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Abstract

The ability to design drugs that disrupt formation of protein-protein interfaces is of 

particular interest to the pharmaceutical industry due to its promise for opening an entire 

new range of drug targets, many of which have already been well characterised in terms 

of their disease causing effect on the human body. Furthermore these interactions can be 

involved in many processes unique and essential to bacteria and viruses.

We show that pockets on protein-protein interface are smaller but more numerous than 

those of marketed drugs using a pocket fnding algorithm (Q-SiteFinder). We investigate 

the similarities and differences between several candidate compounds designed to bind 

and disrupt protein-protein interfaces and compare to those of current marketed drugs 

designed to bind more traditional protein targets.

We ask the further question as to whether it is possible to better identify pockets on a 

protein surface as likely to be drug binding. We conclude that it is possible to carefully use 

random forest machine learning techniques to marginally improve these predictions. 

However, it is extremely diffcult to use simple physical parameters to provide added 

information as to the maximal affnity that a small-molecule might be able to achieve in a 

given binding pocket.

Further to the above questions we then investigate the hDM2-p53 system which when 

disrupted can induce apoptosis in many forms of cancer, making it a target of 

considerable interest to the pharmaceutical industry. Molecular docking is exploited in 

order to generate likely structural conformations of oligoamide hDM2-p53 inhibitors which 

can be used as a starting point for molecular dynamics simulations. These simulations 

using the AMBER/GAFF force feld are then further developed to perform 

replica-exchange alchemical free energy calculations using the Bennett Acceptance Ratio 

non-biased estimator. These simulations are in general shown to be very accurate and 

show promise in generating hypotheses for novel high-affnity oligoamide compounds.
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1 Thesis introduction

The introduction to the work presented in this thesis is split into two main sections, 

the frst provides technical background to many of the computational techniques 

used during the course of this work, whilst the biological background introduces 

the systems that are investigated.

1.1 Technical background

1.1.1 Molecular mechanics force felds

Molecular mechanics force felds can be derived from quantum mechanical  

descriptions of a group of atoms by making two major assumptions. The frst is 

the Born-Oppenheimer approximation which states that electrons travel orders of 

magnitude faster than nuclei, thus they can be treated such that they will react  

instantaneously to any movement of the nuclei. The second is that the nuclei can 

be treated as particles that follow Newtonian dynamics hence the charge 

associated to the electrons can then be represented as a single point charge, 

centred on the atomic nuclei.

On making these assumptions it is possible to construct a Hamiltonian that 

describes the approximate motion of a group of atoms. There are several families 

of force felds that do this including AMBER, CHARMM, OPLS and GROMOS all of 

which have been applied to biological systems. All of these force felds take 

broadly the same shape, but we will focus on the AMBER force felds since they 

have been used extensively during the course of this work.

1.1.2 AMBER force feld

The AMBER force feld has the functional form:
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V  r N= ∑
bonds

k r l− l0
2 ∑

angles
k −0 

2 ∑
torsions

1
2

V n [1cosn−]

∑
i  j [ A ij

R ij
12−

B ij

R ij
6 

q i q j

R ij ]
(1)

Where the frst term represents the contribution to the total energy of the bonds, 

the second term represents the angles, the third term represents the torsions and 

the fnal term represents the non-bonded terms comprised of Lennard Jones and 

coulomb electrostatics respectively.

More simply the bonded interaction term models a covalent bond between to 

atoms as if the atoms were connected with a spring using a harmonic potential  

with spring constant kb, where l and l0 are the current bond length and the 

equilibrium bond length. Angle bending is modelled as a harmonic potential with  

constant kθ, where θ and θ0 are the current bond angle and equilibrium bond 

angle. The torsional potential at angle ϕ, with amplitude determined by Vn, in the 

AMBER force feld is the sum of cosine terms with varying periodicity (determined 

by the multiplicity parameter n and phase parameter γ) that can be combined as a 

fourier sum such that it can describe most torsional potentials with three cosines.

Non-bonded interactions are described by a Lennard-Jones 12-6 potential, where 

Aij =εij
*(Rij

*)12 and Bij = 2εij
*(Rij

*)6. Here εij = (εi εj)½ and Rij
* = Ri

* + Rj
*. εi and εj are the 

depth of the Lennard Jones well for the i th and jth atoms respectively. Ri
* and Rj

* is 

the equilibrium distance of the Lennard Jones well. Electrostatic interactions are 

modelled by the coulomb potential, where q i and qj are the atomic charge of the ith 

and jth atoms, ε is the permittivity of free space and R ij is the distance between the 

atom centres of the ith and jth atoms.
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1.1.2.a GAFF force feld

The GAFF force feld was derived with the intention of allowing the extension of the 

parameters that allow simulation of protein and nucleic acid such that the AMBER 

family of force felds can be used to study small-molecules containing H, C, N, S,  

O, P and halogen atoms such as those typically of interest in drug discovery. To 

this end the authors defned 35 basic atom types alongside 22 special atom 

types. The atoms are necessarily general in order to allow the force feld to 

represent the vast amount of chemical space that is present in structural 

databases such as over 500,000 structures in the Cambridge Structural 

Database(Allen 2002) (CSD), or chemical databases such as PubChem(LY Geer et  

al. 2010) or ZINC(Irwin and Shoichet 2005) which contain orders of magnitude 

more compounds. The GAFF force feld uses the same functional form as AMBER, 

parameters for charge are added using the HF 6-31G* RESP charge ftting 

method, although the authors note that since AM1 BCC charges are parametrised 

in order to reproduce this charge method these may be preferred in cases such as 

large scale databases of compounds are used, where speed of calculation is 

important(Wang, Wolf, et al. 2004).

