 m, red dashed line in Fig. 5.25).

Both figures clearly show the ability of the proposed methodology to remove singu-
larities from the stress fields. In fact while the use of classical elasticity leads to singular
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(a) (b)

(c)
(d)

(e) (f)

Fig. 5.19. Mode I fracture problem: surface plot of stress components σxx (top row), σyy (middle
row), σxy (bottom row), obtained using linear triangular elements with homogeneous natural (left
column) and homogeneous essential (right column) boundary conditions.
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(a) (b)

(c)
(d)

(e) (f)

Fig. 5.20. Mode I fracture problem: surface plot of stress components σxx (top row), σyy (mid-
dle row), σxy (bottom row), obtained using bi-linear quadrilateral elements with homogeneous
natural (left column) and homogeneous essential (right column) boundary conditions.
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(a) (b)

(c)
(d)

(e) (f)

Fig. 5.21. Mode I fracture problem: surface plot of stress components σxx (top row), σyy (middle
row), σxy (bottom row), obtained using quadratic triangular elements with homogeneous natural
(left column) and homogeneous essential (right column) boundary conditions.
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(a) (b)

(c)
(d)

(e) (f)

Fig. 5.22. Mode I fracture problem: surface plot of stress components σxx (top row), σyy (middle
row), σxy (bottom row), obtained using bi-quadratic quadrilateral elements with homogeneous
natural (left column) and homogeneous essential (right column) boundary conditions.
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Fig. 5.23. Mode I fracture problem: σyy profiles along x-axis obtained by applying classical
elasticity (left) and gradient elasticity (right) and the first option on the boundary condition,
upon mesh refinement.

solutions in correspondence of the stress concentrators, if a gradient enrichment is intro-
duced in the governing equations of the problem, the solutions are not singular anymore,
converging to a unique finite solution. Hence, the ability of the proposed methodology to
remove the singularities is confirmed also for three dimensional problems.

5.8 Conclusions

In this chapter a unified gradient-elastic FE methodology for plane, axisymmetric and
three-dimensional problems has been developed.

The proposed methodology has been applied to plane, axisymmetric and three-di-
mensional simple problems without singularities and it has been found that, overall, the
numerically obtained convergence rates are well in line with theoretical predictions. Fur-
thermore, in what concerns axisymmetric problems it has been found that, while for the
displacements all the implemented elements produce results coincident with the analytical
solution, for the stresses the numerical estimates differ from the analytical counterparts
proposed by Gao and Park [58]. These differences can be ascribed to the fact that while the
proposed methodology is a stress-gradient elastic methodology, the one used by Gao and
Park represents a displacement-based formulation, this leading in particular to different
higher-order boundary conditions and different relationship amongst the stress compo-
nents (while in the analytical solution proposed by Gao and Park the stress components
are coupled, in the developed methodology they are uncoupled).

The convergence rate of the proposed methodology has also been analysed in pres-
ence of singularities, showing that both linear and quadratic elements are characterised
by a convergence rate higher than the theoretical value typical of standard finite element
methodologies based on classical elasticity. The cause of this faster convergence has been
mainly attributed to two aspects:
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Fig. 5.24. Stress profiles obtained by applying classical (left) and gradient (right) elasticity, for
uniaxial tensile loading (top), pure bending (centre) and pure torsion (bottom).
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Fig. 5.25. Beams-column joint: geometry and loading conditions (top), coarsest mesh (bottom).
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Fig. 5.26. Beams-column joint: profiles of σxx (top row) and σxy (bottom row), along a column
vertical edge (x = 0.4 m, y = 0.4 m, 0.0 m ≤ z ≤ 2.4 m), for both classical (left column) and
gradient (right column) elasticity, over mesh refinement.

Fig. 5.27. Beams-column joint: profiles of σxx, along the beam in y-direction (x = 0.2 m,
0.0 m ≤ y ≤ 2.4 m, z = 2.0 m), for both classical (left column) and gradient (right column)
elasticity, over mesh refinement.



5.8. CONCLUSIONS 125

• the removal of singularities, characteristic of gradient elasticity theories;

• the non-local stresses determined as primary variables, instead of secondary variables
as in traditional finite element methodologies.

Moreover, a guideline on optimal element size have been suggested, highlighting that
relatively coarse meshes can produce sufficiently accurate solutions, with consequent ad-
vantages in terms of computational cost.

Finally, the ability of the proposed methodology to remove singularities from the stress
fields has been shown by analysing several plane, axisymmetric and three-dimensional
problems characterised by singularities.
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Chapter 6

Static and fatigue assessment of
notched components

6.1 Static assessment of notched components

The accurate evaluation of the static strength of notched components is not an easy
task since, as described in [137], the presence of stress risers can significantly affect the
failure behaviour of components subject to static loading. In particular, Susmel and co-
workers [137] found that components presenting sharp notches may show brittle failure
even if they are made of ductile materials.

The accuracy of the TCD in estimating the static strength of notched components has
been widely demonstrated in several works investigating a wide range of both notches and
materials (from brittle to ductile) [133, 135, 138, 147, 150]. However, the estimation of
the critical distance L through Eq. (2.76) requires the knowledge of the material inherent
strength σ0, which is not always feasible due to time and economic reasons, since it must
be obtained experimentally by testing specimens with notches of different sharpness (see
for example [88, 148]).

To overcome this problem, Louks and co-workers [88] proposed a simplified reformu-
lation of the TCD that has demonstrated to be a very accurate and practical tool for the
design of notched components subject to static loading. In particular, they hypothesised
that σ0 = σUTS for any material, from brittle to ductile, leading to the following definition
of the critical distance:

L∗ =
1

π

(
KIC

σUTS

)2

(6.1)

This definition, even if very similar to Eq. (2.76), presents the great advantage of requiring
the knowledge of KIC and σUTS that are typically provided by manufacturers, avoiding
the need to run expensive and time consuming experimental tests.

In this section, following the encouraging results presented by Louks and co-workers [88],
the gradient-enriched methodology developed in Chapter 5, where ` is estimated through
Eq. (4.2) but with L defined according to Eq. (6.1), is validated against a wide range of
experimental data found in the literature [33, 62, 63, 142]. In particular, both brittle and
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Table 6.1. Mechanical properties of the analysed materials.

Material Ref. E ν σUTS KIC L∗ `

[MPa] [MPa] [Nm−3/2] [mm] [mm]

PMMA (−60°C) [62, 63] 5050 0.40 128.4 1.7 0.056 0.020
Al-15%SiC [33] 82500 0.33 230 6.0 0.217 0.077
Ferritic-pearlitic steel (−40°C) [33] 203000 0.30 502 12.3 0.191 0.068
Martensitic steel [142] 203000 0.30 1482 6.1 0.005 0.002

metallic materials subject to Mode I and mixed-Mode I and II are analysed.

6.1.1 Validation through static experimental results

To assess the accuracy of the proposed gradient-enriched methodology in the estimation of
the static strength of notched components, several experimental results obtained by testing
notched plane specimens under different loading conditions have been analysed. In par-
ticular, Mode I loading conditions were obtained by testing double edge notch specimens
(DENS) under tensile loading [63] (Fig. 6.1a) and single edge notch specimens (SENS) un-
der three-point bending [33] (Fig. 6.1b). Mixed-Mode I and II loading conditions, instead
were reproduced by testing SENS under eccentric three-point bending [62, 142] (Figs. 6.1c
and d). As previously mentioned both brittle materials (polymethyl-metacrylate (PMMA)
at −60°C) and metals (Al-15%SiC, martensitic steel and ferritic-pearlitic steel at −40°C)
have been considered. In Table 6.1 the relevant mechanical properties of the considered
materials are listed, while Table 6.2 summarises the geometrical parameters of the anal-
ysed specimens as well as the various experimental static failure loads Fu used in the
present validation exercise.

The accuracy of the proposed methodology to estimate the static strength of notched
components was evaluated by calculating the following error:

ES[%] =
σgeff − σUTS

σUTS
· 100 (6.2)

where, σgeff is the gradient-enriched effective stress at the hot-spot on the surface of the
specimen. In particular, as suggested in [88], σgeff was considered equal to the first principal
stress, σ1, for brittle materials and to the von Mises equivalent stress, σVM , defined by
Eq. (2.6), for metallic materials.

It is important to note that, according to Eq. (6.2), positive errors correspond to
conservative evaluations of the static strength, while negative values of ES indicates non-
conservative estimates.

In what concerns Mode I loading, given the symmetry of the problem (Figs. 6.1a and
b) the gradient-enriched FE analyses were carried out by modelling only a quarter or half
of the samples, respectively for DENS and SENS specimens. On the contrary, the whole
domain had to be modelled for mixed-Mode I and II problems (Fig. 6.1c and d). Inde-
pendently of the analysed problem, instead, under-integrated bi-quadratic quadrilateral
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Table 6.2. Geometrical parameters and experimental static failure loads Fu.

Material Ref. Load Load W H B b a rn Fu
Mode type(a) [mm] [mm] [mm] [mm] [mm] [mm] [N]

PMMA (−60°C) [63] I T — 28 14 — 7.95 0.53 6400
(Fig. 6.1a) 8.07 0.97 7600

7.95 1.46 8940
7.93 1.91 9890

Al-15%SiC [33] I TPB 140 30 15 — 10 0.5 2248∗

(Fig. 6.1b) 1.0 2510∗

1.5 2785∗

15 0.5 1405∗

1.0 1723∗

1.5 2075∗

Ferritic-pearlitic steel [33] I TPB 220 40 20 — 10 0.5 7730∗

(−40°C) (Fig. 6.1b) 1.0 9140∗

1.5 10800∗

2.0 11690∗

20 0.5 4010∗

1.0 4450∗

1.5 5570∗

2.0 5830∗

PMMA (−60°C) [62] I+II E-TPB 126 28 14 9 14 0.2 1308∗

(Fig. 6.1c) 0.5 2188∗

1.0 2729∗

2.0 3589∗

18 14 0.2 1548∗

0.5 2561∗

1.0 3511∗

2.0 4081∗

27 14 0.2 2127∗

0.5 3458∗

1.0 4391∗

2.0 5052∗

36 14 0.2 3289∗

0.5 4716∗

1.0 6064∗

2.0 7786∗

Martensitic steel [142] I+II E-TPB 120 20 10 10 10 0.2 9240
(Fig. 6.1d) 8630

8290
0.5 12830

13585
12120

1.0 18940
18210
17840

(a) T = Tension; TPB = Three Point Bending; E-TPB = Eccentric Three Point Bending.
(∗) Average of three experimental tests.
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Fig. 6.1. Geometries and loading conditions of the analysed static problems.
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(a) (b)

(c) (d)

Fig. 6.2. Typical meshes used to model specimens of PMMA (a), Al-15%SiC (b), Ferritic-
pearlitic steel (c) and Martensitic steel (d).

elements were used, gradually refining the mesh in the neighbourhood of the notch accord-
ing to the recommendations on optimal element size suggested in Chapter 5 (see also [26]).
Fig. 6.2 shows some examples of the meshes adopted to model the area around the notch
tip. Regarding the boundary conditions, to solve the first step of the proposed method-
ology (Eq. (5.7)) the standard homogeneous essential boundary conditions of classical
elasticity were applied. On the other hand, for the second step (Eq. (5.12)) homogeneous
natural boundary conditions were chosen throughout, that is n · ∇σg = 0 (where n is the
outward normal to the boundary).

The error graph of Fig. 6.3, summarising the accuracy of the proposed gradient-
enriched methodology in the evaluation of the static strength of notched components,
shows that the obtained predictions are affected by errors mainly falling within a scatter
band of ±20%, independently of the assessed material and loading conditions (note that
a ±20% error band is considered acceptable due to all the uncertainties introduced both
during testing and numerical analyses). Only in the case of brittle materials (PMMA at
−60°C) with high degree of mode mixity (b = 36 mm) the proposed methodology pro-
duced slightly more non-conservative results (on average −25%). This can be ascribed to
the fact that, as found by Susmel and Taylor [135], in notched brittle material (such as
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Fig. 6.3. Accuracy of the proposed gradient-enriched methodology in evaluating the static
strength of notched components under Mode I and mixed-Mode I and II static loading.

PMMA) subject to static mixed-mode loading the value of the critical distance changes
with the degree of multiaxiality of the stress field damaging the material process zone.
This phenomenon, that becomes stronger for high degree of mode mixity, is due to the
fact that as the degree of multiaxiality changes also the cracking behaviour of the material
changes.

6.2 Uniaxial and multiaxial high-cycle fatigue assess-

ment of notched components

Given the encouraging results obtained in the previous section for the static assessment
of notched components, the gradient-enriched methodology developed in Chapter 5 is
applied in this section to evaluate the high-cycle fatigue strength of notched components.
In order to check the accuracy and reliability of the proposed methodology in the high-
cycle fatigue assessment of notched components, it was used to analyse a large number
of experimental data taken from the literature. The considered results were generated by
testing, under both uniaxial and multiaxial cyclic loading, metallic specimens containing
different geometrical features. Tables 6.3 and 6.4 summarise the experimental results used
to perform the validation exercise that will be discussed in this section. The reader is also
referred to [25, 120, 123, 134] for a detailed summary of the data sets listed in Tables 6.3
and 6.4.
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Table 6.3. Summary of the experimental results generated under uniaxial fatigue loading.

