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Abstract

Frequency domain analysis are widely done in recent years although it is much more

complicated compared to the time domain because it can provide a more physical meaningful

insight into the system dynamic behaviours such as stability and resonance. Frequency

response function (FRF) is the frequency domain representation of linear systems. However,

as most of practical engineering systems could not be modelled as linear systems, nonlinear

systems analysis becomes an interesting topic to be researched. Output Frequency Response

Function (OFRF) is an extension of FRF to the nonlinear systems. The advantage of using the

OFRF method is the link between the parameters that define the system nonlinearity and the

output frequency response of the system can be observed and understood. This relationship

between the parameters that define the system nonlinearity and the output frequency response

of the system provides the important basis for the nonlinear system analysis and design in

frequency domain.

This research is concerned with two major scopes:

1. The development of a more effective method for the determination of OFRF for both

single input single output (SISO) and multi input multi output (MIMO) nonlinear

systems.

• A new numerical method for determining and expressing the OFRF of nonlinear

systems using Associated Linear Equations (ALEs) is discovered for SISO

nonlinear systems, where this new methodology provided significant improvement

and efficiency in determining the OFRF of the nonlinear system. Using the same
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case study, the number of numerical simulations needed to determine OFRF is

less compared to the method in the current literature [46]. The mathematical

model used in this new method is nonlinear differential equation (NDE).

• However, most of nonlinear engineering systems are MIMO nonlinear systems.

Therefore, to make a new contribution to the numerical method in the frequency

domain, the new numerical method of determining the OFRF of nonlinear systems

using ALEs for SISO nonlinear systems is extended to the MIMO nonlinear

systems. Detailed algorithms for the new numerical method are presented and

these findings opened a new insight into the understanding of the relationship

between the nonlinear parameters and the output of the MIMO nonlinear systems.

• The new numerical method of determining and expressing the OFRF of nonlinear

systems using ALEs for the SISO nonlinear system and the MIMO nonlinear

system were applied to the passive engine mount system and the earthquake

engineering. Detailed process of the determination of OFRFs was presented and

the OFRF based analysis was done using the OFRF determined to facilitate the

design process of the nonlinear systems. These applications show the efficiency

of the new numerical method determined in this research.

2. The application of OFRF approach to the analysis of the output frequency response of

chemical engineering systems.

• The current method in the analysis and design in the frequency domain of

nonlinear chemical engineering systems cannot provide an explicit relationship

between the nonlinear parameters and the output frequency response function.

As the OFRF can solve this problem and provide a new understanding of the

nonlinear chemical process, the new numerical method presented in this thesis
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was applied to the nonlinear non-isothermal continuous stirred tank reactor

(CSTR). The technique used to transform the material and energy balance of the

system to the NDE model was by using the Taylor series form. Then, from the

NDE model, the new numerical method developed in this research was applied

and the OFRF of the system was determined. The OFRF provides a good solution

to the nonlinear non-isothermal CSTR. The relationship between the nonlinear

parameter and the output spectrum of the nonlinear system is analyzed and design

of the system can be done from the analysis.

As a conclusion, this research contributes new numerical methods in frequency domain

analysis. The new numerical methods presented provide new understanding of the relationship

between the parameters that described the nonlinearities and the outputs of the system while

making the process of OFRF determination more efficient. It has been applied to the analysis

and design of nonlinear chemical engineering process system. It helps in the understanding

of the nonlinear chemical process identification and revealing the relationship between the

system output frequency response and parameters that define the system nonlinearity.
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Chapter 1

Introduction

1.1 Background and motivation

1.1.1 Background

A linear system is easier to be analysed compared to a nonlinear system. However, due to the

presence of the nonlinearities, most systems in engineering and real life cannot be represented

as a linear system. Thus, more analysis and research need to be done in the nonlinear system

area for it to be understood. For the past decades, there is an advance progress in the analysis

of the nonlinear systems in both the time and frequency domain. Significant progress that can

be seen towards understanding these methods has been made but as the analysis of a nonlinear

system is a problem dependent, it is still a great challenge to extract useful information from

the system and there are no generic methods to deal with the problems with nonlinearity[28].

Several available techniques that are used in the nonlinear system analysis are for example

perturbation method, averaging method and harmonic balance.

Besides these, several studies investigating nonlinear control system analysis have been

carried out using mathematical models that can describe nonlinear systems [20, 66]. Mathematical

models that are useful in the study of the nonlinear control analysis are Nonlinear Differential
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Equation (NDE) [40], Nonlinear AutoRegressive model with eXogenous input(NARX)

[65], Nonlinear AutoRegressive Moving Average with eXogenous input (NARMAX) [62],

and Time Delayed Differential Equation (TTDE) [33]. Using the mathematical models,

researchers are able to get a clear idea of the relationship between the input and the output of

the system thus can predict the system behavior.

The NDE model is convenient because it can be formed naturally from the models of

physical phenomena. The NARX model is favored when dealing with experimental data [65].

The NARMAX model described a system in terms of a nonlinear functional expansion of

lagged input, output and prediction errors [62]. The TDDE is used in describing differential

equations system with time delays in the physical process [33]. These mathematical models

are widely used in the analysis of nonlinear systems as they can provide better parameter

estimation and prediction accuracy compared to linear models.

The nonlinear systems can be separated to the discrete-time process models and the continuous-time

process models. The NARMAX model is one of the discrete-time data models that is widely

used because it can represent a wide class of nonlinear systems. The NARMAX is useful for

a computer-based system, where the input and output data for the system are only available

at discrete time instants because the measurements and controls are made at discrete time

instants [7]. Examples of the continuous-time process models are Hammerstein and Wiener

models [3, 87]. They are usually known as block-oriented models. The Hammerstein and

Wiener models are considered as block-oriented nonlinear systems that composed by a

cascade combination of a linear dynamic model and a static (memoryless) nonlinear function.

Recently, there have been studies of nonlinear systems that described the system by using

the Volterra series [72, 82, 68]. Volterra model can be both continuous-time model and

discrete-time model. In [14], it is shown that most of the nonlinear systems can be
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represented as Volterra series expansion. The Volterra series also had been used in analysing

nonlinear system in the frequency domain as it provides an important theoretical foundation.

Any system that possesses a Volterra series representation can be described by a series of

associated linear equations (ALEs) [86, 85]. The derivations of ALEs are obtained through

manipulations of the Volterra series. From these ALEs, analysis of the output of the nonlinear

system can be done order by order.

Based on the Volterra series expansion, the concept of the generalized frequency response

function (GRFRs) is proposed in [27]. The GFRF concept is considered as direct extension

of the frequency response function (FRF) function to nonlinear systems and is defined

as the multidimensional Fourier transform of the Volterra kernels. The GFRF provides a

fundamental principle for the study of the nonlinear system in the frequency domain as they

can provide great insight about the nonlinear system that had been analysed by highlighting

physical properties via a unique system representation. Based on the GFRFs concept, an

analytical expression for the output frequency response to a general input that reveals how the

nonlinear mechanisms operate on the input spectrum to produce the system output frequency

response was derived by Lang [43, 44].

Besides [43] and [44], there are studies that have been focusing on computing the GFRFs of

nonlinear systems although these methods asked for more computations compared to linear

case. Analysis of nonlinear systems using GFRFs need more efforts as it is not as trivial as

a linear system case and the multidimensional nature of nonlinear systems make it hard to

interpret and analyse the system properties.

There are several methods to derive the GFRFs for a nonlinear system; the orthogonal

functionals [72, 75] , the variational approach [72, 74] and the probing method [65]. The

GFRFs representation that resulting from these methods are different. For example, the
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variational method can only be used when the system has input-output data and the GFRFs

can be represented in the nonparametric form [74]. Meanwhile, in harmonic probing, the

GFRFs can be obtained through recursive algorithm where higher order GFRFs are computed

by using their lower order counterparts. The orthogonal functionals representation was used

to deal with convergence problem of the conventional Volterra series, where it was difficult

to find convergent Volterra series representation for the given operator [75].

However, there is some limitation in the GFRFs method. There is no revelation in how

the system output frequency response depends on the system parameters as the GFRFs

concept could not provide clear analytical relationship between the system time domain

parameters and the system output frequency response. Graphical analysis of GFRFs method

also could not be done in certain analysis or it could be a cost computation except for second

order cases, where the GFRFs can be analysed from surface plots.

Hence, based on the Volterra series theory and the GFRF concept of the nonlinear system,

the Output Frequency Response Function (OFRF) was proposed by Lang and Billings et

al [46]. This concept is the results of a series of studies. The OFRF concept is useful for a

wide class of nonlinear systems that can be derived by NDE model. It derived an explicit

analytical relationship between the output frequency response and the time domain system

coefficients.

By revealing the significant link between the system output frequency response and parameters

that define the system nonlinearity, the OFRF concept has provided the important basis for

the analysis and design of the nonlinear system. However, the OFRF concept could not be

used in analysing a nonlinear system that exhibits sub-harmonics and chaos as the basis

of the OFRF concept is the Volterra series approach which occupies the middle ground

in generality and applicability of the theories of nonlinear systems [46, 72]. In [59], the
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information about the parametric characteristics of the NDE models can be known priori by

using a set of algorithms which can be used for the OFRF based analysis of nonlinear systems.

One of the numerical methods that could be used for the estimation of the OFRF is

called as nonlinear Characteristic Output Function(nCOS) [38].The OFRF of this method is

represented in a different form compared to the method in [46]. This nCOS method required

a significant number of numerical simulations to generate system responses under different

values of the design parameters which makes the determination of OFRF much more complex

[54].

For the estimation of the OFRF, several numerical methods have been developed [37, 39,

46, 35], but since the truncation order of the underlying Volterra series expansion for the

nonlinear system is difficult to know in advance and it can be varied with different input

magnitudes, biased and even wrong estimation is hard to be avoided. This reduced the

reliability and effectiveness of the OFRF based analysis. As a conclusion, in order to achieve

a more effective OFRF based nonlinear system analysis and provide significant analysis

and design of the nonlinear system in the frequency domain, further research need to be

conducted.

1.1.2 Motivation

The frequency domain analysis has been a topic of research for the last few decades. Besides

being a topic of interest for engineers that study mechanical systems [18, 58], frequency

domain analysis is also of interest to chemical engineer for their chemical process systems

analysis [89, 26]. As most practical engineering systems cannot be modelled as a linear

system, nonlinear system analysis became the subject of interest to be researched.

The nonlinear system analysis and design in the frequency domain lack of explicit analytical
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description that can describe the relationship between the nonlinear parameters and the output

frequency response function of the system, which make it more difficult and complicated

compared to the linear system analysis. In solving nonlinear chemical process control,

the common problems involved are associated with chemical processes like time delays,

unmeasured state variables and high-order and distributed processes [9]. Thus, there are

several methods and techniques that have been used by the researchers to solve these

problems.

Some researchers still use the linear process control techniques for the nonlinear chemical

process control as the conventional proportional-integral-derivative (PID) control is still

effective if the nonlinearities are mild or the nonlinear process operates over a small range

of conditions. For other linear control strategies, the internal model control (IMC), model

predictive control (MPC) and adaptive control, they provide adequate performance when the

process is sufficiently linear in the region of operation. However, other nonlinear control

strategies provide significant improvements over linear control strategies when the process is

highly nonlinear [76].

One of the fundamental nonlinear control strategies is feedback linearization, which is

based on input-output linearization or state-space linearization. Input-output linearization

control is restricted to the process where the nonlinear phase is minimum whereas the

state-space linearization exploited the restriction of the input-output linearization where the

system has a non-minimum phase nonlinear system and produces a stable internal control

[29].

Other methodologies to solve nonlinear chemical process control are Nonlinear Internal

Model Control (NIMC) and Nonlinear Model Predictive Control (NMPC) techniques. NIMC

can be interpreted as a variant of the input-output linearization technique. This method uses



1.1 Background and motivation 7

the two features of the IMC where the controller design is based on the inverse of the process

model and the feedback signal is taken from the error between the plan and the model outputs.

The NIMC method can be used in the open-loop stable processes only but the main advantage

of this method was the main basis of the techniques is on full-state feedback. NMPC was

an extended concept of MPC where it provided stability results for the nonlinear system by

requiring knowledge of the current state of the nonlinear system and it had the ability to

handle all constraints such as control inputs and outputs directly [29].

Most of the methodologies discussed above require an explicit mathematical model of

process dynamics. Thus, this makes the development and analysis of the nonlinear process

identification important to be studied. The models developed from the analysis of the

nonlinear process will be used in the control system design methodologies. For example,

there are several nonlinear system representations of pH neutralisation process; NARX

models [66], neural networks [10] and Wiener model [41] and these representations were

used in different control techniques [66, 91].

In this research, as OFRF concept can provide the explicit relationship between the parameters

that describe the nonlinearity of the system and the output spectrum of the nonlinear system,

it is interesting to apply OFRF to the nonlinear chemical process. The question rose is if

there is any method that can make the determination of OFRF for nonlinear system simpler?

Besides, if OFRF to be applied to the nonlinear chemical process which are mostly multi

input-multi output (MIMO) nonlinear systems, then there is a need for the extension of the

OFRF to MIMO nonlinear system.

Based on the concerns discussed, the OFRF will be the basis of this research. The OFRF

concept needs to be understood and a new numerical method to determine OFRF for the

nonlinear system will be developed. The new numerical method should increase the efficiency
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of the process of OFRF determination. Then, using the new numerical method develops, the

OFRF concept need to be extended to MIMO nonlinear systems so that the new numerical

method can be applied to MIMO nonlinear chemical process system. Then, an application of

analysis and design of an application in chemical engineering using OFRF will be discussed.

1.2 Research objectives

This research has two major scopes to be accomplished. First, this research aims to

development of a more effective method for the determination of OFRF for both SISO

and MIMO nonlinear systems. Secondly, this research involves the application of OFRF

approach to the analysis of the output frequency response of chemical engineering systems.

There are several objectives to be achieved in this research. The details of the objectives are:

1. To understand the OFRF and ALEs concepts and identify the gaps and future improvement

in nonlinear control analysis area. The Volterra series theory in the frequency domain,

the OFRF and the ALEs concepts need to be reviewed. Using the understanding of

these concepts, a new numerical method can be developed to provide better progress

towards understanding the nonlinear control analysis area.

2. To develop a new and more efficient numerical method for the determination of OFRF

of SISO nonlinear systems that can facilitate the process of the analysis and design.

The new numerical method should increase the efficiency of the determination of OFRF

for nonlinear systems by significantly reduce the number of numerical simulations.

The new numerical method will utilise the ALEs concept.

3. To develop and extend the new numerical method for the determination of OFRF of the

MIMO nonlinear systems. Detailed algorithms will be developed for the determination

of OFRF using ALEs for MIMO nonlinear system. The algorithms produced for
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MIMO nonlinear systems will open a new journey to understanding the relationship

between the nonlinear parameters and the output for MIMO nonlinear system.

4. To test the effectiveness of the new numerical method proposed in this research.

Different nonlinear engineering systems will be chosen for the analysis. The simulation

studies should demonstrate the effectiveness of the new numerical method proposed in

the determination of OFRF. The OFRF based analysis should help the analysis and

design of the nonlinear systems.

5. To understand the nonlinear chemical process identification and identify how to reveal

the relationship between the system output frequency response and parameters that

define the system nonlinearity. A mathematical model is needed thus it is crucial to

determine how to represent the nonlinear chemical process system using a NDE model.

6. To implement the new numerical method for the determination of OFRF of the MIMO

nonlinear chemical process system. This implementation will help in the understanding

of the relationship between the system output frequency response and parameters that

define the system nonlinearity of nonlinear chemical engineering process systems. The

application is to the achieve more effective system analysis and designs.

1.3 Contributions

The objectives of this research have been achieved through the following contributions:

• A new numerical method to determine OFRF using ALEs concept is developed.

The new numerical method increases the efficiency of determination of OFRF for

a nonlinear system. The number of simulations needed to determine OFRF is less

compared to the current literature. Detailed algorithms for the new numerical method
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are discussed in Chapter 3. In this new numerical method, three algorithms are involved.

The OFRF representation of the NDE model can be determined priori using the first

derived algorithm. Then, the second algorithm facilitates the derivation of ALEs for

the nonlinear system. Finally, the last algorithm uses the results from the first and

second algorithm and their relationship to determine the OFRF of the nonlinear system.

These algorithms only work for SISO nonlinear system.

• Algorithms to facilitate the process of determination of ALEs for the NDE model for

the SISO and MIMO model are presented. These algorithms are developed in this

research and useful for the new numerical method proposed in this research. The

detailed algorithms to determine ALEs for SISO nonlinear system is presented in

Chapter 3 while the detailed algorithms to determine ALEs for MIMO nonlinear

system is presented in Chapter 4.

• The new numerical method to determine OFRF using ALEs is extended to MIMO

nonlinear systems. This new numerical method also consists of three algorithms and

is discussed in Chapter 4. The first algorithm is an algorithm to determine the OFRF

representation of the NDE MIMO nonlinear system. Then, the second algorithm is

the derivation of ALEs for the MIMO nonlinear system. The last algorithm is the

determination of OFRF using ALEs. These algorithms use the same concept and

techniques as the new numerical method to determine the OFRF using ALEs for the

SISO nonlinear system. The new numerical method to determine the OFRF using

ALEs for the MIMO nonlinear system developed in this research provides a better

understanding of the relationship between the nonlinear parameters and the output for

MIMO nonlinear system.
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• The new numerical method proposed is applied to various nonlinear engineering

problems. Different SISO nonlinear systems and MIMO nonlinear systems were

analysed using the new numerical method. Simulation studies demonstrated the

effectiveness of the new numerical method proposed in the determination of OFRF for

both SISO and MIMO nonlinear system. The OFRF based analysis and design were

done on two different nonlinear systems; the passive engine mount system and the

engineering earthquake system.

• In order to analyse the nonlinear chemical process identification and reveal the

relationship between the system output frequency response and parameters that define

the system nonlinearity, the material and energy balance of the nonlinear non-isothermal

CSTR system is transformed to the NDE model. This was done by expanding the

nonlinear terms in the Taylor series form.

• The new numerical method proposed in this research is implemented and tested to a

nonlinear non-isothermal CSTR system. This system is a periodic operation system.

The analysis of the nonlinear non-isothermal CSTR system used the detailed algorithms

presented and discussed in Chapter 4. Based on the OFRF determined, the relationship

between the system output frequency response and parameters that define the system

nonlinearity is analysed. Also, comparing with steady-state operation analysis [49],

the result of the OFRF based analysis also consistent with the fact that the periodic

operation of a nonlinear system improves the conversion of the product compared to

the steady-state operation [19, 71, 73].

1.3.1 Publication

The research result was published in the conference proceeding that was attended by the

author. The details of the publication is as below: Nik Ibrahim, N. N. L., Lang, Z.Q.
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(2016), A new and efficient method for the determination of Output Frequency Response

Function of nonlinear vibration system. Proceedings of the International Conference on

Smart Infrastructure and Construction (ICSIC 2016), University of Cambridge, Cambridge,

United Kingdom, 27-29 June 2016.

The content of Chapters 3, 4 and 5 are currently in progress to be submitted as three

different publications.

1.4 Thesis layout

Chapter 1 relates to the background and motivation of this research. All the objectives of

this research are also listed in details. Lastly, the contributions and publication that achieved

through this research are explained.

Chapter 2 discusses the frequency domain analysis for nonlinear systems. A review of

system identification and how Volterra models are involved in the development of the studies

of nonlinear are done. Then the GFRFs concept is discussed before the OFRF concept is

discussed comprehensively as the OFRF concept is the foundation of this research. Chapter

2 also discusses about the chemical process background. Different types of chemical reactors

are presented and the background of chemical process control is introduced.

Chapter 3 develops a new numerical method for the determination of the OFRF when the

systems are SISO nonlinear systems. The new approach for determining OFRFs is by using

the NDE model and exploiting the concept of ALEs. The new numerical method consists of

three algorithms. The first algorithm is about the determination of OFRF representation of the

SISO nonlinear system. The second algorithm is for the determination of ALEs for the NDE

model where the ALEs can be determined easily up to any order. The last algorithm focuses
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on the determination of OFRF using the ALEs. This algorithm uses the relationship between

the OFRF representation and the ALEs determined in the first two algorithms. Using the new

numerical method presented, the OFRF of the SISO nonlinear system can be determined with

significantly less number of numerical simulations compared to the previous works. Using

the new numerical method presented in this chapter, an OFRF based analysis and design was

applied to the nonlinear passive engine mount system.

Chapter 4 discussed the new numerical method for the determination of the OFRF when the

systems are MIMO nonlinear systems. It uses the same concepts and techniques presented

in Chapter 3 and is an extension of the new numerical method developed in Chapter 3. The

new numerical method for the determination of the OFRF for the MIMO nonlinear system

also consists of three algorithms. All the algorithms are discussed and presented in details.

The new numerical method developed in this chapter provides a better understanding of the

relationship between the nonlinear parameters and the output for MIMO nonlinear system.

The OFRF based design of a building structure vibration isolation system has then be used

to demonstrate how the new numerical method can be applied to implement a design for

application in earthquake engineering.

Chapter 5 shows the application of the new numerical method developed in this thesis

on chemical engineering system. A periodic operation of a nonlinear non-isothermal

CSTR system is chosen for the analysis. The material and energy balance of the nonlinear

non-isothermal CSTR system is transformed to the NDE model by expanding the nonlinear

terms in the Taylor series form. Then the new numerical method discussed in Chapter 4 is

implemented into the nonlinear non-isothermal CSTR system. Using the OFRF determined,

the analysis and design of the system are done.

Lastly, Chapter 6 summarises and concludes the main results of this research. All contributions
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of the new numerical method proposed in this thesis and its application in the engineering

system are listed. In addition, the suggestion of topics that can use the new outcomes

proposed in the present study is discussed.



Chapter 2

Frequency domain analysis of nonlinear

systems and associated chemical

engineering background

2.1 Overview

Studies of a system can be done in either time or frequency domain by using appropriate

mathematical models. Most practical systems are using time domain analysis where the input

and output signals of the systems are all physical variables changing with time. Although

the frequency domain is far more complicated compared to the time domain, the frequency

domain can provide a more physical meaningful insight into the systems dynamic behaviours

such as stability and resonance. Thus, the analysis in the frequency domains has an excellent

opportunity to be developed.

In the early day, the frequency response techniques provide revolution and conceptual

framework for control theory and applications in engineering [48]. Thus, extensive studies

have been conducted on the system, control, and other relevant subject areas by using
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frequency domain analysis and design. Practical systems can be separated into two; linear

and nonlinear systems. In comparison, a linear system is easier to be analysed compared

to a nonlinear system, but most practical engineering systems cannot be modelled as linear

systems. This makes the nonlinear system analysis an interesting topic to be researched.

2.2 System Identifications

Intensive studies have been done for linear systems in both the time and frequency domains.

In the time domain, for a linear system operator, it can be defined as

y(t) = H(u(t)) (2.1)

where H is a mathematical operator that maps an input signal u(t) to an output signal y(t).

The system output y(t) subjected to a general input u(t) of a linear, stationary, causal and

single input-single output (SISO) in the time domain can be represented by the convolution

integral [72] as

y(t) =
∫

∞

−∞

h(σ)u(t −σ)dσ (2.2)

where h(δ ) is the impulse response called “kernel” and is assumed to satisfy h(t) = 0 for

t < 0.

Whereas, in the frequency domain, the output frequency response of the linear systems

can be described by

Y ( jω) = H( jω)U( jω) (2.3)

when the stable time-invariant linear system is subject to an input whose Fourier transform

exist. U( jω) and Y ( jω) are the system input and output frequency response which are the

Fourier transform of the system output y(t) and a general input u(t) in the time domain.

H( jω) is the Frequency Response Function (FRF) of the linear system. (2.3) shows that the
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output frequency response at any frequency of ω of interest is affected by the input spectrum

and has been widely applied in systems analysis and controller design for engineering.

However, most systems in engineering and real life cannot be represented as a linear system,

due to the presence of nonlinearities. There is an advance progress in the analysis of nonlinear

systems in both time and frequency domain, and significant progress towards understanding

these methods has been made [46]. But it is still a great challenge to extract useful information

from the system, and there is no generic methods to deal with the problems with nonlinearity

as the analysis of a nonlinear system is a problem dependent [28]. The nonlinear systems

have challenging dynamic behaviours such as input multiplicities [42], chaos [23] and open

loop behaviour [83].