In a test of 74 ligand structures minimized using GAFF parameters the authors 

noted that they achieved a 0.25 Å RMSD from the crystal structure, which was 

comparable to the Tripos 5.2 force feld and better than the MMFF94 and 

CHARMM force felds(Wang, Wolf, et al. 2004). In addition it is possible to modify 

parameters based on previously published work, or to perform quantum 

mechanics calculations to validate parameters if the default parameters are 

suspected to be unsatisfactory.
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The rapid calculation of the forces related to the potentials described above is 

discussed in more detail in the section molecular dynamics. It is of particular  

importance to bear in mind several caveats that are introduced in these situations 

and these will be discussed in due course.

1.1.2.b GRID force feld

The GRID force feld was originally developed by Goodford in 1985 and is 

probably the frst example of estimating the interaction energy of a probe with a 

given atom type and a protein molecule(Goodford 1985). GRID was used in the 

development of a potent inhibitor of neuraminidase, which is an early example of  

the successful application of rational drug discovery(von Itzstein et al. 1993). The 

GRID potential takes the form of the sum of Lennard Jones interactions E lj, 

electrostatic interactions Eel and a hydrogen bonding potential Ehb. The Lennard 

Jones function Elj is defned for all positive values of d less than a cutoff of 8 Å.

E lj=
A

d12−
B
d6

(2)

E el=
pq

K  [ 1
d


−

d24sp sq
] (3)

where ε = 4, ζ = 80, K is a combination of geometrical values and natural 

constants, sp and sq are the depths of the charges within the protein for atom p 

and q respectively, and are set to zero if they have fewer than seven protein atoms 

within 4 Å.

E hb=[ C

d6 −
C

d4 ]cosm
(4)

where C = 0.666D dmin
2, θ is the angle subtending the bond between the donor 

atom and hydrogen and the acceptor atom, and m = 2. In cases where Elj is 

repulsive, but Ehb is favoured, Elj is set to zero. Additionally probes and protein 
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atoms are subject to constraints on the number of hydrogen bond acceptors and 

donors that they can make, any probe will take the most favourable values of 

these when the energy is calculated.

1.1.3 Parameter generation

The necessity to generate parameters that accurately describe the behaviour of 

the atoms in the system to be studied was briefy discussed in the section on the 

GAFF force feld. Here we set out in more detail two possible charge calculation 

methods that can be used in tandem with a charge ftting technique known as 

RESP. Finally we discuss the generation of torsional potentials.

1.1.3.a Hartree-Fock Calculations

The Hartree-Fock method allows the approximate computation of the ground 

state wavefunction and energy of a quantum mechanical many body system. 

Carrying out these calculations then allows the computation of atomic charges for 

use in molecular mechanics force felds, or derivation of torsional parameters for 

molecules.

Whilst it is possible to calculate an analytical answer for the ground state 

wavefunction and energy of a hydrogen atom (and related isotopes), it is not 

possible to do so for atoms containing more than one electron. In the case of the 

Helium atom one can use perturbation theory to arrive at an approximate 

analytical solution, however, these approximations do not hold in the case of 

heavier atoms. For many body systems it is not possible to know which 

wavefunction is the correct wavefunction, but using the variation theorem one 

knows that an approximation to the true wavefunction will always have higher 

energy than the true wavefunction. Thus by searching for the minima where the 

frst derivative of the energy of the wavefunction is zero one can identify the 

desired wavefunction. The Hartree-Fock equations are obtained by identifying this 
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energy minima subject to the condition that the molecular orbitals remain 

orthonormal. Constrained minimization can be completed using a mathematical  

technique known as Lagrange multipliers(Leach 2001).

Briefy the main difference between the two body system of the hydrogen atom, 

and a many body system, is that in the many atom system there are interactions 

between electrons, thus altering the spin orbital that one electron occupies will  

change the solution for the remaining electrons. This can be addressed by splitting 

the system into a fxed part ϗj (the nuclei and electrons in fxed spin orbitals) and a 

varied part representing a single remaining electron in spin orbital ϗ i. Three 

operators can then be defned that represent the core Hamilitonian, Coulomb 

interactions and exchange interactions. Taken together we can represent the 

energy as the sum of these three operators H i, Ji, Ki acting on ϗi(Leach 2001).