Material Ref. R ∆σ0 ∆σ
g
0 ∆Kth L ` Specimen Load rn

[MPa] [MPa] [MPa m1/2] [mm] [mm] type(a) type(b) [mm]

SAE 1045 [45] -1 608 608 13.6 0.159 0.056 CNP Ax 0.12-2.5
Al-2024-T351 [45] -1 248 248 5.0 0.129 0.046 CNP Ax 0.12-1.5
G40.11 [46] -1 464 464 15.9 0.374 0.132 CNP Ax 0.2-4.8
SM41B [143, 144] -1 326 326 12.4 0.458 0.162 CNP Ax 0.16-3.0
Mild steel [54, 73] -1 420 420 12.8 0.296 0.105 DENP/CNB Ax 0.05-7.62
NiCr steel [55] -1 1000 1000 12.8 0.085 0.030 CNB Ax 0.05-0.13
Steel 15313 [89] -1 440 440 12.0 0.237 0.084 CNB Ax 0.03-0.76
AISI 304 [73, 156] -1 720 720 12.0 0.110 0.039 CNB Ax 0.04
0.45 C steel [100] -1 582 575.5 8.1 0.061 0.022 CNB RB 0.01-0.6
0.36 C steel [100] -1 446 442 7.6 0.092 0.033 CNB RB 0.2

(a) CNP = Center Notch in flat Plate; DENP = Double Edge Notch in flat Plate; CNB = Circumferential Notch in cylindrical Bar.
(b) Ax = Axial loading; RB = Rotating Bending.

Table 6.4. Summary of the experimental results generated under multiaxial fatigue loading.

Material Ref. R σ0 σ
g
0 τ0 τ

g
0 m L ` Specimen Load rn

[MPa] [MPa] [MPa] [MPa] [mm] [mm] type(a) type(b) [mm]

SAE 1045 [82] -1 304 303.1 176 175.5 — 0.159 0.056 SSF B-T 5
Ck45 [113] -1 304 303.1 176 175.5 — 0.159 0.056 SSF B-T 5
S65A [65] -1 584 581.6 371 369.7 0.37 0.056 0.020 SSF B-T 0.838
0.4% C Steel [65] -1 332 325.1 207 203.1 — 0.178 0.063 CNB B-T 0.005
3% Ni Steel [65] -1 343 337.2 205 201.9 — 0.144 0.051 CNB B-T 0.005
3/3.5% Ni Steel [65] -1 352 330.6 267 252.6 — 0.516 0.182 CNB B-T 0.010
Cr-Va Steel [151] -1 429 423.9 258 255.2 — 0.101 0.036 CNB B-T 0.011
3.5%NiCr Steel [151] -1 540 530.5 352 346.4 — 0.150 0.053 CNB B-T 0.022
(normal impact)
3.5%NiCr Steel [151] -1 509 502.5 324 320.2 — 0.109 0.039 CNB B-T 0.022
(low impact)
NiCrMo Steel [151] -1 594 586.6 343 339.1 — 0.106 0.037 CNB B-T 0.031
En3B [134] -1,0 346 346 268 266.5 0.22 0.048 0.017 CNB Ax-T 0.2, 1.25, 4.0

(a) SSF = cylindrical Shaft with Shoulder Fillet; CNB = Circumferential Notch in cylindrical Bar.
(b) Ax = Axial loading; R = Bending; T = Torsion.

6.2.1 Mode I fatigue loading

The accuracy of the proposed approach in estimating high-cycle fatigue strength of
notched components was initially checked by considering a number of experimental re-
sults generated by testing flat and cylindrical notched specimens subject to uniaxial cyclic
loading. For the Mode I loading case, the error was calculated as follows:

Eσ[%] =
∆σgy −∆σg0

∆σg0
· 100 (6.3)

where ∆σgy is the range of the gradient-enriched stress at the notch tip (see Fig. 4.2a).
According to Eq. (6.3), a positive value of Eσ indicates a conservative estimate, whereas
a negative value of this error index denotes a non-conservative prediction.

The specimens being analysed were subdivided into three groups (Fig. 6.4): flat plates
with central notch (CNP), flat plates with double edge notch (DENP) and cylindrical bars
with circumferential notch (CNB). For any considered data set, Table 1 lists the relevant
material fatigue properties, the maximum and minimum length of the investigated root
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Fig. 6.4. Analysed specimens under uniaxial fatigue loadings: plate with central notch (a), plate
with double edge notch (b) and cylindrical bar with circumferential V-shaped notch (c).

radii, rn, the geometry of the tested notched specimens, and the type of applied loading.
Turning to the gradient elasticity FE analyses, since the considered notched flat spec-

imens were symmetrical about two axes, only a quarter of the CNP and DENP samples
was modelled. Similarly, in the case of the CNB specimens only half of the longitudinal
section was modelled by using axisymmetric elements. Independently of the specific ge-
ometry, under-integrated bi-quadratic quadrilateral elements were used. The mesh in the
vicinity of the stress concentrators was gradually refined according to the recommenda-
tions on optimal element size given in Chapter 5 (see also [26, 27]). In particular, in the
highly stressed regions the average mesh size was equal to about 0.025 mm, with the min-
imum size approaching 0.002 mm (Fig. 6.5). To apply the Ru-Aifantis theory, two sets of
boundary conditions were employed as follows. For the first step, the usual homogeneous
essential boundary conditions of classic elasticity were used to preserve the symmetry of
the problem. In the second step, homogeneous natural boundary conditions were applied
throughout, so that n · ∇σg = 0 (where n is the outward normal to the boundary).

The charts of Fig. 6.5 show some examples of the linear-elastic stress fields obtained
by using gradient elasticity according to the numerical procedure described in Chapter 4.
In particular, the diagrams of Fig. 6.5a were determined by considering CNP specimens
of SM41B [143, 144] with central hole having radius, rn, equal to 0.16 mm (Kt = 9.8)
and 3 mm (Kt = 3), respectively. The stress fields reported in Fig. 6.5b were calculated
instead by modelling the DENP samples of mild steel [54, 73] with notch root radius, rn,
equal to 0.1 mm (Kt = 14.9) as well as to 1.27 mm (Kt = 4.75). In both cases length scale
parameter ` was directly estimated from ∆σ0 and ∆Kth via Eq 4.1. These four diagrams
clearly show gradient-elasticity smoothing effect, this resulting in stress fields having, in
the vicinity of the notch tip, magnitude lower than the corresponding ones calculated
according to continuum mechanics.

As mentioned in §2.4, Neuber proposed to calculate an effective stress to be used to
design notched components against high-cycle fatigue by considering finite volumes and
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Fig. 6.5. Stress distributions along the notch bisector in CNP [143, 144] (a) and DENP [54, 73]
(b) specimens subject to cyclic axial loading.



136 CHAPTER 6. ASSESSMENT OF NOTCHED COMPONENTS

not infinitesimal volumes as postulated by classic continuum mechanics. The charts of
Fig. 6.5 make it evident that gradient elasticity is a powerful numerical tool allowing
Neuber’s idea to be implemented efficiently, where the size of the finite volumes used to
determine the relevant stress fields is related to characteristic length `.

The error diagram of Fig. 6.6 summarises the overall accuracy obtained by using gra-
dient elasticity according to the procedure described in Fig. 4.2a. This diagram makes
it evident that the estimates are characterised by errors falling mainly within an inter-
val ranging between −10% and +30%. It is worth remembering here that the use of
the conventional TCD is seen to result in predictions falling within an error interval of
±20% [130, 151]. This error level is considered to be acceptable because, in general, it
is not possible to distinguish between an error of ±20% and an error of 0% because of
those problems which are usually encountered during testing as well as during the nu-
merical analyses [151]. Hence, the systematic usage of the proposed approach resulted in
predictions falling within an error range of 40%, with the average value of the error being
shifted by 10% toward the conservative side compared to the conventional TCD.

Regarding the predictions summarised in Fig. 6.6, it is worth pointing out that these
estimates were obtained by using ∆σg0 as reference un-notched fatigue limit. Obviously,
under axial loading, the same level of accuracy would be reached by using ∆σ0 instead of
∆σg0 , as described in Chapter 4 (see Fig. 4.1b). In what concerns the notched specimens
tested under rotating bending, Table 6.3 shows that for 0.45C steel and 0.36C steel the
difference between ∆σg0 and ∆σ0 approaches 1%. This implies that using ∆σ0 as reference
plain fatigue limit to assess these notched samples would result in the same overall level
of accuracy as the one that was obtained by employing the gradient-enriched fatigue lim-
its, ∆σg0 . This confirms that gradient elasticity can be safely used to predict high-cycle
fatigue strength by also employing the conventional un-notched fatigue limit as reference
material strength.

6.2.2 Multiaxial fatigue loading

After investigating the accuracy of the Mode I formalisation of the proposed approach,
the subsequent step was checking whether gradient elasticity applied with the MWCM
(Fig. 4.2b) is successful also in estimating high-cycle fatigue strength under multiaxial fa-
tigue loading. The experimental results summarised in Table 6.4 were generated by testing
shafts with shoulder fillet (SSF) (Figs. 6.7a, b and c) and circumferentially notched cylin-
drical bars (CNB) (Fig. 6.7d) under in-phase and out-of-phase fully-reversed bending (or
tension) and torsion. In order to check its accuracy in modelling the mean stress effect
in fatigue, the proposed design approach was also employed to estimate the high-cycle
fatigue strength of notched samples of both S65A [65] and En3B [134] subject to bi-
axial cyclic loading with superimposed static stresses. For the re-analysed experimental
results, Table 6.4 summarises the relevant material fatigue properties, the length of the
assessed notch root radii, rn, the geometry of the notched specimens and the type of
applied loading. As to the L values listed in this table, it is worth observing that they
were estimated [120, 134] by following a procedure based on the combined use of plain
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Fig. 6.6. Accuracy of the proposed design method (Fig. 4.2a) in estimating high-cycle fatigue
strength of notched specimens subject to fully-reversed Mode I cyclic loading.

and notch fatigue limits [136]. Both SSF and CBN specimens were modelled by using
under-integrated axisymmetric bi-quadratic quadrilateral elements refining the mesh in
the vicinity of the stress riser being assessed, according to the recommendations on opti-
mal element size presented in Chapter 5 and in [27]. Figs. 6.8, 6.9, 6.10 and 6.11 shows
typical meshes used to model the aforementioned SSF and CBN specimens.

Other than the results summarised in Table 6.4 and generated under multiaxial fa-
tigue loading, the accuracy of gradient elasticity applied in conjunction with the MWCM
was also checked against a number of experimental results generated by testing CNP and
DENP specimens under uniaxial loading (refer to Table 6.3). The goal of this validation
exercise was to investigate whether this design approach is successful in taking into ac-
count the actual degree of multiaxiality of the gradient-enriched stress fields.

The gradient-enriched stress tensors at the hot-spots (Fig. 4.2b) were determined via
2D and 3D gradient elasticity FE models solved by using the developed FE code. In the
CNP and DENP samples, the gradient enriched stress distributions across the thickness
were determined by solving three-dimensional FE models obtained by considering one
eighth of the specimens. These 3D solutions were obtained by discretising the domain
with 10-noded (quadratic) tetrahedrons and using four Gauss points integration rule to
solve both the steps of the numerical problem, i.e. Eqs. (5.7) and (5.38). In the 3D models,
the average mesh size in the vicinity of the notch tips was equal to about 0.045 mm, with
the minimum size approaching 0.008 mm (Fig. 6.12).

Turning to the notched cylindrical samples, only half of the longitudinal section of the
investigated specimens was modelled by using under-integrated axisymmetric bi-quadratic
quadrilateral elements, the mesh in the vicinity of the assessed stress concentrators being
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Fig. 6.7. Analysed specimens under multiaxial fatigue loadings: shafts with shoulder fillet (a,
b, c) and cylindrical bar with circumferential V-shaped notch (d).

Fig. 6.8. Typical mesh used to model shafts with shoulder fillet of SAE 1045.
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Fig. 6.9. Typical mesh used to model shafts with shoulder fillet of Ck45.

Fig. 6.10. Typical mesh used to model shafts with shoulder fillet of S65A.
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Fig. 6.11. Typical mesh used to model cylindrical bars with circumferential notch.

gradually refined until convergence occurred (see Chapter 5 and [27]). For these axisym-
metric models the average mesh size in the highly stressed regions was equal to 0.015 mm,
the minimum size being equal to about 0.001 mm (Fig. 6.13). As done for the Mode I
loading specimens, also in this case the boundary conditions were taken as homogeneous
essential to calculate the first step of the solution and homogeneous natural throughout
to solve the second step of the numerical process. Finally, since the relevant stress states
were calculated by solving linear gradient elasticity axisymmetric models, the total stress
tensors at the hot-spots were determined for any considered multiaxial loading case by
simply using the superposition principle.

As to the SSF specimens, the hot-spot was positioned, within the fillet, in a material
region close to the junction between the fillet itself and the net section of the samples.
This is in agreement with the cracking behaviour observed by Gough [65]. In fact, nearly
all the SSF samples he tested were seen to fail by a crack initiating at the junction of the
fillet with the central portion of the specimens or slightly removed from that region and
within the fillet.

The diagrams reported in Fig. 6.12 show the through-thickness distribution of the
gradient enriched stress components at the tip of the notch in the CNP specimens of
SM41B [143, 144] loaded in cyclic tension-compression. The reported stress distributions
(Figs. 6.12b and 6.12d) confirm that in three-dimensional bodies the gradient-enriched
stress states at the tip of the notch (i.e. on the surface) are always multiaxial, even if
the nominal loading being applied is uniaxial. This is a consequence of the fact that, as
schematically shown in Fig. 4.1a, gradient elasticity acts as a numerical operator trans-
ferring the sub-surface stresses (which are, in the most general case, triaxial) onto the
surface. In terms of fatigue assessment, this results in the fact that the hot-spots tend to
move from the main surface toward the mid-section of the specimens (i.e. along axis z
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Fig. 6.12. Stress distributions along the notch edge in CNP specimens [143, 144] subject to
cyclic axial loading.
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in Fig. 6.12a). This is confirmed by the charts reported in Figs. 6.12c and 6.12e: for the
specimens with rn = 0.16 mm the hot-spot is at a distance from the main surface equal
to 0.35 mm, whereas for the samples with rn = 3 mm it is positioned at the mid-section
of the notched plate. A similar situation was also observed in the DENP specimens.

