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Abstract 

High Entropy Alloys (HEA) are many-component (>4), near equiatomic compositions that by 

definition, forms disordered single phases, but are also known to form ordered phases such 

as C14 Laves, B2, Sigma etc. Understanding of the HEA phase stability is limited due to lack 

of knowledge of HEA thermodynamics as their stoichiometry is located at, or near the 

centre of their corresponding phase diagrams. Utilising HEAs in industrial and/or functional 

applications requires this understanding for successful design of HEA compositions. The 

original contribution of this thesis is the development of a simple, semi-empirical model that 

allows the prediction of some HEA properties (relative phase stability, hardness) that can be 

easily implemented. The model is developed through initial analysis of HEAs exploring the 

influence of the electronic density on phase stability utilising the Thomas-Fermi-Dirac 

equation for constrained neutral atoms; and the influence of a possible reduction in valence 

orbital degeneracy due to the breaking of symmetry from changes in phase. The hypotheses 

formed from this analysis are further compared with robust ab-initio calculations following 

the Rigid Band Approximation within Density Functional theory. The final two chapters 

examine the construction of the proposed model and its refinement; experimental 

validation of the model is performed through an engineering of a possible replacement for 

the Stellite family of Co-Cr alloys, which has been optimised for wear resistance. 

Experimental validation shows good results with respect to the predicted values. 

  



3 
 

1. Preface 

1.1 Publications 
List of included publications: 

I. Electron Density analysis of multi-principal component alloys through the fourth-order 

Runge-Kutta solution of the Thomas-Fermi-Dirac equation 

Zhaoyuan Leong, Russell Goodall, Iain Todd. 

Physics Review Letters, In peer-review. 

II. The Effect of Electronic Structure on the Phases Present in High-Entropy Alloys 

Zhaoyuan Leong, Jan S. Wróbel, Sergei L. Dudarev, Russell Goodall, Iain Todd, Duc Nguyen-

Manh. 

Nature Scientific Reports, Accepted. 

Comments on contribution: 

I. Experimental (100%), Calculations (100%), Analysis (100%), Data presentation (100%), 

Literature review (100%), and Writing (100%). 

II. Experimental (100%), Calculations (__0%), Analysis (_50%), Data presentation (_90%), 

Literature review (100%), and Writing (_75%). 

Other publications: 

1. Crystalline Structures of Some High Entropy Alloys Obtained by Neutron and X-ray 

Diffraction, U. Dahlborg, J. Cornide, M. Calvo-Dahlborg, T. Hansen, Z. Leong, L. Asensio 

Dominguez, S. Chambreland, A. Cunliffe, R. Goodall, and I. Todd, Acta Physica Polonica A, 2015. 

2. Combined Atom Probe Tomography and TEM Investigations of CoCrFeNi, CoCrFeNi-Pd x 

(x=0.5, 1.0 and 1.5) and CoCrFeNi-Sn, U. Dahlborg, J. Cornide, M. Calvo-Dahlborg, T. Hansen, Z. 

Leong, L. Asensio Dominguez, S. Chambreland, A. Cunliffe, R. Goodall, and I. Todd, Acta Physica 

Polonica A, 2015. 

3. Structure and properties of some CoCrFeNi-based high entropy alloys, J. Cornide, U. Dahlborg, 

Z. Leong, L. Asensio Dominguez, J. Jurasze, S. Jouen, T. Hansen, R. Wunderlich, S. Chambreland, 

I. Todd, R. Goodall and M. Calvo-Dahlborg, TMS 2015 Supplemental Proceedings, 2015. 

4. Structure of some CoCrFeyNi and CoCrFeNiPdx multicomponent HEA alloys by diffraction 

techniques, U. Dahlborg, J. Cornide, M. Calvo-Dahlborg, T.C. Hansen, A. Fitch, Z. Leong, S. 

Chambreland, and R. Goodall, Journal of Alloys and Compounds, 2016. 



4 
 

1.2 Acknowledgements 
First and foremost I would like to thank Russell Goodall for his tremendous encouragement in the 

course of supervising this project as his keen eye for the silver lining has kept me going more than 

once, and in also for both allowing me the freedom to pursue whatever crazy ideas I may have come 

up with but always guiding me back to the path when I do (inevitably) stray. 

Next, I would like to express my gratitude to Iain Todd, from whom my enthusiasm for research was 

developed during my Master’s project and encouraged me to pursue the PhD, and continued to 

guide and offer invaluable advice throughout the PhD. 

I also value the advice given freely by Pearl Sullivan and Alvin Tan, which helped me with my decision 

of choosing between academia and industry; without which, this thesis would not have come into 

being. 

Many thanks to my fellow rapid-solidification cohort. In no particular order, Phil Mahoney, Huang 

Yuhe, Gao Junheng, for their patience at my occasional self-mocking diatribes, help,  friendship, and 

general advice on all things under the sun; Gautam Anand for the much-appreciated talks we have 

had on the theoretical tools of the trade. The technical staff at the department has also been superb 

and invaluable, and have helped in so many ways throughout all of the research work. I would like to 

in particular thank Paul Hawksworth for just being there to offer a word of advice whenever needed, 

especially during those days when the arc-melter was inevitably near-dead. Finally, I would like to 

express my gratitude for one particular individual who thinks himself divine, as his general 

nonchalance (and implicit support) when things going south - ‘Where’s the fun if it’s easy?’ has been 

a particular source of inspiration. You know who you are. 

Finally, at the risk of sounding cliché, I would like to dedicate this thesis to my parents, who have 

provided a firm foundation on which to build all of this from. And of course, Phoebe, without whom 

life would be slightly different.   

 

  



5 
 

Table of Contents 

1. Preface .............................................................................................................................. 3 

1.1 Publications ................................................................................................................. 3 

1.2 Acknowledgements ..................................................................................................... 4 

Table of Contents .............................................................................................................. 5 

2.  Literature review .......................................................................................................... 10 

Table of Contents ............................................................................................................ 11 

2.1  Background ........................................................................................................... 15 

2.2  Relationship between properties and structure / composition .............................. 16 

2.2.1 The conundrum of the single phase ............................................................... 16 

2.2.2 Hardness and mechanical properties ............................................................. 18 

2.2.3  Magnetic properties ...................................................................................... 20 

2.3 Core stabilisation effects ....................................................................................... 23 

2.3.1 Thermodynamic parameters .......................................................................... 24 

2.3.2 Hume-Rothery rules of alloying ...................................................................... 29 

2.3.3 Validity of empirical prediction parameters ................................................... 35 

2.4 Chemical bonding of HEAs .................................................................................... 42 

2.6 Theory of quantum mechanics for phase stability predictions ............................... 44 

2.6.1 Schrodinger equation ..................................................................................... 44 

2.6.2 Thomas-Fermi method ................................................................................... 47 

2.6.3 Hohenberg-Kohn theorems ............................................................................ 51 

2.6.4 The Kohn-Sham equations ............................................................................. 52 

2.6.5 Kohn-Sham Density Functional Theory – Types and options ........................... 54 

2.6.6 Rigid Band Approximation (RBA) .................................................................... 58 

2.6.7 Phase stability using DFT and key challenges ................................................. 60 

2.7 Summary .............................................................................................................. 63 



6 
 

2.9  References ............................................................................................................ 65 

3. Experimental and Numerical Methods ......................................................................... 76 

3.1 Alloy synthesis – Arc melting ................................................................................. 78 

3.2 X-ray diffraction .................................................................................................... 81 

3.3 Hardness testing ................................................................................................... 83 

3.4 Compression testing ............................................................................................. 83 

3.5 Statistical analysis: Cluster analysis and probability density function .................... 84 

3.6 4th order Runge-Kutta solution of the Thomas-Fermi-Dirac function ..................... 85 

3.8 References ............................................................................................................ 88 

4.  The Local Environment of Alloys .................................................................................. 89 

4.1 Chapter Preface .................................................................................................... 95 

4.2 Analysis of the relationship between High-entropy alloy parameters: Enthalpy of 

mixing and averaged electronegativities (Pauling, Allen, and Mulliken) ........................... 97 

4.2.1 Calculations: Cluster and probability density function analysis. ...................... 98 

4.2.2 Cluster analysis of VEC − ΔH plot ................................................................ 101 

4.2.3 Cluster analysis of X − ΔH plots ................................................................... 104 

4.2.4 Distribution of Complex Phases .................................................................... 106 

4.2.5 Summary ..................................................................................................... 107 

4.3 Electron Density Analysis of High-entropy Alloys Simple and Complex Phases .... 107 

4.3.1 Calculations:  4th order Runge-Kutta solution of the Thomas-Fermi-Dirac 

equation. ................................................................................................................... 108 

4.3.2 Summary ..................................................................................................... 114 

4.4 Conclusions ......................................................................................................... 115 

4.5 References .......................................................................................................... 116 

5. The Effect of Electronic Structure on the Phases Present in HEAs ............................... 121 

Table of Contents .......................................................................................................... 122 



7 
 

5.1 Chapter Preface .................................................................................................. 125 

5.2 Rigid Band Approximation of High Entropy Alloys ............................................... 127 

5.2.1 Experimental Identification of Phases Adopted by CoCrFeNi-type Compositions

 127 

5.2.2 RBA Phase Stability as a Function of Valence Electron Concentration .......... 130 

5.2.3 Electronic Origin of Phase Stability for Complex Phases in HEA. ................... 136 

5.2.4 Relative Structural Stability and their Fermi Energy Difference,  F . ......... 137 

5.2.5  RBA versus Experimental observation of HEA Phase Stability as a Function of n 

  .................................................................................................................... 139 

5.2.6 Structural Stability of New HEAs: The CoFeNi-Vx family ................................ 142 

5.3 Chapter Summary ............................................................................................... 143 

5.4 References .......................................................................................................... 145 

6. Tetragonal distortion of simple phases ...................................................................... 150 

6.1 Chapter Preface .................................................................................................. 157 

6.2 Experiment/Calculations ..................................................................................... 158 

6.2.1 Distorted tetragonal cell: Construction of cell .............................................. 158 

6.2.2 Searching for the fivefold degenerate energy .............................................. 164 

6.2.3 Distorted tetragonal cell: Effect of different c/a ratios ................................. 166 

6.2.4 Distorted tetragonal cell: Energy levels ........................................................ 167 

6.2.5 Distorted tetragonal cell: Allotrope of Fe (BCC->FCC) ................................... 171 

6.2.6 General stability between the FCC and BCC structures as a function of the d-

electron number ........................................................................................................ 174 

6.2.7 Extension of theory to predict HEA systems ................................................. 178 

6.2.8  Application of the method: Predicting stoichiometric phase presence in HEA 

compositional families ............................................................................................... 185 

6.3 Conclusions ......................................................................................................... 194 



8 
 

6.4 References .......................................................................................................... 196 

7. Designing hardfacing HEAs with ݐݏ݅ܦܧ. ܺ .................................................................. 201 

Table of Contents .......................................................................................................... 202 

7.1 Chapter Preface .................................................................................................. 206 

7.2 Design of alloy replacement for Stellite coating in hardfacing applications ......... 207 

7.3 Analysis of variation of yield stress to ݐݏ݅ܦܧ. ܺ −  208 ....................................... ܥܥܨ

7.3.1 XRD characterisation of selected CCFN-Ax compositions .............................. 210 

7.3.2 Mechanical properties of selected CCFN-Ax compositions ............................ 212 

7.3.3 Dilatational strain analysis as a function of the enthalpy of mixing .............. 213 

7.3.4 Comparison of ∆ܪ and ݐݏ݅ܦܧ. ܺ −  ݊݅ܽݎݐݏ߶ to describe variation in ܥܥܤ

values  .................................................................................................................... 215 

7.3.5 Effect of  ߶݊݅ܽݎݐݏ on complex phase presence and mechanical properties . 217 

7.3.5 Section summary ......................................................................................... 221 

7.4 Strategy for alloy design ...................................................................................... 223 

7.4.1 Populating data table to obtain trends of ݐݏ݅ܦܧ.  with Vickers hardness ܥܥܨ

(HV)  .................................................................................................................... 224 

7.4.3 Proposed alloy compositions and cost projection of raw materials .............. 229 

7.4.3 Mechanical properties of alloy compositions ............................................... 230 

7.5 Conclusions ......................................................................................................... 236 

7.6 References .......................................................................................................... 238 

9. Conclusions ................................................................................................................... 243 

10. Suggestions of further work ........................................................................................ 246 

11. Appendices .................................................................................................................. 247 

Appendix A: XRD characterisation.................................................................................. 248 

Appendix B: Calculation of errors for compression testing ............................................. 259 

Appendix C: Application of the Stoner Model to Rigid Band Approximation .................. 269 



9 
 

Appendix D: Thomas-Fermi-Dirac Electron Density Code (Mathematica .nb format) ..... 273 

  



10 
 

2.  Literature review 

  



11 
 

Table of Contents 

2.1  Background ........................................................................................................... 15 

2.2  Relationship between properties and structure / composition .............................. 16 

2.2.1 The conundrum of the single phase ............................................................... 16 

2.2.2 Hardness and mechanical properties ............................................................. 18 

2.2.3  Magnetic properties ...................................................................................... 20 

2.3 Core stabilisation effects ....................................................................................... 23 

2.3.1 Thermodynamic parameters .......................................................................... 24 

2.3.1.1 Entropy effects on simple and complex phase presence in HEAs ................ 25 

2.3.3.2 Balancing of the thermodynamic parameters at equilibrium ...................... 26 

2.3.3.3 Validity of the enthalpy of mixing approximated from the Miedema model 28 

2.3.2 Hume-Rothery rules of alloying ...................................................................... 29 

2.3.3 Validity of empirical prediction parameters ................................................... 35 

2.4 Chemical bonding of HEAs .................................................................................... 42 

2.6 Theory of quantum mechanics for phase stability predictions ............................... 44 

2.6.1 Schrodinger equation ..................................................................................... 44 

2.6.2 Thomas-Fermi method ................................................................................... 47 

2.6.3 Hohenberg-Kohn theorems ............................................................................ 51 

2.6.4 The Kohn-Sham equations ............................................................................. 52 

2.6.5 Kohn-Sham Density Functional Theory – Types and options ........................... 54 

2.6.6 Rigid Band Approximation (RBA) .................................................................... 58 

2.6.7 Phase stability using DFT and key challenges ................................................. 60 

2.7 Summary .............................................................................................................. 63 

2.9  References ............................................................................................................ 65 

  



12 
 

Symbols and Abbreviations 

 Atomic size mismatch    ߜ

 Change in Enthalpy   ܪ∆

∆ܵ   Change in Entropy 

 Change in Gibbs free energy   ܩ∆

∇   Laplace operator 

Ω   Empirical parameter used in HEA prediction defined as the ratio of Tm/Tcrit 

 Chemical potential   ߤ

BCC   Body-centred Cubic 

C14   C14 Laves Phase 

CALPHAD  Computer coupling of phase diagrams and thermochemistry 

݁   Rest charge of an electron 

 ி   Fermi energyܧ

ி்ܧ    Thomas-Fermi energy 

ELF   Electron localisation function 

FCC   Face-centred Cubic 

ℏ   Reduced Planck constant 

    Hamiltonianܪ

HEA   High-entropy Alloy 

Hv   Hardness in units Vickers 

m   Mass of a particle 

݊ௐௌ   Electron density at the Wigner-Seitz radius 

 Electron density   (ݎ)݊

N   Number of electrons 

 Momentum operator   (ݎ)

R   Gas constant 

T   Temperature in units Kelvin 

Tcrit   Critical temperature 

Tm   Melting temperature 

  Electrostatic potential   (ݎ)ܸ

VEC   Valence Electron Concentration 

ܺ   Allen electronegativity 

Z   Atomic number 

 



13 
 

Tables of figures 

Figure 1. Structural map of HEA showing the occupying a large region in the structural map 

owing to the multiple selection of alloying compounds and tuneability of phase fraction 

depending on composition [14]. .......................................................................................... 19 

Figure 2. Phase diagram of some elements shown in a 2-D plot of Temperature against the 

electron concentration, e/a, showing the dependence on the phase of the material [53]. .. 34 

Figure 3. Dependence of the enthalpy of mixing, ∆HMix and entropy of mixing, ∆HMix 

when plotted against the atomic size difference, δ on the phase formed [60]. .................... 36 

Figure 4. Dependence of the parameter Ω against the atomic size difference, δ on the phase 

formed [15] ......................................................................................................................... 37 

Figure 5. Dependence of the parameter μ (cf. Eq. X) plotted against the radial mismatch, 

δ [11]. The plot shows HEAs tend to form at high values of μ, corresponding to temperature 

values below the melting temperature ............................................................................... 38 

Figure 6. Relationship between VEC and simple FCC/BCC phases in HEA systems. [12] ....... 39 

Figure 7. Relationship between VEC and Sigma phase formation [76] for AlxCrFe1.5Ni0.5 alloy 

compositions. The sigma phase forms between 6.88 < VEC < 7.84. ..................................... 40 

Figure 8. Biplot of first two principal components from Dominguez et al.’s Principal 

Component Analysis [13]. The phases appear the most fenced in around the lines 

representing the enthalpy of mixing and the valence electron concentration. .................... 41 

Figure 9. Two-dimensional plot of valence electron concentration against the enthalpy of 

mixing showing discrimination between simple and complex phases [13]. Compositions 

containing the simple FCC phase are observed to be distinguishable from compositions 

showing the simple BCC phase. Complex structures are characterised by negative enthalpy 

of mixing values. ................................................................................................................. 42 

Figure 10. Truncated list of options for DFT calculations [94]. ............................................. 56 

Figure 11. Lowest-energy structures in an Au-Cu system as a function of the fraction of Au 

atoms in the lattice [104]. The energy values are calculated using the VASP code [104–106], 

and representative structures are shown as well. ............................................................... 61 

 

Table 1. Phases in HEAs according to their typical hardness values, with examplars of their 

corresponding phases [3]. ................................................................................................... 18 



14 
 

Table 2. Different electronegativity scales and their methods of derivation. ....................... 31 

Table 3. Summary of methods of estimation of the exchange functional, ܸܺ(ݎ)ܥ in DFT 

methods, and some issues associated with them. ............................................................... 57 

Table 4. Summary of the all-electron potential and pseudopotentials used in DFT, and key 

issues related to them. ........................................................................................................ 58 

Table 5. Summary of key issues associated with running DFT calculations. ......................... 62 

  



15 
 

2.1  Background 

Until recently, it was accepted that the addition of too many elemental components in 

significant quantity into a solid solution to form an alloy would cause the formation of 

undesirable intermetallic structures that weaken its mechanical properties. This idea is 

grounded in several thermodynamic and phase diagram analyses that have been 

extrapolated from existing data. The design paradigm of alloys was thus restricted to mostly 

a single principal component with slight changes to the compositions (typically <10%) 

and/or through heat treatment to modify the microstructure. Alloying additions may also 

modify the chemical properties of the alloy, such as the addition of chromium to form 

stainless steel. Alloys that form simple phases with FCC, BCC, and some orthorhombic 

structures are preferred as they possess increased ductility (due to the availability of 

increased slip systems), allowing alloying additions to ‘tune’ the end-product’s mechanical 

properties. 

High-entropy Alloys (HEAs) are a recently developed class of alloy (near equimolar 

compositions consisting of >4 components) that challenge this perception. First reported as 

a curiosity by Cantor et al., the equimolar 5-component CoCrFeNiMn composition (Alloying 

components for all compositions in this thesis are presented in atomic percent) was 

observed to be a FCC solid solution [1]. Further studies on equimolar multicomponent alloys 

have attributed the solid solution stabilisation mechanism to the increased entropy of 

mixing arising from its multiple components [2,3] – hence termed HEAs, as characterisation 

of this class of alloys show that for some, complex phases as predicted from thermodynamic 

databases do not form [2–5]. For ease of discussion in this thesis, the simple phase is 

defined as a phase derived from the FCC, BCC or HCP structures; with complex phases being 

those from all other structures [2] or with ordering [6]. Complex phases are also commonly 

referred to as intermetallics in other fields. 

HEAs are also known as multi-component alloys in the open literature as the stabilisation 

effects of the simple phases have not yet been fully investigated [6–10] and there is 

disagreement over the attributes of entropy, i.e. which entropies (Mixing, magnetic, 

electronic, and vibrational) contribute to HEA phase stability. Characterisation of well-

known simple-phase compositions such as CoCrFeNi and CoCrFeNiPd using advanced 

techniques such as neutron diffraction have shown the microstructure to be composed of 



16 
 

multiple simple FCC phases that possess similar lattice parameters [9]. Furthermore, heat 

treatment of CoCrFeNiMn has shown the precipitation of a complex phase at the grain 

boundaries [7], suggesting that many HEA compositions do not exist as a single solid 

solution, and are likely to be non-ideal thermodynamically [11]. Despite these results, the 

simple phases remain dominant in these compositions, allowing inferences, methods, 

parameters developed from previous analysis [12–16] to still remain relevant. In the 

following discussions the term HEA is used to apply not just to equimolar multi-component 

alloys, but also near equimolar compositions. 

2.2  Relationship between properties and structure / composition 

2.2.1 The conundrum of the single phase 

The main critique behind the prediction of HEA phases from thermodynamic databases 

using the CALPHAD methodology is the lack of suitable databases for many component 

systems [2]. Early predictions on HEA systems by Durga et al. focused on Fe-containing 

HEAs, as the Fe thermodynamic databases have been extensively studied [4]. The predicted 

phases are found to be loosely in agreement with experimental results, with multiple phases 

being predicted, which has been attributed to a lack of ternary phase diagram [5]. Senkov et 

al.’s [5] subsequent improved CALPHAD methodology that includes consideration of binary 

and ternary systems shows that, even for these results, most of the predicted phases 

contain multiple simple phases (CoCrFeNi is predicted to contain FCC and Sigma phases; and 

CoCrFeNiMn FCC and BCC phases) [5], showing similar prediction trends to Durga [4] that 

are not present experimentally. Comparison of phases present at the melting temperature, 

however, shows good agreement with experiment [5], suggesting the non-equilibrium 

nature of these alloys [7] which may be attributed to the slow diffusion of HEAs [2]. This 

hypothesis was mainly based on secondary observations such as the retention of 

nanocrystals and its actual impact in HEA formation has been called into question [a1, a2]. 

Further discussion of this topic will be continued below. 

The single phase nature of HEAs has been called into question as the structure of some HEAs 

were investigated utilising atom probe tomography and neutron diffraction [5] where 

CoCrFeNiCu [8,17] and CoCrFeNiPd [18] compositions were found to consist of multiple 

simple FCC phases that possess lattice parameters with very similar values. In the previously 



17 
 

mentioned CALPHAD studies the CoCrFeNiCu composition is predicted to contain two FCC 

phases at the melting temperature, and two FCC, BCC, and a Sigma phase at 600oC [5]; and 

two FCC and two BCC phases by Durga et al. [4]. The presence of multiple simple FCC phases 

in the as-cast condition instead of the expected single phase solid solution is suggestive of 

the non-trivial nature of phase stabilities of the HEA class of alloys.  

Furthermore CoCrFeNiMn, which has traditionally been considered to be a single simple 

phase HEA, forms complex Sigma phase precipitates at the grain boundaries on undergoing 

long duration heat treatment [7]. The authors of this communication, Pickering et al. 

suggest that HEAs may be inherently thermodynamically metastable. This argument is 

further strengthened by the grain-boundary precipitation observed in the CoCrFeNiMn 

composition under prolonged heat treatments between 500-700°C, as shown by Otto et al. 

[19]. 

The term metastable is used to indicate the timescale needed to achieve thermodynamic 

equilibrium, attributed to the slow diffusion arising from the multiple alloying components 

of different size [2]. Although precipitation of the Sigma phase is attributed to the 

thermodynamics of the system, these have not been explicitly considered. The 

thermodynamic parameters of HEAs will be discussed later below.  

While the inherent instability of these structures is thus acknowledged, reported results 

have also shown that the CrFeCoNiMn solid-solution as-cast structure remains as the 

majority phase for heat-treatments when annealed below a defined temperature, unless: a) 

heat treated for 500h, at which point grain-boundary precipitates appear [7,19], or b) the 

composition is subjected to severe plastic deformation [20]. As such, although these 

compositions have been revealed to possess more complicated structures than previously 

thought, previous studies involving treatment of the system as a single simple phase can 

lead to good predictions of the majority structure [21–24], showing that a ‘cocktail effect’ 

[2] approximation may be used. These approximations involving HEAs are therefore used in 

the following analyses in this thesis. 

Some key benefits that HEAs may bring to alloy development are:  



18 
 

1. The stabilised simple phase is retained as the majority structure near room 

temperatures and if not subjected to severe plastic deformation, and may be 

considered to be process-independent under these conditions [17].  

2. The broad range of elements that can be included in the design of a HEA 

allow the tuning of beneficial chemical properties [21–25]. 

3. Careful control of a HEA composition’s stoichiometry allows tuning of 

mechanical properties [21–24]. 

2.2.2 Hardness and mechanical properties 

Table 1. Phases in HEAs according to their typical hardness values, with examplars of their 

corresponding phases [3]. 

 

Due to the unique simple phase stabilising mechanisms of HEAs and the lack of a single 

principal element, their mechanical properties are very different from those of its 

constituent components. As a result the mechanical properties of HEAs require additional 

study, and are not yet fully explored, with those present in the literature limited to mainly 

compression and hardness testing [9–13]. From these studies, the mechanical properties of 

HEAs are found to rely on the mechanical and crystal structure of the alloy. With regards to 

the bulk hardness of the composition, this can be understood to depend on the volume 

fraction of each phase present, and the microstructure of the alloy [2]. Table 1 above 

illustrates the typical hardness shown by FCC, BCC, complex phases, and carbide-group 

compounds [3]. The carbide-group compounds exhibit highest hardness values associated 

with the covalent bonding of these compounds, followed by complex / intermetallic phases 

that demonstrate covalent-metallic bonding [27–30], and finally FCC / BCC phases that 

possess metallic bonding. Alloy hardness can thus be estimated with knowledge of the 

phase fraction and phase evolution and, as may be expected, alloys which contain complex 

phase stabilising elements are observed to be harder and less ductile. The stoichiometry of 

simple phase containing HEAs may be modified to include a higher proportion of complex 

phase stabilising components to control the phase fraction, increasing their mechanical 



19 
 

properties [21–25]. In line with estimates from the hardness of the phases, the yield 

strength of HEAs decreases as the transition from FCC to BCC phase with a corresponding 

increase in the Young’s Modulus, as in the case for FeCoNi(AlSi)x alloys [31].  

 

Figure 1. Structural map of HEA showing the occupying a large region in the structural map owing to 

the multiple selection of alloying compounds and tuneability of phase fraction depending on 

composition [14]. 

The structural map in Figure 1 above demonstrates the wide range of mechanical properties 

that HEAs may adopt, primarily attributed to the combination of phases that can be present. 

The effect of alloying a simple FCC phase CoCrFeNiMn HEA composition with Al additions to 

induce BCC formation on the mechanical properties was studied by He et al. [32]. The 

resultant hardness was found to be strongly dependent on the stable phase of the system as 

a result of the alloying addition with <8% Al (FCC), 9-16% (FCC-BCC), >17% (BCC), 

respectively. The hardness is observed to increase rapidly between additions of 9-16% of Al 

addition, achieving stable hardness values by 20% alloying addition. The tensile strength and 

ductility of the alloys are found to decrease with increasing alloying addition as may be 

expected from a FCC to BCC transition, as the BCC structure contains fewer slip planes. The 

8-16% Al region demonstrates clearly the possibly of tuning the mechanical properties 

through its alloying addition so as to obtain a mixed-phase structure. 

The effect of complex Sigma phase precipitation in equimolar CoCrFeNi, CoCrFeNiMn 

through the addition of V was studied by Salischev et al. [21], where the hardness was 

observed to increase from 160 HV (CoCrFeNi) to 524 HV (CoCrFeNiV), and from 170 HV 

(CoCrFeNiMn) to 650 HV (CoCrFeNiMnV). The tensile strength of the vanadium containing 

compositions reduced, exhibiting brittle fracture linked to the precipitation of the Sigma 
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phase. Precipitation of the Sigma phase is attributed to poor compatibility of vanadium with 

the other alloying elements, following HEA semi-empirical rules [16].  

Other than the effect of the composition’s structure, Sriharitha et al. attributed the strength 

of CoCrFeNiCuAl HEAs to grain size strengthening, solid solution strengthening, and order 

strengthening [33,34]. This solid solution hardening effect was further studied by Toda-

Caraballo and Rivera-Díaz-del-Castillio [35], in which a prediction scheme to predict the 

effect of solid solution hardening on the mechanical properties of HEAs was developed. In 

the paper, the predicted yield strength was found to indeed, increase, in tandem with the 

experimental yield strength of several HEA compositions. A deviation from the linear trend 

was observed at increased yield stress values that are attributed to the presence of complex 

phase such as Fe2Ti. This may be possibly attributed to the difference in the bonding 

mechanism of complex phases in the electronic structure, which may be expressed as a ratio 

of the bulk modulus to the shear modulus [36]. Lower ratios indicate increased directionality 

of bonding as the shear modulus increases, which lead to a corresponding increase in 

hardness [37].  

2.2.3  Magnetic properties 

There has been some evidence linking the phase and composition of HEAs to their magnetic 

properties, and magnetic phenomena as expected from behaviour of other magnetic 

systems. Zhang et al. in their communication show the FeCoNi(AlSi)x compositional family 

achieves higher saturated magnetisation than CoCrFeNiAlx due to the presence of the FCC 

phase. The higher atomic packing density of the simple FCC phase should lead to a higher 

total magnetic moment per unit volume than the simple BCC structure, or other complex 

structures [31], although a trade-off may be needed to obtain increased mechanical 

properties.  

Despite possessing lower packing density of the BCC/B2 structure and its suggested lower 

saturated magnetisation, Kao et al. reports higher saturated magnetisation values the BCC 

CoCrFeNiAl2.0 composition, than CoCrFeNiAlx (x = 0.25, 0.5, 0.75, 1.0, and 1.25) where FCC 

and mixed FCC-BCC simple phases are present [17]. Similarly, for Ti addition to the CoCrFeNi 

composition which results in the stabilisation of the complex Laves phase [22], which with 

lower packing density (0.71) than the simple FCC phase (0.74) may be expected to have 

lower saturated magnetisations, but these are reported to be higher. The unexpected 
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change may be a result of the change in bonding directionality at the atomic level when 

transitioning from the simple FCC structure to the complex Laves structure, leading to a 

deviation from Vegard’s law [39], and thus the inapplicability of using the packing density to 

describe the magnetic moment per unit volume. 

 

The saturated magnetisations measured by Shun et al. [22], with CoCrFeNi (1.51 Emu/g), 

CoCrFeNiTi0.5 (0.33 Emu/g), CoCrFeNiTi0.8 (1.37 Emu/g), and CoCrFeNiTi1.0 (1.51 Emu/g) 

possess superparamagnetic-like properties, which were attributed to ‘the appearance of 

nanoparticle assemblies embedded in the amorphous phase due to the increment of Ti 

addition’. However, the blocking temperature, TB and Curie temperature, TC for these 

compositions are in the region of 0-50k (TB) and 100-150k(Tc) making them unsuitable for 

practical use. 

 

Development of HEA compositions with Curie temperatures near room temperature 

remains essential for them to be used as magnetic materials [18,40,41]. Investigations into 

CoCrFeNiPdx compositions have shown them to increase in saturated magnetisation at room 

temperature and Curie temperature [18]. The TC is found to be dependent on the amount of 

Pd addition and these results suggest that HEAs may be good materials for consideration as 

next-generation magnetocaloric materials. In following work, Lucas et al. investigate the 

dependency of the TC and magnetic entropy on CoCrxFeNi compositions as a function of Cr 

addition and mechanical deformation, where it is found that increased Cr addition and cold-

rolling results in a higher TC. It is suggested that the antiferromagnetic nature of Cr 

contributes to TC values [6].  

The deleterious effect of Cr on TC is confirmed in detail by Kormann et al. [41], utilising 

Density Functional Theory in combination with Mean Field Theory to model the TC and 

saturated magnetisation behaviour of CoCrxFeNiAy HEA alloys, where A = Ag, Au, Pd, and Cu. 

For CoCrxFeNiAgy, CoCrxFeNiAuy, CoCrxFeNiPdy, and CoCrxFeNiCuy compositions studied, Cr 

addition was found to decrease both TC and saturated magnetisation. 

While the magnetic behaviour of HEAs are accepted to vary depending on compositional 

additions [6,22,38], the dependence of the maximum magnetisation and Curie temperature 

is not easily described by changes in composition or structure, as it is affected by the spin-
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orbit interaction at the atomic level. The magnetic interactions between atoms can affect 

the phase present in HEA compositions; Niu et al. [6] suggest that the influence of 

antiferromagnetic Cr in the CoCrFeNi composition leads to ordering in the structure that 

reduces the net magnetic moment of the structure to 36% that of the disordered structure. 

This ordering is driven by the energetic preference of antiferromagnetic Cr to spatially 

separate to lower the overall energy, and is shown by Klaver et al. [42] to exist for Cr solutes 

in a Fe solvent. It is noteworthy that in the work of Pickering et al. [7] on CoCrFeNiMn the 

phase that forms on heat treatment is Cr-rich. Additional work on ternary Fe-Cr-Ni alloy 

systems by Wrobel et al. [43] furthermore predicts the existence of an ordered structure 

existing near the middle of the phase diagram, corroborating Niu et al.’s [6] study. Magnetic 

frustration in CoCrFeNi alloys appears to be influenced by both alloy preparation methods 

as well as mechanical deformation; in Niu et al.’s [6] study a CoCrFeNi sample prepared 

through mechanical alloying (50 Emu/g) possessed a higher magnetisation as compared 

with a CoCrFeNi sample produced through the arc-melting and casting method (23 Emu/g). 

Furthermore mechanical deformation of the as-cast CoCrFeNi (26 Emu/g) is found to 

increase the magnetisation, in agreement with the results presented by Lucas et al. [40]. 

Despite the general agreement in trends of studies involving CoCrFeNi based compositions, 

the maximum magnetisation achieved between studies is found to vary, e.g. Niu et al. [6] 

report a value of 23 Emu/g for the as-cast CoCrFeni, Shun et al. [22] report a value of 1.51 

Emu/g for CoCrFeni, Kao et al. [38] report 50 Emu/cc (Apx. 8 Emu/g), and Lucas et al. [18] 

report CoCrFeNi as paramagnetic in their 2011 paper. Inspection of the magnetic testing 

methods show that: 

1. Not all of the alloys were tested at a temperature well below TC 

2. Only Niu et al. [6] performed measurements up to 198.9 kA/m (Apx 2,500 Oe) – Kao 

et al. [38] performed the measurements at 100 Oe while in the other 

communications the measurement fields were unspecified. As the TC of CoCrFeNi 

alloys is 130 [40], experiments that have been performed at temperatures above its 

TC, and below the field required for saturation magnetisation may not fully reveal 

information on the nature of CoCrFeNi, or indeed, any HEA composition’s spin 

properties resulting from the Pauli exclusion principle. 
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2.3 Core stabilisation effects 

The simple phases that are surprisingly present in HEAs are of primary interest in the field as 

many properties are strongly dependent on the phase present. The alloying components in 

HEAs also contribute to their properties, and also affect the phase formed. The ability to 

predict phase stabilities of new compositions is thus essential to a HEA development 

strategy. Yeh et al. [3] present several core simple-phase stabilisation effects, identified as: 

1. High-entropy effect: HEAs form simple phases contradicting predictions from the 

Gibbs phase rule that is attributed to the high mixing entropy, due to the multiple 

principal components existing in near-equiatomic ratios, resulting in the solubility 

range being pushed lower into simple phase formation. 

2. Cocktail effect: HEA components interact in a complex way to determine the 

properties. The addition of Al to CoCrFeNiCu is given by Tsai et al. [2] as an example, 

where Al is a simple FCC structure with low-melting point and the relatively weak 

bonds that on addition hardens the CoCrFeNiCuAl composition partly due to the 

formation of a simple BCC structure, and partly due to the bonding effects exhibited 

by Al. The macroscopic properties of HEAs are hence a function of both the 

interatomic interaction between alloying components, and the structure. 

3. The sluggish diffusion effect: Diffusion in HEAs is thought to be slower than 

conventional alloys [44]. This is attributed to large differences in the atomic 

environment of the multi component solid solution, there will be a fluctuation in the 

lattice potential energy that leads to a lower diffusion rate [45]. This is affected by 1. 

Different diffusion rates of each alloying component due to the size difference, and 

2. A minimising of the energy through the formation of local configurations. When 

an atom moves into a new vacancy it will not be as preferable to move it from a low 

energy to a higher energy site. Diffusion effects are thus thought to require a longer 

amount of time and allows for better high-temperature strength and structural 

stability. In their study, Tsai et al. [45] showed that the diffusion of Ni in CoCrFeNiMn 

is 50% higher than in Cr-Fe-Ni. The recent discovery of a complex Sigma phase in 

heat-treated CoCrFeNiMn [7] that was is also attributed to sluggish diffusion effects. 

4. The lattice distortion effect – The size difference between alloying elements of HEAs 

are thought to contribute to a lattice distortion effect that leads to solid solution 



24 
 

strengthening. This effect may also allow the tuning of electrical properties and Tc 

[46]. 

Of the four identified HEA stabilisation effects, the high entropy effect may be described by 

thermodynamic parameters of the entropy of mixing and enthalpy of mixing; the cocktail 

effect may be considered to be derived from the interaction between the valence electrons 

of each contribution; and both the sluggish diffusion and lattice distortion effects are linked 

through the atomic size difference and enthalpy of mixing [47]. Collectively, these effects 

that affect HEA phase stability may be sub-divided into thermodynamic-based parameters 

and parameters based on the Hume-Rothery rules of alloying. 

Of the remaining two effects, the most controversial in current literature is the sluggish 

diffusion effect [a1, a2]. The hypothesis was initially reliant on secondary observations (of 

precipitations of nanocrystals in HEA compositions); further tests done to validate the 

hypothesis have offered mixed results. One issue is that the current data available is unable 

to validate this hypothesis; instead analysis of measured diffusion values for the 

CoCrFeMn0.5Ni composition are found to be actually higher than in conventional materials 

[a1]. Current diffusion data is very limited, and validation of this hypothesis will required 

high-quality experimental diffusion data for a variety of compositions.  

2.3.1 Thermodynamic parameters 

An introduction to thermodynamics is briefly given before proceeding into some analyses 

from literature into the role of thermodynamics in HEAs. The study of thermodynamics 

relates natural phenomena to the quantity of energy exchanged between a system and its 

surroundings. The measureable properties in any system are linked through a relationship 

describing the state of the system, which may be expressed as a state function: 

ܲ = ݂(ܰ, ܸ, ܶ)         (1) 

where P is the pressure, V is the volume, N is the number of moles, and T is the temperature 

in Kelvin. As a consequence of the first law of thermodynamics, the change internal energy, 

∆ܷ is defined as the sum of the heat input, Q into the system and the work done by the 

system, W: 

∆ܷ = ܳ − ܹ           (2) 
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The second and third law of thermodynamics introduce entropy change, ∆ܵ, which in 

statistical thermodynamics is a delocalisation of energy caused by the change from a system 

with fewer available microstates to one with an increased number of available microstates 

for occupation [48]. The number of accessible microstates at 0K is zero. The remaining 

thermodynamic potentials used to represent the state of the system may be derived from 

the above properties. The thermodynamic potentials that are related to the discussion here 

are the enthalpy, ܪ = ܷ + ܸܲ and Gibbs energy, ܩ = ܪ − ܶ∆ܵ. 

2.3.1.1 Entropy effects on simple and complex phase presence in 

HEAs 

The thermodynamic stability of HEAs resulting from multiple alloying components in near-

equimolar proportions is thought to be dependent on its configurational entropy, ∆ܵ 

where the microstates correspond to the number of macrostates, given by the relationship 

formulated by Planck from Boltzmann’s original form as: 

∆ܵ =  (3)         ܰ ݃ܮ ܴ

This formula is wholly dependent on the number of ways it is possible to arrange the total 

number of elements in equimolar ratios in the unit cell of a simple phase solid solution, and 

scales with the number of components. The number of possible configurations of 

equiatomic compositions that may be derived from the periodic table grows increasingly 

larger the higher the number of required components. For example, even in limiting oneself 

to 13 metallic elements to form equiatomic HEA systems of components numbering 

between 5 and 13 would return at least 7,099 possible combinations [49]. Additionally, the 

exact simple phase that will be present in HEAs will be unknown prior to verification making 

it difficult to determine ∆ܵ exactly.  

Otto [50] made investigations into the effects of entropy and enthalpy by substituting 

components of CoCrFeNiMn with elements of similar crystal structures and comparable 

electronegativities. It was found that single simple phase and not complex phase containing 

compositions possess configurational entropy close to that of an ideal solid solution; the 

contribution of ∆ܵ to ∆ܩ only becomes dominant then due to the non-ordered 

structure. High configurational entropy by itself is thus shown to not provide a good a priori 

indicator of what simple phases will be present in HEA alloys; added to this fact is that 
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information on the phase present can only be obtained after experimental characterisation 

which limits the use of ∆ܵ as a parameter that clarifies only the possible reason that a 

particular phase is stabilised. 

In the previous study by Otto, the role of enthalpy of formation was most closely studied, 

with less focus on entropic configurations other than the configurational entropy. Ma et al. 

[51] communicated the results of entropy contributions (magnetic, vibrational, electronic 

and configurational) on a CoCrFeNiMn HEA composition utilising DFT. Contrary to previous 

assumptions that the magnetic, vibrational, and electronic entropy are small compared to 

the configurational entropy, Ma et al. [51] report that the electronic and magnetic entropy 

can contribute up to 50% of the configurational entropy, while the vibrational entropy may 

contribute up to four times the configurational entropy value, dependent on temperature. 

Lucas et al.’s [18] study on CoCrFeNiPd HEA alloys report that the alloying of CoCrFeNi with 

Pd causes a change in the configurational entropy similar in magnitude to the change in the 

vibrational entropy. Considering that their experiments were performed at room 

temperature, their conclusions agree well with Ma et al. [51] 

Considering the difficulties that arise in describing the entropic effect, use of the entropy 

parameter to describe the system may be ill-advised as the full influence of the entropic 

effects are not yet well understood, or researched. Tomilin and Kaloshkin [52] argue that 

based on the current literature [50,53,54] HEAs are actually multicomponent regular 

solutions that are assumed to be randomly distributed, which is only kinetically stable at low 

enthalpies of formation. From the point of view of the enthalpy of mixing, when ∆ܪ is 

close to zero, the solution is close to ideal, and it becomes energetically inefficient to form a 

complex phase [52]. This is backed up by experimental evidence which has found that 

  works well to discriminate between simple and complex phase formation in HEAsܪ∆

[2,15,49,50,54].  

2.3.3.2 Balancing of the thermodynamic parameters at 

equilibrium 

Thermodynamically, it follows that for the simple phase to be stabilised, the entropic 

contribution of the Gibbs energy of mixing must be equivalent to the enthalpy of mixing, 

 : such thatܪ∆
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ܩ∆ = ܪ∆ − ܶ∆ܵ = 0       (4) 

At ∆ܩ = 0 ܪ∆ , = ܶ∆ܵ  and the simple phase stabilised by ∆ܵ  is at 

equilibrium with the ordering of the compositional components i.e. the complex phase. The 

critical temperature, ܶ௧  is defined as the temperature at which for a particular 

composition ∆ܩ = 0 and is given by [15,55]: 

ܶ௧ =
|∆ு|

∆ௌ
         (5) 

The critical temperature is expressed as a ratio of the absolute value of ∆ܪ . By 

convention in HEA research [3,11,42,50,51], ∆ܪ  is approximated using sub-regular 

solution model based on the Miedema approximation for binary pairs [56–58] which 

evaluates ∆ܪ  based on the electron density at the Wigner-Seitz boundary, 

electronegativity, and a hybridisation term. Cunliffe et al. [55] hypothesised that when the 

critical temperature of a potential HEA composition is higher than its solidus temperature 

the high entropy phase is suppressed. In their communication, (TiZrNbCu)1-xNix where x = 

0.125, 0.15, 0.2, and 0.25 were synthesised; for the x = 0.125 and x = 0.15 compositions 

where ܶ௧ ≤ ܶwhere Tm is the melting temperature determined from DSC experiments, 

the precipitation of a dual phase microstructure containing Nb and a simple BCC phase was 

observed. At x = 0.2 and x = 0.25 it was observed that ܶ௧ > ܶ and the microstructure 

contained precipitation of complex Ni42(ZrTi)58 and Cu10Zr7 phases. 

Yang et al. [15] have also independently suggested a parameter, Ω defined as: 

Ω = ்∆ௌ

|∆ு|
= ்

்ೝ
         (6) 

where ܶis determined from the weighted average of the melting temperature of the 

alloying components, that when used in combination with the atomic size mismatch, ߜ in a 

two-dimensional plot allows partial discrimination mainly between simple and complex 

phases of HEAs. It was empirically determined that Ω ≥ 1.1  and ߜ ≤ 6.6%  (here ߜ 

represents the atomic size difference between the alloying components) should be used as 

a criterion for formation of the simple phase from their results. 

Despite the good distinction between simple and complex phases through the two-

dimensional ߜ − Ω plot, analysis of Eq. 6 shows that when ∆ܪ > 0, ܶ௧ may be defined 
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mathematically as the point at which ∆ܩ = 0. However when ∆ܪ ≤ 0, the required 

ܩ∆ = 0 criteria cannot be reached, and has no thermodynamical meaning for binary 

alloys [11]. Poletti and Batezzati [11] introduced a thermodynamic scheme that corrects the  

  for non-ideal behaviour using the regular solution model with binary enthalpyܩ∆

contributions obtained via the Miedema approximation [56,57]. A plot of the ratio of 

corrected ܶ௧  value to ܶ  against ߜ  indicates good separation between simple and 

complex phases that is comparable to the discrimination offered by the method of Yang and 

Zhang. 

2.3.3.3 Validity of the enthalpy of mixing approximated from the 

Miedema model 

As mentioned previously, the empirical ∆ܪ  parameter is approximated from the 

Miedema model [56–58] using the sub-regular solution model to extrapolate from binary 

pairs.  The general form of this approximation is based on the interaction between the 

volumetric effect, chemical potential for electronic charge, and change in the electron 

density at the Wigner-Seitz boundary as a basis for evaluation [58]. The proportionality 

between neighbouring atoms may be given by [57]: 

ܪ∆ ∝ −ܲ(∆X∗)ଶ + ܳ൫∆݊ௐௌ
ଵ/ଷ൯

ଶ
       (7) 

where P and Q are constants related to combinations on metals depending on their valences 

[3], ∆X∗ is Miedema’s electronegativity difference and ∆݊ௐௌ
ଵ/ଷ is the difference in the 

electron density at the Wigner-Seitz boundary. Electronegativity is linked to the valence 

electrons of an atom, even such that the Allen electronegativity scales is defined as the 

average energy of the valence electrons of an atom at the ground state [59]. These 

parameters have been shown to be able to some extent to distinguish between simple and 

complex phase formation in HEAs, and will be discussed further on (c.f. section 2.3.2.) It is 

sufficient to first discuss, here, that previous studies have shown that the structure of a 

composition may be strongly related to the valence electron concentration, famously used 

to explain the stability of FCC and BCC brass by Hume-Rothery [60,61], and shown to also 

apply to a wide variety of other structures, including HEAs [12,61,62]. The stability of these 

phases might be attributed to the dependence of the size changes of the Wigner-Seitz 
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radius and its corresponding density depending on the electronic structure of the 

composition.  