There are many mathematical models that have been used to describe nonlinear systems in

the study of the nonlinear control analysis such as Nonlinear Differential Equation (NDE),

Nonlinear AutoRegressive model with eXogenous input (NARX), Nonlinear AutoRegressive

Moving Average with eXogenous input (NARMAX), and Time Delayed Differential Equation

(TTDE) [12, 33, 62]. The NDE model is convenient and concise while the NARX model

provides practical nonlinear system identification and is used when analysing experimental

data. The NARMAX model described a system regarding a nonlinear functional expansion

of lagged input, output and prediction errors. Lastly, if there is time delays in the physical

process, the TDDE is used in describing differential equations system with time delays

in the physical process. These mathematical models are widely used in the analysis of

nonlinear systems because they can provide better parameter estimation and prediction

accuracy compared to the linear model.

The nonlinear systems can be separated to continuous-time process models and the discrete-time

process models. Volterra model can be both continuous-time model and discrete-time model.
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The Volterra models will be discussed in the next subsection as it is the basic concept of

this research. Closely related to the Volterra models are the block-oriented models. The

best-known members of this class are the Hammerstein and Wiener models, which are special

kinds of nonlinear systems that have various applications in many practical engineering

problems and have been actively researched for a long time. The Hammerstein and Wiener

models are considered as block-oriented nonlinear systems that are composed by a cascade

combination of a linear dynamic model and a static (memoryless) nonlinear function.

There are several methods for the identification of Hammerstein and Wiener models in

the literature [87, 3] such as the iterative method, the stochastic method, the nonlinear least

square method, the separable least square method, the blind method and the frequency

domain method. These methods have their own advantages and disadvantages.

The iterative method divides parameters into linear and nonlinear parts before optimizing

one part and fixing the other parts. The process is repeated where the two parts are switched

for the optimization. The iterative method is efficient to be used in the identification of

Hammerstein and Wiener model [53, 80]. The stochastic method only needs two data which

are white Gaussian input and the system output for the identification. Thus, without knowing

the nonlinearity of the system, the identification of the models can be done [11].

For the nonlinear least square method, it only works if certain restrictive conditions are

hold [6] while the separable least square method works for hard input nonlinearities [5]. Hard

input nonlinearities are difficult because of the coupled unknown parameters of both linear

and nonlinear parts. However, for a system where the structure of the input nonlinearities

are unknown, the identification of linear and nonlinear parts can be done using the blind

method [2]. This makes the blind method works perfectly when no knowledge of the input

nonlinearities available.
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In the frequency domain identification of the Hammerstein model, the use of sinusoidal inputs

makes the identification of the system simpler as the subharmonics and chaos can never

happen. Besides, all the signals inside the system consist of frequencies that are an integer

multiple of the input frequencies because of the periodicity of the input signals. The output

frequency response of the system also can be represented by a Fourier series representation

and the Fourier coefficients are invariant to the input frequencies.

There are several approaches to the frequency domain identification of Hammerstein models.

In [3], the algorithm discussed how a no priori information on the structure of the nonlinearity

and a non-parametric linear part could produce the convergence results in the presence of

white noise assumption.The same concept is used in [4] for the Wiener model by making

some minor modifications.

For a computer-based system, the input and output data for the system only available

at discrete time instants because the measurements and controls are made at discrete time

instants. Thus, although continuous time models can be determined from these data, the

analysis of the discrete-time system is easier to be done by using discrete-time models

themselves. This allows the NARMAX to be popular because it can represent a wide class of

nonlinear systems model and one of the discrete-time data models.

2.2.1 Volterra models

The Volterra model can be both continuous-time model and discrete-data model. There

are research on nonlinear systems that described the system by using the Volterra series

[72, 82, 68]. In [14], it is shown that most of the nonlinear systems can be represented as

Volterra series expansion. The Volterra series also had been used in analysing nonlinear

sytem in the frequency domain as it provides an important theoretical foundation.
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A nonlinear system that is stable at zero equilibrium point which can be approximated

by a Volterra series up to maximum order N can be written as [74]

y(t) =
N

∑
n=1

∫
∞

−∞

. . .
∫

∞

−∞

hn(τ1, . . . ,τn)
n

∏
i=1

u(t − τi)dτi (2.4)

where y(t) and u(t) are the output and input of the system and hn(τ1, . . . ,τn) is the nth-order

Volterra kernel. hn(τ1, . . . ,τn) is a real valued function of τ1, . . . ,τn. Equation (2.4) can be

expressed as

y(t) =
N

∑
n=1

yn(t) (2.5)

where

yn(t) =
∫

∞

−∞

. . .
∫

∞

−∞

hn(τ1, . . . ,τn)
n

∏
i=1

u(t − τi)dτi (2.6)

is the contribution of the nth-order nonlinearity to the system output.

Any system that possesses a Volterra series representation can be described by a series

of associated linear equations (ALEs) [84–86]. From these ALEs, analysis of the output

of the nonlinear system can be done order by order. The derivations of ALEs are obtained

through manipulations of the Volterra series. To understand the concept of ALEs, consider a

second-order differential equation described as

mÿ(t)+ cẏ(t)+ ky(t)+
N

∑
j=2

k jy j(t) =
M

∑
j=1

a ju j(t) (2.7)

where u is the input terms of the system and y is the output terms of the system. Leaving on

the left hand side of the equation only the linear elements, (2.7) will be

mÿ(t)+ cẏ(t)+ ky(t) =
M

∑
j=1

a ju j(t)−
N

∑
j=2

k jy j(t) (2.8)
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Knowing that the system posesses a Volterra representation, substitute

y(t) =
∞

∑
n=1

yn(t) (2.9)

into (2.8) form

m
∞

∑
n=1

ÿn(t)+ c
∞

∑
n=1

ẏn(t)+ k
∞

∑
n=1

yn(t) =
M

∑
j=1

a ju j(t)−
N

∑
n=2

kn

(
∞

∑
i=1

yi(t)

) j

(2.10)

Then, by rearranging the sum, grouping the degree of the terms, (2.10) become

m
∞

∑
n=1

ÿn(t)+ c
∞

∑
n=1

ẏn(t)+ k
∞

∑
n=1

yn(t)

=
M

∑
j=1

a ju j(t)−

(
∞

∑
n=1

n

∑
l=2

kl

n−l+1

∑
j1=1

. . .
n−l+i− j1−···− ji−1

∑
ji=1

. . .
n− j1−···− ji···− jl−1

∑
jl=0

y j1(t)y ji(t) . . .y jl(t)

)
(2.11)

In (2.11), all the elements on the left hand side are linear whereas on the right hand side, all

the terms comprise the summation of terms. In ALEs, determination of the total response

will be the summation of all the responses.

Based on the Volterra series expansion, the concept of the generalized frequency response

function (GRFRs) is proposed in [27]. The nth-order GFRF of system (2.4) is defined as

Hn( jω1, . . . , jωn) =
∫

∞

−∞

. . .
∫

∞

−∞

hn(τ1, . . . ,τn)exp(− j(ω1τ1, . . . ,ωnτn))dτi . . .dτn (2.12)

The GFRF concept is considered as direct extension of the frequency response function

(FRF) function to nonlinear systems. The GFRF provides the fundamental principle for
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the study of nonlinear systems in the frequency domain as they can provide a great insight

about the nonlinear system that had been analysed by highlighting physical properties via

unique system representation and is defined as the multidimensional Fourier transform of the

Volterra kernels [88]. Billings and Peyton Jones derived the analytical relationship between

NDE and GFRFs in [13]. Based on the GFRFs concept, an analytical expression for the

output frequency response to a general input that reveals how the nonlinear mechanisms

operate on the input spectrum to produce the system output frequency response was derived

as [43]
Y ( jω) =

N

∑
n=1

Yn( jω) for ∀ω,

Yn( jω) =
1/

√
n

(2π
n−1)

∫
ω1+···+ωn=ω

Hn( jω1, . . . , jωn)
n

∏
i=1

U( jωi)dσnω

(2.13)

where Yn( jω) represents the nth-order output frequency response of the system and∫
ω1+···+ωn=ω

Hn( jω1, . . . , jωn) denotes the integration of Hn( jω1, . . . , jωn)
n

∏
i=1

U( jωi) over

the n-dimensional hyperplane ω1, . . . ,ωn = ω . The term Hn( jω1, . . . , jωn) is the nth-order

GFRF of the system as defined in (2.12).

In nonlinear systems that can be described by the Volterra series in equation (2.4), the output

frequencies at the steady state can be defined as follows

fY =
N⋃

n=1

fYn (2.14)

where fY represents the non-negative frequency range of the nonlinear system output and

fYN is the non-negative frequency range produced by the nth-order system nonlinearity. An

explicit expression for the nonlinear systems subjected to a general input with a spectrum is



2.2 System Identifications 23

derived as

U( jω) =


U( jω) when |ω| ∈ (a,b),

0 otherwise
(2.15)

where b > a ≥ 0 [44]. The result obtained is as follows

fY = fYN

⋃
fYN−(2p∗−1),

fYN =


i∗−1⋃
k=0

Ik when
nb

a+b
−
⌊

na
(a+b)

⌋
< 1,

i∗⋃
k=0

Ik when
nb

a+b
−
⌊

na
(a+b)

⌋
≥ 1,

i∗ =
⌊

na
(a+b)

⌋
+1 ⌊.⌋ means to take the integer part,

Ik = (na− k(a+b),nb− k(a+b)) for k = 0, . . . , i∗−1,

Ii∗ = (0,nb− i∗(a+b)),

p∗ = 1,2, . . . ,⌊N/2⌋.

(2.16)

This result provides a significant analytical description for the output frequencies of the

nonlinear system and shows the extension of the output frequencies of the linear system to

the nonlinear system. Although these methods asked for more computations compared to

the linear case, besides [43, 44], there are studies that have been focusing on computing

the GFRFs of nonlinear systems. The analysis of nonlinear systems using GFRFs needs

more efforts as it is not as trivial as a linear system case and the multidimensional nature of

nonlinear systems make it hard to interpret and analyse the system properties.

There are several methods to derive the GFRFs for a nonlinear system, for example the

orthogonal functionals [72, 75] , the variational approach [72, 74] and the probing method

[13, 65]. These methods produce different GFRFs representations. For example, GFRFs
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is represented in the nonparametric form for the variational method and can only be used

when the system has input-output data [74]. Meanwhile, in harmonic probing, the GFRFs

can be obtained through recursive algorithm where higher order GFRFs are computed by

using their lower order counterparts. The orthogonal functionals representation is used to

deal with convergence problem of the conventional Volterra series, where it was difficult to

find convergent Volterra series representation for the given operator [75].

However, there is some limitation in the GFRFs method. There is no revelation in how

the system output frequency response depends on the system parameters. The GFRFs

concept could not provide a clear analytical relationship between the system time domain

parameters and the system output frequency response. Graphical analysis of GFRFs method

also could not be done in certain analysis or it could be cost computations except for second

order cases, where the GFRFs can be analysed from surface plots.

Hence, based on the Volterra series theory and the GFRF concept and limitations, the

Nonlinear Output Frequency Response Function (NOFRFs) was proposed by Lang and

Billings in 2005 [45] the Output Frequency Response Function (OFRF) was proposed by

Lang et al in 2007 [46]. These concepts are the results of a series of studies. The NOFRFs

method gave better estimation compared to the harmonic balance method [61]. The concept

of OFRF will be discussed comprehensively in the next subsection.

The GFRF concept itself is being researched actively to overcome its limitation. In 2012,

Bayma produced an algorithm to generate GFRFs from nonlinear system models that can

be described by NARX model [8]. This allows GFRFs to be determined up to any arbitrary

order. Using the same concept applied to the GFRFs, Bayma developed a new method to

determine NOFRFs [7]. The concept of OFRF will be discussed comprehensively in the next

subsection.
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2.2.2 Output Frequency Response Function (OFRF)

The OFRF concept is useful for a wide class of nonlinear system that can be represented

by NDE model. It derived an explicit analytical relationship between the output frequency

response and the time domain system coefficients.

By revealing the significant link between the system output frequency response and parameters

that define the system nonlinearity, OFRF concept has provided an important basis for the

analysis and design of the nonlinear system. However, the OFRF concept could not be used

in analysing a nonlinear system that exhibits sub-harmonics and chaos as the basis of the

OFRF concept is the Volterra series approach which occupies the middle ground in generality

and applicability of the theories of nonlinear systems [46, 72].

Consider polynomial-type nonlinear systems, where the system can be described by a

differential equation of a polynomial form or known as Nonlinear Differential Equation(NDE)

model
M

∑
m=1

m

∑
p=0

p+q=m

L

∑
l1,...,lp+q

cpq(l1, . . . , lp+q)
p

∏
i=1

Dliy(t)×
p+q

∏
i=p+1

Dliu(t) = 0 (2.17)

where M and L are the maximum degrees of nonlinearity in terms of y(t) and u(t), and the

maximum order of derivative while the operator D is defined by

Dlx(t) =
dlx(t)

dt l (2.18)

This equation explains the relationship between the time and frequency domain representations

of nonlinear systems explicitly. By assuming c(1,0)(0) ̸= 0 , equation (2.17) can be used to

represent a valid input/output map. By rearranging this equation, a nonlinear differential

equation model is produced
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− c1,0(0)y(t) =
M

∑
m=1

m

∑
p=0

p+q=m

L

∑
l1,...,lp+q

cpq(l1, . . . , lp+q)
p

∏
i=1

Dliy(t)×
p+q

∏
i=p+1

Dliu(t) (2.19)

For a better of understanding of (2.17), consider a cubic duffing oscillator that was described

as

10ÿ(t)+1000ẏ(t)+2.5×106y(t)+5×104y(t)3 = 10u(t) (2.20)

where the input signal for the output frequency response analysis was u(t) = 15sin(3t), t ∈

[−20s,20s]. (2.20) is in the form of NDE model in equation (2.17) with M = 3 and L =

2. The coefficient of this NDE model are c1,0(2) = 10, c1,0(1) = 1000,c1,0(0) = 2.5×

106,c3,0(0,0,0) = 5×104,c0,1(0) =−10 and all other cpq(.) = 0.

For nonlinear systems that can be described by model (2.17), and satisfies the following

assumptions:

• The system is stable at zero equilibrium

• The systems can equivalently be described by the Volterra series model with N ≥ M

over a regime around the equilibrium,

there exists an explicit analytical relationship between the output frequency response and the

model parameters. In [46], the OFRF of a general nonlinear system can be represented as

Ŷ ( jω) = ∑
( j1,..., jSN )∈J

γ( j1,..., jSN )(ω)x j1
1 . . .x

jSN
SN

=
m1

∑
j1

m2

∑
j2

. . .

mSN

∑
jSN

γ( j1,..., jSN )(ω)x j1
1 . . .x

jSN
SN

(2.21)

where mi are the maximum power of xi, i = 1, . . . ,SN .
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The functions γ( j1,..., jSN )(ω), ji = 0, . . . ,mi, can be determined as



γ0, . . . ,0︸ ︷︷ ︸
SN

(ω)

...

...

γm1,...,mSN
(ω)


= X−1

M̄


Y 1( jω)

...

...

Y M̄( jω)


, (2.22)

where M̄ = (m1 +1)(m2 +1) . . .(mSN +1) and

XM̄ =



(x0
11 . . .x

0
SN1) . . . . . .(x

m1
11 . . .x

mSN
SN1 )

...
...

...
...

...
...

...
...

(x0
1M̄ . . .x0

SNM̄) . . . . . .(xm1
1M̄ . . .x

mSN
SNM̄)︸ ︷︷ ︸

(m1+1)(m2+1)...(mSN+1)


(2.23)

xi(1), . . . ,xi(mi +1) are mi +1 different values that can be taken by the systems parameter

xi, i = 1, . . . ,SN . When the parameters x1, . . . ,xSN of the systems are taken as x1m̃, . . . ,xSNm̃,

with m̃ = 1, . . . ,M̄,xim̃ ∈ {xi(1), . . . ,xi(mi+1)}, i = 1, . . . ,SN , m̃ = 1, . . . ,M̄, (x1i, . . . ,xSN i) ̸=

(x1v, . . . ,xSNv), i ̸= v, the output spectrum of (2.21) can be defined as Y m̃( jω). The output

spectrum Y m̃( jω) can be determined from the system output response through experimental

tests and simulation analysis [28].

In [59], the information about the parametric characteristics in (2.21) can be known priori

by using a set of algorithm. This algorithm provides a good way to determine all the

parametric characteristics involved in the OFRF. By knowing the parametric characteristics,

a correct OFRF representation of a system can be determined easily. Denote the set of all the
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parametric characteristics involved in the representation of Y ( jω) given by (2.21) as Mn and

M1 = [1], then

1. Set N ≥ 0 and n = 0,1, . . . ,N.

2. Calculate Mn by using

Mn =

[
L⋃

l1,...,ln=0

[c0n(l1, . . . , lp)]

]
∪

[
n−1⋃
q=1

n−q⋃
p=1

L⋃
l1,...,ln=0

[c0n(l1, . . . , lp)⊗Mn−q,p]

]

∪

[
n⋃

p=2

L⋃
l1,...,lp=0

[cp0(l1, . . . , lp)⊗Mnp]

]
(2.24)

where ⊗ is the Kronecker product, and

Mnp =
n−p+1⋃

i=1

(Mi ⊗Mn−i,p−1) and Mn1 = Mn (2.25)

3. Lastly, the set of the parametric characteristics in (2.21) can be expressed as

M̄N =
N⋃

n=1

Mn (2.26)

M̄N is the parametric characteristics involved in the OFRF. Using the parametric characteristics,

the OFRF representation can be determined.

One of the numerical methods that could be used for the estimation of the OFRF is called

as nonlinear Characteristic Output Function(nCOS) [38, 36]. In this method, the nonlinear

output spectrum of (3.1) is written as an explicit polynomial function of the characteristic

parameters of the system

Y ( jω) =
N

∑
n=1

χn ·ϕn( jω)T (2.27)

where χn denotes the nth-order characteristic parameter vector composed of nonlinear

parameters and ϕn( jω)T is the correlative complex-valued function of the nth-order output
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spectrum. Both χn and ϕn( jω)T can be analytically determined with method in [37] and [38].

By using the nth-order output spectrum (nth-OSE) algorithm and nth-order nCOS estimation

(nth-COSE) algorithm[35], the estimation of OFRF function can be written as

Ŷ ( jω) = ρŶ1( jω)+

χn|c̄=1

∑
n=2,3,...

ρ
nŶn( jω)+

χn|c̸̄=1

∑
n=2,3,...

ρ
n(Ŷn( jω)|c̄=0χn|c̄ϕn( jω)T ) (2.28)

where c̄ is the set of the characteristics parameters of the system. The OFRF of this method is

represented in a different form compared to that in [46] where it is expressed in a polynomial

function that explicitly stated the relationship between the output spectrum and all the system

characteristic parameters such as nonlinear parameters and input excitation magnitude.

For the estimation of the OFRF, several numerical methods have been developed [35, 37, 39,

46]. However, biased and even wrong estimation is hard to be avoided since the truncation

order of the underlying Volterra series expansion for the nonlinear system is difficult to know

in advance and it can be varied with different input magnitudes. This reduced the reliability

and effectiveness of the OFRF based analysis. As a conclusion, further research need to be

conducted in order to achieve a more effective OFRF based nonlinear system analysis and

provide significant analysis and design of the nonlinear system in the frequency domain.

2.3 Chemical Engineering Process Background

2.3.1 Type of chemical reactors

A chemical process is a process of chemical reaction between two or more reactants resulting

in a conversion of chemical substances that involved. A chemical reactor is a vessel

where chemicals are made as the product of a chemical process reaction. In designing

a chemical reactor, many factors are considered, but the two most important factors are the
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thermodynamic and kinetics of the chemical reaction for the system. The chemical reactors

can be classified into their mode of operations which are continuous and discontinuous

reactors [17]. The two main types of the continuous chemical reactors are continuous stirred

tank reactor (CSTR) and plug flow reactor(PFR) whereas batch reactor is a widely used

discontinuous reactor. Other types of continuous chemical reactors are fixed bed reactors and

fluid bed reactors. Figure 2.1 shows the batch reactor, CSTR, and PFR.

Figure 2.1: The reactors; (a) Batch reactors (b) CSTR (c) PFR.

A batch reactor is a closed thermodynamic reactor system where all reactants are added

at the start and no withdrawal is made until the reaction has reached the desired degree of

completion. A batch reactor is not suitable for large batch size production but is a good

choice of reactor for a small scale production. Thus, the batch reactor is useful in the lab.

Besides, the batch reactor can be used for reactions that required long reaction times and

reactions that have superior selectivity. As the product of the batch reactor can only be

collected once the reaction is completed, the same batch reactor can be used for different

chemical processes. Batch reactors are used widely in chemical and food industry such as

inks, dyes and polymers productions.
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CSTR is a reactor that runs with a continuous flow of reactants and products at a steady-state

operation. The benefit of CSTR is good control of the system and continuous operation can

be done easily. It is economically advantageous to conduct CSTRs in series and parallel. In

the calculation of the performance of CSTR, an assumption of perfect mixing must be made.

Besides, the steady-state CSTR produce low conversion per unit volume. Although there is

a lot of disadvantages of using CSTR, chemical engineer still prefers CSTR because of its

highly flexible condition.

PFR is a tubular reactor that is used for gas reactions. In a PFR, it is assumed that the

flow rate and fluid properties are uniform to the fluid motion over any cross-section and there

are negligible axial mixing [51]. There could be lateral mixing but there must not be any

axial mixing such diffusion [47]. For the same conversion of CSTR and PFR, the volume of

PFR is smaller than the volume of CSTR.

There is an interest in the periodic operation of the reactors to improve the conversion

of the product. Periodic operation of the chemical reactors had been explored actively when

the researchers started to focus on the dynamic behaviour of chemical reactors in the decade

1970-1980 [78, 70, 30]. In [77], Si and Blackburn identified five benefits of the periodic

operation of the chemical reactors. First, the improvement of the conversion, where it is

better than the optimal steady-state operation [19, 71, 73]. Besides, the periodic operation

of the chemical reactors improve the selectivity of the product, thus fewer by-products are

produced. Although in the region of high parameter sensitivity, periodic operation allows the

reactor to be operated safely. Lastly, another advantage of periodic operation is the reduction

rate of catalyst deactivation compared to the steady-state operation [79].

The improvement of the conversion in the periodic operation of chemical reactors is due to

the system nonlinearity [24]. However, researchers started to debate whether the results of
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the periodic operation is significant. Thus, there are investigations in the optimisation of the

periodic operation of the chemical reactors [70, 30]. Overall, these studies provide important

insights into the analysis and control of the periodic operation.

2.3.2 Chemical Process Control

In chemical process control, there are manipulated variables, controlled variables and

processes. The objective of chemical process control is to maintain the process outputs

(controlled variables) at the desired operating conditions, efficiently and safely while adjusting

the process inputs (manipulated variables). A process is called linear when it can be described

by a linear combination of derivatives of the process output y(t), the process input u(t) and

a constant. There are two types of linear processes, time-invariant and time-variant linear

processes where it depends on the coefficients, if the coefficients are time-invariant, then it

became the time-invariant linear process and vice versa. Several control techniques available

for linear process are the conventional proportional-integral-derivative (PID) control, internal

model control (IMC), model predictive control and adaptive control [76, 81, 90].

However, many important industrial chemical processes exhibit the nonlinear behaviours

where the relationship between the controlled and manipulated variables depends on the

operating condition. In solving nonlinear chemical process control, the common problems

involved are associated with chemical processes like time delays, unmeasured state variables

and high-order and distributed processes [9]. Thus, several methods and techniques that have

been used by the researchers to solve these problems. The PID control still effective if the

nonlinearities are mild or the nonlinear process operates over a small range of conditions

[67]. For other linear control strategies, the internal model control, model predictive control

and adaptive control, they provide adequate performance when the process is sufficiently

linear in the region of operation [50]. Other nonlinear control strategies provide significant

improvements over linear control strategies when the process is highly nonlinear.
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One of the fundamental nonlinear control strategies is feedback linearization. The feedback

linearization is based on input-output linearization or state-space linearization. Input-output

linearization control is restricted to the process where the nonlinear phase is minimum

whereas the state-space linearization exploited the restriction of the input-output linearization

where the system has a non-minimum phase nonlinear system and produces a stable internal

control [29].

