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Abstract 

As unique soft materials, hydrogels have received remarkable attention, due to their 

high water content and flexibility of materials design that make them able to well 

mimic biological tissues. This PhD project focused on the development of strong 

hydrogels for potential biomedical applications. Four types of novel nanocomposite 

hydrogels were prepared, characterised and studied in depth, namely graphene oxide 

(GO)-gelatin nanocomposite hydrogels, reduced graphene oxide (RGO)-gelatin 

nanocomposite hydrogels, GO-polyamidoamine (PAMAM) dendrimer nanocom-

posite hydrogels and double crosslinked GO-gelatin nanocomposite hydrogels. 

 GO-gelatin nanocomposite hydrogels were synthesised by self-assembly via 

physical crosslinking bonds (namely, electrostatic interaction and hydrogen bonding). 

This technique avoided using any organic crosslinking agents, and thus would 

benefit a high biocompatibility. The hydrogels showed good mechanical properties, 

thanks to multiple crosslinking sites on GO nanosheets and gelatin chains, exhibiting 

a relatively high storage modulus of up to 114.5 kPa. Drug release tests showed that 

the drug release from the GO-gelatin nanocomposite hydrogel was pH-dependent. 

RGO-gelatin nanocomposite hydrogels were further prepared from physically 

crosslinked GO-gelatin nanocomposite hydrogels via a facile one-pot synthesis, 

again without using an organic crosslinker. In this synthesis, gelatin acted as a 

reducing agent to convert GO to RGO and consequently was chemically grafted onto 

the adjacent RGO surfaces. The resultant chemically crosslinked RGO-gelatin 

nanocomposite hydrogels showed a significant increase in the storage modulus, 50% 

higher than that of GO-gelatin nanocomposite hydrogels with the same original 

composition. Chemically crosslinked RGO-gelatin nanocomposite hydrogels 
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demonstrated an enzyme-favourite degradation, which lost up to 29% of their 

original weight after degradation for 24 h, compared to 17% without enzyme.  

GO-PAMAM dendrimer nanocomposite hydrogels were developed using a 

similar method to that for physically crosslinked GO-gelatin nanocomposite 

hydrogels. GO-PAMAM dendrimer nanocomposite hydrogels showed a significantly 

improved mechanical performance and self-healing property. Both GO and PAMAM 

dendrimer possess abundant functional groups which can induce multiple strong 

crosslinking networks. The highest storage modulus was 284 kPa, that is, 2.5 times 

of that for GO-gelatin nanocomposite hydrogels. The storage modulus of the GO-

PAMAM dendrimer nanocomposite hydrogels increased with increasing GO or 

polymer concentration, but GO provided a higher modulus than PAMAM 

dendrimers at a comparable concentration. 

To develop mechanically strong hydrogels, the double crosslinked GO-gelatin 

nanocomposite hydrogels were synthesised through a one-pot synthesis. Gelatin was 

crosslinked by two crosslinking agents, glutaraldehyde (GTA) and GTA modified 

GO sheets, at a low water content (90 wt.%) which was much lower compared to the 

above nanocomposite hydrogels. In contrast to the neat gelatin hydrogel, double 

crosslinked GO-gelatin hydrogels exhibited significant improvements in mechanical 

properties, for instances, by up to 288% in compressive strength and 160% in shear 

storage modulus. That was ascribed to the novel double crosslinked network 

structure in which GTA-grafted GO sheets function as multifunctional crosslinking 

agents. While the mechanical strength increased with increasing crosslink degree, the 

swelling capability of double crosslinked GO-gelatin hydrogels decreased. 

The results show that the graphene-based nanocomposite hydrogels could have 

potential in soft tissue engineering and drug delivery. 
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Chapter 1. Introduction 

Hydrogels are three-dimensional (3D) networks of hydrophilic polymer chains 

containing a large number of water molecules [1,2]. They are highly biocompatible 

due to their inherent physical properties which are very similar to biological tissues 

[3] and make them attractive materials for biomedical applications [3-5]. As a result, 

hydrogels have been extensively studied for applications in tissue engineering [6-8], 

such as cartilage repair, artificial muscles and wound dressing, as well as drug 

delivery [9-12] and biosensors [13,14]. The mechanical properties of some biological 

tissues are presented in Table 1.1. 

Table 1.1 Mechanical properties of some biological tissues. 

Biological tissue 
Compressive 

strength (MPa) 

Tensile strength 

(MPa) 

Young’s modulus 

(MPa) 

Shear storage 

modulus (kPa) 

Articular cartilage 14-59 [15] - 0.49 [15] - 

Achilles tendon 50-125 [16] - 500-1850 [16] - 

Posterior cruciate 

Ligament 
- 26.8-36.4 [17] 109-345 [17] - 

Cornea - 0.014-0.073 [18] 2.87-3.4 [19] - 

Smooth muscle - 0.013-0.178 [20] 1.3 [21] - 

Skin - - 0.42-0.85 [22] 325.0-1227.9 [23] 

Adipose tissue - - 0.0003-0.024 [24] 7.5 [25] 

 

Hydrogels are commonly divided into two groups according to the type of 

driving forces to form the hydrogels, i.e., covalently bonded hydrogels and 

physically crosslinked hydrogels. However, there are still two issues which limit 

their usages: weak mechanical properties and inability of self-healing. As we know, 

in nature, many biological tissues and organs can self-heal upon damage. To 
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overcome the mechanical weakness of hydrogels, four outstanding strategies were 

reported: slide-ring gel (SR gel), double network hydrogel (DN hydrogel), tetra-

poly(ethylene glycol) hydrogel (tetra-PEG gel) and microsphere reinforced 

composite gel [26,27]. These hydrogels show high mechanical strength and 

rubberlike properties, but they are not capable of self-healing after damage, due to 

their irreversible covalent bonds. So, physically crosslinked hydrogels were 

considered as a more promising solution to solve the two issues mentioned above, 

compared to covalently bonded hydrogels [28,29]. 

To develop physically crosslinked hydrogels with high mechanical performance, 

several different approaches were reported [30-32]. Back to 2002, Haraguchi [30] 

reported a type of nanocomposite hydrogels (NC hydrogels) which made significant 

improvement in mechanical performance. Since then, various NC hydrogels have 

been developed [31,33,34]. Furthermore, Wang and co-workers [32] reported a 

hydrogel consisting of dendritic macromolecule and clay nanosheets with improved 

mechanical properties and self-healing capability. However, design and preparation 

of physically crosslinked hydrogels with both excellent mechanical properties and 

self-healing capability were still technical challenges. 

Graphene and graphene oxide (GO) based materials have been widely studied 

for numerous engineering and biomedical applications [35-38]. This PhD project 

aims to develop new types of graphene based nanocomposite hydrogels with good 

biocompatibility, high mechanical performance and ideally capability to self-heal 

after damage, which could be used for drug delivery, tissue repair and wound healing. 

Biocompatible hydrophilic polymers and strong and flexible atom-thick graphene 

sheets were used to achieve the desired hydrogels, benefiting from their instinct 
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biocompatibility, excellent mechanical properties of graphene [39] or GO [40], and 

their optimised 3D network structures. The specific objectives are outlined below: 

 To develop physically crosslinked GO-gelatin nanocomposite hydrogels 

by a simple self-assembly process and without the usage of a toxic 

organic crosslinking agent, study their formation mechanisms, 

investigate the GO effect on their mechanical properties and study their 

performance on drug delivery. 

 To prepare reduced graphene oxide-gelatin nanocomposite hydrogels by 

a green and facile method avoiding any chemical crosslinking agents and 

organic solvents, study their gelation mechanisms, and investigate their 

mechanical, swelling and degradation behaviour. 

 To develop physically crosslinked GO-polyamidoamine dendrimer 

nanocomposite hydrogels with excellent mechanical properties by a 

facile one-step self-assembly method without using any chemical 

crosslinkers, study their formation mechanisms and mechanical and self-

healing performance. 

 To develop double crosslinked GO-gelatin nanocomposite hydrogels 

with superior mechanical properties using one-pot synthesis and a 

chemical crosslinker, study their gelation mechanisms and investigate 

the structure-property relationships. 

These studies are expected to advance the field of graphene-based polymer 

nanocomposite hydrogels, and the novel hydrogels developed may find potential 

applications in tissue repair, injectable therapy and pH-controlled drug delivery.  
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Chapter 2. Literature review 

2.1 Introduction 

Hydrogels are composed of water-insoluble network of crosslinked polymer chains, 

which have distinctive features, e.g., high water content, excellent biocompatibility 

and osmotic properties [41-43]. Since Kuhn reported swelling hydrogels in 1949 

[44], great interests on hydrogel research have emerged. 

The massively studied hydrogels can be classified into many different groups: 

one of them is superabsorbent hydrogels that are mostly fabricated by employing 

monomers of acrylic acid and acrylamide [45], having wide applications in hygienic, 

agriculture and bio-related areas. Another group of hydrogels, which possess 

excellent optical properties, have been studied for intraocular lens materials [46] and 

photonics researches when the hydrogels have periodic nanostructure [47]. In recent 

years, more and more researches have been exploring hydrogels for biomedical 

applications [48], including medical and biological sensors [49], controlled drug-

delivery systems [50], diagnostic imaging [51], tissue repair [52,53], etc.  

2.2 Covalently bonded hydrogels 

Covalently bonded hydrogels have relatively high mechanical properties owing to 

the intrinsic strong networks. These hydrogels are commonly fabricated by 

polymerisation of the monomers with an organic crosslinking agent. However, in 

general, organic crosslinking agents are toxic to human organs and difficult to be 

completely eliminated from hydrogels [54]. Moreover, covalently bonded hydrogels 

show their limitation in the applications of load-bearing medical devices and strong 

tissue scaffolds. That is mainly ascribed to weak mechanical properties caused by the 
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inhomogeneous structure and poor crosslinking length distribution in the hydrogels 

[55]. Therefore, vast research have been exploring on the hydrogels with high 

mechanical properties. Some approaches were reported such as the DN hydrogels, 

the SR gels and the tetra-PEG hydrogels, which are discussed below. 

2.2.1 Double network hydrogels 

Gong and co-workers [56] first reported DN hydrogels comprising of two 

interpenetrating polymer networks with various hydrophilic polymers, which 

exhibited an extremely high mechanical performance, fracture strength as high as 

dozens of megapascals and high wear resistance. Among several optimal 

combinations, the poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS)- 

polyacrylamide (PAM) hydrogel comprised of the first network of PAMPS and the 

second network of PAM. The PAMPS-PAM hydrogel had a compressive fracture 

strength of 17.2 MPa with 90 wt.% water content [56]. One of two crucial conditions 

to obtain high toughness of the hydrogel is the optimal combination of the highly 

crosslinked first network of rigid polyelectrolyte (PAMPS) and the linear or loosely 

crosslinked (or non-crosslinked) second network (PAM) of flexible neutral polymer 

[56]. When a crack occurs in a hydrogel, the crack energy can be absorbed by the  

second network, preventing the crack growth [57]. The mesh size (ξvoid) of PAM 

network void is larger than the average mesh size (ξave) of PAMPS network (as 

shown in Fig. 2.1). The second crucial condition is the optimal molar ratio of the 

second network monomer to the first network monomer, which falls in a range of 

several to decades [56]. This molar ratio range distinguished from conventional 

interpenetrating hydrogels, which possess similar contents of two polymers but do 

not present extremely high mechanical strength [58]. The DN hydrogels with various 
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polymer combinations were extensively studied by the same group [57,59-67] and 

were also reviewed in their review articles [68,69], summing up their exceptional 

properties up to a compressive strength of 20–60 MPa at a strain of 90–95%, an 

elastic modulus of 0.1–1.0 MPa, a tensile strength of 1–10 MPa at a strain of 1000–

2000% and tearing fracture energy of 100–4400 J m
-2

. 

 

Figure 2.1 Schematic of the structure and mechanism resisting crack growth in the 

PAMPS/PAM DN hydrogel. ξvoid and ξave are assigned as the mesh size of void and 

the average mesh size of PAMPS network, respectively. The black arrows refer to 

the cracks and the hollow arrows indicate the deformation. Reproduced with 

permission from [57], copyright (2004) American Chemical Society. 

By utilising the similar principle, several tough DN hydrogels were also 

developed by other groups, such as mechanically strong DN hydrogels from N,N-

dimethylacrylamide and glycidyl methacrylated hyaluronan [70], DN hydrogels with 

two biocompatible polymers: poly(vinyl alcohol) (PVA)-PEG hydrogels [71] and 

agarose and PEG diacrylate hydrogels [72], conducting hydrogels composed of PAM 

and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) [73], DN hydrogels 
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consisting of oxidised dextran and thiolated chitosan [74], and jellyfish (Rhopilema 

esculenta Kishinouye)-poly(acrylic acid) (PAA) hybrid hydrogels [75]. However, 

DN hydrogels exhibit a poor fatigue resistance, owing to the irreversibility of 

covalent bonds [68]. 

2.2.2 Slide-ring gels (SR gels) 

Okumura et al. [76] reported a new topological hydrogel (defined as SR gel) made 

up of crosslinked polyrotaxane (PR) that comprised of long PEG chains threaded 

with cyclic α-cyclodextrins (α-CD) and capped with bulky groups at the ends [76]. 

Precisely speaking, it is the α-CDs that are chemically bonded to form α-CD dimers, 

figure-of-eight crosslinks, acting as linkages between PRs. These SR gels are 

topologically interlocked by α-CD dimers and the dimers can move along the PEG 

chains freely, hence upon loading the created tension of the PEG chains can be 

equalised, not only in isolated single chains, but also throughout the whole network. 

This phenomenon distinguishes from the conventional chemical gels, in which the 

polymer chains steadily break due to the localised stress resulting from heterogeneity 

of their polymer network, illustrated in the Fig. 2.2. This SR gel showed exceptional 

properties, such as high swelling ratio (ca 400), an optical transmittance of 95% [76], 

a high elongation at break of up to 24 times in length without hysteresis, a tensile 

strength of over 100 kPa [77], as well as 500 Pa for the shear modulus [76]. The 

structural studies on the SR gel using small-angle neutron scattering (SANS) and 

small-angle X-ray scattering show a solvent-dependent pulley effect, that is, the 

pulley effect is active in a good solvent, whereas inactive in a poor solvent [78,79]. 

The SR gel exhibits a J-shaped curve in the stress-strain plot in contrast to the S-

shaped curve for a conventional chemical gel [77]. The SR gel membrane has the 
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ability to control fluid permeation by a fashion of on-off switch by changing the 

imposed pressure, which could be promising materials for separation membranes and 

novel drug delivery [80]. 

 

Figure 2.2 Comparison between (a) a conventional chemical gel model and (b) a SR 

gel model under tensile deformation. The short polymer chains of the conventional 

chemical gel break gradually by cause of the heterogeneous distribution of crosslinks. 

The polymer chains of the SR gel can move through crosslinks and then equalise the 

stress to prevent breaking. Reproduced with permission from [76], copyright (2001) 

John Wiley and Sons. 

Exploiting the principle of SR gels, Ito’s group developed a couple of different 

hydrogels by using various materials and approaches. A novel SR gel was 

synthesised by crosslinking PRs which consisting of inorganic 

poly(dimethylsiloxane) (PDMS) and organic γ-cyclodextrin (γ-CD) [81]. Successful 

synthesis of this SR gel provided a new route to achieve organic-inorganic hybrid 

materials. The group also developed new SR gels [82], in which the crosslinking 
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agent was PR modified with vinyl. The PR, containing a-cyclodextrin (α-CD), was 

modified by 2-acryloyloxyethyl isocyanate providing vinyl groups to the α-CD of the 

PR to become the crosslinker. Poly(N-isopropylacrylamide) (PNIPA) gels (RN gels) 

were synthesised by polymerisation of NIPA monomer in the presence of active 

modified-PR. This method to prepare RN gels could be applied to various polymer 

chains. Based on the concept of RN gels, they further incorporated ionic groups to 

the hydrogel to create extremely stretchable thermo-sensitive PNIPA hydrogels [83]. 

The ionic carboxyl groups on the polyrotaxane crosslinkers (iPR-C) made them 

water soluble and become well stretched in the hydrogel. The hydrogels had a 

maximum stretchability of 1463% and tensile strength of 31.4 kPa. When the iPR-C 

content was low (˂ 3 wt.%), the hydrogels exhibited little pH-sensitivity on their 

swelling behaviour, and the transition temperature was not affected significantly by 

the ionic groups. 

2.2.3 Microsphere reinforced composite hydrogels 

To achieve tough hydrogels with homogenous structure, a new tough hydrogel, 

namely, macromolecular microsphere composite hydrogel (MMC hydrogel) was 

reported by Huang et al. [84]. The MMC hydrogel was made up of acrylic acid (AA), 

which was initiated and crosslinked by the pre-peroxidised macromolecular 

microsphere. The abundant PAA chains grew on the macromolecular microspheres 

and were chemically crosslinked by them; and some chains with one free end can 

entangle each other. The abundant PAA chains grafted to the adjacent 

macromolecular microspheres, along with the additional contribution of strong 

intermolecular hydrogen bonds between those polymer chains, rendered the high 

toughness of the MMC hydrogel. The hydrogel showed a compression strength of 
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78.6 MPa at a strain of 99.3% with 70 wt.% water, which are comparable to an 

articular cartilage [84]. However, continuous swelling restricts the hydrogel’s 

potential as a successful candidate material for biomedical applications, though a 

second network was suggested by the authors to solve the problem bearing the 

principle of the DN hydrogel. The group [85] later reported mechanically strong and 

thermosensitive MMC PNIPA hydrogels. The optimal hydrogels showed a 

compression strength higher than 10 MPa (at 95% strain) at about 60 wt.% water 

content. They [86] also systematically studied the mechanism behind the exceptional 

toughness of the MMC hydrogels. The results from several mechanical tests reveal 

that the chemical bonding regulates the compression strength and toughness of 

MMC hydrogels, whereas the physical interactions including hydrogen bond and 

chain entanglement mainly account for the modulus of the hydrogels. Furthermore, 

the disassociation of physical interactions causes energy loss in the network, 

exhibiting the hysteresis in the cyclic tensile tests. 

Adapting the similar strategy of the MMC hydrogel, several hydrogels were 

reported using various materials or structures as an initiator and a crosslinking centre. 

For example, He et al. [87] developed a new PAA hydrogel by polymerisation of AA 

monomer, which was peroxidised micelles initiated and crosslinked (pMIC) instead 

of macromolecular microspheres. The irradiation-peroxidised micelles (formed from 

alkylphenol polyoxyethylene (10) ether (OP-10)) first initiated the grafting 

polymerisation of hydrophilic monomers AA onto them to form microgels; and 

further polymerisation of monomers AA resulted in the bulk hydrogels. The 

hydrogels showed a high transparency of 95%, a high compression strength up to 86 

MPa and a fracture strain of 95% without break [87]. The hydrogels can recover 

their original dimensions quickly after off-loading, showing excellent shape recovery. 
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The pMIC hydrogel is similar to the MMC hydrogel both in microstructure and 

energy dissipation mechanism. The pMIC hydrogel possesses effective polymer 

chains with fairly even length between the adjacent micelles, ascribed to the small 

size and the well distribution of peroxidised micelles in the polymer matrix [87]. 

Thus, the stress can be equalised among the crosslinked polymer chains upon 

loading, leading to exceptional mechanical performance. Sun et al. [88] reported 

super tough nanomicelle (NM) hydrogels with vinyl-functionalised Pluronic F127 

micelles as multifunctional crosslinking agents. The NM hydrogels were synthesised 

by copolymerisation of acrylamide (AM) monomers in the existence of the 

multifunctional micelles, showing extraordinary mechanical properties. The NM 

hydrogels exhibited a tensile strength of 276 kPa at a fracture strain above 2265%, 

and a fracture energy of 2.34 MJ m
-3

 [88]. Moreover, these hydrogels can sustain 

stress up to 62 MPa (at 98% strain) without fracture [88]. 

Tan et al. [89] reported high mechanical strength and thermo-responsive PNIPA 

hydrogels in which starch-based nanospheres acting as crosslinkers. The nanospheres 

with active allyl groups were formed from acetylated allylic starch. The hydrogels 

showed a maximum compressive strength of 8.44 MPa and a fracture strain of 89.3% 

with 90 wt.% water [89]. The hydrogels also exhibited a high thermo-response rate 

by deswelling almost eight times faster than that of a counterpart conventional 

hydrogel. Qin et al. [90] reported a hydrophilic reactive microgel (HRM) with high 

mechanical strength prepared by copolymerisation of AM monomers and crosslinker 

of 2-acrylamido-2-methylpropane sulfonic acid (AMPS). HRMs were chemically 

modified by N-methylolacrylamide to obtain active double bonds prior to be used in 

the hydrogel synthesis. The resulting HRM hydrogels had a high compressive stress 

up to 4.6 MPa at 90% strain with 93.4 wt.% water; and after the load release, its 
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deformation could be recovered at room temperature [90]. The hydrogels exhibited 

excellent tensile properties, i.e., a fracture tensile strength up to 2.55 kPa at a break 

strain of 323% at a water content of 96.3 wt.% [90]. Wu et al. [91] proposed an 

approach to fabricate homogeneous MMC-like covalently crosslinked 

nanocomposite hydrogels (CNC hydrogels) with extraordinary mechanical strength 

and magnetic property. Free-radical polymerisation was carried out to form the 

various CNC hydrogels using the monomers, n-vinyl pyrrolidone and AA or AM. 

Among them, PAM CNC hydrogels demonstrated the highest fracture tensile 

strength up to 230 kPa and remarkable elongation of 1837% [91]. The additional 

magnetic property was realised by incorporation of Fe3O4 nanoparticles into the 

polystyrene nanoparticles during the preparation. 

2.2.4 Tetra-poly(ethylene glycol) (Tetra-PEG) hydrogels 

Sakai et al. [92] produced a novel tough Tetra-PEG hydrogel with a homogeneous 

structure from symmetrical tetrahedron-like macromonomers, tetra-amine-terminated 

PEG (TA-PEG) and tetra-NHS-glutarate-terminated PEG (TN-PEG). The tetra-PEG 

hydrogel obtained a homogeneous network since its nanostructure was determined 

by the same length of tetra-PEG arms, leading to high mechanical properties. The 

maximum compressive strength of 9.6 MPa was achieved for the tetra-PEG 

hydrogels. [92]. To obtain the highest mechanical properties under compression, the 

optimal molar ratio of the macromonomers was equal and even a small deviation 

leads to weakening in their mechanical properties. The structure of tetra-PEG gel 

was investigated by SANS and static light scattering (SLS) experiments [93,94]. No 

significant scattering was observed to suggest heterogeneity of the crosslinking 

structure in tetra-PEG gels, giving evidence of extremely uniform structure of tetra-
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PEG gels. Only negligible topological defects, such as loops and entanglements, 

were detected in the tetra-PEG gel, which were different with the conventional 

hydrogels [95]. The authors suggested this highly homogeneous structure was 

formed due to three important factors: (1) the tetra-PEG macromolecule’s unique 

behaviour as impenetrable sphere in aqueous solution; (2) one-node and four-chain 

structure of tetra-PEG macromolecule; and (3) the homogeneous mixing of two 

tetra-PEG macromolecules facilitated by electrostatic repulsion between the amine-

terminated tetra-PEG macromolecules [96]. This ideal structure accounts for its 

intriguing properties, i.e., a high transparency of ca 100%, a tensile strength of ca 

150 kPa at a high stretching elongation at break of ca 900%, a high compressive 

strength of 27 MPa (whereas half specimens without break), and an average 

compressive modulus of 99.7 kPa [96]. 

