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Abstract

Sustainable fisheries management require an understanding of the relationship

between the adult population and the number of juveniles successfully added to

that population each year. The process driving larval survival to enter a given

stage of a fish population is highly variable and this pattern of variability reflects

the strength of density-dependent mortality. Marine ecosystems are generally

threatened by climate change and overfishing; the coupling of these two sources

have encouraged scientists to develop end-to-end ecosystem models to study the

interactions of organisms at different trophic levels and to understand their be-

haviours in response to climate change. Our understanding of this important

and massively complex system has been constrained historically by the limited

amount of data available. Recent technological advances are beginning to address

this lack of data, but there is an urgent need for careful statistical methodology

to synthesise this information and to make reliable predictions based upon it.

In this thesis I developed methodologies specifically designed to interpret the

patterns of variability in recruitment by accurately estimating the degree of het-

eroscedasticity in 90 published stock-recruitment datasets. To better estimate

the accuracy of model parameters, I employed a Bayesian hierarchical modelling

framework and applied this to multiple sets of fish populations with different

model structures. Finally, I developed an end-to-end ecological model that takes

into account biotic and abiotic factors, together with data on the fish commu-

nities, to assess the organisation of the marine ecosystem and to investigate the

potential effects of weather or climate changes.

The work developed within this thesis highlights the importance of statistical

methods in estimating the patterns of variability and community structure in

fish populations as well as describing the way organisms and environmental fac-

tors interact within an ecosystem.
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Chapter 1

Introduction

Every truth without exception —and whoever

may utter it —is from the Holy Spirit.

–St. Thomas Aquinas.

In this chapter I present an overview of my work and define the problem that

I am trying to solve using statistical analysis methods. I describe growth and

mortality rates as the driving forces for provoking the dynamical behaviour of fish

populations that depend on environmental changes and fishing activities. Several

methods were used to analyse fish population dynamics. Among those I provide

an overview of some methods that I believe are in line with my perspective.

Finally, I conclude this chapter with an outline of the structure of the remainder

of the report.

1.1 Motivation and Overview

The oceans cover 71% of the earth’s surface and represent a habitat for many

species of fish and sea life. marine systems contribute 27% to global carbon bud-

gets (Le Quéré et al., 2015), and more than 3.1 billion people (20% of the world’s

population) depend on fish as their main source of protein (Food and Agricul-

ture Organisation, 2016). The Food and Agriculture Organisation (2016) of the

United Nations stated that around 90% of the world’s stocks are either fully fished

or overfished and the total world fishery production (capture plus aquaculture) is

projected to increase by 31 million tonnes in the next decade to reach 178 million

tonnes in 2025, which is an increase of 17% to the global consumption of fish

1
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supplies. Unfortunately, fish species are limited in quantities and the use of ille-

gal and inappropriate fishing activities could lead to their extinction. To protect

these resources, proper rules and regulations in fisheries management should be

implemented; local policies should promote aquaculture as an alternative form for

animal food production, which involves cultivating freshwater and saltwater pop-

ulations under controlled conditions. The United Nations Food and Agriculture

Organisation states that freshwater species such as: carp, catfish and tilapia, will

account for most of the increase in aquaculture production and represent about

60% of total aquaculture production in 2025; however, production of higher-value

species, such as shrimps, salmon and trout, is also projected to continue to grow

in the next decade.

In this research, I exploit a set of statistical methods to reveal information em-

bedded in fish stock assessments. I analysed whether adding an extra parameter

(non-constant variance) η1 to the stock-recruitment (S-R) relationship can ex-

plain better the variability in fish recruitment. The analysis is based on two

different approaches: the first is based on using both frequentist and Bayesian

paradigms applied to single fish stock assessment; and the second consists of em-

ploying a Bayesian hierarchical framework applied on multiple fish populations

with different model structures. Finally, I invented a new end-to-end model to

analyse the impact of climate change, variability and extreme weather events on

the abundance of marine species.

1.2 Fish population dynamics

The dynamical behaviour of a fish population is the way a population of fish

varies over time. This variability is caused by the growth and mortality rates in

a population. Hilborn and Walters (1992) define a fish population as a unit stock

of a homogeneous collection of fish that are all subject to the same opportunities

for growth and reproduction and the same risks of natural and fishing mortality.

A sufficient amount of nutrition is necessary for fish to gain weight and reproduce

as they age. Steele et al. (1977, page 44) proposed a relationship between food

intake and body weight or body length, where they illustrated how the growth is

sensitive to fluctuations in the consumption of food. Obvious sources of mortality

are as follows: fishing activities; emigration interpreted as mortality; immigration

interpreted as negative mortality; predation; starvation; poisonous pollutants and
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so forth (Steele et al., 1977, page 87). The mortality is often partitioned into

three different categories: (i) fishing mortality, (ii) density-dependent mortality,

and (iii) density-independent mortality. The density-dependent mortality rate

of fish populations rises when the carying capacity becomes saturated or when

food resources diminish; however, the density-independent mortality rate rises

when the environmental conditions become harsh —chemical changes (salinity

content, oxygen concentration, and acidification) of the aquatic environment.

After hatching the individuals in a cohort are subject to an exponential decay

over time, meaning that the higher the mortality rate the faster the population

numbers decline. Therefore, we can write the population size of next year as a

survival rate s times population size of this year plus new recruits (Hilborn and

Walters, 1992), such that

Nt+1 = sNt +Rt+1 (1.1)

= Nt exp{−f − (m1 +m2 + . . .+mn)}+Rt+1

= Nt exp(−f −m) +Rt+1,

where f is the fishing mortality rate and m = (m1 +m2 + . . .+mn) is the total

natural mortality that includes both density-dependent and density-independent

factors.

1.3 Model of stock and recruitment

The Spawning Stock Biomass constitutes a fundamental characteristic in fisheries

science to assess the growth of a fish population. Recruitment is the abundance

in numbers or biomass of juvenile fish that live from hatching to adult life. The

ideal assessment of spawning stock is the number of eggs produced by adult fish;

marine biologists often assess the spawing stock as the total weight of the fish in

a stock capable of reproducing, which is usually measured in terms of biomass

(e.g. tonnes) (Shepherd and Cushing, 1990). Needle (2001) reviewed a synopsis

of the types of recruitment model that are utilised in stock assessments and the

degree to which these models are employed; he also emphasised the need to link

biological and oceanographic recruitment models with assessment procedures to

study the problem of fish stock assessment. In this context, I briefly describe the

most commonly used models: Beverton-Holt, Ricker and Deriso-Schnute models.
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The simplest model that relates recruitment to spawning stock is the Beverton

and Holt (1957) model, which can be described as

R =
αS

β + S
, (1.2)

where R is the recruitment, S is the stock biomass, α measures the productivity

and β represents the density-dependent mortality in a population. As the stock

size gets very large, the recruitment value tends asymptotically to α.

An alternative formulation of the Beverton-Holt model incorporates a parameter

characterising the ‘steepness’ of the stock-recruit relationship at low stock sizes.

Mace and Doonan (1988) defined the steepness (h) as the fraction of recruitment

from an unfished population (R0) when the spawning stock biomass (SSB) is at

20% of its unfished level (S0). As h approaches 1, the Beverton-Holt relationship

approaches a form in which recruitment is constant; when h is 0.2, recruitment is

linearly related to SSB. The advantage of this formulation is that h is unaffected

by the actual size of the stock.

Ricker (1954) suggested an exponential decay of recruitment as the spawning

stock biomass increases, such that

R = αS exp(−βS). (1.3)

As S → R, then R = log(α)/β.

Deriso (1980) introduced the general three-parameter stock-recruitment relation-

ship to incorporate both Ricker and Beverton-Holt models, which was further de-

veloped by (Schnute, 1985): resulting in the so-called the Deriso-Schnute model:

R = αS(1− γβS)1/γ, (1.4)
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where the parameters α and β measure the productivity and the density-dependent

mortality in a population; however, γ enables us to choose between different sur-

vival models, such that

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αS, lim γ → −∞
αS

1 + βS
, γ = −1

αS exp(−βS), lim γ → 0

αS(1− βS), γ = +1.

(1.5)

If γ → −∞ the stock-recruitment relationship becomes linear as the density-

dependent effect weakens; however, if γ becomes positive such as γ = +1, the

density-dependent mortality rate increases and fish recruitment becomes attenu-

ated with large stock size. Fish populations pass through a number of life-history

stages, starting from planktonic egg to larval to juvenile, before recruitment and

then adult stages. The density dependent mortality is believed to influence fish

populations most during the juvenile stage (Myers and Cadigan, 1993a); Hjort

(1914) considered that recruitment variability was determined in the early stages

of larval development. Much of the research on the early life history of fish has

focused on Hjort’s starvation hypothesis which implies a high mortality of small

feeding larvae during the first few weeks of life (Wooster and Bailey, 1989).

1.4 Methods used to analyse fish populations

Several models have been proposed to describe how a fish population changes

over time. The exponential law of population growth (Malthus, 1798) is proba-

bly the most commonly used method in the field of population ecology to repre-

sent dynamic populations, which is regarded as the first principle of population

dynamics (Turchin, 2001). Conservation laws in modelling a population assume

that birth, death, emigration, and immigration are proportional to the number

of organisms in the population (Turchin, 2001). On the other hand, Bayesian

statistical methods have also been investigated by many scientists for enhanc-

ing fishery management systems. For example, McAllister and Kirkwood (1998)

compared the performance of two Bayesian models for fitting a logistic model

to relative abundance of fish species: the first employs a non-conjugate refer-

ence prior that uses all historic data; the second employs a conjugate prior that
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provides closed form analytical solutions. Munch et al. (2005) used a Bayesian

non-parametric approach with conjugate prior knowledge to evaluate uncertain-

ties in fishery management systems (e.g. stock-recruitment curve, steepness and

the stock biomass at maximum sustainable yield). Their method was applied

to different synthetic data sets generated from a variety of parametric models

(e.g. Ricker, Beverton-Holt, Shepherd, SailaLorda and Open-mixture), and they

finally tested it on empirical datasets for lingcod Ophiodon elongatus and several

salmonids as they found a comparable fit to the Ricker and Beverton-Holt mod-

els. Brodziak and Piner (2010) analysed the North Pacific striped marlin because

they found it vulnerable to recruitment overfishing in pelagic longline fisheries

which targeting tunas. The authors applied two different scenarios to account

for different hypotheses about the steepness of the stock-recruitment relationship

(h = 0.7 and h = 1) for which Beverton-Holt and Ricker models were applied to

estimate the maximum sustainable yield (SMSY) and the associated limit fish-

ing mortality (FMSY) respectively. Results were then combined by the mean

of model averaging to assess the probable status of a fishery resource for these

competing assessment scenarios.

Bayesian hierarchical analysis of stock-recruitment relationship offers a natural

way to incorporate multiple stock assessment hypotheses. Michielsens and McAl-

lister (2004) applied a Bayesian hierarchical analysis using the Beverton-Holt and

Ricker models over the Atlantic salmon stock-recruitment data to infer the steep-

ness parameter for Baltic salmon for which no data are observed. What makes

the steepness parameter interesting is its characteristic that is comparable among

populations.

Chen and Fournier (1999) proposed a Bayesian inference method based on a mix-

ture distribution function to simulate a heavy-tailed distribution for analysing

fisheries data contaminated with outliers. This has the effect of preventing the

probability of occurrence of an event to drop off quickly as we move away from

the centre of the distribution. Moreover, state space models were applied for

modelling the dynamical behaviour of discrete-time population. Buckland et al.

(2004) modelled the wildlife population process by the state process and mea-

surements by the observation processes. The evolution from one state to another

is described by three separate first-order Markov sub-processes (i.e. survival,

movement and birth), which are linked together to produce the overall popula-

tion dynamics model. These might correspond to winter survival, movement in
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spring, and births in early summer. Sequential Monte Carlo was used for eval-

uating model parameters as it avoids computing the intractable likelihood. The

authors proposed an interesting extension to their work by applying time-varying

parameters in a hierarchical framework, as in Newman (2000).

Finally, Tsitsika et al. (2007) applied univariate and multivariate autoregressive

integrated moving average models to predict the total pelagic fish production time

series data of monthly catches up to 12 months in advance. The univariate model

was constructed as a linear function of past values of the time series; however,

the multivariate model was developed so as to predict the value of one species

including the effect of other species. Apparently, the fitting accuracy of multi-

variate models outperformed the univariate ones as they incorporated additional

information in the model.

1.5 Aims and Objectives

The principal aim of this thesis is to develop a statistical inference method for

dynamical fish populations following a discrete time system. A key feature of

this research is to understand the factors that are controlling this evolution, and

come up with a model capable of capturing the underlying structure of the time-

series data. As application I choose to study the influential factors that affect

recruitment variability of fish population in oceans, and develop an end-to-end

statistical model using biotic, abiotic and fish populations to assess the impact

of weather change on the marine ecosystem.

To achieve this aim, it is necessary to develop some research objectives such as

to:

1. Review literature about existing ecological systems (e.g. linear and non-

linear models) to understand how one can mathematically represent the

dynamical behaviour of fish populations.

2. Review literature about the relationship between survival variability and

the strength of density dependence to understand the characteristics of

population regulation.

3. Apply a statistical analysis using Bayesian and frequentist paradigms to

assess the reliability of a non-constant variance added to the Deriso-Schnute

model.
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4. Apply Bayesian hierarchical models to combine knowledge of fish stocks so

as to estimate the distribution of unobserved parameters and understand

the best model structure that can explain the variability of fish recruitment.

5. Develop an end-to-end model to understand the impact of climate change

on the ecosystem and marine species.

1.6 Problem statements

The problem statements of my doctoral research was to investigate the following

questions:

• Can heteroscedastic (non-constant variance) models explain why there is a

high survival rate in fish populations at low stock size?

• Can Bayesian hierarchical analysis improve the estimation of key param-

eters and achieve a better fish recruitment prediction for harvested fish

populations?

• Can we predict the impact of weather change on the ecological system using

end-to-end ecological models?

The answer for each of these questions is described in Chapters: 3, 4 and 5

respectively.

1.7 Data Used

In this research I use the time series for the spawning stock dataset taken from

two sources: (i) RAM Legacy Stock Assessment Database (Ricard et al., 2012),

and (ii) International Council for the Exploration of the Sea (ICES) (http:

//standardgraphs.ices.dk/stockList.aspx). The planktonic data are taken

from the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) (Johns,

2015), and the abiotic variables are taken from National Oceanic and Atmo-

spheric Administration (NOAA) (NOAA, 2015).

In this work, I divided each dataset into three disjoint subsets composed of: train-

ing, validation and testing sets. The training set consists of training the models,

the validation set consists of validating and tweeking the parameters of models
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and the testing set consists of testing the models. A common splitting choice

in machine learning is to choose the first 60% for the training, the next 20% for

validation and the remaining 20% for testing, and this I chose to do in my whole

thesis.

1.8 Structure of the Report

The remainder of this report is organised as follows:

Chapter 2 is the literature review of this thesis for which relevant statistical

information is being explored and analysed. I begin by describing the theory

of probability, compare frequentist and Bayesian approaches, and review

approximation techniques such as: functional approximations and Markov

chains. Other methods are reviewed in this chapter such as: Bayesian

hierarchical models, dynamic Bayesian networks, non-parametric models,

and time series processes that might evolve over time.

Chapter 3 consists of presenting an analysis on assessing the reliability of the

non-constant variance (heteroscedasticity) in the stock-recruitment models

using both frequentist and Bayesian methods. The non-constant variance

is applied to a global compilation of stock and recruitment data to examine

its influence on the relationship between the variability in survival and

population abundance. Much of the work in this chapter is published in the

Canadian Journal of Fisheries and Aquatic Sciences, printed in Appendix

H.

Chapter 4 consists of presenting different hierarchical Bayesian models for im-

proving estimation of key parameters found in stock-recruitment relation-

ships (i.e. the non-constant variance) and improving our understanding of

dynamical behaviour of fish populations and community structures.

Chapter 5 consists of presenting a simple end-to-end modelling framework ex-

ploiting theory from dynamic Bayesian networks for coupling environmen-

tal, planktonic and fisheries data to arrive at predictive ecosystem-scale

models.

Chapter 6 consists of summarising the principal findings and contributions of

my research and to identify possible avenues for future work.



Chapter 2

Background

In this chapter, I review the necessary literature in statistical learning to represent

an appropriate background framework for this research. In particular I focus

on both frequentist and Bayesian inferential theories for learning models from

data. Additionally, I review basic principles of dynamical Bayesian networks,

approximate inference methods, advantages of non-parametric models and time

series processes that might develop over time.

2.1 Basic Concepts in Probability Theory

This section consists of describing basic rules and elementary concepts in proba-

bility theory.

2.1.1 Uncertainty

Uncertainty is a term used to express our ignorance about events or about mea-

surements that we have already performed. It can be caused by the lack of

sufficient information, knowledge or precision. This principle is applicable to a

wide range of applications and fields such as: politics, economics, physics, en-

gineering, biology, law and so forth. Among the numerous practical cases, the

following examples illustrate how uncertainty arises from one or multiple sources

and impacts on our ability to make decisions.

Lack of information as well as having limited knowledge in understanding real

problems may render us unsure about our judgments. For instance, the jury

would become uncertain about convicting the offender if they could not find real

10
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evidence that proved his guilt. On the other hand, an inappropriate software

development methodology can lead to inaccurate or invalid results and hence

throw the project behind schedule. In medical diagnosis, the presence of some

symptoms are not always enough to diagnose the disease with a high degree of

certainty. Though, additional medical tests are usually required to be performed

(Castillo et al., 1997, page 4). From a scientific point of view, uncertainty con-

stitutes an integral part of all sciences, which is a fundamental measure that

characterises the degree of confidence when measuring a physical phenomenon

such as: measuring temperature, length, voltage and so forth. Heisenberg (1927)

conducted an experiment to measure simultaneously the position and momentum

of an electron particle, when struck by a photon. Accordingly, he concluded his

work with the following statement:

The more precisely the position is determined, the less precisely the

momentum is known in this instant, and vice versa.

This was a significant step forward, for that time period, in the development of

the modern theory of quantum mechanics. An intuitive measure of uncertainty

is probability, which we are going to illustrate subsequently.

2.1.2 Probability theory

Early civilisations like the Egyptians, Babylonians and Greeks theoreticians laid

down basic geometry and algebra techniques but they had not come across chance.

This has been on hold until the renaissance (17th century) when Chevalier de

Meré asked Pascal about how to figure out, at any given stage, the probability

of winning a gambling game. Then Pascal involved Fermat on the subject of this

question (Todhunter, 1865, page 7). In these early days, the theory of probability

was based either on the relative frequency of occurrence of an event or on the

subjective degree of belief a person has in an event. Let us assume that we may

repeat an experiment a large number of times, and we query the system about

the relative frequency of occurrence of an event e. If we denote by n the number

of repetitions that are assumed to be independent and identically distributed

(i.i.d.) and by Sn the number of times the event e was found to be true, we could

then state if n is very large the ratio Sn/n should be near to the probability p of

the event e. To make a precise mathematical formulation of this statement, we

translate the term i.i.d. as ‘Bernoulli trials’ with probability p for success, then
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the average number of successes Sn/n should converge to p. Chebichef (1846)

proved this hypothesis by assuming the probability that Sn/n exceeds p + ε,

where ε > 0, in the form

Pr

(
Sn

n
> p+ ε

)
= Pr

(
Sn

n
− p > ε

)
.

An upper bound of this probability is given by Chebyshev’s inequality, such that

Pr

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

)
≤ σ2

nε2
, where σ2 is the variance parameter.

⇒Pr

(∣∣∣∣Sn

n
− p

∣∣∣∣ < ε

)
= 1− Pr

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

)
≥ 1− σ2

nε2
.

Therefore, we conclude that in the limit of large number of trials the probability

of average number of successes deviates from p by a small number ε, such that

lim
n→∞

Pr

{∣∣∣∣Sn

n
− p

∣∣∣∣ < ε

}
→ 1. (2.1)

This theory has been improved by many other scientists such as de-Moivre,

Laplace and in addition to so many others; but it had not found a precise math-

ematical formulation for nearly three centuries till Kolmogorov (1933) when he

finally imposed new axioms for modern probability theory, defined by

A triple (Ω,U ,Pr) is called a probability space if it comprises a set Ω

of events, a σ-algebra U of subsets of Ω, and a probability measure Pr

on the pair (Ω,U ), which can be defined as a function Pr: U → [0, 1]

satisfying

1. The probability of an event is a non-negative real number: Pr(e) �
0.

2. The probability of an event to occur in the entire sample space

is one: Pr(Ω) = 1, and the probability of an event to occur on

the empty space is zero: Pr(∅) = 0.

3. Let e1, . . . , en, . . . be a set of disjoint events of U , in that ei∩ej =
∅ for all pairs i, j satisfying i=/ j, then

Pr

( ∞⋃
i=1

ei

)
=

∞∑
i=1

Pr(ei).
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This contribution was significantly important for enabling further probability

rules to emerge.

2.1.3 Conditional probability

Information sometimes arrives in stages, and this may happen when we are ob-

serving a physical process. For example, if we are observing the activity of a

hot spring or a geyser bursting hot water skyward, we notice that the eruptions

might be occurring either at regular intervals of time or not. While observing

these eruptions, one might compute the probability of an event e2 to occur given

an observed event e1 of the form

Pr(e2|e1) = Pr(e1 ∩ e2)

Pr(e1)
(2.2)

where e1 is the event of the eruption at time t1 and e2 is the expected event at

time t2. If these events are independent one may write Pr(e1∩e2) = Pr(e1) Pr(e2).

More generally, a family {Ei : i ∈ I} is called independent if

Pr

(⋂
i∈J

Ei

)
=
∏
i∈J

Pr(Ei)

for all finite subsets J of I.

2.1.4 Bayes theorem

Bayes theorem was invented by Thomas Bayes (1702-1761), which relates the

conditional probabilities to their inverses. This approach was used as a measure

to represent uncertainty in decisions, known as the first level of inference. Keynes

(1921) proposed that the theory of probability is logical, because it involves logical

relations between the propositions that express our direct knowledge and the

propositions about which we seek indirect knowledge. Soon after, Cox (1946)

used these rules as axioms and developed an elegant probability theory using

Boolean algebra and degree of belief.

Since conjunction is a commutative operation in Boolean algebra, the conditional

probability expressed in Equation (2.2) can be written as

Pr(e1 ∩ e2) = Pr(e2|e1) Pr(e1) = Pr(e1|e2) Pr(e2). (2.3)
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By rearranging we get Bayes’ theorem which takes the form

Pr(e2|e1) = Pr(e1|e2) Pr(e2)
Pr(e1)

, (2.4)

where Pr(e2) could represent the prior knowledge which reflects our belief about

e2 before we observe any evidence, Pr(e1) is the probability of observing the evi-

dence, Pr(e1|e2) is the likelihood which can be determined from the case histories

of the event e2, and Pr(e2|e1) is the posterior probability that determines our

new belief about e2 after observing the evidence e1. In other words, the Bayes

theorem relates the conditional probabilities of events before and after observing

the evidence. Equivalently, one may write Bayes’ theorem in words

Posterior =
Likelihood × P rior

Evidence
. (2.5)

Bayes’ theorem may be highly subjective because of the choice of prior distri-

bution depends upon the individual (or group) concerned. One might develop

further the expression of the posterior such that

Pr(e2|e1) = Pr(e1|e2) Pr(e2)
Pr(e1|e2) Pr(e2) + Pr(e1|¬e2) Pr(¬e2) , (2.6)

where ¬e2 is the negation form of e2, which means that the proposition we made

about e2 is false. Bayes theorem can be used in many applications of probabilistic

modelling and inference such as: spam filtering and human motion modelling.

2.1.5 Random variables

A random variable is a function of a sample space of possible numerical values,

which can be defined as

Let (Ω,U ,Pr) be a probability space. A mapping

X : Ω→ R

with the property that {e ∈ Ω : X(e) ≤ x} ∈ U for each x ∈ R. We

equivalently say that X is U -measurable.

For example, the sample space for a fair coin tossed twice (i.e. x = 2) consists

of the following set Ω = {HH,HT,TH,TT}. For an event e ∈ Ω, the number of
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observed tails are mapped as: X(e) ≤ x, where x ∈ R. This can be illustrated in

the form

X(HH) = 0, X(HT) = X(TH) = 1, X(TT) = 2.

The values of a random variable X can be either real, discrete or complex. The

probability that X will take the value x and Y will take the value y can be written

as Pr(X = x, Y = y), which is called the joint probability of X = x and Y = y.

For discrete random variables, the two fundamental rules of probability theory

can be written in the form{
Marginal probability Pr(X = x) =

∑
y Pr(X = x, Y = y),

Joint probability Pr(X = x, Y = y) = Pr(Y = y|X = x) Pr(X = x).

(2.7)

This is also known as the sum rule and the product rule of probability. Through-

out this thesis, I am going to use an uppercase letter to represent random variables

and a lowercase letter to represent realisations.

2.1.6 Density functions

A continuous random variable X defined over an interval of values is constrained

to take its value from within this interval. For example, if X lies in an interval

[a, b], the behaviour of X can then be described by a probability density function

fX(x) for a ≤ x ≤ b. Figure 2.1 illustrates the area under the density function

Figure 2.1: Example of a probability density function.

fX(x)

xδx

between two points x and x+ δx. However, the mathematical representation for

the distribution function between these points can be defined by

Pr(x < X ≤ x+ δx) =

∫ x+δx

x

fX(u)du. (2.8)
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This can be extended to any measurable set, such that

Pr(X ∈ A) =

∫
A

fX(u)du. (2.9)

Additionally, the total area under the density function must be equal to one, so

that ∫ b

a

fX(x)dx = 1. (2.10)

On the other hand, for a discrete random variable the above probability density

function turns out to become a probability mass function instead, and the inte-

gration term will be replaced by summation, which can be used to describe the

concentration of possible observed values along the x axis.

2.1.7 Expected values and Covariances

The general expression for the expected value of any function g of X can be

written as follows:

E[g(X)] =

∫ +∞

−∞
g(x)fX(x)dx; for a continuous case, (2.11)

and

E[g(X)] =
∑
x

g(x) Pr(X = x) =
∑
x

g(x)p(x); for a discrete case. (2.12)

We can deduce that the mean and variance are special cases of expected values,

where the mean is found by taking g(X) = X , so that

μX = E[X] =

∫ +∞

−∞
xfX(x)dx, (2.13)

and the variance is found by taking g(X) = (X − μX)
2, which is defined by

σ2
X = E[(X − μX)

2] =

∫ +∞

−∞
(x− μX)

2fX(x)dx

= E[X2]− E[X]2 (2.14)

= E[X2]− μ2
X .
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For two random variables X and Y , the covariance is given by

Cov[X, Y ] = E[(X − E[X ])(Y − E[Y ])]

= E[XY ]− E[X]E[Y ] (2.15)

= E[XY ]− μXμY ,

which is actually a measure of dependence. It is always zero for independent

variables and can also be zero for non linear relationships. Finally, if X and Y

are two random vectors, the cross-covariance is used to refer to the covariance

between X and Y, defined by

Cov[X,Y] = E[(X − E[X])(Y − E[Y])T ] (2.16)

= E[(X − μX)(Y − μY )
T ].

2.1.8 Optimisation theory

In most cases numerical techniques are required to search for optima of functions

so as to select the best value from some set of possible choices. Here I review

some basic principles of optimisation theory along with the Automatic Differ-

entiation Model Builder (ADMB) and simulated annealing methods for solving

optimisation problems.

2.1.8.1 Concavity and Convexity

Let us assume that f(x) is a continuous function in the interval [x1, x2]. This

function is concave ⇔

∀x1, x2 ∈ R and ∀λ1, λ2 ∈ [0, 1] given that λ1 + λ2 = 1, we

obtain

f(λ1x1 + λ2x2) ≥ λ1f(x1) + λ2f(x2). (2.17)

Figure 2.2 is a graphical representation of a concave function, which shows that

for any point falling between x1 and x2, the corresponding function value is larger

than the value belonging to the chord . Moreover, the function f(x) is strictly

concave iff the inequality is strict. Similarly, we define the convex function in the

form

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2). (2.18)
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Figure 2.2: Definition of concavity.

x1 x2
λ1x1 + λ2x2
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2.1.8.2 Jensen’s Inequality

For a continuous concave function f(x) ∈ R and X a random variable with values

∈ R, we can write

f(E[X ]) ≥ E[f(x)]. (2.19)

An important conclusion that is worth mentioning at this juncture is that the

local minimum of a convex function is a global minimum too; in addition, the

local maximum of a concave function is also a global maximum.

2.1.8.3 Automatic Differentiation Model Builder

Fournier et al. (2012) developed the automatic differentiation model builder

(ADMB) programming framework based on automatic differentiation (AD) to

numerically compute derivatives of highly nonlinear models with a large number

of parameters. It takes advantage of C++ class structures to collect intermedi-

ate results and perform internal calculations that implement the AD algorithm,

which is based on the chain rule. ADMB uses the reverse AD method as a

general strategy for calculating first-order derivatives rather than applying nu-

merical derivative calculation based on finite differences. AD involves evaluating

the objective function, storing in memory the value of each intermediate quan-

tity (t1, t2, . . . , tn) and then apply the chain rule, in which no derivatives are

calculated. The parameter estimation is based on maximizing the log-likelihood

function using a quasi-Newton algorithm with derivatives obtained using the AD

method (ADMB actually minimizes the objective function so in practice the neg-

ative log-likelihood is used). ADMB partitions the model specification into three
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logical steps: (1) read in the data; (2) declare model parameters; and (3) code

the negative log-likelihood function to be minimized with respect to the model

parameters.

2.1.8.4 Simulated Annealing

Simulated annealing (SA) is an optimisation technique used to search for the

global optimum of a given function. It was inspired from thermodynamics by

analogy with annealing of a metal that consists of heating the solid state metal

to a high temperature and then cooling it down very slowly (annealing) to ensure

thermal equilibrium (Metropolis et al., 1953). This leads to a state with lower

energy than the energy of the metal before heating it. In general, SA algorithms

are better than greedy algorithms (e.g. Nelder-Mead, EM, Newton-Raphson) be-

cause they tend to find the global minimum among many local minima, providing

a sufficiently slow cooling technique. The algorithm of the SA can be described

as follows:

1. Starting from a very high ‘temperature’.

2. Perturb the placement through a defined move.

3. Calculate the change in the score due to the move made.

4. Depending on the change in score, accept or reject the move. The proba-

bility of acceptance depends on the current ‘temperature’.

5. Update the temperature value by lowering the temperature. Then go back

to Second step.

This process is carried out until the ‘Freezing Point’ is reached. one should

probably run this algorithm multiple times, with different initial values, to check

whether it finds approximately the same maximum likelihood estimate on each

run.

2.1.9 Probability distributions

In this section, I review two distributions of the exponential family, namely the

Gaussian and Gamma distributions.
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2.1.9.1 The Gaussian distribution

The Gaussian distribution was invented by Carl Friedrich Gauss (1777-1855) and

has been used widely to model a distribution of continuous variables. It has been

known by the name Normal, because most of the physical processes often have

distributions that are nearly normal (Lyon, 2014). For the univariate case, the

Gaussian distribution can be written in the form

N (x|μ, σ2) =
1√
2πσ2

exp{− 1

2σ2
(x− μ)2}. (2.20)

This distribution is controlled by two parameters which are the mean μ and

variance σ2. One might use the following notation X ∼ N (μ, σ2) to declare that

Figure 2.3: Probability density functions for different Gaussian distributions.

f(x)
σ2 = 1
σ2 = 0.36
σ2 = 0.2

a random variable X follows a Gaussian distribution. Figure 2.3 illustrates three

different Gaussian distributions plotted using different variances.

Assuming that X is a D-dimensional vector of continuous variables written as

X = [X1, X2, . . . , XD] respectively. The multivariate Gaussian distribution takes

the form

N (X|μ,Σ) = 1

(2π)D/2
√|Σ| exp

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
−1
2

⎛
⎜⎜⎜⎜⎝

X1 − μ1

X2 − μ2

...

XD − μD

⎞
⎟⎟⎟⎟⎠

T

Σ−1

⎛
⎜⎜⎜⎜⎝

X1 − μ1

X2 − μ2

...

XD − μD

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

(2.21)

where μ is a D-dimensional mean vector, and Σ is a D × D covariance matrix

given by

Σ =

⎛
⎜⎜⎜⎜⎝
Σ11 · · · Σ1D

Σ21 · · · Σ2D

...
. . .

...

ΣD1 · · · ΣDD

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

Cov[X1, X1] · · · Cov[X1, XD]

Cov[X1, X2]
T · · · Cov[X2, XD]

...
. . .

...

Cov[X1, XD]
T · · · Cov[XD, XD]

⎞
⎟⎟⎟⎟⎠ . (2.22)
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2.1.9.2 The Gamma distribution

The gamma distribution was formally introduced by Karl Pearson during the late

19th century to measure the degree of skewness of a continuous random variable. It

is well suited for many applications (e.g. financial modelling) and most commonly

in Bayesian statistics, where the inverted form of the gamma distribution serves

as a conjugate prior for the variance of the Gaussian distribution. Carvalho

et al. (2010) and Prado and Lopes (2010) have developed inference techniques to

retrieve information from models with fat-tailed noise defined using the inverse

gamma distribution. The probability density function of a gamma distribution,

is given by

f(X|α, β) = βα

Γ(α)
Xα−1 exp(−βX), (2.23)

where X is a random variable, α is the shape parameter, and β is the inverse scale

parameter, such that α, β,X > 0. Additionally, the gamma function evaluated

at α is defined as

Γ(α) ≡
∫ ∞

0

uα−1 exp(−u)du. (2.24)

Figure 2.4 illustrates three possible shapes of the probability density function

Figure 2.4: Probability density functions for different gamma distributions.

α = 1,β = 1.2
α = 2,β = 1.2
α = 3,β = 1.2

obtained by varying α and β respectively. The moments, mean and variance, of

this distribution are given by E[X ] = α/β and Var[X] = α/β2. However, the

inverse gamma (IG) distribution is defined by the distribution of Y = 1/X where

X ∼ G(α, β). The resulting density function becomes

f(X|α, β) = βα

Γ(α)
X−(α−1) exp(−β/X), (2.25)

where the moments are given by

E[X] = β/(α− 1) and Var[X ] = β2/(α− 1)2(α− 2).
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2.1.10 Sufficient Statistic

The concept of sufficient statistic is useful to summarise the data without losing

any information; in many practical examples it may be difficult to retain the data

due to disk storage space or significant degradation in performance. The formal

definition of sufficient statistic can be defined as: let x1, . . . , xn be a random

sample from a population depending on θ. A statistic T = T (x1, . . . , xn) is

said to be sufficient for the family of probability distributions if the conditional

distribution of x1, . . . , xn given T = t is independent of θ. For example, if we

observe a random sample X = {0, 0, 1, 0, 0, . . . , 1} generated from a Bernoulli

distribution B(n, p) and containing n independent non-identical trials; the sum

of the n elements of X entirely depends on the number of 1s that constitutes a

sufficient statistic for p.

2.1.11 Prior distribution

The prior distribution is an integral part of Bayesian inference because it serves

to define the overall model when it is combined with the likelihood. For instance,

the subjectivist approach enables us to develop predictive models as represen-

tation of beliefs before we observe the data. The overall model represents an

updated form of the degree of belief about observables that we made initially and

hence allows the model to learn from experience. What causes Bayesian inference

to become widely adopted in statistics and Machine Learning is its capability of

transforming the inference problem to be completely dependent of the probability

theory. Broadly speaking, the prior is more influential on the posterior distribu-

tion when we have few observations to update our beliefs. Below I describe the

subjective, objective and hierarchical priors.

2.1.11.1 Subjective prior

The subjective Bayesian approach attempts to extrapolate our prior beliefs to

anticipate the future behaviour of physical systems (e.g. weather forecasts). This

knowledge can be gained through different means such as results obtained from

previous similar experiments, historical data or knowledge obtained from expert

systems. Although the subjectivist approach has been widely used for solving

many important practical problems, it is still open for many criticisms due to its

subjective viewpoint itself. Typically, one may find it very difficult to interpret the
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complete detailed specification of beliefs about observables into a language which

allows for precise and rigorous analysis. A commonly used method to provide

a convenient analytical form rather than a realistic treatment is the exponential

family, which is not suitable for problems with latent variables.

2.1.11.2 Objective prior

The objective prior distribution approach attempts to apply non-informative pri-

ors to problems with limited background knowledge. This prior ignorance is also

applicable in instances when one may not be able to represent beliefs about ob-

servables into a mathematical language for the prior. Moreover, it attempts to

reduce the impact of the prior selection to avoid misleading the overall model, and

hence handing over the inference process to the data. This is often said ‘letting

the data speak for themselves’.

The most commonly used non-informative prior is Jeffrey’s prior (Jeffreys, 1946),

which takes the form

πθ(θ) ∝ det
√
I(θ), (2.26)

where I(θ) is the Fisher information matrix for any given value of θ, given by

I(θ) = Eθ

[
∂2

(∂θ)2
log(p(x|θ))

]
. (2.27)

The expectation is determined with respect to the probability function p(x|θ).
The Jeffrey’s prior is valid as long as I(θ) is defined and positive definite. For

example, in case that the data follows a Gaussian distribution N (μ, σ2), the

general rule identifies a uniform prior on μ while fixing σ, whereas it identifies a

prior π(σ) ∝ 1/σ while fixing μ. However, the Jeffrey’s multivariate rule yields

to π(μ, σ) ∝ 1/σ2. This is also known as an improper prior because the area of a

uniform distribution varying between (−∞,+∞) will achieve a sum greater than

one. Berger et al. (2009) proposed an enhanced version of the Jeffrey’s prior that

accounts for high dimensional problems, known as the Reference priors.
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Figure 2.5: A simple generative model for Bayesian inference with hierarchical
prior structure. The dashed rectangles denote a plate representation, that is, a
repetition over the different samples.

i={1,2,. . . ,N}

j={1,2,. . . ,M}

Xiθiαjβ

2.1.11.3 Hierarchical prior

The hierarchical approach consists of splitting the prior into multiple levels of

hyper-prior distributions, which are usually flat and non-informative. An un-

normalised posterior distribution can be written in the form

p(θ|X) ∝ p(X|θ)p(θ).

However, if we believe that the parameter θ depends on a hyper-prior distribution

of α, a hierarchical structure replaces the prior p(θ) into a likelihood p(θ|α) and

a prior p(α), so that

p(θ,α|X) ∝ p(X|θ)p(θ|α)p(α).

Additionally, if we believe that the parameter α depends on another hyperprior

distribution β, the posterior would then become

p(θ,α,β|X) ∝ p(X|θ)p(θ|α)p(α|β)p(β).

This hierarchical structure could continue further until estimating the optimal

prior distributions from the data. Hence the hierarchical prior structure can be

represented in the form

p(θ) =

∫
p(θ|α)p(α)dα, (2.28)

=

∫
p(θ|α)dα

∫
p(α|β)p(β)dβ.
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Figure 2.5 illustrates a three stage hierarchical model such that at the first stage

the dataXi is assumed to be sampled from a certain distribution with a parameter

θi, at the second stage the between data variation is modelled with αj , and at

the third stage, one can set a hyperprior distribution β on the αjs.

2.1.12 Conjugate-exponential models

Conjugate-exponential models involve distributions that belong to the same ex-

ponential family where the prior is chosen to have similar structure to the like-

lihood. Accordingly, both prior and likelihood would become conjugate, and the

prior would be called a conjugate prior with respect to the likelihood (Bernardo

and Smith, 2000). The exponential family of distributions defined over a random

sample, X = {x1, x2, . . . , xn}, and a set of parameters θ can be described in the

form

p(X|θ) =
n∏

j=1

f(xj)[g(θ)]
n exp

{
k∑

i=1

ciφi(θ)

(
n∑

j=1

hi(xj)

)}
, (2.29)

where θ is a vector of natural parameters of the distribution; φi(θ) is a function

of θ; the elements of h(x) =
[∑n

j=1 h1(xj), . . . ,
∑n

j=1 hk(xj)
]
are functions of x

that provides the sufficient statistics of the distribution; ci is a constant term;

f(xj) represents a function over the variable X , and g(θ) is the normalisation

term. A conjugate prior for the likelihood function described in Equation (2.29)

can be written in the form

p(θ|τ ) =
g(θ)τ0 exp

{∑k
i=1 ciφi(θ)τi

}
Z(τ ) , given that θ ∈ Θ, (2.30)

where τ = {τ0, τ1, . . . , τk} is the set of hyper-parameters, and the normalisation

constant represented in the denominator is given by

Z(τ ) =
∫

g(θ)τ0 exp

{
k∑

i=1

ciφi(θ)τi

}
dθ.
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Hence, the posterior will have the same functional form as the prior, given by

p(θ|X) =

∏n
j=1 f(xj)[g(θ)]

n+τ0 exp
{∑k

i=1 ciφi(θ)
(∑n

j=1 hi(xj) + τi

)}
∫
g(θ)τ0 exp

{∑k
i=1 ciφi(θ)τi

}
dθ

. (2.31)

Many common distributions such as the Gaussian, Dirichlet, Beta, Gamma,

Multinomial and Bernoulli are members of this family. For example, the con-

jugate prior for the normal likelihood is the normal gamma prior. However, from

a practical point of view, the more complex the prior function we choose, the

more computationally intensive the exploration of the posterior would become.

2.2 Graphical Models

In this section I introduce some basic concepts of graphical models, which can

be used for building probabilistic models and inference algorithms. Moreover, I

describe the two main members of the graphical models, directed and undirected

graphs, and some of their properties.

2.2.1 Basic concepts

A graph G is defined by a set of nodes (or vertices) and links (or edges). The

former can be used to describe a set of random variables X = (X1, X2, . . . , Xn);

however, the latter consists of a set of links used to describe a probabilistic rela-

tionship among these variables L = (l1, l2, . . . , lm). A graphical model G can be

described using the following notation: G = (X, L).

The name of directed and undirected graphs are derived from the types of links

used in a graph. A graph is called directed when all the links used in a graph

are directed; whereas it is called undirected when all links are undirected. Exam-

ples of directed and undirected graphs are illustrated in Figures 2.6 (a) and (b),

respectively.

2.2.2 Directed Graphs

An important property of directed graphs is the concept of parents and children;

for example, if there is a directed link from Xi to Xj (i.e. Xi → Xj) we can

say that Xi is the parent of Xj , and Xj is the child of Xi. By referring to the
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X1

X2 X3 X4

(a) Directed Graph

X1

X2 X3 X4

(b) Undirected Graph

Figure 2.6: Examples of directed and undirected graphs.

Figure 2.6 (a) we can say that the nodes X1 and X2 are the parents of X3,

and X4 is the only child of X3. A graph G that is composed of directed edges

between nodes such that there is no way to find a closed path or cycle while

following a consistently-directed sequence of edges is called a direct acyclic graph

(DAG); these graphs are also known as belief networks or Bayesian networks.

The joint probability distribution for a DAG defined over a set of n variables can

be represented as

p(X1, X2, . . . , Xn) =
n∏

i=1

p(Xi|pa(Xi)), (2.32)

where pa(Xi) are the parents of Xi. We can then write the joint distribution of

the graphical model (Figure 2.6 (a)) as a product of conditional distributions,

such that

p(X1, X2, X3, X4) = p(X1)p(X2)p(X3|X1, X2)p(X4|X3). (2.33)

The joint distribution defines the probability of events in terms of random vari-

ables, which is often used to refer to a probability density function when observing

continuous variables. By marginalising both sides over X3 and X4, we obtain

p(X1, X2) = p(X1)p(X2), (2.34)

This equation tells us that the knowledge about X2 does not improve our knowl-

edge about X1, and vice-versa. It turns out to represent a joint distribution of

independent random variables by the product of their marginals. The variables

X1 and X2 are said to be independent, if

p(X2|X1) = p(X2). (2.35)
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By referring back to the conditional distribution described in section 2.1.3, we

can write

p(X2|X1) =
p(X1, X2)

p(X1)
. (2.36)

One way to solve this equation is to reverse the problem by propagating the

observed evidence back to the opposite direction. The Equation (2.36) can then

be expressed as follows

p(X2|X1) =
p(X1|X2)× p(X2)

p(X1)
, (2.37)

which reminds us about the Bayes theorem, described previously in section 2.1.4.

The prior p(X2) describes our initial belief about X2 before observing the evi-

dence, the likelihood p(X1|X2) is determined by our model, the evidence p(X1) is

the normalisation constant, and finally the posterior p(X2|X1) is our new knowl-

edge about X2 obtained when observing X1. Therefore graphical models can be

adopted as a convenient method for graphically representing a family of proba-

bility distributions over a large number of random variables.