In solving the nonlinear chemical process control systems, other methodologies that can be

used are Nonlinear Internal Model Control (NIMC) and Nonlinear Model Predictive Control

(NMPC) techniques [21, 25]. The NIMC method can be interpreted as a variant of the

input-output linearization technique and can be used in the open-loop stable processes only

but the main advantage of this method was the main basis of the techniques is on full-state

feedback. This method uses the two features of the IMC where the controller design is based

on the inverse of the process model and the feedback signal is taken from the error between

the plan and the model outputs. The NMPC method was an extended concept of MPC where

it provided stability results for the nonlinear system by requiring knowledge of the current

state of the nonlinear system and it had the ability to handle all constraints such as control

inputs and outputs directly [29, 76].

An explicit mathematical model of process dynamics is required for most of the methodologies

discussed above. Thus, this makes the development and analysis of the nonlinear process

identification important to be studied. The models developed from the analysis of the

nonlinear process will be used in the control system design methodologies. There are several

nonlinear system representations of pH neutralisation process, for example NARX models

[66], neural networks [10] and Wiener model [41] and these representations were used in

different control techniques.
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Another method to analyse both linear and nonlinear chemical process is understanding the

process in the frequency domain. It uses the concept of Fourier transform. In the analysis of

the nonlinear chemical process, the concept of higher-order frequency response functions

(FRFs) is used where it applicable for weakly nonlinear systems[63]. The higher-order

frequency response functions (FRFs) is based on Volterra series and generalised Fourier

transform. According to Petkovska and Do [64], the analysis of nonlinear systems in

frequency domain gives accurate limits in which linear analysis is applicable and enables

nonlinear model parameters estimation.

In chemical process control analysis in the frequency domain, researchers started to use

nonlinear frequency response (NFR) approach that was introduced in [64] recently. One

of the nonlinear chemical process systems that have been investigated in the frequency

domain using the NFR approach is the adsorption process [15, 16, 32]. In [16], analysis of

nonisothermal adsorption controlled by macropore diffusion had been done using the NFR

approach. This analysis developed NFR approach for investigation of adsorption kinetics

and the new approach shows better result compared to the linear FR method.

Besides, continuously stirred tank reactor (CSTR) have been investigated in the frequency

domain [55–57]. The basis of this analysis is the periodic operation of CSTR. The CSTR is

subjected to a periodic input operation in [55, 56] and to simultaneous periodic modulation

of two inputs in [57]. The NFR approach is used in the periodic operation of CSTR and it

was found that the results obtained by the NFR method agreed with the results of numerical

simulations. Besides, the results of the periodic operation of CSTR also better than the

steady-state operation of the CSTR.

Collectively, these studies outline a critical role for analysis of chemical process control to be

done in the frequency domain. The NFR approach provides good insight on the investigation
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of the chemical process. However, there is no analysis done in the chemical process control

that can provide the analytical relationship between the output frequency response and the

nonlinear parameters. The OFRF method that was developed by Lang et al. in [46] can

provide the analytical relationship between the output frequency response and the nonlinear

parameters. Thus, the applicability of the OFRF method in the chemical process control can

provide new insight and understanding in the nonlinear chemical process systems.





Chapter 3

A new numerical method for

determination of OFRF of SISO

nonlinear systems

3.1 Introduction

The Output Frequency Response Function (OFRF) is the basis of this whole research.

Why is it important to determine OFRF of nonlinear system? By revealing the significant

link between the system output frequency response and parameters that define the system

nonlinearity, the OFRF concept has provided an important basis for the analysis and design

of nonlinear systems. The OFRF concept can be used in analysing nonlinear systems that can

be studied using the Volterra series approach which occupies the middle ground in generality

and applicability of the theories of nonlinear systems [46, 72].

This chapter presents three new synergizing algorithms involved in the new numerical

method for determining the OFRFs of SISO nonlinear systems. It will begin by defining the

nonlinear differential equation (NDE) model as the OFRF concept is useful for a wide class
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of nonlinear systems that can be represented by NDE model, showing an explicit analytical

relationship between the output frequency response and the time domain system coefficients.

Then, the concept of the OFRF for single input single output (SISO) nonlinear systems is

introduced and an algorithm is derived where it can determine OFRF representation of the

output spectrum of the system to any inputs.

The first algorithm is about the determination of OFRF representation of the SISO nonlinear

system. The second algorithm is for the determination of ALEs for the NDE model where

the ALEs can be determined easily up to any nth-order. The last algorithm is focusing on

the determination of OFRF using the ALEs. This algorithm use the relationship between

the OFRF representation and the ALEs determined in the first two algorithms. An example,

a simple mechanical system is used to demonstrate the effectiveness of the new numerical

method. Then, the new numerical method will be applied to the passive engine mount system

and the OFRF based analysis will be done using the OFRF determined to facilitate the design

process of the system.

The advantage of the new numerical method is that it allows OFRF, which reveals a significant

link between the system output frequency response and the parameters that define the

system nonlinearity to be determined with significantly less number of numerical simulations

compared to previous works. When the process of determining OFRF is easier, the design of

NDE system can be done more efficiently than before.
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3.2 A new method for determining the OFRF of the SISO

nonlinear systems

3.2.1 NDE model for SISO nonlinear systems

Consider nonlinear systems which can be described by a differential equation of a polynomial

form known as NDE model

M

∑
m=1

m

∑
p=0

p+q=m

L

∑
l1,...,lp+q

cpq(l1, . . . , lp+q)
p

∏
i=1

Dliy(t)×
p+q

∏
i=p+1

Dliu(t) = 0 (3.1)

where M is the maximum degree of nonlinearity in terms of y(t) and u(t), L is the maximum

order of differential function and the operator D is defined by

Dlx(t) =
dlx(t)

dt l (3.2)

This equation describes the relationship between the time domain input and output of the

nonlinear systems. u(t) and p are corresponds to the inputs while y(t) and q are corresponds

to the outputs. This equation also can represent nonlinear systems where its output and

inputs terms relate to each other although the presence of such systems are not common. By

assuming c(1,0)(0) ̸= 0 , equation (3.1) can be used to represent a valid input/output map. By

rearranging this equation, a NDE model is produced as

− c1,0(0)y(t) =
M

∑
m=1

m

∑
p=0

p+q=m

L

∑
l1,...,lp+q

cpq(l1, . . . , lp+q)
p

∏
i=1

Dliy(t)×
p+q

∏
i=p+1

Dliu(t) (3.3)

To illustrate the NDE model, consider a simple mechanical system that is described by

240ÿ+296ẏ+16000y+a2ẏ2 +a3ẏ3 = u(t) (3.4)



40
A new numerical method for

determination of OFRF of SISO nonlinear systems

where the input

u(t) =
200
π

[sin(15t)− sin(3t)
t

, t ∈ [−40.955s,40.96s] (3.5)

and a2 and a3 are the system nonlinear characteristic parameters. This simple mechanical

system is in the form for NDE model in equation (3.1) where M = 3 and L = 2. The

coefficients of this specific NDE model are c0,1(0)=−1, c1,0(0)= 1600,c1,0(1)= 296,c1,0(2)=

240,c2,0(1,1) = a2,c3,0(1,1,1) = a3 and all other cpq(.) = 0.

3.2.2 The Output Frequency Response Function of the SISO nonlinear

systems

3.2.2.1 OFRF representation of the SISO nonlinear system

For nonlinear systems that can be described by model (3.1), and satisfies the following

assumptions:

• The system is stable at zero equilibrium

• The systems can equivalently be described by the Volterra series model with N ≥ M

over a regime around the equilibrium,

there exists an explicit analytical relationship between the output frequency response and

the model parameters. According to [46], the OFRF of a general nonlinear system can be

represented as

Ŷ ( jω) = ∑
( j1,..., jSN )∈J

γ( j1,..., jSN )(ω)x j1
1 . . .x

jSN
SN

=
m1

∑
j1

m2

∑
j2

. . .

mSN

∑
jSN

γ( j1,..., jSN )(ω)x j1
1 . . .x

jSN
SN

(3.6)

where xi, i = 1, . . . ,SN are the parameters which define the system nonlinearity; mi is

the maximum power of xi, i = 1, . . . ,SN . γ( j1,..., jSN )(ω) represents the coefficient of the

term x j1
1 . . . x

jSN
SN

. x j1
1 . . . x

jSN
SN

, ( j1, . . . , jSN ) ∈ J is a set of all monomials involved in the

representation of Ŷ ( jω).
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In order to determine the OFRF representation of the nonlinear system, the set of the

monomials involved in the representation of Ŷ ( jω) up to Nmaxth-order, denote as MNmax need

to be determined first. Then using the MNmax determined, the OFRF representation of the

nonlinear system can be derived. The OFRF respresentation of a nonlinear system can be

determined by the following algorithm,

1. Set n = 1,2, . . . ,Nmax where Nmax ≥ 0.

2. M1 = [1]. Calculate Mn by using

Mn =

[
L⋃

l1,...,ln=0

[c0n(l1, . . . , lp)]

]
∪

[
n−1⋃
q=1

n−q⋃
p=1

L⋃
l1,...,ln=0

[c0n(l1, . . . , lp)⊗Mn−q,p]

]

∪

[
n⋃

p=2

L⋃
l1,...,lp=0

[cp0(l1, . . . , lp)⊗Mnp]

] (3.7)

where ⊗ is the Kronecker product, and

Mnp =
n−p+1⋃

i=1

(Mi ⊗Mn−i,p−1) and Mn1 = Mn (3.8)

3. The set of the monomials involved in the representation of OFRF is

M̄Nmax =
Nmax⋃
n=1

Mn (3.9)

4. Lastly, the OFRF respresentation of the system can be written as

Ŷ ( jω) =
Nmax

∑
n=1

Mn f Pn f (3.10)

where f is corresponding to the element number in Mn.

This algorithm provides an effective way to determine all the monomials involved in the

OFRF (3.6). After knowing these monomials, an OFRF representation of the system can be

determined where every monomial is paired with an OFRF "coefficient".
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3.2.2.2 Example

Consider the simple nonlinear mechanical system that was discussed in the previous subsection,

the OFRF representation of the system up to fourth order, Nmax = 4 can be determined priori

using the algorithm that has been discussed as below. In this example, the OFRF that will

be determine is a fourth order because it is the same case that was analysed in [46]. Thus a

comparison with the number of numerical simulations needed can prove the efficiency of the

new method proposed in this research.

Firstly, set Nmax = 4, n = 1,2,3,4 and the monomial for the first order, M1 = [1]. Then

calculate each Mn using (3.7) resulting in

M1 = [1]

M2 = [a2]

M3 = [a2
2,a3]

M4 = [a2a3,a2
3]

(3.11)

Then, the set of the monomials involved in the OFRF of the simple nonlinear mechanical

system when up to 4-th order system nonlinearity is taken into the account can be expressed

as

M̄4 =
4⋃

n=1

Mn = [1,a2,a2
2,a3,a2a3,a2

3] (3.12)

and using this result, the OFRF representation of the system can be written as

Ŷ ( jω) = P̂11( jω)+a2P̂21( jω)+a2
2P̂31( jω)+a3P̂32( jω)

+a2a3P̂41( jω)+a2
3P̂42( jω)

(3.13)
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3.2.3 Derivation of ALEs for SISO nonlinear systems

3.2.3.1 Associated Linear Equations for SISO nonlinear systems

Any system that possesses a Volterra series representation can be described by a series of

ALEs [86, 85]. From these ALEs, analysis of the output of the nonlinear system can be done

order by order. The ALEs can be obtained through manipulations of the Volterra series. In

this subsection, as most of the nonlinear systems do not have the terms that represents both

inputs and outputs, only nonlinear systems that have the terms that represents only inputs or

outputs will be discussed. The basic NDE model that will be used in the derivation of ALEs

is

P

∑
p=1

L

∑
l1,...,lp

cp0(l1, . . . , lp)
p

∏
i=1

Dliy(t)+
Q

∑
q=1

L

∑
l1,...,lq

c0q(l1, . . . , lq)
q

∏
i=1

Dliu(t) = 0 (3.14)

where Q is the maximum degree of nonlinearity in terms of the inputs, u(t) while where P is

the maximum degree of nonlinearity in terms of outputs,y(t). There is no M and m when

compare to equation (3.1) because the inputs and outputs terms are independent.

Then separating the NDE to two different parts for the output, linear and nonlinear parts

produces

L

∑
l1=0

c10(l1)Dl1y(t)+
P

∑
p=2

L

∑
l1,...,lp

cp0(l1, . . . , lp)
p

∏
i=1

Dliy(t)

+
Q

∑
q=1

L

∑
l1,...,lq

c0q(l1, . . . , lq)
q

∏
i=1

Dliu(t) = 0 (3.15)

Using the knowledge that the NDE model posesses a Volterra representation, substitution of

y(t) =
∞

∑
n=1

yn(t) (3.16)
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into equation (3.15) yields

L

∑
l1=0

c10(l1)
∞

∑
n=1

Dl1yn(t)+
P

∑
p=2

L

∑
l1,...,lp

cp0(l1, . . . , lp)
p

∏
i=1

Dli
∞

∑
n=1

yn(t)

+
Q

∑
q=1

L

∑
l1,...,lq

c0q(l1, . . . , lq)
q

∏
i=1

Dliu(t) = 0 (3.17)

Then, rearrangement of the nonlinear part of the equation (3.17) is made as

L

∑
l1=0

c10(l1)
∞

∑
n=1

Dl1yn(t)+
P

∑
p=2

L

∑
l1,...,lp

cp0(l1, . . . , lp)
( ∞

∑
n=1

D0yn(t)
)p0
( ∞

∑
n=1

D1yn(t)
)p1

. . .

( ∞

∑
n=1

Dsyn(t)
)ps

+
Q

∑
q=1

L

∑
l1,...,lq

c0q(l1, . . . , lq)
q

∏
i=1

Dliu(t) = 0 (3.18)

where p0 + p1 + · · ·+ ps = p. Then, leaving on the LHS of the equation only the linear

elements, (3.18) will be

L

∑
l1=0

c10(l1)
∞

∑
n=1

Dl1yn(t) =−
P

∑
p=2

L

∑
l1,...,lp

cp0(l1, . . . , lp)
( ∞

∑
n=1

D0yn(t)
)p0
( ∞

∑
n=1

D1yn(t)
)p1

. . .

( ∞

∑
n=1

Dsyn(t)
)ps

−
Q

∑
q=1

L

∑
l1,...,lq

c0q(l1, . . . , lq)
q

∏
i=1

Dliu(t) = 0 (3.19)

For the determination of OFRF using ALEs derivation, the systems will be analyzed up to

Nmax order, thus (3.19) can be written as

L

∑
l1=0

c10(l1)
Nmax

∑
n=1

Dl1yn(t) =−
P

∑
p=2

L

∑
l1,...,lp

cp0(l1, . . . , lp)
(Nmax

∑
n=1

D0yn(t)
)p0
(Nmax

∑
n=1

D1yn(t)
)p1

. . .

(Nmax

∑
n=1

Dsyn(t)
)ps

−
Q

∑
q=1

L

∑
l1,...,lq

c0q(l1, . . . , lq)
q

∏
i=1

Dliu(t) = 0 (3.20)
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and (3.20) can be simplified as

L

∑
l1=0

c10(l1)
Nmax

∑
n=1

Dl1yn(t) =−
P

∑
p=2

L

∑
l1,...,lp

cp0(l1, . . . , lp)

(
S

∏
s=0

(Nmax

∑
n=1

Dsyn(t)
)ps

)

−
Q

∑
q=1

L

∑
l1,...,lq

c0q(l1, . . . , lq)
q

∏
i=1

Dliu(t) = 0 (3.21)

where S is the maximum power of the nonlinear terms for each nonlinear output terms. From

equation (3.22), it can be seen the relationship between the linear and nonlinear outputs and

the input.

For the determination of OFRF using ALEs, the analysis of the output of the nonlinear

system is done order by order where the linear terms on the left-hand side are solved by using

nonlinear terms that are one order lower on the right-hand side. Then, the response of the

nonlinear system is the total of all the response from the ALEs. The algorithm to determine

ALE for the NDE model is described as below.

3.2.3.2 Algorithm to determine ALE for the SISO nonlinear system

In ALEs, determination of the total response will be the summation of all the responses.

The following algorithm can be used to determined the ALEs for every Nth-order up to any

Nmaxth-order. Consider a NDE model where the linear and nonlinear parts of the outputs had

been separated and the input and the output terms independent and not related to each other

L

∑
l1=0

c10(l1)
Nmax

∑
n=1

Dl1yn(t) =−
P

∑
p=2

L

∑
l1,...,lp

cp0(l1, . . . , lp)

(
S

∏
s=0

(Nmax

∑
n=1

Dsyn(t)
)ps

)

−
Q

∑
q=1

L

∑
l1,...,lq

c0q(l1, . . . , lq)
q

∏
i=1

Dliu(t) (3.22)

where P is the maximum degree of nonlinearity in terms of y(t), Q is the maximum degree

of nonlinearity in terms of u(t), L is the maximum order of differential function, S is the
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maximum power of the nonlinear terms for each nonlinear output terms and the operator D

is defined by

Dlx(t) =
dlx(t)

dt l (3.23)

The ALEs for every nth-order up to any Nmaxth-order can be determined using the algorithm

below

1. Set n = 1,2, . . . ,Nmax where Nmax ≥ 0.

2. J0 = J1 = 0. The ALEs for every nth-order can be written as

L

∑
l1=0

c10(l1)Dl1yn(t) =
L

∑
l1,...,ln

c0n(l1, . . . , ln)
n

∏
i=1

Dliu(t)+ Jn − Jn−1 (3.24)

where

Jn =−
P

∑
p=2

L

∑
l1,...,lp

cp0(l1, . . . , lp)

(
S

∏
s=0

(n−1

∑
n=1

Dsyn(t)
)ps

(3.25)

3. The estimation of the output signal and the output spectrum for the system up to

Nmaxth-order thus can be written as

ŷ(t) =
Nmax

∑
N=1

ŷn(t) (3.26)

and

Ŷ ( jω) =
Nmax

∑
n=1

Ŷn( jω) (3.27)

This algorithm made the ALEs for every nth-order up to any Nmaxth-order can be determined

more easily.
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3.2.3.3 Example

To show the effectiveness of this algorithm, the ALEs for simple nonlinear mechanical system

up to 4th-order is determined using the steps in the algorithm. First, consider the NDE form

of the system as in (3.4). (3.4) can also be written in the (3.22) form as

240
∞

∑
n=1

D2yn(t)+296
∞

∑
n=1

D1yn(t)+16000
∞

∑
n=1

yn(t)+

a2

( ∞

∑
n=1

D1yn(t)
)2

+a3

( ∞

∑
n=1

D1yn(t)
)3

+
200
π

[sin(15t)− sin(3t)]
t

= 0 (3.28)

where all the condition of the system is the same as before.

As Nmax = 4, n = 1,2,3,4. Then, the general ALEs for every order up to 4th-order can

be written as

c1,0(2)ÿ1(t)+ c1,0(1)ẏ1(t)+ c1,0(0)y1(t) = c0,1(l1)Dl1u(t)+ J1 − J0

c1,0(2)ÿ2(t)+ c1,0(1)ẏ2(t)+ c1,0(0)y2(t) = c0,2(l1, l2)Dl1u(t)Dl2u(t)+ J2 − J1

c1,0(2)ÿ3(t)+ c1,0(1)ẏ3(t)+ c1,0(0)y3(t) = c0,3(l1, l2, l3)Dl1u(t)Dl2u(t)Dl3u(t)+ J3 − J2

c1,0(2)ÿ4(t)+ c1,0(1)ẏ4(t)+ c1,0(0)y4(t) = c0,4(l1 . . . , l4)
4

∏
i=1

Dliu(t)+ J4 − J3

(3.29)

where J0 = J1 = 0, c0,1(l1)Dl1u(t) = u(t) and c0,2(1) = c0,3(1) = c0,4(1) = 0.

Then solving for each Jn, the ALES for the system up to 4th-order are

240ÿ1(t)+296ẏ1(t)+16000y1(t) =u(t)

240ÿ2(t)+296ẏ2(t)+16000y2(t) =−a2ẏ1(t)2 −a3ẏ1(t)
3

240ÿ3(t)+296ẏ3(t)+16000y3(t) =−a2
(
ẏ2(t)2 +2ẏ1(t)ẏ2(t)

)
−a3

(
ẏ2(t)

3 +3ẏ1(t)2ẏ2 +3ẏ1(t)ẏ2(t)2)
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240ÿ4(t)+296ẏ4(t)+16000y4(t) =−a2
(
2ẏ1(t)ẏ3(t)+2ẏ2(t)ẏ3(t)+ ẏ3(t)2)

−a3
(
3ẏ1(t)ẏ3(t)+6ẏ1(t)ẏ2(t)ẏ3(t)+3ẏ1(t)ẏ3(t)2

+3ẏ2(t)ẏ3(t)+3ẏ2(t)ẏ3(t)2 + ẏ3(t)2)
(3.30)

Using the ALEs determined, the estimation of the output signal and the output spectrum for

the system up to 4th-order thus can be written as

ŷ(t) = ŷ1(t)+ ŷ2(t)+ ŷ3(t)+ ŷ4(t) (3.31)

Ŷ ( jω) = Ŷ1( jω)+ Ŷ2( jω)+ Ŷ3( jω)+ Ŷ4( jω) (3.32)

From (3.31), it can be understandable that the estimation of the output signal is the total of

all ALEs responses. Figure 3.1 shows the comparison of the simulated results and the sum of

the ALEs results in the time domain to demonstrate the significant of (3.31).

Figure 3.1: The simulated output signal of the system and sum of the signals from the ALEs
in the time domain when a2 = 500 and a3 = 200.

From Figure 3.1, it can be said that the sum of the ALEs results in the time domain is in

good accuracy to the simulated results. Then, by Fourier transforming all the ALEs results,
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the output spectrum can be approximated by the sum of the solutions of the ALE in the

frequency domain as described in (3.32). Figure 3.2 shows the comparison of the simulated

output spectrum and the sum of the solutions of the ALE in the frequency domain.

Figure 3.2: The simulated output spectrum of the system and sum of the output spectrum
from the ALEs in the frequency domain when a2 = 500 and a3 = 200.

From Figure 3.2, it can be said that the sum of the ALEs results in the frequency domain is

also in good accuracy to the simulated results. These results show that ALEs can described

the nonlinear system that possesses a Volterra series representation and gave good estimation

of the output signal and output spectrum of the nonlinear system.

3.2.4 Determination of OFRF of the SISO nonlinear system using ALEs

3.2.4.1 Algorithm to determine OFRF of the SISO nonlinear system using ALEs

The OFRF of the SISO nonlinear system can be determined using the following algorithm

1. Determine the OFRF representation of the nonlinear system using algorithm in section

3.2.2.1. The OFRF representation can be written as (3.10),

Ŷ ( jω) =
Nmax

∑
n=1

Mn f Pn f (3.33)

where f is corresponding to the number of element in Mn.
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2. Determine the ALEs of the nonlinear system using the algorithm in section 3.2.3.2.

The output spectrum of the nonlinear system can be written as (3.27)

Ŷ ( jω) =
Nmax

∑
n=1

Ŷn( jω) (3.34)

3. The number of the set of ALEs simulations needed to determine OFRF is equal to the

maximum value of j. The output spectrums for each simulation can be written as

Ŷv( jω) =
Nmax

∑
n=1

Ŷnv( jω) (3.35)

where v = 1,2, . . . , j are corresponding to the simulation number.

4. The OFRF "coefficients" need to be determined per Nth-order. The solution for the

OFRF "coefficients" can be determined using the OFRF representation and the output

spectrums from the simulations where


P̂n1( jω)

P̂n2( jω)

...

P̂nv( jω)


=


Mn for simulation 1

Mn for simulation 2
...

Mn for simulation v



−1
Ŷn1( jω)

Ŷn2( jω)

...

Ŷnv( jω)


(3.36)

This algorithm allow the process for the determination of OFRF become more simpler and

systematic. However, it is needed to ensure the matrix formed using the chosen values of Mn

for each simulations is not an ill-conditioned matrix. This can be done using the singular

values decomposition techniques. Using the OFRF determined, the analysis and design of

the nonlinear system can be done.
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3.2.4.2 Example

Consider the same cubic duffing oscillator system

240ÿ+296ẏ+16000y+a2ẏ2 +a3ẏ3 = u(t) (3.37)

and the results of the analysis in the previous sections, the OFRF representation

Ŷ ( jω) = P̂1( jω)+a2P̂2( jω)+a2
2P̂31( jω)+a3P̂32( jω)+a2a3P̂41( jω)+a2

3P̂42( jω)

(3.38)

and the estimation of the output spectrum up to 4th-order

Ŷ ( jω) = Ŷ1( jω)+ Ŷ2( jω)+ Ŷ3( jω)+ Ŷ4( jω) (3.39)

From these results, it can be understood that when using the method of determining OFRF

using ALEs for this system, only two sets of ALEs simulations using different combinations

of a2 and a3 were needed to determine the OFRF of this mechanical system. Table 3.1 shows

the combinations of a2 and a3 used in the two simulations.