[−1
2 ∇ i

2−∑
A=1

M Z A

r iA ]i 1∑
j≠ i [∫d2 j 2 j 2

1
r12 ]i 1

−∑
j≠ i [∫d2 j 2i 2

1
r12 ]1 =∑

j
 ij  j 1

(5)

and we then solve the eigenvalue problem, which does not return the orbital ϗ i 

multiplied by a constant, but a series of orbitals ϗj:

F i 1i 1=∑
j

ij j1 (6)

we call Fi the Fock operator:

F i 1= Hcore1∑
j=1

N

[ J j 1− K j 1]
(7)

for a closed shell system:

F i 1= Hcore1∑
j=1

N/2

[2 J j 1− K j 1]
(8)
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It is possible to use the method of Lagrange multipliers previously mentioned to 

return multipliers that are zero unless i equals j, which converts equation 8 into a 

standard eigenvalue equation. It is then possible to solve the equations using self-

consistent feld theory, by the choice of an ansatz used to calculate the value of 

the coulomb and exchange operators, followed by solution of the Hartree-Fock 

equations, these solutions are used in the next iteration until the results for all  

electrons remain unchanged(Leach 2001).

For solution of the Hartree-Fock equation of a whole molecule the Linear 

Combination of Atomic Orbitals (LCAO) method can be used. Typically the one 

electron orbitals are approximated by a linear combination of Slater type orbitals 

(STOs), which are in turn approximated by a linear combination of Gaussian-type 

orbitals for reasons of computability. These Gaussians are known as basis 

functions and are discussed in slightly more detail below. 

1.1.3.b Basis sets

Basis sets are a set of functions that describe the molecular orbitals. One such set 

of functions that can do this are Slater type orbitals (STOs) which take the 

form(Hehre 1969):

R  r =Nrn−1 e− r (9)

They are particularly diffcult to integrate and as such are typically (as is the case in 

Pople basis sets) replaced by a sum of Gaussian functions that approximate the 

form of the STO. Gaussian functions take the form:

G r =x a yb zce− r 2 (10)

In fgure 1.1, sums of 1, 2, 3 and 4 Gaussian functions approximating the STO for 

the 1s orbital where ζ = 1 are shown. As the number of Gaussian functions 

summed increases the approximation of the STO orbital improves.
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Pople basis sets are commonly used for high-level quantum mechanics 

calculations. Pople basis sets assume that core electrons do not affect the 

chemical properties of the molecule very much, whilst the valence electrons do 

vary widely between compounds(Leach 2001). Thus a single function is used to 

represent the core electrons, X. Two additional sets of Gaussian functions Y and Z 

represent valence electrons. The value of X, Y and Z determine the number of  

Gaussians contained in each function. Finally the basis set can contain two 

additional functions that describe polarization and diffuse wavefunctions, these are 

represented by * and + respectively. In the studies undertaken in this work we 

used the 6-31G* basis set, indicating that 6, 3 and 1 Gaussian functions are used 

and polarization effects are taken into account.

9

Figure 1.1: Approximation of the STO for 1s orbitals with ζ = 1 (red) by Gaussian functions with 

one (blue), two (green), three (black) and four (cyan) Gaussian components. The approximation 

of the integral increases in accuracy as more Gaussian functions are used(Hehre 1969).
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1.1.3.c RESP charge ftting

Charge ftting methods aim to take the Molecular Electrostatic Potential (MEP) and 

determine a set of atomic charges for the molecule that best describe the MEP. In 

1984 Singh and Kollman used a method to determine charges for the AMBER 

force feld that they termed ElectroStatic Potential ft (ESP)(Singh and Kollman 

1984). This method uses points on a series of molecular surfaces with gradually 

increasing van der Waals radii for the atoms. The potential is ftted to points that 

exist on the family of molecular surfaces. When AMBER94 was parametrised a 

slightly modifed version of this method called Restrained ESP (RESP) was 

employed(Cornell et al. 1993). RESP uses hyperbolic restraints on non-hydrogen 

atoms, which tends to have the effect of reducing the charge on atoms such as 

buried carbons, which can sometimes be assigned erroneously high charges 

when using the ESP method(Leach 2001).

1.1.3.d AM1 BCC Charge Calculations

The AM1 BCC charge method aims to replicate the atomic charges produced 

when performing a HF 6-31G* calculation followed by ESP charge ftting(Jakalian, 

Jack, and Bayly 2002). Briefy the method is characterised by calculation of 

electronic structure and formal charge using the AM1 semi-empirical charge 

method. This is followed by a Bond Charge Correction (BCC) that has been 

parametrised by ftting to a set of > 2700 compounds for which atomic charge has 

been determined by HF 6-31G* calculations followed by charge ftting by 

ESP(Jakalian, Jack, and Bayly 2002). The method is orders of magnitude faster 

than standard HF 6-31G* calculations, whilst parametrised for use with the 

AMBER force feld family making it an ideal choice for large molecules, or when 

dealing with large datasets.
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1.1.3.e Torsional parameters

Torsional parameters have been noted to be of particular importance when 

parameterizing force felds. Whilst many sets of parameters for a wide variety of 

dihedrals exist in the GAFF force feld, it is inevitable that for some compounds the 

parameters will either not exist or not accurately describe the potential, either in 

terms of the depth of the well associated with the dihedral, or in the location of the 

minima. In the case of a group of oligoamide compounds this has been addressed 

by frst optimizing the geometry of a compound that carries the key torsion using 

HF 6-31G, MP2, BYLP, B3LYP levels of theory. The torsion in question is then 

scanned at 10(degree) intervals using B3LYP/6-31G(d) and B3LYP/6-311G(d,p) 

levels of theory, whereby the rest of the molecule (not including the torsion) is 

optimized at each step(Klein et al. 2006). These torsional profles are then 

converted to a fourier series for inclusion into the GAFF force feld.