2.2.3 Undirected Graphs

In this section, I briefly introduce undirected graphs, which is the second largest

family of graphical models. They are called undirected graphs because the links

do not carry arrows and do not provide any direction, as illustrated in Figure 2.6

(b). Unlike belief networks, this type of graphs use an alternative factorisation

method to describe the joint probability distribution, which takes the form

p(X1, X2, . . . , Xn) =
1

Z
C∏
c

φc(xc). (2.38)

where Z is the normalisation constant, and φc(Xc) is the potential functions over

the maximal cliques of the graph. A clique is a subset of fully connected nodes

defined for the elements within the clique. For instance, if we factorise the joint

probability distribution of the graph that is illustrated in Figure 2.6 (b), we obtain

p(X1, X2, X3, X4) =
1

Z φc(X1, X3)φc(X2, X3)φc(X3, X4), (2.39)
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where φc(X1, X3), φc(X2, X3) and φc(X3, X4) are the potential functions over the

maximal cliques of the graph. Moreover, this type of graphs is also known as a

Markov network because the set of random variables have a Markov property.

2.3 Scoring functions

In this section I review the AIC, AICc and DIC methods for comparing the fits of

models on a given outcome. These methods are in favour of selecting the model

with the mimimum score so as to approximate the underlying process that has

generated the observed data.

2.3.1 Akaike Information Criterion

The Akaike information criterion (AIC) statistic (Akaike, 1973) is a method used

to select a model from a set of models; it penalises the likelihood for the number

of parameters estimated, such that

AIC = −2L(θ̂) + 2D, (2.40)

where L(θ̂) is the log-likelihood of the model evaluated at the maximum likelihood

estimate of θ and D is the number of (independent) model parameters. This AIC

statistic indicates that the smaller the value, the better the model.

2.3.2 Akaike Information Criterion corrected

An alternative version of the AIC statistic with a more severe penalty for the

number of parameters estimated is known as the bias-corrected AIC, denoted by

AICc (Hurvich and Tsai, 1989), defined as

AICc = −2L(θ̂) + 2D
n

n−D − 1
. (2.41)

This criterion avoids overfitting by replacing the penalty term of AIC with an

exact expression for the bias adjustment and provides improved model selection

for small samples. However, as n gets large, AICc converges to AIC: rendering

the AICc a more effective statistic in practice.
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2.3.3 Deviance Information Criterion

DIC (Spiegelhalter et al., 2002) is a Bayesian version of AIC (Akaike, 1973) in-

tended for hierarchical Bayesian models that consists of replacing the maximum

likelihood estimate with the posterior mean and replacing the number of param-

eters estimated in the model with a data-based bias correction, such that

DIC = D̄ + pD. (2.42)

The first term defines the posterior expectation of the deviance

D̄ = Eθ|y[D(θ)] = Eθ|y[−2 ln f(y|θ)]. (2.43)

This is a function of -2 times log-likelihood and it attains smaller values for better

fitting models.

The second term is the effective number of parameters that measures the com-

plexity of the model, defined as the difference between the posterior mean of the

deviance and the deviance evaluated at the posterior mean θ̄ of parameters, such

that:

pD = D̄−D(θ̄) = Eθ|y[D(θ)]−D(Eθ|y[θ]) = Eθ|y[−2 ln f(y|θ)]+2 lnf(y|θ̄). (2.44)

pD measures the effective number of parameters.

2.4 Statistical Inference

In this section I explore relevant statistical methods that are used in the course of

my research so as to provide a basic understanding of the specific problem. There

are two general approaches to solving statistical problems: the first is based on

the frequentist paradigm, and the second is based on Bayesian methods. Prob-

lems involving reasonably large datasets are well suited to frequentist methods;

however, Bayesian methods are desirable for problems involving small datasets,

missing values and where past knowledge of similar experiments are available

(Wakefield, 2013, page 144).
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2.4.1 Frequentist Statistical Methods

Under the frequentist approach to inference, parameters and hypotheses are

viewed as unknown but fixed quantities; whereas probabilities are related to fre-

quencies of events. Ronald Fisher invented the so-called maximum likelihood

estimation (MLE) method in the mid 1920s so as to determine the parameter

values that maximise the likelihood function, given a modelM. This estimator

is found to be important because it satisfies the following properties: consistency,

normality, and efficiency.

Consider a set of independent identically distributed (i.i.d.) samples denoted

by X = {x1, . . . , xn} for which we aim to estimate the probability distribution

over the data, p(X|θ); one approach consists of involving the MLE to fit model

parameters such that

θML = argmax
θ

p(x|θ,M), (2.45)

The likelihood function, which is the probability of data given parameters, for

i.i.d. samples can be written as the product of individual observations in the data

set such that

p(X|θ) =
n∏

i=1

p(xi|θ), (2.46)

Now let us consider an example where the data is derived from an unknown

Gaussian distribution N (μ, σ2) where we would like to infer the model parameters

θ = {μ, σ2} through maximum likelihood. By assuming that the i.i.d. condition

is still valid, the log-likelihood function can be written as

L(μ, σ2) ≡
n∑

i=1

log p(xi|μ, σ2) = −n
2
log(2π)− n

2
log(σ2)− 1

2

n∑
i=1

(xi−μ)2. (2.47)

By taking the partial derivative for each parameter and equating it to zero, we

obtain the MLE for model parameters, such that

μML =
1

n

n∑
i=1

xi and σ2

ML =
1

n

n∑
i=1

(xi − μML)
2. (2.48)

So far we demonstrated the maximum likelihood as a simple method for estimat-

ing the parameter values of a model. But does it work well in practice?

Let us assume that we have been given a task to judge whether a particular coin

is biased or not. Accordingly, we toss the coin few times (e.g. four times), and
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in each attempt it lands tails. What conclusion can we deduce?

Based on these events, the probability of observing a tail is always one, and

hence we would be very confident, based on maximum likelihood estimation, to

announce that the coin is biased because there is no evidence at all for observing

heads. But does this convince the audience?

One would not believe the coin is biased just by observing a sequence of four tails.

However, it would be more conceivable to convince the audience if we observed

a sequence of hundred tails perhaps, or couple of heads in a very long sequence.

We can deduce that the maximum likelihood is not suitable for problems with

small dataset size; but it can be a good choice for analysing models with few

parameters and a big dataset. Accordingly, we conclude that MLE is not a satis-

factory general solution to infer model parameters because of over fitting problems

when applied to models with many parameters and few observations. One might

propose incorporating prior belief about the model, p(θ), making it possible to

determine the maximum a posteriori (MAP) parameters by using Bayes’ theorem,

which can be written in the form

θMAP = argmax
θ

(p(x|θ,M)p(θ|M)). (2.49)

This can be interpreted as a summary of the posterior. θMAP provides an

exact point estimate for the parameter of interest instead of providing a whole

distribution of possible values.

2.4.2 Bayesian Inference

The problem of learning is often decomposed into three levels of inference (Rat-

tray, 2008): at the first level of inference, we assume that uncertainties can be

represented by probabilistic models; at the second level of inference, we assume

that our proposed mathematical model is correct and then we fit it to the data to

estimate the model parameters; at the third level of inference, we compare differ-

ent plausible models and select the one that best represents the data, known as

model selection. The selected model will be our best choice for representing un-

certainties in decisions. All these levels of inference can be solved by using Bayes

theorem, which is described in section 2.1.4. The advantage of using Bayesian

inference over the frequentist method is its ability to allow inference in difficult

conditions, especially when the data set is limited, noisy and contains missing
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information; but its difficulty lies in specifying the prior distribution because an

incorrect prior distribution in a small data set will have a great distorting effect

on the results. The model parameters θi in a Bayesian modelMi are estimated

by invoking Bayes’ rule, such that

p(θi|X,Mi)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(X|θi,Mi)

Prior︷ ︸︸ ︷
p(θi|Mi)

p(X|Mi)︸ ︷︷ ︸
Evidence

. (2.50)

where Mi is a particular model from a set of models {M1,M2, . . . ,MN}, and
θi is the corresponding parameter vector. In Bayesian modelling we first need to

define the likelihood function p(X|θi,Mi), then express our prior beliefs about

the parameter values before seeing the data, whereas the evidence p(X|Mi) (or

the marginal likelihood) involves an integration over all possible parameters of

the model, such that

p(X|Mi) =

∫
θi∈Θ

p(X|θi,Mi)p(θi|Mi)dθi, (2.51)

where X is a set of random variables. After observing some data, one would

be able to compute the posterior distribution p(θi|X,Mi) that can be used to

improve our knowledge about the parameters. Also, the Bayesian inference allows

the estimation of latent or hidden variables of a model given observed data and

a particular parameter setting, so that

p(Z|X, θi,Mi) =
p(X|Z, θi,Mi)p(Z|θi,Mi)

p(X|θi,Mi)
. (2.52)

where X is a set of real-valued observations with D dimensions, and Z is a vector

of latent variables which lies in a lower dimensional space. The probability of the

observed data for a particular parameter setting can be obtained by integrating

out over all latent variables, given by

p(X|θi,Mi) =

∫
p(Z|θi,Mi)p(X|Z, θi,Mi)dZ. (2.53)

In order to obtain the complete marginal likelihood one should integrate over all

possible sets of parameters and hidden variables rather than optimising them,
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which can be described in the form

p(X|Mi) =

∫
θi∈Θ

p(θi|Mi)

∫
p(Z|θi,Mi)p(X|Z, θi,Mi)dZdθi. (2.54)

In the subsequent sections 2.4.3 and 2.1.11 we shall explain how one could use

Bayesian inference to complete model selection and how the choice of prior is

important in determining the posterior distribution for predicting future events.

2.4.3 Occam’s Razor and Bayesian Model selection

The principle of simplicity dates back to the days of Aristotle, who wrote

Nature operates in the shortest way possible.

Several scientists, philosophers and priests who proceeded Aristotle, provided

different point of views. Until the 14th Century when William of Ockham an

English Franciscan friar Father stated

Pluralitas non est ponenda sine necessitate.

This statement could be translated as ‘Plurality should not be posited without

necessity’. Ockham was an important figure in the medieval era, and because

he used to cut out or shave away the arguments of others, his principle became

known as Ockham’s razor or Occam’s razor. This principle is still valid till our

modern days and has been used by many scientists. Hawking (1995), one of the

most brilliant theoretical physicists in our days, stated

We could still imagine that there is a set of laws that determines events

completely for some supernatural being, who could observe the present

state of the universe without disturbing it. However, such models of

the universe are not of much interest to us mortals. It seems better

to employ the principle known as Occam’s razor and cut out all the

features of the theory that cannot be observed.

We stated in section 2.4.1 that a major limitation of the maximum likelihood

approach in determining model parameters is due to the problem of over fitting.

Bayesian inference is an alternative approach that avoids this problem and con-

sists of computing the posterior distribution over model parameters, which takes

the form

p(θi|X,Mi) =
p(X|θi,Mi)p(θi|Mi)

p(X|Mi)
. (2.55)
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Once determined, this distribution enables us to rectify or correct our prior beliefs

over the parameter values after observing the data. The model evidence or the

marginal likelihood of the data is described in the denominator of Equation (2.55)

that consists of integrating out over all possible parameters settings, as defined in

Equation (2.51). We represent it here again for the sake of convenience, so that

p(X|Mi) =

∫
θi∈Θ

p(X|θi,Mi)p(θi|Mi)dθi.

Finding the marginal likelihood is an important task because on one hand it

enables us to compute the posterior distribution and on the other hand it is nec-

essary to develop Bayesian model comparison for finding the model that best

describes the data. In this situation we are not going to fit the parameters to the

data, but we are going to integrate out over model parameters to avoid the over

fitting. This approach does not prevent us from choosing models with infinitely

large number of parameters because the size of the complexity penalty increases

as we increase the model complexity, as we shall see shortly. Hence the Occam’s

razor becomes crucial for applying a trade-off for finding the best model.

Figure 2.7 illustrates the Occam’s razor axiom where the horizontal axis repre-

sents the space of possible data sets to be modelled so that each point on this

axis represents a particular data set; the vertical axis represents the normalised

distribution of the marginal likelihood, which is integrable to one. A common ap-

proach for simulating a data set consists of averaging the probability of the data

with respect to the values of the parameters, which are taken from their prior

distributions p(θi|Mi). Accordingly, if a model has low variability, the generated

data sets would appear almost with the same pattern —simple representation.

On the other hand, if a model has high variability, the generated data sets would

then appear to be very different —complex representation. For example, Figure

2.7 illustrates three models M1,M2 and M3 with increased complexity, such

that the first model p(X|M1) represents a very simple representation (because it

generates a limited variability of data sets), the third model p(X|M3) represents

a very complex representation (because it generates a wide range of data sets);

however, the second model p(X|M2) represents a reasonable level of complexity.

In general, one may select the model that would provide the highest marginal

likelihood value (known as model selection) or estimate some quantity under

each candidate model and then construct a weighted average over all of them
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Figure 2.7: Pictorial representation of Occam’s razor, adapted from (MacKay,
2003).
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(known as model averaging). When the computation of the marginal likelihood

becomes intractable, one may approximate the problem by choosing Maximum a

Posteriori (MAP) estimate, as defined in Equation (2.49), given by

θMAP = argmax
θ

(p(x|θ,M)p(θ,M)),

which is equivalent to work on a simplified form of the posterior, such that

Posterior ∝ Likelihood × Prior.

This assumes that the posterior distribution is maximised at the point θMAP,

which is known as MAP solution of the model. The Bayesian Information Cri-

terion (BIC) (Schwarz, 1978) can be obtained from the Laplace approximation

applied to the evidence, and so taking logs we obtain

log p(X) ≈ log p(X|θMAP) + log p(θMAP) +
D

2
log(2π)− 1

2
log det(A), (2.56)

where D is the space dimension of the data set X, and A is the second order

derivative of the posterior, which will be developed later. By assuming that the

det(A) ∝ nN , where n is the size of the data set and N is the number of model

parameters, we obtain the BIC expression, which can be written in the form

log p(X) ≈ −2 log p(X|θML) +N logn, (2.57)
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A similar criterion was developed and known as the Akaike Information Criterion

(AIC)

log p(X) ≈ −2 log p(X|θML) + 2n. (2.58)

Both criteria penalize the model when the number of parameters increase un-

necessarily. A limitation of a AIC and BIC scores is that they do not account

for parameter correlations, and hence cannot be used with regularised models

(Rattray, 2008).

2.4.4 Bayesian Hierarchical Modelling

Bayesian hierarchical modelling is a statistical model written modularly (or in

terms of sub-models) so as to integrate models for both within-unit analysis and

across-unit analysis. The aim is to estimate the parameters of the posterior dis-

tribution using the Bayesian method. The within-unit model is used to describe

the model characteristics over a single unit or population; however, the across-

unit analysis is used to account for heterogeneity across all populations (Allenby

et al., 2005). Exchangeability is very useful in Bayesian statistics (de Finetti,

1931). A set of random variables X1, X2, . . . , Xn is exchangeable if the joint

probability p(X1, X2, . . . , Xn) is invariant to permutation of the indices; that is,

for any permutation π,

p(X1, X2, . . . , Xn) = p(Xπ1, Xπ2, . . . , Xπn). (2.59)

Lunn et al. (2013) stated that the exchangeability assumption is equivalent to

assuming the observations were independent and identically distributed from a

distribution with unknown parameters. Bernardo et al. (1983) showed that one

must assume symmetry among the parameters of the prior distribution in case

no ordering or grouping of the parameters can be made. This symmetry is repre-

sented probabilistically by exchangeability for which there exists a unique prob-

ability measure P on [0,1] such that

p(X1, X2, . . . , Xn) =

∫
Πn

i=1p(Xi|θ)dP. (2.60)

Let xij be an observation i within a population j, and θj a set of parameters

governing the data generating Xj. Assume that the parameters θ1, θ2, . . . , θn

are generated exchangeably from n populations with distribution governed by a
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hyperparameter φ. The structure of the Bayesian hierarchical model described

here involves three stages for inference, such that

Stage 1 : Xj ∼ind p(Xj|θj)

Stage 2 : θj |φ ∼i.i.d p(θj |φ)

Stage 3 : φ ∼ π(φ)

In the first stage the data is derived from a distribution that depends on a pa-

rameter θ such that each population Xj is controlled by its own parameter θj.

At the second stage of the hierarchy, the parameter θj comes from a common

distribution that depends on a hyperparameter φ. Finally, at the third stage of

the hierarchy we place a prior on the hyperparameter φ. Only φ has a prior that

is set manually. Thus, the joint posterior distribution of interest in hierarchical

models can be written as

p(θ,φ|X) ∝ p(X|θ,φ)p(θ,φ) = p(X|θ)p(θ|φ)π(φ). (2.61)

Alternatively, the marginal posteriors can be written as

p(θ|X) =

∫
p(θ,φ|X)dφ or p(φ|X) =

∫
p(θ,φ|X)dθ. (2.62)

2.5 Bayesian Networks

A Bayesian network (BN) is a special type of probabilistic graphical model that

explicitly represents conditional independence relationships among random vari-

ables via a directed acyclic graph (DAG). For example, Figure 2.6 (a) represents

the probabilistic relationships between random variables (X1, X2, X3, X4) and

whose edges correspond to direct influence of one node on another (Koller and

Friedman, 2009).

In order to fully specify the Bayesian network, it is necessary to specify the con-

ditional probability distribution for each node upon its parents. Often these con-

ditional distributions include unknown parameters which must be estimated from

data in one of the following ways: maximum likelihood approach, expectation-

maximisation algorithm or Markov chain Monte Carlo. The latter handles the

problem in a Bayesian approach such that all parameters are treated as addi-

tional unobserved variables and estimated after approximating the full posterior
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distribution over all nodes, which is conditional on the observed data. However,

the network structure can be either constructed by expert’s knowledge or learned

from data. In this thesis I will review basic principles of the search and score

approach for learning the structure of BNs.

2.5.1 Structure learning

The search and score approach is an optimisation problem that consists of finding

a BN that maximises a given scoring function. The vast majority of the search

methods used in structure learning are local search procedures such as greedy

hill climbing, as described in Algorithm 1. The method consists of searching for

a structure that maximises a given score. In case of using the likelihood score,

our objective would be to find both a graph G and the MLE of parameters that

maximise the likelihood. Three operations can be used for exploring the search

space, which are: (a) reversing an edge, (b) deleting an edge or (c) adding an

edge. Any move in the search space is subject to the condition that the resulting

structure is a valid BN (DAG). The search evolves in the directions that most

increases the score and stops when it does not find a local move that can increase

the score. Suppose the original network is the one shown in Figure 2.8(a), the

greedy-search procedure starts randomly by reversing the edge between X2 and

X3, deleting the edge between X2 and X3, and finally adding an edge between

X1 and X2 as it improves the score at each step until it does not find any local

move that increases the score.

X1

X2 X3

(a) Original net-
work

X1

X2 X3

(b) Reverse

X1

X2 X3

(c) Delete

X1

X2 X3

(d) Add

Figure 2.8: Examples of a search problem applied on a given network (a) with
typical operations: (b) reverse an edge, (c) delete an edge and (d) add an edge.
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Algorithm 1 Greedy local search algorithm with search operators, adapted from
(Koller and Friedman, 2009)

1: procedureGreedy-Local-Search( σ0, //initial candidate solution.
score, //Score.
O //a set of search operators. )

2: σbest ← σ0

3: Progress ← true
4: while Progress is true do
5: σ ← σbest
6: for each operator o ∈ O do
7: σo ← o(σ) //result of applying o on σ
8: if σo is legal solution then
9: if score(σo) > score(σbest ) then
10: σbest ← σo

11: else
12: Progress ← false
13: end if
14: end if
15: end for
16: end while
17: return σbest
18: end procedure
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2.6 Dynamic Bayesian Networks

A Dynamic Bayesian Network (DBN) is an extension of Bayesian networks that

models time series by relating several successive instances (of BNs) through arcs

so as to represent how the state of a random variable changes over time Murphy

(2002). For a particular case when intra-slice dependencies (connections within

time slices) do not exist, one can turn the DBN into a first-order multivariate

autoregressive model, which means that each node or random variable (at time

t) only depends on the nodes at previous time step (at time t − 1). In essence,

a DBN provides a suitable framework to represent uncertainties, dependencies

and dynamics exhibited in the time series data; but its weakness remains in its

time-invariant nature meaning that the underlying network structure remains

unchanged over time: the dependency between inter-slice variables (connections

across time slices) are fixed and invariant over time.

Let Xt = (X t
1, . . . , X

t
p)

� ∈ R
p be a vector representing the p random variables,

at time t. A stochastic dynamic process can be modeled by a first-order Marko-

vian process such that any variable at time t is dependent only on the variables

observed at time (t−1). One may restrict the transition network to contain only

inter time slice interactions and avoid intra-slice interactions, which renders the

dynamic Bayesian network as a first order multivariate time series process.

The autoregressive model p(Xt|Xt−1) defines a probabilistic distribution of ran-

dom variables at time t given those at time t− 1. The likelihood of the observed

random variables over a time series of T steps can be expressed as:

p(X, . . . ,XT ) = p(X1)

T∏
t=2

p(Xt|Xt−1). (2.63)

In this work, we assume that the transitional probability p(Xt|Xt−1) is repre-

sented by a linear model such that:

p(Xt) ∼ N(A.Xt−1, σ2I) (2.64)

where A ∈ R
p×p is a matrix of coefficients and ε is a white noise with variance

σ2. The former offers a consistent estimation of the structure of DBNs, which

can be recovered by reading off the nonzero coefficients aij ∈ A then adding an

arc from X
(t−1)
j to X t

i respectively (Nagarajan et al., 2013).

One can search for a network structure using a scoring function, used to evaluate
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how well the searched structure matches the data. The searching operator gener-

ally starts with a topology with no links, then iteratively searches for a possible

structure by adding, reversing or deleting edges —there can be no cycles since all

arrows go forward—so as to find a network that maximises the scoring function.

This process is repeated until no modification could improve the score. There is a

wide range of score-based methods that one could choose from to learn the DBN

structure; for example: the likelihood score, the Minimum Description Length

principle, the BIC/AIC score, the marginal likelihood and so forth.

2.6.1 Least Angle Regression

Least Angle Regression (LARS) is a model selection algorithm less greedy than

conventional forward selection algorithms and that consists of fitting linear re-

gression models to high-dimensional data (Efron et al., 2004). LARS is a fast

computational algorithm, effective in high-dimensional settings, and can be easily

modified to implement Lasso (Tibshirani, 1994). LARS starts with all coefficient

equal to zero (like forward selection using Lasso) and finds the predictor most

correlated with the response. The algorithm takes a step towards that predictor

until finding another one, which has high correlation with the current residuals,

that would deviate the trajectory into an equiangular direction (between the two

predictors) until a third one appears and so forth. At each step LARS adds one

covariate to the model; for example, if two variables are almost equally correlated

with the response, then the coefficients of these variables increase at the same

rate approximately. The sparsity of the network is enforced by introducing the

lasso penalty (i.e. L1-norm) and inferred based on the data using cross-validation

technique. Dynamic Bayesian networks can be written nonparametrically as

Xi(t) = f(X1(t− 1), . . . , . . . , Xp(t− 1)), (2.65)

where t describes time index. If we assume a vector autoregressive process of the

first order, then each variable Xi, i = 1, . . . , p can be represented as

Xi(t) = bi +

p∑
j=1

aijXj(t− 1) + εi, (2.66)

where the nonzero elements aij are the adjacency matrix of the interaction net-

work. The interpretation is that the variable j influences variable i if aij is not
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zero. LARS tends to produce some coefficients exactly to zero by applying an

L1 norm penalty to their sum. Then, only nonzero coefficients define significant

dependence relationships.

2.6.2 G1DBN

Lèbre (2009) proposed a two-step procedure for DBN inference: first, it learns a

directed acyclic graph (DAG) encoding first-order conditional dependence G(1) of
each pair (Xi(t), Xj(t− 1)) given all the rest at t − 1. Linear dependencies (the

partial regression coefficients aij|k, k = 1, . . . , p, and p is the number of variables)

can be defined as

Xi(t) = bijk + aij|kXj(t− 1) + aik|jXk(t− 1) + εijk(t), (2.67)

where the rank of the matrix (Xj(t − 1), Xk(t − 1))t≥2 equals to two and the

noise is Gaussian. The conditional dependence between the variables Xi(t) and

Xj(t−1) given other variablesXk(t−1) is measured by testing the null assumption

Hi,j,k
0 : aij|k = 0. For each k �= j, the estimates âij|k are computed either by the:

Least Square estimator, Huber estimator, or the Tukey bisquare estimator. This

procedure generates the p-value pij|k from the standard significance test:

under (Hi,j,k
0 ) : aij|k = 0,

âij|k
σ̂(âij|k)

∼ t(n− 4), (2.68)

where t(n − 4) refers to a Student probability distribution with n − 4 degrees

of freedom and σ̂(âij|k) is the variance estimates for âij|k. A score S1(i, j) equal

to maxk �=j(pij|k) of the p − 1 (i.e. p is the number of variables) computed p-

values derived from Equation(2.68) is being assigned for each potential edge

(Xj(t − 1), Xi(t)). This is the most favourable result to the first order condi-

tional independence. This method does not derive p-values for the edges but

allows to order the possible edges of DAG G(1) according to how likely they are.

The smaller the score or the p-value, the larger the significance of an edge be-

comes because in this case the null hypothesis that assumes aij|k = 0 is rejected.

Eventually, weak edges are filtered out by selecting scores smaller or equal to an

α1 threshold, set by the user.

The second step consists of using the inferred DAG Ĝ(1) (from the previous step)

to infer the real network structure G̃. For each pair (i, j) such that the set of
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edges (Xj(t− 1), Xi(t)) is in Ĝ(1), the model is defined as,

Xi(t) = bi +
∑

j∈pa(Xi(t),Ĝ(1))

a
(2)
ij Xj(t− 1) + εi(t), (2.69)

where a
(2)
ij is the regression coefficient and the rank of the matrix

(Xj(t − 1))t≥2,j∈pa(Xi(t),Ĝ(1)) is denoted by |pa(Xi(t), Ĝ(1))|. Each edge of Ĝ(1) is

assigned a score S2(i, j) equal to the p-value p
(2)
ij derived from the significance

test,

under (Hi,j
0 ) : a

(2)
ij = 0,

â
(2)
ij

σ̂(â
(2)
ij )
∼ t(n− 1− |pa(Xi(t), Ĝ(1))|). (2.70)

The score S2(i, j) = 1 is assigned to the edges that are not in Ĝ(1), the smallest

scores indicate the most significant edges. Hence, the inferred DAG for G̃ contains

edges with a score below a specified threshold α2.

2.6.3 Simone

SIMoNe (Statistical Inference for Modular Networks) (Chiquet et al., 2009) en-

ables inference based on partial correlation coefficients with a Gaussian graphical

model. The algorithm takes into account a latent network structure to increase

the estimation accuracy, which assumes that each node belongs to some unob-

served group. The latent clustering of the network is further used to drive the

selection of arcs through an adaptive L1 penalisation of the model likelihood.

SIMoNe applies an Expectation maximisation (EM) strategy that alternates in-

ference of the network latent structure and inference of the networks edges. In

the E step, it estimates non-zero entries Kij of the concentration matrix; then in

the M step, it applies GLasso to infer the network edges (Friedman et al., 2007).

2.6.4 GeneNet

GeneNet is an R package for analyzing high-dimensional time series data (Opgen-

Rhein and Strimmer, 2007) that estimates directed Gaussian graphical models

(GGMs). Once the positive definitive covariance matrix is estimated (using a

shrinkage estimator) as in (Schafer et al., 2006), it then computes the inverse
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covariance matrix, also known as the concentration matrix, to derive the undi-

rected GGM so that edges are related to the highest partial correlations or highest

probabilistic dependence. GeneNet infers the directionality of the interactions by

comparing, for each pair of connected nodes, the partial variances of the respec-

tive variables. An edge between two nodes is directed in such a fashion that the

direction of the arrow points from the node with the larger standardized partial

variance to the node with the smaller standardized partial variance. Each edge

is given a p-value (the null hypothesis is that the partial correlation between its

nodes is zero) and a score equal to 1 minus the respective p-value. Obviously the

most effective edges are related with the lowest score.

2.7 Intractable Models

Bayesian inference is generally intractable for many models of practical inter-

est because of the determination of the integration measure that is usually not

feasible to be estimated in an analytical closed form, except for exponential fam-

ilies together with conjugate priors. In such situations, we need to resort to

approximation schemes for achieving practical Bayesian inferences to successfully

perform model comparison and prediction tasks. For this purpose, one can use

either analytic approximations of integrals or methods based on Monte Carlo

sampling: generally known as approximate inference. In this section I will review

the Sampling approximation method for estimating the posterior distribution of

intractable models.

2.7.1 Sampling approximation

In this section, I shall outline approximate methods based on numerical sampling

algorithms that consist of generating random samples from a given distribution.

These techniques are known as the Monte Carlo sampling. Suppose that we wish

to evaluate the expectation of some function g(x) with respect to a probability

density function f(x), given by

E[g] =

∫
g(x)f(x)dx, (2.71)
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where x is a single continuous variable. The mean of the probability density

function f(x) can be obtained by taking g(x) = x, and the variance can be ob-

tained by taking g(x) = (x − μx)
2, as described in Equation (2.13) and (2.14)

respectively. For simple f(x) the integral expression described in Equation (2.71)

can be evaluated analytically. However, this closed form solution becomes in-

tractable when the target density function f(x) increases in complexity. If we

can simulate an independent set of samples X = {x1, x2, . . . , xL} from the target

density f(x), we may then form the corresponding set of realisations denoted by

f(X) = {f(x1), f(x2), . . . , f(xL)}, and hence for a large set of samples (when

L → ∞) the strong law of large numbers allows us to approximate the target

density f(x) by a finite sum

f̂ =
1

L

L∑
l=1

δxl(dX), (2.72)

where δxl(dX) denotes the delta-Dirac mass located at xl. The approximated

target density f̂ is obtained by finding the number of samples falling within the

interval [X,X + dX] divided by the total number of samples L. By plugging

Equation (2.72) in (2.71), we obtain

E[ĝ] =

∫
g(x)f̂dx =

∫
g(x)

(
1

L

L∑
l=1

δxl(dX)

)
dx =

1

L

L∑
l=1

g(xl). (2.73)

We deduce that in the limit of large samples the convergence to E[g] is almost

sure, so that

E[ĝ] =
1

L

L∑
l=1

E[g(xl)]
a.s.−−−→

L→∞
E[g]. (2.74)

Moreover, the variance of the approximation can be written in the form

var[ĝ] =
1

L
E[(g − E)2]. (2.75)

This method assumes that one could simulate an independent set of samples from

a density distribution f(x).
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2.7.1.1 Rejection sampling

This method provides a basic sampling technique to generate observations from

a complex density distribution f(x). It consists of bounding the density distri-

bution f(x), from above, with a simple proposal distribution q(x) from which we

can readily draw samples. Then we weight each sample xl generated from q(x)

in such a way to become a sample of the target distribution f(x). We begin by

introducing a constant M that satisfies f(x) ≤ Mq(x), such that M < ∞, to

ensure that it dominates f(x). Next, we evaluate Mq(xl) and then we multiply it

by u, which is a randomly generated number from a uniform distribution U(0, 1).
Finally, the result is compared to f(xl), if uMq(xl) ≤ f(xl) then the sample is

accepted, otherwise it is rejected. The rejection sampling algorithm can be de-

scribed as in Algorithm 2. Figure 2.9 illustrates the rejection sampling algorithm

Algorithm 2 Rejection Sampling algorithm

1: Draw L samples from q(x), such that X = {x1, . . . , xL}
2: for l ← 1, L do
3: Generate a value u from a uniform distribution U(0, 1)
4: if u ≤ f(xl)

Mq(xl)
then

5: Accept the sample xl

6: else
7: Reject the sample xl

8: end if
9: end for

10: return a collection of samples {xl}

where samples are drawn from a simple distribution q(x), which is chosen to be

Gaussian. If the generated sample falls within the distribution f(x) we accept it,

else we reject it. Therefore, after generating few thousand samples, we achieve

approximating the density distribution f(x). This is a basic sampling technique

that suffers from several limitations

• If the proposed distribution q(x) is very different from the target distribu-

tion f(x), we may throw away a large number of samples before obtaining

a good sample size of the target distribution.

• If we choose a large envelope to bound the target distribution from above,

we end up rejecting a large number of samples. Hence, it becomes useful to

select a tight envelope for defining the proposal distribution q(x).
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Figure 2.9: Illustration of the rejection sampling. The black curve represents the
density function f(x) and the red one represents the proposal distribution, which
is a Gaussian. we sample a candidate xi and a uniform variable u, then we accept
the candidate sample if uMq(xi) < f(xi), otherwise we reject it [adapted from
(Andrieu et al., 2003)].

acceptance

f(xi)

uMq(xi)

Mq(xi)

xi x

• This technique may be applicable for a univariate case, but it is impractical

in high-dimensional situations, because the probability mass shifts away

from the region of high probability density and becomes concentrated in a

thin shell at large radius (or in the tails of the distribution) (Bishop, 2007,

page 36). This is also known as heavy tailed distributions in statistics.

2.7.1.2 Importance sampling

As in the case of rejection sampling, importance sampling is based on an arbitrary

proposal importance distribution q(x) such that its support include the support

of f(x). Importance sampling performs better than rejection sampling because

it does not throw away samples, but instead it employs them for approximating

the expectation function using their importance weights, so that

E[g] =

∫
g(x)f(x)dx

=

∫
g(x)

f(x)

q(x)
q(x)dx

=

∫
g(x)w(x)q(x)dx,

where w is known as the importance weight ratio, which represents the unbiased

estimator, that is, used to rectify the distortion introduced by sampling from the
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inappropriate distribution. It takes the value one when the sampled distribution

q(x) matches the distribution of f(x). Consequently, if one can simulate L i.i.d.

samples from q(x), X = {xl}Ll=1, we can then write the Monte Carlo estimate in

the form

E[ĝ] ≈ 1

L

L∑
l=1

g(xl)w(xl). (2.76)

This is known as the importance sampling estimate, which is valid if we can evalu-

ate the importance weight w(x) by which we can estimate the target distribution

f(x) in the form

f̂(dX) =
1

L

L∑
l=1

w(xl)δxl(dX). (2.77)

In Bayesian Statistics, the distribution of interest, f(x), is evaluated up to a

normalisation constant. We can then write f(x) = f̂(X)/Zf , where f̂(X) is the

unnormalised distribution that can be easily evaluated; whereas Zf =
∫
f̂(X)dX

is an intractable normalisation constant. In this case we can write expectations

as

E[g] =

∫
g(X) f̂(X)

q(X)
q(X)dX∫ f̂(X)

q(X)
q(X)dX

(2.78)

By feeding Equation (2.78) with the approximated samples {xl}Ll=1 drawn from

q(x), we obtain

E[ĝ] ≈
∑L

l=1 g(x
l) f̂(x

l)
q(xl)∑L

l=1
f̂(xl)
q(xl)

=

L∑
l=1

g(xl)w̃l, (2.79)

where the normalised importance weights are defined by

w̃l =
f̂(xl)/q(xl)∑L
j=1 f̂(x

j)/q(xj)
. (2.80)

If f̂ = q, then w̃l = 1/L. Thus we can use the sample and weights {xl, w̃l}Ll=1

to approximate any (suitable) expectation with respect to f̂ . Unfortunately, this

method becomes inappropriate when the variability between f̃ and q increases

because the weight vector will distort the non-zero components of the Equation
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(2.79). This mismatch can be caused by the dimensionality of the samples X

that could provoke the variability to grow in an exponential rate. An alternative

solution is to use the Sampling-importance-resampling (SIR) method proposed

by (Rubin, 1988), which is severely criticised by Andrieu et al. (2003) because of

the fact that the SIR procedure does not provide a clear method for treating the

high-dimensional problems. That is, because the resampling scheme introduces

further Monte Carlo variation.

2.7.1.3 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) remains without doubt the most popular

tool to compute approximate posterior inferences for Bayesian models. It can

be applied to sample from any posterior distribution p(θ|X) provided that we

can evaluate analytically the expression presented in the numerator, as appears

in Equation (2.50). The design matrix X comprises N samples each with D

covariates. MCMC approximates the posterior distribution by a set of samples

{θl}Ll=1 rather than a closed form solution. Suppose that we need to gener-

ate a sample from an intractable posterior distribution p(θ|X) for θ ∈ Θ. We

can achieve this by using a Markov chain with state space Θ, such that the set

{θ1, θ2, . . . , θl, . . . , θL} are realisations of the chain, which may be discrete or

continuous. Here, I review some important properties of MCMC. A first order

Markov chain is a stochastic process where the future state depends on the value

of the present state, so that

p(θl+1|θ1, θ2, . . . , θl) = p(θl+1|θl). (2.81)

We say that p(θl+1|θl) is the transition probability of the chain; a Markov chain

is homogeneous if the transition probability is the same for all single steps, so

that

p(θl+1 = j|θl = i)︸ ︷︷ ︸
ti,j(l)

= p(θm+1 = j|θm = i)︸ ︷︷ ︸
ti,j(m)

∀l, m ∈ N
+.

However, a n-step transition probability of a homogeneous Markov chain, can be

defined by

t
(n)
i,j = p(θl+n = j|θl = i).
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The Chapman-Kolmogorov equation is defined by using the Markov property and

the law of total probability, so that

t
(n+m)
i,j =

∑
k∈E

t
(n)
i,k t

(m)
k,j ∀n,m ≥ 0, and i, j ∈ E, (2.82)

where E is a countable set. This produces (n+m)step transition probability that

evaluates the transition from the state i to j. A distribution p(θ) is stationary if

it satisfies the marginal property, given by

p(θl+1) =
∑
θl

(tl,l+1) p(θ
l). (2.83)

A sufficient condition for ensuring a particular probability distribution p(θl) to

be invariant is to choose a transition probability to satisfy the detailed balance

equation, so that

(tl,l+1) p(θ
l) = (tl+1,l) p(θ

l+1). (2.84)

When the Markov chain satisfies the detailed balance equation, then the chain

has p(θ) as a stationary distribution and so the reversed chain is homogeneous

as well as reversible, such that

∑
θl

(tl,l+1) p(θ
l) =

∑
θl

(tl+1,l) p(θ
l+1)

= p(θl+1)
∑
θl

(tl+1,l)

= p(θl+1), (2.85)

Hence the obtained samples {θl}Ll=1 are used to estimate the posterior distri-

bution, as in Equation (2.74). It should also be noted that the early samples

collected during the burn in stage must be discarded because we believe that

those samples are only used for the sake of convergence.

Although this procedure defines a Markov chain which leaves the posterior in-

variant, it does not guarantee to visit any possible value under the posterior

distribution. This requires two additional conditions to be fulfilled:

• The chain must be irreducible, which means if there exist a path with finite

n-steps such that starting from any θi, there is a positive probability (t
(n)
i,j >

0) of visiting any other state θj .
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• The chain must be aperiodic, which means that it does not get trapped into

cycles.

A Markov chain satisfying these two conditions is termed ergodic, which con-

verges to its unique equilibrium distribution regardless of the choice of the initial

state. Several extensions to the MCMC method have been proposed; in what

follows, I outline four approximation methods that have been commonly used for

approximating the posterior distribution in Bayesian inferences.

2.7.1.4 Metropolis-Hastings sampling

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) con-

sists of constructing a successive set of samples {θ1, θ2, . . . , θl, . . . , θL}, with state

space Θ, drawn from a Markov chain with stationary distribution p(θ|X), that

is, defined through a proposal distribution q(θl+1|θl).

In general, if we define the distribution p(θ) up to a normalisation constant, we

can then write

p(θ) =
f(θ)

Z ,

where Z is an intractable normalisation constant. In this situation, it is not

possible to sample directly from p(θ), but one may draw successive samples from

a tractable arbitrary distribution, q(θ), which does not have to be a conditional

version of p(θ). Let θl be an initial sample drawn from an arbitrary distribution

q(θ). In order to construct the transition probability we need to choose another

sample θ∗ and compute the corresponding transition probability between these

two states, p(θ∗|θl). We may then accept or reject the new sample based on a

probability measure a(θ∗|θl), given by

a(θ∗|θl) = min

{
1,

p(θ∗|X)q(θl|θ∗)

p(θl|X)q(θ∗|θl)

}
. (2.86)

The transition from one state to another is then based on the acceptance ratio

a. For instance, if the proposal is accepted, we then accept θl+1 = θ∗; otherwise,

we reject the sample generated by q(θ∗|θl) and set θl+1 = θl (as described in

Algorithm 3).

We can see that the acceptance ratio depends on the posterior distribution for

the initial and proposed states, p(θ∗|X)/p(θl|X). This means that we can im-

plement the acceptance ratio by multiplying the likelihood function by the prior
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distribution, and disregard the intractable normalisation constant Z. The main

conditions that we need to ensure about the transition density is to hold the irre-

ducibility and aperiodicity conditions on the state space. Under these conditions,

the Markov chain will settle at the stationary distribution.

Algorithm 3 Metropolis-Hastings MCMC algorithm, adapted from (Barber,
2011)

1: Pick up the initial state, θl.
2: Propose a new sample θ∗ from the proposal q(θ∗|θl).

3: Let a = p(θ∗|X)q(θl|θ∗)
p(θl|X)q(θ∗|θl)

4: if a = 1 then
5: θl+1 = θ∗ Acceptable proposal
6: else
7: Generate a value u from a uniform distribution U(u|0, 1).
8: if u ≤ a then
9: θl+1 = θ∗ Acceptable proposal

10: else
11: θl+1 = θl

Reject the proposal, and stay at θl for an extra turn
12: end if
13: end if
14: Repeat

2.7.1.5 Gibbs Sampler

The Gibbs sampler is a special case of the single components Metropolis-Hastings

algorithm wherein the proposal sample is always accepted, such that a = 1. The

key concept of the Gibbs algorithm is to sample sequentially from the posterior

conditioned on the remaining parameters using a univariate conditional distribu-

tions. The advantage of using such methods is to make the computation fast and

more tractable compared to other complex forms.

For example, suppose that we have three random variables θ1, θ2 and θ3 and we

wish to find the marginals p(θ1), p(θ2) and p(θ3); the sampler starts by defining

initial values to these variables (i.e. θ
(0)
1 , θ

(0)
2 and θ

(0)
3 ) and draws a sample for

each component in an iterative way, such that

draw θ
(1)
1 from p(θ1|X, θ

(0)
2 , θ

(0)
3 ),

draw θ
(1)
2 from p(θ2|X, θ

(1)
1 , θ

(0)
3 ),

draw θ
(1)
3 from p(θ3|X, θ

(1)
1 , θ

(1)
2 ),

...
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draw θ
(l)
1 from p(θ1|X, θ

(l−1)
2 , θ

(l−1)
3 ),

draw θ
(l)
2 from p(θ2|X, θ

(l)
1 , θ

(l−1)
3 ),

draw θ
(l)
3 from p(θ3|X, θ

(l)
1 , θ

(l)
2 ),

...

and so forth.

To achieve a successful sampling our conditional distributions must be tractable

such that the sequence of transition probabilities for each sampled vector θ(l) =[
θ
(l)
1 , θ

(l)
2 , θ

(l)
3

]
would take the form

tθ(l),θ(l+1) =

3∏
i=1

p
(
θ
(l+1)
i |

(
θ
(l)
j/i if j > i

)
or
(
θ
(l+1)
j/i if j < i

)
,X
)

where j ∈ {1, 2, 3}.
(2.87)

For an infinitely large of sample size (l → ∞), the Gibbs sequence converges to

a stationary distribution, hence the sampled vector θ(l) =
[
θ
(l)
1 , θ

(l)
2 , θ

(l)
3

]
tends

to be sampled from the true posterior. Accordingly, if we choose m replicates(
θ
(l+1)
1 , . . . , θ

(l+m)
1

)
after discarding sufficient burn-in samples, we may then ob-

tain the marginals for each distribution respectively by approximating the samples

as derived from p(θi|X) where i ∈ {1, 2, 3}.
The main advantage of Gibbs sampling is that it saves us from choosing a pro-

posal density function, but on the other hand it suffers from the fact that it may

not converge for highly correlated variables.

