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Abstract 

In this thesis I use Drosophila melanogaster as a model organism to study the 

possible cognitive mechanisms controlling plastic behavioural responses to sperm 

competition. This plastic behaviour involves a male D. melanogaster responding to 

the presence of a rival male by increasing mating duration when housed with a 

female. 

I provide a general context to the work (Chapter 1) before examining my 

model in more temporal detail by investigating how the length of time males were 

exposed to a high sperm competition environment affected maintenance time of the 

plastic behaviour. I show that for males to accurately portray the sperm competition 

environment in their behaviour over a useful timescale they must possess accurate 

sensory systems. Without these, behaviour is still fully plastic, but change occurs at 

a slower speed than males with full sensory ability (Chapter 3). I then show that 

extended mating duration is controlled by a suite of well-known learning and 

memory genes highlighting the need for specific memory pathways to reflect 

ecological change (Chapter 4). However, those same genes do not change in their 

expression due to increased sperm competition, potentially pointing to some other 

mechanism of temporal change underlying the behavioural change (Chapter 5). Due 

to this reliance on learning and memory, I show that an increase in sperm 

competition can affect cognitive ability, and increase expression of synaptic genes 

over a longer time period (Chapter 6). Finally, I summarise my thesis findings and 

discuss how future research can build on the research presented to develop the 

field (Chapter 7). 

My research shows that learning and memory is paramount for males to 

react to changes in the sperm competition environment on a relevant timescale 

where behaviour and the environment have not become mismatched. In addition, I 

show that sperm competition pressures can cause an increase in male individual 
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cognitive ability, posing the question of whether competition is one of the main 

drivers of non-mammalian cognitive ability. 
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Chapter 1 

General Introduction 

Plastic behaviour is a widespread and important component of fitness allowing 

organisms to constantly match the changing environment around them (Mery & 

Burns 2010). To be behaviourally plastic organisms must take information from the 

environment and integrate this with measures of current individual fitness. They 

must then be able to produce a relevant behaviour to environmental change; 

potentially a substantial amount of time after the change has occurred. To do this 

requires learning that acts to form representations of new information, and memory, 

that enables individuals to access this information at specific points in an organism’s 

lifespan (Dukas 2008a). However, how learning and memory work together to 

control an adaptive plastic behaviour remains unclear. Studies on learning and 

memory paint a complex picture of different forms of learning depending on cues 

received from the environment, and of multiple forms of interacting memory types 

(Shohamy & Adcock 2010; Staddon 2016). Considering this, how organisms use 

these multiple learning and memory pathways to control plastic behaviour is of 

interest. 

Here, I synthesise the field of behavioural plasticity and neuroscience to 

establish what role learning and memory has to play in controlling plastic behaviour. 

After this, I focus on plastic behaviour to changes in the sperm competition 

environment. These are important behaviours as they allow individuals to gain 

fitness benefits by plastically responding to the level of sperm competition, 

potentially requiring the integration of multiple cues and memory of previous 

environments. Finally, Drosophila melanogaster will be discussed as the ideal 

model for investigating cognitive control of plastic behaviour. The species is 



 
 

2 
 

genetically and structurally malleable allowing for in-depth investigation into this 

question. 

 

1.1 Phenotypic plasticity  

Phenotypic plasticity is integral to how organisms cope with fluctuating 

environments (West-Eberhard 2003). It is the ability of an individual to display more 

than one possible phenotype from one genotype when faced with different 

environmental conditions (Auld, Agrawal & Relyea 2010). Depending on the stage in 

an individual’s life plasticity occurs it can work to modify development or act to 

change the phenotypic state of a fully developed individual in response to a 

changing environment (Garland & Kelly 2006). Phenotypes can also vary in the 

extent of their plasticity, ranging from environmental canalisation, where a 

phenotype will stay relatively invariant in response to environmental change, to 

continual flexibility (Flatt 2005). Plasticity in development modifies the 

developmental trajectory of an organism in response to early life environmental 

cues and can be influenced by parental behaviour, environmental conditions during 

development, and social situations of pre-adult developmental stages (Uller 2008). 

Once fully developed, a phenotype brought about by this type of plasticity is not 

entirely fixed but further plasticity induced later in development shows an associated 

cost (Hoverman & Relyea 2007). More flexible plasticity is seen within the life-span 

of an organism and includes behavioural plasticity, acclimation, metabolic changes 

and immune adaptation. These traits are a consequence of short term change, 

allowing for a more rapid plastic response to match pressures brought about by 

environmental fluctuations (Kelly, Panhuis & Stoehr 2012). 
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1.1.1 How do different types of plasticity evolve? 

Environmental variation driving the evolution of plasticity can occur on different 

timescales, and hence be termed course or fine grained. These different 

environmental variations then lead to plasticity on different timescales that is either 

within or after development (Baythavong 2011). Course-grained environments 

remain constant throughout generations, but differ from one generation to the next 

and therefore promote plasticity acting in development (Moran 1992). Fine-grained 

environments are constantly fluctuating and select for reversible phenotypes that 

change within a short period of time. This is usually seen for longer lived individuals 

that encounter multiple environments through a lifetime, or short lived animals living 

within rapidly fluctuating environments (Via et al. 1995). For example, in a lot of 

short lived animals, predation pressures vary considerably over a small time-scale; 

this would be deemed fine-grained environmental change and would lead to the 

evolution of very labile phenotypic traits (Schoeppner & Relyea 2009). 

Environmental change causing plasticity can be from a variety of sources, such as a 

change in predation pressure, temperature shift or modification of social status. For 

example, temperature increase causes adaptive nesting behaviour in reptiles 

(Refsnider & Janzen 2012) and plastically of life history traits in fish (Crozier & 

Hutchings 2014), while African cichlids revert to one of two behavioural phenotypes 

depending on the social status achieved after fighting (Oliveira 2009). Overall, the 

environmental variation encountered defines the type of phenotypic plasticity 

evolved. 

 

1.2 Behavioural plasticity 

As one of the more flexible types of phenotypic plasticity behavioural plasticity can 

be evoked multiple times in a lifetime, usually as a consequence of short-duration 

environmental change acting as a stimulus (Mery & Burns 2010). Once a stimulus is 
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removed the behaviour again changes to match the environment (Foster 2013), 

usually reverting back to pre-environmental change levels. This ability to change 

behaviour rapidly is likely to be particularly important in highly changeable 

environments where it is thought to have fitness benefits over a more fixed 

phenotype (Komers 1997). 

Behavioural plasticity can be loosely categorised as developmental or 

activational, though in reality behaviour is a continuum between these two areas 

(Snell-Rood 2013). Developmental behavioural plasticity is similar to the traditional 

definition of developmental plasticity, in that it is a result of different developmental 

trajectories triggered by environmental change. This includes any change seen in 

the nervous system due to experience as well as morphological or physiological 

changes outside the nervous circuitry and can occur within the adult stages of an 

individual (Cardoso, Teles & Oliveira 2015) (Figure 1A). Activational plasticity is a 

change in behaviour that can be achieved through a switch between already 

existing physiological networks (Snell-Rood 2013) (Figure 1B). This is also referred 

to as behaviour as plasticity (Dukas 1998) and innate behavioural plasticity (Mery & 

Burns 2010). Differences between developmental and activational plasticity control 

how behaviour is expressed in a time sensitive manner (developmental plasticity is 

thought to take longer to occur) and so should be reliant on different mechanisms to 

control plastic behaviour. To fully understand how mechanisms act to control 

behavioural plasticity it is therefore important to distinguish between plastic 

behavioural types. 
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Figure 1: A neural network illustration of two forms of behavioural plasticity. A) 

Developmental plasticity refers to the development of reinforced (differentially 

weighted lines) or new network connections as a result of experience. This also 

leads to the development of modulated or new behaviour.  B) Activational 

behavioural plasticity is controlled by differential activation of neural networks that 

control different behaviours in different environments. Here, activated networks can 

be seen in orange, compared to dormant networks shown in black. 
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Environment 2 

Environment 1 

Environment 2 
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Behaviour 2 
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1.2.1 Cost of behavioural plasticity 

General phenotypic plasticity is limited by any costs that occur when a plastic 

individual’s fitness is reduced in comparison to a non-plastic individual when both 

express the same trait value, as well as any physiological constraints that may 

prevent a plastic phenotype from being expressed (DeWitt, Sih & Wilson 1998). 

Both developmental and activational behavioural plasticity come with specific costs 

and limits that can constrain an individual’s ability to be plastic. Developmental 

plasticity requires experience of an environment, meaning individuals undergo 

sampling costs by being naïve to their surroundings (Byers et al. 2005; Sasaki, Fox 

& Duvall 2009).This is also referred to as the exploration-exploitation trade-off 

(Kaelbling, Littman & Moore 1996). Developmental plasticity also requires an 

increase in neural circuitry and tissue (Dukas 1999; Huerta et al. 2004) and a 

potential increase in motor output (Sporns, Tononi & Edelman 2000).  

Neural tissue is 10 times more expensive than muscular tissue (Laughlin, 

van Steveninck & Anderson 1998; Kaufman, Hladik & Pasquet 2003) and therefore 

this increase in neural circuitry comes with a substantial cost. Similarly, activational 

plasticity requires much of the neural circuitry associated with developmental 

plasticity. However, unlike developmental plasticity, activational plasticity may 

undergo additional costs on top of initial tissue investment if neural circuitry required 

for plasticity is not activated (Snell-Rood 2013). Considering this, activational 

plasticity may therefore be used to control innate plastic behaviour countering 

known changes in an environment. In comparison, developmental plasticity could be 

defined as learning, and would be more useful in a fluctuating environment where 

environmental change is more difficult to predict (Moran 1992). Selection may 

therefore act on both types of plasticity to optimize mechanisms underlying plastic 

behaviour dependent on the prevailing environment (Dunlap & Stephens 2009). 
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1.2.2 Behavioural plasticity and cognition 

As seen above, the common factor linking both types of behavioural plasticity as a 

physiological cost is the neural tissue needed to develop a complex behaviour able 

to react to environmental change. As discussed above, neural tissue imposes a high 

energy cost (Kaufman, Hladik & Pasquet 2003). Despite this, neural tissue in the 

form of brains has continued to evolve both in size and complexity, with larger 

brains leading to more complex behaviours and increased propensity for rapid 

behavioural plasticity (Niemela et al. 2013). Although brain size is not a perfect 

proxy (Healy & Rowe 2007) for cognitive ability it has been shown to correlate with 

increased intelligence in multiple taxa (McDaniel 2005; Deaner et al. 2007; Reader, 

Hager & Laland 2011; Kotrschal et al. 2013; Benson-Amram et al. 2016). 

Considering this, the evolution of larger and more complex brains has continued 

due to the many advantages of increased cognition that can directly impact on 

fitness. For example, the ability to problem-solve is linked to reproductive success in 

great tits (Cole et al. 2012; Cauchard et al. 2013).  

Once a relatively complex brain has evolved this can then act as a ‘cognitive 

buffer’ (Sol 2009) to any environmental change that develops, helping individuals 

create novel behaviours to deal with environmental uncertainty. This can be seen 

when species possessing increased brain size are more able to survive when 

introduced into novel environments (Sol et al. 2008; Maklakov et al. 2011). It can 

also be seen with an increased ability to forage across multiple environments and 

so exploit habitat flexibility (Edmunds, Laberge & McCann 2016). Behavioural 

plasticity and cognition are therefore inextricably linked and selection for plasticity 

has been implicated as playing a key role in the evolution of cognitive abilities 

(Morand-Ferron & Quinn 2015). In the next section I outline the evidence for the 

importance of one facet of the environment thought to be particularly critical in 

driving the evolution of cognition; social interactions. 
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1.3 Role of social environment in driving cognition 

There have been many attempts to explain environmental effects on cognition but 

the idea to receive the most attention focuses on the social environment as a driver 

for brain size. Originally described in primates, the ‘social brain’ hypothesis 

theorises that an increase in group size has led to increases in brain size, and 

therefore increases in cognitive ability (Dunbar 1998). This increase in brain size is 

not seen across the brain, but is specific to relative neocortex size, the part of the 

mammalian brain responsible for higher mental functions such as learning and 

memory (Dunbar & Shultz 2007). An increase in size within this area of the primate 

brain also correlates with increased participation in social tasks such as prevalence 

of social play (Lewis 2000), tactical deception (Byrne & Corp 2004) and frequency of 

social learning (Reader & Laland 2002), all factors of group size and social 

complexity. 

The hypothesis has been extended to other taxa such as carnivores (Perez-

Barberia, Shultz & Dunbar 2007), ungulates (Shultz & Dunbar 2006) and birds 

(Beauchamp & Fernandez-Juricic 2004). Recently, the hypothesis has also been 

considered in the context of sexual interactions, with the discovery that 

monogamous species generally have larger brains than species that mate multiply 

(Schillaci 2006; Schillaci 2008). Monogamy stands out as a mating system due to 

the quality of the social relationship it can foster, namely pair-bonds. Pair bonds are 

strong affinities that develop between males and females, potentially leading to a 

lifelong bond. In primates, the ability to form multiple relationships akin to pair bonds 

in their complexity and longevity has enabled an increase in cortex size with 

increased sociality (Shultz & Dunbar 2007). This may also be true of birds, where 

brain size is affected by the ability to increase extra pair copulations (similar to a 

pair bond) while also maintaining a dominant pair bond (West 2014). However, for 

other taxa the quality of pair bonds is more important to the evolution of the social 
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brain than the quantity on these interactions. Therefore, the need for individuals to 

create a complex social bond acts as a stimulus for brain evolution in mammals. 

Although it is not yet known how pair bonds may act to effect the evolution of the 

brain, studies in monogamous rodents hint that pair bonding may be due to reward 

learning (Young & Wang 2004; Young et al. 2011), and that social behaviour is 

regulated by discrete neural circuits relating to pair bonds (Young et al. 2011). 

Outside of mammals, and one paper on birds (Dunbar & Shultz 2007; West 

2014), there is little evidence to support the social brain hypothesis. In insects, the 

mushroom bodies (MBs; see section 1.7.6) are analogous to the cortex in mammals 

by being a centre of higher-order learning (Devaud et al. 2015) that correlates an 

increase of cognitive ability with increases in neural complexity (Heisenberg 1998). 

If the social brain hypothesis applies to insects then this would predict an increase 

in MB complexity with increases in social contact (sociality). In insects differences in 

sociality are most easily seen with the switch to eusociality in groups such as 

Hymnoptera (Liao, Rong & Queller 2015). In Hymnoptera increases in MB size are 

exclusively seen in parasitoid species compared to non-parasitoid species, with no 

influence of sociality, a result in conflict with the social brain hypothesis (Farris & 

Schulmeister 2011). However, it is not parasitoidism itself that seems to drive an 

increase in MB size, but the requirement to locate hosts by learning spatial markers 

through vision and olfaction (Papaj & Vet 1990; Turlings et al. 1993), then memorise 

identified host locations for future egg laying opportunities (van Nouhuys & 

Kaartinen 2008). This ability to learn and memorise spatial information therefore 

seems to drive the evolution of insect brain complexity, as non-parasitic insects that 

rely on spatial feeding patterns show a similar comparative brain physiology to 

parasites. For example, Heliconius butterflies that repeatedly return to the same 

food sites have larger MBs than species that forage randomly (Sivinski 1989), and 



 
 

10 
 

solitary kleptoparasites that monitor burrows of hosts possess large, elaborate MBs 

(Rosenheim 1987; VanderSal 2008). 

Eusociality presents a significant problem to the application of the social 

brain hypothesis to insects (Box 1) (Yan et al. 2014). Within these societies 

individuals are extremely specialised and therefore may only perform a restricted 

set of behavioural tasks throughout a lifetime. It has been suggested that this 

requires less cognitive ability than performance of multiple tasks by one individual 

away from a eusocial society (Gronenberg & Riveros 2009). Indeed, this pattern is 

observed across wasp species, in that eusociality is related to decreased MB 

complexity of workers (O'Donnell et al. 2015). This leads to the possibility that in 

eusocial insects brain investment is spread around the social group, leading to 

decreased individual brain complexity, but increased group cognition (O'Donnell et 

al. 2015). It has therefore been suggested that the social brain hypothesis should 

only be applied to insects which are not eusocial (Gronenberg & Riveros 2009). 

 

1.4 Sperm competition 

One of the ways an environment can change rapidly, therefore exposing individuals 

to experiences where behavioural plasticity may be advantageous, is the rapid and 

continual change in the social environment. This can lead to changes in mating 

opportunities, aggression and health of individuals within a group (Kappeler, Cremer 

& Nunn 2015; Ward & Webster 2016). One measurable change that can occur 

within the social environment and can be unpredictable in its variation is the socio-

sexual context. This describes local sex ratios of males and females, which have an 

effect on mating opportunities or level of mating competition within a defined area, 

limited by an individual animal’s sensory range (Kasumovic et al. 2008). 
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A rapidly changing socio-sexual environment can cause quick acting 

changes in the amount of sexual selection within an environment. Sexual selection 

commonly occurs when females have a choice between multiple males, causing 

males to compete for fertilisations. This can occur through males competing directly 

with each other for mates or territories, or can be a function of indirect competition 

where males display to attract female attention (Jones & Ratterman 2009; Kuijper, 

Pen & Weissing 2012). In polyandrous mating systems females mate multiply with a 

number of males, meaning male ejaculates can compete within a female’s 

reproductive tract for fertilisations. This is deemed sperm competition and was first 

suggested by Geoff Parker as a post-copulatory mechanism of sexual selection 

(Parker 1970). Since its inception a large body of theoretical work has studied and 

modelled how sperm competition can be affected by changes in the environment, 

including social changes (Parker & Pizzari 2010; Kvarnemo & Simmons 2013; 

Edward, Stockley & Hosken 2015). 

The simplest form of sperm competition is referred to as ‘fair raffle’, whereby 

all sperm ejaculated have an equal chance of fertilisation, hence male’s fitness 

directly relates to the number of sperm transferred (Parker & Smith 1990). This most 

commonly occurs when fertilisation is external or female storage is unlimited. If 

mating once within a lifetime males following a fair raffle should invest maximally in 

sperm release to increase the proportion of successful fertilisations gained. 

However, considering sperm and ejaculates are costly (Pitnick, Markow and 

Spencer 1995) males encountering multiple lifetime mating opportunities must 

optimally allocate their resources to gain the greatest fitness benefits by trading-off 

current and future ejaculates (Parker & Pizzari 2010). Males must therefore react to 

environmental sperm competition changes to maximise lifetime fitness. These 

changes in sperm competition can fall into two categories, commonly referred to as 

changes in risk or intensity. Risk refers to the likelihood that a male’s sperm will be 
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in competition (i.e. whether a female has or will remate) whereas intensity refers to 

the number of males competing for the same set of fertilisation opportunities (Parker 

et al. 1996). Males should be able to adjust ejaculate according to both risk and 

intensity (Simmons et al. 2007), with theory pointing to increases in ejaculate 

investment with increased risk, but a decrease in investment with increasing 

intensity (Parker et al. 1997; Engqvist & Reinhold 2005). Males therefore require a 

mechanism enabling them to accurately assess the risk and intensity of current 

sperm competition in the environment. This is likely to be cognitively challenging, as 

males need accurate sensory mechanisms to recognise what may constitute a rival 

(heterospecific v conspecific within an environment), as well as assessing the risk 

those rivals pose in terms of competing sperm. Indeed it has been suggested that 

the need to assess sperm competition intensity has driven the evolution of quantity 

estimation (Shifferman 2012). Shifferman (2012) argues that a male’s response to 

sperm competition is driven by the ability to gauge sperm competition through 

quantity estimation, i.e. the ability to respond to a quantity aspect of stimuli, and that 

this ability is an aspect of an overall cognitive response. Therefore, to effectively 

respond to sperm competition risk a male may have to be able to learn rival signals, 

make a quantity estimation of the number of rivals and then respond to the 

environmental sperm competition risk. This is a complex process of events 

potentially requiring relatively high cognitive abilities. It is also in some ways similar 

to factors learnt when individuals forage in a spatial manner (VanderSal 2008) as 

discussed above. Therefore behaviours in reaction to changes in sperm competition 

could be influenced by cognitive ability or act as an evolutionary pressure on 

cognition in a similar manner to spatial learning. 

Here, I will briefly cover sperm competition responses that males use when 

they are aware of sperm competition risk within the environment. For more 
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information see reviews (Bretman, Gage & Chapman 2011; Simmons & Fitzpatrick 

2012). 

 

1.5 Sperm competition responses to rival males 

Plastic behavioural strategies males use to react to changes in sperm competition 

are extremely varied. As discussed above these are only favoured when the sperm 

competition environment is rapidly changeable and males have the option to mate 

multiply (Parker & Pizzari 2010). The mating system seems to define how males 

may react to sperm competition risk and intensity. It also controls whether plastic 

strategies increase or decrease under high sperm competition. Pre-copulatory 

plastic behaviours are more likely to decrease in frequency when expressed in a 

high sperm competition environment than behaviour occurring within or after 

copulation (Bretman, Gage & Chapman 2011). This follows with the theorised 

effects of sex-ratio on male competition. Using a meta-analysis it has been shown 

that males in an environment with a male biased sex ratio decrease courtship time 

but increase the time initiating post-copulatory behaviours (guarding and duration) 

(Weir, Grant & Hutchings 2011). This is thought to be due to the lack of females 

available to court and the subsequent need to protect females when males 

eventually manage to mate. However, many of these studies use operational sex 

ratio to change the extent of rival competition, a method that ultimately also changes 

the access males have to females and concurrently changes both sperm 

competition risk and intensity (Engqvist & Reinhold 2005). It is therefore necessary 

to study behavioural effects of sperm competition risk and intensity separately and 

without a female presence. 

An example of male reactions to changes in the sperm competition 

environment where individuals are thought to associate rival stimulus with increases 

in sperm competition occurs in crickets (Gryllus bimaculatus). Males of this species 
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increase both intensity of courtship and the size and speed of spermatophore 

transfer when previously presented with a rival male, used within this investigation 

as a proxy for high sperm competition (Lyons & Barnard 2006). Yet another 

example of sperm response to increased risk of competition comes from the 

butterfly, Pieris napi, where males again respond to increased sperm competition by 

significantly increasing ejaculate investment, but this time without a behavioural 

change. Here, male reaction to sperm competition is also more subtle than in 

Gryllus bimaculatus as males are able to grade their response with fluctuations in 

sperm competition risk (Larsdotter-Mellstrom & Wiklund 2015). This seems to be a 

factor of the amount of male sex pheromone present at the time of mating 

(Larsdotter-Mellstrom & Wiklund 2009), supporting the idea that quantity estimation 

is a good signal of sperm competition risk. Sperm competition may also have an 

effect when female choice is the main basis of a mating system. In a leking insect, 

the lesser wax moth, where sperm competition would not traditionally be thought of 

as a component of competition, males allocate a higher proportion of sperm 

reverses  when previously exposed to an increased sperm competition risk (Jarrige 

et al. 2015). An increase in sperm competition risk therefore seems to increase 

ejaculate investment in agreement with general sperm competition theory as 

discussed above (Wedell, Gage & Parker 2002). However, how males integrate the 

cues signalling the presence of increase sperm competition risk to modulate 

behaviour is still not known. 

 

1.6 Learning and memory in plastic behaviour 

In order to exhibit plastic behaviour, animals must be able to acquire new 

environmental information, or learn about the environment. Learning can be defined 

as the acquisition of neuronal representations of new information (Dukas 2008a) 

that can then become fixed (at least for a short period of time) as memory, enabling 
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an organism to modify future behaviour with experience from previous situations to 

better deal with an environment (Mery & Burns 2010). There are multiple types of 

learning characterised by how cues are received from the environment and how 

these cues interact with internal information already possessed by an individual. 

 

 

1.6.1 Non-associative learning 

Non-associative learning is the simplest form of learning and occurs when an animal 

learns about a singular stimulus in isolation to other factors. The animal can then 

either decrease (habituation) or increase (sensitisation) their original response to 

said stimulus after repeated exposure (Kirchkamp 2012). For example, bees show a 

proboscis extension reflex (PER) when their antenna is stimulated with a sugar 

solution. When continually stimulated with sugar solution bees cease proboscis 

extension, successfully habituating to sugar stimulation (Byrne & Hawkins 2015). 

 

1.6.2 Associative learning 

The most commonly used paradigm when testing learning and memory is pavlovian, 

or classical, conditioning. Here, animals learn that one stimulus predicts the 

occurrence of another (Pearce & Bouton 2001). Animals trained to one stimulus 

should therefore show a reaction to a second, previously unrelated stimulus. For 

example, D. melanogaster can learn to avoid an electric shock when paired with a 

particular odour (Tully & Quinn 1985), and rats can associate push levers with food 

(Brembs 2011). Associative learning is seen as ecologically relevant as in the wild 

conditioning allows animals to adapt to imminent biologically significant events in 

which they would otherwise struggle (Hollis 1982; Hollis 1997). 
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1.6.3 Operant conditioning 

In operant conditioning an animal learns to associate the relationship between its 

own actions and a reinforcing stimulus by having the ability to control the 

reinforcement through a change in behaviour. For example, D. melanogaster can 

learn to avoid heated areas in a small chamber, which when memorised means 

individuals avoid the previously heated sections even when increased temperature 

is not present (Wustmann et al. 1996). In another example, male D. melanogaster 

can develop complex hierarchical relationships with other competitors depending on 

the outcome of previous fights. This shows learning from previous fight outcomes 

and the ability to associate a previous action with a reinforcing stimulus (winning or 

losing the fight). In addition, it raises the possibility of a complex recognition system 

that can assess whether an individual has previously encountered another 

competitor (Yurkovic et al. 2006; Trannoy, Chowdhury & Kravitz 2015). 

 

1.7 Memory and plastic behaviour 

Learning types go on to form different types of memory depending on the length, 

number and type of cues learnt from an environment. Memory types can be defined 

by the time memory lasts within an individual. These can be split, very basically, into 

short term, medium term and long term memory (STM, MTM and LTM). Although all 

organisms have slightly different memory traces the general features stay the same 

throughout taxa (Nader 2003). STM is a temporary representation of information, 

which when reinforced forms a MTM trace which after further reinforcement is then 

retained for an extended period of time as LTM. If STM is not reinforced it is 

forgotten and does not form as MTM or LTM (Jonides et al. 2008). It is commonly 

thought that there are 2 different memory traces that follow this basic pattern, 

anaesthesia sensitive memory (ASM) and anaesthesia resistant memory (ARM) 

(Reasor & Poe 2008; Davis 2011). 
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Different memory types are thought to allow organisms to gate memory 

depending on the cues received from the environment. For each learning type the 

number of times or length of time cues are received and reinforced has a direct 

impact on the length of time individuals can remember, with increased cue number 

leading to a longer form of memory (Margulies, Tully & Dubnau 2005; Giurfa 2015). 

This means, if a cue is transient in the environment it may not be important to the 

organism in question and so will only form STM. Conversely, if a cue is sustained 

this may signal that a cue is important and so longer term memory will develop 

(Healy & Jones 2002). In this way, an individual can develop sufficient memory to 

remember important environmental variables without using energy or neuronal 

space responding to unimportant associations (Mery 2013). In addition to the length 

of time a cue can last in an environment, importance of specific cues is thought to 

be different depending on species. For example, related species of parasitoid wasp 

(Nasonia vitripennis and Nasonia giraulti) form different types of memory from the 

same cue depending on the importance of this cue to the life history of the species 

(Hoedjes & Smid 2014). Some species may therefore react and form memory 

quickly to some cues associated with ecologically relevant information, whereas 

other cues will not induce memory as quickly. Overall, the formation of memory type 

is thought to be cue dependent, raising the possibility any plastic behaviour that 

may be controlled by memory is also cue dependent. 

 

1.8 The study system 

1.8.1 Socially induced extended mating duration 

To explore the mechanisms behind plastic behaviour I am using a well-studied 

example of plastic mating behaviour that responds to the social environment. D. 

melanogaster males facultatively extend mating duration with females after previous 

exposure to a rival for 24 hours (Bretman et al. 2010). The behaviour tracks the 
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level of sperm competition in the environment, with males reducing mating duration 

again when kept without rivals for 3 days (Bretman et al. 2012). Extended mating 

duration is associated with an increase in the amount of sperm (Garbaczewska, 

Billeter & Levine 2013; Moatt 2014) and seminal fluid proteins (Sfps) transferred to 

females (Wigby et al. 2009), which modulate a reduction in remating rates and an 

increase in time till the next female remating (Bretman, Fricke & Chapman 2009). 

Males that extend mating duration increase both paternity and fitness across one 

mating, compared to males that are not exposed to sperm competition cues. The 

two main Sfps that modulate these effects are Sex peptide (SP) and ovulin that are 

strategically invested when males had been exposed to a high sperm competition 

environment i.e. the presence of another male (Wigby et al. 2009). It is not known 

whether other Sfps involved in D. melanogaster mating have a similar strategic 

allocation. Extended mating duration after exposure to rivals is repeatable across 

many of the Drosophila genus such as D. pseudoobscura (Price et al. 2012), D. 

montana (Mazzi et al. 2009) and even in species in which females do not remate 

(Lize et al. 2012) and so includes males not exposed to sperm competition. 

 

1.8.2 Sensory cues involved in extended mating duration 

To investigate the sensory inputs required for males to detect rivals and so increase 

mating duration sensory systems were removed individually and the reaction of 

males to rivals assessed. Males use multiple cues to detect rivals and in most cases 

needed any combination of two out of three cues from auditory, olfactory and tactile 

to extend mating duration. Out of these three cues touch elements were deemed to 

be the most important, with visual cues, that were also tested, considered to play no 

role at all (Bretman et al. 2011; Garbaczewska, Billeter & Levine 2013). However, 

some controversy remains, as it has also been reported that vision is the most 

important factor in detecting the presence or absence of other flies, specifying 
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moving red eyes as the modulator of this response (Kim, Jan & Jan 2012). The 

study used the Canton-S strain of D. melanogaster compared to the Dahomey used 

in the two previous studies. Both strains were housed in massed groups meaning 

evolutionary pressures were similar between the two strains, therefore 

discrepancies would not be expected, and are so far unexplained. 

1.8.3 Lifetime costs and benefits of extended mating duration 

In D. melanogaster extending mating duration is beneficial through one mating (as 

discussed above) but has no reproductive benefit if males are forced to undergo 

continually extended mating duration throughout a lifetime (Bretman et al. 2013). 