1.1.4 Conformer generation

Determination of the bioactive conformation of ligands is a critical step in many 

forms of structure-based drug discovery. Determination of the bioactive 

conformation is particularly diffcult due to the fact that they often exist in extended 

conformations(Diller and Merz 2002) with energies several kcal mol-1 higher than 

their global minima(Kirchmair et al. 2005). Several programs designed to identify 

bioactive conformations ligands exist, which broadly fall into one of two categories 

either generating a single low-energy ligand conformation, or generating an 

ensemble of conformations of which one is the bioactive conformation. Corina is  

an example of the frst class of programs, whilst Omega, VConf, Dgeom and 

Balloon all fall into the second category. Previous work in the lab has identifed 

Omega as one of the fastest and most successful in identifying bioactive 

conformations and for this reason it is used exclusively in this work. 
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Briefy Omega uses a rule-based, depth-frst searching algorithm that generates 

ensembles. Initially Omega enumerates ring conformations using a fragment 

library(Agrafotis et al. 2007),(Nicholls, MacCuish, and MacCuish 2004),(Kristam et  

al. 2005),(Good and Cheney 2003),(Boström, Greenwood, and Gottfries 2003),(J 

Boström 2001). The molecule is then disassembled into fragments of up to fve 

contiguous rotatable bonds whereupon a library of pre-calculated torsions is used 

to generate different conformations for each fragment. The fragments are then 

reassembled based on the order of their energies, which generates a pool of 

alternative molecular conformations. The Merck molecular force feld(Halgren 

1996) (MMFF) is used to calculate the energy of each conformer, and an 

adjustable energy threshold, or an adjustable RMSD threshold is used to flter 

unfavourable conformers.

1.1.5 Adding hydrogen atoms

A related problem to that of conformer generation is the correct assignment of 

charges to both protonatable residues in proteins, and to protonatable species in 

ligands. Many of these species will have pKas that suggest an unambiguous 

answer for the protonation state at a given pH, but in many cases multiple 

solutions may be appropriate. The OpenBabel software and OpenEye Babel both 

provide functionality for adding hydrogen atoms to ligands and have been used 

widely in this project. Additionally the molecular viewer Chimera and Maestro both 

have functionality for adding hydrogen atoms to both protein and ligand atoms.

1.1.6 Protein-ligand docking

The feld of molecular docking could be defned as “Given the atomic coordinates 

of two molecules, predict their 'correct' bound association”(Halperin et al. 2002). 

This could involve the desire to determine the structure of protein-protein, protein-

nucleic acid or protein-ligand complexes. Discussed below are the issues 

associated but not limited to protein-ligand interactions. Most often docking is 

approached as a two stage problem, with the frst being the sampling of 
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conformational space to predict likely orientations and positions of ligand relative 

to protein. The second is the identifcation of the correct orientation and position 

from a list of several candidate poses. The challenge with the frst stage is to 

design algorithms that can determine an ensemble of poses that contain the 

'correct' solution using minimal computational power. The challenge in the second 

stage is to produce scoring functions that are generally applicable to complexes 

and can identify the 'correct' solution from the list generated by the frst stage.

A wide variety of software to perform docking and scoring exist, however, we 

discuss particularly the software used in this study, Autodock and FRED. Both of 

which use distinctly different methods to generate likely conformations, and 

additionally use different scoring functions to attempt to identify the 'correct' 

binding pose.

1.1.6.a Autodock

Autodock is one of the most widely used docking programs with over 2000 

citations of the methods paper, that has the additional beneft of being freely 

available to academics(Morris et al. 1998). The original Autodock software is now 

at version 4, and includes a genetic algorithm, and a Lamarckian genetic algorithm 

that both outperform the original simulated annealing method, with the Lamarckian 

genetic algorithm performing the best. Additionally an improved scoring function 

has been described(Huey et al. 2007). Many studies have been performed using 

Autodock, and it has been shown to perform well(Park, J Lee, and S Lee 2006), in 

many cases outperforming other popular docking software such as FlexX(Rarey et  

al. 1996) and DOCK(Ewing et al. 2001).