2.7.1.6 Metropolis Adjusted Langevin Algorithm

Stramer and Tweedie (1999) developed a proposal distribution based on Langevin-

type diffusions that converges faster than traditional random walk methods usu-

ally suffering from slow convergence and long runtimes. Consider the parameter

vector θ ∈ R
D with density p(θ). For example by setting θ = {θ1, θ2, θ3, θ4} ∈ R

4,

D = 4, the Metropolis adjusted Langevin algorithm (MALA) relies on the gradi-

ent of the log-density L(θ) ≡ log(p(θ)) to make proposals satisfying the Langevin

diffusion defined by the stochastical differential equation, such that

dθ(t) = ∇θL{θ(t)}dt/2 + db(t) (2.88)

where b is a 4-dimensional Brownian motion. In practice, one cannot simulate

directly from Equation (2.88), but instead it is recommended to use a discretised
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form of the dynamic. A common choice for solving this discretisation problem is

to use the first order Euler approximation that can be defined as

θ∗ = θn +
ε2

2
∇θL{θn}+ εzn (2.89)

where ε > 0 is the integration step size, and z are normally distributed N (0, I)

independent random variables. The proposal density would then become

q(θ∗|θn) = N (θ∗|θn +
ε2

2
∇θL{θn}, ε2I). (2.90)

This naive first order Euler discretisation suffers from errors due to discretisation

that affects the rate of convergence (Stramer and Tweedie, 1999). The discretisa-

tion errors are reduced by employing the Metropolis acceptance probability after

each integration step. Roberts and Rosenthal (1998) analysed the optimal scal-

ing of ε to Langevin diffusions as D →∞. One can increase the acceptance rate

when scaling ε by D1/3, as cited in Roberts and Rosenthal (1998). Thus MALA

requires O(D1/3) steps to converge.

2.7.1.7 Hamiltonian Monte Carlo

The Hybrid Monte Carlo sampling technique (Duane et al., 1987) found its ori-

gin in statistical physics literature as a MCMC technique for sampling from a

complex physical system. This technique was applied to statistical inference

problems (Neal, 1992, 1993a,b) to obtain samples from the posterior distribu-

tion for Bayesian neural networks. It is also known as Hamiltonian Monte Carlo

(HMC) because it employs Hamiltonian dynamics between states θ ∈ R
D and

augmented variables p ∈ R
D so as to move from one point θ,p to another θ∗,p∗

located further away in space and which will be accepted with a high probability.

The density of θ is described as p(θ), and the density of the auxiliary variable

of p is described as p(p) = N (p|0,M) where M is the covariance matrix. The

auxiliary variables have Gaussian distributions, independent of θ, and of each

other. The factorised joint distribution can be described as

p(θ,p) = p(θ)p(p) (2.91)

=
1

Zθ
eHθ(θ)

1

Zp
eHp(p) =

1

Z
e(Hθ(θ)+Hp(p)) =

1

Z
eH(θ,p).
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The Hamiltonian can be defined as

H(θ,p) = −L(θ) + 1

2
log{(2π)D|M |}︸ ︷︷ ︸

potential energy

+
1

2
p�M−1p︸ ︷︷ ︸

kinetic energy

, (2.92)

where L(θ) ≡ log(p(θ)), H(θ,p) can be viewed as the sum of a ‘potential energy’

with a ‘kinetic energy’, and |M | represents the mass matrix.

The derivatives of θ and p with respect to a fictitious time variable τ can be

described as

dθ

dτ
=

∂H

∂p
= M−1p (2.93)

dp

dτ
= −∂H

∂θ
= ∇θL(θ).

This differential equation cannot be solved analytically, instead one needs to re-

course to numerical approximation technique. A common choice for this problem

consists of employing the Stromer-Verlet or ‘leapfrog’ integrator as used in (Du-

ane et al., 1987; Neal, 1992, 1993b,a), which consists of applying the following

steps:

p(τ + ε/2) = p(τ) +
ε

2
∇θL{θ(τ)}, (2.94)

θ(τ + ε) = θ(τ) + εM−1p(τ + ε/2), (2.95)

p(τ + ε) = p(τ + ε/2) +
ε

2
∇θL{θ(τ + ε)}. (2.96)

The time reversibility can be easily verified by changing the sign of the step

size ε. The integrator preserves phase space volume by showing that the Jaco-

bian transformation from θ,p at time τ to θ,p at time τ + ε has a unit de-

terminant (Neal, 1992). Equation(2.94) to (2.96) can be iterated several times

(e.g. L = 50) to generate a candidate state θ∗,p∗. This proposal step is then

accepted if H(θ∗,p∗) < H(θ,p), otherwise it is accepted with a probability

min{1, exp{−H(θ∗,p∗) + H(θ,p)}}. A simplified form of the model can be

obtained by using M = I, identity matrix. The HMC algorithm that I used

in chapter 3 to sample from the posterior distributions can be described as in

Algorithm 4.
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Algorithm 4 HMC algorithm

1: for chain← 1, n.chain do
2: Initialise the set of parameters θ = {θ1, θ2, θ3, θ4}.
3: Set the gradient g = Grad(θ), and the log-posterior probability such that

p(θ) = L(θ) + log(π(θ)).
4: for iter ← 1, n.iter do
5: Initialise the momentum ‘P ’ using a normal distribution.
6: Evaluate the Hamiltonian value H = Hamiltonian(p(θ),P ).
7: Propose a new step θ∗ and find related gradient g∗ = Grad(θ∗).
8: for l ← 1, L do
9: P = P + (ε/2) ∗ g∗

10: θ∗ = θ∗ + ε ∗ P
11: g∗ = Grad(θ∗)
12: P = P + (ε/2) ∗ g∗

13: end for
14: Evaluate p(θ∗) and H∗ values over θ∗.
15: Accept or reject the state at end of trajectory, returning either the

position at the end of the trajectory θ∗ or the initial position θ.
16: dH = H∗ −H .
17: Accept the new proposal step in Monte-Carlo fashion.
18: if dH ≤ 0 then
19: Acceptance steps, θ = θ∗.
20: else
21: if dH ≥ U(1) then
22: Acceptance steps, θ = θ∗.
23: else
24: Rejectance steps.
25: end if
26: end if
27: end for
28: end for
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2.8 Dynamical Models

2.8.1 State Space Models

The general setup for a state space model (SSM) consists of combining a state

process {Xt}t≥1 with an observation process {Yt = ft(Xt, εt)}t≥1, where {εt} is

a sequence of independent random variables. The state process is an abstract

quantity of the model that evolves in time and capable of generating an observa-

tion according to a given state —it constitutes a sufficient statistic for the model.

The assumptions of a SSM can be defined as

i : The state sequence {Xt}t≥0 is a first order Markov process, where the prob-

ability law of its process is identified by the initial density p0(X0) and the

transition densities p(Xt|Xt−1).

ii : The observations {Yt}t≥1 are conditionally independent of Xs and Ys for s �= t

given Xt.

Figure 2.10: Graphical representation of the SSM.

X0 X1 X2
... Xt−1 Xt

...

Y1 Y2 Yt−1 Yt

Figure 2.10 illustrates a general structure of a SSM representing the relationship

between the state and observable processes such that the joint probability can be

written in the form

p(x1:t, y1:t) = p(x1)

(
t∏

i=2

p(xi|xi−1)

)(
t∏

i=1

p(yi|xi)

)
, (2.97)

where x1:t = (x1, . . . , xt) and y1:t = (y1, . . . , yt) denote collections of states and

observations ranging from time step 1 to t respectively. A primary concern in

many state space inference problems is sequential estimation of the filtering dis-

tribution p(xt|y1:t) (Godsill et al., 2004). For a Linear-Gaussian model we can
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write the likelihood and filtering distributions in the following form

p(yt|yt−1) = N (yt|Ayt−1,Γ) (2.98)

p(xt|yt) = N (xt|Cyt,Σ), (2.99)

where {A,Γ,C,Σ} are the model parameters, which can be obtained by compu-

tationally efficient recursive formulas such as the Kalman filter (Kalman, 1960);

but for general HMMs where the model is non-linear and the conditional distri-

butions are non-Gaussian, the filtering posterior probability distribution of the

state conditional on the observations can be written as

p(xt|y1:t) = p(xt|y1:t−1)p(yt|xt)

p(yt|y1:t−1)
∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1,

(2.100)

where t > 1 and the posterior distribution for determining the initial state is

given by

p(x1|y1) = p(x1)p(y1|x1)

p(y1)
∝ p(x1)p(y1|x1).

However, the likelihood can be described as

p(yt|y1:t−1) =

∫ {
p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

}
dxt. (2.101)

Therefore, numerical approximations are often required to solve the filtering equa-

tion.

2.8.2 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods first appeared under the name of the

bootstrap filter (Gordon et al., 1993) inspired from the sampling importance

resampling (SIR) method (Rubin, 1988), which aims to recursively evaluate the

filter and the prediction densities by a set of randomly generated particles at each

time step separately, such that

1. Resample an existing particle xl
t−1 with a probability w̃l

t−1.

2. Propagate the particle to time t by sampling from p(xt|xl
t−1).
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We begin by assuming that the particle filter, a simulation-based filter, has fixed

model parameters θ. Given the weighted particles {xl
t−1, w̃

l
t−1}Ll=1, we approxi-

mate Equation (2.100) by a weighted sample of particles {xl
t, w̃

l
t}Ll=1, such that

p(xt|y1:t) ∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1.

Given the weighted particles {xl
t−1, w̃

l
t−1}Ll=1, we can write

p̂(xt|y1:t) ∝ p(yt|xt)
L∑
l=1

w̃l
t−1p(xt|xl

t−1)

∝ weight× proposal,

which can be approximated using importance sampling. Accordingly, the poste-

rior would be approximated with a set of weighted particles {xl
t, w̃

l
t}Ll=1. Whereas

the prediction stage combines the current filtering distribution with the state

evolution to obtain the prior distribution of the state at time (t + 1) via the

Chapman-Kolmogorov equation

p(xt+1|y1:t) =
∫

p(xt+1|xt)p(xt|y1:t)dxt. (2.102)

The state equation can be defined as being used to generate the weight and sample

values of the current state vector xt+1 based on past sampled values of the state

xt, which are typically not available in closed form for general nonlinear and non

Gaussian state space models. A generic algorithm for the SMC method can be

described as follows

1. At time step t, we have a sample representation of the conditional density of

the state process p(xt|y1:t) expressed as samples {xl
t}Ll=1 with corresponding

normalised importance weights {w̃l}Ll=1.

2. Resample with replacement the weighted samples {xl
t}Ll=1, according to their

importance weights {w̃l}Ll=1, to obtain a set {x̃l
t}Ll=1. This has the role of

eliminating particles with low importance weights.

3. Propagate each particle forward and approximate {xl
t+1} samples from

the state transition density p(xt+1|x̃l
t), giving approximate samples from

p(xt+1|y1:t). Each of these particles are then perturbed slightly to perform
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1 {xl
t}Ll=1 ∼ p(xt|y1:t).

2 Resample with replacement.

3 Resample and propagate particles forward.

4 Perturb each particle.

5 Approximate p(xt+1|y1:t).

Figure 2.11: A graphical representation of the time evolution of a sequential
Monte Carlo algorithm [adapted from (Doucet et al., 2001)]. At the first level,
we generate {xl

t}Ll=1 samples from p(xt|y1:t) . At the second level, we resample with
replacement to clear away particles that fall below a certain threshold, known as
low importance weight. At the third level, we resample the obtained particles
according to their weights such that the heavier particles can be resampled more
than once and then we propagate them forward to approximate p(xt+1|y1:t). At
the fourth level, we perturb the particles in order to explore the state space
better. Finally, we evaluate and normalise the importance weights of particles
approximated from p(xt+1|y1:t). It should also be noted that the solid curve line
describes the likelihood function at a certain time.
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moves around the parameter space for better exploration.

4. For each of the new particles, evaluate the importance weights wt+1 =

p(yt+1|xl
t+1), and then a normalised weight w̃l

t+1 = wt+1/
∑

i w
i
t+1.

5. Go back to step 1 and repeat for t = t + 1.

Figure 2.11 shows a pictorial representation of the sequential Monte Carlo algo-

rithm described above. Doucet et al. (2000) discussed that in the presence of

lengthy observations the variance of the importance weights may increase over

time, which makes the degeneracy phenomenon unavoidable. One way to limit

this drawback is to choose an importance density that minimises the variance of

the weights, known as the optimal importance density.

2.9 Marginal Likelihood Estimation

Gelman and Meng (1998) introduced a new technique known as path sampling

for approximating the marginal likelihood of a model with parameter vector θ.

Consider introducing an auxiliary variable (or temperature schedule) t ranging

from 0 to 1, and a power posterior defined by various levels of weighted likelihood,

such that

pt(θ|X) ∝ p(X|θ)tp(θ). (2.103)

The auxiliary variable t is inspired by ideas from thermodynamics defined such

that t0 = 0 and tT = 1. By choosing a temperature schedule that links t0 to tT ,

such that

0 = t0 < t1 < · · · < tT = 1, (2.104)

we obtain a path between pt0 and ptT : forming a natural bridge or path from the

prior to the posterior distributions. The Bridge sampling technique improves the

convergence of MCMC methods as it flattens the likelihood function for small

values of t, prior-like distribution, and recovers the posterior of interest for t = 1.

The posterior expectation estimator is given by

z(X|t) =
∫

[p(X|θ)]tp(θ)dθ, (2.105)
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so that z(X|t = 0) is the integral of the prior, which is 1, while z(X|t = 1)

is the marginal likelihood p(X) =
∫
p(X|θ)p(θ)dθ, which can be written in a

telescoping fashion as

p(X) = z(X|t = 1) = z(X|tT ) = z(X|tn)
z(X|t0) =

z(X|t1)
z(X|t0) ×

z(X|t2)
z(X|t1) × . . .× z(X|tT )

z(X|tT−1)
.

(2.106)

Taking logarithms of both sides of Equation (2.106), we can derive an estimate

of z(X|t = 1) such that

log{p(X)} = log

{
z(X|t = 1)

z(X|t = 0)

}
=

∫ 1

0

Eθ|X,t log{p(X|θ)}dt. (2.107)

Thus the log marginal likelihood is the expected log likelihood with respect to

the power posterior at temperature t ∈ [0, 1]. Friel and Pettitt (2008) derived

Equation (2.107) such as:

d

dt
log{z(X|t)} = 1

z(X|t)
d

dt
z(X|t)

=
1

z(X|t)
d

dt

∫
θ

[p(X|θ)]tp(θ)dθ

=
1

z(X|t)
∫
θ

[p(X|θ)]t log{p(X|θ)}p(θ)dθ

=

∫
θ

[p(X|θ)]tp(θ)
z(X|t) log{p(X|θ)}dθ

= Eθ|X,t[log{p(X|θ)}].

Equation (2.107) is estimated by marginalising over the power parameter t and

the model parameter vector θ. The method consists of: discretising the integral

(2.107) over t ∈ [0, 1]; run separate chains for each t; and sampling from the

power posterior to estimate the expected log likelihood, Eθ|X,t[log{p(X|θ)}]. The
marginal likelihood can be evaluated using the trapezoid rule over T intervals

defined using a temperature schedule of type, ts = acs, where as = s/T is an equal

spacing of T cutpoints in the interval [0, 1], and c > 1 is a constant that ensures

the ts are sampled with a high frequency in the region close to t = 0. Thus we
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can approximate the logarithm of the evidence as

log{p(X)} ≈
T−1∑
s=0

(ts+1 − ts)
1

2

[
Eθ|X,ts+1 [log{p(X|θ)}] + Eθ|X,ts[log{p(X|θ)}]

]
.

(2.108)

The Monte Carlo standard error of log{p(X)} is obtained as the square root of

the summed of variances at each cutpoint, νs = Eθ|X,ts+1
[log{p(X|θ)}], so that,

log{p(X)} ≈
√√√√{(t2 − t1)2

2
ν2
1 +

T−1∑
s=2

(ts+1 − ts−1)2

2
ν2
s +

(tT − tT−1)2

2
ν2
T

}
.

(2.109)

2.10 Random Processes

A random process F , also called a stochastic process, is a family of random vari-

ables {f(x); ∀x ∈ X} that maps the sample space Ω into some set S. The choice

of X and S define the characteristics of the process on whether it is countable or

uncountable. For example, the Markov jump process is a ‘discrete-time’ process

because the random variables are indexed by some set X = {0, 1, 2, . . .}; how-
ever, the Gaussian Process (see below) is a ‘continuous-time’ process because it

is defined over a continuous set such that X = [0,∞[. Many important processes

have the property that their joint probability distribution does not change under

time shifts, which are known as the stationary distributions. In this section, I

shall describe the Gaussian processes (GPs) and time series data analysis.

2.10.1 Gaussian processes

A stochastic process F = {f(x); ∀x ∈ X} is said to be a Gaussian process (GP)

if for any finite subset Q ⊂ X , the obtained random vector F = {f(x); ∀x ∈ Q}
is a multivariate Gaussian distribution. This can be interpreted as a distribution

over function spaces.

In the context of machine learning, GPs belong to a non-parametric Bayesian

framework which is defined over an infinite-dimensional parameter space. This

approach affords to have models with infinitely many parameters because it re-

gards the learning as an inference over the parameters of the model rather than

an optimisation approach. The idea of replacing supervised neural networks by
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Gaussian processes was first explored by Williams and Rasmussen (1996) and

Neal (1997). In general, a GP can be described using the mean function m(x)

and a covariance or kernel function k(x, x′) of a continuous process f(x), such

that

m(x) = E[f(x)] (2.110)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))],

where x and x′ ∈ X . Hence we will write the Gaussian process as

f(x) ∼ GP(m(x), k(x, x′)). (2.111)

To achieve a Bayesian learning approach, we need to specify a prior over the

parameters with the purpose of expressing our beliefs about the parameters before

we observe the data. Lawrence et al. (2010) have addressed the problem of

how one may place a prior distribution over an infinite-dimensional object. For

a finite number of inputs, X = {xi}ni=1, the prior distribution over the vector

f = [f(x1), f(x2), . . . , f(xn)] follows a Gaussian distribution N (μ,Kf,f), where μ

is the mean function and Kf,f is the covariance function obtained by evaluating

the kernel function on the observed inputs. Hence, the prior distribution of the

training set can be described in the form

p(f) = N (0,Kf,f), (2.112)

which is a n-dimensional Gaussian distribution where 0 denotes a zero mean

Gaussian prior and Kf,f is the n× n covariance matrix.

In practice, we observe noisy realisations of the continuous process, such that

y(xi) = f(xi) + ε(xi), ε(xi) ∼ N (0, σ2
i ) ∀i = {1, 2, . . . , n}.

This can be used to define a Gaussian likelihood model such that

p(Y |f , σ2I) = N (f , σ2I). (2.113)
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One may then define the marginal likelihood in the form

p(Y |X) =

∫
p(Y |f , X)p(f |X)df (2.114)

= N (Y |0,Kf,f + σ2I)

The logarithm of the marginal likelihood for the Gaussian process regression can

be described as

log p(Y |X) = −1
2
Y �(Kf,f + σ2I)−1Y − 1

2
log |Kf,f + σ2I| − nD

2
log 2π, (2.115)

where D is the training data set dimension. Finally, we can describe the joint

probability distribution in the form

p(Y, f) = p(Y |f)p(f). (2.116)

This expression represents a non-parametric model as the dimension of the co-

variance matrix Kf,f increases with the size of the training set. In this review,

I shall examine the Gaussian process regression model for predicting an output

function f∗ given a test input x∗.

2.10.1.1 Covariance functions

In general, the relationship among observations is related one to another through

the covariance matrix Kf,f . A common choice of the covariance function is the

squared exponential (SE) covariance function, sometimes known as the radial basis

function (RBF) function, such that

Cov(f(xi), f(xj)) = k(xi, xj) = σ2
rbf exp

{
−(xi − xj)

2

2l2

}
+ σ2δij, (2.117)

where σ2
rbf is the signal variance that can amplify or reduce the signal for large

or small values respectively. However, l is the characteristic length-scale that

causes the function to vary rapidly or slowly when adjusting it for small or large

values respectively, and ε ∼ N (0, σ2δij) is a Gaussian white noise. The covariance

function determines the correlation between two random variables. For instance,

the correlation between f(x1) and f(x2) is higher than the correlation between

f(x1) and f(x5). In other words, if x5 is farther from x1 and x2 the correlation
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tends to zero as the separation distance increases. Moreover, this equation shows

that the covariance of outputs is written in function of inputs. The choice of the

covariance function k(., .) has to satisfy Mercer’s theorem which states that any

continuous, symmetric, positive semi-definite kernel function K can be expressed

as a dot product in a high-dimensional space. It turns out that the covariance

function is equivalent to the kernel function, as it is known in the support vector

machine. By satisfying this condition one may develop many other forms of co-

variance functions such as Matérn, rational quadratic and so forth. Additionally,

Rasmussen and Williams (2006) showed that one can create new valid kernels

from old ones by using the sum, product and convolution operations.

2.10.1.2 Parameter estimation

In the machine learning literature, the parameters of a GP are usually estimated

by maximising the marginal likelihood, which is also known as the type II maxi-

mum likelihood.

We re-write the marginal likelihood expression described in Equation (2.115) by

conditioning it explicitly on the parameters of the covariance function, such that

log p(Y |X, θ) = −1
2
Y T (Kf,f +σ2I)−1Y − 1

2
log |Kf,f +σ2I|− nD

2
log 2π. (2.118)

The parameters are normally maximised with respect to each element on θ using

a gradient-descent method, which gives point estimates of the parameter vector

θ.

2.10.1.3 Regression

The Gaussian process in regression would initially require the definition of the

covariance function in a general way. For instance, let us assume that our physical

process can best be described by an underlying RBF kernel, which is a smooth ker-

nel function because the exponential function can have an infinitely large Taylor

series expansions. We then inject a few observations or training points {X, f(X)}
to define the covariance matrix among all possible combinations of these points,
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so that

Kf ,f =

⎛
⎜⎜⎜⎜⎝
k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x1) k(x2, x2) · · · k(x2, xn)
...

...
. . .

...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

⎞
⎟⎟⎟⎟⎠ . (2.119)

Combining the covariance function with the training set would result in defin-

ing the posterior mean, which should be used for prediction. If there are n∗
test points, the prediction would consist of conditioning the joint Gaussian prior

distribution on the observations, p(f∗|f), which would require us to evaluate the

following covariance matrices

K∗,f =

⎛
⎜⎜⎜⎜⎝

k(x1
∗, x1) · · · k(x1

∗, xn)

k(x2
∗, x1) · · · k(x2

∗, xn)
...

. . .
...

k(xn∗∗ , x1) · · · k(xn∗∗ , xn)

⎞
⎟⎟⎟⎟⎠ and K∗,∗ =

⎛
⎜⎜⎜⎜⎝

k(x1
∗, x

1
∗) · · · k(x1

∗, x
n∗∗ )

k(x2
∗, x

1
∗) · · · k(x2

∗, x
n∗∗ )

...
. . .

...

k(xn∗∗ , x1
∗) · · · k(xn∗∗ , xn∗∗ )

⎞
⎟⎟⎟⎟⎠ ,

(2.120)

where K∗,f is the cross-covariance between f∗ and f , and K∗,∗ is the covariance

function associated with f∗. Accordingly, the complete form of the covariance

matrix can be written in the form

K =

(
Kf ,f Kf ,∗
K∗,f K∗,∗

)
. (2.121)

By multiplying the Gaussian likelihood, Equation (2.113), by the Gaussian pro-

cess prior, Equation (2.112), we obtain the posterior distribution evaluated over

f(x), such that

p(f(x)|X, Y ) ∝ GP(mpost(x) = k(x,X)[K(X,X) + σ2I]−1Y, (2.122)

kpost(x, x
′) = k(x, x′)− k(x,X)[K(X,X) + σ2I]−1k(X, x′)).

which represents a distribution over functions. To predict the function values

f∗ evaluated at different locations X∗, we would multiply the likelihood by the

posterior and marginalise out the rest of the infinitely many variables f to keep

the ones that we are interested in, such that

p(f∗|X∗, X, Y ) =

∫
p(f∗|X∗, f)︸ ︷︷ ︸
Likelihood

p(f |X, Y )︸ ︷︷ ︸
Posterior

df , (2.123)
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where the parameters of the model are the function f itself. For most interesting

models this integral is intractable, but it becomes tractable in the GP framework.

This is because the likelihood function is a Gaussian distribution at the observed

points f(x1), f(x2), . . . , f(xn) and the prior is a Gaussian process. The outcome

would then be an infinite dimensional posterior Gaussian distribution, which is a

distribution over functions. It turns out that Equation (2.123) becomes tractable

because the integration of the product of two Gaussians is a Gaussian. Therefore,

the predictive conditional distribution can be represented in the form

p(f∗|X∗, Y,X) = N (f̄∗,Σ), (2.124)

where

f̄∗ = K∗,fK−1
f ,f f (2.125)

Σ = K∗,∗ −K∗,fK−1
f ,fKf ,∗. (2.126)

f̄∗ is a linear representation of the predictive mean evaluated at the test points

such that f̄∗ =
∑n

i=1 cik(x∗, xi) and Σ defines the error bars on this prediction

which is composed of two terms, K∗,∗ is the prior variance and K∗,fK−1
f ,fKf ,∗ is the

covariance between the test points and the training set. The Equation (2.126)

can be interpreted in the following way: the closer our test point is situated from

the training point, the greater the K∗,fK−1
f ,fKf ,∗ expression would become, and

hence the smaller the variance Σ. However, the further our test point is situated

from the training point, the smaller the K∗,fK−1
f ,fKf ,∗ expression would become,

and therefore the larger the variance Σ we would obtain.

As we can see, the prediction performance is controlled entirely by the covariance

matrix, which is an important key for regression.

2.10.2 Time series

A time series is a set of observations collected when observing the evolution of a

physical process in time (e.g. finance, environmental, medicine). An autoregres-

sive process (AR) of order p denoted as AR(p) can be defined in the form

Xt =

p∑
i=1

φiXt−i + εt, (2.127)
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where {φi}pi=1 are constant coefficients and εt is a sequence of uncorrelated white

noise defined with mean 0 and variance σ2. For a special case where p = 1, the

AR(1) process takes the form

Xt = φ1Xt−1 + εt. (2.128)

Assuming stationarity, Weber (2007) described how one may determine the opti-

mal parameters of an AR process. This starts by initially calculating the autoco-

variance function that is achieved by multiplying both sides of Equation (2.128)

by Xt−k and then taking the expected value, such that

Xt−kXt = φ1Xt−kXt−1 +Xt−kεt

⇒ E(Xt−kXt) = E(φ1Xt−kXt−1) + E(Xt−kεt)

⇒ E(Xt−kXt) = φ1E(Xt−kXt−1)

⇒ γk = φ1γk−1.

The sequence γk (for k = 1, 2, . . .) is called the autocovariance function. The

autocorrelation function is defined as follows:

ρk = γk/γ0 = corr(Xt−kXt).

Similarly, squaring Equation (2.128) and taking the expected value as well as

assuming covariance stationarity meaning that E(X2
t−1) = E(X2

t ), the variance

can be directly computed,

E(X2
t ) = φ2

1E(X
2
t−1) + 2φ1E(Xt−1εt) + E(ε2t )

E(X2
t ) = φ2

1E(X
2
t−1) + 0 + σ2

E(X2
t ) = φ2

1E(X
2
t ) + σ2

⇒ γ0 = φ2
1γ0 + σ2

⇒ γ0 = σ2/(1− φ2
1).

The autocorrelation function is obtained by multiplying Equation (2.127) by Xt−k

and dividing it by γ0, such that

ρk = φ1ρk−1 + φ2ρk−2 + . . .+ φpρk−p + εt, (2.129)



2.10. Random Processes 71

which is known as the Yule-Walker equation. The autocorrelation should be zero

for distant observations, γk → 0 as k →∞, in which case the optimal parameters

φ1, φ2, . . . , φp can be solved using a Levinson-Durbin recursion.

Moreover, the moving average process (MA) of order q denoted as MA(q), takes

the form

Xt = θ0 +

q∑
i=1

θiεt−i + εt, (2.130)

where θ0 and {θi}qi=1 are the coefficients and εt is a sequence of uncorrelated white

noise. A first order moving average process MA(1) has dynamics which follow

Xt = θ0 + θ1εt−1 + εt. (2.131)

The mean and the variance are given by

E(Xt) = θ0,

E(X2
t ) = σ2(1 + θ21).

2.10.2.1 Autocorrelation function

The autocorrelation function (ACF) is commonly used to detect non-random pat-

terns presented in a time series data. This technique consists of computing the

autocorrelation at different time lags and analysing their values. Non-random

patterns are generally identified by non-zero autocorrelations, in contrast to ran-

domness which is identified by values near to zero. Figure 2.12-a illustrates the

result of an ACF function applied to time series data, where the horizontal blue

lines represent a 95% confidence interval and the bars represent the values. This

figure tells us that the data is correlated such that current observation are de-

pending on previous ones.

2.10.2.2 Partial autocorrelation function

The Partial autocorrelation function (PACF) is commonly used to define the order

of an autoregressive model. It describes the autocorrelation function between Xt

and Xt−k and disregards any information situated in between (e.g. lags 1 through

k − 1). For example, Figure 2.12-b illustrates the result of a PACF function

applied to a time series data which shows a high autocorrelation value at lag 1.

This recommends that an AR(1) would be a good option to describe the data.
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Figure 2.12: Examples of Autocorrelation and Partial Autocorrelation functions.
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2.10.2.3 Autoregressive moving average

An autoregressive moving average model denoted as ARMA(p,q) is obtained by

combining AR and MA processes, such that

Xt =

p∑
i=1

φiXt−i + εt +

q∑
i=1

θiεt−i, (2.132)

which is stationary for appropriate φ, θ. The contribution of Box and Jenkins

(1976) was in developing a systematic procedure to determine the most appro-

priate values of p and q, which consists of three stages

1. Model identification: consists of assessing whether the data is derived from a

stationary process or not. For instance, we can difference the data to remove

non-stationarity patterns or, for more convenience, transform it (e.g. using

the log function). Then we choose p and q such that the ACF for an MA(q)

is zero beyond lag q, and the PACF for an AR(p) is zero beyond lag p.

2. Parameter estimation: consists of determining model parameters φs and

θs using Levinson-Durbin recursion which restricts results to be within the

unit circle. Accordingly, the approximate log likelihood can be defined by

−2 logL =
n∑

t=1

{
log(2π) + 2 log σt−1 +

(Xt − μt)
2

σ2
t−1

}
, (2.133)
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where μt and σ2
t are functions of the parameters φs and θs. Thus, p and q

can be chosen by minimising the AIC, such that

AIC = −2 logL+ 2(p+ q),

where p+ q is the number of unknown parameters in the model.

3. Diagnostic checking: consists of applying overfitting and residual analysis

tests. The former consists of increasing the number of parameters gradually

until we detect that further parameters are not reducing the AIC value;

however, the latter consists of calculating the residuals from the fitted model

and verifying that they are consistent with white noise. Ljung and Box

(1978) applied a statistical test to check whether the overall randomness

based on a number of lags is different from zero, known as the ‘portmanteau’

test of white noise. It is commonly applied to the residuals of a fitted ARMA

model to test the hypothesis that residuals are uncorrelated.

Additionally, an autoregressive integrated moving average model denoted as

ARIMA(p,d,q) is a generalisation of an ARMA model but with a differencing

term to discard non-stationarity from the data.

2.10.2.4 Autoregressive conditional heteroskedasticity

Autoregressive conditional heteroskedasticity (ARCH) models (Engle, 1982) are

used when we believe that the variance of a time series is not constant at every

point in a series. Such models are often used in financial time series in which

they assume that the current variance is expressed as a function of previous

innovations. Accordingly, the variance of an ARCH(q) model takes the form

σ2
t = α0 + α1ε

2
t−1 + · · ·+ αqε

2
t−q = α0 +

q∑
i=1

αiε
2
t−i, (2.134)

where αi ≥ 0. On the other hand, Bollerslev (1986) proposed a generalized

autoregressive conditional heteroskedasticity (GARCH) model which is a natural

generalization of the ARCH model allowing for a much more flexible lag structure,
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that is, defined in the form

σ2
t = α0+α1ε

2
t−1+· · ·+αqε

2
t−q+β1σ

2
t−1+· · ·+βpσ

2
t−p = α0+

q∑
i=1

αiε
2
t−i+

p∑
i=1

βiσ
2
t−i.

(2.135)

It should also be noted that the generalisation from ARCH to GARCH models is

similar to the generalisation from an autoregressive (AR) model to autoregressive

moving average (ARMA) model.

2.11 Summary

In this chapter, I reviewed some technical ground about probability theory: fre-

quentist and Bayesian inferences. Bayesian inference theories have been widely

used in artificial intelligence and expert systems since the late 1950s; but, un-

fortunately, the solution obtained by these models is rarely achievable in an an-

alytical closed form. To simplify the computation of the posterior distribution,

one may recourse to exponential families on the choice of priors; but for the

majority of cases the posterior distributions are approximated by functional and

MCMC approximation techniques. Since graphical models are at the heart of

every probability model, I reviewed some basic concepts of graphical models that

are necessary in understanding the probabilistic models and inference algorithms.

Finally I discussed the advantage of Gaussian Process models and how one may

fit a time series model to a process that evolves over time.



Chapter 3

Identification and quantification

of heteroscedasticity in

stock-recruitment relationships

Non-constant variance (heteroscedasticity) in the stock-recruitment (S-R) rela-

tionship is proposed as an important factor in sustainable fisheries management,

but its reliable estimation from noisy populations is problematic. I developed

methods for both frequentist and Bayesian approaches to test whether I can

accurately estimate the degree of heteroscedasticity in 90 published S-R popu-

lations. The confidence interval for the heteroscedastic regression model is es-

timated via a parametric bootstrap approach, and the credible interval for the

Bayesian method via a Markov chain Monte Carlo sampling algorithm. I found

strong evidence of negative heteroscedasticity in several stocks, regardless of the

statistical paradigm, the details of density dependence, and the methods used

to generate the original populations. This statistical framework provides an effi-

cient and reliable setting for assessing heteroscedasticity of the S-R relationship

in fisheries.

The objectives of this Chapter are the following:

• To examine whether the additional parameter η1 can provide a better fit to

the data.

• To examine whether the parameter η1 can be reliably estimated.

Much of the work in this chapter has recently been published by the author and

colleagues (Panikian et al., 2015), printed in Appendix H.

75
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3.1 Introduction

Reliable mathematical modelling and prediction of fish populations is of great

importance socially and economically, as well as being a necessary ingredient in

the conservation of biodiversity. Various natural and anthropogenic factors af-

fect fish populations, with the life of juvenile fish typically being characterised

by enormous mortality rates (Hilborn and Walters, 1992). Newly hatched fish

larvae have very low probability of reaching adulthood (Pitchford et al., 2005).

Mortality is due to variability in food supply, migration, predation, starvation,

poisonous pollutants, and fishing activities (Steele et al., 1977): resulting in an

unpredictable relationship between the adult population (‘stock’) and the juve-

niles (‘recruitment’) that will successfully survive to enter the adult population

in the future. Understanding the stock-recruitment (S-R) relationship therefore

requires careful statistical techniques forming a crucial ingredient in the sustain-

able management of these exploited natural resources.

There are, of course, limits to growth in populations. For instance, climatic

changes, environmental conditions and natural disasters are classified as density-

independent factors that influence larval survival and recruitment size directly

but do not regulate variability of juvenile mortality, except for some flatfish

species (Myers and Cadigan, 1993b; Leggett and Deblois, 1994). In contrast, in-

traspecific competition, predation and disease are classified as density-dependent

limiting factors that might regulate the recruitment variation of fish popula-

tions (Myers and Cadigan, 1993a). At low population there would be very little

density-dependent mortality during the juvenile stage, but when the population

size increases a strong density-dependent mortality usually occurs. Myers and

Cadigan (1993b) found that the interannual variability in juvenile survival ap-

pears to be the most important source of variability in abundance; but it is

attenuated by density-dependent mortality in the juvenile stage. From another

perspective, Spencer (2008) studied the effect of both density-dependent and

density-independent factors in determining the spatial distribution of six flatfish

species living in the eastern Bering Sea. This distribution is found to be shifting

northward toward colder habitats in response to increasing temperatures caused

by global warming.

Understanding the stock-recruitment (S-R) relationship therefore requires careful

statistical techniques forming a crucial ingredient in the sustainable management
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of these exploited natural resources. From the point of view of sustainable man-

agement, Shepherd and Cushing (1990) studied plausible regulatory processes for

analysing fish populations and argued that increased variability at low stock sizes

might prevent the collapse of stocks subject to high mortality rates, because in

this case the variability acts to produce depensatory rather than compensatory

density-dependence, a theme echoed by Minto et al. (2008). Hsieh et al. (2006)

presented the first empirical evidence that fishing could increase the survival

variability (a proxy for recruitment variability) in an exploited population and

advocated that increased variability of exploited populations favours a precau-

tionary management approach.

Heteroscedastic models (i.e. statistical models using non-constant variance) have

gained much interest in recent years to explain the regulatory mechanisms in

fish populations. Minto et al. (2008) developed a stochastic method applied to

a meta-analysis of 147 fisheries populations to argue that survival variability

is inversely proportional to stock size. Their model was inspired by Peterman

(1981) who argued that random variation in marine survival rates tends to follow

a log-normal distribution; but the novelty of their method was to incorporate

a functional form of non-constant recruitment variability over adult abundance.

More recently, Burrow et al. (2012) investigated the feasibility of applying het-

eroscedastic models in practice, using two North Sea stocks as examples. They

uncovered a weakness of using a heteroscedastic regression model by showing it

to be statistically unreliable to fit the parameters based on small S-R popula-

tions (containing 40 or 50 data points); but made a mistake while defining the

log-likelihood function (i.e. missing a square term and a factor of 0.5) and re-

stricting their analysis to only two populations. The use of heteroscedastic models

is controversial because previous research engaged in interpreting non-constant

variance has failed to provide a clear-cut answer about its reliable estimation for

fisheries management.

The aims of this study were: (1) to develop frequentist and Bayesian methods for

accurately identifying the non-constant variance exhibited in a density-dependent

model, and (2) to test the reliability of these methods on 90 S-R populations.

Since none of the S-R populations are direct observations, I select populations

estimated by virtual population analysis (VPA) type assessments so as to ensure

that the recruitment estimates are derived from the catch-at-age data, which is

not dependent on the estimate of the spawning stock biomass. I found it useful
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to analyse the edge effects at the beginning and end of the time series data to

test whether VPA methods have an impact upon our results. In this work, I

employed the two dominant approaches to inference, known as Bayesian and fre-

quentist statistical methods, to determine whether one can reliably estimate the

non-constant variance. I conclude that within either the frequentist or Bayesian

paradigm, the reliability of determining the existence of a negative η1 values (the

coefficient of heteroscedasticity) can only be assessed on a case-by-case basis.

3.2 Materials and methods

I pruned S-R populations collated in the publicly available RAM legacy database

(www.ramlegacy.org) (Ricard et al., 2012) by restricting the analysis only to those

estimated by virtual population analysis (VPA) type assessments. The spawning

stock biomass (SSB) is measured in tonnes; however, the recruitment is measured

in thousands of individuals. The 12 VPA-type assessment methods classified un-

der this category are as follows: VPA, SPA, XSA, FLXSA, ADAPT, NFT-ADAPT,

B-ADAPT, SXSA, SPA-ADAPT, NFT-ADAP, ISVPA and hybrid. VPA, also known as

cohort analysis, follows cohorts through their whole life, using catch-at-age data

and natural mortality to back-calculate what recruitment had to be in order to

support the catch (Hilborn and Walters, 1992). In contrast, assessments based on

integrated analyses and statistical catch-at-age assessments employ an underly-

ing S-R relationship, so fitting a S-R curve to their time-series is not appropriate.

There were 100 S-R populations obtained with VPA-type assessment, but 10 pop-

ulations had missing data or no data at all. Accordingly, I restricted the analysis

on the remaining 90 fish populations, representing 32 species (see Appendix A,

Table A.1).

For the purposes of illustration, here I briefly describe a simple VPA analysis

from (Anderson, 1978) to show how one can estimate stock sizes and fishing mor-

tality rates for each year-class (cohort) making up the overall population. The

approach relies on two simple relationships for each cohort, such that

Ci = Ni
Fi

Mi + Fi
{1− exp(−Mi − Fi)} , (3.1)

Ni+1

Ci
=

(Mi + Fi) exp(−Mi − Fi)

Fi {1− exp(−Mi − Fi)} , (3.2)
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where Ci is the catch of fish of that cohort in year i, Ni is the population size

at the beginning of year i, Mi is the natural mortality rate (estimated inde-

pendently from previous research) and Fi is the fishing mortality. Assume (for

example) that no individual exceeds an age of nine years (or equivalently, one can

introduce a plus group for individuals aged 9 and above). Then by knowing Ci,

Mi and by estimating Fi at age nine by incorporating ancillary data in the form

of tagging experiments (Parks, 1976), we would be able to iteratively calculate

the population size each year, starting from the oldest and moving backward to

the youngest. Explicitly N9 is solved using Equation (3.1). Next, the fishing

mortality at age eight or F8 is solved using Equation (3.2). This result is sub-

stituted into the catch equation (3.1) to calculate N8, and so forth down to the

age one. The outcome of the VPA analysis is then used to estimate recruitment

expressed as abundance at age 1 and the SSB by summing up stock sizes of age

2+ in each year respectively. There are many variations on this basic theme,

which use age-structured data to estimate current stock size. I confirmed that

my statistical results are not affected by the VPA-type assessment, and hence I

assume that all relevant S-R datasets are approximately derived from the same

underlying model.

3.2.1 The Model

To understand the relationship between spawning stock biomass (SSB) and re-

cruitment, Minto et al. (2008) proposed the following model:

ln

(
Ri

Si

)
∼i.i.d. N (μi, σ

2
i ) where μi = ln(α) +

1

γ
ln(1− γβSi) and (3.3)

σ2
i = exp(η0 + η1Si),

where Ri and Si are the estimated number of recruits and SSB for each obser-

vation i respectively. The parameter γ is fixed during the analysis; but α, β, η0

and η1 need to be estimated. This is a regression model that assumes the log-

arithm of the ratio (Ri/Si) is an independent and identically distributed (i.i.d.)

sample from a Gaussian model with non-constant variance. In practice, none of

the populations (i.e. spawning stock biomass and recruitment) are actually di-

rect observations. They are in reality model outputs (parameter estimates) from

fisheries assessments, where models have been previously fitted to fisheries data
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(catch, age structure information, indices, etc.). The parameters α and β measure

the productivity and the density-dependent mortality (capacity) in a population,

respectively. The density-independent part of the variance is described by η0,

with the density dependent variance described by η1, known as the heteroscedas-

tic coefficient. The parameter γ enables us to choose between several survival

models. For instance, γ = −1000 generates a model with essentially no density

dependence, and increasing γ increases the amount of density dependence: re-

producing several models that have been advocated in previous studies (Minto

et al., 2008), such as: γ = −2 (Cushing-like), γ = −1 (Beverton-Holt), γ = 0

(Ricker) and γ = 1 (Schaefer).

3.2.2 Likelihood Of The Model

Let R = (R1, R2, . . . , Rn) and S = (S1, S2, . . . , Sn) be the recruitment and stock

model input vectors. The log-likelihood of the heteroscedastic regression model

is

L{ln (R/S) , α, β, η0, η1} = −n

2
ln(2π)− 1

2

n∑
i=1

(η0 + η1Si)− 1

2

n∑
i=1

{
ln
(
Ri
Si

)
− μi

}2

exp(η0 + η1Si)
,

(3.4)

where

μi = ln(α) +
1

γ
ln(1− γβSi),

and n is the number of observations. For the initial set of experiments, I fix

γ = −1 for my analyses here (representing the Beverton-Holt compensation model

(Beverton and Holt, 1957)), which turns the log-likelihood function into the form

L{ln (R/S) , α, β, η0, η1} ∝ −1

2

n∑
i=1

(η0+η1Si)−1

2

n∑
i=1

{
ln
(
Ri
Si

)
− ln(α) + ln(1 + βSi)

}2

exp(η0 + η1Si)
.

(3.5)

For a constant variance, the coefficient of heteroscedasticity is zero and the

variance would be written as σ2 = eη0 . I choose to scale both SSB and recruitment

model inputs with their maximum values respectively so as to normalise the

assessments between 0 and 1, as in (Minto et al., 2008).