When compared to males exposed to an environment lacking rival males, males 

who continually extend mating duration undergo early mortality and decreased 

reproductive benefits later in life, leading to similar overall reproductive outputs 

between the two groups. This highlights the need for males to be plastic to benefit 

from extended mating duration rather than implement a beneficial behaviour 

regardless of environmental factors, and also highlights some possible costs 

associated with plastic behaviour. However, these results were based upon a lab 

study so the data did not take into account natural population dynamics. The natural 

ecology of wild populations of D. melanogaster is not well understood but they must 

undergo social variation, and so it is unlikely extended mating duration would be 

maintained throughout life (Carroll & Corneli 1995). In addition, wild insects 

generally have a shorter lifespan than their laboratory counterparts due to increased 

extrinsic mortality (Kawasaki et al. 2008). If this is the case, there would therefore 

be selection pressures for a short acting increase in fitness without any protection 

for later life fitness, supporting the pattern discussed above.  
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1.8.4 Types of learning in D. melanogaster 

1.8.4.1 Associative learning 

In D. melanogaster, one way associative learning can be tested is a T-maze choice 

test. In this test flies are alternatively exposed to two odours (conditioned stimulus) 

which when paired with electric or mechanistic shocks (unconditioned stimulus) 

create an association between one of the odours and shock. Flies can then be 

tested in a T-maze where memory is assessed with a choice between the two 

original odours, which will cause flies to reject the odour paired with the shock (Tully 

& Quinn 1985; Mery & Kawecki 2003). Within this paradigm differential training 

plans can create separate memory types in a fly. As previously mentioned, ASM 

and ARM are two different memory types separated by their response to 

anaesthesia (Reasor & Poe 2008). Within the T-maze paradigm, one training 

session causes ASM memory that can last up to 5 hours, followed by a consolidated 

ARM phase that can last up to a day (Margulies, Tully & Dubnau 2005). When 

training was repeated, massed training (10 training sessions one after another) 

successfully caused flies to remember for up to 3 days using ARM. In comparison, 

spaced training (10 training sessions split by 15 minute breaks) induced ASM long 

term memory (LLTM) and caused flies to remember an association for up to a week 

(McGuire, Deshazer & Davis 2005) (Figure 2). ARM does not require protein 

synthesis, whereas LLTM requires structural and functional modification of relevant 

synapses (Guan et al. 2011). 
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Figure 2: Memory phases in D. melanogaster. The black line represents memory 

decay at the behavioural level. In D. melanogaster memory can be split into four 

mechanistically distinct phases represented as part of the behavioural response. 

These are short term memory (STM; orange), medium term memory (MTM; Red), 

anaesthesia resistant memory (ARM; blue), and long-lasting long term memory 

(LLTM; green). Reproduced with modifications from Marguiles et al (2005). 

 

 

 

 

 

 

   

 

Hours 

M
em

o
ry

 r
et

en
ti

o
n
 

1 2 3 4 5 24 

STM 

MTM 

LLTM ARM 



 
 

22 
 

1.8.4.2 Courtship suppression 

Similar to testing learning and memory in the T-maze, another learning paradigm in 

Drosophila spp. focusses on courtship suppression as a type of associative 

memory. Here, exposure of males to a previously mated female for 1 hour causes 

courtship suppression towards virgin females that lasts for 2 to 3 hours (Siegel & 

Hall 1979). The conditioned stimuli is present on all females and allows a male to 

identify a female, the unconditioned stimuli is only present on previously mated 

females and acts to train the male to suppress courtship. 

The Drosophila conditioned stimulus is 9-pentacosene, a compound present 

at higher levels on mature females than immature females, and enabling males to 

mark out females (Siwicki et al. 2005). The two main unconditioned stimuli within 

courtship suppression are 7-trocosene and cis-vaccenyl acetate (cVA), both part of 

the male cuticular hydrocarbon profile. 7-trocosene is a surface hydrocarbon 

transferred to a female during male courtship (Lacaille et al. 2007) that lasts for 24 

hours before being groomed off, successfully suppressing male courtship during this 

time. cVA is a longer lasting compound that is instead transferred to females during 

copulation and retained in the reproductive tract. This can successfully cause 

generalized courtship suppression for an extended period of time, along with other 

less well known peptides (Ejima et al. 2007). 

Male courtship suppression is adaptive within the mating environment, 

allowing experienced males who have ‘learned’ to court females depending on 

status to limit costs of courtship by targeting virgin females (Dukas 2005). This was 

evaluated using males who underwent an initial experience phase, and males who 

were naive. Both sets of males courted virgin and previously mated females, 

however, males with experience reduced time courting previously mated females 

and increased time courting virgin females compared to naïve males (Dukas 2005). 

This shows that courtship suppression, itself a plastic behaviour, can be further 
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modified by learning within a changing mating environment, leading to possible 

increased fitness benefits for individuals who invest in learning. 

 

1.8.5 Genetics of learning and memory in courtship suppression and 

associative learning. 

Using the two paradigms outlined above D. melanogaster has provided an ideal 

model to examine the genetics and mechanistic underpinnings of learning and 

memory. The main learning and memory pathway controlling learning and memory 

is Cyclic adenosine monophosphate signalling (cAMP) (Zhou et al.). In D. 

melanogaster, dunce (dnc) and rutabaga (rut) are particularly well studied cAMP 

signalling defective mutants. dnc encodes a phosphodiesterase that breaks down 

cytoplasmic cAMP (Dudai et al. 1976), and rut codes adenylate cyclase, a cAMP 

synthesing enzyme (Livingstone, Sziber & Quinn 1984). Both genes are 

preferentially expressed in the Kenyon cells that make up the MBs, which act as the 

centres for olfactory learning and memory (Campbell & Turner 2010). Rut is thought 

to be activated by stimulation from G-proteins and concurrent Ca2+ entry, meaning it 

can act as the detector allowing convergence of the two stimuli used in associative 

learning (Siwicki & Ladewski 2003). After this, rut is responsible for synthesising 

cAMP from ATP within the MBs, and dnc is responsible for that cAMP removal 

(Gervasi, Tchenio & Preat 2010). Mutants for dnc and rut therefore show an inability 

to learn or recall STM traces in both courtship suppression and associative learning 

(Ackerman & Siegel 1986).  

Amnesiac (amn) is another gene that affects memory retention through 

stimulation of cAMP synthesis through release of its protein product, a 

preproneuropeptide (McGuire, Deshazer & Davis 2005). amn is mostly expressed in 

the dorsal paired medial (DPM) neurons that project over the lobes of the MBs. amn 

flies with expression blocked in the DPM neurons learn as well as wildtype flies but 
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suffer memory decay after 1 hour, with smell association undetectable after this time 

period (Waddell et al. 2000). amn is therefore thought to trigger prolonged cAMP 

cascade activation through rut required for the consolidation of permanent memory 

(Figure 3). 

The only currently known gene to be totally specific to ARM is radish (rsh), 

encoding a protein thought to link with the cAMP pathway through PKA activation. 

Rsh mutants do not show ARM memory, but develop anaesthesia sensitive memory 

of similar length to wildtype flies (Folkers, Waddell & Quinn 2006). Bruchpilot (Brp) 

is a secondary gene that is involved in controlling ARM, but also has a role in ASM. 

Brp is homologous to ELK/CAST active zone proteins in humans and localises to 

presynaptic sites. Mutants show reduced ARM memory after 3 hours, though also 

show some signs of ASM recovery at this timepoint (Knapek, Sigrist & Tanimoto 

2011). 
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Figure 3: cAMP genes controlling memory phases in D. melanogaster. Memory 

phases with discussed genes controlling areas of memory formation in Drosophila 

melanogaster, whose memory formation can be considered representative of insect 

and mammalian learning and memory systems. All olfactory memory associated 

with courtship suppression has so far been reported to require the cAMP cascade 

for associative learning. PKA (cAMP-dependent protein cascade) is also an 

important molecule in the cAMP cascade, with targets including the transcription 

factor CREB needed for the development of transcriptionally controlled LTM, and 

rsh, needed for ARM. Rsh binds to a GTPase regulating neuronal and synaptic 

morphology (Folkers, Waddell & Quinn 2006). Reproduced with modifications from 

McGuire and colleagues (2005). 
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1.8.6 Neuroanatomy associated with associative learning 

In addition to genetic dissection of memory D. melanogaster has provided an 

excellent model to elucidate the neuroanatomy underlying learning and memory. 

Experiments focussing on neuroanatomy are most commonly performed using the 

T-maze assay due to the increased power experimenters have over the timing and 

power of the stimuli used. When groups of flies are trained in associative learning 

paradigms olfactory stimuli are detected through very specific receptor neurons and 

then associated with shock in 3rd tier neurons thought to be within the MBs. 

Olfactory receptor neurons that project into the antennal lobes detect odours 

through antennae and maxillary palps (Waddell & Quinn 2001). Antennal lobes then 

project neurons to the dorsal protocerebrum, which synapses on the dendrites of 

the Kenyon cells that make up the MBs, as well as separately onto the lateral horn 

(Keene & Waddell 2007). The lateral horn is thought to act to modulate innate odor 

responses as removal of the MBs as larvae does not impair odour driven behaviour 

in adults (Heimbeck et al. 2001). The MBs are the site for the formation and 

expression of olfactory memories, expressing genes involved in cAMP synthesis at 

high levels, as discussed above. They comprise symmetrical clusters of 2500 

Kenyon cells that have cell bodies in the MB calyx and extend axons through the 

MB penducle to form α/β, α’/β’ or У lobes (Fahrbach 2006). The α’/β’ lobes seem to 

play a part in consolidating memories, and α/β lobes in the retrieval and expression 

of memory. The У lobes are needed for STM and may play a role in detecting the 

conditioned and unconditioned stimuli used in a training protocol (Guven-Ozkan & 

Davis 2014). 

To consolidate all the information D. melanogaster has provided us about 

learning and memory a model for associative learning and memory has been 

created. Inputs from antennal lobes and DPM neurons are thought to converge on 

the MBs, activating rut through coincident Ca2+ influx and monoamine binding to G-
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protein coupled receptors. This causes a cAMP cascade that concludes in the case 

of LTM with changes in gene expression. To consolidate memory it is thought that 

MB neurons report back to DPM neurons, creating a feedback loop, which if 

activated multiply, leads to consolidated memory. An individual’s memory output is 

finally expressed through lateral protocerebrum neurons, that project onto antennal 

lobe projection neurons, causing ecologically relevant behaviours (Figure 4) 

(Dubnau et al. 2001; Waddell & Quinn 2001; Keene & Waddell 2007; Smith, 

Wessnitzer & Webb 2008; Stopfer 2014). 
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Figure 4: Possible model for associative learning in D. melanogaster.  Mushroom 

body neuron receive inputs from antennal lobes and DPM neurons, activating rut 

through coincident Ca2+ influx and monoamine binding to G-protein coupled 

receptors. This causes a cAMP cascade and elevation of cAMP in relevant MB 

neurons. Depending on training conditions and duration of cAMP elevation this then 

results in long lived changes in gene expression (LTM) or modification in synaptic 

connectivity (STM and MTM). Figure with modifications from Waddell and Quinn 

2001. 
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1.9 Outline of thesis 

The overarching aim of this thesis is to address how behavioural plasticity in 

response to a changing sperm competition environment may be controlled by 

cognitive mechanisms through the use of a D. melanogaster model. This model is 

behaviourally well characterised and the species is fully genetically and 

neurologically malleable. In addition, similar patterns in response to increased 

sperm competition have now been shown to occur in other species of fly 

(Merosargus cingulatus) (Barbosa 2012), lekking moths (Achroia grisella) (Jarrige et 

al. 2015) and crickets (Teleogryllus oceanicus) (Simmons et al. 2007), raising the 

possibility any mechanism found to affect behaviour in this thesis could be 

conserved between species. 

Chapter 2 asks how long male extended mating duration continues to last 

once males are removed from increased sperm competition. In addition, it examines 

how changing exposure time to a high sperm competition environment can influence 

how long plastic behaviour lasts. This is important to outline the temporal dynamics 

of extended mating duration for comparison to results in later chapters. It also 

allows theories of possible mechanisms to be drawn up, in this case, a theory of 

how learning and memory may contribute to extended mating duration. 

Chapter 3 builds on previous work by Bretman and colleagues (2011) and 

uses information from Chapter 2 to look at the importance of different senses in 

controlling the temporal dynamics of a male’s response to increased sperm 

competition. This is important to understand how cues needed to sense an 

environment may play a role in controlling the time frame of a plastic behaviour, and 

therefore how cues may impact on the mechanisms underlying plastic behaviour. 

Chapter 4 investigated the possible cognitive mechanism behind extended 

mating behaviour using mutants of common genes associated with learning and 

memory in D. melanogaster. The aim was to disentangle whether learning and 
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memory were in part responsible for male extended mating duration, and if so, 

whether a specific type of memory modulated the reaction to the environment. This 

is important to help establish how extended mating duration may have evolved and 

may hint at possible interactions with other areas of behaviour, potentially controlled 

by the same mechanism. The original hypothesis based on the temporal dynamics 

of the behaviour investigated in Chapter 2 was that anaesthesia resistant memory, a 

form of long term memory, would control extended mating duration. 

Chapter 5 investigates the molecular changes that might underpin 

behavioural state change in a male responding to increased sperm competition. 

Reversible behavioural plasticity similar to that shown in extended mating duration 

may parallel neurogenomic change where differential expression of an important 

subset of genes cause different behaviours (Cardoso, Teles & Oliveira 2015).  I 

measured the expression of genes found to be important to extended mating 

duration (shown in chapter 4) that were also differentially expressed in a previous 

transcriptomics study. This enabled me to elucidate whether neurogenomic change 

was indeed underlying changes in behaviour. To focus on any transient changes in 

gene expression, qPCR was used to measure genes at time periods that paralleled 

changes in male behaviour and that I hypothesised would change in their 

expression levels with changes in behaviour. 

An increase in sociality is theorised to increase neural tissue and so 

increase cognitive ability in mammals and birds. However, in insects the 

evolutionary pressures driving cognitive ability are not agreed on. In Chapter 6 I 

investigate whether exposure to a social environment affects within generation 

cognitive ability and/or expression of a suite of synaptic genes in male D. 

melanogaster. The aim was to establish whether changes in the social environment 

within generations could lead to differences in cognitive ability in an insect model 

and if so, to identify a possible evolutionary driver behind these differences. 
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Heterospecific social environments were also investigated to elucidate whether 

specific types of sociality were important for the evolution of cognition in D. 

melanogaster. I hypothesised that social differences would not drive within 

generation differences in cognitive ability, though social differences would contribute 

to the evolution of cognition over multiple generations as shown by Hollis and 

Kawecki (Hollis & Kawecki 2014). This work was carried out with the help of Laurin 

McDowall who assisted with behavioural experiments. 

Chapter 7 is a general discussion of what this thesis has found and the wider 

implications of those findings. I discuss the mechanisms controlling male sperm 

competition responses and how these can impact the wider literature in informing 

work investigating how other plastic responses are controlled. I then go on to 

discuss how the competitive environment may have impacted cognitive abilities in 

line with theories of brain evolution. I conclude with suggestions for future work to 

further our understanding of cognitive ecology, in particular, mechanisms controlling 

plastic behaviour. 

Appendix I details supplementary experimental methods and preliminary 

data associated with the main chapters. I show how concentrations for associative 

learning experiments used in chapter 5 and 6 were calculated. I also show that 

male’s extended mating duration responses do not differ depending on the time of 

day they were tested, something that may have impacted experiments performed in 

chapter 2, 3 and 4. 
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Maintenance of extended mating duration in response to sperm 

competition threat is determined by exposure time to rival males 

2.1 Summary 

Phenotypic plasticity can increase fitness in rapidly changeable environments, but 

may be limited if the underlying mechanisms cause a lag-time between 

environmental change and individual response or if the information individuals 

receive is unreliable. Hence to understand the evolution of plasticity we need to 

assess whether individuals respond to fine-scale variation in environmental cues. In 

this study we use a Drosophila melanogaster fruit fly model to investigate factors 

that determine how quickly males alter their behaviour in response to changes in 

sperm competition cues. Male D. melanogaster respond to exposure to rival males 

prior to mating by extending mating duration and increasing ejaculate investment. It 

has previously been shown to build-up the response; males need ~ 24h exposure to 

a rival. We reasoned that this lag-time was necessary to increase ejaculate 

production, but this physiological limitation should not apply when moving from high 

to low competition environments, hence we predicted that males should immediately 

decrease their investment when competition is removed. Here we test this by 

measuring how long rival-exposed males maintain an extended mating duration 

phenotype after removal of the rival. I also assessed whether exposure time to a 

rival male affects the speed of change in behavioural state. Males maintain 

extended mating duration for hours after a rival is removed, but this is dependent on 

time of exposure to a rival. Our results suggest that males use exposure time to 

assess whether the threat of sperm competition is transient (so unlikely to translate 

into realised competition) or sustained (requiring a response). Therefore, lag-times 

between environmental changes and responses may buffer animals against making 

hasty decisions in fluctuating environments.  
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2.2 Introduction 

Phenotypic plasticity is the expression of different phenotypes from the same 

genotype in response to an environmental cue (West-Eberhard 2003). In animals, 

behavioural plasticity is predicted to be a particularly potent form of phenotypic 

plasticity due to its rapid flexibility and low production costs (Parker 1982), and 

hence flexible behaviour can enable animals to cope with rapidly changing 

environments (Komers 1997). However, to be adaptive, behavioural plasticity must 

track the environment accurately and on a similar timescale to the environmental 

variation to which it responds (Gabriel et al. 2005). If it does not, mismatches 

between behaviour and the environment are predicted to be costly (Auld, Agrawal & 

Relyea 2010). This is most readily seen in environments that have recently 

undergone mass changes to which behavioural plasticity fails to respond correctly. 

For example, snowshoe hares (Lepus americanus) fail to modify hiding or fleeing 

behaviour in environments where snow cover has decreased, raising the likelihood 

of predation (Zimova et al. 2014) and red squirrels (Tamiasciurus hudsonicus) must 

breed earlier in the season to take advantage of increasing spring temperatures and 

food (Reale et al. 2003). Other phenological mismatches to climate change include 

changes in the timing of hibernation emergence in mammals (Ozgul et al. 2010; 

Lane et al. 2012) and migratory journeys in birds (Both & Visser 2001). Depending 

on the type of environmental variation, proximate cues might change more quickly 

than the prevailing population conditions, and so animals might need to judge if the 

change is transient or sustained enough to warrant a response. Mismatches with 

the environment driven by time-lags in production of new trait values are therefore 

crucial to the range of plasticity an individual can exhibit, but are rarely quantified 

(DeWitt, Sih & Wilson 1998; Auld, Agrawal & Relyea 2010). In order to understand 

these limits, how plasticity evolves, and why not all traits are plastic, it is crucial to 
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examine factors that impact the speed with which environmental inputs are 

translated into plastic responses. 

One rapidly changing facet of the environment is the socio-sexual context, 

as sex ratio can vary locally and over short time scales (Kasumovic et al. 2008; 

Punzalan, Rodd & Rowe 2010). This is particularly important for males as they are 

predicted to allocate reproductive resources strategically, trading-off current and 

future mating opportunities depending on the competitive environment (Parker et al. 

1996; Parker et al. 1997). To respond to changing socio-sexual environments males 

could change mating strategies either as an immediate response to another male 

(or cues of other males), or using a response that requires a period of exposure to 

changes in the social environment (Bretman, Gage & Chapman 2011). We currently 

have very little understanding of how males assess and assimilate environmental 

information and how this is translated into altered behavioural and physiological 

states. One of the best studied examples is the response of male Drosophila 

melanogaster fruit flies, whereby males exposed to a rival male before mating 

subsequently mate for longer than males held alone (Bretman, Fricke & Chapman 

2009). This leads to increased short-term reproductive success compared to males 

who have not been exposed to rivals (Bretman, Fricke & Chapman 2009), mediated 

by alterations in ejaculate contents (Wigby et al. 2009; Garbaczewska, Billeter & 

Levine 2013; Moatt 2014). Mating duration tracks the level of sperm competition 

anticipated, increasing when males are exposed to a rival and reducing when that 

rival is removed (Bretman et al. 2012). Males kept with rivals die sooner and 

become progressively less successful at obtaining matings over life, supporting 

costs of responding to rivals (Bretman et al. 2013). 

In this study, I explore how quickly males can match a new competitive 

environment and whether exposure time to rivals affects the speed of adjustment. It 

has previously been shown that males require ~24h exposure to a rival to increase 
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mating duration and gain fitness benefits, with this time lag thought to allow an 

increase in production of ejaculate components (Bretman et al. 2010). However, 

males moving from high to low competition environments should not be constrained 

by the same physiological limitation and so should not require any adjustment time. 

If this is the only consideration in the speed of response then I predict that males 

moved from high to low competition should quickly change their strategy and not 

mate for longer than males that have never perceived competition. To investigate 

this prediction, I measured how long rival-exposed males continued to extend 

mating duration after a rival had been removed. In addition, in order to assess 

whether males use exposure time as a proxy for the likely persistence of the sperm 

competition threat, I measured whether initial exposure time altered the 

maintenance of extended mating duration behaviour. 

 

2.3 Material and Methods 

2.3.1 General experimental set-up 

Experiments were conducted in a 25°C humidified room with a 12 hours light: 12 

hours dark cycle (9 am to 9pm light cycle), using plastic vials (75x25mm) with 7 ml 

standard sugar-yeast-agar (SYA) medium (Bass et al. 2007). All wild type flies were 

the Dahomey strain as in our previous studies. Larvae were raised at a standard 

density of 100 per vial. At eclosion, flies were collected and sexed using ice 

anaesthesia, and stored 10 per vial. Females were supplemented with live yeast 

granules. Males were aged for 24h before being haphazardly assigned to a social 

environment treatment i.e. plus-rival or no-rival. In different experiments we 

manipulated “exposure time” (time from introduction to removal of the rival) and 

“maintenance time” (time from removal of the rival to mating) (Figure 1 and Table 1) 

to gain an understanding of how long the mating duration response is maintained for 

and how it could be affected by exposure time. At mating, males were aspirated 
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singly into a vial containing a single female and allowed to mate, and mating 

duration recorded. If no mating occurred within 3 hours the vial was discarded. This 

gave sample sizes of at least 30 males for each time period, in line with previous 

work (Bretman, Fricke & Chapman 2009; Bretman et al. 2010). 
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Figure 1: Experimental design. Focal males (solid symbols) were separated at 

eclosion and haphazardly assigned to no-rival (vials 1) or plus-rival (vials 2, rival is 

the dotted symbol) treatments, handled in exactly the same way except for the 

presence of absence of the rival. In different experiments we varied exposure time 

(time kept with the rival male) and maintenance time (time from removal of the rival 

male until mating), as described in Table 1. Focal males were transferred to new 

vials for isolation (vials 1a and 2a) and females were added to these vials to record 

mating duration. 
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Table 1: Description of experiments 1-5 providing information about the exposure 

times, maintenance times and paired set-ups for each experiment 

 Experiment Paired treatments?* Exposure time (h) Maintenance time (h) 

 1 y 72 0, 12, 24, 36, 48 

 2 n 72 0, 9, 12, 15, 18, 24 

 3 y 36 0, 12, 24 

 4 y 24 0, 12, 24 

 5 n 24 1, 3, 6, 9, 12 

* y = each plus-rival treatment has a corresponding no-rival treatment, n = multiple 

plus-rival treatments compared to one no-rival control treatment 
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2.3.2 Maintenance of the response after 72h exposure 

In Experiment 1 (Table 1), we investigated how the response to a rival in extended 

mating duration was maintained over 48h after a rival was removed (maintenance 

time). This required offsetting the introduction of the rival and therefore the day on 

which males were mated. Hence, we set up paired treatments, whereby each plus-

rival treatment had a corresponding no-rival treatment handled in the same way. 

The plus-rival treatments were exposed to a rival for 72h to make sure a full 

response was realised (Bretman et al. 2012), and then isolated from any social 

interaction for 0, 12, 24, 36 and 48h before mating. In Experiment 2 we further 

narrowed down the maintenance time. Here we were able to mate all males at once, 

hence had one no-rival treatment and 6 plus-rival treatments exposed to a rival for 

72h and then isolated for 0, 9, 12, 15, 18 or 24h before mating. 

 

2.3.3 Effect of exposure time on maintenance time 

To test whether the amount of time males spent with rivals (exposure time) affected 

the maintenance time of the response we repeated Experiment 1, but this time plus-

rival treatments were exposed to a rival for either 36h (Experiment 3) or 24h 

(Experiment 4). After exposure, focal males were isolated for 0, 12 or 24h prior to 

mating. Finding that 24h exposure reduced maintenance time to under 12h we 

further narrowed this down as in Experiment 2, this time giving plus-rival treatments 

24h exposure and isolating them for 1, 3, 6, 9 or 12h before mating (Experiment 5). 

 

2.3.4 Statistical analysis 

Statistical analysis was performed using SPSSv14. If data were normally 

distributed, comparisons between three or more treatments were made using 

ANOVA with Dunnetts post-hoc tests. Where there were only pairs of treatments 
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comparisons were made using t tests. If data did not meet the assumptions of 

normality Kruskall-Wallis (K-W) or Mann Whitney U tests (MWU) were used (as 

indicated in the Results section). To reiterate, where the design permitted, the key 

comparisons were between males kept singly or with a rival but treated the same in 

all other respects, as this controlled for any other manipulation effects. Bonferroni 

corrections were made where multiple tests were used; this was relevant only when 

multiple groups of males in a plus-rival treatment were compared to a single no-rival 

treatment group. 

 

2.4 Results 

2.4.1 Maintenance of the response after 72h exposure 

In Experiment 1, after 72h exposure to a rival, males extended mating duration for 

12h (MWU: Z = -3.722, N = 77, p < 0.001), but not for 24h (T-test: t70 = -1.597,  p = 

0.115) or more after removal of the rival (Figure 2A). In Experiment 2, we narrowed 

maintenance time down further, again finding that mating duration was affected by 

time since isolation from a rival (K-W: Χ2
7
  = 15.862, p = 0.026). Post-hoc tests 

showed that males continued to significantly increase mating duration after 12h of 

isolation (MWU: Z = -3.136, N = 77, p = 0.014), but failed to do so after 15h isolation 

(MWU: Z = -2.349, N = 75, p= 0.133, Figure S2B). 
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Figure 2: Effect of maintenance time on mating duration. Mating duration (mean +/- 

SEM) of males held singly or exposed to rivals for 72h. A) Males were held singly 

(white bars) or exposed to a rival (grey bars) then separated for 0-48h before 

mating. * indicates a significant difference between paired treatments (** < 0.01, *** 

< 0.001). B) Males were held singly or exposed to a rival and separated for 0-24h 

before mating. * indicates a significant difference compared to the single treatment, 

after Bonferroni correction. 
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2.4.2 Effect of exposure time on maintenance time 

Length of exposure to a rival affected the maintenance of extended mating duration. 

Males exposed to rivals for 36h showed a similar pattern to those exposed for 72h 

(Experiment 1) and extended mating duration for at least 12h after removal of the 

rival (Experiment 3 MWU Z = -3.294, N = 76, p = 0.001; Figure 3A). This was not 

the case for males that had only been exposed to a rival for 24h before isolation 

(Experiment 4 MWU Z = -0.985, N = 71, p = 0.324; Figure 3B). We explored this 

further, finding that when males had been exposed to a rival for 24h (Experiment 5) 

only males isolated for 0h (MWU Z = -3.292, N = 75, p = 0.006) and 1h (MWU Z = -

3.406, N = 72, p = 0.006) before mating mated for significantly longer than males 

never exposed to a rival (Figure 3C). 
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Fig 3: Effect of exposure time on maintenance time in response to a rival. Mating 

duration (mean +/- SEM) of males held singly or exposed to a rival for 36h (A) or 

24h (B, C). A and B males were held singly (white bars) or exposed to a rival (grey 

bars) and separated for 0, 12 and 24h before mating. * indicates a significant 

difference between paired treatments (** < 0.01, *** < 0.001). C) Males were held 

singly or exposed to a rival then separated for 0-24h before mating. * indicates a 

significant difference compared to the single treatment, after Bonferroni correction. 
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2.5 Discussion 

We show that the speed with which males can adjust their behaviour to a new 

sperm competitive environment is dictated by the length of time exposed to a rival. 

When exposure time was standardised to 72h, the increase in mating duration seen 

after exposure to a rival male was maintained for 12h  after removal of that rival, in 

line with a previous report (Kim, Jan & Jan 2012). In addition, exposure time to a 

rival had a critical effect on the time the response was maintained. After 36h of 

exposure the behavioural response was maintained for at least 12h, similar to the 

pattern when males were exposed to a rival for 72h. However, after 24h exposure, a 

full response was realised but only persisted for 1h after removal of the rival. This 

suggests that whilst it is possible for males to alter behaviour shortly after a rival is 

removed, they do not if they have had at least 36h exposure. 

Previously, we found it was necessary for males to be exposed to rivals for 

at least 24h before displaying an adaptive response, which could be considered a 

lag-time limit to plasticity. We suggested this time was required to enable a 

corresponding alteration of ejaculate components (Bretman et al. 2010), such as 

more seminal proteins (Wigby et al. 2009) or more/ better quality sperm 

(Garbaczewska, Billeter & Levine 2013; Moatt 2014). In D. melanogaster, the 

relationship between mating duration per se and ejaculate transfer is not 

straightforward (Gilchrist & Partridge 2000; Manier et al. 2010) but multiple studies 

have shown that its modulation in response to social contact does indeed affect 

fitness (Bretman, Fricke & Chapman 2009; Bretman et al. 2011; Bretman et al. 

2012; Price et al. 2012; Bretman et al. 2013). Nevertheless, over successive 

matings, the duration response and fitness outcomes can become uncoupled 

(Bretman et al. 2012; Bretman et al. 2013), suggesting the behaviour alone does not 

alter fitness. This is the basis of our prediction that to build up the response requires 

time to produce more/ better quality ejaculate components. However, males could 
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reduce investment by transferring less ejaculate, so should immediately respond to 

the removal of competition, hence time to modulate ejaculate seems unlikely to 

explain why there is a time lag between removal of the rival and the decrease in 

mating duration. After 24h exposure, males do respond to rivals but reduce mating 

duration within 1h after the rival is removed. Males are therefore capable of making 

rapid adjustment to their behaviour, though here we did not measure whether there 

is a corresponding speedy adjustment to ejaculate transfer. 

Theory generally predicts that males should invest more as sperm 

comeptition risk (probability of a female remating) increases. However, with respect 

to  sperm competition intensity (number of competing ejaculates), investment should 

be maximised with one rival, as thereafter potential fitness returns diminish with 

each additional competitor (Parker et al. 1996; Parker et al. 1997). However there 

are many variations to these models incorporating factors such as the quality of 

information available to the male, female quality and male age, experience and 

condiditon (Parker & Pizzari 2010). In our D. melanogaster example, exposure time 

might give males information about both risk and intensity. However, previous work 

showed that males were not sensitive to the number or density of rivals (Bretman et 

al. 2010), suggesting that the critcal determinant of fitness is whether or not a male 

is in competition, rather than with how many other males. A further consideration is 

whether males respond to population mean rather than immediate threat. Longer 

exposure times might indicate that even though the immediate competitive threat is 

removed, the mean competition within the area or population is high and therefore 

greater investment should be maintained as insurance against sudden increases in 

local competition. Indeed, recent evidence suggests that males can be primed for 

the average levels of sperm competition within the population if they receive cues as 

larvae (Bretman et al. 2015), which might be 10 days before they become adult and 

are subject to that competition. Males raised in the presence of adult males or in 
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high larval densities developed larger accessory glands (Bretman et al. 2015) and 

the latter condition also increased their relative allocation of seminal fluid proteins 

when adult (Wigby et al. 2015). However, developmental environment was not 

found to affect adult behavioural strategies, suggesting that cues received as 

juveniles can accurately predict the average population level of sperm competition 

but are a relatively poor indicator of immediate competition at any particular mating 

(Bretman et al. 2015).  