Table 3.1: Value of a2 and a3 used in the two simulations

Simulation a2 a3

1 500 200
2 1000 700

This mean that the number of numerical simulation needed is less than the previous method,

the method used in [46] where it need to simulate 8 simulations with different combinations

of a2 and a3 to get fourth order OFRF of the mechanical system. Then, the two equations

below showed the estimation of the output spectrum of the system in the frequency domain

for simulation 1 and 2 respectively,

Ŷ1( jω) = Ŷ11( jω)+ Ŷ21( jω)+ Ŷ31( jω)+ Ŷ41( jω) (3.40)
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Ŷ2( jω) = Ŷ12( jω)+ Ŷ22( jω)+ Ŷ32( jω)+ Ŷ42( jω) (3.41)

Then, the solution for the OFRF "coefficients" can be determined as below

P̂11( jω) = Ŷ11( jω)[
P̂21( jω)

]
=
[
a2

]−1 [
Ŷ21( jω)

]
P̂31( jω)

P̂32( jω)

=

a2(1)
2 a3(1)

a2(2)
2 a3(2)

−1Ŷ31( jω)

Ŷ32( jω)


P̂41( jω)

P̂42( jω)

=

a2(1)a3(1) a2(1)
3

a2(2)a3(2) a2(2)
3

−1Ŷ41( jω)

Ŷ42( jω)


(3.42)

and the OFRF for the mechanical system is determined. Using this new numerical method,

the OFRF determined should give good estimation when 500 ≥ a ≥ 1000 and 200 ≥ b ≥ 700.

To verify the effectiveness of this approach, the OFRF determined was tested with a different

set of of parameters, a2 = 700 and a3 = 400 and compared with the simulated output

spectrum. Figure 3.3 shows the comparison of the amplitude of Y ( jω) and Ŷ ( jω) when

a2 = 700 and a3 = 400.

Figure 3.3: Comparison between the simulated output spectrum and the spectrum evaluated
using OFRF when a2 = 700 and a3 = 400.
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It can be observed that the results from both simulated output spectrum and the spectrum

evaluated using OFRF showed excellent agreement. The OFRF determined can estimate

the output spectrum for different values of the parameters a2 and a3. Comparing this result

with [46], both OFRF determined was fourth order but the number of simulations used

to determine OFRF are different. This method only need 2 set of simulations while the

method used in [46] need 8 simulations with different combinations of a2 and a3 to get

fourth order OFRF. This implies that the determination of OFRF using ALEs reduce the

number of simulations needed thus make the OFRF determination easier to be carried out. In

this research, all the results are from the numerical simulations. On the other hand, if the

OFRF determined is compared with the experimental data, the noise in the data need to be

considered. The noise needs to be filtered out before the analysis.

3.3 The OFRF based analysis and design of a passive engine

mount

3.3.1 Passive engine mount

Most vibration systems are inherently nonlinear. Therefore a proper design of the system

nonlinearity has great significance for achieving desired vibration control performance. In

this context, an appropriate design of nonlinear parameters are often needed. Thus, the

concept of nonlinear vibration isolation had been studied by the researchers. Traditionally,

harmonic balance [69] and averaging methods [34] have been used to analyse the effects of

nonlinear parameters on the system vibration responses. Then, the nonlinear parameters are

designed based on the results of analysis.

Different optimization techniques had been approached by researchers for the optimization of

the vibration isolators. A RMS cost function method had been developed where the damping
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and stiffness values for the linear isolator can be optimized [52]. Alkhatib et al. [1] used

the RMS method and the generic method to optimize a linear quarter car suspension system.

However, the implementation of this techniques to the nonlinear systems are complicated

because of the nonlinearities in the model. In 2008, Peng and Lang [59] used the OFRF based

analysis where the relationship between the nonlinear parameters and the output frequency

of a passive engine mount was determined and facilitated the analysis and design process.

In this section, the new numerical method to determine OFRF using ALEs will be applied to

the nonlinear passive engine mount. Passive engine mount is one type of passive isolators that

used to isolate the inherently nonlinear vibration systems. Ibrahim [31] made an outstanding

review of nonlinear passive vibration isolators. Detailed process of the determination of

OFRF will be presented. Using the OFRF determined, the relationship between the nonlinear

parameters, the damping and the stiffness of the system and the output can be understood.

This result enables the OFRF based design of nonlinear systems especially nonlinear vibration

isolators to be more easily implemented so as to significantly facilitate the application of

nonlinear designs in engineering practice.

Consider a second order nonlinear passive engine mount discussed in [59] whose motion

governing equation is given by

mÿ+(c1 + c2y2)ẏ+(k1 + k2y2)y =−mu1 (3.43)

where y = x2−x1 and u = ẍ1. Figure 3.4 shows the schematic of the nonlinear passive engine

mount.

The parameters m,c1 and k1 are fixed as

m = 20×106kg c1 = 10×104Ns/m k1 = 40×106N/m (3.44)
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Figure 3.4: Schematic of the nonlinear passive engine mount.

Then, (3.43) can be rewritten as

20×106ÿ+(10×104 + c2y2)ẏ+(40×106 + k2y2)y =−20×106ẍ1 (3.45)

and (3.45) is obviously a specific instance of (3.1) with c1,0(2) = 20×106, c1,0(1) = 10×

104,c1,0(0) = 40×106,c3,0(0,0,1) = c2,c3,0(0,0,0) = k2, and c0,1(2) =−20×106. In this

analysis, the input base excitation, u is the specific random signal generated.

3.3.2 OFRF representation of the passive engine mount

The OFRF that will be determined in this application is fifth order. First step in this method

is to determine the set of monomials involved in the representation of Ŷ ( jω) up to 5th-order.

Set n = 1,2, . . . ,5 and all the monomials involved can be determine using the algorithm

presented in section 3.2.2.1. The results of the algorithm are

M1 = [1]

M3 = [c2,k2]

M5 = [c2
2,c2k2,k2

2]

(3.46)
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and

M̄5 =
5⋃

n=1

Mn = [1,c2,k2,c2
2,c2k2,k2

2] (3.47)

Then, the OFRF representation can be determined where every monomial is paired with an

OFRF "coefficient". The OFRF representation of the passive engine mount system is

Ŷ ( jω) = P̂11( jω)+ c2P̂31( jω)+ k2P̂32( jω)+ c2
2P̂51( jω)+ c2k2P̂52( jω)+ k2

2P̂53( jω)

(3.48)

3.3.3 ALEs derivation of the passive engine mount

For the derivation of ALE of the nonlinear system, the non-zero ALEs up to fifth order can

be determined using the algorithm discussed in Section 3.2.3.2. First set Nmax = 5. Rewritten

(3.45) as

20×106
∞

∑
n=1

D2y(t)+10×104
∞

∑
n=1

D1y(t)+40×106
∞

∑
n=1

y(t)+

c2

( ∞

∑
n=1

D1y(t)
)( ∞

∑
n=1

y(t)
)2

+ k2

( ∞

∑
n=1

y(t)
)3

+20×106D2x1(t) = 0 (3.49)

where for c3,0(0,0,1) = c2 and c3,0(0,0,0) = k2.

Then, the ALEs for every nth-order up to any 5th-order can be written as

c1,0(2)ÿ1(t)+ c1,0(1)ẏ1(t)+ c1,0(0)y1(t) = c0,1(l1)Dl1u(t)+ J1 − J0

c1,0(2)ÿ3(t)+ c1,0(1)ẏ3(t)+ c1,0(0)y3(t) = c0,3(l1 . . . , l3)
3

∏
i=1

Dliu(t)+ J3 − J2

c1,0(2)ÿ5(t)+ c1,0(1)ẏ5(t)+ c1,0(0)y5(t) = c0,5(l1 . . . , l5)
5

∏
i=1

Dliu(t)+ J5 − J4

(3.50)
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where
J0 = J1 = 0

c0,1(l1)Dl1u(t) = 20×106D2x1(t)

c0,3(l1 . . . , l3)
3

∏
i=1

Dliu(t) = c0,5(l1 . . . , l5)
5

∏
i=1

Dliu(t) = 0

Lastly, solving for each Jn, the ALES for the system up to 5th-order are

20×106ÿ1(t)+10×104ẏ1(t)+40×106y1(t) =−20×106ẍ1

20×106ÿ3(t)+10×104ẏ3(t)+40×106y3(t) =−c2y1(t)2ẏ1(t)− k2y1(t)3

20×106ÿ5(t)+10×104ẏ5(t)+40×106y5(t)

=−c2
(
2y1(t)y3(t)ẏ1 + y3(t)2ẏ1 + y1(t)2ẏ3 +2y1(t)y3(t)ẏ3 + y3(t)2ẏ3

)
−k2

(
3y1(t)2y3(t)+3y1(t)y3(t)2 + y3(t)3)

(3.51)

The estimation of the output signal of the system in the time domain up to 5th-order is

ŷ(t) = ŷ1(t)+ ŷ3(t)+ ŷ5(t) (3.52)

while the estimation of the output spectrum for the system up to 5th-order is

Ŷ ( jω) = Ŷ1( jω)+ Ŷ3( jω)+ Ŷ5( jω) (3.53)

The estimation of the output signal and the output spectrum of the system are the sum of

ALEs in time domain and frequency domain respectively.

3.3.4 Determination of OFRF using ALEs

Then, using the algorithm presented in the Section 3.2.4.1, the OFRF of the passive engine

mount can be determined. First, rewritten the OFRF representation of the passive engine
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mount system, (3.48) that was determined using algorithm derived in Section 3.2.2.1

Ŷ ( jω) = P̂11( jω)+ c2P̂31( jω)+ k2P̂32( jω)+ c2
2P̂51( jω)+ c2k2P̂52( jω)+ k2

2P̂53( jω)

(3.54)

Then, the ALEs of the passive engine mount was determined using the algorithm in Section

3.2.3.2. The output spectrum of the passive engine mount is

Ŷ ( jω) = Ŷ1( jω)+ Ŷ3( jω)+ Ŷ5( jω) (3.55)

Based on algorithm to determine the OFRF using ALEs only three sets of ALEs simulations

using different combinations of c2 and k2 were needed to determine the OFRF of this passive

engine mount system. Table 3.2 shows the combinations of c2 and k2 used in the three

simulations.

Table 3.2: Value of c2 and k2 used in the three simulations

Simulation,v c2 k2

1 20×103 25×103

2 40×103 40×103

3 60×103 55×103

The estimation of the output spectrum of the system in the frequency domain for simulation

v = 1,2 and 3 respectively are

Ŷv( jω) = Ŷ1v( jω)+ Ŷ3v( jω)+ Ŷ5v( jω) (3.56)

Figure 3.5 shows the magnitude of the output spectrum in the frequency domain of the

system in comparison to the sum of ALEs in the frequency domain for simulation 1 when

c2 = 60×103 and k2 = 10×103. Figure 3.5 shows that the sum of the ALEs in the frequency

domain is the same as the magnitude of the output spectrum of the system when c2 = 60×103

and k2 = 10×103.



3.3 The OFRF based analysis and design of a passive engine mount 59

Figure 3.5: Comparison between the simulated output spectrum and the total of ALEs output
spectrum when c2 = 60×103 and k2 = 10×103.

Then, using the three simulations and the OFRF representation that had been determined,

the OFRF of the system can be produced. P̂11( jω), P̂31( jω), P̂32( jω), P̂51( jω), P̂52( jω), and

P̂53( jω) can be evaluated where

P̂11( jω) = Ŷ11( jω) (3.57)P̂31( jω)

P̂32( jω)

=

c2(1) k2(1)

c2(2) k2(2)

−1Ŷ31( jω)

Ŷ32( jω)

 (3.58)


P̂51( jω)

P̂52( jω)

P̂53( jω)

=


c2

2
(1) c2(1)k2(1) k2(1)

2

c2
2
(2) c2(2)k2(2) k2(2)

2

c2
2
(3) c2(3)k2(3) k2(3)

2


−1

Ŷ51( jω)

Ŷ52( jω)

Ŷ53( jω)

 (3.59)

3.3.5 The results and analysis

To verify the OFRF of the system that had been obtained, Ŷ ( jω) obtained using OFRF

determined was compared with the Y ( jω) from the simulated data. Figure 3.6 shows the

comparison of the amplitude of Ŷ ( jω) and Y ( jω) when c2 = 30×703 and k2 = 40×103.

The OFRF determined using this new method should give good estimation when 20×103 ≥

c2 ≥ 60×103 and 25×103 ≥ k2 ≥ 55×103.
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Figure 3.6: Comparison between the simulated output spectrum and the spectrum evaluated
using OFRF when c2 = 70×103 and k2 = 40×103 for the passive engine mount system.

From Figure 3.6, the output spectrum evaluated using OFRF is in excellent agreement with

the simulated output spectrum although there is small error in the lower frequency. Overall, it

can be observed that OFRF provide good estimation of the magnitude of the output spectrum.

In addition, this method of determining OFRF using OFRF only need 3 simulations whereas

the current literature method [46] need at least 6 simulations. Thus, this proves that the

method of determining the OFRF by using ALEs produce an excellent result and increase

the efficiency of the process involved.

Using the OFRF determined, the design of the system parameters c2 and k2 can be performed

efficiently as the OFRF shows the relationship between the nonlinear parameters and the

output frequency response function. Figure 3.7 shows the OFRF based relationship between

the parameters c2 and k2 and magnitude of the output spectrum at 1.466 rad/s frequency.

From Figure 3.7, the relationship between the parameters c2 and k2 and magnitude of

the output spectrum at 1.466 rad/s frequency can be understood clearly. The magnitude of

the output spectrum increases with the increases of damping coefficient, c2 while it decreases
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Figure 3.7: The relationship between the parameters c2 and k2 and magnitude of the output
spectrum at 1.466 rad/s for the passive engine mount system.

with the increases of the stiffness coefficient, k2. When comparing with the OFRF determined,

which is as follows

Ŷ ( jω) = P̂11( jω)+ c2P̂31( jω)+ k2P̂32( jω)+ c2
2P̂51( jω)+ c2k2P̂52( jω)+ k2

2P̂53( jω)

(3.60)

it can be understood that the values of OFRF "coefficients", P̂51( jω), P̂52( jω) and P̂53( jω)

are insignificant compared to the values of OFRF "coefficients", P̂11( jω), P̂31( jω) and

P̂32( jω). This shows that the relationship is linear. This relationship will be useful for

designing process of the passive engine mount.

3.4 Conclusion

In this chapter, the detailed algorithms involved in the new numerical method of determining

OFRF for SISO nonlinear system using ALEs were presented. The concept of the OFRF for

SISO nonlinear systems is discussed and an algorithm is derived in Section 3.2.2.1 where

the OFRF representation of the output spectrum of the system to any inputs can be derived.

Then, the algorithm to determine ALEs for nonlinear systems that can be described by the
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NDE model are presented in Section 3.2.3.2. Finally, using the relationship between the

OFRF representation and the ALEs, the new algorithm to determine the OFRF for the SISO

nonlinear system using ALEs was derived as in Section 3.2.4.1.

This new numerical method allows OFRF, which reveals a significant link between the

system output frequency response and the parameters that define the system nonlinearity

to be determined with a significantly less number of numerical simulations compared to

previous works. The OFRF based analysis was applied to a passive engine mount system.

Detailed process of the OFRF determination using the new numerical method discussed in

this chapter was presented and the analysis and design of the passive engine mount system

were done. The OFRF provide an explicit relationship between the output spectrum and the

nonlinear parameters of the passive engine mount, the damping coefficient and the stiffness

coefficient. This relationship provides an insight on the relationship thus useful for the design

process of the nonlinear systems.

As a conclusion, the new numerical method proposed in this chapter is more efficient

to determine OFRF for SISO nonlinear systems compared to the currently available method

[46, 35] and can be used to the wide area of engineering. It can help in the frequency domain

analysis on how the system behaviours affected by the nonlinear parameter and in the design

of the parameters to achieve desired system output frequency responses. The numerical

method discussed in this chapter only works for a SISO nonlinear system, but its concept

will be used as a foundation for the next chapter.



Chapter 4

A new numerical method for

determination of OFRFs of MIMO

nonlinear systems

4.1 Introduction

In the previous chapter, a new numerical method for the determination of OFRF of single

input single output (SISO) nonlinear systems is proposed. The new numerical method allows

the determination of output frequency response function (OFRF) to be less tedious compared

to the current numerical method, thus makes the design of SISO nonlinear systems to be done

more efficiently compared to before. As most of engineering systems are multi input-multi

output (MIMO) nonlinear system, it will be great if the new numerical method can be used

to determine the OFRF for the MIMO nonlinear systems.

After a thorough analysis, it was found that this new numerical method can be extended

and used for the determination of OFRF for the MIMO nonlinear system. This finding was

motivated by [60] where it presented the concept of Nonlinear Output Frequency Response



64
A new numerical method for

determination of OFRFs of MIMO nonlinear systems

Function(NOFRF) that can be used in the multi input nonlinear systems. This chapter

discusses the concept of determination of OFRF of MIMO nonlinear systems which was the

extended version of the SISO nonlinear system concept. The new numerical method allowed

the idea of OFRF to be used in a more complicated system.

This chapter begins by defining the nonlinear differential equation (NDE) model for MIMO

nonlinear system. The new numerical method discussed in this chapter consists of three

synergizing algorithms. The first algorithm is about the determination of OFRF representation

of the MIMO nonlinear system. The second algorithm is the determination of ALEs for the

MIMO nonlinear system where the ALEs can be determined easily up to any nth-order. The

last algorithm is focusing on the determination of OFRF using the ALEs. This algorithm

uses the relationship between the OFRF representation and the ALEs determined in the first

two algorithms. These three algorithms make the determination of OFRF more systematic.

The new numerical method presented in this chapter allowed the concept of OFRF to be

applied to a wide range of nonlinear engineering system as most of the engineering systems

are nonlinear. The OFRF based design of a building structure vibration isolation system

has then be used to demonstrate how the new numerical method discussed in this chapter

can be applied to implement a design for application in earthquake engineering. A paper on

the implementation of OFRF into the earthquake engineering [54] had been submitted and

accepted for the International Conference on Smart Infrastructure and Construction (ICSIC

2016).
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4.2 A new numerical method for determining the OFRF of

a MIMO nonlinear system

4.2.1 Nonlinear differential equation (NDE) model for multi input multi

output (MIMO)

Consider a r-input and m-output nonlinear system. The dynamics of kith subsystem can be

represented by

Nl

∑
n=1

n

∑
p=0

m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

r

∑
β1=1

r

∑
β2=β1

. . .
r

∑
βq=βq−1

L

∑
l1,...,lp+q

cα1,...,αp,β1,...,βq
pq (ki : l1, . . . , lp+q)

×
p

∏
i=1

Dliyαi(t)×
p+q

∏
i=p+1

Dliuβi−p(t) = 0

(4.1)

where p+q = n, L is the order of the maximum derivative and the operator Dli is defined as

Dlix(t) =
dlix(t)

dt li
(4.2)

This equation explains each kith subsystem individually where the parameter cα1,...,αp,β1,...,βq
pq (k1 :

l1, . . . , lp+q) is associated with the term ∏
p
i=1 Dliyαi(t)∏

p+q
i=p+1 Dliuβi−p(t) = 0.

To illustrate a MIMO-NDE model, consider a quadratic nonlinear system that was described

as

ÿ1(t)+20ẏ1(t)+1010y1(t)+140y2(t)+ay1
2(t)+200y1(t)y2(t)+by2

2(t) = u1(t)

ÿ2(t)+20ẏ2(t)+4010y2(t)+72y1(t)+100y1
2(t)+300y1(t)y2(t)+200y2

2(t) = u2(t)

(4.3)
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This MIMO-NDE model could be represented in the (4.1) form. The coefficients for the first

subsystem are

c1
1,0(1 : 2) = 1,

c1
1,0(1 : 1) = 20,

c1
1,0(1 : 0) = 1010,

c2
1,0(1 : 0) = 140,

c1,1
2,0(1 : 0,0) = a,

c1,2
2,0(1 : 0,0) = 200,

c2,2
2,0(1 : 0,0) = b,

c1
0,1(1 : 0) =−1

(4.4)

and the coefficients for the second subsystem are

c2
1,0(2 : 2) = 1,

c2
1,0(2 : 1) = 20,

c2
1,0(2 : 0) = 4010,

c1
1,0(2 : 0) = 72,

c1,1
2,0(2 : 0,0) = 100,

c1,2
2,0(2 : 0,0) = 300,

c2,2
2,0(2 : 0,0) = 200,

c2
0,1(2 : 0) =−1

(4.5)
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4.2.2 The Output Frequency Response Function for MIMO nonlinear

system

4.2.2.1 OFRF representation of the MIMO nonlinear system

It is the same basic concept as stated before, where the explicit analytical relationship between

the output frequency response and the model parameters for nonlinear systems exists, if and

only if the nonlinear system can be described by model (4.1), and satisfies the following

assumptions:

• The system is stable at zero equilibrium

• The systems can equivalently be described by the Volterra series model with N ≥ M

over a regime around the equilibrium,

The OFRF of a general MIMO nonlinear system is the extension of the OFRF of a general

nonlinear system[46] and can be represented as

Ŷαi( jω) = ∑
( j1,..., jSN )∈J

γ( j1,..., jSN )(ω)x j1
1 . . .x

jSN
SN

=
m1

∑
j1

m2

∑
j2

. . .

mSN

∑
jSN

γ( j1,..., jSN )(ω)x j1
1 . . .x

jSN
SN

(4.6)

where xi, i = 1, . . . ,SN are the parameters which define the system nonlinearity; mi is the

maximum power of xi, i= 1, . . . ,SN . x j1
1 . . . x

jSN
SN

represent the coefficients of the termγ( j1,..., jSN )(ω)

which is a set of all monomials involved in the representation of Ŷαi( jω).

In order to determine the OFRF representation of the MIMO nonlinear system, the set of

the monomials involved in the representation of Ŷ ( jω) up to Nmaxth-order, denote as MNmax

need to be determined first. Then using the MNmax determined, the OFRF representation of

the MIMO nonlinear system can be derived.
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The OFRF respresentation of a MIMO nonlinear system can be determined by the following

algorithm,

1. Set Nmax > 0 and n = 1,2, . . . ,Nmax.

2. M1 = [1]. Calculate Mn by using

Mn =

[
L⋃

l1,...,ln=0

[cα1,...,αp,β1,...,βq
0n (ki : l1, . . . , lp)]

]

∪

[
n−1⋃
q=1

n−q⋃
p=1

L⋃
l1,...,ln=0

[cα1,...,αp,β1,...,βq
0n (ki : l1, . . . , lp)⊗Mn−q,p]

]

∪

[
n⋃

p=2

L⋃
l1,...,lp=0

[cα1,...,αp,β1,...,βq
p0 (ki : l1, . . . , lp)⊗Mnp]

] (4.7)

where ⊗ is the Kronecker product, and

Mnp =
n−p+1⋃

i=1

(Mi ⊗Mn−i,p−1) and Mn1 = Mn (4.8)

3. Then, the set of the parametric characteristics of the system in (4.6) can be expressed

as

M̄Nmax =
Nmax⋃
n=1

Mn (4.9)

4. Lastly, the OFRF respresentation of each outputs of the MIMO nonlinear system can

be written as

Ŷαi( jω) =
Nmax

∑
n=1

Mn f Pn f (4.10)

where f is corresponding to the number of element in Mn and αi is corresponding to

the output.