To determine whether the log-likelihood function for Equation (3.5) is globally

concave or not, I examined the matrix of second derivatives (or the Hessian
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matrix):

H(α, β, η0, η1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2L
∂α2

∂2L

∂β∂α

∂2L
∂η0∂α

∂2L
∂η1∂α

∂2L
∂α∂β

∂2L
∂β2

∂2L
∂η0∂β

∂2L
∂η1∂β

∂2L
∂α∂η0

∂2L
∂β∂η0

∂2L
∂η20

∂2L
∂η1∂η0

∂2L
∂α∂η1

∂2L
∂β∂η1

∂2L
∂η0∂η1

∂2L
∂η21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.6)

To simplify the expressions I set ξi = ln(Ri

Si
)− ln(α) + ln(1 + βSi), ai = exp(η0 +

η1Si) and bi =
Si

1+βSi
. Thus, the Hessian matrix would take the form

H(α, β, η0, η1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
α2

∑n
i=1

(1+ξi)
ai

1
α

∑n
i=1

bi
ai

− 1
α

∑n
i=1

ξi
ai

− 1
α

∑n
i=1

Siξi
ai

1
α

∑n
i=1

bi
ai

∑n
i=1 b

2
i
(ξi−1)

ai

∑n
i=1 bi

ξi
ai

∑n
i=1 biSi

ξi
ai

− 1
α

∑n
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(3.7)

from which I derived the sequence of determinants known as principal minors.

Definition 3.2.1. Let A be an n × n matrix; a k × k submatrix of A formed

by deleting n − k rows of A, and the same n − k columns of A, is called princi-

pal submatrix of A. The determinant of a principal submatrix of A is called a

principal minor of A.

Because the principal minors do not have a simplified form, a numerical solution

becomes essential to test the alternation in sign of principal minors. To do so,

I defined a subset C ⊂ R
4 such that C = {0 < α < 10, 0 < β < 10,−5 <

η0 < 10,−5 < η1 < 10} from which I randomly sampled six sets of parameters

(α, β, η0, η1) and plugged them in the log-likelihood function. Generally speaking,

a function is said to be concave if it satisfies the following theorem:

Theorem 1. A twice differentiable real-valued function defined on an open convex

set C is concave if and only if the Hessian matrix is negative semi-definite

everywhere on C. In other words, if and only if (−1)kΔk ≥ 0 for k = 1, 2, . . . , n.

At any point, the leading principal minors must alternate in sign with Δ1 ≤ 0,

Δ2 ≥ 0, Δ3 ≤ 0 and so forth (Boyd and Vandenberghe, 2004).
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Table 3.1: Random selection of parameters (α, β, η0, η1) with their associ-
ated principal minors (Δ1, Δ2, Δ3, Δ4) obtained while analysing the HAWG-
HERRVIaVIIbc-1956-2010 stock-recruitment dataset. The first four columns de-
scribe the sampled parameters, but the last four columns describe the correspond-
ing principal minors.

Sampled Parameters Principal Minors

α β η0 η1 Δ1 Δ2 Δ3 Δ4

4.658601 3.110526 -3.096537 6.527564 2.607741 -55.056882 16298.42608 -37216.55418
8.910902 1.921319 3.00684 3.99925 1.24E-02 -1.06E-03 2.71E-03 -9.76E-05
0.03391379 2.79001425 1.34757225 4.18833674 -19159.197 -4166.447 128401.969 -67830.031
3.3805582 8.0489839 0.8670313 5.646247 -2.63E-01 -2.73E-03 5.56E-03 -8.68E-05
8.452809 9.76857 8.68387 1.497699 2.12E-05 -3.55E-09 2.13E-11 -2.95E-15
2.886448 6.962125 9.985499 7.325011 -3.40E-05 -1.47E-11 2.37E-15 -1.96E-21

The principal minors are found to not alternate in sign (Table 3.1) as they

showed: (1) local concavity (first and second rows), (2) indefinite curvatures de-

scribed by the arbitrary change in the sign of principal minors (third and fourth

rows) and (3) flat curvatures described by the null principal minors (last two

rows). Since there is at least one sample that disagrees with Theorem 1, the

log-likelihood function is not concave and requires suitable methods for solving

this optimization problem. Figure 3.1 illustrates the shape of the log-likelihood

function that is obtained by projecting it on all possible dimensional spaces.

3.2.3 Why choose a heteroscedastic regression model?

I compared model fitting for heteroscedastic and non-heteroscedastic regression

models using the AICc statistic, I found a prevalence of the heteroscedastic

model for 78 out of 90 populations showing that the heteroscedastic model had a

much better fit across the majority of stocks, regardless of the coefficient of het-

eroscedasticity. Since the sign of η1 has a great influence in determining whether

such a model is appropriate for devising optimal harvest strategies, I pursue an

inquiry in the remainder of this Chapter to investigate whether the sign of η1 can

be reliably estimated. I also applied the AICc statistic as a measure to determine

the most appropriate value for γ that fits the S-R populations.
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Figure 3.1: Projection of the log-likelihood function on all possible axes.
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3.2.4 Frequentist inference

In this work, I apply maximum likelihood estimation (MLE) method to find a

specific estimate θ̂ of θ = (α, β, η0, η1) that maximises the log-likelihood func-

tion L(θ|R,S). If there is a unique maximum, then the MLE estimator θ̂ is

consistent and asymptotically normal with its mean concentrated near the true

value θ. Let θ̂ be the maximum likelihood estimator (MLE) of θ that maximises

the log-likelihood function L(R,S|θ). Here, I investigate several optimisation

techniques. I first develop a Simulated Annealing (SA) algorithm with a uni-

form perturbation proposal distribution inspired from (Robert and Casella, 2009,

p.144), the pseudocode example is described in Algorithm 5.

I additionally employ Nelder-Mead (Nelder and Mead, 1965), quasi-Newton

(Byrd et al., 1995) and conjugate-gradient (Fletcher and Reeves, 1964) optimisa-

tion algorithms available in the built-in R function optim. Furthermore, I employ

the AD Model Builder (ADMB) that is a free software package designed to help
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Algorithm 5 The implemented SA algorithm, adapted from (Robert and Casella,
2009).

1: Define the domain of definition of parameters.
2: Define the number of random restarts and the number of iterations.
3: for rand← 1, n.Rand do
4: Initialise the Temp, Factor and Scale parameters to 1.
5: Initialise θ = (α, β, η0, η1) to θ0.
6: Store the initial step in state.cur = θ0.
7: Store the initial likelihood value in curL = L(θ0).
8: for iter ← 1, n.Iter do
9: Propose a single step for each parameter.
10: For example, α∗ = state.cur[1] + runif(1,−1, 1) ∗ Scale.
11: if Temp ∗ log(runif(1)) < (L(θ∗)− curL) then
12: θ = θ∗

13: curL = L(θ∗)
14: end if
15: state.st[iter, ] = state.cur #store the values.
16: Temp = 1/ log(1 + iter). # set the temperature schedule.
17: acc.steps = length(unique(state.st[(ceiling(iter/2)):iter,1])).
18: #in case of a continuous rejection, minimise the jumps.
19: if (acc.steps == 1) then
20: Factor = Factor/10.
21: end if
22: #in case of a continuous acceptance, maximise the jumps to avoid

local maxima.
23: if (2 ∗ acc.steps > iter) then
24: Factor = Factor ∗ 10.
25: end if
26: Scale = max(2, Factor ∗ √Temp).
27: end for
28: For each random restart, store the parameters corresponding to the max-

imum likelihood in a global array.
29: end for
30: Find the largest maximum likelihood amongst the random restarts.
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Table 3.2: Five optimisation techniques applied to two randomly selected
datasets, AFWG-POLLNEAR-1957-2011 and NEFSC-HADGB-1930-2008 re-
spectively. The maximised log-likelihood (max LL) value shows the strength
of the algorithm and time(s) represents the elapsed time in seconds.

dataset method α̂ β̂ η̂0 η̂1 max LL time(s)
1 ADMB 9.417463 19.4767 -1.024932 -0.9773355 14.86818 2.09

CG 5.707483 11.06662 -1.005155 -1.000677 14.67919 3
Nelder-Mead 9.416474 19.47436 -1.024609 -0.9776983 14.86818 0.9
quasi-Newton 9.302521 19.21712 -1.024472 -0.9779884 14.86811 1.15

SA 9.990274 20.72245 -1.031662 -0.9748721 14.86555 461.94
2 ADMB 0.2826475 0.9606392 0.3339682 1.070824 -62.16186 4.66

CG 0.2750472 0.8212238 0.3538997 0.9994656 -62.17271 3.22
Nelder-Mead 0.2826419 0.9604135 0.3341409 1.070727 -62.16186 1
quasi-Newton 0.2826537 0.9607349 0.33397 1.070809 -62.16186 0.51

SA 0.285909 1.036674 0.3617885 1.010243 -62.16706 496.09

Table 3.3: Comparison between (a) ADMB and quasi-Newton, and (b) ADMB
and Nelder-Mead, when applied onto 90 S-R datasets.

Compared to
quasi-Newton Nelder-Mead

ADMB = 38 33
ADMB > 45 40
ADMB < 7 17

ecologists solve numerous statistical problems (Fournier et al., 2012). All these

methods are applied on two representative datasets so as to maximise the log-

likelihood function, as described in Equation (3.5). Table 3.2 illustrates the point

estimates of each optimisation technique along with the maximised log-likelihood

and elapsed time values respectively. All these techniques provide very close esti-

mate parameters such that the best method is identified as the one that gives the

largest log-likelihood value. In these two cases, CG performs the worst amongst.

Because of the Metropolis algorithm’s, accept-reject proposals, SA is found to

suffer from high computational cost which makes it impractical to be applied to

all the datasets. To evaluate quasi-Newton, Nelder-Mead and ADMB, I applied

these methods to all the datasets where I found the ADMB to be the most ap-

propriate optimisation technique for this problem. Table 3.3 summarizes this

comparison and shows that ADMB performs better than both quasi-Newton and

Nelder-Mead techniques. For instance, I found that ADMB and quasi-Newton

are equal over 38 cases, ADMB performs better than the quasi-Newton over 45

cases and worse over 7 cases.

Efron (1979) was the first to introduce the resampling residuals method to
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construct a bootstrap empirical distribution from an original dataset assumed to

be from an i.i.d. population. His method was applied to a series of examples in-

cluding the basic case of a simple linear regression for which the method reliably

assigned measures of accuracy of the model parameters. After his discovery many

other researchers employed bootstrap methods in the literature as an approach

for estimating the distribution of the estimator, see for example (Efron and Tib-

shirani, 1986). Efron’s method assumes the distribution of the residual errors

are approximately normally distributed. This normal approximation works well

when the residual errors are homoscedastic, but can fail when residual errors are

heteroscedastic making it inappropriate for estimating the parameters; see Shao

(1988) and Wu (1986). A heteroscedastic bootstrap method was proposed by

Wu (1986) for resampling residuals using a weighted bootstrap technique. Wu’s

method consists of slightly modifying Efron’s original method to consider the

nonconstancy of the error variances presented in the data. Liu (1988) proposed

that Wu’s sampling method could be substituted by randomly selecting samples

from a population that has its third central moment equal to one with a zero

mean and unit variance in order to obtain the second order properties of Wu’s

bootstrap. DiCiccio and Efron (1996) proposed a parametric bootstrap method

with second order accuracy and correctness for producing good approximate con-

fidence intervals, which has no distributional assumption on the mean-variance

model.

To assess the estimation error for η1 (heteroscedasticity parameter), I first em-

ployed the weighted residual bootstrap methods as used by Wu and Liu to in-

vestigate the properties of the estimator η̂1, but I found that these methods did

not accurately approximate the 95% confidence interval for a particular dataset

(namely INIDEP-ARGHAKENARG-1985-2007) because the MLE used for bootstrap

simulations is found to be outside the approximate 95% confidence interval. As a

result, I decided to abandon the weighted resampling residuals methods and use

instead the parametric bootstrap sampling approach, as in DiCiccio and Efron

(1996). This method is also known as bootstrapping raw data, where each repli-

cation is obtained by sampling from the heteroscedastic distribution fitted with

the MLE θ̂. The theory of this method shows that the bootstrap confidence

intervals are second-order correct as well as second-order accurate (DiCiccio and

Efron, 1996, sections 8 and 9) and it is appropriate for studies with small sample

size. I describe this sampling method for simulating new recruits as follows:
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Step 1: Use both stock and recruitment model inputs to estimate θ̂ = (α̂, β̂, η̂0, η̂1).

Step 2: Draw i.i.d. samples X∗ = (x∗
1, x

∗
2, . . . , x

∗
n) from N (μ̂i, σ̂

2
i ) where

μ̂i = ln(α̂)− ln(1 + β̂Si) and σ̂2
i = exp(η̂0 + η̂1Si),

with n is the number of data points found in the S-R population, and

i = 1, . . . , n.

Step 3: Simulate new recruitR∗ = S exp(X∗), such thatR∗ = (R∗
1, R

∗
2, . . . , R

∗
n).

Step 4: Scale R∗ with its maximum value so as to range between 0 and 1.

Step 5: Re-fit the regression model to the simulated data (R∗,S) and estimate

θ̂
∗
(R∗|S) = argmax

θ̂

θ̂(R∗|S).

Step 6: Repeat steps 2 to 5, 1000 times so as to obtain a good approximation

of the confidence interval.

I compared the parametric bootstrap method with the asymptotic confidence in-

tervals from ADMB for the subset of populations with adequate sample sizes

(greater than 30) and positive definite Hessians; I found that the bootstrap

method provides empirical coverages for η̂1 noticeably wider than the asymp-

totic confidence intervals (Table 3.4). The findings confirm that under the first

order asymptotic theory the residual errors of recruitment are not normally dis-

tributed rendering the first order asymptotic theory inappropriate to assess the

estimation error for η1. To account for possible skewness of the estimator, Singh

(1981) and DiCiccio and Efron (1996) proved that second-order properties are of-

ten more desirable as they improve by an order of magnitude upon the accuracy

of the standard intervals.

During this analysis I found the Hessian matrix for three populations, namely

INIDEP-PATGRENADIERSARG-1983-2006, NWWG-HADFAPL-1955-2011 and

NWWG-HERRIsum-1984-2011 (also known by their id number: 25, 58 and 60), not

positive definite meaning that the optimizer might fail to find the highest likeli-

hood for which the parametric bootstrapping method would result in estimating

incorrect MLEs. To overcome this hurdle, one can apply a Bayesian approach to

estimate the posterior distribution of η1, as discussed in Section 3.2.5.

The above analysis could be incomplete, because I focused only on the Beverton-

Holt compensation model, see Equation (3.5). Here I generalise my previous

assumption by making available the set of possible models γ ∈ {−2,−1, 0,+1}
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Table 3.4: Descriptive comparison of asymptotic and bootstrap methods for es-
timating the approximate 95% confidence interval for η1.

Asymptotic 95% CI Bootstrap 95% CI

AssessId noSamples η̂1 Lower limit Upper limit Lower limit Upper limit

AFWG-GHALNEAR-1960-2010 43 1.31 0.85 1.76 -1.24 3.16
AFWG-HADNEAR-1947-2010 58 -1.77 -2 -1.54 -3.42 0.31
AFWG-HADNS-IIIa-1963-2011 49 0.33 0.01 0.66 -2.4 2.72
AFWG-POLLNEAR-1957-2011 49 -0.98 -1.16 -0.79 -2.52 0.43
DFO-HAD5Zejm-1968-2003 34 1.56 1.12 1.99 -0.94 3.62
DFO-HERR4VWX-1964-2006 41 2.1 1.75 2.44 -0.27 4.05

and choose the one that provides the minimum AICc score, for each population

respectively. A non-asymptotic recruitment is obtained for γ = −2, which means

that recruitment can grow with adult abundance size. However, an overcompen-

sation model is obtained for γ ∈ {−1, 0,+1}, which are different sorts of density

dependence models. For γ ∈ {−2,−1, 0,+1} I obtain different models but with

the same number of parameters {α, β, η0, η1}. As noted in Minto et al. (2008), I

generated the log-likelihood functions of these models such as: the Cushing-like

model is obtained for γ = −2,

L{ln (R/S) , α, β, η0, η1} ∝ −1

2

n∑
i=1

(η0+η1Si)−1

2

n∑
i=1

{
ln
(
Ri
Si

)
− ln(α) + 1

2 ln(1 + 2βSi)
}2

exp(η0 + η1Si)
.

(3.8)

The Beverton-Holt model is obtained for γ = −1,

L{ln (R/S) , α, β, η0, η1} ∝ −1

2

n∑
i=1

(η0+η1Si)−1

2

n∑
i=1

{
ln
(
Ri
Si

)
− ln(α) + ln(1 + βSi)

}2

exp(η0 + η1Si)
.

(3.9)

The Ricker model is obtained after developing a first-order Taylor expansion of

the log(1 − γβSi) function around γ → 0 resulting in −βSi after dividing it by

γ, which takes the form

L{ln (R/S) , α, β, η0, η1} ∝ −1

2

n∑
i=1

(η0 + η1Si)− 1

2

n∑
i=1

{
ln
(
Ri
Si

)
− ln(α) + βSi

}2

exp(η0 + η1Si)
.

(3.10)
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The Schaefer model is obtained for γ = +1,

L{ln (R/S) , α, β, η0, η1} ∝ −1

2

n∑
i=1

(η0+η1Si)−1

2

n∑
i=1

{
ln
(
Ri
Si

)
− ln(α) − ln(1− βSi)

}2

exp(η0 + η1Si)
.

(3.11)

I use the AICc score with the point estimate approach for applying model selec-

tion instead of approximating the marginal likelihood function. I applied ADMB

over the four different models (e.g. γ = {−2,−1, 0,+1}) and select for each pop-

ulation the model with the minimum AICc score. To find a point estimate for

γ = +1, the parameter β should be less than {1/max(Si)} = 1 so as to assert

a valid argument for the logarithmic function —both S and R are scaled with

their maximum value respectively. The purpose of this analysis is to provide a

precise assessment for the non-constant variance (instead of relying only on the

Beverton-Holt model) as it fits the data more accurately. I found a prevalence

of the Schaefer model for the majority of populations that underscores the im-

portance of using density-dependent models in explaining the S-R relationships

(Table 3.5). To better understand and evaluate the impact of the heteroscedas-

ticity coefficient, Figure 3.2 illustrates several plots showing recruits versus rela-

tive spawning stock biomass along with the estimated stock-recruit relationship

and approximate 95% confidence intervals around this relationship for both het-

eroscedastic and non-heteroscedastic (i.e. constant variance) models; these plots

are for four populations fitted with different shape parameter γ respectively. Re-

cruitment is commonly assumed to have stochastic variability that follows a log-

normal distribution from which I derive the expected recruits for each shape

parameter γ (see Appendix B for complete derivation). By substituting γ for

−2,−1, 0 and +1 in Equation (B.1), the expected recruits becomes:

E(R) =
αS√

1 + 2βS
exp

(
exp(η0 + η1S)

2

)
for γ = −2, (3.12)

E(R) =
αS

1 + βS
exp

(
exp(η0 + η1S)

2

)
for γ = −1, (3.13)

E(R) = αS exp

(
−βS +

exp(η0 + η1S)

2

)
for γ = 0, (3.14)

E(R) = αS(1− βS) exp

(
exp(η0 + η1S)

2

)
for γ = 1. (3.15)

The expected stock-recruitment curves are plotted based on the fitted value of γ,
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Table 3.5: Populations fitted with best-fit model parameter γ. The model selec-
tion is based on the shape parameter γ corresponding to: γ = −2 (Cushing-like),
γ = −1 (Beverton-Holt), γ = 0 (Ricker) and γ = 1 (Schaefer).

γ Model Fitted populations
-2 Cushing 12 out of 90
-1 Beverton-Holt 26 out of 90
0 Ricker 19 out of 90
+1 Schaefer 33 out of 90

the MLE found with ADMB, and the SSB model input (Figure 3.2). I illustrate

the heteroscedastic expected recruitment curve with a solid black plot, and the

non-heteroscedastic expected recruitment curve with a dotted black plot —ob-

tained by setting η1 = 0. I construct the approximate 95% confidence interval

for recruitment as follows: sort the SSB population in an ascending order; use

Equation (3.3) to generate 10,000 samples for each element; approximate the 95%

confidence interval of recruitment estimates for each SSB data point, using the

percentile of the sampling distribution. Figure 3.2 shows that the coefficient of

heteroscedasticity η1 has a positive impact in estimating the approximate 95%

confidence interval; the coverage of recruits (dashed red plot) is more accurate

than the non-heteroscedastic model (grey envelope), and hence its significance

in fisheries management. The plots for the 90 S-R populations are illustrated in

Appendix C.

3.2.4.1 Measure of Confidence Interval

I used the bias-corrected and accelerated method (BCa) (DiCiccio and Efron,

1996) to form the approximate 95% confidence interval of the density distribu-

tion η̂∗
1. Let Ĝ(η̂1) be the cumulative distribution function (cdf) of bootstrap

replications η̂1
∗,

Ĝ(η̂1) = #(η̂1
∗ ≤ η̂1)/B. (3.16)

In this case B = 1000 replications. By definition the bias-corrected κ/2 endpoints

for the percentile bootstrap confidence interval are calculated as

η̂1BCa(κ) = Ĝ−1

{
Φ

(
ẑ0 +

ẑ0 + z(κ)

1− a(ẑ0 + z(κ))

)}
, (3.17)

where Φ(.) is the standard normal cdf. The BCa interval is controlled by two

parameters, namely the bias-correction ẑ0 and acceleration parameters a. The
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Figure 3.2: Expected stock-recruitment curves with approximate 95% confidence
intervals fitted with different values of γ. Examples of the Herring, Pollock,
Greenland halibut, and Cod families, chosen to illustrate the difference in fit
between the heteroscedastic and non-heteroscedastic models. (a) Herring from
Eastern Baltic (fitted with γ = −2), (b) Pollock from IIIa, VI and North Sea
(fitted with γ = −1), (c) Greenland halibut from Labrador Shelf - Grand Banks
(fitted with γ = 0), and (d) Cod from St. Pierre Bank (fitted with γ = +1).
The expected recruit for the non-heteroscedastic model (dotted black plot) and
its approximate 95% confidence interval (grey envelop) are compared against the
expected recruit for the heteroscedastic model (solid black plot) and its approxi-
mated 95% confidence interval (dashed red plot).
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bias-correction estimate ẑ0 gives the proportion of estimates η̂∗
1 less than η̂1, such

that

ẑ0 = Φ−1
{
Ĝ(η̂1)

}
= Φ−1

{
#(η̂∗

1 ≤ η̂1)

1000

}
, (3.18)

where Φ−1 is the probit function. DiCiccio and Efron (1996) developed a theory

to approximate the confidence interval. The method defines the acceleration

parameter a that measures how rapidly standard error changes on a normalized

scale, which has an interpretation of skewness. A non-parametric estimate of a

can be described as

â =
1

6

∑n
i=1 U

3
i

(
∑n

i=1 U
2
i )

3/2
. (3.19)

Then, the jackknife influence function Ui is calculated, as

Ui = (n− 1)(η̂1 − η̂1(i)), (3.20)

where η̂1(i) is the estimate of η1 based on the reduced data

R(i) = (R1, . . . , Ri−1, Ri+1, . . . , Rn) and S(i) = (S1, . . . , Si−1, Si+1, . . . , Sn). There-

fore, the central 95% BCa interval for η1 is obtained by

CI95%(η1) = (η̂1BCa
(0.025), η̂1BCa

(0.975)). (3.21)

Note that the confidence interval for η1 is mainly influenced by the number of data

points found in the population. The more data points there are, the narrower the

confidence interval will be. This means that the variability for η̂1 is small for large

populations, thereby leading to a more reliable fit of the heteroscedastic model

than for small population sizes. Figure 3.3 illustrates the approximate 95% BCa

confidence interval width versus the population size, applied to all populations.

3.2.4.2 Classification based on the frequentist paradigm

My goal is to investigate whether I could recover accurately the sign of the coef-

ficient of heteroscedasticity. Here, I analyse whether the approximate confidence

interval for η1 denoted as CI(η1) lies in a region showing a consistent sign with

the coefficient η1. Accordingly, I classify each population in one of three ways:

(-1) strong evidence for negative η1 that is attained when CI(η1) lies in the neg-

ative region; (+1) strong evidence for positive η1 when CI(η1) lies in the positive

region; and (0) inconclusive evidence for heteroscedasticity.



3.2. Materials and methods 93

Figure 3.3: Plot showing the effect of the sample size on the width of the ap-
proximated 95% confidence interval. This plot is generated for a Beverton-Holt
stock-recruitment model (γ= -1).
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3.2.5 Bayesian inference

Bayesian methods offer an alternative to the traditional frequentist method, and

may be particularly valuable for populations where there is already some infor-

mation about the model’s parameters. To define a Bayesian analogue of the

method of fitting parameters outlined above, I need to specify prior distribu-

tions for log(α), β, η0 and η1 to quantify my knowledge before considering the

data. Difficulties in Bayesian approaches arise in prior specification such that for a

non-informative prior results obtained by using Bayesian methods will be approx-

imately similar to using the frequentist paradigm. However, Bayesian methods

may be particularly useful where priors can be specified based on information

about similar stocks.

Because there is no prior knowledge for the parameter values, I chose two arbi-

trary sets of priors to see to what extent the marginal posteriors vary. Firstly, I

choose to define a normal prior for log(α), a wide uniform prior for β covering a

region of positive values (to avoid numerical failures), and a symmetrical uniform
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prior around the origin for both η0 and η1, such that

π1{log(α)} = N (1, 52) (3.22)

π1(β) = U(0, 6000) (3.23)

π1(η0) = U(−30,+30) (3.24)

π1(η1) = U(−30,+30). (3.25)

Secondly, I defined a normal prior for log(α); a Gamma for β to constrain it to

positive values; and a Gaussian prior for both η0 and η1, such that

π2{log(α)} = N (1, 52) (3.26)

π2(β) = Ga(1, 0.001) (3.27)

π2(η0) = N (0, 102) (3.28)

π2(η1) = N (0, 102). (3.29)

It is common to assume independent priors for the parameters, such that π(θ) =

π{log(α)} × π(β)× π(η0)× π(η1).

Here I used four different Markov chain Monte Carlo (MCMC) sampling methods:

(1) Metropolis within Gibbs, (2) Metropolis Adjusted Langevin Algorithm, (3)

Hamiltonian Monte Carlo, and (4) an MCMC package called JAGS (Just Another

Gibbs Sampler) (Plummer, 2003); I implemented the first three methods in R and

called JAGS, an open-source engine for the BUGS language written in C++, from

R via package rjags.

3.2.5.1 Comparison of Markov chain Monte Carlo methods

The implemented MCMC methods in R suffered from slow execution speed com-

pared to JAGS, which is fast and easy to use. These methods are used to sample

from the joint posterior distribution p(log(α), β, η0, η1|R,S) so as to estimate

the marginal posterior distribution of η1 given data. For illustrative purposes, I

compared convergence of all four methods on a representative dataset (e.g. DFO-

QUE-COD3Pn4RS-1964-2007) as described in (Table 3.6). Results show that the

HMC sampling method works very well as it provided the largest effective sam-

pling size (ESS) among the other methods; but its weakness lies in its speed: 27

minutes to analyse a single dataset. One could overcome this weakness by imple-

menting it as a multithreaded application in C++. However, JAGS showed itself
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to be more efficient as it proved to be fast in execution and convergence over the

multiple chains; additionally, it requires fewer parameters for tuning compared to

the HMC algorithm, which requires one to tune the number of iterations over the

leapfrog integrator and the step size that are set on an adhoc basis. Hence I used

JAGS in estimating the marginal posterior distribution of the model parameters.

Figure 3.4 illustrates the MCMC samples generated by JAGS for estimating the

Table 3.6: Comparison of diagnostic MCMC methods with four runs and 1000
posterior samples for the model parameters applied to DFO-QUE-COD3Pn4RS-1964-

2007 dataset. √
R̂ ESS

Method log(α) β η0 η1 log(α) β η0 η1 time(s)
HMC 1.00 1.00 1.02 1.02 250 250 120 250 1643
JAGS 1.02 1.01 1.00 1.02 85.7 87.4 103.9 89.9 15.72
MALA 1.03 1.04 1.04 1.04 98 72 110 120 375
Metropolis-Gibbs 1.14 1.12 1.07 1.07 23 26 43 41 837

marginal posterior distributions for the parameters of interest (log(α), β, η0, η1),

ranging from left to right respectively.

3.2.5.2 Convergence criteria

I monitor the approximate convergence of MCMC by using the
√

R̂ statistic

provided in the Coda package in R. Gelman (2004) described this statistic as a

measure that compares variation between and within simulated sequences until

‘within’ variation roughly equals ‘between’ variation, for multiple parallel chains.

One can be reasonably confident that convergence is achieved if
√
R̂ < 1.1. I

simulated four parallel MCMC sequences of 10,000 iterations each after discard-

ing 50,000 samples of each chain, referred to as burn-in; these chains are started

each from a different initial value and thinned by taking one sample every four

samples so as to minimise the autocorrelation between samples. After conver-

gence each simulated sequence is close to the distribution of all other sequences

combined together, which all converge to the same posterior distribution. If ap-

proximate convergence has not been reached, those populations are identified,

then I repeated the approximation by increasing the number of burn-in samples

(from 1e+5 to 2e+6) and even the number of step size adjustments (from 1e+4 to

1e+5) —tuned by the n.adapt parameter. Figure 3.5 illustrates overlaid plots for

the marginal posterior distribution of each parameter of interest (log(α), β, η0, η1),

which are shown for priors π1 and π2.



96 Chapter 3. Heteroscedasticity in Fish Populations

Figure 3.4: Graphical displays showing the JAGS sampler output applied onto
the DFO-QUE-COD3Pn4RS-1964-2007 dataset. The top row shows trace plots of the
marginal distributions of each parameter (log(α), β, η0, η1) and ranging from left
to right respectively. The second row shows the empirical marginal posterior
distributions of each parameter respectively. The bottom row shows the autocor-
relation function for the parameters of interest.
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Figure 3.5: Marginal posterior distributions for the parameters produced by the
JAGS sampler sampled from priors π1 and π2 respectively. Each panel includes
four density plots (except for the top left one): two priors (π1 and π2)for each
parameter and the posteriors corresponding to each of these priors when applied
to DFO-QUE-COD3Pn4RS-1964-2007 population.
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3.2.5.3 Bayesian sensitivity analysis

The theory of subjective probability enables one to apply a prior distribution in

inference to reflect reasonable a priori assumption about parameters. In Bayesian

statistics, prior robustness is a real issue for inference; to reduce this concern, one

should investigate whether slight changes in the prior distribution cause signifi-

cant changes in the decision rule. Here I found that the choice between π1 and π2

did not influence the resulting Bayesian inference: indicating a reasonable degree

of robustness.

3.2.6 Edge Effects Analysis

VPA analysis estimates stock sizes and fishing mortality rates for each year-

class (cohort) making up the overall population; the recruitment is estimated as

abundance at age 1 and the SSB is estimated by summing up stock sizes of age

2+ in each year respectively (Anderson, 1978). As one goes backward in time, the

final age class assumptions and the catch-at-age data totally drive the estimates

to become very precise at the beginning of the age group; however, techniques

based on the shrinkage to the mean factor —such as XSA—can impose constraints

on the last year estimates as well as on the oldest age group (Daskalov, 1998). To

account for this kind of estimation error, I analyse the possibility of edge effects

in the VPA methods by removing data points from the beginning and end of the

time series data. Here I analyse two types of populations. First, I revisit results

obtained from model selection by selecting populations having their approximate

95% confidence interval for η1 lying entirely in the negative region (as shown in

Appendix A, Table A.1). Second, I select populations having more than 55 data

points so as to check the effect on long time series data. The former selection

presents seven full populations for which five were fitted with γ = 1, one was

fitted with γ = 0, and one was fitted with γ = −2. Next I truncated two data

points at both ends (four points in total) of the seven populations, and five data

points at both ends (ten points in total) of the four biggest populations on which

I repeated the analysis of testing the reliability of the non-constant variance. If

the 95% approximate confidence intervals of both full and truncated datasets are

consistent in sign, then I conclude that edge effects in VPA methods are unlikely

to influence our results; otherwise I conclude that VPA methods are likely to

influence the results.
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Table 3.7: Confidence Levels and data classification of the 90 S-R populations
for a Beverton-Holt stock-recruitment model; the {-1, 0,+1} coding based on the
η̂1 distribution indicates the presence of: strong evidence for reliably identifying
η1 < 0, inconclusive evidence where the sign of η1 can not be identified, and
strong evidence for identifying η1 > 0, respectively.

Coding of η̂1 distribution
Confidence Level (%) −1 0 +1

60 30 43 17
70 26 50 14
80 22 61 7
90 15 72 3
95 11 78 1
99 7 82 1

3.3 Results

Statistical analysis based on the frequentist paradigm shows, for a Beverton-Holt

model, the existence of seven populations having their approximate 99% con-

fidence interval for η1 lying entirely in the negative region (Table 3.7). Those

seven populations are from six different fish species in six locations, indicating

that this classification result is not peculiar to a particular species or location.

Standard confidence levels were increased gradually to reflect the sensitivity of

the classification labels of the 90 S-R populations to the choice of cut-offs. For

low confidence levels I observed many populations classified with label -1, but

this classification declined as I increased the confidence level.

Next, I compared results obtained from the frequentist approach to those ob-

tained from Bayesian methods. In the Bayesian framework the credible interval

is obtained from the marginal posterior distribution using the equal-tailed cred-

ible interval. Figure 3.6 illustrates a comparison between the frequentist and

Bayesian inference (for different priors for η1) applied to a single population,

namely DFO-QUE-COD3Pn4RS-1964-2007. Note that in the frequentist method I am

using a parametric bootstrap replication of η̂1; however, in the Bayesian setting I

am estimating the marginal posterior distribution of η1 given a particular popula-

tion and a prior. I am in general interested in whether these methods produce the

same result or not; the bootstrap estimates (red plot), the posterior distribution

with respect to π1 (dotted-dashed green plot) and the posterior with respect to π2

(dashed blue plot) produced approximately comparable results in the sense that
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their approximate 95% confidence interval and approximate 95% credible inter-

vals were more likely to agree, despite the difference of their shapes. I should

also inform the reader that in this figure I used half of the posterior samples (i.e.

5,000 samples) from both posteriors so as to avoid overlap of p(η1|R,S, π1) and

p(η1|R,S, π2) in plots. I generalised this comparison —by analysing the output

Figure 3.6: Density plots of: 1,000 parametric bootstrap replications of η̂1 (solid
red plot); marginal posterior distribution of η1 with respect to π1 (dotted-dashed
green plot); marginal posterior distribution of η1 with respect to π2 (dashed blue
plot). The analysis is applied to the DFO-QUE-COD3Pn4RS-1964-2007 population.
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of frequentist and Bayesian methods—for all 90 S-R populations, as illustrated in

Figure 3.7. The MLE used for bootstrap simulations is represented by an asterisk

(*); the black error bars represent the approximate 95% confidence intervals and

the square shape denotes the mode of simulated MLEs distribution. The red

error bars represent the approximate 95% credible intervals with respect to π1,

and the blue ones represent the approximate 95% credible intervals with respect

to π2. I observed a large approximate 95% confidence interval for the following

population numbers: 9, 10, 13, 22, 25, 50, 55, 62 and 63, caused essentially by

the small sample sizes: 12, 28, 29, 17, 20, 12, 8, 10, and 9 data points respec-

tively. Moreover, I found for some other populations (20, 50, 53 and 63) different

marginal posteriors with respect to the choice of the prior; however, for the re-

maining populations I found robust posterior inference with respect to the choice
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Figure 3.7: Comparison between the frequentist and Bayesian method to inference
for a Beverton-Holt model. The black error bars show an approximate 95%
BCa confidence interval where the asterisk symbol represents the MLE of η1 and
the square symbol represents the mode of simulated MLEs with bootstrapping.
The red error bars and the blue error bars show the approximate 95% credible
interval with respect to π1 and π2 respectively. The vertical axis represents the η1
parameter and the horizontal axis represents the sequential population number;
ranging from 1 to 30, 31 to 60, and 61 to 90 respectively.
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Table 3.8: Comparison between frequentist and Bayesian methods (with π1 and π2

priors) for a Beverton-Holt stock-recruitment model for evaluating the reliability
of η1 in survival across the 90 S-R fish populations.

Coding of η1 distribution
frequentist Bayesian π1 Bayesian π2

Confidence Level (%) −1 0 +1 −1 0 +1 −1 0 +1

60 30 43 17 32 43 15 31 47 12
70 26 50 14 29 47 14 27 51 12
80 22 61 7 21 62 7 20 65 5
90 15 72 3 12 73 5 10 77 3
95 11 78 1 11 75 4 10 77 3
99 7 82 1 9 79 2 7 82 1

Table 3.9: Confidence Levels and data classification of the 90 S-R populations
using model selection; the {-1, 0,+1} coding based on the η̂1 distribution indicate
the presence of: strong evidence for reliably identifying η1 < 0, inconclusive
evidence where the sign of η1 can not be identified, and a strong evidence for
identifying η1 > 0, respectively.

Label
Confidence Level (%) −1 0 +1

60 31 48 11
70 28 53 9
80 23 62 5
90 16 70 4
95 7 82 1
99 3 87 0

of the prior (i.e. π1 or π2). Table 3.8 illustrates a comparison of the estimation

error for η1 assessed by the frequentist and Bayesian approaches when applied to

the 90 S-R populations. I observed that both frequentist and Bayesian methods

classified approximately the same number of populations, labelled with −1.
To adjust my results, I used the fitted models (derived from model selection) and

tested whether I could reliably estimate the sign of η1 with different confidence

levels, as described in Table 3.9. For the case where the confidence level is 95%, I

found seven populations labelled with −1, 82 populations labelled with 0 and one

population labelled with +1. The entire classification list for the 95% confidence

level is illustrated in Appendix A (Table A.1).

Finally, I applied the edge effect analysis to populations classified with label -1

and to populations longer than 55 data points (Table A.1). The former revealed

an agreement in the classification of six of the seven populations so that I can
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Table 3.10: Edge effect analysis applied to populations showing their approxi-
mate 95% confidence interval of η1 lying in the negative region; γ describes the
best fitted model, Complete Data describes the CI obtained for the complete
population, Truncated Data describes the CI obtained after truncating the pop-
ulation at both ends, and IsComparable indicates whether analysis repeated on
truncated population agrees with the original one.

95% CI
Assessment Id γ Complete Data Truncated Data IsComparable

DFO-QUE-COD3Pn4RS-1964-2007 1 [-4.70, -0.22] [-4.62, -0.72] Yes
IMARPE-PANCHPERUNC-1963-2004 1 [-5.14, -0.80] [-5.61 ,-1.25] Yes
INIDEP-SBWHITARGS-1985-2007 1 [-10.67, -2.27] [-14.46, -8.47] Yes
NRIFS-OFLOUNECS-1986-2010 1 [-30.0, -14.2] [-27.68, -2.50] Yes
NWWG-HERRIsum-1984-2011 0 [-12.13, -3.53] [-18.55, -2.62] Yes
WGBFAS-HERR30-1972-2011 1 [-5.62, -0.16] [-4.32, -0.09] Yes

WGNSSK-WHITNS-VIId-IIIa-1989-2010 -2 [-10.23, -0.09] [-7.60, 3.12] No

Table 3.11: Edge effect analysis applied to populations with more than 55 data
points; γ describes the best fitted model, Complete Data describes the CI ob-
tained for the complete population, Truncated Data describes the CI obtained
after truncating the population at both ends, and IsComparable indicates whether
analysis repeated on truncated population agrees with the original one.

95% CI
Assessment Id γ Complete Data Truncated Data IsComparable

AFWG-HADNEAR-1947-2010 1 [-3.63, 0.52] [-3.86, 0.11] Yes
ICCAT-ATBTUNAEATL-1950-2010 0 [-4.62, 3.09] [-3.88, 3.49] Yes

NEFSC-HADGB-1930-2008 1 [-1.45, 2.59] [-2.12, 2.14] Yes
WGNSSK-CODNEAR-1943-2010 0 [-4.12, -0.36] [-4.79, -0.88] Yes

assert that possible edge effects in the VPA are unlikely to be influencing the

analysis for these model inputs (Table 3.10); however, for populations larger than

55 data points I found complete agreement with the original results, indicating

that the effect of VPA methods reduces with long time-series populations (Table

3.11).

3.4 Discussion

This study develops, implements and tests methods for identifying non-constant

variance (heteroscedasticity) in the spawner-recruit relationship. I found het-

eroscedastic models tend to fit the S-R model inputs better than constant vari-

ance models across the majority of stocks showing a dominance over 78 out of
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90 populations (see section 3.2.3) and strong evidence for a negative coefficient

of heteroscedasticity in seven cases (Table A.1), including exploited cod, herring

and whiting stocks in addition to olive flounder and Peruvian anchoveta. I ad-

vocate that the evidence for stochastic regulation in these cases deserves to be

taken into account by managers. In contrast, only one stock was identified as

having a positive coefficient of heteroscedasticity at the 95% confidence level.

I analysed the estimation error for η1 (heteroscedasticity parameter) by explor-

ing a class of heterogeneity models —frequentist and Bayesian paradigms—and

associated model-fitting algorithms. Under the frequentist method, parameters

are viewed as unknown but fixed quantities: consequently the use of inferential

procedures were evaluated under repeated sampling of the data. The frequentist

method is generally easy to implement; but it encounters difficulties for small

population sizes, resulting in a large interval estimation and a loss of statistical

significance. In contrast, Bayesian approaches can be appealing for problems of

this sort, but difficulties arise in prior specification. Here, I used minimal prior

information π1 and π2 to obtain the marginal posterior distribution for the pa-

rameters of interest; the estimation error for η1 is obtained by estimating the

Bayesian credible intervals using the posterior distribution.

To determine whether I can reliably estimate the sign of η1, I tested whether

the confidence interval lies in a region showing a consistent sign with the coeffi-

cient; I found that both frequentist and Bayesian methods led approximately to

equivalent inference; but there are some circumstances under which one method

outperforms the other, especially when the sample size is below 30 and when the

Hessian matrix is not positive definite. The application of model selection reveals

a consistent feature across all populations as it selects a model having the best

predictive ability among other models; in every case heteroscedastic models fit

the data better (i.e. lower AICc score), regardless of the sign of the coefficient

of heteroscedasticity. This information is useful in a management context, where

knowledge of the coefficient of heteroscedasticity is an important feature in as-

sessing sustainable exploitation regimes (Minto et al., 2008; Burrow et al., 2012).

This is illustrated in Appendix A (Table A.1), which broadly labels each popu-

lation from the set {-1, 0, +1} coding; the value -1 corresponds to stocks where

there is good statistical evidence for a negative coefficient of heteroscedasticity

(using, in this case, an approximate 95% confidence interval).
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To reliably identify a negative coefficient of heteroscedasticity, managers or fish-

eries scientists using the frequentist methods should check that their chosen con-

fidence interval lies in the negative region; those using the Bayesian framework

can consider π1 or π2 as a non-informative benchmark prior and check whether

their Bayesian credible interval lies in the negative region. I note that Bayesian

approaches may be particularly useful where priors can be specified based on

information about similar stocks in other locations. To protect this work against

false positives or negatives, I recommend fisheries scientists to use both frequen-

tist and Bayesian methods when assessing stocks for heteroscedasticity; if both

methods agree then there would be strong evidence that our conclusion is correct;

otherwise I should investigate the limitation of each method separately.

Although both frequentist and Bayesian approaches were developed to identify

the non-constant variance exhibited in density-dependent models, heteroscedas-

ticity could not be identified for the majority of the datasets no matter which

method is used (out of 90 datasets, eight datasets are classified with label -1

and +1, under an approximate 95% confidence interval). The two principal rea-

sons that drive this limited capacity to reliably identify heteroscedasticity are as

follows: first, the data are typically rather poorly explained by the best-fitting

stock-recruitment relationships due to the inherent noise in the stock-recruitment

relationship; second, the time series are not long enough for reliable parameter

estimation in most cases (Burrow et al., 2012). Furthermore, it is likely that,

in some stocks, the magnitude of any heteroscedasticity is negligible. Neverthe-

less, this does not diminish the potential importance of heteroscedasticity and its

identification, especially in the eight datasets for which I found good evidence of

its presence.

I investigated whether there are natural clusterings of stocks with the same het-

eroscedastic classification; for example, one might hypothesise the same heter-

scedastic signal of fish stocks of the same (or similar) species in different loca-

tions, or alternatively in different stocks at the same location. My preliminary

analyses (using approximate 95% confidence levels) indicates no such convenient

clusterings. However, further work is needed. For example, classification based

on approximate 80% confidence levels reveals a consistent -1 classification for

American Plaice, and such patterns may have relevance for sustainable manage-

ment.