The charts reported in Fig. 6.13 show the stress distributions along the notch bisec-
tor in CNB specimens loaded in bending, tension, and torsion. As to the stress analysis
problem, it is interesting to observe here that, according to the way gradient elasticity
manipulates the local stress fields, with ` > 0 the gradient enriched stress state at the
tip of a circumferential notch in a cylindrical bar loaded either in bending, in tension, or
in torsion is always multiaxial. In other words, in the investigated axisymmetric notched
specimens, the gradient-enriched stress fields acting on the material in the vicinity of the
hot-spots were always multiaxial, this holding true independently from the degree of mul-
tiaxiality characterising the nominal load history.

Once the relevant gradient-enriched stress tensors at the hot-spots (Fig. 4.2b) were
determined, the stress components relative to the critical plane (i.e. τ ga , σgn,m and σgn,a)
were calculated by using software Multi-FEAST (www.multi-feast.com). Multi-FEAST is
a software designed to estimate fatigue damage under constant and variable amplitude
uniaxial and multiaxial fatigue loading. Multi-FEAST is based on the Modified Wöhler
Curve Method described in §2.2.5. In particular, provided the time histories of the stress
components in the point of interest (respect to the global system of axes), Multi-FEAST
considers several potential orientations of the critical plane (by varying the three Euler
angles) and calculates for each of them the time history of the shear stress amplitude τa
produced by the aforementioned stress components. The critical plane is then identified
as the plane where the shear stress amplitude shows the maximum variance (Shear Stress
Maximum Variance Method). Once the critical plane is determined, Multi-FEAST calcu-
lates the amplitude σn,a and mean value σn,m of the stress normal to the critical plane as
well as the effective stress ratio ρeff and perform the assessment expressed by Eq. (2.51).

The error diagrams of Fig. 6.14 summarise the overall accuracy obtained by using
gradient elasticity in conjunction with the MWCM to estimate the high-cycle fatigue
strength, with the error being defined as follows:

Eτ [%] =
τ geq − τ

g
0

τ g0
· 100 (6.4)

with τ geq defined by Eq. (4.6).
According to Eq. (6.4), a positive value of this error index indicates a conservative

estimate, whereas a negative value implies a non-conservative prediction.
Regarding the accuracy of the proposed approach (Fig. 4.2b), attention is initially

focused on those experimental results generated by testing CNP and DENP specimens
under nominal uniaxial fatigue loading. As mentioned earlier, for these specimens the
relevant gradient enriched stress fields were determined by solving 3D FE models. As
shown in Figs 6.12c and 6.12e for two samples of SM41B [143, 144], the fatigue damage
extent in CNP and DENP specimens loaded in cyclic tension-compression was estimated
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Fig. 6.13. Stress distributions along the notch edge in CNB specimens made of 3%Ni Steel [65]
and En3B [134], loaded in bending, tension and torsion.
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by considering that material point in the thickness experiencing the largest value of the
equivalent shear stress amplitude, τ geq, calculated according to Eq. (4.6). It is worth ob-
serving that, to calculate τ geq, the gradient enriched plain torsional fatigue limits, τ g0 , were
estimated from the corresponding uniaxial ones according to von Mises hypothesis. The
error diagram reported in Fig. 6.14a confirms that gradient elasticity applied along with
the MWCM was successful in assessing the highcycle fatigue strength of CNP and DENP
specimens, the estimates falling within an error interval of ±20%.

Subsequently, attention was focused on the experimental results generated by test-
ing notched cylindrical specimens under uniaxial fatigue loading (i.e. either bending or
tension-compression). The error chart of Fig. 6.14b confirms that the use of the multiaxial
formulation of the proposed approach resulted in estimates characterised by acceptable
accuracy also when applied to axisymmetric problems. In particular, it is worth observ-
ing that accurate predictions were made not only under fully-reversed uniaxial loading
(UA,ZMS), but also in the presence of superimposed static stresses (UA,N-ZMS).

For what concerns multiaxial load histories, the error chart of Fig. 6.14b confirms that
the use of the proposed approach resulted in estimates mainly falling within an error
interval of ±20%, not only in the presence of out-of-phase loading, but also under non-
zero mean stresses. The fact that a relatively small number of estimates fall outside the
acceptable ±20% scatter band can be ascribed to two main factors:

• physiological scatter of experimental results: by testing several specimens of a given
material, with same geometry and under the same loading conditions, significantly
different values of the fatigue strength can be obtained;

• the TCD critical distance under torsion is seen to be larger than the corresponding
value determined under uniaxial loading [131, 139]. However, in the proposed ap-
proach, also in the cases where torsional loading are involved (T,ZMS, T,N-ZMS,
IPh,ZMS, IPh,N-ZMS, OoPh,ZMS and OoPh,N-ZMS) the material characteristic
length ` is directly derived from the TCD critical distance, L, determined under
uniaxial fatigue loading. This might lead is some instances to less accurate estima-
tions.

Furthermore, it is worth observing that almost all the estimates with errors falling outside
the acceptable ±20% scatter band are conservative. This aspect is usually well accepted
by the industry.

As to the prediction reported in the charts of Fig. 6.14b, they were obtained by using
σg0 and τ g0 as reference fatigue strengths. However, according to Table 6.4, the difference
between conventional and gradient-enriched fatigue limits was always lower than about
6% (with the average value approaching 1.5%). This makes it evident that using σ0 and
τ0 would result in an overall accuracy similar to the one obtained by employing σg0 and
τ g0 . This further confirms that, in situations of practical interest, the proposed multiaxial
fatigue design approach can safely be used by simply employing σ0 and τ0 as material
reference strengths.
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Fig. 6.14. Accuracy of gradient elasticity applied along with the MWCM (Fig. 4.2b) in estimat-
ing high-cycle fatigue strength of notched specimens subject to uniaxial/multiaxial fatigue load-
ing (UA=uniaxial loading; T=torsional loading; IPh=In-Phase loading; OoPh=Out-of-Phase
loading; ZMS=Zero Mean Stress; N-ZMS=Non-Zero Mean Stress).
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6.2.3 Conclusions

In the present chapter, the gradient elasticity-based methodology developed in Chapter 5
has been used to estimate the static and high-cycle fatigue strength of different types of
notched samples subject to various loading conditions; both brittle and metallic materials
have been considered.

The encouraging results of the aforementioned validation exercise revealed that the
proposed gradient-enriched methodology, combined with the TCD for the definition of
the intrinsic length parameter `, can potentially become a powerful tool for the static
and high-cycle fatigue assessments of notched components. In fact, the ability of gradient
elasticity to smooth the stress field in the neighbourhood of stress risers allows sufficiently
accurate static and fatigue assessment of notched components by simply considering the
relevant non-local stress at the hot-spot on the surface of the specimen. This significantly
simplifies the assessment procedure, avoiding the need to define the failure location inside
the body a priori.

In what concerns static problems, the definition of ` according to Eqs. (4.1) and (6.1)
leads to further advantages, since ` can be estimated by knowing just two mechanical
properties of the assessed material (namely KIC and σUTS) that can be easily obtained
from the manufacturers, with significant benefits in terms of time and costs.

Regarding fatigue problems, instead, it has been shown that, under Mode I cyclic
loading, the gradient-enriched stress experienced at the hot-spot and perpendicular to
the notch bisector can directly be used to estimate the extent of the high-cycle fatigue
damage. Furthermore, gradient elasticity applied together with the MWCM resulted in
estimations of the high-cycle fatigue strength of notched components characterised by
acceptable levels of accuracy in both uniaxial and multiaxial fatigue loading conditions.

This brings significant simplifications with respect to many existing fatigue assessment
approaches. In fact, the proposed methodology allows to perform the fatigue assessment
of notched components by considering them as simple plain specimens, avoiding the non-
trivial identification of the failure location into the assessed body a priori. Furthermore,
these results have also the important implication that, as soon as the length scale ` is
clearly identified, notched components can be assessed against fatigue by simply using
the proposed gradient-enriched FE methodology without considering any linear elastic
fracture mechanics (LEFM) concept. However, it has been shown that, in the absence of
a clear identification of the length scale `, Eq. (4.1), based on well-known LEFM concepts,
represents a reliable and practical approximation of the length scale parameter.

These results, although encouraging, represent only the starting point and a more
extensive research work would be extremely beneficial. In particular, a wider range of
geometries and materials needs to be analysed (including metals, ceramics, polymers and
concrete) as well as more loading conditions (both uniaxial and multiaxial).
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Chapter 7

Estimation of the high-cycle fatigue
strength of notched plain concrete

The continuous development of the civil engineering infrastructure sector makes con-
crete the most widely used structural material. In particular, as reported by the Interna-
tional Energy Agency (IEA) and the World Business Council for Sustainable Development
(WBCSD) [77], 5% of the annual global CO2 produced by human activities is due to the
world cement production with an even worse future outlook, passing from a global con-
crete production of 2.55 billion tons in 2006 to an estimated global production ranging
between 3.69 and 4.40 billion tons in 2050. Furthermore, in [77] is stated that the cement
industry CO2 emissions saw an increase of about 42% from 2000 to 2006 and, of course,
this trend cannot continue indefinitely, on the contrary, it should be inverted. In 2008 G8
leaders asked the IEA to develop a series of roadmap with the aim of halving the global
industrial CO2 production by 2050. In particular, the cement roadmap [77] estimates that
the cement industry could contribute to the aforementioned global reduction with an 18%
abatement of its direct emissions, compared to the current levels, by 2050.

It is clear, then, that one of the most urgent issues to be addressed is the improve-
ment of the in-service performance of concrete structures by simultaneously reducing the
CO2 emissions as well as the production, maintenance and energy costs. In this context,
the static assessment of concrete structures has been investigated for decades by the in-
ternational scientific community, and nowadays the design of concrete structures against
static loading can be effectively performed by adopting relatively low safety factors. This
results in slender structures, contributing to a significant reduction in the use of concrete
and consequently of natural resources with positive consequences on the environmental
impact, in particular from the carbon emissions point of view.

However, the aforementioned size reduction of concrete structural components makes
concrete structures more vulnerable to fatigue, due to the inevitable increase of the mag-
nitude of in-service local stresses. In a recent investigation [125], it has been shown that
the effect of time-variable loading can no longer be ignored if the design, of both plain
and short-fibre/particle reinforced concrete structures, is performed by using safety fac-
tors lower than 2.5. This is a crucial aspect since several key concrete structures such as,
for instance, runways subject to repeated loads due to passing aircraft, asphalt concretes
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subject to cyclic local pressures due to the action of tyres, bridges fatigued by travelling
vehicles, and concrete foundations of wind turbines, are subject to in-service time-variable
loading. Moreover, in 2012 fatigue has been recognised, by a British working group [10]
operating under the auspices of both the Department of Energy and Climate Change and
the Office for Nuclear Development, as one of the key structural issues to be assessed
when designing concrete structures for the nuclear sector. In this scenario, the fatigue
assessment of concrete infrastructures is complicated by stress/strain concentration phe-
nomena produced by local stress risers characterising their structural parts.

Hence, from now on, structural engineers will have to deal with two main challenges:

• rationalise the usage of natural resources;

• minimise carbon emissions.

These two goals can be achieved by designing structural components, minimising the
amount of material needed to reach an adequate level of safety. To achieve this, concrete
structural parts/details characterised by complex shapes could be required, with the pos-
sible introduction of stress/strain risers, making the fatigue behaviour of notched concrete
a research topic of central importance in the near future. Despite this, apart from three
isolated investigations [101, 105, 154], the fatigue assessment of concrete notched com-
ponents has not received the due consideration until now and, unfortunately, despite the
wide availability of experimental studies and results (see [125] for an up-to-date summary
of the data available in the literature), universally recognised design techniques have still
to be defined.

In plain concrete the possible locations for crack initiation can typically be in the ce-
ment paste, inside the aggregates, or at the interface between matrix and aggregates [67,
162]. In case of fatigue loadings, the crack initiation has been seen to take place pre-
dominantly at the interface between the cement paste and the aggregates. Hence, fatigue
cracks can be considered as the result of an increasing weakening of the bonds under local
tensile/shear cyclic stresses and strains [97]. According to this fatigue damage model, the
aggregates can be considered as hard inclusions leading to localised stress/strain concen-
tration phenomena, suggesting that the overall fatigue strength of plain concrete is highly
influenced by the material microstructural features. Thus, it is of primary importance to
ensure that such microstructural features are properly taken into account, when contin-
uum mechanics theories are used to predict the fatigue behaviour of concrete structures
or components. In this chapter, the applicability and accuracy of the gradient elasticity-
based methodology presented in Chapter 5 and of the Theory of Critical Distances in
modelling the high-cycle fatigue behaviour of notched plain concrete, are investigated.

7.1 Preliminary definitions and assumptions

The fatigue strength of plain concrete depends on several variables which include surface
roughness, extreme environmental conditions, temperature, type of loading, load history’s
degree of multiaxiality, water-to-cement ratio, ageing, and presence of shrinkage stresses.
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Given the material and the environmental conditions, from a design point of view, the
overall fatigue strength of a concrete structure is strongly affected also by the presence of
non-zero mean stresses [125]. This implies that the stress quantities to be used to apply
both the TCD and gradient elasticity must be defined so that the mean stress effect in
concrete fatigue is taken into account effectively.

Consider the beam sketched in Fig. 7.1 which is hypothesised to be damaged either
by a cyclic bending moment M(t) (Fig. 7.1a) or by a cyclic axial force P (t) (Fig. 7.1b), t
being time. Point O is the location where a fatigue crack is expected to initiate, so that
this material point is used also to define a convenient system of coordinates (see Figs. 7.1a
and 7.1b). Time-variable force P (t) and bending moment M(t) result in a local stress at
point O that varies cyclically as shown in the σy vs. t charts reported in Figs. 7.1c and d,
respectively. As soon as the amplitude, σa, the mean value, σm, the maximum stress, σmax,
and the minimum stress, σmin, characterising the loading cycle are known (see Figs. 7.1c
and d), the corresponding load ratio, R, can directly be defined through Eq. (2.13).