The OFRF representation is the same for each output but the value of the OFRF "coefficients"

are different. This algorithm is an extended version of the algorithm discussed in the Section

3.2.2.1 and it works for MIMO nonlinear systems that have subsystems.
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4.2.2.2 Example

In order to understand this algorithm more, considering the quadratic nonlinear system that

was discussed before, the OFRF representation of the first subsystem up to fourth order

can be determined priori using the algorithm that has been discussed. Firstly, set Nmax = 4,

n = 1,2,3,4 and the monomial for the first order, M1 = [1]. Then, calculate each Mn using

(4.7) for quadratic nonlinear system. The outcomes of the calculation are

M2 = [a,b]

M3 = [a2,ab,b2]

M4 = [a3,a2b,ab2,b3]

(4.11)

Lastly, the set of the parametric characteristics for cubic duffing oscillator system up to 4-th

order can be expressed as

M̄4 =
4⋃

n=1

Mn = [1,a,b,a2,ab,b2,a3,a2b,ab2,b3] (4.12)

and using this results, the OFRF representation of the two outputs of the quadratic nonlinear

system can be written as

Ŷ1( jω) = P̂11( jω)+aP̂21( jω)+bP̂22( jω)+a2P̂31( jω)+abP̂32( jω)

+b2P̂33( jω)+a3P̂41( jω)+a2bP̂42( jω)+ab2P̂43( jω)+b3P̂44( jω)

Ŷ2( jω) = P̂11( jω)+aP̂21( jω)+bP̂22( jω)+a2P̂31( jω)+abP̂32( jω)

+b2P̂33( jω)+a3P̂41( jω)+a2bP̂42( jω)+ab2P̂43( jω)+b3P̂44( jω)

(4.13)

From (4.13), it can bee seen that for both outputs, the OFRF representations are the same.

Although the OFRF representations are the same, the OFRF"coefficients" are different.
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4.2.3 Derivation of ALEs for MIMO nonlinear systems

4.2.3.1 ALEs for MIMO nonlinear system

Similarly to the SISO nonlinear system, MIMO nonlinear systems also can be described

by a series of ALEs as any system that possesses a Volterra series representation can be

described by a series of associated linear equations (ALEs) [86] [85]. To derive ALEs for

MIMO-NDE systems, consider MIMO nonlinear systems that have the input and the output

terms independent and not related to each other

m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

P

∑
p=1

L

∑
l1,...,lp

cp0(ki : l1, . . . , lp)
p

∏
i=1

Dliyαi(t)

+
r

∑
β1=1

r

∑
β2=β1

. . .
r

∑
βq=βq−1

Q

∑
q=1

L

∑
l1,...,lq

c0q(ki : l1, . . . , lq)
q

∏
i=1

Dliuβi(t) = 0 (4.14)

Then separating the NDE to two different parts for the output, linear and nonlinear parts

generates

m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

L

∑
l1=0

c10(ki : l1)Dl1yαi(t)

+
m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

P

∑
p=2

L

∑
l1,...,lp

cp0(ki : l1, . . . , lp)
p

∏
i=1

Dliyαi(t)

+
r

∑
β1=1

r

∑
β2=β1

. . .
r

∑
βq=βq−1

Q

∑
q=1

L

∑
l1,...,lq

c0q(ki : l1, . . . , lq)
q

∏
i=1

Dliuβi(t) = 0 (4.15)

Using the knowledge that the NDE model posesses a Volterra representation, substitution of

yαi(t) =
∞

∑
n=1

yαi,n(t) (4.16)
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into equation (4.15) results in

m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

L

∑
l1=0

c10(ki : l1)
∞

∑
n=1

Dl1yαi,n(t)

+
m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

P

∑
p=2

L

∑
l1,...,lp

cp0(ki : l1, . . . , lp)
p

∏
i=1

∞

∑
n=1

Dliyαi,n(t)

+
r

∑
β1=1

r

∑
β2=β1

. . .
r

∑
βq=βq−1

Q

∑
q=1

L

∑
l1,...,lq

c0q(ki : l1, . . . , lq)
q

∏
i=1

Dliuβi(t) = 0 (4.17)

Then, rearrangement of the nonlinear part of the equation (4.17) is made as

m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

L

∑
l1=0

c10(ki : l1)
∞

∑
n=1

Dl1yαi,n(t)+
m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

P

∑
p=2

L

∑
l1,...,lp

cp0(ki :l1, . . . , lp)
( ∞

∑
n=1

D0yαi,n(t)
)p0
( ∞

∑
n=1

D1yαi,n(t)
)p1

. . .
( ∞

∑
n=1

Dsyαi,n(t)
)ps

+
r

∑
β1=1

r

∑
β2=β1

. . .
r

∑
βq=βq−1

Q

∑
q=1

L

∑
l1,...,lq

c0q(ki : l1, . . . , lq)
q

∏
i=1

Dliuβi(t) = 0 (4.18)

where p0 + p1 + · · ·+ ps = p.

Then, leaving on the LHS of the equation only the linear elements, (4.18) will be

m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

L

∑
l1=0

c10(ki : l1)
∞

∑
n=1

Dl1yαi,n(t) =−
m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

P

∑
p=2

L

∑
l1,...,lp

cp0(ki :l1, . . . , lp)
( ∞

∑
n=1

D0yαi,n(t)
)p0
( ∞

∑
n=1

D1yαi,n(t)
)p1

. . .
( ∞

∑
n=1

Dsyαi,n(t)
)ps

−
r

∑
β1=1

r

∑
β2=β1

. . .
r

∑
βq=βq−1

Q

∑
q=1

L

∑
l1,...,lq

c0q(ki : l1, . . . , lq)
q

∏
i=1

Dliuβi(t) = 0 (4.19)
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For the determination of OFRF using ALEs derivation, the systems will be assessed up to

Nmax order, thus (4.19) can be written as

m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

L

∑
l1=0

c10(ki : l1)
Nmax

∑
n=1

Dl1yαi,n(t) =−
m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

P

∑
p=2

L

∑
l1,...,lp

cp0(ki :l1, . . . , lp)
(Nmax

∑
n=1

D0yαi,n(t)
)p0
(Nmax

∑
n=1

D1yαi,n(t)
)p1

. . .
(Nmax

∑
n=1

Dsyαi,n(t)
)ps

−
r

∑
β1=1

r

∑
β2=β1

. . .
r

∑
βq=βq−1

Q

∑
q=1

L

∑
l1,...,lq

c0q(ki : l1, . . . , lq)
q

∏
i=1

Dliuβi(t) = 0 (4.20)

and (4.20) can be simplified as

m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

L

∑
l1=0

c10(ki : l1)
Nmax

∑
n=1

Dl1yαi,n(t)

=−
m

∑
α1=1

m

∑
α2=α1

. . .
m

∑
αp=αp−1

P

∑
p=2

L

∑
l1,...,lp

cp0(ki : l1, . . . , lp)

(
S

∏
s=0

(Nmax

∑
n=1

Dsyαi,n(t)
)ps

)

−
r

∑
β1=1

r

∑
β2=β1

. . .
r

∑
βq=βq−1

Q

∑
q=1

L

∑
l1,...,lq

c0q(ki : l1, . . . , lq)
q

∏
i=1

Dliuβi(t) (4.21)

where S is the maximum power of the nonlinear terms for each nonlinear output terms. From

equation (4.21), it can be seen the relationship between the input and the outputs; linear and

nonlinear.

For the determination of OFRF using ALEs in MIMO-NDE system, the analysis of the

output of the nonlinear system is done order by order for the set of MIMO-NDE system,

where the linear terms on the left hand side is solved by using nonlinear terms that is one

order lower on the right hand side. Then, the response of the nonlinear system is the total

of all the response from the ALEs. The algorithm to determine ALE for the MIMO-NDE

model is discussed in the next subsection.
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4.2.3.2 Algorithm to determine ALE for MIMO-NDE model

The following algorithm can be used to determine the ALEs for every Nth-order up to any

Nmaxth-order for the MIMO-NDE model. Note that determination of the total response will

be the summation of all the responses in ALEs. This algorithm is for a MIMO-NDE model,

where the linear and nonlinear parts of the outputs had been separated, and the input and the

output terms are independent and not related to each other

L

∑
l1=0

c10(ki : l1)
Nmax

∑
n=1

Dl1yαi,n(t) =−
P

∑
p=2

L

∑
l1,...,lp

cp0(ki : l1, . . . , lp)

(
S

∏
s=0

(Nmax

∑
n=1

Dsyαi,n(t)
)ps

)

−
Q

∑
q=1

L

∑
l1,...,lq

c0q(ki : l1, . . . , lq)
q

∏
i=1

Dliuβi(t) (4.22)

where P is maximum degree of nonlinearity in terms of y(t), Q is maximum degree of

nonlinearity in terms of u(t), L is the maximum order of differential function, S is the

maximum power of the nonlinear terms for each nonlinear output terms and the operator D

is defined by

Dlx(t) =
dlx(t)

dt l (4.23)

The ALEs for every nth-order up to any Nmaxth-order can be determined using the steps

below

1. Set n = 1,2, . . . ,Nmax where Nmax > 0.

2. Jn,0 = Jn,1 = 0. The ALEs for every nth-order can be written as

L

∑
l1=0

c10(ki : l1)Dl1yαi,n(t) =
L

∑
l1,...,ln

c0n(ki : l1, . . . , ln)
n

∏
i=1

Dliuβi(t)+ Jαi,n − Jαi,n−1

(4.24)

where

Jαi,n =−
P

∑
p=2

L

∑
l1,...,lp

cp0(ki : l1, . . . , lp)

(
S

∏
s=0

(n−1

∑
n=1

Dsyαi,n(t)
)ps

(4.25)
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3. The estimation of the output signal and the output spectrum for each outputs of the

system up to Nmaxth-order thus can be written as

ŷαi(t) =
Nmax

∑
n=1

ŷαi,n(t) (4.26)

and

Ŷαi( jω) =
Nmax

∑
n=1

Ŷαi,n( jω) (4.27)

where αi is corresponding to the ouput and n is the order of the ALE.

This algorithm makes the ALEs for every Nth-order up to any Nmaxth-order can be determined

easily for each set of MIMO-NDE model.

4.2.3.3 Example

To show the effectiveness of this algorithm, the ALEs for quadratic nonlinear system up to

4th-order is determined using the steps in the algorithm. Take a look again at the NDE form

of the quadratic nonlinear system as in (4.3)

ÿ1(t)+20ẏ1(t)+1010y1(t)+140y2(t)+ay1
2(t)+200y1(t)y2(t)+by2

2(t) = u1(t)

ÿ2(t)+20ẏ2(t)+4010y2(t)+72y1(t)+100y1
2(t)+300y1(t)y2(t)+200y2

2(t) = u2(t)

In order to use the algorithm, rewrite (4.3) in the different form as

D2y1(t)+20D1y1(t)+1010y1(t)+140y2(t)

+ay1(t)2 +200y1(t)y2(t)+by2(t)2 = u1(t)

D2y2(t)+20D1y2(t)+4010y2(t)+72y1(t)

+100y1(t)2 +300y1(t)y2(t)+200y2(t)2 = u2(t)

(4.28)
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Using the steps in the algorithm, set Nmax = 4, n = 1,2,3,4. Then, the general ALEs for

every order up to 4th-order can be written as

c1
1,0(1 : 2)D2y1,1(t)+ c1

1,0(1 : 1)D1y1,1(t))+ c2
1,0(1 : 0)y2,1(t)+ c1

1,0(1 : 0)y1,1(t)

= c1
0,1(1 : l1)Dl1u1(t)+ J1,1 − J1,0

c2
1,0(2 : 2)D2y2,1(t)+ c2

1,0(2 : 1)D1y2,1(t))+ c2
1,0(2 : 0)y2,1(t)+ c1

1,0(2 : 0)y1,1(t)

= c2
0,1(2 : l1)Dl1u2(t)+ J2,1 − J2,0

c1
1,0(1 : 2)D2y1,2(t)+ c1

1,0(1 : 1)D1y1,2(t))+ c1
1,0(1 : 0)y1,2(t)+ c2

1,0(1 : 0)y2,2(t)

= c1,1
0,2(1 : l1, l2)Dl1u1(t)Dl2u1(t)+ J1,2 − J1,1

c2
1,0(2 : 2)D2y2,2(t)+ c2

1,0(2 : 1)D1y2,2(t))+ c2
1,0(2 : 0)y2,2(t)+ c1

1,0(2 : 0)y1,2(t)

= c2,2
0,2(2 : l1, l2)Dl1u2(t)Dl2u2(t)+ J2,2 − J2,1

c1
1,0(1 : 2)D2y1,3(t)+ c1

1,0(1 : 1)D1y1,3(t))+ c1
1,0(1 : 0)y1,3(t)+ c2

1,0(1 : 0)y2,3(t)

= c1,1,1
0,3 (1 : l1, l2, l3)Dl1u1(t)Dl2u1(t)Dl3u1(t)+ J1,3 − J1,2

c2
1,0(2 : 2)D2y1,3(t)+ c2

1,0(2 : 1)D1y1,3(t))+ c2
1,0(2 : 0)y2,3(t)+ c1

1,0(2 : 0)y1,3(t)

= c2,2,2
0,3 (2 : l1, l2, l3)Dl1u2(t)Dl2u2(t)Dl3u2(t)+ J2,3 − J2,2

c1
1,0(1 : 2)D2y1,4(t)+ c1

1,0(1 : 1)D1y1,4(t))+ c1
1,0(1 : 0)y1,4(t)+ c2

1,0(1 : 0)y2,4(t)

= c1,1,1,1
0,4 (1 : l1, l2, l3, l4)Dl1u1(t)Dl2u1(t)Dl3u1(t)Dl4u1(t)+ J1,4 − J1,3

c2
1,0(2 : 2)D2y1,4(t)+ c2

1,0(2 : 1)D1y1,4(t))+ c2
1,0(2 : 0)y2,4(t)+ c1

1,0(2 : 0)y1,4(t)

= c2,2,2,2
0,4 (2 : l1, l2, l3, l4)Dl1u2(t)Dl2u2(t)Dl3u2(t)Dl4u2(t)+ J2,4 − J2,3

(4.29)

where J0 = J1 = 0, c1
0,1(1 : l1)Dl1u1(t) = u1(t), c2

0,1(2 : l1)Dl1u2(t) = u2(t) and c1
0,2(1 :

l1, l2) = c2
0,2(2 : l1, l2) = c1

0,3(1 : l1, l2, l3) = c2
0,3(2 : l1, l2, l3) = c1

0,4(1 : l1, l2, l3, l4) = c2
0,4(2 :

l1, l2, l3, l4) = 0.
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After solving J1,n and J2,n, the ALEs for the system up to 4th-order can be written as

D2y1,1(t)+20D1y1,1(t))+1010y1,1(t)+140y2,1(t) = u1(t)

D2y1,1(t)+20D1y1,1(t))+4010y2,1(t)+72y1,1(t) = u2(t)

D2y1,2(t)+20D1y1,2(t))+1010y1,2(t)+140y2,2(t)

=−a
(
y1,1(t)

)2 −200y1,1(t)y2,1(t)−b
(
y2,1(t)

)2

D2y1(2)(t)+20D1y1(2)(t))+4010y2(2)(t)+72y1(2)(t)

=−100
(
y1,1(t)

)2 −300y1,1(t)y2,1(t)−200
(
y2,1(t)

)2

D2y1,3(t)+20D1y1,3(t))+1010y1,3(t)+140y2,3(t) =−a
[(

y1,2(t)
)2

+2y1,1(t)y1,2(t)
]

−200
[
y1,1(t)y2,2(t)+ y1,2(t)y2,1(t)+ y1,2(t)y2,2(t)

]
−b
[(

y2,2(t)
)2

+2y2,1(t)y2,2(t)
]

D2y1,3(t)+20D1y1,3(t))+4010y2,3(t)+72y1,3(t) =−100
[(

y1,2(t)
)2

+2y1,1(t)y1,2(t)
]

−300
[
y1,1(t)y2,2(t)+ y1,2(t)y2,1(t)+ y1,2(t)y2,2(t)

]
−200

[(
y2,2(t)

)2
+2y2,1(t)y2,2(t)

]

D2y1,2(t)+20D1y1,4(t))+1010y1,4(t)+140y2,4(t)

=−a
[(

y1,3(t)
)2

+2y1,1(t)y1,3(t)+2y1,2(t)y1,3(t)
]
−200

[
y1,1(t)y2,3(t)

+ y1,2(t)y2,3(t)+ y1,3(t)y2,1(t)+ y1,3(t)y2,2(t)+ y1,3(t)y2,3(t)
]
−b
[(

y1,3(t)
)2

+2y2,1(t)y2,3(t)+2y2,2(t)y2,3(t)
]

D2y1,4(t)+20D1y1,4(t))+4010y2,4(t)+72y1,4(t)

=−100
[(

y1,3(t)
)2

+2y1,1(t)y1,3(t)+2y1,2(t)y1,3(t)
]
−300

[
y1,1(t)y2,3(t)

+ y1,2(t)y2,3(t)+ y1,3(t)y2,1(t)+ y1,3(t)y2,2(t)+ y1,3(t)y2,3(t)
]
−200

[(
y1,3(t)

)2

+2y2,1(t)y2,3(t)+2y2,2(t)y2,3(t)
]

(4.30)
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Lastly, the estimation of the outputs signal and the outputs spectrum for the system up to

4th-order for both outputs thus can be written as

ŷ1(t) = ŷ1,1(t)+ ŷ1,2(t)+ ŷ1,3(t)+ ŷ1,4(t)

ŷ2(t) = ŷ2,1(t)+ ŷ2,2(t)+ ŷ2,3(t)+ ŷ2,4(t)
(4.31)

and
Ŷ1( jω) = Ŷ1,1( jω)+ Ŷ1,2( jω)+ Ŷ1,3( jω)+ Ŷ1,4( jω)

Ŷ2( jω) = Ŷ2,1( jω)+ Ŷ2,2( jω)+ Ŷ2,3( jω)+ Ŷ2,4( jω)
(4.32)

Comparing with the previous chapter, Section 3.2.3.2, the estimation of the output signal and

the output spectrum look the same as estimation for the SISO nonlinear system. However, for

MIMO-NDE model, the estimation is independent for all outputs produced. The estimation

of the output signal is the total of all ALEs responses for each outputs. Figure 4.1 shows the

comparison of the simulated results and the sum of the ALEs results in the time domain to

indicate the significant of (4.31).

Figure 4.1: The simulated output signals for both y1 and y2 of the system and sum of the
signals from the ALEs in the time domain when a = 50 and b = 150.
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Then, from (4.38), which is the result of Fourier transform of (4.31), it is understandable

that the ouput spectrum for each output can be approximated by the sum of the each outputs

solutions of the ALE in the frequency domain. Figure 4.2 shows the comparison of the

simulated output spectrum and the sum of the solutions of the ALE in the frequency domain

for each outputs, y1 and y2.

Figure 4.2: The simulated output spectrum of the system and sum of the output spectrum
from the ALEs in the frequency domain when a = 50 and b = 150 for both y1 and y2.

From both Figure 4.1 and Figure 4.2, it can be said that the sum of the ALEs results in both

the time and frequency domain is in good accuracy to the simulated results for all the outputs

in the system.
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4.2.4 Determination of OFRF using ALEs for MIMO nonlinear system

4.2.4.1 Algorithm to determine OFRF using ALEs for MIMO nonlinear system

The OFRF of the MIMO nonlinear system can be determined using the following algorithm

1. Determine the OFRF representation of the nonlinear system using algorithm in section

4.2.2.1. The OFRF representation can be written as (4.10),

Ŷαi( jω) =
Nmax

∑
n=1

Mn f Pn f (4.33)

where f is corresponding to the number of element in Mn and αi is corresponding to

the output.

2. Determine the ALEs of the nonlinear system using the algorithm in section 4.2.3.2.

The output spectrum of the nonlinear system can be written as (4.27)

Ŷαi( jω) =
Nmax

∑
n=1

Ŷαi,n( jω) (4.34)

where αi is corresponding to the ouput and n is the order of the ALE.

3. The number of the set of ALEs simulations needed to determine OFRF is equal to the

maximum value of f . The output spectrums of the MIMO nonlinear system for each

simulation can be written as

Ŷ v
αi
( jω) =

Nmax

∑
n=1

Ŷ v
αi,n( jω) (4.35)

where v is corresponding to the simulation number, αi is corresponding to the output

and n is the order of the ALE.

4. The OFRF "coefficients" for each outputs need to be determined per nth-order. The

solution for the OFRF "coefficients" for each output can be determined using the OFRF

representation and the output spectrums from the simulations where
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
P̂n1( jω)

P̂n2( jω)

...

P̂nv( jω)


=


Mn for simulation 1

Mn for simulation 2
...

Mn for simulation v



−1
Ŷn1( jω)

Ŷn2( jω)

...

Ŷnv( jω)


(4.36)

This algorithm allow the process for the determination of OFRF become more simpler and

systematic. Using the OFRF determined, the analysis and design of the nonlinear system can

be done.

4.2.4.2 Example

In the previous chapter, the OFRF "coefficients" need to be determined per Nth-order in order

to determine the OFRF of the nonlinear system. It will be the same for the MIMO-NDE

models that had been discussed throughout this chapter. However, the OFRF "coefficients"

for each outputs need to be calculated independently.

The OFRF representations for both outputs, y1 and y2 for the quadratic nonlinear systems are

Ŷ1( jω) = P̂1( jω)+aP̂21( jω)+bP̂22( jω)+a2P̂31( jω)+abP̂32( jω)

+b2P̂33( jω)+a3P̂41( jω)+a2bP̂42( jω)+ab2P̂43( jω)+b3P̂44( jω)

Ŷ2( jω) = P̂1( jω)+aP̂21( jω)+bP̂22( jω)+a2P̂31( jω)+abP̂32( jω)

+b2P̂33( jω)+a3P̂41( jω)+a2bP̂42( jω)+ab2P̂43( jω)+b3P̂44( jω)

(4.37)

and the estimation of the output spectrum up to 4th-order for both outputs, y1 and y2 are

Ŷ1( jω) = Ŷ1,1( jω)+ Ŷ1,2( jω)+ Ŷ1,3( jω)+ Ŷ1,4( jω)

Ŷ2( jω) = Ŷ2,1( jω)+ Ŷ2,2( jω)+ Ŷ2,3( jω)+ Ŷ2,4( jω)
(4.38)

From these results, it can be understood that in using the method of determining OFRF

using ALEs for this system, four sets of ALEs simulations using different combinations of a



4.2 A new numerical method for determining the OFRF of
a MIMO nonlinear system 81

and b were needed to determine the OFRF of this mechanical system. Table 4.1 shows the

combinations of a and b used in the four simulations.

Table 4.1: Value of a and b used in the four simulations

Simulation, v av bv

1 50 150
2 75 200
3 100 250
4 125 300

From the four sets of simulations, as already mentioned previously, the estimation of the

output spectrum of the system in the frequency domain is the total of the ALEs responses.