In general genetic algorithms use defnitions and ideas from the feld of evolution 

and apply them to problems in computation. In the case of a docking problem 

variables that describe translation, orientation and conformation of the ligand are 

called 'state variables'. Each of the state variables describes a 'gene' whereby the 
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collection of genes for each ligand determines a genotype. The specifc atomic 

coordinates of each ligand correspond to a phenotype. The interaction energy 

between the protein and ligand is calculated using a force feld and describes the  

'ftness' of the solution, whereby solutions with better ftness are more likely to 

reproduce, and less ft solutions are more likely to die. New solutions can be 

generated by 'crossover' of genes from two parents to produce offspring. In 

addition mutation effects, whereby a gene is randomly mutated can also be 

described(Morris et al. 1998). The basic genetic algorithm described above can 

perform a global search of the possible solution space, however, it was also 

desirable to allow local search once a more favourable region is located and to this 

end the Lamarckian genetic algorithm was developed.

The Lamarckian genetic algorithm uses the same style of genetic algorithm as 

above for local search, but also implements a local search similar to that 

developed by Solis and Wets(Solis and Wets 1981). The combination of these two 

methods was shown to perform better than either of the methods 

independently(Morris et al. 1998).

Further to their previous work on producing a force feld for use with 

Autodock 3(Morris et al. 1998), the authors also developed a new scoring function 

parameterized on a dataset of 188 protein-ligand complexes with known binding 

affnity and tested their results on a set of 100 protease inhibitors(Huey et al. 

2007).

1.1.6.b FRED

The FRED program uses a modifed Gaussian Docking Function (GDF) that is a 

summation of pairwise terms between protein and ligand atoms. The GDF is a 

function of the area overlap of the two atoms minus the volume overlap of the two 

Gaussian functions describing each atom multiplied by a constant λ, that 

minimizes the GDF(McGann et al. 2003). In equation 11, di,j is the distance 
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between a pair of atom i and j, R i and Rj are the atomic radii of the atoms i and j, 

� V i,j is the intersection volume between the ligand and the negative image of the 

protein binding site, κ is a constant optimized during the development of the 

method. The frst two terms correspond to the atomic area matched, whilst the 

fnal term corresponds to the overlap of molecular volume.

F i , j d i , j=R i

V i , j d i , j

 R i , j

R j

V i , j d i , j

R j

−[163

9   R i
2 R j

2

R i
2R j

2 
3
2
exp  

R i
2R j

2 di , j
2]

(11)

The fnal implementation of the GDF used in FRED is slightly modifed by the 

addition of an exponential function to the volume overlap term that acts to 

penalise clashes between protein and ligand atoms(McGaughey et al. 2007). 

FRED has been shown to be successful in the context of virtual 

screening(McGaughey et al. 2007).

1.1.7 Minimization of a system

Energy minimization of a system to be studied by molecular dynamics is a 

technique applied to ensure that the simulation is stable to numerical instabilities.  

An energy minimization algorithm will identify the frst and second derivatives of the 

energy function that describes the system. The coordinates of the system are then 

varied until the frst derivative of the energy function is zero, and the second 

derivative is greater than zero. This means that the system is in a local energy 

minimum. A variety of energy minimization routines exist for a variety of purposes. 

Conjugate gradient minimization and l-bgfs minimization are both suitable for use 

with molecular dynamics simulations(Liu and Nocedal 1989). When minimizing 

systems on a grid such as is often the case in molecular docking alternative 

algorithms such as the downhill simplex algorithm of Nelder and Mead or Solis 

and Wetts are required(Nelder and Mead 1965),(Solis and Wets 1981).
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1.1.8 Molecular dynamics

Molecular dynamics is the process of numerically integrating Newton's laws of 

motion for a system of many particles interacting as described by a force feld 

such as the AMBER/GAFF force feld described in equation 1. There are many 

programs available to perform molecular dynamics simulations, many of which can 

perform very similar calculations. We focus on GROMACS and Desmond, which 

have both been designed to perform fast numerical integration and have support 

for the AMBER/GAFF force felds.

1.1.8.a Integration

Newton's second law of motion can be stated in differential form as:

d2 x i

dt2 =
F x i

m i

(12)

It is clear then that integration of the equation allows determination of the velocity 

of the particle i, this equation can then be integrated again to determine the 

position xi of the particle at a later time. In general there are no exact solutions to 

the general n-body problem, so numerical integration must be used to determine 

the velocities and positions of the particles in the system at a later time. There are 

many algorithms that can do this, we discuss the leap frog and verlet algorithms 

since they are relatively simple and implemented in GROMACS and Desmond.

The Verlet algorithm uses the positions and accelerations at time t, and positions 

from the previous step r (t - dt) to calculate the new position at t + dt, r (t + dt):

r  t t =r  t  t v t 
1
2  t2 a t −...

(13)

r  t− t =r  t − tv  t 
1
2 t 2a t −...

(14)

Adding the two equations gives:
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r  t t =2r  t −r t− t  t2at  (15)

A variation of the Verlet algorithm called the leap-frog algorithm has also been 

developed, which uses the relationships:

r  t t =r t v t
1
2 t 

(16)

v  t
1
2  t =v t−

1
2 t  t a t 

(17)

So the velocities at time v (t + ½dt) are calculated from the velocities at time v  

(t – ½dt) and the acceleration at time t, followed by the positions at time r (t + dt) 

from the velocities previously calculated.