Our findings suggest that responding to the addition or removal of rivals 

immediately may not be the best strategy; hence we might question whether this 

time-lag is a true limit to plasticity or is actually adaptive. If the competitive 

environment can change rapidly, cues could be transient and therefore misleading 

to an individual about the level of competition in the environment. Males may 

therefore be better to wait and become certain of the level of competition before 

creating a potentially costly response. To disentangle whether the lag-time between 

environmental change and a change in behaviour is adaptive it would be informative 

to uncover the mechanism controlling the plastic behaviour. If the mechanism 

shows behavioural change could be accomplished without a time-lag, this suggests 

the time-lag is adaptive within the changing environment. For animals such as D. 

melanogaster that are difficult to observe in the wild, it is unlikely we could 

accurately measure the natural timescale of their social interactions. Nevertheless, it 

is likely that the environment varies, as without this variation the plasticity in 

responses should be maintained or initially evolve (Carroll & Corneli 1995). Given 

flies will aggregate around food sources, we can speculate that males could spend 

72h in intense social contact (Stamps et al. 2005; Reaume & Sokolowski 2006). 

Conversely they could be socially isolated for 12h or longer, for example, when 

migrating between food patches or sheltering from adverse weather conditions, and 

in this context the ability to remember a previous social contact should be beneficial 
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(Stamps et al. 2005; Reaume & Sokolowski 2006). We employed manipulations 

where males were continuously with or without a rival for given periods, however 

natural fluctuations could occur at much shorter timescales than we tested. 

In other contexts, differences in the time periods between presentations of 

cues can affect behavioural responses of flies. Associative learning involves training 

flies to associate a smell with a shock or reward and leads to different lengths of 

memory consolidation depending on the speed with which flies are presented with 

cues (Tully et al. 1994). When presented with cues multiple times in a spaced 

manner flies form long-term memory (LTM) and can remember an association for up 

to 7 days. Flies presented with cues on mass form protein synthesis independent 

memory, or anaesthesia resistant memory (ARM) and remember the same 

information for a shorter amount of time (Scheunemann et al. 2012). When viewed 

through our paradigm males are constantly exposed to a stimulus, even when not in 

physical contact, due to another male’s smell (Gaudry, Nagel & Wilson 2012), and 

so are exposed to the equivalent of massed training. ARM builds up slowly, 

reaching asymptomatic levels after 2 hours and lasting up to 24 hours (Margulies, 

Tully & Dubnau 2005), a time period I have already discussed as potentially 

adaptive in terms of mating competition. In flies, ARM and LTM build up 

simultaneously but are mutually exclusive after multiple training trials (Placais et al. 

2012). Training for both memory types is seemingly additive, in that increased 

training causes an increase in memory length (Margulies, Tully & Dubnau 2005), 

something that is also shown in the results here, though after an initial investment of 

24 hours in a high sperm competition environment (Bretman et al. 2010). These 

multiple forms of memory are important when learning in a novel environment, as it 

allows organisms to create different temporal behavioural outputs from differing 

experiences. For example, parasitic wasps (Cotesia glomerata and Trichogramma 

evanescens) use differing memory types to remember the spatial distribution of 
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butterfly eggs depending on the species of butterfly. Butterflies that lay a greater 

number of eggs elicit longer term memory (controlled by LTM) in the wasp than 

single egg species where memory forms via ARM, allowing wasps to forget 

information at different speeds depending on the reward (Kruidhof et al. 2012). This 

is especially advantageous in extremely changeable environments where 

individuals can gain fitness from constantly updating learned information and 

changing their behaviour accordingly (Burns, Foucaud & Mery 2011). 

Another learning and memory assay that parallels the paradigm I use here is 

that of courtship suppression, whereby male D. melanogaster exposed to 

unreceptive (recently mated) females learn to reduce courtship effort (Kamyshev, 

Iliadi & Bragina 1999). Similar to the response to rivals, exposure time to female 

cues is important, but interestingly, discrete training periods rather than constant 

contact is required for males to consolidate this from short term to long term 

memory (McBride et al. 1999). Although these behaviours show parallels, they may 

be quite cognitively different tasks: Courtship suppression is somewhat binary (i.e. 

learning a cue that the female is or is not receptive) whereas responding to rivals 

requires remembering an amount of time spent with a rival male as a proxy for the 

probability of future competition. As the pathways controlling courtship suppression 

and associative learning are well documented (Griffith & Ejima 2009), it will be 

fruitful to compare the learning and memory mechanisms involved.  

Throughout this and much of our previous work, a single fly has been used 

as a competitor. Although in natural settings it might be expected that multiple 

males would simultaneously or successively interact, in a laboratory setting neither 

number nor density of rivals affects the magnitude of the response (Bretman et al. 

2010). In addition, we used virgin flies throughout, and although the focal could be 

sexually experienced in the wild, this does not affect the mating duration response 

we report here (Bretman et al. 2012). Similarly, males can employ plastic sperm 
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competition strategies depending on female mating status, quality and age. For 

example, in D. melanogaster males can respond to female mating status by altering 

sperm number (Luepold et al. 2011) and seminal fluid composition (Sirot, Wolfner & 

Wigby 2011), though it should be noted that the direction of this response (i.e. more 

investment in mated or virgin females) is not consistent across studies (Friberg 

2006). The mating status of the female has been shown not to affect the extended 

mating duration in response to rival-exposure (Bretman, Fricke & Chapman 2009), 

and females having little ability to control mating length once mating had begun 

(Bretman, Westmancoat & Chapman 2013). Nevertheless, future work could test 

whether male experience or age, or female mating status, alters the speed with 

which males respond to changes in competition cues or change ejaculate amount. 

To further our understanding of the neuroecology and evolution of 

recognition systems, and plasticity in general, we need to examine these processes 

mechanistically, at neuronal, biochemical and genetic levels. Here D. melanogaster 

offers significant advantages, as it is a very well established model for exploring 

learning and memory mechanisms, in many ways already discussed (Margulies, 

Tully & Dubnau 2005; McGuire, Deshazer & Davis 2005; Ejima et al. 2007).  

In conclusion, we have shown that in D. melanogaster, the speed of 

behavioural responses to sperm competition rivals is affected by prior exposure time 

and sensory cues. Behavioural plasticity is thought to be a cheap and fast way to 

cope with environmental change, yet we show that males do not always respond to 

changes in their competitive environment as quickly as they are capable. Our 

findings could be interpreted as limitations of plasticity, or alternatively that both the 

lag-time allows males to quantify sperm competition threat within a population. 

These findings could therefore have important implications for understanding 

context dependent decision making, especially as this Drosophila model will enable 

future studies to dissect these processes at many mechanistic levels. 
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Sensory limits affect temporal dynamics of a male’s response to sperm 

competition 

3.1 Summary 

Organisms obtain information from the environment using a wide range of sensory 

cues. These cues can interact with each other to form multimodal sensory systems 

needed to distinguish specific individual types and so enable reactions to subtle 

modulations in an environment. The ability to respond quickly to changes in the 

environment is important, but is at risk when the sensory system employed is not 

optimal for the task. This may lead to information reliability limits to plasticity that 

could slow an individual’s response to an environmental change. In Drosophila 

melanogaster, multiple senses interact to enable males to evaluate the make-up of 

the competitive environment, and so control any subsequent mating duration 

changes. However, if a single sense is removed it has no effect on the overall 

change in behavioural response to increases in sperm competition. In this chapter, I 

remove individual senses and measure a male’s ability to respond to the addition of 

a rival over 24 hours. I also investigate the effect of sense removal on maintenance 

of the response to rivals over 24 hours. I reason that removal of single senses 

should not affect the speed of the build-up or maintenance of the behavioural 

response due to compensation from other senses enabling multimodal 

communication. However, removal of multiple senses should increase the amount 

of time males take to respond to changes in the competitive environment. 

When single senses were removed males were slower to extend mating 

duration in response to an increase in sperm competition in comparison to normal 

males. However, single sense removal did not affect the rate at which males were 

able to match mating duration to a decrease in sperm competition. This suggests a 

more accurate sensory mechanism is needed when reacting to competitive cues 

than when reacting to a lack of competition. It may also show that reacting to 
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competition is more costly than failing to match a non-competitive environment so 

needs to be more tightly controlled. The change in temporal dynamics depending on 

sensory removal when reacting to an increase in sperm competition supports 

information-reliability as being a limit on plastic behaviour. 

 

3.2 Introduction 

Organisms extract information from the environment using a wide range of sensory 

cues (Munoz & Blumstein 2012). These can inform an individual about the location 

of food, mates and potential predators that allows the organism to respond to the 

environment in a suitable manner (Bro-Jorgensen 2010). Multiple sensory cues 

interact to form an accurate picture of the environment, i.e. are multimodal, and 

cross reference to maximise the accuracy of any sensory signal (Johnstone 1996). 

The need for one sense in preference to another is driven by an individual’s ecology 

and the characteristics of the cue. For example, chemical cues are more important 

than visual cues when determining species recognition in shoaling fish due to 

impaired vision in murky water and the high dispersal characteristics of chemicals in 

this substrate (Ward, Axford & Krause 2002). 

To be able to create an accurate environmental picture, information must be 

sensed and assimilated to identify change on a time scale similar to any variation 

occurring within an environment. Single cues that endure in the environment can 

give outdated information. For example, chemical cues can signal predator 

presence but may remain in the environment after the predator is gone (Ward & 

Mehner 2010). If organisms receive outdated information it could lead to a loss of 

fitness due to inappropriate actions leading an individual into danger, or away from 

opportunities. DeWitt and colleagues (DeWitt, Sih & Wilson 1998) defined this as 

information-reliability limits to plasticity, where limits to the ability to collect accurate 

sensory information, or pick-up misleading cues, causes an organism to mismatch 
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its phenotype to the environment. This leads to a subsequent loss of fitness 

compared with a less plastic individual and increases the need for a multimodal 

sensory system that can reduce inaccuracy in an individual’s response to change, 

so reducing costs of mismatching to an environment. 

The ability to respond to cues quickly and accurately is especially important 

when reacting to changes in the social environment due to quick fluctuations in 

potential disease transmission, predation pressure and intraspecific competition. 

Individuals in any group will release cues to inform other members of their 

dominance (Cornwallis & Birkhead 2008) and condition (Scheuber, Jacot & Brinkhof 

2004). This can then be used by receivers to modulate their behaviour depending 

on the make-up of the social group. In D. melanogaster, male flies modulate their 

mating duration depending on the presence or absence of a competitor male, 

however, display either a 24 (Bretman et al. 2010) or 12 hour (Rouse & Bretman 

2016) lag-time depending on whether they are reacting to the addition or removal of 

a rival (Rouse & Bretman 2016). In addition to this time lag, information-reliability 

limits should change how quickly males respond to changes in the environment. 

However, one sense may not have an effect if competition assessment relies on 

multimodal cues, such as Drosophila, whose senses show functional redundancy 

when reacting to mating rivals (Bretman et al. 2011). Therefore, loss of a 

competitive cue should be covered by the remaining senses, allowing males to 

respond to a change in the environment successfully and at the same rate as a 

male without sensory loss. 

In this study, we use Drosophila melanogaster males to investigate how the 

loss of different sensory inputs affects the speed of behavioural plasticity induced by 

changes in the competitive environment. This gives us some understanding of the 

theorised sensory limits to plasticity and how multimodal sensory systems work to 

enable individuals to react quickly to their current environment. 
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3.3 Material and Methods 

3.3.1 Fly stocks and husbandry 

Experiments were conducted in a 25°C humidified room with a 12 hour light: 12 

hour dark cycle (9 am to 9pm light cycle), using plastic vials (75x25mm) with 7 ml 

standard sugar-yeast-agar medium (Bass et al. 2007). For sensory experiments all 

wild type flies were the Dahomey strain as in our previous studies. Wildtype larvae 

were raised at a standard density of 100 per vial. At eclosion, flies were collected 

and sexed using ice anaesthesia, and stored 10 per vial. Females were 

supplemented with live yeast granules. 

Where Canton-S strains were used the stocks were generously donated by 

Dr Tom Price. Flies were grown in vial by placing 5 males and 5 females in a vial 

and allowing them to mate. Again, at eclosion, flies were collected and sexed using 

ice anaesthesia, and stored 10 per vial. 

Orco2 flies were generously donated by Tracey Chapman and were also 

grown in vial by placing 5 males and 5 females together and allowing them to mate. 

Offspring were collected at eclosion and sexed using ice anaesthesia. As all 

experiments were internally controlled (had a fly isolated and with rivals) strain 

differences were accounted for within any mating duration experiments. 

 

3.3.2 Testing effect of vision on extended mating duration in two different 

strains of Drosophila melanogaster 

There are previous conflicting reports about the role of vision in extended mating 

duration. One investigation concluded that any paired combination of auditory, 

olfactory and tactile cues were needed for males to recognise a rival presence 

(Bretman et al. 2011), whereas the other found that vision alone was enough for a 

male to extend mating duration (Kim, Jan & Jan 2012). To investigate the role 
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played by vision in controlling a male’s ability to respond to a rival an experiment 

from Kim and colleagues (2012) was repeated using mirrors (12 mm diameter, 

113.1 mm2) to simulate the moving red eyes of a rival male D. melanogaster. Two 

strains of D. melanogaster were tested for their ability to extended mating duration 

using vision only, Dahomey, which has been used in Bretman et al (2011), and 

Canton-S, used in Kim et al (2012). In their respective studies both strains had 

shown extended mating duration in response to a rival presence. To simulate the 

presence of a rival through visual cues only mirrors were placed at the bottom of a 

vial with an otherwise single male. Two controls were used, focal males housed with 

a rival to control for day effects on mating duration, and a focal male placed with an 

upside-down mirror to control for any effect of mirror presence. Flies were kept in 

these environments for 3 days before being mated with a virgin female and the 

mating duration calculated. All manipulations were performed on both Dahomey and 

Canton-S strains. This give sample sizes of at least 30 individual male flies for all 

treatments across both strains of D. melanogaster. 

 

3.3.3 Effect of sensory deprivation on speed of behavioural response 

To investigate whether sensory deprivation would affect maintenance or build-up of 

extended mating duration, we manipulated olfactory and auditory cues as in our 

previous work (Table 1) (Bretman et al. 2011). To remove auditory signals rival male 

wings were removed under CO2 anaesthesia (Figure 1). We removed olfaction by, 

using focal males mutants lacking odorant receptor 83b (Orco2), a co-receptor 

responsible for perceiving 80% of D. melanogaster’s odour range (Larsson et al. 

2004). We also used wild type males with their 3rd segment of antennae removed 

under CO2  anaesthesia (Figure 1), which removes sensillae required for males to 

respond to odour cues (van Naters & Carlson 2007) and also aristae which 

contribute to detection of sound (Gopfert & Robert 2002). All sensory manipulations 
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were performed before any behavioural experiments were undertaken. Flies were 

given at least 24 hours to recover. The first experiment focused on maintenance 

time of a response used focal males kept in the plus-rival treatment for 72h before 

isolating them for 0, 12 and 24h before mating. This gave sample sizes of 26 to 40 

male flies for each group. To measure the effect of sensory manipulations on the 

build-up of the mating duration response over 29h males were collected singly 

before being exposed to rivals for 20, 24 and 29h prior to mating. This gave sample 

sizes of between 23 and 40 male flies for each group. Importantly in all experiments, 

comparisons were only made between males with the same sensory manipulation 

kept singly or with a rival, hence controlling for manipulation or genetic background 

effects 

  

Table 1: Description of experiments 2 and 3 providing information about the 

exposure time, maintenance times and whether the dynamics of the behaviour 

changed compared to unmodulated males. 

 

 

 

Experiment Sense modulation Exposure time 

(h) 

Maintenance 

time (h) 

Changed from 

unmodulated 

2 Wing removal 72 0, 12, 24 No 

 Orco2 72 0, 12, 24 No 

 Antennae removal 72 0, 12, 24 Yes 

3 Wing removal 20, 24, 29 0 Yes 

 Orco2 20, 24, 29 0 Yes 

 Antennae removal 20, 24, 29 0 Yes 
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Figure 1: Physical sensory manipulations. A) No manipulation wildtype Dahomey. B) 

Wildtype Dahomey with wings removed (auditory cues) Magnification = 20 x C) 3rd 

segment of antennae intact. D) 3rd segment of antennae removed. Magnification = 

100 x 
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3.3.4 Statistical analysis 

Statistical analysis was performed using SPSSv14 and R v 3.3.1 (Ihaka & 

Gentleman 1996). To test the effect of vision on extended mating duration data was 

analysed using a GLM with quasi Poisson errors (accounting for under dispersion). 

Strain and rival treatment were fixed factors and Analysis of deviance was used to 

reduce from full to minimal model. Differences between the two strains were 

compared using a Mann-Whitney U test, with rival treatments then compared using 

post hoc Tukey pairwise comparisons (single vs upside-down mirror, single vs 

paired, upside-down mirror vs paired). Bonferroni correction was used for multiple 

comparisons. To test the effect of sensory deprivation on the time it took for males 

to build-up and maintain extended mating duration, comparisons between three or 

more treatments were made using ANOVA with Dunnetts post-hoc tests and pairs 

of treatments using t tests if the data was normal. If data did not meet the 

assumptions of these tests then Kruskall-Wallis (K-W) or Mann Whitney U tests 

(MWU) were used (as indicated in the Results section). To reiterate, where the 

design permitted, the key comparisons were between males kept singly or with a 

rival but treated the same in all other respects, as this controlled for any other 

manipulation effects. 

 

3.4 Results 

3.4.1 Testing the effect of vision on extended mating duration in two different 

strains of Drosophila melanogaster 

I tested male reactions to visual cues achieved by placing a mirror with an otherwise 

single male. There was no significant interaction between strain and rival treatment, 

with both Dahomey and Canton-S strains responding in the same way to their pre-

mating environment (AOD: F1,203 = 0.629, p = 0.429). There were significant effects 
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of both strain and rival treatment. When the effect of rival treatment was 

investigated further paired males were shown to mate significantly longer than both 

single males (p = 0.006) and males kept with an upside-down mirror (p < 0.001; 

Figure 2). Both single males and males previously housed with an upside-down 

mirror did not differ in their mating duration (p = 0.964). Overall, Dahomey flies 

mated for longer than Canton-S flies (Mann Whitney U: Z = 6947.500, N = 207, p < 

0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

59 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Singular visual cues are not enough to invoke extended mating duration. 

Mating duration of males held singly (white bars) with a mirror (hashed bars) or with 

rivals (dark grey bars). Significance between the two strains is represented by the 

overarching bar. Within strains, significance is represented by letters. Same letters 

represent no significance between two groups, different letters represent a 

significant difference between two groups. Error bars represent SEM. * indicates a 

significant difference between paired treatments (* p < 0.05 ** p < 0.01, *** p < 

0.001). 
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3.4.2 Effect of sensory deprivation on the build-up of response to rivals 

I investigated how sensory manipulations affect the speed with which males built up 

a response to rivals. Previous work has shown that males respond to a rival male 

presence after 24h exposure time (Bretman et al. 2010), confirmed in Chapter 2, Fig 

3c. However, in each of our sensory manipulations we found no significant increase 

in mating duration even after 29h exposure to a rival (Wing removal: K-W Χ2
3 = 

7.774,  p = 0.500; Fig 3a. Orco2: ANOVA F3, 80 = 1.302, p = 0.280; Fig 3b. 3rd 

segment: ANOVA F3, 94 = 1.589, p = 0.197;  Fig 3c). This suggests that sensory 

deprivation increases the lag-time between environmental change and behavioural 

response.  
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Figure 3: Sensory deprivation affects build-up of sperm competition response. 

Mating duration of males held singly (white bars) or with rivals (grey bars) for 20, 24 

and 29 h before immediate mating to females. A) Males maintained with wingless 

rivals. B) Orco2 focal males lacking odorant co-receptor. C) Wild type focal males 

with the 3rd segment of their antennae removed. Error bars represent standard 

errors. There was no significant difference between any of the paired treatments.  
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3.4.3 Effect of sensory deprivation on the maintenance of response to rivals 

I also tested  how sensory manipulations modulated the maintenance time of 

extended mating duration. Males exposed to rivals but not receiving  auditory (wing-

removed rivals) or olfactory cues (use of Orco2 mutants) showed a pattern similar to 

unmanipulated wild type flies (Chapter 2, Fig 3a). These males increased their 

mating duration for 12h after removal of the rival (Wing removal: MWU Z = -2.812, N 

= 73, p = 0.005; Fig 4a. Orco2: MWU Z = 2.388, N = 58, p = 0.017; Fig 3b), but not 

after 24h isolation (Wing removal: t 73 = -0.659, p = 0.512; Fig 4a. Orco2: t51 = -1.124, 

p = 0.266; Fig 4b). In contrast, when the 3rd antennal segment was removed, males 

continued to extended mating duration for 24h (MWU Z = -2.891, N = 66, p = 0.004; 

Fig 4c), ~10h longer than unmanipulated wild type males. 
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Figure 4: Sensory deprivation effects on maintenance of extended mating duration. 

Mating duration of males held singly (white bars) or with rivals (grey bars) for 72h 

before being isolated for 0, 12 or 24 h. A) Males maintained with wingless rivals. B) 

Orco2 focal males lacking odorant co-receptor. C) Wild type focal males with the 3rd 

segment of their antennae removed. Error bars represent standard errors * indicates 

a significant difference between paired treatments (** p < 0.01, *** p < 0.001). 
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3.5 Discussion 

In this chapter I show that vision as a single sense has no effect on a male’s ability 

to respond to a rival male, supporting previous work (Bretman et al. 2011), but 

bringing into doubt other findings from a separate lab (Kim, Jan & Jan 2012). In 

addition, we have also shown that the speed of a male’s response to fluctuations in 

the socio-sexual environment changes depending on the cue received from that 

environment and whether males are responding to the presence or absence of said 

cue. Removal of a sensory cue had no effect on a male’s ability to reduce his 

mating duration when removed from a high sperm competition environment. 

However, it did reduce the ability of a male to respond as rapidly to the introduction 

of a rival male than if left with a whole suite of cues about the environment. This 

suggests sensory cues received from the environment are not totally redundant, as 

previously suggested (Bretman et al. 2011), and that it is more costly to incorrectly 

respond to the presence of rival males than it is to decrease mating duration when 

sperm competition may still be high. 

 

3.5.1 Testing effect of vision on extended mating duration in two different 

strains of Drosophila melanogaster 

There have been conflicting reports on the importance of vision in promoting male 

extended mating behaviour in response to increased sperm competition. Previously, 

it had been suggested that males reacted to visual cues, specifically moving red 

eyes, when extending mating duration (Kim, Jan & Jan 2012). My data show that 

the image of a rival male was not enough to induce either a Dahomey or Canton-S 

male to significantly extend mating duration. If a male did indeed respond to moving 

red eyes then an increase in mating duration would be seen whenever a male 

interacted with any species of Drosophila, not just their own. This is in contrast to 

reports showing that D. melanogaster males do not extend mating duration in 
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response to a D. simulans presence (Price et al. 2012), it also makes little 

evolutionary sense, as males of a species under no competition would incur lifetime 

fitness costs due to the presence of a non-competing species male (Bretman et al. 

2013). The weight of evidence therefore suggests that previous work to look at the 

sensory signals underlying a male’s ability to respond to rivals (Bretman, Gage & 

Chapman 2011) is a good place to start when investigating sensory limits to 

plasticity in this model. Other authors have explained the discrepancy between the 

two studies discussed above by referencing differences in the two strains used 

(Maguire, Lize & Price 2015); however, this does not seem to act as a full 

explanation as each strain has been kept under the same evolutionary pressures 

(very high mating in a cage) where benefits of one specific sensory cue over all 

others (as shown for the Canton-S strain) would be unusual. Our results show the 

same pattern of mating duration for both strains, which does not support the idea 

that the two strains have evolved different sensory systems to recognise rival males. 

However, it does open up the possibility the differences between the two studies 

may be a result of different lab environments or viewers. In particular, there are 

discrepancies between sample sizes and methods across the two studies. Bretman 

and colleagues (2011) measured mating duration to the nearest minute for a sample 

size of at least 30. In comparison, Kim and colleagues (2012) measured mating 

duration every 10 seconds but used sample sizes as small as 14. In addition, to 

create a high sperm competition environment Kim and colleagues placed four males 

within the same environment, potentially creating pseudo-replication and reducing 

sample sizes by a factor of 4. Another area where the two studies used different 

methods is in the transfer of males between environments, specifically in the use of 

CO2 anaesthesia, an anaesthetic proven to affect D. melanogaster behaviour for up 

to 24 hours (Barron 2000; Bartholomew et al. 2015). Bretman and colleagues 

(2011) aspirated males from housing to mating chambers whereas Kim et al (2012) 

anaesthetised males using CO2. Overall, considering the weight of evidence 



 
 

66 
 

suggesting vision is unimportant for males to extend mating duration in response to 

increased sperm competition (Bretman et al. 2011; Maguire, Lize & Price 2015) the 

genetic dissection of extended mating duration carried out by Kim and colleagues 

(2012) will be treated with some caution within this thesis. 

 

3.5.2 Effect of sensory deprivation on the maintenance and build-up of 

response to rivals  

A hypothesised limit to plasticity is that of information-reliability (Auld, Agrawal & 

Relyea 2010), specifically that plastic responses require sensory recognition 

systems that accurately perceive and process environmental information. In our 

paradigm this means sensing that another individual poses a sperm competition 

threat, with senses possibly incorporating information about whether the rival is 

conspecific, male and sexually mature. Senses may also have to include 

information about the time a rival has been present within an environment and 

incorporate this into a measure of rival persistence. It has previously been 

suggested that because males lacking one sense are still able to respond to 

increases in sperm competition, this shows sensory redundancy (Bretman et al. 

2011). Which would be in line with the redundant signal hypothesis for sexual 

ornamentation (Zuk, Ligon & Thornhill 1992). In the current study, males could still 

respond to a lack (i.e. reduce mating duration) or increase of competition (i.e. 

increased mating duration) when single senses were manipulated (either 80% 

olfaction through use of Orco2 or auditory through removal of rivals wings). 

However, the speed of behavioural response was reduced compared to 

unmanipulated males (Bretman et al. 2010; Rouse & Bretman 2016) suggesting 

senses are not fully redundant and there is an element of information-reliability 

relied upon to achieve extended mating duration that matches the timescale of 

environmental change. In a simple odour associative learning task in D. 
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melanogaster, odour detection was not the rate limiting step in decision making, but 

when faced with more difficult tasks (distinguishing between low-contrast stimuli), 

flies took longer to gather information before making a choice (DasGupta, Ferreira & 

Miesenboeck 2014). Arguably integrating information from multiple cues to detect 

the presence or absence of a rival is rather more cognitively challenging than such 

single–odour tests. Nevertheless, this might suggest that in responding to rival 

males, the rate at which sensory information can be gathered does not impose a 

limit on plasticity, but the task becomes more difficult (though not impossible) when 

senses are removed.  

Another point of interest is the time difference between the build-up of the 

behavioural response and the maintenance of the same behavioural response when 

senses were removed. The speed of response patterns are not fully symmetrical; 

whilst removal of one sense affected the build-up of the response when exposed to 

a rival, single-sense manipulations had no effect on the decline of the response 

when the rival was removed. However, removal of the 3rd antennal segment, which 

inhibits both olfaction and hearing (Gopfert & Robert 2002), affected both build-up 

and decline of mating duration. This raises the question of whether the build-up of 

the response is more sensitive to information-reliability limits, perhaps because it is 

likely to be more costly to make the wrong decision and build-up a response when 

competition is low than to maintain it once competition has been removed (Bretman 

et al. 2010). As a caveat to this idea, it is important to note that the build-up of 

mating duration was tested more frequently in the same time period than the return 

of mating duration to pre-exposure levels. Whereas the build-up of extended mating 

duration was tested every 3 hours, the loss of the same behaviour was tested on a 

12 hours period. Therefore, it is possible that the return of mating duration to pre-

exposure levels occurs at the same or similar rate to the build-up of the response 

but is hidden by the lack of resolution in the experimental set-up. 
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One possible way for there to be differences between the senses required in 

the build-up versus loss of the extended mating response may come from the 

different spatial quality needed for each cue to be processed. Cues work on 

different spatial and temporal scales, meaning in a multimodal sensory system cues 

are processed in an additive fashion. A long-range cue can alert an individual to the 

potential for a secondary cue, thereby enhancing the detectability of the second cue 

(Rowe & Guilford 1996; Rowe 1999). In fish chemical cues that provide information 

about predator risk act to ‘prime’ other senses that work on a closer spatial scale 

(mosquitofish, Gambusia holbrooki Ward & Mehner 2010; Guppies, Poecilia 

reticulata Stephenson 2016). Chemical cues are inaccurate and may provide 

outdated information about the presence of a predator (Ward & Mehner 2010) and 

so individually do not elicit a behavioural response. In this way fish show no 

behavioural change to an olfactory predator cue but react rapidly when other cues 

concur with this first warning. Similarly, male wolf-spiders (Family Lycosidae) use a 

form of multimodal communication to attract females. It has been suggested that 

these different modes are important to the female at different stages of pre-copular 

due to differences in distances females are able to detect and recognise different 

cues (Barth 1993; Uetz & Roberts 2002). Within this model long distance cues are 

used by multiple species, making them an important but inaccurate way to initially 

recognise a potential partner (Barth 1993). Cues that work on a closer spatial scale 

are then used to differentiate between potential partners and individuals of a 

different species. 

In D. melanogaster, long range cues are typically thought of as vision or 

smell (Gaudry, Nagel & Wilson 2012), with smell the only cue out of the two 

currently known to affect other fly behaviour (Farine, Ferveur & Everaerts 2012). 

When reacting to a rival, the removal of a male ability to smell through the use of 

Orco2 mutants may therefore have the effect of dampening other cues that act on a 
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closer spatial scale e.g. mechanosensory stimuli, by failing to ’prime’ other senses 

to a potential rival presence. In comparison, when rivals are removed, focal males 

immediately lose all cues that work on a close spatial scale. This leaves only long-

range cues that act to ‘prime’ behaviours, but these do not elicit a behavioural 

response by themselves. As wildtype males do not respond to these cues 

individually (Bretman et al. 2011), probably due to the potential inaccuracy of long-

range cues, this could explain why the removal of smell in manipulated males does 

not create a different temporal dynamic in extended mating behaviour when 

compared to wildtype males.  