Fukasawa et al. [97] introduced clay into the gel to prepare tetra-PEG based 

nanocomposite gels (tP-NC gels) with excellent optical property and high 

mechanical performance. The authors discovered that the buffer solution for reaction 

was critical to obtain the homogeneous distribution of the exfoliated clay and had a 

control on viscosity in the clay suspensions. They found the best option was 

pyrophosphate-Na buffer. The best mechanical properties were achieved by the 

following optimal preparative steps: clay suspension was mixed with TA-PEG 

before mixed with TN-PEG. The tP-NC gels showed a high transparency of 83%, a 

tensile strength of 300–560 kPa (beyond double the corresponding neat tetra-PEG 

gel) at a strain of 900–1000% [97]. 
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2.2.5 Other covalently crosslinked tough hydrogels 

Appreciating excellent regioselectivity and high yielding of copper-catalysed 

reaction of azides and terminal acetylenes [98], Malkoch et al. [99] reported a new 

PEG-based hydrogel prepared by this Click chemistry, possessing well-defined 

microstructure and high mechanical performance. The hydrogels were synthesised of 

by cycloaddition reaction of diacetylene-functionalised and tetra-azide-

functionalised PEG derivatives in aqueous solutions by copper (I) catalysis. The 

hydrogels exhibited a high tensile strength of 2.39 MPa and a strain of 1550% [99], 

which was ascribed to their ideal structure networks. Moreover, remaining azide and 

acetylene groups were available for further functionalisation of the hydrogel by 

incorporation of bioactive molecules. 

Tough hydrogels containing lamellar bilayer structure were created by Haque et 

al. [100], which were formed into a plate-like shape by free radical polymerisation of 

surfactant dodecylglyceryl itaconate (DGI) and AM monomer in the aqueous 

solution. The polymer matrix of PAM was chemically crosslinked network but no 

chemical crosslinking between PAM and polymetric-dodecylglyceryl itaconate 

(PDGI). During the preparation, DGI self-assembled into lamellar bilayers with 

unidirectional alignment parallel to the top surface of the hydrogel, rendering the gel 

strong mechanical anisotropy, i.e., a 10-fold elastic modulus in the direction of the 

lamellar layers compared to that in perpendicular direction. Along with the direction 

parallel to the bilayers, the ultimate strength of 600 kPa and fracture strain of 2200% 

were obtained for the PDGI-PAM gel [101]. Since the stacked lamellar bilayers were 

formed by reversible hydrophobic association, they could dissociate to dissipate the 

energy upon deformation, showing capability of self-recovery and fatigue resistance, 

and large hysteresis. Furthermore, crack blunting was formed to effectively inhibit 
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crack propagation due to lipid-like mobile structure of lamellar bilayers [101]. 

Interestingly, the periodical oriental stricture of the bilayers induced the PDGI-PAM 

gel to exhibit structural colour, even reversibly tunable by a controlled manner of 

applied stress or strain which giving potential applications in advanced stress or 

strain sensors. 

2.3 Physically crosslinked hydrogels 

The covalently bonded hydrogels could exhibit relatively high mechanical strength; 

however, generally they are lack of adaptivity or self-healing and they are non-

recyclable. Furthermore, the toxicity of the crosslinker used in the synthetic process 

may limit their potential in biomedical area. Hence, physically crosslinked hydrogels 

with excellent mechanical performance and self-healing ability have been drawing 

vast interest. The physical interactions to form hydrogels include ionic strength, 

hydrogen bonding, hydrophobic association, π–π stacking interaction, coordination 

and physical tanglement effect [28,102,103]. 

2.3.1 Nanocomposite hydrogels 

In 2002, Harahuchi and Takehisa [30] first reported high strength nanocomposite 

hydrogels (NC hydrogels), which were synthesised from NIPA monomer and clay 

nanosheets. In the hydrogel, clay sheets acted as multifunctional physical 

crosslinkers. Fig. 2.3 illustrates the organic-inorganic structure of the PNIPA NC 

hydrogel. The optimised hydrogel exhibited an extraordinary toughness, i.e., a 

tensile strength of 109 kPa, a modulus of 9.9 kPa and a fracture strain of 857%, 

which were significantly improved compared to the conventional crosslinked 

counterpart hydrogel [30]. With highly increased clay content the hydrogels had a 
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compressive strength up to 5 MPa with a strain of 80% [104]. High mechanical 

properties were interpreted attributable to the complex combination of ionic 

interactions between clay, initiator and PNIPA, and also due to homogenous 

structure of hydrogel as a consequence of well dispersion of clay nanosheets in the 

initial reaction solution [105]. Unlike in the conventional hydrogel, in the NC 

hydrogel, the crosslinker density and the chain lengths between crosslinking points 

are independently controlled [106]. The clay sheets are uniformly distributed in the 

hydrogel and the distance between adjacent clays (Dic, in Fig. 2.3) is the same as the 

polymer chain length between the relevant crosslinking points. Liu et al. [33] 

developed PNIPA-clay hydrogels with a high clay content, obtaining significantly 

improved mechanical properties (i.e., a tensile strength of 1 MPa and a fracture strain 

of 1400%). Some other minerals were also used for the development of 

nanocomposite hydrogels. For example, poly(methacrylamide) nanocomposite 

hydrogels [107] with water-soluble rigid polysiloxane as the crosslinker, and 

poly(acrylic acid-co-N-isopropylacrylamide)-hydrotalcite nanocomposite hydrogels 

using hydrotalcit as the crosslinker [108], were reported. 
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Figure 2.3 Schematic of an organic/inorganic NC hydrogel. χ is the flexible polymer 

chains connected to two neighbouring clay sheets. g is the flexible polymer chain 

with only one end grafted to one clay sheet. Dic is inter-crosslinking distance 

between the neighbouring clay particles. Reproduced with permission from [106], 

copyright (2002) American Chemical Society. 

NC hydrogel is such an extraordinary network not only because of its high 

transparency and mechanical strength, but also of unique feature of self-healing. Its 

self-healing materialises by autonomously reconstructing crosslinks across the 

damaged interfaces or between fractured surfaces without a healing agent [109]. A 

poly(N,N-dimethylacrylamide)-clay nanocompsite hydrogel (D-NC hydrogel) is 

used to demonstrate the self-healing. The adhesion of two cutting surfaces was 

achieved by the long polymer chains from either cutting side interacting with clay 

surfaces through physical bonding [109]. This NC hydrogel showed an advantage of 

its self-healing property that the separated parts could be completely healed by 

pressing the fractured surfaces together only at a mild temperature (Fig. 2.4). The 
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self-healed D-NC hydrogel with medium clay content can completely recover (100%) 

its tensile strength at an optimal condition. 

 

Figure 2.4 Self-healing illustration of the NC hydrogel (D-NC3 indicates poly(N,N-

Dimethylacrylamide)-clay hydrogel), (a) before damage, (b) after damage (with 

several sharp cuts), (c) after self-healed. Reproduced with permission from [109], 

copyright (2011) John Wiley and Sons. 

2.3.2 Hydrophobic association hydrogels 

Jiang and co-workers [110] successfully developed a hydrophobic association 

hydrogel (HA gel) by micellar copolymerisation of AM and octyl phenol polyethoxy 

ether acrylate (OP-4-AC) in the presence of sodium dodecyl sulfate (SDS). The 

hydrogel was formed with the associated micelles acting as physical crosslinking 

points (Fig. 2.5), which was mechanically strong, excellent in transparency and 

capable of self-healing and remoulding. Their group further studied the HA gels in 

the later reports [111-114]. The maximum tensile strength of 212.79 kPa, elastic 

modulus of 4.98 kPa and elongation at break of 1281.41% were achieved [111]. 

Especially, the reversible dissociation of the associated micelles renders the self-
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healing ability of HA gels. The cut hydrogel specimen can self-heal after putting the 

two cut parts together at a wet environment and ambient temperature [112]. 

Temperature-responsive poly(AA-AM) gels with exceptional mechanical strength 

were also reported by the same group [113]. The monomers AA and AM accounted 

for the majority in the polymer copolymerisation during the preparation, while a 

small portion of octylphenol polyoxyethylene ether acrylate with seven ethoxyl units 

(OP-7-AC) was used to create hydrophobic segments. The transparency of the HA 

gels was greatly affected by the phase transition. Thus, the transparency could be 

controlled by regulating the phase transition temperature through varying the ratio of 

AA to AM, monomer concentration, and fraction of hydrophobic monomer OP-7-

AC and surfactant SDS in the synthesis. 

 

Figure 2.5 Schematic representation of the structural model of HA gels formed by 

hydrophobic association. Reproduced with permission from [111], copyright (2010) 

Elsevier Ltd.. 

Several other HA gels studies were also reported by different groups [115-118]. 

Tough and self-healing PAM HA gels [115] were prepared by copolymerising 

stearyl methacrylate (C18) or dococyl acrylate (C22) with AM monomer in a sodium 
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dodecyl sulfate (SDS) solution. These hydrogels exhibited a shear storage modulus 

of around 1 kPa (at 1 Hz), and elongation at break of 3600% for C18 gel and 1300–

1700% for C22 gel, respectively [115]. The fractured C18 hydrogels can self-heal by 

pressing together at room temperature, and exhibit the similar extensibility as the 

original hydrogels, indicating a complete repair. The exceptional self-healing 

capability owes to the free, non-associated C18 blocks in the hydrogels. The 

structural studies [116,117] on the PAM HA gels reveal that the self-healing 

capability are determined by the length of alkyl side chains and the concentration of 

the surfactant. 18-carbon methacrylates on the side chain are optimal for self-healing 

efficiency. On the other hand, the decrease in the surfactant SDS concentration leads 

to weakening of self-healing ability, however, benefits a significant improvement in 

the mechanical strength. 

2.3.3 Other physically crosslinked hydrogels 

Apart from aforementioned strong physically crosslinked hydrogels, there are some 

other successful approaches towards synthesising mechanically reinforced physical 

hydrogels. PVA has been used in the biomedical applications and its hydrogel 

materials have become significantly interesting since exceptionally strong PVA 

hydrogels [119,120] were produced by a number of freezing-thawing cycles, without 

utilisation of a chemical crosslinking or a reinforcing agent. The process of 

densification of the macromolecular structure saw a strong physical hydrogel. 

Peppas and Stauffer’s findings [119,121] suggested that the properties of PVA 

hydrogels, such as the strength, stability and swelling ratio, depended on the solution 

concentration, the polymer molecular weight, freezing time, processing temperature 

and the repeating times of freezing-thawing process. The strongest gel was achieved 
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when a 15 wt.% PVA solution was subject to five freezing-thawing cycles: freezing 

at −20 °C for 24 h and subsequently thawing at 23 °C for 24 h. The dependence of 

mechanical performance on water content were compared in two sets of hydrogels 

[122]: the hydrogels with 75 wt.% water content exhibited a compressive strength of 

2.1 MPa at the strain range of 60–62%, and compressive modulus of 1–18 MPa 

(comparable to that of natural articular cartilage) and those with a higher water 

content of 80 wt.% exhibited a compression strength of 1.4 MPa at the strain range 

of 45–47% and compressive modulus of 0.7–6.8 MPa. Three concepts of hydrogen 

bonding, polymer crystallisation and phase separation were commonly accepted to 

interpret the gelation mechanism of the PVA hydrogels [121]. However, the phase 

separation was suggested to contribute more to their excellent mechanical properties 

than the polymer crystallisation [123,124]. Adopting the above concept, more studies 

on PVA based hydrogels synthesised by freezing-thawing method were reported for 

biomedical applications, such as PVA hydrogel nanoparticles for drug delivery [125], 

cellular PVA hydrogels with enhanced swelling and mechanical performance [126]. 

Furthermore, several nanofiller reinforced mechanically strong PVA nanocomposite 

hydrogels were reported, such as carbon nanotube-PVA nanocomposite hydrogels 

with an increase in tensile strength by 94% and tensile modulus by 78% compared 

with the neat PVA hydrogel [127], clay-PVA nanocomposite hydrogels with a 

tensile modulus increased by 27% [128], and GO-PVA nanocomposite hydrogels 

with a tensile strength increase by 132% and a compressive strength by 36% [129]. 

Wang et al. [32] produced dendritic macromolecule nanocomposite hydrogels. 

The hydrogels were formed by crosslinking clay nanosheets (CNSs) pre-treated with 

sodium polyacrylate (ASAP). The crosslinking agent was dendritic macromolecules 

(G3-binder). Clay sheets can be bonded by the adhesive dendron-terminated ends of 



22 
 
 

crosslinking agent through electrostatic attraction [32], as shown in Fig. 2.6. This 

hydrogel had a high storage modulus of 0.5 MPa, good biocompatibility, and rapid 

and complete self-healing. A few freshly cut hydrogel blocks could self-heal by 

simply pressing them together. The fresh surfaces of the hydrogel were essential for 

their adhesion. 

 

Figure 2.6 Schematic of the gelation mechanism of the hydrogel, (a) stacked CNSs, 

(b) homogeneously dispersed CNSs by interaction with ASAP, (c) the formed 

hydrogel network by CNSs crosslinking dendritic macromolecules. d-f, Optical 

images corresponding to the different status of a-c. Reproduced with permission 

from [32], copyright (2010) Nature Publishing Group.  

Besides the different tough hydrogels, ionically crosslinked polyelectrolytes 

hydrogels were also an important strategy to achieve tough, resilient and self-

healable hydrogels. Henderson et al. [130] reported ionically crosslinked hydrogels, 

exhibiting a high fracture stress (up to ∼1 MPa). The hydrogels were formed by 

crosslinking hydrophobic poly(methyl methacrylate) (PMMA) and hydrophilic 
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poly(methacrylic acid) (PMAA) triblock copolymers with divalent ions (Zn
2+

, Ca
2+

, 

Ni
2+

, Co
2+

, and Cu
2+

) in pH-buffered solutions. The hydrogels ionically crosslinked 

by Zn
2+ 

show maximum ultimate strength of 0.86 MPa at 170% strain, Young’s 

modulus up to 21 MPa, and the strain energy density of 1.4 MJ m
-3

 [130]. The 

optimal mechanical performances were achieved on the appropriate conditions, 

which were relevant to the type and concentration of cations, and pH value of the 

matrix. Some PMAA midblocks are associated with adjacent PMAA midblocks by 

divalent ions, whereas, the PMMA backbones are crosslinked by physical 

association. The ionical links, relatively stronger than physical association, can first 

break to dissipate energy upon deformation, and the commitment is reversible. The 

ionically crosslinking and physical association in the system synergistically 

contributes to the remarkable increase in their mechanical properties. 

There were other reported polymer hydrogels that could be classified as 

ionically crosslinked hydrogels, precisely speaking, physically and chemically 

crosslinked hydrogels. For example, alginate/N,O-carboxymethyl chitosan (NOCC) 

hydrogels  crosslinked mainly by ionic bonds were reported with potentials for oral 

drug delivery, where microencapsulated hydrogel beads were prepared by adding 

aqueous blend of alginate and NOCC into a Ca
2+

 solution [131]. PAA-alginate-silica 

hydrogels with interpenetrating networks structure were prepared by UV 

polymerisation [132]. The hydrogels consisted of alginate network ionically 

crosslinked by calcium ions and chemically crosslinked PAA network; that were 

interpenetrated to each other. The mechanical properties were further improved due 

to addition of nano-silica into these hydrogels. Sun et al. [133] reported PAM-

alginate hydrogels comprising of ionically and covalently crosslinked networks, 

exhibiting exceptional mechanical properties. They were excellent models of the 
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double network systems, comprising of a primary ‘alginate’ network ionically 

crosslinked by calcium ions and a secondary covalently crosslinked PAM network. 

The hydrogels were greatly enhanced, showing a fracture energy of ~9 kJ m
-2

, a 

fracture strength of 156 kPa and a fracture strain of 2300%, at a water content of 90% 

[133]. 

Sun et al. [134] reported physical polyampholytes (PA) hydrogels prepared by 

the random copolymerisation of anionic and cationic monomers, showing high 

toughness and viscoelasticity. Among various combinations, one typical 

combination of such an ionic monomer pair is 3-(methacryloylamino)propyl-

trimethylammonium chloride (MPTC) and sodium p-styrenesulphonate (NaSS). The 

randomly distributed charges during synthesis render strong and weak ionic bonds 

throughout the hydrogel by inter and intra-chain fashion. When the hydrogels are 

under deformation, the weak ionic bonds preferentially break; meanwhile, the strong 

ionic bonds preserve the structure of the network. The energy dissipation by the 

rupture and reform of the reversible weak bonds results in reinforcement of fracture 

strength, fatigue resistance, toughness and self-healing capability, as illustrated in 

Fig. 2.7. The PA hydrogels exhibit extraordinary mechanical properties, i.e., ultimate 

strength of 1.8 MPa at a strain of 750%, a high fracture energy of 4 kJ m
-2

, and 100% 

self-heal [134]. 
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Figure 2.7 Schematic model of a physical polyampholyte hydrogel, (a) a network 

with strong and weak ionic bonds at original and stretched status. The strong ionic 

bonds render undamaged backbone of the network upon stretching, whereas, the 

weak ionic bonds sacrifice to break. (b) The chemical structures of optional cationic 

monomers of MPTC and DMAEA-Q, and anionic monomers of NaSS and AMPS. 

Reproduced with permission from [134], copyright (2013) Nature Publishing Group. 

2.4 Graphene-polymer nanocomposite hydrogels 

2.4.1 Graphene and graphene oxide 

Graphene is a flat monolayer of carbon atoms with honeycomb lattice structure [135]. 

The length of carbon-carbon bond in graphene is 0.142 nm [136]. It has been one of 

the most exciting materials to be studied since its free-standing form was first 

discovered by Novoselov and Geim [137] in 2004. Graphene is considered as the 

parental form of all graphitic materials, e.g., fullerenes, carbon nanotubes and 

graphite (Fig. 2.8), though it is distinctly different from them [135]. Graphene has a 

strength at break of 42 N m
-1

, a Young’s modulus of 1.0 TPa [39] and a specific 
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surface area of 2630 m
2
 g

-1
 [138]. It also possesses an electron mobility of 10,000 

cm
2
 V

-1
 s

-1
 [137] and a thermal conductivity value of ~4.8–5.3 kW m

-1
 K

-1
 [139] at 

room temperature. There are several techniques reported to prepare graphene. The 

first attempt was the exfoliation method, also known as scotch tape method by 

Novoselov and Geim [137]. Chemical vapour deposition method [140] which 

produces graphene on metallic substrates, and liquid-phase exfoliation method [141] 

which disperses and exfoliates pristine graphite in organic solvents were also 

developed. However, a practical and scalable approach to produce graphene is 

chemical reduction of graphene oxide [142,143]. This product is known as reduced 

graphene oxide (RGO) or chemically converted graphene [144], which inherits most 

interesting properties of graphene. 

 

Figure 2.8 Schematic of all forms of the graphitic materials. Graphene, a 2D primary 

building material, can be transformed into 0D buckyballs, 1D nanotubes, and 3D 

graphite. Reproduced with permission from [135], copyright (2007) Nature 

Publishing Group. 
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Because of its exceptional properties, including high electron mobility, 

mechanical properties and surface area, graphene has recently attracted tremendous 

attention in various applications, such as optoelectronics, energy storage, catalysis, 

gas sensing, super-capacitors, thermoelectric devices, composites, tissue engineering 

and drug delivery [37,145-148]. 

GO is a derivative oxidised from graphite, possessing abundant hydroxyl, epoxy 

and carboxyl groups. Its precise chemical structure has been a debatable subject due 

to the complexity of the material and the lack of satisfied characterisation techniques 

[142]. Fig. 2.9 shows the most commonly accepted schematic structure of GO, the 

Lerf-Klinowski model, in which the hydroxyl, epoxy groups are grafted on the 

planar surface, whereas carboxyl groups appear at the edge of GO sheets [149]. GO 

can be prepared by chemical exfoliation using three primary methods. In Brodie’s 

method [150], graphite is oxidised in the reaction involving potassium chlorate and 

fuming nitric acid. Staudenmaier’s method [151] is an improved approach of 

Brodie’s preparation, also adding concentrated sulfuric acid, which can achieve a 

similar extent of oxidation by one-step synthesis in contrast to Brodie’s multiple 

oxidations. The latest primary one is Hummers’ method [152], in which GO is 

obtained through the vigorous reaction between graphite, concentrated sulphuric acid 

and potassium permanganate. Several modified approaches [153-155] were 

developed to improve the primary methods. GO has a similar one-atom thickness of 

~0.6–1.2 nm slightly higher than the thickness of 0.345 nm for a monolayer of 

graphene. GO has a Young’s modulus of 207.6 GPa (for a monolayer thickness of 

0.7 nm) [40]. In contrast to graphene of excellent electrical conductivity, the GO 

monolayers are almost insulator, with differential conductivity values of 1–5 × 10
-3

 S 

cm
-1

 at a bias voltage of 10 V (for a monolayer of GO with a thickness of 1 nm). 
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Figure 2.9 Schematic of the structural model of GO. Reproduced with permission 

from [149], copyright (1998) American Chemical Society. 

GO has exceptional properties such as high mechanical strength, superb solution 

processability and high surface activity. The oxygen-containing groups of GO are 

available for covalent and non-covalent functionalisation [156] which afford 

opportunities for various and flexible designs in new material development. The 

hydroxyl and carboxyl groups of GO are hydrophilic and make it excellent in water 

dispersion [157]. In addition, GO is cost competitive compared to carbon nanotubes, 

owing to the low-cost raw material of graphite. In recent years, graphene-based 

materials have been extensively explored for biomedical applications, such as drug 

delivery, biosensing and tissue engineering [37,158]. 

To be used in biomedical applications, the toxicity of graphene and GO is 

concerned. In the literature, the cytotoxicity of graphene and GO is reported to be 

influenced by their concentration, size, shape, type of dispersants despite of some 

mixed findings [158,159]. A recent in vitro study [160] showed that GO was no 

noncytotoxic by promoting mammalian cell growth and also bacterial growth. 
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Furthermore, surface-functionalisation of graphene or GO with a biopolymer 

improves biocompatibility and reduces cytotoxicity because it can reduce the strong 

hydrophobic interactions of graphene or GO with cells and tissues [161]. For 

instance, chitosan-functionalised GO nanosheets promoted the growth of human 

mesenchymal stem cells [162]. Gelatin-functionalised GO nanosheets (a size range 

of 80–3000 nm) showed no toxicity at 200 μg mL
-1

 to human breast adenocarcinoma 

cells [163]. The PEG coated nanographene sheets were confirmed as an excellent 

photothermal therapy agent without showing appreciable toxicity to the tested mice 

[164]. In vivo toxicity test to mice did not show obvious toxicity for PEGylated 

nanographene sheets when the mice were injected with the dose of 20 mg kg
-1

 for 40 

days [164]. In vivo toxicology with mice demonstrated that PEG-functionalised GO 

nanosheets had insignificant toxicity and could be excreted from the body by 

metabolism after intravenous and intraperitoneal administration, with little retention 

in reticuloendothelial systems [165,166]. Thus, modification and functionalisation of 

graphene and its derivatives can promote them to be used in potential biomedical 

applications, though the long-term toxicity of these materials needs further deep 

studies. 