It must, however be noted that Miedema’s empirical model finds itself at odds with modern 

interpretations of quantum mechanics as the empirical model modifies the work function 

term to new values, ∆X∗  to achieve agreement with experimental ∆ܪ  values [63,64].  

Furthermore although the empirical values show good relationship with VEC, there is a 

deviation between the ratio between the enthalpy of mixing and the difference in the 

number of valence electrons squared, ∆ு

∆ேమ , which has been shown to start deviating from 

theoretical predictions between 4 < n < 7, regarded as a zone of complex phase presence in 

HEAs [12,13].  

2.3.2 Hume-Rothery rules of alloying 

The Hume-Rothery rules of alloying provide a set of guidelines by which a solid solution may 

form as a result of substitutional alloying. These rules have been invoked to describe the 

solid solution stability of HEAs. The Hume-Rothery rules are not well defined, as different 

factors were stressed by Hume-Rothery at different times, though it is generally recognised 

that the rules in order of importance are the atomic size effect, the electronegativity, and 

the electron concentration [65]. The first two parameters are considered to have the most 

impact on solid solution formation while the valence electron concentration parameter is 

considered to be a secondary effect [11,65]. 

a. Atomic Size Factor 

The atomic size factor rule is defined by Hume-Rothery [66] to be a restriction on solid 

solubility arising from the lattice distortion affecting substitutional solubility when the 

atomic diameters of the solute and solvent differ by more than 14%. This Hume-Rothery 

rule was further investigated by Waber et al. [16] who applied the parameter to 1423 

terminal solid solutions and found that the rule correctly predicted over 90% of the solid 

solubility when compared to experimental observation. For atoms with similar atomic sizes 

the solid solution that forms is considered to be complete, or extensive. Extensive solid 

solubility is found to only partially comply with Hume-Rothery rules (of 804 compositions 

investigated only 50% were found to match the Hume-Rothery rule). 
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A more simple explanation of Hume-Rothery rules may be considered by treating the solute 

and solvent in terms of an isotropic elastic continuum [47,67,68]. Darken and Gurry [69] 

show that the solid solubility reduces to 1 at% when the strain energy exceeds 4kBT per 

atom, where kB is the Boltzman’s constant and T is the temperature in Kelvin. While the 

strain accommodated in the structure is increased as a function of temperature, the strain 

in the solvent matrix should be minimised, as excess strain can act as a driving force for 

nucleation, leading to the possible nucleation and growth of secondary structures under 

favourable conditions [68]. 

One issue with the atomic size factor is the determination of the atomic radius. In HEAs 

[15,70] and other systems the atomic radius is typically defined as the half the nearest-

neighbour distance in the crystal structure of a pure metal. In reality, the atomic radius will 

most likely depend on factors such as the coordination number of its environment resulting 

from the interaction of its valence electrons.  

Mott [39] studied the quantum mechanical basis for the isotropic elastic continuum and 

found that the energy of an atom was more dependent on the atomic volume than on its 

coordination number; explaining the reason that a metal atom placed into a hole of its own 

size retains its original energy. That is, although the interaction between d-orbitals 

determines the interatomic distance between transition metals, it is the atomic volume that 

contributes to its energy. 

The atomic size factor has been invoked with good results for prediction of the formation of 

both HEAs and bulk metallic glasses. As mentioned earlier, Yang and Zhang [15] used a two-

dimensional plot of Ω against the atomic size mismatch, ߜ  to successfully discriminate 

between simple phase, complex phase, and bulk metallic glass formation. Large atomic size 

mismatch is found to aid formation of bulk metallic glasses, due to increased difficulties for 

diffusion [71], while Ω ≥ 1.1 and ߜ ≤ 6.6% should be used as a criterion for formation of 

the simple phase from their results, largely showing adherence to Hume-Rothery rules. The 

complete discrimination between simple and complex phases is not yet achieved and may 

be attributed to the earlier inconsistencies with the thermodynamic approaches as 

discussed earlier, or the reduced accuracy from approximating the atomic radii with the 

radii of the alloying element in its pure metal state or from the role of other, unknown 

factors. 
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b. Electronegativity 

Electronegativity is defined as the ability of an atom to attract electrons towards itself. The 

electronegativity rule is an electrochemical effect employed to describe the electronic 

interactions between the constituent components of an alloy composition [61]. In a binary 

system this is evaluated by taking the difference in the Pauling electronegativity between 

the two constituent elements. An electronegativity difference of zero would imply that both 

pairs of electrons possess the same tendency to attract electrons and the electrons will be 

shared between both atoms, while a large electronegativity difference would imply that the 

resulting charge transfer is more favourable towards the formation of a compound phase 

[65]. 

Electronegativity values cannot be directly measured, so they must be measured indirectly 

from other atomic or molecular properties. The first electronegativity scale was introduced 

by [72] based on the analysis of the heats of formation and combustion of gaseous 

molecules. Deviations from this constructed scale are found to increase in tandem with the 

ionic character of the bonds studied. A number of additional scales use the properties of 

free atoms as a measure of their reactivities. Some of these scales are tabulated below. 

Table 2. Different electronegativity scales and their methods of derivation. 

Electronegativity Scale Method Reference 

Pauling 
Derived from measures of the heats of formation and 

combustion of gaseous molecules. 
[72] 

Mulliken 

Derived from the average of the ionisation potential and 

electron affinity, calculated for suitable valence states of 

the element.  

[73] 

Gordy 

Derived from a potential given as 
൫൯


, where ൫ܼ൯݁ is 

the effective nuclear charge a neutral atom acting on a 

valence electron at a distance from its nucleus, equivalent 

to its single covalent bond radius, r. 

[74] 

Walsh 
Derived from the stretching force constant of an A-H bond 

that is found to increases as a function of electronegativity. 
[75] 
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Sanderson 
Derived from the ratio of the average electronic density of 

an atom to that of an inert, hypothetical isoelectronic atom. 
[76] 

Alfred-Rochow 

Derived from the force of attraction between the nucleus 

and an electron from a bonded atom using Columb’s law, 

defined as 
൫൯మ

మ  where ൫ܼ൯݁ is the effective nuclear 

charge and r is the covalent radius of the atom. 

[77] 

Phillips 
Derived from the dielectric charge transfer of atoms in a 

given valence states. 
[78] 

Martynov & Batsanov 
Derived from the square root of the mean of successive 

ionisation potentials of an atom’s valence electrons. 
[79] 

Allen 

Derived from the the average one-electron energy of the 

valence-shell electrons in a ground-state free atom given by 
 ாା ாೞ

ା
, where m and n are the number of p and s valence 

electrons, and Ep and Es are the averaged total energy 

difference between a ground-state neutral atom and an 

ionised atom. 

[59] 

Newly derived electronegativity scales are normally constructed to address inaccuracies that 

are present in previous scales. These discrepancies are due to the fact that most scales are 

based on a particular point of reference from the properties of the free atoms, and that for 

different applications the electronic structure of the atom may be such that these points of 

reference become inaccurate when used [80]. Electronegativity scales may be broadly 

divided into either absolute scales, or Pauling-like scales. Absolute scales originate from 

Parr’s [81] 1934 communication which showed that electronegativity analysed from the 

viewpoint of Density Functional Theory is equivalent to the negative of ߤ, the electronic 

chemical potential and this value is constant for any  chemical system, atom, ion or 

molecule. The chemical potential may be defined by the function = డா

డே
ܸ, where E is the 

electronic energy, N is equivalent to the number of electrons, and V is the potential of the 

nuclei. It is further shown that the Mulliken electronegativity, the average of the ionisation 

energy and the electron affinity is a good approximation of ߤ, and that the Mulliken 
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electronegativity is termed the ‘absolute electronegativity’ in reference to its near equality 

to this property, −ߤ. 

In HEAs the electronegativity parameter used for most predictions is the ubiquitous Pauling 

scale [2,3,12,50,70,82]. Poletti et al. [11] used a 2-dimensional plot of the Allen scale 

electronegativity difference, Δ ܺ  against the atomic radius mismatch, ߜ  to show 

separation between the formation of simple and complex phases. For values ranging 

between: 1. 1% < ߜ < 6% , and 2. 3 < Δ ܺ < 6 , only simple phase formation is 

observed for all calculated compositions. The discrimination between the simple and 

complex phase functions extremely well despite the fact that the exact nature of the 

delocalised electrons in transition metals is not well defined [59], a critique that Allen et al. 

[59] themselves acknowledge. Furthermore, all tested compositions possess components 

mainly located from the different groups within the fourth period, and complete separation 

of simple/complex phase solutions are not completely known. 

c. Valence electron concentration 

The valence electron concentration (VEC) is defined as the number of electrons in the 

outermost orbital that play a role in bonding mechanisms. This parameter is of importance 

when the size factor and the electronegativity difference is of minor importance [61]. In 

general, the electronic concentration effect are in part attributed to the observation that 

certain crystal structures (FCC, BCC, HCP) are linked to known values of electron 

concentration per atom ratios [11,61].  
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Figure 2. Phase diagram of some elements shown in a 2-D plot of Temperature against the electron 

concentration, e/a, showing the dependence on the phase of the material [61]. 

This is illustrated in Figure 2 which schematically represents a composite phase diagram of 

noble metals alloyed with non-noble metals, represented in terms of the average itinerant 

electrons per atom ratio, e/a. It is observed that the FCC, BCC and HCP phases tend to 

appear at particular e/a ratios, regardless of the alloying addition added. Hence it may be 

said that for complete solid solubility, the phase of the solute and the solvent should be 

similar. 

The electron concentration as defined and used in describing the Hume-Rothery rules is the 

average itinerant electrons per atom, e/a. Another definition that is used to describe the 

electron concentration is the number of electrons in the valence band, the valence electron 

concentration or VEC. The valence electron concentration is an important tool in 

determining phase stability in quantum mechanics. From band theory, the valence electrons 

are quantised into discrete levels which in a metal forms a continuum that is known as a 

band. The valence electrons form bands that are close to the Fermi level, the total chemical 

potential of the solid at 0 K. 
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The stability of phases exhibiting metallic bonding may related to the valence electron 

concentration, because the Fermi surface of any phase, which is an abstract boundary in 

momentum space derived from the periodicity and symmetry of the lattice, interacts with 

the bands at the Fermi level. For a host of competing structures, the availability of 

accommodation into lower energy bands, depending on the Fermi surface would thus lead 

to a phase’s stability over others [11]. The valence electron parameter with regards to phase 

stability has been investigated with various ab-initio methods, such as showing good 

validation with regards to predicting the phases present in the Cu-Zn [60], in AB transition 

metal aluminides [83], and in transition metal systems [84]; although again, the 

determination of the average valence electron concentration is non-trivial due to electronic 

effects [59,61]. It is expected that HEAs with a greater number of principal components will 

display increased interactions. 

Study of HEAs as a function of the valence electron concentration shows that the stability of 

the simple FCC and BCC phase is well delineated by this parameter [12,70]. In general, the 

simple FCC structure is stabilised at VEC > 8, mixed simple phases of FCC/BCC and 

intermetallics are found between 7 < VEC < 8, and the BCC phase is stabilised at VEC < 7. 

These values are found to be independent of the stoichiometry of the compositional 

components, but the simple-complex phase transition points may change depending on the 

elements present in the composition. This effect may be linked to the chemical bonding 

arising from the electronic structure. 

2.3.3 Validity of empirical prediction parameters 

Together, the thermodynamic and Hume-Rothery parameters that have been discussed 

form the basis of semi-empirical/empirical structure predictions of HEAs. These parameters 

have been used together in various 2-dimensional (2-D) plots to derive guidelines for the 

formation of HEA simple phases.  



36 
 

 

Figure 3. Dependence of the enthalpy of mixing, ∆ܪெ௫ and entropy of mixing, ∆ܪெ௫ when plotted 

against the atomic size difference, ߜ on the phase formed [70].  

A plot of the thermodynamic parameters against the atomic mismatch has shown the ability 

to segregate HEA compositions into zones where simple phases and complex phases form. 

In the figure the symbols represent, ○: equiatomic amorphous alloys; •: non-equiatomic 

amorphous alloys; □: solid soluƟon phases. and Δ: intermetallic phases. 

The empirical rules shown here appear to be bounded by a dashed box, which has been 

drawn to guide the eye and as a result the exact limits for which values of the enthalpy of 

mixing and atomic size different need to be reached to obtain a solid solution phase cannot 

be determined, and as such the results here can only be used as a vague guideline in alloy 

design. Furthermore, the discrimination is not perfect as some overlap exists between these 

areas of stability – most obviously, several intermetallic phases appear in the bounded box, 

that are not, in fact, distinctly separated from the solid solution alloys. 



37 
 

 

Figure 4. Dependence of the parameter Ω against the atomic size difference, ߜ on the phase formed 

[15] 

In their publication, Yang and Zhang attempt to obtain an improved empirical ruleset for 

HEA alloy design through the analysis of the atomic size difference. The results are shown in 

Figure 4 where the y-axis is derived from a critical temperature for HEAs from the 

relationship:  

Ω = ்∆ௌ

|∆ு|
= ்

்ೝ
         (8) 

When judged by the eye, the plot in Figure 4 appears to offer increased discrimination 

between the intermetallic, mixed phases (where simple phases co-exist with intermetallic 

phases), bulk metallic glasses (signified by the term BMGs in the plot), and the simple 

phases. It is an interesting point that in both analyses, these rough empirical parameters 

may be used to distinguish in very simple plots the approximate areas of formation of not 

only solid solutions and intermetallic compounds from one another, but also the bulk 

metallic glasses. 

While it appears that discrimination between simple and complex phases is much more 

obvious, there remains some overlap between the formation of solid solution and 

intermetallic phases. Thus, although the reformulation of thermodynamic parameters to 

obtain the parameter Ω is successful, the overlap in Figure 4 suggests some secondary factor 

(or more) that remains unaccounted for. 
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Figure 5. Dependence of the parameter ߤ (cf. Eq. X) plotted against the radial mismatch, [11] ߜ. The 

plot shows HEAs tend to form at high values of ߤ, corresponding to temperature values below the 

melting temperature 

The usage of ideal thermodynamic parameters in HEA systems was hypothesised to have no 

meaning thermodynamically by Poletti et al. [43], attributed to the non-ideal nature of 

HEAs. Shown in Figure 5, Poletti et al. present a plot of ߤ =
்ಾ

்ೄ
 where ெܶ is the melting 

temperature and ௌܶ is the temperature at which the free energy of mixing experiences an 

inflection at its spinodal point(s).  

The plot shows HEAs tend to form at high values of ߤ, corresponding to temperature values 

below the melting temperature. This finding is in agreement with Cunliffe et al.’s report 

where where ܶ௧ ≤ ܶ corresponds with the formation of a BCC HEA [55], although Poletti 

et al.’s formulation of ߤ is considered to be a refinement of the parameter presented by 

Cunliffe et al. (which considered the HEA to be a near-ideal solid solution) 

The use and relative success of the ߤ parameter emphasises the non-ideal behaviour of 

HEAs [85]. This highlights also the requirement for alternative means of prediction of HEA 

phase that goes beyond the currently established ‘simple’ thermodynamic and semi-

empirical parameters [2,45,49,50]. 
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Figure 6. Relationship between VEC and simple FCC/BCC phases in HEA systems [12]. The figure is 

separated into three zones: the left-most zone represents a zone of BCC stability for the 

encompassed compositions, the middle zone shows a regions of BCC+FCC stability, while the right-

most zone presents compositions that are FCC stable. 

The previous figures considered solid-solubility in HEAs using mainly thermodynamic 

parameters. In the periodic table of the elements, it is known that specific values of valence 

electron concentration represents stability of certain phases (i.e. tetragonal, HCP, BCC, FCC 

etc.); this has famously been studied by Hume-Rothery as the itinerant electron per atom 

(e/a) rule and used to explain the stability between brass and bronze. By making the 

assumption that HEAs can be approximated as an ideal solid solution, the mean value of the 

valence electron concentration weighted according to a composition’s alloying elements, 

can be taken to be representative of it. 

In Figure 6 above, Guo et al. attempted to use the valence electron parameter to 

discriminate between the formation of simple FCC phase and simple BCC phase. The figure 

is separated into three zones: the left-most zone represents a zone of BCC stability for the 

encompassed compositions, the middle zone shows a regions of BCC+FCC stability, while the 

right-most zone presents compositions that are FCC stable. The overall separation of the 

different phases are quite good, although one interesting observation is that of the selected 

compositions, approximately half or more are Al, Co, Cr, Cu, Fe, and Ni containing 

compositions. 
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Figure 7. Relationship between VEC and Sigma phase formation [86] for AlxCrFe1.5Ni0.5 alloy 

compositions. The sigma phase forms between 6.88 < VEC < 7.84. 

In Figure 7 Tsai et al. [76] furthered Guo’s VEC analysis and found that the previously 

identified areas for FCC+BCC formation also proved to be a zone for complex Sigma phase 

formation dependent on the composition. This observations highlights that the 

approximation made by averaging the VEC (which may be considered to be the empirical 

VEC), can lead to vary different predicitons of stability, depending on the composition of the 

alloy, although the approximate trends still appear to hold true. 

As a corrolary of the previous observation, the defined zone for complex phase formation 

(here, the Sigma phase) was found to vary depending on the composition of the alloy 

system. Two reasons for this might exist, the first of which is attributed to the inaccuracy of 

the emprical VEC, whilst the second attempts to address the problem from a semi-empirical 

perspective. 

1. The VEC parameter, even for the pure transition metals is highly dependent on the 

electronic structure, and as such can only be determined precisely from 

experimental data, or from robust ab-initio simulations. The deviations observed 

here may represent the inaccuracy of the empirical VEC. 

2. Some secondary effect (or more) that influences the phase stability of HEAs is not 

fully captured by the plot of VEC as shown in Figure 7. Further analysis and 

development is this required. 
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Figure 8. Biplot of first two principal components from Dominguez et al.’s Principal Component 

Analysis [13]. The phases appear the most fenced in around the lines representing the enthalpy of 

mixing and the valence electron concentration. 

Dominguez et al. [13] performed a principal component analysis of both thermodynamic 

and Hume-Rothery parameters to try and address some of the observations presented 

above. Figure 8 presents a biplot of the first two principal components of the resultant 

analysis. The biplot shows that the simple FCC phases cluster around the enthalpy of mixing 

and valence electron concentration axis, the simple BCC phase compositions cluster around 

the enthalpy of mixing and the electronegativity difference axes, while the complex phases 

(intermetallics) are found to be located in the lower right quadrant in the region bordered 

by the valence electron concentration and the entropy of mixing. 

It is therefore suggested that the simple/complex phase stability of HEAs may be 

discriminated through a two-dimensional plot of the valence electron and the enthalpy of 

mixing, as shown in Figure 9.  
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Figure 9. Two-dimensional plot of valence electron concentration against the enthalpy of mixing 

showing discrimination between simple and complex phases [13]. Compositions containing the 

simple FCC phase are observed to be distinguishable from compositions showing the simple BCC 

phase. Complex structures are characterised by negative enthalpy of mixing values. 

The partitioning in Figure 9 may be attributed to the fact that the enthalpy of mixing is in 

itself based on the valence electron concentration [11] as admitted by Miedema in his 

formulation of the enthalpy of mixing [61]. Miedema’s enthalpy of mixing is derived from 

the electron density at the Wigner-Seitz border as well as a modified electronegativity 

difference for binary cells. The formulation of the Wigner-Seitz cell is dependent on the 

bonding of the atom, as the cell may not be symmetrical due to electron effects. If the bond 

is partially covalent or has a higher energy, there may be significant deviations from the 

valence electron parameter. The incomplete phase discrimination evidenced in the two-

dimensional plot may arise from the non-compliance of the Miedema model with quantum 

mechanics principles as discussed in Section 2.3.3.3. This is discussed further in the first 

results chapter, Chapter 4. 

2.4 Chemical bonding of HEAs 

The three types of chemical bonds, covalent bonds, ionic bonds and metallic bonds are 

often useful to describe the attraction between atoms that allow the formation of chemical 

compounds. The least well understood of these is the metallic bond, whose standard 

description relies on band structure theory and implies the lack of a band gap separating the 

valence and conduction bands [87,88]. Band structure theory relies on the 

momentum/reciprocal space representation of a crystal structure, and it is the absence of a 

physical space representation that presents difficulties in establishing the physical 



43 
 

significance of the metallic bond’s delocalised electrons that is present in theories of 

chemical bonding. Early theories of chemical bonding did not consider the metallic bond 

[72,89], while later considerations promoted the near free-electron model [61]. Later 

experimental work determining the Fermi surface of metals showed that metallic bonding 

was better described as partially delocalised covalent bonds [90] as they were found to not 

be spherical, as would be expected for perfectly delocalised electrons. 

The relationships between structure and properties of metals and alloys may be described 

by identifying the distribution of electron density with bonding directionality [30]. In HEAs, 

the complex phase stabilisation of alloying additions with covalent character may be 

described as possessing directional bonding. For example, sufficient addition of V or Ti to 

the CoCrFeNi composition is known to destabilise the simple FCC phase to Sigma and C14 

Laves complex phases [22], and is often described as possessing bonding directionality. 

Analysis of Sigma and C14 complexes that are ordered (intermetallics) have shown that they 

possess some degree of covalency [27]. 

The nature of bonding directionality has been investigated by Eberhart [30]. This analysis of 

the charge density topology is based on Bader’s Electron Localisation Function (ELF) that 

identifies the critical points of the charge density i.e. where no electron flow is taking place 

as regions of interest that is shown to return a picture consistent with classical chemical 

bonding [91]. Further comparison between the bond redistribution in response to a strained 

system and the above mentioned charge redistribution of the bond critical points shows a 

good correlation between the both. Indeed, it is shown in Eberhart’s analysis that transition 

metals with a valency near ten (Cu, Ag, Au, and Pd) possess fairly anisotropic bonding 

properties in comparison to Al.  

Similarly, an analysis utilising Becke and Edgecombe’s ELF function that partitions the charge 

density of the electron spin energy difference [92] presents metallic bonding as delocalised 

electrons with covalent character [28]. Silvi and Gatti identify the critical points of metallic 

Li, Na, K, V, Al, Ca, Sc, and Cu to be located at the octahedral and tetrahedral centres [28], 

which in agreement with the analysis performed by Edgecombe [92].  The partial covalent 

bond character referred to by Silvi and Gatti refers not to any ionic competition but to the 

fact that the electronic occupation at the critical points are typically low, attributed to high 

coordination of atoms and to strong repulsion from the nucleus, leading to increased 
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clustering of these critical points around the nucleus. A similar ELF analysis performed on 

intermetallic compounds alpha-Si, CaAl2Si2, SrAl2, BaAl4, CaAl2, alpha-Al show distinctive 

structuring and high localisation of electrons, indicating bonding with increased covalent 

character [28] that is consistent with the covalent nature of Laves phases investigated. 

Although these findings begin to elucidate on the bonding difference between simple and 

complex phases, these theoretical analyses are based on concepts not widely used in 

concepts of bonding or alloy design. In Lee and Hoffman’s paper, an attempt is made by 

using ab-initio quantum mechanical methods as a numerical laboratory to “build an 

understanding of alloy and intermetallic structure using concepts already familiar to the 

chemistry community” [93]. In this work, it is hypothesised that a metallic structure’s FCC → 

BCT → BCC transformaƟon, or vice versa, is analogous to a molecular Jahn-Teller distortion 

by means of a change in the point group symmetry; a modified Bloch function of the 

periodic lattice is used to determine the effect of a this symmetry change. It is shown that 

the change in energy between the distorted structures as a function of the valence electron 

concentration is in good agreement with the results predicted by Pettifor [94]. 

In general, Lee and Hoffman conclude that a Jahn-Teller like distortion for metals and alloys 

may exist, represented by translation and rotational symmetry elements. Furthermore, the 

Jahn-Teller like distortions are influenced by the number of Fermi surface states and their 

availability of the states and their orbitals for distortion, and intermetallic formation is 

found to only occur at the nodal points between FCC and BCC stability [93]. The results of 

this analysis are in good agreement with the dependency of HEA valence electron 

concentration on phase stability.  

It becomes apparent that the covalent-like character of metallic bonding may strongly 

influence the phase stability of an alloy. Simplifying the alloy design scheme for HEAs may 

therefore require the understanding of the composition at the atomic level, and usage of 

quantum mechanics models to be achieved. 

2.6 Theory of quantum mechanics for phase stability predictions 

2.6.1 Schrodinger equation 

Quantum mechanics is the study of physics at very small scales, and may be applied to 

investigate the electronic structure of HEAs arising from interactions between the alloying 
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elements. The electronic structure is defined as the state of motion of electrons in an 

electrostatic field created by a stationary nuclei [95]. Within quantum mechanics, electrons 

possess wavelike properties which may be interpreted in several ways [96,97]. The 

Schrodinger equation [97] is invoked to describe the properties of electrons as a function of 

its wavefunction. The classical non-realivistic expression for the energy of a particle is given 

by the sum of the kinetic energy, ܧ and the potential energy, ܧ: 

ܧ = ܧ + ܧ =
మ

ଶ
+  (9)         (ݔ)ܸ

where m is the mass of the particle, p is its momentum and V(x) is the potential energy 

along the x axis. The De Broglie hypothesis is invoked to represent wave-particle duality with 

frequency, ߱  and wavenumber, ݇  by substituting  = ℏ݇  and ܧ = ℏ߱ . Here ℏ  is the 

reduced Planck constant. Eq. 9 transforms to: 

ℏ߱ =
ℏమమ

ଶ
+  (10)          (ݔ)ܸ

A travelling wave may be described to consist of combinations of its sinusoidal functions, 

ݕ = ݔ݇) sinݕ − ݕ and (ݐ߱ = ݔ݇) cosݕ −  As the De Broglie hypothesis describes the .(ݐ߱

electron as a wave moving around the nucleus, the Euler identity, ݁௫ = cos(ݔ) + ݅ sin (ݔ) 

transforms this into the complex form with the wavefunction written as: 

,ݔ)߮ (ݐ =  (௫ିఠ௧)         (11)݁ܣ

From Eq. 11, its partial derivatives are: 

డఝ

డ௧
= −݅߱߮ and డ

మఝ

డ௫మ = −݇ଶ߮        (12) 

Modifying Eq. 10 so that Eq. 10 ×߮ =ℏ߱. ߮, and substituting Eq. 12, Eq. 10 transforms to the 

time-dependent Schrodinger equation for a particle: 

݅ℏ ቀ
డ

డ௧
,ݔ)߮ ቁ(ݐ =

ିℏమ

ଶ
ቀ

డమ

డ௫మ ,ݔ)߮ ቁ(ݐ + ,ݔ)߮(ݔ)ܸ  (13)     (ݐ

From Eq. 13, the 3-dimensional time-independent Schrodinger may be expressed as: 

(ݎ)߮ܧ =  (14)         (ݎ)߮ܪ
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where ∇ଶis the Laplacian operator defined as ∇=
డ

డ௫
+

డ

డ௬
+

డ

డ௭
 and ܪ is the Hamiltonian 

operator corresponding to the total energy of the system. The ܪ in Eq. Q6 is given by: 

ܪ =
ିℏమ

ଶ
(∇ଶ) +  (15)         (ݎ)ܸ

Eq. Q6 can be solved for the one-electron hydrogen atom by presenting the Laplacian 

operator in its polar coordinates form and has the separable form of: 

,ݎ)߮ ,ߠ ߶) = ܴܰ,(ݎ) ܲ
(ܿߠݏ) ݁థ      (16) 

where the solution of the wavefunction is given by its dependence on the radial distance, ݎ, 

polar angle ߠ, and azimuth angle, ߶  and designated by the quantum numbers ݊, ݉, ܽ݊݀ ݈. 

For a system with >1 particle, i.e. Ne electrons and Nn neutrons that would obey the 

stationary Schrodinger equation the coulombic interactions will have to be accounted for, 

such that: 

ܪ = ܶ + ܸ + ܸ + ܸ        (17) 

where ܶ  corresponds to the total kinetic energy of the electrons, and the total potential 

energy is dependent on the electron-nucleon interaction, ܸ , the electron-electron 

interaction, ܸ and the nucleon-nucleon interaction ܸ. The Pauli principle must also be 

adhered to, mathematically, the wavefunction will be antisymmetric upon the exchange of 

any pair of particles: 

,ଵߪଵሬሬሬԦݎ)߮ (ଶߪଶሬሬሬԦݎ = ,ଶߪଶሬሬሬԦݎ)߮−  ଵ)       (18)ߪଵሬሬሬԦݎ

The exact solution for the many-body Hamiltonian in Eq. 17 is impossible for systems 

containing more than one electron due to coupling between electrons arising from 

coulombic interactions. Approximations of Eq. 17 may be divided into two classes, one 

based on wavefunction-methods such as Hartree-Fock [98] and the second based on density 

methods. The following discussion will cover to methods pertaining to the electron density 

solutions, which is the dominant method for quantum mechanical simulation of periodic 

systems and employed in this thesis using the CASTEP code [99]. 
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2.6.2 Thomas-Fermi method 

Thomas [100] and Fermi [101] independently proposed a statistical method to approximate 

the distribution of electrons in a many-body system in a semi-classical way, thus avoiding 

the requirement of solving the N-body wavefunction problem. Lenz [102] demonstrated 

that the equation could be derived as a functional of the electron density and the method 

itself is often viewed as a precursor to the Density Functional Theory. The Thomas-Fermi 

method was later refined by Dirac [96] to account for the exchange energy arising from the 

Pauli Exclusion Principle. The disadvantage of this method is the inability to inspect the 

individual features of the atomic structure [98,103]. 

The Thomas-Fermi approximation may be derived through several methods. Here, the 

electron density of the system is first derived. The number of electrons in a system can be 

obtained from phase space, as the fraction  

dܰ = ቀ
ଶ

యቁ ቀ
ସ

ଷ
ቁ          ܸ݀ ଷ ߨ

 (19) 

Therefore, the number density n(r) = dܰ/ܸ݀:  

݊ =  ቀ
ଶ

యቁ ቀ
ସ

ଷ
ቁ  ଷ         (20)(ݎ) ߨ

Now, the semi-classical formula for the Fermi energy may be obtained with the relation 

from: 

(ݎ) =  (21)           ݒ݉

such that: 

ிܧ =
()మ

ଶ
+  (22)          (ݎ)ܸ

(ݎ)ܸ = ிܧ −
()మ

ଶ
          (23) 

The semi-classical number density can then be obtained by eliminating p(r). Combining Eq. 

23 into Eq. 20: 

(ݎ)݊ =
଼గ

ଷయ ሾ2݉(ܧி −  ሿଷ/ଶ        (24)((ݎ)ܸ
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Now that a relationship between density, Fermi energy, and the potential has been 

established, an energy functional dependent on the electron density may be formulated. 

Starting from the Schrodinger Hamiltonian, the energy of the system can be considered to 

consist of electron-electron, electron-neutron, neutron-neutron interactions, and the kinetic 

energy. From Eq. 19, the kinetic energy of an electron at position r may also be derived from 

as a function of the fraction of electrons present where F = dN/dP. Hence: 

(ݎ)ܶ =  (ݎ)݊ 
మ

ଶ
ቀ

ଷ గ మ

గ ()యቁ
ୀ()

 ݀  (25)        ݎ݀

(ݎ)ܶ = 
ଷ ()

ଶ


 ర

()య

ୀ()
 ݀  (26)         ݎ݀

(ݎ)ܶ =   
ଷ ()

ଵ 
ଶ(ݎ)  (27)         ݎ݀

From Eq. 20 where: 

(ݎ) = ቀ
ଷ () య 

଼ గ
ቁ

ଵ/ଷ
         (28) 

Therefore Eq. 27 transforms into: 

(ݎ)ܶ = 
ଷ ()

ଵ 
ቀ

ଷ () య 

଼ గ
ቁ

ଶ/ଷ
 (29)         ݎ݀

(ݎ)ܶ =
ଷ మ 

ଵ 
ቀ

ଷ 

଼ గ
ቁ

ଶ/ଷ
  (30)        ݎ݀ ହ/ଷ(ݎ)݊ 

which is the form of the kinetic energy of the system. The potential of the electron-neutron 

interaction can be given by the potential energy of an electron from the nucleus centre by: 

ܸ = (ݎ)݊ ܼ− 
మ


 (31)         ݎ݀

The electron-electron interaction may be given as: 

ܸ = (′ݎ)݊(ݎ)݊ 
మ

ଶ(ିᇲ)
 (32)        ݎ݀′ݎ݀

Combining Eq. 30, 31, and 32, the energy functional of the Thomas-Fermi equation is thus: 

ி்ܧ =
ଷ మ 

ଵ 
ቀ

ଷ 

଼ గ
ቁ

ଶ/ଷ
 ݎ݀ ହ/ଷ(ݎ)݊  − ܼ ݁ଶ 

()


ݎ݀ + ݁ଶ 

()(ᇱ)

ଶ(ିᇲ)
 (33)   ݎ݀′ݎ݀
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The energy of the system must be minimised with respect to the electron density. The 

condition for minimisation is  ݎ݀ (ݎ)݊ = ܰ when ݊(ݎ) ≥ 0. A Lagrange multiplier, ߤ  is 

introduced to minimise the energy such that: 

ఋ(ாಷାఓ  ()ௗ)

ఋ ()
= 0          (34) 

Following this condition, Eq. 33 may be re-written as: 

ଷ మ 

ଵ 
ቀ

ଷ 

଼ గ
ቁ

ଶ/ଷ ହ 

ଷ
ଶ/ଷ(ݎ)݊  −

 మ


+ ݁ଶ 

൫ᇲ൯

ଶ(ିᇲ)
ᇱݎ݀ + ߤ = 0     (35) 

Utilising the condition for minimisation given by the Lagrange operator, Eq. 20, and that 
ௗா

ௗே
= ிܧ =   :we obtain the general solution for the Thomas-Fermi equation ,[104] ߤ−

(ݎ)ܸ = ிܧ − ቀ
 మ

ଶ
ቁ          (36) 

(ݎ)ܸ = ߤ− − ቀ
 మ

ଶ
ቁ ቀ

ଷ 

଼ గ
ቁ

ଶ/ଷ
 ଶ/ଷ        (37)(ݎ)݊

Since ଷ మ 

ଵ 
ቀ

ଷ 

଼ గ
ቁ

ଶ/ଷ ହ 

ଷ
 :ଶ/ଷ cancels out the T(r) term from Eq. 29, Eq. 37 transforms into(ݎ)݊ 

(ݎ)ܸ = −
 మ


+ ݁ଶ 

൫ᇲ൯

ଶ(ିᇲ)
 ᇱ        (38)ݎ݀

Applying the Poisson relationship for the total number of electrons for a spherical symmetry 

to the above equation then returns the following: 

∇ଶܸ(ݎ) = ݎ݀ ܼ ଶ൫݁ߨ 4 −  ൯        (39)(ݎ)݊

∇ଶܸ(ݎ) = ݎ݀ ܼ ଶ݁ߨ 4 −
ଷଶగమమ

ଷయ
ሾ2݉(ܧி −  ሿଷ/ଶ     (40)((ݎ)ܸ

∇ଶܸ(ݎ) = ݎ݀ ܼ ଶ݁ߨ 4 − ቀ
ଶగ


ቁ

ଷ
ቀ

ସమ

ଷ గ
ቁ ሾ2݉(ܧி −  ሿଷ/ଶ     (41)((ݎ)ܸ

Normalising against the Bohr radius, where ܽ =
మ

ସ  గమ మ gives: 

∇ଶܸ(ݎ) = ݎ݀ ܼ ଶ݁ߨ 4 −
ସమ

ଷ గ


ଶ(ாಷି())

మ൬ మ

ర  ഏమ మ൰
൩

ଷ/ଶ

       (42) 
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∇ଶܸ(ݎ) = ݎ݀ ܼ ଶ݁ߨ 4 −
ସమ

ଷ గ
ቂ

ଶ(ாಷି())

మబ
ቃ

ଷ/ଶ
       (43) 

To reduce the above equation to the general dimensionless form of the Thomas-Fermi 

equation with spherical symmetry, the following relationships are used [104]: 

 మఝ(௫)


= (ݎ)ܸ −  ி          (44)ܧ

ݎ =  (45)           ݔ ܾ

The boundary conditions are ܸ(ݎ) → 0 as ݎ → ∞, such that the 4 ݁ߨଶ ܼ ݀ݎ term may be 

eliminated and now: 

ଵ

మ ∇ଶ(ܸ(ݎ)) = −
ସ

ଷ గ
ቂ

ଶ(ாಷି())

మబ
ቃ

ଷ/ଶ
        (46) 

ቀ


య ௫
ቁ

ୢమ

ௗ௫మ ൫߮(ݔ)൯ = ቀ
ସ

ଷ గ 
ቁ ቀ

ଶ 

బ  ௫
ቁ

ଷ/ଶ
 ଷ/ଶ      (47)(ݔ)߮

ୢమ

ௗ௫మ ൫߮(ݔ)൯ = ቀ
ସ

ଷ గ  
ቁ ቀ

ଶ 

బ  
ቁ

ଷ/ଶ
ܾଷ/ଶ ൨

ఝ(௫)య/మ

௫భ/మ        (48) 

To reduce Eq. 48 to the dimensionless form, b must be set so that the content of the bracket 

is equivalent to unity. Therefore the following equation must be satisfied: 

ቀ
ସ

ଷ గ  
ቁ ቀ

ଶ 

బ  
ቁ

ଷ/ଶ
ܾଷ/ଶ = 1         (49) 

And the following relationship may be obtained from Eq. 49: 

ܾଷ/ଶ = ቀ
ଷ గ 

ସ 
ቁ ቀ

 బ

ଶ
ቁ

ଷ/ଶ
         (50) 

ܾ = ቀ
ଽ గమ మ

ଵଶ଼
ቁ

ଵ/ଷ
ܽ          (51) 

Thereby allowing the dimensionless general Thomas-Fermi equation for neutral, non-

isolated atoms following the spherical approximation to be given as: 

ௗమఝ(௫)

ௗ௫మ =
ఝ(௫)య/మ

௫భ/మ           (52) 

Dirac introduced modifications into the Thomas-Fermi equation above to account for 

exchange. The modified Thomas-Fermi-Dirac equation is as follows: 
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ௗమఝ(௫)

ௗ௫మ = ݔ ඌߝ + ቀ
ఝ(௫)

௫
ቁ

ଵ/ଶ
ඐ

ଷ

         (53) 

with the following boundary conditions: 

߮(0) = 1           (54) 

ቀ
ௗఝ

ௗ௫
ቁ

௫ୀ௫బ
=

ఝ(௫బ)

௫బ
          (55) 

Eq. 52 and 53 are based on a spherical approximation of the electron cloud, which is not 

exact, but forms a reasonable approximation [105]. As the energy terms are taken for a 

homogenous electron gas, the approximation returns inexact results for molecular systems 

but are considered reasonable for metals [106], and may also be applied to systems 

containing multiple elements. The equations may be solved using the Feynman-Metropolis-

Teller method [105] whereby a semi-convergent power series of the form: 

(ݔ)߮ = 1 + ܽ(ݔ)/ଶ + ⋯, n>1        (56) 

may be expressed where an represents the coefficients of the expansion. Once the initial 

slope, a2 is selected the remaining coefficients may be determined. Ren et al. [17] used a 

fourth-order Runge-Kutta to solve Eq. 53 with good results, when comparing with known 

values of electronic densities of selected elements from the periodic table.  

2.6.3 Hohenberg-Kohn theorems  

The Thomas-Fermi approach was the first theory that was developed to describe the 

properties of atoms based on an electronic density but faces several limitations: i.e the total 

energies are inaccurate, the electron density diverges near the nucleus and does not decay 

as ݎ → ∞.   

It was not until the development of the Hohenberg-Kohn theorems [107] which provided 

explicit proof that the energy of a system of particles can be written as a function of the 

electronic density that led to the development of density functional theory and more 

accurate functions. The theorems are: 

Theorem 1:  For any system of interacting particles in an external potential, the density is 

uniquely determined. 
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Theorem 2: A universal functional for the energy can be determined in terms of the 

density. The exact ground state is the global minimum of this functional. 

Application of the Hohenberg-Kohn theorems then allows the ground state of any system of 

interacting particles to be found as long as the external potential is minimised, and the 

various properties arising from the electronic interactions.  

This can be seen from a simple thought experiment where we assume that for a specified 

system the external potential, ܸ(ݎ) has been defined. It is further assumed that the kinetic 

energy, ܶ and the electron-electron interaction energy, ܸ  is reliably approximated and 

therefore, the ground state is simply the minimum of the external potential, or the sum of 

ܶ, ܸ, and potential energy, ܸ as a function of the electronic density, ݊(ݎ). It can also be 

assumed that ܸ(ݎ) is dependent on a parameter, ܽ, which can be the lattice constant in a 

particular crystal, or the angle of the crystal structure. Since the energy can be determined 

as a function of the electron density and ܸ(ݎ), a value of ܽ that minimises the energy can be 

computed and in this way, various properties associated with the ground state of the 

compound can be obtained (e.g. lattice parameters, compressibility, elastic constants, 

phonon vibrations etc.). Although this is possible theoretically, in practice the minimisation 

of the external potential is numerically difficult due to the complexity of the equation. 

Furthermore, values of ܶ and ܸ must be approximated accurately.  

2.6.4 The Kohn-Sham equations 

The minimisation of an explicit energy functional is one of the ways that the ground state 

can be obtained. One example of this is the minimisation of Thomas-Fermi energy functional 

as given in Eq. 33. As mentioned previously, the classical approximations made in the 

Thomas-Fermi approximation and the lack of an exchange-correlation functional lead to 

inaccuracies in the approximation, especially with regards to large atoms or molecules with 

covalent type bonding. The Kohn-Sham equations offer an alternative that does not work in 

terms of the electronic density but instead includes a wave-function which incorporates the 

exchange-correlation functional that is missing from the Thomas-Fermi approximation. The 

energy of the system, or the Hamiltonian is described by Eq. 17 as the sum of the kinetic 

energy, electron-neutron interaction, electron-electron interaction, and nucleon-nucleon 

interaction: 
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ܪ = ܶ + ܸ + ܸ + ܸ        (57) 

and the energy of the ground state can be written as: 

ܧ = ݉݅݊→ே൫()ܨ +  .(ݎ) ܸ݀ݎ൯      (58) 

where ()ܨ = ܶ() + ܸ(). In Chapter 2.8.2, the Thomas-Fermi method sought to solve 

 :by using classical theory to approximate values of ܶ ܽ݊݀ ܸ so that ()ܨ

()ܨ = ܶ
௦௦() + ܸ

௦௦() +  (59)    ()ேି௦௦ܧ

where ()ܨ is the sum of the classical kinetic energy and electron-electron interaction term, 

as well as the contributions from non-classical effects. The Thomas-Fermi approximation for 

the kinetic and interaction term is not equal to the true kinetic energy and interaction term 

due to non-classical effects. Kohn and Sham accounted for this by calling the non-classical 

contribution to the total energy as the exchange-correlation energy, ܧ() so that: 

()ܧ = ൣ ܶ() − ܶ
௦௦()൧ + ൣ ܸ() − ܸ

௦௦()൧   

 (60) 

With this in mind, the energy of the system then becomes: 

()ܧ = ܶ() + ܸ() + ܸ() + ܸ() +  (61)    ()ܧ

To obtain the Kohn-Sham equations, the variational principle is applied so that a fictitious 

system of non-interacting electrons that generate the same density as the defined system is 

obtained, and is defined by a local effective external potential. The lowest energy of the 

orbitals of this system is: 

൬−
ଵ

ଶ
∇ଶ + ܸ(ݎ)൰ ߮(ݎ) =  (62)       (ݎ)߮ߝ

where ܸ is the effective potential, ߮ is the wavefunction, and ߝ is the orbital energy of 

the corresponding Kohn-Sham orbital. ܸ(ݎ) is defined as:  

ܸ(ݎ) = 
()

ିᇲ ᇱݎ݀ + ܸ(ݎ) + ாܸ௫௧(ݎ)      (63) 

and the electron density may be described using the Born approximation as: 

(ݎ) = ∑ |߮(ݎ)|ଶே
          (64) 
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The Kohn-Sham equation appears to take a form similar to the Schrodinger equation, the 

key difference being that the potential of the Kohn-Sham equation is a function of the 

electronic density. The numerical solution to the Kohn-Sham equations may then be 

obtained by inserting a basis function and expanding the equation to obtain eigenvalue for 

each available solution. Due to the fact that the equations are coupled and non-linear, the 

solution has to be self-consistent. Self-consistent in this sense, means that the trial input 

electron density must be equivalent to the Kohn-Sham solution of ߮(ݎ), such that the 

electron density, (ݎ) is equivalent to the trial electron density used to generate the Kohn-

Sham potential, ܸ(ݎ), up to a specified margin. The Kohn-Sham equation is classed as a 

type of density functional, as the Kohn-Sham potential is dependent on the electronic 

density. Although other types of density functional theory schemes have been devised, such 

as the orbital-free density functional theory [108] which aims to develop a better 

representation of the kinetic energy term in terms of the density to remove the need for 

Kohn-Sham orbitals, the Kohn-Sham density functional theory is currently most widely 

employed due to its reputation for accuracy, efficiency and reliability [109]. The Kohn-Sham 

density functional theory is used in this thesis and further discussion will focus on this 

aspect. 

2.6.5 Kohn-Sham Density Functional Theory – Types and options 

Basis sets are employed to represent the Kohn-Sham orbital and are sets of equations that 

represent molecular orbitals of interest that are to be studied. In this way, the interactions 

between different systems of different elements can be studied. The type of system 

investigated using the Kohn-Sham equations has a large bearing on the type of basis 

functions employed to expand the Kohn-Sham equation. The basis sets may be roughly 

divided into: 

1. Atomic basis sets, also known as localised basis sets 

2. Plane-wave basis sets, also known as non-localised basis sets 

Atomic basis sets are so-called as the functions are centred on a point in space that 

represents the nuclei, and may be further sub-divided into slater-type orbitals, based on the 

equations developed by Slater [110] and whose coefficient were later refined by Clementi 

from first-principles [111], and Gaussian-type orbitals to describe the molecular orbitals. 
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Gaussian-type orbitals [112] utilise two or more Gaussian functions to approximate the 

molecular orbitals. The use of Gaussian-type orbitals offer a speedup in comparison to Slater 

type-orbitals of 4-5 orders of magnitude as their integrals can be evaluated analytically. To 

obtain comparable accuracy to Slater-type orbitals, more Gaussian must be added together 

to improve accuracy. As the trade-off between computation speed and accuracy is often an 

unknown variable, when Gaussian-type orbitals are employed as a basis set they must be 

carefully checked to ensure accuracy of the final solution.  