In parallel to the senses involved in extended mating duration, courtship 

suppression, as discussed in chapter 2, uses a similar sensory repertoire. In brief, 

courtship suppression exposes males to a mated trainer female, causing males to 

reduce courtship towards any subsequent tester females regardless of their mating 

status (Griffith & Ejima 2009). Within this paradigm, males use visual, olfactory and 

auditory cues to find and court potential mates (Ejima & Griffith 2008). Similarly to 

extended mating duration, the removal of any one sense will not stop courtship 

suppression; suggesting behaviour is controlled by redundant signalling (Ejima et al. 

2005; Krstic, Boll & Noll 2009). Although changes in the speed of behavioural 

plasticity have not been explicitly investigated in this model, differences in how the 

test is carried out give us some idea of how senses interact to efficiently suppress 

courtship. When carried out in a larger chamber, male ability to characterise the 

tester female is reduced and training has to last for longer to create the same effect 

as training in a smaller chamber (Griffith & Ejima 2009). This mirrors the reduction 

of a male’s ability to process long-distance communication, slowing down the speed 

in which plastic behaviour can change, and supports the ideas in our study. 

In contrast to the single-sense manipulations, removal of the 3rd antennal 

segment, affected both build-up and decline of the response. This manipulation 
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likely inhibits both olfaction and hearing (Gopfert & Robert 2002), but probably does 

not fully remove either sense, as for example Orco is also expressed in the 

maxillary palps (Larsson et al. 2004). It is thought that competitor recognition in 

general (e.g. direct aggressive conflict over territories) requires multiple cues across 

different sensory modalities (Grether 2011). In the few examples where cues of 

sperm competition rivals have been explored, most require only a single auditory 

(Bailey, Gray & Zuk 2010) or chemical cue (delBarco-Trillo & Ferkin 2004; Carazo, 

Font & Alfthan 2007; Aragon 2009; Larsdotter-Mellstrom et al. 2016). The only other 

study so far to report a requirement for multiple cues showed that the fruit fly D. 

pseudoobscura requires both odour and tactile cues (Maguire, Lize & Price 2015), 

similar but not identical to D. melanogaster. As yet we cannot explain these 

differences, especially as speed of response has not been considered in these other 

animals, but this variation shows the evolutionary variability of cue recognition 

systems (Maguire, Lize & Price 2015). Multimodal communication is thought to 

increase reaction times (Rowe 1999), but this idea relates to reactions on a 

timescale of seconds (Zeyl & Laberge 2011) rather than hours as we describe. 

Whether the multiple cues males use in this context convey different information 

(e.g. sex or species), or contribute similar information but achieve a response 

threshold faster, remains to be investigated. 

 In conclusion, vision is not responsible for an increase in mating duration 

when male Drosophila melanogaster are exposed to an increased sperm 

competition threat in either Dahomey or Canton-S strains. We have also shown that 

the speed of behavioural responses to changes in the sperm competition threat is 

affected by the availability of sensory cues. This could be seen as a limitation to 

behavioural plasticity in line with those suggested by Auld and colleagues (2010) 

and shows that a full sensory repertoire is needed for males to quantify the sperm 

competition threat within a population. 
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Anaesthesia sensitive memory controls male D. melanogaster 

reactions to the sperm competitive environment 

4.1 Summary 

Plastic behaviour requires individuals to learn and memorise cues associated with 

environmental change before using this experience to subsequently modify 

behaviour. In D. melanogaster male extended mating duration is an important 

plastic behaviour allowing males to gain fitness benefits from a constantly 

fluctuating social environment. Previous work has shown expression changes of 

genes associated with learning and memory after exposure to a rival male. Coupled 

with the importance of olfaction on a male’s ability to extend mating, I hypothesised 

that an olfactory learning and memory pathway may play an important role in 

controlling male’s reaction to increases in sperm competition. To test this hypothesis 

I use multiple mutant stocks to target genes that play a well-known role in learning 

and memory. In addition, I investigate the brain structures important for extended 

mating duration to answer whether particular brain structures play a role in 

controlling extended mating duration. I specifically focus on the MBs as the structure 

most associated with olfactory learning and memory. 

I show that extended mating duration depends on learning and memory 

genes dunce, rutabaga and amnesiac involved in anaesthesia sensitive memory, 

and the behaviour is therefore dependent on protein synthesis. I also show that the 

MBs, as the centre for olfactory memory, play an integral part in controlling the 

plastic behaviour. These results reveal the properties and temporal dynamics of 

acquisition, consolidation and retrieval of memory specific to extended mating 

duration. This suggests that the type of memory used to control extended mating 

duration aligns with the frequency of environmental fluctuation to which the 

behaviour responds. The mechanism also supports ideas in Chapter 2 that the lag 
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time seen between receiving environmental cues and expression of plastic 

behaviour is adaptive. 

 

4.2 Introduction 

Plastic behaviour requires individuals to learn and memorise cues associated with 

environmental change before using this experience to subsequently modify 

behaviour (Mery & Burns 2010). There are many types of memory defined by the 

length of time they allow individuals to retain information, however, little is known 

about how these different memory types may act to control the dynamics or extent 

of plasticity in individual behaviours (Smid & Vet 2016). Drosophila melanogaster 

males respond to the presence of rivals by increasing their mating duration 

(Bretman, Fricke & Chapman 2009), facilitating the release of a greater amount of 

sperm and seminal fluid into the female reproductive tract (Wigby et al. 2009). This 

leads to fitness benefits for the responding male, who gains paternity and reduces 

competition for his own sperm (Bretman, Fricke & Chapman 2009). 

Previous work has suggested that expression changes in learning and 

memory genes underlie some of the behavioural patterning seen in extended 

mating duration (Mohorianu et al. in prep). Coupled with the importance of olfaction 

on mediating responses to rivals (Bretman et al. 2011) this points to a specific 

learning and memory pathway that may be involved in extended mating duration, 

namely the 3’-5’-cyclic adenosine monophosphate (cAMP) pathway. The cAMP 

second messenger system is linked to olfactory ability (Restrepo, Teeter & Schild 

1996) and has traditionally been investigated by training a fly to associate an odour 

with reward or punishment (Tully et al. 1990). Genes involved in this pathway 

include dunce (dnc), rutabaga (rut), amnesiac (amn) and neurofibromin (nf1) 

(McGuire, Deshazer & Davis 2005) that are associated with the control of different 
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memory phases and may be genetically knocked down to investigate memory 

dynamics. Typically, these genes show enriched expression in the MBs (Han et al. 

1992; Gervasi, Tchenio & Preat 2010), the olfactory centre of the brain, or in the 

case of amn are expressed in DPM neurons closely associated with the MBs 

(Waddell et al. 2000). In D. melanogaster, MBs are comprised of bilateral clusters of 

approximately 2,500 Kenyon cells and are classified into α/β, α’/β’ and У 

subdivisions (Davis 2005). The MB neurons act as olfactory coincidence detectors, 

allowing synchronised coactivity of stimuli to create associative memory (Stopfer 

2014). 

There are two distinct memory pathways utilised when training a fly to 

associate a smell with a shock. Anaesthesia sensitive memory (ASM) relies on the 

cAMP dependent pathway and can be split into short-term memory (STM), medium-

term memory (MTM) and Long-lasting long term memory (LLTM) depending on 

training (Quinn & Dudai 1976; Margulies, Tully & Dubnau 2005). Short-term and 

MTM appear after only one training cycle that can create memory for up to 4 hours, 

however, LLTM only appears after flies are exposed to spaced training, and is a 

factor of reinforcing MTM (Yu, Akalal & Davis 2006). LLTM relies on cAMP-

dependent protein kinase activation of CREB, a cellular transcription factor, and 

subsequent protein synthesis (Davis 2011) causing memory that lasts up to a week 

in flies that undergo multiple training periods spaced at 15 minute intervals. In 

addition to ASM, anaesthesia resistant memory (ARM) also forms with associative 

training but is distinguishable from ASM by its resistance to post-training 

anaesthesia and its ability to last up to 24 hours with only one training cycle (Isabel, 

Pascual & Preat 2004). It is a form of long-lasting memory that can be consolidated 

to last multiple days through massed training (multiple training trials with not breaks) 

and is dependent on radish (rsh) expression in the MBs (Folkers, Waddell & Quinn 

2006). 
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The response to potential sperm competitors by male D. melanogaster, 

referred to as extended mating duration, can be initiated by exposing males to rivals 

for 3 days. Males then continue to respond to rivals for 12 hours, suggesting the 

behaviour is a function longer term memory, either LTM or ARM (Rouse & Bretman 

2016). In addition, rival exposure would seem to parallel continual conditioning 

cycles in that males are continually challenged with rival stimuli over 3 days. 

Therefore I predicted extended mating duration to be under the control of ARM. 

Previously, this idea has drawn some attention (Kim, Jan & Jan 2012), however, 

inconsistencies have arisen in the identification of cues involved in controlling 

extended mating duration, a factor directly affecting any memory processes that 

may be involved. In light of this and to test the prediction outlined above that 

extended mating duration is controlled by long lasting ARM I first established 

whether extended mating duration was abolished by application of anaesthesia, 

before testing ability to increase mating duration in dnc, rut, amn, nf1 and rsh 

mutants. These mutants have previously been used to isolate different memory 

phases (Margulies, Tully & Dubnau 2005) and therefore provide information about 

which memory phases are most important for controlling extended mating duration. I 

also investigated parts of the neural circuitry that may underlie extended mating 

behaviour, focusing on the MBs essential to controlling olfactory memories. 

 

4.3 Materials and Methods 

4.3.1 Flies 

Experiments were conducted in a 25°C humidified room with a 12 hours light: 12 

hours dark cycle (9 am to 9pm light cycle), using plastic vials (75x25mm) with 7 ml 

standard sugar-yeast-agar (SYA) medium (Bass et al. 2007). All wild type flies used 

in extended mating duration experiments were the Dahomey strain as in our 

previous studies. Larvae for this strain were raised at a standard density of 100 per 
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vial. At eclosion, flies were collected and sexed using ice anaesthesia, and stored 

10 per vial. Females were supplemented with live yeast granules. 

All non Dahomey stocks were raised ‘in vial’, with crosses using 5 females 

and 5 males to create progeny. Mutant flies were first tested in an associative 

learning paradigm to check for successful abolishment of learning and/or memory 

ability. Flies were then tested for extended mating duration (described below). w1118 

males were crossed to drivers and used as a control in any associative learning 

experiments where mutants came from the same white background. Canton-S 

stocks donated by Tom Price were used as control males for comparison of learning 

and memory scores in associative learning trials. All stocks were purchased from 

Bloomington Stock centre except where specified. 

 

4.3.2 Cold shock to knock-out ASM 

Previously it has been shown that application of cold anaesthesia effectively knocks 

out ASM but leaves ARM intact (Folkers, Drain & Quinn 1993). To test the need of 

ARM when reacting to rival males, focal males were transferred to a vial in ice for 2 

minutes after being exposed to a rival for 3 days. Flies were then allowed 30 

minutes to acclimatise to room temperature before being isolated and placed with a 

female and the latency to mating and duration of mating scored. All experimental 

procedures were also performed on flies kept singly. This gave sample sizes of 38 

to 40 individual males for each group. 

 

4.3.3 Associative learning 

I employed a bioassay to confirm the expected phenotype of transgenic flies. 

Following the experimental procedure from Mery and Kawecki (2005; 2007) 

conditioning and tests were performed on 40-70 flies in male only groups. 4-
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methylcyclohexanol (MCH) and 3-octanol (OCT) were diluted in light oil (OCT: 1.85 

µl/ml MCH: 2 µl/ml) so that naïve flies distributed evenly between the 2 odours over 

2 minutes. Odours were delivered into vials containing flies via air drawn through a 

vacuum pump. 

Flies were conditioned by delivering one odorant for 1 minute accompanied 

by mechanical shock administered by a vortex for 2 seconds every 5 seconds. This 

was followed by 30 seconds of air before delivering the second, distinct odour for 1 

minute with no mechanical shock. To test learning or memory ability flies were 

presented with both odorants simultaneously for 2 minutes, in which time flies could 

choose the odorant they preferred (Figure 1) (Mery & Kawecki 2005; Mery et al. 

2007). A learning index (LI) was calculated by subtracting the flies making the 

‘wrong’ choice (segregating towards the odour they had received while undergoing 

mechanical shock) from flies making the ‘correct’ choice before dividing this number 

by the total flies tested. To generate one data point two groups of independent flies 

were trained reciprocally i.e. one group was trained against MCH and the other 

trained against OCT, before the LI for the two groups were averaged. This was to 

account for any skew in the distribution of flies between the two odours.  

To test different types of memory all flies underwent one training trial, but 

differed in their post-training handling, details below. 

 

4.3.3.1 Early memory or learning 

To test learning flies were conditioned once before being immediately tested 

between the two odours. 
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4.3.3.2 STM 

To test STM flies were conditioned once before being removed from the apparatus 

for 30 minutes. Flies were then re-introduced with 30 seconds of air before being 

transferred to the choice point and presented with both odours. 

 

4.3.3.3 ARM 

To test ARM flies were conditioned once before being removed from the apparatus 

for 2 hours. Flies were then cold-shocked for 2 minutes before being given 30 

minutes to recover. Flies were then re-introduced with 30 seconds of air before 

being transferred to the choice point and presented with both odours. This followed 

protocol from Folkers et al (2006). 
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Figure 1: Basic associative learning for early term memory. Flies were given a 

mechanical shock while receiving one of either 3-octanol or 4-methylcyclohexanol 

(A). They were then left for 30 seconds before being given the reciprocal smell 

without any shock (B). They were then transferred into a lift and given a choice of 

both smells simultaneously for 2 minutes before being collected and counted (C). 
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4.3.4 Extended mating duration 

For all extended mating duration tests each mutant had a focal male kept singly and 

with a rival. Each experimental period was run in addition to wild-type Dahomey 

controls to check that the extended mating duration phenotype was successfully 

represented on a particular day. In all experiments males were exposed to rivals for 

3 days, or kept singly. The latency to mate and mating duration were recorded for all 

mating’s within the first 3 hours. Each extended mating duration test was performed 

with 20 to 40 individual male flies per treatment. 

 

4.3.5 Stocks 

Each stock is treated separately within this section. Number in parenthesis after the 

stock title names are the numbers used to define the stock on Flybase. Each mutant 

relates to a different learning and memory phase tested for its effect on extended 

mating duration. The related learning or memory phase of each stock is represented 

in Figure 2a with the prediction for each mutants effect on extended mating duration 

represented in Table 1. 

 

4.3.5.1 w1118 3605 

White-eye flies were generously donated by Dr Liz Duncan. When crossed to any 

Gal-4 drivers used to knock-down learning and/or memory in associative learning 

and memory trials this controls for the effect of white eye for any mutant that also 

incorporates w1118 mutation into its genotype. This is a common occurrence as a 

way to signal the successful insertion of a mutant gene. 
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4.3.5.2 Elav 8765 

P{GAL4-elav.L}2/CyO is a commonly used Gal-4 enhancer trap driving expression 

in the nervous system. Elav drivers were heterozygous for elav, a neuro specific 

protein expressed throughout the nervous system. To test spatial expression in the 

Gal-4 line P{GAL4-elav.L}2/CyO was crossed to GFP and imaged (Figure 2b). 

 

4.3.5.3 OK107 106098 

w*; P{GawB}eyOK107 is a commonly used Gal-4 enhancer trap expressed in all three 

subclasses of mushroom body neuron throughout development (Aso et al. 2009). 

To test spatial expression in the Gal4 line w*; P{GawB}eyOK107 was crossed to GF 

and imaged (Figure 2c) The stock was purchased from Kyoto stock centre. 

 

4.3.5.4 NP3061 104360 

w*; P{GawB}CG8379NP3061 is a Gal-4 enhancer trap driving expression in the α/β 

lobes of the mushroom body (Aso et al. 2009). To test spatial expression in the Gal4 

line w*; P{GawB}CG8379NP3061 was crossed to GFP and imaged (Figure 2d). The 

stock was purchased from Kyoto stock centre. 

 

4.3.5.5 Dunce 6020 

Dnc knockout flies were homozygous for dnc (1). To measure learning and memory 

was successfully reduced flies underwent testing for early memory in the above 

associative memory paradigm (Figure 1). To measure how knocking out dunce 

affected extended mating duration, males were exposed to rivals for 3 days before 

being removed and mated to females immediately. To test whether dunce males 
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were able to increase mating duration through a short term memory period males 

were isolated for 30 minutes before being mating to females. Wildtype Dahomey 

females were used for calculation of mating duration. 

 

4.3.5.6 Neurofibromin10201 

NF1 knock-down flies were created by crossing w1118; PBac{PB}Nf1c00617 males to 

P{GAL4-elav.L}2/CyO to create focal males of the genotype w1118; PBac{PB}Nf1c00617 

; P{GAL4-elav.L}2 which were selected by picking flies with straight wings. To test 

associative learning males underwent testing for early memory. Control males for 

associative learning tests were w1118 males crossed to P{GAL4-elav.L}2/CyO 

females to create w1118; P{GAL4-elav.L}2 males thereby controlling for both elav and 

white-eyed phenotypes. To test whether males required NF1 to control mating 

duration, males were exposed to rivals for 3 days before immediate exposure to 

females. 

 

4.3.5.7 Amnesiac 10150 

Amnesiac knock-down mutants were created by crossing w1118; P{EP}amnEP346 

males to virgin P{GAL4-elav.L}2/CyO females to drive the mutation in the CNS. This 

created focal males of the genotype w1118; P{EP}amnEP346; P{GAL4-elav.L}2 as 

males were selected against the curly wing phenotype. Amnesiac mutants lacking 

amnesiac in the MBs were created by crossing w1118; P{EP}amnEP346 males to virgin 

w*; P{GawB}eyOK107 females. This created focal males of the genotype w1118; 

P{EP}amnEP346; P{GawB}eyOK107. To test associative memory males were trained to 

the STM protocol. Control males for these tests using w1118; P{EP}amnEP346; 

P{GAL4-elav.L}2 focal males were w1118 males crossed to P{GAL4-elav.L}2/CyO to 

create w1118; P{GAL4-elav.L}2 males therefore controlling for both elav and white-
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eye phenotypes. Control males for w1118; P{EP}amnEP346; P{GawB}eyOK107 males 

were w1118 males crossed to w*; P{GawB}eyOK107 females to create w; 

P{GawB}eyOK107 males controlling for white eye and OK107 expression. To test 

extended mating duration males were placed with rival males for 3 days before 

being immediately mated to females. 

 

4.3.5.8 Rutabaga 9405 

Rut knock-down flies were homozygous for rut P{lArB}rut2080; P{UAS-rut.Z}2. This 

genotype was mated to multiple Gal4 drivers to rescue rut spatially in the brain and 

investigate the brain structures needed for extended mating duration. To rescue rut 

in the MB lobes, male P{lArB}rut2080; P{UAS-rut.Z}2 were crossed with virgin w*; 

P{GawB}eyOK107  females to create focal males of the genotype P{lArB}rut2080; 

P{UAS-rut.Z}2; P{GawB}eyOK107. To rescue rut in α/β MB neurons male 

P{lArB}rut2080; P{UAS-rut.Z}2 were crossed with w*; P{GawB}CG8379NP3061 females 

to create focal males of the genotype P{lArB}rut2080; P{UAS-rut.Z}2; 

P{GawB}CG8379NP3061. To test associative learning males were tested with 

immediate memory protocol, control males for these tests were Canton-S males. To 

test extended mating duration males were placed with rival males for 3 days before 

being immediately mated to females. 

 

4.3.5.9 Radish V39931 

Radish knock-downs in the CNS were created by crossing w1118; P{GD8769}v39931 

males to virgin P{GAL4-elav.L}2/CyO females to create focal males of the genotype 

w1118; P{GAL4-elav.L}2; P{GD8769}v39931. To test associative memory 

knockdowns underwent the ARM protocol, control males for these tests were w1118 

males crossed to P{GAL4-elav.L}2/CyO females to create w1118; P{GAL4-elav.L}2 
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males and thereby control for both elav and white-eye phentoypes. To test extended 

mating duration males were exposed to rivals for 3 days before being immediately 

mating to a female, or isolated for 6 or 12 hours before female mating. The stock 

was purchased from Vienna stock centre. 
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Figure 2: cAMP genes controlling D. melanogaster memory phases and test of Gal-

40 drivers a) Genes responsible for controlling areas of memory formation in 

Drosophila melanogaster. Reproduced with modifications from (McGuire, Deshazer 

& Davis 2005) b) elav expressing GFP in all the neurons of the brain. Gain in the 

picture was reduced to 0.5 x normal to allow for effective image capture c) OK107 

expressing GFP in the MB lobes of the D. melanogaster brain d) NP3061 

expressing GFP in the α/β mushroom body lobes. Magnification X 120 
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4.3.6 Confirmation of driver tissue specificity through fluorescence 

In order to confirm driver lines drove expression of mutants in expected tissues, 

expression patterns were determined by crossing GFP males to driver females of 

the lines P{GAL4-elav.L}2/CyO, w*; P{GawB}CG8379NP3061 or w*; P{GawB}eyOK107 

before progeny male brains were dissected and mounted in 1 x Phosphate Buffered 

Saline. Pictures were taken on a Leica M165 FC fluorescent stereo microscope at 

120 x magnification with pE-300 CoolLED illumination system providing illumination, 

and using a QIClickTM CCD camera. Images were processed using Q capture Pro 7 

software. Gain allows the brightness of an image to be modulated before taking a 

picture, by increasing or reducing the output of incident light. Gain was reduced to 

allow for effective imaging in both pictures, figure 2a had a gain 0.5 x the gain in 

figure 2b. 

 

4.3.7 Statistical analysis 

Analysis was carried out in SPSS. The results of cold shocking males were normally 

distributed and analysed using a Linear Model with rival exposure and anaesthesia 

as fixed factors. Differences in mating duration between males kept singly or with 

rivals were compared using T-tests for both males that had undergone anaesthesia 

and males that had not. Associative learning tests were analysed with simple 

pairwise comparisons between control males and males of a mutant genotype. 

Extended mating duration assays were also analysed by pairwise comparisons of 

flies of the same genotype either kept single or with rivals. As the key comparisons 

are always within genotype, this gives an internal control for genetic background 

and off target effects. Depending on the normality of each comparison either a 

Mann-Whitney U test or a t-test was used. 
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Table 1: Detailed function of important genes used in this chapter, what their mutants were used to test in relation to extended mating duration, 

and predictions of how these mutants may affect extended mating behaviour. 

 

Gene Function Testing Prediction 

Dunce Learning Whether males can learn and memorise their 
sperm competition environment for 30 minutes 

Extended mating duration to be abolished 
when tested immediately after isolation 

NF1 Rut associated learning in 
the α/β MB neurons 

Whether males use their α/β MB neurons  to 
learn and/or remember their sperm competition 
environment 

Extended mating duration to be abolished 
when tested immediately after isolation 

Amn MTM Whether males remember an increase in 
sperm competition after learning 

Males to extend mating duration but for this 
plastic behaviour to cease after 2 to 3 hours in 
isolation 

Rut Learning and STM Whether males can learn and/or memorise an 
increase in sperm competition 

 

Extended mating duration to be abolished 
when tested after isolation 

Radish ARM Whether males use ARM to memorise an 
increase in the sperm competition environment 
after learning 

Males to extend mating duration after exposure 
to a high sperm competition environment. 
However, after isolation males to fail to 
continue to extend mating duration for a full 12 
hour response (shown in Chapter 2) 
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4.4 Results 

4.4.1 Cold shock 

Mating duration was significantly affected by both rival exposure (LM: F1,145 = 

10.683, p = 0.001) and anaesthesia (LM: F1,145 = 7.739, p = 0.006), but these two 

factors did not interact (LM: F1, 290 = 0.910, p = 0.342). Males were then spilt into 

anaesthesia treatments and compared pairwise depending on social environment. 

Males that had not undergone anaesthesia significantly increased mating duration 

when kept with a rival for 3 days (F74 = 1.033, p = 0.002), however, this response 

was abolished in males that had undergone cold-shock (F67 = 0.135, p = 0.135) 

(Figure 3). To check for latent effects of anaesthesia males kept singly were 

compared between anaesthesia treatments, and showed no effect of the cold shock 

(F77 = 0.330, p = 0.146). 
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Figure 3: Effect of cold shock. Mating duration for males kept singly (white bars) and 

males kept with rivals (grey bars). Males were either kept as a control or underwent 

cold shock where males were placed on ice for 2 minutes half an hour prior to 

calculation of mating duration. Error bars represent standard error. * indicates a 

significant difference between paired treatments (* p < 0.05 ** p < 0.01). 
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4.4.2 Dunce 

Males mutant for dnc were less able to learn and memorise an association than 

wild-type flies after 30 minutes (t-test: t15 = 2.930, p = 0.010: Figure 4A) as reported 

in previous work (Dudai et al. 1976). As mutant males were unable to memorise an 

association their reaction to increased sperm competition levels was then tested. 

When immediately moved from the presence of a rival to a female, dnc males 

significantly increased mating duration when housed with a rival when compared to 

a single male (t-test: t41 = -2.565, p = 0.014). When tested for effects of rival housing 

after isolation for 30 minutes wild-type males performed as expected (Mann-

Whitney: Z70 = -2.473, p = 0.013), however, dnc males kept with rivals failed to 

increase their mating duration compared to single males (T-test: t41 = -1.679, p = 

0.101: Figure 4B). dnc males were therefore able to learn, but not memorise the 

presence of a rival. 
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Figure 4: dnc 30-minute memory ability and effect on extended mating duration. A) 

dnc and wild-type learning indices B) Mating duration of single males (white bars) 

and males kept with rivals (grey bars) of wildtype and dnc males. Error bars 

represent SEM. * indicates a significant difference between paired treatments (* p < 

0.05 ** p < 0.01). 
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4.4.3 Neurofibromin 

NF1 mutant males showed significantly reduced learning ability in a associative 

learning protocol (t-test: t8 = 2.535, p = 0.035: Figure 5A) in line with previous 

reports (Guo et al. 2000). Mutant males were then tested for their ability to extend 

mating duration. NF1 mutant males were able to significantly extend mating duration 

(Mann-Whitney: Z56 = -2.449, p = 0.014) in a similar manner as wild-type males 

(Mann-Whitney: Z152 = -2.889, p = 0.004: Figure 5B). Therefore NF1 has no role to 

play in controlling extended mating duration in males. 
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Figure 5: Ability of NF1 to learn an association, and effect of NF1 mutation on 

extended mating duration. A) learning index of NF1 compared to wild type learning. 

B) Mating duration of single males (white bars) compared to males kept with rivals 

(grey bars) for Dahomey and mutant NF1 males. Error bars represent SEM. * 

indicates a significant difference between paired treatments (* p < 0.05 ** p < 0.01). 
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4.4.4 Amnesiac 

Amn male learning was significantly reduced when mutations were driven in the 

central nervous system (T-test: t8 = 2.940, p = 0.019), however, when driven in the 

MBs mutant males did not show any difference in learning ability compared to wild-

type flies (T-test: t8 = 0.821, p = 0.435: Figure 6A). This was expected as amn is 

vital in DPM neurons that synapse onto the MBs but do not need to be expressed in 

the MBs themselves. When tested for extended mating duration ability males 

mutant for amn driven in the MBs significantly extended mating duration when 

housed with rivals and compared to single males (Mann-Whitney: Z52 = -2.439, p = 

0.015), similar to wild-type male reactions (Mann-Whitney: Z65 = -4.600, p < 0.001). 

However, males with mutant amn driven in the CNS failed to respond to rivals in the 

same way (T-test: t53 = -0.883, p = 0.381: Figure 6B), showing that amn is needed 

for controlling extended mating duration. 
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Figure 6: Amn male performance in an associative learning task, and effect of 

amnesiac mutation on extended mating duration. A) wild type learning (white bars) 

compared to amn male learning (grey bars) driven separately in either the general 

CNS (elav) or MBs (OK107). B) Mating duration of single males (white bars) 

compared to males kept with rivals (grey bars) for wildtype and mutant amn males. 

Error bars represent SEM. * indicates a significant difference between paired 

treatments (* p < 0.05). 
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4.4.5 Rutabaga 

Learning was significantly compromised in male rut mutants (t6 = 3.103, p = 0.021), 

before being rescued by expression of wild-type rut in the MBs (T-test: t6 = -0.203, p 

= 0.846: Figure 7A) (Livingstone, Sziber & Quinn 1984). Mutant males were tested 

for their ability to extend mating duration when housed with a male rival. Rut 

mutants were unable to respond to a rival presence by extending mating duration 

(Mann-Whitney: Z = -0.960, N = 44, p = 0.337), however rescue of rut within all the 

lobes of the MBs enabled a return of the behaviour (T-test: t54 = -2.580, p = 0.013) 

to the same level as Dahomey wild-type controls (Mann-Whitney: Z = -4.332, N = 

71, p < 0.001). Rescue of rut within the α/β MB neurons was not sufficient to rescue 

behaviour (Mann-Whitney: Z = -0.309, N = 55, p = 0.757: Figure 7B). Therefore, rut 

is needed in the MBs for males to be able to respond to rivals. 
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Figure 7: rut mutant male performance in an associative learning task, and effect of 

rut mutation on extended mating duration. A) wild type learning (white bars) 

compared to rut male learning (grey bars). rut was either mutant or rescued by 

driving wild-type rut in the MBs (OK107) or α/β neurons of the MBs (NP3061) B) 

Mating duration of single males (white bars) compared to males kept with rivals 

(grey bars) for wildtype and mutant rut males. Error bars represent SEM. * indicates 

a significant difference between paired treatments (* p < 0.05 ** p < 0.01, *** p < 

0.001). 
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4.4.6 Radish 

ARM was significantly down-regulated in rsh RNAi knockdowns driven in the CNS 

compared to controls (T-test: t12 = 2.198, p = 0.048: Figure 8A). Knock-down of the 

rsh gene did not reduce a male’s reaction to a rival male at 0 (Mann-Whitney: Z = -

2.259, N = 49, p = 0.024), 6 (Mann-Whitney: Z = -3.998, N = 68 p < 0.001) or 12 

(Mann-Whitney: Z = -3.526, N = 63 p < 0.001: Figure 8B) hours. Indeed, it seems 

that rsh may extend the time period of a male reaction to increased sperm 

competition when compared with a wild-type male with a rival, where extended 

mating duration had started to reduce to pre-exposure levels (Mann-Whitney: Z = -

2.151, N = 71 p = 0.031). Results for all genes, and the effects of their mutants on 

extended mating duration are summarised in Table 2. 
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Figure 8: rsh knockdown male performance in an associative learning task (A), and 

effect of rsh knockdown on extended mating duration (B). Mating duration of single 

males (white bars) compared to males kept with rivals (grey bars) for wildtype and 

rsh knockdown males driven in the CNS. rsh knockdown males were immediately 

mated after 3 days with a rival, isolated for 6 hours after rival exposure, or isolated 

for 12 hours after rival exposure before mating. Error bars represent SEM. * 

indicates a significant difference between paired treatments (* p < 0.05 ** p < 0.01, 

*** p < 0.001). 
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Table 2: Detailed function of important genes used in this chapter, predictions of how these genes mutants may affect extended mating 

behaviour and results for these predictions.