Another possible method of integration is the velocity Verlet method, which has a 

signifcant advantage over the leap-frog algorithm since it can provide the 

positions, velocities and accelerations at the same time:

r  t t =r  t  t v t 
1
2  t2 a t 

(18)

v  t t =v t 
1
2  t [a t a t t ]

(19)

The velocity Verlet method requires a three-step methodology since the 

acceleration at time t and t + dt is required, so once the positions at time t + dt is 

calculated the velocities at time t + ½dt can be calculated:

v  t
1
2  t =v  t 

1
2 t a t 

(20)

The previous equation allows the fnal step of the calculation detailed in equation 

19 to be carried out. Use of a velocity Verlet method is required if the use of 

certain barostats such as the Anderson or Martyna-Tobias-Klein barostat is 

desired.
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1.1.8.b Temperature control

Since molecular dynamics simulations are aiming to reproduce macroscopically 

observable quantities of the simulated system such as the free energy of binding 

between a protein and a ligand, simulations will often require to be performed in 

the same thermodynamic ensemble as the experiment is performed. Most 

chemical reactions happen in the isothermal-isobaric ensemble (or nPT ensemble)  

meaning that the number of particles in the system n, the pressure P and the 

temperature T are all constant when time averaged. For this reason a thermostat 

and barostat for the system are required to generate the correct thermodynamic 

ensemble. Several methods for implementing thermostats and barostats exist.

One of the simplest methods of controlling the temperature of the system is the 

Berendsen thermostat, which is implemented in both Desmond and GROMACS. 

The Berendsen thermostat mimics weak coupling of the system to an external 

heat bath with temperature T0. This has the effect of slowly correcting the 

temperature towards the target temperature of T0 subject to the equation:

dT
dt =

T 0−T


(21)

Practically this means that the temperature decays exponentially towards T0 with a 

time constant � , which can be particularly useful for equilibration of systems. The 

Berendsen thermostat does not however generate the nPT thermodynamic 

ensemble since it suppresses fuctuations in the kinetic energy of the system(D. 

Van Der Spoel, E. Lindahl, B. Hess, A. R. Van Buuren, E. Apol and D. P. Tieleman,  

A. L. T. M. Sijbers, K. A. Feenstra 2005).
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1.1.8.c Pressure control

There is a Berendsen algorithm for pressure control which uses similar ideas to the 

Berendsen thermostat, whereby the volume of the box is altered at each step. 

Here P is the current system pressure, P0 is the reference temperature and � P is 

the time constant.

dP
dt =

P0−P
P

(22)

at each step the box volume is scaled by a factor η and the coordinates and 

velocities are rescaled by the cube root of η. In this equation ß is the isothermal 

compressibility of the system.

=1−
 t
p

P0−P 
(23)

Once again the Berendsen barostat can suffer from the problem that it does not 

generate the correct thermodynamic ensemble, so whilst it is useful for 

equilibrating systems to a desired pressure it is not appropriate for use in 

situations whereby simulation in a well-defned thermodynamic ensemble is 

required(D. Van Der Spoel, E. Lindahl, B. Hess, A. R. Van Buuren, E. Apol and D.  

P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra 2005).

The extended ensemble Parrinello-Rahman barostat is another alternative for 

pressure control in MD simulations. However, we discuss the Martyna-Tobias-Klein 

combination since we use it in free energy calculations discussed in later chapters.

The Martyna-Tobias-Klein nPT system in Desmond is essentially using a Nose-

Hoover temperature control system, with the pressure controlled by a constant 

pressure, constant entropy piston(Martyna, Tobias, and ML Klein 1994).
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1.1.8.d GROMACS

GROMACS 4.0 has been designed to be a fast, open and scalable piece of 

software for performing molecular dynamics simulations(Hess et al. 2008). Earlier 

versions of GROMACS took advantage of code optimizations for specifc 

computer architectures(Lindahl, Hess, and Spoel 2001). Version 4.0 builds on 

these foundations and attempts to improve the scalability of the algorithms 

employed such that multiple cpus can be employed to simulate a single system 

without loss of speed. One of the main benefts of GROMACS is the user 

community that has developed many analysis tools for GROMACS 

trajectories(Hess et al. 2008). One of the major disadvantages of GROMACS is 

that it currently employs a leap-frog algorithm as the main integrator meaning that 

Nose-Hoover pressure control is not available, however this is being addressed 

with future releases expected to support use of velocity verlet integrators.

1.1.8.e Desmond

The Desmond algorithm was originally designed as a scalable algorithm for a 

custom built simulation engine called ANTON. However, the Desmond code has 

been ported to run on x86 based processors and shows speed similar to that of 

other high-performance MD codes(Bowers et al. 2006),(Hess et al. 2008). 

Desmond has been used for performing free energy calculations and benefts from 

a bundled GUI that in some cases can aid in designing simulations. Furthermore it  

uses the leapfrog algorithm, enabling use of Nose-Hoover 

thermostating/barostating(Bowers et al. 2006).

1.1.9 Free energy calculations

Accurate determination of the free energy of protein-ligand association is of 

obvious interest due to the direct relationship to the binding affnity.