Plane-wave basis sets take advantage of Bloch’s theorem [88], which states that for a 

periodic system where the effective potential, ܸ(ݎ) possesses translational symmetry, the 

wavefunction can be written as: 

߮ = ݁ .ߤ(ݎ)         (65) 

where the left-hand side of the equation represents the cell periodic part, and the right-

hand side of the equation is represented by a wavelike part which can be expended and 

represented as plane waves whose wave vectors are equal to the reciprocal space vector of 

the crystal being investigated. In the equation, (ݎ)ߤ has the same periodicity as ܸ(ݎ), and k, 

the reciprocal space, lies within the same reciprocal unit cell. Using Bloch’s theorem then 

allows the problem of a system with an infinite number of electrons to be simplified to that 

of an infinite amount of reciprocal space vectors into the first Brillouin zone of the 

representative periodic cell, where the electronic wavefunction at each k point can be 

represented by a plane wave basis set. 

Using a non-localised basis set offers the benefit that the functions are orthogonal, 

enhancing computational speed, and the relative accuracies of the energies calculated using 

this method. This makes them very suitable for obtaining the information of the electronic 

structure of periodic structures. In comparison, computing results for inhomogenous 

systems such as glasses or isolated systems requires higher computational power due to the 

large numbers of basis functions needed per periodic cell.  
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Figure 10. Truncated list of options for DFT calculations [109].  

Other than the discussed options for the selection of the basis set, several other options 

exist in applying the DFT calculations for practical purposes. A simplified list of these is 

shown in Figure 10, where it can be seen that options exist for the calculation of all three 

remaining terms of the Kohn-Sham equation. Estimation of the exchange functional, ܸ(ݎ) 

term can be summarised mainly into the following methods, shown in Table 3: 
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Table 3. Summary of methods of estimation of the exchange correlation, ܸ(ݎ) in DFT methods, 

and some issues associated with them. 

Name Description Issues 

Local Density Approximation 

(LDA) 

Derived from the homogenous 

electron gas model 

 Underestimation of 

band gap 

 Fails in situations 

where there is a rapid 

change in electron 

density such as in 

molecules 

Generalised Gradient 

Approximation  (GGA) 

Corrects the LDA functional by 

considering the gradient of the 

electron density 

 Reduces error for 

magnetic solids 

 Softens the bonds 

resulting in increased 

lattice constants and 

decreased bulk 

modulus 

 Does not account for 

Van der Walls forces 

Hubbard Correction for 

Correlated Ground States 

(LDA+U/GGA+U) 

Corrects the error for strongly-

correlated materials by 

introducing a Hubbard term 

into the energy equation 

 

Hybrid Methods  Combines weighted values of 

Hartree-Fock exchange energy 

with exchange-correlation 

terms from other sources 

 Increased accuracy in 

calculating total 

energies due to better 

representation of 

exchange 

 Increased 

computational cost 
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Of the two terms left, the Kohn-Sham potential, ܸ(ݎ) may, generally, be described by a 

Coulomb potential or by an effective potential: 

Table 4. Summary of the all-electron potential and pseudopotentials used in DFT, and key issues 

related to them. 

Potential Description Issues 

All-electron potential A Columbic potential term is 

used to represent a defined 

system of fixed electrons, 

neglecting exchange and 

correlation effects. 

 Does not take into 

account exchange and 

correlation effects. 

 Computationally taxing 

Pseudopotential [113] An effective potential is used to 

describe the core electrons, 

while the valence electrons 

wavefunctions are replaced 

with pseudo wlecavefunctions 

which are smoother in the core 

region.  

 Computationally faster 

 Does not work well for 

transition metals due to 

no clear distinction 

between the tightly 

bound core electrons 

and loosely bound 

valence electrons. 

2.6.6 Rigid Band Approximation (RBA) 

One simplification that may be used with random solid solutions is the rigid band 

approximation (RBA) [60,114,115]. The RBA theory asserts that the electronic bandstructure 

of pure materials remains unchanged upon alloying and only the filling of the bandstructure 

up to the Fermi level changes, depending on the valence electron concentration of the 

alloyed system, in comparison to the unalloyed material. More rigorously, the RBA can be 

understood to be explained by the following: 

For ease of discussion, the equations in this section will be expressed using Dirac notation. 

The Schrodinger equation for a pure material is: 

ห߮ܪ
(ݎ) >= ߝ

ห߮
(ݎ) >         (66) 
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where ܪ is the Hamiltonian of the pure material, ߮(ݎ) is the wavefunction, and ߝ
 is the 

energy of |߮(ݎ) >. As stated previously the Hamiltonian may be simplified so that it is a 

function of kinetic energy, − ଵ

ଶ
∇ଶ and a potential, ܸ(ݎ): 

ܪ = −
ଵ

ଶ
∇ଶ +  (67)         (ݎ)ܸ

Upon alloying, the Hamiltonian changes so that: 

ܪ = ܪ +  (68)         (ݎ)ܸ∆

where ∆ܸ(ݎ) is the perturbing potential associated with the alloying addition. Similarly, the 

wavefunction of the system may be written as: 

|߮(ݎ) >= |߮
(ݎ) > +|∆߮

(ݎ) >       (69) 

where |∆߮
(ݎ) > is the perturbed wavefunction of the system arising from the alloying 

addition. Since the energy associated with the metallic crystal is a function of the electron 

density, it can be written as: 

ߝ =< ߮(ݎ)|ܪ|߮(ݎ) >        (70) 

Therefore, the change in energy, ∆ܧ can be shown to be: 

ߝ∆ = ߝ − ߝ
          (71) 

ߝ∆ =< ߮(ݎ)|ܪ|߮(ݎ) > −< ߮(ݎ)|ܪ|߮(ݎ) >     (72) 

ߝ∆ = ቆ
< ߮

(ݎ)|ܪ|߮
(ݎ) > +< ∆߮

(ݎ)|ܪ|߮
(ݎ) > −

< ߮
(ݎ)|ܪ|߮

(ݎ) > +< ߮
(ݎ)|ܪ|∆߮

(ݎ) >
ቇ    (73) 

ߝ∆ = ቆ
< ߮

(ݎ)|∆ܸ(ݎ)|߮
(ݎ) > +< ∆߮

(ݎ)|ܪ|߮
(ݎ) > +

< ∆߮
(ݎ)|∆ܸ(ݎ)|߮

(ݎ) > +< ߮
(ݎ)|ܪ|∆߮

(ݎ) >
ቇ   (74) 

For the orthogonality condition if ∆߮
 ≠ ߮

, then < ∆߮
(ݎ)|߮

(ݎ) >= 0 and therefore the 

equation becomes: 

ߝ∆ =< ߮
(ݎ)|∆ܸ(ݎ)|߮

(ݎ) >       (75) 

If the valence electrons are delocalised and following the free electron approximation: 

ߝ∆ =< (ݎ)ܸ∆ >         (76) 
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As long as ∆ߝ is a constant for each point in reciprocal space, the density of shapes of the 

alloy would have the same shape as that of the pure material. From the above equation, it 

can be seen that the change in energy is constant throughout the bandstructure and 

equivalent to the integrated average of ∆ܸ(ݎ), which is the perturbing potential associated 

with the alloying addition. One key point is that the density of states is only considered 

similar to the unalloyed system if the valency of the solute does not differ from the pure 

unalloyed material. In the case where the valency of the solute is dissimilar to the unalloyed 

material, all features of the RBA remain the same other than the shape of the Density of 

States changes in the alloy and must be recomputed [116,117]. The RBA has been used to 

successfully explain the Hume-Rothery rules [60,116–118], and its application can be used 

to describe the phase stability of alloys in terms of the unalloyed composition as a function 

of the valence electrons. 

2.6.7 Phase stability using DFT and key challenges 

The relative phase stabilities of a particular system can be understood in terms of the 

energy of formation of the system as a function of the designated structures, which can be 

calculated as long as the chemical composition and atomic positions of the structure in 

question are known. The energies of selected structures may be compared with one 

another to determine the lowest energy structure, and hence the most energetically 

favourable one. An example of this is shown in Figure 11 which represents the lowest 

energy of various structures for the Au-Cu system [119], that have been calculated using the 

VASP code [120–122] which uses a plane-wave basis set. The lowest-energy structures are 

displayed in Figure 11 at the equivalent Au fraction.  
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Figure 11. Lowest-energy structures in an Au-Cu system as a function of the fraction of Au atoms in 

the lattice [119]. The energy values are calculated using the VASP code [104–106], and 

representative structures are shown as well. 

When computing for multi-component systems with >3 alloying components, some key 

issues that must be resolved are: 

1. Identification of the structures to be tested for a given alloy composition. For 

example, in the CoCrFeNi equimolar HEA composition: the 6 binary phase diagrams 

of Co-Cr, Co-Fe, Co-Ni, Cr-Fe, Cr-Ni, and Fe-Ni lists amongst the possible structures 

the FCC, BCC, HCP, and Sigma phases [123]. Further ternary phase diagrams may give 

additional information on the possible structures present, which may be inaccurate 

depending on the usage of less well known alloying additions [5].   

2. The exact chemical composition of a particular structure is not known precisely, and 

may impact the accuracy of the calculations. While research into HEAs is mainly 

driven by the concept of the search for single-phase solid-solution compositions 

[3,44,86], in practice, this is not always observed experimentally [6,8–10,21,124] 

which presents issues in the construction of an equivalent structure that is 

representative of the microstructural features of an alloy composition that is 

grounded in reality. 

3. For a priori calculations of alloy compositions for alloy design, the structural 

parameters of the alloy composition are unknown even with prior analysis utilising 

binary and ternary phase diagrams due to straining of the lattice from atomic size 

mismatch [47]. The parameters must thus be obtained by minimising the Hartree-

Fock energy as a function of the lattice parameter to obtain their most stable self-
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consistent values. As such, the selection of the potential and basis set that is 

important to a model multi-component solid solution, as depending on the chemical 

bonding between constituent elements, the valency of the transition elements may 

differ leading to either an overestimation or underestimation of the structural 

parameters due to the pseudopotential chosen. This can be rectified through 

experimental verification with experimental results, which limits predictive a priori 

use. 

These issues are summarised briefly in the table below: 

Table 5. Summary of key issues associated with running DFT calculations. 

Issue Problem Resolution 

Identification of competing 

structures 

Determining competing 

structures of an alloy 

composition 

Checking with binary phase 

diagrams, Experimental 

Chemical composition of 

structures 

Representing the chemical 

disorder of simple and 

complex phases accurately 

Special Quasirandom Structure 

(SQS), Virtual Crystal 

Approximation, Experimental 

Inclusion of correct structural 

parameters 

Determining accurate 

structural parameters for 

calculations 

Geometry optimisation, 

Mathematical Models, 

Experimental 
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2.7 Summary 

From the literature review, several key points regarding phase stability in HEAs are noted. 

Firstly, from the semi-empirical and empirical parameters, of the various available 

electronegativity scales only the Pauling electronegativity scale is most frequently employed 

in HEA prediction, which typically takes into account chemical bonds such as covalent and 

ionic bonds. Other electronegativity scales which are derived from other assumptions may 

possess increased accuracy. As an approximation, the Mulliken electronegativity is 

considered to be equivalent to the Fermi energy at 0 K; and the Mulliken electronegativity 

of the first valence electron may be a better measure of the energetics of an element, and 

its interaction with other pure elements.  

The chemical bonds of HEAs are metallic bonds, whose electrons are delocalised in a 

sphere-like distribution around the atom and may be described as quantised bands of 

energy levels. The metallic bonds possess some covalent characteristics which depend on 

the alloying element, and may exhibit increased directional bonding (bonding with covalent 

like character) that is associated with the complex phases. This may only be probed through 

analysis of the electronic structure. A simple method suited to this analysis is the Thomas-

Fermi-Dirac approximation as the electron density is fairly uniform due to strong screening 

by the nucleus. 

The above two observations strongly suggest that the phase stability of HEAs are co-related 

to the Fermi energy and electron bonding directionality of the alloy, both of which are 

features of the electronic structure. The structural stability may be considered from an 

electronic structure perspective using ab-initio modelling tools. Furthermore, the semi-

empirical parameters used in the prediction of HEA phase stability such as Miedema’s 

enthalpy of mixing are not clearly grounded in quantum mechanical rules and hence, not 

exact, requiring quantum mechanical treatment for improvement of accuracy. The rigid 

band approximation may be employed as the approximation can be used to describe the 

validity of Hume-Rothery rules, which are employed in the prediction of HEA stability. 

Finally, although ab-initio density functional theory offers many advantages, they are best 

employed to describe known systems as many of a system’s parameters such as the crystal 

structure, chemical composition, and cell parameters must otherwise be found for the 
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ground state, and these values are very sensitive to the approximations, potentials, and 

basis sets used. A better semi-empirical model that includes more quantum mechanical 

principles needs to be made available to predict the stability of HEAs to expedite alloy 

design. Knowledge of the phase structure of potential HEA compositions, across the entire 

stoichiometry range, will allow compositions of interest to be pinpointed. 

Therefore, the following results chapters in this thesis can be split into: 

1. The investigations of whether consideration of quantum mechanical principles can 

increase the accuracy of predictions of HEA phase presence/stability (Chapters 3 & 

4). 

2. Development a simple predictive scheme that includes quantum mechanical 

principles which allows for the possibility to design a multiple component system so 

that an alloy composition which possesses desired combinations simple and complex 

structures Chapters (5 and 6). 
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3.1 Alloy synthesis – Arc melting 

 

Figure 12. Figure showing the Edmund Buhler MAM 1 arc-melter. 

Alloy synthesis was carried out in a small-scale Edmund Buhler MAM 1 arc-melter, displayed in 

Figure 12. The individual key components are labelled as 1. The main chamber, 2. Copper 

water-cooled melting hearth and casting hearth (not shown), 3. Valve-controlled suction 

device for attachment to casting hearth, and 4. Range of copper moulds for casting. Close-

up images of the demarked components can be found in Figure 13. 

The synthesis of samples is preceded by weighing out the alloying elements of at least 

99.9% purity. All alloying elements are polished with grit paper to remove any potential 

oxide layer and contaminants from the surface of the metal. The metals are subsequently 

cleaned by sonicating in an acetone-filled beaker. The sonication is performed at the 

minimum amplitude for 5 minutes to ensure that re-oxidisation does not occur resulting 

from excessive energy transfer. The alloying elements of the selected composition are 

weighed out so that 5 g of the composition is made. The weigh-out is measured to an 

accuracy of 0.1g for each individual component and their weights are recorded.  
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The weighted-out components are inserted into one of the crucibles in the melting hearth 

with a small titanium ingot in the centre crucible, to act as an oxygen getter; the melting 

hearth is then sealed into the vacuum chamber, and the chamber is depressurised to 

0.3 ×10ହ Pa and flushed with argon to 0.7×10ହ Pa. This process is repeated thrice to flush 

as much air as possible from the chamber to reduce the chance of oxidisation of the 

material during the melting process. The chamber is then further depressurised to 1×10ିଷ 

Pa. On reaching the targeted pressure, the evacuated chamber is re-filled with Ar to 

0.2 ×10ହ Pa and the DC power supply is activated so that current flows from the tungsten 

carbide tip acting as a cathode to the crucible base that acts as an anode. The alloying 

components located in the crucible is then melted. 
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Figure 13. Images of the arc-melter. From top-left, clockwise: The vacuum chamber, copper hearth 

with titanium getter, suction-casting attachment, and copper moulds. 
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The ingots were re-melted three times to improve compositional homogeneity of the alloy; 

after retrieving the melted sample, it is sectioned in half to be visually inspected for possible 

signs of segregation of the alloying components. In the event of segregated or un-melted 

constituents, the samples were further re-melted as required until good mixing was 

achieved. The melted ingot is then weighted for comparison with the pre-melted 

components to determine the amount of raw materials that have been lost in the synthesis. 

Once an ingot has been melted, they may then be cast in the casting hearth into a desired 

shape. The procedure for the operation of the casting hearth when attached to the vacuum 

chamber (cf. Figure 13. (a)) is similar to that of the melting hearth with one addition: prior to 

depressurisation the secondary vacuum chamber and its attachment (cf. Figure 13. (c)) is 

pressurised to -0.7 gauge pressure so that a pressure differential is created between the 

vacuum chamber and the secondary chamber after the Argon back-filling process, allowing 

the molten composition to be sucked into the water-cooled copper hearth. A selection of 

copper moulds are available (cf. Figure 13. (d)). 

For standard XRD characterisation experiments and compression testing the 3 mm diameter 

rod shape is used and in the event that a particular composition possesses high viscosity 

which prevents casting in the 3 mm diameter die, the 6 mm diameter rod shape is used for 

enhanced flow; for hardness indentation and scratch testing the samples are cast into 2 mm 

x 6 mm x 10 mm rectangular ingots. 

3.2 X-ray diffraction 

Transmission XRD experiments of powder produced by rasping samples in the as-cast 

condition were conducted on a STOE Stadi diffractometer utilising a Mo k-α 

monochromated source. This method was chosen over reflective XRD to ease 

characterisation of complex phase containing HEA compositions that were too brittle to be 

ground and polished due to their tendency to fragment mid-grinding.  
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Figure 14. Comparison of XRD traces of the CoCrFeNi composition obtained from transmission XRD 

and reflection XRD. 

Figure 14 shows a comparison of the XRD patterns of a HEA CoCrFeNi composition cast into 

a 3 mm rod determined and rasped using a transmission XRD method from a Mo source 

versus the bulk sample using a reflective XRD method in a Bruker D2 Phaser using radiation 

from a Cu source. The difference in peak positions is attributed to the rasping process that 

reduces the strain in the CoCrFeNi alloy system. For the transmission XRD data, the {311} 

peak is indexed at ݀ିଵ =  ;ሶܣ ሶିଵwhich corresponds to a lattice parameter of 3.578ܣ0.927

while for the reflection data the {311} peak is indexed at ݀ିଵ = ሶିଵܣ0.929  which 

corresponds to a lattice parameter of 3.570 ܣሶ. The difference in accuracy between the as-

cast sample and the rasped sample amounts to 0.008 ܣሶ , which is 0.2 %. Generally, 

determination of lattice parameters is only accurate up to two decimal places for standard 

laboratory equipment and is normally sufficient for characterisation purposes. As such, the 

characterisation of the sample using transmission XRD is considered to be useable in 

determining the structure present in the HEAs sample here and as representative of the as-

cast condition for the analyses required in this work. Further comparison of experimental 

data with equivalent literature data it was found that similar phases present in the XRD 

pattern despite the lower resolution of the radiation source [4–7].  

All transmission XRD samples were run from 17° - 50° with a step size of 0.02 for four hours 

and the XRD patterns were Rietveld refined using reference instrument diffraction profiles. 

The angle chosen is sufficient to index the first 5 peaks of the FCC structure: the {111}, {200}, 
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{220}, {311}, and {222} peaks. In general, for peak identification the peak positions and 

general peak intensities are required to match at least three peaks of a reference database, 

or the Bragg reflections of a known structure, and the chosen angles of 2ߠ = 17° to 50° are 

deemed to be sufficient for phase detection. 

All XRD values are presented as a function of the percentage intensity and reciprocal lattice, 

d 1 ሶܣ) ିଵ). Characterisation of the XRD results was performed utilising indexed patterns 

from the PDF4+ database as a guide; following which a Rietveld refinement on the lattice 

parameters and structure was performed on the data using the GSAS software package [a1]. 

It should be recognised that, while commonly used for characterisation of the structure of 

metals and alloys, standard XRD may not detect lower intensity peaks associated with 

smaller phase fractions due to low resolution or poor signal-to-noise ratios, and also may 

not discriminate precisely between such effects as depth profile information and 

compositional variation from segregation, for example. However, for the current goal it is a 

suitable characterisation method as the RBA technique is itself a DFT-based electronic 

structure method suitable for predictions in situations of incomplete knowledge, and a 

complete experimental investigation of structure and properties would naturally follow.  

3.3 Hardness testing 

Hardness testing is performed on samples that have been cast into rectangular ingots of 

dimensions 2 mm x 6 mm x 10 mm. The samples are ground and polished to obtained a 

good surface finish and are tested on a standard Vickers indenter using a diamond 

pyramidal-shaped tip using a load of 10 kg. At least 5 indents are made and the average 

hardness of the composition can then be determined.  

3.4 Compression testing 

Compression testing samples are prepared by sectioning as-cast 3 mm rods so that the 

length to diameter ratio of the rods are 2.0 +/- 0.1 (6 mm) following ASTM E9-89A standards 

for compression testing; the rods are polished so that the ends are parallel to one another 

within 0.0127 mm in preparation for compression testing. The parallelism is checked by 

measuring the distance between both ends at the opposing edges of the cylinder using a 

electronic micrometer which is accurate up to 0.005 mm. The compression tests were 

conducted on a Zwick/Roell Z050 TH testing device at a constant strain rate of 2 ×10ିସିݏଵ 
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using a 50 kN load, while the degree of compression is determined from the crossheads. At 

least two samples of each composition, synthesised separately, were tested to check the 

reproducibility of the compression testing results. 

The engineering stress-strain curves are converted into true stress-strain curves using the 

following formula: 

்ߪ = ா(1ߪ +  ா)          (1)ߝ

்ߝ = 1)݊ܮ +  ா)          (2)ߝ

where ்ߪ is the true stress, ߪா  is the engineering stress, ்ߝ is the true strain, and ߝா  is the 

engineering strain. 

3.5 Statistical analysis: Cluster analysis and probability density function 

The cluster centre in cluster analysis is obtained by minimising the sum of the Euclidean 

distance, ݀ா௨ௗ between members of all identified clusters. In the case of an analysis on 

a xy grid, the equation to be minimised is: 

݀ா௨ௗ = ඥ(ݔ − )ଶݔ + ݕ) −  )ଶ       (3)ݕ

where the coordinates (ݔ,  ) represents the coordinate of the nth member of an identifiedݕ

cluster, while (ݔ ,  ) represents the coordinate of the cluster’s centre. The location of theݕ

cluster centre can be determined by minimising the sum of the Euclidean distances for all 

members across all identified clusters, ݊݅ܯ(∑ ݀ா௨ௗ). In this thesis, ݊݅ܯ(∑ ݀ா௨ௗ) 

is obtained by using the solver add-in of MS Excel, with a convergence value of 1×10ିହ, 

mutation rate of 0.15, and a population size of 100. 

Once the coordinates of the cluster centre have been determined, the cluster standard 

deviation for the x and y axis can be determined using the following relationships: 

௫ߪ = ට
ଵ


∑ ݔ) − )ଶݔ

ୀଵ , ௬ߪ = ට
ଵ


∑ ݕ) − )ଶݕ

ୀଵ      (4) 

The distribution of the clusters can also be analysed using a probability density function. The 

analysis is performed on the Mathematica 10 [8] suite utilising the SmoothHistogram 

function which uses a smooth kernel distribution estimate. This estimate has the general 

form of: 
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ଵ


∑ )ܭ

௫ି௫


)

ୀଵ          (5) 

where K is a weighting function known as the kernel, and h is a smoothing parameter known 

as the bandwidth. In the analysis of this thesis the selection of the kernel was left to 

Mathematica [8] while selection of the bandwidth was estimated using the mean of 

Silverman’s normal distribution approximation given by: 

ℎ =  ො ݊ି.ଶ         (6)ߪ 1.06

where ߪො is the standard deviation and n is the dataset length. 

3.6 4th order Runge-Kutta solution of the Thomas-Fermi-Dirac function 

The Thomas-Fermi-Dirac equation is solved in this thesis using a 4th order Runge-Kutta 

method. The method can be used to solve an ordinary differential equation of the form: 

ௗ௬

ௗ௫
= ,ݔ)݂ ,(ݕ (0)ݕ =          (7)ݕ

In which case y may be written as: 

ାଵݕ = ݕ + (ܽଵ݇ଵ + ܽଶ݇ଶ + ܽଷ݇ଷ + ܽସ݇ସ)ℎ      (8) 

which may be equated with a semi-convergent Taylor expansion so that: 

ାଵݕ = ݕ + ∑ ቂቀ
ଵ

!
ቁ ቀ

ௗೕ௬

ௗ௫ೕቁ ାଵݔ) − )ቃݔ
ୀଵ        (9) 

Comparing Equation 8 with 9, ℎ = ାଵݔ) −  ,) , ܽ are the related coefficients of expansionݔ

and ݇ is a function of ቀௗ௬

ௗ௫
ቁ


. The general solution used may be written as: 

ାଵݕ = ݕ +
ଵ


(݇ଵ + 2݇ଶ + 2݇ଷ + ݇ସ)ℎ       (10) 

By defining ௗ௬

ௗ௫
= ݔ)݂ ,  :), the coefficients ݇ may be written asݕ

݇ଵ = ,ݔ)݂   (ݕ

݇ଶ = ݔ)݂ +
1
2

ℎ, ݕ +
1
2

݇ଵℎ) 

݇ଷ = ݔ)݂ +
1
2

ℎ, ݕ +
1
2

݇ଶℎ) 
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݇ସ = ݔ)݂ + ℎ, ݕ + ݇ଷℎ)         (11) 

Equation 10 is the general solution for a first order differential equation. The solution for a 

2nd order differential equation may be solved by converting the second order differential 

equation 

ௗమ௬

ௗ௫మ +
ௗ௬

ௗ௫
+ ݕ =  (12)          ܥ

into two first order differential equations of the form: 

ݕ݀
ݔ݀

=  ݖ

ௗ௭

ௗ௫
= ܥ − ݕ −  (13)          ݖ

so that the general solution from Equation 10 can now be used to solve Equations 13. The 

solution to the Thomas-Fermi-Dirac approximation in Chapter 4 is achieved using the 

method described above, and computed in Mathematica [8]; and the code is shown in the 

Appendix. The 4th order Runge-Kutta method may be implemented computationally to solve 

the Thomas-Fermi-Dirac approximation by first defining the equations and the boundary 

conditions: 

ௗమ௬

ௗ௫మ = ݔ ඌቀ
௬(௫)

௫
ቁ

ଵ/ଶ
+ ඐߝ

ଷ

        (14) 

(0)ݕ = 1           (15) 

ቀ
ௗ௬

ௗ௫
ቁ

௫ୀ௫బ
=

௬(௫బ)

௫బ
         (16) 

A semi-convergent expansion of Eq. 2 may then be written as [9]: 

(ݔ)ݕ = 1 + ܽ(ݔ)/ଶ+. .. , up to n = 13       (17) 

where an represents the coefficients of the expansion which may be obtained by inserting 

Eq. 17 into Eq. 14 and comparing coefficients of similar power exponents from both sides of 

the equation, with the exception of the coefficient a2 which is defined as the initial slope of 

the TFD equation, where ܽଶ = ߮′(0). a2 coefficients lie between -1.7 and -1.5, and the 

numerical solution of the TFD equation may then obtained by determining the minimised 
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electron density, n(x) in this range by using Equations 10 and 11 to solve both first order 

differential equations, Equation 14 and 16.  

Since the initial slope has been defined as −1.7 < ܽଶ < −1.5, the step size ℎ = ାଵݔ) −  (ݔ

must also be defined for the algorithm to function. For the calculations in this thesis, ℎ =

50. The electron density and its associated Wigner-Seitz radius may then be computed. For 

a known crystal structure, the rws may be approximated from the mean volume, V per atom, 

N of the unit cell where each atom is considered to be spherical, hence leading to: 

௪௦ݎ =
ଷ

ସேగ

ଵ/ଷ
          (18) 

The electron density for this Wigner-Seitz radius may then be selected from the list of 

solutions of Equation 90, given by the 4th order Runge-Kutta method.  
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4.  The Local Environment of Alloys 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Objective To understand the underlying relationship between the electronic structure and 

phase presence in High-entropy Alloys. 

Hypothesis The Mulliken electronegativity scale of the first valence electron will enable 

discrimination between simple and complex phases due to the difference in metallic 

bonding between simple and complex phases. This difference can also be evidenced 

from the electron density. 

Analysis Type Analytical (80%), Experimental (20%) 

Variables Alloy Composition 

Primary Result  Electronegativity, Electron density 

Techniques Arc-Melting & Casting, XRD, Numerical Analysis 
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Symbols and Abbreviations 

∆X    Electronegativity difference 

∆X∗   Change in Miedema electronegativity 

Δ ܺ  Allen electronegativity difference 

∆ܵ   Entropy of mixing 

ܽ   Bohr radius 

Å   Units Angstrom 

 ො   Standard deviationߪ

 Atomic size difference   ߜ

 Electronic chemical potential   ߤ

 Thomas-Fermi-Dirac Function   (ݔ)߮

BCC   Body-centred cubic 

E    Energy  

FCC   Face-centred cubic 

HEA   High-entropy alloy 

 Electron density at x   (ݔ)݊

nP   Averaged primary quantum number 

݊ௐௌ   Electron density at the Wigner-Seitz radius 

N    Number of electrons 

PCA   Principal component analysis 

PDF   Pair distribution function 

r   Radius 

 ௪௦   Wigner-Seitz radiusݎ

RK   Runge-Kutta 

TFD   Thomas-Fermi-Dirac 

V    Potential of the nuclei 

VEC   Valence electron concentration 

x   Normalised radius 

XAllen   Allen electronegativity 

XMulliken   Mulliken electronegativity 

XPauling   Pauling electronegativity 
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Z   Atomic number 
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4.1 Chapter Preface 

Chapter 4 is split into two sections involving two separate analyses; section 4.2 covers the 

analysis of the relationship between enthalpy of mixing and various measures of 

electronegativity (Pauling, Allen, and Mulliken) High-entropy Alloy (HEA) parameters, while 

section 4.3 addresses the electron density analysis of HEAs simple and complex phases. The 

hypothesis tested in this chapter is as follows: 

The Mulliken electronegativity scale of the first valence electron will enable 

discrimination between simple and complex phases due to the difference in metallic 

bonding between simple and complex phases. This difference can also be evidenced 

from the electron density, being representative of the electronic structure. 

In Section 4.2 the average electronegativity values of selected HEA compositions are 

considered for their ability in distinguishing and predicting simple/complex phase presence 

in HEAs. Electronegativity is expected to offer better discrimination as their point of 

reference will more accurately reflect the atomic environment; as mentioned in Section 

1.3.2 of the Literature review these scales may be derived from properties of the free atoms 

such as their heats of formation, paired bond lengths, charge transfer properties etc. The 

Mulliken electronegativity may be able to better represent the metallic bonding nature of 

HEA compositions by taking the arithmetic mean of the first electron affinity and  first 

ionisation energy, as the valence electrons in transition metals are dependent on many 

factors related to the electronic structure [10]. 

In Section 4.3 the electron densities of selected HEA compositions are probed for their 

ability in distinguishing and predicting simple/complex phase presence in HEAs. Complex 

phase presence in HEAs is often attributed to the addition of alloying elements which 

possess increased bond directionality (c.f. Section 1.4 in the Literature Review). Further 

evidence is given for charge redistribution in these phases, suggesting that their local 

environment is different from the simple phases, and that an analysis of the electron density 

at the Wigner-Seitz radius may allow for further discrimination. 

It is the aim of this Chapter to explore the difference between discrimination of 

simple/complex phases determined through a semi-empirical method utilising averaged 

electronegativity values in Section 4.2, and through a simple approximation of the local 
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environment using the Thomas-Fermi-Dirac equations in Section 4.3. The results and 

increased understanding in this chapter are used to fuel the development of a strategy for 

alloy design. 
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4.2 Analysis of the relationship between High-entropy alloy parameters: Enthalpy of 

mixing and averaged electronegativities (Pauling, Allen, and Mulliken)  

The effect of some empirical and thermodynamic parameters (enthalpy of mixing (∆ܪ), 

electronegativity difference (∆X), atomic size difference (ߜ), entropy of mixing (∆ܵ), and 

valence electron concentration (VEC)) on the presence of the simple phase was studied by 

Dominguez et al. [11] statistically utilising a principal component analysis (PCA), from which 

it was shown that the VEC and ∆ܪ parameters could be used to distinguish between the 

presence of simple and complex structures in HEA compositions. It is of particular interest 

that the electronegativity parameter, defined as the ability of an atom to attract electrons 

towards itself, did not successfully discriminate between simple and complex phases in the 

PCA.  

The electronegativity rule is an electrochemical effect employed to describe the electronic 

interactions between the constituent components of an alloy composition [12]. In a binary 

system this is evaluated by taking the difference in the Pauling electronegativity between 

the two constituent elements. An electronegativity difference of zero would imply that 

elements possess the same tendency to attract electrons and the electrons will be shared 

between both atoms, while a large electronegativity difference would imply that the 

resulting charge transfer is more favourable towards the formation of a compound phase.  

As mentioned in Section 1.3.2 of the Literature Review, electronegativity scales may be 

broadly divided into either absolute scales, or Pauling-like scales. Absolute scales originate 

from Parr’s 1934 [13] communication which showed that electronegativity analysed from 

the viewpoint of density functional theory is equivalent to the negative of ߤ, the electronic 

chemical potential and this value is constant for any  chemical system, atom, ion or 

molecule. The chemical potential may be defined by the function = డா

డே
ܸ, where E is the 

electronic energy, N is equivalent to the number of electrons, and V is the potential of the 

nuclei. It is further shown that the Mulliken electronegativity, the average of the ionisation 

energy and the electron affinity, is a good approximation of ߤ, and that the Mulliken 

electronegativity is termed the ‘absolute electronegativity’ in reference to its near equality 

to this property, −ߤ. 
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The electroneutrality principle introduced by Pauling [14] states that charge has to be 

transferred from the more electronegative to the less electronegative atom. This concept 

has been explored by Miedema [15] who reports  > 96% accuracy in predicting the 

metallurgical behaviour of transition metal alloys in terms of the electronegativity 

difference and electron density difference at the Wigner-Seitz radius parameters. The 

motivation of this section is to therefore determine the influence of the mean Pauling, 

Allen, and Mulliken electronegativity parameters, at which electroneutrality should be 

reached theoretically, on the discrimination of simple FCC and BCC phase forming HEA 

compositions, and their applicability in compositional selection and alloy design. 

4.2.1 Calculations: Cluster and probability density function analysis.  

The dataset used in this study consists of 24 HEA compositions selected by considering their 

diffraction patterns (presenting one simple diffraction pattern of either FCC, BCC, or HCP 

type]) from literature showing the presence of a majority (>90%) phase consisting of simple 

FCC (9 compositions), simple BCC (10 compositions), and complex structures (4 

compositions). Shown in Table 6, the values of the primary quantum number (n), the Pauling 

electronegativity (XPauling), Allen electronegativity (XAllen), Mulliken electronegativity 

(XMulliken), enthalpy of mixing (ΔH) and valence electron concentration (VEC) for each 

composition are determined from the weighted average of the respective composition’s 

individual elemental alloying additions. Values of XMulliken here are determined as the 

average of the first ionisation energy and electron affinity of the alloying element involved. 
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Table 6. Tabulated values of the for XPauling, XAllen, and XMulliken mean electronegativities of selected 

HEA compositions taken from literature, with their corresponding averaged primary quantum 

number, nP, majority phase present, enthalpy of mixing, and valence electron concentration.  

Nominal composition Group n XPauling XAllen XMulliken ઢ۶ VEC Ref 
Al0.17Co0.17Cr0.17Fe0.17Mo0.02Ni0.17 BCC (3d) 3.2 1.49 1.46 3.28 -12.13 4.52 [a1] 
Al0.17Co0.17Cr0.17Fe0.17Ni0.17Nb0.02 BCC (3d) 3.2 1.48 1.46 3.28 -13.32 4.51 [a2] 

Al0.27 Co0.18Cr0.18Fe0.18Ni0.18 BCC (4d) 3.7 1.75 1.73 3.82 -12.32 5.13 [a3] 
Al0.2Nb0.2Ta0.2Ti0.2V0.2 BCC (4d) 4.4 1.58 1.45 3.61 -13.44 4.40 [a4] 

Al0.11Nb0.22Ta0.22Ti0.22V0.22 BCC (4d) 3.7 1.29 1.18 2.99 -8.40 3.73 [a4] 
Nb0.25Mo0.25Ta0.25W0.25 BCC (5d) 5.5 1.91 1.42 4.01 -6.50 5.50 [a5, a6] 

Al0.06Nb0.23Ta0.23Ti0.23V0.23 BCC (5d) 4.7 1.57 1.42 3.69 -6.50 4.67 [a4] 
Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2 BCC (5d) 5.2 1.45 1.32 3.64 2.72 3.60 [a6] 
Nb0.2Mo0.2Ta0.2V0.2W0.2 BCC (5d) 5.2 1.85 1.44 3.93 -4.64 5.40 [a6] 

Hf0.33Nb0.33Zr0.33 BCC (5d) 5.3 1.41 1.30 3.61 3.56 3.00 [a7] 
Al0.06Cr0.19Fe0.19Co0.19Ni0.19Cu0.19 FCC (4d) 3.7 1.82 1.79 4.12 0.16 6.77 [a8] 
Al0.10Cr0.18Fe0.18Co0.18Ni0.18Cu0.18 FCC (4d) 3.7 1.82 1.79 4.09 -1.52 6.64 [a8] 

Co0.25Cr0.25 Fe0.25Ni0.25 FCC (4d) 4.0 1.82 1.79 4.10 6.25 6.00 [a9, a10, 
a11] 

Cr0.23Fe0.23Co0.23Ni0.23Cu0.12 FCC (4d) 4.0 1.83 1.80 4.15 0.49 6.56 [a9, a10] 
Co0.2Cr0.2 Fe0.2Ni0.2Pd0.2 FCC (4d) 4.2 1.90 1.75 4.17 -5.60 6.80 [a10, a11] 
Co0.2Cr0.2Fe0.2 Mn0.2Ni0.2 FCC (4d) 4.0 1.77 1.78 4.03 -4.16 6.20 [a12] 

Co0.23Cr0.23 Fe0.23Ni0.23Pd0.12 FCC (4d) 4.1 1.86 1.77 4.14 -4.80 6.44 [a9, a10] 
Co0.19Cr0.19Fe0.19Ni0.19Pd0.28 FCC (4d) 4.3 1.92 1.74 4.20 -5.83 7.09 [a9, a10] 

Cr0.13 Cu0.25Fe0.25 Mn0.13Ni0.25 FCC (4d) 4.0 1.81 1.81 4.16 -17.5 7.25 [a15] 
AlCoCrFeMo0.5Ni Complex - 1.81 1.73 3.93 -11.21 5.45 [a15] 
CuTiVFeNiZrCo Complex - 1.72 1.39 3.36 -14.82 6.00 [a8] 

CoCrFeNiCuAl0.5V Complex - 1.79 1.51 3.46 -4.46 6.38 [a16] 
CoCrFeNiCuAl0.5V1.6 Complex - 1.75 1.31 2.95 -11.53 5.49 [a16] 

Ti0.25Mn0.25Fe0.25Ni0.25 Complex - 1.71 1.70 3.90 -16.55 7.25 [a17] 
 

In addition to separating the 24 compositions by the majority phase present, they have 

been further partitioned according to their averaged primary quantum numbers rounded to 

integer values. These subdivided groups are illustrated in Table 1 as the BCC (3d), BCC (4d), 

BCC (5d), FCC (4d), and complex structures. The distribution of these compositions may be 

analysed utilising a Euclidean distance-based cluster analysis.  

By designating the compositions belonging in each group as members of each cluster (here 

the clusters are denoted as BCC (3d), BCC (4d), BCC (5d), and FCC (4d)), the cluster centre 

may be determined by minimising the Euclidean distance between each composition within 

a group to a common arbitrary point that is defined as the cluster centre. The values of 
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these are shown in Table 6 listed together with the standard deviations of each cluster for 

values of XPauling, XAllen, XMulliken, and VEC. Values of these results will be shown graphically 

and discussed individually in the following results and discussion section. The presence of 

complex phases within the cluster analysis were found to be independent of the simple 

phase partition. This result is in agreement with previous work in the VEC-ΔH plot [6], which 

will be shown later in this work to be similar to the X-ΔH plots. The analysis in this work will 

therefore focus on the separation between the FCC and BCC structures, and for ease of 

representation, complex structures will not be shown.  

Table 7. Coordinates of cluster centres for BCC (3d), BCC (4d), BCC (5d), and FCC (4d) data calculated 

from HEA compositions listed in   
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Table 6 for for XPauling, XAllen, and XMulliken tabulated together with the calculated standard deviation of 

the samples. Cluster centre coordinates are obtained by minimising the Euclidean distance between 

the coordinates of each point in the ܺ −  .biplot of identified clusters ܪ∆

Cluster XPauling XAllen XMulliken VEC 

 
X ± ࣌ෝ ∆࣌ ± ࡴෝ X ± ࣌ෝ ∆࣌ ± ࡴෝ X ± ࣌ෝ ∆࣌ ± ࡴෝ VEC ± ࣌ෝ ∆࣌ ± ࡴෝ 

BCC (3d) 1.49 ± 0 -12.75 ± 0.6 1.46 ± 0 -12.56 ± 0.62 3.28 ± 0 -12.76 ± 0.6 4.86 ± 0.34 -12.77 ± 0.6 

BCC (4d) 1.75 ± 0.28 -12.32 ± 2.35 1.73 ± 0.36 -12.32 ± 2.35 3.82 ± 0.49 -12.32 ± 2.35 4.67 ± 0.63 -12.07 ± 2.27 

BCC (5d) 1.85 ± 0.24 -4.64 ± 3.91 1.44 ± 0.06 -4.64 ± 3.91 3.93 ± 0.19 -4.64 ± 3.91 5.38 ± 0.96 -3.29 ± 3.83 

FCC (4d) 1.82 ± 0.05 -1.65 ± 3.87 1.78 ± 0.02 -1.77 ± 3.86 4.11 ± 0.05 -1.87 ± 3.86 6.12 ± 0.55 -2.93 ± 4 

4.2.2 Cluster analysis of ۳۱܄ − ઢ۶ plot 

The result of the cluster analysis is first analysed as a biplot of VEC-ΔH in Figure 1(a). This 

biplot is the similar to the one presented by Dominguez et al. as a result of their PCA, and 

shows the two variables that best distinguish the simple FCC/BCC and complex phases from 

one another, out of all five empirical parameters that were analysed. It is emphasised again 

that each point on the left-most plot represents 1 of the 24 selected compositions, which 

have been partitioned into one of several groups/clusters. The highlighted zones on the plot 

show the results of the cluster analysis, while the secondary plot on the right is the result of 

another statistical analysis, the probability density function of the distribution of these 

identified clusters. These analyses are used to study the distribution of the HEA 

compositions within the subsequent biplots as a function of their classification to each 

cluster, the discussion of which will be elaborated later. 

Figure 15 (a) shows a graphical representation of the cluster centres encompassing an area 

with two boundaries; The first boundary’s limits are defined by the cluster standard 

deviation (see values of σ ̂ in Table 6), while the second boundary’s limits are defined by the 

composition within the cluster possessing the largest difference in Euclidean distance from 

its centre. The resultant analysis shows a distinct overlap within the first cluster boundary 

between the simple FCC (4d) and BCC (5d) clusters. Additionally, the BCC (3d) cluster is 

found to be located within the BCC (4d) cluster, although minimal overlap between the 

second cluster boundary of BCC (4d) and BCC (5d).  

Figure 15 (b) presents a smoothed pair density function (PDF) of the distribution of VEC of 

the HEA compositions using the KernelMixtureDistribution function included in the 
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Mathematica 10 package [8]. The kernel bandwidth, h for XPauling, XAllen, XMulliken, and VEC was 

estimated using the mean of Silverman’s normal distribution approximation [19], given by: 

ℎ =  ො ݊ି.ଶ         (1)ߪ 1.06

where ߪො is the standard deviation and n is the dataset length. h was determined to be of the 

following values for XPauling (h: 0.21), XAllen (h: 0.15), XMulliken (h: 0.25), and VEC (h: 0.88) 

respectively. Further information on the numerical analyses may be found in the Methods 

section. In the two-dimensional PDF landscape represented by Figure 15 (b), the PDF 

determined independently of ΔH, the BCC (3d), BCC (4d), and BCC (5d) clusters exhibit 

significant overlap with each other, which is in agreement with Figure 15 (a). The positions 

of the cluster centres and standard deviations in Figure 15 (a) are mapped as to Figure 15 (b) 

according to their corresponding clusters, shown by the highlighted regions of the PDF 

curves. The location of the cluster centre is observed to be off-centre from the mean 

position of the smoothed histogram, showing the influence of ΔH in determining the cluster 

centres located in Figure 15 (a), and their influence on phase discrimination. 

 

Figure 15. (a) Two-dimensional plot of ܸܥܧ − ΔH following Dominguez et al.’s analysis with dark 

areas bounded, and (b) The associated Probability Density Function (PDF) for the VEC distribution of 

HEA compositions studied here. 

The above analysis is performed by obtaining ∆ܪ values from the Miedema model using 

the interaction between the volumetric effect, chemical potential for electronic charge, and 

change in the electron density at the Wigner-Seitz boundary as a basis for evaluation [20]. 

The proportionality between neighbouring atoms may be given by [3]: 
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ܪ∆ ∝ −ܲ(∆X∗)ଶ + ܳ൫∆݊ௐௌ
ଵ/ଷ൯

ଶ
       (2) 

where P and Q are constants related to combinations of metals depending on their valences 

[3], ∆X∗ is Miedema’s electronegativity difference and ∆nୗ
ଵ/ଷ is the difference in the 

electron density at the Wigner-Seitz boundary. Electronegativity is linked to the valence 

electrons of an atom, even such that the Allen electronegativity scale is defined as the 

average energy of the valence electrons of an atom at the ground state [10]. Previous 

studies have shown that the structure of a composition may be strongly related to the 

valence electron concentration, famously used to explain the stability FCC and BCC brass by 

Hume-Rothery [12], and shown to also apply to a wide variety of other structures, including 

HEAs [12,21,22]. The stability of these phases might be attributed to the dependence of the 

size changes on the electronic properties of the composition such as electronegativity and 

valence electron [23], which is in agreement with the two-dimensional plot of Dominguez et 

al. [11]. By making the simplification that VEC ∝ X, the gradient of the VEC − ∆H can be 

written as: 

ఋாതതതതതത

ఋ∆ு
=

ఋா

ఋ൫ି(∆ଡ଼∗)మାொ∆ೈೄ
మ/య൯

        (3) 

The difference between the identified clusters of simple structures can then be determined 

to be the ratio between the rate of change of the valence electron concentration to the rate 

of change of the sum of Miedema’s electronegativity difference and the electron density at 

the Wigner-Seitz radius as described in Eq. 2. The separation of the clusters between the 

simple FCC and BCC phases and their respective averaged primary quantum numbers can 

then be attributed to a different rate of change in δ∆H. From Eq. 3, this may be attributed 

to a combination of 1. The change in the shielding effect between atom to atom in the case 

of an increased primary quantum number, reducing the attraction experienced between the 

valence electrons and the nucleus and hence ∆X ∗; and 2. A difference in the bonding 

behaviour in the electronic structure reflected by the electron density. 