In this analysis, I made two assumptions. First, I discarded ten S-R populations
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from the RAM legacy database due to missing data resulting in the analysis of 90

S-R populations of 32 species. I think that this sampling scheme had no bias im-

plication because each population is treated individually and with no effect on the

others. Second, I treated all VPA-type assessments as approximately equivalent

having first verified that the choice of an assessment had no statistical effect on

the sign of coefficient of heteroscedasticity; this is validated by mapping the het-

eroscedasticity coefficient value against the VPA-type assessment where I found

no impact of the VPA-type assessment on the classification method. Addition-

ally, I assessed the possibility of edge effects in the VPA methods. Such effects

may be caused by backward-convergence of VPA methods, increased variance of

recruitment at the end of the time-series, and shrinkage factors. All these fac-

tors may introduce a bias in both SSB and recruitment estimates. This made no

difference in the classification of 10 of the 11 populations tested, allowing me to

confidently advocate the use of a heteroscedastic model with negative coefficient

of heteroscedasticity as a valid management choice in these cases.

My future work will seek to extend the analysis to a more holistic ecosystem-level

analysis including external biotic and abiotic factors (i.e. an end-to-end perspec-

tive). Besides, I propose combining data from multiple stocks of similar species to

better estimate the parameters of the spawner-recruit relationship. To account

for heterogeneity, I propose considering a blocking factor and/or within-block

correlation in the log-likelihood function across different populations of similar

species. If I do not get a blocking effect, meaning that two (or more) populations

from the same species have similar variance, then pooling of multiple populations

becomes statistically feasible. Alternatively, one can use data from multiple pop-

ulations to obtain estimates of key parameters for individual populations through

a Bayesian hierarchical framework (Gelman, 2004).



Chapter 4

Bayesian Hierarchical Modelling

for understanding fish population

dynamics and community

structures

Hierarchical Bayesian models can be useful for improving estimation of key pa-

rameters found in stock-recruitment (S-R) relationships. The presented method-

ology combines information from various populations to borrow strength across

populations so as to estimate improved S-R model parameters across all popu-

lations. This allows us to generate one-step-ahead prediction of fish recruitment

given stock abundance. I propose four different Bayesian hierarchical models ap-

plied on five geographical locations (Celtic Sea, Faroe Plateau, Georges Bank,

North-East Arctic, and North Sea) from which I found the non-constant variance

model (in the majority of cases) as the best model in predicting fish recruitment

values. In addition, I found the grouping of fish species based on water column

contributes to better understanding of the dynamics of fish communities com-

pared to the case where the selection is made arbitrarily.

The objectives of this Chapter are the following:

• To examine whether a combined knowledge of fish populations can reduce

the uncertainty in key parameters and improve the accuracy of recruitment

forecasts.

107
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• To find the best candidate Bayesian hierarchical model that generates ac-

curate predictions of recruitment.

• To find whether the non-constant variance can be reliable to community

based fisheries management.

4.1 Introduction

Fisheries stock assessment and management are highly controversial subjects be-

cause of imperfect stock sampling and model errors. These factors are the major

sources of uncertainty in the population biology of exploited species (Hill et al.,

2007), which affect the parameter estimates of the ecological model. The smaller

the stock assessment, the more uncertainty is induced in estimating the parameter

values. Many scientists have accounted for this problem by introducing some aux-

iliary data (i.e. tagging data) or prior knowledge that uses survey data and expert

judgement to the stock assessments so as to increase the accuracy of the results

(Punt et al., 2000; McAllister et al., 1994; McAllister and Ianelli, 1997). Minto

et al. (2008) combined data (by species) from different populations using meta-

analysis methods to increase the precision of their statistical analysis. Bayesian

hierarchical modelling (BHM) offers an alternative way to estimate model param-

eters especially when dealing with multiple short datasets: one could reasonably

expect that the parameters are related to each other such that knowing the pa-

rameters of one population would have an influence on the ones from the other

population. Many scientists have applied Bayesian analyses using hierarchical

models to fisheries stock assessments (Forrest et al., 2010; Michielsens et al.,

2008) so as to improve estimates of population characteristics, achieved by com-

bining the data from neighbouring populations. The principle of BHM consists

of modelling observable outcomes as conditionally dependent on certain param-

eters, which themselves are given a probabilistic specification in terms of further

parameters, known as hyperparameters (Gelman, 2004). Such representation has

the effect of reducing the uncertainty of the biological processes underlying the

population dynamics of exploited species (Myers and Mertz, 1998) resulting in

improving the quality of stock assessment and developing optimal management

strategies (Chen et al., 2003).

In a recent study, Panikian et al. (2015) proposed a future work plan of using a

Bayesian hierarchical framework to combine data from multiple stocks so as to
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better estimate the heteroscedasticity coefficient. In this work, I use four different

stock-recruitment (S-R) relationships: the first is that of Minto et al. (2008), the

second is a modified version of Minto’s model that incorporates a community-

based factor, the third is that of Minto’s model but with a constant variance (i.e.

η1 = 0), and the fourth is the community based model with a constant variance.

These models are used within a Bayesian hierarchical framework to inference for

random effects (or between-population variance) and predict recruitment values.

In general, BHMs provide more accurate statistical estimates of model param-

eters than the non-Bayesian hierarchical models (non-BHMs) at the expense of

some additional parameters that can be regarded as related or connected in some

way by the structure of the problem. One can develop a joint posterior distribu-

tion of all the unknown quantities so as to reflect the dependencies among the

parameters.

To measure the strength of the evidence provided by the data for the different

S-R models, I used the deviance information criterion (DIC), the marginal like-

lihood, and a predictive approach to show comparison among competing models

so as to select the one that is best among the candidates. The DIC was proposed

by (Spiegelhalter et al., 2002) and is a Bayesian version or generalization of the

Akaike information criterion (Akaike, 1973), which trades off a measure of model

adequacy against a measure of complexity. Since random effect parameters (see

Section 4.2.2) are the focus for predicting results of future recruitment values,

deviance based methods such as the DIC metric become appropriate. On the

other hand, the marginal likelihood is evaluated by integrating out the random

effects and hyperparameters developed under the integrated likelihood (Sinharay

and Stern, 2005). The estimation of the marginal likelihood can be achieved in

practice by Markov chain Monte Carlo (MCMC) sampling or the Laplace approx-

imation to the completed data likelihood.

The DIC and the marginal likelihood are applied onto training and validation

sets constituting 80% of the data; however, the predictive approach based on

minimising the root mean square error (RMSE) consists of fitting the model on

the training set (60%) and then validating it onto the validation set (20%). How-

ever, the last 20% of the data is kept for testing the models.

This analysis is carried out based on data from five different geographical areas:

Celtic Sea, Faroe Plateau, Georges Bank, North-East Arctic and North Sea, using

data from (Ricard et al., 2012) (www.ramlegacy.org; version 1). The analysis is
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also performed on a more global scale: firstly by considering all pelagic popu-

lations, then all demersal populations, and finally by combining all populations

(demersal and pelagic). The best model is identified for each case respectively

from which I predict fish recruitment and evaluate those values against the ones

that are assessed by the virtual population analysis (VPA). This approach gives

a way for analysing the importance and consistency of the coefficient of het-

eroscedasticity η1 within a Bayesian hierarchical framework.

From another perspective, I found an increase in accuracy in predicting fish re-

cruitment by grouping fish populations according to the water column (i.e. pelagic

or demersal depths) rather than pooling all fish populations together. For in-

stance, 64% of pelagic fish recruitment are predicted more accurately by restrict-

ing the analysis on pelagic populations than pooling all populations together

(36% from available test data points); whereas 61% of demersal fish recruitment

are predicted more accurately by restricting the analysis on demersal populations

than pooling all populations together (39%).

4.2 Materials and methods

4.2.1 The Data

I prune S-R populations collated in the publicly available RAM legacy database

(www.ramlegacy.org; version 1) (Ricard et al., 2012) by restricting the analysis

only to those estimated by virtual population analysis (VPA) type assessments.

The spawning stock biomass (SSB) is measured in tonnes; however, the recruit-

ment is measured in thousands of individuals. The 12 VPA-type assessment

methods classified under this category are as follows: VPA, SPA, XSA, FLXSA,

ADAPT, NFT-ADAPT, B-ADAPT, SXSA, SPA-ADAPT, NFT-ADAP, ISVPA and hybrid.

VPA, also known as cohort analysis, follows cohorts through their whole life, us-

ing catch-at-age data and natural mortality to back-calculate what recruitment

had to be in order to support the catch (Hilborn and Walters, 1992). In contrast,

assessments based on integrated analyses and statistical catch-at-age assessments

employ an underlying S-R relationship, so fitting a S-R curve to their time-series

is not appropriate. There were 100 S-R populations obtained with VPA-type as-

sessment; but 10 populations had missing data or no data at all, two stocks with

no SSB unit ( SEFSC-KMACKGM-1992-2001, SEFSC-KMACKSATLC-1981-2001), one
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stock with few assessment values containing eight samples (NRIFS-SAURNWPAC-

1980-2010), and a single Japanese stock population with very large recruitment

numbers (NRIFS-JANCHOPJPN-1978-2009). Accordingly, I restricted our analysis

on the remaining 86 fish populations, representing 31 species (see Appendix A,

exclude above four stocks from Table A.1) and I scaled all stocks and recruits

assessments by 1e+6 where I preserved the scale across all experiments.

4.2.2 Candidate models for the stock-recruitment rela-

tionship

In this work I propose four models M1, M2, M3 and M4 to analyse the stock

and recruitment relationship, such that:

• The first model M1 is the heteroscedastic stock and recruitment relation-

ship proposed by Minto et al. (2008)

ln

(
Ri,j

Si,j

)
∼i.i.d. N (μi,j, σ

2
i,j) where μi,j = ln(α)j +

1

γj
ln(1− γjβjSi,j) and

(4.1)

σ2
i,j = exp(η0j + η1jSi,j),

where Ri,j and Si,j are the estimated recruitment and spawning biomass for

population j in year i respectively; the parameters αj and βj measure the

productivity and the density-dependent mortality (capacity) in population

j, respectively. The density-independent part of the variance is described

by η0j , with the density dependent variance described by η1j , known as

the heteroscedastic coefficient. For consistent negative values of η1j , the

variance varies less with large SSB. The complexity of this model lies in the

parameter space of βj and γj due to the constraint imposed on the value

of (1− γjβjSi,j) to be positive so as to be computable with the logarithmic

function. This creates two disconnected regions such that the parameter

βj is constrained to be positive while γj is negative, and vice-versa. To

overcome this hurdle, I divided this model into three separate regions:

1. The parameter γj is constrained to be negative and βj to be positive;

in this case the model remains as defined in Equation (4.1).
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2. The parameter γj is close to 0; in this case I develop a Taylor expansion

of ln(1− γjβjSi,j) up to the third order:

ln

(
Ri,j

Si,j

)
∼i.i.d. N (μi,j, σ

2
i,j) where (4.2)

μi,j = ln(α)j − βjSi,j − 1

2
γj(βjSi,j)

2 − 1

3
γ2
j (βjSi,j)

3 and

σ2
i,j = exp(η0j + η1jSi,j),

3. The parameter γj is constrained to be positive and βj to be negative;

the model remains as defined in Equation (4.1).

• The second modelM2 takes into account fish populations living in a com-

munity and subject to competition. I define A as the set of all populations

living in a community for which the survival model can be described as

ln

(
Ri,j

Si,j

)
∼i.i.d. N (μi,j, σ

2
i,j) where μi,j = ln(α)j +

1

γj
ln(1− γjβjCi,A) and

(4.3)

σ2
i,j = exp(η0j + η1jCi,A),

where Ci,A is the normalised community spawning biomass

Ci,A =

∑
j∈A Si,j

maxi(
∑

j∈A Si,j)
. (4.4)

The parameter space of βj and γj is divided similarly into three disconnected

regions, as above.

• The third model M3 is a general Deriso-Schnute (Deriso, 1980; Schnute,

1985) survival model with a constant variance that takes the form

ln

(
Ri,j

Si,j

)
∼i.i.d. N (μi,j, σ

2
i,j) where μi,j = ln(α)j +

1

γj
ln(1− γjβjSi,j) and

(4.5)

σ2
i,j = exp(η0j).

Similarly toM1 this model is divided into three separate regions:

1. The parameter γj is constrained to be negative and βj to be positive;
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in this case the model remains as defined in Equation (4.5).

2. The parameter γj is close to 0; in this case I develop a Taylor expansion

of ln(1− γjβjSi,j) up to the third order:

ln

(
Ri,j

Si,j

)
∼i.i.d. N (μi,j, σ

2
i,j) where (4.6)

μi,j = ln(α)j − βjSi,j − 1

2
γj(βjSi,j)

2 − 1

3
γ2
j (βSi,j)

3 and

σ2
i,j = exp(η0j),

3. The parameter γj is constrained to be positive and βj to be negative;

the model remains as defined in Equation (4.5).

• The fourth modelM4 takes into account fish populations living in a com-

munity and subject to competition with a constant variance, such that

ln

(
Ri,j

Si,j

)
∼i.i.d. N (μi,j, σ

2
i,j) where μi,j = ln(α)j +

1

γj
ln(1− γjβjCi,A) and

(4.7)

σ2
i,j = exp(η0j),

where Ci,A is the normalised community spawning biomass. The parameter

space of βj and γj is divided similarly into three disconnected regions, as

above.

In brief, the modelsM1 andM3 are based on population-level analysis; however,

the models M2 and M4 are based on both population and community level

analysis, determined by the parameter C.

4.2.3 Current study

I implement four Bayesian hierarchical models for the S-R relationships, as de-

scribed in equations: (4.1), (4.3), (4.5) and (4.7), to estimate the marginal pos-

terior distribution of random effects and to predict fish recruitment given a value

of SSB. This analysis is built on several cases:

• Populations based on geographical locations: I selected the Celtic sea, Faroe

Plateau, Georges Bank, North East Arctic and the North Sea that contain

three, three, six, five and three populations respectively. All these five
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regions contain demersal species except for the North East Arctic area,

which contains a single pelagic species.

• Populations based on water column depth: I select 59 populations residing

in the demersal water column and 27 populations residing in the pelagic

water column as well as all 86 populations.

4.3 Hierarchical Bayesian models

Our computational strategy for Bayesian hierarchical learning follows the general

approach that consists of combining the knowledge found in each population to

estimate the marginal posterior distribution of the hyperparameters. I employ

BHMs that involve three stages for inference; at the first stage, I assume all ob-

servations are drawn from a Gaussian distribution. For example, Equation (4.1)

shows that the survival variability follows a Gaussian distribution.

At the second stage, the between-population variation is modelled using random

effect models. If we believe a priori that all the parameters (ln(α)j, βj, η0j , η1j, γj)

are exchangeable in their joint distribution (de Finetti, 1931), then we can decom-

pose the prior distribution with all the unknown parameters in an i.i.d. mixture

form as

p(log(α), β, η0, η1, γ) =

∫
p(log(α)|φ)p(β|φ)p(η0|φ)p(η1|φ)p(γ|φ)π(φ)dφ,

(4.8)

so that the collection of parameters (ln(α)j, βj , η0j, η1j , γj) are conditionally inde-

pendent given hyperparameter φ.

At the third stage, a proper hyperprior distribution is set on the hyperparameters

such that

φ = (φα, φβ, φη0, φη1 , φγ) ∼i.i.d. π(.). (4.9)

Parametric choices for p(.|φ) and π(.) are described in section 4.3.1. Graphical

representations for the BHMs M1, M2, M3 and M4 are illustrated in Figures

4.1, 4.2, 4.3 and 4.4 respectively. These models are used to make inferences on

random effects (ln(α)j, βj , η0j, η1j , γj) and to predict fish recruitment values using

the JAGS software. The analysis takes into consideration the different constraints

on γj (i.e. γj < 0, γj ≈ 0, and γj > 0) and their impact on predictions.

To compare these competing models for finding the best candidate model, I used:
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the Deviance information criterion (DIC) (Spiegelhalter et al., 2002); the marginal

likelihood estimation via the power posterior method (Friel and Pettitt, 2008);

and a predictive approach method (see sections 2.3.3, 4.3.4 and 4.3.5 respectively).

Moreover, I compared the BHM against the non BHM (or non-BHM) approach,

based on single fish species analysis, to quantify the precision of each method on

both inference and prediction.

Figure 4.1: Graphical model illustrating the BHM M1 for inferring the param-
eters of Equation (4.1) and forecasting fish recruitment values. The unshaded
nodes represent parameters and hyperparameters; the shaded nodes represents
the observed data; the rectangular plates denote repetition (i.e. the loop over i
and j). For example, Si,j represents the SSB assessment value for population j
in year i. The distribution over the hyperpriors is described in section 4.3.1.
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4.3.1 Choice for prior and Hyperprior Distributions

A random effects model, also known as multilevel or mixed model, assumes the

dataset that we observe is sampled from a larger population; for example, if we

collect results from different laboratories, the ‘laboratory’ might be a random

effect. LaMotte (1983) defined that an effect is called random if it is assumed to

be a realised value of a random variable. In Bayesian statistics, a prior probability

distribution represents our prior belief about model parameters before observing

the data. The choice of the random effects and hyperprior distributions for the
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Figure 4.2: Graphical model illustrating the BHM M2 for inferring the param-
eters of Equation (4.3) and forecasting fish recruitment values. The unshaded
nodes represent parameters and hyperparameters; the shaded nodes represents
the observed data; the rectangular plates denote repetition (i.e. the loop over i
and j). For example, Si,j represents the SSB assessment value for population j
in year i. The distribution of the hyperpriors are described in section 4.3.1.
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Figure 4.3: Graphical model illustrating the BHM M3 for inferring the param-
eters of Equation (4.5) and forecasting fish recruitment values. The unshaded
nodes represent parameters and hyperparameters; the shaded nodes represents
the observed data; the rectangular plates denote repetition (i.e. the loop over i
and j). For example, Si,j represents the SSB assessment value for population j
in year i. The distribution of the hyperpriors are described in section 4.3.1.
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Figure 4.4: Graphical model illustrating the BHM M4 for inferring the param-
eters of Equation (4.7) and forecasting fish recruitment values. The unshaded
nodes represent parameters and hyperparameters; the shaded nodes represents
the observed data; the rectangular plates denote repetition (i.e. the loop over i
and j). For example, Si,j represents the SSB assessment value for population j
in year i. The distribution of the hyperpriors are described in section 4.3.1.
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different ranges of γj is based on minimal prior information, such that

γj < 0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log(α)j ∼ N (φα, 0.2
2), φα ∼ U(−5, 20)

βj ∼ Gamma(φβ, 0.01), φβ ∼ U(1, 300)
η0j ∼ N (φη0, 0.4

2), φη0 ∼ U(−20, 20)
η1j ∼ N (φη1, 1.5

2), φη1 ∼ U(−20, 20)
γj ∼ N (φγ, 0.2

2), φγ ∼ U(−10,−1).

The distribution of the productivity parameter log(α)j is chosen to cover a wide

range such that the uncertainty over its mean value is assumed to vary uniformly

between -5 and 20; the distribution of the density-dependence mortality βj is

chosen to be constrained to positive values to which I assign a wide Gamma

distribution; the distribution of the variance parameters η0j and η1j are modelled

to follow a Gaussian distribution with a large uncertainty on their mean values

varying uniformly between -20 and 20 respectively; and the distribution of γj is

constrained to be negative to which the mean of its Gaussian distribution is set to
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vary uniformly between -10 and -1. This constraint is applied for all populations

living in the same region, for all j ∈ A.

For the case γj ≈ 0, I define:

γj ≈ 0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log(α)j ∼ N (φα, 0.1
2), φα ∼ U(−5, 20)

βj ∼ N (φβ, 1.5
2), φβ ∼ U(−10, 500)

η0j ∼ N (φη0, 0.4
2), φη0 ∼ U(−20, 20)

η1j ∼ N (φη1, 1.5
2), φη1 ∼ U(−20, 20)

γj ∼ N (φγ, 0.1
2), φγ ∼ U(−1,+1),

where the distributions of βj and γj are not constrained to any specific region for

all populations. Finally, for the case γj > 0, I define:

γj > 0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log(α)j ∼ N (φα, 0.2
2), φα ∼ U(−5, 20)

βj ∼ N (φβ, 0.4
2), φβ ∼ U(−10,−1.5)

η0j ∼ N (φη0, 0.4
2), φη0 ∼ U(−20, 20)

η1j ∼ N (φη1, 1.5
2), φη1 ∼ U(−20, 20)

γj ∼ Gamma(φγ, 1), φγ ∼ U(0.5, 2),

where the distribution of βj is constrained to be negative and that of γj is con-

strained to be positive for all populations.

4.3.2 Bayesian Inference

Markov chain Monte-Carlo (MCMC) methods are employed to draw successive

samples from the joint posterior distribution of all parameters such that each

simulated value depends only on the previous simulated value. I implemented

the four models M1, M2, M3 and M4 using JAGS and drew random samples

from the posterior distribution of model parameters. JAGS runs a number of

alternative sampling algorithms that includes the Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970), the Slice sampling (Neal, 2003) and

the Adaptive Rejection sampling algorithms (Gilks et al., 1995) to update the

full conditionals within a Gibbs sampling scheme. For example, the use of the

Metropolis algorithm leads to a type of sampling known as Metropolis-within-

Gibbs. These samples can then be used to draw inferences regarding the model
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parameters and model fit. The inference runs over four parallel MCMC sequences

of 10,000 iterations each after discarding 50,000 samples of each chain, referred

to as ‘burn-in’. These chains are started randomly at different starting points

and thinned by taking one sample from every five samples so as to minimize the

autocorrelation between samples. The number of adaptation steps is set to 10,000,

that is, the number of adaptive iterations used at the start of the simulation.

Convergence of the chains is measured via the Gelman statistic (
√

R̂) provided

in the Coda package in R. One can be reasonably confident that convergence is

achieved if
√

R̂ < 1.1. Once the convergence criterion is met, Markov chains of

marginal posterior distributions are generated with respect to the likelihood and

prior distributions.

4.3.3 Recruitment Prediction

Fish recruitment is predicted using one of possible graphical models (Figure 4.1,

4.2, 4.3 and 4.4) that illustrate how the expected recruitment is predicted from

the two sources of data Si,j and Ri,j . In the course of this analysis, the Si,j is

observed in both training and test sets while the Ri,j is observed only in the

training set. For example, by considering the model illustrated in Figure 4.1, the

complete joint posterior distribution of all the parameters and hyperparameters

can be described as:

p(μi,j, τi,j, log(α)j, βj, η0j , η1j , γj, φγ, φα, φβ, φη0, φη1 |Si,j, log(Ri,j/Si,j)) ∝
p(μi,j|Si,j, γj, log(α)j, βj)× p(τi,j|Si,j, η0j , η1j)× p(log(Ri,j/Si,j)|μi,j, τi,j)×

p(Ri,j | log(Ri,j/Si,j), Si,j)×p(γj|φγ)×p(log(α)j|φα)×p(βj |φβ)×p(η0j |φη0)×p(η1j |φη1).

(4.10)

As mentioned in Section 4.3.2 MCMC methods are used to generate a sample

from the joint distribution of the parameters. In fact, the sample thus gener-

ated is a sample from the joint distribution of all unobserved variables, Equation

(4.10), which includes both parameters and test set values of Ri,j. This sample

is then used to estimate the marginal distribution over each test set value of Ri,j.

The expression of the joint distribution can vary based on the selected Bayesian

hierarchical model (Figure 4.1, 4.2, 4.3 or 4.4). Appendix E provides the source

code of the JAGS model used to predict the marginal posterior distribution of

fish recruitment for each test data point. Figure 4.5 illustrates the probability
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distributions over possible values of fish recruitment given two test values. The

point estimate of fish recruitment is chosen to be the mode of the distributions,

which represents a sensible choice for this problem.

Figure 4.5: Density plot for fish recruitment prediction given SSB value. The
black curve represents the probability distribution over possible values of pre-
dicted recruits where the red vertical line marks the mode of the distribution;
however, the red triangle marks the recruitment assessment estimated by VPA.
The recruitment axis is scaled by 1e+6.
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4.3.4 Marginal likelihood

The power posterior method (Friel and Pettitt, 2008) is a way of estimating the

marginal likelihood function for a statistical model by raising the likelihood for

the Equation (4.1) (for example) to the power of t:

p{ln (R/S) |α, β, η0, η1}t = exp

[
t×
{
−n
2
ln(2π)− 1

2

n∑
i=1

(η0 + η1Si)−

1

2

n∑
i=1

{
ln
(

Ri

Si

)
− ln(α)− 1

γ
ln(1− γβSi)

}2

exp(η0 + η1Si)

⎫⎪⎬
⎪⎭
⎤
⎥⎦

(4.11)
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by taking the logarithm function of both sides, I get

t× ln[p{ln (R/S) |α, β, η0, η1}] = t×
{
−n
2
ln(2π)− 1

2

n∑
i=1

(η0 + η1Si)−

1

2

n∑
i=1

{
ln
(

Ri

Si

)
− ln(α)− 1

γ
ln(1− γβSi)

}2

exp(η0 + η1Si)

⎫⎪⎬
⎪⎭ .

(4.12)

A full review of the marginal likelihood method via power posterior is described

in Chapter 2, section 2.9. To improve the convergence rate, I started at tT = 1

cutpoint and used the posterior mean parameter values to initiate the chain at

the previous cutpoint, tT−1, and so forth. Within each temperature ts, 4000

samples were collected from the stationary distribution pts{θ| ln(R/S)}. The

implementation of the power posterior method is described in Appendix D.

4.3.5 Predictive approach

I apply the predictive approach on the validation set after dividing the datasets

into training, validation and testing sets with proportions of 60%, 20% and 20%

respectively. This method consists of evaluating the accuracy of models M1,

M2,M3 andM4 on the validation set and comparing predicted fish recruitment

against the VPA estimate using the root mean square error (RMSE) evaluation

metric. Our interest is then to select the model that gets the best RMSE most

times.

4.3.6 Dataset Split

The dataset is split according to the different evaluation metric techniques. The

split for the DIC and MLL techniques consists of dividing the data into training

and test sets with proportions of 80% and 20% respectively. The training set is

used to fit the models, but the test set is used for testing the accuracy of models.

However, the split for the predictive approach consists of dividing the dataset

into training, validation and test sets with proportions of 60%, 20% and 20%

respectively. The validation set is used to validate the models before applying

them on the test set.
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4.4 Results

In accordance with the above plan, first I verified the assumption that uncertainty

for a BHM is smaller than the non-BHM. Table 4.1 compares the posterior prob-

abilities of both methods and shows that for the same set of priors we achieved a

reduced uncertainty or a smaller credible interval width (CI width) for estimates

of model parameters when using a BHM compared to a non-BHM. Additionally,

the three evaluation metrics (DIC, MLL and predictive approach) indicate that a

BHM fits the data better and provides a better predictive accuracy than a non-

BHM. Then I employed the model M1 (with γ ≈ 0) to compare the predictive

accuracy of BHM versus non-BHM using the RMSE metric (Table 4.2). This

comparison is applied on the North-East Arctic area that comprises 48 test data

points from which 36 test points (or 75% of cases) are best predicted with the

BHM and the remaining 12 test points (or 25% of cases) are best predicted with

the non-BHM, which gives a dominance of BHM over the non-BHM. There is a

clear pattern that those remaining 12 test points (or 25% of cases) are related to

AFWG-GHALNEAR and WGNSSK-CODCOASTNOR populations (Table 4.2)

for which a non-BHM is more suitable than a BHM.

After verifying that the prediction accuracy of BHM outperforms the non-BHM,

I employed the BHM to assess the predictive accuracy of models (M1,M2,M3

and M4) over eight different cases (Celtic sea, Faroe Plateau, Georges Bank,

North-East Arctic, north sea, Pelagic, Demersal and All populations) using the

DIC, MLL and the predictive approaches. I found that the three metrics have

generally disagreed upon each case for the choice of best predictive model. In

this work, I followed the general approach in statistics that consists of keeping a

separate set for testing purposes so as to identify the best evaluation metric. DIC

was slightly better than the other evaluation metrics in depicting the accurate

predictive model in three out of eight cases (Tables 4.3 and 4.4), which makes it

suitable for this problem. The consistency in sign of η1 describes its degree of

reliability such that a consistent negative sign of η1 indicates that the variance

attenuates with large SSB densities, but a consistent positive sign of η1 indicates

that the variance increases with large SSB densities; otherwise, when the sign

becomes inconsistent (the density distribution lies between negative and positive

regions) η1 becomes unreliable.

The test set is used to check the results obtained by the validation set (Table

4.3 and 4.4). It turns out that the test set predictions differ in four out of eight
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Table 4.1: Descriptive comparison of posterior distributions resulting from the
Bayesian hierarchical model M1 to those from the equivalent non-hierarchical
model applied to fisheries located in North-East Arctic with γ < 0. The fitting of
the two models is assessed with the DIC, MLL and Predictive approach metrics;
the smaller the DIC values indicate a better fitting model; however, the larger
the MLL values (closer to zero) indicate a better fitting model; and the larger
the predictive approach indicate a better fitting model.

Hierarchical model Posterior Non-hierarchical model Posterior

Population Parameters Mode (95% interval) CI width Mode (95% interval) CI width

CODNEAR log(α) 8.53 (7.90, 9.47) 1.57 8.69 (7.95, 9.43) 1.48
β 265.96 (129.29, 964.35) 835.06 414.48 (175.87, 1022.39) 846.52
η0 -1.72 (-2.21, -1.12) 1.09 -2.6 (-3.35, -1.50) 1.85
η1 -2.68 (-6.20, 1.25) 7.45 4.29 (-9.03, 19.02) 28.05
γ -1.26 (-1.68, -1.00) 0.68 -1.32 (-1.89, -1.07) 0.82

CODCOASTNOR log(α) 8.66 (7.96, 9.70) 1.74 7.77 (7.42, 9.61) 2.19
β 42.51 (17.30, 411.13) 393.83 392.34 (162.28, 1024.30) 862.02
η0 0.17 (-0.31, 0.66) 0.97 1.01 (0.03, 2.25) 2.22
η1 -1.55 (-4.54, 2.27) 6.81 -7.93 (-16.59, 1.56) 18.15
γ -1.46 (-1.99, -1.00) 0.99 -8.71 (-9.82, -1.81) 8.01

POLLNEAR log(α) 8.65 (8.02, 9.76) 1.74 10.5 (9.20, 11.58) 2.38
β 38.49 (17.14, 288.18) 271.04 401 (159.82, 1033.48) 873.66
η0 -0.88 (-1.54, -0.24) 1.3 -1.05 (-1.81, -0.05) 1.76
η1 -1.99 (-3.72, -0.11) 3.61 -1.93 (-4.08, 0.61) 4.69
γ -1.31 (-1.79, -0.97) 0.82 -1.16 (-1.82, -1.02) 0.8

HADNEAR log(α) 8.56 (7.91, 9.57) 1.66 6.58 (6.31, 9.62) 3.31
β 179.62 (81.24, 729.59) 648.35 389.06 (159.86, 1025.47) 865.61
η0 -1.34 (-2.00, -0.65) 1.35 -1.54 (-3.73, 0.76) 4.49
η1 -3.37 (-6.94, 0.32) 7.26 -3.18 (-19.50, 10.75) 30.25
γ -1.3 (-1.80, -0.95) 0.85 -1.63 (-9.60, -1.15) 8.45

GHALNEAR log(α) 8.61 (8.06, 9.81) 1.75 10.42 (8.55, 11.77) 3.22
β 7.79 (3.49, 105.12) 101.63 397.27 (168.27, 994.27) 826
η0 -0.56 (-1.06, 0.04) 1.1 -0.46 (-1.11, 0.35) 1.46
η1 -1.4 (-2.61, 0.06) 2.67 -1.55 (-2.97, 0.50) 3.47
γ -1.45 (-1.94, -0.96) 0.98 -1.63 (-5.46, -1.24) 4.22

—hyperparameters—
φα 8.56 (8.04, 9.62) — — — —
φβ 1.17 (1.02, 4.07) — — — —
φη0 -0.88 (-1.35, -0.34) — — — —
φη1 -1.88 (-4.37, 0.33) — — — —
φγ -1.36 (-1.77, -1.06) — — — —

—model comparison—
DIC 343 344.4
MLL -152.19 -154.23

Predictive approach 29 19
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Table 4.2: Comparison between BHM versus non-BHM using the model M1,
which is applied on the test set of the North-East Arctic area based on the RMSE
metric.

RMSE RMSE

Test point BHM non-BHM Test point BHM non-BHM

AFWG-GHALNEAR-1960-2010-test1 11.22 9.33 AFWG-POLLNEAR-1957-2011-test4 202.68 263.44
AFWG-GHALNEAR-1960-2010-test2 10.80 8.55 AFWG-POLLNEAR-1957-2011-test5 181.59 294.07
AFWG-GHALNEAR-1960-2010-test3 12.40 8.66 AFWG-POLLNEAR-1957-2011-test6 128.35 271.38
AFWG-GHALNEAR-1960-2010-test4 15.84 11.10 AFWG-POLLNEAR-1957-2011-test7 88.98 NA
AFWG-GHALNEAR-1960-2010-test5 18.51 12.15 AFWG-POLLNEAR-1957-2011-test8 87.91 NA
AFWG-GHALNEAR-1960-2010-test6 21.11 12.99 AFWG-POLLNEAR-1957-2011-test9 79.37 NA
AFWG-GHALNEAR-1960-2010-test7 21.12 14.08 AFWG-POLLNEAR-1957-2011-test10 95.38 248.52
AFWG-GHALNEAR-1960-2010-test8 23.21 23.28 WGNSSK-CODCOASTNOR-1982-2010-test1 55.35 56.52
AFWG-GHALNEAR-1960-2010-test9 20.64 13.72 WGNSSK-CODCOASTNOR-1982-2010-test2 50.02 32.51
AFWG-HADNEAR-1947-2010-test1 356.66 15723.44 WGNSSK-CODCOASTNOR-1982-2010-test3 55.44 38.63
AFWG-HADNEAR-1947-2010-test2 452.12 8218.28 WGNSSK-CODCOASTNOR-1982-2010-test4 48.44 44.43
AFWG-HADNEAR-1947-2010-test3 353.41 5894.39 WGNSSK-CODCOASTNOR-1982-2010-test5 61.20 48.65
AFWG-HADNEAR-1947-2010-test4 360.22 8459.52 WGNSSK-CODNEAR-1943-2010-test1 541.09 1464.18
AFWG-HADNEAR-1947-2010-test5 252.87 9602.55 WGNSSK-CODNEAR-1943-2010-test2 526.36 1214.43
AFWG-HADNEAR-1947-2010-test6 298.35 10860.39 WGNSSK-CODNEAR-1943-2010-test3 470.64 1111.73
AFWG-HADNEAR-1947-2010-test7 328.20 6225.47 WGNSSK-CODNEAR-1943-2010-test4 437.33 868.94
AFWG-HADNEAR-1947-2010-test8 363.03 15009.30 WGNSSK-CODNEAR-1943-2010-test5 455.36 774.94
AFWG-HADNEAR-1947-2010-test9 612.94 6650.72 WGNSSK-CODNEAR-1943-2010-test6 519.66 1102.71
AFWG-HADNEAR-1947-2010-test10 979.37 16336.43 WGNSSK-CODNEAR-1943-2010-test7 480.46 1220.29
AFWG-HADNEAR-1947-2010-test11 863.26 4707.23 WGNSSK-CODNEAR-1943-2010-test8 531.61 1283.44
AFWG-HADNEAR-1947-2010-test12 372.98 12075.20 WGNSSK-CODNEAR-1943-2010-test9 537.89 1335.49
AFWG-POLLNEAR-1957-2011-test1 170.44 219.24 WGNSSK-CODNEAR-1943-2010-test10 508.04 1151.85
AFWG-POLLNEAR-1957-2011-test2 153.78 243.92 WGNSSK-CODNEAR-1943-2010-test11 570.06 1352.08
AFWG-POLLNEAR-1957-2011-test3 137.53 248.15 WGNSSK-CODNEAR-1943-2010-test12 694.27 1495.03
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cases from those of the validation set. Moreover, the test set indicates that the

heteroscedastic model (η1 �= 0) is found in general to provide a better prediction

of fish recruitment value than the non-heteroscedastic models (η1 = 0). In five

out of eight cases (results showed in Table 4.4) the heteroscedastic model is found

to provide a higher accuracy than the non-heteroscedastic model, as assessed by

the RMSE metric. The testing set indicates M1 as the best model for predict-

ing fish recruitment over the majority of cases; however, recruitment variability

in Georges Bank —encompasses six demersal fish populations—is best described

with the community factor model M2. By analysing the reliability of the het-

eroscedasticity parameter usingM1 andM2 over the three areas (Faroe plateau,

Georges Bank and North-East Arctic) where recruitment variability is best de-

scribed with η1, I found a consistency in sign of η1 over an approximate 95%

credible interval just in Faroe plateau; however, for the other two areas North-

East Arctic and Georges Bank the consistency was reached when the confidence

level is lowered down to 70% and 12% respectively (Figure 4.6).

Figure 4.6: Credible interval of η1 approximated with different confidence levels.
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Table 4.3: Descriptive comparison of modelM1,M2,M3 andM4 assessed by the means of
marginal log-likelihood (MLL), deviance information criterion (DIC) and predictive approach
methods. The larger the MLL values (closer to zero) indicate a better fitting model. Note
that smaller DIC values indicate a better fitting model; but a larger value for the predictive
approach value indicates a better fit.

M1 M2 M3 (η1 = 0) M4 (η1 = 0)

Area method γ < 0 γ ≈ 0 γ > 0 γ < 0 γ ≈ 0 γ > 0 γ < 0 γ ≈ 0 γ > 0 γ < 0 γ ≈ 0 γ > 0

Celtic Sea MLL -49.69 -49.64 -50.26 -50.35 -49.13 -50.06 -49.69 -49.65 -50.26 -50.34 -49.24 -50.05
(3 dem. pop.) DIC 149.5 237.9 208.2 213 205.4 188.6 148.2 237.8 207.8 207 199.8 188.1

Predictive approach 7 0 0 0 2 1 7 0 0 2 1 2
Faroe Plateau MLL -94.13 -92.57 -94.6 -94.31 -93.28 -94.67 -94.13 -92.62 -94.61 -94.33 -92.92 -94.67
(3 dem. pop.) DIC 269.6 245.4 313 289.1 277.5 319.5 257.1 248.2 310.6 287.3 275.9 317.2

Predictive approach 1 5 3 12 4 0 0 6 0 0 0 0
Georges Bank MLL -135.72 -134.76 -136.21 -135.61 -134.60 -136.35 -135.71 -134.75 -136.24 -135.59 -134.04 -136.36
(6 dem. pop.) DIC 491.5 584.5 538.7 479.5 524.3 549 487.9 582.3 540 473.9 518.7 547.5

Predictive approach 7 0 0 7 0 4 2 0 0 13 8 4
North-East Arctic MLL -152.19 -150.45 -153.52 -152.89 -150.19 -153.40 -152.26 -150.56 -153.55 -153.06 -151.05 -153.42

(4 dem. + 1 pel. pop.) DIC 343 374.8 469 409.7 411.4 454.3 346.1 381.8 471 422.7 426.5 454.5
Predictive approach 6 2 0 5 3 5 12 9 0 3 0 3

North Sea MLL -79.74 -78.88 -80.22 -80 -78.93 -80.07 -79.73 -78.88 -80.21 -80 -78.87 -80.07
(3 dem. pop.) DIC 226.2 256.5 273.4 253.5 257.5 256.1 224.9 254 272.5 251.3 253.1 256.5

Predictive approach 6 0 1 1 1 2 10 3 1 3 0 0
Pelagic MLL -447.54 -438.20 -448.09 -441.13 -435.67 -447.16 -449.70 -438.48 -448.32 -442.13 -436.63 -448.27
(27 pop.) DIC 1691 2373 2557 1887 2214 2449 1639 2388 2582 1923 2221 2546

Predictive approach 17 7 5 73 35 26 6 2 0 1 7 5
Demersal MLL -934.60 -924.03 -940.40 -935.41 -924.80 -936.89 -934.71 -924.38 -940.76 -936.23 -918.9 -937.66
(59 pop.) DIC 3250 3935 3912 3425 3411 3569 3285 3954 3946 3495 3466 3629

Predictive approach 80 11 9 50 45 66 27 12 1 25 55 11
All Populations MLL -1382.44-1366.44-1391.13-1379.32-1374.38-1385.44-1382.54-1367.14-1391.45-1380.54-1357.99-1386.87

(86 pop.) DIC 3964 4325 4432 3610 3783 4136 5254 6731 6791 5883 5915 6263
Predictive approach 164 9 9 84 108 97 14 4 1 35 41 10
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Table 4.4: Predictive approach for evaluating models M1, M2, M3 and M4

applied to the testing set. The numbers scored in a model represent the cases for
which this particular model is found to minimise the RMSE.

M1 M2 M3 (η1 = 0) M4 (η1 = 0)

Predictive approach γ < 0 γ ≈ 0 γ > 0 γ < 0 γ ≈ 0 γ > 0 γ < 0 γ ≈ 0 γ > 0 γ < 0 γ ≈ 0 γ > 0

Celtic Sea 4 0 0 0 1 3 7 0 0 0 1 6
Faroe Plateau 0 12 0 3 6 0 1 4 0 1 2 2
Georges Bank 11 0 0 14 1 1 3 2 0 2 5 6

North-East Arctic 7 19 0 5 0 0 11 2 1 1 0 2
North Sea 4 0 0 2 0 0 8 1 2 1 1 9
Pelagic 86 13 1 8 10 15 0 2 4 0 20 25
Demersal 87 32 15 40 49 28 26 6 5 8 47 49

All Populations 86 44 16 37 49 87 27 7 3 35 83 102

Finally, I used the test set to measure the effect of grouping fish populations

according to the water column (i.e. pelagic or demersal depths) versus the case

of pooling all fish populations together on the accuracy of predicting fish recruit-

ment. First, I fit M1 (γ < 0) to pelagic populations (i.e. 27 populations) and

M4 (γ > 0) to the case of all populations (i.e. 86 populations). The predicted

recruitment values derived from each analysis are compared against the VPA as-

sessments: showing better performance when grouping fish populations in pelagic

habitat (64%) rather than pooling all populations (36%) (Table 4.5). The for-

mula for calculating the percentage is based on the best recruitment prediction

achieved from different groups of populations (water column and all populations)

obtained from the total test points found in the water column (pelagic or dem-

ersal). Similarly, I fitM1 (γ < 0) to demersal populations (i.e. 59 populations)

where I found an improvement by grouping fish populations in demersal habitat

(61%) rather than pooling all populations (39%) (Table 4.5). Results show that

a more accurate recruitment predictions is obtained when limiting the analysis

to species in the same water-column depth community.

4.5 Discussion

BHMs are found to reduce the uncertainty in key parameters and to provide a

more accurate prediction of fish recruitment compared to non-BHMs (Table 4.1

and 4.2). The non-constant variance model (M1) showed to be more accurate

than the other models (Table 4.4) and proved that the non-constant variance η1

to be reliable over an approximate 95% credible interval in Faroe Plateau and
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Table 4.5: Comparison of best recruitment prediction achieved by grouping pop-
ulations by pelagic (open water), all populations, and demersal (bottom dwelling)
habitats. The rows describe the grouping by water column (i.e. pelagic or de-
mersal). Two experiments are conducted accordingly: first, predict recruitment
by restricting the populations to the same water column; second, predict recruit-
ment by pooling all populations. However, the vertical columns assigns the best
prediction for each case respectively.

Water-column Pelagic All Populations (Pelagic + Demersal) Demersal

Pelagic (total of 184 test points) 64% 36% –
Demersal (total of 392 test points) – 39% 61%

70% in North-East Arctic areas (Figures 4.6 (a) and (b)).

In this research I applied four different BHMs onto five different geographical

regions (Celtic Sea, Faroe Plateau, Georges Bank, North-East Arctic and North

Sea) and three other macro scale marine column zones (pelagic, demersal and

all populations) so as to find the model that best describes the recruitment vari-

ability in these regions. The macro scale marine analysis is aimed to assess the

influence of grouping fish species, across different water depths, on the prediction

accuracy of fish recruitment. This research also extends the work of (Panikian

et al., 2015) by applying a BHM for assessing the sign of the coefficient of het-

eroscedasticity η1.

To validate this work, I compared the inferred S-R model parameters via BHM

and non-BHM methods applied on the North-East Arctic area, which contains

five stocks, where I found an increase of accuracy (or low uncertainty) in ap-

proximating the 95% credible interval using the BHM method. Additionally, I

compared the prediction accuracy of fish recruitment using these two methods

applied on the same area where I found a more accurate result is achieved via a

BHM method. I repeated the same experiment on the Georges Bank (containing

six populations) area and I observed a similar conclusion. This tells us that BHM

are more accurate (in both inference and prediction) than non-BHM (or single

species assessment) and worth considering for fairly short and noisy interdepen-

dent ecological time series data.