∆G=∆ r G
0RT lnK eq (24)
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Here ∆G is the change in Gibbs free energy, ∆ rG0 is the change of reaction free 

energy under standard conditions, R is the molar gas constant, T is the 

temperature and Keq is the equilibrium constant of the reaction which in this case 

will be the dissociation constant Kd. Since we want to determine the equilibrium 

free energy of the association, we know that ∆G is zero, so we can rearrange to 

show:

K d=e
−

∆r G0

RT
(25)

Computationally direct simulation of free energy is very demanding, since whilst 

thermodynamic properties such as internal energy or pressure rely on sampling of 

low energy regions of phase space, accurate determination of free energy 

depends heavily on high energy regions of phase space, which are not 

preferentially sampled by molecular dynamics simulations. As a result of these 

sampling diffculties much work has been carried out to investigate novel methods 

to obtain  accurate, well converged values of free energy. Even more diffcult to 

achieve is accurate, well converged values for entropy and enthalpy of the 

association. For constant nPT systems free energy is related to enthalpy change 

(∆H) and entropy change (∆S) by the simple thermodynamic relationship:

∆G=∆H−T ∆S (26)

So given that free energy has already been determined it would seem that 

determination of the enthalpy of the system will elucidate the entropy of the 

system. The simplest way to do this would be to determine the average enthalpy 

in state A and state B and subtract. However the difference is a small number and 

the values are large numbers that scale with system size. This means that in 

practice the error on the value can be an order of magnitude larger than the error  

on measurement of the free energy(Chipot and Pohorille 2007). From a pragmatic 

point of view whilst the entropy and enthalpy contributions to binding may be of 

interest to a medicinal chemist, the computational chemist is perhaps only 
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interested in the end goal of developing a compound with high binding affnity. The 

enthalpic and entropic contributions may be best determined by methods such as 

Isothermal Titration Calorimetry (ITC)(Freire 2008). 

It is possible to consider two states A, and B for which we are interested in 

calculating the free energy difference between. In this chapter state A might be an 

oligoamide compound of interest, whilst state B might be a reference oligoamide 

compound. If we were then to introduce a third state C which represents a third 

different oligoamide compound, we could calculate the difference in energy 

between C and B, allowing us to rank compound A and C in terms of their binding 

affnity.

1.1.9.a Perturbation theory

We will now consider the method of thermodynamic perturbation, often called free 

energy perturbation (FEP). If we consider the difference in free energy between the 

previously mentioned states A and B.

∆G=GB−G A=−kBT ln
ZB

Z A

(27)

Here we use G to represent quantities of free energies, kB is the boltzmann 

constant, T is the temperature of the system and ZA, ZB are the partition functions 

of the respective states. Substituting in the equation for the two partition functions 

and simplifying leads to:

∆G=−kBT 〈exp−[ HB−H A
kB T ]〉0

(28)

The subscript zero shows that the average is calculated over the conformations 

generated whilst sampling in state A. Simulating the reverse process we can swap 

the subscript zero for one (indicating sampling in state B), and switching the order 

of subtraction of Hamiltonians. This method has been attributed to 
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Zwanzig(Zwanzig 1954). Convergence of calculations using this method can be 

checked for convergence by carrying out the forward and reverse calculation to 

see whether they agree. The method is unlikely to converge if state A does not 

overlap in phase space with state B(Leach 2001).

1.1.9.b Coupling Parameter

In the case of creation/annihilation or mutation of atoms as in alchemical free 

energy calculations we can use a coupling parameter λ. When considering 

mutation between two states A and B we can describe state A as having λ = 0, 

and state B as having λ = 1. This can allow us to defne intermediate states such 

that when state A and state B do not have good phase space overlap we can 

defne an intermediate state Z that has overlap with both state A and state B. 

Whilst state A and state B are likely to have a physical reality, state Z can be an 

alchemical intermediate, with some degree of the interactions from both physical 

states. The coupling parameter λ describes this intermediate state.

1.1.9.c Thermodynamic integration

Thermodynamic integration (TI) is an alternative method that can be applied to 

calculated the free energy difference between two states. The formula that 

describes the method is:

∆G=∫ 〈∂ H pN , rN 
∂ 〉



d
(29)

Conceptually the change in the energy between two lambda states is calculated, 

and the area under the line that this represents is integrated using the trapezium 

rule(Leach 2001).
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1.1.9.d Non-equilibrium methods

A counter intuitive approach to gaining estimates of the equilibrium free energy, is 

to approach the problem by looking at non-equilibrium simulations. Perhaps 

surprisingly this leads to several successful methods for predicting the equilibrium 

free energy. Many of these methods are reviewed in detail in the book by Chipot 

and Pohorille(Chipot and Pohorille 2007) and additionally in the review article by 

Cossins et al.(Cossins et al. 2009).

1.1.9.e Jarzynski's Identity

For a slow growth simulation that by defnition cannot proceed infnitely slowly we 

do know that the work W(� ) performed on the system during the transformation is 

on average greater than or equal to the free energy difference ∆G between the 

states at λ = 0 and λ = 1.