2.4.2 Graphene (or RGO) based hydrogels 

Graphene (or RGO) hydrogels have been investigated for applications in energy 

storage, electronics, electrochemistry and healthcare [167-170]. A self-assembled 

RGO hydrogel was first reported by Xu and co-workers [168] in 2010, showing high 

specific capacitances. In this work, GO sheets were reduced to RGO sheets through a 

hydrothermal process and self-assembled to a hydrogel via π–π stacking. The 

partially reduced GO sheets with remaining hydrophilic oxygenated groups can 
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encapsulate water in the process of self-assembly. Fig. 2.10 illustrates the formation 

mechanism of the hydrogel. Since then, a number of graphene-inorganic composite 

hydrogels, such as graphene-Ni(OH)2 composite hydrogels [169] and graphene-VO2 

nanobelt composite hydrogels [170], were developed, which exhibited further 

improved capacitances. 

 

Figure 2.10 Formation mechanism proposed for the hydrothermal reduced GO 

hydrogel. Reproduced with permission from [168], copyright (2010) American 

Chemical Society. 

Graphene-polymer nanocomposite hydrogels have also been investigated. 

Graphene-PAM hydrogels were synthesised via in situ polymerisation of acrylamide 

in an aqueous suspension of PAM-stabilised graphene, showing a compressive 

strength of 9 kPa and a storage modulus of 7 kPa at a water content of about 90 wt.% 

[171]. At a similar water content, RGO-poly(N,N-dimethylacryl-amide) (PDMAA) 

hydrogels were synthesised as potential tissue scaffolds by in situ polymerisation of 

DMAA within a pre-formed graphene hydrogel, giving a high compressive strength 

of 2.62 MPa due to their dual network structures [172]. A graphene-poly(3,4-

ethylenedioxythiophene) (PEDOT) hydrogel exhibited a compressive strength of 

29.6 MPa and a storage modulus of 2.1 MPa at a water content of 59.5 wt.% mainly 
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because of the high solid content and the strong physical interaction between 

PEDOT chain and graphene [173]. These nanocomposite hydrogels were synthesised 

by in situ polymerisation in which the monomer was polymerised in the presence of 

graphene nanosheets. Self-assembly method was also employed to synthesise RGO-

polymer nanocomposite hydrogels. For example, RGO-containing dipeptide 

hydrogels were synthesised and showed a storage modulus of 41 kPa at a water 

content of 99.5 wt.% [174]. A RGO-agarose hydrogel was fabricated for miniature-

scale water purification [175]. 

2.4.3 Graphene oxide based hydrogels 

A number of GO reinforced polymer hydrogels have recently been reported [176-

179]. For example, GO-PVA hydrogel [179] was formed by involving both chemical 

and physical bonding. In some other hydrogels, monomers were in situ polymerised 

and chemically crosslinked in the presence of GO sheets and water, where GO acted 

as a reinforcing filler. The hydrophilic oxygen-containing groups allowed GO to 

readily exfoliate and stably disperse as monolayer sheets in water, conferring good 

dispersion of GO in the aqueous solution of hydrophilic polymer matrix, which was 

critical to mechanically strong hydrogels [178]. For example, the compressive 

strength of a polyacrylamide hydrogel increased by 6-fold with the addition of only 1 

wt.% GO sheets [176]. 

Physically crosslinked GO-based hydrogels could be synthesised by mixing 

cations, small organic molecules, macromolecules, or long chain polymers with GO 

suspension [157]. These hydrogels are normally reversible and also sensitive to the 

surrounding environment, rendering applications with stimuli-responsiveness 

[177,180]. The oxygenated functional groups on GO surfaces also enable it to serve 
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as a physical crosslinker in the formation of a hydrogel [179]. Bai et al. [180] 

reported a pH-sensitive GO-PVA composite hydrogel by a direct mixing method for 

drug delivery, which showed a storage modulus of ~200 Pa and was able to release 

84% of the loaded VB12 molecules into a neutral solution after 42 h as opposed to 

51% into an acidic solution. Xu and co-workers [181] prepared a GO-DNA 

hydrogel, which exhibited environmental stability, dye-loading capacity and self-

healing ability. This hydrogel was prepared by heating the mixture of GO suspension 

and DNA solution at 90 °C for 5 min.  Upon the heating, the double stranded DNA 

(dsDNA) was unwound into single stranded DNA (ssDNA); and then the ssDNA 

chains adhered the neighbouring GO sheets through multiple physical interactions 

(Fig. 2.11) [181]. The strong physical interactions between DNA and GO, i.e., π–π 

stacking, hydrophobic interaction, electrostatic interaction and hydrogen bonding, 

render the hydrogel high environmental stability. The hydrogel obtained a storage 

modulus of about 4.6 kPa [181].  

 

Figure 2.11 Schematic of the preparing procedure and gelation mechanism of the 

GO-DNA hydrogel. Reproduced with permission from [181], copyright (2010) 

American Chemical Society. 
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Figure 2.12 Illustration of the self-healing: (A) the initial free-standing hydrogel, (B) 

three small blocks (cut with a razor), and (C) the self-healed blocks. Reproduced 

with permission from [181], copyright (2010) American Chemical Society. 

The proposed self-healing mechanism of GO-DNA hydrogel was similar to the 

preparation process, i.e., residual dsDNA contained in the hydrogel could unwind 

and adhere the cutting surfaces after the hydrogel blocks were pushed together and 

heated at 90 °C for 3 min [181]. The hydrogel blocks could be adhered together and 

held on between two supports horizontally or hung vertically, shown in Fig. 2.12. 

2.5 Gelatin and graphene-gelatin nanocomposites 

2.5.1 Introduction to gelatin 

Gelatin is a denatured biopolymer, derived from collagen, with abundant amino 

groups and carboxyl groups on its molecular chains [182]. Gelatin shows inherent 

cationic nature at pH values below its isoelectric point via protonation of amino 

groups [183]. It possesses distinctive characteristics, such as biocompatibility, 

remarkable affinity to proteins, biodegradability and low cost. Therefore, gelatin is 

widely used for food, cosmetic, pharmaceutical and medical applications [184,185]. 

Gelatin is obtained by extracting collagen-source materials, which constitute the 
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main organic component of animal skins, bones, tendon, and loose connective 

tissues [185,186]. The acid or alkaline process is applied to the raw material before 

gelatin is extracted. Type A and Type B gelatin denote the acid-extracted and 

alkaline-extracted gelatin, respectively [185]. 

Gelatin has three predominant groups of amino acids among some 18 amino 

acids that compose partially ordered linear gelatin chain with very little ramifications 

[185]. Glycine is the predominant N-terminal amino acid of alkaline-extracted 

gelatin, while alanine is the primary amino acid of acid-extracted gelatin [187]. 

Roughly one-third to half of the amino acid residues are glycine or alanine. Proline 

or hydroxyproline makes up about one-fourth of the total amino acid residues [187]. 

Gelatin could be enzymatically degraded in vivo and split to yield smaller rnolecules 

which could be excreted or metabolised [188]. 

2.5.2 Graphene-gelatin nanocomposites and hydrogels 

Prior to the development of the hydrogels combined graphene and gelatin, graphene-

gelatin composite and gelatin functionalised graphene nanoparticles were explored. 

Previous research on dry and solid GO-gelatin nanocomposites demonstrated that the 

presence of no more than 2 wt.% GO improved the mechanical properties and 

induced the growth of more calcium phosphate biominerals in contrast to pristine 

gelatin [189]. Furthermore, gelatin functionalised graphene nanosheets were 

prepared for drug delivery and cellular imaging, in which gelatin chains reduced GO 

and grafted onto the surface of the resultant RGO nanosheets [163]. In this case, 

gelatin not only improved biocompatibility of graphene nanosheets, but also acted as 

a reducing agent to reduce GO to RGO under mild heating (95 °C) forming covalent 

bonding with RGO through its amino groups. 
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GO-PAA-gelatin nanocomposite hydrogels were reported, which presented a 

tensile strength of 150–250 kPa with ~90 wt.% water [190], and a compressive 

strength of 7–26 MPa with 29–51 wt.% water content [191], mainly owing to their 

strong semi-interpenetrating network comprising chemically crosslinked PAA and 

loose gelatin chains as well as the low water contents. UV crosslinked GO-gelatin 

methacrylate composite hydrogels were also reported, which showed a compressive 

strength of 91.3–976.7 kPa at a water content of 94.3–94.5 wt.% [192]. These 

findings indicate the possibility of creating strong nanocomposite hydrogels 

primarily based on graphene (or GO) and gelatin. 

2.6 Polyamidoamine (PAMAM) dendrimer-based hydrogels and 

hybrids 

2.6.1 Introduction to PAMAM dendrimer 

Starburst dendrimers are highly ordered oligomeric and polymeric compounds, i.e., 

3D molecular architectures possessing dimensionally precise surfaces with a defined 

number of surface groups [193-195]. The dendrimers are synthesised by repeating 

reaction starting from initial cores, such as small organic molecules. Starburst 

dendrimers can mimic certain properties of micelles and liposomes and even those of 

biomolecules of biological systems [193]. Dendrimers show great potential in the 

biomedical applications, including drug delivery, tissue engineering, gene 

transfection, and therapeutic imaging [195-199]. PAMAM dendrimer is an important 

dendrimer family, a class of macromolecules which are synthesised through two 

main routes: divergent synthesis or convergent synthesis, achieving a 3D architecture 

with a core (ammonia or ethylenediamine (EDA)), repeating units (amidoamine) and 

active surface groups (amino groups for full-generation and carboxylic acid groups 
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for half-generation) [200-202]. PAMAM dendrimers are commercially available and 

have been extensively studied in biomedical field due to their low cytotoxicity, 

controllable size and easy functionalisation [203]. The potential applications of 

PAMAM dendrimers include drug carriers, pharmaceutical agents, gene transfection 

reagents, biosensors, etc. [204-207]. The toxicity of PAMAM dendrimers is 

generally influenced by the factors of their concentration, exposure duration, 

generation, and terminal groups [204,208,209]. PAMAM dendrimers possessing 

cationic termini display higher cytotoxicity than polyationic dendrimers. The 

peripheral amino groups of PAMAM dendrimers could be modified with other 

molecules to reduce the positive charge on their surface, such as partial acetylation, 

acylation or glycation, and cause the dendrimers less cytotoxic. The modified 

PAMAM dendrimers have been successfully utilised in biomedical applications 

[206,210]. 

2.6.2 Graphene-PAMAM dendrimer nanocomposite and hydrogels 

Amine-terminated PAMAM dendrimer is an interesting cationic material for the 

biomedical research. Collagen scaffolds with incorporation of amine-terminated 

PAMAM dendrimer were reported, where the dendrimer was used as an additional 

crosslinker to improve the environmental stability of chemically crosslinked collagen 

scaffolds [211]. A number of PAMAM-PEG hydrogels were investigated for 

versatile platforms in biomedical applications, in which PAMAM was the primary 

building component [212,213]. The combination of PAMAM dendrimers and 

graphene derivatives has been introduced to develop hybrid nanomaterials in 

different forms. RGO nanosheets modified by PAMAM dendrimers were reported 

for catalysis [214,215]. RGO-PAMAM-silver nanoparticles were prepared for 
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electrode applications and biosensing [216]. PAMAM-modified GO nanosheets and 

GO-PAMAM composites, showing an excellent adsorption ability, were investigated 

for removing heavy metal ions from waste water [217,218]. GO and hyperbranched 

dimethylolpropionic acid polyester-toughened PAA hydrogels with excellent water 

absorbing capability and high mechanical properties were also reported [219]. 

PAMAM dendrimers have an advantage over linear chain polymers on 

hydrogel gelation, because they have much more functional end groups 

available for crosslinking, so the crosslinking density of the resulting 

hydrogels might be higher, leading to higher mechanical properties [196]. In 

addition, the dendrimers could be readily modified to modulate the chemical, 

physical and biological properties where necessary [212]. 

2.7 Other graphene-cationic polymer nanocomposites and hydrogels 

Nanocomposites with the combination of another cationic natural biopolymer, such 

as chitosan and GO in different physical forms were reported. Small additions of GO 

enhanced the mechanical properties and drug delivery performance in dry and solid 

chitosan-GO nanocomposites [220,221]. Chitosan-functionalised graphene 

nanosheets [222,223] were investigated for potential application as pH-sensitive drug 

carriers. GO-chitosan nanocomposite hydrogels were reported as broad range 

adsorbent materials for purifying water [224]. Self-assembled chitosan hydrogel 

using GO nanosheets as crosslinkers was reported [225]. Graphene-chitosan 

conductive hydrogels were prepared which are processable, exhibit tunable swelling 

properties and show excellent biocompatibility [226]. 
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2.8 Summary 

Hydrogels have advanced remarkably in the past decades. However, in order for 

hydrogels to be successfully used for biomedical applications, there are still two 

major challenges to tackle, including: 1) sufficiently improving the mechanical 

properties. For instance, native articular cartilage can bear a compressive strength of 

3–18 MPa [227], whereas most synthetic hydrogels are much lower than expected; 2) 

possessing self-healing ability like many biological tissues. So far the reported 

materials capable of self-healing require so strict conditions to heal, e.g., heating  at 

high temperature and/or fresh cut surfaces [32]. 

The physically crosslinked NC hydrogels and dendritic macromolecular 

hydrogels showed good self-healing ability and relatively higher mechanical 

properties in comparison with other self-healing hydrogels. Both hydrogels are 

crosslinked mainly by ionic interactions which are stronger than the other non-

covalent interactions such as hydrogen bonding and hydrophobic effect. Thus, the 

strategies of using ionic interactions as crosslinking bonds to build strong and self-

healing networks seem promising. That could be utilised to develop novel 

nanocomposite hydrogels using a cationic polymer such as gelatin or a dendritic 

polymer and strong graphene nanosheets to obtain desired strength, toughness and 

self-healing properties. Furthermore, a few other issues need be aware of, which are 

favourable to achieve mechanically strong hydrogels such as increasing crosslinking 

density and yield homogeneous nano/micro structure [91]. 
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Chapter 3. Self-assembled graphene oxide–gelatin 

nanocomposite hydrogels 

3.1 Introduction 

The aim of this chapter is to develop a new type of polymer nanocomposite 

hydrogels crosslinked by physical interactions (i.e., electrostatic interaction and 

hydrogen bonding) with high mechanical performance for potential uses in 

biomedical applications. Herein, novel physically crosslinked GO-gelatin 

nanocomposite hydrogels were prepared by a simple self-assembling approach 

without involving an organic crosslinker or a complex synthesis procedure. GO-

gelatin nanocomposite hydrogels with various material ratios were prepared, and 

characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy 

(FT-IR), Raman spectroscopy and scanning electron microscopy (SEM). GO was 

also characterised and tested by atomic force microscopy (AFM) and 

thermogravimetric analysis (TGA). The chemical structure, morphology, static and 

dynamic rheological properties, pH-sensitivity, and gelation mechanisms of the 

hydrogels were discussed in detail. The GO content effect on their mechanical 

properties was studied. The effective crosslinking densities were determined by the 

rheological measurements. Their potential application in pH-responsive drug release 

was demonstrated, in which drug release tests were carried out on a typical GO-

gelatin nnanocomposite hydrogel using model drug fluorescein sodium.  
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3.2 Experimental section 

3.2.1 Materials 

Graphite powder (size ˂ 20 μm), gelatin (type B, BioReagent, bloom strength 

225, isoelectric point: 4.7–5.2, average molecular weight Mw: 50,000), 

potassium permanganate (KMnO4), sodium nitrate (NaNO3), hydrogen 

peroxide (H2O2, 30%), concentrated sulphuric acid (H2SO4, 98%), 

hydrochloric acid (HCl, 35%), phosphate buffered saline (PBS) tablets and 

fluorescein sodium salt (BioReagent) were all purchased from Sigma-Aldrich. 

3.2.2 Preparation of graphene oxide 

GO was synthesised by a modified Hummers’ method [152,155]. Briefly, 69 

mL concentrated H2SO4 and 1.5 g NaNO3 was mixed with 3.0 g graphite 

powder at 0 °C in an ice bath, and afterwards 9.0 g KMnO4 was gradually 

added into the graphite mixture and kept its temperature lower than 20 °C 

while stirring. The temperature was then raised to 35 °C before the mixture 

was stirred for 12 h. Next, an additional amount of KMnO4 (9.0 g) was added 

gradually, and the mixture was kept stirring at 35 °C for a further 24 h. The 

resulting brown paste-like mixture was cooled down to room temperature and 

poured onto 400 mL ice with 20 mL H2O2. Through a rigorous reaction, the 

mixture immediately turned from brown to bright yellow. After stirring for 2 h, 

the resultant graphite oxide was filtered through cellulose membrane (pore 

size: 0.45 μm, Whatman) and washed with 1:10 HCl aqueous solution (400 

mL) and filtered again. The filtrate was washed with distilled water and 

centrifuged (Centrifuge 5804, Eppendorf, Germany) at 4000 rpm for 30 min 

repeatedly until the supernatant became neutral. The solid graphite oxide was 
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dispersed in distilled water (~1 mg mL
-1

) and exfoliated under sonication 

(Elmasonic S 30 H, Elma, Germany) for 1 h. The fully exfoliated GO 

suspension was dialysed to remove the remaining acid and metal species for at 

least one week. Finally, the GO suspension was freeze-dried (FreeZone Triad 

Freeze Dry System, Labcoco Corporation) to obtain GO powder for future use. 

3.2.3 Preparation of GO-gelatin nanocomposite hydrogels 

GO-gelatin nanocomposite hydrogels (GGHs) were prepared by self-assembly. 

A typical synthesis of hydrogels is described below. The GO aqueous 

suspension (10.9 mg mL
-1

) was prepared by mixing pre-determined amounts 

of GO and water by 1 hour’s stirring and 30 minutes’ sonication. Gelatin 

solutions with varying concentrations were prepared by stirring desired 

amounts of gelatin and water for 1 h at 60 °C. Hydrogel samples were created 

by directly mixing 5.5 mL of the GO suspension with 0.5 mL of a gelatin 

solution at 37 °C. During this process, the gelatin solution was added drop-

wise into the GO suspension while the mixture was stirred, and hydrogels 

formed in about 20 s. The hydrogels are designated as GmGnH, where m and n 

define the concentration of GO and gelatin, respectively, in the final hydrogel 

with the unit of mg mL
-1

. For example, G10G5H is a hydrogel comprising 10 

mg mL
-1

 GO and 5 mg mL
-1

 gelatin. 

3.2.4 Structural characterisation 

AFM was performed by using a Veeco Instruments Dimension 3100 atomic 

force microscope operated in tapping mode. A diluted GO aqueous suspension 

was dropped onto a freshly cleaved mica surface and left overnight to dry in 

air. SEM was carried out using an FEI Inspect F scanning electron microscope 
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at 10 kV. An aqueous GO suspension (10 mg mL
-1

) and GO-gelatin hydrogels 

were first frozen in liquid nitrogen, and then subjected to freeze-drying under 

vacuum at −10 °C for two days. The lyophilised GO and GO-gelatin hydrogels 

were fractured carefully and fixed on aluminium stubs. All samples were 

coated using a gold sputter coater (Emscope SC500A) and the fracture 

surfaces were observed under SEM. FT-IR of gelatin, graphite, lyophilised GO 

and lyophilised GO-gelatin hydrogels was carried out on a Perkin Elmer 

Spectrum 100 spectrometer with a diamond attenuated total reflectance 

(diamond-ATR) unit at a resolution of 4.0 cm
-1

 and an accumulation of 5 scans. 

Raman spectroscopy was conducted on a Renishaw inVia Raman Microscope 

with 514 nm laser excitation operating at 1.0 mW. XRD was achieved with an 

X-ray diffractometer (STOE STADI P) with Cu Kα1 radiations (λ = 0.15406 

nm) at 40 kV and 35 mA. Diffraction patterns were recorded at a scan speed of 

0.27
o
 s

-1
 and with a step size of 0.03

o
 (2θ). TGA was performed under nitrogen 

atmosphere with a Perkin Elmer Pyris 1 Thermal Analyser at a heating rate of 

5 °C min
-1

. 

3.2.5 Rheological measurements 

Rheological measurements were performed on an AR2000 Advanced 

Rheometer (TA Instruments). Oscillatory shear measurements were carried out 

at 25 °C to determine the storage moduli (G') and loss moduli (G") of the GO-

gelatin hydrogels over an angular frequency range from 0.1 to 100 rad s
-1

 

under a fixed strain of 0.1% (in the linear viscoelastic region pre-determined 

by dynamic strain sweep tests). All measurements were performed with a 

parallel-plate geometry (diameter 40 mm) equipped with a solvent trap to 
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avoid evaporation. The gap between two parallel plates was fixed to be 1.0 

mm. 

A series of shear viscosity measurements were also carried out on the rheometer 

to study the formation mechanisms of the hydrogels. Samples, including the 

precursor solutions of the hydrogels and the mixtures of these solutions at various 

ratios, were measured over a shear rate range from 0.01 to 1 s
-1

 at 25 °C. 

3.2.6 In vitro drug release tests 

The drug-encapsulated nanocomposite hydrogel was prepared as follows. 

First, a model drug, fluorescein sodium, was mixed into a gelatin solution 

under stirring for 1 h, which was subsequently introduced into a GO 

suspension to form a drug-loaded hydrogel comprising of 10.0 mg mL
-1

 GO, 

10.0 mg mL
-1

 gelatin and 3.0 mg mL
-1

 fluorescein sodium. For each test, 0.4 

mL drug-loaded hydrogel was deposited into a small plastic tube before it was 

immersed into 100 mL of a neutral PBS solution (pH = 7.4) or an acidic HCl 

solution (pH = 1.7). The release test was kept undisturbed at body temperature 

(37 °C) throughout the whole period. The tests were repeated three times. The 

concentrations of fluorescein sodium in the PBS solution and HCl solution 

were determined by UV–Vis absorbance intensities from two calibration 

curves of fluorescein sodium in PBS at the wavelengths of 490 nm and in HCl 

solution at 437 nm, respectively. UV-Vis Spectroscopy was performed on a 

UV/VIS/NIR Spectrometer (Lambda 900, Perkin Elmer), with a scan interval 

of 1 nm. 
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3.3 Results and discussion 

3.3.1 Structure and properties of GO-graphene nanocomposite hydrogels 

Fig. 3.1 illustrates the XRD patterns of graphite, graphite oxide and lyophilised GO-

gelatin hydrogels. A strong diffraction  peak of graphite oxide appears at 2θ = 10.6°, 

corresponding to an interlayer spacing of 0.83 nm, which is consistent with the 

previous report [181]. As a comparison, the pristine graphite has a diffraction peak at 

26.4°, corresponding to an interlayer spacing of 0.34 nm. The results indicate that 

graphite oxide has been successfully synthesised and the oxygenated functional 

groups are present on the surface of graphene sheets expanding the interlayer spacing 

of graphite [228]. 