From a different perspective, results showed that the coefficient of heteroscedas-

ticity deserves consideration in Faroe Plateau, North-East Arctic, pelagic and

demersal communities because it had a better predictive accuracy on the test set

(Table 4.4). This is in contrast to the constant variance model (η1 = 0) that
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is found to have some significance for the Celtic Sea and the North Sea as it

provided a higher prediction accuracy. The reliability of the sign of η1 in the

three regions (Faroe plateau, Georges Bank and North-East Arctic) is found to

be consistent for an approximate credible interval of 95%, 12% and 70% respec-

tively. I concluded that the recruitment variability in the Georges Bank area is

not possible to be explained with a heteroscedastic model because of the large

amount of uncertainty of η1 presented in the NEFSC-YELLGB-1935-2008 popu-

lation (Figure 4.6).

The analysis is based on proposing four different Bayesian hierarchical models

characterised by different S-R relationship (section 4.2.2), but with the same set

of prior and hyperprior distributions. These models are assessed by different

means (DIC, MLL, and predictive approach) where I found the DIC to be more

reliable than both MLL and the predictive approach as the evaluation process

(on the validation set) showed that it predicted the sensible model within three

out of eight cases of the test set. Because the Deriso-Schnute model presents a

singularity at γ = 0, I partitioned the search space into three disconnected zones

(γ < 0, γ ≈ 0, γ > 0) so as to overcome this limitation. The four models: M1,

M2, M3 and M4 are analysed along with the different constraints on γ. The

assessment on the test set helped us to identify the models with best prediction

values such as: M1 (with γ > 0 and γ ≈ 0) is found to provide the best recruit-

ment prediction for the Faroe Plateau, North-East Arctic, pelagic and demersal

water columns; M2 (with γ < 0) provided best accuracy for the Georges Bank;

M3 (with γ < 0) found to provide the best prediction for the Celtic sea; and

the model M4 (with γ > 0) found to provide the best prediction for the North

sea and all populations. I checked whether the prediction accuracy of fish re-

cruitment is affected by pooling multiple populations across the water column

zones. Results showed that estimating fish recruitment by restricting the analy-

sis to species within their own community (i.e. pelagic or demersal) has a higher

accuracy than pooling all fish populations together (Table 4.5).

Marine fish populations are difficult to manage because of complexities result-

ing from: imperfect understanding of the ecosystem, imperfect understanding of

the marine biology, imperfect sampling of fish populations and imperfect math-

ematical modelling. However, the management of fish populations is improved

regularly by monitoring the performance of stock assessment in relation to the

target objectives and providing feedback so as to improve the system.
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In this work I provide to fishery managers (or policy makers) a new way of as-

sessing the size of fish recruitment where I advocate the importance of collecting

as many fish stock assessments from the same community (specified by the same

geographical region and water column) as they can, then employ the different

modelsM1,M2,M3 andM4 that I proposed to find the one that best describes

the S-R variability, which is assessed by the lowest RMSE prediction value. A

more compelling reason for conducting stock assessment selection based on water

column is because I found an increase in accuracy by grouping stocks by water

column rather than pooling all populations together (Table 4.5).

BHM proved to be a successful approach in managing marine communities in-

dicating that a community based structure can explain better the recruitment

variability of fish populations than analysing a single stock assessment. On the

ecosystem level I conclude that the sea surface is to some extent disconnected from

the sea bed in the sense that the water column mixing does not affect enormously

nutrient supplies of these two habitats: as I found that fish stock assessments are

best analysed on their own community.

As future work, one can probably look to overcome the limitations of the Deriso-

Schnute model and find ways to interpolate between the Beverton-Holt, Ricker

and Schaefer models without falling to the singularity at γ = 0.



Chapter 5

End-To-End Statistical Modelling

for Marine Ecosystems via

Machine Learning

I provide a simple modelling framework, exploiting algorithms from dynamic

Bayesian networks, for coupling environmental, planktonic and fisheries data to

arrive at predictive ecosystem-scale models. This study is concentrated on ICES

Division VIa, with monthly and annual observations spanning years 1960 to 2014.

I propose two ecological models to represent the structural dependencies within

the data: the first is designated to analyse the full data set and the second to

analyse the planktonic and abiotic variables only. Both models have shown a

better prediction on the unseen data when compared to six other off-the-shelf al-

gorithms. Although the proposed autoregressive models are too simple to capture

complex long-term interdependencies, their simplicity can reveal clear short-term

relationships. In this work, I show that the data support single-species rather

than community-based fisheries management. Moreover, by applying perturba-

tions to simulate climate change, the models consistently predict large disruptions

to the dinoflagellate and fish larvae communities in response to changes in tem-

perature and salinity.

The objectives of this Chapter are the following:

• To assess whether modelling fish populations within a community context

is more appropriate than conventional species-based fisheries management

methods.

131



132 Chapter 5. End-To-End Ecosystem Challenges in Fisheries

• To develop methods for understanding the impact of environmental changes

on marine species.

5.1 Introduction

There has been a rapid rise in the development of system scale marine models over

the past decade (Travers et al., 2007; Rose et al., 2010) incorporating dynamics

from ocean physics to top trophic level of fisheries. These so-called end-to-end

models typically combine sub-models from hydrodynamics (representing coastal

water dynamics), bio-geochemistry (representing the utilisation of nutrients by

the lower trophic level organisms) and fisheries (representing the higher trophic

level organisms) (Rose et al., 2010).

Keyl and Wolff (2008) described the impacts of fishery pressure and environmen-

tal variability on fish populations and pointed out that the performance of fished

stocks (i.e. survival, growth and reproduction) can better be described if environ-

mental or climatic variability is incorporated into the fisheries models. However,

end-to-end models require advances in data collection, modelling theory and com-

puting power. For example, the time series observations of ocean properties are

collected by remote sensing from satellites, whereas assessments for the Contin-

uous Plankton Recorder (CPR) data and fish populations are being conducted

through marine ecological surveys. Since there are no rules defining the required

level of detail that should be considered in an end-to-end research, the choice of

processes and organisms remains an open problem (Rose, 2012).

There are currently several established modeling frameworks. Travers et al. (2009)

coupled the ROMS-N2P2Z2D2 and the OSMOSE models into a single framework

to capture a new range of two-way dynamics between low trophic level and high

trophic level models by simulating both top-down and bottom-up effects. Fen-

nel (2010) developed a two-way interaction NPZDF model that couples the mass

fluxes between the state variables of the lower and upper food web —dominated

by two prey species (sprat and herring) and one predator (cod). The Atlantis

modeling framework simulates ocean physics, nutrient cycling, ecology, and fish-

ery dynamics in a single modelling framework (Fulton, 2001; Link et al., 2010).

There has been much interest in forging formal and quantitative linkages be-

tween climate and living marine resources (Hollowed et al., 2011; Stock et al.,

2011) so as to understand the impacts of climate variability on fish and fisheries.
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The methods range from single-species stock assessments to techniques for eval-

uating impacts at the multispecies or ecosystem level. Fromentin and Planque

(1996) were the first to prove that the North Atlantic Oscillation (NAO) index

is correlated with the abundance of two major zooplankton copepod species in

the eastern Northeast Atlantic and the North Sea through both temperature and

wind speed (i.e. turbulent mixing affecting the development rate of zooplankton);

however this correlation apparently broke down after 1996. Marine ecosystems

reveal complex responses to climate changes because the response at the higher

trophic level is not always proportional to the magnitude of changes of environ-

mental conditions (Ito et al., 2010).

End-to-end models are becoming steadily more dependent on the mechanistic

representations of complex dynamic systems that often require calibrating many

parameters. This leads to potential difficulties with mathematical stability and

tractability due to increased model complexity (Travers et al., 2007; Wong, 2014).

Trifonova et al. (2015) compared Bayesian network modelling approaches with la-

tent variables to reveal species dynamics for 7 geographically and temporally var-

ied areas within the North Sea. They also applied structure learning techniques

to identify functional relationships such as prey-predator between trophic groups

of species that vary across space and time. In a more recent work, Trifonova

et al. (2017) used a dynamic Bayesian network model with a hidden variable and

spatial autocorrelation to explore future productivity of different fish and zoo-

plankton species in response to changes in temperature within the North Sea.

In this Chapter, I analyse the influence of environmental changes on planktonic

and fish populations using multivariate autoregressive models so as to determine

the evolution of the system over time. The advantage of the proposed revised

ecological model (REMO) lies in its probabilistic framework, its capability for

dealing with multivariate time-series data streams contaminated by noisy and

incomplete samples, and its flexibility in incorporating new potential sources of

data (e.g. new species and environmental factors). REMO can also deal with pre-

viously unobserved conditions and respond to possible impacts of climate change

on the ecosystem. I demonstrate REMO on a data set composed of 18 ran-

dom variables collected from three different sources: the National Oceanic and

Atmospheric Administration (NOAA) from which we obtained the abiotic com-

ponents, the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) institute

from which I obtained the biotic components and the International Council for
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Table 5.1: Five ICES data sets found in the Northwest Coast of Scotland and
Northern Ireland (Division VIa) taken from the assessment year 2015.
id Fish Stock Stock Description Species Period Type

1. cod-scow
Cod in Division VIa (West of
Scotland)

Gadus morhua 1981-2014 Demersal

2. had-346a

Haddock in Subarea IV and Di-
visions IIIa West and VIa (North
Sea, Skagerrak and West of Scot-
land)

Melanogrammus
aeglefinus

1972-2014 Demersal

3. her-67bc
Herring in Divisions VIa and
VIIb,c (West of Scotland, West of
Ireland)

Clupea harengus 1960-2014 Pelagic

4. meg-4a6a Megrim in Divisions IVa and VIa Lepidorhombus 1985-2014 Demersal

5. whg-scow
Whiting in Division VIa (West of
Scotland)

Merlangius mer-
langus

1981-2014 Demersal

the Exploration of the Sea (ICES) from which I obtained the fish populations.

The selected geographical location is situated in the Northwest Coast of Scotland

and Northern Ireland (ICES Division VIa) and bounded in an area defined by

the following coordinates: (60◦30’ north latitude, 4◦00’ west longitude), (60◦30’

north, 5◦00’ west), (60◦00’ north, 4◦00’ west), (60◦00’ north, 12◦00’ west), (54◦30’

north, 12◦00’ west), (54◦30’ north, 4◦00’ west) and then back to the point of be-

ginning (60◦30’ north latitude, 4◦00’ west longitude).

Two application-driven outcomes of this study are: (1) to assess whether mod-

elling fish populations within a community context is more appropriate than con-

ventional species-based fisheries management methods, and (2) to develop meth-

ods for understanding the impact of environmental changes on marine species.

5.2 Materials and methods

In this research I select five fish stock populations from the International Council

for the Exploration of the Sea (ICES) database (http://standardgraphs.ices.

dk/stockList.aspx), living in the Northwest Coast of Scotland and North Ire-

land (ICES Division VIa). The length and characteristics of the data on the fish

population are summarised in Table 5.1. To understand the influence of abiotic

and biotic factors on the abundance of fish populations, I consider an additional

13 variables (environmental and biological) along with fish populations, which

can be described as follows:
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1. Arctic Oscillation (AO) is a climate index describing the atmospheric circu-

lation over the Arctic. Positive values of AO indicates that the polar vortex

(i.e. the polar pressure circulation) is stronger compared to the air pressure

at mid-latitudes. This creates a strong air flow circulation and confines the

coldest air to the high latitudes. However, under negative AO conditions,

the air travels from the North pole toward low pressure areas and brings

cold weather to North America, Europe, and Asia.

2. The North Atlantic Oscillation (NAO) index is viewed as a dominant cause

of climate change in the North Atlantic region. The National Oceanic and

Atmospheric Administration (NOAA) states that strong positive phases of

NAO tend to be associated with above-normal temperatures across northern

Europe and are also associated with above-normal precipitation over north-

ern Europe and Scandinavia. However, opposite patterns of temperature

and precipitation anomalies are typically observed during strong negative

phases of the NAO.

3. Sea surface temperature (SST) has a direct influence on phytoplankton

growth and metabolic rates.

4. Wind speed (Wind) often increases with a high NAO index. Strong winds

induce greater turbulence and lead to more intense vertical mixing which is

important in controlling spring phytoplankton bloom (Sverdrup, 1953).

5. Salinity (SAL) is a significant factor in the growth and reproduction of fish

populations (Lowe et al., 2012).

6. The Southern Oscillation index (SOI) gives an indication of the development

and intensity of El Niño or La Niña events in the Pacific Ocean, which is

computed using monthly mean sea level pressure anomalies at Tahiti and

Darwin.

7. Fish larvae (FishLarvae) are the part of the zooplankton that eat smaller

plankton. They are usually consumed by larger animals. The newly hatched

fish larvae have a total length of around three millimeters and can swim

poorly compared to the older larvae which swim faster. The larva period is

relatively short, typically several weeks, during which the larva grows and

changes its structure and form to become a juvenile fish.
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8. Krill (Krill) are small crustaceans which feed on phytoplankton and zoo-

plankton; they exhibit large daily vertical migrations, moving near the sur-

face at night and in deeper waters during the day. This vertical migration

(across the water column) for feeding and reproductive purposes make them

extremely vulnerable to predators.

9. Copepods (Cope) are important species for global ecology and the carbon

cycle because they are a major food source for small fish and other crus-

taceans such as krill.

10. Large Copepods (LargeCope) are likely to consume larger and more prey

than small copepods.

11. Fish Eggs (FishEgg) are often released in the sunlit zone of the water col-

umn, usually less than 200 meters below the surface. Fish eggs cannot

swim at all but rely on the large yolk sac they carry within the egg for

nourishment.

12. Dinoflagellates (Dinoflage) are typically small-sized stress-tolerant species

of plankton.

13. Diatoms (Diatom) are a major group of algae, and are among the most

common types of phytoplankton which dominate the water surface during

the spring bloom.

The gathered ecological data for the biotic and abiotic factors cover a period start-

ing from 1960 till 2014; but do not preserve consistency of time interval for the

five fish populations (Table 5.1). A strong variability of NAO is often associated

either with an index value greater than 1.0 or less than -1.0. This strong variabil-

ity contributes to changes in the atmospheric pressure, wind speed, precipitation,

air temperature and sea surface temperature (SST) anomalies (Hurrell, 1995).

I proceed up the trophic layers, beginning with phytoplankton, zooplankton,

through to fish. Around the UK, primary production follows a seasonal pattern.

Winter storms and strong winds vertically mix the water column, transporting

nutrient concentrations to the surface. In spring, when the sunlight intensity

increases, conditions are suitable to stimulate growth of the phytoplankton and

allow photosynthesis —a phenomenon known as the spring bloom. Sverdrup

(1953) showed that there must be a critical depth on the surface layer such that
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blooming can occur only if the depth of the mixed layer is less than a critical

value. This is known as Sverdrup’s critical depth hypothesis. The spring bloom

is generally dominated by diatoms, photosynthetic algae which can be used as

indicators for monitoring the environmental aquatic conditions and water qual-

ity (Hering et al., 2006). In summer, as the surface layers warm, a thermocline

can develop preventing vertical mixing and re-suspension of nutrients, the sur-

face waters become nutrient-replete and nanoflagellates (competitor organisms)

become dominant; however, in autumn, during periods with low nutrient con-

centrations, dinoflagellates (stress tolerators) species become dominant (Hansen

et al., 1996). Often around the UK, autumn storms can cause mixing and break

down stratification, allowing the re-suspension of nutrients. In autumn months,

light levels are often sufficient to ‘kick-start’ a secondary late bloom of diatoms.

Moving into winter, the phytoplankton production depletes as daylight hours be-

come shorter. Irigoien et al. (2000) suggest a possible link between NAO index

and phytoplankton species because of significant correlation found between the

winter NAO (December to March) and the diatom abundance (April to May).

Edwards et al. (2001) concluded that variability in phytoplankton biomass is

affected by the sea surface temperature influenced by the North Atlantic Oscil-

lation index. Zooplankton are generally tiny animals (the majority of which are

Crustacea) and, as all plankton, they are weak swimmers and usually drift along

with the currents. They can be classified by size or stage of development. Among

the large number of zooplankton, I selected Fish Eggs, Fish Larvae, Large Cope-

pods, Small Copepods and Euphausiids (or krill) datasets from the CPR survey

database (Johns, 2015).

I chose three different methods to conduct this research: the first is to analyse

the data through a yearly index; the second through both monthly and yearly

indices (monthly + yearly); and the third through a monthly index.

For the yearly index analysis, I encountered missing values in both planktonic

(presented in monthly samples) and fish species (presented in yearly samples).

To get around this problem, I computed the annual mean value for the observed

planktonic data by throwing away samples containing missing values (in case

they exist). For example, if in a particular year there are two months of missing

values, I omitted those months and averaged the abundance of the species based

on the observed values only. In statistics, a listwise deletion involves omitting an

entire record from analysis if any single value is missing. I used this approach
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to remove incomplete assessments of fish populations such that after combining

the entire data set (abiotic + biotic + fish populations) across the year index, we

obtain a rectangular data set with no missing values. I also called this method

the yearly data structure.

For the monthly index analysis, I used a linear interpolation method to impute

the missing monthly samples in the planktonic data set, and a linear interpolation

for the fish species taken between two yearly assessment samples so as to impute

a value for each month respectively —I also called this method the monthly data

structure.

Lastly, for the (monthly + yearly) index analysis, I used a linear interpolation to

recover monthly missing values for the planktonic data and restricted the analysis

on observed assessments for fish populations from which I omitted missing values

of fish populations using a listwise deletion. This approach resulted in construct-

ing a high dimensional dataset (33 samples × 168 dimensions).

Because the listwise deletion approach removed too many observed samples (33

out of 55 years), I decided in a second part of this research not to include fish

populations and limit the analysis only to biotic and abiotic variables.

5.2.1 The Data

Data sets (1-2) were downloaded from the National Weather Service publicly

available at (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_

ao_index/ao_index.html) and (http://www.cpc.ncep.noaa.gov/products/precip/

CWlink/pna/nao.shtml) respectively; data sets (3-5) are taken from the interac-

tive time series explorer (NOAA, 2015) website, which allows the user to extract

the data by specifying a set of geographical coordinates; data set (6) is down-

loaded from the publicly available web site: (http://www.cpc.ncep.noaa.gov/

data/indices/); and data sets (7-13) are taken from (Johns, 2015). The data

set covers a period ranging from 1960 till 2014.

In this work, the data were divided into three parts: training, validation and test

sets with proportions of 60%, 20% and 20% respectively.

5.2.2 Multivariate autoregressive models

In this research, I applied different multivariate first order autoregressive algo-

rithms (Least Angle Regression (LARS), G1DBN, Simone, Gaussian Process,
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GeneNet and a Baseline method) to come up with a (better) revised ecological

model (REMO) to explain the data, while enforcing sparseness in network con-

nectivity. Amongst the first order autoregressive models, I proposed a Baseline

method as a very basic autoregressive model (with a coefficient parameter equal

to one and with a zero noise) that consists of predicting the next step ahead

value to be equal to the present observation. A detailed description of these

methods is provided in Chapter 2, section 2.6. As an evaluation metric, I used

the root mean square error (RMSE) to measure the spread of predictions around

the ground truth. There are also other possible metrics that one could use such

as the mean absolute error.

5.2.3 Selecting tuning parameters for the models

Below is the method that I followed to tune the parameters for the different

models:

LARS: The shrinking of the coefficient estimates towards zero is performed with

Lasso (Tibshirani, 1994) whereas the shrinkage parameter is estimated using

a cross validation method.

G1DBN: the threshold α1 is chosen such that after the first step of inference all

random variables are expected to have no more than one parent; however,

the choice of α2 is less problematic and can be chosen so as to lower the

number of edges. I applied a heuristic approach to set α1, I carried out

inference with different values of α1, such that α1 = {0.08, 0.1, 0.2, 0.3}.
The best result is found for α1 = 0.08 which resulted in a higher accuracy.

On the other hand, I chose a low α2 threshold (α2=0.09) so as to be confident

in the selected edges.

Simone: to determine the best number of edges, I applied a heuristic approach

by measuring the RMSE associated to different value of edges: 30, 50, 100

and 150 edges. The best network is found with a penalty corresponding to

at most 30 edges.

Gaussian Process: I used the Radial Basis kernel function for the covariance

matrix because it fits the data better than: Polynomial, Linear, Laplacian

and Bessel kernels.
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GeneNet: to determine the best number of edges, I applied a heuristic approach

by measuring the RMSE associated to different value of edges: 30, 50, 100

and 150 edges. The best network is found with a penalty corresponding to

at most 150 edges.

5.2.4 Revised Ecological Model (REMO)

REMO is a heuristic search algorithm used for learning the ecological network

structure using a multivariate autoregressive model, which is described as in

Algorithm 6. After building REMO on the validation set, I tested all models

on the test set and evaluate them according to the RMSE metric.

Algorithm 6 REMO local search algorithm.

1: Split the data set into: training, validation and test sets.
2: Select six (more or less) off-the-shelf models: Least Angle Regression (LARS),

G1DBN, Simone, Gaussian Process, GeneNet and a Baseline method.
3: Train all these models on the training set.
4: Test the models on the validation set.
5: for each variable j ← 1:18 (i.e. NAO, AO, Diatom, . . . ) do
6: Find the model that produced the best one-step-ahead prediction on the

validation set (evaluated with the RMSE metric).
7: Construct the coefficient of the autoregressive matrix A from which I

inferred the interaction between variables. For example, if we assume a first-
order autoregressive process X(t) = A.X(t− 1), a non-zero element aij from
A implies an arc from Xj to Xi.

8: Extend the obtained solution σj ← {aij} to encompass non-linear inter-
actions, using ‘bilinear terms’.

9: δj ← Greedy-Local-Search(σj , RMSE, O) where O = {delete, reverse,
add} edges. This local search is described in Chapter 2, Algorithm 1.

10: end for
11: REMO ← {δj} ∀j
12: return REMO

5.2.5 Revised Ecological Model with listwise deletion (REMO1)

Models (e.g. linear and non-linear) are trained using listwise deletion method

(remove the cases with missing values) so as to restrict the data to the assessed

(or observed) fish populations, biotic and abiotic values, then are validated on

the validation set from which we choose between models that best fit the data.

The consequence of listwise deletion results in discarding much information and
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restricting the data set to range from 1985 till 2014. The process of inferring the

network structure of REMO1, for the yearly index, is described in Algorithm 6.

The method consists of: (1) rectangularising with listwise deletion all collected

variables; (2) picking the best fit model (LARS, G1DBN, Simone, Gaussian pro-

cess, GeneNet and Baseline) applied onto the validation data set for each variable

respectively; (3) extending the solution to include nonlinear interactions (in some

cases) using ‘bilinear terms’ (Buchel and Friston, 1997) such that to model a hy-

pothesized interaction between variables XSAL and XSST I formed a new bilinear

variable I = XSST × XSAL; and (4) applying a greedy local search algorithm,

as described in Algorithm 1 (Chapter 2), which adjust the initial structure by

randomly adding, reversing or deleting one edge at a time so as to improve the

accuracy upon the validation set (i.e. to attain a lower RMSE). The desired out-

put is a network structure (from the set of all possible structures) that best fits

the validation set.

For example, REMO1 depicted that the krill at time t+1 is influenced by several

other variables at time t, such that

XKrill(t+ 1) = α13XSST(t) + α14XDiatom(t) + α15XFishLarvae(t)+

α16XSAL(t) + α17XSST(t)XFishLarvae(t), (5.1)

where the αi’s are constant parameters fitted while training the model on the

training data. The set of interactions that were discovered is described in Ap-

pendix F.1; however, the graphical representation of REMO1 is illustrated as

in Figure 5.1. REMO1 manifests some unexpected relationships, including links

from SAL and Krill to Wind, and Diatom to SAL. Obviously these links do not

make sense from an ecological point of view but are picked up in the process of

generating the model, as they provide a better fit to the data. I think that this

issue is mainly caused by the fact that the annual mean data set with listwise

deletion is small and noisy.

5.2.6 Bayesian hierarchical modelling for fish populations

In this section, I used previous modelsM1,M2,M3 andM4 described in chapter

4 on the fish populations and compared the predictive accuracy of fish recruitment

on the test set. Results shows (Table 5.5) that the model M2 with γ < 0

outperforms the other models meaning that a Bayesian hierarchical model with
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Figure 5.1: Graphical representation of REMO1 analysing the entire data set with
listwise deletion for fish populations —ranging from 1985 to 2014. The nodes
describe the random variables representing the ecological system; blue denotes
abiotic variables, green denotes phytoplakton, grey denotes auxiliary variables
(introduced for a better fit to the data), orange denotes zooplankton, red denotes
fish populations, and finally the squares denote the fishing mortality rate. For a
better fit, we introduced two auxiliary variables: SST × FLarvae and Haddock ×
AO. The edges with arrows describe dependencies among these variables. For ex-
ample, an arrow from node SOI to node AO, describes a first order autoregressive
model such that: AO(t+ 1) = αSOI(t).
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community factor and heteroscedastic parameter provide the best accuracy for

the ICES division VIa.

5.2.7 Revised Ecological Model applied to Biotic and Abi-

otic variables only (REMO2)

In this section, I decided to make use of all biotic and abiotic variables, without

considering the five fish populations, so as to overcome limitations induced by

listwise deletion. Another compelling reason for dropping the fish populations in

this section is because I found previously that variations in climate have little

influence on the stock size of fish populations. For example, REMO2 depicted

that the krill at time t+ 1 is influenced by several other variables at time t, such

that

XKrill(t + 1) = α15XSST(t) + α16XCope(t) + α17XFishLarvae(t).

The set of interactions that were discovered in this section is described in Ap-

pendix F.2; the graphical representation of the learned model is illustrated in

Figure 5.2. I found that REMO2 did not develop unexpected relationships as in

REMO1 because in this case the data set is almost two times bigger than that of

REMO1.

5.2.8 Modelling perturbations to the Ecological system

Climate change is the main cause of increasing the sea surface temperatures and

melting of glaciers on land (in places like Antarctica and Greenland). To predict

the possible consequence of these adverse situations on the ecological system,

I simulated future responses from REMO1 and REMO2 according to a set of

scenarios described as follows:

S1: annual mean SST increases by 2◦C.

S2: annual mean Salinity decreases by 5%.

S3: annual mean SST increases by 2◦C and annual mean Salinity decreases by

5%.

S4: annual mean NAO hits an index of +1.
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Figure 5.2: Graphical representation of REMO2 with biotic and abiotic variables
only —ranging from 1960 to 2014. The nodes describe the random variables
representing the ecological system; blue denotes abiotic variables, green denotes
phytoplakton, grey denotes auxiliary variables (introduced for a better fit to
the data), and orange denotes zooplankton. For a better fit, we introduced four
different auxiliary variables: Wind × NAO, LCope ×Wind, SAL × SST and SST
× Diatom. The edges with arrows describe dependencies among these variables.
For example, the self-loop on the SAL node describes a first order autoregressive
model such that: SAL(t + 1) = αSAL(t).

SST

SAL

Wind SOI

Dinoflage

SALxSST

FishLarvae

Cope

LargeCope

Diatom SSTxDiatom

Krill

FishEgg

NAO

WindxNAO

LCopexWind



5.3. Results 145

S5: annual mean NAO falls to an index of -1.

S6: annual mean Wind speed reaches 10.8 m/s (an increase of 20% from 2014’s

record).

S7: annual mean SOI hits an index of +1.

S8: annual mean SOI falls to an index of -1.

5.3 Results

In accordance with the above plan, results are split in three sections: the first is

for REMO1, the second is for the Bayesian hierarchical modelling to assess the

community influence on fish populations and the third is for REMO2.

5.3.1 Evaluating models with listwise deletion for fish pop-

ulations (REMO1)

In this section I compare results generated by all models (i.e. LARS, G1DBN,

Simone, Gaussian Process, GeneNet, Baseline and REMO) based on the list-

wise deletion data set. Firstly, I used the annual mean average of the data to

compare the prediction accuracy for each model (Table 5.2): the smaller RMSE

value means the higher the prediction accuracy. All models (i.e. LARS, G1DBN,

Simone, Gaussian Process and GeneNet) except the Baseline model have their

input parameters tuned as described in section 5.2.3.

REMO1 predicted with a higher level of accuracy on the validation set (15 out

of 18 random variables) than the other models (Table 5.2), and it preserved its

accuracy by showing a better prediction over the test set ( Table 5.3). I interro-

gated REMO1 by measuring the percentage of change for each random variable

when simulating its response to a set of scenarios (S1-to-S8) so as to understand

the possible impact of abiotic variables on the ecological system. The percentage

change is described as {(Si−S0)/S0}×100 so as to produce the result in percent

(%), E0 is the prediction under normal condition and Si is the prediction un-

der conditions (S1-to-S8). There are some instances where REMO1 and REMO2

predicted negative numbers indicating extinction of species after perturbation,

this interpretation is caused by the fact that the models are linear and do not
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Table 5.2: Root Mean Square Error (RMSE) characteristic of models —LARS,
G1DBN (α1 = 0.08), Simone (with 30 edges), Gaussian Process (RBF Kernel),
GeneNet (150 edges), Baseline and REMO1—applied to the Validation set of the
yearly data structure with listwise deletion. The highlighted cells represent the
best RMSE values for each random variable respectively.

Variable LARS G1DBN Simone Gaussian Process GeneNet BaseLine REMO1

AO 0.241 0.239 0.241 0.231 0.239 0.273 0.234
NAO 0.295 0.275 0.268 0.293 0.281 0.351 0.243
SST 0.151 0.119 0.138 0.418 0.368 0.138 0.138
Wind 0.471 0.422 0.365 0.415 0.517 0.466 0.322
SAL 0.070 0.095 0.071 0.092 0.054 0.071 0.071
SOI 1.376 0.506 0.516 0.464 0.529 0.393 0.393

FishLarvae 0.172 0.168 0.118 0.138 0.238 0.199 0.114
Krill 0.608 0.600 0.534 0.687 0.551 0.673 0.505

LargeCope 5.504 6.193 6.851 6.484 8.332 10.327 4.895
FishEgg 0.191 0.193 0.159 0.195 0.161 0.244 0.153
Dinoflage 9930.857 9966.763 10270.354 11334.991 13182.095 9589.969 9589.969
Diatom 14277.515 14194.859 35777.813 15555.976 37000.384 35777.813 11069.484
Cope 216.743 222.094 132.510 272.516 193.485 199.741 129.596
Cod 3298.835 2267.984 2267.984 17499.467 4301.217 2267.984 2267.984

Haddock 639829.627 503027.757 341845.100 494502.263 359136.432 341845.100 341845.100
Herring 69603.857 64365.717 64365.717 78882.110 69765.521 64365.717 64365.717
Megrim 0.382 0.111 0.111 0.221 0.205 0.111 0.111
Whiting 13370.767 2660.310 2660.310 38500.380 5257.545 2660.310 2660.310

Table 5.3: Root Mean Square Error (RMSE) characteristic of models —LARS,
G1DBN (α1 = 0.08), Simone (with 30 edges), Gaussian Process (RBF Kernel),
GeneNet (150 edges), Baseline and REMO1—applied to the Test set of the yearly
data structure with listwise deletion. The highlighted cells represent the best
RMSE values for each random variable respectively.

Variable LARS G1DBN Simone Gaussian Process GeneNet BaseLine REMO1

AO 0.555 0.524 0.539 0.524 0.524 0.792 0.519
NAO 0.822 0.657 0.539 0.614 0.724 0.810 0.536
SST 0.150 0.157 0.180 0.383 0.308 0.180 0.180
Wind 0.508 0.335 0.255 0.232 0.303 0.415 0.293
SAL 0.143 0.101 0.083 0.121 0.092 0.083 0.083
SOI 0.899 0.687 0.548 0.645 0.687 0.791 0.791

FishLarvae 0.257 0.126 0.121 0.092 0.124 0.119 0.085
Krill 1.037 0.712 0.716 0.633 0.817 1.081 0.730

LargeCope 9.388 9.524 11.528 10.244 11.274 15.075 11.814
FishEgg 0.198 0.215 0.245 0.206 0.209 0.300 0.242
Dinoflage 13013.320 14055.920 12988.625 11569.258 11565.062 8089.141 8089.141
Diatom 30140.735 30843.110 47201.027 31617.540 29092.234 47201.027 32225.974
Cope 202.506 182.532 277.824 246.966 262.394 87.147 243.824
Cod 3779.347 665.433 665.433 18626.226 7393.712 665.433 665.433

Haddock 892128.708 332881.220 208951.922 670634.096 367830.331 208951.922 208951.922
Herring 96843.352 72627.553 72627.553 281908.596 177245.396 72627.553 72627.553
Megrim 0.540 0.183 0.183 0.407 0.491 0.183 0.183
Whiting 6526.765 3364.011 3364.011 33051.149 4366.370 3364.011 3364.011
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Table 5.4: Percentage change of variables predicted by REMO1: applied to list-
wise deletion for fish populations with yearly data structure ranging between
1985 and 2014. S0: one-step-ahead prediction in normal conditions based on
2014 values; S1: increased SST by 2◦C; S2: decrease Salinity by 5%; S3: S1 and
S2 observed simultaneously; S4: NAO +1; S5: NAO -1. The cells containing
the value ‘Extinct’ designate variables that are predicted to become extinct after
perturbation; in reality this is more likely to indicate community-scale reorgani-
sation.

Variable S0 S1(%) S2(%) S3(%) S4(%) S5(%)

SST 11.3283333 17.65 0 17.65 0 0
Wind 9.426231376 0 -5.09 -5.09 0 0
SAL 35.07677523 0 -5 -5 0 0
SOI -0.133333333 0 0 0 0 0

FishLarvae 0.227383987 7.26 0 7.26 0 0
Krill 1.087443078 -89.53 -43.88 Extinct 0 0

LargeCope 23.19401715 149.38 0 149.38 0 0
FishEgg 0.158427557 23.60 0 23.60 Extinct 193.92
Dinoflage 26456.31641 0 0 0 0 0
Diatom 79622.74432 0 0 0 15.75 -22.87
Cope 602.1739492 -3.89 0 -3.89 0 0

incorporate knowledge to avoid negative predictions. Table 5.4 shows that un-

der conditions (S1-to-S5) I observe a big impact in the planktonic community,

whereas under conditions S3 and S4, we reach a concerning ecological level show-

ing an extinction of Krill and fish eggs. I discarded conditions S6, S7 and S8

because they were found to have no effect on the ecological system modelled by

REMO1; I also omitted fish populations from Table 5.4 because changes in envi-

ronmental conditions are found to have no immediate impact on fish stocks, as

justified by the multivariate first-order autoregressive model (Figure 5.1).

Secondly, I applied the monthly data structure for learning the models for which

each row represents a monthly sample: abiotic and plankton data are sampled

on a monthly basis, but fish stocks are linearly interpolated between two consec-

utive annual estimations so as to obtain an estimate for each month respectively.

I found LARS outperformed the other models providing the best RMSE values

over the majority of the variables; but when I interrogated the model the forecasts

were not reliable because the model predicted an extinction of larvae, copepods

and dinoflagellates under normal conditions (S0), which indicated it to be unre-

liable.

Thirdly, I applied the (monthly + yearly) data structure: I preserved the monthly

frequency for abiotic and plankton data and the yearly frequency for the fish
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Table 5.5: Predictive approach for evaluating models M1, M2, M3 and M4

applied to the testing set of: Herring, Haddock, Cod and Whiting populations.
The numbers scored in a model represent the cases for which this particular model
is found to minimise the RMSE.

M1 M2 M3 M4

Predictive approach γ < 0 γ ≈ 0 γ > 0 γ < 0 γ ≈ 0 γ > 0 γ < 0 γ ≈ 0 γ > 0 γ < 0 γ ≈ 0 γ > 0

ICES VIa 5 0 3 12 8 10 8 0 5 7 6 11

species. This approach led to a high dimensional data (33 samples × 168 dimen-

sions) with limited training set samples. The Baseline method showed a better

accuracy over the validation set than the other models, but when evaluating it

on the testing set it reported a poor accuracy (results are not displayed). Since

the Baseline model cannot reflect an immediate change (at the next time step) in

response to climate changes, I instead interrogated the LARS model’s response

to those changes. This showed it to be unreliable as it predicted extinction of

some species under normal conditions (S0).

5.3.2 Bayesian hierarchical modelling applied on fish pop-

ulations

In this section, I applied the different models (M1,M2,M3 andM4) described

in Chapter 4 on fish stock and recruitment datasets. I excluded the Megrim pop-

ulation from this experiment because it does not contain recruitment assessment

values. Table 5.5 describes the model M2 with η1 �= 0, γ < 0 and community

factor as the best predictive accuracy model on fish recruitment.

5.3.3 Evaluating models with Biotic and Abiotic variables

(REMO2)

In this section I applied the evaluation method only to the yearly data structure,

provided that the other structures (i.e. (monthly + yearly) and monthly) are

ruled out in the previous section (section 5.3.1). I trained all the models on

the training set, then validated them on the validation set. I followed the same

approach as before to pick the best fit model for the purpose of building REMO2,

as illustrated in Figure 5.2. Table 5.6 shows that REMO2 outperformed the other

models on the validation set by recording a best fit for 7 out of 13 variables;

however, Table 5.7 shows a domination of REMO2 over the other models on the
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Table 5.6: Root Mean Square Error (RMSE) characteristic of models —LARS,
G1DBN (α1 = 0.1), Simone (with 100 edges), Gaussian Process (RBF Kernel),
GeneNet (30 edges), Baseline and REMO2—applied to the Validation set of the
yearly data structure with biotic and abiotic variables only. The highlighted cells
represent the best RMSE values for each random variable respectively.

Variable LARS G1DBN Simone Gaussian Process GeneNet BaseLine REMO2

AO 0.282 0.269 0.288 0.234 0.269 0.368 0.255
NAO 0.289 0.290 0.288 0.286 0.315 0.413 0.288
SST 0.338 0.328 0.234 0.327 0.310 0.234 0.234
Wind 0.411 0.388 0.305 0.386 0.409 0.358 0.344
SAL 0.076 0.083 0.083 0.069 0.080 0.083 0.083
SOI 0.590 0.598 0.687 0.558 0.550 0.687 0.582

FishLarvae 0.290 0.240 0.262 0.274 0.275 0.318 0.194
Krill 0.849 0.828 0.954 0.846 0.796 1.121 0.794

LargeCope 11.084 11.186 14.287 11.391 13.263 14.287 11.608
FishEgg 0.198 0.192 0.203 0.194 0.191 0.203 0.177
Dinoflage 14939.393 12642.507 13183.215 15832.408 14351.051 13458.519 11770.892
Diatom 24083.318 35609.669 35609.669 24800.425 22158.042 35609.669 21722.851
Cope 259.386 350.382 350.382 298.497 323.584 350.382 255.777

Table 5.7: Root Mean Square Error (RMSE) characteristic of models —LARS,
G1DBN (α1 = 0.1), Simone (with 100 edges), Gaussian Process (RBF Kernel),
GeneNet (30 edges), Baseline and REMO2—applied to the Test set of the yearly
data structure with biotic and abiotic variables only. The highlighted cells rep-
resent the best RMSE values for each random variable respectively.

Variable LARS G1DBN Simone Gaussian Process GeneNet BaseLine REMO2

AO 0.425 0.398 0.403 0.430 0.398 0.618 0.406
NAO 0.455 0.447 0.424 0.499 0.550 0.652 0.438
SST 0.485 0.396 0.153 0.479 0.375 0.153 0.153
Wind 0.523 0.448 0.382 0.484 0.526 0.450 0.433
SAL 0.094 0.073 0.073 0.098 0.067 0.073 0.073
SOI 0.591 0.591 0.649 0.605 0.556 0.649 0.639

FishLarvae 0.315 0.147 0.184 0.336 0.203 0.157 0.136
Krill 0.904 0.788 0.737 0.828 0.766 0.909 0.685

LargeCope 8.862 8.510 12.174 9.439 8.532 12.174 9.410
FishEgg 0.216 0.196 0.278 0.210 0.194 0.278 0.163
Dinoflage 23798.406 14351.058 11182.163 22548.823 12441.963 7542.022 7483.482
Diatom 36701.539 36824.063 36824.063 33403.342 33520.037 36824.063 23705.011
Cope 268.143 108.716 108.716 318.847 247.794 108.716 258.466
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Table 5.8: Percentage change of variables predicted by REMO2: restricted on
biotic and abiotic data sets with yearly data structure ranging between 1960 and
2014. S0: one-step-ahead prediction in normal conditions based on 2014 values;
S1: increased SST by 2◦C; S2: decrease Salinity by 5%; S3: S1 and S2 observed
simultaneously; S4: NAO +1; S5: NAO -1; S6: Wind speed increases by 20%; S7:
SOI +1; S8: SOI -1. The cells containing the value ‘Extinct’ designate variables
that are predicted to become extinct after perturbation; in reality this is more
likely to indicate community-scale reorganisation.

Variable S0 S1(%) S2(%) S3(%) S4(%) S5(%) S6(%) S7(%) S8(%)

SST 11.3283333 17.65 0 17.65 0 0 0 0 0
Wind 9.526358927 18.21 -36.95 -183.55 0 0 0 0.04 -0.03
SAL 35.07677523 0 -5 -5 0 0 0 0 0

FishLarvae 0.225534979 Extinct Extinct Extinct 0 0 0 0 0
Krill 1.250787427 8.36 0 8.36 0 0 0 0 0

LargeCope 18.52169331 68.49 0 68.49 0 0 0 0 0
FishEgg 0.255274549 149.75 37.27 187.02 0 0 0 -7.85 6.00
Dinoflage 17920.67957 Extinct 0 Extinct 36.65 -53.20 Extinct 44.11 -33.73
Diatom 90137.13516 23.70 0 23.70 5.58 -8.11 -9.18 0 0
Cope 559.1973576 0 0 0 0 0 -36.22 0 0

test set and showing a higher prediction accuracy for 6 out of 13 variables. I

interrogated REMO2 by simulating its response on a set of scenarios (S1-to-S8).

I did not include in this table the forecasts for AO, NAO and SOI because they

are modelled as zero (Appendix F.2); I noticed that under conditions (S1-to-S8)

there is a big impact throughout the ecosystem. In particular, under S3, I found

a serious risk of extinction for both fish larvae and dinoflagellates species due

to an increase of SST and a decrease in salinity, showing a bigger effect on the

extinction of fish larvae found under S1. However, conditions (S4, S5 and S6)

exert only an influence on phytoplankton communities.

5.4 Discussion

REMO1 depicted a single species fish population analysis rather than a com-

munity based interaction (Figure 5.1); in contrast to the Bayesian hierarchical

models which depicted a community based structure (see section 5.2.6) as a more

accurate model for predicting fish recruitment. REMO2 predicted a disappear-

ance of fish larvae and loss of dinoflagellate blooms in response to an increase of

sea surface temperature by 2◦C (Table 5.8).

Over the last ten years, there have been a large number of different modelling

approaches applied to end-to-end modelling (Rose et al., 2010; Fulton, 2010). My
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objective was to provide a statistical model capable of analyzing marine ecosys-

tem response to environmental perturbations. The model consists of analysing

marine ecosystem data from several sources, with different temporal resolutions,

bounded by the Northwest Coast of Scotland and Northern Ireland (Division

VIa). This geographical area can have temperate oceanic plankton taxa as well

as colder water plankton as the shelf-edge current can bring warmer water species

around the top of Scotland and into the North Sea.

I collected 13 different random variables for both biotic and abiotic factors and

five additional ICES fish populations from which I derived two sets of data: the

first is based on a listwise deletion for the fish populations, and the second is

based on analysing the biotic and abiotic variables only. Since there is no general

theory for how to combine processes and organisms that operate on different time

and space scales together into a model, especially when one goes up the trophic

levels, I applied a set of first order autoregressive methods to infer the relationship

among the random variables so as to understand the influential factors affecting

each variable. I proposed a method for structural learning and for predicting one-

step-ahead values for all the ecological variables, which showed a higher accuracy

rate than the other statistical models (i.e. LARS, G1DBN, Simone, Gaussian

Process, GeneNet and Baseline).

In addition to these two methods, I looked into imputing missing fish stock assess-

ments using the bootstrap expectation maximisation (EMB) algorithm (Honaker

and King, 2010). This imputation method builds on the concept of multiple

imputation that consists of extracting relevant information from the observed

portions of a data set so as to impute multiple values for each missing sample,

but when I compared it against the listwise deletion approach I found the latter

providing a higher accuracy over biotic and abiotic data, hence the extrapolation

of missing fish stock assessments was omitted from this research.