Gene Function Prediction Result 

Dunce Learning Extended mating duration to be abolished 
when tested immediately after isolation 

Extended mating duration still functioning when 
tested immediately after isolation of a male 
previously exposed to a rival, but abolished if 
male isolated for 30 minutes before testing 

NF1 Rut associated learning in 
the α/β MB neurons 

Extended mating duration to be abolished 
when tested immediately after isolation 

Extended mating not abolished 

Amn MTM Males to extend mating duration but for this 
plastic behaviour to cease after 2 to 3 hours in 
isolation 

Extended mating duration abolished 
immediately after focal male removal from a 
rival male 

Rut Learning and STM Extended mating duration to be abolished 
when tested after isolation 

 

Extended mating duration abolished 
immediately 

 

Radish ARM Males to extend mating duration after exposure 
to a high sperm competition environment. 
However, after isolation males to fail to 
continue to extend mating duration for a full 12 
hour response (shown in Chapter 2) 

Males continue to extend mating duration for 
the full length of the response i.e. 12 hours 
(calculated in Chapter 2) 
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4.5 Discussion 

Within this chapter I provide evidence that males control extended mating duration 

through ASM, a genetically distinct learning and memory mechanism. Mutations in 

three of the genes most commonly associated with the learning and memory cAMP 

cascade (dnc, rutabaga and amnesiac) lead to abolishment of extended mating 

behaviour. This provides unequivocal evidence that extended mating behaviour is at 

least in part controlled by ASM, but not ARM, and mirrors some of the results of a 

previous report (Kim, Jan & Jan 2012). 

 

4.5.1 Amnesiac 

amn encodes a preproneuropeptide released from the DPM neurons to initiate 

cAMP synthesis via stimulation of rut (Waddell et al. 2000). In addition, amn acts to 

initiate a excitatory feedback loop to the MBs to consolidate STM into MTM (Yu et 

al. 2005; Keene & Waddell 2007). In associative learning and courtship suppression 

amn flies learn to associate two stimuli, but subsequently forget any association 

after 30 to 90 minutes (Quinn, Sziber & Booker 1979; Ejima et al. 2005). Within this 

investigation, after exposure to an increased sperm competition environment, amn 

mutant males fail to extend mating duration immediately after removal from a rival 

presence. This result places amn as an important gene in regulating extended 

mating duration. Within the extended mating duration assay males have 2 hours to 

mate with females, within the time period amn mutants return to baseline memory 

(Waddell et al. 2000; Ejima et al. 2005). Therefore, my result shows that amn is 

needed by males to effectively extend mating duration, however, tells us very little 

about whether amn is required to learn about an environmental increase in sperm 

competition, or whether amn mutants learn this increase then forget competitive 

changes. Considering amn has never been described as a learning mutant, the 
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more likely scenario is that amn mutants successfully learn an increase in the sperm 

competition environment, but forget within the time period males take to mate. 

Given amn creates an excitatory feedback with the MBs during consolidation of 

memory (Keene & Waddell 2007; Guven-Ozkan & Davis 2014), this would suggest 

that MB neurons are also needed for the effective control of extended mating 

duration. 

 

4.5.2 Dunce 

Dnc is a cAMP phosphodiesterase responsible for degrading cAMP released into a 

neuron and is expressed at high levels in the MBs (Nighorn, Healy & Davis 1991). 

Similar to amn, dnc mutants display a temporal anomaly when reacting to increased 

sperm competition that differs from associative learning. Dnc mutants cannot learn 

to associate a smell with a shock when trained to associatively learn (Dudai et al. 

1976), but here continue to extend mating duration beyond immediate recall i.e. 0-2 

hours after isolation from another male. However, once isolated for 30 minutes, dnc 

mutants stop responding to increased environmental sperm competition, this 

highlights dnc as an important gene needed to control extended mating duration.  

The temporal discrepancy in dnc mutants between associative learning and 

extended mating duration is puzzling. One explanation could be to do with other 

factors of fly’s physiology affected when mutating dnc. Dnc mutants show a loss of 

pheromone specificity (Devaud, Keane & Ferrus 2003), that can affect their ability to 

identify individuals with different hydrocarbon profiles in other learning and memory 

assays (Ejima et al. 2005). Previously, olfaction has been shown to be one of the 

main drivers behind extended mating duration (Bretman et al. 2011). This could 

mean dnc mutants fail to differentiate between olfactory signals when switched from 

rival male to female housing and therefore still perceive a sperm competition threat 

when housed with females. When isolated, dnc males do not receive any signal and 
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therefore may ‘forget’ previous housing, and abolish extended mating duration. 

Conversely, my results may show that dnc is not needed for initial assessment and 

memory of the competitive environment, but is responsible for behavioural 

consolidation when removed from an environment with high sperm competition. This 

could occur through a feedback loop when dnc-mediated cAMP signals are 

important for memory consolidation, such as the MB-antennal lobe feedback loop 

controlling the STM precursor to ARM, where there is some evidence dnc 

expression is needed for this feedback loop to occur (Hu, Zhang & Wang 2010; 

Scheunemann et al. 2012). 

 

4.5.3 Rutabaga and neurofibromin 

Rutabaga is an adenyl cyclase responsive to G-proteins and Ca2+ and is highly 

expressed in the MBs (McGuire, Deshazer & Davis 2005). During associative 

learning it is thought to act as a coincidence detector and facilitate association of the 

conditioned and unconditioned stimuli (Tomchik & Davis 2009). Mutants for rut 

therefore show no learning or memory ability in associative learning assays 

(Livingstone, Sziber & Quinn 1984). Similarly, extended mating behaviour is totally 

abolished in rut mutant males. Interestingly, however, wildtype rut expression in the 

MBs can rescue extended mating duration, but not when rut expression is only 

rescued in the α/β MB neurons. This suggests that expression of rut is important for 

extended mating behaviour only when expressed in either the α’/β’ or γ lobes of the 

MBs. Due to the close association between rut and NF1 (Guo et al. 2000), NF1 was 

therefore also tested in relation to extended mating duration. NF1 encodes a ras 

GTPase activating protein that is required for rut activation in the α/β neurons and 

subsequent development of memory, but is not required for rut activation in α’/β’ or 

γ lobes (Buchanan & Davis 2010). NF1 is not needed by males to facilitate 
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extended mating duration, further supporting the α’/β’ and γ neurons as responsible 

for controlling extended mating duration. 

Functionally, neurons within the MBs can be separated by their participation 

in different aspects of memory, though relationships between the neurons and 

memory are complex. The γ neurons are thought to process and express early 

memories by detecting the coincidence of conditioned and unconditioned stimuli 

(Blum et al. 2009). These early memories are thought to consolidate in the α’/β’ MB 

neurons, which hold early memories for up to 3 hours post-conditioning after one 

training cycle (Krashes et al. 2007; Cervantes-Sandoval et al. 2013). Finally, the α/β 

neurons are thought to retrieve and express memory after training is complete 

(Guven-Ozkan & Davis 2014), but also act as a secondary channel for memory 

retention in addition to γ neurons (Blum & Dubnau 2010). The γ and α/β neuron dual 

memory pathways build-up in parallel to express memory between 9 and 24 hours, 

however reduce dependence on γ neurons over time, until LLTM relies totally on α/β 

neurons for behavioural expression (Cervantes-Sandoval et al. 2013). LLTM is 

independent of any activity in the α’/β’ neurons and does not build up through cross-

referencing STM between γ and α/β lobes (Trannoy et al. 2011), functionally 

separating memory consolidation into α/β neuron dependent or independent 

(Guven-Ozkan & Davis 2014). Focusing on γ neurons, functional cellular imaging 

has shown the memory trace in the γ lobes to take up to 18 hours to build, before 

persisting for up to 48 hours (Akalal, Yu & Davis 2010). These time periods are 

remarkably similar to the time taken to build-up extended mating duration (Bretman 

et al. 2010) and reduce the behaviour to pre-exposure levels after 36 hours in the 

competitive environment (Rouse & Bretman 2016). Control of extended mating 

duration through γ lobes therefore allows for a short-term response to relatively 

short-term increases in the sperm competition environment and a longer response 

after greater exposure to competitive rivals.  
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Why extended mating duration seems to use γ and α’/β’ neurons to 

consolidate memory of increased sperm competition, but not α/β neurons remains 

unclear, but the answer may be rooted in the ecology of extended mating behaviour. 

Tailor made memory refers to the properties and temporal dynamics of acquisition, 

consolidation and retrieval of memory after learning and is specific for each 

ecological context (Smid & Vet 2006; Smid & Vet 2016). For example, parasitoid 

wasps differ in the spatial memory pathway (ARM or ASM) used to remember 

different species of host depending on the oviposition reward the host is associated 

with (Kruidhof et al. 2012). As ARM is less costly that ASM (Mery & Kawecki 2005) 

this means the wasp only invest in LTM when the reward is large. Recently, it has 

been suggested that the 24 hour lag time seen before D. melanogaster males 

extend mating duration only occurs so males can confirm that a competitive threat is 

sustained (Rouse & Bretman 2016). After this initial investment the maintenance 

time of this behaviour relies on exposure time. This mirrors memory development in 

the wasp in that long lasting behavioural change is only initiated if a threat (Rouse & 

Bretman 2016) or reward (Kruidhof et al. 2012) is substantial. 

In D. melanogaster, memory developed by the γ neurons is a more 

malleable form of memory than that which is developed in the α/β neurons (Trannoy 

et al. 2011) after training in that it controls both STM and LTM periods (Guven-

Ozkan & Davis 2014). This should increase the ability of a male to react to quick 

changes in the sperm competition environment through STM and also guard against 

reduction of behaviour when sperm competition threat within a locality is still high 

but the immediate cue of rival presence has been removed. In comparison, memory 

developed through α/β neurons is ‘all or nothing’ LTM that may become mal-

adaptive in a quick changing environment. The specific neuronal structure relied 

upon for extended mating duration, specifically γ neurons, can therefore create 
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behaviour that can act on a transient or sustained timescale depending on the 

sperm competition environment in an ecologically relevant way. 

In conclusion, males require NF1 independent rut expression in the γ and 

α’/β’ neurons of the MBs to facilitate extended mating duration in response to 

increased sperm competition. However, to explicitly show this, further work would 

have to be performed on extended mating duration focussing specifically on 

different MB neuron subsets and component interactions in the ASM pathway. 

 

4.5.4 Radish 

In addition to ASM, D. melanogaster possess a separate genetically and functionally 

distinct consolidated memory phase called ARM. ARM requires expression of a 

gene called rsh in the mushrooms bodies, thought to encode a protein which binds 

to Rac-1 to control synaptic morphology (Folkers, Waddell & Quinn 2006). Males 

that underwent retrograde amnesia or knockdown of rsh still responded to rival 

males by extending mating duration, showing ARM is not needed for an increase in 

mating duration due to a rival presence. However, knockdown of rsh did have an 

interesting effect on the magnitude of the behavioural response when focal males 

had been isolated. Previous reports have defined extended mating duration as 

lasting 12 hours after isolation of rivals, before mating duration returns to pre-rival 

exposure levels (Rouse & Bretman 2016). Here, rsh knockdown males seem to 

continue to strongly respond to rivals at 12 hours, in comparison to a wild-type 

male’s whose response to rivals started to reduce at 12 hours (as expected). This 

could signal rsh knockdown males differ in their temporal reaction to isolation, or 

that ARM is needed to respond to an absence of a rival. However, further work 

would be needed to determine is this is indeed the case as effect size is not an ideal 

indicator of future behaviour in extended mating duration (Bretman, Fricke & 

Chapman 2009). 
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4.5.5 Ecologically relevant memory phases 

The main conclusion to draw from my results in this chapter is after 3 days males 

require ASM, but not ARM to successfully extend mating duration in response to an 

increased sperm competition threat. This is unexpected as male-male interactions 

within the sperm competition environment seem to mirror massed training in 

associative learning (discussed in chapter 2) that would promote ARM. In addition, 

ARM is less stable than ASM (Tully et al. 1994) and has a lower fitness cost (Mery 

& Kawecki 2005), both seemingly advantageous points when reacting to quick 

changing environments. 

Reasons males may rely on ASM over ARM when reacting to changes in the 

sperm competition environment are two-fold. I have previously argued (chapter 2) 

that males must receive continual stimuli from a rival in the form of olfactory 

stimulus due to the far reaching effects of olfaction in the environment (Gaudry, 

Nagel & Wilson 2012). However, multiple sensory stimuli are needed for males to 

increase mating duration (Bretman et al. 2011), meaning whenever a rival male is 

not physically present males may only be exposed to one stimulus. The physical 

movement of rivals within a focal male’s sensory range may therefore act to 

promote extended mating duration only at spaced intervals, effectively bringing 

about ASM. Firstly, little is known about natural populations of D. melanogaster, so 

it is difficult to assess whether the response in the wild requires continuous 

stimulation from rival males. Tentative measurements of D. melanogaster dispersal 

in the wild measuring density of flies showed 2-3 flies per 100m2 after release, but 

with a tendency to aggregate in shady areas (McInnis, Schaffer & Mettler 1982). 

Although no time period was specified for individuals to move between aggregations 

individual dispersal between points of intense social interactions would fit with a 

spaced training cycle. 
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Secondly, it may not be advantageous to use the most malleable memory 

system available when addressing the changing competitive environment. 

Compared to ARM, ASM takes longer to build to LTM (one memory trial initiates 4-

hour ASM memory, but 24-hour ARM memory), is longer lived and more stable 

(Tully et al 1994). ASM could therefore function as an initial way to ‘gate’ extended 

mating duration through the need for multiple exposures to rival males to confirm a 

sperm competition threat is sustained. ASM could then increase the time period 

extended mating duration lasts to guard against reducing extended mating duration 

when environmental sperm competition threat is still high. In comparison to ASM, 

ARM would create and reduce a behavioural response more quickly. This is 

especially important considering the costs of extending mating duration are also due 

to increased sperm and seminal fluid proteins production, and hints that any 

additional costs accrued by using ASM over ARM (Mery & Kawecki 2005) are 

outweighed by the benefits of extended mating duration. Similar ecological memory 

can be seen in the parasitic wasp genus Cotesia, where different species use 

separate mechanisms to control plastic behaviour dependent on the spatial 

distribution of host opportunities. Here, species that form LTM but not ARM 

parasitize hosts with wide distributions that supply spaced stimuli, and take a long 

time to build up memory (Smid et al. 2007). This supports the above assertion that 

males may only receive competitive stimuli at spaced intervals, and ideas from 

chapter 2 that suggest males rarely come into contact with male-male competition. 

Alternatively to the two points outlined above, reliance on ASM could be due 

to the temporal foundations of extended mating duration assays. Males are left with 

rivals for 3 days, 2 days more than the time period needed to create an extended 

mating response. ASM has been shown to remove ARM with multiple spaced 

training (Placais et al. 2012), raising the possibility initial reactions to a rival 

presence after 24 hours are due to ARM, but with increased exposure ASM 
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becomes more relevant. Explicit experiments to look for this switch would therefore 

be very useful to see whether these two memory types interact in any way to control 

extended mating duration. 

Overall, learning from experience is crucial for animals to reach their peak 

fitness. In addition, dealing with multiple cues within an environment means an 

animal must prioritise those cues which are most reliable. Here, I find D. 

melanogaster use a memory process that requires multiple spaced cues to create 

behaviour, effectively minimising the risk of responding to a transient environmental 

change. I also find this memory dynamic is kept malleable to the social environment 

by only employing a subset of the nervous architecture available. How memory is 

employed to control mating duration in this model raises questions about how 

memory types may control timescales of plastic behaviour in other systems. In 

addition to examples used above, other research also show that the type of memory 

induced by environmental cues links to the length of the plastic behaviour in 

Nasonia parasitoid wasps (Hoedjes et al. 2011; Hoedjes et al. 2012; Hoedjes & 

Smid 2014), though this research is limited to the difference between ASM and 

ARM. I would therefore expect that memory type used to control a plastic behaviour 

parallels the timescale at which the behaviour works. Considering this, a plastic 

behaviour which is fully malleable but occurred on a seasonal basis may therefore 

use a memory type that is extremely long-lasting to prevent accidental behavioural 

switches not consistent to the current season. However, this prediction would need 

to be tested and such long-lasting changes in behaviour may be better controlled by 

other mechanisms, such as genomic change (Cardoso, Teles & Oliveira 2015). 
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Expression of memory-associated genes in response to sperm 

competition cues 

5.1 Summary 

To understand how behavioural change is controlled it is necessary to understand 

the underlying physiological, neural and genomic proximate mechanisms that 

interface the genotype and the environment. Specific types of behavioural plasticity 

are thought to use these mechanisms in different ways to control the speed at which 

a plastic behaviour can act. Recent theory has postulated that short term flexible 

behaviour should be controlled by a switch in neural circuitry and show transient 

changes in the neurogenomic state of the brain. Our model of male behavioural 

responses to the sperm competition environment could be categorised as this type 

of plasticity as male D. melanogaster respond to an increase in the competitive 

environment by modulating mating duration, a fully flexible behaviour. Previous work 

has suggested that extended mating duration is paralleled by transcriptomic change 

over 50 hours, but does not consider how this change relates to the time period of 

the behavioural switch. 

In this chapter, I investigate whether changes in expression levels of genes 

highly expressed in the brain control extended mating duration in D. melanogaster. 

Four different learning and memory genes either known to respond to the presence 

of a rival or be important in controlling extended mating duration were tested for 

expression differences. I predicted that expression of neuronal genes should show 

transient changes paralleling behavioural change and so measured males kept with 

or without a rival male across six time periods. These time periods spanned the 

build-up of extended mating duration over 72 hours, and the return to pre-rival 

exposure levels. Ultimately, there was no clear pattern in gene expression levels for 

any of the genes investigated when comparing between males kept singly or with a 

rival. This suggests that changes in transcription levels do not underpin changes 
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seen in male behaviour due to increased sperm competition threat. Instead it could 

be that neural mechanisms are more important than neurogenomic changes when 

males respond to rivals, or that post-transcriptional modifications control the ability 

of a male to respond to a rival male. 

 

5.2 Introduction 

To understand behavioural change to fluctuations in the environment, it is 

necessary to understand the underlying physiological, neural and genomic 

proximate mechanisms that interface the genotype and the environment (Aubin-

Horth & Renn 2009). Behavioural change due to social plasticity can be viewed as a 

consistent expression of set behaviour in response to relevant social information 

(Cardoso, Teles & Oliveira 2015). Different types of social plasticity are predicted to 

rely on different combinations of physiological, neural and genomic change to 

control behaviour. Physiological changes can occur early in development to 

influence behaviour throughout a lifetime, or can act on a short-term ‘activational’ 

basis where release of a hormone pre-empts the switch between behaviours 

(Moore, Hews & Knapp 1998; Hau & Goymann 2015). Neural control of behavioural 

plasticity is thought to be controlled by structural plasticity that promotes the 

development of new neural circuits, or by biochemical switching that occurs 

between established neural networks (Oliveira 2009). Finally, socially regulated 

neurogenomic states are thought to correspond to different behavioural states and 

so control social plasticity. For example, neurogenomic expression allows 

researchers to predict individual switches in behaviour between hive work and 

foraging in the honey bee Apis mellifera (Whitfield, Cziko & Robinson 2003). How 

neurogenomic change leads to social plasticity is complex, but may be through the 

activation of immediate early genes that then act as neuromolecular switches to 
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induce plastic behaviour (Perez-Cadahia, Drobic & Davie 2011; Cardoso, Teles & 

Oliveira 2015; Teles, Cardoso & Oliveira 2016). 

Drosophila melanogaster male extended mating behaviour is short-lived 

(Rouse & Bretman 2016) and reversible within a lifetime of an individual (Bretman et 

al. 2012). This suggests that it is a fully flexible plastic behaviour associated with 

transient changes in gene expression between behavioural states (Cardaso et al, 

2015, table 1). Genomic changes between behavioural states can be investigated in 

two ways. Firstly, by the comparison of two reaction norms measuring genotype 

pre- and post- environmental change. Or secondly, via a molecular time series 

investigating the transitional period between reaction norms where genomic change 

is initiated before genotypes are stabilised at the end of the plastic behaviour 

(Aubin-Horth & Renn 2009). Previously, Mohorianu, Bretman and colleagues (2016, 

in review) have shown a marked early upregulation in sensory genes expressed in 

the head/thorax after 2 hours in a rival presence. When tested at later time periods 

(26 and 50 hours) expression of the same genes were not upregulated. Additionally, 

a number of neuronal genes were differentially expressed in males after 2, 26 or 50 

hours with a rival, timescales that mirror changing behavioural reaction norms, and 

hint at neurogenomic change controlling behaviour. Here, I address the transitional 

period where males build up the extended mating behaviour response, using the 

temporal dynamics of the behaviour (Rouse & Bretman 2016) as a template for the 

time periods investigated. 

 Similar studies have shown that transcriptional change can be induced by 

social or sexual environmental fluctuations that drive physiological changes on a 

short and reversible timescale (Lopez-Maury, Marguerat & Bahler 2008; Robinson, 

Fernald & Clayton 2008), in line with the theory laid out above. In flies, rival 

exposure is already known to cause differential expression of two seminal fluid 

genes (Fedorka, Winterhalter & Ware 2011) and short term social exposure can 
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change transcription levels of genes associated with perception and 

spermatogenesis (Carney 2007). Generally, environmental enrichment, including 

the addition of other individuals to increase social complexity, can cause mass 

transcriptional change in the brain. In rodents, addition of novel objects into an 

environment promoted the expression of genes linked to neuronal structure, 

synaptic plasticity and transmission (Rampon et al. 2000). In fish, change in social 

dominance behaviour correlates with changes in expression of immediate early 

genes thought to promote brain activation wherever they are expressed (Fernald & 

Maruska 2012). From these examples, and considering the theory discussed above, 

I therefore predict genes involved in learning and memory show differential 

expression on the same time scale as changes into control mating duration. 

To establish whether extended mating duration requires transient changes in 

gene expression, I target four genes involved in the D. melanogaster learning and 

memory pathway. Of these four genes, rut and dnc are already known as vital to 

controlling extended mating duration (Chapter 4), while dnc also shows a change in 

expression depending on exposure to rivals (Mohorianu et al. in prep). Considering 

the important of dnc and rut on controlling extended mating duration I hypothesise 

that both genes will be upregulated in males kept with rivals at time points soon 

after rival males were introduced to the environment (Table 1). The two other genes 

tested have not been shown to have a role in extended mating duration, but are 

involved in olfactory learning and memory. Neurexin (Nrx-1) is involved in learning 

and is crucial for the development and function of synapses (Li et al. 2007; Zeng et 

al. 2007). Along with dnc it is differentially expressed after males have been 

exposed to rivals for two or 50 hours (Mohorianu et al. in prep) and functions in 

similar areas of the brain to dnc and rut, namely the MBs (Sun, Zeng & Xie 2016). It 

therefore should be upregulated in males exposed to rivals at all time points (Table 

1). Notch is involved in long-term memory, but not learning or short-term memory 
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(Ge et al. 2004) and therefore I hypothesise should be upregulated in males kept 

with rivals after a rival male has been removed (Table 1). 

 

 

 

Table 1: Detailed function of important genes used in this chapter and predictions of 

how the initiation of extended mating duration may affect expression of these genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Function Prediction 

Dunce Learning Dunce to be upregulated within the 
first  hours of rival introduction into 
the environment or soon after rival 
removal 

Nrx-1 Synapse 
development and 
function 

Neurexin to be upregulated at all 
times points 

Rut Learning and STM Rut to be upregulated within the first 6 
hours of rival introduction into the 
environment or soon after rival 
removal 

Notch LTM Notch to be upregulated after rival 
removal between 63 and 72 hours 
after original exposure  
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5.3 Materials and methods 

5.3.1 Fly husbandry and experimental set up 

Experiments were conducted in a 25°C humidified room with a 12 hour light: 12 

hour dark cycle (9 am to 9pm light cycle), using plastic vials (75x25mm) with 7 ml 

standard sugar-yeast-agar medium (Bass et al. 2007). Wildtype larvae were raised 

at a standard density of 100 per vial. At eclosion, flies were collected and sexed 

using ice anaesthesia and randomly assigned to a social environment, either kept 

single or kept with rivals. Focal males from both social environments were snap 

frozen in liquid nitrogen 5, 24 or 48 after induction of a rival to measure how gene 

expressin changed with the build-up of the extended mating response (Bretman et 

al. 2010). To measure how gene expression changed with the reduction of mating 

duration when males were isolated (shown in Chapter 2) males were left with rivals 

for 48 hours before being isolated in separate vials. The males were isolated for 12, 

15 and 24 hours before being snap frozen in liquid nitrogen to cover the time males 

reduced mating duration back to pre-exposure levels (Rouse & Bretman 2016). 

Control males underwent the same transfer of vials but were kept isolated for the 

whole process. Flies were stored at -80°C and the head and thorax dissected from 

the abdomen on dry ice. 

 

5.3.2 Assessment of gene expression through qPCR 

RNA was extracted from between 17 and 30 pooled dissected male thorax and 

heads per sample using Direct-zolTM RNA miniprep columns following the 

manufacturer’s protocol. This was checked for concentration and purity on a 

nanodrop before being run on a gel to check for RNA degradation (Figure 1). cDNA 

synthesis was carried out using the Life Technologies First strand cDNA kit 

following the manufacturer’s protocol. Synthesis output underwent PCR with Act5c 
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primers and was then run on a 1% agarose gel to check for efficient synthesis. The 

corresponding no reverse transcriptase control was also run to check for 

contaminants (Figure 2). 

All qPCR primers were designed with a melting temperature of 60°C +/- 1°C 

with CG content between 20-80%. These primer pairs were tested for efficiency 

using a 10 times dilution series on whole body RNA and accepted if the efficiency 

fell between 90 and 110% for dilutions that mirrored similar expression levels within 

samples. R2, a measure for pipetting accuracy of standards was accepted if above 

0.99 (Table 2). Genes of interest were selected from a list of genes that had 

previously shown differences in expression due to rival exposure (Mohorianu et al. 

in prep) and known learning and memory genes (McGuire, Deshazer & Davis 2005). 

Housekeeping genes Actin 5c, Rap21 and EF1 were selected for their stability of 

expression under different social environments (Ling & Salvaterra 2011). 

All time points listed were originally tested for changes in gene expression in 

three replicated pooled samples. Subsequently, males kept with rivals for 5 and 24 

hours, and males isolated from rivals for 12 and 24 hours were again tested for 

changes in gene expression using another three independent pooled samples. 

These time points were investigated in more detail as they were deemed the most 

likely to show potential differences in gene expression between social environments 

from previous behavioural (Rouse & Bretman 2016) and molecular data (Carney 

2007; Mohorianu et al. in prep). This gave an N of 6 for the time points highlighted 

above and an N of 3 for males kept with rivals for 48 hours, and males isolated from 

rivals for 15 hours. 
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Figure 1: Assessment of RNA quality for qPCR via gel electrophoresis a) RNA 

extraction on a 1% agarose gel. Lane 1 = ssRNA ladder with major band marked at 

3000 bp.  Lane 2 and 3 are examples of RNA degradation (samples B1 and B2); 

other samples have not degraded and are useable in cDNA synthesis. Insect rRNA 

looks less clean than mammalian rRNA as there is a endogenous hidden break 

within the RNA that causes two similar sized fragments to 18S RNA to be created 

(Winnebeck, Millar & Warman 2010). 
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Figure 2: Assessment of cDNA quality for qPCR via gel electrophoresis. Check for 

efficient synthesis of DNA from previously shown RNA products. Lane 1 shows 100 

bp DNA ladder with major band sizes marked in base pairs. Lanes 2-5 show no-

reverse-transcription control (NRT) samples. Lanes 6-9 show successful cDNA 

synthesis. Lane 10 shows an E.coli positive control to confirm successful PCR. 

Once all RNA is confirmed as being converted into cDNA with no signal in NRT 

samples qPCR can continue. 
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Table 2: Forward and reverse oligonucleotides for individual genes with efficiency. Primers were designed with a melting temperature of 60°C 

+/- 1°C and with a CG content between 20-80%. 

 

 

 

 

 

 

 

 

 

 

Gene Forward Reverse Efficiency % R2 

Act5c GTGGATACTCCTCCCGACAC GCAGCAACTTCTTCGTCACA 91.3 0.999 

Rut AGAATGTGAGCATCCTTTTC TACGCAAACAGTGATTATCG 101.6 0.997 

Ef1 GTCTGGAGGCAATGTGCTTT AATATGATGTCGCCCTGGTT 106.6 0.999 

Rap21 TTCACTTACGAACCATCAAACATT GCTGGCTGACTTCCTTTCAC 107.4 0.999 

Notch GCACCAAACACTTGGATTTGT GGTTTTGCCATTGAGTTGTG 92 0.999 

Dunce TGTGGCATACACCATATTTCAG GAAACGGATTGTCTTTGACG 97.9 0.998 

Nrx-1 GACAACAACTGGCACACGAT TACTGTGGCGACCCAGAAT 98.8 0.996 
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Quantification of transcript levels in flies relative to controls (EF1, Act5c and 

Rap21) were performed using the ΔΔCT method (Hellemans et al. 2007). For all 

genes, Ct values for samples were quantified against the lowest value across 

biological replicates, taking into account the efficiency of the primer used. For 

housekeeping genes this number was then used to calculate a geometric mean of 

all the housekeepers in each sample. Each gene of interest was then divided by the 

geometric mean of the housekeepers for each sample before being averaged 

across biological replicates to get a relative expression for each gene when males 

were both single and with rivals. 

 

5.3.3 Statistical analysis 

Statistical analysis was performed using SPSSv14 and R 3.3.1 (Ihaka & Gentleman 

1996). Before any analysis was undertaken, relative expression scores from 

samples with unusual qPCR curves were removed. This was due to multiple 

samples being retested (through experimenter error) and in the case of Nrx-1 

expression qPCR plates being run one year after RNA was extracted. Relative 

expression was non-normal and was fitted to a generalised linear model with quasi-

Poisson errors (to account for underdispersion) using gene, time and social 

environment as fixed factors, and using Analysis of Deviance (AOD) to reduce from 

the full to minimal model. To elucidate any differences between social environments 

within each gene, dunce, rut, Nrx-1 and Notch expression were explored 

individually. For dunce, rut and Nrx-1 expression data was non-normal and 

therefore a generalised linear model with quasi-Poisson distribution (to account for 

underdispersion) was fitted using time and exposure to rivals as fixed factors. 