 

Figure 3.1 XRD patterns of (a) graphite, (b) graphite oxide and lyophilised GO-

gelatin nanocomposites: (c) G10G5H, (d) G10G7.5H and (e) G10G10H, 

respectively. 

XRD results are supported by the observation of single GO nanosheets under 

AFM. The thickness of GO nanosheets is about 1.0 nm and the typical lateral 

dimension is one to several micrometres (Fig. 3.2). This thickness is similar to those 
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reported by others [155,229], and much greater than the thickness of single-layer 

graphene (0.35 ± 0.01 nm) measured by AFM [230]. The thickness of single-layer 

GO determined under AFM is also greater than the interlayer spacing of graphite 

oxide determined by XRD, which may be due to the presence of a water layer 

between GO and the substrate and/or the resolution of the AFM tip [231]. 

                    

Figure 3.2 Tapping mode AFM topographic image and height profile of a single 

layer of GO which shows the vertical distance is about 1.0 nm. 

The oxidisation degree of the GO was estimated by TGA (Fig. 3.3). The TGA 

curve of graphite is almost flat, exhibiting little mass loss from room temperature to 

800 ºC. In contrast, there is 61% mass loss for GO during the same temperature 

range. The first mass loss of 14% is found below 100 ºC, which is attributed to the 

loss of water molecules absorbed into the GO bulk material. The major mass loss 

occurs at around 210 ºC, corresponding to the main peak observed in the derivative 

weight curve, due to pyrolysis of the labile oxygen-containing functional groups, 

yielding CO, CO2, and steam [149]. The subsequent mass loss at above 250 ºC is 

owing to elimination of remaining functional groups. Therefore, one can estimate the 

oxygen-containing functional groups of the dried GO to be approximately 55% after 

the elimination of water from GO. 
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Figure 3.3 TGA curves of graphite and GO. 

Compared to the evident XRD peaks in graphite oxide and graphite, small broad 

peaks centred at 9.8
o
 are observed in curves c and d (Fig. 3.1) of the lyophilised 

hydrogels G10G5H and G10G7.5H, which indicates good dispersion of GO in the 

hydrogels with only a low degree of re-aggregation of some GO single sheets during 

the hydrogel formation. However, there is no observable peak in the curve e of 

G10G10H comprising the highest content of gelatin and the lowest content of GO, 

suggesting that exfoliated GO remain as individual sheets in the polymer matrix [232] 

even though the amount of GO in lyophilised G10G10H nanocomposite is as high as 

50 wt.%. 

Fig. 3.4 shows FT-IR spectra of graphite, gelatin, lyophilised GO and GO-

gelatin hydrogels with different gelatin contents and a fixed GO content. The 

spectrum of the pristine graphite only shows a weak absorbance centred at 3400 cm
-1

, 

which could be O–H stretching bond from absorbed water. The spectrum of GO 

reveals the presence of C=O carbonyl stretching at 1731 cm
-1

, C=C aromatic carbon 

vibration at 1619 cm
-1

, C–OH stretching vibration at 1360 cm
-1

, C–O–C epoxy at 
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1276 cm
-1

 and C–O alkoxy at 1050 cm
-1

 [233,234], O–H stretching vibration and the 

intercalated water molecules at 3100–3400 cm
-1

 [235]. The peaks in the gelatin 

spectrum can be assigned to the C=O stretching vibration of amide I (1631 cm
-1

), the 

N–H bending of amide II (1519 cm
-1

), amide III (1232 cm
-1

), and N–H stretching of 

primary amine (3264 cm
-1

), respectively [236,237]. After incorporation of gelatin 

into the GO, the C=O vibration peak of GO at 1731 cm
-1

 becomes weaker and 

disappears completely in G10G10H (curve e) with the highest gelatin content (50 

wt.%), which can be interpreted by the formation of ammonium carboxylate 

complex through the protonated amino groups of gelatin and carboxyl groups of GO 

[238,239], arising from the electrostatic forces between the two materials. 

 

Figure 3.4 FT-IR spectra of (a) graphite, (b) GO, (c-e) lyophilised GO-gelatin 

hydrogels: (c) G10G5H, (d) G10G7.5H and (e) G10G10H, and (f) gelatin powder.  

In the FT-IR spectra of the nanocomposites (curves c-e), the in-plane bending 

peak (amide II in gelatin) occurs and is blue-shifted from 1519 cm
-1

 to 1532 cm
-1

. 

Meanwhile, the N–H stretching vibration (3264 cm
-1

) of gelatin becomes broader 

and its intensity increases with increasing gelatin amount. Both of these are ascribed 

4000 3500 3000 2500 2000 1500 1000 500

1635

 

 

A
b

s
o

rb
a
n

c
e
 /

 %

Wavenumber / cm
-1

a

b

c

d

e

f

1731

16193100-3400

1050

1360

1276

1631
1519

3400

1232
3264

1532



48 
 
 

to the formation of hydrogen bonds between –NH2 of gelatin and oxygen-containing 

groups on the GO sheets. The amide I vibration is also blue-shifted from 1631 to 

1635 cm
-1

, again indicating the hydrogen bonding between gelatin and GO. These 

are clear evidence that strong physical bonding exists between the two components 

in the GO-gelatin hydrogels. 

Fig. 3.5 shows Raman spectra of graphite, lyophilised GO and lyophilised GO-

gelatin nanocomposite hydrogels with various contents of gelatin. Curve a is a 

typical Raman spectrum of raw graphite, showing a sharp G band at 1579 cm
-1

 in 

relation to the in-phase vibration (E2g mode) of the graphite lattice, and a weak D 

band at 1358 cm
-1

 corresponding to the symmetric A1g mode of lattice [240]. A 

broad peak at 2723 cm
-1

 is assigned to 2D band [241]. After the oxidation, the G 

band and D band of graphite become broader in GO. A significantly increased 

intensity ratio of GO, ID/IG (0.81), is also observed compared to that (0.06) of 

graphite, due to a higher level of disorder of the graphene layers and the increased 

defects [242,243]. Moreover, the G band of GO is blue-shifted to 1599 cm
-1

, which 

is mainly due to the presence of higher energy functional groups with isolated double 

bonds on GO sheets [244] and the newly appeared D' band (at 1620 cm
-1

) [240,245]. 

The Raman spectra of the lyophilised GO-gelatin hydrogels show similar profiles to 

that of GO except that G band of GO sheets is gradually red-shifted from 1599 to 

1590 cm
-1

 in the hydrogel with the highest content of gelatin. This shift is owing to 

the charge transfer from the amino groups of the branched chains of gelatin to GO 

sheets [181]. Both FT-IR and Raman spectra of lyophilised hydrogels confirm the 

existence of hydrogen bonding and electrostatic forces, or in other words physical 

crosslinking between gelatin and GO. 
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Figure 3.5 Raman spectra of (a) graphite, (b) GO, (c-e) lyophilised GO-gelatin 

nanocomposites (c) G10G5H, (d) G10G7.5H and (e) G10G10H. 

The interior morphology of the lyophilised GO aqueous suspension (10 

mg mL
-1

) and GO-gelatin hydrogels is investigated by SEM. SEM images (Fig. 

3.6) show that the lyophilised GO suspension and GO-gelatin hydrogels 

exhibit open and interconnected porous structures. The interconnected 

structure of GO (7.2 ± 3.1 μm) is formed due to the structural changes during 

the drying stage in which the GO sheets become contacted to each other (Fig. 

3.6A); the hydrogen bonding between GO sheets and the residual hydrogen-

bonded water molecules between GO sheets [246] may have facilitated the 

formation of this interconnected network. When GO is mixed with gelatin to 

form a nanocomposite hydrogel, the porous structure turns less uniform and 

the surface of the pore walls and edges becomes rougher. In the 

nanocomposite samples (Figs. 3.6B-D), the walls of the porous structure 

consist of GO sheets (shown by the orange arrows) with coated gelatin, similar 

to the morphology of the reported GO-hemoglobin hydrogel [247]. Gelatin is also 
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Figure 3.6 SEM images of (a) a lyophilised GO aqueous suspension (10 mg mL
-1

) 

(no hydrogel is formed at this concentration), and lyophilised (b) G10G5H, (c) 

G10G7.5H and (d) G10G10H hydrogels. Orange arrows indicate the gelatin-coated 

GO sheets and blue arrows show gelatin linking GO sheets together. 

found to link GO sheets in the nanocomposite hydrogels (shown by the blue 

arrows). With increasing gelatin content, more gelatin links can be observed in 

the G10G7.5H and G10G10H (Figs. 3.6C and D). The average pore sizes for 

G10G5H, G10G7.5H and G10G10H are 6.2 ± 4.5 μm, 6.4 ± 4.5 μm and 7.7 ± 

5.4 μm, respectively. The inhomogeneity of the structure increases with 

increasing gelatin content (Figs. 3.6B-D) due to a more rapid gelling process 

and a less thorough mixing of the two components during the preparation of 

the hydrogel. The −NH2 groups of the gelatin chains become protonated by –

COOH groups from GO, leading to strong electrostatic attractions between the 

two materials and the formation of a robust hydrogel. In addition, hydrogen 

bonding between the amino groups of gelatin and oxygen-containing 
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functional groups on GO surfaces contributes to the forces to form the 

hydrogels. 

The nanocomposite hydrogels are pH-sensitive, which can be confirmed by a 

tube inversion method [248] that shows a gel-sol transition (Fig. 3.7). When the pH 

value of the GO-gelatin hydrogel is increased from ~4.6 to beyond 9.0 by an 

ammonia solution, the hydrogel turns to a sol. Subsequently, as an HCl solution is 

added into the sol to decrease the pH value to below 9.0, the sol converts back to a 

gel. The sol-gel transition is reversible and repeatable. It is believed that pH value 

can modulate protonation and de-protonation of the amino groups of gelatin [249] 

and hence the electrostatic forces between gelatin and GO nanosheets. When the pH 

value of the hydrogel increases, the amino groups of gelatin gradually deprotonate, 

which results in the weakening of electrostatic forces between the two opposite 

charged components [249], that is, positively charged amino groups of gelatin and 

negatively charged carboxyl groups of GO nanosheets. Such a process releases the 

carboxyl groups on GO sheets from the coordination with the amino groups of 

gelatin, which could increase electrostatic repulsion between GO nanosheets. When 

the repulsive forces overcome the binding force, the gel-sol transition happens [180]. 

Conversely, decreasing the pH value of the sol causes further protonation of amino 

groups of gelatin, and thus ammonium carboxylate complex restores between the 

amino groups of gelatin and carboxyl groups on GO nanosheets. When the binding 

forces dominate, the sol-gel transition takes place [180]. 
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Figure 3.7 Photos of (a) GO-gelatin hydrogel (G10G5H) (pH: ~4.6), which (b) turns 

to sol when pH ˃ 9.0, and (c) gels again when pH ˂ 9.0. Inner diameter of the bottle: 

15 mm. 

Small deformation oscillatory measurements (Fig. 3.8) reveal that the 

nanocomposite hydrogels have a substantial elastic response, and that shear 

storage modulus (G') is generally frequency independent within the test range 

(0.1–100 rad s
-1

). Furthermore, G' is significantly higher than loss modulus 

(G"). This result indicates that the GGH has a stable and continuous network 

with a high degree of crosslinking [181]. Although the GGH contains 98–98.5 

wt.% water, its mechanical property is still impressive, with maximum storage 

modulus up to 114.5 kPa. This is probably due to the cooperative contributions 

of inherently superior stiffness of GO and strong interactions between gelatin 

chains and GO sheets. 
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Figure 3.8 Storage moduli G' (solid) and loss moduli G" (hollow) of hydrogels: (A) 

G10G5H, G10G7.5 and G10G10H. 

The rheological properties of the resulting hydrogels depend on the 

concentrations of both GO and gelatin. As shown in Fig. 3.8, the storage modulus of 

the nanocomposite hydrogel increases with increasing gelatin concentration when 

the concentration of GO is fixed at 10 mg mL
-1

. The values are 3.2, 54.0 and 114.5 

kPa for G10G5H, G10G7.5H and G10G10H, respectively. G10G7.5H has a 50% 

increase in gelatin content compared to G10G5H, resulting in a ~16-fold increase in 

storage modulus. More significantly, G10G10H double the gelatin content of 

G10G5H, resulting in a ~35-fold increase in storage modulus. 

The increase of the gelatin content introduces more effective polymer chains 

between the neighbouring GO nanosheets, enhancing the robustness of the 3D 

network significantly. It is worth noting that hydrogels could not be formed by either 

GO or gelatin alone at the same or even doubled concentrations. As previously 

discussed, GO-gelatin hydrogel network is achieved through physical interactions, 

that is, electrostatic forces between protonated amino groups of gelatin and carboxyl 

groups on GO sheets [250], as well as hydrogen bonding between the amino groups 
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of gelatin and oxygen-containing functional groups on GO surfaces. The abundant 

functional groups on GO nanosheets and gelatin chains induce multiple crosslinking 

sites on each GO nanosheet and gelatin chain, which account for the high mechanical 

performance of the GO-gelatin hydrogel. As expected for most physical hydrogels 

[109,118], these GO-gelatin hydrogels also exhibit self-healing ability. The freshly-

cut pieces of hydrogel can self-heal into a whole block after they are gently pressed 

together for 3 minutes (pictures not shown).  

The storage modulus values of 54.0 and 114.5 kPa reported herein for GO-

gelatin nanocomposite hydrogels with water contents of 98.25 wt.% and 98 wt.% are 

significantly higher than the value (~0.7 kPa) obtained for self-assembled GO-

chitosan hydrogels with a lower amount of water (91.7 wt.%) reported by Han et al. 

[225]. They fall within the range of the values (10–400 kPa) for other self-assembled 

GO-chitosan hydrogels with a higher amount of water (99.4–99.5 wt.%) reported by 

Chen at el. [224]. 

 

Figure 3.9 Storage moduli G' (solid) and loss moduli G" (hollow) of hydrogels: 

G6G10H, G8G10H and G10G10H. 
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In order to understand the contribution of GO loading to the rheological 

properties, another set of hydrogels were prepared and tested. Fig. 3.9 shows the 

shear moduli of GO-gelatin hydrogels with a constant gelatin concentration (10 mg 

mL
-1

) and various GO concentrations (6, 8 and 10 mg mL
-1

, respectively). The 

storage modulus increases with the increase in the concentration of GO, being 2.3 

kPa for G6G10H and 10.2 kPa for G8G10H in contrast to 114.5 kPa for G10G10H. 

The storage moduli are generally independent of the frequency and much higher than 

their corresponding loss moduli over the entire test range. These are similar to the 

results discussed above for the hydrogels with various gelatin contents. By 

comparing these two sets of data, it is found that the storage modulus of G10G7.5H 

is much greater than that of G8G10H, and G10G5H is stiffer than G6G10H. All of 

these hydrogels have a similar water content (98–98.5 wt.%). This indicates that GO 

will make more contribution to the mechanical performance of the hydrogels than 

gelatin when at the same concentration, because of its higher intrinsic mechanical 

properties. 

The rheological data are also used to determine the crosslinking density, N, 

and the number average molecular weight of polymer chains between the 

crosslinkers in the hydrogel, 𝑀𝑐. N is defined as the number of active polymer 

chains per unit volume in the network. A well-known rubber elasticity theory 

(equation 3.1) [251] is used to determine the N and 𝑀𝑐 of the hydrogels, 

                                          𝐺 = 𝑁𝑘𝑇 =
𝑐𝑅𝑇

𝑀𝑐
(1 −

2𝑀𝑐

𝑀
)                                           (3.1) 

where G is the static shear modulus, T is absolute temperature (298 K), k is 

Boltzmann constant (1.38065 × 10
-23

 J K
-1

), R is the gas constant (8.31 m
3 

Pa K
-1 
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moL
-1

), c is the polymer concentration, and M is the average molecular weight of the 

polymer. To apply equation 1, the synthesised GO-gelatin hydrogels are assumed as 

homogeneous Gaussian networks, in which well dispersed GO nanosheets crosslink 

gelatin chains, and gelatin chains with an average molecular weight of 50,000 are 

considered to be sufficiently long and have freely rotating links [251]. 

To obtain N and 𝑀𝑐, static shear modulus G needs to be identified. Table 3.1 

lists the dynamic shear moduli of GO-gelatin hydrogels determined by oscillation 

rheological measurements as above discussed. According to the literature [252], 

static Young’s modulus (E) of elasticity is highly correlated to dynamic Young’s 

modulus (E'), which is represented by an empirical equation 3.2: 

                                                   𝐸 = 0.629𝐸′ − 1.586                                          (3.2) 

For homogeneous isotropic materials, a simple relation exists between static 

Young’s modulus and shear modulus (equation 3.3), which also applies to dynamic 

moduli [253]. 

                                                   𝐺 =
𝐸

2(1+𝜈)
                                                           (3.3) 

where ν is Poisson’s ratio. Because the hydrogels are assumed as ideal rubbers, ν is 

taken as 0.5 [254]. By combining equations 3.2 and 3.3, the dynamic shear modulus 

G' (i.e., storage modulus) can be converted to the desired static shear modulus G, in 

equation 3.4. 

                                                  𝐺 = 0.629𝐺′ −
1.586

2(1+𝜈)
                                          (3.4) 
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Thus, N and 𝑀𝑐 for GO-gelatin hydrogels can be determined by equations 3.1 and 

3.4, with the values of dynamic shear modulus. The results are shown in Table 3.1. 

For the hydrogels with a fixed GO content, N increases from 4.9 × 10
23

 m
-3

  for 

G10G5H to 175.0 × 10
23

 m
-3

 for G10G10H. Correspondingly, 𝑀𝑐 drops from 4,938 

to 339 g moL
-1

. The lowest crosslinking density (4.9 × 10
23

 m
-3

) could be considered 

as a threshold crosslinking density because 5 mg mL
-1

 is the critical concentration of 

gelatin to form the hydrogel (see next section). For the hydrogels with a fixed gelatin 

content, N increases from 3.5 × 10
23

 m
-3 

for G6G10H to 15.5 × 10
23

 m
-3 

for G8G10H. 

Correspondingly, 𝑀𝑐 drops from 10,213 to 3,358 g moL
-1

. 

Table 3.1 Crosslinking densities and number average molecular weights of polymer 

chains between the crosslinking sites in the hydrogels with varying composition. 

Sample 
Gelatin                    

(mg mL
-1

) 

Storage modulus 

(kPa) 

Crosslinking 

density           

(×10
23

 m
-3

) 

Number average 

molecular weight  

(g moL
-1

) 

G10G10H 10 114.5 175.0 339 

G10G7.5 7.5 54.0 82.6 535 

G10G5H 5 3.2 4.9 4938 

G8G10H 10 10.2 15.5 3358 

G6G10H 10 2.3 3.5 10213 

These results suggest the mechanical properties of the GO-gelatin hydrogels can 

be adjusted by controlling the crosslinking density and the number average 

molecular weight between the crosslinking sites in the preparation process through 

varying the composition and/or the molecular weight of gelatin [255,256]. 

Furthermore, the crosslinking density and 𝑀𝑐  affect the degradation rate of the 
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hydrogel and diffusivity of the encapsulated drug during drug release [256]. By 

manipulating the crosslinking density and  𝑀𝑐, these properties may be tuned too. 

3.3.2 Gelation mechanisms of GO-gelatin nanocomposite hydrogels 

Rheological properties are commonly used to study gelation mechanism of 

hydrogels [257,258]. A typical hydrogel sample was prepared by adding 0.5 mL of a 

gelatin solution drop-wise into 5.5 mL of a GO suspension, and hydrogels formed in 

approximately 20 s. Self-assembly of these hydrogels is very rapid, so it is 

challenging to monitor and study the ongoing gelation process. Thus, a series of 

viscosity measurements were performed, in which the concentration of GO in the 

final mixture was fixed at 10 mg mL
-1

 while the concentration of gelatin increased 

gradually, from zero to 10 mg mL
-1

. This series of mixtures represent the 

suspensions at pre-stages and the fully gelled hydrogels from the first set of three 

hydrogels discussed above. 

Fig. 3.10A shows shear viscosities of the GO suspension, GO-gelatin 

suspensions (containing 1–4 mg mL
-1

 gelatin) and GO-gelatin hydrogels (containing 

5–10 mg mL
-1

 gelatin) as a function of shear rate. The viscosity increases with 

increasing concentration of gelatin over the entire range of shear rate (0.01–1.0 s
-1

). 

The evolution of viscosity (at shear rate = 0.8 s
-1

) of the suspensions and hydrogels 

against the change of the concentration of gelatin is shown in Fig. 3.10B. There are 

minimal viscosity increases at the initial stage (0–2 mg mL
-1

 gelatin, stageⅠin Fig. 

3.10C), when only a small amount of gelatin chains are available to interact with the 

GO nanosheets. At the following stage (2–4 mg mL
-1

 gelatin, stage Ⅱ in Fig. 3.10C), 

with increasing polymer content, the viscosity exhibits a slightly more rapid increase 

(Fig. 3.10B, inset). This change may be related to the formation of abundant GO-
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gelatin clusters in the suspension [259] because of the physical interactions between 

gelatin chains and GO sheets. When the concentration of gelatin reaches the critical 

value of 5 mg mL
-1

, a steep increase in viscosity is observed. The viscosity of the 

hydrogel (containing 5 mg mL
-1

 gelatin) is two orders of magnitude greater than that 

of pure GO suspension. At this point (stage Ⅲ in Fig. 3.10C), the grown GO-gelatin 

clusters interact to each other and long gelatin chains may bridge the adjacent GO 

sheets [260], as seen in the SEM images (Figs. 3.6b-d). In consequence, the gelation 

threshold is reached and the binding force is high enough to drive the gelation of 

physically crosslinked GO-gelatin hydrogel. It is noteworthy that these GO-gelatin 

hydrogels with 3D networks can be formed using a very low total amount of GO and 

gelatin in water (only 1.5–2 wt.% solid content in the hydrogel). These results 

confirm that GO and gelatin chains can physically crosslink together effectively, 

presumably via multiple crosslinking sites on each nanosheet and each polymer 

chain due to their ample functional groups. 
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Figure 3.10 (A) Viscosities of the mixtures of an aqueous GO suspension (10 

mg mL
-1

) and a gelatin solution with varying concentration from zero to 4.0 

mg mL
-1

, and of the hydrogels with 5.0, 7.5 and 10 mg mL
-1

 gelatin; the 

plateau at the initial part of the viscosity curve of G10G10H may be due to 
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zero shear or yield stress between the imperfect surface of the hydrogel and 

one of the parallel plates upon application of a force; (B) The correlation 

between viscosity and the concentration of gelatin at the shear rate of 0.8 s
-1

, 

derived from the results in Fig. 3.10A. (C) Proposed gelation mechanism of 

GO-gelatin hydrogels in different stages of gelation; black lines and blue 

curves indicate GO nanosheets and polymer chains, respectively. Stage I: low 

gelatin concentration, stage II: medium gelatin concentration forming clusters, 

and stage III: relatively high gelatin concentration forming a hydrogel. 