Equation (4.39) shows the estimation of the output spectrum of the system in the frequency

domain for 4 simulations for both y1 and y2 outputs

Ŷ 1
1 ( jω) = Ŷ 1

1,1( jω)+ Ŷ 1
1,2( jω)+ Ŷ 1

1,3( jω)+ Ŷ 1
1,4( jω)

Ŷ 1
2 ( jω) = Ŷ 1

2,1( jω)+ Ŷ 1
2,2( jω)+ Ŷ 1

2,3( jω)+ Ŷ 1
2,4( jω)

Ŷ 2
1 ( jω) = Ŷ 2

1,1( jω)+ Ŷ 2
1,2( jω)+ Ŷ 2

1,3( jω)+ Ŷ 2
1,4( jω)

Ŷ 2
2 ( jω) = Ŷ 2

2,1( jω)+ Ŷ 2
2,2( jω)+ Ŷ 2

2,3( jω)+ Ŷ 2
2,4( jω)

Ŷ 3
1 ( jω) = Ŷ 3

1,1( jω)+ Ŷ 3
1,2( jω)+ Ŷ 3

1,3( jω)+ Ŷ 3
1,4( jω)

Ŷ 3
2 ( jω) = Ŷ 3

2,1( jω)+ Ŷ 3
2,2( jω)+ Ŷ 3

2,3( jω)+ Ŷ 3
2,4( jω)

Ŷ 4
1 ( jω) = Ŷ 4

1,1( jω)+ Ŷ 4
1,2( jω)+ Ŷ 4

1,3( jω)+ Ŷ 4
1,4( jω)

Ŷ 4
2 ( jω) = Ŷ 4

2,1( jω)+ Ŷ 4
2,2( jω)+ Ŷ 4

2,3( jω)+ Ŷ 4
2,4( jω)

(4.39)

It is best to note that the value of OFRF "coeffcients" are different for each outputs although

the OFRF representation for the outputs are the same.
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Then, the solution for the OFRF "coefficients" for output y1 can be determined as

P̂1( jω) = Ŷ 1
1,1( jω)P̂21( jω)

P̂22( jω)

=

a1 b1

a2 b2

−1Ŷ 1
1,2( jω)

Ŷ 2
1,2( jω)




P̂31( jω)

P̂32( jω)

P̂33( jω)

=


a1

2 a1b1 b1
2

a2
2 a2b2 b2

2

a3
2 a3b3 b3

2


−1

Ŷ 1
1,3( jω)

Ŷ 2
1,3( jω)

Ŷ 3
1,3( jω)




P̂41( jω)

P̂42( jω)

P̂43( jω)

P̂43( jω)


=


a1

3 a1
2b1 a1b1

2 b1
3

a2
3 a2

2b2 a2b2
2 b2

3

a3
3 a3

2b3 a3b3
2 b3

3

a4
3 a4

2b4 a4b4
2 b4

3



−1
Ŷ 1

1,4( jω)

Ŷ 2
1,4( jω)

Ŷ 3
1,4( jω)

Ŷ 4
1,4( jω)



(4.40)

whereas output y2 can be determined as

P̂1( jω) = Ŷ 1
2,1( jω)P̂21( jω)

P̂22( jω)

=

a1 b1

a2 b2

−1Ŷ 1
2,2( jω)

Ŷ 2
2,2( jω)




P̂31( jω)

P̂32( jω)

P̂33( jω)

=


a1

2 a1b1 b1
2

a2
2 a2b2 b2

2

a3
2 a3b3 b3

2


−1

Ŷ 1
2,3( jω)

Ŷ 2
2,3( jω)

Ŷ 3
2,3( jω)




P̂41( jω)

P̂42( jω)

P̂43( jω)

P̂43( jω)


=


a1

3 a1
2b1 a1b1

2 b1
3

a2
3 a2

2b2 a2b2
2 b2

3

a3
3 a3

2b3 a3b3
2 b3

3

a4
3 a4

2b4 a4b4
2 b4

3



−1
Ŷ 1

2,4( jω)

Ŷ 2
2,4( jω)

Ŷ 3
2,4( jω)

Ŷ 4
2,4( jω)



(4.41)

Using this new numerical method, the OFRF determined should give good estimation when

50 ≥ a ≥ 125 and 150 ≥ b ≥ 300.
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To prove the effectiveness of this approach, the OFRF determined was compared with the

simulated output spectrum when a = 90 and b = 240. Figure 4.3 shows the comparison of

the amplitude of Y1( jω) and Ŷ1( jω) when a = 90 and b = 240 whereas Figure 4.4 shows

the comparison of the amplitude of Y2( jω) and Ŷ2( jω) when a = 90 and b = 240 .

Figure 4.3: Comparison between the simulated output spectrum and the spectrum evaluated
using OFRF for output y1 when a = 90 and b = 240.

Figure 4.4: Comparison between the simulated output spectrum and the spectrum evaluated
using OFRF for output y2 when a = 90 and b = 240.

Comparing the two results from both simulated output spectrum and the spectrum evaluated

using OFRF for the two outputs, it can be said that the output spectrum evaluated using

OFRF is in excellent agreement to the simulated output spectrum. These results indicate that

the new numerical method and algorithms discussed can be used to determine the OFRF of
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the MIMO-NDE system correctly and efficiently. This will help in the analysis and design

process of MIMO-NDE system too.

4.3 Application study in earthquake engineering

Nonlinear isolators can effectively protect buildings and bridges against the earthquakes [31].

In this subsection, how OFRF can be used in the earthquake engineering will be discussed. A

building with a nonlinear building isolation system will be analysed. It will demonstrate the

effectiveness of the new numerical method and how the OFRF based analysis can be applied

to implement a design for application in earthquake engineering.

It will first present how to determine OFRF using the new numerical method for the

determination of OFRF of MIMO nonlinear system. Then, using the OFRF determined, the

relationship between the nonlinear parameters and the output frequency response will be

presented to show how the results from the OFRF determination can be used in the design

process.

4.3.1 The model of Sosokan building

The building that will be analyzed in this subsection is the Sosokan building, a nine-story

university building at Keio University [22]. The building has nine level with seven floors

above the ground and two basement floors. Figure 4.5 shows the picture of the Sosokan

building.

For the OFRF based analysis, consider the equation of motion of the building system of the

building at the Keio University [22] where it is given as

Mẍ+Cẋ+Kx = Eu+Fz̈ (4.42)
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Figure 4.5: The picture of Sosokan bulding.

with
x = [x1 x2 . . . x10]

T

M = diag(m1 m2 . . . m10)

C =



c1 + c2 −c2 · · · 0 0

−c2 c2 + c3 · · · · · · 0
...

... . . . ...
...

0 · · · · · · c9 + c10 −c10

0 0 · · · −c10 c10



K =



k1 + k2 −k2 · · · 0 0

−k2 k2 + k3 · · · · · · 0
...

... . . . ...
...

0 · · · · · · k9 + k10 −k10

0 0 · · · −k10 k10


E = [1 0 . . . 0]T

F = [−m1 −m2 . . . −m10]
T

(4.43)
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where M, C, and K are the mass, damping and stiffness matrices for the building systems

respectively, and x, u, and z̈ are the displacement vector, control force and ground acceleration,

respectively.

The input, which is the ground acceleration used for this analysis is the data from the

wave of the main shock of the 2011 Great East Japan Earthquake [22]. Figure 4.6 shows

the input wave of the main shock. Only the data from t = 0s to t = 60s will be use in this

analysis.

Figure 4.6: The main shock of the 2011 Great East Japan Earthquake.

This system is a single input multi output NDE system where the nonlinearity is in the

control force which will be introduced later and it uses one input, the ground acceleration

and generates ten outputs. For this analysis, the control force of the system is described as

u = (C1 +C2x2
1)ẋ1 +(K1 +K2x2

1)x1 (4.44)

which was the damping and stiffness functions of the nonlinear passive isolators. C1 and K1

are constants whereas C2 and K2 are the parameters that will be investigated in this analysis.

The value of C1 and K1 are define in the table 4.2 below.
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Table 4.2: Value of C1 and K1 used in the analysis.

Parameters Value

C1 10×103

K1 10×103

Table 4.3 shows the structural parameters value of the building systems.

Table 4.3: Structural parameters of the building at the Keio University

Mass Stiffness Damping
Floor ×106 kg ×106 N/m ×106 Ns/m

RF 2.4999 999.6 8.0487
7F 2.0664 1156.4 9.3110
6F 2.0371 1381.8 11.126
5F 2.0369 1568.0 12.625
4F 2.0500 1813.0 14.598
3F 2.0331 1803.2 14.520
2F 1.8264 1979.6 15.940
1F 2.4906 2763.6 22.252

B1F 3.4382 2273.6 18.306
B2F 4.9814 66.836 0

The nonlinearity of this system is from the nonlinear building isolation system that was

installed at the lowest level. Figure 4.7 shows the schematic of the nine levels building at the

Keio University with the nonlinear building isolation system installed at the lowest level.
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Figure 4.7: The schematic of the building with the nonlinear building isolation system.



4.3 Application study in earthquake engineering 89

4.3.2 OFRF representation of the Sosokan building

To determine the OFRF representation, the characteristic parameter vector of the system up

to the fifth order can be determined by using the parametric characteristics analysis, where

M1 = [1]

M2 = null

M3 = [C2,K2]

M4 = null

M5 = [C2
2,C2K2,K2

2 ]

(4.45)

The second order and fourth order characteristic parameter vector are null because there

is no even order monomials in this system. Then, using the result from the parametric

characteristic analysis, the OFRF representation of the system for each outputs i, where

i = 1,2, . . . ,10 can be written as

Ŷi( jω) = P̂1( jω)+C2P̂31( jω)+K2P̂32( jω)+C2
2P̂51( jω)+C2K2P̂52( jω)+K2

2P̂53( jω)

(4.46)

The OFRF representation is the same for all outputs but the value of the OFRF "coefficients"

are independent to the outputs.

4.3.3 ALEs derivation of the Sosokan building

The derivation of ALEs for this system is described in Appendix A. From the ALEs

determined, the estimation of the outputs signal and the outputs spectrum for the system up

to 5th-order for each outputs i, i = 1,2, . . .10 thus can be written as

ŷi(t) = ŷi,1(t)+ ŷi,3(t)+ ŷi,5(t) (4.47)



90
A new numerical method for

determination of OFRFs of MIMO nonlinear systems

and

Ŷi( jω) = Ŷi,1( jω)+ Ŷi,3( jω)+ Ŷi,5( jω) (4.48)

4.3.4 Determination of OFRF using ALEs

From equation (4.47) - (4.48) analysis, it can be understood that only three sets of ALEs

simulations using different combinations of C2 and K2 were needed to determine the OFRF

of this system. Table 4.4 shows the combinations of C2 and K2 used in the three simulations.

From the three simulations, the solution for the OFRF "coefficients" for each outputs, yi

Table 4.4: Value of C2 and K2 used in the two simulations

Simulation, v C2 K2

1 5×106 4×106

2 7×106 8×106

3 9×106 12×106

where i = 1,2...10 which are corresponds to each floor can be determined as

P̂1( jω) = Ŷ 1
i,1( jω)P̂31( jω)

P̂32( jω)

=

C2,1 K2,1

C2,2 K2,2

−1Ŷ 1
i,2( jω)

Ŷ 2
i,2( jω)




P̂51( jω)

P̂52( jω)

P̂53( jω)

=


C2

2,1 C2,1K2,1 K2
2,1

C2
2,2 C2,2K2,2 K2

2,2

C2
2,3 C2,3K2,3 K2

2,3


−1

Ŷ 1
i,3( jω)

Ŷ 2
i,3( jω)

Ŷ 3
i,3( jω)


(4.49)

It is best to note that the value of OFRF "coefficients" are different for each outputs although

the OFRF representation for the outputs are the same. For a better understanding, the OFRF



4.3 Application study in earthquake engineering 91

of the system for each outputs can be written using (4.46) as

Ŷ1( jω) = P̂1( jω)+C2P̂31( jω)+K2P̂32( jω)+C2
2P̂51( jω)+C2K2P̂52( jω)+K2

2P̂53( jω)

Ŷ2( jω) = P̂1( jω)+C2P̂31( jω)+K2P̂32( jω)+C2
2P̂51( jω)+C2K2P̂52( jω)+K2

2P̂53( jω)

Ŷ3( jω) = P̂1( jω)+C2P̂31( jω)+K2P̂32( jω)+C2
2P̂51( jω)+C2K2P̂52( jω)+K2

2P̂53( jω)

...

Ŷ9( jω) = P̂1( jω)+C2P̂31( jω)+K2P̂32( jω)+C2
2P̂51( jω)+C2K2P̂52( jω)+K2

2P̂53( jω)

Ŷ10( jω) = P̂1( jω)+C2P̂31( jω)+K2P̂32( jω)+C2
2P̂51( jω)+C2K2P̂52( jω)+K2

2P̂53( jω)

(4.50)

where the value of OFRF "coefficients", P̂1( jω), P̂31( jω), P̂32( jω), P̂51( jω), P̂52( jω) and

P̂53( jω) are different for each outputs and Ŷ1( jω) refers to the outputs for floor B2F and

Ŷ10( jω) refers to the outputs for floor RF.

4.3.5 The results and analysis

Then using the OFRF determined, different values of C2 and K2 had been tested with the

OFRF determined and the results were compared with the simulated output spectrum. Figure

4.8 shows the comparison of the amplitude of Y1( jω) and Ŷ1( jω) when C2 = 120×105 and

K2 = 40×105 for odd floors. The comparison for the even floors between the amplitude of

Y1( jω) and Ŷ1( jω) when C2 = 120×105 and K2 = 40×105 are in the Appendix B.

Comparing the results from both simulated output spectrum and the spectrum evaluated

using OFRF in 4.8 for each outputs of the odd floors, it can be said that the output spectrums

evaluated using OFRF are in excellent agreement to the simulated output spectrum. These

results indicate that the new numerical method and algorithms discussed can be used to

determine the OFRF of the MIMO-NDE system correctly and efficiently.
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Figure 4.8: Comparison between the simulated output spectrum and the spectrum evaluated
using OFRF for the odd floors when C2 = 120×105 and K2 = 40×105.

From the OFRF determined, the design of the system parameters C2 and K2 can be performed

efficiently as the OFRF shows the relationship between the nonlinear parameters and the

output frequency response. Figure 4.9 shows the OFRF based relationship between the

parameters C2 and K2 and magnitude of the output spectrum at 1.6755 rad/s frequency for

the 5F Floor.



4.4 Conclusion 93

Figure 4.9: The relationship between the parameters, C2 and K2 and magnitude of the output
spectrum at 1.6755 rad/s frequency for the 5F floor.

Figure 4.9 shows that the relationship is nonlinear. When comparing with the OFRF

determined for the 5F floor, which is as follows

Ŷ7( jω) = P̂1( jω)+C2P̂31( jω)+K2P̂32( jω)+C2
2P̂51( jω)+C2K2P̂52( jω)+K2

2P̂53( jω)

(4.51)

it shows that as the relationship is nonlinear, the value of OFRF "coefficients", P̂51( jω), P̂52( jω)

and P̂53( jω) are significant unlike the case studied in previous chapter. The relationship

shown on Figure 4.9 is useful for designing process of the nonlinear building isolation system.

In addition, the relationship between the nonlinear parameters and the output frequency

response for other floors can be done using the OFRF determined.

4.4 Conclusion

In this chapter, the full process of determining OFRF for MIMO nonlinear system using

ALEs was presented. This allows OFRF, which reveals a significant link between the system

output frequency response and the parameters that define the system nonlinearity to be
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determined in more efficiently in a MIMO-NDE engineering system. The concepts in the

new numerical method discussed in the previous chapter are extended in this chapter for

the MIMO nonlinear system. Three algorithms were derived and developed using the same

concept and techniques as in the previous chapter.

The first algorithm to derive the OFRF representation of the output spectrum of the system to

any inputs were derived for MIMO nonlinear system in presented in Section 4.2.2.1. Next,

the algorithm to determine ALEs for SISO nonlinear systems that can be described by the

NDE model are extended to the MIMO system using the same techniques as in previous

chapter, Section 3.2.3.2. Then, the relationship between the OFRF representation and the

ALEs is used for the determination of OFRF for the MIMO-NDE system. An algorithm to

determine the OFRF using the ALEs were presented in Section 4.2.4.1. Using the OFRF

determined, the analysis and design of nonlinear systems can be done efficiently.

As a conclusion, the new numerical method introduced in this chapter provides a better way

for the analysis of MIMO nonlinear system and can be used to a wide area of engineering.

It can help in the frequency domain analysis on how the system behaviours affected by the

nonlinear parameter and in the design of the parameters to achieve desired system output

frequency responses. The new numerical method presented in this chapter will be used in the

analysis of non-isothermal Continuous Stirred Tank Reactor (CSTR) in the next chapter.



Chapter 5

Application of OFRF in non-isothermal

Continuous Stirred Tank Reactor

(CSTR)

5.1 Introduction

Application of the OFRF can be used in many engineering fields. In this chapter, an

application of OFRF in chemical engineering will be discussed to show how this new

numerical method in determining OFRF is useful in the chemical engineering area. It will

be focusing on the periodic operation of a nonlinear non-isothermal continuous stirred tank

reactor (CSTR). CSTR is one of the main types of reactors in chemical process engineering.

The CSTR in this analysis will be tested with periodic modulation input. The advantage of

periodic modulation of one or more inputs compared to the optimal steady-state operation is

it can give better average performance thus improved selectivity and increased conversion of

the reactant.

As this new numerical method needs to have the nonlinear model to be defined by the NDE,
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the first step to determine the OFRF of the nonlinear system is to define the mathematical

model of the nonlinear non-isothermal CSTR. Then, the new numerical method discussed in

the previous chapter is implemented into the non-isothermal CSTR system, and OFRF of the

system can be determined. The effectiveness of the new numerical method in determining

the OFRF using ALEs is proved with numerical simulations. From the OFRF determined

with the new numerical method, a relationship between the parameters that define the system

nonlinearity and the output frequency response is revealed.

In this analysis, the OFRF based analysis was done. Using the output spectrums generated

from the OFRF determined, the average value of the output spectrum was determined. Then,

the mean value of both outputs of the systems; outlet concentration of the reactant and the

temperature of the reactor was compared with the numerical simulation results. The results

also proved that periodic modulation input provides a better average performance compared

to the steady-state operation. Also, this OFRF based analysis provide a new insight and

understanding to the nonlinear chemical control because the current literature method only

reveals the relationship between the input and output of the nonlinear system.

5.2 Implementation of the OFRF into the nonlinear

non-isothermal CSTR

5.2.1 Mathematical model of a nonlinear non-isothermal CSTR

In this subsection, the mathematical model of a nonlinear non-isothermal CSTR with

periodically operated input and homogeneous nth order reaction is modelled. Consider

a simple reaction

A−−−→product(s)
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where a homogeneous n-th order reaction takes place [55]. The rate law is

r = k0e
EA
RT cA

n (5.1)

where cA is the reactant concentration, T is the temperature, EA is the activation energy, k0 is

the preexponential factor in the Arrhenius equation and R is the universal gas constant.

For the analysis of the nonlinear nonisothermal CSTR, the material balance for the reactant

A can be written as

V
dcA

dt
= FcA,in −FcA − k0e−

EA
RT cA

nV (5.2)

and the energy balance can be written as

V ρcp
dT
dt

= FρcpTin −FρcpT +(−∆HR)k0e−
EA
RT cA

nV −UAw(T −Tj) (5.3)

where t is the time, F is the volumetric flow rate of the reaction stream, V is the volume of

the CSTR reactor, ∆HR is the heat of reaction, Aw is the surface area of the heat exchanger,

U is the overall heat transfer coefficient, ρ is the density and cp is the specific heat capacity.

There are two subscripts used in the equation, the subscript in is for the inlet and the subscript

j is for the heating/cooling fluid in the reactor jacket.

There are several assumptions made in this analysis:

1. The CSTR reactor is well mixed and is at steady state.

2. The volume, V is constant where the inlet and outlet flow rates are equal.

3. All physical and chemical properties are independent of temperature.
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As the CSTR reactor is considered to be at steady state, the material and energy balances are

given with the following expressions:

cAin,s

cA,s
= 1+ k0e−

EA
RT,s cA,s

n−1 V
Fs

(5.4)

Tin,s

Ts
= 1−

(−∆HR)k0e−
EA
RTs cA,s

n

ρcpTs

V
Fs

+
UAw

ρcp
−

UAwTj,s

ρcpTs
(5.5)

For simplification, the following parameters which is in functions of the physical parameters

of the reactor and steady state will be introduced:

α = k0e−
EA
RTs cA,s

n−1 V
Fs

β =
(−∆HR)k0e−

EA
RTs cA,s

n

ρcpTs

V
Fs

γ =
EA

RTs

δ =
UAwTj,s

ρcpTs

St =
UAw

FsρcpTs

(5.6)

Then, all variables are changed to dimensionless forms for the purpose of frequency domain

analysis. The definitions of all the dimensionless variables are as written in Table 5.1 where

they show their relatives derivations from the steady state values.

Using all these parameters and the dimensionless variables, the material balance for the

reactant A and the energy balance in (5.2)-(5.3) can be written

dC
dτ

=(1+α)(Φ+1)(Cin +1)− (Φ+1)(C+1)− k0e−
EA

RTs(θ+1) cn−1
A,s

V
Fs
(1+C)n

dθ

dτ
=(1+β +St −δ )(Φ+1)(θin +1)− (Φ+1)(θ +1)−St(θ +1)+δ (θJ +1)

−
∆HRk0cn

A,sV

ρcpTsFs
e−

EA
RTs(θ+1) (1+C)n

(5.7)
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Table 5.1: Definitions of the dimensionless variables.

Variable Name Dimensionless form

Time τ = t
V/Fs

Frequency ω = ωd
V
Fs

Inlet concentration of the reactant Cin =
cA,in−cAin,s

cAin,s

Volumetric flow rate of the stream Φ= F−Fs
Fs

Outlet concentration of the reactant C =
cA−cA,s

cA,s

Inlet temperature θi =
Tin−Tin,s

Tin,s

Temperature in the CSTR θ = T−Ts
Ts

Temperatur of the heating or cooling fluid θ j =
Tj−Tj,s

Tj,s

The inlet concentration of the reactant, Cin is the periodic input of this system where its

equation can be written as

Cin = 0.2
(
cos(15t)− cos(7t)

)
, t ∈ (0,20) (5.8)

and Figure 5.1 shows the frequency for the inlet concentration of the reactant, Cin

Figure 5.1: The frequency of the inlet concentration of the reactant, Cin.

To use this model in the new numerical method proposed in Chapter 4 of this thesis, the

equation will be transform to Nonlinear Differential Equation(NDE) model where all the

nonlinearities are in the polynomial form. The nonlinear terms will be expanding in the
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Taylor series form. The Taylor series expansions for the nonlinear terms up to second order

are

e−
EA

RTs(θ+1) = e−
EA
RTs +θ

EA

RTs
e−

EA
RTs +θ

2−EA

RTs
e−

EA
RTs +

θ 2

2
−EA

RTs
e−

EA
RTs + . . .

= e−γ +θγe−γ −θ
2
γe−γ +

θ 2

2
γe−γ + . . .)

= e−γ(1+θγ −θ
2
γ +

θ 2

2
γ + . . .)

(1+C)n = 1+nC+
1
2

n(n−1)C2 + . . .

(1+C)ne−
EA

RTs(θ+1) = e−γ(1+θγ −θ
2
γ +

θ 2

2
γ +nC+nCθγ +

1
2

n(n−1)C2 + . . .)

(5.9)

and (5.7) are formed into

dC
dτ

=(1+α)(Φ+1)(Cin +1)− (Φ+1)(C+1)−α

(
1+θγ −θ

2
γ +

θ 2

2
γ +nC+nCθγ

+
1
2

n(n−1)C2
)

dθ

dτ
=(1+β +St −δ )(Φ+1)(θin +1)− (Φ+1)(θ +1)−St(θ +1)+δ (θJ +1)

−β

(
1+θγ −θ

2
γ +

θ 2

2
γ +nC+nCθγ +

1
2

n(n−1)C2
)

(5.10)

Expanding (5.10) and representing in the (4.1) form enables the coefficients for both

subsystem to be determined easier.

dC
dτ

−
(

1+αΦ+α +Φ
)

Cin −
(

αΦ+Φ−α

)
−
(
Φ+1−αn

)
C+αγθ

+αγnCθ +α
1
2

n(n−1)C2 +
(

αγ −α
γ

2

)
θ

2 = 0

dθ

dτ
−
(
Φ+Φβ +ΦSt −Φδ

)
θin −

(
Φβ +ΦSt −Φδ +δθJ

)
+βnC

+
(
Φ+1+St −βγ

)
θ +βγnCθ −

(
γ

2
− γ

)
βθ

2 +β
1
2

n(n−1)C2 = 0

(5.11)
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The coefficients for the first subsystem are

c1
1,0(1 : 1) = 1,

c1
1,0(1 : 0) =−

(
Φ+1−αn

)
,

c2
1,0(1 : 0) = αγ,

c1,1
2,0(1 : 0,0) = α

1
2

n(n−1),

c1,2
2,0(1 : 0,0) = αγn,

c2,2
2,0(1 : 0,0) = αγ −α

γ

2
,

c1
0,1(1 : 0) =−

(
1+αΦ+α +Φ

)

(5.12)

and the coefficients for the second subsystem are

c2
1,0(2 : 1) = 1,

c2
1,0(2 : 0) = Φ+1+St −βγ,

c1
1,0(2 : 0) = βn,

c1,1
2,0(2 : 0,0) = β

1
2

n(n−1),

c1,2
2,0(2 : 0,0) = βγn,

c2,2
2,0(2 : 0,0) =−β

(
γ

2
− γ

)
,

c2
0,1(2 : 0) =−

(
Φ+Φβ +ΦSt −Φδ

)
(5.13)

In this analysis, the values of all the model parameters use in the rest of the chapter are listed

in (5.2) which defined an exothermic first order reaction and were taken from [49],[55].