Eq. (2.13) suggests that, as long as the maximum stress is positive (Fig. 7.1c), the
load ratio takes on a value which is always lower than unity, a negative minimum stress
resulting in a negative value for R. On the contrary, when the concrete component being
assessed is subject to cyclic compression (Fig. 7.1d), R takes on a value which is always
larger than unity, R diverging to infinity as σmax approaches zero.

By re-analysing about 1500 experimental results taken from the literature and gen-
erated by testing both plain and short-fibre/particle reinforced concretes [125], it has
been proven that the mean stress effect in concrete fatigue can efficiently be modelled by
defining the design stress, σDesign, as follows:

σDesign = σmax when σmax > 0 (7.1)

σDesign = |σmin| when σmax ≤ 0 (7.2)

The fatigue strength of concrete can then be summarised in conventional log-log S-N
diagrams, where the design stress, σDesign, is plotted against the number of cycles to failure,
Nf (Fig. 7.1e). According to this schematisation, fatigue results can directly be post-
processed through appropriate statistical tools [116, 123] to determine the corresponding
fatigue curve for the targeted probability of survival, PS. Irrespective of the adopted value
for PS, as already explained in Chapter 2, fatigue curves can be mathematically described
as follows:

σkDesign ·Nf = σkA ·NA (7.3)

where k is the negative inverse slope and σA is the design endurance limit, i.e. a reference
strength extrapolated at a reference number of cycles to failure, NA (see Fig. 7.1e).

The level of scattering associated with the investigated data set can concisely be
quantified by using the following ratio [123]:
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Fig. 7.1. Concrete beam loaded in cyclic bending (a) and subject to cyclic axial loading (b);
load histories characterised by different values of the load ratio (c and d); Wöhler diagram and
fatigue curves for different values of PS (e); unifying Wöhler diagram to perform the fatigue
assessment of un-notched plain and short fibre/particle reinforced concretes (grey markers =
run outs) [125] (f).
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Tσ =
σ0,10%

σ0,90%

(7.4)

where σ0,10% and σ0,90% are the endurance limits determined, at NA cycles to failure, for
10% and 90% probabilities of survival, respectively. According to Eqs. (7.1) and (7.2),
design endurance limits, σA, are then suggested to be defined as [125]:

σA = σMAX when σmax > 0 (7.5)

σA = |σMIN| when σmax ≤ 0 (7.6)

In the above definitions σMAX and |σMIN| are determined at NA cycles to failure (note
that σMAX and σMIN are different from σmax and σmin previously defined).

As demonstrated in the fatigue diagram reported in Fig. 7.1f, the assumptions dis-
cussed above allow a unifying scatter band suitable for designing un-notched concretes
against fatigue to be determined. In more detail, this scatter band was determined by
post-processing about 1500 experimental data taken from the literature and generated
by testing both plain and short-fibre/particle reinforced concretes cyclically loaded ei-
ther in tension, in tension-compression, in compression, or in bending [125]. Such a high
level of unification was reached by normalising the design stress, σDesign, via the pertinent
reference static strength, σS, defined as follows:

• under cyclic tension-tension/compression ⇒ σS = fT

• under cyclic compression ⇒ σS = fC

• under cyclic bending ⇒ σS = fB

In the above definitions fT , fC , and fB are the material static strengths determined under
tension, compression, and bending, respectively. The fatigue curve reported in Fig. 7.1f
was determined under the hypothesis of a log-normal distribution of the number of cycles
to failure for each stress level by assuming a confidence level equal to 95% [116].

It is worth observing here that, according to the available design codes [9, 75], the
reference fatigue curves recommended to perform the fatigue assessment of welded joints
are characterised by a Tσ value equal to 1.5 [72]. As shown in Fig. 7.1f, the Tσ value
associated with the reported unifying scatter band is equal to 1.418, which confirms the
validity of the formed hypotheses. Therefore, according to Fig. 7.1f, the fatigue lifetime
of un-notched plain and short-fibre/particle reinforced concrete can directly be estimated
by using solely the pertinent material static strength, σS, as calibration information inde-
pendently from the actual value of the mean stress characterising the load history being
assessed.

Since the schematisation summarised in the present section has proven to be capable of
accurately taking into account the mean stress effect in concrete fatigue, the same strategy
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— i.e., Eqs. (7.5) and (7.6) — will be used in what follows not only to reformulate both
the TCD and gradient elasticity to make them suitable for modelling the highcycle fatigue
behaviour of notched plain concretes, but also to post-process the generated experimental
results.

7.2 Experimental details

The accuracy of both the TCD and gradient elasticity in estimating high-cycle fatigue
strength of notched plain concrete has been investigated by testing, under cyclic four-point
bending, prismatic beams containing notches characterised by three different sharpness
levels, as shown in Fig. 7.2. In particular, the investigated beams were 500 mm long with
100 mm × 100 mm cross sections, while the notch depth was equal to 50 mm. The in-
vestigated notches had root radius equal to 25 mm (Fig. 7.2b), 12.5 mm (Fig. 7.2c), and
1.4 mm (Fig. 7.2d), corresponding to a net stress concentration factor, Kt, of 1.47, 1.84,
and 4.32, respectively. The un-notched specimens, as shown in Fig. 7.2a, were designed so
that, during the tests the portion of material subject to cyclic uniform bending moment
had the same net width (i.e., 50 mm) as the notched specimens, in order to avoid any size
effects, independently from the geometry of the investigated specimens.

The samples were manufactured by using a concrete mix designed [153] using PFA
Portland Cement with strength class equal to 32.5N/mm2, natural round gravel with 10
mm grading, and grade M concrete sand (cement content = 450 kg/m3; fine aggregate
content = 825 kg/m3; coarse aggregate content = 825 kg/m3). Two batches of speci-
mens, characterised by two different water-to-cement (w/c) ratios, were cast in order to
investigate specimens having the same material morphology but different strengths. In
particular, Batch A was produced by choosing a w/c ratio equal to 0.5, while in Batch
B the w/c ratio was equal to 0.4. According to the ASTM recommendations [22], all the
samples were removed from the moulds 24 h after casting and subsequently cured in a
moist room at 23°C for 28 days. Whereas the sharp notches (root radius equal to 1.4 mm)
were created by using a circular saw with thickness equal to 2.8 mm, all the other notched
specimens, as well as the un-notched samples, were produced by casting the required ge-
ometrical features directly into the bulk material by using specific moulds having plastic
inserts attached to their bottom.

Fig. 7.3 shows two examples of the macroscopic morphology of the concrete used to
manufacture the two batches of samples, the average inter-aggregate distance being equal
to about 4 mm.

The static properties were determined under three-point bending as the average of five
different tests for each batch, resulting in a flexural strength fB = 4.9 MPa for Batch A
and fB = 6.5 MPa for Batch B.

The fatigue results were generated by using a bespoke electric testing table which
was modified and developed for this specific experimental investigation (Fig. 7.2e). Two
independent loading cells were used to gather and record the load histories applied during
the tests and the deflection at the mid-section of the samples was measured via a Linear
Variable Displacement Transducer (LVDT). The force-controlled experiments were run
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Fig. 7.2. Geometry of the investigated specimens (dimensions in millimetres) and fatigue testing
apparatus.

Fig. 7.3. Macroscopic morphology of the tested concrete.
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Table 7.1. Batch A: summary of the geometrical dimensions of the tested specimens and
corresponding fatigue results.

Code d w rn σmax R Nf Run out
[mm] [mm] [mm] [MPa] [Cycles]

P-A-1 101.6 53.1 — 3.4 0.16 132300
P-A-2 101.6 52.9 — 3.2 0.11 2000000 •
P-A-3 99.6 53.4 — 3.4 0.09 175600
P-A-4 99.6 53.2 — 3.2 0.06 2000000 •

B-A-1 101.0 50.5 25 3.7 0.05 500
B-A-2 101.3 49.6 25 3.5 0.05 3800
B-A-3 100.0 50.0 25 3.3 0.06 2000000 •
B-A-4 101.4 51.0 25 3.5 0.10 1890800
B-A-5 100.8 49.4 25 3.3 0.08 36600
B-A-6 101.4 51.0 25 3.1 0.08 2000000 •
B-A-7 100.0 50.0 25 3.3 0.05 2000000 •

I-A-1 100.4 49.3 12.5 3.5 0.06 147100
I-A-2 100.0 50.0 12.5 3.3 0.06 551000
I-A-3 100.0 50.2 12.5 3.2 0.10 312900
I-A-4 100.4 52.8 12.5 2.9 0.07 2000000 •
I-A-5 100.4 49.3 12.5 3.2 0.12 2000000 •

S-A-1 101.7 50.4 1.4 3.4 0.12 855200
S-A-2 101.7 49.7 1.4 3.2 0.06 2000000 •
S-A-3 100.3 46.1 1.4 3.4 0.14 22200
S-A-4 100.6 49.8 1.4 3.1 0.07 523600
S-A-5 101.7 50.4 1.4 2.9 0.15 2000000 •

at room temperature at a frequency of 10 Hz, adopting as failure criterion the complete
breakage of the specimens and the run out tests were stopped at 2 · 106 cycles.

Tables 7.1 and 7.2 summarise the results obtained by testing under cyclic bending
the specimens belonging to Batch A and Batch B, respectively. These tables report the
code of the specimens, the measured depth, d, and width, w, of the net cross sectional
area (see Fig. 7.2), the notch root radius, rn, the maximum nominal net stress in the cycle
during testing, σmax, the applied load ratio, R, and the experimental number of cycles to
failure, Nf .

Examining carefully the fracture surfaces of the investigated specimens, as those
shown in Fig. 7.4, it was possible to notice that the fatigue cracks initiated mainly at the
interfaces between cementitious matrix and aggregates, with the subsequent propagation
taking place in the cement paste. The complete failure of the samples was reached through
a fast fracture process, preceded by the formation of relatively short fatigue cracks. Ac-
cording to the observed cracking behaviour, it is possible to state that, in the highly
stressed region, the cement paste represents the weakest link in the fatigue strength of
the microstructural chain, with the interfaces between matrix and aggregate playing the
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Table 7.2. Batch B: summary of the geometrical dimensions of the tested specimens and cor-
responding fatigue results.

Code d w rn σmax R Nf Run out
[mm] [mm] [mm] [MPa] [Cycles]

P-B-1 101.4 49.0 — 5.0 0.31 2000000 •
P-B-2 101.6 49.3 — 5.4 0.37 700
P-B-3 100.7 48.7 — 5.1 0.31 2000000 •
P-B-4 99.2 48.5 — 5.4 0.34 71500
P-B-5 101.0 49.0 — 5.0 0.32 468900

B-B-1 101.1 50.8 25 5.0 0.44 2600
B-B-2 101.2 51.0 25 4.8 0.40 180200
B-B-3 100.9 51.5 25 4.6 0.36 2000000 •
B-B-4 101.4 51.7 25 4.8 0.37 226300
B-B-5 101.0 51.8 25 4.6 0.38 2000000 •

I-B-1 100.3 53.3 12.5 4.7 0.37 2000000 •
I-B-2 101.8 51.6 12.5 4.9 0.37 1070200
I-B-3 100.8 52.3 12.5 4.7 0.36 225600
I-B-4 101.0 47.0 12.5 4.5 0.32 2000000 •
I-B-5 100.2 51.0 12.5 4.7 0.32 159700
I-B-6 101.0 48.8 12.5 4.5 0.33 3100

S-B-1 101.0 51.2 1.4 4.5 0.37 2000000 •
S-B-2 101.0 49.2 1.4 4.7 0.34 1935400
S-B-3 101.7 49.8 1.4 4.5 0.33 2000000 •
S-B-4 100.7 49.9 1.4 4.7 0.36 75200
S-B-5 101.1 49.8 1.4 4.5 0.32 2000000 •
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Fig. 7.4. Macroscopic cracking behaviour under fatigue loading displayed by the tested concrete.
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Table 7.3. Endurance limits determined through Dixon’s procedure at NA = 2 · 106 cycles to
failure.

Batch fb N. of tests rn Kt Rm δ K σMAX

[MPa] [mm] [MPa]

A 4.9 4 — 1.00 0.11 0.20 0.500 3.3
7 25 1.47 0.07 0.20 0.169 3.3
5 12.5 1.84 0.09 0.23 −0.026 3.2
5 1.4 4.36 0.11 0.22 0.878 3.1

B 6.5 5 — 1.00 0.33 0.36 0.084 5.1
5 25 1.47 0.40 0.25 0.439 4.7
6 12.5 1.84 0.35 0.20 0.296 4.6
5 1.4 4.36 0.34 0.20 0.701 4.6

role of preferential crack initiation locations.
The endurance limits were determined by assuming NA = 2 · 106 as reference number

of cycles to failure, according to the strategy adopted in [125] to investigate the fatigue
behaviour of un-notched plain and short fibre/particle reinforced concrete. The experi-
mental data summarised in Tables 7.1 and 7.2, used to determine the required endurance
limits, were generated according to Dixons up-and-down procedure [43]. In particular this
method consists in assuming an initial tentative endurance limit, running the first fatigue
test at a stress level higher than the estimated value. If the specimen fails at reference
number of cycles to failure lower than NA, the following test has to be run at a lower
stress level. Otherwise, if the specimen survives to a number of cycles equal to NA, then
the following test has to be run at a higher stress level. By so doing, the stress level
characterising each test depends on the previous experimental results, such a procedure
being applied iteratively by increasing or decreasing the magnitude of the applied cyclic
loading. For each data set, the endurance limit for a probability of survival PS = 50% was
estimated from the tests according to the following formula:

σMAX = σLT +K · δ (7.7)

where σMAX is the maximum nominal net stress in the fatigue cycle at the endurance limit,
δ is the interval between two adjacent stress levels and σLT is the stress at the last test
run for any material/geometry configuration, while K is a constant which can directly be
extracted from the table supplied by Dixon himself in [43] and compiled by performing
a rigorous statistical analysis. The results obtained by post-processing the experimental
tests (listed in Tables 7.1 and 7.2) thorough Dixon’s procedure are graphically presented
in the diagrams of Fig. 7.5, as well as concisely summarised in Table 7.3. In both Fig. 7.5
and Table 7.3, Rm is the average value of the nominal load ratio, R, for each data set.
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Fig. 7.5. Endurance limits determined according to the up-and-down method.