3.3.3 pH-sensitive drug release behaviour of GO-gelatin nanocomposite 

hydrogels 

Fig. 3.11 shows the drug release profiles of the GO-gelatin hydrogels in two 

different pH media. The releasing profile in PBS (pH = 7.4) shows a rapid drug 

release within the first 10 h, and then it turns to a plateau. The drug release in the 

acidic solution (pH = 1.7) has a similar trend, but the release begins to slow down 

just after 3 h. There is a significant difference between the equilibrium drug release 

amounts in neutral and acidic solutions. 96% of fluorescein sodium (cumulative drug 

release: 2.88 mg mL
-1

) is diffused from the gel into the neutral solution after 45 h, 

which is more than triple of 28% (cumulative drug release: 0.84 mg mL
-1

) of the 

drug released in the acidic medium in the same period of time. 

The result indicates GO-gelatin hydrogel is a pH-sensitive drug carrier. Similar 

pH-sensitive drug release behaviour was previously reported for GO-poly(vinyl 

alcohol) hydrogels [180], chitosan-functionalised GO nanosheets [222,223], dry 

chitosan-GO nanocomposites [221] and dry chitosan-reduced GO nanocomposites 

[261]. The diffusion of the encapsulated drug in an acidic solution is unfavourable 

because GO sheets tend to form tightly packed aggregates [180]. 
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Figure 3.11 Drug releasing profiles in neutral PBS (pH = 7.4) and acidic HCl 

solutions (pH = 1.7). Error bar indicate standard deviation on three replicate samples. 

 

Figure 3.12 SEM images of the cross section of the lyophilised hydrogels after 

immersion in (a) neutral PBS (pH = 7.4) and (b) acidic HCl (pH = 1.7) solutions for 

45 h. 

This hypothesis is verified by the microstructure of the lyophilised hydrogels 

observed under SEM (Fig. 3.12). The hydrogels had been immersed in both media 

for 45 h during the drug release experiments. The pore size of the hydrogel from the 

neutral PBS immersion is significantly higher than that of the hydrogel immersed in 

the acidic solution. A bigger pore size in the network greatly promotes the diffusion 

of the encapsulated drug molecules from the hydrogel to a liquid environment [262]. 
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This pH-sensitive drug release behaviour may allow the hydrogels to be used to 

selectively release a drug in the intestine (pH = 6.6–7.5), with little released in the 

stomach (pH = 1.0–2.5) [263], thus offering higher drug bioavailability for the 

treatment of diseases. 

The GO-gelatin nanocomposite hydrogels described here are promising 

candidates for controlled drug delivery, having advantages over conventional pH-

sensitive drug delivery systems (e.g., enteric coated tablets, capsules) in terms of the 

efficacy and controlled release of the drug [264]. While the conventional systems 

can successfully carry drugs to a specific region of the gastrointestinal tract, they 

cannot protect the drug in the enzymatic environment due to their burst release of the 

drug, causing some of the drug to become inactivated or altered [264,265], as well as 

a fast and uncontrolled release of the drug. Thus, the  concentration of the drug in 

plasma and the efficacy of the drug are difficult to maintain [266]. In contrast, the 

GO-gelatin hydrogels can protect the encapsulated drug from enzymatic attack much 

better as they will not break down immediately in an enzymatic environment. Hence, 

the drug efficacy can be maintained, and the drug can be released in a more steady 

and controllable manner with a longer release time (as shown in Fig. 3.11), avoiding 

multiple administrations of the drug within a short period of time. Furthermore, the 

drug release kinetics of these hydrogels could be optimised by manipulating the 

crosslinking density and pore sizes of the hydrogels [264]. 

Gelatin undergoes enzymatically hydrolytic degradation in the body. In vivo 

experiments with mice showed chemically crosslinked gelatin hydrogels with 98.8 

wt.% water degraded completely in 10 days [267]. In this work, the drug is first 

bonded to gelatin, followed by mixing with GO sheets to form a drug-loaded 

nanocomposite hydrogel, which also leads to the coating of gelatin onto GO sheets 
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as previously discussed. After the hydrogel is administrated, the gelatin-coated GO 

nanosheets are expected to gradually dissociate from the bulk hydrogel during the 

course of gelatin degradation. If an oral administration is applied, gelatin-coated GO 

nanosheets can be excreted quickly from the body with 2–3% left in a day and 

almost complete excretion after a week [166]. 

3.4 Conclusions 

Graphene oxide-gelatin nanocomposite hydrogels with various material 

contents were successfully prepared by self-assembly from the mixtures of an 

aqueous GO suspension and a gelatin solution at the desired ratios. The 

physical crosslinks formed between GO and gelatin via electrostatic forces and 

hydrogen bonding were confirmed by FT-IR, Raman spectroscopy, SEM and 

rheological tests. These hydrogels demonstrated reversible sol-gel transitions 

upon changing the pH value. While containing 98–98.5 wt.% water, the GO-

gelatin hydrogels showed relatively high storage modulus, up to 114.5 kPa. 

The storage modulus of the hydrogel increased with increasing gelatin or GO 

concentration, and GO provided a higher modulus than gelatin at a comparable 

concentration. Studies on the gelation mechanisms revealed that the critical 

concentration of gelatin to form a hydrogel with 10 mg mL
-1

 GO was 5 mg 

mL
-1

. The gelation of the hydrogel underwent three stages: 1) initial increase 

in viscosity; 2) formation of GO-gelatin clusters; and 3) formation of a 

hydrogel as the concentration of gelatin reaches the critical value. The 

multiple crosslinking sites on each GO nanosheet and gelatin chain rendered 

GO-gelatin hydrogels high mechanical performance. The drug release tests 

showed high efficiency on the release of a model drug, 96%, to a neutral 
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solution (pH = 7.4), compared with 28% release to an acidic solution (pH = 

1.7). The self-assembly approach to synthesise the GO-gelatin hydrogels was 

simple and fast, without the need of a toxic organic crosslinker. These 

relatively strong GO-gelatin nanocomposite hydrogels with pH sensitivity may 

find potential applications in pH-controlled drug delivery. 
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Chapter 4. Reduced graphene oxide-gelatin nanocomposite     

hydrogels 

4.1 Introduction 

In order to further improve the mechanical properties of the physically crosslinked 

GO-gelatin nanocomposite hydrogels prepared in Chapter 3, RGO-gelatin 

nanocomposite hydrogels were prepared by one-pot synthesis via a mild heating 

process (at 95 °C for 24 h). It was expected that the amino groups of gelatin could 

react with functional groups on GO, i.e., ring-opening amination of epoxy and the 

amidation reaction with carboxylic acid groups at an elevated temperature, and 

covalently bond to RGO sheets, leading to chemically crosslinked hydrogel networks. 

Together with the hydrogen bonding between the residual amino groups of gelatin 

and the residual hydroxyl groups on RGO sheets, the chemically crosslinked 

hydrogel networks were expected to significantly enhance their mechanical 

properties compared to the networks purely made up of physical interactions. 

Moreover, organic crosslinkers were excluded in the preparation, eliminating their 

toxicity. These are distinguished with the conventional chemical hydrogels. AFM, 

TGA and UV-Vis spectroscopy were performed to characterise RGO. FT-IR, Raman 

spectroscopy, XRD and SEM were utilised to characterise the RGO-gelatin 

nanocomposite hydrogels to study their chemical structure, morphology and gelation 

mechanisms. The rheological measurements were conducted to decide the 

rheological properties and the effective crosslinking densities. Water swelling tests 

of the dried hydrogels were performed and the swelling behaviour was discussed by 

Fick's diffusion law. The enzymatic degradation tests of the hydrogels were also 

conducted.  



67 
 
 

4.2 Experimental section 

4.2.1 Materials 

Graphite powder, gelatin, and the other chemicals used for GO preparation were the 

same as used in Chapter 3. Collagenase type II from Clostridium histolyticum (≥ 125 

CDU mg
-1

 solid) and Dulbecco’s phosphate buffered saline (PBS, with MgCl2 and 

CaCl2, pH = 7.4) were all purchased from Sigma-Aldrich and used as received. 

4.2.2 Preparation of RGO-gelatin nanocomposite hydrogels 

GO was synthesised from graphite powder using a modified Hummers’ method 

[152,155], purified and freeze-dried as described in Chapter 3. RGO-gelatin 

nanocomposite hydrogels were prepared by heating mixtures of a GO aqueous 

suspension and a gelatin solution with desired ratios at 95 °C for 24 h. The required 

amount of GO powder was dispersed in distilled water in a glass vial and stirred for 

2 h using a magnetic stirrer before it was subjected to 30 min sonication to obtain a 

fully exfoliated GO suspension. The gelatin solution was prepared by heating a 

desired amount of gelatin in distilled water at 60 °C for 1 h. In a typical preparation, 

0.5 mL gelatin solution (24 mg mL
-1

) was added into 5.5 mL GO suspension (10.9 

mg mL
-1

) by drop wise while stirring. Then, the mixture, sealed in the glass vial, was 

heated in an oil bath at 95 °C for 24 h. In this study, a series of RGO-gelatin 

hydrogels at different material ratios were synthesised. The precursor of the RGO-

gelatin hydrogels was the mixture of GO dispersion and gelatin solution comprising 

of 10 mg mL
-1

 GO, and various concentrations of gelatin, i.e., 2, 5 and 10 mg mL
-1

, 

respectively. The RGO-gelatin nanocomposite hydrogels were designated as 

RGGnH, where n defined the concentration of gelatin in the hydrogels with a unit of 

mg mL
-1

. 
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4.2.3 Structural characterisation 

FT-IR, XRD, AFM, TGA, SEM and Raman spectroscopy were carried out on 

the same instruments using the settings as described in Chapter 3. An aqueous 

GO suspension (10 mg mL
-1

), was prepared as described in the preparation 

section, and RGO-gelatin hydrogels were first frozen in liquid nitrogen, and 

then dried under vacuum at −10 °C for two days and at room temperature for 

30 min in a freeze dryer. The lyophilised sponge-like samples for SEM 

observation were carefully deposited on aluminium stubs before they were 

coated with gold by a sputter coater. The average pore sizes were calculated by 

measuring the size of the pores (30 pores) with an ImageJ software. 

For AFM characterisation, a diluted RGO aqueous suspension was 

dropped onto a freshly cleaved mica surface and left overnight to dry in air. 

UV-Vis spectroscopy was performed on a UV/VIS/NIR Spectrometer 

(Lambda 900, Perkin Elmer), with a scan interval of 1 nm. The RGO 

nanosheets used for AFM, UV-Vis spectroscopy and TGA were extracted 

from the RGO-gelatin hydrogels. A small fraction of hydrogel was smashed 

and washed three times using distilled water (80 °C), followed by 

centrifugation (at 8000 rpm) at each time, to remove excess and non-grafted 

gelatin on the graphene surface. Some sediment was lyophilised for TGA tests. 

The remaining was re-dispersed in distilled water at 1 mg mL
-1

 by stirring and 

then sonicating for 5 min. The obtained suspension was centrifuged at a lower 

speed (2000 rpm) for 20 min to remove large particles. The supernatant was 

taken for characterisation under AFM and UV-Vis spectroscopy. 
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4.2.4 Rheological measurements 

Oscillatory shear measurements were carried out to determine the storage moduli (G') 

and loss moduli (G") of the RGO-gelatin hydrogels by the same instrument and 

method used in Chapter 3. The gap between two geometry parallel plates was fixed 

at 2 mm. 

4.2.5 Swelling tests 

As-prepared hydrogels were punched into discs with the same size (15 mm in 

diameter and 6 mm thick). The hydrogels were frozen by liquid nitrogen before 

freeze-drying. The freeze-dried hydrogel samples were then immersed in excess 

distilled water to obtain equilibrium swelling at room temperature. The samples were 

weighed at 0.5, 1, 3, 6, 12 and 24 h. The measurements were carried out on three 

replicate samples. The swelling ratio (SR) of the hydrogel was calculated according 

to equation (4.1): 

                                                      𝑆𝑅 =
𝑊𝑠−𝑊𝑑

𝑊𝑑
                                                     (4.1) 

where Ws is the weight of the swollen hydrogel at the different time interval and Wd 

is the weight of the freeze-dried hydrogel before immersion in water. 

4.2.6 In vitro Biodegradation 

The hydrogel cylinders (RGG10H) with dimensions of 6 mm in height and 15 mm in 

diameter were placed in 8 mL PBS solution with 0.5 U mL
-1

 collagenase type II and 

incubated (Shaker Incubator SI500, Stuart) at 37 °C and a speed of 100 rpm for 2, 4, 

8, 16, 24 and 32 h. At each time point, the collagenase solution was removed and the 

remaining hydrogels were washed with distilled water. The hydrogels were then 

lyophilised at −10 °C after frozen by using liquid nitrogen. The degradation was 
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calculated by dividing the lost weight of the lyophilised samples by the original 

weight of the untreated lyophilised hydrogels. The sample size was three per group. 

The control samples underwent degradation in the PBS solution without collagenase. 

4.3 Results and discussion 

The RGO-gelatin hydrogels were synthesised by heating the mixture of an aqueous 

GO suspension and a gelatin water solution at 95 °C for 24 h. According to the 

literature [163,237], gelatin chains could be grafted onto GO sheets whilst reducing 

them into RGO. It has been shown that different types of amine can react with some 

of the functional groups on GO via two main routes, i.e., ring-opening amination of 

epoxy on the surface of GO and the amidation reaction of carboxylic acid groups at 

the edges of GO, both with the amino groups of gelatin by thermal treatment 

[238,268,269]. The hydrogen bonding between amine and hydroxyl on the GO was 

also proposed in the literature [270]. It is, therefore, hypothesised that the main 

interactions between GO and gelatin during the hydrogel formation process could be 

the same as discussed above, though the nature of chemical reactions is not totally 

clear due to the complexity of the GO structure [142]. These proposed main 

interactions are illustrated in Scheme 4.1 [268]. Through the chemical and physical 

interactions between GO and gelatin, GO sheets are expected to crosslink with 

gelatin chains and form a hydrogel whilst being reduced to RGO. 
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Scheme 4.1 Illustration of the proposed main chemical reactions and physical 

interactions between GO nanosheets and gelatin to produce a RGO-gelatin hydrogel. 

In order to verify the above hypotheses, changes to the chemical structure of 

gelatin and GO during the synthesis were first investigated by FT-IR spectroscopy. 

Fig. 4.1 shows FT-IR spectra of graphite, GO, gelatin and lyophilised RGO-gelatin 

hydrogels with different gelatin contents. The spectrum of the graphite (curve a) only 

shows a weak absorbance of O–H stretching at 3400 cm
-1

 caused by the absorbed 

water. The spectrum of GO (curve b) reveals the presence of different types of 

oxygenated functional group: O–H stretching bond at 3200–3400 cm
-1

, C=O 

carbonyl stretching at 1729 cm
-1

, C–OH stretching vibration at 1361 cm
-1

, C–O–C 

epoxy at 1225 cm
-1

 and C–O alkoxy at 1046 cm
-1

, as well as C=C vibrations from 

aromatic structure domains at 1621 cm
-1

 [234,271,272]. The spectrum of gelatin 

(curve f) is recorded as a control, and its characteristic groups are identified: amide I 
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vibration (C=O, 1627 cm
-1

), amide II bending vibration (N–H, 1521 cm
-1

), amide III 

(1238 cm
-1

), and N–H stretching (3262 cm
-1

) [273]. Eliminating the intensity varying 

due to the various GO weight ratio in the nanocomposites, the epoxy vibration (1225 

cm
-1

) of GO is weakened in RGG5H and RGG10H (curves d and e) confirming the 

ring-opening reaction between epoxy groups of GO and amino groups of gelatin 

[268]. Similarly, the C=O stretching vibration of GO gradually decreases in its 

intensity as the gelatin content increases and almost disappears in RGG10H. This 

illustrates the amidation of carboxyl groups at the edge of GO with amino groups of 

gelatin, which agrees well with the previous report [269]. These FT-IR results 

confirm the proposed chemical reactions illustrated in Scheme 4.1 [268]. The ring-

opening reaction between epoxy groups and amino groups is a nucleophilic 

substitution reaction resulting in the creation of hydroxyl groups and formation of 

C–N bonds. The amidation of carboxyl groups of GO with amino groups of gelatin is 

a condensation reaction which requires heat. 

 

Figure 4.1 FT-IR spectra of (a) graphite, (b) GO, and (c-e) lyophilised RGO-gelatin 

hydrogels: (c) RGG2H, (d) RGG5H, (e) RGG10H, and (f) gelatin.  

4000 3500 3000 2500 2000 1500 1000 500

1361

3400

f

e

d

c

b

a

3262

1238

15211627

1634 1533

10461225
1621

1729

3200-3400

Wavenumber / cm-1

A
b

s
o

rb
a
n

c
e
 /

 %

 
 



73 
 
 

It is also found that the modest vibration C–OH centred at 1361 cm
-1

 and the 

strong C–O vibration at 1046 cm
-1

 in GO become weaker with an increasing amount 

of gelatin in the hydrogel, indicating partial elimination of the hydroxyl groups of 

RGO during the synthesis of the hydrogel [163,237]. Furthermore, gelatin has 

residual –NH2 groups, –NH3
+
 and –COO

–
 ions on its macromolecular chains and 

these functional groups can form hydrogen bonding and electrostatic attractions with 

the residual hydroxyl and carboxyl groups of RGO as well as with their adjacent 

gelatin molecules [238]. Thus, the chemical and physical bonds between the RGO 

sheets and gelatin chains are the driven forces to link the two components together to 

form a 3D continuous network, i.e. a RGO-gelatin hydrogel, as illustrated in Scheme 

4.2. 

 

Scheme 4.2 Illustration of the hydrogel formation process. 

The structural changes of graphene materials in the hydrogels could also be 

identified in Raman spectra, as shown in Fig. 4.2. The pristine graphite (curve a) 

shows a sharp G band at 1579 cm
-1

 in relation to the in-phase vibration of the 

graphite lattice, and a weak D band is found at 1355 cm
-1

, which is induced by 

structural disorder and defects [240,274]. After oxidation, the D band becomes 

stronger and broader in GO (curve b). As a result, the intensity ratio of D band to G 

band, ID/IG (0.79), increases significantly compared to that of graphite (0.08), which 
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is associated with a marked decrease in the graphite crystal size arising from a 

considerably higher level of disorder of the graphene structure and increased defects 

[243,275]. The G band becomes slightly asymmetric in GO due to its overlap with 

the defect-related G' band at 1620 cm
-1

 [243]. As depicted in Fig. 4.2, the lyophilised 

RGO-gelatin hydrogels (curves c-e) have similar profiles to that of GO. With the 

increase of gelatin content in the RGO hydrogels, the intensity ratio of ID/IG 

increases slightly from 0.79 to 0.85. This variation is lower compared to the values 

found for the reduction of GO by other chemicals reported in the literature [276,277], 

which may be due to the partial reduction of GO as described subsequently and 

hence only a small change to the graphite crystal size. 

 

Figure 4.2 Raman spectra of (a) graphite, (b) GO, and (c-e) lyophilised RGO-gelatin 

hydrogels: (c) RGG2H, (d) RGG5H, and (e) RGG10H. The ratios of ID/IG for the 

hydrogels are also shown in the figure. 

XRD patterns of graphite, graphite oxide, gelatin and the lyophilised RGO-

gelatin hydrogels are shown in Fig. 4.3. Graphite (curve a) shows a sharp and strong 

peak at 26.4°, corresponding to a typical interlayer spacing (d) of 0.34 nm [278]. 
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Gelatin powder typically exhibits two broad peaks centred at 20.4° and 7.2°, due to 

the crystalline structure originated from a-helix and triple-helical structure [279]. A 

slightly broader 2θ peak for GO (curve b) appears at 10.6°, corresponding to an 

interlayer spacing of 0.83 nm. A weak broad peak centred at 8.1
o
 (d = 1.09 nm) is 

observed for the freeze-dried RGG2H with the least gelatin content (16.7 wt.%). The 

presence of this weak peak suggests there are a small amount of stacks of not fully 

dispersed RGO sheets in the hydrogel presumably due to the insufficient gelatin 

content. In contrast, there is no observable diffraction peak for the lyophilised 

RGG10H which comprises the highest gelatin content (50.0 wt.%) (curve d), 

indicating that graphite and gelatin have completely lost their order in the crystal 

structure and RGO nanosheets are dispersed in the hydrogel as exfoliated single 

nanosheets [105]. 

 

Figure 4.3 XRD patterns of (a) graphite, (b) GO, and (c-e) lyophilised RGO-gelatin 

hydrogels: (c) RGG2H, (d) RGG5H, (e) RGG10H, and (f) gelatin. 

The morphology of GO and RGO nanosheets is illustrated in Fig. 4.4. AFM 

results show that the thickness of a single layer of GO is ~1.0 nm (Fig. 4.4A), 
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whereas the thickness of RGO increases to ~1.7 nm (Fig. 4.4B), confirming the 

grafting of gelatin molecules on the surface of GO. The thickness of the GO 

determined by AFM is slightly higher than that from XRD, due to the presence of a 

water layer between GO and the substrate and perhaps also to the resolution of the 

AFM tip [231]. The lateral sizes of the GO and RGO sheets are both typically in the 

range of several hundreds of nanometres to a few micrometres, implicating that the 

synthesis process did not reduce the size. RGO sheets extracted from the RGO-

gelatin hydrogel were characterised by UV-Vis spectroscopy.  

 

Figure 4.4 Tapping mode AFM topographic images of (A) single-layer nanosheets 

of GO and (B) RGO extracted from RGG10H with the height profile.  

The absorption spectra confirmed the chemical reduction of GO to RGO during 

the hydrogel formation under the heat treatment (Fig. 4.5). The spectrum of GO 

shows a absorption peak at 228 nm referring to π → π* transitions of aromatic C=C 

bonds and a shoulder at 300 nm ascribed to n → π* transitions of C=O bonds 

[280,281]. In contrast, the peak at 228 nm in the spectrum of RGO shifts to 251 nm, 

indicating the electronic conjugation is restored [280]. This shift is smaller than that 

(to 270 nm) of hydrazine reduced GO [282], and that (266 nm) of GO nanosheets 

reduced in a gelatin solution with an excessive amount of gelatin at 95 °C for 24 h 
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[163]. It indicates a partial restoration of the sp
2
 carbon network of RGO in this work, 

i.e., partial reduction of GO as previously discussed, even at the largest gelatin 

content used. The disappearance of the peak at 300 nm corresponds to de-

oxygenation of the C=O groups of GO nanosheets [283]. 

                                       

 

Figure 4.5 UV-Vis absorption spectra of (a) GO and (b) RGO (extracted from RGO-

gelatin hydrogel, RGG10H) aqueous suspension at a concentration of 0.1 mg mL
-1

.  