Relative expression for Notch was normal and therefore a linear model was fitted 

using time and rival exposure as fixed factors. After models, post-hoc tests were 
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performed (Mann-Whitney or T-tests) to investigate whether males kept singly or 

with rivals differed at discrete time periods. 

 

5.4 Results 

Considering all data together expression levels did not differ due to gene (AOD: 

Χ2
216 = 15.724, p = 0.463) or social housing (AOD: Χ2

217 = 15.736, p = 0.690) but did 

significantly differ depending on the experimental time period (AOD: Χ2
218 = -0.631, 

p = 0.004). This difference is almost definitely driven by the time each group was 

frozen for RNA extraction and represents how gene expression may change with 

circadian rhythm (Claridge-Chang et al. 2001). However, as there were no 

significant interactions between these factors, analysis was then carried out for each 

gene and for each time point. 

 

5.4.1 By gene 

To investigate whether there were differences in relative expression for individual 

genes depending on time and sociality, models were run by individual genes with 

sociality and time as fixed factors. Relative expression levels differed significantly 

depending on the time males from both groups were snap frozen in liquid nitrogen 

for rut and Nrx, however, a pattern to how gene levels changed over time was not 

easy to distinguish (Table 3). Again, differences in expression compared across 

time periods is a function of how expression may change with circadian rhythm 

(Claridge-Chang et al. 2001). In addition, there was no change in relative gene 

expression for any gene when comparing across social environments (Figure 3-6). 
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5.4.2 By time period 

As the key question in the study was how social interactions may have affected 

relative gene expression depending on the time a male was exposed to a rival, and 

the subsequent time without a rival presence, pairwise comparisons were made for 

each gene at each time point between rival-exposed or non-exposed treatments. 

Here, there was no interest in comparing gene expression between time points. 

Relative expression levels of dunce, rut, notch or Nrx-1 did not significantly change 

depending on the social environment they had been previously exposed regardless 

of the time period investigated (Table 3). This was different to my predictions that a 

change in gene expression would control the behavioural dynamics of extended 

mating duration (Table 4). 
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Figure 3: Relative expression of dunce when kept singly (white bars) and with a rival 

(grey bars) for distinct periods. The dotted line represents when males were 

removed from a rival presence, 48 hours after originally being exposed to a rival. 

Previous to this, males were kept with rivals for 5 or 24 hours. Error bars represent 

1 SEM, numbers within the bars show the number of pooled samples tested.  

5 5 6 6 3 3 5 6 3 2 6 6 



 
 

123 
 

 

 

Figure 4: Relative expression of rut when kept singly (white bars) and with a rival 

(grey bars) for distinct periods. The dotted line represents when males were 

removed from a rival presence, 48 hours after originally being exposed to a rival. 

Previous to this, males were kept with rivals for 5 or 24 hours. Error bars represent 

1 SEM, numbers within the bars show the number of pooled samples tested. 
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Figure 5: Relative expression of Notch when kept singly (white bars) and with a rival 

(grey bars) for distinct periods. The dotted line represents when males were 

removed from a rival presence, 48 hours after originally being exposed to a rival. 

Previous to this, males were kept with rivals for 5 or 24 hours. Error bars represent 

1 SEM, numbers within the bars show the number of pooled samples tested.  
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Figure 6: Relative expression of Nrx-1 when kept singly (white bars) and with a rival 

(grey bars) for distinct periods. The dotted line represents when males were 

removed from a rival presence, 48 hours after originally being exposed to a rival. 

Previous to this, males were kept with rivals for 5 or 24 hours. Error bars represent 

1 SEM, numbers within the bars show the number of pooled samples tested. 
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Table 3: Test used, test statistic and significance value (p) for tests performed on 

relative expression differences across four learning and memory genes. 

Asterisks represent the level of significance. * < 0.05, ** < 0.01, *** < 0.001.

Gene Test Test stat N p 

Dunce Social*Time 

Social 

Time 

AOD: Χ2
52 = 3.566 

AOD: Χ2
53 = 3.603 

AOD: Χ2
53 = 3.787 

 0.676 

0.477 

0.082 

Rut Social*Time 

Social 

Time 

AOD: Χ2
54 = 4.134 

AOD: Χ2
55 = 4.202 

AOD: Χ2
55 = 4.7320 

 0.563 

0.349 

0.005  ** 

Notch Social*Time 

Social 

Time 

F45 = 0.477 

F45 = 1.640 

F45 = 0.477 

 0.791 

0.207 

0.791 

Nrx-1 Social*Time 

Social 

Time 

AOD: Χ2
47 = 3.481 

AOD: Χ2
48 = 3.494 

AOD: Χ2
48 = 3.806 

 0.976 

0.676 

0.037 * 

Dunce 5 

24 

0 

12 

15 

24 

Z = -0.940 

Z = -0.641 

Z = -1.091 

Z = -1.643 

Z = -0.775 

Z = -0.160 

10 

12 

6 

11 

4 

12 

0.347 

0.522 

0.275 

0.100 

0.439 

0.879 

Rut 5 

24 

0 

12 

15 

24 

Z = -0.104 

Z = -1.441 

Z = -0.218 

Z = -0.548 

Z = -0.218 

Z = -0.801 

10 

12 

6 

11 

6 

12 

0.917 

0.150 

0.827 

0.584 

0.827 

0.423 

Notch 5 

24 

0 

12 

15 

24 

t8 = -0.312 

t10 = -1.104 

t4 = -1.320 

t9 = 0.563 

t4 = 0.138 

t10 = -1.266 

 0.763 

0.306 

0.257 

0.587 

0.897 

0.234 

Nrx-1 5 

24 

0 

12 

15 

24 

Z = -0.289 

Z = -0.732 

Z = -0.775 

Z = -0.183 

Z = -0.218 

Z = -0.183 

8 

10 

4 

11 

6 

11 

0.773 

0.465 

0.439 

0.855 

0.827 

0.855 
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Table 4: Detailed function of important genes used in this chapter, predictions of 

how the expression of the genes may differ when focal males are exposed to rival 

males at different time points and the actual results for these predictions. 

 

 

 

 

 

 

 

 

Gene Function Prediction Result 

Dunce Learning Dunce to be upregulated 
within the first  hours of 
rival introduction into the 
environment or soon 
after rival removal 

No difference in 
expression between 
male kept singly or with 
a rival at any time 
period 

Nrx-1 Synapse 
development and 
function 

Neurexin to be 
upregulated at all times 
points 

No difference in 
expression between 
male kept singly or with 
a rival at any time 
period 

Rut Learning and 
STM 

Rut to be upregulated 
within the first 6 hours of 
rival introduction into the 
environment or soon 
after rival removal 

No difference in 
expression between 
male kept singly or with 
a rival at any time 
period 

Notch LTM Notch to be upregulated 
after rival removal 
between 63 and 72 
hours after original 
exposure  

No difference in 
expression between 
male kept singly or with 
a rival at any time 
period 



 
 

128 
 

5.5 Discussion 

In this chapter I show that rival induced extended mating duration in male D. 

melanogaster does not require expression changes in a subset of learning and 

memory genes. The genes investigated have previously been shown to be involved 

in the control of extended mating duration (Chapter 4 (Kim, Jan & Jan 2012)) or be 

responsible for synaptic remodelling associated with plastic development in the 

brain (Knight, Xie & Boulianne 2011). If these genes acted to control extended 

mating duration via transcription change it was expected that they would fluctuate 

depending on the social environment. The lack of response suggests that although 

learning and memory plays a role in controlling extended mating duration, it does so 

through mechanisms other than change in the transcriptomic state of the brain. 

As discussed in previous chapters, extended mating duration bares a close 

resemblance to courtship suppression, both in the length of time needed to create a 

memory phase and the sensory modalities needed to induce plastic behaviour. In 

addition, learning and memory genes controlling behaviour seem to be conserved 

between these two slightly different physiological processes (Chapter 4). In long-

term courtship suppression, the memory phase suggested to be most analogous to 

extended mating behaviour (Rouse & Bretman 2016), genes associated with 

muscular cytoskeletal dynamics were significantly upregulated in flies that had 

undergone suppression training compared to naïve flies (Winbush et al. 2012). 

These genes act to alter neuronal architecture and reorganise axonal connections 

critical for cognition (Dent & Gertler 2003) and therefore upregulation appears to be 

a possible function whereby learning and memory is controlled.  The gene 

investigated within this chapter associated with a similar process is Neurexin (Nrx-1) 

which acts to modulate interactions between pre and post synaptic compartments at 

septate junctions (Baumgartner et al. 1996) and so structure synaptic architecture. 
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Indeed, when males were trained to supress courtship this increased Nrx-1 isoform 

abundance; though did not change total gene expression (Winbush et al. 2012).  

In comparison, a study that measured genomic change after males had 

been exposed to rivals for 20 minutes found that any gene involved in learning or 

axon development was downregulated. This included Fasciclin II, a cell adhesion 

protein found at septate junctions that works in a comparable manner to Nrx-1. 

Similar genes that work in comparable pathways are therefore regulated very 

differently between the two studies (Ellis & Carney 2011; Winbush et al. 2012) 

depending on whether learning and memory or competition is induced. The change 

in gene expression between the two studies is potentially a factor of the interacting 

partner’s sex. Genomic changes created by courting or competing depending on the   

sex of a rival are well established (Certel et al. 2007; Certel et al. 2010). However, 

the genes discussed in this chapter do not show differential expression depending 

on the sex of the interacting partner in other studies (Winbush et al. 2012). 

Assuming an increase in learning and memory plays a role in controlling reactions 

to a rival male presence (Chapter 4) both studies should therefore show agreement 

on the direction of expression in a similar suite of genes. The fact they do not may 

be due to two possibilities. Firstly, that courtship suppression or extended mating 

duration are in conflict and therefore any shared molecular mechanisms would not 

agree on the direction of gene expression. Any shared molecular mechanisms 

controlling conflicting behaviours are thought to be modulated by context specific 

transcription factors (Chandrasekaran et al. 2011) that upregulate or downregulate 

gene expression by taking into account the organisms internal environment (Sanogo 

& Bell 2016). An example of such a transcription factor in bee (Apis mellifera) 

behaviour is Creb that plays a role in multiple behavioural changes 

(Chandrasekaran et al. 2011). The presence of a rival and learning and memory 

may therefore be deemed conflicting behaviours and rely on internal environment to 
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establish the neurogenomic change that may control behaviour and so show 

different expression depending on experimental process (Ellis & Carney 2011; 

Winbush et al. 2012). 

Conversely, reaction to a rival presence and learning may not share a 

molecular mechanism. This is supported by work that examined how gene 

expression could change with olfactory associative learning, a learning paradigm 

using stimuli directly controlled by the researcher. Here, differentially expressed 

genes did not mirror any of the genes shown to vary with rival male presence 

(Dubnau et al. 2003). Males may therefore rely on a neural or post-transcriptional 

mechanism to control extended mating duration. Indeed, learning and memory via 

olfactory association reveals small changes in expression levels for proteins with 

genes tested in this study. All three of dnc, rut and Notch change protein expression 

after learning, suggesting some role for post-translational control in memory 

formation (Zhang et al. 2014). Post-translational expression differences can occur in 

multiple ways, for example, through phosphorylation or acetylation. A previous study 

has shown that loss of histone acetylase function significantly decreased rut and 

Fas II expression within the adult head, which also impacted on courtship 

suppression ability (Xu et al. 2014). In order to conclude whether control of 

extended mating duration is due to post-transcriptional protein content/levels the 

groups discussed here would have to be compared. Different protein levels 

depending on sperm competition, coupled with the result shown in this chapter, 

would support post-transcriptional change as a controller of complex physiological 

plasticity. 

Overall, my results point to a need for post-transcriptional change to control 

extended mating duration. However, previous research has shown social challenge 

leads to gene expression changes involved with neuronal architecture in multiple 

species (Rampon et al. 2000; Rittschof et al. 2014; Greenwood & Peichel 2015). I 
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was therefore expecting expression change in at least one of the genes tested here. 

In addition to the need for post-transcriptional controls a possible explanation for the 

lack of gene expression change stems from the tested genes’ importance in other 

molecular pathways. dunce and rut are both significant players in the cAMP-learning 

and memory pathway. dunce has a role in controlling visual attention (van 

Swinderen et al. 2009) and both genes regulate cAMP levels in the embryo, helping 

to define normal development (Whitehousehills, Bellen & Kiger 1992). Considering 

dunce is involved in visual attention, I would not expect an increase in expression 

levels as there is no evidence for vision bringing about extended mating duration 

(Bretman et al 2011 and Chapter 3). In addition, visual attention is linked to 

contextual learning (Brembs & Wiener 2006; Zhang et al. 2007), meaning normal 

dunce expression is needed in areas outside of simple learning and memory. 

Another gene I tested in this chapter is well known for controlling a wide range of 

physiological processes. Notch signalling controls cell communication, cell fate and 

genesis of new tissue in development (Lai 2004).  In addition it also controls 

plasticity of multiple neuronal systems in adult D. melanogaster (Ables et al. 2011; 

Kidd, Struhl & Lieber 2015) and the possible maintenance of pluripotent stems cells 

(Guo & Ohlstein 2015). It is therefore not surprising that a small change in sociality 

would not have a large effect on the expression of this gene as this would then go 

on to have significant effects on other physiological processes, potentially not 

involved in rival induced extended mating duration. 

The evidence presented above, that genes involved in controlling extended 

mating duration are also involved in a multitude of other pathways, supports a 

previous suggestion in Chapter 4. That extended mating duration has co-opted 

learning and memory circuitry to ensure behavioural change works on accurate 

timescales. Extended mating duration relies on mushroom body (MB) circuits that 
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also modulate a wide range of behaviours such as temperature preference (Hong et 

al. 2008), learning, memory (Stopfer 2014) and sleep (Joiner et al. 2006). 

Considering the lack of neurogenomic change seen in this chapter after the 

introduction of rivals for 48 hours this would support MB circuitry as a potential 

controller for extended mating duration. If indeed extended mating duration is 

controlled by neural circuitry the most parsimonious explanation would involve 

biochemical switching between neuronal networks modulated by the release of 

neuromodulatory hormones with the addition of a rival. In D. melanogaster these 

hormones are known to act on G-protein coupled receptors that interact with 

adenylate cyclase to regulate production of 2nd messengers (Nassel 2002). 

Previously extended mating duration has been abolished when the gene for a 

specific neuromodulator, amnesiac, is knocked out (Chapter 4). This would further 

support the need for a biochemical switch between neurons to enable extended 

mating duration. To test this idea neuromodulators would need to be measured 

within the brain of males exposed to rivals at time periods that correlate to a build-

up of behavioural plasticity.  

Considering extended mating duration seems to have co-opted at least 

some mechanisms involved in learning and memory it may also act as another 

pressure allowing learning and memory to evolve. Males able to learn and 

memorise gain a fitness advantage when in mating competition through a suite of 

behaviours (Dukas, Clark & Abbott 2006; Saleem et al. 2014), to which extended 

mating duration can now be added (Bretman, Fricke & Chapman 2009). Overall, 

when mating competition is removed and these behaviours are not needed anymore 

learning and memory ability is reduced (Hollis & Kawecki 2014). This highlights 

reactions to social rivalry as a key component in the need to evolve effective 

cognitive ability. 
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The main limitation of the study is the ability to look at expression differences 

for only four genes. These genes were carefully picked as the most likely to show 

differential expression after exposure to rivals and also have a role to play in 

learning and memory. However, as seen in previous investigations, the use of 

transcriptomics would be more applicable to questions I am trying to answer. 

Although qPCR is a very powerful tool to investigate gene expression differences a 

whole genome approach as seen in studies by Carney (2007) Winbrush and 

colleagues (2012) and Smith and colleagues (2013) would be able to highlight gene 

expression differences in the brain that would not have occurred to me to target. 

This would also allow me to establish whether differences in gene expression, 

though not statistically different, are biologically meaningful (Bickel 2004). To do 

this, each gene could be analysed as part of a module of other genes with similar 

biological properties to establish whether a set of genes generally showed a change 

in expression (Cho, Wang & Galas 2011). In addition to the limits discussed above, 

qPCR does not allow for comparisons of transcript abundance between conditions 

unless looked for specifically. However, the drawback to high-through-put 

techniques such as RNAseq would have been the reduction of different time periods 

I would have been able to use when exposing males to rivals as the cost would be 

prohibitive. 

In conclusion, genes typically thought of as controlling physiological 

processes through learning and memory do not use differential expression as a 

mechanism of control in extended mating duration. Of the genes involved in learning 

and memory that do undergo differential expression none change expression levels 

in a constant way depending on whether learning and memory or male-male 

competition has been induced. This raises the possibility that learning and rival 

exposure are not transcriptionally linked when controlling extended mating duration. 
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Post-transcriptional changes would therefore be the front runner for a molecular 

mechanism underlying extended mating duration. 
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Effect of social contact and sperm competition on cognition in 

male Drosophila melanogaster 

Thanks to Laurin McDowall for all the help collecting data for this chapter 

 

6.1 Summary 

It has been hypothesised that increases in cognition, the ability to sense and react 

to environmental stimuli, are due to an increase in sociality, specifically the 

development of complex relationships. However, the interaction between sociality 

and the evolution of cognition is controversial, and in particular the role in sexually 

selected behaviour. Recent evidence shows that competition for matings seem to 

have driven an increase in male cognitive ability in D. melanogaster. There is also 

evidence that sperm competition induces at least one plastic behaviour known to be 

controlled by learning and memory. Despite this, it is still not known whether 

individual males show within generation cognitive plasticity to changes in sperm 

competition. 

Here, I show an increase in sperm competition from the presence of 

conspecific rivals increases cognitive ability in male Drosophila melanogaster. I also 

show an increase is general competition from heterospecific rivals does not lead to 

a comparable increase in cognition. Furthermore, an increase in cognitive ability 

was paired with an increase in the expression of a subset of genes associated with 

increased neural complexity and synapse control. The results indicate that male-

male competition is important for D. melanogaster males to develop cognitive ability, 

and may be involved in the evolution of increased cognition in insects. 
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6.2 Introduction 

Cognition is defined as the neural processes needed to acquire, process, retain and 

use information (Dukas 2004a). It includes but is not limited to perception, learning, 

memory and decision making (Shettleworth 2010). However, whilst the processes 

by which brains have evolved, and how the environment affects the cognition of 

animals has been widely researched, a consensus about the critical drivers of 

cognitive evolution has not yet emerged. Previously it has been suggested that a 

more complex social environment has led to an increase in brain size and cognition 

in social mammals. The ‘social brain hypothesis’ was originally put forward to 

explain increased cognitive ability in primates, and postulates that an increase in 

relative brain size evolved due to increased social complexity (Dunbar 1998; Dunbar 

2009). Since then, evidence has been presented from outside the primate system 

including ungulates (Shultz & Dunbar 2006), carnivores (Perez-Barberia, Shultz & 

Dunbar 2007) and bats (Pitnick, Jones & Wilkinson 2006), all in support of the idea 

that sociality increases brain complexity. As a critical facet of social complexity, 

mating systems have been scrutinised to help pinpoint parts of the social 

environment responsible for impacting the evolution of the brain. Monogamy, 

especially pairbonding, was found to lead to an increase in neocortex size and so 

functioned to increase cognition (Dunbar & Shultz 2007). It was reasoned that the 

ability of an animal to form a complex social relationship, such as pairbonding, was 

cognitively more challenging than any social relationship developed in polygamous 

mating systems. However in insects, recent theory suggests that male-male 

competition may be important for the evolution of quantity assessment (Shifferman 

2012), suggesting the role of sexually selected reproductive behaviours is 

cognitively challenging and therefore requires further investigation. 

Although insects possess relatively small brains, they exhibit sophisticated 

social behaviours and relatively advanced cognitive abilities such as associative 
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learning (McGuire, Deshazer & Davis 2005), spatial memory (Menzel et al. 2000; 

Menzel et al. 2005; Collett, Chittka & Collett 2013; Collett 2014), anticipatory 

memory  (Greenspan & van Swinderen 2004) and second order conditioning 

(Brembs & Heisenberg 2001; Menzel 2001). In addition, their generation time allows 

for experimental evolution to directly answer questions that are left to theory in 

larger, longer lived animals. It may be therefore surprising that in comparison to 

mammalian mating systems, there is a paucity of evidence linking social interactions 

and cognition (Lihoreau, Latty & Chittka 2012). Those studies that have examined 

the link between social interactions and cognition in insects have based their 

conclusions around the size and complexity of the insect MBs. These are involved 

in many of the cognitive tasks insects are able to perform and parallel the cortex in 

mammals as a centre of higher-order learning (Heisenberg 1998; Devaud et al. 

2015). In addition, they react structurally to changes within an insect’s lifetime, with 

both the honey bee Apis mellifera (Ismail, Robinson & Fahrbach 2006) and the ant 

Camponotus floridanus (Gronenberg, Heeren & Holldobler 1996) increasing MB 

complexity with increased foraging experience, and D. melanogaster decreasing 

synapse number (Donlea, Ramanan & Shaw 2009) when socially isolated. To 

accrue these relatively long-term structural changes there is usually a parallel 

change in the neurogenomic state of the brain (Whitfield, Cziko & Robinson 2003; 

Lutz et al. 2012). When comparing solitary and eusocial insect species, MB 

complexity is reduced with increased sociality in direct opposition to results seen in 

mammals (Farris & Schulmeister 2011). However, as previously discussed (Chapter 

1) these two social environments do not just entail a comparative increase in social 

interactions but also the emergence of behaviourally distinct clones in eusocial 

insects (Gronenberg & Riveros 2009). It is therefore likely that studies of non-

eusocial insects will generate more generally applicable understanding of the 

implications of insect social interactions on brain evolution. 
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One study to investigate the link between sociality and cognitive ability in a 

small individualised society found that removal of male-male competition for 100 

generations significantly decreased a D. melanogaster male’s ability to learn (Hollis 

& Kawecki 2014). This was measured by evaluation of a male’s capacity to perform 

a complex social learning task and a simple Pavlovian conditioning assay. As it is 

now known that males find responding to rivals cognitively challenging (Chapter 4) 

and considering the ability for the insect brain to plastically respond to 

environmental change (Donlea & Shaw 2009), this study would suggest that 

removal of male-male competition may affect individual cognitive ability. I would 

therefore predict that individuals receiving cues from an environment with male-

male competition would show greater cognitive ability within life when compared to 

socially isolated individuals. 

To assess whether individual cognition was affected by social environment 

individual flies were socially isolated, then exposed to a conspecific or 

heterospecific male partner for 10 days. This enabled us to distinguish between 

whether general social interactions such as competition for food and space may be 

influencing cognitive ability, or whether male-male (sperm) competition specifically 

affected cognition. Following the methods in Hollis and Kawecki (2014) cognition 

was measured via two learning and memory paradigms, associative learning, and 

virgin finding (learning in a complex environment). Associative learning was 

measured using a T-maze and examined a male’s ability to form a simple 

association between a smell and shock. Virgin finding is an ethologically relevant 

complex association task that requires a male to learn and memorise information 

about a female’s mating status over 20 minutes, and apply that information to court 

the female most likely to mate out of a choice of five. In addition, gene expression 

for a subset of synaptic genes was quantified to measure potential changes in the 

neurogenomic state of the brain as a proxy for potential structural plasticity. 
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6.3 Materials and Methods 

6.3.1 Fly stocks 

Drosophila melanogaster fly rearing and virgin finding (an assay to assess the 

cognitive ability of a male to learn and remember the identity of a virgin female in a 

group of five females) were performed in a 25°C humidified room, with a 12:12 light 

dark cycle (9 am to 9pm light cycle). Flies were maintained in plastic vials containing 

7ml sugar-yeast-agar medium (100 g brewer’s yeast, 100 g sugar, 20 g agar, 30 ml 

Nipagin (10% solution) and 3ml propionic acid per litre of medium; (Bass et al. 

2007). Wild-type flies are originally from a large laboratory stock population 

collected in Dahomey (Benin) and are the same as used in previous studies from 

our associated lab (Bretman et al. 2012; Bretman, Westmancoat & Chapman 2013; 

Bretman et al. 2013) etc. Larvae for all experiments were raised 100 per vial and 

supplemented with live yeast. Upon eclosion sexes were separated on ice 

anaesthesia with females supplemented with live yeast. As Drosophila virilis have a 

slightly lower thermal preference than D. melanogaster (Sayeed & Benzer 1996), D. 

virilis (Yamamoto 1994) rivals were grown in vials at 20°C before being collected 

and sexed on ice. 

 

6.3.2 Social treatments 

6.3.2.1 Conspecific competition 

To test the effects of intraspecific male-male competition on cognition focal wild-type 

males were randomly assigned to one of two treatments, either single or exposed to 

rival males identified by a wing clip, for 10 or 50 days. They were then assigned to 

one of three experiments, virgin finding, associative learning, or gene expression 

studies. Males used in virgin finding or associative learning tests were taken directly 

from their social environments and used in their respective assays. Males that 
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underwent qPCR were snap frozen in liquid nitrogen, head and thorax dissected 

away from the abdomen on dry ice and frozen at -80°C before extraction. 

 

6.3.2.2 Heterospecific competition 

Previously, D. virilis rival males (Figure 1A) have been shown to have no effect on 

the mating duration of a D. melanogaster focal male (Bretman et al. in prep). To test 

the effects of interspecific male-male competition and therefore distinguish the 

effects of sperm competition (shown with D. melanogaster rivals) and general 

competition focal wild-type males were randomly assigned to one of two treatments, 

either single or exposed to rival Drosophila virilis male (Figure 1A), for 10 days. The 

social environment was kept at 20°C to keep the D. virilis alive and active (Dillon et 

al. 2009). After exposure all focal flies were treated in the same way as previously 

detailed (Figure 1B). Virgin finding and expression experiments were later repeated 

at 25°C to investigate whether the temperature affected any patterns found. 

 

6.3.2.3 Variable environment 

To test the effects of a plastic environment on cognitive ability and how timing of 

sociality can influence cognitive development, males were randomly assigned to 

one of two changeable social environments. Males were either exposed to another 

D. melanogaster rival for 10 days before being allowed 10 days in isolation. Over 

the same time period males were kept singly for 10 days before being exposed to a 

D. melanogaster rivals for 10 days. After exposure all males underwent virgin 

finding as a proxy for cognitive ability (Figure 2). 
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Figure 1: Drosophila melanogaster focal individuals and experimental set-up. A) 

Focal male D. melanogaster (left) compared to a rival D. virilis male. Magnification = 

x 7.5 B) B) Experimental set-up and data collection. D. melanogaster males (Mel) 

were removed from their individual environments, either single, with a D. 

melanogaster rival or with a D. virilis (Vir) rival, and data collected through virgin 

finding, associative learning or analysis of gene expression. Each test was 

independent of all others. Uninterrupted male signs represent males taken forward 

for testing, dotted male signs represent rival males.  
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Figure 2: D. melanogaster males in a variable environment. S,R describes males 

kept singly for 10 days and then exposed to a D. melanogaster rival for 10 days 

before undergoing the virgin finding assay. R,S describes males kept with a D. 

melanogaster rival for 10 days and then being moved to an isolated environment for 

10 days before undergoing virgin finding. For both B) and C) solid male signs 

represent males taken forward for testing, dotted male signs represent rival males 
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6.3.3 Mating duration response to D. virilis rivals 

Data had been previously collected by Amanda Bretman, James Westmancoat and 

Tracey Chapman and comes from a larger body of work investigating male D. 

melanogaster reactions to heterospecific rivals (Bretman et al. in prep). This 

provides evidence that rival D. virilis do not provide a sperm competition challenge 

to focal D. melanogaster allowing me to use this species as a general competitor 

and so distinguish the effects of sperm competition on cognitive ability later in the 

Chapter. Male mating duration responses to either a D. melanogaster or D. virilis 

rival after 3 days were measured over three independent experiments. Data non-

normal and were examined with a generalised linear model with Poisson errors, 

using Analysis of Deviance to reduce from the full to minimal model. Differences 

between treatments were then compared using Mann-Whitney U tests and 

significance values corrected using Bonferroni correction. There was no effect of 

experimental repeat on mating duration (AOD: Χ2
1,324 = -0.243, p = 0.622) but there 

was a significant effect of treatment on mating duration (AOD: Χ2
1,324 = -3.951, p = 

0.047). When these differences were examined in more detail males kept with D. 

melanogaster rivals significantly increased mating duration compared to both single 

males (Mann-Whitney U: Z = -7.875, N = 218, p < 0.001) and males kept with D. 

virilis rivals (Mann-Whitney U: Z = -7.414, N = 218, p < 0.001). Single males and 

males kept with D. virilis rivals did not differ in their mating duration (Mann-Whitney 

U: Z = -1.143, N = 216, p = 0.759; Figure 3). 
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Figure 3: Response to conspecific and heterospecific rival males. Mating duration of 

males maintained singly, with a rival D. melanogaster male or with a D. virilis male 

for 3 days. Error bars represent SEM. Overall significance between treatments is 

shown above bar. Treatments that do not share a letter were significantly different 

(post hoc Mann-Whitney tests with Bonferroni adjustment). 
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6.3.4 Virgin Finding 

To measure how efficiently males could find a virgin female in a complex social 

environment an individual male was placed in a vial with four previously mated 

females and one virgin. This meant to gain the maximum fitness by finding and 

mating the virgin female (Dukas 2005; Hollis & Kawecki 2014) males had to 

integrate information about mating status from all females over 20 minutes while 

using this information to identify the virgin. Vials were scored every minute for 20 

minutes to see whether the male was courting, and if so, whether the courted 

female was mated or virgin. The viewer was able to distinguish the type of female 

by a small wing clip carried by either the virgin female or mated females depending 

on the test number. This was to ensure wing clipping did not affect the ability of 

females to reject male’s advances. For males who were successful in mating, data 

were only counted up until and including the minute of the successful mating. This 

gave between 78 and 88 individual males per group tested for their ability to find a 

virgin spread over three repeats. 

 

6.3.5 Aversive associative conditioning 

Aversive associative testing was performed on individual flies similar to Claridge-

Chang and colleagues (2009) and tests the ability to associate between a smell and 

shock. All experiments were performed at 22-25°C in a dark room under red light. 

We used 3-octanol (2.7µL/mL) and 4-methylcyclohexanol (1µL/mL) diluted in light 

mineral oil as odorants. The odours were drawn through the T-maze and delivered 

to the flies with a vacuum pump. Individual flies were trained in the T-maze by first 

calculating the innate preference of the fly for either odour over 2 minutes. The fly 

was then exposed to the preferred odour accompanied by mechanical shock for 1 

second every 5 seconds for 1 minute. This period was followed by a 30 second rest 

period where the fly was exposed to air. The next minute flies were exposed to the 
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other odour without shock. This training protocol was repeated once more. To test 2 

minute memory flies were immediately moved to a choice point and given both 

smells simultaneously. The time an individual spent showing preference for either 

smell was recorded over 2 minutes. This was subsequently calculated as a 

percentage of the total time an individual made a decision (moved away from the 

choice point). If an individual had shown preference for both smells in the original 

test, the percentage of time spent in the smell later not associated with the shock 

was subtracted from the learning score. 