From the parameters, the steady state solution that exists are cA,s = 0.3466kmol/m3 and

Ts = 388K. However, this steady state is not optimum. These values also had been tested

with the stability analysis [55] and was found stable. It is important to determine if the

system is a stable system as OFRF only works for stable system.
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Table 5.2: Value for the physical parameters

Parameter Value Units

Reaction order, n 1
Volume of the reactor, V 1 m3

Preexponential factor of the reaction rate constant, k0 1×1010 1/min
Activation energy, EA 69 256 kJ/kmol
Heat of reaction, δHR -543 920 kJ/kmol
Heat of capacity, ρcp 4.184×103 kJ/K/m3

Steady state inlet concentration, cAi,s 2 kmol/m3

Steady state inlet temperature, Ti,s 323 K
Steady state temperature of the coolant, Ti,s 365 K
Overall heat transfer coefficient, U 160 W/m2/K
Surface area for heat exchange, Aw 240 m2

The parameter of interest in this analysis is the steady state flow-rate, Fs. As a note, all the

values discussed in this subsection will be used throughout the analysis in this chapter. For

a better understanding of the system, Figure 5.2 shows the nonlinear nonisothermal CSTR

with the a) dimensional parameters and b) dimensionless parameters.

Figure 5.2: The nonlinear nonisothermal CSTR with the a) dimensional parameters and b)
dimensionless parameters.
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5.2.2 Output Frequency Response Functions(OFRF) respresentation

for nonlinear non-isothermal CSTR

The next crucial step in this analysis is to determine OFRF representation for the nonlinear

non-isothermal CSTR using the algorithm discussed in Section 4.2.2.1. Recall that OFRF is

about the relationship between parameter that define the system nonlinearity and the outputs.

However, in this system, the parameters define both the system linearity and nonlinearity. An

assumption was made where the effect of the parameter of interest on the linear part has only

small effect on the nonlinear system.

To determine the OFRF representation, first, the characteristic parameter vector of the system

up to the third order can be determined by using the parametric characteristics analysis that

was discussed in Chapter 4. The parameter of interest in this analysis is the steady state flow

rate of the reaction, Fs. The result of parametric characteristics analysis of the systems are

M1 = [1] M2 =

[
1
Fs

]
M3 =

[
1

Fs
2

]
(5.14)

Then, using the result from the parametric characteristic analysis, the OFRF representation

of the system for each outputs can be written as

Ĉ( jω) = P̂11( jω)+

[
1

Fs,nl

]
P̂21( jω)+

[
1

Fs,nl
2

]
P̂31( jω)

θ̂( jω) = P̂11( jω)+

[
1

Fs,nl

]
P̂21( jω)+

[
1

Fs,nl
2

]
P̂31( jω)

(5.15)

The OFRF representation is the same for all outputs but the value of the OFRF "coefficients"

are independent to the outputs. The value of the OFRF "coefficients" can be determined

using the ALE that is derived in the next section.
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5.2.3 Derivation of Associated Linear Equations(ALEs) for nonlinear

non-isothermal CSTR

Chapter 4 has provided an algorithm to determine ALE for MIMO-NDE model in subsection

4.2.3.1. Using that algorithm, the ALEs for the nonlinear non-isothermal CSTR is derived.

Rewritten (5.11) again for a better understanding of the process in this section.

dC
dτ

−
(

1+αΦ+α +Φ
)

Cin −
(

αΦ+Φ−α

)
−
(
Φ+1−αn

)
C+αγθ

+αγnCθ +α
1
2

n(n−1)C2 +
(

αγ −α
γ

2

)
θ

2 = 0

dθ

dτ
−
(
Φ+Φβ +ΦSt −Φδ

)
θin −

(
Φβ +ΦSt −Φδ +δθJ

)
+βnC

+
(
Φ+1+St −βγ

)
θ +βγnCθ −

(
γ

2
− γ

)
βθ

2 +β
1
2

n(n−1)C2 = 0

(5.16)

where
α = k0e−

EA
RTs cA,s

n−1 V
Fs

β =
(−∆HR)k0e−

EA
RTs cA,s

n

ρcpTs

V
Fs

γ =
EA

RTs

δ =
UAwTj,s

ρcpTs

St =
UAw

FsρcpTs

Next, rewrite (5.16) in the different form as (4.22)

D1C(τ)−
(

1+αΦ+α +Φ
)

Cin(τ)−
(

αΦ+Φ−α

)
−
(
Φ+1−αn

)
C(τ)+αγθ(τ)

+αγnC(τ)θ(τ)+α
1
2

n(n−1)C(τ)2 +
(

αγ −α
γ

2

)
θ(τ)2 = 0

D1
θ(τ)−

(
Φ+Φβ +ΦSt −Φδ

)
θin(τ)−

(
Φβ +ΦSt −Φδ +δθJ(τ)

)
+βnC(τ)

+
(
Φ+1+St −βγ

)
θ(τ)+βγnC(τ)θ(τ)−β

(
γ

2
− γ

)
θ(τ)2 +β

1
2

n(n−1)C(τ)2 = 0
(5.17)
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Using the steps in the algorithm, set Nmax = 3, N = 1,2,3. Then, the general ALEs for every

order up to 3rd-order can be written as

c1
1,0(1 : 1)D1y1,1(τ)+ c1

1,0(1 : 0)y1,1(τ)+ c2
1,0(1 : 0)y2,1(τ) = c1

0,1(1 : 0)u1(τ)+ J1,1 − J1,0

c2
1,0(2 : 1)D1y2,1(τ)+ c1

1,0(2 : 0)y1,1(τ)+ c2
1,0(2 : 0)y2,1(τ) = c2

0,1(1 : 0)u2(τ)+ J2,1 − J2,0

c1
1,0(1 : 1)D1y1,1(τ)+ c1

1,0(1 : 0)y1,1(τ)+ c2
1,0(1 : 0)y2,1(τ) = J1,2 − J1,1

c2
1,0(2 : 1)D1y2,1(τ)+ c1

1,0(2 : 0)y1,1(τ)+ c2
1,0(2 : 0)y2,1(τ) = J2,2 − J2,1

c1
1,0(1 : 1)D1y1,1(τ)+ c1

1,0(1 : 0)y1,1(τ)+ c2
1,0(1 : 0)y2,1(τ) = J1,3 − J1,2

c2
1,0(2 : 1)D1y2,1(τ)+ c1

1,0(2 : 0)y1,1(τ)+ c2
1,0(2 : 0)y2,1(τ) = J2,3 − J2,2

(5.18)

where J1,0 = J2,0 = J1,1 = J2,1 = 0. Then, after solving J1,N and J2,N , the ALEs for the system

up to 3rd-order can be written as

D1C1(τ)−
(
Φ+1−αn

)
C1(τ)+αγθ1(τ)

=
(

1+αΦ+α +Φ
)

Cin(τ)+
(

αΦ+Φ−α

)
D1

θ1(τ)+βnC1(τ)+
(
Φ+1+St −βγ

)
θ1(τ)

=
(
Φ+Φβ +ΦSt −Φδ

)
θin(τ)+

(
Φβ +ΦSt −Φδ +δθJ(τ)

)

D1C2(τ)−
(
Φ+1−αn

)
C2(τ)+αγθ2(τ)

= αγnC1(τ)θ1(τ)+α
1
2

n(n−1)C1(τ)
2 +
(

αγ −α
γ

2

)
θ1(τ)

2

D1
θ2(τ)+βnC2(τ)+

(
Φ+1+St −βγ

)
θ2(τ)

= βγnC1(τ)θ1(τ)−β

(
γ

2
− γ

)
θ1(τ)

2 +β
1
2

n(n−1)C1(τ)
2
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D1C3(τ)−
(
Φ+1−αn

)
C3(τ)+αγθ3(τ)

= α
1
2

n(n−1)
(

2C1(τ)C2(τ)+C2(τ)
2
)
+
(

αγ −α
γ

2

)(
2θ1(τ)θ2(τ)+θ2(τ)

2
)

+αγn
(

C1(τ)θ2(τ)+C2(τ)θ1(τ)+C2(τ)θ2(τ)
)

D1
θ3(τ)+βnC3(τ)+

(
Φ+1+St −βγ

)
θ3(τ)

=−β

(
γ

2
− γ

)(
2θ1(τ)θ2(τ)+θ2(τ)

2
)
+β

1
2

n(n−1)
(

2C1(τ)C2(τ)+C2(τ)
2
)

+βγn
(

C1(τ)θ2(τ)+C2(τ)θ1(τ)+C2(τ)θ2(τ)
)

(5.19)

Solving (5.19) set by set for C1(τ),C2(τ),C3(τ),θ1(τ),θ2(τ) and θ1(τ). Then, the estimation

of the outputs signal and the outputs spectrum for the system up to 3rd-order for both outputs

thus can be written as
Ĉ(τ) = Ĉ1(τ)+Ĉ2(τ)+Ĉ3(τ)

θ̂(τ) = θ̂1(τ)+ θ̂2(τ)+ θ̂3(τ)
(5.20)

and
Ĉ( jω) = Ĉ1( jω)+Ĉ2( jω)+Ĉ3( jω)

θ̂( jω) = θ̂1( jω)+ θ̂2( jω)+ θ̂3( jω)
(5.21)

As a MIMO-NDE model, the estimation is independent for all outputs produced. The

estimation of the output signal is the total of all ALEs responses for each outputs. In this

nonlinear non-isothermal CSTR, there are two outputs which are outlet concentration of

the reactant, C and temperature in the reactor, θ . These outputs are in the dimensionless

form and can be changed back to the dimension form using their steady state values. Figure

5.3 shows the comparison of the simulated results and the sum of the ALEs results in the

dimensionless time domain form to indicate the significant of (5.20).

Then, from (5.21), which is the result of Fourier transform of (5.20), it is understandable

that the ouput spectrum for each output can be approximated by the sum of the each outputs

solutions of the ALE in the frequency domain. Figure 5.4 shows the comparison of the
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Figure 5.3: The simulated output signals for both outlet concentration of the reactant, C and
temperature in the reactor, θ and sum of the signals from the ALEs in the dimensionless time
domain when Fs = 1.

simulated output spectrum and the sum of the solutions of the ALE in the frequency domain

for each outputs, outlet concentration of the reactant, C and temperature in the reactor, θ .

From both Figure 5.3 and Figure 5.4, it can be said that the sum of the ALEs results in both

Figure 5.4: The simulated output signals for both outlet concentration of the reactant, C
and temperature in the reactor, θ of the system and sum of the signals from the ALEs when
Fs = 1.
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the time and frequency domain is in good accuracy to the simulated results for all the outputs

in the system. Then, using the steady state values of the concentration of the reactor, the

output signal changed to their dimensional form. Figure 5.5 shows the comparison of the

simulated results and the sum of the ALEs results in the time domain.

Figure 5.5: The simulated output signals for both outlet concentration of the reactant, cA and
temperature in the reactor, T and sum of the signals from the ALEs when Fs = 1.

Figure 5.5 shows that the ALEs derivation works for analysis in the dimensional form. These

results shows the effectiveness of the ALEs determined using the algorithm discussed in

Section 4.2.2.1. The estimation of the output spectrum up to 3rd-order for both outputs, C

and θ of the nonlinear non-isothermal CSTR that was determined in this subsection will be

used in the next subsection.



5.2 Implementation of the OFRF into the nonlinear
non-isothermal CSTR 109

5.2.4 Determination of OFRF of the nonlinear non-isothermal CSTR

using ALEs

To determine the OFRF of the nonlinear non-isothermal CSTR, the algorithm derived in

Section 4.2.4.1 will be used. First the OFRF representations for both dimensionless outputs,

outlet concentration of the reactant, C and temperature in the reactor, θ for the nonlinear

non-isothermal CSTR was determined in subsection 5.2.2. The OFRF representations can be

written as

Ĉ( jω) = P̂11( jω)+

[
1
Fs

]
P̂21( jω)+

[
1

Fs
2

]
P̂31( jω)

θ̂( jω) = P̂11( jω)+

[
1
Fs

]
P̂21( jω)+

[
1

Fs
2

]
P̂31( jω)

(5.22)

The OFRF representation is the same for both outputs but the OFRF "coefficients" for

each outputs need to be calculated independently. Then, from the ALEs of the nonlinear

non-isothermal CSTR that was determined in previous subsection, the estimation of the

output spectrum up to 3rd-order for both outputs, C and θ are

Ĉ( jω) = Ŷ1,1( jω)+ Ŷ1,2( jω)+ Ŷ1,3( jω))

θ̂( jω) = Ŷ2,1( jω)+ Ŷ2,2( jω)+ Ŷ2,3( jω)
(5.23)

From these results, it can be understood that in using the method of determining OFRF using

ALEs for this system, only one set of ALEs simulations using one value of Fs was needed to

determine the OFRF of this nonlinear non-isothermal CSTR system. Combining both (5.22)

and (5.23) produces

P̂11( jω)+

[
1
Fs

]
P̂21( jω)+

[
1

Fs
2

]
P̂31( jω) = Ŷ1,1( jω)+ Ŷ1,2( jω)+ Ŷ1,3( jω)) (5.24)

P̂11( jω)+

[
1
Fs

]
P̂21( jω)+

[
1

Fs
2

]
P̂31( jω) = Ŷ2,1( jω)+ Ŷ2,2( jω)+ Ŷ2,3( jω) (5.25)
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where (5.24) corresponds to the first output, the outlet concentration of the reactant, C and

(5.25) corresponds to the second output, the temperature in the reactor, θ . Then, the solution

for the OFRF "coefficients" for the outlet concentration of the reactant, C can be determined

as
P̂11( jω) = Ŷ1,1( jω)

P̂21( jω) =

[
1
Fs

]−1

Ŷ1,2( jω)

P̂31( jω) =

[
1

F2
s

]−1

Ŷ1,3( jω)

(5.26)

whereas the OFRF "coefficients" for the temperature in the reactor, θ can be determined as

P̂11( jω) = Ŷ2,1( jω)

P̂21( jω) =

[
1
Fs

]−1

Ŷ2,2( jω)

P̂31( jω) =

[
1

F2
s

]−1

Ŷ2,3( jω)

(5.27)

It is best to note again that the value of P̂11( jω), P̂21( jω) and P̂31( jω) are different for each

outputs although the OFRF representation for the outputs are the same as represented in

(5.22). Using the value of the parameter Fs = 1, OFRF of the system was determined. Using

the OFRF determined, a comparison between the simulated output spectrum and the spectrum

evaluated using OFRF for each outputs can be done.

Different value of Fs(Fs = 0.7,0.8,0.9 and 1.0 m3/min) were used in the OFRF determined

to show the effectiveness of the OFRF determined. Figure 5.6 shows the comparison of the

amplitude of C( jω) and Ĉ( jω) for four different value of Fs.
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Figure 5.6: Comparison between the simulated output spectrum and the spectrum evaluated
using OFRF for output C with different values of Fs.

From Figure 5.6, it can be seen that the OFRF can estimate the output spectrum of the

outlet concentration of the reactant, C. However, it can be observed that the OFRF can only

estimate the output spectrum well at certain frequency when Fs ̸= 1.0m3/min. Comparing

the two results from both simulated output spectrum and the spectrum evaluated using OFRF

for the four different values of Fs, it can be said that the output spectrum evaluated using

OFRF had a limitation where the value of Fs used in the OFRF determination affected the

results. The bigger the difference between the value of parameter used in the OFRF based

analysis and the value of parameter used in the OFRF determined, the larger the error in the

output spectrum evaluated using OFRF when compared with the simulated output spectrum.

The same relationship can be seen from the results for the second output, θ , the temperature

in the reactor in Figure 5.7. Figure 5.7 shows the comparison of the amplitude of θ( jω) and

θ̂( jω) for four different value of Fs.
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Figure 5.7: Comparison between the simulated output spectrum and the spectrum evaluated
using OFRF for output θ with different values of Fs.

Based on the results on both Figure 5.6 and Figure 5.7, it supported the assumption made at

the beginning of this implementation. As OFRF can represent the simulated output spectrum

well, it can be concluded that although the parameter of interest, Fs define both the linearity

and the nonlinearity, the effect of the linear part is small on the nonlinear system.

5.2.5 OFRF based analysis for the nonlinear non-isothermal CSTR

Using the OFRF determined, two OFRF based analysis were done. First, using the fact from

the current literature, OFRF will be used to check whether a periodic modulation of the input

for the nonlinear non-isothermal CSTR system has a better average performance compared

to the steady state operation due to the nonlinearities in the system. Second, using the OFRF,

a function that can directly shows the relationship between the average value of output signal

for dimensionless outlet concentration of the reactant and the nonlinear parameter will be

presented to facilitate the analysis and design of nonlinear chemical process system.
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For the first OFRF based analysis, by inversing the results of the OFRF estimated output

spectrums, the data are converted to the time domain. Then, using the steady state values

of the concentration of the reactant, the dimensionless data is converted to the real value

output signal and the average of the output signals for the four different values of Fs can

be calculated. Table 5.3 shows the mean value of the outlet concentration of the reactant,

c̄A determined using numerical simulation and OFRF and their percentage error. In this

comparison, the simulation time is constant and the starting conditions are the same.

Table 5.3: Comparison between mean values of the outlet concentration of the reactant, c̄A
using numerical simulation and OFRF.

Fs c̄A using c̄A Percentage
m3/min numerical simulation using OFRF error (%)

0.7 0.3328 0.3282 1.38
0.8 0.3311 0.3304 0.21
0.9 0.3314 0.3321 0.21
1.0 0.3340 0.3335 0.15

From Table 5.3, it can be analysed that the bigger the flow rate, the smaller the mean values

of the outlet concentration. This show the relationship between the parameter of interest,

flow rate, which defines the system nonlinearity and the outputs of the system. Besides, all

the mean values of the outlet concentration of the reactant, c̄A are less than the steady-state

value (cA,s = 0.3466 kmol/m3) which are consistent with the fact that a periodic modulation

of a nonlinear system will has a better average performance compared to the steady state due

to the nonlinearities in the system.

The data in Table 5.3 also show that the percentage error between the result using OFRF and

numerical simulation are small for each different value of Fs that were analysed. Thus, it

is clear that OFRF can provide a good result in the analysis of a nonlinear non-isothermal

CSTR system. In addition, it is also interesting to point out that the difference between the
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mean values of the outlet concentration of the reactant, c̄A using numerical simulation and

OFRF are bigger when Fs is smaller. This is because the OFRF that was used in this analysis

was determined from the results of Fs = 1.0.

Then, the same concept was applied to the second output in the dimensional form and

time domain, the temperature of the reactor, T . Table (5.4) shows the mean value of the

temperature of the reactor, T̄ determined using numerical simulation and OFRF.

From table 5.4, the mean values of the temperature of the reactor are close to the steady

Table 5.4: Comparison between mean values of the temperature of the reactor, T̄ using
numerical simulation and OFRF.

Fs T̄ using numerical simulation T̄ using OFRF

0.7 388.09 388.23
0.8 388.12 388.20
0.9 388.15 388.18
1.0 388.15 388.16

state value (Ts = 388K). This show that Fs has small effect on the temperature of the reactor.

In addition, the difference between the mean values of the temperature of the reactor, T̄

using numerical simulation and OFRF are bigger when Fs is smaller. This finding provides

conclusive support that the estimation of the OFRF will has bigger deviation from the

simulated result when the parameter analyzed had bigger difference from the parameter value

that was used in the determination of the OFRF.

Next, for the second OFRF based analysis, a function that can directly shows the relationship

between the average value of output signal for dimensionless outlet concentration of the

reactant and the nonlinear parameter is needed. To determine this function, first, consider the

OFRF that was determined for the non-isothermal CSTR.

Ĉ( jω) = P̂11( jω)+

[
1
Fs

]
P̂21( jω)+

[
1

Fs
2

]
P̂31( jω) (5.28)
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Using (5.28), the average value of each functions can be determined as

1
ω2 −ω1

∫
ω2

ω1

Ĉ( jω)Ĉ∗( jω)dω

=
1

ω2 −ω1

∫
ω2

ω1

(
P̂11( jω)+

[
1
Fs

]
P̂21( jω)+

[
1

Fs
2

]
P̂31( jω)

)

×

(
P̂∗

11( jω)+

[
1
Fs

]
P̂∗

21( jω)dω +

[
1

Fs
2

]
P̂∗

31( jω)

)
dω

=
1

ω2 −ω1

∫
ω2

ω1

(
P̂11( jω)P̂∗

11( jω)+

[
1
Fs

](
P̂21( jω)P̂∗

11( jω)+ P̂11( jω)P̂∗
21( jω)

)
+

[
1

Fs
2

](
P̂31( jω)P̂∗

11( jω)+ P̂21( jω)P̂∗
21( jω)+ P̂11( jω)P̂∗

31( jω)
)

+

[
1

Fs
3

](
P̂31( jω)P̂∗

21( jω)+ P̂21( jω)P̂∗
21( jω)

)
+

[
1

Fs
4

](
P̂31( jω)P̂∗

31( jω)
))

dω

=
1

ω2 −ω1

∫
ω2

ω1

P̂11( jω)P̂∗
11( jω)dω

+

[
1
Fs

]
1

ω2 −ω1

∫
ω2

ω1

(
P̂21( jω)P̂∗

11( jω)+ P̂11( jω)P̂∗
21( jω)

)
dω

+

[
1

Fs
2

]
1

ω2 −ω1

∫
ω2

ω1

(
P̂31( jω)P̂∗

11( jω)+ P̂21( jω)P̂∗
21( jω)+ P̂11( jω)P̂∗

31( jω)
)

dω

+

[
1

Fs
3

]
1

ω2 −ω1

∫
ω2

ω1

(
P̂31( jω)P̂∗

21( jω)+ P̂21( jω)P̂∗
21( jω)

)
dω
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(5.29)

Then, using the relationship where

∫
ω2

ω1

Ĉ( jω)Ĉ∗( jω)dω =
∫

ω2

ω1

|Ĉ( jω)|2dω (5.30)
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and the Rayleigh’s Theorem where the integral of the power spectrum equals the integral of

the squared modulus of the function

∫
∞

−∞

| f̂ (x)|2dx =
∫

∞

−∞

| f̂ ( jω)|2dω (5.31)

the relationship between the average value of the output spectrum for dimensionless outlet

concentration of the reactant and the average value of output signal for dimensionless outlet

concentration of the reactant can be written as

1
τ2 − τ1

∫
τ2

τ1

|Ĉ(τ)|2dτ =
1

ω2 −ω1

∫
ω2

ω1

|Ĉ( jω)|2dω (5.32)

Thus, using the OFRF determined, a relationship between the nonlinear parameters and the

average value of outlet concentration output spectrum for dimensionless outlet concentration

of the reactant can be written as

1
ω2 −ω1

∫
ω2

ω1

|Ĉ( jω)|2dω

=
1

ω2 −ω1

∫
ω2

ω1

P̂11( jω)P̂∗
11( jω)dω

+

[
1
Fs

]
1

ω2 −ω1

∫
ω2

ω1

(
P̂21( jω)P̂∗

11( jω)+ P̂11( jω)P̂∗
21( jω)

)
dω

+

[
1

Fs
2

]
1

ω2 −ω1

∫
ω2

ω1

(
P̂31( jω)P̂∗

11( jω)+ P̂21( jω)P̂∗
21( jω)+ P̂11( jω)P̂∗

31( jω)
)

dω

+

[
1

Fs
3

]
1

ω2 −ω1

∫
ω2

ω1

(
P̂31( jω)P̂∗

21( jω)+ P̂21( jω)P̂∗
21( jω)

)
dω

+

[
1

Fs
4

]
1

ω2 −ω1

∫
ω2

ω1

(
P̂31( jω)P̂∗

31( jω)
)

dω

(5.33)

This equation shows the relationship between the nonlinear parameters, the steady state flow

rate, Fs and the average value of output spectrum for dimensionless outlet concentration of

the reactant. Using (5.32), the relationship between the nonlinear parameters, the steady state
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flow rate, Fs and the average value of output signal for dimensionless outlet concentration of

the reactant can also be written as

1
τ2 − τ1

∫
τ2

τ1

|Ĉ(τ)|2dτ

=
1

ω2 −ω1

∫
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ω1
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+
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1
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]
1
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∫
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)
dω

+
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2
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1

ω2 −ω1

∫
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(
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31( jω)
)

dω

+
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1
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3

]
1

ω2 −ω1

∫
ω2

ω1

(
P̂31( jω)P̂∗
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)
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+

[
1
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4

]
1

ω2 −ω1

∫
ω2

ω1

(
P̂31( jω)P̂∗

31( jω)
)

dω

(5.34)

Both relationships allow a further analysis to be done using the OFRF. To show the effectiveness

of this relationship, using the OFRF determined for the non-isothermal CSTR, this equation

was produced

1
50−0

∫ 50

0
|Ĉ( jω)|2dω

= 0.4407+

[
1
Fs

]
0.0018+

[
1

Fs
2

]
0.0116+

[
1

Fs
3

]
(7.8809×10−4)+

[
1

Fs
4

]
0.0020

(5.35)

In this equation, only the frequency data for ω = 0−50 cycles is considered which is half of

the output spectrum data. Using equation (5.33) , the value of Fs that can produced a specified

average value of output spectrum for dimensionless outlet concentration of the reactant can

be determined. For example, if the average value of output spectrum for dimensionless outlet

concentration of the reactant specified is 0.4589, the value of Fs can be determined by finding
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the roots of this equation

0.4589 = 0.4407+

[
1
Fs

]
0.0018+

[
1

Fs
2

]
0.0116+

[
1

Fs
3

]
(7.7565×10−4)+

[
1

Fs
4

]
0.0020

(5.36)

The are four roots for equation (5.36). From the four roots, only one can be used as the value

of Fs because two roots are complex numbers while the other one root is negative number.