7.3 Validation through experimental data

To investigate the importance of microstructural length scale parameters in describing
the high-cycle fatigue behaviour of notched plain concrete, the accuracy and reliability of
both gradient elasticity and the TCD have been checked against the experimental results
obtained from the tests described in the previous paragraph.

As already explained in Chapter 2, the different formalisations of the TCD are all
characterised by a common feature consisting in the fact that the extent of damage is
determined through an effective stress depending not only on the magnitude of the lo-
cal linear elastic stress fields, but also on a material length scale parameter L, whose
value is not affected by the profile of the stress concentrator being assessed [123, 148].
Furthermore, depending on both the morphological features of the assessed material and
the nature of the crack nucleation and propagation mechanisms, several experimental ev-
idence demonstrates that length L can be associated to either the material micro-, meso-
or macroscopic features [123, 148]. Similarly, gradient elasticity length scale parameter `
is representative of the underlying microstructure of the considered material, in partic-
ular its value has been shown to be directly related to the size of the dominant source
of microstructural heterogeneity [59]. Therefore, under high-cycle fatigue loading, both L
and ` can range from a few microns [21, 158] up to several millimetres [17, 123].

Coming back to the investigated concrete mixes, since from §7.2 it emerges quite clearly
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the fact that, at a mesoscopic level, the cement paste represents the weakest feature in the
investigated concrete mixes, it is reasonable to expect that L and ` are of the order of the
average inter-aggregate distance. This means that both the TCD and gradient elasticity
will be used to model the high-cycle fatigue behaviour of notched concrete by employing
length scale parameters determined at a mesoscopic level. This aspect is very important
since the investigated mixes had different water to cement ratios, this resulting in cement
pastes characterised by different microstructural features.

As far as ductile materials are concerned, both the TCD and gradient elasticity are
seen to be capable of accommodating any material non-linearities into a linear-elastic
constitutive law [17, 21, 123, 127, 148]. In particular, via length L, the magnitude of the
effective stress used by the TCD to evaluate the extent of damage is lower than the value
of the linear-elastic stress in the neighbourhood of the tip of the geometrical feature be-
ing assessed (see Figs. 2.25b and c). Similarly, giving the boundary conditions, the use
of gradient elasticity produces, in the vicinity of the stress concentrator being assessed,
gradient-enriched stress values lower than the correspondent stress values determined ac-
cording to classical elasticity. This allows the TCD and gradient elasticity, in case of
ductile materials, to simulate the smoothing effect of plasticity on the local stress fields
without renouncing to the advantages of linear stress/strain analyses. Furthermore, since
in notched/cracked ductile materials in the endurance limit condition the magnitude of
the cyclic nominal loading is relatively small, the amount of material experiencing large
scale plastic deformations is usually very limited [148], allowing local plasticity to be ne-
glected with little loss of accuracy [123]. This explains why both the linear-elastic TCD
and gradient elasticity show high accuracy in predicting the high-cycle fatigue strength
of cracked [17, 21, 127, 146], notched [17, 122, 127, 130, 132, 146] and welded ductile
metals [86, 87, 124, 126, 134, 149, 157].

Concrete, unfortunately, is a completely different and much more complex material,
showing a quasi-brittle mechanical behaviour with various types of non-linearities, mainly
influenced by the microstructural features of the mix. However, due to their accuracy in
modelling the high-cycle fatigue behaviour of ductile materials, both the TCD and gradi-
ent elasticity are expected to be able to fit the aforementioned local non-linearities into a
simple linear-elastic framework. As a consequence, in the following of this chapter TCD
and gradient elasticity will be applied under the assumption that the stress-stain rela-
tion of the analysed concrete mixes can adequately be described, at a mesoscopic scale,
through a simple linear-elastic constitutive law.

It is worth observing here also that the use of the TCD and gradient elasticity to
model the high-cycle fatigue behaviour of notched concrete is based on the assumption
that L and ` are independent parameters whose value is related solely to the material
morphology. According to this assumption, the required length scale parameters can be
defined without addressing the fracture energy problem a priori.

Much experimental evidence suggests that the frequency of the applied loading has a
quite limited effect up to about 20 Hz [106]. Accordingly, it is possible to presume that
lengths L and ` as well are not influenced by the frequency of the applied loading as long
as the frequency itself does not affect the overall fatigue strength of the concrete being
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investigated. On the contrary, owing to the viscous behaviour characterising the mechan-
ical behaviour of concrete, frequency is expected to become more and more important as
the rate of the cyclic loading increases, this possibly affecting not only the strength of the
investigated concrete, but also the related length scale parameters [84]. As mentioned in
§7.2, the experimental results used to assess the accuracy of both the TCD and gradient
elasticity were generated at a frequency of 10 Hz. Therefore, owing to the fact that the
applied frequency was lower than 20 Hz [106], the hypothesis was formed that its effect
could be neglected with little loss of accuracy. However, in light of the complexity of this
problem, it is evident that more theoretical and experimental work needs to be done in
this area in order to accurately study the frequency effect in concrete fatigue, this being
out of the scope of the present study.

7.3.1 Finite Element analyses

In order to apply the TCD, the continuum mechanics linear elastic stress fields ahead
of the investigated notches were determined by using commercial FE software ANSYS®.
The tested concrete was modelled as a homogeneous and isotropic material. The notched
beams were meshed using 2D element Plane 183, an 8-node element with quadratic dis-
placement behaviour. The required linear elastic stress-distance curves were obtained by
gradually increasing the mesh density in the notch tip regions until convergence occurred
(meaning that the stresses at the notch tip obtained from two consecutive mesh refine-
ments are equal at the second decimal digit).

The gradient elasticity FE models were solved by using the finite element framework
developed in Chapter 5. Both the un-notched and notched specimens were modelled by
using quadrilateral four-noded bilinear elements. Also in this case, the mesh density in the
regions of interest was gradually refined until convergence occurred (see Fig. 7.6). Finally,
the numerical solutions were calculated by taking the boundary conditions as homoge-
neous essential for the first step of the Ru-Aifantis theory (Eq.(5.7)) and homogeneous
natural throughout for the second step (Eq. (5.12)).

7.3.2 Theory of Critical Distances

Since the maximum stress in the cycle allows the mean stress effect in concrete fatigue to
be modelled effectively, the Point Method (PM), Line Method (LM), and Area Method
(AM) were reformulated as follows:

σeff,max = σy,max

(
θ = 0°, r =

L

2

)
(7.8)

σeff,max =
1

2L

∫ 2L

0

σy,max (θ = 0°, r) dr (7.9)

σeff,max =
4

πL2

∫ π/2

0

∫ L

0

σ1,max (θ, r) r dr dθ (7.10)
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Fig. 7.6. Typical meshes used to model the area around the notch tip of the analysed concrete
beams.
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In the above definitions, σeff,max is the maximum value of the effective stress, whereas
σy,max and σ1,max are the maximum values of local stress components σy and σ1, respec-
tively.

Given Eqs. (7.8), (7.9) and (7.10), according to the TCD philosophy [123, 148] a
notched concrete component is within the endurance limit condition as long as the maxi-
mum effective stress, σeff,max, is lower than (or, at least, equal to) the maximum endurance
limit of the un-notched material, σ0,MAX.

In order to apply the TCD to estimate the notch endurance limits summarised in
Table 7.3, the critical distance value, L, for the investigated concrete was determined by
following the procedure schematically summarised in Fig. 2.26, the stress quantities of
interest being obviously expressed in terms of maximum values. As shown in the charts of
Fig. 7.7, the use of σ0,MAX and the linear-elastic stress-distance curve determined, in the
endurance limit condition, from the sharply notched specimens led to a critical distance
value, L, for Batch A and Batch B of 5.8 mm. Since the material mesoscopic morphol-
ogy was the same for both batches (see Fig. 7.3), this result strongly supports the idea
that length scale parameter L depends solely on those morphological features affecting
the overall strength of the material being assessed. In particular, as mentioned earlier,
in the investigated concrete the initiation process was seen to take place mainly at the
interfaces between matrix and aggregates, the subsequent propagation occurring in the
cement paste. Accordingly, the value for critical distance L estimated via the simplified
procedure summarised in Fig. 2.26 resulted in a length approaching the average inter-
aggregate distance of 4 mm.

Turning to the accuracy of the different formalisation of the TCD, the stress-distance
curves plotted, at the endurance limit, in the charts of Fig. 7.7 prove that the PM was
accurate in estimating the high-cycle fatigue strength of the beams containing blunt
(Kt = 1.47), intermediate (Kt = 1.84) and sharp (Kt = 4.32) notches (i.e. the values
of the linear elastic stress at a distance L/2 from the notch tip are close to the un-notched
material endurance limit, σ0,MAX). The error bands reported in Fig. 7.7 were determined
by defining the error as follows:

Error =
σeff,max − σ0,MAX

σ0,MAX

[%] (7.11)

According to the above definition, an error larger than zero denotes a conservative
prediction, whereas a negative error indicates a non-conservative estimate.

Table 7.4 confirms that the TCD used in the form of the PM and AM was capable of
estimates falling within an error interval of about ±10% independently of the sharpness
of the assessed notch. On the contrary, the predictions made using the LM were seen to
fall on the non-conservative side, within an error interval of about ±20%.

To conclude, the obtained level of accuracy is certainly encouraging since, as far as
notches are concerned, it is not possible to distinguish between an error of ±20% and
an error of 0% as a consequence of those problems that are usually encountered when
performing the testing as well as the numerical analyses [151].
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Fig. 7.7. Local linear-elastic stress fields in the endurance limit condition and accuracy of the
PM in estimating the high-cycle fatigue strength of the tested notched concrete.
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Table 7.4. Overall accuracy in the estimation of the high-cycle fatigue strength of the tested
specimens through the TCD and gradient elasticity (GE).

Batch Kt Error [%]

PM LM AM GE GE
(` = 2.05 mm) (` = 4 mm)

A 1.47 8.8 -14.1 12.6 18.5 15.4
1.84 12.7 -13.9 16.6 27.6 15.7
4.32 0.0 -15.3 10.8 29.4 −3.6

B 1.47 0.4 -20.8 3.7 9.2 7.0
1.84 4.9 -19.9 8.5 18.8 8.4
4.32 0.0 -18.7 6.3 24.3 −7.0

7.3.3 Gradient elasticity applied according to the Theory of
Critical Distances

In two recent investigations [20, 127], it has been proven that gradient-enriched crack tip
stresses are capable of accurately modelling, at the threshold condition, the transition
from the long- to the short-crack regime, both under high-cycle fatigue [127] and static
loading [20]. Due to the high level of accuracy that was obtained by following such a strat-
egy, also in the present investigation the hypothesis is formed that the high-cycle fatigue
strength of notched plain concrete can directly be estimated through the linear-elastic
gradient-enriched stress state determined at the notch tip. Furthermore, as discussed in
§7.1, gradient elasticity has to be applied in terms of maximum values of the stresses in the
fatigue cycle in order to efficiently take into account the mean stress effect in concrete fa-
tigue. According to the above considerations, the maximum value of the gradient-enriched
effective stress is as follows:

σgeff,max = σgy,max (θ = 0°, r = 0) (7.12)

where in this case, σgy,max denotes the gradient-enriched stress perpendicular to the x-axis
(see Fig. 2.25a for the definition of the local frame of reference). Therefore, similarly to
the TCD, the assumption can be made that the notched concrete being designed is at
its endurance limit (i.e., in the threshold condition) when σgeff,max equals the maximum
endurance limit of the un-notched material, σ0,MAX .

The second information which is needed to calculate the effective stress via Eq. (7.12)
is the microstructural length scale parameter `. As previously mentioned in Chapter 4, it
was proven in [127] that ` can directly be estimated from the TCD critical distance value,
L, through Eq. (4.1).

Therefore, gradient elasticity was applied in accordance with the TCD to estimate
the notch endurance limits of the tested concrete by taking the length scale parameter,
`, equal to 2.05 mm, L being equal to 5.8 mm. The diagrams reported in Fig. 7.8 show
the gradient-enriched stress fields determined, at the endurance limit, for ` = 2.05 mm,
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the error being calculated via Eq. (7.11). These diagrams together with Table 7.4 make
it evident that the use of gradient elasticity applied according to the TCD resulted in
conservative estimates, the level of conservatism increasing with the increase of the notch
sharpness.

To conclude, since L can be easily derived, either via Eq. (2.80) re-arranged in terms
of maximum values or through the simplified procedure summarised in Fig. 2.26, the
obtained results strongly support the idea that gradient elasticity can be safely used in
conjunction with the TCD’s philosophy by always reaching during the design process an
appropriate level of safety.