The discrimination can thus be seen to be based on the behaviour of the electrons, from 

quantum-mechanical principles. The value of VEC by itself, can then be taken as a semi-

empirical value reflecting the electronic structure that in combination with the ratio ஔେതതതതതത

ஔ∆ୌ
, 

allows discrimination of the simple structures. Although this 2-D plot shown in Figure 15 



104 
 

allows said discrimination, the resulting histogram analysis shown in Figure 15. (b) does not 

conform to expectation of the energy levels of these structures, as one might expect the 

overall energy of an atom to increase in tandem with its size. This may be attributed to the 

fact that VEC values, derived semi-empirically from the periodic table, may be very different 

from the exact electrons available for bonding at the quantum-mechanical level, due to 

interactions of the electronic structure. 

As the change in Miedema’s electronegativity parameter, ∆X∗ is proportional to the change 

in Pauling electronegativity [3,15,23] which should be better able to reflect the electronic 

properties of an atom, it is proposed here that a relationship between Xഥ − ΔH may give 

better partitioning of the simple/complex phases in HEAs. Figure 16 presents the cluster and 

PDF analysis performed for Xഥ − ΔH  for three different electronegativity scales, X୪୪ୣ୬ , 

Xୟ୳୪୧୬, and X୳୪୪୧୩ୣ୬.  

4.2.3 Cluster analysis of ܆ഥ − ઢ۶ plots 

Figure 16 (a) and (b) shows the similar cluster and PDF analysis performed to investigate the  

Xഥୟ୳୪୧୬ − ΔH  relationship. The simple/complex phase discrimination here is in good 

agreement with the two-dimensional plot of VEC − ΔH  shown in Figure 15 (a). In 

comparison, while here a larger overlap between the FCC (4d) and BCC (5d) clusters is 

observed, the BCC (3d) cluster here is more distinctly distinguished from the BCC (4d) 

cluster, being located at the edge of the first boundary of the BCC (4d) cluster. From Figure 

16 (b), the separation of Xഥୟ୳୪୧୬ values between the clusters with values Xഥେେ (ଷୢ): 1.49, 

Xഥେେ (ସୢ): 1.75, Xഥେେ (ହୢ): 1.85 are observed to be much more distinct when compared to 

the plot of VEC − ΔH shown in Figure 15 (a). The close overlap of the FCC (4d) and BCC (5d) 

cluster is also observed in Figure 16 (b) with Xഥେେ (ସୢ): 1.82 and Xഥେେ (ହୢ): 1.8. 

Figure 2 (c) shows the cluster and PDF analysis performed for the Xഥ୪୪ୣ୬ − ΔH relationship, 

where a clear distinction between the FCC (4d) and BCC (4d) structure is observed. The 

spread of the BCC (4d) cluster is seen to be much larger in comparison to the BCC (3d), BCC 

(5d), and FCC (4d) clusters as evidenced by σෝେେ (ସୢ): 0.36, in comparison to σෝେେ (ଷୢ): 0, 

σෝେେ (ହୢ): 0.06, and σෝେେ (ସୢ): 0.02. The locations of these cluster centres in ascending order 

are Xഥେେ (ସୢ) : 1.44, Xഥେେ (ଷୢ) : 1.46, Xഥେେ (ହୢ) : 1.73, and Xഥେେ (ସୢ) : 1.78, reflecting a 

discrepency with the earlier Xഥ୪୪ୣ୬ − ΔH analysis, as the electronegativity, reflective of the 
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orbital energy, should scale with the mean atomic size. The PDF analysis in Figure 2 (d) 

demonstrates a similar pattern with the BCC (4d) distribution appearing to be more evenly 

distributed, due to the small sample size of the BCC (4d) cluster. The positions of the BCC 

(3d), BCC (4d) and BCC (5d) peaks in Figure 2 (d) are seen to be very close to one another, 

which shows good comparison with Figure 2 (b). 

 

Figure 16. (Left: a, c, e) HEA distribution shown on biplots of electronegativity plotted against 

enthalpy of mixing for XPauling, XAllen, and XMulliken with dark bounded areas showing the extent of 
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standard deviation from the cluster centre and light bounded areas showing the maximum Euclidean 

distance between cluster centre and the outermost regions. (Right: b, d, f) Smoothed histogram 

plots for XPauling, XAllen, and XMulliken of BCC (3d), BCC (4d), BCC (5d), and FCC (4d) HEA alloy 

compositions following a Gaussian distribution. 

Figure 16 (e) shows the analysis performed the Xഥ୳୪୪୧୩ୣ୬ − ΔH relationship showing good 

identification of phases within the two-dimensional plot. The FCC (4d) and BCC (5d) clusters 

are observed to overlap at around ΔH = −5.5. The cluster positions as shown in Figure 2 (f) 

are in ascending order are Xഥେେ (ଷୢ): 3.28, Xഥେେ (ସୢ): 3.82, Xഥେେ (ହୢ): 3.93, and Xഥେେ (ସୢ): 

4.11, showing a good relationship between electronegativity and mean orbital size. The  

location of the PDF peaks in Figure 16 (e) are similar to those from the cluster analysis in 

Figure 16 (d), in ascending order being BCC (3d), BCC (4d), BCC (5d), and FCC (4d).  

In general, it is observed from the analyses in Figure 15 and Figure 16 taking into account 

not only the phase, but also the mean primary quantum number of the HEA compositions 

allows for better discrimination of these clusters within the associated two-dimensional 

plots as shown above. Furthermore, the values of Xഥ are observed to co-relate with the mean 

primary quantum number as may be expected from established relationships between 

electronegativity and orbital energy [24,25]. Of the three electronegativities explored here 

the distinction between all four clusters is based on the position of the maxima and found to 

be most distinct for the Xഥ୳୪୪୧୩ୣ୬ − ΔH relationship.  

4.2.4 Distribution of Complex Phases 

The distribution of complex phases in Figure 15 and Figure 16 are found to generally lie 

outside the range of cluster values attributed to the presence of the simple FCC and BCC 

phases. In the plot of VEC − ΔH, the CoCrFeNiCuAl0.5V composition at position (ΔH: -4.46, 

VEC: 6.38) was located within the first boundary of the FCC (4d) and BCC (5d) cluster.  

The Xഥୟ୳୪୧୬ − ΔH plot fares worse than the VEC − ΔH plot, showing CoCrFeNiCuAl0.5V (ΔH: 

-11.53, Xഥୟ୳୪୧୬: 1.79), and AlCoCrFeMo0.5Ni (ΔH: -11.21, Xഥୟ୳୪୧୬: 1.75) located within the 

first boundary of the BCC (4d) cluster, with the CoCrFeNiCuAl0.5V composition at position 

(ΔH: -4.46, VEC: 1.79) also located within the first boundary of the FCC (4d) and BCC (5d) 

cluster. Whereas in the Xഥ୪୪ୣ୬ − ΔH plot, only the AlCoCrFeMo0.5Ni composition (ΔH: -
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11.21, Xഥ୪୪ୣ୬: 1.73) is found to be located within the first boundary, showing better 

discrimination between simple and complex phases within the cluster analysis. 

For the Xഥ୳୪୪୧୩ୣ୬ − ΔH plot, the complex phases are located outside the first boundary of 

the identified clusters, showing good separation between the simple and complex phases. 

No boundaries or separate clusters were able to be identified for the complex phases 

without significant overlap between the existing FCC (4d), BCC (3d), BCC (4d), and BCC (5d) 

clusters. The position of the complex phases were found in general to be dispersed 

throughout the 2-D plot in the analysis of Dominguez et al. [11], similar to those found in 

the analysis here. Pettifor’s analysis of the Miedema enthalpy of mixing model shows that 

the ratio of ΔH/(ΔVEC)ଶ begins deviating from theoretical predictions between 4 < VEC <

7, which is regarded as a zone of complex phase presence in HEAs [15,26]. The non-

conformation of the complex phase containing compositions may result from the increased 

bonding directionality exhibited by these phases [27,28], which may lead to a change in the 

electron density and charge transfer behaviour, hence leading to different overall scaling in 

the 2-D plots shown above. 

4.2.5 Summary 

The analysis performed in Sections 4.2.1 and 4.2.2 show that utilising the average 

electronegativity value of a HEA composition allows for discrimination between the simple 

HEA phases, with the best separation shown for XMulliken. However, complex phases are 

found to be interspaced between the zones of simple phase formation possessing no 

common trend. This is attributed to the change in charge redistribution between simple and 

complex phases [23,28,29], which is hypothesised to result from interactions in the 

electronic structure that may be analysed as a function of the electronic density. The next 

section will therefore aim to look at the changes in electron density as a function of simple 

and complex structure containing HEA compositions. 

4.3 Electron Density Analysis of High-entropy Alloys Simple and Complex Phases 

Principal component analysis of the atomic and thermodynamic parameters has largely 

differentiated simple and complex phases in a 2-dimensional plot of the valence electron 

concentration against the enthalpy of mixing [11]. As a) the valence electron parameter may 

be considered a quantum-mechanical parameter used as an indicator of the electronic 
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structure to predict phase stability [30–32] and b) the electronic structure of complex 

phases is not simple: e.g. some B2 phases are shown to possess increased directional 

bonding [15], and the Sigma phase shares some local structure properties with icosahedral 

glass [33], the study of the electronic structure of HEAs should therefore shed light on the 

competition between simple and complex phases. Furthermore, analysis of HEA 

simple/complex phase presence utilising various electronegativity scales performed in 

Section 4.2 shows good discrimination between the FCC and BCC simple phases, which may 

be further separated according to their principal quantum number. The absence of trend of 

the complex phases was hypothesised to be attributed to increased charge redistribution 

between their alloying components, leading to a change in the electron density at the 

Wigner-Seitz radius.  

Motivated by this possibility and the lack of available knowledge on the electronic 

structures of HEAs, the electron density of some HEA compositions produced 

experimentally, and from literature is probed utilising the Runge-Kutta (RK) numerical 

solution of the Thomas-Fermi-Dirac (TFD) equation first presented by Ren et al. [9]. While 

the choice of numerical model may not provide full information on the electronic structure 

of these compositions, it meets the criteria of this work – that is to use a minimally 

complicated model to relate aspects of the electronic structure with experimentally 

determined phases present. Here, the results of the RK TFD solution are used not as a tool 

for phase prediction or justification, but instead as a numerical laboratory for additional 

insight. 

4.3.1 Calculations:  4th order Runge-Kutta solution of the Thomas-Fermi-Dirac equation. 

The TFD model is an expansion on Thomas’ [34] and Fermi’s [35] original work to account 

for the effect of electron exchange interactions to solve the many-electron problem. 

According to the TFD Model, the electron density at absolute zero is given by: 

(ݔ)݊ =


ସగఓయ ߝ + ቀ
ఝ(௫)

௫
ቁ

ଵ/ଶ
൨

ଷ

        (1) 

where ߤ = ܽ ቀ
ଽగమ

ଵଶ଼
ቁ

ଵ/ଷ
 represents the electron density, a0 (ݔ)݊ ,is the TFD function (ݔ)߮ ,

is the Bohr radius, Z is the atomic number, x is the normalised radius with ݎ = ߝ and ,ݔ ߤ =

ቀ
ଷ

ଷଶగమቁ
ଵ/ଷ

ܼିଶ/ଷ represents the electron exchange interaction term introduced by Dirac. 
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Following Ren et al. [9], the second-order differential expression of the TFD equation in Eq. 

(2) with associated boundary conditions in Eq. (3) & Eq. (4) for a non-isolated neutral atom. 

ௗమఝ

ௗ௫మ = ݔ ඌቀ
ఝ(௫)

௫
ቁ

ଵ/ଶ
+ ඐߝ

ଷ

        (2) 

߮(0) = 1           (3) 

ቀ
ௗఝ

ௗ௫
ቁ

௫ୀ௫బ
=

ఝ(௫బ)

௫బ
         (4) 

 

A semi-convergent expansion of Eq. 2 may then be written as: 

(ݔ)߮ = 1 + ܽ(ݔ)/ଶ+. .. , up to n = 13       (5) 

where an represents the coefficients of the expansion which may be obtained by inserting 

Eq. (5) into Eq. (2) and comparing coefficients of similar power exponents from both sides of 

the equation, with the exception of the coefficient a2 which is defined as the initial slope of 

the TFD equation, where ܽଶ = ߮′(0). a2 coefficients lie between -1.7 and -1.5 [36], and the 

numerical solution of the TFD equation in Eq. (2) is then obtained by determining the 

minimised electron density, n(e) for a2 coefficients in this range, by solving Eq. (5) and its 

derivative utilising the fourth order RK method for a given atomic number, Z. n(rws) may 

then be selected from the determined TFD solution of each a2 value through knowledge of 

the composition’s the Wigner-Seitz radius, rws. For a known crystal structure, the rws may be 

approximated from the mean volume, V per atom, N of the unit cell where each atom is 

considered to be spherical, hence leading to:  

௪௦ݎ =
ଷ

ସேగ

ଵ/ଷ
          (6) 

Selected HEA compositions with principal alloying components Co1Cr1Fe1Ni1Ax with A = Pd, 

Ti, Al, and V (here denoted CCFN-Ax) from the literature have been selected and added with 

newer compositions. The samples made here are processed by arc-melting elements of at 

least 99.9% purity in a water-cooled copper hearth in a backfilled Ar atmosphere.  3 mm 

rods were cast via suction casting into a water-cooled copper hearth under similar 

conditions and the main phases present in the as-cast condition with their associated lattice 

parameters were determined through x-ray diffraction as described in the Methods section. 

Experimentally determined XRD patterns are presented in Figure 17 from which it is shown 

that the simple FCC phase is stable for the four-component CoCrFeNi system.  
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Figure 17. XRD patterns of Co1Cr1Fe1Ni1Ax (denoted CCFN-Ax) where A = Al, Ti, V, Mn, and Pd with 

associated phase classifications as shown in Table 3. 

Further addition of a fifth element to equimolar CCFN is observed to destabilise the FCC 

structure as the average atomic number, Zavg decreases; this is the case for CCFN-Ti, CCFN-

Al, and CCFN-V.  Conversely, an increase in Zavg, as in CCFN-Pd is observed to maintain the 

presence of the FCC phase. The results obtained here are consistent with the predictions 

and observations from the literature, where complex phases are observed to be present at 

intermediate valence electron values [37–40]. Lattice parameters and volume fractions for 

the observed majority phases are obtained via Rietveld refinement (cf. Appendix) and are 

used to estimate averaged rws values from Eq. (6) by weighting according to the observed 

volume fractions, and are listed in Table 3; rws values obtained thus are considered to be 

averaged values representing the electronic structure of the alloy composition. CCFN is 

calculated to have an rws value of 1.387 Å, and further addition of a fifth element to the 

composition increases rws, with CCFN-Pd1.0 at 1.430 Å; CCFN-Ti1.0 at 1.422 Å; CCFN-Al1.0 at 

1.418 Å; and CCFN-V1.0 at 1.411 Å. Values for other stochiometries may be found in Table 3. 

This increase is consistent, but not necessarily indicative of the severe lattice distortion 

effect alluded to by Tsai and Yeh [41] that should scale with the number of HEA 

components. The large increase in rws for CCFN-Pd is thought to be caused by the larger size 

difference of Pd in comparison to the base four-component alloy. 
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The aforementioned numerical solution was programed utilising Mathematica 10.0 [8], 

following the steps outlined previously.  

 

To confirm the accuracy of the model, n(rws) for elemental Cu and Fe were calculated by 

substituting rws values obtained from atomic radii data. These values of rws correspond to 

1.413Å for Cu and 1.411Å for Fe respectively. Corresponding values of n(rws) are listed in 

parentheses for Cu (2.926×1029m-3) and for Fe (2.867×1029m-3) respectively. These values 

are in relatively good agreement with the previously calculated results [a18, a19] of Ren et 

al. [9] for Cu (2.931×1029m-3) and Fe (2.739×1029m-3), and are also within reasonable range 

of Ghosh et al.’s density functional approach, with Cu (2.82×1029m-3) and Fe (2.79×1029m-3) 

[a20]. 
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Table 8. Tabulated HEA compositions selected for this study with references where applicable, 

phases present (FCC/BCC/C14/Sigma/Mixed), calculated Wigner-Seitz radius (rws), and electron 

density (n(e)). 
*The lattice parameters from which rws is approximated from for these compositions are taken from literature. 

**The electron densities of these elements have been used to verify the accuracy of our calculations. 

Composition 

 

Phase & 

classification 

Ref. 

 

rws  

(Å) 

n(e)  

(× 1029 m-3) 

CCFN FCC (Simple) This work 1.387 3.43464 

CCFN-Pd0.5 FCC (Simple) This work 1.415 3.131 

CCFN-Pd1.0 FCC (Simple) This work 1.430 3.22017 

CCFN-Pd1.5 FCC (Simple) This work 1.450 2.97 

MnFeNiCo* FCC (Simple) [11] 1.591 1.79266 

CuCrFeNi2Mn2* FCC (Simple) [43] 1.420 3.03986 

CuCr2Fe2Ni2Mn2* FCC (Simple) [43] 1.420 3.00415 

Cu2CrFe2Ni2Mn* FCC (Simple) [43] 1.420 3.21073 

CCFN-V0.3 FCC (Simple) This work 1.399 3.3334 

MnNbVTi* BCC (Simple) [11] 1.546 2.1672 

MoFeCrTiW* BCC (Simple) [44] 1.540 2.27894 

AlCoCrFeNiTi0.5* BCC (Simple) [45] 1.428 3.02415 

AlCoCrFeNiTi1.0* BCC (Simple) [45] 1.418 3.28204 

CCFN-Ti1.5 C14 (Complex) This work 1.518 2.11844 

MnFeNiTi* C14 (Complex) [11] 1.430 2.7202 

CoCrFeNiCuTi* C14 (Complex) [46] 1.516 2.16777 

AlCoCrFeNiTi1.5* C14 (Complex) [45] 1.516 2.17118 

CCFN-Al1.0 B2 (Complex) This work 1.418 2.90383 

CCFN-Al1.5 B2 (Complex) This work 1.427 2.82094 

CCFN-V1.0 Sigma (Complex) This work 1.411 2.84697 

CCFN-V2.0 Sigma (Complex) This work 1.422 2.78239 

Al0.5CoCrCuFeNiTi* Sigma (Complex) [47] 1.420 2.76524 

CCFN-Ti1 FCC/C14 (Mixed) This work 1.422 2.86675 

CCFN-V0.7 FCC/Sigma (Mixed) This work 1.403 2.94575 

CCFN-Al0.5 FCC/B2 (Mixed) This work 1.407 2.79962 

CoCrFeNiAlCu* FCC/BCC (Mixed) [48] 1.430 2.88853 

CCFN-Ti0.5 FCC/C14 (Mixed) This work 1.411 2.95598 

Ta34Nb33Hf8Zr14Ti11* BCC (Simple 5d) [49] 1.654 1.94304 

NbMoTaW* BCC (Simple 5d) [50] 1.586 2.47968 

TaNbHfZr* BCC (Simple 5d) [51] 1.689 1.56364 

VNbMoTaW* BCC (Simple 5d) [52] 1.569 2.57589 

Utilising the results of the RK solution of the TFD equation, the electron density is obtained 

through Eq. (1). These values are listed in Table 8 and are shown graphically in Figure 18 
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with the primary phase observed experimentally. A full table containing values of the a2 

coefficient may be found in the appendix. It is observed that there appears to be a 

demarcation between HEA simple and complex phases, with the lines in Figure 18 acting as 

a guide to the eye. Simple phases are further observed to be separated depending on the 

mean primary quantum number of the constituent alloying components (differentiated as 

4d, and 5d in Figure 18), as the electron density scales with rws for HEAs with alloying 

components that are mainly from the same row of the periodic table, or have similar 

average primary quantum numbers due the increasing number of non-valence electrons (c.f. 

Table I). Current empirical approaches do not account for the influence of the average 

primary quantum number of the considered alloy though the effect may be mirrored in new 

ways of depicting data. 

 

Figure 18. (Left) 2-dimensional plot of electron density against the Wigner-Seitz radius 

showing the separation of complex and simple phases; (Right) HEA compositions from the 

shaded zone in (Left) from the CCFN-Ax family (A = V and Ti) are displayed. The square 

markers represent the simple phase, the circular markers represent a mixed phase (simple + 

complex), while the triangular markers represent a complex structure. It is observed that 

the electron density lowers immediately upon the precipitation of even minor amounts of a 

secondary complex structure, as characterised via XRD. 

The demarcation between simple and complex phases is characterised by a downwards shift 

so that the electron density is lowered for any equivalent rws value. This is illustrated in the 

inset of Figure 18 for both CCFN-V and CCFN-Ti HEA compositions where the occurrence of 

the complex phase is shown to correspond to a rapid lowering of the electron density, for 

both mixed and complex phase compositions, indicating the influence of the alloying 

addition in destabilising the electronic structure of the simple phase. The three areas shown 
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in Figure 18 each show a linear-like relationship with rws. It must be emphasised that the 

regions observed are of dissimilar compositional content despite originating from the same 

row of the periodic table and thus the linear relationship may be considered to be content-

independent; showing the electronic structure of complex phases to be distinguishable from 

simple phases within this two-dimensional plot.  

 

Returning to Figure 18, the simple phase appears to be stabilised through alloying additions 

that are able to maintain a near-delocalised bandstructure near the Fermi energy. The 

complex phases are likely stabilised once the addition of alloying elements with covalent-

like character are able to sufficiently distort the bandstructure [28]; thus leading to an 

immediate corresponding change in the electron density. Physically, an increase in 

interatomic spacing may allow for increased occupancy at interstitial sites as required, thus 

creating conditions for the formation of an energetically stable structure that may better 

reflect the state of the bandstructure. In this case, stability of HEA simple phases may 

possibly be achieved by maintaining the delocalisation of its electrons near its Fermi energy 

either through selection of non-directional alloying elements, or compensating for alloying 

elements that exhibit covalent-like character.   

4.3.2 Summary 

In conclusion, the electron densities of five-component HEA compositions based on the 

equimolar four-component CCFN composition have been analysed together with other HEA 

compositions from literature. This analysis shows the effective successful structural 

separation between simple and complex phases within a single two-dimensional map 

comparable to semi-empirical methods. Current results suggest that the influence of the 

average primary quantum number when utilising enthalpy of mixing values should be 

further examined to possibly distinguish 4d, 5d, and etc. compositions in predictions for HEA 

alloy design. Precipitation of complex phases is also observed to be linked to a change in 

electronic structure behaviour which varies from that of the simple phases. This could be 

useful for phase predictions when combined with an appropriate method for extrapolating 

the Wigner-Seitz radius for multi-principal component alloys. In closing, an in-depth study of 

the electronic structure would be instructive in facilitating the development of an efficient 
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alloy design strategy that accounts in toto all main contributions to the electronic structure 

for avoiding ‘hot zones’ of complex phase formation, as required. 

4.4 Conclusions 

The analysis in Sections 4.2 of this chapter have shown that the simple phase differentiation 

in a 2-D plot may more accurately reflect the electronic structure when values of VEC are 

replaced with those of the averaged electronegativity, Xഥ୳୪୪୧୩ୣ୬. The distinction between 

the FCC and BCC simple phases, and the simple and complex phases are attributed to 

changes in the shielding of larger sized atoms for the former, and changes in bond 

directionality reflected in the electronic density at the Wigner-Seitz radius for the latter. 

The analysis in Section 4.3 finds that a 2-D plot of Wigner-Seitz radius determined from 

experimental and literature-based lattice constants against the electronic density calculated 

from the Thomas-Fermi-Dirac shows a destabilisation of the electron density to lower values 

at any equivalent Wigner-Seitz radius as the complex phase is stabilised, satisfying the 

hypothesis presented in Section 4.2.  

Both results show the dependence of both simple and complex structures on the electronic 

structure of the material that so far, cannot be fully represented on any 2-D plots studied 

here. Further investigation of the phase stability based on the electronic structure is 

necessary to shed further light on HEA structural stability. 
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5. The Effect of Electronic Structure on the Phases Present in HEAs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Objective To understand the underlying relationship between the electronic structure and 

phase presence in High-entropy Alloys. 

Hypothesis The Mulliken electronegativity scale of the first valence electron will enable 

discrimination between simple and complex phases due to the difference in metallic 

bonding between simple and complex phases. This difference can also be evidenced 

from the electron density. 

Analysis Type Analytical (80%), Experimental (20%) 

Variables Alloy Composition 

Primary Result  Electronegativity, Electron density 

Techniques Arc-Melting & Casting, XRD, Numerical Analysis 
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Symbols and Abbreviations 

E )21(    Energy difference between structures 1 and 2 

BCC   Body-centred cubic 

)(D    Spin-polarised total DOS per atom for electrons for spin-up 

)(D    Spin-polarised total DOS per atom for electrons for spin-down 

DFT   Density function theory 

DOS   Density of states 

 F    Fermi energy 

FCC   Face-centred cubic 

HEA   High-entropy alloy 

I eff    Effective Stoner parameter 

mav    Average magnetic moment 

n   Valence electron concentration, quantum-mechanics based 

RBA   Rigid-band approximation 

SQS   Special quasirandom structure 

VEC   Valence electron concentration, semi-empirical 

XRD   X-ray Diffraction 
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5.1 Chapter Preface 

Continuing from the previous chapter where effects of the electronic structure were found 

to influence phase stability, Chapter 5 delves deeper into the electronic structure aspect of 

HEAs and its influence on the structural stability. To access such information, the Density 

Functional Theory (DFT) formalism [53] can be used, such as in investigating enthalpies [54] 

and entropies [55] of formation for HEAs within spin-polarised electronic structure 

calculations. Full electronic structure calculations are not easily performed on a composition 

to composition basis, as the various structural parameters of the ground state must be first 

determined, and calculations must be performed for each prospective composition 

regardless of stoichiometry. 

One simplification of the DFT approach is the Rigid Band Approximation (RBA) as described 

in the Literature Review, originally proposed for non-magnetic metallic alloys, which 

assumes that the energy difference between two phases is given entirely by the difference 

in band-structure energy [30,31,56,57]. This allows the investigation of A-B HEAs where A is 

the base alloy composition and B is the varying alloy addition. This technique allows the 

competing structures to be analysed across the entire A-Bx range; here magnetic 

compositions of CoCrFeNi-Ax (here denoted CCFN-Ax) where A: Al, Pd, V, and Ti are 

investigated. The RBA predictions are validated with XRD characterisation, showing good 

agreement between experimental and theoretical predictions in the phase structures 

present, and providing increased accuracy in predicting the phase transitions of these 

compositions over those of the semi-empirical methods. The RBA models are simple enough 

to readily interpret the available experimental data, while powerful enough to predict 

correctly the new stable phase in a multicomponent system, while taking into account the 

electronic structure. 

A combined modelling and experimental approach is thus proposed in this chapter, by 

generalising a RBA model for magnetic systems and taking electronic structure effects into 

account in prediction of the phase most likely to be found in multicomponent alloys. It is 

found that the VEC parameter is able to serve as a good predictor of simple-complex 

transitions when the s, p, and d valence electrons are accounted for. Therefore, the RBA 

model can be used as a simple but relatively accurate method based on electronic structure 

calculations for phase stability prediction in HEAs, in particular in the understanding and 
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design of a new HEA system, CoFeNiV, where the structural transition with varying levels of 

constituent elements is predicted, as a function of the valence electron concentration, n 

obtained from the integrated spin-polarised density of states.  
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5.2 Rigid Band Approximation of High Entropy Alloys 

Adapted from Zhaoyuan Leong, Jan S. Wróbel, Sergei L. Dudarev, Russell Goodall, Iain Todd, Duc 

Nguyen-Manh, “The Effect of Electronic Structure on the Phases Present in High-Entropy Alloys”, 

Nature Scientific Reports,  Awaiting editor decision. 

 

In order to better understand, and improve on, the phase discrimination found in 2-

dimensional plots of the empirical models [11], the simple-complex phase transition of a 

number of 5-component HEA alloys based on the equiatomic CoCrFeNi (CCFN) composition 

is investigated through X-Ray Diffraction (XRD) characterisation. The compositions are 

compared to predictions from the RBA approach, in particular of the transition between 

phases that occurs with changing stoichiometry.  The original RBA approach [31,58,59] is 

generalised to include the effects of magnetism using the Stoner model [60–62], as this 

affects the change in energy between two phases (particularly since the constituent metals 

Co, Cr, Fe, and Ni already exhibit magnetic behaviour; other CoCrFeNi-type alloys have also 

been reported for their magnetic properties [55,63–65]).  

5.2.1 Experimental Identification of Phases Adopted by CoCrFeNi-type Compositions 

20 HEA compositions based on CoCrFeNiAX, where A = Pd, Al, V, and Ti (henceforth denoted 

as CCFN-Pdx, CCFN-Alx, CCFN-Vx, and CCFN-Tix) with nominal compositions given in Table 1 

were made. The amount of each alloying addition was selected to explore the transition 

between simple (FCC and BCC) and complex (B2, Sigma and C14) phases. The analysis of 

CCFN-Ax compositions has been extended beyond those previously reported to identify the 

accuracy of the RBA predicted phase stability in terms of the relative behaviour of the 

electronic densities of states. Further compositions from the novel CoFeNiVx system 

(henceforth denoted CoFN-Vx) were also prepared in order to validate the use of the RBA 

model for unknown compositions against experimental data. The compositional variations 

are tabulated in Table 1. 
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Table 9. High Entropy Alloy compositions with their respective nominal compositions, indexed 

phases and lattice constants, and VEC values.  

*These new stoichiometric compositions have been selected to extend the data on the CCFN-A (A = Pd, V, Al, and Ti) 

compositional families selected for this work. 

Composition 
Nominal 

Composition 
Indexed Phase 

Lattice Parameter 

(Å) +/- 0.01 Å 
VEC Reference 

CCFN CoCrFeNi FCC a = 3.56 8.25 [7,22,65] 

CCFN-Pd0.5 (CoCrFeNi)0.89Pd0.11 FCC a = 3.62 8.44 [65] 

CCFN-Pd1.0 (CoCrFeNi)0.80Pd0.20 FCC a = 3.66 8.60 [65] 

CCFN-Pd1.5 (CoCrFeNi)0.73Pd0.27 FCC a = 3.71 8.73 This Work* 

CCFN-Al0.5 

  
(CoCrFeNi)0.89Al0.11 

FCC a = 3.60 
7.67 [39,66] 

BCC a = 2.87 

CCFN-Al1.0 (CoCrFeNi)0.80Al0.20 BCC a = 2.88 7.20 [39,66] 

CCFN-Al1.5 

  
(CoCrFeNi)0.73Al0.27 

BCC a = 2.88 6.81 
[39,66] 

B2 a = 2.82  

CCFN-Al3.0 (CoCrFeNi)0.57Al0.43 B2 a = 2.89 6.00 This Work* 

CCFN-V0.3 (CoCrFeNi)0.93Al0.07 FCC a = 3.58 8.02 This Work* 

CCFN-V0.7 

  
(CoCrFeNi)0.85V0.15 

FCC a = 3.59 
7.77 This Work* 

Sigma a = 8.78, c = 4.60 

CCFN-V1.0 

  
(CoCrFeNi)0.80V0.20 

FCC a = 3.61 
7.60 [37] 

Sigma a = 8.79, c = 4.58 

CCFN-V2.0 (CoCrFeNi)0.67V0.33 Sigma a = 8.87, c = 4.59 7.17 This Work* 

CoFN-V1.0 (CoFeNi)0.75V0.25 FCC a = 3.59 8.00 This Work* 

CoFN-V1.5 (CoFeNi)0.67V0.33 FCC a = 3.61 7.67 This Work* 

CoFN-V2.0 (CoFeNi)0.60V0.40 Sigma a = 9.04, c = 4.68 7.40 This Work* 

CCFN-Ti0.4 (CoCrFeNi)0.91Ti0.09 FCC a = 3.59 7.86 This Work* 

CCFN-Ti0.6 (CoCrFeNi)0.87Ti0.13 FCC a = 3.61 7.70 This Work* 
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CCFN-Ti1.0 (CoCrFeNi)0.80TI0.20 

C14 a = 4.79, c = 7.76 

7.40 [40] 

FCC a = 3.64 

CCFN-Ti1.5 (CoCrFeNi)0.73TI0.27 C14 a = 4.77, c = 7.74 7.09 This Work* 

CCFN-Ti2.0 (CoCrFeNi)0.67Ti0.33 
C14 a = 4.81, c = 7.82 

6.83 This Work* 

BCC a = 2.98 

 

To analyse the phases adopted by these compositions, XRD characterisation experiments 

were performed on samples. The XRD patterns show that, within detection limits, the FCC 

phase is present for compositions CCFN-Pd0.5, CCFN-Pd1.0, and CCFN-Pd1.5. New 

compositions CoFN-V1.0, CoFN-V1.5 and CoFN-V2.0 were also synthesised to consider the 

phase stability resulting from the removal of Cr from the CCFN-Vx family. For the CCFN-Alx 

family the FCC phase is maintained for CCFN-Al0.5 with some small amounts of BCC/B2 

formation. The BCC phase is fully adopted at the CCFN-Al1.0 composition the BCC/B2 phase 

at CCFN-Al3.0. Similarly, the CCFN-Vx family is FCC-stable at the smaller V additions of CCFN-

V0.5 and CCFN-V0.8 with some secondary phase formation for larger V additions. A mixed 

FCC-Sigma phase is observed for CCFN-V1.0 and the composition fully adopts the Sigma 

phase by CCFN-V2.0. The phase formation and Rietveld refined lattice parameters are 

summarised in Table 9; where increasing amounts of Pd, Al, and V are added to CCFN there 

is an associated increase in the lattice parameter. The empirical VEC used in the analysis of 

the alloy compositions are obtained from the weighted average of the electrons 

accommodated in the s, p, d orbitals of the alloy’s constituent elements [22]. 

The phase discrimination as a 2-dimensional plot of the enthalpy of mixing against VEC was 

first presented by Dominguez et al. [14] where a single BCC phase forms for 3 < VEC < 6, a 

single FCC phase forms for 8 < VEC < 11, and complex phases form for 6 < VEC < 8. The 

experimental results show that the compositions of complex phases (c.f.  Table 1) indeed 

possess values in the intermediate range of 6 < VEC < 7.8. However, when considering the 

phase stability of complex structures in specific compositions, the cubic B2 presence in 

CCFN-Alx compositions determined experimentally is observed fully only from VEC  6.81; 

the tetragonal Sigma phase presence in the CCFN-Vx compositions at VEC  7.77; and the 

hexagonal C14 phase presence in CCFN-Tix compositions is only observed at VEC 7.4.  
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These observations highlight the behaviours that result from the dependence of electronic 

structure for the different complex phases as a function of elemental alloy additions. The 

RBA method employed in this study allows investigation of the relative structural stability of 

CCFN (CCFN-Ax) as a function of the exact valence electron concentration, n which is, in turn 

obtained from the integration of density of states (c.f. equation (2) below). 

5.2.2 RBA Phase Stability as a Function of Valence Electron Concentration 

 

Figure 19. (a) Spin-polarised density of states of FCC and BCC 32-atom Special Quasi-Random 

Structure (SQS) CCFN and; (b) Spin-polarised band energy difference between FCC and BCC CCFN (i) 

Without double-counting Stoner corrections, (ii) With Stoner Correction and; (c) The Fermi energy 

difference between the FCC and BCC structure (c.f. equation (4)). 

Within DFT, the total energy difference between two structures (1 and 2) at a fixed volume 

for an investigated alloy can be decomposed into two contributions [31,67,68]: 

EEE eeB
)21()21()21( 


          (1) 

where the first contribution represents the change in band energy between two structures, 

and the second contribution arises from the structural energy difference in electrostatic and 

electron-electron interactions. By using the RBA/frozen potential approach [67,68] the 

energy difference between two non-magnetic phases can be simply approximated from 

comparing the band-structure energy difference using the same frozen potential for the two 

structures at a fixed volume. This approximation is valid to the first order not only for an 
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elemental metal but also for metallic alloys where the second contribution is considered to 

be small [30,31,56,57]. In order to analyse the phase stability of alloys for a wide range of 

concentrations the energy difference can be presented as a function of n. The latter can be 

in turn determined from the integration of total electronic density of states (DOS) per atom 

up to the Fermi energy. 

For magnetic alloys, such as CCFN-based HEAs investigated in this work, applying the Stoner 

model to the RBA allows the band energy difference to be decomposed to contributions 

from the spin-polarised band energy and the double-counting contributions arising from 

magnetic interactions [60,61]. In this case, the value of valence electron concentration, n, 

can be obtained from the integration of spin-polarised total DOS per atom as 

nndDdDn FF





    )()(       (2) 

where )(D  and )(D  are the spin-polarised total DOS per atom for electrons with spin-

up and spin-down, respectively, and  F  is the Fermi energy. 

An exact application of the Stoner model requires the knowledge of magnetic moments of 

all atoms in the system but it can be simplified through using an effective Stoner parameter, 

I eff . The latter one is defined as the exchange splitting of the on-site energies of electrons 

with spin-up and spin-down due to average atomic magnetic moment, mav , which can be 

obtained from the non-magnetic total DOS and the value of the average atomic magnetic 

moment of the entire simulation cell.  The energy difference between any two magnetic 

structures can be thus written as: 

 mImIEE aveffaveffBandSpinMag
2)2( )2(2)1( )1()21()21(

4

1
 




      (3)  

where the first term is related to the spin-polarised band energy difference obtained from 

the total DOS per atom and per electron spin and the second term is the double-counting 

contribution coming from magnetic interactions. As shown in Table SI in the Appendix, the 

energy differences calculated with a knowledge of magnetic moments of all atoms in the 

system and those obtained using average magnetic moments and effective Stoner 

parameters are in a quantitative agreement and in line with the results obtained using the 
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LMTO code [69]. Thus, for the RBA analysis of stability of other CCFN-based alloys the 

simplified method based on the effective Stoner parameter will be applied. The derivation 

of the RBA for magnetic systems using the Stoner model can be found in the Appendix [see 

equations (I-V)]. Fig. 19 (a) shows the spin-polarised DOS of disordered simple FCC and BCC 

phases calculated utilising a Special Quasi-random Structure (SQS) [70,71] generated 

Co8Cr8Fe8Ni8 structure representing the CCFN composition, which is used for the RBA 

analysis. Fig. 19 (b) shows the resulting FCC-BCC band energy difference of CCFN alloys 

calculated with and without Stoner corrections as a function of n.  

From Fig. 19 (b) it is observed that the FCC phase for the CCFN composition is stabilised in 

the region of n > 6.97 according to the RBA prediction from equation (3). The FCC stable 

zone reported by Dominguez et al.’s PCA analysis was found to lie between 8 < VEC < 11 

[11]; this difference is expected as we have not considered the stability of complex phases in 

the CCFN composition. The compositions CCFN-Mn and CCFN-Cu with n = 8 and n = 8.8 

respectively, lie within the FCC-stable region; this RBA prediction is in agreement with 

experimental determination of their respective structure [72]. According to Fig. 1(b), the 

simple BCC phase would be stabilised within the region of 3.75 < n < 6.97. Extension of our 

RBA analysis to the experimental observation for BCC HEAs containing 4d and 5d BCC 

transition metals (TMs) previously reported such as WNbMoTa [73,74] with VEC = 5.5, and 

TiVMnNb [11] with VEC = 5.25 agrees with the RBA model as both fall within the BCC-stable 

region. 

Below we apply the RBA model for studying the structural-stability competition between 

simple phases (FCC and BCC) and different complex phases within four CCFN-Ax alloys 

(A=Pd, Al, V and Ti). 
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Figure 20. Predictions and experimental results for several alloy systems, I – CCFN-Pd, II – CCFN-Al, III 

–CCFN-V, and IV – CCFN-Ti, showing for each, the change in phase stability with increasing 5th 

element content through (a) VEC, n, against the band energy difference, (b) The Fermi Energy 

difference as defined in equation (4) below, and (c) Its associated XRD patterns. 
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Fig. 20(I-IV) shows the results of theoretical and experimental investigation of phase 

stability of several 5-component CCFN-based alloy systems. In each case the fifth element 

was chosen in such a way that it represents different type of alloying element. In the CCFN-

Pd alloys shown in Fig. 20I, palladium is a 4d-transition metal element located on a different 

row of the periodic table in comparison to the other four elements (Cr, Co, Fe and Ni; 3d 

transition metals). Accordingly, the results from the RBA model comparing the energy 

difference between FCC and BCC structures in CCFN-Pd alloys, shown in Fig. 2I, are slightly 

different to those for CCFN alloys displayed in Fig. 19. The RBA results for structural energy 

differences between the simple phases (FCC and BCC) and B2 phase in CCFN-Al alloys are 

shown in Fig 2II, where Al is a sp-metal from outside the transition metal series. Finally for 

CCFN-V and CCFN-Ti alloys, where both V and Ti are in the same 3d transition metal series, 

there is competition between simple and complex phases in term of the Sigma and C14 

structures; the RBA model results are shown in Figs. 2III and 2IV, respectively. The energy 

differences between complex phases (B2, Sigma or C14) and the BCC phase calculated using 

RBA as a function of n are shown in Figs. 2I-IV(a). The relationship between the calculated 

total energy difference of two competitive structures (Eq. 3) and the plots of Fermi energy 

differences,  F  shown in Figs. 2I-IV(b) will be explained later in the “Discussion” section. 

The corresponding XRD patterns for CCFN and the four CCFN-AX HEAs are presented in Figs. 

2I-IV(c). The XRD peaks were attributed to different considered phases: FCC, BCC, B2, Sigma 

and C14. In order to compare the theoretical RBA results and the experimental data, the 

valence electron concentration values n calculated within the RBA model for a chosen 

measured alloy composition are indicated on Figs. 20I-IV(a) and Figs. 20I-IV(b) by lines of the 

same pattern as in the XRD results in Figs. 20I-IV(c).  

The FCC-BCC energy difference for CCFN-Pdx HEA obtained using the RBA method shows 

that the increase of n, associated with the increasing additions of Pd stabilises the FCC 

phase, see Fig. 20I(a). Moreover, the region of stability of single FCC phase contains not only 

the CCFN and CCFN-Pdx HEA compositions but it can be extended to n = 7. The experimental 

XRD results for corresponding valence electron concentration values, n confirm the RBA 

prediction for the CCFN-Pdx HEA since all of the patterns are indexed as the FCC phase. The 

experimental results also show an increase in the FCC lattice parameter with the increasing 
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concentration of Pd, wich is in agreement with the most recent fully-relaxed DFT 

calculations [5].   

Fig. 20II displays the results for RBA analysis for CCFN-Alx where x = 0, 0.5, 1.0, and 1.5. The 

B2 phase is also considered as there is shown to be a high enthalpy of formation of the B2 

structure between FeAl, CoAl, NiAl[75]. Moving down Figures 20II (a), (b), and (c) represents 

an increase in aluminium content according to corresponding n values, and the existence of 

the B2 phase for CCFN-Al1.0 (n =7.2) and CCFN-Al3.0 (n = 6.81) is confirmed through XRD 

verification which is also in accordance with the literature[39,66] while CCFN-Al0.5 (n = 7.67) 

retains the FCC phase.  

In Fig. 20III, for CCFN-Vx where x = 0, 0.3, 0.8, 1.0, and 2.0, we include consideration of the 

complex Sigma phase, shown in binary FeCr and FeV phase diagrams [76]. The valence 

electron concentration value n is decreased with increasing V addition. By comparing Fig. 

20III (a) and Fig. 20III (c), an excellent agreement of predicted stable phase as a function of 

n, from single FCC to complex Sigma phase from EMag  values is found with experimental 

results, in accordance with literature [37]. 

In Fig. 20IV, for CCFN-Tix where x = 0, 0.4, 0.6, 1.0, and 1.5, the C14 phase is additionally 

considered as this intermetallic structure is related to the CoTi2, CrTi2, and TiCr2 complex 

phase forming binary compounds[76]. The inclusion of Ti and the related C14 complex 

phase into the RBA analysis destabilises the BCC phase much further below n = 5.5 than in 

the previously considered cases of Pd, Al and V alloying. XRD results show that the CCFN-Ti 

undergoes a transition from the FCC to C14 phase between CCFN-Ti0.6 (n=7.70) and CCFN-

Ti1.0 (n=7.40); the CCFN-Ti1.0 (n=7.40), CCFN-Ti1.5 (n=7.09), and CCFN-Ti2.0 (n=6.83) phases 

have been indexed as FCC-C14, C14, and C14-BCC respectively. The structural trend in 

changes of phase stability between FCC, C14 and BCC will be discussed in the next section. 

Generally, present predictions of phase stability as a function of n using the RBA analysis 

have been found to give a reasonable match when compared to the outputs from our XRD 

analysis. Lowering of the n value within families of HEAs causes a change in stability from a 

FCC single phase to complex phases (B2, Sigma and C14) back to a BCC single phase. 

Formation of complex phases is observed to occur at the transition between FCC-BCC 

stability, located near n = 7 as observed in Fig. 1 for the CCFN alloys. This prediction based 
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on electronic structure calculations is in line with Gao’s empirical rules [77] where complex 

phase formation is observed at intermediate n values between 6.5 and 7.5. 

5.2.3 Electronic Origin of Phase Stability for Complex Phases in HEA. 

In order to understand the structural trend from simple to complex phase in CCFN-Ax HEAs 

investigated in the previous section, we begin to analyse the phase stability of CCFN-Alx 

(where x = 0.5, 1.0, and 3.0) within the RBA model in predicting transition from the FCC to 

the B2 phase. It is worth emphasising again that the RBA has been used successfully to 

investigate the structural trend of intermetallic compounds and complex Hume-Rothery 

phases in transitional metal aluminides known as spd electron phases [31,56].  Here the 

hybridisation effect between sp-valence electrons of Al with the d-orbitals of transition 

metals (TM) plays a crucial role in structural stability trends and their physical properties. In 

the case of HEA CCFN-Alx, a similar effect can be seen from the construction of frozen-

potential approximation for Al and TM atoms (Cr, Co, Fe, Ni) to the electronic structure 

calculations within the RBA model for different SQS structures. It is well-known from both 

experimental and DFT data that among the B2 compounds formed between Al and TMs, the 

B2-AlNi phase has the strongest negative enthalpy of formation [75]. The B2 phase can be 

built, therefore, from an ordered structure with four Al, Ni, Fe, Co atoms where Al-Ni pairs 

are dominant at nearest neighbour distance in the BCC-like structure.    