TGA was used to determine the composition of the RGO sheets extracted from 

the RGO-gelatin hydrogels, and the results are shown in Fig. 4.6. The weight losses 

below 100 °C are all considered due to the evaporation of absorbed water. The TGA 

curve of GO shows its major weight loss (~34 wt.% of the dried sample) at around 

210 °C, attributed to pyrolysis of the oxygen-containing functional groups generate 

CO, CO2 and steam [284]. As the temperature is further increased, it shows a very 

slow change in the weight. Gelatin shows a major weight loss (~64 wt.% of the dried 

sample) in the region from 250 °C to 500 °C. The TGA curves of all the three RGOs 

can be divided to two major stages in terms of weight loss. The first occurs between 
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140 °C and 250 °C, and the second appears from 250 to 500 °C. One can deduce that 

the first loss is mainly attributed to the pyrolysis of the functional groups on the GO 

while the latter is mainly due to the pyrolysis of the gelatin chains grafted on the 

RGO sheets. The RGO extracted from the hydrogel with a higher gelatin content 

exhibits a less weight loss (RGG10 ˂ RGG5H ˂ RGG2H) from 140 °C to 250 °C, in 

coordination to the pyrolysis of the relatively lower content of GO. In reverse, the 

corresponding RGO has a higher weight loss (RGG10 ˃ RGG5H ˃ RGG2H) in the 

range of 250–550 °C, in accordance with the pyrolysis of the gelatin. The weight 

percentages of gelatin molecules grafted on the RGO sheets are calculated after the 

elimination of the absorbed water, which are 31.7, 46.4 and 51.5 wt.% for the hybrid 

nanosheets extracted from RGG2H, RGG5H and RGG10H, respectively. This 

further clarifies that a fraction of gelatin in the hydrogel covalently bonded to the 

graphene nanosheets and the rest interacted with each other and RGO through 

physical bonding. 

 

Figure 4.6 TGA curves of (a) GO, (b-d) RGO (extracted from corresponding 

RGG2H, RGG5H and RGG10H, respectively), and (e) gelatin. 
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Fig. 4.7 demonstrates that the evolution of the form of the RGO-gelatin 

hydrogels before and after heat treatment during the hydrogel synthesis. A precursor 

of RGG2H, a mixture of GO and gelatin suspension (Fig. 4.7A), remains as a sol 

before heating. In contrast, the precursors of RGG5H and RGG10H are hydrogels 

(Figs. 4.7B and C) after physically mixing the two components (confirmed by the 

tube inversion method), in which the physically bonding is strong enough to form 

the hydrogel due to the appropriate gelatin content as described in Chapter 3. After 

heat treatment, the three RGO-gelatin hydrogels are obtained. Their black color is 

also evidence of the reduction of GO in the hydrogel compared with dark brown 

color of their GO precursors. For all the three hydrogel precursors, chemical 

reactions occurred between abundant NH2 groups on gelatin chains and carboxyl and 

epoxy groups on the GO nanosheets during the heating process (illustrated in 

Scheme 4.1), leading to the reduction of GO. In RGG2H, this also results in the 

formation of a stable 3D network. All the three RGO-gelatin hydrogels are formed 

by RGO sheets connecting the adjacent gelatin chains by the covalent bonds and 

hydrogen bonding as depicted in Scheme 4.2. 

 

Figure 4.7 Illustration of the evolution of the formation of the hydrogels: (A) 

RGG2H, (B) RGG5H and (C) RGG10H before and after heat treatment during the 

hydrogel synthesis. Diameter of the containers: 15 mm. 
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Figure 4.8 (A) Storage moduli G' (solid) and loss moduli G'' (hollow), and (B) loss 

factor tan δ of lyophilised hydrogels. 

Fig. 4.8A shows the rheological properties of RGGHs with different gelatin 

contents. The RGO-gelatin hydrogels exhibit typical rheological behaviour of 

hydrogels. The storage modulus is nearly frequency independent, showing only 

slight increase as the angular frequency increases. The loss factor tan δ (tan δ = 

G"/G') is also relatively independent to the angular frequency in the testing range 

(Fig. 4.8B). The storage moduli are one order of magnitude greater than the 
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corresponding loss moduli, indicating the hydrogels are stable networks and more 

elastic than viscous [174]. The storage moduli of the RGGHs increase as the content 

of gelatin increases, while remaining a similar water content (~98.0–98.8 wt.%). The 

storage modulus of RGG10H is 172.3 kPa at 10 rad s
-1

, which is 89% greater than 

91.1 kPa of RGG5H and 169% greater than 64.4 kPa of RGG2H, respectively. The 

more gelatin are introduced to the system, the more chemical crosslinking sites 

between the gelatin chains and GO nanosheets are created, leading to a more stable 

network and less mobility of the macromolecular chains. 

Previously, we reported that physically crosslinked GO-gelatin hydrogels had 

storage moduli of 114.5 kPa and 3.2 kPa with the same composition of RGG10H and 

RGG5H, respectively. The storage modulus of RGG10H is 50% higher than that of 

the physically crosslinked counterpart hydrogel, while the value of RGG5H is 27-

fold higher than that of its GO counterpart, as shown in Fig. 4.9. The results indicate 

the covalent bonds considerably enhance the mechanical performance of the RGGHs 

compared to the physically crosslinked counterpart hydrogels, in particular those 

weaker hydrogels with a lower gelatin concentration. The storage moduli of these 

RGO-gelatin nanocomposite hydrogels are comparable with that (7.5 kPa) of adipose 

tissue (Table 1.1), indicating the possible applications in the relevant tissue 

engineering.  
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Figure 4.9 Storage moduli comparison between the physically crosslinked GO-

gelatin nanocomposite hydrogels (G10G5H and G10G10H) and RGO-gelatin 

nanocomposite hydrogels (RGG5H and RGG10H). 

The rheological data are also used to determine the crosslinking density, N, and 

the number average molecular weight of polymer chains between the crosslinkers in 

the hydrogel, 𝑀𝑐 . The same rubber elasticity theory [251] and analysis method 

employed in Chapter 3 is used here. By applying the experimental values of G' to 

equations 3.1 and 3.4, the results are determined and shown in Table 4.1. 

Table 4.1 Crosslinking densities and number average molecular weights of polymer 

chains between the adjacent crosslinking sites in the RGO-gelatin hydrogels with 

varying compositions. 

Sample 
Gelatin 

(mg mL
-1

) 

GO 

(mg mL
-1

) 

Storage 

Modulus, G' 

(kPa) 

Crosslinking 

Density, N 

(× 10
23

 m
-3

) 

Number Average 

Molecular Weight, 

𝑀𝑐 (g moL
-1

) 

RGG2H 2 10 64.4 99 122 

RGG5H 5 10 91.1 139 214 

RGG10H 10 10 172.3 263 226 

 

For the hydrogels with a fixed graphene content, N increases from 99 × 10
23

 m
-3

 

for RGG2H to 139 × 10
23

 m
-3

 for RGG5H and 263 × 10
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Correspondingly, 𝑀𝑐 between the neighboring crosslinking sites (RGO nanosheets) 

increases from 122 to 214 and 226 g moL
-1

. There is a high quantity of covalent and 

non-covalent crosslinking sites for the formation of the RGO-gelatin hydrogel, due 

to the abundant functional groups from both GO sheets and gelatin chains. This 

gives rise to the relatively high values of N and relatively low values of  𝑀𝑐 

presented in Table 4.1. As one would expect, a higher crosslinking density leads to a 

stiffer hydrogel. The mechanical properties of the hydrogels could be modulated by 

varying the composition and hence controlling the crosslinking density, similar to 

our previous observation for GO-gelatin nanocomposite hydrogels in Chapter 3. 

Fig. 4.10 shows the morphology of a lyophilised GO suspension and RGO-

gelatin hydrogels under SEM. The RGGHs consist of the same concentration of GO 

in water as the neat GO suspension, regardless the difference in gelatin content. All 

the lyophilised samples show porous structure despite of the broad variation in the 

pore size. The porous structure (7.4 ± 3.5 μm) of the lyophilised GO suspension (Fig. 

4.10A) was formed due to the structural changes during the drying stage; the GO 

sheets contact to each other to form the network presumably facilitated by the 

hydrogen bonding between GO sheets and the residual hydrogen-bonded water 

molecules between GO sheets [246]. Fig 4.10B shows a lyophilised GO-gelatin 

suspension, a precursor of RGG2H prior to the gelation process. It has a similar 

porous structure (7.1 ± 4.1 μm) to the lyophilised GO suspension although the 

additional gelatin also contributes to the formation of hydrogen bonds in addition to 

water molecules. In contrast, the lyophilised RGG2H (Fig. 4.10C) possesses much 

smaller pores, with an average pore size of 2.3 ± 1.1 μm. This is because when the 

hydrogel is formed, GO sheets crosslink with gelatin chains to form a much finer 

network structure, and the stable network within the hydrogels restricts the growth of 
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ice crystals during the freezing process [176]. RGG5H has a slightly lower average 

pore size (1.7 ± 0.7 μm) to RGG2H, whereas the value of RGG10H is significantly 

greater (3.2 ± 1.2 μm). The average pore sizes of RGG5H and RGG10H are much 

smaller than those (6.2 ± 4.5 μm and 7.7 ± 5.4 μm, respectively) of physically 

crosslinked GO-gelatin nanocomposite hydrogels with the same composition 

reported in Chapter 3. This may be due to reconstruction of the microstructure of 

RGO-gelatin nanocomposite triggered by the movement of graphene sheets and 

gelatin chains during the heating process, though there is no notable volume change 

before and after hydrogel formation. The finer structure also contributes to the 

superior mechanical performance of the RGO-gelatin nanocomposite hydrogels as 

opposed to those of the GO-gelatin nanocomposite hydrogels as previously 

discussed. 

                                       

        

Figure 4.10  SEM images of cross-section surfaces of (A) lyophilised GO 

suspension (10 mg mL
-1

), (B) lyophilised precursor mixture of RGG2H before 

gelation (containing 10 mg mL
-1

 GO and 2 mg mL
-1

 gelatin), (C) lyophilised 

RGG2H, (D) RGG5H, and (E) RGG10H. 
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Since the hydrogel RGG10H has the highest storage modulus in the current 

study, it is used for subsequent investigation of the swelling and degradation 

behaviour. Fig. 4.11A shows the water swelling behaviour of the lyophilised 

hydrogel (RGG10H). The swelling curve is steep at the initial state and then turns to 

a plateau. It reaches equilibrium by 24 h at a swelling weight ratio of 44.7. Fick’s 

law (equation 4.2) [285] was used to describe water swelling behaviour of the RGO-

gelatin hydrogel. 

                            𝑀𝑡 𝑀𝑒𝑞⁄ = 1 − (8 𝜋2⁄ ) ∑
𝑒𝑥𝑝[−𝜋2(2𝑚+1)2𝐷𝑡 𝐿2⁄ ]

(2𝑚+1)2

∞

𝑚=0
                 (4.2) 

where Mt is the swelling degree at time t, Meq is the equilibrium swelling degree, D is 

the diffusion coefficient of water molecules, and L is the thickness of the specimens. 

The diffusion coefficient, D, derived from equation (4.2), is 8.2 × 10
-10 

m
2
 s

-1
. It can 

be seen from Fig. 4.11B that the theoretical values fit the experimental data very well. 

Thus, one can predict the swelling behaviour of the RGO-gelatin hydrogels by using 

the Fick’s law. 
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Figure 4.11 (A) Swelling behaviour of a RGO-gelatin hydrogel (RGG10H), and (B) 

Mt /Meq against time t for RGG10H. Error bar indicate standard deviation on three 

replicate samples. 

Fig. 4.12 shows the degradation profiles of the hydrogel RGG10H at body 

temperature in the PBS solutions with and without the presence of collagenase. In 

the initial 2 h, the sample undergoes almost the same degradation rate with and 

without the enzyme, which can be interpreted as weight loss of the loose gelatin 

molecules due to diffusion. Afterwards, there is a much more considerable weight 
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loss of the hydrogel with collagenase than that without the enzyme. After 24 h, 29% 

of the original weight lost in the collagenase degradation, which is 70% higher than 

the value (17%) obtained without enzyme. These results also show that the RGO-

gelatin hydrogel is more stable than GO-gelatin methacrylate hydrogels with only 30% 

weight [192] remaining after the same period of time. This can be ascribed to the 

higher crosslinking density in the former. Since the collagenase attacks peptide 

linkages [192], the main weight loss is mainly due to the degradation of gelatin 

molecules although there might be a small amount of RGO sheets detached from the 

bulk hydrogel. 

 

Figure 4.12 Degradation profiles of the same hydrogel with and without collagenase 

in PBS solution. Error bar indicate standard deviation on three replicate samples. 

4.4 Conclusions 

RGO-gelatin nanocomposite hydrogels were synthesised by heating the mixture of a 

GO suspension and a gelatin solution at various weight ratios at 95 °C for 24 h, 

without using a chemical crosslinker. GO acted as a multifunctional crosslinker to 

connect the surrounding gelatin chains to form a 3D network, while gelatin acted 
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simultaneously as a reducing agent and a biocompatibiliser for GO, as well as a 

building component of the hydrogel. The chemical (mainly) and physical 

crosslinking between graphene sheets and gelatin chains within the hydrogel was 

confirmed by FT-IR, Raman spectroscopy, AFM, TGA and UV-Vis spectroscopy. 

SEM image revealed the internal porous morphology of the hydrogels. The storage 

modulus of the hydrogel was tuneable by changing the gelatin concentration in the 

precursor mixture. With the concentration of gelatin of 10 mg mL
-1

 and the water 

content of 98 wt.%, the highest storage modulus of RGO-gelatin hydrogels was 

172.3 kPa, 50% higher than that of physical crosslinked GO-gelatin nanocomposite 

hydrogels in Chapter 3. The freeze-dried hydrogel reached equilibrium in 24 h at a 

swelling weight ratio of 44.7, and the water swelling behaviour follows Fick’s 

diffusion law. The hydrogels demonstrated an enzyme-favourite degradation with 71% 

weight remained after degradation with collagenase for 24 h. The biodegradable 

RGO-gelatin hydrogels could have potential in tissue engineering and drug delivery. 
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Chapter 5. Graphene oxide-polyamidoamine dendrimer 

nanocomposite hydrogels 

5.1 Introduction 

In Chapter 3, GO was used as a physical crosslinker to form physically crosslinked 

GO-gelatin nanocomposite hydrogels. And the resulting hydrogels exhibited high 

mechanical properties. To develop new physically crosslinked hydrogels with a 

higher mechanical performance, GO-PAMAM nanocomposite hydrogels were 

synthesised through a facile and fast one-step self-assembly method without any 

organic crosslinkers involved. PAMAM dendrimer could possess a high charge 

density on its globular surface when it was protonated, and so the multiple 

electrostatic interactions between GO sheets and PAMAM molecules could provide 

stronger driving force for network formation and exhibiting self-healing ability, 

compared to that between GO sheets and gelatin molecules. The PAMAM 

dendrimers were synthesised, and their chemical structure was characterised by mass 

spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR) and 

potentiometric titration. The chemical structure, morphology, mechanical properties 

and gelation mechanisms of GO-PAMAM nanocomposite hydrogels were 

investigated by FT-IR, Raman spectroscopy, XRD, SEM and rheometry. Their self-

healing property was also demonstrated. 

5.2 Experimental section 

5.2.1 Materials 

Graphite powder and the other chemicals used for GO preparation were the same as 

in Chapter 3. Ethylenediamine (EDA) (≥ 99.5%), methanol (≥ 99.9%), 
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methylacrylate (MA) (99%) and deuterium oxide (D2O) (99.9 atom% D) were all 

obtained from Sigma-Aldrich Corporation. 

5.2.2 Preparation of PAMAM dendrimer G4.0 

The PAMAM dendrimer Generation 4.0 (G4.0) was prepared following a method 

described in the literature [200]. Briefly, an EDA methanol solution was prepared 

and cooled to −20 °C, to which methanolic MA was added by drop-wise under 

agitation. The resultant solution was reacted at 25 °C for 2 days and at 40 °C for 4 

days. The excess MA and solvent were removed by vacuum distillation below 40 °C, 

leading to a half-generation dendrimer (multi-ester) [201]. Then the multi-ester 

methanol solution was prepared and cooled down to −20 °C. The solution was 

slowly added to the pre-cooled EDA methanol solution, which was kept below 

−10 °C. The resulting mixture solution was kept at 25 °C reacting for 2 days and 

afterwards at 40 °C for 4 days, before the removal of excess EDA and solvent. As a 

result, a pale amber-coloured syrup, a full-generation dendrimer [201], was obtained. 

This whole process was further replicated four times to achieve the PAMAM 

dendrimer G4.0 for subsequent studies. 

5.2.3 Preparation of GO-PAMAM nanocomposite hydrogels 

GO was synthesised using graphite powder by the modified Hummers’ method 

[152,155], and subsequently washed and purified as described in Chapter 3. GO-

PAMAM nanocomposite hydrogels were synthesised by one-step self-assembly. 

Typically, a PAMAM water solution (0.5 mL) with a desired concentration was 

added drop by drop into a GO suspension (5.5 mL) under stirring to form a hydrogel 

in about 30 s. Two sets of hydrogels were prepared. In one set, the GO concentration 

in the hydrogel was 10 mg mL
-1

, and the PAMAM concentration varied as 0.5, 1, 5, 
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10, 20 and 30 mg mL
-1

. In the other set, PAMAM was kept at 10 mg mL
-1

, while GO 

varied as 6, 8 and 10 mg mL
-1

. The hydrogel products were denoted as GmDnH, in 

which m and n defined the concentrations of graphene oxide and PAMAM, 

respectively. 

5.2.4 Structural characterisation 

The dendrimer (5 mg mL
-1

) was dissolved in D2O and analysed on a NMR 

spectrometer (Bruker DRX-500) at 25 °C for 
1
H with the solvent proton signal as an 

internal reference. The spectrometer was equipped with an inverse geometry 5 mm 

VSP probe with a single z-gradient. The operation software version was TOPSPIN 

1.3. The mass spectrum of the PAMAM dendrimer was obtained on a Bruker Reflex 

III MALDI-TOF mass spectrometer. The matrix solution was sinapic acid (10 mg 

mL
-1

) in acetonitrile: water: trifluoroacetic acid (weight ratio, 50: 50: 0.1). The 

concentration of PAMAM dendrimer in the matrix solution was 1 mg mL
-1

. Before 

testing, the mass spectrometer was calibrated with the matrix solution containing 

known peptides. Titrations were performed on a Multiparameter (SevenExcellence
TM

) 

and an INLAB Expert Pro-ISM pH electrode (Mettler Toledo) at ambient 

temperature (23 ± 1 °C) in nitrogen environment. PAMAM dendrimer (13 mg) 

firstly was dissolved in a 10 mL 0.1 M NaCl solution. Here, 0.1001 M HCl and 

0.0999 M NaOH were used for forward and back titrations, respectively. GO (40 mg) 

was dispersed in 10 mL 0.1 M NaCl solution by 30 min sonication before the 

suspension was tuned using the standard NaOH solution to pH = 10, and then titrated 

by the standard HCl solution to pH = 2.30. The titrant was added by 0.03 mL 

portions using a pipet (Eppendorf Research Plus, Eppendorf, Germany). Laser 

scattering particle sizing was performed on a Coulter LS130 (ranging from 0.1 to 
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900 μm) by 3 runs on graphite powder and a fully exfoliated GO aqueous suspension 

of 0.5 mg mL
-1

, respectively. 

FT-IR, XRD, SEM and Raman spectroscopy were carried on a set of same 

instruments using the same settings as described in Chapter 3. Freeze-dried samples 

were used for these structural and morphological analyses, and they were prepared 

by the same method as in Chapter 3. In SEM analysis, the pore sizes were averaged 

from at least 40 pores using ImageJ software. Rheological tests were conducted on a 

rheometer (MCR 301, Anton Paar) using 25 mm parallel plates at the angular 

frequency range of 0.1–100 rad s
−1

. The strain was set at 0.1% within the linear 

viscoelastic zone, while the test gap was fixed at 2.0 mm. 

5.3 Results and discussion 

5.3.1 Characterisation of PAMAM dendrimer G4.0 

Synthesis of the PAMAM dendrimer was a two-step process, using an initiator core, 

EDA. After a continuous process, the PAMAM dendrimer with –NH2 terminal 

groups was obtained. The 
1
H NMR spectrum (500 MHz, D2O) of the prepared 

PAMAM dendrimer (Fig. 5.1) shows the chemical shifts at δ = 2.36 (Hc), 2.55 (Ha 

and He), 2.66 (Hg), 2.75 (Hb), 3.18 (Hf) and 3.22 ppm (Hd), which can be identified 

with the protons assigned with the same letters in the theoretical PAMAM dendrimer 

fragment. These chemical shifts are consistent with the results reported in the 

previous papers [286,287], initially verifying the molecular structure and confirming 

the successful synthesis of the PAMAM dendrimer G4.0. 
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Figure 5.1 
1
H NMR spectrum of the PAMAM dendrimer G4.0 and peak 

assignments corresponding to the protons denoted in the fragment of a PAMAM 

dendrimer. 

The molecular weight of the PAMAM dendrimer G4.0 prepared, determined by 

MS, is 9,534 Dalton (Fig. 5.2), which is lower than the theoretical value of 14,196 

for PAMAM dendrimer G4.0 with an ideal structure [200]. The deviation of the 

resultant molecular weight from the original synthesis design was presumably due to 

incomplete Michael addition, intramolecular cyclisation, and fragmentation arising 

from the retro-Michael reaction [200]. This deviation could also be partially 

attributed to the measurement system as reported in the literature [288]. 
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Figure 5.2 MALDI-TOF mass spectrum of PAMAM dendrimer G4.0. 

Curve a in Fig. 5.3 shows that the PAMAM dendrimer is basic (pH = 9.26) in an 

aqueous solution (1.3 mg mL
-1

) before titration. The turning points during the back-

titration (curve b) show the distinctive start and end points of protonation, which is 

consistent with the previous report [200] for PAMAM dendrimers. According to the 

first derivative peaks, the start and end points of deprotonation are at pH = 4.05 and 

pH = 7.51 for tertiary amines and at pH = 7.51 and pH = 10.51 for primary amines, 

respectively. Because the geometric structure of the PAMAM dendrimer G4.0 is 

globular, only the peripheral primary amine (−NH2) groups can participate in 

electrostatic attractions with GO sheets. The number of −NH2 groups present in the 

dendrimer can be calculated according to the consumption of OH
–
 ions during 

deprotonation of −NH2 groups and the molecular weight estimated from MS [289]. 

Considering the minimum volumetric addition (0.03 mL) during the titration, the 

number of in −NH2 groups our PAMAM dendrimer is 46 ± 2. This number is lower 

than the theoretical value (64) of PAMAM dendrimer G4.0, because of the defects 

and incomplete reactions as described earlier [200]. 
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Figure 5.3 Potentiometric acid-base titration of PAMAM. The forward titration 

(curve a) and the back titration (curve b) were performed using a 0.1001 M HCl 

solution and a 0.0999 M NaOH solution, respectively. 

5.3.2 Characterisation of GO 

The GO nanosheets used to synthesise the nanocomposite hydrogels have been 

characterised by AFM and TGA in Chapter 3. The single GO nanosheets have a 

thickness of 1.0 nm and a typical length of one to several microns (with a new AFM 

profile inset shown in Fig. 5.4). The content of oxygenated groups in GO was 

approximately 55 wt.% according to TGA analysis. As shown in Fig. 5.4, the raw 

material, graphite powder, was measured to be between 1.8 and 50 μm in particle 

size. The majority of the GO nanosheets range in size from 2.2 to 20 μm with a mean 

of 5.5 μm. This laser sizing measurement records the hydrodynamic diameter of 

particles by assuming these particles are spherical in shape. 
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Figure 5.4 Laser scattering particle sizing profiles of (a) graphite powder and (b) GO 

nanosheets in an aqueous solution, with an inset of the tapping mode AFM 

topographic image of two layers of GO.  