7.3.4 Gradient elasticity and material microstructural features

By carefully observing the diagrams of Fig. 7.8, it is possible to notice that, in the en-
durance limit condition, the gradient-enriched stress at the surface of the un-notched
specimens is lower than the corresponding endurance limit determined according to con-
tinuum mechanics. This apparent anomaly is a consequence of the fact that, as already
explained in Chapter 4, in the presence of stress gradients, gradient elasticity manipu-
lates the local stress fields by incorporating into the stress analysis the microstructural
length scale parameter, ` (see Figs. 4.1b and c). Solely in the absence of gradients the
stress fields determined via gradient elasticity coincide with those determined according
to continuum mechanics. This is what happens, for instance, under axial loading (see
Fig. 4.1a). Therefore, one may argue that the conventional un-notched endurance limit,
σ0,MAX, determined under bending is not a strength quantity suitable for being used to
employ gradient elasticity to estimate the high-cycle fatigue strength of notched mate-
rials. Having said that, the hypothesis can be formed that the maximum value of the
gradient-enriched endurance limit, σg0,MAX, can directly be derived from the experimental
results generated by testing un-notched specimens under cyclic bending provided that the
value of the length scale parameter, `, is set a priori. In order to choose an appropriate
value for the microstructural length scale parameter, it is worth remembering here that
length ` is seen to be directly related to the size of the dominant source of microstruc-
tural heterogeneity [59]. Therefore, the assumption can be made that ` equals the average
inter-aggregate distance, i.e., ` = 4 mm, since in the tested concrete the cement paste
was seen to play the role of the weakest link in the fatigue strength of the microstruc-
tural chain (Fig. 7.4). As shown in the diagrams of Figs. 7.9a and 7.9b, taking the length
scale parameter equal to 4 mm resulted in a maximum value of the gradient-enriched
un-notched endurance limit, σg0,MAX = 2.8 MPa for Batch A and σg0,MAX = 4.3 MPa to
for Batch B. The gradient-enriched stress-distance curves reported in the above charts
make it evident that the use of such a strategy resulted in highly accurate predictions,
with estimates falling within an error interval of ±15% (see Table 7.4). To conclude, it is
worth observing that in Figs. 7.9 as well as in the last column of Table 7.4 the error was
calculated as follows:

Error =
σgeff,max − σ

g
0,MAX

σg0,MAX

[%] (7.13)
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Fig. 7.8. Gradient-enriched stress fields in the endurance limit condition and accuracy of gra-
dient elasticity applied according to the TCD in estimating the high-cycle fatigue strength of
the tested notched concrete.
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Fig. 7.9. Accuracy of gradient elasticity calibrated via the average inter-aggregate distance in
estimating the high-cycle fatigue strength of the tested notched concrete.
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where σgeff,max was determined according to Eq. (7.12).
Although the choice of taking the internal length ` = 4 mm is reasonable, one could

argue that it is to some extent arbitrary. Therefore, the sensitivity of the results with
respect to a different choice of length scale has been investigated by analysing the same
problems but with ` = 3 mm (−25%) and ` = 5 mm (+25%). This investigation showed
that a variation of ±25% on the length scale produced variations on the error included
in the range ±10% with the errors falling anyway within the usual acceptable ±20%
error scatter band. Hence, even if the accuracy of the results presents some sensitivity to
the choice of the length scale, substantial variations of the length scale parameter result
anyway in predictions with acceptable accuracy.

7.4 Conclusions

In this chapter the accuracy and reliability of using microstructural length scale param-
eters in modelling the high-cycle fatigue behaviour of notched plain concrete have been
investigated against an appropriate set of experimental data. It is possible to conclude
that, also for notched concrete under fatigue loading, the mean stress effect can be accu-
rately taken into account by considering the maximum stress in the cycle.

Regarding the TCD, the use of both the PM and AM resulted in highly accurate es-
timates, proving that these two formalisations of the TCD are suitable for modelling the
high-cycle fatigue behaviour of notched plain concrete. On the contrary, even though the
obtained error level was acceptable, the use of the LM led to non-conservative estimates.
Furthermore, the fact that the critical distance L was seen to be the same in both batches
strongly supports the idea that L mainly depends on the morphological features affecting
the overall strength of the considered material.

In what concerns gradient elasticity, instead, if applied according to the TCD it led
to conservative estimates, the level of conservatism increasing with the sharpness of the
notch. On the other hand, if gradient elasticity is applied by taking length scale parameter
` equal to the average inter-aggregate distance, it resulted in a remarkable level of accu-
racy. This strongly supports the idea that length ` is a parameter suitable for modelling
the dominant source of microstructural heterogeneity.

Finally, more work needs to be done in this area to check the accuracy of the TCD and
gradient elasticity, not only with other plain and short-fibre reinforced concrete containing
different notches, but also under mixed mode loading.
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Chapter 8

Gradient visco-elasticity

A material showing both elastic and viscous behaviour, when subject to deformation pro-
cesses, is commonly defined visco-elastic. Visco-elastic materials are characterised by an
intermediate behaviour between purely elastic and purely viscous materials; in particular
the viscous component is responsible of the time-dependant behaviour of the material. For
example, when the Maxwell model shown in Fig. 8.1a is used to describe the visco-elastic
behaviour, a visco-elastic material subject to a constant strain experiences an instanta-
neous elastic stress which then decreases with time (relaxation). On the other hand, if
the Kelvin-Voigt model shown in Fig. 8.1b is used, a material subject to a constant stress
shows an instantaneous deformation (due to the elastic part) which increases with time
until the material fails or the stress is removed (creep).

A large number of common materials like synthetic polymers, biopolymers, wood,
human tissue, bituminous materials and metals at high temperature show strong visco-
elastic behaviour, making the development of a continuum theory, capable of capturing
micro-structural as well as time-dependent phenomena, of primary interest.

Despite the significant number of gradient-enriched theories for elasticity and plastic-
ity, and the ability of gradient theories to take into account the effect of the microstructure
on the global behaviour of a material in both static and dynamics, gradient visco-elasticity
theories have received not great interest in the past. An attempt to describe visco-elastic
materials has been made by Gudmundson [66] in 2006, who proposed a strain gradient
visco-elastic model to describe length scale effects in such materials. However, as the au-
thor points himself further in [66], the proposed method is lacking a link between the
length scale and the material’s microstructure.

In this chapter a micro-inertia gradient visco-elasticity theory is proposed to study
wave dispersion in periodic composites, allowing new insights into the effects of both
gradient enrichment and viscosity on wave propagation as well as their interaction. The
proposed theory is characterised by a direct link with the underlying microstructure as
well as material properties. Moreover, an effective and straightforward finite element im-
plementation of the presented theory is proposed. Some insight about the interaction
between viscosity and inertia gradient, as well as the different effects they have on wave
propagation and dispersion, are also given through an application of the new methodology
to a one-dimensional wave propagation problem.
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Fig. 8.1. Basic visco-elastic models: Maxwell (a) and Kelvin-Voigt (b).

8.1 Model derivation

Let us consider the Kelvin-Voigt model shown in Fig. 8.1b and represented by a purely
viscous damper and a purely elastic spring connected in parallel. It can be expressed by
the following equation:

ftotal = fspring + fdamper = su(t) + ηu̇(t) (8.1)

where s is the stiffness of the spring and η is the viscosity of the damper, or analogously:

σ(t) = Eε(t) + γ̃ε̇(t) (8.2)

where σ is the stress, ε the strain, E the Young’s modulus, γ̃ the damping factor, t the
time and the dot represents the time derivative.

Gradient visco-elasticity theory can be obtained through the continualisation of a
discrete lattice (Fig. 8.2) as explained in [14], taking into account that now the particles
of mass m are in series with Kelvin-Voigt models characterised by spring stiffness s and
viscosity η; the distance between two consecutive particles is denoted d . The equation of
the motion of the nth particle can be written as:

mün = s (un+1 − 2un + un−1) + η (u̇n+1 − 2u̇n + u̇n−1) (8.3)

Passing now from the discrete to the continuum model, the displacements can be
re-defined as

u(x, t) = un(t) and u(x± d, t) = un±1(t) (8.4)
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Fig. 8.2. Mono-dimensional discrete model consisting in particles and Kelvin-Voigt models.

Then, by using the Taylor series the generic displacement can be written as

u(x± d, t) ≈ u(x, t)± du′(x, t) +
1

2
d2u′′(x, t)± 1

6
d3u′′′(x, t) +

1

24
d4u′′′′(x, t)± · · · (8.5)

and substituting Eq. (8.5) into Eq. (8.3), a new equation of the motion is obtained, in
which an higher order term appears for both displacements and velocities:

mü(x, t) = sd2

[
u′′(x, t) +

1

12
d2u′′′′(x, t)

]
+ ηd2

[
u̇′′(x, t) +

1

12
d2u̇′′′′(x, t)

]
(8.6)

or similarly, replacing the mass, the spring stiffness and the (stiffness-) proportional damp-
ing, respectively, with the following relations m = ρAd, s = EA/d and η = τEA/d

ρü(x, t) = E

[
u′′(x, t) +

1

12
d2u′′′′(x, t) + τ

(
u̇′′(x, t) +

1

12
d2u̇′′′′(x, t)

)]
(8.7)

where ρ is the mass density and τ is the (stiffness-) proportional damping coefficient with
unit of time. In Eqs. (8.6) and (8.7), truncation of the Taylor series has been applied such
that only the next-highest order terms are maintained.

This results in an enriched-gradient model with positive sign, which unfortunately
has been proved to produce unstable results [19]. Stabilisation can be obtained through
a simple mathematical manipulation that consists in taking the Laplacian of the original
equation of the motion (8.7), that is (ignoring the spatial and temporal dependence for
notational simplicity)

ρü′′ = E

[
u′′′′ +

1

12
d2u′′′′′′ + τ

(
u̇′′′′ +

1

12
d2u̇′′′′′′

)]
(8.8)



172 CHAPTER 8. GRADIENT VISCO-ELASTICITY

multiplying Eq. (8.8) by 1
12
d2, which leads to (neglecting higher-order terms)

1

12
d2ρü′′ =

1

12
d2E (u′′′′ + τ u̇′′′′) (8.9)

and finally subtracting Eq. (8.9) from Eq. (8.7), which leads to:

ρ

(
ü− 1

12
d2ü′′

)
= E (u′′ + τ u̇′′) (8.10)

or alternatively

ρ
(
ü− `2ü′′

)
= E (u′′ + τ u̇′′) (8.11)

where the length scale ` is linked to the inter-particle distance d by the expression ` =
1√
12
d.
This technique can also be applied in multi-dimensions, which in the isotropic case

leads to the following equation of the motion:

ρ
(
ü− `2∇2ü

)
= LTCL (u + τ u̇) (8.12)

Note 1. For non-isotropic materials the length scale ` is not a scalar anymore, but the
length scale effects in each direction of anisotropy are collected in a tensor Ls (see for
example [60]).

8.2 Dispersion analysis

8.2.1 Discrete model

To study the dispersive behaviour of the discrete model of Eq. (8.3), the general harmonic
solution

un = U exp(i(ωt− kxn)) (8.13)

is considered, where U is the amplitude, k is the wave number, t is the time, xn the
coordinate of the nth particle and ω is the angular frequency defined as a complex number
as

ω = ωh + iωd (8.14)

with ωh and ωd the harmonic and damping component of ω, respectively.
Substituting Eqs. (8.13) and (8.14) into Eq. (8.3) and considering that xn±1 = xn ± d,

the following expression for ωd and ωh are obtained
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ωd = 2
c2
e

d2
τ sin2

(
kd

2

)
(8.15)

ωh = 2
ce
d

∣∣∣∣sin(kd2
)∣∣∣∣
√

1− c2
e

d2
τ 2 sin2

(
kd

2

)
(8.16)

where ce =
√
E/ρ is the elastic bar velocity. Sub-critical damping is identified via non-

imaginary values of ωh, which leads to the following condition:

1− c2
e

d2
τ 2 sin2

(
kd

2

)
≥ 0 (8.17)

or in terms of τ :

τ ≤ 1∣∣sin (kd
2

)∣∣ dce (8.18)

Since 0 ≤
∣∣sin (kd

2

)∣∣ ≤ 1, Eq. (8.18) can be simplified as

τ ≤ d

ce
(8.19)

which sets the threshold value of τ that separates sub-critical and super-critical damping.

8.2.2 Continuum model

In what concerns the continuum model, the following harmonic solution

u(x, t) = U exp(i(ωt− kx)) (8.20)

is substituted into the one-dimensional continuum equation of the motion (8.10), leading
to the following equation

ρω2

(
1 +

1

12
d2k2

)
= Ek2 (1 + iωτ) (8.21)

Introducing Eq. (8.14) in Eq. (8.21) the following expressions for ωd and ωh are obtained:

ωd =
c2
ek

2τ

2
(
1 + 1

12
d2k2

) (8.22)

ωh =
cek√

1 + 1
12
d2k2

√
1− c2

ek
2τ 2

4
(
1 + 1

12
d2k2

) (8.23)
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Fig. 8.3. Harmonic component of the angular frequency versus wave number when classical
visco-elasticity theory is applied (a) and for the non-viscous micro-inertia theory (b).

Taking d = 0 m the continuum model for classical visco-elasticity is retrieved, ob-
taining the following expression for the harmonic component of the angular frequency

ωh = cek

√
1− c2

ek
2τ 2

4
(8.24)

Thus,

τ = 2
1

cekc
(8.25)

is the condition for critical damping, from which can be easily determined the cut-off
value kc (i.e. the wave number associated with ωh = 0).

Similarly, the micro-inertia gradient elasticity model is found by setting the condition
τ = 0 s which yields

ωh =
cek√

1 + 1
12
d2k2

(8.26)

In Fig. 8.3a the harmonic component of the angular frequency ωh is plotted against
the wave number k, in the case the classical visco-elasticity theory is applied, for different
values of τ , while in Fig. 8.3b the same graph is plotted for the non-viscous micro-inertia
theory (τ = 0 s), for different values of d.

Coming back to Eq. (8.23), it can be observed that positive values of the argument
of the second square root lead to real values of ωh, while if the considered argument is
negative, ωh becomes imaginary. Considering Eq. (8.20) together with Eq. (8.14) it can
be easily found that real values of ωh lead to the case of sub-critical damping, while
imaginary values make the system super-critically damped (see Appendix B for a more
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detailed discussion about the stability of this solution). Hence, summarising it can be
stated that the condition

τc =
1√
3

d

ce
(8.27)

which makes the argument of the square root null for k → ∞, represents the condition
of critical damping and consequently if τ < τc the system is under-damped, while
for τ > τc a range of higher wave numbers will be over-damped.

Thus, an important feature of the proposed theory can be found in the fact that
varying τ (which depends on material properties) it is possible to have control on which
wave numbers are over-damped. In particular, the lower bound of the over-damped wave
numbers can be defined as the cut-off value kc obtained by imposing

1− c2
ek

2τ 2

4
(
1 + 1

12
d2k2

) = 0 (8.28)

which leads to

kc =
2√

c2
eτ

2 − 1
3
d2

(8.29)

that represents the wave number in correspondence of which ωh is zero and beyond which
imaginary frequencies ωh are obtained.