Fig. 2IIa shows the B2-BCC structural energy difference calculated from the RBA model 

plotted together with the FCC-BCC difference as a function of n.  It is found from the RBA 

calculations that the competition between FCC and B2 phases starts at valence electron 

concentration, n ≈ 8  Comparing with the present experimental data for HEA CCFN-Al0.5 (n = 

7.67) indicating the existence of FCC peaks in XRD (Fig.IIc), it appears that the RBA model 

could overestimate the stability of the B2 phase. However, in comparison with a new HEA 

composition, AlCoCrFeNi2.1, where the corresponding valence electron concentration, n = 

7.70, the experimental observation [78] of an FCC/B2 dual-phase constitution not only 

validates our theoretical prediction but also demonstrates that the formation of B2 phase is 

strongly correlated with the short-range chemical order between Al and the excess 

composition of Ni transition metals in the HEAs.          
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The phase stability trends between the FCC phase and intermetallic phase C14 for the CCFN-

Tix compositions in Fig. 2IV also deserve further analysis. From Table 9, we observe a change 

in experimentally determined phase stabilities from CCFN-Ti1.0, CCFN-Ti1.5 and CCFN-Ti2.0 as a 

mixture of FCC-C14, to C14, and finally a BCC-C14 mixture, respectively. By comparing the 

theoretical results displayed between Fig. 20IV and Fig. 19, it is found that the CCFN-Ti1.0 

composition with n = 7.40 is located within the CCFN FCC stable region while the CCFN-Ti2.0 

composition with n = 6.83 is below the CCFN FCC-BCC nodal point at n = 7.26. The CCFN-Ti0.5 

composition with n = 7.09 lies closest to the FCC-BCC nodal point where 0EMag , 

suggesting that complex phases form at these points, which is in line with the analysis 

performed by Dominguez et al. [11] where the stability was found to range from the simple 

FCC phase (high VEC values), to the complex phase (medium VEC values), to the simple BCC 

phase (low VEC values), which follows a similar trend to n in this analysis. 

5.2.4 Relative Structural Stability and their Fermi Energy Difference,  F . 

The relative structural stability between two phases within the RBA model is defined by 

comparing the spin-polarised band-structure energy difference in equation (3) as a function 

of the number of valence electron, n, determined from equation (2). The origin of the 

structural stability within the RBA model can be further analysed in terms of the change in 

Fermi energy [30,31]. The latter one can be defined as the first derivative of the band 

energy difference of two competing structures with respect to the change in n: 

 
n
EMag

F 






)21(

)21(          (4) 

From equation (4) it follows that the extremal of the energy difference, EMag  occurs for 

the number of electrons at which the two Fermi energies are equal, i.e.  0)21(   F  . The 

latter condition is important because it would correspond to the stationary points where the 

second phase becomes the most stable one in comparison to the first phase [30,31]. For the 

CCFN case shown in Fig. 1,  0)(   BCCFCC
F at n = 5.5 where E BCCFCC

Mag
)(   is maximal and the 

BCC phase exhibits the largest stability with respect to the FCC phase, see Figs. 19(b) and 

19(c). Applying the criterion (4) for CCFN-Pdx HEA the maximum difference between FCC 

and BCC phase is predicted at n = 9.4 where  0 F  as can be seen in Fig. 20I(b). For that 

number of n the FCC phase the most stable one in comparison with the BCC phase.  
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Fig. 20II (b) shows  F  plots calculated from energy difference EMag  for both FCC and B2 

phases in CCFN-Alx HEA in reference to the BCC phase. The maximum EMag  between the 

FCC-BCC phases is at n = 7.8 which in turn corresponds to 0 F , but the former is not the 

most stable structure since EMag  of the B2-BCC phases is lower than that of FCC-BCC 

phases at this value, as shown in Fig. 20II (a). The plot for  F  as a function of n for B2-BCC 

phases shows that there are two zero values at n = 6.4 and 7.4 where the B2 phase could be 

the most stable. The differentiation of both phases with XRD in the present study cannot be 

certain due to the low intensity of the obtained peaks, but B2 formation appears to begin 

from CCFN-Al0.5 onwards at n = 7.67 and continues in CCFN-Al1.0 at n = 7.2 and CCFN-Al1.5 at 

n = 6.81. This is in line with the determined value of n = 7.4 where the Fermi energy 

difference between B2 and BCC is equal to zero. It is worth mentioning again that by looking 

at general competition between FCC, B2 and BCC phases the criterion 0 F  strongly 

supports the experimental observation of dual FCC/B2 phases observed in AlCoCrFeNi2.1 

with the value n=7.7 which is located in between the FCC stable phase (n=7.8) and the B2 

stable phase (n=7.4).  

For CCFN-V from Fig. 20III (b) it appears that for maximum stability of the Sigma phase with 

respect to the BCC phase two zero values for  F  at n = 7.65 and n = 6.65 are observed. 

From XRD results it is evident that the Sigma phase is dominant between CCFN-V1.0 and 

CCFN-V2.0 (n = 7.6 and n = 7.16 respectively), and CoFN-V1.5 and CoFN-V2.0 (n = 7.67 and n = 

7.4, respectively). This is also close to the predicted value of the most stable Sigma at n = 

7.65.  

According to Fig. 20IV (b) for the CCFN-Ti family, the prediction of the stationary point of 

0 F  from the FCC-BCC plot corresponding to the most stable FCC point lies at n = 9.0. 

The stationary point for the C14-BCC plot is located at n = 6.4 where the C14 phase is the 

most stable one. The C14 phase is not observed as a stable structure for CCFN-Ti0.4 at n = 

7.85 and CCFN-Ti0.6 at n = 7.7 because from Fig 2IV (a) EMag  of the FCC-BCC plot is lower 

than the C14-BCC one for n ≥ 7.69. It is possible that C14 phases may exist in small 

quantities and further precipitation is being supressed by the high cooling rate as a result of 

the synthesis method used in this work.  
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Thus, beside the case of CCFN-Pdx HEA where the FCC phase is the most stable one for all n 

values (see Fig. 2I(b)), the above analysis using the criterion 0 F  allows compositions to 

be predicted in CCFN-Alx, CCFN-Vx, CCFN-Tix HEAs that stabilise the complex phases and 

therefore possesses the ability to develop simple/complex phase combinations.  

5.2.5  RBA versus Experimental observation of HEA Phase Stability as a Function of n 

Fig. 21 illustrates a comparison of the experimentally-determined phase present and 

quantum-mechanical RBA-determined stable phase for each HEA family with different 

values of n. The first row for each HEA family represents the former as determined from 

EMag  while the indicated (bold, underline) regions show the points at which 0 F  

where the indicated phase is the most stable. It is shown that the agreement between 

experimental and RBA results is very satisfactory. In the case of CCFN-Alx, the present 

experimental XRD results of the BCC phase in the range of Al concentration between 0.5 

(n=7.67) and 1.0 (n=7.2) show that these BCC alloys are strongly disordered, whereas the Al-

Ni short range chemical-order alloys present within the RBA model are more in favour of the 

B2 phase. The experimental observation of the dual FCC/B2 phases in the Ni-rich HEA of 

AlCoCrFeNi2.1 (n=7.70) has confirmed the validity of RBA prediction. In general, it is observed 

that the simple FCC phase is present at n > 8, the complex phases are present between 6 < n 

< 8, and the simple BCC phase at n < 6. This variation in phase stability as a function of n 

supports the simple two dimensional plot presented by Dominguez et al. [11] and Guo et al. 

[22]. In particular, the empirical VEC parameter used in all previous studies has a strong 

relationship with the quantum-mechanical value n from electronic-structure calculations.  
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Family Method 5.0 - 5.5 - 6.0 - 6.5 - 7.0 - 7.5 - 8.0 - 8.5 - 9.0 

CCFN 
Exp.               FCC*   

RBA BCC BCC BCC BCC BCC BCC FCC FCC FCC 

CCFN-Pd 
Exp.               FCC*[65] FCC*[65] 

RBA BCC BCC BCC BCC BCC FCC FCC FCC FCC 

CCFN-Al Exp.       
B2*[39,66] B2*[39,66] B2*[39,66] 

FCC* 

FCC/B2[78]     

RBA BCC B2 B2 B2 B2 B2 B2 FCC FCC 

CCFN-V 
Exp.         σ* σ*[37] FCC*     

RBA BCC BCC σ σ σ σ FCC FCC FCC 

CoFN-V 
Exp.         σ* FCC* FCC*     

RBA BCC BCC σ σ σ σ FCC FCC FCC 

CCFN-Ti 
Exp.       C14* C14*[40] FCC*       

RBA C14 C14 C14 C14 C14 FCC FCC FCC FCC 

Figure 21. Phases present via XRD (Red) as a function of regions of valence electron concentration 

and predicted via EMag  (Black) and 0 F  (Bold, Underlined) as a function of regions n. Both 

VEC and n are considered equivalent here, showing good interchangeability between both. While 

EMag  predicts the relative stability of different phases (c.f. equation (3)), 0 F  represents the 

criterion point at which the considered phase is the most stable one (c.f. equation (4)). * indicates 

experiments performed in this work, while a superscript number indicates that the composition is 

found in the corresponding reference from the literature possessing the indicated structure. 

Fig. 3 illustrates a comparison of the experimentally-determined phase present and 

quantum-mechanical RBA-determined stable phase for each HEA family with different 

values of n. The first row for each HEA family represents the former, while the latter is 

determined from EMag  with the indicated (bolded, underlined) regions showing the points 

at which 0 F , where the indicated phase is the most stable. It is shown that the 

agreement between experimental and RBA results is very satisfactory. In the case of CCFN-

Alx, the present experimental XRD results of the BCC phase in the range of Al concentration 

between 0.5 (n=7.67) and 1.0 (n=7.2) shows that these BCC alloys are strongly disordered, 

whereas the Al-Ni short range chemical-order alloys present within the RBA model are more 

in favour of the B2 phase. The experimental observation of the dual FCC/B2 phases in the 

Ni-rich HEA of AlCoCrFeNi2.1 (n=7.70) has confirmed the validity of RBA prediction. In 
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general, it is observed that the simple FCC phase is present at n > 8, the complex phases are 

present between 6 < n < 8, and the simple BCC phase at n < 6. This variation in phase 

stability as a function of n supports the simple two dimensional plot presented by 

Dominguez et al.14 and Guo et al. [22]. In particular, the empirical VEC parameter used in all 

previous studies has a strong relationship with the quantum-mechanical value n from 

electronic-structure calculations.  

It is apparent from Fig. 20 and summarised in Fig. 21 that performed in conjunction, analysis 

of EMag  and  F  results allows for deeper understanding of phase stabilities, although 

for rough predictions EMag  alone is enough to give relatively accurate results for the 

compositions tested in this work. A comparison of EMag  and  F  with n values for the 

tested compositional families show that in terms of phase stability, n at which the simple 

FCC phase transition is located is dependent on the chemical bonding nature of the alloying 

element to CCFN.  

The results of the RBA analysis suggest that empirical VEC values have a strong connection 

to the values of n calculated from electronic spin-polarised DOS (Eq. 2) and that the 

accuracy of predictions in alloy design can be improved as long as electronic structure 

effects at the quantum scale are accounted for. In light of the dependency on the electronic 

structure, the increased accuracy with which HEA complex phases may be determined is not 

surprising.  As Miedema's empirical rule for the enthalpy of mixing, ∆H, has been found to 

be inconsistent with quantum mechanics principles [26,79], the ability of the two-

dimensional plot shown by Dominguez et al. [11] to distinguish between components may 

arise from the deviation in the ratio between the enthalpy of mixing and the difference in 

the number of valence electrons squared from Miedema's model. The latter quantity 

 nH  2/  has been shown [79] to start deviating from theoretical predictions between 4 < 

V < 7, which is regarded as zones of complex phase presence in HEAs. 

These factors may be accounted for by utilising the RBA technique presented in this chapter. 

As shown in Fig. 2 and Fig. 3, EMag  values may be used to approximate, to a good degree 

of accuracy, the phases present in any particular stoichiometric composition within a 

preselected CCFN family (here family refers to all elemental alloying components comprising 

the composition), as a function of n. 
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5.2.6 Structural Stability of New HEAs: The CoFeNi-Vx family 

The above hypothesis is tested through the removal of Cr from CCFN-Vx to form the CoFeNi-

Vx (here denoted as CoFN-Vx) alloys and the subsequent analysis of its phase stabilities 

utilising the RBA method as a function of a change in vanadium addition. To achieve this the 

CCFN FCC-BCC RBA analysis is modified to include the consideration of the Sigma phase due 

to strong enthalpies of mixing of FeCr and FeV for the Sigma phase as in the case of CCFN-Vx. 

No explicit consideration is necessary as Co, Cr, Fe, Ni, and V are located on the same row of 

the periodic table. 

 

Figure 22. Transition of FCC to Sigma phase stability in CoFN-V (a) As a function of increasing 

Vanadium content represented by n, and (b) Its associated XRD Patterns. 

Fig. 422 indicates the analysis of the CoFN-Vx composition, in terms of n. The RBA analysis 

described in Fig. 2(III) for the relative structural energy between FCC-BCC and FCC-Sigma 

phases in CCFN-Vx is adapted for investigation of the new HEAs. Removal of Cr has the effect 

of shifting n values to higher regions, with the effect of destabilising the Sigma structure. 

This shift in n to the region of FCC stability may be attributed to the Fermi surface nesting in 

HEAs with or without Cr which can stabilise a complex phase [80].  For equiatomic CoFN-V1.0 

at n = 8 observed from Fig. 4 (a) that the FCC phase is stabilised as compared to the 

presence of Sigma phase previously considered at equiatomic CCFN-V1.0 with n = 7.6. In Fig. 

4 (b) experimental XRD patterns verify the prediction of CoFN-V1.0 and subsequent 

compositions, CoFN-V1.5 (FCC phase at n = 7.67) and CoFN-V2.0 (Sigma phase at n = 7.40) 

predicted within the RBA model, indicating that the VEC values in Table 1 are in good 

agreement with n and that the RBA method therefore can be used as a valid tool for phase 

prediction, by taking into consideration the chemical bonding of the alloying species. 

(a) (b) 
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The power of the RBA model when used in conjunction with n in predicting complex phase 

formation in HEAs makes it suitable for the design of new HEA compositions. The relative 

phase stability as a function of n may be analysed for equiatomic compositions of 

designated multi-component alloys with four or more elements. As formation of the 

complex phase is identified to occur around the nodal points of FCC-BCC energy difference 

where 0EMag  (c.f. Fig. 2), the generalisation of the RBA approach would require a 

starting alloy composition that is a known simple phase (FCC/BCC) such as CCFN (FCC), 

CCFN-Pd (FCC), CCFN-Mn (FCC), WNbMoTa (BCC), or TiVMnNb (BCC), that is to be modified 

by changing its stoichiometry, or by further alloying additions to the composition. It is 

preferable for the initial structure to be FCC-type as it is less complicated to obtain the self-

consistent charge density from a close-packed structure as an input frozen potential for the 

RBA, as compared to a more complex structure. The secondary phase chosen for 

consideration will depend on the alloying additions to the composition and the enthalpies of 

mixing of the phases which may either be analysed directly or obtained from literature.  

5.3 Chapter Summary 

In this chapter the RBA approach which gives a full description of the influence of electronic 

structure effects on phase formation in HEAs has been applied, and the predictions were 

compared to experimental results. The main findings are as follows: 

 The RBA model proves successful to access information on phases present in 

multicomponent HEAs as a result of macro alloying of the CCFN composition. 

Formation of complex phases is found to coincide with the transition between FCC 

and BCC, being the lower energy structures at intermediate values of the valence 

electron concentration, n determined from integration of spin-polarised DOS for the 

magnetic HEAs.  

 Values of n for which complex phases are found have been predicted with more 

precision for specific alloy systems and validated experimentally:  Sigma phase for 

CCFN-Vx (n < 7.6), B2 for CCFN-Alx (n < 8.1) and C14 phase for CCFN-Tix (n < 7.7). 

 The RBA scheme is successful at predicting the complex Sigma phase found in the 

previously unreported CoFN-Vx composition (n ≤ 7.6) and allow the prediction of 

other complex intermetallic phases in new alloy compositions as a function of n.  
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The results generally show that the phase stability and transition can be accurately 

described when the electronic structure of the composition is taken into account. 

Application of the RBA method greatly simplifies the modelling of prospective calculations 

while giving accurate results, but is limited to analyses of A-Bx compositions. The results 

emphasise the need for a robust and fairly accurate predictive scheme that takes into 

account quantum mechanical effects that can be used to determine compositions of 

interest that can then be further investigated using computer-intensive ab-initio methods. 
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6. Tetragonal distortion of simple phases 

 

“The interest I have to believe a thing is no proof that such a thing exists.”  

― Voltaire 

 

 

 

 

 

 

 

 

 

 

 

 

Objective To explore alternative methods of predicting structural presence within multi-

component alloys by simplifying the problem where applicable, while still retaining 

key concepts from quantum mechanics. 

Hypothesis The FCC, BCC and complex structures can be represented as a type of distorted 

tetragonal structure. The d-orbitals can be mapped out to real space from reciprocal 

space onto this distorted structure, allowing the energy of the structure to be 

quantified and different structures to be compared. 

Analysis Type Analytical (80%), Experimental (20%) 

Variables Alloy Composition, Alloy Structure, Valence Electron Concentration 

Primary Result  Prediction of Stable Structures in HEAs 

Techniques Arc-Melting & Casting, XRD, Numerical Analysis 
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Symbols and Abbreviations 

 Change in radius   ݎߜ

 ା   Positive change in radiusݎߜ

 Negative change in radius   ିݎߜ

 ௦௧.   Change in radius resulting from a distorted tetragonal structureݎߜ

 ݎ ௗ(݀)   Normalised distance between the occupied d-orbital fromݎߜ

 Difference is the distance between the maximum and minimum ܦ∆

distortion of the tetragonal structure from ݎ 

݈   Effective quantum number 

 Thomas-Fermi screening length    ߣ

߮ௌ௧   Slater wavefunction 

Å    Angstrom symbol 

ℋ   Hamiltonian 

BCC   Body-centred cubic 

BCT   Body-centred tetragonal 

݁   Electron rest charge 

݁    Energy of the quantised energy level 

݃    Degeneracy of the energy level, ݅ 

 ௩   Average energy of a system of particlesܧ

 ௗതതതതത   Mean delocalisation of energyܧ

    Electron-electron interaction energyܧ

    Electron-nucleus interaction energyܧ

    Kinetic energyܧ

 ௦௧.   Energy of the distorted tetragonal structureܧ

 ை௧   Orbital energyܧ

ܧ∆
    Change in energy at ݎ for an atom X 

 ோ௦ Potential energy of the valence electrons calculated using a modifiedܧ

Rose binding energy equation 

 ௌ Energy associated with a change in spin satisfying the Pauli exclusionܧ

principle 

 Total energy   ்ܧ
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 ி   Fermi-Dirac distributionܨ

FCC   Face-centred cubic 

݇   Boltzmann constant 

ௗܰ    Number of d-electrons 

n   Valence electron concentration 

݊ொ   Primary quantum number 

 Electron density at the Wigner-Seitz radius   (௪௦ݎ)݊

r   Radius 

    Fictitious mean radiusݎ

s   Screening constant 

 Chemical potential    ߤ

 Potential energy at distance r   (ݎ)ܸ

Z   Atomic number  
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6.1 Chapter Preface 

The structure of Chapter 6 can be loosely defined as a step-by-step presentation of the 

construction of a method to obtain the energy of a structural system (whether FCC, BCC or 

complex structures), and its application to the prediction of various phases of alloys of 

transition elements. The FCC, BCC, and complex structures are represented here by a 

distorted tetragonal system with different ܿ/ܽ  ratios of its axis. The hypotheses and 

subsequent corollaries gathered from the conclusions of the previous chapters are used 

extensively in the formulation of this prediction scheme.  

The hypothesis tested in this chapter is: 

The FCC, BCC and complex structures can be represented as a type of distorted 

tetragonal structure. Therefore, if the d-orbitals can be mapped out to real space 

from reciprocal space onto this distorted structure, the stability of the structures can 

be studied as a function of the filling of the d-orbitals. 

The verification is made with comparison to physical systems and the literature, where 

applicable, in order to confirm the accuracy and validity of the assumptions and 

corresponding results.  

In Section 6.2.4, the stable structures of elemental Fe and Ni are predicted to verify the 

method; while in Section 6.2.5 a Fermi distribution is applied in order to demonstrate the 

interplay between the stability of Fe FCC and BCC allotropes as a function of temperature. 

In Section 6.2.6, the FCC-BCC stability curve (cf. Figure 30) generated is compared to the 

RBA method described in Chapter 5, and also the Tight-Binding method used by Lee and 

Hoffman [81]. The incorporation of complex structures into this stability curve results in 

Figure 31 in Section 6.2.7, which is compared to the semi-empirical model as summarised 

utilising PCA described by Dominguez et al. [11]. 

Finally, in Section 6.28 the method is simplified and used to predict the structure of various 

CoCrFeNi-Ax systems (where A = Al, Ti, V, Mo, and Pd), and CoCrFe-Vx, CoCrFe-Tix, and 

CoFeNi-Vx systems. The predictions are confronted with the results of experimental XRD 

characterisation, and where applicable, predictions from the RBA model used in Chapter 5.  
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It is the aim of this Chapter to explore alternative methods of describing structural presence 

within multi-component alloys by simplifying the problem where applicable, while still 

retaining concepts from quantum mechanics. In doing so, the method described here will 

provide a strategy for a first-pass ‘filter’ of potentially good alloy compositions as a function 

of stoichiometry so that more advanced and accurate strategies can be employed to further 

study the system, such as robust ab-initio calculations.  

The results of these compositions are in good agreement with their equivalent comparisons, 

and the final chapter will describe how the stability values described here can be applied to 

estimate some mechanical and functional properties of HEA compositions. 

6.2 Experiment/Calculations 

6.2.1 Distorted tetragonal cell: Construction of cell 

From previous chapters, the simple structures present at valence electron concentration 

values ݊ > 7, and ݊ < 6.5 and the complex structures found between  6.5 < ݊ < 7 [11,22] 

are attributed to changes in the electronic structure. The different behaviour of complex 

structures from simple structures from the average electronegativity and electron density 

analyses in Chapter 4 suggests that some destabilisation mechanism occurs in the 6.5 <

݊ < 7 range, and that this mechanism is responsible for the stabilisation of the simple 

phases. To investigate the mechanism by which the energy levels of the simple FCC and BCC 

phases are kept constant, the body-centred tetragonal (BCT) structure is selected for 

analysis in this chapter. The FCC phase may be represented simply by a body-centred 

tetragonal (BCT) phase with ܿ/ܽ = ൫√2൯
ଵ

 , while the BCC phase is represented by a BCT 

phase with ܿ/ܽ = ൫√2൯


. 
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Figure 23.1. (Left) The figure shows the 5 d-orbitals combined, with the directions of the d-

orbitals mapped into 3-d space. (Right) The directions of the d-orbitals are mapped into a 

tetragonal unit cell, with the d-orbital x and y axes shifted by 45° (relative to the a and b 

axes, which represent the unit cell axes), to bring the direction of the d-orbitals in line with 

the nearest neighbours. The nearest neighbours are not shown for clarity, but can be seen 

in Figure 23.2. 

A 2 ×2 ×2 supercell of both structures is constructed to obtain values of the interatomic 

distances between the nearest neighbours. The d-orbitals are the primary contributors to 

bonding in transition metals, and their preferred axes be mapped into the unit cell (cf. Table 

10 for further explanation later in the chapter) by considering the structure only in its real-

space coordinates as hard spheres.  Figure 23.1 shows how these orbitals may be mapped 

onto a tetragonal unit cell by shifting the x and y axes by 45°. It is useful to emphasise that 

the d-orbitals are mapped to the neighbouring atoms to consider the effects of the d-orbital 

to d-orbital bonding (since when the unit cell is expanded into a supercell, the orbitals of 

each atom are assumed bond with each neighbour in the directions presented here). 
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Figure 23.2. Atoms in a 2 x 2 x 2 tetragonal structure around a central atom, highlighted according to 

their assigned d-orbitals. The x-y-z and a-b-c axes are indicated in the figure for the ratios ൫√2൯
ିଵ

, 

൫√2൯


, and ൫√2൯
ଵ

. (Bottom) The distance between the atoms in each assigned d-orbital are 

tabulated. 

Figure 23 shows the selected closest neighbour atoms corresponding to several distorted 

BCT lattices with ܿ/ܽ = ൫√2൯
ିଵ

, ൫√2൯


, ܽ݊݀ ൫√2൯
ଵ

. As shown in Figure 23.2 (a), the x and y 
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directions are located at 45o to the a and b axis, while the z axis is defined as parallel to the c 

axis. The corresponding dxy, dyz, dxz, dx2-y2, and dz2 orbitals have been labelled accordingly.  

Since the average kinetic energy remains constant for a fixed temperature, changes in 

interatomic distance may be attributed to a change in only the potential energy, it is 

assumed here that the interatomic distance between the central atom and each denoted d-

orbital is proportional to the change in bond energy. For purposes of this analysis we 

consider the electrons within a fixed ‘frame’ – that is, they are approximated as possessing 

directionality, occupying certain regions as per the spherical harmonics of Schrodinger’s 

equation (cf. Chapter 2.8). The interatomic distances are normalised against the ݀௫మି௬మ 

interatomic distance and presented in Figure 1 (d, e, f). At ܿ/ܽ = ൫√2൯
ଵ

, presented in Figure 

23.2 (f) the ݀௫௬, ݀௫௭ , ܽ݊݀ ݀௬௭ orbitals are observed to be 1/√2 of the interatomic distance 

between the ݀௫ଶା௬ଶ ܽ݊݀ ݀௭ଶ orbitals. As the d-orbitals do not possess a similar interatomic 

distance, it may argued that the d-orbitals have been lifted from their five-fold degeneracy 

in the ground state, which will be located between the energy levels of the 

݀௫௬ , ݀௫௭, ܽ݊݀ ݀௬௭, and ݀௫ଶା௬ଶ ܽ݊݀ ݀௭ଶ orbitals, within the ܿ/ܽ = ൫√2൯
ଵ

 (FCC) distorted BCT 

structure. In order to proceed with analysis of the relative energy levels of the undistorted 

tetragonal lattice, the interatomic distance corresponding to the fivefold degenerate ground 

state must be defined.  

Before the fivefold degenerate ground state is discussed in the following section,  the cross-

sections of the real d-orbitals are calculated and shown by substituting the radial part of the 

Schrodinger equation for a Slater-type orbital [82], using Clementi’s constants [83], (cf.  

Table 10).  Here, the distortion of the various d-orbitals to a less spherical shape is assumed 

to be an indication of reduced metallic character due to increased probability of orbital 

overlap between neighbouring atoms, and therefore increased bonding directionality. To 

obtain representative values of the different c/a ratios, the radius pertaining to each d-

orbital is multiplied by the separation found from the previous analysis of the distorted 

tetragonal cell, as shown in Figure 23.2. The cross-sections across the yz and xz planes were 

observed to be similar and as such, only the cross-sections across the yz=xz and xy planes 

are shown below. 
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Table 10. Cross-sections along the x-y and y-z axis of the d-orbitals with different z/x ratios to 

represent the c/a ratios ൫√2൯
ିଵ

, ൫√2൯


, and ൫√2൯
ଵ

 in a tetragonal structure. The shape of the d-

orbitals are calculated using a Slater-type orbital [82] (cf. Eq. 2 below) using Clementi’s constants 

[83] for the radial part of the Schrodinger equation. The y-z cross-section is equivalent to the x-z 

cross-section as the axis is constrained so that x=y. 

c/a yz = xz xy 

൫√൯
ି

 

(0.71) 

  

൫√൯


 

(1.00) 

  

൫√൯


 

(1.41) 
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The cross-sections corresponding to the ܿ/ܽ = ൫√2൯


and ൫√2൯
ଵ

 ratios are found to be 

approximately spherical in nature (cf. Figure 24). Figure 24 presents a graph of the ratio of 

displacement between the radial distance between the xy and yz cross-sections. It is 

observed that between 0 < ߠ <
గ

ସ
 , the xy cross-section is observed to experience a large 

displacement along the z-axis. In contrast, when changing from a ratio of ܿ/ܽ = ൫√2൯
ଵ
 to 

ܿ/ܽ = ൫√2൯

 the displacement between both the xy and yz cross-sections only rises above 

5% between 0 < ߠ <
గ

଼
. The analysis performed here offers good agreement with the 

agreed properties of the more delocalised nature of the simple FCC and BCC structures, 

represented by the ܿ/ܽ = ൫√2൯
ଵ

 and ܿ/ܽ = ൫√2൯


 ratios. The analysis suggests that a 

tetragonal distortion with ܿ/ܽ = ൫√2൯
ିଵ

 possesses significant directional bonding in 

comparison to the other ratios, although this cannot be directly attributed to complex 

structures, such as how the FCC and BCC structures are represented by the other ܿ/ܽ ratios. 

In the following sections, the discussion will first consider the possible phase presence of 

FCC and BCC structures in HEAs, as a function of a distorted tetragonal structure, before 

dealing with the justification of the ܿ/ܽ = ൫√2൯
ିଵ

 representation of the complex structure. 

 

Figure 24. Ratio between the radius of the first quartile of the yz cross-section to the radius of the 

first quartile of the xy cross-section. For the ܿ/ܽ = −൫√2൯
ିଵ

 ratio, between 0 < ߠ <
గ

ସ
 , the xy 

cross-section is observed to experience a large displacement along the z-axis. In contrast, when 

changing from a ratio of ܿ/ܽ = ൫√2൯
ଵ
 to ܿ/ܽ = ൫√2൯


 the displacement between both the xy and yz 

cross-sections only rise above 5% between 0 < ߠ <
గ

଼
. 
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6.2.2 Searching for the fivefold degenerate energy 

The Ni FCC structure is used as the representative of simple transition metal structure in 

searching for the theoretical non-distorted energy. A simple 2-D potential plot of the energy 

against the radius is employed to determine the non-distorted energy. Figure 25 below 

shows the 4s and 3d orbital interatomic energies of Ni as a function of its radius, calculated 

using a modified version of the method of Rose et al. [84] with the general form: 

ோ௦ܧ = ை௧ (1ܧ− + ∗ఉ ఈି݁(∗ߙ ߚ
       (1) 

where ߚ is a fitting constant where ߚ = ∗ߙ ,[84] 1.16 =
ଶ(ି)

ఒ
 where ߣ is the Thomas-

Fermi screening length ߣ = ቀ
ଽగ

ସ
ቁ

ଵ/ଷ
ቀ

ସగ ఝೄೌೝ() 

ଷ
ቁ

ଵ/
  is the meanݎ is the radius and ݎ ,

radius at which ௗఝ()మ

ௗ
= 0. The final parameters are related to orbital wavefunctions which 

here, are  approximated from a Slater-type orbitals [82]; ܧை௧ is the orbital energy of the 

4s and 3d orbitals which is the integral of ߮ௌ௧(ݎ), the radial part of the Scrodinger 

wavefunction represented by a non-normalised Slater-type orbital given by the general 

form: 

߮ௌ ݏ4) + 3݀) = ∑ ೂିଵ݁ݎ
ିೋషೞ

ೂ
 

ସ௦ାଷௗ       (2) 

where ݏ is the atomic screening constant, ݎ is the radius, ܼ is the atomic number, and ݊ொ is 

the primary quantum number. The atomic screening constants are obtained from Clementi 

[83] where the effective atomic number, ݈ = ܼ −  The first and second neighbours as .ݏ

found in the previous section may be written as a function of Ni first nearest neighbour, 

݊1ே, where ݀௫௬ , ݀௫௭ , ܽ݊݀ ݀௬௭ = ݊1ே, and ݀௫ଶା௬ଶ ܽ݊݀ ݀௭ଶ = √2 ݊1ே.  
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Figure 25. Plot of the potential for the valence electrons of FCC Ni. The energy-radius relationship 

here is obtained using a modified Rose binding energy equation [84] of FCC Ni’s 4s and 3d valence 

orbitals (cf. Eq. 1). (Inset) Zoom-in to the change in radius, ିݎߜ and ݎߜା from ݎ that is equivalent to 

the change in energy (cf. Eq. 3) 

Consequently, as the Ni FCC cell possesses a lattice parameter of 3.6 Å, the first nearest 

neighbour distance may be calculated as ݊1ே =
ଷ. Å

ଶ√ଶ
= 1.28 Å, and ݊2ே = √2 ݊1ே =

1.81 Å. These distances correspond to the predetermined distances between the atoms in 

each assigned d-orbital for a value of c/a = ൫√2൯
ଵ

. The interatomic distance corresponding 

to the fivefold degenerate ground state, which may be considered to be a fictitious mean 

ratio, ݎ is located between ݊1ே < ݎ < ݊2ே. The exact location is determined here as 

the point at which the sum of the change in energy between ݎ and the distorted d-orbitals 

is equivalent to zero and may be computed by considering the gradient of the potential 

shown in Figure 25. Mathematically, the first derivative of the potential with respect to 

change in radius, ݎߜ can be solved for all increases (ݎߜା) and decreases (ିݎߜ) to ݎ. Here, 

the equation to be solved is: 

ఋ ாೃೞ
య (ଵಿି)

ఋ
(ିݎߜ) =

ఋ ாೃೞ
య (ିଶಿ)

ఋ
 (3)     (ାݎߜ )

Solving for the above equation where ݊1ே = 1.28, and ݊2ே = 1.80 returns ݎ = 1.61. 

These values are illustrated graphically in the inset of Figure 25. The difference in magnitude 

between ିݎߜ and ݎߜା is attributed to the shape of the potential, where the slope of a 

negative displacement from ݎ  is steeper than that of a corresponding positive 
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displacement. As a result, when normalised against the total displacement, ିݎߜ +  ା, theݎߜ

values ିݎߜ ≅ ିݎߜ) 0.63 + ାݎߜ ା) andݎߜ ≅ ିݎߜ) 0.37 +  .(ାݎߜ

6.2.3 Distorted tetragonal cell: Effect of different c/a ratios 

The d-orbitals from Figure 1 can now be analysed in terms of the theoretical fivefold 

degenerate energy, ݎ . For a FCC structure, the equivalent distorted BCT cell is at ܿ/ܽ =

√2ଵ. The interatomic distances between the ݀௫௬ , ݀௫௭, ݀௬௭, ݀௫మା௬మ ܽ݊݀ ݀௭మ  orbitals can be 

shown as a function of ݎ. Figure 26 (c) shows the BCT ܿ/ܽ = √2ଵ cell where the red line 

denotes the undistorted energy determined from values of ିݎߜ and ݎߜା. From the earlier 

analysis, the normalised distance between the ݀௫௬, ݀௫௭ , and ݀௬௭  orbitals and ݎ is taken as 

≈ ିݎߜ = −0.6 and ݀௫ଶା௬ଶ ܽ݊݀ ݀௭ଶ as ݎߜା ≈ 0.4. This is represented in Figure 26 as ିݎߜ ≈

−
.ଵ଼

(.ଵଶା.ଵ଼)
 and ݎߜା ≈

.ଵଶ

(.ଵଶା.ଵ଼)
, respectively. The convention of the signs used represents 

either an increase (+) or a decrease in interatomic distance from ݎ (-). 

 

Figure 26. Normalised distance of the d-orbitals from determined value of ݎ for different ratios of 

(a) BCT ܿ/ܽ = √2ିଵ; (b) BCT ܿ/ܽ = √2; and (c) BCT ܿ/ܽ = √2ଵ   

A contraction of the ܿ/ܽ ratio affects the interatomic distance of the bonds along the length 

of the z axis, leading to a corresponding contraction in the interatomic distances of the d 

orbitals. At ܿ/ܽ = √2 it can be determined that as a consequence of the ܿ/ܽ distortion the 

earlier degeneracy = 3 of ݀௫௬ , ݀௫௭ , ܽ݊݀ ݀௬௭  orbitals and degeneracy = 2 of ݀௫మା௬మ  ܽ݊݀ ݀௭మ  

orbitals have been lifted so that the ݀௫௭ , ܽ݊݀ ݀௬௭ interatomic distances have decreased, 

with respect to the ݀௫௬  orbital. The ratio between the interatomic distances of the 

݀௫మି௬మ  ܽ݊݀ ݀௫௬ orbitals (c.f. Figure 23.2) have remained unchanged, where 
ௗೣమషమ  

ௗೣ
= √2 

and the relative position of ݎ with respect to these orbitals is expected to remain 

unchanged. Therefore, the normalised interatomic distance between the d-orbitals and  ݎ 
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for a distortion to ܿ/ܽ = √2


 is -0.27 for ݀௫௬ ܽ݊݀ ݀௬௭, -0.18 for ݀௫௬ ܽ݊݀ ݀௭ଶ, and 0.12 for 

݀௫ଶି௬ଶ.  

Utilising a similar distorted tetragonal analysis, a contraction of the z axis so that ܿ/ܽ =

√2
ିଵ

leads to further breaking of the 2/2/1 d-orbital degeneracy at ܿ/ܽ = √2

 so that the 

normalised interatomic distance between the d-orbitals and ݎ are now -0.38 for ݀௭ଶ, -0.32  

for ݀௫௭ ܽ݊݀ ݀௬௭, -0.18 for ݀௫௬, and 0.12 for ݀௫ଶି௬ଶ. 

6.2.4 Distorted tetragonal cell: Energy levels 

The energy of the distorted tetragonal cells may then be evaluated by invoking the Aufbau 

principle and the Pauli exclusion principle so that the most stable occupancy of the d-

orbitals is obtained. In general, the energy of a many-electron system orbiting a nucleus 

consists of nucleus energy and the electron energy. The Born-Oppenheimer principle allows 

the energy of the nucleus to be separated into its nuclear and electronic components and as 

such the general form of the electronic energy may be written as (c.f. Chapter 2): 

்ܧ = ܧ + ܧ +           (4)ܧ

where ܧ is the kinetic energy, ܧ is the electron-nucleus interaction energy, ܧ is the 

electron-electron interaction energy. The total energy, ்ܧ may be obtained through several 

methods. In the following analysis the total energy that is, the energy required to remove all 

the atoms surrounding the nucleus to an infinite distance is given by [82,85]: 

(ܰ)்ܧ = ℋ(ܰ) = ∑ − ൬
ି௦

ೂ
൰

ଶ
ேୀ
ୀଵ        (5) 

where Z is the atomic number, s is the Clementi shielding constant [83], and ݊ொ is the 

primary quantum number. In the model of the distorted tetragonal cell described here, the 

energy of the distorted cell is a function of the interaction between an energy change cause 

by a shift in interatomic distance and the energy associated with a change in spin satisfying 

the Pauli exclusion principle, ∆ܧௌ. It follows that the tetragonal distortion leads to a 

corresponding change in the potential energy of the electron so that: 

(ݎ)ܸ =
ே మ


          (6) 

Applying the Laplacian gives: 
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∇ଶܸ(ݎ) = ଶ ௗܰ݁ߨ 4  (7)        ݎ݀ 

Since for ݎߜ ,(ܰ)்ܧ(݀) = 0, the energy associated with the distortion from rm, ܧ௦௧. is 

then: 

,.௦௧ݎߜ).௦௧ܧ ௗܰ) = ∑ )( ߨ 4) ௗܰ  (ܦ∆)((݀)ௗݎߜ)( 
ௗభ,మ,య…ఱ
ୀଵ + ∑ )ௌܧ∆ ௗܰ)ே(↑↓)

ୀଵ  (8) 

where ܧ௦௧. is given in terms of the ܿ/ܽ orbital distortion, ݎߜ௦௧. and the number of d 

electrons, ௗܰ; the first term is the total energy given by the occupancy of each d-orbital 

( ݀ଵ,ଶ,ଷ…ହ = ݀௫௬, ݀௫௭, ݀௬௭, ݀௫ଶା௬ଶ ܽ݊݀ ݀௭ଶ )  satisfying the Aufbau principle and Pauli 

exclusion principle with each orbital possessing energy ݎ)்ܧ, ܰ).  ௗ(݀) is theݎߜ ௗ. whereݎߜ

normalised distance between the occupied d-orbital from ݎ. The second term arises from 

the energy required to change the sign of the electron spin to satisfy the Pauli exclusion 

principle. For easier calculation,  ݎߜ௦௧. is normalised so that ఋವೞ.

∆
=  is the ܦ∆ where ,ܥ

difference is the distance between the maximum and minimum distortion of the tetragonal 

structure from ݎ as determined in Figure 26, and C is a constant related to the ratio of the 

distortion of an orbital to  ∆ܦ. 

For 3d-block transition metal possessing 10 d-electrons, satisfying the Aufbau principle will 

lead to the condition where the energy of the fully filled distorted cell will be equivalent to 

the energy at ݎ, i.e. where the total change in energy required to change the sign of the 

electron spin to satisfy the Pauli exclusion principle is equivalent to the sum of the change in 

energy required to distort the tetragonal structure by ݎߜ௦௧. =  :Mathematically .ܦ∆ ܥ

,.௦௧ݎߜ).௦௧ܧ 10) ≈  (9)        (10)்ܧ

By substituting values for C from Figure 26, (10)்ܧ for a tetragonal cell with ܿ/ܽ = √2
ଵ

 

corresponding to an FCC structure is calculated:  

(ܦ∆)ሾ(6)(−0.6)ߨ 4 + ሿ(ܦ∆)(0.4)(4) + ௌܧ∆ 5 =  (10)   (10)்ܧ

Whereas for a tetragonal cell with ܿ/ܽ = √2


 corresponding to a BCC structure,  

(ܦ∆)ሾ(4)(−0.5)ߨ 4 + (ܦ∆)(0.3−)(4) + ሿ(ܦ∆)(0.2)(2) + ௌܧ∆ 5 =  (11) (10)்ܧ 
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Figure 27. Plot of the potential for the valence electrons of Fe obtained using a modified Rose 

binding energy equation [84] of Fe’s 4s and 3d valence orbitals (cf. Eq. 1), with the value for the 

energy at ݎ, ∆ܧ
ி indicated. (Inset: Top) Zoom-in to the electron occupancy of the hypothesised 

distorted d=orbitals for the BCC structure where c/ܽ = ൫√2൯


 ; and (Inset: Bottom) Zoom-in to the 

electron occupancy of the hypothesised distorted d-orbitals for the FCC structure where /ܽ =

൫√2൯
ଵ

. 

Therefore, solving for Ni at ௗܰ = 10, the following is obtained: 

ௌܧ∆
ேିி ( ௗܰ) = 43.28 ܸ݁, ௌܧ∆

ேି ( ௗܰ) = 76.22 ܸ݁    (12) 

While solving for Fe at ௗܰ = 10, the values are: 

ௌܧ∆
ிିி ( ௗܰ) = 35.98 ܸ݁, ௌܧ∆

ிି ( ௗܰ) = 63.15 ܸ݁    (13) 

It must first be noted that these values in eV cannot be considered to be the exact energy 

values of the system studied as the full potential is not used, and no attempt was made to 

solve any of the equations central to quantum mechanics to obtain the ground-state 

energies. The values here may, however, be used as a comparison of the relative stability of 

the structures in a distorted tetragonal system. Values of ∆ܧௌ
ேି, and ∆ܧௌ

ிିி  are 

considered unphysical as the Ni and Fe system does not adopt these phases at the ground 

state. These approximated ܧௌ values are still, however, in agreement with the empirical 

parameters predicted by Dominguez et al. [11] where the FCC structure is present at 7 <

ܥܧܸ < 10 and the BCC structure is present at 5 < ܥܧܸ < 7 since the spin energies for FCC 

are lower than that for the BCC at ௗܰ = 10, and hence in terms of stability ∆ܧௌ
ி ( ௗܰ) 
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ௌܧ∆<
 ( ௗܰ). Figure 27 shows the energy-radius curve for Fe, ܧோ௦(݁ܨ) and the various 

energy levels of the d-orbitals are indicated with the dashed lines. As all approximated 

values of ܧௌ > ܧ∆
ி, in fulfilling the Aufbau principle all available d-orbitals must be filled 

with an electron before the Pauli principle is invoked. In calculating the physical example of 

Fe with 6 d-electrons ௗܰ=6, the inset of Figure 27 (Top), presents the electron occupancy for 

ܿ/ܽ = ൫√2൯

 representing the BCC structure and Figure 27 (Bottom), presents the electron 

occupancy for ܿ/ܽ = ൫√2൯
ଵ

 representing the FCC structure. At ௗܰ=10, ∆ܧௗ
ி(10) = ܧ∆

ி =

−110 ܸ݁, as discussed earlier. However, for ∆ܧ
ி (6) the energy levels are seen to lower 

to ∆ܧ
ி (6) = −266 ܸ݁. A corresponding decrease is found for ∆ܧி

ி (6) = −196 ܸ݁. Of 

these, ∆ܧ
ி (6) is lower in energy and therefore the more stable structure at ௗܰ=6 for Fe. 

This is the correct physical structure for Fe at 0 K. 

 

Figure 28. Plot of the potential for the valence electron of Ni obtained using a modified Rose binding 

energy equation [84] of Ni’s 4s and 3d valence orbitals (cf. Eq. 1), with the value for the energy at 

ܧ∆ ,ݎ
ி indicated. (Inset: Top) Zoom-in to the electron occupancy of the hypothesised distorted d-

orbitals for the BCC structure where /ܽ = ൫√2൯


 ; and (Inset: Bottom) Zoom-in to the electron 

occupancy of the hypothesised distorted d-orbitals for the FCC structure where ܿ/ܽ = ൫√2൯
ଵ
 . 

Figure 28 shows a similar analysis for the physical Ni system, with ௗܰ=8, displaying the 

energy-radius curve for Ni, ܧோ௦(ܰ݅) and the various energy levels corresponding to the d-

orbitals indicated again with dashed lines. For Ni, ∆ܧ
ே = −135 ܸ݁, and obtained values of 

ܧ∆
ே (8) = −269.4 ܸ݁ and ∆ܧி

ி (8) = −362.7 ܸ݁, showing that the lower energy value 

of ∆ܧி
ி  is responsible for the stability of the FCC structure at 0 K for Ni.  
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6.2.5 Distorted tetragonal cell: Allotrope of Fe (BCC->FCC) 

The analyses performed in the preceding sections are performed on a system at 0K. As a 

system increases in temperature, the average energy, ܧ௩ = ݇ ܶ  according to the 

equipartition theorem where ݇the Boltzmann constant, and T is is the temperature in 

Kelvin. An increase in temperature therefore leads to a corresponding increase in ܧ௩. The 

distribution of a system of identical fermions that can be distinguished may be described 

using Fermi-Dirac statistics which take the form of: 

ிܨ =
ଵ

ಶ/(ೖಳ )ାଵ
         (14) 

where ܨி denotes the Fermi-Dirac distribution, ܧ denotes a general energy term, ݇ the 

Boltzmann constant, and ܶ the temperature in Kelvin. However, ܨி does not account for 

the energy sensitivity of the degenerate ݀௫௬, ݀௫௭ , ݀௬௭, ݀௫ଶା௬ଶ, ௭ଶ݀ ݎ  orbitals that is 

dependent on the potential of the d-orbital. 