The result of GO titration is shown in Fig. 5.5. The titrant (HCl) consumption is 

mainly attributed to the protonation of hydroxyl and carboxyl groups [290]. The start 

point of protonation (at pH = 8.24) is attributed to hydroxyl groups while the end 

point (at pH = 4.76) is due to more acidic carboxyl groups. However, there is no 

clear transition point between the two steps, probably because of the surface 

heterogeneity of GO [290,291]. This result indicates that the GO suspension is 

negatively charged above pH = 4.76. 
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Figure 5.5 Acid-base titration of GO, using a 0.1001 M HCl solution. 

5.3.3 Characterisation of GO-PAMAM nanocomposite hydrogels 

The GO-PAMAM nanocomposite hydrogels with a fixed concentration of GO were 

prepared by adding a small portion of a PAMAM solution into an aqueous GO 

suspension under stirring. Stable hydrogels, G10D1H, G10D5H, G10D10H and 

G10D20H, were formed and confirmed by the tube inversion test [248] (Fig. 5.S1). 

Incorporation of less PAMAM dendrimer, G10D0.5H, failed to form a hydrogel, but 

a sol (Fig. 5.S1). FT-IR spectra of graphite, GO, neat PAMAM and lyophilised GO-

PAMAM nanocomposite hydrogels are presented in Fig. 5.6. Graphite only 

possesses a weak O–H stretching at 3400 cm
-1

 which is from residual water. GO 

(curve b) shows the absorption peaks of C=O (1731 cm
-1

), C=C (1619 cm
-1

), C–O–C 

(1276 cm
-1

) and C–O (1050 cm
-1

), as well as O–H (3200–3400 cm
-1

) [271,292]. The 

spectrum g shows typical characteristics of PAMAM: the vibration peaks for C=O 

stretching (1631 cm
-1

), C(O)NH (1545 cm
-1

) and C–H stretching (2933 cm
-1

), as well 

as N–H stretching of primary amine (3263 cm
-1

) and anti-symmetric substituted 

primary amine (3071 cm
-1

) [293]. This further confirms that the PAMAM dendrimer 
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was successfully synthesised. After incorporation of PAMAM, the C=O peak of GO 

(1731 cm
-1

) diminishes and vanishes completely in G10D20H (curve f) and 

G10D30H (curve g) containing 67 wt.% and 75 wt.% PAMAM, respectively. This 

may be explained by the transformation of carboxyl functional groups from GO to 

carboxylate complex via associating with the amino groups from PAMAM [238,239]. 

Emergence of the C(O)NH bending at 1545 cm
-1

 and C=O amide I vibration at 1631 

cm
-1

 in curves b-e for the nanocomposites also confirms the incorporation of 

PAMAM into the hydrogels. 

 

Figure 5.6 FT-IR spectra of (a) graphite, (b) lyophilised GO and GO-PAMAM 

nanocomposite hydrogels: (c) G10D1H, (d) G10D5H, (e) G10D10H, (f) G10D20H, 

(g) G10D30H, and (h) neat PAMAM dendrimer. 

Fig. 5.7 illustrates Raman spectra of each sample. The intense G band (at 1580 

cm
-1

) of graphite (curve a) is ascribed to in-phase vibration of the E2g mode of the 

lattice, while a small D band at1353 cm
-1

 is contributed to the A1g mode 

[240,294,295]. After oxidation and exfoliation, both bands turn broader (curve b). 

The intensity ratio (ID/IG) increases significantly from 0.08 for graphite to 0.79 in 
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GO, implying a much higher degree of lattice disorder and defects in the latter 

[241,296]. Furthermore, the G band of graphite moves to 1598 cm
-1

, and a new D' 

band at 1620 cm
-1

 appears in GO, because of the isolation of double bonds from 

higher-energy functional groups in GO sheets [241,296]. GO-PAMAM 

nanocomposite hydrogels possess similar spectra (curves c-g) to GO. With an 

increasing PAMAM content, the G band gradually shifts from 1598 cm
-1

 in GO to 

1587 cm
-1

 in G10D30H, attributable to the charge transfer from PAMAM to GO 

sheets [181]. These results indicate the electrostatic interactions between GO and 

PAMAM. 

 

Figure 5.7 Raman spectra of (a) graphite, (b) lyophilised GO and GO-PAMAM 

nanocomposite hydrogels: (c) G10D1H, (d) G10D5H, (e) G10D10H, (f) G10D20H, 

(g) G10D30H, and (h) neat PAMAM dendrimer. 

Figure 5.8 depicts XRD traces of the samples. A strong peak is observed at 26.4° 

for graphite corresponding to an interlayer distance (d002) of 0.34 nm. After oxidation, 

a typical diffraction peak of graphite oxide is observed at 10.6° corresponding to a 
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d002 of 0.83 nm, ascribed to the formation of oxygenated groups on graphene [297].  

However, the GO diffraction peak disappears in the XRD traces of lyophilised GO-

PAMAM nanocomposite hydrogels, indicating an excellent dispersion and 

exfoliation of GO in the nanocomposites, noting the high contents of GO in the 

nanocomposites [298]. 

 

Figure 5.8 XRD traces of (a) graphite, (b) lyophilised GO, and lyophilised GO-

PAMAM nanocomposite hydrogels: (c) G10D1H, (d) G10D5H, (e) G10D10H, (f) 

G10D20H, and (g) G10D30H. 

The interior morphologies of the lyophilised samples were observed by SEM, as 

illustrated in Fig. 5.9. The nanocomposite hydrogels possess interconnected open 

porous microstructures which vary with the PAMAM content. The morphology of 

the nanocomposite with the least PAMAM (G10D1H in Fig. 5.9B, pore size 6.1 ± 

2.5 μm) has the least change compared to the structure (7.2 ± 3.7 μm) of the 

lyophilised GO suspension (Fig. 5.9A). In contrast, more changes occur to G10D5H 

and G10D10H which exhibit much smaller pore sizes (2.4 ± 1.2 and 2.0 ± 0.9 μm, 

respectively). At higher PAMAM contents, G10D20H (pore size 3.4 ± 1.6 μm) and 
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G10D30H (pore size 4.9 ± 2.2 μm) show significantly different morphological 

profiles, with more integral and less porous structures. G10D30H possesses less 

uniform porous structure than G10D20H, presumably due to the higher dendrimer 

content. Excess dendrimer may cause inhomogeneous crosslinking between GO and 

PAMAM in the hydrogel, leaving some regions with more solid contents than others. 

The porous microstructure in the hydrogel has an important effect on its mechanical 

properties, which is discussed further subsequently. 

       

       

Figure 5.9 SEM images of lyophilised (A) GO suspension and GO-PAMAM 

nanocomposite hydrogels: (B) G10D1H, (C) G10D5H, (D) G10D10H, (E) 

G10D20H, and (F) G10D30H. 

The hydrogel network is assembled by physically crosslinking positively 

charged PAMAM dendrimer (mainly −NH2 groups) and negatively charged GO 

nanosheets (mainly carboxyl groups). Based on the consumption of the acid or the 

base by GO or PAMAM during their back-titrations (as shown in Fig. 5.5 and 5.3), 

the ratio of the charge moles per unit weight between GO and PAMAM, is 
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calculated to be 0.6. The strong electrostatic attractions between −NH2 groups at the 

edge of globular PAMAM and –COOH groups from GO result in the formation of a 

robust hydrogel (Scheme 5.1). The charge capacity ratios of GO to PAMAM in the 

hydrogels are 6/1, 6/5, 6/10, 6/20 and 6/30 for G10D1H, G10D5H, G10D10H, 

G10D20H and G10D30H, respectively. Since G10D0.5H cannot form a hydrogel, 

6/1 is considered as the approximate critical gelation ratio for this system. As 

expected for many physically crosslinked hydrogels these GO-PAMAM 

nanocomposite hydrogels demonstrated self-healing capability, and the self-healing 

process was relatively fast (Fig. 5.S2) due to the multiple physical crosslinks, e.g., 

electrostatic interactions [299]. 

 

Scheme 5.1 Illustration of 3D-network GO-PAMAM nanocomposite hydrogel 

formed mainly by the electrostatic interactions between the deprotonated carboxyl 

groups of GO and protonated amino groups of PAMAM. 
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Rheological measurements (Fig. 5.10) show that storage moduli (G') and loss 

moduli (G") of GO-PAMAM nanocomposite hydrogels are nearly independent of 

angular frequency between 0.1–100 rad s
-1

, confirming the highly elastic 

characteristic of the hydrogels [181]. Furthermore, G' is about one order higher than 

G" and the damping factors (tan δ) are almost independent of frequency, suggesting 

the formation of stable hydrogels (Fig. 5.10B and 5.11B) [300]. Comprising the least 

PAMAM concentration of 1 mg mL
-1

, G10D1H has a storage modulus of 17 kPa at 

10 rad s
-1

. The storage modulus of G10D5H, 42 kPa, is 147% higher than that of 

G10D1H. A more than 5-fold increase is seen in the storage modulus of G10D10H 

(108 kPa) compared with that of G10D1H, and more significantly, an about 16-fold 

increase is found for G10D20H with a storage modulus of 284 kPa. This signifies 

that up to a certain PAMAM concentration (20 mg mL
-1

) the hydrogel becomes more 

elastic with increasing PAMAM content; a higher fraction of PAMAM results in 

more effective crosslinks which significantly improves the elasticity of the 3D 

network. However, a further increase of PAMAM content sees a decrease in the 

storage modulus to 128 kPa for G10D30H, which may owe to its less uniform 

porous structure compared to G10D20H as discussed previously. Containing 97 wt.% 

water, G10D20H is still impressive in its mechanical property; the presence of 

copious crosslinking points on every GO nanosheet and every PAMAM 

macromolecule (shown in Scheme 5.1), leads to the strong crosslinking interactions. 

Their storage moduli are comparable to those (Table 1.1) of natural skin and adipose 

tissues, suggesting that they might be used for relevant tissue engineering apart from 

drug delivery. 
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Figure 5.10 (A) G' (solid), G" (hollow), and (B) tan δ of GO-PAMAM hydrogels: 

G10D1H, G10D5H, G10D10H, G10D20H and G10D30H. 

To examine the influence of GO on the viscoelastic parameters, rheological 

measurements were also undertaken on a series of hydrogels with various GO 

contents at a fixed concentration of PAMAM (20 mg mL
-1

). In Fig. 5.11A, the 

results show a monotonous rise in the storage moduli of the hydrogels with 

increasing GO content to 10 mg mL
-1

, being 12, 44 and 284 kPa for G6D20H, 

G8D20H and G10D20H, respectively. A higher GO content (12 mg mL
-1

) resulted in 

an unsuccessful preparation of hydrogel, which was observed during experiments 

0.1 1 10 100

100

1000

10000

100000

 

 

 G10D10H

 G10D20H

 G10D20H

 G10D30H

 G10D30H

 G10D1H

 G10D1H

 G10D5H

 G10D5H

 G10D10H

G
',
 G

'' 
/ 

P
a

Angular frequency / rad s
-1

(A)

0.1 1 10 100

0.0

0.2

0.4

 

 

 G10D1H

 G10D5H

 G10D10H

 G10D20H

 G10D30H

T
a
n


Angular frequency / rad s
-1

(B)



105 
 
 

due to the poor dispersion of GO nanosheets in the mixture (not shown). An increase 

in the GO content by 67% from G6D20H to G10D20H leads to an enhancement in 

the storage modulus by 23-fold. In contrast, an increase in the dendrimer content by 

19-fold from G10D1H to G10D20H only induces an increase in the storage modulus 

by 16-fold. It is also noted, by comparing G10D10H, G10D5H with G6D20H, and 

G10D10H with G8D20H, that while the total content of GO and PAMAM in the 

hydrogel is lower, the hydrogel composing of a higher GO content exhibits a higher 

storage modulus. All of these results (Table 5.1) suggest that GO with a higher 

modulus than PAMAM contributes more significantly to the storage modulus of the 

nanocomposite hydrogel. Beside the content, the characteristics of GO, e.g., the 

lateral size and oxidation degree, will also influence the mechanical performance of 

the nanocomposite hydrogels. For instance, a decrease in the lateral size of GO 

nanosheets leads to a lower aspect ratio, which makes GO less efficient in 

reinforcing polymers [301]. It may also impact the dispersion of GO and the 

crosslinking density at a given GO content, again influencing the mechanical 

performance of the hydrogel. Similarly, a change to the oxidation degree of GO may 

affect the dispersion, crosslinking density and the mechanical properties of GO. 
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Figure 5.11 (A) G' (solid), G" (hollow) and (B) tan δ of GO-PAMAM hydrogels: 

G6D20H, G8D20H and G10D20H. 

The highest storage modulus of 284 kPa reported herein for GO-PAMAM 

nanocomposite hydrogels is 247% of the highest modulus (115 kPa) for self-

assembled GO-gelatin nanocomposite hydrogel in Chapter 3, and 165% of the 

highest value (172 kPa) for the reduced GO-gelatin nanocomposite hydrogels in 

Chapter 4. The storage moduli of these GO-PAMAM nanocomposite hydrogels are 

comparable to the values (10–400 kPa) of the GO-chitosan hydrogels reported by 
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other researchers [224]. Both GO and PAMAM dendrimer possess abundant 

functional groups which induce multiple strong crosslinks on each GO nanosheet 

and each PAMAM macromolecule. Furthermore, the inherent high stiffness of GO 

also contributes to the excellent mechanical properties of these hydrogels. 

The crosslinking density (N) and the number average molecular weight of the 

polymer chains between two neighbouring crosslinks (𝑀𝑐) are important parameters 

of a hydrogel [302]. Assuming GO-PAMAM hydrogels as homogeneous Gaussian 

networks, these parameters can be calculated from the static shear modulus (G) data 

according to the rubber elasticity theory (equation 3.1) [251]. Here, the polymer is 

PAMAM dendrimer instead of gelatin as in Chapter 3 and 4. Thus, M is molecular 

weight of the PAMAM dendrimer (9,534). By inserting the known data into 

equations 3.1 and 3.4, N and 𝑀𝑐  for the hydrogels are determined and shown in 

Table 5.1. 

Table 5.1 Rheological and crosslinking data of GO−PAMAM nanocomposite 

hydrogels 

Sample 
PAMAM  

(mg mL
-1

) 

GO  

(mg mL
-1

) 

Storage 

modulus, 

G’ (kPa) 

Crosslinking 

density, N   

(× 10
23

 m
-3

) 

Number average 

molecular weight, 

 𝑀𝑐 (g mol
-1

) 

G10D1H 1 10 17 26.0 221 

G10D5H 5 10 42 64.2 426 

G10D10H 10 10 108 165.1 338 

G10D20H 20 10 284 434.2 262 

G10D30H 30 10 128 195.7 771 

G8D20H 20 8 44 67.0 1299 

G6D20H 20 6 12 18.8 2703 

As shown in Table 5.1, N raises from 26.0 × 10
23

 m
-3

 for G10D1H to 434.2 × 

10
23

 m
-3

 for G10D20H, having the same varying trend as that for G'. 𝑀𝑐 values are 
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calculated to be 221, 426, 338 and 262 g mol
-1

 for G10D1H, G10D5H, G10D10H 

and G10D20H, respectively. For those hydrogels with a fixed PAMAM content, N 

enhances from 18.8 × 10
23

 to 67.0 × 10
23

 and 434.2 × 10
23

 m
-3

 for G6D20H, 

G8D20H and G10D20H, respectively. Correspondingly,  𝑀𝑐  drops from 2,703 to 

1,299 and 262 g mol
-1

. The results illustrate a structure-property correlation that the 

hydrogel with a higher modulus possesses a higher crosslinking density, which is 

consistent with the results in Chapter 3 and Chapter 4. 

5.4 Conclusions 

GO-PAMAM dendrimer nanocomposite hydrogels with different concentrations of 

GO and PAMAM were synthesised through self-assembly in one step. The multiple 

electrostatic interactions between GO sheets and PAMAM molecules, determined by 

FT-IR and Raman spectroscopy, provided the driving force for network formation. 

These strong interactions rendered the nanocomposite hydrogels a high 

mechanical performance, with a storage modulus of up to 284 kPa at 10 mg mL
-1

 GO 

and 20 mg mL
-1

 PAMAM. At a fixed GO concentration (10 mg mL
-1

), the storage 

modulus improved with PAMAM content first and then dropped under the studied 

range (up to 30 mg mL
−1

). The critical concentration for PAMAM to construct a 

self-assembled GO-PAMAM nanocomposite hydrogel at this GO concentration was 

approximately 1.0 mg mL
-1

. In contrast, the modulus of the self-assembled GO-

PAMAM hydrogel increased with increasing GO content up to 10 mg mL
-1

 at a fixed 

PAMAM content of 20 mg mL
-1

, after which a hydrogel could not be formed. 

Compared to PAMAM, GO contributed more significantly to the storage modulus of 

the nanocomposite hydrogel. This kind of GO-PAMAM nanocomposite hydrogels 

might be explored for the applications in soft tissue engineering and drug delivery. 
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Chapter 6. Double crosslinked graphene oxide-gelatin 

hydrogels 

6.1 Introduction 

We developed chemically crosslinked RGO-gelatin nanocomposite hydrogels in 

Chapter 4. However, the water content in those hydrogels is very high, which limit 

their mechanical performance. To develop chemically crosslinked nanocomposite 

hydrogels with a higher mechanical performance, double crosslinked GO-gelatin 

nanocomposite hydrogels were synthesised in one pot using glutaraldehyde (GTA) 

and GTA-grafted GO as double chemical crosslinkers. The resulted nanocomposite 

hydrogels contain a much lower water content (90 wt.%), compared to those 

nanocomposite hydrogels studied in Chapter 4. It is hypothesised that GTA firstly 

reacts with GO sheets to form GTA-grafted GO with one free end of aldehyde group, 

then the aldehyde groups from GTA-grafted GO and free GTA further react with 

amino groups in gelatin chains. Thus, chemically crosslinked GO-gelatin 

nanocomposite hydrogels could be formed through double crosslinking by GTA 

molecules and GTA modified multifunctional GO sheets. The significant 

improvements in mechanical properties were assumed to be down to the novel 

structure of double crosslinked network and the much lowered water content. FT-IR, 

SEM, rheometry and the compression tests were performed to characterise the 

nanocomposite hydrogels. The chemical structure, morphology, gelation 

mechanisms and mechanical properties of the hydrogels were investigated in depth. 

Swelling tests were implemented to determine their swelling capabilities. 
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6.2 Experimental section 

6.2.1 Materials 

Gelatin, graphite powder and the other chemicals used for GO preparation were the 

same as described in Chapter 3. Glutaraldehyde (50%) and glycine (1 mol L
-1

) were 

all obtained from Sigma-Aldrich Corporation. 

6.2.2 Preparation of GO-gelatin hydrogels 

GO was synthesised from pristine graphite by a modified Hummers’ method [155], 

and purified and freeze-dried as described in Chapter 3. The GO-gelatin 

nanocomposite hydrogels were synthesised by crosslinking gelatin using GTA in the 

presence of GO nanosheets. A typical synthesis of the GO-gelatin nanocomposite 

hydrogel is described as follows. 0.1 mL of aqueous GTA (0.056 g, 0.56 mg mL
-1

) 

solution was mixed with 4.9 mL of aqueous GO (0.001 g, 0.2 mg mL
-1

) suspension 

under vigorous stirring at 37 °C for 1 h.  0.999 g gelatin was added into 5 mL 

distilled water and then stirred at 60 °C for 1 h. It was then added into the water 

mixture of GTA and GO under stirring for 3 min before it was cast into a cylindrical 

mould. The mixture was kept at 20 °C for 24 h to complete the gelation of gelatin 

through chemical crosslinking. In these hydrogels, the concentration of  GO 

increased from zero to 5 mg mL
-1

, while the weight ratio of both gelatin and GO to 

water was kept constant at 1:10. After gelation, the remaining aldehyde groups from 

GTA were blocked by immersing the bulk hydrogel into a glycine solution (100 mM) 

at 37 °C for 1 h, and following triple wash in distilled water. The hydrogels were 

named as GHn, in which n denoted ten times of the concentration (mg mL
-1

) of GO 

in the final hydrogel. 
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6.2.3 Structure characterisation 

Gelatin, GO and double crosslinked GO-gelatin nanocomposite hydrogels 

were analysed by FT-IR using the same instrument and specimens preparing 

method as described in Chapter 3. As a control sample to study the 

interactions between GO and GTA, the GTA-modified GO was also 

investigated by FT-IR. This sample was prepared using the same procedure as 

for nanocomposite hydrogel, namely mixing the same amount of GO 

suspension and GTA solution at 37 °C for 1 h, and subsequently followed by 

dialysis for 3 days to remove the unreacted GTA and then air-dry at room 

temperature for 3 days. A neat GO suspension was also air-dried and 

characterised as a control. Morphologies of the GO-gelatin hydrogels were 

studied by using SEM (the same as in Chapter 3). The average pore sizes were 

calculated (at least 100 pores) by using ImageJ software. 

6.2.4 Compression tests 

Uniaxial compression testing was performed using a mechanical testing 

system (Model TA500, Lloyd Instruments) equipped with a control and 

analysis software of NEXYGEN. The hydrogel rods (20 mm high and 10 mm 

in diameter) were compressed at a speed rate of 1 mm min
−1

 using a load cell 

of 50 N. Measurement was performed on 5 replicate samples in each group. 

6.2.5 Rheological measurements 

The rheological properties of the double crosslinked GO-gelatin nanocomposite 

hydrogels were measured by using the same instrument and method used in Chapter 

5. 
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6.2.6 Swelling tests 

Hydrogel discs (10 × 10 × 2 mm
3
) were air-dried for one week at room temperature 

and then submerged in distilled water at 23 ± 1 °C for swelling tests. The samples 

were weighed after a week when the weights became constant. Three replicate 

samples were used for the measurements. The swelling ratios of these hydrogels 

were determined using equation 6.1: 

                                                          𝑆𝑅 =
𝑊𝑠−𝑊𝑑

𝑊𝑑
                                                    (6.1) 

in which Ws and Wd denote the weights of the swollen and dried hydrogel, 

respectively. 

6.3 Results and discussion 

GO nanosheets used to synthesise the nanocomposite hydrogels have been 

characterised by AFM and laser sizing in Chapter 3. The thickness of single-layer 

GO nanosheets was determined in Chapter 5 to be 1.0 nm and the majority of GO 

nanosheets ranged in size from 2.2 to 20 μm with a mean of 5.5 μm. When a GO 

aqueous suspension was utilised for the preparation of GO reinforced hydrogels, the 

functional groups on the GO nanosheets provided sites for physical and chemical 

interactions with the polymer matrix [303,304]. 

As described before [271,305], the spectrum of GO (curve a in Fig. 6.1) shows 

the existence of different oxygen-containing functional groups: carbonyl groups 

(C=O, 1729 cm
-1

), alkoxy groups (C–O, 1044 cm
-1

) and epoxy groups (C–O–C, 

1222 cm
-1

). O–H stretching bond and C=C vibrations are also observed at 3200–

3400 cm
-1

 and 1616 cm
-1

, respectively. Gelatin is characterised for comparison, and 

its main characteristic groups are identified in curve h. The absorption bands at 1633, 
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1522, 1230 and 3285 cm
-1

 are assigned to the amide I vibration (C=O), amide II 

bending vibration (N–H), amide III and N–H stretching, respectively [236,306]. GH0 

has a similar profile to gelatin powder. After incorporation of GO into the gelatin, 

the C=O peak in GO at 1729 cm
-1

 disappears in the GO-gelatin nanocomposite 

(curve b-g), which is ascribed to the association between carboxyl groups on GO 

nanosheets and amino functional groups in gelatin to form ammonium carboxylate 

complex [239]. The features of the amide I vibration and amide II bending vibration 

from gelatin dominate in the studied nanocomposites (curves b-g), overshadowing 

the feature of C=C vibrations from GO. 