I found the data set arranged on an annual mean basis (yearly data structure) pro-

duced a more comprehensible Markovian network structure than the (monthly +

yearly) and monthly data structures. I then simulated the response from REMO

with a set of different scenarios (S1-to-S8) so as to understand the impact of

weather change on the marine ecosystem; the model flagged serious risk values

for fish larvae, fish eggs, krill and dinoflagellates under the following cases: S1,

S2, S3, S4 and S6 (Table 5.4 and 5.8). Figure 5.1 illustrates that fish stocks are

independent of each other within this modelling context, supporting the analysis
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of fish stocks (in isolation) without considering the effect of the community. This

was one of the reasons why I omitted fish populations in the second part of this

research where I repeated the analysis over the biotic and abiotic variables only.

The advantage of this approach is that I used as much information as possible

(ranging from 1960 to 2014).

Table 5.4 and 5.8 showed that the number of fish eggs appear to be increasing

under the effect of temperatures. I explain this behaviour as the fecundity of

female fish increases with water temperatures. The abundance of diatoms and

large copepods are found to increase under warmer water temperatures; but the

abundance of copepods is found to decrease with temperature (Table 5.8). This is

consistent with the theory that Calanus finmarchicus and Calanus helgolandicus

copepods would occupy a niche (and grow) in cold and warm water temperatures

respectively (Bonnet et al., 2008); these two species can co-occur in the same ge-

ographical region such that the former species becomes more abundant in cooler

temperatures earlier in the year and the latter species becomes more abundant

in warmer temperatures later in the year. Table 5.8 shows that an increase of

20% in wind speed could destabilise the ecosystem by reducing the number of

diatoms and copepods. However, the model did not show a consistent signal (Ta-

ble 5.4 and 5.8) concerning the effect of temperature on Krill. The most serious

risk remains that of the sea surface temperature where an increase by 2◦C could

jeopardize the fish larvae in the short run, and hence deplete the fish stock size

on the long run.

This study shows that statistical analysis using multivariate first-order autore-

gressive models can be helpful in revealing the underlying relationship among

the random variables so as to analyse the ecosystem response to environmental

perturbations.

Both REMO1 and REMO2 sometimes predict negative values for variables in

response to ecological perturbations. This limitation is caused by the linear re-

gression models that has been employed, which might be overcome with some

non-linear models. Moreover, I explain the prediction of a negative value by

destabilizing the ecosystem equilibrium point (nutrient diffusion) where I can’t

say what will happen, but I think that the ecological system will have to reor-

ganise itself in some way, involving zooplankton, phytoplankton and fish species.

REMO is limited for predicting one-step-ahead forecasts of ecological variables
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(Figure 5.1 and 5.2) and may be helpful for formulating end-to-end fisheries man-

agement. Possibly, one can extend this work to cover long term forecasts through

a multivariate non-linear regression analysis.



Chapter 6

Conclusion and outlook

In this final chapter, I summarise the principal findings and contributions of my

research, then I review each chapter of this thesis and finally I identify possible

avenues for future work.

6.1 Thesis contribution

This thesis contributes to fishery management with three important inputs: (i)

the non-constant variance parameter is important in analysing the stock-recruitment

relationship in a single fish populations, provided the consistency in sign; (ii)

Bayesian hierarchical models based on the Deriso-Schnute relationship is a sensi-

ble choice for forecasting fish recruitment; (iii) marine communities will become

endangered if the sea surface temperature increases by 2◦C, which could cause

extinction of fish eggs and loss of dinoflagellate blooms.

6.2 Thesis summary

In Chapter 1, I defined the research problem and methods to be used for com-

pleting this project where I introduced the Deriso and Schnute model to lay down

the foundation for modelling the growth of fish populations.

In Chapter 2, I reviewed basic probability theory, frequentist and Bayesian paradigms,

dynamic Bayesian networks, non-parametric models and time series modelling for

handling uncertainties in fish populations.

In Chapter 3, I developed and implemented methods for identifying the non-

constant variance (heteroscedasticity) in the spawner-recruit relationship. I found

154
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heteroscedastic models tend to fit the S-R model inputs better than constant vari-

ance models across the majority of stocks, and strong evidence for a negative co-

efficient of heteroscedasticity in seven cases (Table A.1), including exploited cod,

herring and whiting stocks in addition to olive flounder and Peruvian anchoveta.

I advocate that the non-constant variance parameter in these cases deserves to

be taken into account by managers. In contrast, only one stock was identified as

having a positive coefficient of heteroscedasticity at the 95% confidence levels.

To determine whether I can reliably estimate the sign of η1, I tested whether the

confidence interval lies in a region showing a consistent sign with the coefficient

where I found that both frequentist and Bayesian methods led approximately to

equivalent inference.

To reliably identify a negative coefficient of heteroscedasticity, managers or fish-

eries scientists using the frequentist methods should check that their chosen con-

fidence interval lies in the negative region; those using the Bayesian framework

can consider the proposed priors (i.e. π1 or π2) as a non-informative benchmark

prior and check whether their Bayesian credible interval lies in the negative re-

gion. I note that Bayesian approaches may be particularly useful where priors

can be specified based on information about similar stocks in other locations.

To protect this work against false positives or negatives, I recommend fisheries

scientists to use both frequentist and Bayesian methods when assessing stocks for

heteroscedasticity; if both methods agree then there would be strong support for

our conclusion being correct; otherwise they should investigate the limitation of

each method separately.

In Chapter 4, I extended the analysis of Chapter 3 by applying a Bayesian hier-

archical model for assessing the sign of the coefficient of heteroscedasticity η1. I

found that the Bayesian hierarchical model applied to fish stocks living in a com-

munity has reduced the uncertainty in parameter estimates of the S-R relationship

compared to the case where the analysis is based on a single stock assessment.

I proposed four different S-R relationships based on the Deriso-Schnute (Deriso,

1980; Schnute, 1985) model. These models (M1,M2,M3 andM4) are assessed

on five different geographical areas: Celtic sea, Faroe Plateau, Georges Bank,

North-East Arctic and North sea; and three other macro scale marine column

zones: pelagic, demersal and all populations. The macro scale marine analysis

is aimed to assess the influence of grouping fish species, across different water

depths, on the prediction accuracy of fish populations.
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Results showed that the coefficient of heteroscedasticity deserves consideration

in Faroe Plateau, North-East Arctic, pelagic and demersal communities because

it had a better predictive accuracy on the test set; in contrast to the constant

variance model (η1 = 0) that is found to have some significance for the Celtic

Sea, the North Sea and all populations as it provided a higher prediction accu-

racy. The reliability of the sign of η1 is found to be approximately consistent in

two regions: Faroe Plateau and North-East Arctic with an approximate credible

interval of 95% and 70% respectively.

Because the Deriso-Schnute model presents a singularity at γ = 0, I partitioned

the search space into three disconnected zones (γ < 0, γ ≈ 0, γ > 0) so as to over-

come this limitation. The models are analysed along with different constraints

on γ; whereas the assessment on the test set helped us to identify the model with

best prediction values. The modelM1 (with γ > 0 and γ ≈ 0) is found to provide

the best recruitment prediction for the Faroe Plateau, North-East Arctic, pelagic

and demersal water columns; M2 (with γ < 0) provided best accuracy for the

Georges Bank; M3 (with γ < 0) found to provide the best prediction for the

Celtic sea; and the modelM4 (with γ > 0) found to provide the best prediction

for the North sea and all populations. I checked whether the prediction accuracy

of fish recruitment is affected by pooling multiple populations across the water

column zones; my results showed that estimating fish recruitment by restricting

the analysis to species within their own community (i.e. pelagic or demersal) has

a higher accuracy than pooling all fish populations together.

In this work, I provide to fishery managers (or policy makers) a new way of assess-

ing the size of fish recruitment: I advocate the importance of collecting as many

fish stock assessments within the same community as they can, then apply them

to the four (or other) possible models so as to check the one that has the lowest

RMSE value in recruitment prediction. A more compelling reason to conduct

stock assessment selection based on water column is because I found an increase

in accuracy compared to the case of pooling pelagic and demersal populations

together.

On the ecosystem level I conclude that the sea surface is to some extent dis-

connected from the sea bed in the sense that the water column mixing does not

affect enormously nutrient supplies of these two habitats: I found that fish stock

assessments are best analysed on their own community.
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In Chapter 5, I aimed to provide a statistical model capable of analysing ma-

rine ecosystem response to environmental perturbations. The model consisted of

analysing marine ecosystem data from several sources, with different temporal

resolutions, bounded by the Northwest Coast of Scotland and Northern Ireland

(Division VIa). This geographical area can have temperate oceanic plankton taxa

as well as colder water plankton as the shelf-edge current can bring warmer water

species around the top of Scotland and into the North Sea.

I collected 13 different random variables for both biotic and abiotic factors and

five additional ICES fish populations from which I derived two data sets: the

first is based on a listwise deletion for the fish populations, and the second is

based on analysing the biotic and abiotic variables only. Since there is no general

theory on how to combine processes and organisms that operate on different time

and space scales together into a model, especially when one goes up the trophic

levels, I applied a set of first order autoregressive models from which I built a

revised ecological model (REMO) that outperformed the other models. I used

REMO to simulate future responses with a set of different enquiries (E1-to-E8)

to understand the impact of weather change on the marine ecosystem; the model

showed serious risk values for fish larvae, fish eggs, krill and dinoflagellates when

the sea surface temperature increases by 2◦C.

The analysis shows that the number of fish eggs appear to be increasing under

the effect of temperatures, I explain this behaviour as the fecundity of female fish

increases with water temperatures; the abundance of diatoms and large copepods

are found to increase under warmer water temperatures; but the abundance of

copepods are found to decrease with temperature. This is consistent with the the-

ory that Calanus finmarchicus and Calanus helgolandicus copepods would occupy

a niche (and grow) in cold and warm water temperatures respectively (Bonnet

et al., 2008); these two species can co-occur in the same geographical region such

that the former species becomes more abundant in cooler temperatures earlier

in the year and the latter species becomes more abundant in warmer tempera-

tures later in the year. The results showed that an increase of 20% in wind speed

could destabilise the ecosystem by reducing the number of diatoms and copepods.

However, the most serious risk remains that of the sea surface temperature where

an increase by 2◦C could jeopardize the fish larvae in the short run; and hence

deplete the fish stock size in the long run.
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6.3 Future Work

This thesis is a comprehensive study of analysing the dynamical behaviour of fish

populations, which could be extended for future research; below are some specific

guidelines for further research.

6.3.1 Modelling a new Stock-recruitment relationship

One can probably look to overcome the limitation of the Deriso-Schnute model

and find ways to interpolate between the Beverton-Holt, Ricker and Schaefer

models without falling to the singularity at γ = 0.

6.3.2 Enhancing REMO

The main weakness of REMO is in predicting negative values for variables in

response to ecological perturbations; one may enhance REMO by means of non-

linear models so as to overcome the limitation caused by the linear regression

models.

6.3.3 Dynamical Stability

An important ecological aspect that one may need to understand is whether

there are ways to organise interaction of species so as to lead to more persistent

communities. Scientists addressed this question by studying for example the

relationship between diversity and stability (Ives and Carpenter, 2007) and the

structural stability across ecological systems (Rudolf et al., 2014) so as to find

ways for food web configurations that promote stable equilibrium population

dynamics of species. Wilkinson (2011) defined an equilibrium solution as a set of

concentrations that will not change over time; one can employ a stochastic process

to approximate the evolution of the ecological system as a continuous time Markov

process with a discrete state space. For instance, a stochastic kinetic formulation

of the Lotka-Volterra model can be used to draw discrete event simulations using

the Gillespie algorithm (Gillespie, 1977). A competitive Lotka-Volterra model

can be described as follows:

dXi

dt
= riXi

(
1−

∑N
j=1 αijXj

Ki

)
, (6.1)
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where N is the number of species, X is the size of the population at time t, r

is the growth rate, and αij is the effect of species j on species i, which is also

known as the trophic link strength; whereas K is the carrying capacity. We can

use this model to simulate the equilibrium condition for the ecological system

and understand the factors that may affect its stability. Moreover, we can ask a

few important questions, such as:

• can we evaluate how robust communities are to species loss?

• what would happen if we eliminate some of the species in that region?

6.3.4 Autoregressive Hidden Markov Model

I propose employing a Bayesian state space model, also known as Autoregressive

Hidden Markov Model, to predict the population trajectory of related species,

given current stock assessment value and prior knowledge. This research aims to

help us understand the evolution of marine species so as to evaluate the percentage

of growth or decline of each particular species per year. Some ideas are already

proposed for this task, which are described in Appendix G.
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Table A.1: Reliable fit of η1 applied to the 90’s S-R populations where we restrict
the confidence level to 95%. The column ‘Label’ indicates whether there is a
strong evidence for reliably identifying η1, columns 2-to-6 report information
about the populations, and γ indicates the best-fit model.

Label Assessment Id Method Short Species Common Name Area Name γ

-1 DFO-QUE-COD3Pn4RS-1964-2007 ADAPT morhua Atlantic cod Northern Gulf of St.
Lawrence

1

-1 IMARPE-PANCHPERUNC-1963-2004 VPA ringens Peruvian anchoveta North-Central Peruvian
coast

1

-1 INIDEP-SBWHITARGS-1985-2007 VPA australis Southern blue whiting Southern Argentina 1
-1 NRIFS-OFLOUNECS-1986-2010 VPA olivaceus Olive flounder East China Sea 1
-1 NWWG-HERRIsum-1984-2011 NFT-ADAPT harengus Herring Iceland Grounds 0
-1 WGBFAS-HERR30-1972-2011 XSA harengus Herring Bothnian Sea 1
-1 WGNSSK-WHITNS-VIId-IIIa-1989-2010 XSA merlangus Whiting IIIa, VIId and North Sea -2
0 AFWG-GHALNEAR-1960-2010 XSA hippoglossoides Greenland halibut North-East Arctic -1
0 AFWG-HADNEAR-1947-2010 XSA aeglefinus Haddock North-East Arctic 1
0 AFWG-HADNS-IIIa-1963-2011 FLXSA aeglefinus Haddock IIIa and North Sea -1
0 AFWG-POLLNEAR-1957-2011 XSA virens Pollock North-East Arctic -1
0 DFO-COD5Zjm-1978-2003 ADAPT morhua Atlantic cod Georges Bank 1
0 DFO-HAD5Zejm-1968-2003 ADAPT aeglefinus Haddock Georges Bank -1
0 DFO-HERR4VWX-1964-2006 ADAPT harengus Herring Scotian Shelf and Bay of

Fundy
0

0 DFO-MAR-HAD4X5Y-1960-2003 SPA-ADAPT aeglefinus Haddock Western Scotian Shelf,
Bay of Fundy and Gulf of

Maine

0

0 DFO-NFLD-COD2J3KLIS-1959-2006 ADAPT morhua Atlantic cod Southern
Labrador-Eastern
Newfoundland

0

0 DFO-NFLD-COD3Ps-1959-2004 B-ADAPT morhua Atlantic cod St. Pierre Bank 1
0 DFO-POLL4X5YZ-1980-2006 ADAPT virens Pollock Western Scotian Shelf,

Bay of Fundy, Gulf of
Maine and Georges Bank

-1

0 DFO-QUE-HERR4RFA-1971-2003 SPA-ADAPT harengus Herring NAFO division 4R 0
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0 DFO-QUE-HERR4RSP-1963-2004 SPA-ADAPT harengus Herring NAFO division 4R 0
0 DFO-SG-COD4TVn-1965-2009 ADAPT morhua Atlantic cod Southern Gulf of St.

Lawrence
1

0 DFO-SG-HERR4TFA-1974-2007 SPA-ADAPT harengus Herring Southern Gulf of St.
Lawrence

0

0 DFO-SG-HERR4TSP-1974-2007 SPA-ADAPT harengus Herring Southern Gulf of St.
Lawrence

-1

0 HAWG-HERRVIaVIIbc-1956-2010 VPA harengus Herring VIa, VIIb and VIIc -1
0 ICCAT-ATBTUNAEATL-1950-2010 ADAPT thynnus Atlantic bluefin tuna Eastern Atlantic 0
0 ICCAT-ATBTUNAWATL-1950-2010 ADAPT thynnus Atlantic bluefin tuna Western Atlantic -2
0 INIDEP-ARGANCHONARG-1989-2007 ADAPT anchoita Argentine anchoita Northern Argentina 1
0 INIDEP-ARGHAKENARG-1985-2007 VPA hubbsi Argentine hake Northern Argentina 0
0 INIDEP-ARGHAKESARG-1985-2008 VPA hubbsi Argentine hake Southern Argentina 0
0 INIDEP-PATGRENADIERSARG-1983-2006 VPA magellanicus Patagonian grenadier Southern Argentina -1
0 NAFO-SC-AMPL3LNO-1955-2007 VPA platessoides American Plaice Grand Banks -2
0 NAFO-SC-AMPL3M-1960-2007 XSA platessoides American Plaice Flemish Cap 1
0 NAFO-SC-COD3M-1959-2008 hybrid morhua Atlantic cod Flemish Cap 1
0 NAFO-SC-COD3NO-1953-2007 SPA morhua Atlantic cod Southern Grand Banks 1
0 NAFO-SC-GHAL23KLMNO-1960-2006 XSA hippoglossoides Greenland halibut Labrador Shelf - Grand

Banks
0

0 NAFO-SC-REDFISHSPP3M-1985-2006 XSA spp Redfish species Flemish Cap -1
0 NEFSC-AMPL5YZ-1960-2008 ADAPT platessoides American Plaice Gulf of Maine / Georges

Bank
-1

0 NEFSC-CODGB-1960-2008 ADAPT morhua Atlantic cod Georges Bank -2
0 NEFSC-CODGOM-1893-2008 ADAPT morhua Atlantic cod Gulf of Maine -1
0 NEFSC-HAD5Y-1956-2008 NFT-ADAPT aeglefinus Haddock Gulf of Maine -1
0 NEFSC-HADGB-1930-2008 NFT-ADAPT aeglefinus Haddock Georges Bank 1
0 NEFSC-MACKGOMCHATT-1960-2005 VPA scombrus Mackerel Gulf of Maine / Cape

Hatteras
1

0 NEFSC-WINFLOUN5Z-1982-2007 ADAPT americanus Winter Flounder Georges Bank -1
0 NEFSC-WINFLOUNSNEMATL-1940-2007 NFT-ADAPT americanus Winter Flounder Southern New England

/Mid Atlantic
1

0 NEFSC-WITFLOUN5Y-1982-2008 VPA cynoglossus Witch Flounder Gulf of Maine -1
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0 NEFSC-YELLCCODGOM-1935-2008 VPA ferruginea Yellowtail flounder Cape Cod / Gulf of
Maine

-1

0 NEFSC-YELLGB-1935-2008 VPA ferruginea Yellowtail flounder Georges Bank 0
0 NEFSC-YELLSNEMATL-1935-2008 VPA ferruginea Yellowtail Flounder Southern New England

/Mid Atlantic
0

0 NRIFS-BMACKECS-1992-2010 VPA australasicus Blue mackerel East China Sea -2
0 NRIFS-CMACKTSST-1973-2010 VPA japonicus Chub mackerel Tsushima Strait 1
0 NRIFS-JANCHOPJPN-1978-2009 VPA japonicus Japanese anchovy Pacific Coast of Japan -2
0 NRIFS-JMACKTSST-1973-2010 VPA japonicus Japanese jack mackerel Tsushima Strait 1
0 NRIFS-OFLOUNNSJ-1999-2010 VPA olivaceus Olive flounder Sea of Japan North -2
0 NRIFS-OFLOUNSETO-1987-2010 VPA olivaceus Olive flounder Inland Sea of Japan -1
0 NRIFS-PILCHTSST-1960-2010 VPA melanostictus Japanese pilchard Tsushima Strait 1
0 NRIFS-RBRMPAC-1977-2010 VPA major Red seabream Pacific Ocean -1
0 NRIFS-SAURNWPAC-1980-2010 VPA saira Pacific saury Northwest Pacific -2
0 NRIFS-SPANMACKSETO-1987-2010 VPA niphonius Japanese Spanish mackerel Inland Sea of Japan 1
0 NWWG-CODFAPL-1959-2011 XSA morhua Atlantic cod Faroe Plateau -1
0 NWWG-HADFAPL-1955-2011 XSA aeglefinus Haddock Faroe Plateau 1
0 NWWG-HADICE-1977-2011 XSA aeglefinus Haddock Iceland Grounds 0
0 NWWG-POLLFAPL-1958-2011 XSA virens Pollock Faroe Plateau 1
0 SEFSC-KMACKGM-1992-2001 VPA cavalla King Mackerel Gulf of Mexico 0
0 SEFSC-KMACKSATLC-1981-2001 VPA cavalla King Mackerel Southern Atlantic coast 1
0 WGBFAS-CODIS-1968-2010 B-ADAPT morhua Atlantic cod Irish Sea 1
0 WGBFAS-CODVIIek-1970-2011 XSA morhua Atlantic Cod Celtic Sea 1
0 WGBFAS-HERR2532-1973-2011 XSA harengus Herring Eastern Baltic -2
0 WGBFAS-HERR31-1979-2010 XSA harengus Herring Bothnian Bay 1
0 WGBFAS-HERRRIGA-1976-2011 XSA harengus Herring Gulf of Riga East of

Gotland
1

0 WGBFAS-SPRAT22-32-1973-2011 XSA sprattus Sprat Baltic Areas 22-32 -2
0 WGHMM-FMEG8c9a-1986-2010 XSA boscii Fourspotted megrim VIIIc-IXa -2
0 WGHMM-MEG8c9a-1985-2010 XSA whiffiagonis Megrim VIIIc-IXa 1
0 WGHMM-SOLEVIII-1982-2011 XSA vulgaris common European sole Bay of Biscay 1
0 WGNSDS-SOLEIS-1968-2011 XSA vulgaris common European sole Irish Sea 1
0 WGNSSK-CODCOASTNOR-1982-2010 XSA morhua Atlantic cod North-East Arctic 1
0 WGNSSK-CODNEAR-1943-2010 XSA morhua Atlantic cod North-East Arctic 0
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0 WGNSSK-HADROCK-1990-2011 XSA aeglefinus Haddock Rockall Bank -1
0 WGNSSK-NPOUTNS-1983-2011 SXSA esmarkii Norway pout North Sea -1
0 WGNSSK-PLAIC7d-1979-2010 XSA platessa European Plaice Eastern English Channel 1
0 WGNSSK-PLAICIIIa-1976-2006 XSA platessa European Plaice Kattegat and Skagerrak 0
0 WGNSSK-PLAICNS-1956-2010 XSA platessa European Plaice North Sea -1
0 WGNSSK-POLLNS-VI-IIIa-1964-2010 XSA virens Pollock IIIa, VI and North Sea -1
0 WGNSSK-SOLENS-1956-2010 XSA vulgaris common European sole North Sea 0
0 WGNSSK-SOLEVIId-1981-2011 XSA vulgaris common European sole Eastern English Channel -1
0 WGSSDS-HADVIIb-k-1993-2006 XSA aeglefinus Haddock ICES VIIb-k -1
0 WGSSDS-PLAICECHW-1979-2010 XSA platessa European Plaice Western English Channel 1
0 WGSSDS-SOLECS-1970-2011 XSA vulgaris common European sole Celtic Sea -1
0 WGSSDS-SOLEVIIe-1968-2010 FLXSA vulgaris common European sole Western English Channel -2
0 WGSSDS-WHITVIIek-1982-2010 FLXSA merlangus Whiting Celtic Sea -1
1 NRIFS-RBRMSETO-1977-2010 VPA major Red seabream Inland Sea of Japan 0



Appendix B

Derivative of Expected Fish

Recruitment

The derivative of expected fish recruitment starts by considering Equation (3.3),

such that

ln

(
Ri

Si

)
∼i.i.d. N (μi, σ

2
i ) where μi = ln(α) +

1

γ
ln(1− γβSi) and

σ2
i = exp(η0 + η1Si),

By the properties of the lognormal distribution, the expectation of ln(R/S) can

be described as

E(R/S) = exp(μ+ σ2/2).

For a fixed S, the expected recruits becomes

E(R) = S exp

(
ln(α) +

1

γ
ln(1− γβS) + exp(η0 + η1S)/2

)
. (B.1)

For γ = −2, then

E(R) = S exp

(
ln(α)− 1

2
ln(1 + 2βS) + exp(η0 + η1S)/2

)

= S exp (ln(α)) exp

(
−1
2
ln(1 + 2βS)

)
exp (exp(η0 + η1S)/2)

=
αS√

1 + 2βS
exp

(
exp(η0 + η1S)

2

)
.
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Figure C.1: Expected stock-recruitment curves with approximate 95% confidence
intervals fitted with different values of γ. Examples of the 90 S-R datasets that
illustrate the difference in fit between the heteroscedastic and nonheteroscedastic
models. The expected recruit for the nonheteroscedastic model (dotted black
plot) and its approximate 95% confidence interval (grey area) are compared
against the expected recruit for the heteroscedastic model (solid black plot) and
its approximated 95% confidence interval (dashed plot).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

AFWG−GHALNEAR−1960−2010  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

AFWG−HADNEAR−1947−2010  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

AFWG−HADNS−IIIa−1963−2011  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

AFWG−POLLNEAR−1957−2011  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−COD5Zjm−1978−2003  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−HAD5Zejm−1968−2003  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−HERR4VWX−1964−2006  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−MAR−HAD4X5Y−1960−2003  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−NFLD−COD2J3KLIS−1959−2006  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−NFLD−COD3Ps−1959−2004  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−POLL4X5YZ−1980−2006  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−QUE−COD3Pn4RS−1964−2007  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t



168 Appendix C. Expected stock and recruitment curves

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−QUE−HERR4RFA−1971−2003  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−QUE−HERR4RSP−1963−2004  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−SG−COD4TVn−1965−2009  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−SG−HERR4TFA−1974−2007  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

DFO−SG−HERR4TSP−1974−2007  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

HAWG−HERRVIaVIIbc−1956−2010  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

ICCAT−ATBTUNAEATL−1950−2010  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

ICCAT−ATBTUNAWATL−1950−2010  (fitted with γ = −2), 

Spawning Stock Biomass
R

ec
ru

itm
en

t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

IMARPE−PANCHPERUNC−1963−2004  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

INIDEP−ARGANCHONARG−1989−2007  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

INIDEP−ARGHAKENARG−1985−2007  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

INIDEP−ARGHAKESARG−1985−2008  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

INIDEP−PATGRENADIERSARG−1983−2006  (fitted with γ = −1),

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

INIDEP−SBWHITARGS−1985−2007  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NAFO−SC−AMPL3LNO−1955−2007  (fitted with γ = −2), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NAFO−SC−AMPL3M−1960−2007  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t



169

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NAFO−SC−COD3M−1959−2008  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NAFO−SC−COD3NO−1953−2007  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NAFO−SC−GHAL23KLMNO−1960−2006  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NAFO−SC−REDFISHSPP3M−1985−2006  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−AMPL5YZ−1960−2008  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−CODGB−1960−2008  (fitted with γ = −2), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−CODGOM−1893−2008  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−HAD5Y−1956−2008  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−HADGB−1930−2008  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−MACKGOMCHATT−1960−2005  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−WINFLOUN5Z−1982−2007  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−WINFLOUNSNEMATL−1940−2007  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−WITFLOUN5Y−1982−2008  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−YELLCCODGOM−1935−2008  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−YELLGB−1935−2008  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NEFSC−YELLSNEMATL−1935−2008  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t



170 Appendix C. Expected stock and recruitment curves

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−BMACKECS−1992−2010  (fitted with γ = −2), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−CMACKTSST−1973−2010  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−JANCHOPJPN−1978−2009  (fitted with γ = −2), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−JMACKTSST−1973−2010  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−OFLOUNECS−1986−2010  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−OFLOUNNSJ−1999−2010  (fitted with γ = −2), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−OFLOUNSETO−1987−2010  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−PILCHTSST−1960−2010  (fitted with γ = 1), 

Spawning Stock Biomass
R

ec
ru

itm
en

t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−RBRMPAC−1977−2010  (fitted with γ = −1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−RBRMSETO−1977−2010  (fitted with γ = 0), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−SAURNWPAC−1980−2010  (fitted with γ = −2), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NRIFS−SPANMACKSETO−1987−2010  (fitted with γ = 1), 

Spawning Stock Biomass

R
ec

ru
itm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NWWG−CODFAPL−1959−2011  (fitted with γ = −1), 
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Appendix D

Marginal Likelihood Estimation

Here I include the implemented JAGS model used to estimate the marginal likeli-

hood for the modelM1 (with γ < 0) via the power posterior method, as described

in Chapter 4.

data {
f o r ( j i n 1 : L ) { # j deno te s d i f f e r ent popul at i ons , L i s a pa r amete r .

f o r ( i i n Sta r t From. s t [ 1 , j ] : S topAt . s t [ 1 , j ] ) { # i deno te s data poin t s , ‘ Sta r t From

. s t ’ and ‘StopAt . s t ’ a r e ve c t or s i nd i c at in g t he s i z e o f ea ch popul at ion ( i . e . a

l l f i s h popul at i ons we r e pu t in a mat r i x in R) .

f o r ( s in 1 :T){ # s deno te s the cu t poin t s .

l o g .RdivS [ i , j , s ] <− ( l o g(R[ i , j ] /S [ i , j ] ) )

}} }
}

mode l {
f o r ( j i n 1 : L ) {

f o r ( s in 1 : T){
f o r ( i i n Sta r t From. s t [ 1 , j ] : S topAt . s t [ 1 , j ] ) {
# mode l ’ s l i k e l i h o od .

l o g .RdivS [ i , j , s ] ˜ dnorm(mu [ i , j , s ] , t a u [ i , j , s ] )

mu [ i , j , s ] <− ( l o g . a lph a [ j , s ] + (1 /gamma[ j , s ] ) ∗ l o g(1 − gamma[ j , s ] ∗ be ta [ j , s ]
∗S [ i , j ] ) )

tau [ i , j , s ] <− exp (−eta0[ j , s ] − e ta1 [ j , s ] ∗S [ i , j ] )

# I d iv id e the l i k e l i hood in f our te rms , f o r s imp l i f i c at i o n .

te rmA[ i , j , s ] <− 0 . 5 ∗N.d a ta [ j ] ∗ l o g(2 ∗PI )

te rmB[ i , j , s ] <− 0 . 5 ∗ sum(eta0[ j , s ] + e ta1 [ j , s ] ∗S [ i , j ] )

t e rmC[ i , j , s ] <− ( l o g .RdivS [ i , j , s ] − l o g . a lph a [ j , s ] − (1 /gamma[ j , s ] ) ∗ l o g(1−gamma[ j

, s ] ∗ be ta [ j , s ] ∗S [ i , j ] ) ) ˆ2

te rmD[ i , j , s ] <− exp ( e t a 0 [ j , s ] + e ta1 [ j , s ] ∗S [ i , j ] )

# by tempe r i n g t he l og− l i k e l i hood e xpr e s s i on , we wri te

l o gLik e l i hood [ i , j , s ] <− (−te rmA[ i , j , s ] − te rmB[ i , j , s ] −0 . 5 ∗ sum(te rmC[ i , j , s ] / te rm

D[ i , j , s ] ) ) ∗q [T+1−s ]

}# end i .
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# sum up the Log−Like l i hood o f a l l data poin t s be lon g in g t o ea ch popul at ion r e sp e c t

i v e l y .

LLik [ j , s ] <− sum( l o gLik e l i hood [ Sta r t From. s t [ 1 , j ] : S topAt . s t [ 1 , j ] , j , s ] )

}#end s .

}#end j .

f o r ( s in 1 : T){
f o r ( j i n 1 : L ) {
# de f i n e the r andom e f f e c t s .

l o g . a lph a [ j , s ] ˜ dnorm(ph i . a [ s ] , 1/pow(0 . 1 , 2 ) )

be ta [ j , s ] ˜ dgamma( p h i . k . b [ s ] , 0 . 01 )

e t a0 [ j , s ] ˜ dnorm(ph i . e 0 [ s ] , 1/pow(0 . 4 , 2 ) )

e t a1 [ j , s ] ˜ dnorm(ph i . e 1 [ s ] , 1/pow(1 . 5 , 2 ) )

gamma[ j , s ] ˜ dnorm(ph i . g [ s ] , 1/pow(0 . 2 , 2 ) )

}#end j .

# de f i n e t he hype r p r i o r d i s t r i but i o n s .

ph i . a [ s ] ˜ dun i f (−5, 20) #−−>alph a .

ph i . k . b [ s ] ˜ dun i f ( 1 , 300 ) #−−>beta .

ph i . e 0 [ s ] ˜ dun i f (−20,20) #−−>eta0 .

ph i . e 1 [ s ] ˜ dun i f (−20,20) #−−>eta1 .

ph i . g [ s ] ˜ dun i f (−10, −1) #−−>gamma.

#. .

q [ s ] <−pow ( a [ s ] , e ) # ‘ e ’ : i s the exponent pa r amete r s e t f r om the main s c r i p t (e . g

. va r i e s f r om 2 −to− 5) .

# e s t i mate the l og− l i k e l i hood at d i f f e r ent cut−poin t s .

tLL [ s ] <− sum(LLik [ 1 : L , s ] )

}#end s

PI <− 3 .1415926

a [ 1 ] <− 0 .01

f o r ( s in 2 :T) {a [ s ] <− s /T}
f o r ( s in 1 : (T−1) ) {
# compu te the l o g o f the e vid e nce us in g the t r ape z ium ru l e .

mc.LL [ s ] <− ( q [ s+1]−q [ s ] ) ∗ ( tLL [ s+1]+tLL [ s ] ) ∗0 . 5
}
# get the sum of a l l Monte−Ca r l o (mc ) cut−poin t sampl e s .

l o gML <− sum(mc.LL [ ] )

}

Figure D.1 plots the expected deviances Eθ| ln(R/S),t[log{p(ln(R/S)|θ)}] for the

power posterior for the different modelsM1,M2,M3 andM4 with γ < 0 against

t. The analysis is based on the North-East Arctic containing five populations and

where the model is examined over 20 discretized step (0 = t0 < t1 < . . . t19 <

t20 = 1) using a temperature schedule of the type ti = (i/20)4. To improve the

convergence rate, I started at t20 and used the last posterior mean parameter

values from the MCMC chain to initiate the chain at the previous temperature

step t19 and so forth. The analysis is executed over four parallel MCMC chains
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where after burn-in and thinning I collect 4000 samples from the stationary dis-

tribution pts{θ| ln(R/S)}. This plot shows that there is a little differences in

Eθ| ln(R/S),t[log{p(ln(R/S)|θ)}] for t away from 0.

Figure D.1: Expected (half) deviance under the distribution pt{θ| ln(R/S)},
plotted against temperature for the models: M1,M2,M3 andM4 (with γ < 0)
applied to the North-East Arctic region.
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Appendix E

Recruitment Prediction in JAGS

Here I include the source code of the JAGS model used to predict the marginal

posterior distribution of fish recruitment for each test data point using the model

M1 with γ < 0.

data {
f o r ( j i n 1 : L ) {

f o r ( i i n Sta r t From. s t [ 1 , j ] : S topAt .Tr a i n . s t [ 1 , j ] ) {
l o g .RdivS [ i , j ] <− l o g(R[ i , j ] /S [ i , j ] )

} }
}

mode l {
f o r ( j i n 1 : L ) {

f o r ( i i n Sta r t From. s t [ 1 , j ] : S topAt .Tr a i n . s t [ 1 , j ] ) {
# mode l ’ s l i k e l i hood

l o g .RdivS [ i , j ] ˜ dnorm(mu [ i , j ] , t a u [ i , j ] )

mu [ i , j ] <− l o g . a lph a [ j ] + (1 /gamma[ j ] ) ∗ l o g(1 − gamma[ j ] ∗ be ta [ j ] ∗S [ i , j ] )

tau [ i , j ] <− exp (−eta0[ j ] − e ta1 [ j ] ∗S [ i , j ] )

}
# random e f f e c t s

l o g . a lph a [ j ] ˜ dnorm(ph i . a , 1/pow(0 . 2 , 2 ) )

be ta [ j ] ˜ dgamma( ph i . k . b , 0 . 01 )

e t a0 [ j ] ˜ dnorm(ph i . e 0 , 1/pow(0 . 4 , 2 ) )

e t a1 [ j ] ˜ dnorm(ph i . e 1 , 1/pow(1 . 5 , 2 ) )

gamma[ j ] ˜ dnorm(ph i . g , 1/pow(0 . 2 , 2 ) )

}
# Hype r p r i o r d i s t r i but i ons

ph i . a ˜ dun i f (−5, 20) #−−>alph a

ph i . k . b ˜ dun i f ( 1 , 300 ) #−−>beta

ph i . e0 ˜ dun i f (−20,20) #−−>eta0

ph i . e1 ˜ dun i f (−20,20) #−−>eta1

ph i . g ˜ dun i f (−10, −1) #−−>gamma

#do r e c r u i tment pr e d i c t i o n .
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f o r ( j i n 1 : L ) {
f o r ( i i n Sta r t From.Te s t . s t [ 1 , j ] : S topAt . s t [ 1 , j ] ) {

# mode l ’ s l i k e l i hood

l o g .RdivS.T e s t [ i , j ] ˜ dnorm(mu. te s t [ i , j ] , t a u . te s t [ i , j ] )

mu. te s t [ i , j ] <− l o g . a lph a [ j ] + (1 /gamma[ j ] ) ∗ l o g(1 − gamma[ j ] ∗ be ta [ j ] ∗S [ i ,

j ] )

ta u . te s t [ i , j ] <− exp (−eta0[ j ] − e ta1 [ j ] ∗S [ i , j ] )

R. p r ed [ i , j ] <− exp ( l o g .RdivS.T e s t [ i , j ] ) ∗S [ i , j ]

}
}

}



Appendix F

Dynamic Bayesian Network

Learning

F.1 Proposed model with listwise deletion for

fish populations (REMO1)

I define explicitly the set of interactions of the Proposed model in term of multi-

variate first order autoregressive model as per below:

XAO(t+ 1) = α1XSOI(t).

XNAO(t+ 1) = α2XSOI(t).

XSST(t+ 1) = α3XSST(t) + α4XSAL(t).

XWind(t+ 1) = α5XKrill(t) + α6XSAL(t).

XSAL(t+ 1) = α7XSAL(t) + α8XDiatom(t) + α9XSST(t).

XSOI(t+ 1) = α10XSOI(t).

XFishLarvae(t+ 1) = α11XSST(t) + α12XCope(t).

XKrill(t+ 1) = α13XSST(t) + α14XDiatom(t) + α15XFishLarvae(t)+

α16XSAL(t) + α17XSST(t)XFishLarvae(t).

XLargeCope(t+ 1) = α18XCope(t) + α19XSST(t).
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XFishEgg(t+ 1) = α20XCope(t) + α21XHaddock(t) + α22XAO(t) + α23XKrill(t)+

α24XNAO(t) + α25XSST(t) + α26XHaddock(t)XAO(t).

XDinoflage(t+ 1) = α27XDinoflage(t) + C.

XDiatom(t+ 1) = α28XNAO(t) + α29XDinoflage(t) + C.

XCope(t+ 1) = α30XMegrim(t) + α31XDiatom(t) + α32XFishLarvae(t) + α33XSST(t).

XCod(t+ 1) = α34XCod(t) + α35XfmortCod(t).

XHaddock(t+ 1) = α36XHaddock(t) + α37XfmortHad(t).

XHerring(t+ 1) = α38XHerring(t) + α39XfmortHer(t).

XMegrim(t+ 1) = α40XMegrim(t) + α41XfmortMeg(t).

XWhiting(t+ 1) = α42XWhiting(t) + α43XfmortWhiting(t).

F.2 Proposed model with Biotic and Abiotic var-

ilables (REMO2)

I define explicitly the set of interactions of the Proposed model (Biotic and Abiotic

varilables only) in term of multivariate first order autoregressive model as per

below:

XAO(t+ 1) = 0.

XNAO(t+ 1) = 0.

XSST(t+ 1) = α1XSST(t).

XWind(t+ 1) = α2XSAL(t) + α3XSST(t) + α4XSOI(t) + α5XDinoflage(t)+

α6XSAL(t)XSST(t).

XSAL(t+ 1) = α7XSAL(t).

XSOI(t+ 1) = 0.

XFishLarvae(t+ 1) = α8XSST(t) + α9XSAL(t) + α10XCope(t) + α11XDinoflage(t)+

α12XLargeCope(t) + α13XDiatom(t) + α14XSST(t)XDiatom(t).
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XKrill(t+ 1) = α15XSST(t) + α16XCope(t) + α17XFishLarvae(t).

XLargeCope(t+ 1) = α18XCope(t) + α19XSST(t).

XFishEgg(t+ 1) = α20XSAL(t) + α21XSST(t) + α22XSOI(t) + α23XLargeCope(t)+

α24XDiatom(t).

XDinoflage(t+ 1) = α25XSOI(t) + α26XSST(t) + α27XWind(t) + α28XNAO(t)+

α29XDiatom(t) + α30XSST(t)XDiatom(t).

XDiatom(t+ 1) = α31XDinoflage(t) + α32XSST(t) + α33XFishLarvae(t)+

α34XWind(t) + α35XNAO(t) + α36XNAO(t)XWind(t).

XCope(t+ 1) = α37XLargeCope(t) + α38XFishLarvae(t) + α39XWind(t)+

α40XLargeCope(t)XWind(t).



Appendix G

Bayesian state-space model

The Bayesian state-space model that I am proposing can be described as follows:

St+1 = St exp(−m− f) +RtXt+1 + εt+1, (G.1)

Xt+1 = φXt + wt+1, (G.2)

where St+1 is the stock size at time (t + 1), Rt is the recruits at time t. The

parameters m and f are the natural and fishing mortality rates respectively.

The variables εt+1 and wt+1 are zero mean identically independently distributed

Gaussian noise on the measurements and underlying process respectively. I de-

scribe the assessment noise as a Gaussian heteroscedastic noise such that εt+1 ∼
N (0, e(η0+η1St+1)) where η0 and η1 are unknown parameters, and the underlying

process noise as wt+1 ∼ N (0, σ2).

Equation (G.1) represents the observation density St+1 ∼ p(St+1|Xt+1) which is

capable of generating one-step ahead forecast of the population size. Equation

(G.2) represents the state evolution density Xt+1 ∼ p(Xt+1|Xt) which is a first or-

der Markov process. Figure G.1 illustrates the conditional independence structure

in a graphical model in which directed arrows represent conditional dependencies

in the set of conditional distributions comprising the model.

Beddington and May (1977) stated that the size of the population is main-

tained at an equilibrium point controlled by the variability of recruitment, which

balances the losses resulted from natural mortality and low harvesting rates. This

inspired me to integrate a latent process Xt+1 to the observation density by mul-

tiplying it to the recruitment random variable Rt. I identify this latent process as

the recruitment variability process. This process models both density dependent
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Figure G.1: Directed graph describing the proposed AHMM in which the distri-
bution of the observation St depends on previous observation St−1, on the latent
state Xt, and on Rt−1.

... Xt−1 Xt Xt+1
...

... St−1 St St+1
...

... Rt−1 Rt
...

and density independent factors. Environmental changes, food supplies and har-

vesting are density independent factors. In contrast, intraspecific competitions,

predations and diseases are classified as density dependent limiting factors that

regulate the recruitment variation in marine fishes in the early life history (Myers

and Cadigan, 1993b). In normal situations, Xt+1 would be close to one, but when

the conditions become adverse its value would drop near to zero indicating a high

variability in recruits. Intermediate values would indicate a smoothly varying

profile. This description restricts the temporal variability of Xt+1 to be defined

between 0 and 1.

For convenience, I propose a first order Markov process for the state evolution

density. The regulation process Xt+1 is stationary if −1 < φ < 1, hence the mean

can be described as

E(Xt+1) = φE(Xt) + E(τt+1)

⇒ E(Xt+1) = φE(Xt+1) + 0

⇒ E(Xt+1) = 0.
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and the variance as

V(Xt+1) = φ2
V(Xt) + V(τt+1)

⇒ V(Xt+1) = φ2
V(Xt+1) + σ2

⇒ V(Xt+1) =
σ2

1− φ2
.

I fix σ2 = 1 − φ2 to set the marginal variance of the state evolution density

at stationarity to 1, such that Xt+1 ∼ N (0, 1). This would simulate all the

components from a normal distribution. Elements of the state evolution density

X = [X1, . . . , Xt+1] represent the relative regulation strength at different time

points.

As all parameters are static and do not change over time, the full joint density

over all quantities over t = 0 : T can be described as

p(S,R, m, f,X) =
T∏
t=1

p(St+1 | St, Rt, m, f,Xt+1, η0, η1)p(X1) (G.3)

×
T∏
t=2

p(Xt+1|Xt, φ, σ)π(η0)π(η1)π(σ)π(φ).