An increase in temperature in the system leads to a change in the distribution of the 

electrons represented by ܨி. As a result, the mean radius of the d-orbital electrons may be 

shifted to a different energy level. This change in radius is shown graphically in Figure 29 

and may be given by: 

ܧ)ݎ + (ܧߜ = (ܧ)ݎ +  (15)        (ܧߜ)ݎ

Assuming continuous stability of the distorted tetragonal lattice, the relative position of the 

degenerate energy orbitals must be constrained such that for ܿ/ܽ = ൫√2൯
ଵ

 representing the 

FCC structure, the radius of the lowest energy orbital corresponds to the nearest neighbour 

distance, ݊1, the next lowest orbital corresponds (1.41)(݊1) as determined from the early 

analysis of the distorted tetragonal cell. Similarly, for ܿ/ܽ = ൫√2൯


 representing the BCC 

structure the radius of the d-orbitals correspond to the nearest neighbour distance, ݊1, for 

the lowest energy d-orbital,  ݊1/0.87, and 1.41(݊1/0.87) for the highest energy level 

corresponds. The change in energy can only therefore result in a limited distortion of the 

radius, ݎߜ depending on the existing energy level of the d-orbital at a radius, ݎ which 

satisfies the wavefunction, ߮, given by Schrodinger’s equation. Therefore the sensitivity of 

the change in energy is: 
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ଵܣ  
ா(ାఋ)

ா()
= ଵܣ ቀ

ா()

ா()
+

ఋா(ఋ)

ா()
ቁ = ଵܣ ቀ1 +

ఋா(ఋ)

ா()
ቁ    (16) 

where ܣ is a constant related to the first nearest neighbour distance. When (ݎ)ܧ ≫  ,(ݎߜ)ܧ

1 +
ா(ఋ)

ா()
≈ ݁

ಶ(ഃೝ)
ಶ(ೝ)  and therefore: 

ாതതതതതത

భ
= ݁

భ


∑ ಶ(ഃೝ)
ಶ(ೝ)          (17) 

where ܧௗതതതതത represents the mean delocalisation of energy that is attributed to a state, ݅, 

where ݅ = and ݊ ,ܥܥܤ ݎ ܥܥܨ  represents the number of energy levels in the system ݅; i.e. 

݊ி = 2 and ݊ = 3. The probability of finding an electron is then reduced by this 

averaged delocalisation of energy such that: 

ிܨ =
భ

ቌ
ಶష(ೖಳ )(ಽ(ಶതതതതതതത))

(ೖಳ ) ቍାష(ಽ(ಶതതതതതതത)

      (18) 

where (݇ ܶ)(݃ܮ(ܧௗതതതതത) =
ಳ ்


∑ ா(ఋ)

ா()  is the rate of change of the average delocalisation 

of energy of a state, ݅, to the temperature, ܶ.  

Since ቆ݁
ಶష(ೖಳ )(ಽ(ಶതതതതതതത))

(ೖಳ ) ቇ ቀ
ଵ

ష(ಽ(ಶതതതതതതത)ቁ reduces to ݁ா/(ಳ ்), Equation 18 may be re-written 

for a trial FCC system with phase X as: 

ிܨ 
 =

(భ)(ாതതതതതത)

൫ಶ/(ೖಳ )൯ାଵ
=

(భ)ቀாതതതതതതቁ

൬∆ಶಷ
 /(ೖಳ )൰ାଵ

       (19) 

Combining the two equations, the stability between the BCC structure demonstrated by a 

distorted tetragonal cell, ܿ/ܽ = ൫√2൯

 and the FCC structure represented by a distorted 

tetragonal cell, ܿ/ܽ = ൫√2൯
ଵ

 of a trial Fe system may therefore be given by: 

ிܨ
ିி(݁ܨ) = ிܨଵிቀܣ

(݁ܨ) − ிܨ
ி(݁ܨ)ቁ,      (20) 

ிܨ
ିி(݁ܨ) = )ଵிܣ

ாതതതതതതಳ

∆ಶಷ
ಳ/(ೖಳ )ାଵ

−
ாതതതതതതಷ

∆ಶಷ
ಷ/(ೖಳ )ାଵ

)    (21) 
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Interestingly, the general form of ܨி described here using the Fermi-Dirac distribution (cf. 

Equation 19) can be compared with the microcanonical ensemble of the Fermi-Dirac 

distribution: 

ிܨ =


(షഋ)/(ೖಳ )ାଵ
         (22) 

where ݃ is the degeneracy of the energy level, ݅; ݁ is the energy of the quantised energy 

level, and ߤ is the chemical potential. The difference between the microcanonical ensemble 

form of the Fermi-Dirac distribution and ܨி
  used in this analysis is that ܧௗതതതതത is estimated 

through a perturbation of the radius of each of the degenerate energy levels of the 

corresponding distorted tetragonal structure corresponding to the FCC and BCC structures 

as a function of the first nearest neighbour distance given by the constant ܣଵ, rather than 

being a directly calculated value. The relationship between each 

݀௫௬ , ݀௫௭, ݀௬௭, ݀௫ଶା௬ଶ ܽ݊݀ ݀௭ଶ orbital energy level and ܣଵ is obtained from analysis in the 

preceding sections. 

 

Figure 29. Plot of the potential for the valence electron of Fe obtained using a modified Rose binding 

energy equation [84] of Ni’s 4s and 3d valence orbitals (cf. Eq. 1). The black line illustrates the total 

energy at a radius r, ்ܧ =  while the dotted red line illustrates the perturbation of the radius by (ݎ)ܧ

்ܧ so that ݎߜ = (ݎ)ܧ + ிܨ Plot of (Inset) .ݎߜ
ிି(݁ܨ) as a function of temperature showing the 

BCC phase stabilised at T < 1320K, and the FCC phase stabilised at T > 1320K. 

Figure 29 shows the change in energy as a function of a perturbation of the radius, ݎ to 

ݎ + ிܨ The inset of Figure 29 shows a plot of the earlier derived .ݎߜ
ିி(݁ܨ) equation 

as a function of the temperature, ܶ in Kelvin. It is only possible for ܨி
ିி(݁ܨ) > 0 
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when ܨி
 > ிܨ

ி  and conversely, for for ܨி
ିி(݁ܨ) < 0 when ܨி

 < ிܨ
ி . As 

shown in the inset the transition between both phases occurs when the occupancy rate 

of both states are equivalent to one another, ܨி
 = ிܨ

ி, at which ܶ = ܭ1320 =

 which is in reasonable agreement with the transition temperature to austenite ,ܥ1047°

Fe at 912°ܥ. 

6.2.6 General stability between the FCC and BCC structures as a function of the d-

electron number 

In the above sections, it has been demonstrated that in the comparison of the energies of 

the FCC and BCC phases as a function of a distorted tetragonal structure with different ܿ/ܽ 

ratios, the BCC structure is stable at 0K for Fe, and the FCC structure is stable at 0 K for Ni. 

The average delocalisation of energy of the d-orbitals has been shown to be obtainable 

through a perturbation of ܧோ௦, predicting a FCC to BCC transition value for Fe (1320 K) that 

is in good agreement with the experimental value (1180K).  

In this section, the distorted tetragonal structure analysis is employed to attempt to 

distinguish between FCC and BCC phase stability as a function of the d-electron count. The 

energy difference between both phases is: 

.௦௧ܧ
ிି = .௦௧ܧ

ி ,.௦௧ݎߜ) ௗܰ) − ௦ܧ .
 ,.௦௧ݎߜ) ௗܰ)     (23) 

As the spin-orbit contribution is unique for each number of d-electrons, ௗܰ = 1, 2, 3 … 10, 

the second term, ∑ )ௌܧ∆ ௗܰ)ே(↑↓)
ୀଵ  from ܧ௦௧.

ி  and ܧ௦௧.
  (cf. Eq. 8) cancel out, and the Eq. 

23 can be written as: 

.௦௧ܧ
ிି ( ௗܰ) = ( ߨ 4) ቌ

∑ ቀ
ே.ఋ(ௗ)

∆ಳ ቁ ௗభ,మ,య…ఱ(ிܧ∆)
ୀଵ

− ∑ ( ௗܰ ) ቀ
ே.ఋ(ௗ)

∆ಷ ቁ  (ܧ∆)
ௗభ,మ,య…ఱ
ୀଵ

ቍ   (24) 

Referring to the results of Chapter 4, simple and complex HEA phases were found to be 

separated in a two-dimensional plot of the electron density and the Wigner-Seitz radius. The 

Hohenberg-Kohn theorems state that the total energy of any system acting under an 

external potential may be described as a function of its electron density. As the simple 

phases are found in the previous analysis to scale with the Wigner-Seitz radius irrespective 

of FCC or BCC structure, we can write: 
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∆ா
ಳ

∆ா
ಷ ≈

()ಳ

()ಷ =
ேಳ

ேಷ

(ఋಷ)

( ఋಳ)
       (25) 

By assuming that the number of electrons remains constant, the ratio of the total energy of 

the BCC structure to the FCC structure, as shown in Eq. 25, can simply be taken as the cube 

of the ratio between the nearest neighbour distance of the FCC and BCC structure obtained 

from analysis of the distorted tetragonal structure. For ܿ/ܽ = ൫√2൯


these values 

correspond to ݊1 = and ݊2 ݎ = ቀ
ଶ

ଷ
ቁ

ଵ/ଷ
்ܧ∆ Hence .ݎ

 may be written in terms of 

்ܧ∆
ி: 

்ܧ∆
 ≈

ଶ

ଷ
்ܧ∆

ி         (26) 

and Equation 24 is now: 

.௦௧ܧ
ிି( ௗܰ) = ( ߨ 4) ቌ

∑ ( ௗܰ  ) ቀ
ఋ(ௗ)

∆ಳ ቁ ௗభ,మ,య…ఱ(ܧ∆)
ୀଵ

− ∑ ( ௗܰ ) ቀ
ఋ(ௗ)

∆ಷ ቁ (
ଶ

ଷ
்ܧ∆

ி) 
ௗభ,మ,య…ఱ
ୀଵ

ቍ   (27) 

The Aufbau and Pauling principles are then employed to determine the filling of the d-

orbitals, allowing ܧ௦௧.
ிି  to be shown as a function of the number of valence electrons. 

Figure 30 presents a plot of ܧ௦௧.
ிି  against ௗܰ  where ܧ௦௧.(ଷௗ)

ிି is shown by the black, 

dashed line. This is similar in magnitude to ܧ௦௧.(ଷௗ ସ௦)
ிି  but diverges past ௗܰ = 8. The 

௦௧.(ଷௗ)ܧ
ிି  curve shows that the BCC phase represented by ܿ/ܽ = ൫√2൯


 is stable between 

roughly 4 < ௗܰ < 7  and ௗܰ > 8.5 ; while the FCC phase represented by a tetragonal 

distortion of ൫√2൯
ଵ

 is stable between ௗܰ < 4  and 7 < ௗܰ < 8.5 . Comparison between 

these predicted values and ܧௌିௗ
ிି  obtained through the Rigid Band Approximation 

performed in Chapter 5 is acceptable, up to ௗܰ = 8 whereby ܧ௦௧.(ଷௗ)
ிି diverges into the 

BCC-stable region. This prediction by ܧ௦௧.(ଷௗ)
ிି is unphysical as known compositions such as 

Ni ( ௗܰ = 8) , Cu ( ௗܰ = 9) , and Ag ( ௗܰ = 9)  possess the FCC structure at room 

temperature. Furthermore, HEA compositions such as CoCrFeNiPd [65,86] ( ௗܰ = 8.25) and 

its stochiometries possess the FCC phase as well. One reason for the deviation may be the s-

d orbital hybridisation that occurs. It is well-known that Cu, despite possessing fewer 

electrons than required to obtain a closed-shell structure for the s and d orbitals, possesses 

a d10 configuration; which is not exclusive to Cu but applies to Group 11 of the periodic 
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table. A reasonable hypothesis is that the increase in energy from d-orbital filling favours a 

hybridised 3d-4s orbital to decrease the total energy of the system. This hypothesis is 

consistent with this study, which argues that splitting of orbitals can be mapped onto the 

closest neighbours in a distorted tetragonal structure and can affect the overall energy of 

the system, leading to the energetical preference of one structure over another.  

 

Figure 30. Plot of the FCC-BCC energy difference calculated using a 3d distorted tetragonal structure, 

௦௧.(ଷௗ)ܧ
ிି; 4s 3d distorted tetragonal structure, ܧ௦௧.(ଷௗ ସ௦)

ிି ; using the RBA methodology from 

Chapter 4, ܧௌିௗ
ிି ; and adapted from Lee and Hoffman’s tight binding model [81], ܧఓଶିு௨

ிି . 

A naïve approximation to simulating this criterion is to allow for an additional energy level 

between ݎߜௗ(݉݅݊) and ݎ for two additional electrons, which will cause a decrease in 

energy, stabilising the system. In Figure 30, ܧ௦௧.(ଷௗ ସ௦)
ிି , the black solid line represents this 

approximation, where the application of this correction brings the deviation of ܧ௦௧.(ଷௗ)
ிି for 

ௗܰ > 8.5 back to agreement with experimental results, and the predicted zones of FCC and 

BCC stability as determined from Dominguez et al.’s work [11]. It is observed from the 

௦௧.(ଷௗ ସ௦)ܧ
ிି  curve that the FCC structure is found to be stable up to ܸܥܧ = 7.2 while the 

BCC structure is stable between 3.8 < ܥܧܸ < 7.2. In comparison to the RBA-derived curve, 

ௌିܧ
ிି  shown also in Figure 30, the FCC structure is found to be stable up to ܸܥܧ = 7 

while the BCC structure is stable between 3.8 < ܥܧܸ < 7. Both analyses of the FCC-BCC 

stability are comparable and are in good agreement with one another. 



177 
 

As discussed in Chapter 5, the RBA model calculates the structural stability utilising ab-initio 

methods where the atomic positions can be constrained to a periodic lattice group, based 

on Bloch’s theorem [87],  to obtain the electronic band structure from which the total 

energies of the structure can be obtained. The RBA generates the FCC-BCC stability curve by 

assuming that the energy curves and density of states of a solvent metal do not change on 

alloying [58,59]. In this method, it is approximated that on alloying, the effect of the solute 

metal is to modify the occupancy of the electrons in the electronic band structure, so 

changing the Fermi surface and filling of the density of states to a new equilibrium energy. 

In this way, the structural stability between the FCC and BCC simple structures can be 

obtained by subtracting the energy curves from one another, and represented simply as a 

function of the averaged number of electrons present in the periodic lattice group, or some 

representation thereof such as a disordered structure generated using the Special 

Quasirandom Structure method (SQS) [70]. 

In contrast, the distorted tetragonal method described and presented in this chapter 

considers the structure as a function of an axial distortion of a tetragonal lattice. This 

distortion leads to a change in the corresponding energy levels of the d-orbitals that are 

mapped onto the tetragonal lattice in real space, so modifying the energy occupancy from 

an undistorted tetragonal structure where ܽ = ܾ = ܿ , thus changing the fivefold 

degeneracy of the d-orbital. The energy level of a distorted structure as a function of the 

number of d-electrons is then dependent on the Aufbau and Pauling principles as a function 

of the spin and occupancy energies. The structural stability is then obtained by subtracting 

the energy levels of distorted structures representing the FCC and BCC structures. 

It can be seen that stability values derived from both the RBA and distorted tetragonal 

methods are dependent on obtaining the difference in the energy levels of the competing 

structures. While the RBA method searches for the electronic energy difference based on 

the changing occupancy at the density of states, the distorted tetragonal method obtains 

the energy difference by making an a posteriori determination of the relationship between 

the degree of distortion of a tetragonal structure and the phase present as a function of 

possible d-orbital degeneracy. This relationship is then used to predict phase presence for 

all future compositions as a function of the valence electron concentration. Although 

theoretical analysis from quantum mechanical principles on this d-orbital degeneracy is not 
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performed here, comparison between both methods and their good agreement strengthens 

the value of the assumptions made in the construction of the distorted tetragonal structure 

approach. 

Furthermore, a similar approach was reported by Lee and Hoffman [81], who suggest that 

the FCC-BCC competition in transition metals may be described by a Jahn-Teller like 

distortion, similar to that exhibited by molecular compounds. They construct an energy 

function to test this hypothesis using an ab-initio tight-binding method. For comparison, in 

Figure 30 the red line represents the results of this energy difference, ܧఓଶିு௨
ிି . The 

minimum of ܧఓଶିு௨
ிି  is observed to be at ܸܥܧ = 8.5 while the maximum is observed to 

be at ܸܥܧ = 5  while the transition where ܧఓଶିு௨
ிି = 0  is observed at ܸܥܧ = 6.2 . 

௦௧.(ଷௗ ସ௦)ܧ
ிି  shows the minimum to be at ܸܥܧ = 9, the maximum to be at ܸܥܧ = 5, and the 

transition point to be at ܸܥܧ = 7.2. Overall, the results of ܧఓଶିு௨
ிି  are in excellent 

agreement with ܧ௦௧.(ଷௗ ସ௦)
ிି  where it is emphasised again that the energy difference is 

approximated from the interatomic distance between neighbouring atoms of the distorted 

tetragonal structure, allowing for faster ‘back of the envelope’ type solutions that can be 

employed for alloy design.  

6.2.7 Extension of theory to predict HEA systems 

In the earlier sections, a methodology to describe the FCC and BCC structure in terms of a 

distorted tetragonal structure was developed and described. Following that, the method 

was used to analyse the stability of Fe and Ni at 0K, and furthermore predict the FCC-BCC 

transition between two allotropes of Fe. All predictions were found to be well-grounded in 

reality. The method was then further generalised to describe the FCC-BCC phase stability as 

a function of the number of d-electrons, which was shown to be in agreement with the 

earlier chapters utilising the Thomas-Fermi-Dirac model and the Rigid-Band Approximation, 

while also being in agreement with predictions from literature [11,81]. In this section, a 

method for predictions of the stable phases of HEA alloys and some of their properties will 

be developed and discussed. 

While in the previous sections the FCC and BCC structures have been shown to be 

successfully represented by the distorted tetragonal lattice, complex structures have not yet 

been analysed within this context. The complex phase is defined here as an intermediate 
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energy transition through the cusp of FCC-BCC stability following the analysis of Dominguez 

et al. [11] and the Rigid Band analysis from earlier chapters; within the context of the 

distorted tetragonal structure as determined earlier from the deviation from spherical 

symmetry in Table 10 and quantified in Figure 24, the ansatz is that the complex phase may 

be taken to be represented by the ratio ܿ/ܽ = ൫√2൯
ିଵ

≈ 0.71.  

By using a similar analysis as that performed in section 4.2.3, this ansatz is tested and 

confronted with the results presented by Dominguez et al. [11]. The normalised interatomic 

distance between the d-orbitals and ݎ are now are now -0.23 for ݀௫௭ ܽ݊݀ ݀௬௭, -0.18 for 

݀௫௬, -0.04 for ݀௭ଶ, and 0.12 for ݀௫ଶି௬ଶ. 

To obtain the stability values for a ܧ௦௧.
௫ି ( ௗܰ) analysis, it is necessary to identify the 

energy ratio between the complex and BCC structure, 
∆ா

ೣ

∆ா
ಳ . From the results of Chapter 

4, the electron density at the Wigner-Seitz radius, ݊(ݎ௪௦) of complex and simple systems is 

shown to vary with each other as a result of the electron density analysis using the Thomas-

Fermi-Dirac approximation. Analysis of ݊(ݎ௪௦) values obtained from the 4th order Runge-

Kutta solution of the Thomas-Fermi-Dirac formula in Chapter 2 shows that ݊(ݎ௪௦) decreases 

by  ଷ.ିଶ.

ଷ.
= ்ܧ∆  .0.13

  is then given as: 

∆ா
ಳ

 ∆ா
ೣ = (1 − 0.13)        (28) 

்ܧ∆
௫ ≈ ்ܧ∆ 1.15

         (29) 

The resulting plot is given as:  
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Figure 31. Plot of ∆ܧ௦௧.  (ଷௗ ସ௦)
ிି  and ∆ܧ௦௧.  (ଷௗ ସ௦)

௫ି as a function of the valence electron 

concentration. Regions of phase stability are highlighted for simple FCC phases (Red), complex 

phases (Purple), and simple BCC phases (Blue). The phase stabilities as predicted by Dominguez et al. 

[11] are included at the bottom of the graph, for comparison. 

Figure 31 shows the resulting plot of ܧ௦௧.
௫ି , where  ܧ௦௧.

௫ is represented by a 

tetragonal distortion with ܿ/ܽ = ൫√2൯
ିଵ

. The most stable phase in this analysis is identified 

as the one with the lowest energy; when both curves are in the positive region for any value 

of VEC, in that region the BCC structure is considered to be more stable. When any of the 

curves are in the negative region, the more stable phase is dependent upon the more 

negative value between the FCC and Complex structures, represented by ܧ௦௧.
ிି and 

.௦௧ܧ
௫ି. The results of this analysis are shown in Figure 31 where the red-shaded 

region represents the FCC structure, the purple-shaded region represents the Complex 

structure(s), and the blue-shaded region represents the BCC structure. The bottom of the 

graph shows stability regions as determined from Dominguez et al.’s principal component 

analysis [11]. The stability regions as predicted from Figure 31 show the FCC-stable region to 

be located between 8.25 < ܥܧܸ < 10, the complex-stable region between 6.88 < ܥܧܸ <

8.25, and the BCC stable region between 4.15 < ܥܧܸ < 6.88, while stability at lower 

regions are not discussed as for most cases of HEAs and other alloys the VEC values are not 

that low, and the results from Dominguez et al. does not offer a similar opportunity for 

comparison. The predicted stability regions by Dominguez et al. lie between 8 < ܥܧܸ < 10 
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for the FCC structure, 6 < ܥܧܸ < 8 for complex structures, and  3 < ܥܧܸ < 6 for the BCC 

structure.  

In general, results obtained from both methods are comparable with one another, other 

than a discrepancy in stability regions around ܸܥܧ ≈ 1, which is more than the estimated 

error values of the distorted tetragonal analysis of ± ଵ

ଶ
 electron. This difference may be 

attributed to the different synthesis methods performed by reported compositions in the 

literature, as the microstructure and phase present in HEAs are considered to be dependent 

on the cooling rate [2,4]. Moreover, as considered in Chapter 4, the overall accuracy of the 

RBA method to the 2-D VEC-∆ܪ plot from the PCA method stems from the fact that the 

valence electron concentration is unable to accurately represent the energies within the 

electronic structure, attributed to the occupancy levels of the valence orbitals e.g. 3d, 4d, 4f 

orbitals that will modify stability regions as a function of VEC. This has been shown in the 

analyses of average electronegativity and electron density in the Chapter 4.  Therefore, 

stability values obtained from the PCA method therefore may not offer distinction of energy 

values of the valence orbitals, not due to weakness of the method, but instead attributed to 

the statistical noise resulting from grouping all HEA compositions together. 

The discussion of the distorted tetragonal method up to this point has been generalised so 

that the energy values do not have to be explicitly considered, for ease of calculation. 

However, later inclusion of the energy values are expected shift stability values accordingly. 

While this analysis gives generally reasonable results with regards to the more stable phase, 

as mentioned earlier, the specificity of these predictions with regards to specific alloy 

compositions are lacking. In calculating ܧ௦௧.
ிି  and ܧ௦௧.

௫ି, the energies between 

the considered FCC, BCC, and Complex structures were considered to be equal and 

therefore cancelled each other out within Eq. 26. In reality, the energy of these structures at 

specific valence electron concentrations are unique to each composition, as a function of 

their individual alloying elements and interactions. In order to make useful predictions for 

any particular composition so that their structures can be known with reasonable certainty 

prior to any experimental work, the approach must be modified to account for the structural 

energies. From Eq. 27: 
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.௦௧ܧ
ି( ௗܰ) = ( ߨ 4) ቌ

∑ ቀ
ே.ఋ(ௗ)

∆ ቁ ௗభ,మ,య…ఱ(ܧ∆)
ୀଵ −

∑ ( ௗܰ  ) ቀ
ே.ఋ(ௗ)

∆ೊ ቁ  (ܧ∆)
ௗభ,మ,య…ఱ
ୀଵ

ቍ    (30) 

To account for the non-physical values of treating ∆ܧ = ܧ∆ , let ∆ܧ = ܧ∆ ܣ  and 

separate ܧ௦௧. into two parts so that ܧ௦௧.
 = ܵ( ௗܰ).  . This modification is similar toܧ∆

the treatment used earlier to perform analysis of ܧ௦௧.
ிି and ܧ௦௧.

௫ି. 

.௦௧ܧ
ି( ௗܰ) = )൫ܵܧ∆ ௗܰ). − ܣ ܵ( ௗܰ)൯      (31) 

The right-hand side of ܧ௦௧.
ି( ௗܰ) takes the form of the equations from the earlier analysis of 

.௦௧ܧ
ிି  and ܧ௦௧.

௫ି, the difference being that previously ∆ܧ ܽ݊݀ ∆ܧ cancelled 

each other out. ൫ܵ( ௗܰ). − ܣ ܵ( ௗܰ)൯  can be further simplified by considering the 

relationship as Boltzman-type distribution where: 

ி

ிೊ =
ೄ൫ಿ൯.ಲ

ೄೊ൫ಿ൯
          (32) 

As ܸܥܧ = 10 → 0, the stable structures go from ܥܥܨ → ݔ݈݁݉ܥ →  The most stable .ܥܥܤ

point of ܵி( ௗܰ) can therefore be used as a point of reference to simplify the above 

formula. Figure 32 shows interpolated values of ܵி( ௗܰ) and its derivative, ܵி′( ௗܰ) 

performed on Mathematica using the built-in integration command. It is found that 

between 8.25 < ܥܧܸ < 10 where the FCC structure is considered stable, the inflection 

point of ܵி( ௗܰ) = .௦௧ܧ
ிି ( ௗܰ) ,  ܵி′( ௗܰ) = 0  lies at ܸܥܧ = 9, or ௗܰ = 7  if it is 

assumed that there are two electrons in the s-orbitals, which is the point where the FCC 

structure can be considered most stable.  
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Figure 32. Plot of the FCC-BCC energy difference calculate for the 4s 3d distorted tetragonal 

structure, ∆ܧ௦௧.  (ଷௗ ସ௦)
௫ି  shown as a Red solid line, and its derivative ఋ

ఋ ே
௦௧.  (ଷௗ ସ௦)ܧ∆

௫ି . 

Equation 32 is rewritten as a function of ௗܰ  so that: 

ி

ிೊ = ܥ +
ళ

ಿ
          (33) 

where C is a fitting constant to account for the approximation ܵ( ௗܰ) ≈ ܥ + ௗܰ. The 

averaged electronegativity analysis from Chapter 4 showed that the energy of a composition 

can be reasonably well approximated by the Mulliken electronegativity, ܺெ௨. Let  

ܧ∆ ≈ ிܧ ≈
ூା

ଶ
 where I is the first ionisation potential and A is the first electron affinity, 

and therefore Eq. 31 transforms into: 

.௦௧ܧ
ି( ௗܰ) = ܥ + ܺெ௨ ݁ିே

       (34) 

where ܥ = −11. The above equation can now be used as a naïve prediction method to 

distinguish between the phases present in some compositions of HEAs as a function of only 

ܺெ௨ and ܰௗ. A demonstration of the use of the above equation is shown in Figure 33, 

where an additional transition element is added the four-component CoCrFeNi to form an 

equimolar composition, here denoted as CCFN-A. ܺெ௨ and ܰௗ  values are obtained by 

obtaining a weighted average of the compositions, according to their stoichiometry. 



184 
 

 

Figure 33. Pseudo-stability values of FCC and non-FCC structures for equimolar CCFN-A 

compositions, ܧ௦௧.
ிି for transition elements in the periodic table. Positive values (highlighted in 

purple) denote the preferred presence of simple/complex non-FCC structures while negative values 

(highlighted in red) denote the preferred presence of the simple FCC structure. Values close to 

.௦௧ܧ
ିி = 0 are likely to posesss mixed phases (highlighted in orange), with the proportion of 

FCC/non-FCC phases being dependent on the degree of positive/negative value of ܧ௦௧.
ିி . 

From Figure 33 it may be determined that the compositions CCFN* [4,5,5,6], CCFN-Mn* 

[88,89], CCFN-Cu* [4], CCFN-Zn, CCFN-Ru*, CCFN-Rh*, CCFN-Pd*, CCFN-Ag, CCFN-Cd**, 

CCFN-Os**, CCFN-Ir**, CCFN-Pt, and CCFN-Au are considered to be FCC stable. Of the 12 

compositions identified here, CCFN-Cd, CCFN-Os, and CCFN-Ir denoted by (**), are 

considered too toxic to synthesise without the use of special equipment. Of the remaining 

compositions, 5 compositions denoted with an (*) have been synthesised and confirmed to 

possess a close-packed structure. Of these, CCFN-Rh and CCFN-Re have been found to 

possess a HCP close-packed structure, while the remaining possesses the FCC structure. Of 

the untested compositions, CCFN-Zn possesses an extremely low vapour-pressure and is not 

easily synthesised, in CCFN-Ag silver is widely considered to be an immiscible alloy due to its 

high binary enthalpy of mixing values with respect to CCFN, and the cost involving the 

synthesis of CCFN-Pt and CCFN-Au have prevented any experiments from being run. 

Electron affinity data for Tc and Hg were not available for any calculations for those 

calculations. 

Of the compositions with values close to ܧ௦௧.
ିி = 0 , CCFN-Mn is a well-known 

composition with the FCC structure that is also thought to possess the Sigma phase on heat 

treatment [2]. Equimolar CCFN-Mo was found to possess a complex phase that was not fully 
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indexed, while equimolar CCFN-Re was synthesised and is expected to possess a mixed 

structure containing a HCP phase with another unidentified structure. 

In terms of the compositions possessing positive values, these are found to be CCFN-Sc**, 

CCFN-Ti* [4], CCFN-V*, CCFN-Y**, CCFN-Zr*, CCFN-Hf, CCFN-Ta, CCFN-W, and CCFN-Al* [39]. 

From the listed compositions, CCFN-Ti, CCFN-V, and CCFN-Al denoted with an (*) are found 

to possess complex phases of C14 Laves, Sigma, and B2, respectively. Synthesis of CCFN-Sc 

and CCFN-Y, denoted by (**) was considered unviable due to its levels of moderate toxicity, 

while synthesis of CCFN-Ta and CCFN-W was attempted but no conclusive results/analysis 

were obtained due to the large disparity between the melting temperature of W and Ta to 

the base CCFN alloy components. Synthesised compositions are discussed with respect to 

different stoichiometries in the following section. 

6.2.8  Application of the method: Predicting stoichiometric phase presence in HEA 

compositional families 

In Figure 34, the tetragonal distortion model is applied to predict the relative stability of the 

FCC phase in the well-studied CCFN-Alx system [4–6,66,90] (here referred to as the CCFN-Al 

family). The analysis in Figure 34 is divided into three sections, where Figure 34. (a) shows 

Eq. 33 applied to the CCFN-Al stability where negative-values mean that the FCC phase is 

more likely to be present (and hence, stable), while positive-values mean that the FCC 

structure is less likely to be present. For convenience, zones where the FCC structure is 

considered to be more stable are shaded in Red, while zones where the FCC structure is less 

stable are shaded in green, and these zones are delineated as a function of x addition in a 

(CoCrFeNi)4+x-Ax composition (here denoted as CCFN-Ax following the conventions in HEA 

literature), with A = Al in this instance. Figure 34. (b) shows the XRD traces for selected 

compositions within the CCFN-Al family, following the procedures outlined in the Methods 

section. The XRD patterns presented in terms of the percentage intensity and in units of the 

reciprocal space vector, ଵ

ௗ
, are shown next to their corresponding positions to Figure 34. (a); 

and are also colour-coded according to the phase determined to be present via XRD with 

red representing the FCC structure and green representing all other structures. For 

convenience, the full XRD analysis of the compositions are not discussed here, for the 

reader may refer to appendix X for analysis on the XRD structure characterisation and lattice 

parameters via Rietveld refinement. Figure 34. (c) shows the zoomed-in XRD traces between 
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0.45 <
ଵ

ௗ
< 0.6 where the change in peak structure, whether peak asymmetry or intensity is 

shown to demonstrate the presence of non-FCC structures. 

 

  Figure 34. Prediction of the different stoichiometry of the CCFN-Al family with experimental 

verification (XRD). 

The analysis in Figure 34. (a) shows that for the CCFN-Alx family, the FCC structure will be 

more stable at ݔ < 0.35 . The compositions CCFN, CCFN-Al0.5, and CCFN-Al1.0 were 

synthesised into 3 mm rods as described in the methods section, following that the samples 

were prepared for XRD analysis and the obtained patterns were analysed as described also 

in the methods section. CCFN-Al0.5 is observed to possess the FCC structure. The <111> peak 

has an asymmetrical shoulder on the right side of the peak, that is thought to be attributed 

to the formation of a B2 structure due to the high enthalpy of formation of this structure 

between FeAl, CoAl, NiAl [75] pairs. The CCFN-Al1.0 structure, however, is characterised as a 

BCC structure, due to the absence of characteristic peaks attributed to the B2 structure. The 

presence of a secondary structure in CCFN-Al0.5 classifies it as being no longer FCC-stable. 

When the asymmetry of CCFN-Al0.5 is reduced to a sum of two peaks, the position of the 

secondary peak is found to be similar to the position of the <110> BCC peak in CCFN-Al1.0 

and as such both CCFN-Al0.5 and CCFN-Al1.0 are classified as compositions where the FCC 

structure is considered to be less stable. The predicted structural presence in Figure 34. (a) 

is found to be validated by the XRD characterisation shown in Figure 34. (b); the predictions 

and experimental characterisation are also found to be in good agreement with the 

literature.  
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Earlier predictions using the RBA model predict the FCC-BCC/B2 transition to be at ܸܥܧ =

8.1 which corresponds to ݔ = 0.2, which is at a lower value compared to the prediction 

made in Figure 34. (a) where the transition point is observed at ݔ = 0.35. The low intensity 

peaks corresponding to the secondary structure present in CCFN-Al0.5 in Figure 34. (c) 

suggests that the transition point lies near the ݔ = 0.5 point, in which case the prediction in 

Figure 34. (a) offers better accuracy in prediction the transition point of the CCFN-Al0.5 

family. As discussed in the earlier chapter, this discrepancy may be attributed to the 

construction of the Special Quasirandom Structure (SQS) used as input for the RBA analysis, 

rather than being indicative of the accuracy of the method. 

 

Figure 35. Prediction of the different stoichiometry of the CCFN-V family with experimental 

verification (XRD). 

A similar analysis to that performed in Figure 34 is done for the CCFN-Vx family here in 

Figure 35. The transition point between stoichiometries where the FCC structure structures 

is considered to be more stable and where the FCC structure is considered to be less stable 

is found to be at ݔ = 0.68. This structure is expected to be the complex Sigma phase as 

determined from binary FeCr and FeV phase diagrams [76]. Compositions of CCFN-V, CCFN-

V0.3, CCFN-V0.7, CCFN-V0.8, and CCFN-V1.0 were synthesised and analysed using the same 

methods as in the analysis of the CCFN-Alx family and are shown in Figure 35. (b). The onset 

of precipitation of a secondary non-FCC structure cannot be determined with 100% 

certainty due to the low resolution of the Mo source used in the XRD analysis, however, the 

presence of low-intensity peaks at CCFN-V0.8 at ଵ

ௗ
= 0.47 and ଵ

ௗ
= 0.52 (cf. Figure 35. (c)) 

which are not observed in CCFN-V0.7 suggests that the onset of secondary structure 
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formation lies between CCFN-V0.7 and CCFN-V0.8, which is in good agreement with the 

predictions made from Figure 35. (a). CCFN-V1.0 has been characterised showing the Sigma 

complex structure, which is as expected from the FeCr and FeV binary phase diagrams [76]. 

In Figure 35. (c), the position of the Sigma structure peaks are in good agreement with the 

location of the low-intensity secondary structure peaks found in CCFN-V0.8. In general, the 

results of the analysis show that the predictions are in good agreement with the 

experimental characterisation, and consistent with the results presented in literature [37].  

Earlier predictions using the RBA model predict the FCC-Sigma transition to be at ܸܥܧ = 7.6 

which corresponds to ݔ = 1.0, where the Sigma trace is observed to be the majority 

structure only observed for CCFN-V1.0 (cf. Figure 35. (c)). It must be clarified that the 

difference between the predictions made through the RBA and the distorted tetragonal 

method is that the latter appears predicts the onset of the formation of the Sigma phase (cf.  

Figure 35. (a)). 

 

Figure 36. Removal of Ni from CCFN-V to form CoCrFe-Vx (CCF-V) and prediction of its stability with 

experimental verification (XRD). 

Following the streamlined semi-empirical rules reported by Dominguez et al. [11] using a 

Principal Component Analysis (PCA), the coordinates of a composition in a two-dimensional 

plot of the enthalpy of mixing (∆ܪ) and the valence electron concentration (VEC) indicates 

the structural stability of a HEA composition. The conditions for the FCC stable zone 

reported by Dominguez et al.’s PCA analysis that must be met are for 8 < VEC < 11 and 

ܪ∆ > −5. For a new test composition where the removal of Ni from the equimolar CCFN-

V1.0 composition to form equimolar CoCrFe-V1.0 (here denoted CCF-V1.0), ∆ܪ is lowered from 
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-6.08 kJ/mol to -7.25 kJ/mol while the valence electron concentration is reduced from 

ܥܧܸ = 7.6 to ܸܥܧ = 7 which does not meet the conditions for formation of a simple FCC 

structure. The composition CCF-V0.2 possesses ∆ܪ = −4.02 and ܸܥܧ = 7.5, suggesting that 

the complex phase will be present at this composition as well. Figure 36. (a) shows the 

analysis for the CFN-Vx family from which it is determined that the  CCN-Vx composition 

prefers to adopt a non-FCC phase at all values of x, which is in agreement with the trends in 

Figure 31 describing ∆ܧ௦௧.  (ଷௗ ସ௦)
ிି  and ∆ܧ௦௧.  (ଷௗ ସ௦)

௫ି  as a function of the VEC. This is 

further confirmed in the XRD characterisation of CCF-V0.2 and CCF-V0.7 in Figure 36. (b) both 

of which have been identified as the Sigma phase which is as expected from the FeCr and 

FeV binary phase diagrams [76], and shows good agreement with the semi-empirical rules.  

As the alloying elements in the CFN-Vx family are from the same section of the periodic table 

as CCFN-Vx, its predictions generated using the RBA method can be used for a similar 

analysis. This earlier analysis predict the FCC-Sigma transition to be at ܸܥܧ = 7.6 which 

corresponds to ݔ = 0.1, which is good accordance with the results predicted using the 

distorted tetragonal structure method shown in Figure 36. (a). The composition CCF-V0.2 is 

indexed to possess the Sigma structure as a majority structure; and it may be reasonably 

noted that similar to the its prediction of the CCFN-Vx family, the RBA method overestimates 

the FCC to non-FCC transition point here also. 

 

Figure 37. Removal of Cr from CCFN-V to form CoFeNi-Vx (CoFN-V) and prediction of its stability with 

experimental verification (XRD). 
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In Chapter 4 a CoFeNi-Vx (here denoted CoFN-Vx) system was developed using the RBA 

method through removal of Cr from the CCFN-Vx system. As mentioned previously, Cr is 

expected to contribute to stability of the Sigma phase from binary FeCr contributions [76]. 

Additionally, Cr may contribute to nesting at the Fermi surface that leads to directional 

bonding which stabilises the complex phase [80]. In Figure 37. (a) the CoFN-Vx system is 

analysed, and the transition point between stoichiometries where the FCC structure is more 

stable and where other phases are more stable lies at ݔ = 1 . The experimental 

characterisation of synthesised compositions from the CoFN-Vx system is shown in Figure 

37. (b) for CoFN-V1.0, CoFN-V1.5, and CoFN-V2.0. Figure 37. (c) shows the XRD patterns of 

CoFN-V1.0 and CoFN-V1.5 from 0.45 <
ଵ

ௗ
< 0.6 where in contrast to CoFN-V1.0 which is 

determined to be a FCC structure, the CoFN-V1.5 pattern is observed to possess low intensity 

peaks signalling the precipitation of a secondary phase. The FCC to non-FCC transition 

determined experimentally lies between 1 < ݔ < 1.5, from which it may be determined 

that the prediction in  Figure 37. (a) has underestimated the FCC to non-FCC transition of 

the system. 

The RBA model predicts the FCC-Sigma transition to be at ܸܥܧ = 7.6 which corresponds to 

ݔ = 1.5, which is in excellent agreement with the experimental validation in Figure 37. (b), 

but contradicts the prediction shown in Figure 37. (a) where the transition point is predicted 

to be ݔ = 1. It is interesting that the while predictions concerning the FCC to non-FCC 

transition points in the previous two V-containing families of CCFN-Vx and CCF-Vx were 

overestimated in comparison to the tetragonal distorted structure method, here in the 

CoFN-Vx family the transition point is accurately represented. As the CCFN system was used 

as a point of reference to obtain the constant ܥ in Eq. 33, the inaccuracy could result from 

electronic interaction effects arising from the removal of Cr such as its spin density wave 

effect, which cannot be accounted for by the method used here, which uses only the 

Mulliken electronegativity and the VEC to represent electronic structure effects. The 

influence of Fermi surface nesting on the constant ܥ will need to be further investigated to 

improve accuracy of this method. 
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Figure 38. Prediction of the different stoichiometry of the CCFN-Ti family with experimental 

verification (XRD). 

The known CCFN-Tix family [40]  is next investigated using the distorted tetragonal structure 

method Figure 38. (a) presents this analysis where the transition point between the FCC and 

non-FCC structure is located at ݔ = 0.5. Figure 38. (b) shows the graph of the synthesised 

CCFN-Tix compositions for CCFN-Ti0.4, CCFN-Ti0.6, and CCFN-Ti1.0. CCFN-Ti0.4 and CCFN-Ti0.6 

are found to possess a FCC structure while CCFN-Ti1.0 possesses the C14 Laves structure. In 

Figure 38. (c) the CCFN-Ti0.4 pattern is indexed as a FCC structure and the <111> peak is 

observed to be fairly symmetrical, while the CCFN-Ti0.6 pattern although also indexed as a 

FCC structure possesses several low intensity peaks that are related to the presence of a 

secondary non-FCC structure. The low intensities make it difficult to characterise the 

secondary structure, but it is expected to be the C14 Laves phase, as indexed in CCFN-Ti1.0. 

In total, the characterisation of the CCFN-Tix samples are in good agreement with the 

prediction in Figure 38. (a).  

Earlier predictions using the RBA model predict the FCC-C14 transition to be at ܸܥܧ = 7.55 

which corresponds to ݔ = 0.6, which is very close to the prediction in Figure 38. (a) which 

corresponds to ݔ = 0.51. The XRD patterns in Figure 38. (c) show the zoom-in of the XRD 

patterns for the compositions CCFN-Ti0.4, CCFN-Ti0.6, and CCFN-Ti1.5. The increase in 

asymmetry of the <111> peak in CCFN-Ti0.4 and CCFN-Ti0.6 can be seen in the right shoulder 

of the peak, which represents low-intensity peaks corresponding to a secondary structure, 

as mentioned earlier. Consequently, the RBA method appears to overestimate the FCC to 

non-FCC transition point of the CCFN-Tix family.  
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Figure 39. Prediction of the different stoichiometry of the CCF-Ti family with experimental 

verification (XRD). 

Similar to the analysis of the CCF-Vx family as presented in Figure 36, the removal of Ni form 

CCFN-Tix to form a CoCrFe-Tix type composition (here denoted CCF-Tix) is analysed here to 

test the robustness of the predictive scheme. Figure 39. (a) presents the stability of the FCC 

structure and non-FCC structures generated using the distorted tetragonal structure model. 

Compared to V which possesses ܸܥܧ = 5, Ti possesses ܸܥܧ = 4, which leads to a further 

destabilisation of the FCC structure, towards the zones where the complex phases and BCC 

phases are stable, according to the semi-empirical rules [11,91]. In Figure 39. (a) it is 

observed that for the entire stoichiometric range of CCF-Tix the FCC structure is not 

considered to be stable. The XRD patterns of two synthesised compositions belonging to the 

CCF-Tix family, CCF-Ti0.2 and CCF-Ti1.0   are shown in Figure 39. (b) where the structure 

consists of a majority C14 Laves phase similar to the CCFN-Tix family, and other unidentified 

peaks that may belong to one or more structures. The CCF-Ti0.2 pattern contains no peaks 

that can be indexed to the FCC structure and is considered as a complex phase containing 

composition. (cf. Figure 39. (c)), while for CCF-Ti1.0 the observed structure is also a mixture 

of the Laves C14 structure and some other unindexed peaks due to the complexity of the 

system.  

Similar to the previous, the alloying components belonging to the CCF-Tix family are 

comparable to the CCFN-Tix family and as such the earlier analysis of the latter using the 

RBA method may be used to also analyse the phase stability of the CCF-Tix family 

compositions. From the RBA method it is observed that the FCC-C14 transition point lies at 
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ܥܧܸ = 7.7, which is an unphysical value for the CCF-Tix family as the CoCrFe (here denoted 

CCF) composition without any Ti addition possesses ܸܥܧ = 7.67. As such, it is expected that 

all additions of Ti to the CCF structure would further stabilise the Laves C14 structure, which 

is in accordance with the predictions made in Figure 39. (a). Overall, for the CCF-Tix system, 

predictions made using the distorted tetragonal structure model are in excellent agreement 

with experiments, and also the analysis using the RBA model. 

 

Figure 40. Prediction of the different stoichiometry of the CCFN-Mo family with experimental 

verification (XRD). 

Previous analyses of CCFN-Ax type HEA compositions were performed, where A represents 

selected 3d transition metal elements. It is worth mentioning again that the approximation 

of the distorted tetragonal structure described in this chapter makes predictions as a 

function of the Mulliken electronegativity and VEC. From the conclusion of the analysis of 

the averaged electronegativity and electron density in Chapter 4, it was shown that the 

energy levels of HEA compositions, and indeed any alloy composition is sensitive to the 

primary quantum number of the alloying elements, as this directly reflects the occupancy of 

the valence orbital, and hence the orbital energy. It is therefore of interest to test the 

method on transition metal elements possessing different primary quantum numbers. 

In Figure 40, the stability of the FCC and non-FCC structures are analysed for Mo addition to 

the equimolar CCFN composition, here referred to as the CCFN-Mox family. The complex 

structure in the CCFN-Mox family, if any, is expected to be the rhombohedral Mu phase that 

is associated with FeMo and FeCrMo phase diagrams [76]. Figure 40. (a) shows the resulting 

analysis where the FCC to non-FCC transition point is located at ݔ = 0.42. Figure 40. (b) 
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shows the analysis of synthesised CCFN-Mo0.5  and CCFN-Mo1.5 compositions. The CCFN-

Mo0.5 composition is indexed to have a majority phase consisting of the FCC structure; low 

intensity peaks are found at ଵ

ௗ
= 0.47 and ଵ

ௗ
= 0.51 for this composition (cf. Figure 40. (c)) 

that show the possible presence of a secondary structure. The pattern cannot be fully 

indexed due to the low noise-to-signal ratio associated with the instrument. The CCFN-Mo1.0 

composition in Figure 40. (c) is not fully indexed due to the complexity of the phase. The FCC 

and non-FCC transition point determined experimentally will occur at slightly below ݔ = 0.5, 

which is in good agreement with the prediction in Figure 40. (a). 

 

Figure 41. Prediction of the different stoichiometry of the CCFN-Pd family with experimental 

verification (XRD). 