In Fig. 8.4 the harmonic component of the angular frequency ωh, obtained by applying
the different models, is plotted versus the wave number k, for different values of the
dimensionless parameter ξ, writing τ as

τ = ξ
d

ce
(8.30)

It is worth clarifying that the results shown in Fig. 8.4 are physically of interest only for
0 ≤ k ≤ π (i.e. first Brillouin zone). However, for reasons of completeness and to allow
further mathematical considerations, expressed below, a wider range of wave numbers has
been considered.

From Fig. 8.4, considering wave numbers up to π, it is evident that the micro-inertia
gradient visco-elastic model is able to describe with higher accuracy the dispersive be-
haviour of the discrete model, compared to the classical visco-elastic model, even if it
must be observed that the improvement introduced by the gradient enrichment becomes
weaker for high value of τ .

Note 2. It can also be noticed that, in the case of critical damping (Fig. 8.4b), the
ωh− k curve, resulting from the micro-inertia gradient model, can be split into two parts:
a first part characterised by a negative second derivative (concave) and a second one con-
vex. Through a more accurate study of the second derivative it has been found that for
ξ > 1/

√
6 the curve shows an inflexion point.
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Fig. 8.4. Harmonic component of the angular frequency versus wave number for the discrete
model (dashed line), classical visco-elastic model (dash-dotted line) and micro-inertia gradient
visco-elastic model (solid line), for different values of ξ: ξ = 0.4 (a), ξ = 1/

√
3 (b), ξ = 0.6 (c),

ξ = 1.0 (d).
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Thus, we can summarise the results of the proposed micro-inertia gradient model as
follows

• 0 ≤ ξ ≤ 1/
√

6: the ωh − k curve is always concave and it tends to the horizontal
asymptote

ωh = 6
ce
d

√
1

3
− ξ2 (8.31)

• 1/
√

6 < ξ ≤ 1/
√

3: the curve is characterised by a first concave part followed by a
second convex one, but ωh is real for every wave number;

• ξ > 1/
√

3: ωh assumes imaginary values for a range of higher wave numbers.

Finally, comparing Fig. 8.4 with Fig. 8.3 it can be easily seen that both classical
visco-elasticity and gradient elasticity (straight solid line in Fig. 8.3a, corresponding to
τ = 0 s) models alone are not able to accurately describe the dispersive behaviour of
the discrete model, but introducing a micro-inertia gradient enrichment into the classical
visco-elasticity theory a significant improvement of the results is obtained for 0 ≤ k ≤ π.

8.3 Discretisation

Starting from Eq. (8.12) the finite element equations for the bi-dimensional case will
be defined, while the equations for the three-dimensional case can be easily obtained,
following a similar procedure. Some information about the time integration algorithm
adopted in the proposed methodology to solve the equations of the motion will be also
provided.

8.3.1 Finite element equations

The continuum displacement field is discretised by means of shape functions which, as
usual, are collected in the matrix Nu defined by Eq. (5.2), which allows the contin-
uum displacements u = [ux, uy]

T to be expressed in terms of the nodal displacements

d = [d1x, d1y, d2x, d2y, . . . ]
T through the relation u = Nud.

Taking the weak form of the equation of the motion (8.12), considering now also the
body forces b, with domain Ω and boundary Γ, followed by integration by parts, and con-
sidering the discretisation of the displacements described above, we obtain the following
equation:

∫
Ω

ρ

[
Nu

TNu + `2

(
∂Nu

T

∂x

∂Nu

∂x
+
∂Nu

T

∂y

∂Nu

∂y

)]
dΩ d̈ +

+

∫
Ω

Bu
TCBudΩ

(
d + τ ḋ

)
=

∫
Ω

Nu
TbdΩ +

∫
Γ

Nu
TtdΓ (8.32)
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where t is the vector of the prescribed traction on the Neumann part of the boundary
and includes also the inertia effects.

Finally we obtain the discrete system of equation

[M + H] d̈ + K
(
d + τ ḋ

)
= f (8.33)

with

K =

∫
Ω

Bu
TCBudΩ (8.34)

the stiffness matrix,

M =

∫
Ω

ρNu
TNudΩ (8.35)

the classic mass matrix,

H =

∫
Ω

ρ`2

(
∂Nu

T

∂x

∂Nu

∂x
+
∂Nu

T

∂y

∂Nu

∂y

)
dΩ (8.36)

the gradient-enriched part of the mass matrix, and

f =

∫
Ω

Nu
TbdΩ +

∫
Γ

Nu
TtdΓ (8.37)

the force vector. Note that the structure of H resembles that of a diffusivity matrix.

8.3.2 Time integration

In dynamics the equations of the motion of discrete systems are solved in the time domain
by using direct integration algorithms.

Here, the Crank-Nicolson method [41] has been used, obtained from the Newmark
method [99] by setting the two parameters β∗ = 1/4 and γ∗ = 1/2, which makes the
method unconditionally stable [64].

The fundamental relations of this method are:

üi+1 =
4

∆t2

(
ui+1 − ui −∆t u̇i −

1

4
∆t2üi

)
(8.38)

u̇i+1 = u̇i +
1

2
∆t (üi + üi+1) (8.39)

where ui, u̇i and üi are, respectively, the displacement, velocity and acceleration at the i th

time instant, while ∆t is the chosen time step; that lead to the following time-discretisation
of Eq. (8.33)
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Fig. 8.5. Mono-dimensional representation of a periodic bi-component material.

[
4 [M + H]

∆t2
+

(
2τ

∆t
+ 1

)
K

]
ui+1 =

= [M + H]

(
4ui
∆t2

+
4u̇i
∆t

+ üi

)
+ τK

(
2ui
∆t

+ u̇i

)
+ f (8.40)

from which the nodal displacements at time i+1 can be determined, knowing the values
of the nodal displacements, velocities and accelerations at the previous time step i.

8.4 Homogenisation approach and length scale iden-

tification for periodic composites

In the scope of this chapter, the periodic elastic composite analysed by Chen and Fish [39]
will be considered. This periodic composite consists of two different materials (properties
are denoted by the subscript 1 and 2 respectively), with volume fraction defined by the
parameter α as shown in Fig. 8.5.

Now the constitutive relations can be presented as

σ = E (ε+ τ ε̇) (8.41)

where τ is the damping proportional factor.
Considering the homogeneous continuum model proposed by Chen and Fish [39], ne-

glecting the multiple time scales and taking into account the constitutive relation (8.41),
the leading order equation of the motion takes the following form:

ρü = E (u′′ + τ u̇′′) (8.42)

where

ρ = αρ1 + (1− α)ρ2 (8.43)
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E =
E1E2

(1− α)E1 + αE2

(8.44)

are, respectively, the homogenised mass density and Young’s modulus.
Including the next high-order term, the equation of the motion reads:

ρü = E (u′′ + τ u̇′′) + γd2E (u′′′′ + τ u̇′′′′) (8.45)

where d is the size of the unit cell as shown in Fig. 8.5 and γ is expressed in the following
way:

γ =
1

12

[
α(1− α)(ρ1E1 − ρ2E2)

(1− α)ρE1 + αρE2

]2

(8.46)

Imposing the two conditions 0 < α < 1 and ρ1E1 6= ρ2E2 we obtain γ > 0.
As it can be easily noticed, Eq. (8.45) represents an enriched-gradient equation of the

motion in which the higher-gradient term is characterised by a positive sign, which, as
previously mentioned, produces unstable results. However, with a mathematical procedure
similar to the one previously explained, as also proposed in [39] for elastic materials, it
is possible to replace the previous unstable model with a stable inertia-gradient model.
This leads to the following stable inertia-gradient equation of the motion:

ρ
(
ü− γd2ü′′

)
= E (u′′ + τ u̇′′) (8.47)

or equivalently

ρ
(
ü− γd2ü′′

)
= Eu′′ +Du̇′′ (8.48)

where D = τE.
Comparing now Eq. (8.11) with Eq. (8.48), the length scale ` can be written in terms

of geometry and material parameters only:

` = d
√
γ (8.49)

Finally, it is worth highlighting that, since the governing partial differential equations
(8.48) of the proposed micro-inertia gradient visco-elastic methodology are second-order
in space, only one set of boundary conditions must be applied. In particular, either:

• essential boundary conditions: u = u or

• natural boundary conditions: ft = ρ`2ü′ + E(u′ + τ u̇′) = f t

where ft are the tractions containing also inertia and damping effects, while u and f t are,
respectively, the prescribed values of displacements and tractions on the boundaries.

Furthermore, in addition to the aforementioned boundary conditions, the following
initial conditions are also needed:
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• u(t=0) = u0

• u̇(t=0) = u̇0

where u0 and u̇0 are the prescribed initial values of, respectively, displacements and ve-
locities.

8.5 Numerical tests

The proposed theory has been applied to the one-dimensional wave propagation problem
consisting in a 100 m long periodic composite bar, similar to the one shown in Fig. 8.5, in
which the first material is characterised by mass density ρ1 and Young’s modulus E1, while
in what concerns the second material, the properties are denoted as ρ2 and E2. Following
Eqs. (8.43) and (8.44), the macroscopic effective material properties are ρ = 1 kg m−3,

E = 1 N m−2 and ce =
√
E/ρ = 1 m/s. Both materials are characterised by the same

damping proportional factor τ and the volume fraction is assumed to be α = 0.5, while
the unit cell size is taken d = 1 m.

The bar has a square cross section A = 1 m2, it is fully restrained at its right hand
end and subject to a unit-pulse at its left hand end.

The two problems presented in [32] denoted as Case a (large contrast) and Case b
(moderate contrast) are considered. The length scales for the two problems are deter-
mined through Eqs. (8.46) and (8.49), which leads to ` = d

√
γ = 0.289 m for Case a and

` = d
√
γ = 0.159 m for Case b. Following the same procedure presented in §8.2.2 and

considering that now ` =
√
γd instead of ` = 1

12
d the critical value of the damping coef-

ficient is found to be τc = 2`/ce = 0.578 s for Case a and τc = 2`/ce = 0.318 s for Case
b. The two problems have been analysed for four different values of τ , from τ = 0.000 s
(corresponding to the case of rate independent elastic material discussed in [32]) up to a
value of the same order of magnitude of τc (i.e. τ = 0.002 s, τ = 0.02 s and τ = 0.2 s).

The problems have been modelled using linear elements, where the elastic/viscoelastic
heterogeneous solution has been obtained by explicitly modelling the microstructural het-
erogeneity of the bar, through alternating groups of elements, characterised by the proper-
ties of material 1 and 2, so that the unit cell size d = 1 m. A time step of ∆t = 6.25 ·10−2 s
has been used for the heterogeneous solution, while for the classical and gradient simu-
lations it has been assigned a value ∆t = 0.2 s. The time step ∆t has been determined
as ∆t = ∆x/ce [30, 163], where ∆x is the minimum element size (in the present exercise
uniform meshes have been used). In order to explicitly model the two materials with good
accuracy, the heterogeneous solution required a finer mesh (1600 elements) respect to
the classical and gradient models (200 elements) where the composite material has been
modelled as a homogeneous continuum, leading to a smaller time step.

In Fig. 8.6 the dynamic response of the composite bar after 90 s is shown for both
Case a and b and for different values of viscosity, where Figs. 8.6a and 8.6b are the same
presented in [32]. Comparing the wave fronts produced by the gradient and the explicit
heterogeneous models, it can be observed that the proposed theory provide a good ap-
proximation of the heterogeneous model. On the contrary, it is possible to notice that
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Fig. 8.6. Dynamic response of the one-dimensional periodic composite bar for Case a (a, c, e)
and Case b (b, d, f) and for different value of the (stiffness-)proportional damping coefficient:
τ = 0.000 s (a, b), τ = 0.002 s (c, d), τ = 0.02 s (e, f), τ = 0.2 s (g, h), at t = 90 s.
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classical elasticity, for a given value of τ , produce the same dynamic response for both
Case a and Case b, highlighting the inability of classical elasticity to take into account
the effect of heterogeneity on the dynamic behaviour of a composite material.

Before further analysing Fig. 8.6, it is worth highlighting that the slope of the plotted
wave fronts represents the wave propagation speed. For example, considering Fig. 8.6a
and Fig. 8.6b, corresponding to the elastic case (τ = 0 s), it is possible to observe that the
response produced by the gradient model after 90 s from the application of the unit-pulse
load (in good agreement with the response of the heterogeneous model) is characterised
by a lower propagation speed (shallower wave front) if compared to the response pro-
duced by classical elasticity, that neglecting numerical dispersion can still be considered
a Heaviside function as just after the application of the load. This aspect, valid also for
visco-elastic problems with damping coefficient τ at least one order of magnitude smaller
than the critical value τc (Figs. 8.6c-f), shows that the proposed methodology is able to
properly describe the dispersive behaviour (reduction of the wave propagation speed with
time) of a heterogeneous material regardless the viscosity. In fact from Fig. 8.7 it can be
noticed that for values of τ up to one order of magnitude lower than the critical value,
viscosity does not produce any significant reduction in the propagation speed of the wave
front, while a significant reduction in the amplitude of the high-frequency components
is observed. This attenuation of the high-frequency components is stronger in materials
with low level of heterogeneity (Case b).

From Figs. 8.6a-f it is also possible to observe that the difference between the slope
of the wave front produced by the classical theory and the one produced by the gradient
model is smaller for Case b (lower heterogeneity) than for Case a (higher heterogeneity),
meaning that materials with higher level of heterogeneity present stronger dispersive be-
haviour. For damping approaching the critical value (same order of magnitude), instead,
the dispersion due to viscosity becomes predominant over the one due to the heterogeneity
and the three models produce comparable results (Fig. 8.6g and Fig. 8.6h).