I use θ = {m, f, η0, η1, φ} to denote collectively the model parameters. Next, one

may substitute the heteroscedastic noise with other possible noises, such that

(1) an isotropic noise and (2) a heavy tailed non-Gaussian innovations at the

observational level.

All parameters are considered as static, but one may propose a time varying

parameters to accommodate with possible temporal heterogeneity. A change-

point model has the role to reveal the temporal heterogeneity in a sequence of

observations by estimating the number of change-points, n , and their position

τ1, τ2, . . . , τn. It turns out that observations are homogeneous within segments and

heterogeneous across segments. Each segment is governed by a set of parameters

θ and independent of the parameters of other segments which implies that the

change-points satisfy a Markov property.
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ARTICLE

Identification and quantification of heteroscedasticity in
stock–recruitment relationships
Garo Panikian, James Cussens, and Jonathan W. Pitchford

Abstract: Nonconstant variance (heteroscedasticity) in the stock–recruitment (S-R) relationship is proposed as an important

factor in sustainable fisheries management, but its reliable estimation from noisy populations is problematic. We developed

methods for both frequentist and Bayesian approaches to test whether we can accurately estimate the degree of heteroscedas-

ticity in 90 published S-R populations. We estimated the confidence interval for the heteroscedastic regression model via a

parametric bootstrap approach and the credible interval for the Bayesian method via a Markov chain Monte Carlo sampling

algorithm. We found strong evidence of negative heteroscedasticity in several stocks, regardless of the statistical paradigm, the

details of density dependence, and the methods used to generate the original populations. This statistical framework, together

with its associated freely available software, provides an efficient and reliable setting for assessing heteroscedasticity of the S-R

relationship in fisheries.

Résumé : Si le caractère non constant de la variance (hétéroscédasticité) de la relation stock–recrutement (S-R) est proposé

comme facteur important dans la gestion durable des pêches, l’estimation fiable de cette propriété pour des populations bruitées

pose problème. Nous avons mis au point des méthodes pour des approches tant fréquentistes que bayésiennes pour vérifier s’il

est possible d’estimer avec exactitude le degré d’hétéroscédasticité dans 90 populations de S-R publiées. Nous avons estimé

l’intervalle de confiance pour le modèle de régression hétéroscédastique par une approche d’amorçage paramétrique et

l’intervalle de crédibilité pour la méthode bayésienne par un algorithme d’échantillonnage de Monte Carlo par chaînes de

Markov. Nous avons constaté de fortes indications d’une hétéroscédasticité négative dans plusieurs stocks, quels que soient le

paradigme statistique, les détails de la dépendance sur la densité et les méthodes utilisées pour générer les populations initiales.

Ce cadre statistique, combiné à un logiciel associé gratuit, offre un contexte efficient et fiable pour évaluer l’hétéroscédasticité

de la relation S-R dans les pêches. [Traduit par la Rédaction]

Introduction
Reliable mathematical modelling and prediction of fish popu-

lations is of great importance socially and economically, as well as

being a necessary ingredient in the conservation of biodiversity.

Various natural and anthropogenic factors affect fish popula-

tions, with the life of juvenile fish typically being characterized by

enormous mortality rates (Hilborn and Walters, 1992). Newly

hatched fish larvae have low probability of reaching adulthood

(Pitchford et al. 2005). Mortality is due to variability in food sup-

ply, migration, predation, starvation, poisonous pollutants, and

fishing activities (Steele 1977), resulting in an unpredictable rela-

tionship between the adult population (stock) and the juveniles

(recruitment) that will successfully survive to enter the adult pop-

ulation in the future. Understanding the stock–recruitment (S-R)

relationship therefore requires careful statistical techniques

forming a crucial ingredient in the sustainable management of

these exploited natural resources. From the point of view of sus-

tainable management, Shepherd et al. (1990) studied plausible

regulatory processes for analysing fish populations and argued

that increased variability at low stock sizes might prevent the

collapse of stocks subject to high mortality rates, a theme echoed

by Minto et al. (2008). Hsieh et al. (2006) presented the first empir-

ical evidence that fishing could increase the survival variability (a

proxy for recruitment variability) in an exploited population and

advocated that increased variability of exploited populations fa-

vours a precautionary management approach.

Heteroscedastic models (i.e., statistical models using noncon-

stant variance) have gained much interest in recent years to ex-

plain the regulatory mechanisms in fish populations. Minto et al.

(2008) developed a stochasticmethod applied to ameta-analysis of

147 fisheries populations to argue that survival variability is in-

versely proportional to stock size. Their model was inspired by

Peterman (1981), who argued that random variation in marine

survival rates tends to follow a log-normal distribution, but the

novelty of their method was to incorporate a functional form of

nonconstant recruitment variability over adult abundance. More

recently, Burrow et al. (2013) investigated the feasibility of apply-

ing heteroscedastic models in practice, using two North Sea

stocks as examples. They uncovered a weakness of using a het-

eroscedastic regression model by showing it to be statistically

unreliable to fit the parameters based on small S-R populations

(containing 40 or 50 data points), but made a mistake while defin-

ing the log-likelihood function (i.e., missing a square term and a

factor of 0.5) and restricting their analysis to only two popula-

tions. The use of heteroscedastic models is controversial because

previous research engaged in interpreting nonconstant variance
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has failed to provide a clear-cut answer about its reliable estima-

tion for fisheries management.

The aims of this study were (i) to develop frequentist and Bayes-

ian methods for accurately identifying the nonconstant variance

exhibited in a density-dependentmodel and (ii) to test the reliabil-

ity of these methods on 90 S-R populations. Since none of the S-R

populations are direct observations, we select populations esti-

mated by virtual population analysis (VPA)-type assessments so as

to ensure that the recruitment estimates are derived from the

catch-at-age data, which is not dependent on the estimate of the

spawning stock biomass (SSB). We analyse the edge effects at

the beginning and end of the time series data to test whether VPA

methods have an impact upon our results. We employ the two

dominant approaches to inference, known as Bayesian and fre-

quentist statistical methods, to determine whether one can reli-

ably estimate the nonconstant variance. We conclude that within

either the frequentist or Bayesian paradigm, the reliability of de-

termining the existence of a negative nonconstant variance can

only be assessed on a case-by-case basis.

Materials and methods
We prune S-R populations collated in the publicly available

RAM legacy database version 1 (www.ramlegacy.org; Ricard et al.

2012) by restricting the analysis only to those estimated by VPA-type

assessments. The SSB is measured in tonnes; however, the recruit-

ment is measured in thousands of individuals. The 12 VPA-type as-

sessmentmethods classified under this category are as follows: VPA,

SPA, XSA, FLXSA, ADAPT, NFT-ADAPT, B-ADAPT, SXSA, SPA-ADAPT,

NFT-ADAP, ISVPA, and hybrid. VPA, also known as cohort analysis,

follows cohorts through their whole life, using catch-at-age data

and natural mortality to back-calculate what recruitment had to

be to support the catch (Hilborn and Walters 1992). In contrast,

assessments based on integrated analyses and statistical catch-at-

age assessments employ an underlying S-R relationship, so fitting

an S-R curve to their time series is not appropriate. There were

100 S-R populations obtained with VPA-type assessment, but

10 populations had missing data or no data at all. Accordingly, we

restricted our analysis on the remaining 90 fish populations, rep-

resenting 32 species (see Appendix A, Table A1).

The model

To understand the relationship between SSB and recruitment,

Minto et al. (2008) proposed the following model, such that

(1)

ln�Ri

Si
� � i.i.d. N��i,�i

2�
where

�i � ln(�) �
1

�
ln(1 � �	Si)

and

�i
2 � exp(
0 � 
1Si)

where Ri and Si are the estimated number of recruits and SSB for

each observation i, respectively. This is a regression model that

assumes the logarithm of the ratio Ri/Si is an independent and

identically distributed (i.i.d.) sample from a Gaussian model with

nonconstant variance. In practice, none of the populations (i.e.,

SSB and recruitment) are actually direct observations. They are in

reality model outputs (parameter estimates) from fisheries assess-

ments, where models have been previously fitted to fisheries data

(catch, age structure information, indices, etc.). The parameters �
and 	 measure the productivity and the density-dependent

mortality (capacity) in a population, respectively. The density-

independent part of the variance is described by 
0, with the

density-dependent variance described by 
1, known as the het-

eroscedastic coefficient. The parameter � enables us to choose

among several survival models. For instance, � = –1000 generates

a model with essentially no density dependence, and increasing �
increases the amount of density dependence, reproducing several

models that have been advocated in previous studies (Minto et al.

2008), such as: � = –2 (Cushing-like), � = –1 (Beverton–Holt), � = 0

(Ricker), and � = 1 (Schaefer).

Likelihood of the model

We let R = (R1, R2, …, Rn) and S = (S1, S2, …, Sn) be the respective

recruitment and stock model input vectors. The log-likelihood of

the heteroscedastic regression model is

(2) L�ln(R/S),�,	,
0,
1� � �
n
2
ln(2�) �

1

2	
i�1

n

(
0 � 
1Si)

�
1

2	
i�1

n 
ln�Ri

Si
� � f�Ri

Si
��2

exp(
0 � 
1Si)

where

f�Ri

Si
� � ln(�) �

1

�
ln(1 � �	Si)

and n is the number of observations. We fix � = –1 for our analyses

here (representing the Beverton–Holt compensation model),

which turns the log-likelihood function into the form

(3) L�ln(R/S),�,	,
0,
1� � �
1

2	
i�1

n

(
0 � 
1Si)

�
1

2	
i�1

n 
ln�Ri

Si
� � ln(�) � ln(1 � 	Si)�2

exp(
0 � 
1Si)

For a constant variance, the coefficient of heteroscedasticity is

zero and the variancewould bewritten as �2 � exp�
0�. We choose

to scale both SSB and recruitment model inputs with their maxi-

mum values respectively, as in (Minto et al. 2008).

To determinewhether the log-likelihood function (eq. 3) is glob-

ally concave or not, we examine the matrix of second derivatives

(or the Hessian matrix) from which we derive the sequence of

determinants known as “principal minors”. Since the leading

principal minors do not alternate in sign, we conclude that the

log-likelihood function is not concave, and hence we require suit-

able methods for solving the maximum likelihood problem.

Why choose a heteroscedastic regression model?

The Akaike information criterion (AIC) statistic (Akaike 1973) is

a method used to select a model from a set of models; it penalizes

the likelihood for the number of parameters that we estimate,

such that

(4) AIC � �2L(�̂) � 2D

where L��̂� is the log-likelihood of the model evaluated at the

maximum likelihood estimate of �, and D is the number of (inde-

pendent) model parameters. This AIC statistic indicates that a

smaller value has a better fit of the model to the data. An alterna-

tive version of this statistic with amore severe penalty is known as

the bias-corrected AIC, denoted by AICc (Hurvich and Tsai 1989),

defined by
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(5) AICc � �2L(�̂) � 2D n
n � D � 1

This criterion avoids overfitting by replacing the penalty term

of AIC with an exact expression for the bias adjustment and pro-

vides improved model selection for small samples. However, as n
gets large, AICc converges to AIC, rendering the AICc a more effec-

tive statistic in practice.We comparedmodel fitting for heterosce-

dastic and nonheteroscedastic regression models using the AICc

statistic. We found a prevalence of the heteroscedastic model for

78 out of 90 populations, showing that the heteroscedastic model

had a much better fit across the majority of stocks, regardless of

the coefficient of heteroscedasticity. Since the sign of 
1 has a

great influence in determining whether such a model is appro-

priate for devising optimal harvest strategies, we investigated

whether we can reliably estimate the sign of 
1; we also applied

the AICc statistic as a measure to determine the most appropriate

value for � that fits the S-R populations.

Frequentist inference

Let �̂ be the maximum likelihood estimation (MLE) of � = (�, 	,

0, 
1) that maximizes the log-likelihood function L�R
��. Here,

we make use of the software AD Model Builder (ADMB) to solve

this optimization problem (Fournier et al. 2012) because we found

it to perform better than off-the-shelf Nelder-Mead and Newton

methods.

To assess the estimation error for 
1 (heteroscedasticity param-

eter), we first employed ADMB to get standard errors and confi-

dence intervals using the standard likelihood asymptotics, but

we were confronted with two hurdles. First, we found 42 out of

90 populations had a sample size of fewer than 30 data points

(among them two populations found with Hessian matrix not

positive definite) for which it is common not to apply the Central

Limit Theorem. Second, among the remaining 48 populations, we

found a case (namely NWWG-HADFAPL-1955-2011) for which the

Hessian is not positive definite, rendering the confidence inter-

vals unobtainable. Hence, we decided to abandon the standard

likelihood asymptotics method and use the parametric bootstrap

sampling approach, as in DiCiccio and Efron (1996). This method

is also known as bootstrapping raw data, where each replication is

obtained by sampling from the heteroscedastic distribution fitted

with the MLE �̂. The theory of this method shows that the boot-

strap confidence intervals are second-order correct as well as

second-order accurate (DiCiccio and Efron 1996, sections 8 and 9),

and it is appropriate for studies with small sample size. We de-

scribe this sampling method for simulating new recruits as fol-

lows:

Step 1: Use both stock and recruitmentmodel inputs to estimate

�̂ � ��̂, 	̂, 
̂0, 
̂1�, the MLE of � = (�, 	, 
0, 
1).

Step 2: Draw i.i.d. samples x∗ � �x1
∗
, x2

∗
, …, xn

∗� from N��̂i, �̂i
2�

where

�̂i � ln(�̂) � ln(1 � 	̂Si) and �̂i
2 � exp(
̂0 � 
̂1Si)

with n being the number of data points found in the S-R popula-

tion, and i = 1, …, n.
Step 3: Simulate new recruit R� = S exp(x�), such that R∗ � �R1

∗
,

R2
∗
, …, Rn

∗�.
Step 4: Scale R� with its maximum value.

Step 5: Refit the regression model to the simulated data (R�, S)
and estimate �̂∗�R∗
S�.

Step 6: Repeat steps 2 to 5, 1000 times, to obtain a good approx-

imation of the confidence interval.

We compared the parametric bootstrap method with the as-

ymptotic confidence intervals from ADMB for the subset of pop-

ulations with adequate sample sizes (greater than 30) and positive

definite Hessians; we found that the bootstrap method provides

empirical coverages for 
̂1 noticeably wider than the asymptotic

confidence intervals (Table 1). The findings confirm that under the

first-order asymptotic theory, the residual errors of recruitments

are not normally distributed, rendering the first-order asymptotic

theory inappropriate to assess the estimation error for 
1. To ac-

count for possible skewness of the estimator, Singh (1981) and

DiCiccio and Efron (1996) proved that second-order properties are

often more desirable, as they improve by an order of magnitude

upon the accuracy of the standard intervals.

During this analysis we found the Hessian matrix for three

populations, namely INIDEP-PATGRENADIERSARG-1983-2006,

NWWG-HADFAPL-1955-2011, and NWWG-HERRIsum-1984-2011

(also known by their ID numbers: 25, 58, and 60), not positive

definite, meaning that the optimizer will fail to find the true

maximumof the log-likelihood function forwhich the parametric

bootstrappingmethod would result in estimating incorrect MLEs.

To overcome this hurdle, one can apply a Bayesian approach to

estimate the posterior distribution of 
1, as discussed in the sec-

tion on Bayesian inference.

Our above analysis could be incomplete, because we focused

only on the Beverton–Holt compensation model (see eq. 3). Here

we generalize our previous assumption by making available the

set of possible models � � {−2, −1, 0, +1} and choose the one that

provides the minimum AICc score for each population, respec-

tively. A nonasymptotic recruitment is obtained for � = –2, which

means that recruitments can grow with adult abundance size.

However, an overcompensation model is obtained for � � {−1, 0,

+1}, which are different sorts of density dependence models. For

� � {−2, −1, 0, +1}, we obtain different models but with the same

number of parameters {�, 	, 
0, 
1}. We describe the log-

likelihood functions of these models as follows: the Cushing-like

model is obtained for � = –2:

(6) L�ln(R/S),�,	,
0,
1� � �
1

2	
i�1

n

(
0 � 
1Si)

�
1

2	
i�1

n 
ln�Ri

Si
� � ln(�) �

1

2
ln(1 � 2	Si)�2

exp(
0 � 
1Si)

Table 1. Descriptive comparison of asymptotic and bootstrap methods for estimating the approximate 95% confi-

dence interval for 
1.

Asymptotic 95% CI Bootstrap 95% CI

Assessment ID

No. of

samples 
̂1 Lower limit Upper limit Lower limit Upper limit

AFWG-GHALNEAR-1960-2010 43 1.31 0.85 1.76 −1.24 3.16

AFWG-HADNEAR-1947-2010 58 −1.77 −2 −1.54 −3.42 0.31

AFWG-HADNS-IIIa-1963-2011 49 0.33 0.01 0.66 −2.4 2.72

AFWG-POLLNEAR-1957-2011 49 −0.98 −1.16 −0.79 −2.52 0.43

DFO-HAD5Zejm-1968-2003 34 1.56 1.12 1.99 −0.94 3.62

DFO-HERR4VWX-1964-2006 41 2.1 1.75 2.44 −0.27 4.05
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The Beverton–Holt model is obtained for � = –1:

(7) L�ln(R/S),�,	,
0,
1� � �
1

2	
i�1

n

(
0 � 
1Si)

�
1

2	
i�1

n 
ln�Ri

Si
� � ln(�) � ln(1 � 	Si)�2

exp(
0 � 
1Si)

The Ricker model is obtained after developing a first-order Taylor

expansion of the log(1 – �	Si) function around � ¡ 0, resulting in

–	Si after dividing it by �, which takes the form

(8) L�ln(R/S),�,	,
0,
1� � �
1

2	
i�1

n

(
0 � 
1Si)

�
1

2	
i�1

n 
ln�Ri

Si
� � ln(�) � 	Si�2

exp(
0 � 
1Si)

The Schaefer model is obtained for � = +1:

(9) L�ln(R/S),�,	,
0,
1� � �
1

2	
i�1

n

(
0 � 
1Si)

�
1

2	
i�1

n 
ln�Ri

Si
� � ln(�) � ln(1 � 	Si)�2

exp(
0 � 
1Si)

We use the AICc score with the point estimate approach for

applying model selection instead of approximating the marginal

likelihood function. We applied ADMB over the four different

models (e.g., � = {–2, –1, 0, +1}), andwe selected for each population

the model with the minimum AICc score. To find a point estimate

for � = +1, the parameter 	 should be less than {1/max(Si)} = 1 so as

to assert a valid argument for the logarithmic function — both S
and R are respectively scaled with their maximum value. The

purpose of this analysis is to provide a precise assessment for the

nonconstant variance (instead of relying only on the Beverton–

Holt model) as it fits the data more accurately; we found a preva-

lence of the Schaefer model for the majority of populations that

underscores the importance of using density-dependent models

in explaining the S-R relationships (Table 2). To better understand

and evaluate the impact of the heteroscedasticity coefficient, we

illustrate in Fig. 1 plots showing recruits versus relative spawning

stock biomass along with the estimated stock–recruit relation-

ship and approximate 95% confidence intervals around this rela-

tionship for both heteroscedastic and nonheteroscedastic (i.e.,

constant variance) models; these plots are for four populations

fitted with different shape parameter �. Recruitment is com-

monly assumed to have stochastic variability that follows a log-

normal distribution from which we derive the expected recruits

for each shape parameter �, such as

(10) E(R) �
�S

�1 � 2	S
exp
exp(
0 � 
1S)

2
� for � � �2

(11) E(R) �
�S

1 � 	S
exp
exp(
0 � 
1S)

2
� for � � �1

(12) E(R) � �S exp
�	S �
exp(
0 � 
1S)

2
� for � � 0

(13) E(R) � �S(1 � 	S)exp
exp(
0 � 
1S)
2

� for � � 1

The expected S-R curve is plotted based on the fitted value of �,
theMLE foundwith ADMB, and the SSBmodel input.We illustrate

the heteroscedastic expected recruitment curve with solid black

plot, and the nonheteroscedastic expected recruitment curve

with dotted black plot — obtained by setting 
1 = 0. We construct

the approximate 95% confidence interval for recruitment as fol-

lows: sort the SSB population in an ascending order; use eq. 1 to

generate 10 000 samples for each element; approximate the 95%

confidence interval of recruitment estimates for each SSB data

point, using the percentile of the sampling distribution. Figure 1

shows that the coefficient of heteroscedasticity 
1 has a positive

impact in estimating the approximate 95% confidence interval;

the coverage of recruits (dashed plot) is more accurate than the

nonheteroscedastic model (grey area) and hence its importance in

fisheries management. The plots for the 90 S-R populations are

illustrated in the Supplementary material1 section.

Measure of confidence interval
Weuse thebias-corrected andacceleratedmethod (BCa;DiCiccio and

Efron 1996) to form the approximate 95% confidence interval of the

density distribution �̂1
∗
. Let Ĝ�
̂1� be the cumulative distribution

function of bootstrap replications �̂1
∗
:

(14) Ĝ(
̂1) � #��̂1
∗
≤ 
̂1�/B

In this case, B = 1000 replications. By definition, the bias-

corrected �/2 endpoints for the percentile bootstrap confidence

interval are calculated as

(15) 
̂1BCa
(�) � Ĝ�1
��ẑ0 �

ẑ0 � z(�)

1 � a�ẑ0 � z(�)���
where �(.) is the standard normal cumulative distribution func-

tion. The BCa interval is controlled by two parameters, namely

the bias-correction ẑ0 and acceleration parameters a. The bias-

correction estimate ẑ0 gives the proportion of estimates �̂1
∗
less

than 
̂1, such that

(16) ẑ0 � ��1�Ĝ(
̂1)� � ��1
#��̂1
∗
≤ 
̂1�

1000
�

However, the acceleration parameter a measures how rapidly

standard error changes on a normalized scale, which has an

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2014-0549. This data

show the expected stock–recruitment curves with approximate 95% confidence intervals fitted with different values of �, for each of the 90 stocks analysed.

Table 2. Populations fitted with best-fit model

parameter �.

� Model Fitted populations

−2 Cushing 12 out of 90

−1 Beverton–Holt 26 out of 90

0 Ricker 19 out of 90

+1 Schaefer 33 out of 90

Note: The model selection is based on the shape pa-

rameter � corresponding to � = −2 (Cushing-like), � = −1

(Beverton–Holt), � = 0 (Ricker), and � = 1 (Schaefer).
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190 Appendix H. Reprint of publication I

interpretation of skewness. A nonparametric estimate of a can be

described as

(17) â �
1

6

	i�1

n
Ui
3

�	i�1

n
Ui
2�3/2

We use the jackknife influence function to calculate Ui, where

(18) Ui � (n � 1)(
̂1 � 
̂1(i))

where 
̂1�i� is the estimate of 
1 based on the reduced data R(i) = (R1,
…, Ri–1, …, Rn) and S(i) = (S1, …, Si–1, Si+1, …, Sn). Therefore, the
central 95% BCa interval for 
1 is given by

(19) CI95%(
1) � (
̂1BCa
(0.025), 
̂1BCa

(0.975))

Note that the confidence interval of 
1 is mainly influenced by

the number of data points found in the population. Themore data

points we have, the narrower confidence interval we obtain. This

means that the variability for 
̂1 is small for large populations,

thereby leading to amore reliable fit of the heteroscedastic model

than for small population sizes. Figure 2 illustrates the approxi-

mate 95% BCa confidence interval width versus the population

size, applied to all populations.

Classification based on the frequentist paradigm
Our goal is to investigate whether we could recover accurately

the sign of the coefficient of heteroscedasticity. Here, we analyse

whether the approximate confidence interval for 
1, denoted as

CI(
1), falls in a region showing a consistent sign with the coeffi-

cient 
1. Accordingly, we classify each population in one of three

ways: (−1): strong evidence for negative 
1 that is attained when

CI(
1) falls in the negative region; (+1): strong evidence for positive


1 when CI(
1) falls in the positive region; and (0): inconclusive

evidence for heteroscedasticity.

Bayesian inference

Bayesian methods offer an alternative to the traditional fre-

quentistmethod andmay be particularly valuable for populations

where there is already some information about the model’s pa-

rameters. To define a Bayesian analogue of the method of fitting

parameters outlined above, we need to specify prior distributions

for �, 	, 
0, and 
1 to quantify our knowledge before considering

the data. Because we do not have prior knowledge for the param-

Fig. 1. Expected stock–recruitment curves with approximate 95% confidence intervals fitted with different values of �. Examples of the

herring, pollock, Greenland halibut, and cod families, chosen to illustrate the difference in fit between the heteroscedastic and

nonheteroscedastic models, are shown: (a) herring from Eastern Baltic (fitted with � = –2), (b) pollock from IIIa, VI, and North Sea (fitted with

� = –1), (c) Greenland halibut from Labrador Shelf – Grand Banks (fitted with � = 0), and (d) cod from St. Pierre Bank (fitted with � = +1). The

expected recruit for the nonheteroscedastic model (dotted black plot) and its approximate 95% confidence interval (grey area) are compared

against the expected recruit for the heteroscedastic model (solid black plot) and its approximated 95% confidence interval (dashed plot).
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eter values, we chose two arbitrary sets of priors to see to what

extent the marginal posteriors vary. Firstly, we choose to define a

normal prior information for log(�), a wide uniform prior for 	
covering a region of positive values (to avoid numerical failures),

and a symmetrical uniform prior around the origin for both 
0

and 
1, such that

(20) �1{log(�)} � N(1, 52
)

(21) �1(	) � U(0, 6000)

(22) �1(
0) � U(�30,�30)

(23) �1(
1) � U(�30,�30)

Secondly, we define a normal prior information for log(�), a
Gamma distribution for 	 to constrain it to positive values, and a

Gaussian distribution for both 
0 and 
1, such that

(24) �2{log(�)} � N(1, 52
)

(25) �2(	) � Gamma(1, 0.001)

(26) �2(
0) � N(0, 102
)

(27) �2(
1) � N(0, 102
)

It is common to assume independent priors for the parameters,

such that �(�) = �{log(�)} × �(	) × �(
0) × �(
1). We use Markov

chain Monte Carlo (MCMC) sampling by JAGS (Just Another Gibbs

Sampling; Plummer, 2003) from R via package rjags to sample

from the joint posterior distribution p(�, 	, 
0, 
1 | R, S) with the

purpose of estimating the marginal posterior distribution of 
1

given data.

Convergence criteria
We monitor the approximate convergence of MCMC by using

the �R̂ statistic provided in the Coda package in R. Gelman et al.

(2004) described this statistic as a measure that compares varia-

tion between and within simulated sequences until “within” vari-

ation roughly equals “between” variation, for multiple parallel

chains. One can be reasonably confident that convergence is

achieved if �R̂ � 1.1. We simulated four parallel MCMC sequences

of 10 000 iterations each after discarding 50 000 samples of each

chain, referred to as “burn-in”; these chains are started each from

a different initial value and thinned by taking one sample from

every four samples so as tominimize the autocorrelation between

samples. After convergence, each simulated sequence is close to

the distribution of all other sequences combined together, which

all converge to the same posterior distribution. If approximate

convergence has not been reached, we identify those populations

and repeat the approximation by increasing the number of

burn-in samples (from 1e + 5 to 2e + 6) and even the number of step

size adjustments (from 1e + 4 to 1e + 5) — tuned by n.adapt param-

eter. Figure 3 illustrates overlaid plots for the marginal posterior

distribution of each parameter of interest (log(�), 	, 
0, 
1) with

priors �1 and �2, respectively.

Bayesian sensitivity analysis
The theory of subjective probability enables one to apply a prior

distribution in inference to reflect whatever is reasonably as-

sumed. In Bayesian statistics, prior robustness is a real issue for

inference; to reduce this concern, one should investigate whether

slight changes in the prior distribution cause significant changes

in the decision rule. Herewe found that the choice between�1 and

�2 did not influence the resulting Bayesian inference, indicating a

reasonable degree of robustness.

Edge effects analysis

VPA estimates stock sizes and fishing mortality rates for each

year class (cohort) making up the overall population; the recruit-

ment is estimated as abundance at age 1, and the SSB is estimated

by summing up stock sizes of age 2+ in each respective year

(Anderson 1978). As we go backward in time, the final age class

assumptions and the catch-at-age data totally drive the estimates

to become very precise at the beginning of the age group; how-

ever, techniques based on the shrinkage to the mean factor —
such as XSA — can impose constraints on the last year estimates

as well as on the oldest age group (Daskalov 1998). To account for

this kind of estimation error, we analyse the possibility of edge

effects in the VPA methods by removing data points from the

beginning and end of the time series data. Here we analyse two

types of populations. First, we revisit results obtained frommodel

selection by selecting populations having their approximate 95%

confidence interval for
1 falling entirely in the negative region (as

Fig. 2. Plot showing the effect of the sample size on the width of the approximated 95% confidence interval. This plot is generated for a

Beverton–Holt stock–recruitment model (� = –1).
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192 Appendix H. Reprint of publication I

shown in Appendix A, Table A1). Second, we select populations

having more than 55 data points so as to check the effect on long

time series data. The former selection presents seven full popula-

tions for which five were fitted with � = 1, one was fitted with � =

0, and another was fitted with � = –2; the latter presents four full

populations. Next we truncated two data points at both ends of

the seven populations and five data points at both ends of the four

biggest populations on which we repeated the analysis of testing

the reliability of the nonconstant variance respectively. If the re-

sults were approximately matching to the pattern typically ob-

tained with the full datasets, then we obtain evidence that edge

effects in VPA methods are unlikely to influence our results; oth-

erwise, we conclude that VPA methods are likely to influence the

results.

Results
Statistical analysis based on the frequentist paradigm shows for

a Beverton–Holt model the existence of seven populations having

their approximate 99% confidence interval for 
1 falling entirely

in the negative region (Table 3). Those seven populations are from

six different fish species in six locations, indicating that this clas-

sification result is not peculiar to a particular species or location.

Standard confidence levels were increased gradually to reflect the

sensitivity of the classification labels of the 90 S-R populations to

Fig. 3. Marginal posterior distributions for the parameters produced by the JAGS sampler sampled from priors �1 and �2. Each panel includes

four density plots (except for the top left panel): two priors (�1 and �2) for each parameter and the posteriors corresponding to each of these

priors when applied to the DFO-QUE-COD3Pn4RS-1964-2007 population.
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Table 3. Confidence levels and

data classification of the 90 S-R

populations for a Beverton–Holt

stock–recruitment model.

Coding of 
̂1

distribution

Confidence

level (%) −1 0 +1

60 30 43 17

70 26 50 14

80 22 61 7

90 15 72 3

95 11 78 1

99 7 82 1

Note: The {−1, 0, +1} coding based

on the 
̂1 distribution indicates the

presence of strong evidence for reli-

ably identifying 
1 < 0, inconclusive

evidence where the sign of 
1 cannot

be identified, and a strong evidence

for identifying 
1 > 0, respectively.
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the choice of cut-offs. For low confidence levels, we observe many

populations classifiedwith label –1, but this classification declines

as the confidence level increases.

Next,we compared results obtained from the frequentist approach

with those obtained from Bayesian methods. In the Bayesian

framework, the credible interval is obtained from the marginal

posterior distribution using the equal-tailed credible interval.

Figure 4 illustrates a comparison between the frequentist and

Bayesian inference (for different priors for 
1) applied to a single

population, namely DFO-QUE-COD3Pn4RS-1964-2007. Note that in

the frequentist method we are using a parametric bootstrap rep-

lication of 
̂1; however, in the Bayesian setting we are estimating

the marginal posterior distribution of 
1 given a particular popu-

lation and a prior. We are in general interested in the outcome of

these methods in knowing whether they produce the same result

or not; the density of MLE simulates (solid line), the posterior

distribution with respect to �1 (dot-dashed line), and the posterior

with respect to �2 (dashed line) produced approximately compa-

rable results. Their approximate 95% confidence interval and ap-

proximate 95% credible intervals were more likely to agree. We

should also inform the reader that in this figure we used half of

the posterior samples (i.e., 5000 samples) from both posteriors to

avoid overlap in plots.

We generalized this comparison — by analysing the output of

frequentist and Bayesian methods — for all 90 S-R populations, as

illustrated in Fig. 5. The MLE used for bootstrap simulations is

represented by an asterisk (*); the error bars on the asterisks rep-

resent the approximate 95% confidence intervals, and the square

shape denotes themode of simulatedMLEs distribution. The error

bars on the triangles represent the approximate 95% credible in-

tervals with respect to �1, and the error bars on the circles repre-

sent the approximate 95% credible intervals with respect to �2.

We observed a large approximate 95% confidence interval for the

following population numbers: 9, 10, 13, 22, 25, 50, 55, 62, and 63,

caused essentially by the small sample sizes of 12, 28, 29, 17, 20, 12,

8, 10, and 9 data points, respectively. In contrast, we found for

some other populations (20, 50, 53, and 63) different marginal

posteriors with respect to the choice of the prior. For the remain-

ing populations we found robust posterior inference with respect

to the choice of the prior (i.e., �1 or �2). Table 4 illustrates a

comparison of the estimation error for 
1 assessed by the frequen-

tist and Bayesian approaches when applied to the 90 S-R popula-

tions. We observed that both frequentist and Bayesian methods

Fig. 4. Density plots of (i) 1000 parametric bootstrap replications of 
̂1 (solid plot); (ii) marginal posterior distribution of 
1 with respect to �1

(dot-dashed plot); and (iii) marginal posterior distribution of 
1 with respect to �2 (dashed plot). The analysis is applied to the DFO-QUE-

COD3Pn4RS-1964-2007 population.
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Table 4. Comparison between frequentist and Bayesian methods

(with �1 and �2 priors) for a Beverton–Holt stock–recruitment model

for evaluating the reliability of 
1 in survival across the 90 S-R fish

populations.

Coding of 
1 distribution

Frequentist Bayesian �1 Bayesian �2

Confidence

level (%) −1 0 +1 −1 0 +1 −1 0 +1

60 30 43 17 32 43 15 31 47 12

70 26 50 14 29 47 14 27 51 12

80 22 61 7 21 62 7 20 65 5

90 15 72 3 12 73 5 10 77 3

95 11 78 1 11 75 4 10 77 3

99 7 82 1 9 79 2 7 82 1

Table 5. Confidence levels and data

classification of the 90 S-R populations

using model selection.

Label

Confidence

level (%) −1 0 +1

60 31 48 11

70 28 53 9

80 23 62 5

90 16 70 4

95 7 82 1

99 3 87 0

Note: The {−1, 0, +1} coding based on the 
̂1

distribution indicate the presence of strong

evidence for reliably identifying 
1 < 0, incon-

clusive evidence where the sign of 
1 cannot

be identified, and a strong evidence for iden-

tifying 
1 > 0, respectively.
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194 Appendix H. Reprint of publication I

Fig. 5. Comparison between the frequentist and Bayesian methods to inference for a Beverton–Holt model. The error bars on the asterisks

show an approximate 95% BCa confidence interval, where the asterisk symbol represents the MLE of 
1 and the square symbol represents the

mode of simulated MLEs with bootstrapping. The error bars on the triangles and circles show the approximate 95% credible interval with

respect to �1 and �2, respectively. The vertical axis represents the 
1 parameter, and the horizontal axis represents the sequential population

number, ranging from 1 to 30, 31 to 60, and 61 to 90, respectively.
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classified approximately the same number of populations, la-

belled with –1.

To adjust our results, we used our fitted models and tested

whether we could reliably estimate the sign of 
1 with different

confidence levels, as described in Table 5. For the case where the

confidence level is 95%, we found seven populations labelled with

–1, 82 populations labelled with 0, and one population labelled

with +1. The entire classification list for the 95% confidence level is

illustrated in Appendix A, Table A1.

Finally, we applied the edge effect analysis to populations clas-

sified with label –1 and to populations longer than 55 data points

(Table A1). The former revealed an agreement in the classification

of six of the seven populations so that we can assert that possible

edge effects in the VPA are unlikely to be influencing the analysis

for thesemodel inputs (Table 6); however, in the latter we found a

complete agreement with original results, indicating that the ef-

fect of VPA methods reduces with long time series populations

(Table 7).

Discussion
This study develops, implements, and tests methods for identi-

fying nonconstant variance (heteroscedasticity) in the spawner–

recruit relationship. We found heteroscedastic models tend to fit

the S-R model inputs better than constant variance models across

the majority of stocks and found strong evidence for a negative

coefficient of heteroscedasticity in seven cases (Table A1), includ-

ing exploited cod, herring, andwhiting stocks, in addition to olive

flounder (Paralichthys olivaceus) and Peruvian anchoveta (Engraulis
ringens). We advocate that the evidence for stochastic regulation

in these cases deserves to be taken into account by managers. In

contrast, only one stock was identified as having a positive coef-

ficient of heteroscedasticity at the 95% confidence level.

We analysed the estimation error for 
1 (heteroscedasticity

parameter) by exploring a class of heterogeneity models —
frequentist and Bayesian paradigms — and associated model-

fitting algorithms. Under the frequentist method, parameters are

viewed as unknown but fixed quantities; consequently, the use of

inferential procedures were evaluated under repeated sampling

of the data. The frequentist method is generally easy to imple-

ment, but it encounters difficulties for small population size re-

sulting in a large interval estimation and a loss of statistical

significance. In contrast, Bayesian approaches can be appealing

for problems of this sort, but difficulties arise in prior specifica-

tion. Here, we usedminimal prior information �1 and �2 to obtain

themarginal posterior distribution for the parameters of interest;

the estimation error for 
1 is obtained by estimating the Bayesian

credible intervals using the posterior distribution.

To determine whether we can reliably estimate the sign of 
1,

we tested whether the confidence interval falls in a region show-

ing a consistent sign with the coefficient. We found that both

frequentist and Bayesian methods led approximately to equiva-

lent inference, but there are some circumstances under which

one method outperforms the other, especially when the sample

size is below 30 and when the Hessian matrix is not positive

definite. The application of model selection reveals a consistent

feature across all populations, as it selects amodel having the best

predictive ability among other models; in every case, heterosce-

dastic models fit the data better (i.e., lower AICc score), regardless

of the sign of the coefficient of heteroscedasticity. This informa-

tion is useful in a management context, where knowledge of the

coefficient of heteroscedasticity is an important feature in assess-

ing sustainable exploitation regimes (Minto et al. 2008; Burrow

et al. 2013). This is illustrated in Appendix A (Table A1), which

broadly labels each population from the set {–1, 0, +1}; the value –1

corresponds to stocks where there is good statistical evidence for

a negative coefficient of heteroscedasticity (using, in this case, an

approximate 95% confidence interval).

To reliably identify a negative coefficient of heteroscedasticity,

managers or fisheries scientists using the frequentist methods

should check that their chosen confidence interval lies in the nega-

tive region; those using the Bayesian framework can consider �1 or

�2 as a noninformative benchmark prior and check whether their

Bayesian credible interval lies in the negative region. We note that

Bayesian approaches may be particularly useful where priors can be

specified based on information about similar stocks in other loca-

tions. To protect this work against false positives or negatives, we

recommend fisheries scientists to use both frequentist and Bayesian

methods when assessing stocks for heteroscedasticity. If bothmeth-

Table 6. Edge effect analysis applied to populations showing their approximate 95% confidence interval (CI) of


1 falling in the negative region.

95% CI

Assessment ID � Complete data Truncated data Is comparable

DFO-QUE-COD3Pn4RS-1964-2007 1 (−4.70, −0.22) (−4.62, −0.72) Yes

IMARPE-PANCHPERUNC-1963-2004 1 (−5.14, −0.80) (−5.61, −1.25) Yes

INIDEP-SBWHITARGS-1985-2007 1 (−10.67, −2.27) (−14.46, −8.47) Yes

NRIFS-OFLOUNECS-1986-2010 1 (−30.0, −14.2) (−27.68, −2.50) Yes

NWWG-HERRIsum-1984-2011 0 (−12.13, −3.53) (−18.55, −2.62) Yes

WGBFAS-HERR30-1972-2011 1 (−5.62, −0.16) (−4.32, −0.09) Yes

WGNSSK-WHITNS-VIId-IIIa-1989-2010 −2 (−10.23, −0.09) (−7.60, 3.12) No

Note: � describes the best-fitted model, Complete Data describes the CI obtained for the complete population, Truncated

Data describes the CI obtained after truncating the population at both ends, and Is Comparable indicates whether analysis

repeated on truncated population agrees with the original one.

Table 7. Edge effect analysis applied to populations with more than 55 data points.

95% CI

Assessment ID � Complete data Truncated data Is comparable

AFWG-HADNEAR-1947-2010 1 (−3.63, 0.52) (−3.86, 0.11) Yes

ICCAT-ATBTUNAEATL-1950-2010 0 (−4.62, 3.09) (−3.88, 3.49) Yes

NEFSC-HADGB-1930-2008 1 (−1.45, 2.59) (−2.12, 2.14) Yes

WGNSSK-CODNEAR-1943-2010 0 (−4.12, −0.36) (−4.79, −0.88) Yes

Note: � describes the best fitted model, Complete Data describes the CI obtained for the complete population, Truncated

Data describes the CI obtained after truncating the population at both ends, and Is Comparable indicates whether analysis

repeated on truncated population agrees with the original one.
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odsagree, then therewouldbe strongevidence thatour conclusion is

correct; otherwise, we should investigate the limitation of each

method separately. To facilitate comparison, examples of the R code

necessary for our analyses are supplied in the Supplementary mate-

rial1. (The entire results can be reproduced by using the complete

project built in R. Please see the file README.txt contained within

the zip file of the Supplementary data for more details.)

Although both frequentist and Bayesian approacheswere devel-

oped to identify the nonconstant variance exhibited in density-

dependent models, heteroscedasticity could not be identified for

the majority of the datasets no matter which method is used (out

of 90 datasets, eight datasets are classified with label –1 and +1,

under an approximate 95% confidence interval). The two principal

reasons that drive this limited capacity to reliably identify het-

eroscedasticity are as follows: first, the data are typically rather

poorly explained by the best-fitting S-R relationships because of

the inherent noise in the S-R relationship; second, the time series

are not long enough for reliable parameter estimation in most

cases (Burrow et al. 2013). Furthermore, it is likely that, in some

stocks, the magnitude of any heteroscedasticity is negligible.

Nevertheless, this does not diminish the potential importance

of heteroscedasticity and its identification, especially in the eight

datasets for which we found good evidence of its presence.

We investigated whether there are natural clusterings of stocks

with the sameheteroscedastic classification; for example, onemight

hypothesize the same heteroscedastic signal of fish stocks of the

same (or similar) species in different locations or alternatively in

different stocks at the same location. Our preliminary analyses (us-

ing approximate 95% confidence levels) indicate no such convenient

clusterings. However, further work is needed. For example, classifi-

cation based on approximate 80% confidence levels reveals a consis-

tent –1 classification for American plaice (Hippoglossoides platessoides),
and such patternsmay have relevance for sustainablemanagement.

In this analysis, we made two assumptions. First, we discarded

10 S-R populations from the RAM legacy database because of miss-

ing data resulting in the analysis of 90 S-R populations of 32 spe-

cies. We think that this sampling scheme had no bias implication

because each population is treated individually and with no effect

on the others. Second, we treated all VPA-type assessments as

approximately equivalent, having first verified that the choice of

an assessment had no statistical effect on the sign of coefficient of

heteroscedasticity; this is validated by mapping the heteroscedas-

ticity coefficient value against the VPA-type assessment where we

found no impact of the VPA-type assessment on the classification

method. Additionally, we assessed the possibility of edge effects in

the VPA methods. Such effects may be caused by backward-

convergence of VPA methods, increased variance of recruitment

at the end of the time series, and shrinkage factors, and all these

factors may introduce a bias in both SSB and recruitment esti-

mates. This made no difference in the classification of 10 of the

11 populations tested, allowing us to confidently advocate the use

of a heteroscedastic model with negative coefficient of heterosce-

dasticity as a valid management choice in these cases.

Our futureworkwill seek to extend the analysis to amore holistic

ecosystem-level analysis including external biotic and abiotic factors

(i.e., an end-to-end perspective). Besides, we propose combining data

frommultiple stocks of similar species to better estimate the param-

eters of the S-R relationship. To account for heterogeneity, we pro-

pose considering a blocking factor and (or) within-block correlation

in the log-likelihood function across different populations of similar

species. Ifwedonot get ablocking effect,meaning that two (ormore)

populations from the same species have the same variance, then

pooling of multiple populations become statistically feasible. Alter-

natively, one can use data frommultiple populations to obtain esti-

mates of key parameters for individual populations throughout a

Bayesian hierarchical framework (Gelman et al. 2004).
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O’Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter,
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