 

6.3.6 Measuring gene expression via qPCR 

RNA was extracted from a pooled sample of 10 to 25 dissected male thorax and 

heads using Direct-zolTM RNA miniprep columns following the manufacturers 

protocol. This was checked for concentration and purity on a nanodrop before being 

run on an agarose gel to assess purity (Figure 4a). cDNA synthesis was carried out 

using the Life Technologies First strand cDNA kit following the manufacturers 

protocol and checked against the corresponding no reverse transcriptase controls to 

check efficient synthesis (Figure 4b). 

Genes were chosen from a previous subset of genes shown to be involved 

with controlling extended mating behaviour (Chapter 4) or as being differentially 

expressed in the presence of rivals (Mohorianu et al. in prep). Housekeeper genes 

EF1 and Rap21 were chosen as the least likely to change with rival presence from 

multiple genes tested in a previous report (Ling & Salvaterra 2011). All qPCR 

primers were designed with a melting temperature of 60°C +/- 1°C with CG content 

between 20-80%. These primer pairs were tested for efficiency using a 10 times 

dilution series on whole body RNA and accepted if the efficiency fell between 90 

and 110% with an R2 greater than 0.98 (Table 1).
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Table 1: qPCR Primer sequence and efficiency. Showing forward and reverse nucleotide sequence, efficiency, and R2 value for each primer 

investigated. Efficiency was deemed acceptable between 90 % and 110 %, R2 values show the pipetting accuracy of standards and should be 

above 0.98. 

 

 

 

 

 

 

 

 

 

Gene Forward Reverse Efficiency R2 

Ef1 GTCTGGAGGCAATGTGCTTT AATATGATGTCGCCCTGGTT 106.4 0.999 

Rap21 TTCACTTACGAACCATCAAACATT GCTGGCTGACTTCCTTTCAC 107.4 0.999 

Brp GACATCAAGGACCGCAAGAT GCCATATCCACCTGGTTGTC 95.2 0.999 

Dunce TGTGGCATACACCATATTTCAG GAAACGGATTGTCTTTGACG 97.8 0.998 

Futsch ACGTTTCCGATTGTCACGTC GCTGCTACCTCCTCATCGTC 99.6 0.992 

Dikar CATCTATAAAATCCCGCAGAGG CGGTATCTCCCACCATGATT 99.8 0.998 

Neurexin GACAACAACTGGCACACGAT TACTGTGGCGACCCAGAAT 98.8 0.995 
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Figure 4: Assessment of RNA and cDNA quality for qPCR via gel electrophoresis a) RNA extraction on 1% agarose gel. Lane 1 = ssRNA 

ladder with major band marked at 3000 bp, 2-6 = RNA. White outlines highlight 28S (top) and 18S (bottom) RNA. Drosophila 28S rRNA is 

processed into 2 fragments that migrate in a similar manner to the 18S rRNA (Winnebeck, Millar & Warman 2010). Any degradation around 

these highlights is due to the use of non-autoclaved buffer when making and running the gel. b) Assessment of efficient synthesis of cDNA. 

Lane 1 and 14 show 100 bp DNA ladder with major bands size marked in base pairs. Lanes 2, 4, 6, 8, 10 and 12 show cDNA synthesis with 

reverse transcriptase (+RT) for the RNA extractions shown in a). Lanes 3, 5, 7, 9, 11 and 13 show cDNA synthesis without reverse 

transcriptase (-RT) for the same RNA extractions. 
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Quantification of transcript levels in flies relative to housekeeping genes (Ef1 and 

Rap21) were performed using the ΔΔCT method (Hellemans et al. 2007). For all 

genes, Ct values for samples were quantified against the lowest value across 

biological replicates, taking into account the efficiency of the primer used. For 

housekeeping genes this number was then used to calculate a geometric mean of 

both housekeepers in each sample. Each gene of interest was then divided by the 

geometric mean of the housekeepers for each sample before being averaged 

across biological replicates to get a relative expression for each gene when males 

were both single and with rivals (Hellemans et al. 2007). 

 

6.3.7 Statistical analysis 

Statistical analysis was performed using SPSSv14 and R 3.3.1 (Ihaka & Gentleman 

1996). 

 

6.3.7.1 Virgin finding 

Behaviour was a binomial response (courting or not, courting the virgin or mated 

female), hence the effect of social treatment was analysed using a generalised 

linear mixed model with a binomial distribution with social treatment as a fixed factor 

and repeat as a random factor. A model with effect of treatment included was 

compared to a model relying solely on random factors to explain variation using 

Analysis of Deviance. 

An activity index, or % courting, was generated for each individual male by 

dividing the number of times a male courted by the total minutes a male spent in the 

company of the females. A Learning index, or % correct courting (when a male 

courted the virgin, or “correct female”), was generated by dividing the number of 
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times a male correctly courted a virgin female from the amount of time that male 

spent courting. These indices were used to graph data. 

 

6.3.7.2 Associative learning 

To account for the differences in behaviour between test sessions, learning indices 

from 4 to 6 flies were analysed as the mean across individuals within one session. 

This gave one data point for each genotype for each training and testing session for 

between 8 and 10 sessions for each pairwise comparison. The Learning index from 

these 8 to 10 sessions was then compared in a pairwise manner between focal flies 

that had been kept singly or with rivals for all experiments. All experiments were 

normally distributed so were compared with independent T-tests. 

 

6.3.7.3 Gene expression 

For experiments with male focal flies exposed to D. melanogaster or D. virilis rivals, 

relative expression differences were established through a 2-way ANOVA with gene 

and social group as main factors. Pairwise comparisons were then performed to 

investigate the difference between males kept singularly and with a rival for each 

gene. 
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Table 2: Detailed function of important learning and memory genes examined in this 

chapter and predictions of how rival exposure for 10 days may affect expression of 

these genes. 

Gene Function Prediction 

Bruckpilot Vesicle release at 
the synapse 

Upregulated when focal males had 
previously been kept with rival D. 
melanogaster but not when kept 
with D. virilis 

Dikar LTM Upregulated when focal males had 
previously been kept with rival D. 
melanogaster but not when kept 
with D. virilis 

Dunce Learning Upregulated when focal males had 
previously been kept with rival D. 
melanogaster but not when kept 
with D. virilis 

Futsch Regulates 
synaptic growth 
and organisation 

Upregulated when focal males had 
previously been kept with rival D. 
melanogaster but not when kept 
with D. virilis 

Neurexin Synapse 
development and 
function 

Upregulated when focal males had 
previously been kept with rival D. 
melanogaster but not when kept 
with D. virilis 
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6.4 Results 

6.4.1 Virgin finding 

6.4.1.1 Males kept with D. melanogaster rivals 

Males kept with D. melanogaster rivals for 10 days did not differ significantly in 

overall courting effort compared to single males (AOD: Χ2
1 < 0.0001, N = 165, p = 

0.986. Figure 5A). However, males previously kept with a rival male for 10 days 

were significantly more effective at targeting courtship towards virgin females over 

the length of the assay than males kept isolated (AOD: Χ2
1 = 29.212, N = 165, p < 

0.001. Figure 6A). 

 

6.4.1.2 Males kept with D. virilis rivals 

D. melanogaster males kept with D. virilis males for 10 days significantly increased 

their courting effort when compared to single males (AOD: Χ2
1 = 4.871, N = 176, p = 

0.027. Figure 5B) showing that males could sense the presence of a D. virilis rival. 

However, males kept singly were significantly more likely to effectively target their 

courtship towards virgin females compared to males kept with D. virilis rivals (Χ2
1 = 

8.1616, N = 176, p = 0.004. Figure 6B). 

 

6.4.1.3 Males kept with D. melanogaster rivals for 50 days 

When males were kept with rivals for 50 days they significantly decreased their 

courting rate over 20 minutes when compared to males kept single (Χ2
1 = 119.49, N 

= 157 p < 0.001. Figure 5C). However, although there was a difference in how often 

males courted females generally, there was no difference in the ability of males to 

direct courting towards a “correct”, or virgin, female (Χ2
1 = 3.592, N = 157, p = 

0.058. Figure 6C). 
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6.4.1.4 Males kept in a variable environment 

To establish whether the timing of sociality was important to the development of 

cognitive ability males were exposed to a D. melanogaster rival presence for 10 

days before being socially isolated (deemed R,S for short). Males were also socially 

isolated for 10 days before being exposed to a D. melanogaster rival for a further 10 

days (S,R). Males who had been exposed to rival males for the 10 days at the start 

of life before being socially isolated significantly increased courting effort when 

compared to males who had undergone social isolation first (Χ2
1 = 16.316, N = 172, 

p < 0.001. Figure 5D). However, there was no effect of social environment on a 

males ability to court a virgin female in a complex environment (Χ2
1 = 1.027, N = 

172, p = 0.311. Figure 6D). 
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Figure 5: Effect of social environment on the amount of unspecific courting 

performed by D. melanogaster focal males in 20 minutes. All graphs show courting 

percentage towards any female (choice of one virgin female and four mated 

females) as a proxy for activity. A) Shows the difference between males kept singly 

and males previously kept with a rival D. melanogaster male for 10 days. B) Shows 

the difference between males kept singly and males previously kept with a rival D. 

virilis male for 10 days. C) Shows courting effort when males have been kept singly 

or with a D. melanogaster rival for 50 days and shows the effect of ageing on 

activity. D) Compares courting effort when males have been kept with rival D. 

melanogaster males for the first 10 days (R,S) or the second 10 days (S,R) of a 20 

day cycle. All error bars represent SEM. * < 0.05, ** < 0.01, *** < 0.001. 
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Figure 6: Effect of social environment on the ability of D. melanogaster focal males 

to identify and court a virgin female in a complex environment made up of four other 

previously mated females. All graphs show the percentage of courting which is 

directed towards a virgin female (“Correct” courting) as a proxy for cognitive ability. 

A) Shows the difference between males kept singly and males previously kept with 

a rival D. melanogaster male for 10 days. B) Shows the difference between males 

kept singly and males previously kept with a rival D. virilis male for 10 days. C) 

Shows ability to identify a virgin when males have been kept singly or with a D. 

melanogaster rival for 50 days and shows the effect of ageing on cognition. D) 

Compares virgin finding ability of focal males when kept with rival D. melanogaster 

males for the first 10 days (R,S) or the second 10 days (S,R) of a 20 day cycle. This 

compares social effects on the development of cognition. All error bars represent 

SEM. * < 0.05, ** < 0.01, *** < 0.001. 
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6.4.2 Associative learning 

The environment an individual was kept in for 10 days significantly changed the way 

they were able to learn and memorise information taught to them in an olfactory T-

maze. 

When kept with a rival D. melanogaster male for 10 days, focal D. melanogaster 

males significantly increased their ability to learn and memorise an association 

compared to isolated males (t-test: t20 = -2.422, p = 0.025). In comparison, when D. 

melanogaster males were kept housed with a D. virilis male there was no difference 

in their ability to learn or memorise compared to single males (T-test: t12 = -0.063, p 

= 0.950 Figure 10). 

 

 

 

 

 

 

 

 

 

 

Figure 7: Learning index in an associative learning and memory task. A) D. 

melanogaster males were either kept singly (white bars) or exposed to either D. 

melanogaster or D. virilis (grey bars) as rivals. Error bars represent 1 SEM, * 

indicates a significant difference between paired treatments * < 0.05, ** < 0.01, *** < 

0.001 
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6.4.3 Measuring gene expression via qPCR 

6.4.3.1 Gene expression changes after exposure to a D. melanogaster rival 

The social environment had a significant effect on gene expression tested across all 

genes (ANOVA: F1 = 11.178, p = 0.002). When each gene was investigated 

individually using pairwise comparisons to test the effect of social housing with a 

rival, sociality significantly increased gene expression for two genes, Futsch (T-test: 

t9 = -3.299, p = 0.012) and Neurexin (T-test: F10 = -3.424, p = 0.006; Figure 11), but 

not for any of the other genes tested (Table 2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Relative expression of five learning and memory genes after exposure to 

conspecific rivals. Relative expression levels of five genes when males were kept 

with D. melanogaster rivals (grey bars) compared to when males were kept singly 

(white bars). Error bars represent SEM. * indicates a significant difference between 

paired treatments * < 0.05, ** < 0.01, *** < 0.001 

** * 
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6.4.3.2 Gene expression changes after exposure to a D. virilis rival 

When D.melangoaster males were exposed to D. virilis rivals for 10 days there was 

no subsequent difference in gene expression for any of the genes tested (Figure 8; 

Table 2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Relative expression of five learning and memory genes after exposure to 

heterospecific rivals. Relative expression values for five genes when males were 

kept with D. virilis rivals (grey bars) or singularly (white bars). Error bars represent 

SEM.
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Table 3: Statistics for gene expression studies involving D. melanogaster (Mel) and 

D. virilis (Vir). Degrees of freedom are in parenthesis to the test statistic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stars show level of significance * < 0.05, ** < 0.01

Experiment Gene Test Test statistic p 

Mel x Mel  2 way ANOVA  

Sociality 

Gene 

Gene x Sociality 

 

F1,49 = 11.178 

F4,49 = 1.957 

F4,49 = 0.718 

 

0.002 ** 

0.116 

0.584 

 Brp T-test t10 = -1.030 0.327 

 Dunce T-test t10 = -0.849 0.416 

 Dikar T-test t10 = -0.703 0.498 

 Futsch T-test t9 = -3.229 0.012 * 

 Neurexin T-test t10 = -3.424 0.006 ** 

Mel x Vir 

25°C 

 2 way ANOVA 

Sociality 

Gene 

Gene x Sociality 

 

F1,39 = 2.233 

F4,39 = 3.639 

F4,39 = 1.014 

 

0.083 

0.064 

0.412 

 Brp T-test t8 = -0.170 0.870 

 Dunce T-test t7 = -0.480 0.646 

 Dikar T-test t8 = 1.560 0.157 

 Futsch T-test t7 = 0.899 0.398 

 Neurexin T-test t7 = 1.236 0.256 
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Table 4:  Detailed function of important learning and memory genes used in this chapter, predictions of how expression may change with rival 

exposure for 10 days and actual results.

Gene Function Prediction Result 

Bruckpilot Vesicle release at the 
synapse 

Upregulated when focal males had previously 
been kept with rival D. melanogaster but not 
when kept with D. virilis 

No significant difference in expression levels 
when males kept with rivals of any species 
compared to males kept isolated 

Dikar LTM Upregulated when focal males had previously 
been kept with rival D. melanogaster but not 
when kept with D. virilis 

No significant difference in expression levels 
when males kept with rivals of any species 
compared to males kept isolated 

Dunce Learning Upregulated when focal males had previously 
been kept with rival D. melanogaster but not 
when kept with D. virilis 

No significant difference in expression levels 
when males kept with rivals of any species 
compared to males kept isolated 

Futsch Regulates synaptic growth 
and organisation 

Upregulated when focal males had previously 
been kept with rival D. melanogaster but not 
when kept with D. virilis 

Males kept with D. melanogaster rivals have 
significantly upregulated expression compared 
to males kept isolated. Males kept with D. virilis 
rivals have no change in expression levels 
compared to isolated males 

Neurexin Synapse development and 
function 

Upregulated when focal males had previously 
been kept with rival D. melanogaster but not 
when kept with D. virilis 

Males kept with D. melanogaster rivals have 
significantly upregulated expression compared 
to males kept isolated. Males kept with D. virilis 
rivals have no change in expression levels 
compared to isolated males 
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6.5 Discussion 

In this chapter I show exposing male D. melanogaster to competitive rivals of the 

same species for 10 days significantly increases their ability to perform two learning 

and memory tasks. One, an ethologically relevant complex association task requires 

males to learn about a female’s mating status and apply this information over 20 

minutes (Hollis & Kawecki 2014). The other examines a male’s ability to create a 

simple association between a smell and shock and tests early-term memories 

(Claridge-Chang et al. 2009). Increased learning and memory ability in both these 

tasks couples with increased expression in genes associated with synapse 

morphology and cytoskeletal dynamics. In comparison, exposing males to rivals 

which are not seen as a competitive threat (D. virilis species) does not induce either 

increase in learning and memory ability or gene expression changes seen when 

males are kept with conspecific rivals. 

 

6.5.1 Males, competition and cognition 

D. melanogaster males previously housed with conspecific rivals for 10 days 

showed an increased ability to learn and memorise in two cognitive tasks. The 

ability to avoid an odour previously paired with a mechanical shock relies on 

associative learning (Mery & Kawecki 2003). Finding and successfully courting a 

virgin female in a complex social environment relies on a male’s ability to apply 

previous experience, and requires learning and decision making under uncertain 

conditions (Ejima & Griffith 2011; Hollis & Kawecki 2014). We applied both assays 

in order to assess male cognition in a reproductive and non-reproductive context. 

The ability of a focal male D. melanogaster to perform two cognitive tasks 

improved when exposed to D. melanogaster rivals, but did not show the same 

significant improvement when focal males were housed with D. virilis rivals. D. virilis 
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inhabit similar temperature parameters and cosmopolitan distribution as D. 

melanogaster suggesting the two species would interact in the wild (Spieth 1979; 

Throckmorton 1982; Mirol et al. 2008). In support of this, there is a significant 

decrease in courting effort of males housed with D. virilis compared to isolated 

males suggesting that D. melanogaster males can sense the presence of rival D. 

virilis. The two species are sexually isolated so cannot hybridise. In Drosophila, 

acoustic, tactile, gustatory, visual and chemosensory cues have all been implicated 

in sexual isolation (Cobb & Ferveur 1995; Greenspan & Ferveur 2000). However, 

recent work has highlighted auditory differences as the original driver of isolation 

(Yukilevich et al. 2016). Male D. melanogaster ability to sense a rival D. virilis may 

therefore be due to a multimodal sensory system that include differences in cuticular 

hydrocarbon make-up (Jackson & Bartelt 1986; Ferveur 2005) or incompatibility of 

courtship song (Saarikettu, Liimatainen & Hoikkala 2005). Despite the apparent 

ability for D. melanogaster males to identify D. virilis males, D. melanogaster do not 

extend mating duration when exposed to D. virilis males for three days (Bretman et 

al. in prep). This response has previously been shown to be induced by an increase 

in sperm competition (Bretman, Fricke & Chapman 2009). Considering the failure of 

D. virilis rivals to induce an increase in learning and memory ability on par with 

conspecific rivals, it is probable the increase in cognitive ability seen in this chapter 

is driven by male-male conspecific competition, potentially sperm competition.  

There have been previous examples of the need for the social environment to drive 

the full development of memory ability in bees. Honey bees (Apis mellifera) socially 

isolated for the first 3 days of adult development show decreased ability to perform 

an associative task compared to bees exposed to social cues (Ichikawa & Sasaki 

2003). However, to my knowledge this is the first time conspecific competition has 

been shown to drive changes to within generational learning development. 
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A likely candidate for the underlying mechanism controlling this increase in 

cognitive ability might be structural responses within the MBs. Previously MB 

circuits have been shown to control extended mating duration, a plastic behaviour 

induced by an increase in sperm competition (Chapter 4). They are also responsible 

for decision making in uncertain conditions and olfactory memory (Akalal et al. 

2006; Farris 2013). D. melanogaster MBs continue to develop during the first week 

after eclosion, gaining a net increase of 200-400 fibres, before remaining stable for 

another 2 weeks (Technau 1984). Adults deprived of olfactory cues within the first 3 

weeks do not develop more MB fibres than the initial number present at eclosion 

(Technau 1984; Balling, Technau & Heisenberg 1987). This developmental pattern 

can be used to explain the increase in cognitive ability after males were housed for 

10 days with a rival. It also suggests that behaviour induced by an increase in 

conspecific contact modulates the adult development of the MBs and so effects 

learning and memory ability. In a similar way, individual bees improve their foraging 

efficiency with experience (Dukas & Visscher 1994; Ismail, Robinson & Fahrbach 

2006) by learning the spatial distribution of food sources (Dukas 2008b), with the 

change driven by an increase in the size of the mushroom body neuropil (Withers et 

al. 2008; Lutz et al. 2012). This pattern is repeated throughout many taxa. For 

example, the ant Camponotus floridanus denied social interaction for the first 30 

days of life show decreased relative MB size compared to individuals allowed 

normal social interactions (Seid & Junge 2016). In mammals, macaque monkeys 

isolated for the first 6 months of life are behaviourally atypical (Harlow & Suomi 

1971) while monkeys living in larger social networks increase relative brain size to a 

greater extent than monkeys limited to a normal social group (Sallet et al. 2011).  

 

 

 



 
 

164 
 

6.5.2 D. melanogaster males kept in variable environments 

Males exposed to a variable environment for 20 days where exposure to rival males 

occurred in the first or the last 10 days did not differ in their ability to find and court a 

virgin female between these two environments. There is no loss of MB fibres in the 

first three weeks of D. melanogaster post-eclosion life (Technau 1984). Therefore, 

males exposed to rival males in the variable environments tested should both 

increase cognitive ability as already discussed above. For males that were exposed 

to rivals for 10 days prior to isolation this then shows that any socially induced 

cognitive changes that occur in the first 10 days are maintained beyond immediate 

removal from the environment that induced those changes. This supports ideas 

above, as well as in chapter 4, that structural plasticity is responsible for conspecific 

mediated behaviour. This is because if an increase in cognition was purely a 

transient behavioural change, 10 days away from the stimulus inducing that 

behaviour should see individuals return to previous iterations of behaviour 

(Cardoso, Teles & Oliveira 2015). Nethertheless, the lack of isolated male control 

within this experiment, I cannot say with certainty that males exposed to a rival after 

isolation for 10 days have increased cognitive ability. Therefore, more testing of 

cognitive reactions to variable environments in D. melanogaster is needed. In the 

honey bee (Apis mellifera)  the later individuals are first exposed to a complex social 

environment the less able they are to learn a novel association (Ichikawa & Sasaki 

2003). A similar time sensitive opportunity window for males exposed to 

conspecifics to increase cognitive ability may well be occurring here. This would 

then show that males exposed to rival presence for 10 days before isolation return 

to a cognitive level on par with isolated males. Overall, more work is required to 

separate these two possibilities. 
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6.5.3 Socially induced changes in gene expression 

As well as an effect on cognitive ability, perceived sperm competition increased 

expression of two of the five genes tested within the central nervous system. futsch 

and neurexin significantly increased their expression levels when males had 

previously been kept with rivals compared to singly kept males or males kept with D. 

virilis rivals. futsch controls synaptic growth at the neuromuscular junction by 

regulating the synaptic microtubule cytoskeleton (Roos and Hummel 2000). Nrx-1 

controls synapse communication and assembly (Knight, Xie & Boulianne 2011). 

Both are specifically associated with the cytoarchitecture of synapses, either 

through the regulation of the microtubule cytoskeleton (Roos et al. 2000) or through 

synaptogenesis (Li et al. 2007; Larkin et al. 2015). Therefore, these genes could be 

seen as proxies to synapse functionality or number, especially neurexin, which 

shows evidence of increased adult synaptic development with overexpression 

(Larkin et al. 2015). The link between synapse number and cognition is well 

established, with decreases in synapse number linked to decreased cognition in 

multiple species (Spires-Jones & Knafo 2012), including humans (DeKosky & Scheff 

1990) and chemically induced increases in synapse connectivity in mice linked to an 

increase in cognitive performance (Rogers et al. 2011). The increase in expression 

of genes linked to synapse functionality in this model can therefore be linked to the 

increase in cognition. Future work on the effect of sperm competition on the brain in 

D. melanogaster should therefore focus on revealing changes in synapse number or 

functionality with an increase in sperm competition. 

dunce, bruckpilot and dikar did not show differential expression when 

compared between social environments. This is in line with previous results that 

show an increase in sperm competition does not induce expression changes of 

genes directly associated with learning and memory (Chapter 5). Despite this, there 

was a generalised tendency to increase gene expression in males that had 
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previously been kept with a rival. Although within this research a large scale study 

into neurogenomic differences brought on by competition was not performed, 

differences in gene expression linked to changes in the social environment are not 

unusual (Rampon et al. 2000; Greenwood & Peichel 2015). Small genomic changes 

spread across multiple genes may therefore have an additive effect causing small 

changes in gene expression. Indeed, 5 minutes of courting in D. melanogaster 

males is enough to significantly change transcriptional profiles, including genes 

involved in neurotransmission (Carney 2007), though these changes are reduced 24 

hours after rival addition (Mohorianu et al. in prep). As qPCR is low throughput I 

have only assessed a small number of genes. Broad scale neurogenomic change 

could be assessed using transcriptomics. In addition to measuring differential gene 

expression transcription factors can be used to establish whether expression 

changes may be seen in downstream genes. In other models, conserved 

transcription factors regulate large portions of neural plasticity. For example  the 

transcription factor egr-1 is upregulated rapidly when fish compete for social 

dominance, going on to regulate genes involved in social dominance (Burmeister, 

Jarvis & Fernald 2005) but is also downregulated in socially isolated individuals 

(Matsumoto et al. 2012). Consequently, it may be beneficial in the future to assess 

the role of transcription factors or epigenomic modifiers as key regulators of brain 

plasticity in response to environmental enrichment. 

 

6.5.4 Males 50 days 

When males were exposed to a rival for 50 days they significantly decreased the 

amount of courting they engaged in, and no longer showed an increased ability to 

identify a virgin female compared to isolated males. This supports previous work 

that details substantial costs associated with males responding to the threat of 

sperm competition, including reduction in lifespan (Bretman et al. 2013). A likely 
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source of the costs associated with responding to rivals was thought to be in the 

upregulation of ejaculate proteins (Wigby et al. 2009). However, results in this 

Chapter and in Chapter 4 now also point to costs associated with an upregulation in 

cognitive abilities. The likely development of MBs with increased social interaction 

(Technau 1984) increase neural substrate within the MBs, a form of tissue likely to 

be very costly (Laughlin, van Steveninck & Anderson 1998; Rittschof, Grozinger & 

Robinson 2015). In addition, a male response to rivals is modulated by anaesthesia 

sensitive memory requiring protein synthesis (Tully et al. 1994)(Chapter 4), which 

itself induces a substantial cost leading to decreased lifespan and ability to cope 

with an environmental challenge (Mery & Kawecki 2005; Mery 2007). Therefore, in 

addition to increased ejaculate production, responding to a rival presence initiates 

both the cost of activating neural substrate and the development of new neural 

tissue.  

The trade-off between the energy needed to create a response to sperm 

competition and energy needed for other traits is shown here in a reduction of effort 

when courting females, but may also show in cognitive ability. Males kept with 

conspecific rivals for 10 days increased their level of cognition compared to single 

males but this difference was abolished after 50 days of exposure to a rival. A single 

male’s cognition did not change between the two time periods, making it unlikely the 

reduction in cognition is solely a response to ageing. Instead, it seems males kept 

with rivals are unable to continue to increase cognition past a certain age. 

Considering the cognitive pressures enforced by responding to rivals, cognitive 

ability may therefore act with age in a similar vein to other measurable factors as 

shown in Bretman et al (2012). That is, increased cognition brought about by 

neurogenomic and synaptic changes early in life is favoured due to the benefits 

associated with the ability to respond to an environment, however, with the caveat 

of decreased energy levels later in life. 



 
 

168 
 

D. melanogaster show reduced learning and memory ability with increased 

age (Tonoki & Davis 2015), even showing cognitive decline within 10 days (Tamura 

et al. 2003). However, an increase in social complexity can help to protect against 

cognitive ageing and disease in multiple taxa (Seeman & Crimmins 2001; Ryff & 

Singer 2005; Amdam 2011). In D. melanogaster an increase in sociality can lead to 

the restructuring of areas of the brain affected by disease (Xu et al. 2016), and 

subsequent rescue of cognitive function (van Praag, Kempermann & Gage 2000; 

Carulli, Foscarin & Rossi 2011). However, very little work has been performed in 

insects to study how sociality affects cognitive ageing without prior induction of 

disease in a model. A D. melanogaster model to investigate cognitive declines 

would therefore be valuable, especially considering the malleable genetic and 

behavioural system. For males kept with rivals for 50 days before learning and 

memory was measured it is hard to elucidate whether males show increased 

cognitive ageing with rivals. This is due to control flies never exposed to rivals 

unable to show normal cognitive ageing due to depressed cognition early in life 

(discussed above). It would therefore be interesting to probe the temporal dynamics 

of cognitive stimulation and decline in more detail. 

 

Evolution of insect cognition 

The results in this chapter support the social brain hypothesis that cognitive ability is 

shaped by social interactions, but with caveats. Instead of a general increase in 

social interactions promoting brain evolution, I show conspecific interactions 

(perceived risk of sperm competition) are an important mechanism promoting the 

evolution of cognition in D. melanogaster, as first suggested by Hollis and Kaewecki 

(2014). Within this previous study males were kept in a strict monogamous mating 

system or allowed to mate freely for 100 generations. Learning and memory ability 

were then measured and enforced monogamy was found to depress cognitive 
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ability in males. This study directly tests how the evolution of cognition is influenced 

by sperm competition, and through my data a mechanism can now be suggested. 

That the sperm competition environment affects the developmental process of male 

D. melanogaster to elicit phenotypes with different cognitive abilities, with these 

phenotypes then under selection after an initial 3 week development window. 

Overall, this is in conflict with previous work on mammals suggesting that male-male 

competition decreases the cognitive ability of males over evolutionary time (Schillaci 

2008), due to increased investment in testes decreasing investment opportunities in 

the brain (Pitnick, Jones & Wilkinson 2006). This highlights that different cognitive 

pressures imposed by different mating systems may depend on species specific 

detail such as access to mates and potential competition within the environment. In 

addition, complexity in primate social groups, thought to have an effect on cognitive 

ability (Schillaci 2008) varies with levels of parental care, a behaviour not often seen 

in insects (including D. melanogaster). 

Considering MBs seem to modulate reactions to the sperm competition 

environment (Chapters 4 and 5), and previously have been the focus of studies 

investigating the evolution of the insect brain, the experimental evolutionary work 

discussed above would be an excellent system to investigate sperm competition as 

an evolutionary pressure on brain structure. I would predict that males kept in a 

monogamous environment would show a significant decrease in MB complexity 

compared to a polygamous environment. One way to test this theory would be to 

measure complexity or size of the MB lobes in flies undergoing experimental 

evolution similar to that seen in Hollis and Kawecki (2014). Another way to examine 

how quantity of sperm competition may affect a male’s cognitive ability is through 

the use of hyper-promiscuity. This would involve measuring male cognition under 

the pressures of a hyper-promiscuous environment. Previously, males that have 

undergone experimental evolution within this environment decreased their courtship 
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frequency, though the quality of courtship as a proxy of cognition was not 

investigated (Perry et al. 2016). If conspecific competition drives the evolution of 

cognition in D. melanogaster as suggested it may be that further cognitive 

developments would be seen under hyper-promiscuous environmental pressures. 