The ability of the proposed gradient-enriched visco-elastic methodology to describe the
dispersive behaviour of heterogeneous materials, in contrast with classical visco-elasticity,
is clearly shown in Fig. 8.8 where the wave fronts produced by both classical and gradient
visco-elasticity are plotted at three different time instants. In fact it can be noticed that,
while the propagation speed (slope of the wave front) obtained through classical elasticity
does not vary in time (neglecting numerical dispersions), the propagation speed produced
by the proposed gradient-enriched methodology decreases as time increases, with this
phenomenon more pronounced for higher level of heterogeneity (Case a).

Summarising, for values of the damping coefficient τ up to one order of magnitude
lower than the critical value, the introduction of a gradient enrichment has a significant
effect on the propagation speed of the wave front, allowing a more accurate description of
the dispersive behaviour of both elastic and visco-elastic heterogeneous materials, while
the viscosity has a damping effect on the high frequency components and negligible ef-
fects on the propagation speed of the wave front. For values of τ approaching the critical
value τc, instead, the dispersive effect due to the heterogeneity of the material becomes
negligible compared to the one due to the viscosity and the responses produced by both
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Fig. 8.7. Effect of viscosity on the dynamic response of the bar: gradient elastic/visco-elastic
solutions for Case a (a) and Case b (b).
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Fig. 8.8. Wave fronts produced by classical and gradient visco-elastic (τ = 0.002 s) models after
70, 80 and 90 s for Case a (a) and Case b (b).
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classical and gradient visco-elasticity coincides.

8.6 Conclusions

The proposed inertia-gradient visco-elastic theory represents a first attempt to extend and
generalise gradient theories to the class of visco-elastic problems, and provides a more ac-
curate tool to describe the dispersive behaviour of periodic visco-elastic composites.

The performed dispersion analysis has shown that the introduction of a micro-inertia
gradient enrichment in the governing equations, helps capturing with higher accuracy the
dispersive behaviour of the discrete model. Furthermore, from the mentioned analysis it
has been also found that by changing the value of the (stiffness-)proportional damping
coefficient, τ , it is possible to introduce super-critical damping and, in this case, control
which wave numbers are super-critically damped.

The ability of the proposed theory to adequately describe dispersive wave propaga-
tion phenomena has been shown. Moreover, it has been observed that, for values of the
damping coefficient at least one order of magnitude lower than the corresponding critical
value, viscosity and gradient enrichment have two complementary effects, which makes
essential the use of a gradient visco-elastic theory, for an accurate description of the over-
all dynamic behaviour of a visco-elastic material. In particular, while viscosity attenuates
the high frequency components, gradient enrichment reduces the propagation speed of the
wave front. For values of the damping coefficient approaching the corresponding critical
value, instead, the viscosity becomes dominant over the heterogeneity of the material and
both classical and gradient visco-elastic models produce comparable solutions. Addition-
ally, the proposed methodology shows a very good agreement, in terms of displacements,
with the correspondent heterogeneous model, where the microstructural heterogeneity of
the material is explicitly modelled.

Since the proposed theory represents the first attempt to introduce viscosity in a gra-
dient elasticity theory, the main goal of the present study was to explore and understand
the interaction between viscosity and inertia-gradient, as well as their effects on wave
dispersion rather than propose a complete gradient visco-elasticity theory.

Therefore, some issues remain open for future studies, in particular:

• extension of the proposed theory to periodic composites, whose constitutive ma-
terials are characterised by either proportional damping with different factor of
proportionality or non proportional damping;

• extension of the one-dimensional theory to multi-dimensional problems.





Chapter 9

Conclusions and future directions

9.1 Conclusions

In this thesis, a unified finite element methodology based on the combination of gradient
elasticity and the Theory of Critical Distances has been developed, implemented and val-
idated against a wide range of problems, in particular for the static and high-cycle fatigue
assessment of notched components subject to in-service complex systems of loads. The
proposed methodology takes full advantage of the TCD’s accuracy in estimating static
and high-cycle fatigue strength of notched/cracked components and, on the other hand, of
the ability of gradient elasticity to remove stress singularities or smooth stress concentra-
tions such as those emerging at the tips of cracks or notches, respectively, when classical
linear-elastic analyses are adopted.

The proposed methodology, devised to address plane, axisymmetric and three-dimen-
sional problems, develops the stress-based Ru-Aifantis theory of gradient elasticity into
an effective C0 finite element framework, making it readily implementable in commercial
finite element software and therefore easily accessible to engineers for practical applica-
tions. In particular, the main advantage from a practical point of view, respect to existing
approaches, is that it allows both static and high-cycle fatigue assessment of notched com-
ponents by directly considering the relevant gradient-enriched stresses at the hot-spot on
the surface of the component being assessed. This significantly simplifies the static and
fatigue assessment of components containing stress risers by avoiding the need to know
the failure location a priori, typical of the existing approaches.

Once the developed gradient-based methodology was implemented, the most suitable
integration rules were identified for each implemented element. In particular, when ` 6= 0
the same integration rule can be used to solve both the first and second step of the pro-
posed methodology.

Furthermore, an extensive convergence study has been also carried out for problems
with and without cracks, showing that:

• in the absence of cracks, the proposed methodology produces numerical solutions
that converge to the exact solution with a rate in good agreement with theoretical
predictions;
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• in the presence of cracks, the proposed methodology shows a higher convergence
rate compared to the theoretical value typical of standard finite element method-
ologies.

This faster convergence in the presence of cracks can be attributed to two main causes:
the removal of singularities, characteristic of gradient elasticity theories and the fact that
gradient-enriched stresses are determined as primary and not as secondary variables like
in conventional finite element methodologies.

Moreover, the error study in the presence of cracks allowed the formulation of optimal
element size guideline, showing that accurate solutions can be obtained by using relatively
coarse meshes, significantly reducing the computational effort.

Through the study of several plane, axisymmetric and three-dimensional problems,
the ability of the proposed gradient-based methodology to remove stress singularities was
also confirmed.

Furthermore, the proposed methodology demonstrated to have the potential to become
a powerful tool in the static and high-cycle fatigue assessment of notched components,
showing its accuracy and reliability for a wide range of:

• benchmark geometries: plates with central notch, plates with double edge notch,
cylindrical bars with circumferential notch, cylindrical shafts with shoulder fillet,
notched beams;

• notch geometries: sharp, intermediate and blunt U-notches, V-notches, shoulder
fillets;

• materials: from brittle to ductile materials. In particular, 19 different types of steel,
aluminium alloys, PMMA, plain concrete;

• loading conditions: cyclic Mode I, cyclic mixed-Mode I and III, in-phase and out-
of-phase cyclic loading, fully-reversed loading and also in presence of superimposed
static stresses.

In all the analysed scenarios (under both static and high-cycle fatigue loading), the pro-
posed methodology produced accurate estimates of the static and fatigue strength with
errors mainly falling within an error band of ±20%.

An interesting aspect emerged applying the proposed methodology to model the high-
cycle fatigue behaviour of notched plain concrete. When the proposed methodology was
applied according to the TCD, or in other words calculating ` according to Eq. (4.1),
slightly too conservative estimations of the fatigue strength were obtained, while defining
` as the average inter-aggregate distance a higher level of accuracy was reached. This
finding further supports the idea that the length scale of gradient elasticity ` must be
somehow related to the dominant microstructural feature of the considered material.

Finally, the proposed gradient elastic methodology has also been extended to the study
of visco-elastic problems, allowing a more accurate description of the dispersive behaviour
of periodic visco-elastic composites. The proposed gradient visco-elastic theory resulted
to be very accurate in the description of dispersive wave propagation phenomena. It also
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highlighted that, to properly describe the dynamic behaviour of a visco-elastic material, a
gradient visco-elastic theory must be used. In fact, it has been found that gradient enrich-
ment and viscosity provide two complementary contributions for values of the damping
coefficient at least one order of magnitude lower than the corresponding critical value:
the first reduces the propagation speed of the wave front, while the second damps the
high frequency components. For values of the damping coefficient approaching the corre-
sponding critical value, instead, the viscosity becomes dominant over the heterogeneity
of the material and both classical and gradient visco-elastic models produce comparable
solutions.

9.2 Future directions

The work presented in this thesis represents an important step forward respect to the
state of the art for two main reasons:

• the Ru-Aifantis theory of gradient elasticity has been implemented for the first time
in a comprehensive and effective finite element methodology, easily implementable
in commercial FE software and usable by engineers to study plane, axisymmetric
and three-dimensional problems;

• accuracy and versatility of the proposed methodology, allowing accurate and straight-
forward (compared to existing approaches) static and fatigue assessments of notched
components made of a wide range of materials, as well as a precise description of
size effects and dispersive wave propagation phenomena.

Nevertheless, some problems need still to be addressed and others can now be explored
thanks to the gradient-based methodology proposed in this thesis. In particular:

• a fundamental unresolved problem that needs to be addressed is undoubtedly the
clear identification of the length scale parameter `. Although several evidence sup-
ports the idea that ` is related to the dominant microstructural feature of the ma-
terial being assessed, more research work needs to be done in order to give ` a clear
physical meaning;

• passing to more applicative aspects, regarding the static assessment of notched com-
ponents, more research work needs to be done in order to validate the gradient-based
methodology developed in Chapter 5 against a wider range of geometries, materials
and loading conditions. In what concerns the uni/multiaxial fatigue assessment of
notched components, instead, further studies are needed to extend the proposed
methodology to the finite lifetime regime. Furthermore, it would be of great interest
to apply the proposed methodology to other new materials as well as more complex
structures such as welded or bolted joints;

• another interesting study would be to test the accuracy of the proposed methodology
against different type of plain and short-fibre reinforced concrete as well as different
notch geometries and loading conditions;
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• given the ability of the proposed gradient-enriched methodology to accurately de-
scribe size effects, a relatively straightforward but extremely useful research work
would be to apply the proposed methodology to investigate both external and in-
ternal geometric size effects in components presenting one or more holes.
Consider, for instance, the case of a plate with one or more holes, commonly used
in practical engineering applications. In this case it is possible to encounter both
external (due to the size of the whole component) and internal (due to size of the
holes and distances amongst them) size effects.
While the problem with a single hole is characterised by three length quantities
(considering a square plate): the size of the plate D, the radius of the hole rn and
the internal length `, representative of the underlying microstructure; the problem
with two holes is characterised by an additional length, that is the distance d be-
tween the two holes. Finally in the more generic case with four or more holes, two
further length parameters appear respect to the first case with just one hole: the
horizontal dx (x-direction) and vertical dy (y-direction) distances between two con-
secutive holes. In first instance, it is possible to assume the condition dx = dy = d,
reducing the additional length parameters to one.
Whilst solving the problem with a single hole just the size effects due to the exter-
nal geometry can be described, the solution of the other problems with two, four or
more holes will allow to determine not only the size effects related to the external
geometry, but also those due to internal geometry aspects (such as the radius of the
holes and the distance among them) and in particular the effects that one or more
holes induce in the stress field around a nearby hole.
Different analysis can be performed, varying the specimen size (keeping constant
the ratio between the radius of the hole and the size of the plate), the radius of the
holes and their distances. Furthermore, the more complex scenario of plates with
cracks departing from the holes could also be analysed;

• finally, regarding the proposed gradient visco-elastic methodology, further research
efforts have to be spent in extending the aforementioned methodology to multi-
dimensional problems and to materials showing non proportional damping. This
would make this methodology applicable to several important problems, such as the
study of regeneration phenomena in bones subject to vibrations for the treatment
of osteoporosis.



Appendix A

Richardson’s extrapolation

Richardson’s extrapolation is a technique used to generate high-accuracy results while
using low order formulas. Extrapolation can be applied whenever it is known that an
approximation technique has an error term with a predictable form.

Let us consider a problem for which an analytical solution is not available but an accu-
rate estimation of the exact solution is needed. Solving the problem through a numerical
procedure characterised by a step ∆t, the solution f∆t is obtained. If the same problem
is then solved by regularly reducing the step size n-times (e.g. ∆t
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exact solution, Fexact, can be extrapolated by solving the following system of equations:
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where f∆t
2
, . . . , f∆t

2n
are the solutions correspondent to the step sizes indicated by the sub-

scripts, while C1, . . . , Cn are coefficients.
Depending on the number of refinements used to extrapolate the exact solution, sys-

tem A.1 can be significantly reduced and different orders of Richardson’s extrapolation
can be identified:

• First-order: when only one refinement of the original step ∆t is used. In this case,
system A.1 reduces to the first two equations in the two unknowns Fexact and C1,
leading to the following expression for the exact solution:

Fexact ≈ −f∆t + 2f∆t
2

(A.2)
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• Second-order: when two refinements of the original step ∆t are used. In this case,
system A.1 reduces to the first three equations with Fexact, C1 and C2 as unknowns,
leading to the following expression for the exact solution:

Fexact ≈ −
1

3
f∆t − 2f∆t

2
+

8

3
f∆t

4
(A.3)

• Third-order: when three refinements of the original step ∆t are used. System A.1
reduces to the first four equations with Fexact, C1, C2 and C3 as unknowns. The
exact solution for the third-order extrapolation is approximated by the following
polynomial:
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1
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21
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• Higher-order: in a similar fashion, higher-order extrapolations can be obtained by
considering more refinements. However, the accuracy increase could not justify the
higher computational effort.
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Stability of the harmonic solution
when ωh assumes imaginary values

When the argument of the square root in Eq. (8.23) is negative, ωh takes the following
form

ωh = ±i
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Considering Eq. (8.14), Eq. (8.20) can then be re-written as

u(x, t) = U exp((iωh − ωd) t) exp(−ikx) (B.2)

and substituting Eqs. (8.22) and (B.1) into Eq. (B.2), the following expression is obtained
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Focusing the attention on the argument of the first exponential term, it can be ob-
served that negative values produce stable results and represent the condition of super-
critical damping, while positive values would lead to unstable results (amplification of
the response). However, it can be easily shown that the considered argument is always
negative; hence there are no risks to incur in instabilities of the solution.
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