Similarly, the above analysis for 4d type transition metals is extended for Pd addition to the 

equimolar CCFN composition to form the CCFN-Pdx composition. In Figure 41. (a) it is shown 

that the FCC structure is stable for all values of ݔ up to ݔ = 2.0. The XRD analysis of 

synthesised CCFN-Pd0.5, CCFN-Pd1.0, and CCFN-Pd1.5 is shown in Figure 41. (b), where all of 

the indexed phases are determined to be of the FCC structure. The zoom-in of the XRD 

patterns in Figure 41. (c), show no traces of low-intensity peaks related to the presence of a 

secondary structure. The determination of the structures present in these phases is in good 

agreement with the prediction in Figure 41. (a). 

6.3 Conclusions 

In conclusion: 
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 A method to describe the energy levels of FCC, BCC and Complex structures based on 

a distorted tetragonal structure has been developed and described in this Chapter. 

The method has been verified by correctly predicting the structural stability of Ni and 

Fe at 0K. Furthermore, adapting the method to a Fermi-Dirac distribution 

demonstrates the capability in describing the FCC-BCC transition of Fe allotrope as a 

function of temperature. 

 The distorted tetragonal method was generalised to describe the stability of FCC, 

BCC, and complex structures as a function of the valence electron concentration. 

Comparison of the generated FCC-BCC and complex-BCC curves with Lee and 

Hoffman’s tight-binding method [81] and Dominguez et al.’s semi-empirical based 

PCA method verified the accuracy of the method and indirectly the applicability of 

the assumptions employed in its construction. 

 To develop a simplistic but robust model for HEA prediction, the generalised model 

is approximated so that it may be described as a function of the Fermi energy and a 

exponential-type probability function. Several HEA compositions of type CCFN-Ax 

where A is some transition metal or post-transition metal such as Al are synthesised 

and the method is used to predict their stabilities. Predictions using the RBA method 

are used as comparison and the results are very close with one another, and in some 

cases offers better accuracy. The influence of some quantum effects such as Fermi 

surface nesting are not adequately described, and further work needs to be 

undertaken for refinement. However, the overall error of the 8 compositional 

families tested, conservatively, is < 5.25%, where ݁ݎݎݎ = ቂቀ
.ଶ

ଶ
ቁ ቀ

ଵ

଼
ቁ + ቀ

.ହ

ଵଶ
ቁቃ 100%, 

which is reasonable.  

The key achievement of this chapter is that a method for prediction of alloy stabilities have 

been developed and further simplified so that predictions for entire ranges of 

stoichiometries can be performed quickly in spreadsheet-based software such as MS Excel. 

Once key compositional stoichiometries are identified, more computationally expensive ab-

initio methods with increased accuracy may be used to further confirm the selection and 

improve the alloy design process.  
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Design of Experiment 

Objective:  To use the semi-empirical methods developed in previous chapters for the design of 

new alloy compositions. 

Hypothesis:  The presence of both simple and complex phases possesses a strong influence on 

the mechanical properties of HEA composition. Values of ܧ௦௧.
ି  have been 

successfully used to predict the simple to complex phase transitions in HEAs and is 

expected to co-relate with the mechanical properties, and leveraged upon as a 

strategy for alloy design. 

Exp. Type:  Data mining, Verification 

Primary Var.:  Alloy Composition; as a function of (Enthalpy of Mixing & EPSEUDO) 

Constant Var.: Pressure, Temperature 

Primary Result:  XRD characterisation, Vickers hardness, Elastic modulus, Yield strength 

Techniques: Compression Testing, Arc-Melting & Casting  
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Å   Units Angstrom 

 Gibbs free energy per unit area for formation of the secondary phase   ܩ∆

 Change in enthalpy of mixing   ܪ∆

n    Change in the valence electron concertation  

 Surface energy between the matrix/secondary phase    ߛ

  Surface energy between grain boundaries before the nucleation ofߛ

any secondary phase 

  Chemical potential of the system     ߤ

    Chemical potential at the standard rate of the vacancyߤ

߶௦௧   Dilatational strain energy 

 ௗ   Yield stressߪ

a    Actual activity of the old solid solution phase 

ae    Equilibrium activity of the old solid solution phase 

A   Electron affinity 

C11,c, C12,c, and C44,c Elastic constants of the strain cluster 

C11,m, C12,m, and C44,m  Elastic constants of the strain matrix 

 ௦௧.   Energy associated with a distorted tetragonal structureܧ

    Effective driving force for nucleationܧ

Ey   Young’s modulus 
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N   Units Newton 

Pa   Units Pascal 

T   Temperature in Kelvin 
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     Poisson’s ratio for the strain matrixݒ

ܸ   Volumes per molecule for the strain cluster  

ܸ    Volumes per molecule for the strain matrix  
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7.1 Chapter Preface 

In the previous chapters, the structural stability of HEAs was shown the be strongly 

influenced by the alloy composition’s electronic structure, where 2-D plots of these 

parameters are sufficient to separate out the various simple and complex phases from one 

another, thereby providing a means to determine the possibility of a structure being present 

in any given composition. Ab-initio calculations performed using the Rigid Band 

Approximation (RBA) was employed to probe the electronic structure in further detail, as a 

function of the valence electron concentration. It was found that the RBA was sufficient to 

describe HEA alloys of a perturbed CoCrFeNi (here denoted CCFN) structure with some 

elemental addition A, to form CCFN-Ax. The success of the predictive results was limited by 

the fact that the potential of the starting composition (here, CCFN) must be determined 

with high accuracy, and the difficulty of determining the various parameters of an unknown 

composition, as discussed in the literature review. A simplified method for determining 

structural stability that attempts to naively describe the quantum mechanical Aufbau and 

Pauli principles using a distorted tetragonal structure as a reference point was developed in 

Chapter 5 and discussed. 

In Chapter 6, the distorted tetragonal structure method is used to develop a strategy for 

designing a new alloy composition using as an example the hard-facing of combustion 

engine valves.  
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7.2 Design of alloy replacement for Stellite coating in hardfacing 

applications 

 

Figure 42. (a) Comparison of wear-resistance and hardness between some multicomponent alloys 

and traditional alloys [1]. (b) Effect of lightweighting of components on cam speed [2]. 

Providing a hard face for components exposed to wear in combustion engines is desirable so 

that lighter materials that may not have the prerequisite mechanical properties and 

corrosion resistance may be used. The use of these lightweight materials may increase the 

potential revolution per minute (rpm) of an engine, leading to higher specific power 

(horsepower/litre), and hence increased fuel efficiency [2,3], reducing emissions.  This is 

shown in Figure 1. (b), where light weight components reduce torque at maximum engine 

speed up to 2,000 rpm, at which most engines are driven, and can contribute noticeable fuel 

savings. 

In a valve as an example of such as component the key materials challenge is to obtain a 

good degree of toughness and corrosion resistance. In high volume production, X45CrSi9-3 

Martensitic steel [4] is used as a valve material, while the hard-facing properties of the valve 

head are enhanced with a coating; the surface treatment can either be a nitriding process, 

or a coating may be applied such as the Co64Cr30W5C1 composition, with the commercial 

name Stellite-6. The Stellite 6 coating is often used in engines that run on unleaded fuel, so 

that durability can be enhanced in the absence of Pb lubrication from leaded fuel. 

Al and Cr containing HEA compositions possess increased wear and corrosion resistance (cf. 

Figure 1) [1]. Research on the CoCrFeNi-Al composition has shown that the proportion of B2 

intermetallic phases can be controlled as a function of the stoichiometry to achieve targeted 

mechanical properties by controlling the Al and Cr additions as shown in Chapters 4 and 5. 

Comparable hardness and yield strengths to Stellite 6 may thus be achieved by tuning the 
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stoichiometry, or through additional alloying additions. Possible precipitation of the B2 

phase at increased temperatures may alleviate issues with thermal loading at increased 

engine temperatures. Another advantage of HEAs is that the thermal stability of its main 

phase renders it relatively insensitive to production conditions, reducing production costs by 

allowing larger tolerances for cooling rate and heat treatments in production.  

Since corrosion is an electrochemical process the structure of the system has less influence 

on the corrosion properties. The corrosion resistance is a function of the alloying 

components and selection of potential alloy stoichiometries will have to take this into 

account. The remaining two key parameters, the degree of toughness and resistance to 

wear must first be related to ܧ௦௧.
ି  values for further application into alloy design of a 

Stellite replacement. 

7.3 Analysis of variation of yield stress to ࢚࢙ࡰࡱ.
 ࡲିࢄ

As discussed in the Literature Review, recent advances in HEAs [5–8] report that the 

microstructures of HEAs are not, in fact, of a single phase but may instead contain multiple 

simple phases, complex phases (here all non-simple phases are called complex phases), or a 

mixture of both, showing a thermodynamically non-ideal nature which may be considered 

to originate from strain and chemical interactions between chemical species during the 

mixing process. The mixing of atoms in a structure leads to lattice strain when atoms of 

significantly different sizes are exchanged, leading to increased volume per atom values and 

excess enthalpies of mixing [9]. Despite this, it is notable that the lattice parameters of co-

existing simple phases are very similar to each other [6–8]. Many of these mixed simple 

phase HEAs demonstrate attractive mechanical properties for engineering such as the 

ductility of the CoCrFeNi composition [10], the high fracture toughness of CoCrFeNiMn at 

low temperatures [11], and the thermal stability of CoCrFeNiCu [12,13]. Engineering these 

properties for use will require correlating the bulk mechanical properties of a composition 

to its possible phases, which remain a challenge due to the thermodynamic and kinetic 

complexity [14].  

To illustrate, the four-component equiatomic CoCrFeNi composition (here denoted CCFN) 

HEA which has been extensively studied within the past 10 years is considered here for 

simplicity to possess a FCC simple phase [6–8,15]. Addition of a fifth element into a 
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composition to form CCFN-Ax will either 1) maintain the simple FCC phase, 2) destabilise the 

simple FCC phase into a complex phase or combination of phases, or 3) destabilise the 

simple FCC phase into a BCC phase [16] depending the relative miscibility of additional 

alloying components. Although the relative stability of these CCFN-X compositions may be 

estimated from HEA empirical parameters (atomic size mixing, electronegativity), 

thermodynamic (enthalpy of mixing, configurational entropy) [17], their mechanical 

properties may only be empirically estimated by taking the weighted average of the 

hardness of the constituent phases, which must first be determined experimentally [15], 

and may be affected by composition.  

In alloying, the inclusion of elements with large atomic size difference is thought to 

contribute a large strain energy leading to formation of regions of solid immiscibility that 

reduces the free energy of the system [18]. The increasing volume density of atoms in HEAs 

with higher number of components is associated with strain fields within their structures 

[15].  This dilatational strain field may be expressed only in terms of the elastic modulus and 

Poisson’s ratio of the matrix and the substitutional element [9]. Through the Voigt average, 

this may be expressed in terms of the elastic constants C11, C12, and C44. This change is 

analysed with  ܧ௦௧.
ିி  to determine if a link between phase structure and strain energy is 

present, and more importantly, how the combination of phases present and their 

mechanical properties may correspond to ܧ௦௧.
ିி  and therefore provide a parameter to aid 

in the alloy design for hard-facing applications.  
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7.3.1 XRD characterisation of selected CCFN-Ax compositions 

For this investigation, HEA compositions CCFN, CCFN-V0.3, CCFN-V0.7, CCFN-Ti0.4, CCFN-Ti0.6, 

CCFN-Al0.5, CCFN-Pd0.5, CCFN-Pd1.0, and CCFN-Pd1.5 as listed in Table 11 are selected as they 

have been reported to lie within the stoichiometry range where the simple FCC phase is 

present as a majority phase, allowing subsequent Rietveld refinement to be simplified. Their 

stoichiometric compositions are listed in Figure 43. The samples are synthesised and 

characterised via XRD following the steps outlined in the methods section; synthesised 3 

mm rods were further sectioned so that the length to diameter ratio of the rods was 2.0 +/- 

0.1 (6 mm) following ASTM E9-89A standards for compression testing as mentioned in the 

methods section. Testing is performed on a Zwick/Roell Z050 compression testing machine 

utilising a 50 kN load cell under a strain rate of 2 x 10-4s-1. 

 

Figure 43. XRD patterns of FCC CCFN-X (X: Al, Ti, V, Mn, and Pd) 

XRD patterns of the as-cast compositions show that the majority phase is of the simple FCC 

phase, which is in good agreement with the literature [7,19,20]. The lattice parameters are 

obtained from a Rietveld refinement of the data and are tabulated in Table 11. It is observed 

that in general, alloying additions to the CCFN structure expand the FCC lattice. The 

magnitude of the lattice expansion is, in turn dependent on the atomic radius of the 

elemental addition. Pd addition to CCFN causes the lattice constant to vary the most, from 

3.55 to 3.62, 3.66, and 3.69 Å, for compositions CCFN-Pd0.5, CCFN-Pd1.0, and CCFN-Pd1.5 

respectively (c.f. Table 11). In contrast, additions of V, Ti, and Al only expand the lattice to 
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3.58, 3.59, and 3.60 Å for CCFN-V0.3, CCFN-Ti0.6, and CCFN-Al0.5 respectively. Further 

additions of V, Ti, and Al expands the FCC lattice minimally past these values as complex 

phase precipitation steadily increases in tandem with these elemental additions [21,22]. 

The <111> peak of compositions CCFN-Al0.5, CCFN-Ti0.6, and CCFN-V0.7 are observed to be 

asymmetric on the right shoulder of the peak, suggesting possible precipitation of a 

secondary phase. This is in accordance with  ܧ௦௧.
ି values for CCFN-Al0.5, CCFN-Ti0.6, and 

CCFN-V0.7 which are positive and suggest the presence of non-FCC structures. As Al, Ti and V 

are B2, Laves C14, and Sigma phase stabilisers respectively from both binary phase diagrams 

sources [23] as well as experimental characterisation [6–8,15,20,22,24], the secondary 

phase is regarded as a complex phase, which is in agreement with the experimental 

characterisation here. ܧ௦௧.
ି  values corresponding to ܧ௦௧.

ି(ܰܨܥܥ − (.ହ݈ܣ = 2.59 , 

.௦௧ܧ
ି(ܰܨܥܥ − ܶ݅.) = 0.92, and ܧ௦௧.

ି(ܰܨܥܥ − ܸ.) = 0.21 are at the cusp of the 

FCC/non-FCC transition where the onset of secondary phase presence begins. 

Table 11. Compositions tested in the study, and their determined values for the lattice parameter, 

aexp (Å); dilatational strain value, ϕୱ୲୰ୟ୧୬; enthalpy of mixing, Δܪ (kJ/mol); and valence electron 

concentration, VEC; and tetragonal distortion energy, ܧ௦௧.
ି. 

 

Nominal 

Composition 
aexp (Å) ܖܑ܉ܚܜܛ 

ઢࡴ 

(kJ/mol) 

VEC ࢚࢙ࡰࡱ.
ିࢄ

CCFN Co25Cr25Fe25Ni25 3.55 N/a -3.75 8.25 -4.20 

CCFN-Al0.5 Co22Cr22Fe22Ni22Al11 3.60 7.292 -9.98 7.67 2.59 

CCFN-Ti0.4 Co23Cr23Fe23Ni23Ti09 3.59 4.306 -9.43 7.86 -0.96 

CCFN-Ti0.6 Co22Cr22Fe22Ni22Ti13 3.59 5.277 -9.77 7.70 0.92 

CCFN-V0.3 Co23C323Fe23Ni23V07 3.58 2.398 -6.21 8.02 -2.43 

CCFN-V0.7 Co21Cr21Fe21Ni21V15 3.59 5.725 -8.32 7.77 0.21 

CCFN-Mn1.0 Co20Cr20Fe20Ni20Mn20 3.59 13.74 -4.16 8 -2.01 

CCFN-Pd0.5 Co22Cr22Fe22Ni22Pd11 3.62 26.79 -5.02 8.44 -6.37 

CCFN-Pd1.0 Co20Cr20Fe20Ni20Pd20 3.66 65.14 -5.81 8.6 -5.91 

CCFN-Pd1.5 Co18Cr18Fe18Ni18Pd27 3.69 110.0 -5.98 8.78 -6.41 
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7.3.2 Mechanical properties of selected CCFN-Ax compositions 

 

Figure 44. Compression testing results of CCFN, CCFN-Al0.5, CCFN-V0.3, CCFN-Mn and CCFN-Pd HEA 

compositions with two repeats. 

For the CCFN, CCFN-Al0.5, CCFN-Ti0.6, CCFN-V0.3, CCFN-Mn, and CCFN-Pd compositions, two 

compression testing samples were prepared each. The obtained results were corrected for 
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the machine compliance and Figure 44 presents the compression testing results of all CCFN-

X (X: Al, Ti, V, Mn, and Pd) investigated in this communication.  

Calculation of the errors can be found in the Appendix. A visual inspection of Figure 44 

shows that the repeats are in good agreement with one another. The elastic modulus and 

0.2% yield stress of the compositions were determined from the initial gradient of the 

compression test curves. The results are shown below in Table 12.  

Table 12. 0.2% Yield Strength (MPa), Experimental Young Modulus (GPa), and Young Modulus (GPa) 

values from literature where applicable for the selected composition. 

Composition 

 ࢊࢋࢅ࣌ 0.2%

(MPa) 

Ey Exp. 

(GPa) 

Ey Lit. 

(GPa) 

Ref 

CCFN 190 100 171 [11] 

CCFN-Al0.6 360 266 250 [16] 

CCFN-Ti0.6 1600 264 N/A N/A 

CCFN-V0.3 290 160 N/A N/A 

CCFN-Mn 280 105 137 [25] 

CCFN-Pd 240 150 N/A N/A 

CCFN-Pd1.5 382 155 N/A N/A 

The experimental repeats are found to be in good agreement with one another.  The 

experimentally determined elastic modulus of CCFN, CCFN-Al0.6, and CCFN-Mn1.0 were found 

to be in reasonably good agreement with previously determined elastic moduli. Of the 

determined 0.2% yield strengths, CCFN-Ti0.6 (1600 MPa) is observed to possess the highest, 

followed by CCFN-Pd1.5 (382 MPa), CCFN-Al0.6 (360 MPa), CCFN-V0.3 (290 MPa), CCFN-Mn 

(280 MPa), CCFN-Pd (240 MPa), and CCFN (190 MPa). Furthermore from Figure 44 it can be 

seen that CCFN-Ti0.6 has experienced brittle failure while CCFN-Al0.6, CCFN-V0.3, CCFN-Mn, 

CCFN-Pd1.5, and CCFN-Pd experienced ductile fracture. These observations appear to be in 

good agreement with the XRD results where complex phase precipitation is expected in the 

CCFN-Al0.6 and CCFN-Ti0.6 compositions. 

7.3.3 Dilatational strain analysis as a function of the enthalpy of mixing 

The effects of the possible presence of strain within a HEA structure can be considered to be 

two-fold: 1) higher strain energy, ϕୱ୲୰ୟ୧୬ increases the barrier for dislocation movement and 

hence affects mechanical properties [26], and 2) Heterogenous nucleation of a secondary 
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phase is only possible when the driving force for nucleation, dU is greater than the 

dilatational strain, ϕୱ୲୰ୟ୧୬ affecting the formation of complex phases [27]. The strain energy 

per atom in a cluster for an initially unstrained matrix is given by: 

߶௦௧ =
(ି)మாೊ,ாೊ,

ଷൣଶ(ଵିଶ௩)ாೊ,ା(ଵା௩)ாೊ,൧
       (1) 

where ܸ and ܸ are the volumes per molecule for the matrix and the cluster respectively, 

 , are the Young’s modulus for the matrix and the cluster respectively, andܧ , andܧ

ݒ  andݒ  are the Poisson’s ratio for the matrix and the cluster respectively. The Voigt 

average [28], where it is assumed that a homogenous strain is present in the structure for 

cubic structures is taken so that the elastic strain energy, ߶௦௧ can be expressed as a 

function of the elastic constants C11, C12, and C44: 

߶௦௧ =
(ି)మ(భభ,ିభమ,ିଷరర,)(ଶభభ,ାଶభమ,)

ଷൣସభభ,ିସభమ,ାଵଶరర,ାହభభ,ାଵభమ,൧
     (2) 

 

Figure 45. Dilational strain induced by the substitution of a single atom. 

where C11,m, C12,m, and C44,m are the elastic constants of the matrix and C11,c, C12,c, and C44,c 

are the elastic constants of the matrix. As the equimolar CCFN composition has been 

previously determined to mainly consist of the simple FCC phase [6–8], a naïve simplification 

of the alloying process may be taken. The substitution of a CCFN matrix with some foreign 

element, X, is considered, and characterised by an associated ߶௦௧ value due to elastic 

constant and volume mismatch between the matrix and the cluster. The dilational strain 

induced by the substitution of a single atom is illustrated in Figure 45 through eq. 2, the 

change in strain energy by the modification of the CCFN composition with some alloying 

element, A to form CCFN-Ax. 
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Table 13. Elastic constants of the four-component CCFN composition and elemental V, Al, and Ti in 

their stable phases at standard conditions, obtained from literature. 

 

C11 

(MPa) 

C12 

(MPa) 

C44  

(MPa) 
Ref 

CCFN 238 151 168 [29,30] 

Al 162 92 47 [30,31] 

Ti 107 61 29 [30,32] 

V 237 122 48 [30,33] 

Mn 257 272 105 [30] 

Pd 198 156 70 [30] 

Rietveld refined lattice parameters listed in Table 11 are substituted into Eq. 2 to obtain the 

dilational strain energy induced by addition of an alloying element into the CCFN matrix, 

߶௦௧
௫   where it is observed that for compositions whose alloying additions only show the 

simple phase to be present, CCFN-Mn1.0 (19.74), CCFN-Pd0.5 (26.79), CCFN-Pd1.0 (65.14), and 

CCFN-Pd1.5 (110.0), are observed to possess higher ߶௦௧
௫  values as compared to CCFN-V0.3 

(4.71), CCFN-V0.7 (7.90), CCFN-Ti0.4 (3.59), CCFN-Ti0.6 (6.99), and CCFN-Al0.5 (8.64) which adopt 

a majority complex phase structure at higher values of V, Ti, or Al addition [20]. This may be 

attributed to the fact that increased strain energy increases the energy associated with the 

compositional fluctuations within the solid solution and is known to reduce the driving force 

for nucleation from a strained matrix [27].  

7.3.4 Comparison of ∆ࡴ and ࢚࢙ࡰࡱ.
 values ࢇ࢚࢙࢘ࣘ to describe variation in ିࢄ

A plot of the strain energy and the enthalpy of mixing is presented in Figure 46 (Left) where 

enthalpy of mixing values are obtained from the Miedema model, which evaluates the 

interaction between a volumetric effect, the chemical potential for electronic charge, and 

the change in the electron density at the Wigner-Seitz boundary [34]. The strain energy 

associated with the bending and stretching of bonds is thought to play a role in determining 

the mixing enthalpy of the system [9] and as the strain energy is attributed mainly to the 

volumetric difference, the observed deviation between the two groups whose alloying 

addition stabilise the simple phase (Mn and Pd) and destabilise the simple phase (Al, Ti, and 

V) may be attributed to a change in the electron density and electronegativity difference. 

The partition between simple and complex phases in this 2-dimensional plot is in line with 
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previous investigations which have shown the dependence of simple/complex phase 

presence on the electron density [35], and the values of ∆ܪ at which these phases are 

stabilised [17]. The onset of complex phase formation is characterised by immediate 

destabilisation of the electronic structure by increased bonding directionality as discussed in 

Chapter 3 may be linked to the ability of the structure to accommodate strain in the system. 

 

Figure 46. (Left). Plot of the strain energy and the enthalpy of mixing; (Right) Plot of the strain 

energy against ܧ௦௧.
ି. 

Figure 46 (Right) displays a plot of the strain energy against ܧ௦௧.
ି. While a rigorous 

comparison of ܧ௦௧.
ିி and ∆ܪ is not performed in this chapter as the aim is to obtain a 

correlation between ܧ௦௧.
ିி  and compositional mechanical properties, the graphical 

comparison in Figure 46 shows a correlation between both when ܧ௦௧.
ିி  values are 

reversed. The similarity between ܧ௦௧.
ିி  and ∆ܪ may be attributed to the use of an 

electronegativity scale which is equivalent to the chemical potential at 0 K to represent both 

functions. As mentioned in Chapter 4, the ratio between the enthalpy of mixing and the 

difference in the number of valence electrons squared,  nH  2/  from Miedema's model 

has been shown [36] to start deviating from theoretical predictions between 4 < n < 7, 

which is regarded as a zone of complex phase presence in HEAs. This limit of n is similar to 

the cut-off point for FCC formation determined using the distorted tetragonal model 

discussed in Chapter 5. A graphical comparison of Figure 46 (Left) and Figure 46 (Right) 

shows that the dispersion of the points possesses increased linearity in the 2-D plot of 

Figure 46 (Right) in comparison with Figure 46 (Left). The accuracy of each function with 

respect to the ability to represent ߶௦௧ , or their exact co-dependence cannot be 

determined from just the graphical comparison, but merely indicates that both functions 
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may be representative of one another. In any case, in further discussion, for predictive 

purposes for all observed trends, ∆ܪ values can be substituted for by ܧ௦௧.
ିி values. 

7.3.5 Effect of  ࣘࢇ࢚࢙࢘ on complex phase presence and mechanical properties 

The driving force for nucleation of a secondary phase from a matrix is, as mentioned 

previously, partly dependent on the strain energy of the system with the effective driving 

force for nucleation of this secondary phase defined as: 

ܧ = −(Δߤ − ߶௦௧
௫ )        (3) 

where Δߤ = )݃ܮ ܶ݇



) and a and ae are the actual and equilibrium activity of the old solid 

solution phase, and k and T are the Boltzmann constant and temperature, respectively. The 

above equation covers the decay of solids through condensation of ‘atomic vacancies’ 

arising from the old phase dissolved in them and is valid for all instances where a > ae. This 

condensation leads to the appearance of macroscopic cavities i.e. the new phase in the 

solid. The activity, ܽ is defined by: 

ߤ = ߤ +  (4)         (ܽ)݃ܮ ܴܶ

where ߤ and ߤ are defined as the chemical potential of the system and chemical potential 

at the standard rate of the vacancy, and R and T are the gas constant and the temperature, 

respectively. For a dilute solution, the activity may be approximated as its molar 

concentration; moreover it may be approximated that at equilibrium, ܽ ≈ ிேܯ ≈ 1. Eq. 

3 therefore transforms to: 

ܧ = −(
ఓିఓబ

ே
− ߶௦௧

௫ )        (5) 

where the chemical potential may be taken as the rule-of-mixtures Mulliken 

electronegativity of the composition of the matrix, and the cluster to be: 

ݑ ≈ −߯ெ௨ ≈ ∑ (−
ூା

ଶ
)ݔ        (6) 

where I and A are the first ionisation energy and electron affinity respectively and ݅ 

represents the total number of components in the alloy system and therefore Δߤ 

transforms into: 
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Δߤ =
∑ శࡵି)


ࡺࡲࡺࡲ࢞ࡺࡲ( ି∑ శࡵି)


ࡺࡲ( షࡺࡲషࡺࡲ࢞ )

ࡺ
     (7) 

By substituting Eq. 7 into Eq. 3, the effective driving force may be determined. It therefore 

follows that for nucleation to proceed the condition Δߤ > ߶௦௧ must be fulfilled so that 

ܧ < 0. In Eq. 7, the driving force for nucleation is dependent upon the chemical potential 

and its magnitude relative to ߶௦௧. Values for Eeff are determined from known ionisation 

energies and electron affinities using a weighted average for each composition, with each 

stoichiometry being assumed to be a random solid solution. 

From the results it is observed that compositions containing simple-phase stabilising alloying 

additions, CCFN-Mn1.0 (12.12), CCFN-Pd0.5 (29.61), CCFN-Pd1.0 (70.2), and CCFN-Pd1.5 (117.2) 

are larger than those containing complex-phase alloying additions: CCFN-V0.3 (2.31), CCFN-V-

0.7 (2.79), CCFN-Ti0.4 (0.73), CCFN-Ti0.6 (0.79), and CCFN-Al0.5 (1.33).  Although no secondary 

phases are observed in these samples, a plot of  ܧ/߶௦௧
௫  against Δܪ as shown in Fig. 46 

(b) shows that the effective driving force for nucleation, ܧ normalised to the strain 

energy, ߶௦௧ decreases as Δܪ decreases into more negative regions, towards regions of 

complex phase formation [17], showing that the Δߤ > ߶௦௧ condition may be reached 

with increasing alloying additions of Ti, V, or Al. The reduced strain energy of Ti, V, and Al 

containing compositions may be caused by changes in energy caused by phase 

transformation in the solid solutions with more negative Δܪ values due to increased 

ordering. The formation of complex phases would modify the total energy balance at the 

interface between the matrix and the secondary phase for incoherent alloying additions, 

which may be expressed as: 

ߛ = ߛ +  (8)           ܩ∆

where ߛ is the surface energy between the matrix/secondary phase, ߛis surface energy 

between grain boundaries before the nucleation of any secondary phase. ∆ܩ is regarded as 

the Gibbs free energy per unit area for formation of the secondary phase. Since ∆ܩ is 

negative, the surface energy is reduced by the formation of a complex phase. Negative 

enthalpy of mixing values may thus provide a pathway for strain reduction for compositions 

containing complex-phase stabilising elements.  
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The inability for formation of a complex phase as a mechanism for strain reduction is 

reflected in the increasing strain energy that is consistent for all FCC simple phases (CCFN-

Mn and CCFN-Pd). Due to the increased strain energy, system with such characteristics may 

exhibit regions of solid immiscibility where the free energy is reduced by separation of the 

composition into regions that possess compositions closer to the unalloyed state; this may 

explain the degrees of separation that have been observed for some compositions where 

multiple simple phases appear that are enriched with particular elemental combinations [5–

8]. It may be inferred that the addition of anisotropic alloying elements leads to increased 

directional bonding, and may reduce the total free energy through the formation of 

complex structures that can reduce the surface energy in the structure (cf. Eq. 8). As change 

in bond anisotropy affects the elastic anisotropy of the structure [37], the precipitation of 

complex phases leads to deleterious effects on the bulk mechanical properties [15]. As 

shown in Figure 47 the elastic modulus of compositions possessing the simple structure are 

less sensitive to an equivalent reduction in strain energy as compared to compositions 

possessing complex structure(s). As a result, complex phase(s) containing compositions 

possess higher elastic modulus and yield stress for any equivalent value of elastic strain. 

One concern is that the strain energy presented in this chapter is derived by utilising the 

CoCrFeNi composition as the matrix element, with the assumption that the composition is a 

solid solution that is thermodynamically near-ideal. This is a simplification as the 

composition is considered to contain multiple similar simple FCC phases but appears to 

provide good properties in comparison to all other HEA CCFN-X compositions presented [6–

8]. The relationship between the elastic modulus and calculated dilatational strain values 

are shown in Figure 47 below. As expected, the elastic modulus appears to decrease with 

߶௦௧ following a similar trend with the ∆ܪ − ߶௦௧
௫  relationship, whereby the elastic 

modulus of complex phase stabilised compositions such as CCFN-V0.3 and CCFN-Al0.6 are 

observed to increase much more rapidly as compared to simple phase stabilised 

compositions such as CCFN-Mn and CCFN-Pd.  

From an electronic perspective, complex phase stabilised HEA compositions are reported to 

possess lower electron densities compared to simple phase stabilise HEA compositions at 

any particular Wigner-Seitz radius, suggesting the possibility of chemical bonding of 

increased covalent nature and fewer electrons delocalised around the Wigner-Seitz radius 
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[38] and is associated with reduced dislocation generations and a smaller dislocation core 

size [39] leading to reduced mobility for dislocations [40], thus an increased number of 

dislocations may be accumulated in each slip plane [41]. This leads to an increase in strength 

[42], which is observed in Figure 47 in comparison with the simple phase where the elastic 

modulus increases at a much slower rate. 

 

Figure 47. Clockwise from top-left: (a) Plot of the elastic modulus against the calculated strain 

energy of CCFN, CCFN-Al, CCFN-Ti0.6, CCFN-Mn, and CCFN-Pd showing a separation between 

complex-phase and simple phase stabilising additions; (b) A plot of the elastic modulus of the 

previous compositions against their enthalpy of mixing values, showing the relationship between 

them, and; (c) For comparison with; (b) a plot of the enthalpy of mixing against the calculated strain 

energy showing also the separation between complex and simple phase containing HEAs. 

From Figure 47 comparing the top and the bottom figure shows that the enthalpy of mixing 

appears to be linked to the changes in the elastic modulus, which is in good agreement with 

Christian who reports that the strain energy is associated with the mixing enthalpy of the 

system [9]. From Eq. 2 it may be seen that the strain energy is derived from both the elastic 

anisotropy mismatch and volume mismatch between the CCFN matrix and the alloying 

addition, and that both may be thought to influence structural stability of the resulting HEA 

composition; these parameters are similar to previous methods which employ the atomic 
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radius as a means of determining structural stability, following Hume-Rothery rules [17,43]. 

The ability to distinguish between compositions that will eventually lead to simple and 

complex phase presence with even small amounts of alloying additions is demonstrated in 

the 2-dimensional plots of ∆ܪ − ߶௦௧
௫  and ܧ௬ − ߶௦௧

௫ . This separation is in good 

agreement with the results presented in a previous communication where addition of 

alloying components which stabilise the complex phase is immediately preceded by a 

decrease in the electron density for any equivalent Wigner-Seitz radius.  

By plotting ܧ௬ −  it may be seen from Figure 47b that for the five-component HEA ܪ∆

compositions studied here, experimentally determined ܧ௬ scales well with ∆ܪ with: 

ܪ∆ =          ௬ܧ 0.0376−

with ܧ௬ written in units of GPa for the CCFN-X compositions tested in this paper. The 

identical trends observed in both ∆ܪ − ߶௦௧
௫  and ܧ௬ − ߶௦௧

௫  curves establish that the 

enthalpy of mixing may be used to determine roughly the elastic modulus of a given HEA 

system despite the observed influence of the alloying addition on the dilatational strain. 

7.3.5 Section summary 

In summary, in this study it has been determined that: 

1. Predictive trends involving enthalpy of mixing values may be substituted for by 

values of ܧ௦௧.
ିி. 

2. Negative enthalpy of mixing values may provide a pathway for strain reduction for 

compositions containing complex-phase stabilising elements through the 

precipitation of complex phases that lower the interfacial energy. 

3. A separation between compositions that stabilise the simple phase and the complex 

phase is shown here suggesting that the effect of alloying addition on mechanical 

properties is dependent only on the dilatational strain. 

4. The enthalpy of mixing is shown to be useable as an empirical parameter to predict 

the elastic modulus of the CCFN-X (X: Al, Ti, V, Mn, and Pd) HEA compositions that 

have been investigated in this study. These values do not give any indication of the 

ductility of the compositions, and further analysis of the dilatational strain with 
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regards to ductility would be required to correctly sift out HEA compositions that 

may be used during the alloy design process. 
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7.4 Strategy for alloy design 

From previous discussion, it is shown that values of ܧ௦௧.
  scale with the elastic modulus. 

This scaling is reflected in the analysis of the dilatational strain where the precipitation of a 

complex phase is thought to modify the total energy balance at the interface between the 

matrix and the secondary phase for incoherent alloying additions, which has the effect of 

reducing the surface energy by the formation of a complex phase, lowering the overall total 

energy. The similarity to ܧ௦௧.
  is attributed to the treatment taken in derivation of ܧ௦௧.

 , 

where the total energy is considered as a function of the interatomic distance between the 

neighbours in a modified distorted tetragonal cell.  

In order to facilitate the design of a replacement alloy composition for Stellite-6, a 

prediction scheme for the desired mechanical properties to be obtained from a HEA 

composition must be developed. Due to the lack of tensile test data for HEA compositions in 

the literature, hardness values are substituted instead. Hardness values could be used as an 

indication of the elastic modulus as long as the ratio of contribution of the elasticity and 

plasticity of the material to its overall strength remains similar [44] (a rather coarse 

assumption). In Table 5 several HEA compositions and their associated hardness values in 

Vickers hardness (Hv) are tabulated together with the corresponding structure present, and 

value of ܧ௦௧.
 . The column Ref. indicates the reference of the particular composition and its 

associated hardness values and phase present. (*) indicates that the hardness values for the 

denoted compositions have been approximated from the yield strengths obtained from 

Section 6.4.2 using the relationship ݒܪ ≈
ఙೊ

.ଷ
, while (**) indicates new compositions that 

have been synthesized following the guidelines as described in the Methods section and 

hardness tested to verify the model.  
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7.4.1 Populating data table to obtain trends of ࢚࢙ࡰࡱ.
ࡲ  with Vickers hardness (HV) 

Table 14. List of selected HEA compositions and their associated values of hardness values in Vickers 

hardness (Hv), structures present, and calculated values of ܧ௦௧.
 . References are indiciated where 

appropriated as well. 

Composition Hardness (HV) Structure ࢚࢙ࡰࡱ.
ࡲ .࢚࢙ࡰࡱ 

 .࢚࢙ࡰࡱ 
 .Ref ࢄࡱࡸࡼࡹࡻ

FeNiCrCuCo 286.00 FCC -6.82   [45] 

AlCo0.5CrCuFeNi  473.00 SIMPLE -6.62   [46] 

CoCrFeNi-Pd1.5 344.44 FCC -6.41   * 

CoCrFeNi-Pd 333.33 FCC -5.91   * 

CoCrFeNiCu 219.00 FCC -5.91   ** 

CoCrCuFeNiAl0.5  150.00 FCC -5.89   [47] 

Al0.5CoCrCuFeNi 208.00 FCC -5.14   [46] 

CoCrCuFeNiAl0.5 200.00 FCC -4.59   [44] 

CoCrFeNi 232.00 FCC -4.24   ** 

CoCrFeNi 222.22 FCC -4.24   * 

CoCrNiCu 300.00 FCC -4.04   ** 

FeNiCrCuAl 342.00 SIMPLE -3.77   [45] 

CoCrFeNiCuAl0.5V0.2 200.00 FCC -3.71   [24] 

AlCoCr0.5CuFeNi 367.00 SIMPLE -3.32   [43] 

AlCoCrCuFeNi 420.00 SIMPLE -3.14   [43] 

CoCrFeNiCuAl0.5V0.4 225.00 FCC -2.91   [45] 

CoCrFeNi-Mn 255.56 FCC -2.90   * 

CoCrFeNi-V0.3 355.56 FCC -2.44   * 

CoCrFeNiCuAl0.5V0.6 325.00 SIMPLE -1.99   [45] 

AlCoCrCuFe0.5Ni 418.00 SIMPLE -1.87   [43] 
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Co64Cr30W5C1 413.00 FCC -1.72   [48] 

CoCrFeNiCuAl0.5V0.8 450.00 COMPLEX -1.09   [45] 

AlCoCrCuFeNi0.5 423.00 SIMPLE -0.18   [43] 

CoCrCuFeNiAl1.0 400.00 SIMPLE -0.07   [44] 

AlCoCrCu0.5FeNi 458.00 BCC 0.84   [43] 

FeNiCrCuMn 296.00 SIMPLE 5.50   [42] 

Co16Cr16Fe16Al16Ni36 440.00 BCC  2.89  [44] 

CoCrCuFeNiAl1.5 500.00 BCC  6.05  [44] 

CuTiVFeNiZr 590.00 N/A  13.44  [49] 

CoCrCuFeNiAl2.0 550.00 BCC  14.05  [44] 

CoCrCuFeNiAl2.5 600.00 BCC  23.84  [44] 

CoCrCuFeNiAl3.0 670.00 BCC  35.54  [44] 

MoTiVFeNiZr 740.00 N/A  44.31  [46] 

AlTiVFeNiZrCoCr 780.00 N/A  55.67  [46] 

AlTiVFeNiZrCo 790.00 N/A  65.12  [46] 

AlTiVFeNiZr 800.00 N/A  111.86  [46] 

Cr20Fe30Mo35Cu15 500.00 COMPLEX   -0.66 ** 

CoCrFeNiCuAl0.5V 650.00 COMPLEX   -0.07 [45] 

CoCrFeNi -Ti0.6 586.67 COMPLEX   0.91 * 

CoCrFeNiCuAl0.5V1.2 575.00 COMPLEX   0.93 [45] 

AlCoCrFe2.0Mo0.5Ni 660.00 COMPLEX   1.44 [50] 

CoCrFeNiCuAl0.5V1.4 580.00 COMPLEX   1.89 [45] 

CoCrFeNiCuAl0.5V1.6 590.00 COMPLEX   2.93 [24] 

Co25Cr25Cu15Ni15Al20 610.00 N/A   3.57 ** 
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AlCoCrFe1.5Mo0.5Ni 650.00 COMPLEX   3.86 [50] 

CoCrFeNiCuAl0.5V1.8 595.00 COMPLEX   4.05 [45] 

CoCrFeNi -Al0.6 591.11 B2   4.33 * 

CoCrFeNiCuAl0.5V2.0 590.00 BCC   5.10 [24] 

FeNiCrCoZr 566.00 COMPLEX   5.18 [42] 

AlCoCrFeMo0.5Ni 725.00 COMPLEX   7.52 [46] 

CuTiVFeNiZrCo 630.00 N/A   8.08 [49] 

CuTiVFeNiZrCoCr 680.00 N/A   8.91 [49] 

AlCoCrFe0.5Mo0.5Ni 750.00 COMPLEX   12.65 [46] 

MoTiVFeNiZrCo 790.00 N/A   27.41 [49] 

The following figure, Figure 48, shows a graphical plot of the data shown in Table 5, where 

the compositions have been separated depending on the respective structure as 

determined from the corresponding references in literature, or from experimental XRD 

characterisation. The construction of the approximated ܧ௦௧.
  values plotted against ܸܪ 

show a competition between the HEA complex phases and simple BCC phase in achievable 

values of hardness. It is observed from the 2-D plot that when the condition ܧ௦௧.
 > 0 is 

reached, the achievable hardness of a HEA composition is dependent on the stabilisation of 

either the simple BCC structure, or of complex structures. This deviation in achievable 

hardness as a function of ܧ௦௧.
  may originate from the proportion of contribution of the 

elasticity and plasticity of the phase to the overall mechanical properties [44]. The formation 

of complex phases leads to a reduction in plasticity, which can be explained by the increase 

in bond directionality on formation of complex phases which is consistent with the analyses 

and the intermediate conclusions drawn thus far in the thesis. With an increase in bond 

directionality, the lattice distortion induced by the presence of a particular dislocation is 

enhanced, increasing the minimum stresses required for dislocation motion [51].  
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Figure 48. 2-D plot of ܧ௦௧.
 against Vickers hardness (HV) values, showing the dependence of HEA 

hardness on the phase present. As discussed in Chapter 5, ܧ௦௧.
  values are able to indicate the 

relative stability of FCC and non-FCC structures; the divergence in the plot indicates the difference in 

properties exhibited by the BCC and complex structures. The hardness range attributed to the 

Stellite-6 composition is indicate in the plot, as well. 

As mentioned earlier, ߪ values of CCFN-type compositions (in this section denoted by its 

full name, keeping with the naming convention of similar HEA compositions found in the 

literature search) CoCrFeNi, CoCrFeNi-Pd1.0, CoCrFeNi-Pd1.5, CoCrFeNi-Mn, CoCrFeNi-V0.3, 

CoCrFeNi-Ti0.6, and CoCrFeNi-Al0.6 have been converted into Vickers hardness through the 

relationship ܸܪ ≈
ఙೊ

.ଷ
. Converted hardness values are observed to conform to the plotted 

trends very well, as shown in Figure 48. The trends are further tested through the synthesis 

of several HEA compositions selected to test the capabilities of the 2-D plot for the design of 

alloy compositions with specific hardness and to verify the trends in the 2-D plot in Figure 

48. The selected compositions are Cu-based HEAs which have been reported to offer good 

thermal stability [13], and Al-based HEAs which also offer good oxidisation resistance at high 

temperatures [1,22]. The selected compositions are CoCrFeNi, CoCrFeNiCu, CoCrNiCu, 

CoCrFeNiTi0.6, Cr20Fe30Mo35Cu15, and Co25Cr25Cu15Ni15Al20. The measured hardness of these 

compositions is found to correspond well to the trend outlined in Figure 48, corresponding 

232, 219, 300, 500, and 610 Hv respectively. The replacement of Co and Ni in the 

CoCrFeNiCu composition with Mo to form Cr20Fe30Mo35Cu15 changes ܧ௦௧.
 . from -5.91 to -

0.66, destabilizing the FCC structure and has the effect of increasing the hardness from 219 

to 500 Hv; while the addition of Al to CoCrNiCu to form Co25Cr25Cu15Ni15Al20 also destablises 
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the FCC structure to a greater degree than previously, from ܧ௦௧.
 = −4.04 to ܧ௦௧.

 = 3.57 

leading to a greater corresponding increase in hardness from 300 Hv to 610 Hv. A similar 

comparison for the substitution of Fe with Al in Co25Cr25Cu15Ni15Al20 to form equimolar 

CoCrFeNiCu shows a reduction from ܧ௦௧.
 = 3.57 to ܧ௦௧.

 = −5.91, leading to a greater 

corresponding decrease in hardness from 610 Hv to 219 Hv. The lower hardness in 

comparison to the CoCrNiCu composition is in agreement with the lower ܧ௦௧.
 value of -

5.91. 

Initial investigations into the 2-D plot in Figure 48 strongly suggest that a HEA alloy design 

strategy to tune the hardness may be executed by taking a known FCC structure (beginning 

at the left edge of the plot) and tuning the stoichiometry to achieve an increase in hardness 

(moving to the right edge of the plot) to a range based on Figure 48. This strategy will allow 

several potential compositions to be shortlisted for in-depth testing for potential 

applications. In the following discussion the hardness corresponding to Stellite-6 will be 

identified. 

The data points in Figure 48 are fitted following an exponential type equation of the general 

form: 

.௦௧ܧ
 = ܣ + .ଵܤ ݁మ.ு௩        

where the left-hand side of the equation, ܣ = ଵܣ + .ଶܣ  is related to the linear part of ݒܪ

the equation representing HEA compositions where the simple FCC structure is present, 

where the fitting constants are determined to be ܣଵ = −8.17 and ܣଶ = 1.5×10ିଶ. The 

right-hand side of the equation given by ܤଵ. ݁మ.ு௩ is related to the divergence of plastic to 

elastic contribution to influence of the hardness values, as a result of the presence of either 

the simple BCC structure or the complex structures. For a divergence to compositions where 

the simple BCC structure is considered present the fitting constants take the values ܤଵ
 =

49×10ିଷ and ܤଶ
 = 0.929×10ିଶ; while for a divergence to compositions where the 

complex structures are considered present the fitting constants take the values ܤଵ
௫ =

0.1×10ିଷ and ܤଶ
௫ = 1.55×10ିଶ. 