Conversely, the removal of female rejection allowing the development of hyper-

promiscuous females within this study (Perry et al. 2016) may have also removed 

the advantage males gain from mating experience (Dukas 2005). This would 

potentially lead to a decrease in cognitive ability over evolutionary time.  

Previous work on the evolution of cognition in insects has suggested 

sociality (Kamhi et al. 2016; Seid & Junge 2016) or novel visual inputs such as 

those gained from spatial learning as drivers of cognition (Riveros, Seid & Wcislo 

2012; Muscedere et al. 2014; Amador-Vargas et al. 2015; Farris 2016). Both 

suggestions gain evidence from eusocial societies, creating confusion over whether 

a main driver of insect cognitive/brain evolution can be defined. Within individualised 

societies, the picture is clearer, with the evolution of the MBs primarily thought to be 

reliant on complex foraging behaviour (Lihoreau, Latty & Chittka 2012). In addition 

to this, results in this chapter and previous work (Hollis & Kawecki 2014) now 

suggest that sperm competition may also be one of the evolutionary pressures 

behind an increase in cognition in insects. 
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General discussion 

Despite plastic behaviour being ubiquitous and important we know very little about 

the mechanistic underpinnings that control how behaviour reacts to the 

environment. It is theorised that different types of behavioural plasticity will require 

different proximate mechanisms depending on the time in development plasticity 

occurs, and the amount of plasticity shown by the behaviour i.e. how reversible the 

behaviour is. However, it is not known whether these discrete types of plasticity 

require different controlling mechanisms and hence this field is gaining more 

attention (Cardoso, Teles & Oliveira 2015). 

To investigate mechanisms underlying plastic behaviour I have used a D. 

melanogaster model that is consistent, predictable and has a direct link to fitness. 

Male D. melanogaster have been shown to plastically respond to an increase in 

sperm competition by extending their mating duration, enabling males to gain fitness 

benefits due to an increased transfer of sperm and seminal fluid protein quantity 

(Wigby et al. 2009; Moatt 2014). The cues required for males to react to increased 

sperm competition are well known (Bretman et al. 2011), as are the costs of the 

plastic behaviour (Bretman et al. 2013). 

This thesis has contributed to our understanding of the proximate 

mechanisms that can control a plastic behaviour. It has also highlighted one of the 

potential evolutionary drivers behind insect cognition. 

 

7.1 Main findings 

7.1.1 Males use exposure time to rivals to modulate dynamics of plastic 

behaviour 

I investigated the temporal dynamics of extended mating duration seen in D. 

melanogaster as a response to increased sperm competition (Rouse & Bretman 
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2016). The study showed significant effects of changing the exposure time of males 

to the sperm competition environment. After 24 hours in a high sperm competition 

environment males significantly increased mating duration for 1 hour, after which 

males reduced their mating duration to pre-exposure levels. The time extended 

mating duration was maintained was modulated by exposure time to rivals. At its full 

extent, extended mating duration lasted for 12 hours, before slowly returning to pre-

exposure levels. As males were able to reduce mating duration quickly after only 24 

hours with rivals this shows males are able to react quickly to changes in 

competition pressure, but do not if they have undergone increased exposure time to 

a rival. Considering the removal of an immediate rival does not inform the focal 

males about the population level sperm competition threat, it seems likely that 

males use time with a rival to inform them whether further risk of sperm competition 

is high. This would suggest a memory mechanism is required to remember the 

length of time males spend in a rival presence. A cognitive mechanism is also 

supported by the temporal dynamics of the plastic behaviour which parallels known 

time periods of learning and memory (Margulies, Tully & Dubnau 2005). This 

suggests cognition could be a productive avenue of research to investigate the 

mechanism behind extended mating duration. 

 

7.1.2 Accuracy of behavioural plasticity is dependent on a multimodal sensory 

system 

I investigated how sensory removal impacted the temporal dynamics of extended 

mating duration, as discussed in the previous chapter. Some of this work was also 

published by Rouse and Bretman (2016). Sense removal showed significant effects 

on the time it took to build-up extended mating duration, revealing the importance of 

a multimodal sensory system which was not addressed in a previous study 

(Bretman et al. 2011). Previously, the need for multiple senses was seen as a form 
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of adaptive redundancy, whereas here I highlight the need for an accurate and 

reliable multimodal sensory system to effectively respond to increased sperm 

competition risk on the same time scale as unmanipulated males. In comparison to 

the build-up of the plastic response, the maintenance of the plastic response was 

not affected by all the sensory manipulations performed in the study. Reduction of 

single senses did not affect the maintenance of the response, but removal of the 3rd 

segment of the arista meant males responded to rivals for longer than 

unmanipulated males. This manipulation potentially removed some olfactory and 

auditory sensory ability which may have had the effect of essentially removing two 

sensory pathways. In addition, the maintenance of extended mating duration was 

not investigated at the same temporal level as the build-up of the plastic behaviour, 

potentially masking differences that would be revealed with a more detailed study. 

Overall, the result focused on the need for accurate and reliable sensory stimuli 

leading to time sensitive plastic behaviour, and supported previous studies 

suggesting that the build-up of mating duration was costly compared to reducing 

mating duration too early. 

In addition, I examined a previous report that highlighted vision as the only 

sense D .melanogaster males required to respond to rivals. I found that vision was 

not involved in extended mating duration and in light of other research (Bretman et 

al. 2011; Maguire, Lize & Price 2015) this called into question genetic studies also 

performed into elucidating how extended mating duration was controlled (Kim, Jan 

& Jan 2012). It is important to know the cues involved in a plastic behaviour as this 

strongly relates to the possible memory mechanisms that may be used to control 

behaviour. For example, in D. melanogaster the ellipsoid bodies are required for 

visual place learning (Ofstad, Zuker & Reiser 2011), whereas olfactory memory 

requires action in MB neurons (Akalal et al. 2006). Both types of learning require the 

action of the cAMP second messenger system though mutants for genes within this 
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system differ in their effect on memory between visual and olfactory memory 

(Folkers 1982). 

 

7.1.3 Anaesthesia sensitive memory controls extended mating duration 

Within this chapter I investigated the cognitive mechanisms controlling extended 

mating duration and demonstrated a need for anaesthesia sensitive memory, but 

not anaesthesia resistant memory to control this plastic behaviour. In addition, I 

demonstrated that the MBs, the centre for olfactory associative learning (Akalal et 

al. 2006), were needed for extended mating duration to take place. The finding that 

extended mating duration relies on ASM is in part in line with previous reports (Kim, 

Jan & Jan 2012) and the predicted training males would receive from the 

environment (McInnis, Schaffer & Mettler 1982). In contrast, the importance of the 

MBs in controlling the behaviour is in direct opposition to previous reports (Kim, Jan 

& Jan 2012). Interestingly, the neural mechanisms predicted by my results point to 

the use of the most malleable ASM type available. This suggests that although 

memory needs to be stable (Tully et al. 1994), it must be able to follow a time-scale 

on par with the speed of change within the environment. Associative learning and 

memory use nearly identical genetic underpinning as extended mating duration 

(McGuire, Deshazer & Davis 2005), though they work on different timescales. This 

opens up the possibility that learning and memory mechanisms have been co-opted 

by other behaviours such as extended mating duration, potentially reducing the 

costs needed to develop separate nervous control for individual plastic behaviours. 

However, this raises the question of how behaviours are controlled in a context 

specific manner so plastic behaviours modulated by similar memory mechanisms 

stay defined. One way may be the physical separation between neurons used for 

one memory over another. In D. melanogaster, STM and LTM can be induced in 

parallel through a single session of appetitive conditioning, after which memory 
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types can are separated by the different neurons they depend on to control a 

reaction to the trained cues. STM is γ neuron dependent and LTM is α/β neuron 

dependent (Trannoy et al. 2011; Yamagata et al. 2015). This mirrors vertebrates 

that separate memories through the use of distinct brain areas (Izquierdo et al. 

2006). Therefore, a behaviour such as extended mating duration, which uses γ 

neurons to produce a long term memory, could be separated from other ecologically 

relevant behaviours induced by separate cues that induce memory in different 

neuronal subsets. In vertebrates induction of different memory types is also 

separated by biochemical pathway (Izquierdo et al. 2002), something which has not 

been shown in insects. 

 

7.1.4 Transient changes in gene expression do not control behavioural 

plasticity 

I tested whether extended mating duration relied upon changes in expression levels 

of genes that in chapter 4 I had previously shown to control plastic behaviour. I also 

tested genes involved in LTM and synapse development. I found no significant 

evidence for transient changes in gene expression controlling extended mating 

duration. However, I only explored a subset of cognitive genes based on a previous 

transcriptomics study highlighting some of these genes as being responsive to a 

rival presence (Mohorianu et al. in prep). These genes covered very little of the 

genetic architecture underlying learning and memory and were focussed on to allow 

me to split the behaviour into time-periods I thought would parallel the temporal 

dynamics of learning and memory phases. 

My experiment would benefit from the use of a high-throughput method to 

compare gene expression, even up to the point of testing for different transcript 

levels within genes. However, this would also reduce the temporal detail gained 

from the experiment due to funding restrictions. Overall, the study focussed on 



 
 

176 
 

possible neurogenomic mechanisms that theory held as important for behavioural 

plasticity (Cardoso, Teles & Oliveira 2015). My results provide some evidence that 

extended mating duration may be controlled more by physiological and neural 

mechanisms other than changes in gene expression. 

 

7.1.5 Cognitive ability is modulated by conspecific interactions 

In my final data chapter I investigated whether keeping males in a high sperm 

competition environment (kept with a D. melanogaster rival) for 10 days would affect 

the cognitive ability of a male. This was investigated through the use of two learning 

and memory assays designed to test both associative and operant conditioning. 

Furthermore, in order to distinguish between the effects of heterospecifc competition 

and conspecific competition on cognitive ability I also measured responses to D. 

virilis rivals acting as a general resource competitor. In addition to behavioural 

testing, I measured whether there was an effect of this long-lasting increase in 

sperm competition on the expression levels of a subset of genes involved in 

learning and memory. Experiments revealed an increase in cognitive ability and 

expression levels of two learning and memory genes associated with synaptic 

plasticity when males were kept in a high sperm competition environment. These 

changes were not seen when kept with heterospecific rivals that did not provide a 

sperm competition threat. 

In addition to the main part of the study, male reactions to a variable environment 

were also tested to establish whether cognitive ability fluctuated with the presence 

or absence of a rival. Males were exposed to a high sperm competition environment 

for 10 days before being isolated, and vice versa, before undergoing a test of 

learning and memory. Male cognitive response to variable environments did not 

differ from each other, suggesting that once males were exposed to a high sperm 

competition environment any cognitive increases were maintained beyond 
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immediate environmental variability. Whether increased gene expression is also 

maintained without the constant presence of a rival remains to be established. 

This provides an insight into the possible evolutionary drivers for an increase in 

insect cognition and is supported by previous experimental evolutionary work (Hollis 

& Kawecki 2014). Future work could focus on whether females show similar 

responses to competition and if not, whether the evolution of insect cognition could 

be constrained by sex differences in the evolutionary drivers of cognition. 

 

7.2 Implications and conclusions 

7.2.1 Genetic mechanisms of extended mating duration 

The main objective of this thesis was to elucidate a possible cognitive mechanism 

modulating extended mating duration in D. melanogaster. Results from Chapter 4 

would suggest that extended mating duration is controlled by ASM via the cAMP 2nd 

messenger system. In addition, memory is modulated via the γ neurons in the MBs, 

thereby using the most malleable ASM type available. To my knowledge this is the 

first time an ecologically relevant behaviour has been shown to be controlled 

through induction of plasticity via specific structural physiology i.e. specific neurons 

are responsible for the length of time of a specific behaviour. 

From chapters 2-4, an overall mechanism for extended mating duration can 

be proposed. In D. melanogaster, males learn and acquire ‘competitive’ memory 

from a specific set of stimuli over 24 hours, consolidate this memory in the γ 

neurons of the MBs before expressing this memory for between 1 and 12 hours 

depending on the time they were exposed to rivals. From the geographical and 

temporal dynamics of the ecological system, this suggests that a single neuronal 

subset can control a complex behaviour independent of other distractions. 
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7.2.2 Mechanisms of social plasticity 

The genomic and neural mechanisms controlling plastic behaviour are theorised to 

be specific to the type of plastic behaviour induced (Cardaso et al 2015, table 1). 

Within this thesis I tested the hypothesis that behavioural flexibility shows transient 

changes in gene expression and found no clear effect of changes in behaviour on 

the neurogenomic state over 2 days (Chapter 5). However, when males were 

exposed to rivals for 10 days (Chapter 6) there was an increase in gene expression 

of two genes involved with synapse development. This suggests that neurogenomic 

change does not control extended mating duration, which instead may be controlled 

by neural mechanisms such as switching between neural circuits. However, that 

neurogenomic change may be a consequence of a continued signal from the 

environment and may affect the mechanisms of plastic behaviour at a later 

developmental point (Figure 1). Neurogenomic change is also required for 

sequential MB development that potentially occurs when males have been exposed 

to a competitive environment for an extended amount of time (Technau 1984). This 

potential change in brain structure and increase in genes associated with synapse 

development parallels the pattern that occurs in bee MBs. In these brain structures 

accumulated foraging experience increases neutrophil growth associated with 

behavioural change detectable between the first and second week of foraging 

(Farris, Robinson & Fahrbach 2001; Ismail, Robinson & Fahrbach 2006). This 

correlates to neurogenomic changes on a similar timescale, with greater expression 

of genes associated with neutrophil growth the older and more experienced an 

individual becomes (Lutz et al. 2012).  

The behavioural and development change occurring in bees has previously 

been treated as sequential behavioural plasticity, where structural and behavioural 

change is not reversible (Zayed & Robinson 2012; Cardoso, Teles & Oliveira 2015). 

Considering this, any behavioural plasticity induced by rival presence in D. 
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melanogaster, such as an increase in learning seen in chapter 6, may well be a type 

of sequential plasticity controlled by epigenetic change (Cardoso, Teles & Oliveira 

2015). Research into differences in the epigenome between males exposed to rivals 

and single males would therefore be fruitful as a way to gain knowledge about how 

extended mating duration, and general plastic behaviour, is ultimately controlled. 

Previous studies into epigenetic changes have uncovered interplay between 

experience and the changing genome to control plastic brain development 

(Fagiolini, Jensen & Champagne 2009) and learning and memory (Day & Sweatt 

2011). Considering both these areas seem to have a role to play in how males react 

to both short term and long term changes in the sperm competition environment the 

model used within this thesis would be ideal to investigate how epigenetics may 

control plastic behaviour further. 

 In addition to expanding this model of extended mating duration to include 

epigenetic dissection of behavioural control, investigating the response to rivals 

through the proteome should be considered. The Drosophila proteome is highly 

plastic (Zhou et al. 2012) and has already been shown to change after the induction 

of learning and memory (Zhang et al. 2014). Differential expression of proteins are 

also known to affect phenotypic plasticity in other species such as caste 

differentiation in the honey bee Apis mellifera (Fang et al. 2012). Behavioural 

plasticity might therefore benefit from investigation into how the proteome can help 

control behaviours in response to environmental change. 

One potential way to test for neuro-plasticity and whether it may affect 

extended mating duration without complex imaging or genomic techniques would be 

use the temporal dynamics already known about the behaviour. Extended mating 

duration could be induced via 5 days in the social environment followed by isolation 

for 3 days. Males would then be tested for the speed at which they increase mating 

duration. This would provide insight into whether neurological and cognitive 
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changes seen after association with a rival are transient, or whether the structural 

plasticity of the brain has been irreversibly changed by rival exposure and can be 

used to inform the speed of future behavioural plasticity.
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Figure 1: Potential mechanism controlling socially induced plastic behaviour. The receiver, here represented by a brain (blue) acquires 

information from the environment (red, blue and green arrows). This is processed through physiological mechanisms specific to that plastic 

behaviour such as specific neural networks. Once an individual is sure of an environment a behavioural output will be expressed, this will also 

feed back into the acquisition and processing of environmental cues. If the signal of environmental change is transient there will be no 

significant genomic change linked to controlling the plastic behaviour. However, if environmental change is sustained the processing of the 

environmental signal will feed into genomic change (green dotted arrow), which may have lasting implications on how behavioural output is 

controlled (red dotted arrow). For example, genomic change leading to the development of a more complex neural network controlling the 

plastic behaviour. Whether there are any repercussions to this development such as a faster behavioural change when an individual is exposed 

to a changing environmental signal is get to be investigated.

Behavioural output Acquisition Signaller 
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7.2.3 Competition and the evolution of the insect brain 

The evolution of the brain to enhance cognitive ability is naturally a source of great 

interest. In mammals, increases in the number of individuals in the social group 

paired with increased complexity of social interactions seem to have driven the 

evolution of a larger relative brain and therefore and increase in cognitive ability. 

However, drivers of insect brain evolution have been harder to pin down due in part 

to disagreements about what constitutes sociality in an insect society (Sokolowski 

2010). In chapter 6 I show that sperm competition is important for males to increase 

cognitive ability within a life-time, and suggest that this is one of the pressures by 

which insect cognition may have evolved. This is supported by previous work that 

used experimental evolution to show that enforced monogamy reduced cognitive 

ability in males (Hollis & Kawecki 2014) and lab work showing males require 

cognitive abilities to mate effectively within a complex environment (Dukas 2004b; 

Dukas 2005; Griffith & Ejima 2009). This is in direct opposition to how sperm 

competition is thought to act as an evolutionary pressure in mammals. Comparative 

analyses in mammals have shown that an increase in sperm competition correlates 

to a decrease in cognition, thought to be a factor of increased investment in testes 

size (Pitnick, Jones & Wilkinson 2006). Why effects of sperm competition seem to 

act so differently on cognition in insects is unknown, but highlights different cognitive 

pressures imposed by differing mating systems. 

As well as more general social interactions such as the change in sperm 

competition felt in an environment that work on a population level and which I have 

focussed on in this thesis, some social interactions also work on a more 

individualistic level. This occurs when individuals can identify and react to 

genetically more similar individuals (like siblings) in a different manner to less 

genetically similar individuals, or strangers (Waldman 1988). In Drosophila 

melanogaster olfaction allows male and females to identify novel partners and 
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therefore increase the genetic diversity of their offspring (Tan et al. 2013). In a 

similar manner males are able to identify brothers (Lize, McKay & Lewis 2014) and 

social groups containing brothers’ fight less and cause less harm to females after 

mating (Carazo et al. 2014). Considering this, there may be an effect of relatedness 

on the interaction of males, potentially effecting extended mating duration and/or 

some of the cognitive work investigated in this thesis. Taylor (Taylor 2014) has 

shown relatedness does not influence the extent to which males extend mating 

duration, though it may affect the time taken for males to mate with females. 

However, in Chapter 6 relatedness may well effect the extent males increase 

cognitive ability due to the potential of higher relatedness meaning a more complex 

social relationship (similar to a pair bond). To avoid this possibility all flies were 

randomised when assigned to a social environment and therefore were extremely 

unlikely to come into contact with a sibling, however, this cannot be totally ruled out. 

What would be interesting is to evaluate whether similar competitive 

elements drive the evolution of the female brain. As sperm competition is not 

relevant when discussing females possible competitive behaviours that could be 

tested include egg laying or feeding. As an extra challenge these behaviours are 

controlled by both olfactory (Zrelec et al. 2013) and spatial memory (Navawongse et 

al. 2016), a known driver of brain development in honey bees (Menzel 2012). 

Separating competition and spatial memory would therefore be a challenge, but 

could be achieved with the use of different Drosophila species in a similar manner to 

this thesis.  

It may also be informative to undertake a comparative analysis of the 

mechanisms behind cognitive evolution. Many insect species produce a similar 

response to sperm competition as D. melanogaster, changing their behaviour and 

ejaculate investment in response to competitive change. For example, Gryllus 

bimaculatus males seem to use a form of learning and memory to respond to a rival 
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presence (Lyons & Barnard 2006). In addition, multiple taxa seem to employ 

quantity to assess environmental change such as is seen when assessing sperm 

competition threat (Carazo, Fernandez-Perea & Font 2012; Shifferman 2012; Pahl, 

Si & Zhang 2013; Larsdotter-Mellstrom et al. 2016). It would therefore be interesting 

to evaluate if any mechanisms are conserved between species that use learning 

and memory or quantity assessment in their natural environments. 

Given the research I have undertaken in Chapters 5 and 6 future work could 

focus on how synapse complexity is affected by sperm competition in a similar 

manner to work on sleep (Donlea, Ramanan & Shaw 2009; Donlea & Shaw 2009). 

Within this research, brain complexity is measured by counting the number of 

synapses within a certain neuronal tissue. I would recommend starting in the MBs, 

especially the γ neurons, which have been shown to remodel having undergone 

STM via appetitive associative learning (Marin et al. 2005) and underpin extended 

mating duration. In addition to this work, it is becoming increasing evident that social 

environment can drive ageing patterns in multiple taxa (Blakemore 2008; Cacioppo 

& Hawkey 2009; Baarendse et al. 2013). Therefore, as D. melanogaster respond to 

changes in sociality there is scope to investigate how this occurs through 

mechanistic studies. This simple insect model system for sociality and age would 

then be important for predicting and potentially preventing human age-related 

cognitive decline. 

 

7.2.4 Tailor made memory 

Previous work has suggested the theory of tailor made memory where learning and 

memory is species or population specific. Within this work, the learning and memory 

type for a population is described by the properties and temporal dynamics of 

memory acquisition, consolidation, waning, forgetting and retrieval after learning 
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(Smid & Vet 2016). This is supported by work highlighting where species differ in 

their memory type depending on a reward (Kruidhof et al. 2012). 

From my work, I suggest that this theory is taken one step further, in that a 

learning and memory type can be specific within a population to the plastic 

behaviour memory supports. I feel this thesis lends support to my argument. 

Previously, D. melanogaster memory types have been described as STM, MTM, 

LLTM or ARM (Margulies, Tully & Dubnau 2005), with a very specific set of 

acquisition variables defined. Within this thesis, I have shown that a plastic 

behaviour modulated by sperm competition depends on similar genetic and 

neurological structures as associative learning. However, I also show that the 

acquisition, consolidation and retrieval of that behaviour do not fit into common 

memory dynamics. These assays are not ecologically relevant due to a researcher’s 

control of the associative cues delivered to the flies.  

Therefore, as extended mating duration is a natural behaviour, it is expected 

the brain’s response to competition should occur on a time scale consistent with the 

life history of the fly and consistent with memory suitable to this particular ecological 

niche. Extended mating duration may be therefore tailor made specifically to 

address geographical and temporal dynamics of D. melanogaster using neural 

circuits that match the speed of the behaviour. 

It is important to know how learning and memory may be tailor made to 

insects depending on their environment as this information could potentially be 

applied to areas of insect control. Vector insects have been shown to learn 

associations between host defence strength and a volatile odour (Vinauger, Buratti 

& Lazzari 2011a; Vinauger, Buratti & Lazzari 2011b), allowing them to avoid hosts 

with strong defences and develop host preferences (Bouyer et al. 2007; Vinauger, 

Pereira & Lazzari 2012). However, this learning ability can be modified by cue type 

and strength similar to other learning paradigms (Vinauger et al. 2016). For 
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example, the mosquito Aedes aegypti has been shown to employ LTM after being 

trained twice to associate a blood meal with an unconditioned odour (Vinauger, Lutz 

& Riffell 2014). However, in other studies using colour as the unconditioned stimulus 

individuals only remembered an association for 60 minutes after one training cycle 

(Menda et al. 2013). Knowledge about how vector insects control learning and 

memory and how it is advantageous may allow learning and memory in vector 

insects to be targeted as a potential control strategy. 
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Appendix I – Time of day effects on extended mating duration and 

determining smell in associative learning assays 

 

I.I Extended mating duration and time of day 

Due to the time periods some of my work spanned it was necessary to carry out 

experiments in the afternoon instead of in the morning. Usually mating duration 

experiments were performed at 9am, however, when males had to be removed from 

rivals at night to allow for longer periods of isolation or rival exposure (from 9 to 6 

hours) prior to calculating mating duration (as when investigating the build-up of the 

mating duration response when individual senses are removed in chapter 3) mating 

duration was calculated at 2pm. 

 

I.I.I Materials and Methods 

Males were kept singularly or with rivals for 3 days before being exposed to a virgin 

female and mating duration calculated. Experiments were carried out at 9 am or 2 

pm, requiring that social environments be set up at 9 am and 2 pm 3 days previous. 

 

I.I.II Results 

There was no difference between a males ability to significantly extend mating 

duration dependent on the time of day tested. When exposed to rivals, males 

significantly increased mating duration at both 9am (Student T-test: t62 = -2.668, p = 

0.010) and 2pm (Mann Whitney U test: Z = -3.348, N = 62, p = 0.001) in line with 

previous reports (Figure 1). 
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Figure 1: The ability to significantly extend mating duration does not change 

depending on the time of day. Single males (white bars) are directly compared to 

males kept with rivals (grey bars) with data collected at 9am and 2pm. Error bars 

represent 1 standard error mean (S.E.M.). * ≤ 0.05, ** ≤ 0.01, ***≤ 0.001 
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I.II Associative T-maze smell sensing with group males 

Associative learning and memory allows the training of flies, both as a group and 

singularly, to associate a shock or reward with a smell (Mery & Kawecki 2003; 

Krashes & Waddell 2011). Traditionally, odours used are 3-Octanol (Procter, Moore 

& Miller) and 4-Methylcyclohexanol (Tomchik & Davis). To carry out T-maze 

associative learning and memory testing requires MCH and OCT to be balanced so 

that there will be no effect of odours on the behavioural response of the fly. This 

was a trial and error process using smell concentrations from previous experiments 

(Mery & Kawecki 2003; Krashes & Waddell 2011) as a starting point. In addition, 

once smells had been balanced, they were tested independently against air to 

confirm that each odour was equally weighted in their effect on the behaviour of the 

flies. 

 

I.II.I Balancing 3-Octanol and 4-Methylcyclohexanol 

All odours were delivered to flies with the use of a vacuum pump. 3-Octanol and 4-

Methylcyclohexanol were diluted in 10 ml of light mineral oil before being vortexed 

and placed to bubble for 10 minutes. These odours were then used in experiments. 

Groups of 50-60 flies were placed into a T-maze and exposed to air for 30 

seconds; they were then transferred to a choice point between the 2 smells. Flies 

were given 2 minutes to choose between the smells, at the end of which they were 

removed and counted. 

To calculate the percentage of flies moving towards 3-Octanol (an arbitrary 

choice of smell to compare against) the number of flies that moved towards OCT 

were counted and divided from the total number of flies in the test before being 

multiplied by 100 (figure 2a) 
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I.II.II Ability to sense smells 

Groups of 50-60 males were placed into a T-maze and exposed to air for 30 

seconds. They were then transferred to a choice point where they were allowed to 

choose between either OCT or MCH and air for 2 minutes. 

To calculate the percentage of flies moving towards to smell the number of 

flies moving towards a smell was counted and divided from the total number of flies. 

This number was then multiplied by 100 (figure 2b). 

 

I.II.III Results 

Male flies separated equally between 3-Octanol and 4-methocyclohexanol when 

18.5 µl of Oct and 20 µl of Mch was each diluted in 10 ml of light mineral oil (One-

samples T-test: t17 = -0.052, p = 0.959, Table 1). There was no difference in the 

ability of males to sense either smell when compared to air (Students T-test: t19 = 

0.229, p= 0.821, Figure 2c). Therefore, any group experiments undertaken used an 

18.5/20 (µl/µl) Oct/Mch split. 
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Figure 2: Smell sensing in group males. (a) is the equation used to calculate the Oct 

preference of male flies when exposed to both Oct and Mch. (b) is the equation 

used to calculate either Oct or Mch preference when exposed to a smell and air. (c) 

shows the % males flies moving towards smell when given a choice between a 

smell and air. Error bars show 1 standard error mean.

Total number of flies 

Number of flies in 3-Octanol 
100 X 

Total number of flies 

Number of flies in smell 
100 X 

A 

B 
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Table 1: T-maze smell sensing. Oct/Mch shows the amount used (in µl) when 

diluting in 10 ml of light mineral oil for the two smells. % Oct shows the percentage 

of flies choosing 3-Octanol out of the total number of flies who made a choice. 

 

Oct/Mch (µl/µl) % Oct Sig. value 

16/10 68.6 +/- 2.36 ≤ 0.000 

17/10 61.17 +/- 4.15 0.004 

20/20 40.67 +/- 1.77 0.001 

18.5/20 49.84 +/- 2.92 0.959 

 

Sig. value shows the significance value of a one-sample T-test when % Oct was 

compared to 50 %.
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I.III Associative T-maze smell sensing with single males 

In addition to balancing the smells when males are tested in groups, males 

undergoing learning and memory testing in the T-maze individually should also have 

an equal likelihood to choose both smells (Claridge-Chang et al. 2009). Although 

this should theoretically be the same balance of smells as when males were tested 

in groups, group living may change the ability of males to sense one or both of the 2 

smells used differently. Therefore, similar experimental methods were used to 

balance smells in the T-maze when only 1 male was present at a time. Again, a trial 

and error process was used beginning with the 18.5/20 OCT/MCH split used to 

balance males tested in groups. 

 

I.III.I Smell sensing with single males 

Single males were placed in a T-maze and exposed to air for 30 seconds before 

being moved to a choice point. Here, males were exposed to 3-Octanol and 4-

Methlycyclohexanol for 2 minutes. The time males spent in either smell was timed 

and the overall 3-Octanol score calculated by dividing the total time spent making a 

choice by the time spent in 3-Octanol then multiplying this number by 100. 

 

I.III.II Results 

Single male flies spent equal amount of times in 3-Octanol and 4-

Methlycyclohexanol when 27 µl of Oct and 10 µl of Mch were each diluted in 10 ml 

of light mineral oil (One-sample T-test: t129 = -0.977, p = 0.330, Table 2).
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Table 2: Smell sensing for a single fly. Oct/Mch shows the amount in µl of each 

smell diluted in 10 ml of light mineral oil. Oct index shows the percentage of time out 

of 120 seconds single flies spent in Oct. 

 

Oct/Mch (µl/µl) Oct index (%) Sig. value 

 10/30 98.8 +/- 1.19 ≤0.000 

 10/25 67.2 +/- 20.73 0.444 

 10/20 87.8 +/- 12.18 N/A 

 20/20 74.9 +/- 18.81 0.257 

 25/20 97.4 +/- 3.52 0.003 

 25/15 100 +/- 0 N/A 

 40/20 97.6 +/- 2.35 ≤0.000 

 20/10 77.5 +/- 16.22 0.151 

 25/10 76.5 +/- 11.31 0.079 

 27/10 46.1 +/- 4.0 0.33 

 30/10 8.6 +/- 5.0 0.004 

 

Sig. value shows the significance value of a one-sample T-test when % Oct was 

compared to 50 %
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