 

Figure 6.1  FT-IR spectra of the lyophilised (a) GO, (b) GH0, (c) GH1, (d) GH5, (e) 

GH10, (f) GH30, (g) GH50, and (h) neat gelatin. 

To investigate the formation mechanism of the hydrogels further, the FT-IR 

spectrum of the mixture of GO and GTA, prior to mixing with gelatin solution to 

form a hydrogel, was also studied. Fig. 6.2 shows the spectra comparison of GO and 

GTA modified GO. The occurrence of a new shoulder at 2792–2840 cm
-1

, 

corresponding to the C–H stretch mode of GTA, initially indicates the presence of  
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Figure 6.2 FT-IR spectra comparison of (a) GO and (b) GTA surface-modified GO. 

GTA on GO sheets. The peaks of C–O and C–O–C show some shifts from 1046 and 

1214 to 1056 cm
-1

 and 1224 cm
-1

 respectively, along with significant increases of 

their intensities, suggesting the formation of hemiacetal structure by reacting the 

hydroxyl groups of GO sheets with aldehyde groups of GTA [307]. The C=O peak at 

1720 cm
-1

 shifts to 1704 cm
-1

 and its intensity increases, which is ascribed to the 

residual unreacted aldehyde groups of GTA as its one end may still remain free 

while the other end reacts with GO. These findings are in line with those reported in 

the literature [307], confirming the reaction between the hydroxyl groups of GO and 

the aldehyde groups of GTA and their covalent bonding. The proposed chemical 

reaction is illustrated in Scheme 6.1. The remaining aldehyde groups on the GTA 

modified GO act as multiple crosslinker points for further reaction with gelatin 

chains during hydrogel gelation. It is known that the aldehyde groups of GTA react 

with amino groups in gelatin to yield Schiff bases [308] and crosslink gelatin 

molecular chains to create a network. Additional crosslinking was also reported via 

the chemical reaction between aldehyde groups of GTA and hydroxyl functional 

groups of gelatin [308]. Thus, the GO-gelatin nanocomposite hydrogels are formed 
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through double crosslinking by GTA molecules and GTA modified multifunctional 

GO sheets, and possibly also with additional physical interactions, including 

electrostatic interaction and hydrogen bonding, enduring between the carboxyl, 

epoxy and unreacted hydroxyl functional groups on GO nanosheets and amino 

groups in gelatin molecules. The mechanism of the formation of double crosslinked 

structure in the GO-gelatin nanocomposite hydrogel is proposed in Scheme 6.2. 

 

Scheme 6.1 The proposed chemical reaction between GO and GTA. 

 

Scheme 6.2 The proposed schematic structure of double crosslinked GO-gelatin 

nanocomposite hydrogels. Here, double crosslinkers refer to GTA and GTA-

modified GO. As the physical interactions are weaker than the two chemical 

crosslinks, they are not considered in the term of double crosslinks. 
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The interior morphologies of the double crosslinked GO-gelatin nanocomposite 

hydrogels were investigated by SEM. The neat gelatin hydrogel crosslinked by GTA, 

GH0, displayed a porous structure with a pore size of 1.67 ± 0.38 μm (Fig. 6.3A). 

After incorporation of GO, the GO-gelatin hydrogel is double crosslinked by both 

GTA and GTA-grafted GO and becomes stiffer, which suppresses the growth of ice 

crystals during the freezing step. This resulted in a smaller pore size for GO-gelatin 

hydrogel GH1 (0.74 ± 0.29 μm) with a narrow pore size distribution (Fig. 6.3B), 

suggesting good distribution of GO sheets within the hydrogel at the low 

concentration. With increasing GO content, the pores become uneven and shallower 

(Figs. 6.3C-F). A wider distribution of pore sizes suggests GO is not distributed in 

localised areas of the hydrogel network as well as in GH1. GH5, GH10, GH30 and 

GH50 have bigger average pore sizes of 0.89 ± 0.35 μm, 1.21 ± 0.42 μm, 1.38 ± 

0.66 μm and 1.27 ± 0.44 μm, respectively. 

 

 

Figure 6.3 SEM images of lyophilised GO-gelatin nanocomposite hydrogels: (a) 

GH0, (b) GH1, (c) GH5, (d) GH10, (e) GH30 and (f) GH50. 
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Mechanical properties of the double crosslinked GO-gelatin hydrogels were 

evaluated by uniaxial compression. The compressive strength of the hydrogel 

increases upon the increase of the GO concentration (Fig. 6.4). The compressive 

strength of 566 kPa for GH50 with the highest GO concentration shows a 288% 

increase compared to 146 kPa for the neat gelatin hydrogel (Table 6.1). These values 

are comparable to those values (91–501 kPa) of gelatin methacrylate-GO composite 

hydrogels [192]. The compressive modulus of the GO-gelatin nanocomposite 

hydrogel increases in general upon the incorporation of GO into the hydrogel. It 

records the maximum modulus of 62 kPa for GH30 which almost triples the value 

(21 kPa) of the neat gelatin hydrogel (Table 6.1). These significant improvements in 

the mechanical performance of the gelatin hydrogel are ascribed to the double 

crosslinked network structure in the nanocomposite hydrogels in which GO sheets, 

grafted with GTA, function as multifunctional crosslinkers, and also to the 

reinforcement effect of GO as an effective nanofiller with a superb fracture strength, 

a Young's modulus beyond 208 GPa [40], a large surface area and a high aspect ratio. 

Furthermore, carboxyl, epoxy and unreacted hydroxyl groups on the GO nanosheets 

are well associated with the polar gelatin by electrostatic interaction and hydrogen 

bonding [238], also providing effective load transfer between gelatin matrix and GO 

nanosheets along with the covalent bonds. The compressive fracture energies (the 

areas under the compressive stress-strain curves) of the nanocomposite hydrogels are 

also calculated and shown in Table 6.1, increasing from 20.8 kJ m
-3

 for GH0 to 76.3 

kJ m
-3

 for GH50. The high flexibility and mobility of GO nanosheets can help 

effectively dissipate energy that is applied to the hydrogel, and therefore has a 

prominent effect on the hydrogel toughness [309,310]. 
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Figure 6.4 Compressive stress-strain curves of hydrogels: GH0, GH1, GH5, GH10, 

GH30 and GH50. 

The compressive tangent moduli of the hydrogels significantly varied upon the 

change of strain magnitude, indicating nonlinear and viscoelastic material behaviour 

(Fig. 6.5). The tangent moduli of all GO-gelatin hydrogels are higher than those of 

the neat gelatin hydrogel at strain magnitudes greater than 10%. The tangent 

modulus of GH30 is higher than that of GH50 at strain magnitudes greater than 10%, 

in line with their compressive moduli. This may be due to the worse distribution of 

GO sheets in GH50. The content of GO sheets has two opposing effects on modulus: 

on one side, a higher GO concentration increases the modulus of the hydrogel; but 

on the other side, it causes worse distribution which leads to aggregation of some 

GO sheets and so overall reduces the crosslinking density and the modulus. In 

contrast, the compressive strains at break of GO-gelatin hydrogels are all similar 

except for GH5. Overall, the compressive strength, stiffness and toughness of the 

gelatin hydrogel are improved by the GO effect, which plays a critical part in 

enhancing their mechanical properties. 
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Figure 6.5 Compressive tangent modulus versus compressive strain of hydrogels: 

GH0, GH1, GH5, GH10, GH30 and GH50. Error bar indicate standard deviation on 

five replicate samples. 

Table 6.1 Compressive properties of the double crosslinked GO-gelatin 

nanocomposite hydrogels. 

Sample Compressive strength 

(kPa) 

Young’s modulus 

(kPa) 

Fracture strain           

(%) 

Fracture energy 

(kJ m
-3

) 

GH0 146 ± 11 21 ± 10 67.9 ± 4.4 20.8 ± 14.9 

GH1 286 ± 25 31 ± 12 67.5 ± 11.4 37.3 ± 4.4 

GH5 253 ± 55 31 ± 14 77.0 ± 4.4 40.9 ± 6.0 

GH10 377 ± 68 42 ± 9 70.2 ± 2.4 49.7 ± 6.7 

GH30 509 ± 118 62 ± 18 65.9 ± 5.0 74.2 ± 20.7 

GH50 566 ± 56 58 ± 11 70.0 ± 2.5 76.3 ± 4.7 

Rheological measurements (Fig. 6.6) reveal viscoelastic characteristics of the 

hydrogels. Their storage moduli are always greater than their counterpart loss moduli, 

indicating elastic behaviour is dominant in these hydrogels [181]. In Fig. 6.6A, G' is 

about one to two magnitude orders higher than its corresponding G" (Fig. 6.6B). So, 

the values of the damping factor, tan δ, are much lower than 1, suggesting the 

formation of highly elastic hydrogels (Fig. 6.6C) [300]. The storage modulus of the  
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Figure 6.6 (A) G' (solid), (B) G" (hollow) and (C) damping factor (tan δ) of 

hydrogels: GH0, GH1, GH5, GH10, GH30 and GH50. 
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neat gelatin hydrogel (GH0) is 10.4 kPa (at 10 rad s
-1

). With the incorporation of GO 

into the gelatin hydrogels, their storage modulus increases.  A 12% increase has been 

observed in the hydrogel GH1 (11.6 kPa), compared to that of GH0. The storage 

modulus of GH10 (20.1 kPa) increases more significantly, showing 93% increase in 

contrast to GH0. The storage modulus reaches the highest value of 27.0 kPa (at 10 

rad s
-1

) for GH30 which shows a 160% increase, though it is lower than that of 

GH50 below the crossover point at 2 rad s
-1

. A further increase in the concentration 

of GO leads to a decrease in the storage modulus to 23.6 kPa (at 10 rad s
-1

) for GH50, 

indicating the structure weakening, which may be owing to the aggregation of GO 

and a lower crosslinking density as previously discussed. The strong mechanical 

properties of these nanocomposite hydrogels provide them possibility to be used in a 

broad biomedical area, such as artificial skin, wound dressing and etc., referencing to 

mechanical properties of some natural tissues (Table 1.1).  

The crosslinking density (N) of the hydrogels, an important parameter to 

characterise the structure-property relationship of hydrogels, was investigated. It is 

useful for the design of the new hydrogels and manipulation of their properties. The 

double crosslinked GO-gelatin nanocomposite hydrogel is considered as a Gaussian 

network and N is related to the static shear modulus (G) [251]. The correlation 

between them was depicted by the rubber elasticity theory, as shown in equation 3.1 

[251]. 𝑀𝑐 is the average molecular weight of polymer chain segments between the 

crosslinking sites, and  𝑀  is the molecular weight of the polymer (gelatin). By 

substituting the experimental data of G' in equations 3.1 and 3.4, the crosslinking 

density and 𝑀𝑐 are determined and shown in Table 6.2. 



122 
 
 

The crosslinking density, N, of the hydrogels increases upon the increase in the 

GO concentration, from 15.9 ×10
23

 m
-3

 for GH0 up to 41.3 ×10
23

 m
-3

 for GH30 

before dropping to 36.1 ×10
23

 m
-3

 for GH50. The hydrogel with a higher modulus 

  

Table 6.2 N and 𝑀𝑐 in the double crosslinked GO-gelatin nanocomposite hydrogels 

with different compositions. 

Sample Gelatin  

(wt.%) 

GO  

(mg mL
-1

) 

GTA        

(g) 

G'  

(kPa) 

N  

(× 10
23

 m
-3

) 

𝑀𝑐  

(g mol
-1

) 

GH0 10 0 0.056 10.4 15.9 15057 

GH1 10 0.1 0.056 11.6 17.7 14396 

GH5 10 0.5 0.056 10.8 16.5 14830 

GH10 10 1 0.056 20.1 30.7 10983 

GH30 10 3 0.056 27.0 41.3 9210 

GH50 10 5 0.056 23.6 36.1 10006 

 

possesses a higher crosslinking density, which is consistent with the literature [311]. 

Considering the same amount of chemical crosslinker (GTA) was used in the 

synthesis of hydrogels, it is GO that induces the higher crosslinking density; it acts 

as both a multifunctional crosslinker, when grafted with multiple GTA, and a 

reinforcing nanofiller. Like the case with compressive or storage modulus, the 

decrease of N for GH50, which has the highest GO content, can be explained by less 

effective crosslinks between GO nanosheets and gelatin molecules due to increased 

aggregation of GO sheets. The values of  𝑀𝑐  obtained vary in reverse to the 

crosslinking density, decreasing from 15,057 to 9,210 g mol
-1

 for GH0 and GH30 

respectively before increasing to 10,006 g mol
-1

 for GH50. 

To better understand the GO effect on the crosslinking of the networks, the 

swelling property of the lyophilised GO-gelatin nanocomposite hydrogels with 
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different GO contents was investigated, and illustrated in Fig. 6.7. The swelling 

reached equilibrium in distilled water after a week. All the hydrogels basically 

maintained their original shape, and there was no migration of GO nanosheets from 

the hydrogel into water throughout the swelling tests. With the increase of the 

amount of GO, the swelling ratio of GO-gelatin nanocomposite generally decreases. 

The equilibrium swelling ratio decreases from 8.3 g g
-1

 for GH0 to 7.4 g g
-1

 for 

GH50. This confirms a higher crosslink degree in the nanocomposite hydrogel. More 

specially, GO sheets, grafted with multiple GTA, can function as multifunctional 

crosslinking agents to form multiple junctions in the network and inhibit their 

swelling, resulting in the decrease in swelling capability. Similar phenomena have 

been reported for different nanofiller-enhanced hydrogels in the literature [171,312]. 

However, the swelling ratio (7.4 g g
-1

) of GH50 is higher than that (7.0 g g
-1

) of 

GH30 presumably due to increased aggregation of GO sheets. It is well known that 

there is a strong correlation between the swelling capability and the crosslink density. 

Thus, the crosslinking density of GH50 is lower than that of GH30. The results are in 

line with the corresponding crosslinking densities derived from mechanical 

properties and presented in the Table 6.2. 
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Figure 6.7 Equilibrium swelling of the double crosslinked GO-gelatin 

nanocomposite hydrogels with various GO contents: GH0, GH1, GH5, GH10, GH30 

and GH50. Error bar indicate standard deviation on three replicate samples. 

6.4 Conclusions 

Double crosslinked GO-gelatin nanocomposite hydrogels have been successfully 

synthesised by using both GTA and GTA modified GO sheets as crosslinking agents. 

The hydrogels with varying amounts of GO display improved mechanical strength, 

stiffness and toughness, which is ascribed to the double crosslinked network 

structure and also the contribution of GO sheets as multifunctional crosslinkers and 

effective reinforcing nanofillers. At a fixed GTA concentration, the compressive 

strength of the hydrogel increases with increasing GO content. GH50, containing 5 

mg mL
-1

 GO, shows the highest compressive strength of 566 kPa at a strain of 70%, 

exhibiting a 288% increase compared to the neat gelatin hydrogel. However, the 

highest elastic modulus of 62 kPa is observed for GH30 with 3 mg mL
-1

 GO, which 

has a compressive strength of 509 kPa at a strain of 65.9%. The elastic modulus 

value of GH30 doubles that of the neat gelatin hydrogel. The shear storage modulus 

generally increases with increasing GO content, apart from the highest GO content. 
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The highest value of shear storage modulus is 27.0 kPa for GH30, showing a 160% 

increase to 10.4 kPa for GH0. The swelling capability of the GO-gelatin hydrogel 

decreases with increasing crosslink degree and mechanical strength. The novel 

nanocomposite hydrogels could have the potential in the applications for biomedical 

engineering. 
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Chapter 7. Overall conclusions and suggestions for future 

work  

7.1 Overall conclusions 

This thesis has focused on the synthesis and characterisation of novel graphene-

based polymer nanocomposite hydrogels with strong mechanical properties, using 

GO and a biocompatible cationic polymer (i.e., gelatin and PAMAM dendrimer) as 

the raw materials. The four types of nanocomposite hydrogels were developed by 

different methods and were studied individually in depth, though some common 

characterisation techniques were used throughout the thesis. GO (or RGO) acted as 

both an effective multifunctional crosslinking agent and a strong reinforcing agent of 

the nanocomposite hydrogels. The mechanical properties of the hydrogel increased 

with increasing GO or polymer concentration and GO provided a higher contribution 

than the polymer at a comparable concentration.  

Both physically crosslinked GO-gelatin nanocomposite hydrogels and GO-

PAMAM dendrimer nanocomposite hydrogels were synthesised based on self-

assembly utilising mainly electrostatic interactions. This technique was facile and 

green, avoiding involving an organic crosslinker, and thus benefited the high 

biocompatibility. The multiple crosslinking sites on each GO nanosheet and gelatin 

chain rendered the physically crosslinked GO-gelatin hydrogels a high mechanical 

performance. These hydrogels were pH-sensitive and exhibited pH-controlled drug 

release behaviour. PAMAM dendrimer could possess a higher charge density on its 

globular surface when it was protonated, leading to stronger electrostatic interactions 

with opposite charged GO nanosheets. The optimal charge capacity ratios of GO to 

PAMAM in the hydrogels resulted in the formation of a robust hydrogel. The highest 



127 
 
 

storage modulus of GO-PAMAM nanocomposite hydrogels was 2.5 times of that for 

physically crosslinked GO-gelatin nanocomposite hydrogel. These GO-PAMAM 

nanocomposite hydrogels demonstrated self-healing capability, due to their strong 

and reversible physical crosslinks, i.e., electrostatic interactions.  

RGO-gelatin nanocomposite hydrogels were further synthesised from physically 

crosslinked GO-gelatin nanocomposite hydrogels through reaction between GO 

sheets and gelatin molecules, where gelatin molecules reduced GO to RGO. The 

gelation forces included both chemical (mainly) and physical crosslinking between 

graphene sheets and gelatin chains. The highest storage modulus of RGO-gelatin 

hydrogels was 50% higher than the value of physical crosslinked GO-gelatin 

nanocomposite hydrogels. The degradation tests showed that the hydrogels were 

enzyme favourable. 

The double crosslinked GO-gelatin nanocomposite hydrogels were developed 

containing a much lower water content compared to the hydrogels studied in Chapter 

3, 4, and 5. These nanocomposite hydrogels exhibited significant increases in 

mechanical properties compared to the neat gelatin hydrogel, which was ascribed to 

the double crosslinked structure and also the contribution of GO sheets as 

multifunctional crosslinkers and effective reinforcing nanofillers. The swelling 

capability of GO-gelatin hydrogel decreased with increasing the crosslink degree, 

while their mechanical properties increase.  

The mechanical properties of RGO-gelatin nanocomposite hydrogels, GO-

PAMAM nanocomposite hydrogels and double crosslinked GO-gelatin 

nanocomposite hydrogels are comparable or higher than that of some natural tissue, 

such as skin and adipose tissue as shown in Table 1.1. Thanks to the improvements 

in the mechanical properties, pH sensitivity and self-healing property, these novel 
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nanocomposite hydrogels could have potential for drug delivery and tissue 

engineering. Their mechanical properties are shown in Table 7.1, and their potential 

applications are also suggested. 

Table 7.1 Mechanical properties of the prepared different hydrogels and their 

potential applications. 

Prepared hydrogels 

Maximum 

Storage 

modulus (kPa) 

Maximum 

Compressive 

strength (kPa) 

Maximum 

Young’s 

modulus (kPa) 

Potential 

applications 

GO-gelatin 

nanocomposite hydrogels 
114.5 - - Drug delivery 

RGO-gelatin 

nanocomposite hydrogels 
172.3 - - 

Drug delivery, 

adipose tissue 

GO-PAMAM 

nanocomposite hydrogels 
284.0 - - 

Drug delivery, 

skin 

Double crosslinked GO-

gelatin nanocomposite 

hydrogels 

27.0 566 ± 56 62 ± 18 
skin, wound 

dressing, etc. 

 

7.2 Suggestions for future work 

GO with the same average size was used in the preparation of the nanocomposite 

hydrogels throughout this project. As we know, the size of the reinforcement filler is 

a key influential factor to the mechanical properties of composites. Hence, the effect 

of GO particle size on mechanical properties of the nanocomposite hydrogels could 

be studied to optimise the size of GO in the synthesis of the hydrogels.  

Increasing the electrical field density on the GO sheet surface by modification or 

functionalisation is another possible method to enhance the mechanical performance 

of the physically crosslinked nanocomposite hydrogels, i.e., GO-gelatin 

nanocomposite hydrogels and GO-PAMAM nanocomposite hydrogels. The 

increased electrical field density could strengthen the electrostatic interactions 
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between negatively charged GO sheets and positively charged gelatin or PAMAM 

dendrimer macromolecules. Therefore, the mechanically improved hydrogels could 

be obtained. 

Another strategy to improve the mechanical performance is to increase the solid 

content per unit volume in the hydrogels, i.e., the concentration of GO (or RGO) and 

the polymer (gelatin or PAMAM dendrimer). Considering the solid content is still 

low, further increasing their proportion to the whole hydrogel could benefit their 

mechanical strength, particularly for GO-gelatin nanocomposite hydrogels, RGO-

gelatin nanocomposite hydrogels and GO-PAMAM nanocomposite hydrogels. The 

morphology studies in this research suggest that beyond the optimal GO or the 

polymer concentration the inhomogeneity of the microstructure of the 

nanocomposite hydrogel increases, which leads to the decline in the mechanical 

properties. The inhomogeneity of the microstructure may be owing to the quick 

gelation of the nanocomposite developed, which restricts the uniform distribution of 

GO sheets in the gelatin matrix. The possible solution could be to tune pH value of 

the starting solutions prior to mixing to supress the electrostatic interaction between 

the two components and slow down the gelation process, and then reverse the pH 

value afterwards. 

To improve the double crosslinked GO-gelatin hydrogels, this might be through 

introducing a second polymer network into the existing hydrogel to form an 

interpenetrating structure, like DN hydrogels. Interpenetrating network is a 

reasonable strategy to improve the mechanical performance of the hydrogels. By 

controlling the proportion of the initiator, crosslinker and monomer, the polymerised 

chains of the second polymer could be long and flexible, which can enhance the 

entanglement effect in the hydrogel. 
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Appendix 1. Supplemental figures 

 

 

Figure 5.S1 Digital images of the G10D0.5H sol (instead of a hydrogel), and the 

successfully prepared GO-PAMAM nanocomposite hydrogels: G10D1H, G10D5H, 

G10D10H and G10D20H. The inner diameter of the container is 28 mm. 

 

 

Figure 5.S2 (A) Four pieces of freshly cut free-standing hydrogel blocks; (B) the 

adhered four blocks can hang on horizontally showing self-healing ability. The 

hydrogel blocks self-healed after the freshly cut surfaces were gently pressed 

together and left for 10 min. 