The hardness range of Stellite-6 (Co64Cr30W5C1), highlighted in red in Table 5 is between 380 

– 490 HV [48] and is shown in Figure 48. The region of desired hardness values corresponds 
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to a transition point between the FCC structure and non-FCC structures. As the hardness 

difference between the two groups of the simple BCC structure and the complex structures 

are only beginning to diverge from one another in this region, mixed structures containing a 

combination of the simple FCC and BCC structures, as well as complex structures may be 

considered as long as they meet threshold values of ܧ௦௧.
 . Of the six compositions 

synthesised earlier, the Co25Cr25Cu15Ni15Al20 is selected to be modified as the addition of Cr, 

Cu, Ni, and Al is believed to enhance to corrosion-resistance properties of the end 

compositions; while tuning of the amount of Al addition allows control over the presence of 

secondary phases to modify the existing mechanical properties of the FCC structure that is 

predicted to be stabilised in CoCrCuNi following the distorted tetragonal structure method 

with ܧ௦௧.
 = 4.04.  

To achieve a targeted hardness value of 450 HV, the threshold value determined from the 

fitting equation is ܧ௦௧.
 = 1.86 for a composition where simple BCC-type structures are 

stabilised, and ܧ௦௧.
௫ = −1.22 for a composition where complex structures are present. 

A new stoichiometry from the Co25Cr25Cu15Ni15Al20 composition can be obtained using a 

genetic algorithm to fine-tune the desired stoichiometry so that the previously stated 

conditions  ܧ௦௧.
 = 1.86 and ܧ௦௧.

௫ = −1.22 are achieved.  

7.4.3 Proposed alloy compositions and cost projection of raw materials 

The list of compositions in Table 6 show the tuning of the compositions as a result of the 

substitution of alloying elements and stoichiometry, while the Stellite-6 composition in 

Table 6 is used as a reference point, while subsequent compositions indicate the process of 

refinement of the alloy compositions. The equimolar Co20Cr20Cu20Ni20Fe20 composition was 

first synthesised due to reported good thermal stability properties associated with this 

composition [13]. However, the hardness value of 300 Hv is considered to be outside the 

range of Stellite-6 to be considered as a viable replacement and as such an alternative 

composition where Fe is replaced by Al to form a Co25Cr25Cu15Ni15Al20 multi-component alloy 

composition was synthesised also. Al is included as an alloying element due to its resistance 

to oxidation [1,22,47,49] and ability to harden the structure through the formation of B2 

structures, which may be expected from the Al-Ni binary phase diagram [23] and negative 

enthalpy of mixing value [52]. Although the obtained hardness value of Co25Cr25Cu15Ni15Al20, 
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at 610 Hv is too high to be considered as a replacement for Stellite-6, the higher hardness 

value offer scope for optimisation of the alloy stoichiometry. 

 Table 15. Cost reduction of proposed compositions and their associated hardness values. (*) 

indicates the hardness of the newly proposed compositions that will be discussed in the following 

section (cf. Table 7). 

Composition $/100 g Cost Reduction (%) ࢚࢙ࡰࡱ.
ࢄ  Hardness (Hv) 

Stellite-6 24.23 N/A -0.33 435 

Co20Cr20Cu20Ni20Fe20 15.14 38 -5.89 300 

Co25Cr25Cu15Ni15Al20 18.87 22 3.57 610 

Co16Cr13Cu18Ni28Al25 14.96 38 1.86 542* 

Co22Cr14Cu18Ni26Al20 15.65 35 -1.23 426* 

New stoichiometries satisfying the conditions can be obtained using a random sampling 

method by employing the evolutionary algorithm included in the Microsoft Excel solver 

plugin. Two new stoichiometries of the Co25Cr25Cu15Ni15Al20 composition are computed so 

that they match the conditions  ܧ௦௧.
 = 1.86 and ܧ௦௧.

௫ = −1.22 and are shown in 

Table 6 above, and are found to be Co16Cr13Cu18Ni28Al25 with ܧ௦௧.
 = 1.86  and 

Co22Cr14Cu18Ni26Al20 with ܧ௦௧.
 = −1.23. 

Early projections show a good reduction in cost per 100 g ($/100 g) of 38% and 35% in 

comparison to Stellite-6, due to the reduction in Co and Cr content. 

7.4.4 Mechanical properties of alloy compositions 

Table 16. Hardness values for the trial compositions Co16Cr13Cu18Ni28Al25 and Co22Cr14Cu18Ni26Al20 

proposed in Section 6.4.2. Ten indentations are performed and the averaged hardness values are 

indicated. The second proposed composition Co22Cr14Cu18Ni26Al20 achieved the targeted hardness 

values and is selected for further studies. 

 
1 2 3 4 5 6 7 8 9 10 Average (Hv) 

Co16Cr13Cu18Ni28Al25 530.3 524.7 558.9 536.0 508.3 541.8 541.8 547.7 566.0 559.8 541.5 ± 15% 

Co22Cr14Cu18Ni26Al20 463.6 454.5 408.7 428.6 397.5 428.6 437.0 420.5 420.5 404.9 426.4 ± 15% 
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The hardness values for the proposed compositions Co22Cr14Cu18Ni26Al20 and 

Co16Cr13Cu18Ni28Al25 in Table 6 of Section 6.5.2 are obtained from as-cast compositions of 

dimensions 15 mm x 10 mm x 2 mm following the synthesis methods outlined in the 

methods section. 10 repeats were taken and the average hardness value for 

Co16Cr13Cu18Ni28Al25 was determined to be 541.5 Hv, while the average hardness value for 
Co22Cr14Cu18Ni26Al20 was determined to be 426.4 Hv. Since the Co16Cr13Cu18Ni28Al25 

composition possesses   ܧ௦௧.
 = 1.86 and the Al-Co and Al-Ni binary pairs suggest the 

presence of decagonal AlCo-type and B2 AlNi-type intermetallic compounds, this suggests 

that the hardness of the system diverges to the curve where complex phases are considered 

present. Substituting ܧ௦௧.
  into the fitted equation with the assumption that the system 

diverges to the complex structure curve predicts a hardness value of 593 Hv, which is in 

reasonable agreement with the experimental value of 541.5 Hv, which is within the error 

range of 12%. Conversely, the Co22Cr14Cu18Ni26Al20 composition possesses ܧ௦௧.
 = −1.23 

and is expected to retain a FCC structure. Substituting ܧ௦௧.
  into the fitted equation with 

the assumption that the system remains at the curve at which BCC structures are present 

predicts a hardness value of 393 Hv, which is in reasonable agreement with the 

experimental value of 426.4 Hv, and also lies within the error range. The hardness values for 

both compositions appears to be consistently underestimated by ≈ 8%, suggesting that the 

error encountered is a systematic error. The verification of the hardness values of both 

compositions show the possibility of the ܧ௦௧.
 − Hardness plot as a tool for alloy design. 

The second proposed composition Co22Cr14Cu18Ni26Al20 achieved the targeted hardness 

values within the 400-500 Hv range, which is expected to possess a dual FCC-BCC structure 

and was selected for further investigation. 
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Figure 49. XRD pattern of Co22Cr14Cu18Ni26Al20. The XRD pattern is found to consist of FCC and BCC 

peaks (demarked by red spherical markers and blue spherical markers, respectively), with the lattice 

parameters determined to be 3.59 Å for the FCC structure, and 2.87 Å for the FCC structure. 

XRD characterisation of the phases present was performed following the methodology 

outlined in Chapter 2. Figure 49 shows the XRD patterns for the shortlisted composition 

Co22Cr14Cu18Ni26Al20, which was indexed and found to contain peaks that are attributed to 

the FCC and BCC simple structures. The peaks corresponding to the FCC and BCC simple 

structures are indicated in Figure 49 with red spherical markers for the FCC structure and 

blue spherical markers for the BCC structure. The lattice parameters for both phases were 

determned to be 3.59 Å for the FCC structure, and 2.87 Å for the FCC structure, respectively. 

One issue with the XRD characterisation is that, as mentioned in Chapter 4, for Al-Co and Al-

Ni containing compounds, the B2 phase may form due to interactions between these 

species [23]. The characterisation technique used here provides insufficient resolution and 

signal-to-noise ratio to differentiate between the BCC and B2 structure. However, 

comparison of the results from the hardness test to the 2-D ܧ௦௧.
 − Hardness plot places 

the composition on the FCC -> BCC trendline, suggesting that the BCC structure is present 

rather than the B2 structure. Confirmation of this would require more advanced 

characterisation techniques. 
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Figure 50. Zoom-in of the <2 0 0> BCC and <2 2 0> FCC peaks in the obtained XRD patterns 

showing peak asymmetry. 

Cu may be regarded as a generally immiscible alloying addition; it possesses a positive 

enthalpy of mixing when in Cu-Co, Cu-Cr, and Co-Ni pairs, possessing only a negative 

enthalpy of mixing in Cu-Al. This may be indicative of a preference for segregation, which is 

observed in other Cu-containing HEA compositions. A visual inspection of the <2 0 0> BCC 

and <2 2 0> FCC peaks shows asymmetry in both BCC and FCC peaks. To try and confirm the 

possibility of a two-phase HEA, additional SEM characterisations were performed.  

Figure 51. SEM characterisation micrographs. (Left) 20,000× magnification of the 

Co22Cr14Cu18Ni26Al20 composition. (Right) False-colouring of the 20,000× magnification micrograph. 
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Figure 51 shows a 20,000× magnification of the Co22Cr14Cu18Ni26Al20 composition showing 

primarily an island-like structure embedded in a matrix. False-colouring the micrograph (c.f. Figure 

51 – Right) suggests that the edges of the grains possesses a different composition from the centre 

of the grains. Similarly, this behaviour is also noted in the matrix itself. Closer towards the grain 

boundaries, an enrichening of the matrix composition may be observed. Based also on the analysis 

of the false-colouring, it is seen that the composition of the small precipitations in the matrix are 

comparable to the grains (white-pink). 

 

Figure 52. EDS analysis of a the Co22Cr14Cu18Ni26Al20 composition at 20,000× magnification. 

To try and co-relate the composition to the micrograph, an EDS analysis was also 

performed. From the analysis in Figure 52 is may be observed that the grains appear to be 

Cu-enriched, while the matrix appears to be Al-enriched; from this it may be hypothesised 

that the matrix represents the BCC phase, whilst the island-like grain structures represents 

the FCC phase.  From the analysis in Figures 51 and 52, no obvious segregations are 

observed and the composition appears to adopt only two phases, although it is seen that 

enrichment of the microstructure exists. This may be the contribution to the XRD peak 

asymmetry, although higher characterisation tests will have to be performed to confirm 

this. 
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Figure 53. Compression test of the Co22Cr14Cu18Ni26Al20 composition, with ߪௗ  of 1,243 MPa and a 

Young’s Modulus of 184 MPa. 

The mechanical properties of the Co22Cr14Cu18Ni26Al20 composition was characterised via 

compression testing as outlined in the Methods section, Chapter 2. Figure 53 displays the 

true stress-true strain curve for the new HEA composition. Both tests show good 

repeatability with one another, and the yield stress, ߪௗ is determined to be 1,243 MPa, 

while the elastic modulus, ܧ was found to be 184 MPa. 

Table 17. Summary of the mechanical properties of the shortlisted Co22Cr14Cu18Ni26Al20 composition 

in comparison to the Stellte-6 composition.  

Composition 
Yield Stress, 

 (MPa) ࢊࢋࢅ࣌

Elastic Modulus,  

 (GPa) ࢅࡱ
Hardness  

(Hv) 

H/ࢅࡱ 

(HV/GPa) 

Ref. 

Stellite-6 750 209 435 2.08 [53] 

Co22Cr14Cu18Ni26Al20 1,243± 12% 184± 12% 426.4 ± 15% 2.32 Exp. 

A comparison with the mechanical properties of the Stellite-6 composition is shown in Table 

17 where the mechanical properties of Stellite-6 were obtained from Kennametal [53] 

where ߪௗ of the Co22Cr14Cu18Ni26Al20 was found to be 65% higher in comparison to 

Stellite-6. On the other hand, the value ܧ (209 GPa vs. 184 GPa) and Vickers hardness (435 

HV vs 426 HV) were determined to be slightly lower in comparison with Stellite-6. It has 
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been previously reported that the ratio of hardness to elastic modulus, H/ܧ may be used as 

an indicator of coating durability [54], with higher values of H/ܧ indicating the increased 

elastic strain to failure capability of the material. From the mechanical tests performed, it is 

determined that the new HEA composition possesses a H/ܧ value that is slightly higher 

than the Stellite-6 composition, indicating that it is likely to possess better wear properties.  

Initial experimental characterisation of the Co22Cr14Cu18Ni26Al20 composition verifies the 

prediction of a mixed FCC/BCC structure as determined from Figure 48, while Vickers 

indentation tests return results that are within the preselected and accepted range of 

hardness values (when compared to the Stellite-6 composition). Further compression tests 

that have been run on the as-cast samples return results with a much higher yield stress 

than Stellite-6, suggesting increased performance capabilities in comparison to Stellite-6. 

The H/ܧ ratio is used as an indication of the applicability of the material for hardfacing 

purposes, and the obtained value of 2.32 is slightly higher than Stellite-6 (2.08), which may 

suggest increased enhancement in wear properties. Finally, the Co22Cr14Cu18Ni26Al20 was 

selected to also reduce the Co and Cr content in Stellite-6, to lead to a cost reduction of the 

raw materials. As the mechanical properties tested thus far suggest that the 

Co22Cr14Cu18Ni26Al20 composition is comparable to Stellite-6, it also offers the benefit of an 

estimated 28% reduction in the costs of raw materials.  

To verify the mechanical properties and wear resistance requires further wear testing such 

as scratch testing, and tensile tests. Further tests on the corrosion resistance of the new 

alloy composition must also be completed, as the change in the newly proposed 

composition’s alloying components may modify corrosion behaviour. The up-scalability for 

the production of this alloy composition also needs to be studied for its feasibility. 

The case study performed here has successfully shown the application of the ܧ௦௧.
 -

Hardness 2-D plot to design a new composition using hardness as a design criterion. 

7.5 Conclusions 

The following may be summarised from the results presented in this chapter: 

 An analysis of the dilatational strain in CCFN-Ax lattices (where A = Al, Ti, V, Mn, and 

Pd) shows that it is linked to the various mechanical properties in HEAs. 
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 The enthalpy of mixing is determined to serve as a good indicator of the degree of 

dilatational strain, and hence mechanical properties. 

 This is shown to be applicable to values of ܧ௦௧.
  as well, and is validated through a 2-

D plot of ܧ௦௧.
 -Hardness. 

 The 2-D plot of ܧ௦௧.
 -Hardness is used to successfully design an alloy composition 

that possesses comparable properties to Stellite-6, while optimising the 

compositional stoichiometry so that the costs of the raw materials may be reduced 

by 28%. 
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8. Conclusions 

The thesis chapters have so far presented two linked themes: 

1. The investigations of whether consideration of quantum mechanical principles can increase 

the accuracy of predictions of HEA phase presence/stability (Chapters 4 and 5). 

2. Development a simple predictive scheme that includes quantum mechanical principles 

which allows for the possibility to design a multiple component system so that an alloy 

composition which possesses desired combinations of simple and complex structures 

(Chapters 6 and 7). 

In the first results chapter, Chapter 4, the structural stability HEAs was shown to be qualitatively 

linked to an alloy composition’s parameters when displayed as a 2-D plot. These plots are: 

1. Enthalpy of mixing against the averaged electronegativity 

2. Electron density to the Wigner-seitz radius 

Subsequent analysis of the 2-D plots show that the determination of structural stability for both 

simple and complex phases are highly dependent on the periodicity of the alloy composition (i.e. the 

primary quantum number). In the first 2-D plot the rate of change of the averaged electronegativity 

to the electron density at the Wigner-Seitz radius, as defined by the Miedema enthalpy of mixing, is 

hypothesised to be responsible for the shift in energy levels between FCC/BCC; while the non-

conformation of the complex phases to the determined zones of simple structure and/or any fixed 

zones are attributed to a shift in bond directionality, which is thought to be able to be characterised 

by the electron density of an alloy unique to that composition. This is subsequently investigated in 

the second 2-D plot, where the electron density is calculated using the Thomas-Fermi-Dirac equation. 

The results show a clear differentiation between the simple and complex phases via a drop in 

electron density for any equivalent Wigner-Seitz radius, which in agreement with the previous 

results and discussion from the first section. 

The second results chapter, Chapter 5, continues by analysing the electronic structure of HEAs using 

the Rigid Band Approximation (RBA) within Density Functional Theory. By reducing the problem of 

analysing the electronic structure to a single bandstructure for different CoCrFeNi-Ax (here denoted 

CCFN-Ax) compositions as a function of the ab-initio valence electron concentration, it is shown that 

the accuracy of the FCC-BCC/FCC-Complex phase transitions of HEA alloys can be improved beyond 

those shown by semi-empirical parameters used (enthalpy of mixing, entropy of mixing, 

electronegativity difference, or atomic size difference), further strengthening the argument that 

knowledge of the electronic structure is essential in determining the phases present. Due to the 
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nature of ab-initio methods, the RBA approximation faces difficulties when new compositions with 

different components are used in design, instead of following the strategy of A-B alloying, where A is 

the base composition such as CCFN, and B some alloying addition. 

The third results chapter, Chapter 6, focused on utilising the conclusions and corollaries developed in 

Chapters 4 and 5 to develop a prediction scheme for use in alloy design that is more precise that 

previous semi-empirical methods. Here, the simple FCC and BCC structures, and the complex 

structures were linked to a tetragonal cell with different distortions along the c-axis, thus 

representing them with different ܿ/ܽ ratios. The distorted tetragonal structure is first developed and 

used to successfully predict the stable structure for Fe and Ni at 0 K, as well as for allotropes of Fe. 

The scheme is then extended to provide predictions for the HEA compositional families CCFN-Alx, 

CCFN-Vx, CoFN-Vx, CCFN-Tix, and CCFN-Pdx that were previously used in the RBA analysis. When 

confronted with experimental XRD validations and the predictions used in the RBA analysis, the 

results were found to be in relatively good agreement. Furthermore, the scheme was used to predict 

the structural stability for CCFN-Mox and CoFN-Tix compositions which were then validated 

experimentally via XRD characterisation; the results were also found to be in agreement with one 

another. 

In the final results chapter, Chapter 7, the distorted tetragonal scheme was used to design a HEA 

composition that can be used as a replacement for Stellite-6, which is used for its hardfacing 

properties, such as in the drive-trains of car engines. By using hardness values as a criteria, a near 

equimolar Co22Cr14Cu18Ni26Al20 composition was shortlisted. Experimental verification of the 

compositions using Vickers indentation, XRD characterisation, and compression testing shows good 

results that are very close to those exhibited by Stellite-6 (Co64Cr30W5C1). The selection of the 

composition was performed to reduce the Co and Cr content of Stellite-6. 

In conclusion, in this thesis the effects of the electronic structure were first determined and 

confirmed in Chapters 4 and 5. In order to facilitate the selection of new compositions for in-depth 

investigations and shorten to alloy-design process, a new prediction scheme was developed and 

discussed in Chapter 6, that offered better prediction capabilities than previous semi-empirical 

methods. The scheme was verified with the results of the RBA analysis performed in Chapter 5, as 

well as with predictions from literature, and from experimental results. Finally, in Chapter 7, the 

developed schemed was put through a test in which a HEA composition that may replace Stellite-6 

was designed. Initial characterisation experiments show promising results for the 

Co22Cr14Cu18Ni26Al20 which possesses elastic modulus and hardness values that are very close to 
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Stellite-6. The composition possesses a yield strength (1,243 MPa) that is 40% higher than Stellite-6 

(750 MPa). 
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9. Suggestions of further work 

Some suggestions are made here that may be suitable in further exploring the conclusions brought 

forward in the previous chapters: 

1. As the distorted tetragonal scheme is based in part of the energy required to change the 

spin of an electron, this may be reflected by the change in measured maximum 

magnetisation. A dataset built up from the analysis of the maximum magnetisation of 

several bulk metallic glass compositions would therefore allow the prediction of 

magnetisation properties of materials to be recast in a potentially easier predictive scheme if 

a trend can be found. 

2. Repeat analysis of multiple-component datasets to perform a lattice strain analysis using 

diffraction characterisation techniques. Either a x-ray or neutron source may be used to 

consider the lattice strain. As the onset of complex phases appear to be associated with a 

reduction in the dilatational strain, this may lead to understanding the role of lattice strain in 

mechanical properties e.g. through formation of stacking faults. 

3. Perform a scoping study to examine the possibility of predicting simple solid solution phases 

of the lightweight elements (Li, Mg, Ca, Na, etc.) by extending the analysis of the Mulliken 

electronegativity. 

4. Ab-initio calculations of the distorted tetragonal structures to check the relationship 

between the electron density distribution of the c/a ratios associated with complex phases. 

The distribution should be more covalent-like in nature.  
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Appendix A: XRD characterisation 

XRD Data: Rietveld refined peaks 

CCFN and CCFN-Pdx systems 
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CCFN-Alx systems 
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CCFN-Vx systems 
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CoFN-Vx systems 
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CCFN-Tix systems 
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Appendix B: Calculation of errors for compression testing  

Performed partly by Yuhe, Huang. 

Uncertainty calculations for compression testing was performed following the Manual of Codes of Practice for 

the Determination of Uncertainties in Mechanical Tests on Metallic Materials [1], with relevant measurement 

parameters and corresponding symbols shown in Table 1. The sources of uncertainty and their contributions to 

the measured compression test are considered and shown in Table 2, and are classified as type A and B 

depending on the way their influences are quantified. Uncertainties evaluated through statistical means are 

classified as type A while uncertainties evaluated through other means (e.g. via calibration certificate, 

manufacturer’s information) are classified as type B.  

Table 18. Selected parameters for measurement of uncertainties. 

Quantity Symbol Values 

Applied Load P ±0.5% 

Strain ɛ ±0.5% 

Specimen original diameter d0 ±0.05mm 

Specimen original gauge length l0 ±0.05mm 

Angle(Specimen/Extensometer) α ±1° 

Load range used for E ΔP ±0.5% 

Elongation range used for E ΔL ±0.5% 

In the calculations here the load cell and extensometer uncertainty  is 0.05% as obtained from the Zwick Z050 

manual. The regression limit was considered to be 2% by considering the average of each calculated Young’s 

modulus slope of the straight line which was fitted to the data utilising the least squares method. The 

expanded uncertainty, U is obtained by multiplying the combined uncertainty uc with a coverage factor, k that 

is selected on the basis of the level of confidence required. For a normal distribution, the coverage factor is 

considered to be 2, which corresponds to a confidence interval of 95.4%, and is the value used in this 

publication. 

Table 19. Determined uncertainty parameters for CCFN-X (X: Mn, V0.3, Pd, Ti0.6 and Al0.5) 

compositions. 

Composition Uncertainty of Proof Strength, Rp0.2 Uncertainty of Elastic Modulus, E 

CCFN   

CCFN-Mn ±5.16% ±5.7 

CCFN-V0.3 ±13.22 ±13.46 
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CCFN-Pd ±6.81 ±7.24 

CCFN-Ti0.6 ±11.16 ±11.42 

CCFN-Al0.5 ±9.32 ±9.64 

 

Table 2 presents the uncertainties for the compression tests performed in this calculation. The higher 

uncertainties of CCFN-V and CCFN-Ti may be attributed to the large yield stress which leads to an 

enhancement of ΔP and UExtenso. Detailed information on the calculations may be found below in Table 4-7. 
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Glossary of Symbols 

A0   Original cross-sectional area of the parallel length 

d0    Original diameter of the parallel length of a cylindrical test-piece 

E    Young's modulus of elasticity 

k    Coverage factor used to calculate expanded uncertainty 

l0    Original gauge length 

L0    Theoretical gauge length 

P    Load  

Rp0.2    Proof strength, non-proportional elongation  

U    Expanded uncertainty  

U(xi)    Standard uncertainty 

uCell    Standard uncertainty on load cell data 

uCaliper    Standard uncertainty on calliper data 

UE    Expanded uncertainty on E 

uExtenso    Standard uncertainty on extensometer data 

URp0.2    Expanded uncertainty on Rp0.2 

ΔL    Elongation increment  

ΔP    Load increment 

Uc(y)    Combined uncertainty on the mean result y of a measurand 
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Table 20. Template for calculation of compression testing uncertainties. 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN)  B Rectangular sqrt(3) ݈

 ܮ∆ܣ
u(Cell) 

Extensometer ɛ (mm)  B Rectangular sqrt(3) ∆݈ܲ

 ଶܮ∆ܣ
u(ext) 

Calliper d0 (mm)  B Rectangular sqrt(3) 
−8

∆݈ܲ

݀ߨ
ଷ∆ܮ

 
u(cal) 

Operator 

Manual choice of regression 

limits on graph 

P (KN)  A Normal 1 1 u(reg) 

Manual extensometer 

angular positioning 

ɛ (mm)  A Normal 1 1 u(ang) 

Specimen 

Original gauge length l0 (mm)  A Normal 1 1 u(gl) 

 

Combine standard 

Uncertainty 

    Normal    

uc 

Expanded Uncertainty (with 

k=2) 

    Normal   UE 

 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN)  B Rectangular sqrt(3) 1 u(Cell) 

Extensometer ɛ (mm)  B Rectangular sqrt(3) 1 u(ext) 

Young’s Modules E RP0.2 (Mpa)  B Normal 1 1 u(mod) 

 

Combine standard 

Uncertainty 

    Normal   uc 

Expanded Uncertainty (with 

k=2) 

    Normal   URP0,2 

 

 Table 21. Calculation of uncertainties for CCFN-Mn. 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN) 0.5% B Rectangular sqrt(3) 9.44 0.08% 

Extensometer ɛ (mm) 0.5% B Rectangular sqrt(3) 146.78 1.27% 

Calliper d0 (mm) 0.05 B Rectangular sqrt(3) 8.81 0.007% 

Operator 

Manual choice of regression 

limits on graph 

P (KN) 2% A Normal 1 1 2% 

Manual extensometer angular 

positioning 

ɛ (mm) 1deg A Normal 1 1 1% 

Specimen 

Original gauge length l0 (mm) 0.05 A Normal 1 1 0.05% 
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Combine standard 

Uncertainty 

    Normal    

2.58% 

Expanded Uncertainty (with 

k=2) 

    Normal   5.16% 

 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN) 0.5% B Rectangular sqrt(3) 1 0.865% 

Extensometer ɛ (mm) 0.5% B Rectangular sqrt(3) 1 0.865% 

Young’s Modules E RP0.2 (Mpa) 2.58% B Normal 1 1 2.58% 

 

Combine standard 

Uncertainty 

    Normal   2.85% 

Expanded Uncertainty (with 

k=2) 

    Normal   5.7% 
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Table 22. Calculation of uncertainties for CCFN-V. 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN) 0.5% B Rectangular sqrt(3) 19.52 0.17% 

Extensometer ɛ (mm) 0.5% B Rectangular sqrt(3) 718.1 6.22% 

Calliper d0 (mm) 0.05 B Rectangular sqrt(3) 20.82 0.018% 

Operator 

Manual choice of regression 

limits on graph 

P (KN) 2% A Normal 1 1 2% 

Manual extensometer angular 

positioning 

ɛ (mm) 1deg A Normal 1 1 1% 

Specimen 

Original gauge length l0 (mm) 0.05 A Normal 1 1 0.05% 

 

Combine standard 

Uncertainty 

    Normal    

6.61% 

Expanded Uncertainty (with 

k=2) 

    Normal   13.22% 

 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN) 0.5% B Rectangular sqrt(3) 1 0.865% 

Extensometer ɛ (mm) 0.5% B Rectangular sqrt(3) 1 0.865% 

Young’s Modules E RP0.2 (Mpa) 6.61% B Normal 1 1 6.61% 

 

Combine standard 

Uncertainty 

    Normal   6.73% 

Expanded Uncertainty (with 

k=2) 

    Normal   13.46% 

 

Table 23. Calculation of uncertainties for CCFN-Pd. 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN) 0.5% B Rectangular sqrt(3) 11.79 0.102% 

Extensometer ɛ (mm) 0.5% B Rectangular sqrt(3) 294.8 2.55% 

Calliper d0 (mm) 0.05 B Rectangular sqrt(3) 14.15 0.012% 

Operator 

Manual choice of regression 

limits on graph 

P (KN) 2% A Normal 1 1 2% 

Manual extensometer angular 

positioning 

ɛ (mm) 1deg A Normal 1 1 1% 

Specimen 

Original gauge length l0 (mm) 0.05 A Normal 1 1 0.05% 

 

Combine standard     Normal    
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Uncertainty 3.403% 

Expanded Uncertainty (with 

k=2) 

    Normal   6.806% 

 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN) 0.5% B Rectangular sqrt(3) 1 0.865% 

Extensometer ɛ (mm) 0.5% B Rectangular sqrt(3) 1 0.865% 

Young’s Modules E RP0.2 (Mpa) 3.403% B Normal 1 1 3.403% 

 

Combine standard 

Uncertainty 

    Normal   3.62% 

Expanded Uncertainty (with 

k=2) 

    Normal   7.24% 
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Table 24. Calculation of uncertainties for CCFN-Ti. 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN) 0.5% B Rectangular sqrt(3) 14.15 0.123% 

Extensometer ɛ (mm) 0.5% B Rectangular sqrt(3) 589.76 5.107% 

Calliper d0 (mm) 0.05 B Rectangular sqrt(3) 23.59 0.0204% 

Operator 

Manual choice of regression 

limits on graph 

P (KN) 2% A Normal 1 1 2% 

Manual extensometer angular 

positioning 

ɛ (mm) 1deg A Normal 1 1 1% 

Specimen 

Original gauge length l0 (mm) 0.05 A Normal 1 1 0.05% 

 

Combine standard 

Uncertainty 

    Normal    

5.58% 

Expanded Uncertainty (with 

k=2) 

    Normal   11.16% 

 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN) 0.5% B Rectangular sqrt(3) 1 0.865% 

Extensometer ɛ (mm) 0.5% B Rectangular sqrt(3) 1 0.865% 

Young’s Modules E RP0.2 (Mpa) 5.58% B Normal 1 1 5.58% 

 

Combine standard 

Uncertainty 

    Normal   5.71% 

Expanded Uncertainty (with 

k=2) 

    Normal   11.42% 

 

 

Table 25. Calculation of uncertainties for CCFN-Al. 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN) 0.5% B Rectangular sqrt(3) 14.15 0.12% 

Extensometer ɛ (mm) 0.5% B Rectangular sqrt(3) 471.81 4.09% 

Calliper d0 (mm) 0.05 B Rectangular sqrt(3) 18.87 0.016% 

Operator 

Manual choice of regression 

limits on graph 

P (KN) 2% A Normal 1 1 2% 

Manual extensometer angular 

positioning 

ɛ (mm) 1deg A Normal 1 1 1% 

Specimen 

Original gauge length l0 (mm) 0.05 A Normal 1 1 0.05% 

 

Combine standard     Normal    
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Uncertainty 4.66% 

Expanded Uncertainty (with 

k=2) 

    Normal   9.32% 

 

Column No. 1 2 3 4 5 6 7 8 9 

Source of uncertainty (xi) Measurement(Xi) Uncertainties 

Measurement 

affected 

Nominal or average 

value 

Uncertainty In 

measurement 

Type Probability 

Distribution 

Divisor dv Ci u (Xi) 

Apparatus 

Load Cell P (KN) 0.5% B Rectangular sqrt(3) 1 0.865% 

Extensometer ɛ (mm) 0.5% B Rectangular sqrt(3) 1 0.865% 

Young’s Modules E RP0.2 (Mpa) 10.103% B Normal 1 1 4.66% 

 

Combine standard 

Uncertainty 

    Normal   4.82% 

Expanded Uncertainty (with 

k=2) 

    Normal   9.64% 
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Appendix C: Application of the Stoner Model to Rigid Band Approximation 

Provided by: Dr. Jan Wrobel, Culham Centre for Fusion Energy 

The structural stability of simple FCC and BCC phases, and all other complex phases observed in 

multi-component alloys can be investigated by using the frozen potential approximation (FPA) to 

density functional theory (DFT).  Within the first order approximation the energy difference between 

any two non-magnetic structures is given by the difference between their band energies at a fixed 

equilibrium volume, V 0 [67,68,92]: 

 
 




 
)2( )2()1( )1(

00

)21()21( )(2)(2 FF
V

BandMagNon dDdDEE  (I) 

where )()1( D  and )()2( D  are the densities of states (DOS) per atom with a factor of 2 for a spin 

to energy   and  )1(
F  and  )2(

F  are the Fermi energies for structure 1 and 2, respectively. They are 

determined from the number of valence electrons per atom: 

 
 

)2( )2()1( )1( )(2)(2 FF dDdDn      (II) 

Frozen potentials for the different atomic species are determined from self-consistent calculations, 

normally for structures with a small unit cell. They are then transferred into other structures with 

the same alloy composition and the same equilibrium volume. The difference between the band 

energies EBand
)21(   is calculated under the constraint that the potential within the Wigner-Seitz sphere 

remains unchanged (frozen) when going from one structure type to another. Since the energy 

difference in the first order frozen potential approximation is computed assuming fixed atomic 

volumes, this approximation is correct for structures with relatively similar equilibrium atomic 

volumes like for example FCC and BCC phases, which can be related to each other through the Bain 

transformation.  

Assuming that alloying changes the number of valence electrons per atom but the electronic DOS of 

different phases remain rigid (the rigid band approximation), the variation of the energy difference 

as a function of the number of electrons can be evaluated by comparing the band energies, see 

equation (I)[30,31,93]. 

Within the present work, the RBA model has been generalised for the case of  magnetic materials 

like CCFN-based alloys using the Stoner model of magnetism[60–62]. In transition metal alloys the 

latter one introduces magnetism by introducing local exchange fields within the band energy 

concept. In particular, electrons with spins up and down have different on-site energies depending 
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on whether their spin is parallel or anti-parallel to the local magnetic moment. The effective on-site 

energy  
i  is given by    

mI iiii
2

1
         (III) 

where  i  is the single-particle non-magnetic on-site energy, nnm iii
  , is the difference between 

electron occupancies of site i  by spin-down and spin-up electrons with a spin index  . The Stoner 

exchange parameter I i  refers to the exchange splitting of on-site energies of electrons with spin up 

and spin down due to the local magnetic moment mi [60,61,65].  

From equation (III), the energy difference between two magnetic structures, following the Stoner 

model of magnetism (Stoner Model I), corrected for the double counting contribution, and 

normalised by the number of atoms, N in both structures can be given by: 

 
N

mImIE
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iiiiiiBandSpin

Mag

2 )2(2 )1()21(

)21( 4

1







     (IV) 

where the first term is the spin-polarised band energy difference between any two magnetic 

structures at a fixed equilibrium volume V 0  (defined below in equation (V)), the second term is the 

double-counting contribution arising from magnetic interactions[60–62], and N  is the number of 

atoms in both considered structures. E BandSpin
)21( 
  is defined as: 
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where )()1( D   and )()2( D   are the spin-polarised total DOS per atom for electrons with spin-up 

and )()1( D   and )()2( D   are the spin-polarised total DOS per atom for electrons with spin-down. 

The Stoner parameters in equation (IV) are assumed to be constant for each type of atoms[94]. 

However, application of equation (IV) requires knowledge of the magnetic moments of all atoms as a 

function of n in the system, of which is difficult to be validated experimentally. Therefore, we use an 

effective Stoner parameter I eff  which refers to the exchange splitting of the on-site energies of 

electrons with spin-up and spin-down due to the average atomic magnetic moment mav , defined as: 

    FFaveff mI         (VI) 
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where  
F  and  

F  are the Fermi energies for electrons with spin-up and spin-down, respectively, 

defined as energies of the non-magnetic total DOS, )(D , which are the number of electrons per 

atom with spin-up and spin-down, obtained from the spin-polarised total DOS. The average 

magnetic moment of the entire simulation cell from the non-magnetic total DOS is equal to the one 

obtained from the spin-polarised total DOS and is given by: 








 


  F

F

FF dDdDdDmav )()()(    (VII)  

By using the effective Stoner parameter and the average magnetic moment the energy difference 

between any two magnetic structures in the effective Stoner Model II can now be written as: 

 mImIEE aveffaveffBandSpinMag
2 )2()2(2 )1()1()21()21(

4

1
 


     (VIII)  

Both Stoner Model I and effective Stoner Model II can be justified by the comparison of energy 

differences with those obtained using the LMTO code. As shown in Table SI the energy differences 

between the considered magnetic structures and the BCC structures with the same composition 

calculated using both equation (IV) and (VIII) are in quantitative agreement with each other and in 

line with the results calculated using the LMTO code. The only exception is that the C14 structure of 

Co9Cr12Fe9Ni6 alloy which is less stable than the BCC phase when equation (VIII) is applied and it is 

more stable than the BCC phase by using equation (IV) and the LMTO code. However, all the 

considered methods predict that the FCC phase is the most stable one. 
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Table SI. Average magnetic moments obtained using equation (VII) (mav ) and energy differences (

Emag ) between the considered magnetic structures and the BCC structures with the same 

composition calculated using equations (IV) and (VIII), compared with the results calculated using 

the LMTO code.  I eff is the effective Stoner parameters calculated using equation (VI). Energies, 

magnetic moments and effective Stoner parameters are given in eV ,   per atom and /eV , 

respectively.  The valence electron concentration of considered structures is indicated by n. 

  Structure  
ΔEMag 

(equation 

(IV)) 

ΔEMag 

(equation 

(VIII)) 

ΔEMag 

(LMTO) 

mav  

(equation 

(VII)) 

mav 

(LMTO) 

Ieff 

(equation 

(VI)) 

CCFN 
Co8Cr8Fe8Ni8 

(n = 8.25) 

FCC -0.136 -0.099 -0.083 0.372 0.372 1.295 

BCC    0.421 0.421 1.302 

CCFN-Al 
Co8Fe8Ni8Al8 

(n = 7.5) 

FCC -0.043 -0.020 -0.001 0.939 0.930 3.940 

BCC    1.011 0.990 4.392 

B2 -0.065 -0.102 -0.072 0.948 0.948 4.124 

CCFN-Pd 
Co6Cr7Fe7Ni6Pd6  

(n = 8.5) 

FCC -0.139 -0.070 -0.064 0.881 0.864 3.631 

BCC    0.913 0.915 3.746 

CCFN-V 
Co9Cr12Fe9Ni6 

(n = 8.133) 

FCC -0.147 -0.123 -0.073 0.350 0.344 1.228 

BCC    0.415 0.422 1.205 

Sigma -0.151 -0.120 -0.069 0.312 0.317 0.993 

CCFN-Ti 
Co9Cr12Fe9Ni6 
 (n = 7.917) 

FCC -0.063  -0.027  -0.021 0.687  0.171 0.987  

BCC    0.691 0.172  0.831 

C14 -0.018  0.022 -0.013 0.817 0.819  0.909 
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Appendix D: Thomas-Fermi-Dirac Electron Density Code (Mathematica .nb 

format) 

The code is commented, the syntax for comments are (*COMMENT*).  

------------------------------test_runge.nb Start------------------------------ 

Runge-Kutta for 2nd order ODE 

ClearAll["Global`*"] 

(*Required equations are defined here*) 

\[Epsilon]=(3/(32(\[Pi])^2))^(1/3) Z^(-2/3); 

\[Mu]=(5.29*10^-11)((9\[Pi]^2)/(128Z))^(1/3); 

 

(*y''(t)=t(Sqrt[y/t]+(3/(32(22/7)^2))^(1/3)Z^(-2/3))^3 with y(0)=1 and y'(0)=a2*) 

(*f[t_]=Pseudo \[Psi] and g[t]=Pseudo \[Psi]' based on Ren et al.'s work*) 

f[t_]:=1+a2 t+(4 t^(3/2))/3+(3 t^2 \[Epsilon])/2+t^4 ((2 a2)/15+(77 \[Epsilon]^2)/120)+t^(5/2) ((2 

a2)/5+(4 \[Epsilon]^2)/5)+t^(7/2) ((3 a2^2)/70+(5 \[Epsilon])/7+(6 a2 \[Epsilon]^2)/35)+t^3 (1/3+(a2 

\[Epsilon])/2+\[Epsilon]^3/6)+t^5 (a2^2/175+(5 \[Epsilon])/28+(137 a2 \[Epsilon]^2)/1400+(17 

\[Epsilon]^4)/200)+t^(9/2) (2/27-a2^3/252+(41 a2 \[Epsilon])/210-(a2^2 \[Epsilon]^2)/42+(14 

\[Epsilon]^4)/45)+t^6 (4/405+(4 a2^3)/1575+(a2 \[Epsilon])/21+(8 a2^2 \[Epsilon]^2)/525+(509 

\[Epsilon]^3)/5040-(2 a2 \[Epsilon]^4)/175)+t^(11/2) ((31 a2)/1485+a2^4/1056+(15397 

\[Epsilon]^2)/83160+(83 a2^2 \[Epsilon]^2)/9240+(a2^3 \[Epsilon]^2)/132+(37 a2 

\[Epsilon]^3)/3465+\[Epsilon]^5/99)+t^(13/2) ((557 a2^2)/100100-(5 a2^5)/4576+(272 

\[Epsilon])/9009+(47 a2^3 \[Epsilon])/48048+(21457 a2 \[Epsilon]^2)/40040-(15 a2^4 

\[Epsilon]^2)/4576+(41 a2^2 \[Epsilon]^3)/4004+(149 \[Epsilon]^4)/6600-(a2 \[Epsilon]^5)/286); 

g[t_]:=a2+2 Sqrt[t]+3 t \[Epsilon]+4 t^3 ((2 a2)/15+(77 \[Epsilon]^2)/120)+5/2 t^(3/2) ((2 a2)/5+(4 

\[Epsilon]^2)/5)+7/2 t^(5/2) ((3 a2^2)/70+(5 \[Epsilon])/7+(6 a2 \[Epsilon]^2)/35)+3 t^2 (1/3+(a2 

\[Epsilon])/2+\[Epsilon]^3/6)+5 t^4 (a2^2/175+(5 \[Epsilon])/28+(137 a2 \[Epsilon]^2)/1400+(17 

\[Epsilon]^4)/200)+9/2 t^(7/2) (2/27-a2^3/252+(41 a2 \[Epsilon])/210-(a2^2 \[Epsilon]^2)/42+(14 

\[Epsilon]^4)/45)+6 t^5 (4/405+(4 a2^3)/1575+(a2 \[Epsilon])/21+(8 a2^2 \[Epsilon]^2)/525+(509 

\[Epsilon]^3)/5040-(2 a2 \[Epsilon]^4)/175)+11/2 t^(9/2) ((31 a2)/1485+a2^4/1056+(15397 

\[Epsilon]^2)/83160+(83 a2^2 \[Epsilon]^2)/9240+(a2^3 \[Epsilon]^2)/132+(37 a2 

\[Epsilon]^3)/3465+\[Epsilon]^5/99)+13/2 t^(11/2) ((557 a2^2)/100100-(5 a2^5)/4576+(272 

\[Epsilon])/9009+(47 a2^3 \[Epsilon])/48048+(21457 a2 \[Epsilon]^2)/40040-(15 a2^4 

\[Epsilon]^2)/4576+(41 a2^2 \[Epsilon]^3)/4004+(149 \[Epsilon]^4)/6600-(a2 \[Epsilon]^5)/286); 
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(*Second diffrential equation \[Psi] following the Poisson relationship=*) 

p[t_,y_]:=t (Sqrt[y/t]+(3/(32(\[Pi])^2))^(1/3) Z^(-2/3))^3; 

 

(*Boundary conditions, y[0] and g[0] is equivalent to omiga[0], which represents the null point*) 

omiga[0]=0.48; 

f[0]=f[omiga[0]^2/2]; 

g[0]=g[omiga[0]^2/2]; 

 

Function to determine a2 and \[Psi] 

(*Function to search for each element*) 

calculateValues[atomicNumver_,tmaxValue_,a2Max_,a2Min_]:=( 

(*Define Variables that are called in function*) 

(*Atomic number of the element to be searched*) 

Z=atomicNumver; 

(*Max number of steps for do function to obtain list of \[Psi] results for each w*) 

tmax=tmaxValue;  

(*Number of a2 steps to run*) 

nmax=10; 

(*Min a2*) 

a2max=a2Max;  

(*Max a2*) 

a2min=a2Min; 

(*define the step size, da2*) 

da2=(a2max-(a2min))/nmax; 

Do[{ 

(*a2 defined as a function of step size*) 

a2=a2min+(da2*n); 

(*Do start to obtain list of \[Psi] against w*) 

Do[{ 

omiga[n+1]=omiga[n]+0.1; 

x[n_]:=omiga[n]^2/2; 

h=x[n+1]-x[n]; 

k1=g[n]; 

l1=p[x[n],f[n]]; 
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k2=g[n]+(l1 h)/2; 

l2=p[x[n]+h/2,f[n]+(k1 h)/2]; 

 

k3=g[n]+(l2 h)/2; 

l3=p[x[n]+h/2,f[n]+(k2 h)/2]; 

k4=g[n]+l3 h; 

l4=p[x[n+1],f[n]+k3 h]; 

f[n+1]=f[n]+(h/6 )(k1+2 k2+2 k3+k4); 

g[n+1]=g[n]+(h/6) (l1+2 l2+2l3+l4); 

},{n,0,tmax}]; 

 

(*Defining table of \[Omega],\[Psi]*) 

table1=Table[{omiga[i],f[i],x[i]},{i,0,tmax}]; 

(*Defining table of \[Omega],\[Psi]^2-\[Psi]/2*) 

table3=Table[{omiga[i],Abs[g[i]-f[i]/x[i]]},{i,0,tmax}]; 

(*Defining variables listed as a function of 0<n<nmax*) 

radius[n]=wValue[n]^2/2 \[Mu] 10^10; 

wValue[n]=table3[[Ordering[table3[[All,2]],1],1]][[1]]; 

phi[n]=table1[[Ordering[table3[[All,2]],1],2]][[1]]; 

xValue[n]=table1[[Ordering[table1[[All,2]],1],3]][[1]]; 

},{n,0,nmax}]; 

(*Creating table containing n, a2, \[Omega], Subscript[r, ws], \[Psi]*) 

table4=Table[{n,a2min+(da2*n),radius[n],Z/(4\[Pi] \[Mu]^3) 

(\[Epsilon]+(phi[n]/xValue[n])^(1/2))^3},{n,0,nmax}]; 

(*Calling table 4 as an output in tableform*) 

table4//TableForm 

); 

(*Eg: Calculate values for Cu (Z=29) at 50 intervals*) 

(*3 decimal places refinement*) 

calculateValues[26.17,50,-1.6248,-1.625] 

0 -1.625  1.58304 -2.61758*10^28+1.39559*10^28 I 

1 -1.62498 1.6545  -2.07559*10^28+1.48789*10^28 I 

2 -1.62496 1.80215 -1.71583*10^28+1.53566*10^28 I 

3 -1.62494 2.11639 -2.6661*10^27+1.34254*10^28 I 
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4 -1.62492 1.72754 9.40891*10^28 

5 -1.6249  1.58304 1.55965*10^29 

6 -1.62488 1.51316 2.19175*10^29 

7 -1.62486 1.44485 2.70941*10^29 

8 -1.62484 1.37812 3.03986*10^29 

9 -1.62482 1.37812 3.66395*10^29 

10 -1.6248  1.31297 4.12254*10^29 

------------------------------test_runge.nb End------------------------------ 