As a result, the value of Fs calculated from (5.36) is 0.9483 m3/min.

Comparing with the results from the numerical simulation using equation (5.16), the average

value of output spectrum for dimensionless outlet concentration of the reactant is 0.4599 and

the average value of output signal for dimensionless outlet concentration of the reactant is

0.4597 when the steady state flow rate,Fs is 0.9483 m3/min. This result shows that (5.35)

allows the determination of the steady state flow rate, Fs when the average value of output

spectrum or output signal for dimensionless outlet concentration of the reactant are specified.

In this OFRF based analysis, the relationship between the nonlinear parameter and the

output of the system can be determined. Using the current methodology and literature, only

relationship between input and output of the system can be determined. In [55–57], the

analysis of the same system, the nonlinear non-isothermal CSTR was done. It shows the

effects of the periodic modulation input on the output of the system using nonlinear frequency

response method. Thus, only relationship between the input and output can be understood.

In this new OFRF based analysis, the relationship between the nonlinear parameter and the

output can be understood and used for the manufacturing of chemical process design. This

provides a new method for nonlinear chemical process system analysis and design.
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5.3 Conclusion

In conclusion, this chapter has provided convincing evidence of how OFRF is useful in

the chemical engineering process and may contribute to a further understanding of the

relationship between the nonlinear parameters and the outputs of the system. In this analysis,

an assumption where the parameter of interest in the linear part has a small effect on the

nonlinear system had been made. The assumption allows the analysis using OFRF can be

done as OFRF shows an explicit relationship between the nonlinear parameters and the

outputs of the system.

This analysis also presented how the nonlinear system can be transformed to the NDE

model using the expansion of the nonlinear terms in the Taylor series form technique. This

transformation allowed the determination of OFRF for the nonlinear non-isothermal CSTR

systems. Although this chapter only focuses on the specific case of non-isothermal CSTR, the

same technique can be easily applied to other nonlinear CSTR. Besides, the same techniques

also could be used in other types of reactor.

Based on the OFRF that was determined in this analysis, a different type of analysis

and design can be done either in dimensionless or dimensional forms of the nonlinear

non-isothermal CSTR. The process of transforming the dimensionless form results into the

dimensional forms is by using the steady-state values of the system. This analysis provides

a new insight for the nonlinear chemical process as the current research only provide a

relationship between the inputs and the outputs of the system, but OFRF allows an explicit

relationship between the parameter that describes the nonlinearities and the output of the

system.

Using the OFRF that was determined using the new method, a new OFRF based analysis was

done. The relationship between the steady state flow rate, Fs and the average value of the
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output spectrum or the output signal for dimensionless outlet concentration of the reactant

were presented. The nonlinear parameters can be calculated when the average value of the

output spectrum or the output signal for dimensionless outlet concentration of the reactant

is specified. This new OFRF based analysis shows the relationship between the nonlinear

parameter and the output of the system and this analysis is useful for the chemical process

design. Lastly, this method opens a new area for the understanding and development of

chemical process system analysis and design.



Chapter 6

Conclusion and Recommendation for

Future Works

6.1 Summary and Conclusion

The purpose of this research was to develop a new and efficient numerical method in frequency

domain analysis. Besides, this research aims to understand the relationship between the

system output frequency response and parameters that define the system nonlinearity of

nonlinear chemical engineering process systems.

In this research, the Volterra series theory in the frequency domain, the OFRF and the

ALEs are reviewed. Then, the new numerical method for the determination of OFRF has

been derived where it utilised the ALEs concept. The new numerical method increases the

efficiency of the determination of OFRF for nonlinear systems by significantly reducing the

number of numerical simulations and had been tested with SISO nonlinear systems. The

OFRF based analysis and design were applied to a nonlinear passive engine mount system

using the new numerical method derived in this research.
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Understanding that most of nonlinear systems are not SISO and the need to has a numerical

method to determine OFRF for MIMO nonlinear systems, the new numerical method concepts

and techniques for the determination of OFRF using ALEs has been extended to the MIMO

nonlinear systems. Detailed algorithms are derived for the determination of OFRF using

ALEs for MIMO nonlinear system. The new numerical method to determine the OFRF for

the MIMO nonlinear system opened a new journey to understanding the relationship between

the nonlinear parameters and the output for MIMO nonlinear system. The new numerical

method for the determination of OFRF for MIMO nonlinear system had been tested with

MIMO nonlinear system. The OFRF based design of a building structure vibration isolation

system has then be used to demonstrate how the new numerical method can be applied to

implement a design for application in earthquake engineering.

Finally, the new numerical method proposed in this research have been applied to the

analysis and design of nonlinear chemical engineering process system. The OFRF based

analysis and design had been applied to the nonlinear non-isothermal CSTR. The results

help in the understanding of the nonlinear chemical process identification and revealing the

relationship between the system output frequency response and parameters that define the

system nonlinearity.

6.2 Contributions of this research

This research makes several noteworthy contributions to the analysis and design on the

nonlinear system in the frequency domain. The summary of the contributions of this works

are as follows:

1. A new and efficient numerical method to determine OFRF using ALEs concept for the

SISO nonlinear systems is proposed.
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Three detailed algorithms for the new numerical method is presented in Chapter

3. These algorithms only work for SISO nonlinear system. The first algorithm is about

the determination of the OFRF representation from the NDE model. Then, the second

algorithm facilitates the derivation of ALEs for the nonlinear system. Finally, the last

algorithm uses the results from the first and second algorithm and their relationship to

determine the OFRF of the nonlinear system. The new numerical method increases the

efficiency of determination of OFRF for a nonlinear system. The number of simulations

needed to determine OFRF is less compared to the current literature [46].

2. A new numerical method to determine OFRF using ALEs for MIMO nonlinear systems

is developed.

The concepts in the new numerical method to determine OFRF using ALEs for

the SISO nonlinear model are extended to the MIMO nonlinear system. A better

understanding of the relationship between the nonlinear parameters and the output for

MIMO nonlinear system is achieved using the new numerical method to determine the

OFRF using ALEs for the MIMO nonlinear systems developed in this research. This

new numerical method also consists of three algorithms and is presented in Chapter 4.

These algorithms use the same concept and techniques as the new numerical method

to determine the OFRF using ALEs for the SISO nonlinear system. The first algorithm

is an algorithm to determine the OFRF representation of the NDE MIMO nonlinear

system. Then, the second algorithm is the derivation of ALEs for the MIMO nonlinear

system. The second algorithm facilitates the process of determining the ALEs for the

MIMO nonlinear system. The last algorithm is the determination of OFRF using ALEs.

3. Applications of the new numerical method to various nonlinear engineering problems.
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The new numerical method proposed is applied to various nonlinear engineering

problems. Different SISO nonlinear systems and MIMO nonlinear systems were tested

and analysed using the new numerical method developed in this research. Simulation

studies demonstrated the effectiveness of the new numerical method proposed in the

determination of OFRF for both SISO and MIMO nonlinear systems. The OFRF based

analysis and design were done on two different nonlinear systems; the passive engine

mount system and the engineering earthquake system. This OFRF based analysis

provide a better understanding of the relationship between the nonlinear parameters

and the output for the nonlinear systems.

4. The application of OFRF approach to the analysis of the output frequency response of

the nonlinear non-isothermal CSTR system.

The new numerical method proposed in this research is implemented and tested to the

nonlinear non-isothermal CSTR system. The nonlinear non-isothermal CSTR system

is transformed to the NDE model by expanding the nonlinear terms in the material and

energy balance equation using the Taylor series concept. Then, the detailed algorithms

presented and discussed in Chapter 4 are used to determine the OFRF for the nonlinear

non-isothermal CSTR system. The OFRF provides a good solution to the nonlinear

non-isothermal CSTR. Then, the OFRF based analysis was done using the OFRF

determined. The relationship between the system output frequency response and

parameters that define the system nonlinearity is analysed. In addition, as this system is

a periodic operation system, the result of the OFRF based analysis was compared with

the result in [49] where it analysed the same nonlinear system but in the steady-state

operation. The result agrees with the current literature [19, 71, 73] where the periodic

operation system improve the conversion of the product compared to the steady-state

operation.
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6.3 Future works

In the present research, a new numerical method to determine OFRF using ALEs for both

SISO and MIMO nonlinear systems are developed. The application of the new numerical

method to the nonlinear chemical process analysis and design also had been presented.

However, there is abundant room for further research. It is recommended that further

research is undertaken in the following area:

1. In this research, only application of OFRF into the CSTR is considered. It is interesting

to apply the OFRF based analysis and design to other types of reactors such as batch

reactor and PFR. The CSTR system that was analysed in this research is a nonlinear

non-isothermal CSTR system that used Taylor series to be transformed to the NDE

model. The same technique should applicable to other types of reactors. The OFRF

concept provides an explicit analytical relationship between the output frequency

response and the parameters that define the nonlinearity of the system. The relationship

that can be determined by OFRF can help the researchers to optimise the reactors.

2. Besides applying the OFRF concepts to other types of reactors, the OFRF based

analysis and design should also be implemented to different nonlinear chemical process

systems such as adsorption and pH neutralisation processes. The derivation of NDE

model from a current mathematical model that was used to describe these nonlinear

chemical process systems might be a challenge. But, as OFRF can provide the

analytical relationship between the output frequency response and the parameters that

define the nonlinearity of the system, the results of this research can provide a new

understanding to these nonlinear chemical process systems.

3. The results from the analysis and design of the nonlinear non-isothermal CSTR is based

on the numerical simulation. It would be interesting to compare the results from the

numerical simulation with the experimental data. Further experimental investigations



126 Conclusion and Recommendation for Future Works

are needed to understand the relationship between the nonlinear parameters and

the output frequency response of the nonlinear chemical process systems. These

investigations can help in the designing process of the control system and the optimisation

of the nonlinear system.

The recommended further research are focusing on the chemical engineering area. OFRF can

show an explicit relationship between the system output frequency response and parameters

that define the system nonlinearity while the current method in chemical process control is

only focusing on the relationship between the input and the output of the nonlinear chemical

process system. Therefore, this allows the OFRF based analysis to have an advantage in the

nonlinear chemical process control analysis and design. This future works will provide new

development in the chemical engineering process control area.
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[16] D. Brzić and M. Petkovska. Nonlinear frequency response analysis of nonisothermal
adsorption controlled by macropore diffusion. Chemical Engineering Science,
118:141–153, 2014.

[17] F. Caccavale, M. Iamarino, F. Pierri, and V. Tufano. Control and Monitoring of Chemical
Batch Reactors. Springer-Verlag London, 2011.

[18] A. Chatterjee and N. S. Vyas. Non-linear parameter estimation in
multi-degree-of-freedom systems using multi-input Volterra series. Mechanical
Systems and Signal Processing, 18:457–489, 2004.

[19] C. C. Chen, C. Hwang, and R. Y. K. Yang. Optimal Periodic Forcing of Nonlinear
Chemical Processes for Performance Improvements. The Canadian Journal of Chemical
Engineering, 72(4):672–682, 1994.

[20] S. Chen and S. A. Billings. Representation of non-linear systems: the NARMAX model.
International Journal of Control, 49(3):1013–1032, 1989.

[21] S. Cui and M. S. Chiu. A Multiple Model Approach to Nonlinear Internal Model
Control Design. Computers and Chemical Engineering, 23(Supplement):S253–S256,
1999.

[22] M. Dan and M. Kohiyama. System identification and control improvement of
semi-active-controlled-base-isolated building using the record of the 2011 Great East
Japan Earthquake. Safety, Reliability, Risk and Life-Cycle Performance of Structure &
Infrastructures, pages 3842–3847, 2013.

[23] M. F. Doherty and J. M. Ottino. Chaos in Deterministic Systems: Strange Attractors,
Turbulence and Applications in Chemical Engineering. Chemical Engineering Science,
43(2):139–183, 1988.

[24] J. M. Douglas. Process Dynamics and Control Volume 2 Control System Synthesis.
Prentice-Hall Inc, Englewood Cliffs, New Jersey, 1972.



References 129

[25] J. Du and T. A. Johansen. Integrated Multilinear Model Predictive Control of Nonlinear
Systems Based on Gap Metric. Industrial and Engineering Chemistry Research,
54(22):6002–6011, 2015.

[26] A. R. Garayhi and F. J. Keil. Determination of kinetic expressions from the frequency
response of a catalytic reactor - theoretical and experimental investigations. Chemical
Engineering Science, 56:1317–1325, 2001.

[27] D. A. George. Continuous nonlinear systems. Technical Report 355, MIT Research
Laboratory of Electronics, 1959.

[28] P. Guo. Damping System Designs using Nonlinear Frequency Analysis Approach. PhD
thesis, University of Sheffield, 2012.

[29] M. A. Henson and D. E. Seborg. Nonlinear Process Control. Prentice-Hall PTR, NJ,
USA, 1997.

[30] F. J. M. Horn and R. C. Lin. Periodic processes : A variational approach. Industrial &
Engineering Chemistry Process Design and Development, 6(1):21–30, 1967.

[31] R. A. Ibrahim. Recent advances in nonlinear passive vibration isolators. Journal of
Sound and Vibration, 314:371–452, 2008.
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Appendix A

Results for the quadratic nonlinear

MIMO system

A.1 Comparison between the simulated output and the sum

of ALEs

Figure A.1: The simulated output signals for both y1 and y2 of the system and sum of the
signals from the ALEs in the time domain when a = 50 and b = 150.
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Figure A.2: The simulated output spectrum of the system and sum of the output spectrum
from the ALEs in the frequency domain when a = 50 and b = 150 for both y1 and y2.

A.2 Comparison between the simulated output spectrum

and the spectrum evaluated using OFRF

Figure A.3: Comparison between the simulated output spectrum and the spectrum evaluated
using OFRF for output y1 when a = 90 and b = 240.
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Figure A.4: Comparison between the simulated output spectrum and the spectrum evaluated
using OFRF for output y2 when a = 90 and b = 240.







140 OFRF based analysis for the application in the earthquake engineering

Appendix B

OFRF based analysis for the application

in the earthquake engineering

B.1 The derivation of ALEs for the building system

In order to use the algorithm, rewrite the building system (4.42) in the different form as

m1D2x1(t)+(c1 + c2)D1x1(t)− c2D1x2(t)+(k1 + k2)x1(t)− k2x2(t)

= (C1 +C2x1(t)2)D1x1(t)+(K1 +K2x1(t)2)x1(t)−m1z̈(t)

m2D2x2(t)− c2D1x1(t)+(c2 + c3)D1x2(t)− c3D1x3(t)− k2x1(t)+(k2 + k3)x2(t)− k3x3(t)

=−m2z̈(t)

m3D2x3(t)− c3D1x2(t)+(c3 + c4)D1x3(t)− c4D1x4(t)− k3x2(t)+(k3 + k4)x3(t)− k4x4(t)

=−m3z̈(t)

m4D2x4(t)− c4D1x3(t)+(c4 + c5)D1x4(t)− c5D1x5(t)− k4x3(t)+(k4 + k5)x4(t)− k5x5(t)

=−m4z̈(t)

m5D2x5(t)− c5D1x4(t)+(c5 + c6)D1x5(t)− c6D1x6(t)− k5x4(t)+(k5 + k6)x5(t)− k6x6(t)

=−m5z̈(t)

m6D2x6(t)− c6D1x5(t)+(c6 + c7)D1x6(t)− c7D1x7(t)− k6x5(t)+(k6 + k7)x6(t)− k7x7(t)

=−m6z̈(t)

m7D2x7(t)− c7D1x6(t)+(c7 + c8)D1x7(t)− c8D1x8(t)− k7x6(t)+(k7 + k8)x7(t)− k8x8(t)

=−m7z̈(t)
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m8D2x8(t)− c8D1x7(t)+(c8 + c9)D1x8(t)− c9D1x9(t)− k8x7(t)+(k8 + k9)x8(t)− k9x9(t)

=−m8z̈(t)

m9D2x9(t)− c9D1x8(t)+(c9 + c10)D1x9(t)− c10D1x10(t)− k9x8(t)+(k9 + k10)x9(t)

− k10x10(t) =−m9z̈(t)

m10D2x10(t)− c10D1x9(t)+ c10D1x10(t)− k10x9(t)+ k10x10(t)

=−m10z̈(t) (B.1)

Using the steps in the algorithm, set Nmax = 3, N = 1,2,3. Then, the ALEs for every

order up to 5th-order can be written as

m1D2x1,1(t)+(c1 + c2)D1x1,1(t)− c2D1x2,1(t)+(k1 + k2)x1,1(t)− k2x2,1(t)

=−m1z̈(t)

m2D2x2,1(t)− c2D1x1,1(t)+(c2 + c3)D1x2,1(t)− c3D1x3,1(t)− k2x1,1(t)+(k2 + k3)x2,1(t)

− k3x3,1(t) =−m2z̈(t)

m3D2x3,1(t)− c3D1x2,1(t)+(c3 + c4)D1x3,1(t)− c4D1x4,1(t)− k3x2,1(t)+(k3 + k4)x3,1(t)

− k4x4,1(t) =−m3z̈(t)

m4D2x4,1(t)− c4D1x3,1(t)+(c4 + c5)D1x4,1(t)− c5D1x5,1(t)− k4x3,1(t)+(k4 + k5)x4,1(t)

− k5x5,1(t) =−m4z̈(t)

m5D2x5,1(t)− c5D1x4,1(t)+(c5 + c6)D1x5,1(t)− c6D1x6,1(t)− k5x4,1(t)+(k5 + k6)x5,1(t)

− k6x6,1(t) =−m5z̈(t)

m6D2x6,1(t)− c6D1x5,1(t)+(c6 + c7)D1x6,1(t)− c7D1x7,1(t)− k6x5,1(t)+(k6 + k7)x6,1(t)

− k7x7,1(t) =−m6z̈(t)
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m7D2x7,1(t)− c7D1x6,1(t)+(c7 + c8)D1x7,1(t)− c8D1x8,1(t)− k7x6,1(t)+(k7 + k8)x7,1(t)

− k8x8,1(t) =−m7z̈(t)

m8D2x8,1(t)− c8D1x7,1(t)+(c8 + c9)D1x8,1(t)− c9D1x9,1(t)− k8x7,1(t)+(k8 + k9)x8,1(t)

− k9x9,1(t) =−m8z̈(t)

m9D2x9,1(t)− c9D1x8,1(t)+(c9 + c10)D1x9,1(t)− c10D1x10,1(t)− k9x8,1(t)

+(k9 + k10)x9,1(t)− k10x10,1(t) =−m9z̈(t)

m10D2x10,1(t)− c10D1x9,1(t)+ c10D1x10,1(t)− k10x9,1(t)+ k10x10,1(t)

=−m10z̈(t) (B.2)

m1D2x1,3(t)+(c1 + c2)D1x1,3(t)− c2D1x2,3(t)+(k1 + k2)x1,3(t)− k2x2,3(t)

=−C2x1,1(t)2ẋ1,1(t)−K2x1,1(t)3

m2D2x2,3(t)− c2D1x1,3(t)+(c2 + c3)D1x2,3(t)− c3D1x3,3(t)− k2x1,3(t)+(k2 + k3)x2,3(t)

− k3x3,3(t) = 0

m3D2x3,3(t)− c3D1x2,3(t)+(c3 + c4)D1x3,3(t)− c4D1x4,3(t)− k3x2,3(t)+(k3 + k4)x3,3(t)

− k4x4,3(t) = 0

m4D2x4,3(t)− c4D1x3,3(t)+(c4 + c5)D1x4,3(t)− c5D1x5,3(t)− k4x3,3(t)+(k4 + k5)x4,3(t)

− k5x5,3(t) = 0

m5D2x5,3(t)− c5D1x4,3(t)+(c5 + c6)D1x5,3(t)− c6D1x6,3(t)− k5x4,3(t)+(k5 + k6)x5,3(t)

− k6x6,3(t) = 0

m6D2x6,3(t)− c6D1x5,3(t)+(c6 + c7)D1x6,3(t)− c7D1x7,3(t)− k6x5,3(t)+(k6 + k7)x6,3(t)

− k7x7,3(t) = 0
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m7D2x7,3(t)− c7D1x6,3(t)+(c7 + c8)D1x7,3(t)− c8D1x8,3(t)− k7x6,3(t)+(k7 + k8)x7,3(t)

− k8x8,3(t) = 0

m8D2x8,3(t)− c8D1x7,3(t)+(c8 + c9)D1x8,3(t)− c9D1x9,3(t)− k8x7,3(t)+(k8 + k9)x8,3(t)

− k9x9,3(t) = 0

m9D2x9,3(t)− c9D1x8,3(t)+(c9 + c10)D1x9,3(t)− c10D1x10,3(t)− k9x8,3(t)

+(k9 + k10)x9,3(t)− k10x10,3(t) = 0

m10D2x10,3(t)− c10D1x9,3(t)+ c10D1x10,3(t)− k10x9,3(t)+ k10x10,3(t)

= 0 (B.3)

m1D2x1,5(t)+(c1 + c2)D1x1,5(t)− c2D1x2,5(t)+(k1 + k2)x1,5(t)− k2x2,5(t)

=−C2
(
2x1,1(t)x1,3(t)ẋ1,1 + x1,3(t)2ẋ1,1 + x1,1(t)2ẋ1,3 +2x1,1(t)x1,3(t)ẋ1,3

+ x1,3(t)2ẋ1,3
)
−K2

(
3y1(t)2y3(t)+3y1(t)y3(t)2 + y3(t)3)

m2D2x2,5(t)− c2D1x1,5(t)+(c2 + c3)D1x2,5(t)− c3D1x3,5(t)− k2x1,5(t)+(k2 + k3)x2,5(t)

− k3x3,5(t) = 0

m3D2x3,5(t)− c3D1x2,5(t)+(c3 + c4)D1x3,5(t)− c4D1x4,5(t)− k3x2,5(t)+(k3 + k4)x3,5(t)

− k4x4,5(t) = 0

m4D2x4,5(t)− c4D1x3,5(t)+(c4 + c5)D1x4,5(t)− c5D1x5,5(t)− k4x3,5(t)+(k4 + k5)x4,5(t)

− k5x5,5(t) = 0)

m5D2x5,5(t)− c5D1x4,5(t)+(c5 + c6)D1x5,5(t)− c6D1x6,5(t)− k5x4,5(t)+(k5 + k6)x5,5(t)

− k6x6,5(t) = 0

m6D2x6,5(t)− c6D1x5,5(t)+(c6 + c7)D1x6,5(t)− c7D1x7,5(t)− k6x5,5(t)+(k6 + k7)x6,5(t)

− k7x7,5(t) = 0
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m7D2x7,5(t)− c7D1x6,5(t)+(c7 + c8)D1x7,5(t)− c8D1x8,5(t)− k7x6,5(t)+(k7 + k8)x7,5(t)

− k8x8,5(t) = 0

m8D2x8,5(t)− c8D1x7,5(t)+(c8 + c9)D1x8,5(t)− c9D1x9,5(t)− k8x7,5(t)+(k8 + k9)x8,5(t)

− k9x9,5(t) = 0

m9D2x9,5(t)− c9D1x8,5(t)+(c9 + c10)D1x9,5(t)− c10D1x10,5(t)− k9x8,5(t)

+(k9 + k10)x9,5(t)− k10x10,5(t) = 0

m10D2x10,5(t)− c10D1x9,5(t)+ c10D1x10,5(t)− k10x9,5(t)+ k10x10,5(t)

= 0 (B.4)

(B.2) is the first order ALEs for the system while (B.3) and (B.4) are the third and fifth order

ALEs for the system.

B.2 Comparison between the simulated output spectrum

and the spectrum evaluated using OFRF for even floors
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Figure B.1: Comparison between the simulated output spectrum and the spectrum evaluated
using OFRF for the even floors when C2 = 120×105 and K2 = 40×105.
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