〈W 〉∆G (30)

Jarzynski showed that it is possible to convert the inequality into an equality 

provided that a defned path λ(t) connects the initial and fnal states. Jarzynski 

showed that the left hand site of the equation which is the exponential average of  

a set of non-equilibrium work values W(� ) can yield an equilibrium free energy ∆G.

〈exp [−W ] 〉=exp −∆G (31)

In reality the exponential average here has been observed to be noisy and biased, 

thus the average depends strongly on behaviour at the tails of the distribution 

which are not as well sampled, which can lead to problems with convergence of  

the free energy values(Shirts et al. 2003).

1.1.9.f Weighted Histogram Analysis Method

Statistical mechanics tells us that the probabilities of observing a given macrostate 

of the system are linked to the partition function of the system. Thus observations 

from a simulation of the system can allow determination of the density of states, 
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where ß is the inverse of the boltzmann constant multiplied by the system 

temperature, Ω(U) is the probability distribution of macrostates with energy U, and 

Z(T) is the partition function of the system.

pU ;T =
e−U U 

Z T 

(32)

If we split this continuous measure of probability into fnite bins, and let f(U) be the 

number of times an energy in the range [U,U+∆U] is observed in a simulation we 

can write a formula for the normalized observed energy distribution.

pU ;T =
f U 

∆U∑
U '

f U '
(33)

substituting into our original equation:

U =pU ;T 0e
0 U Z T 0 (34)

That is to say that an estimate of the density of states can be determined from a 

simulation at temperature T0. It is then possible to use the density of states to 

calculate thermodynamic properties of interest. There are a few problems in the 

above method that come to light when performing a more thorough analysis. 

Although in principle we can measure the density of states from a simulation at 

any temperature, in practice the potential energies at a temperature far from the 

temperature of interest will lead to poor statistics(Chipot and Pohorille 2007).

Ferrenberg and Swendsen developed a procedure for incorporating data from 

simulations at multiple temperatures (or coupling parameters) to predict ensemble 

averages such as free energy(Ferrenberg and Swendsen 1989). The idea is that 

the contribution to the ensemble average from each histogram should be based 

on the error associated to that histogram. Thus histograms with lower errors will 
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contribute more to the fnal measurement. An illustrative derivation is shown in the 

book by Chipot and Pohorille(Chipot and Pohorille 2007), and a detailed derivation 

is presented in the book by Frenkel and Smit(Frenkel and Smit 2002).

1.1.9.g Bennett Acceptance Ratio

One of the major problems with WHAM is that the choice of centre and bin width 

of histogram can bias the free energy estimate. The Bennett Acceptance Ratio 

was originally shown to be an unbiased estimator of the free energy(Bennett 

1976), and has subsequently been shown to be analogous to WHAM in the limit of  

histograms with infnitesimally narrow width(Shirts and Chodera 2008).

Writing the Crooks relation - which looks at the relationship between work and free 

energy when looking at the forward and reverse transformations - as an average:

∫ f W ; ∆Ge−W p f W dW =∫ f W ; ∆Ge− ∆ G pbW dW (35)

The function f(W; ∆G) is an arbitrary function, and p f and pb are the forward and 

backward transformation probability densities respectively. Bennett then showed 

that the function that minimized the mean square error of the free energy is:

f W ; ∆G=[ e−W −∆ G 

N f 
1

N b
]
−1 (36)

where Nf and Nb are the number of forward and backward trajectories. This yields 

an implicit equation that can be solved for ∆G by a Newton-Raphson method.

∑
i=1

N f 1

1
N f

N b
eW i− ∆G 

=∑
i=1

Nb 1

1
Nb

N f
e  W i− ∆G 

(37)

Here W is the work in the forward direction, and W  is the work in the backward 

direction(Chipot and Pohorille 2007).
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1.1.9.h Lambda dynamics

Lambda dynamics is a non-equilibrium method where λ is an explicit degree of 

freedom. In lambda dynamics the system is slowly changed between λ = 0 and 

λ = 1 over the course of time. In the limit that τ → ∞ the transformation tends to an 

equilibrium simulation.

∆G= lim
∞

∫
0


∂ H
∂ =t

̇t dt
(38)

Lambda dynamics have been used in many situations, Khandogin and Brooks 

used lambda dynamics to model protonation states of protonatable residues in 

constant pH molecular dynamics simulations(Khandogin and Brooks 2005), whilst 

Michel et al. used water molecules with variable lambda states in monte carlo 

simulations to predict the location of structural waters(Michel, Tirado-Rives, and 

Jorgensen 2009).

1.1.10 Binding site detection

A relatively large number of pocket detection algorithms have been proposed. 

These pocket detection algorithms can be grouped according to the principles 

that they make use of in order to make their pocket predictions. The largest 

number of algorithms for pocket detection fall into the category of geometry based 

methods. These methods all use geometric considerations to defne pockets. 

Studies have shown that the ligand binding site is commonly found in the largest 

geometric pocket(Laurie and Jackson, 2005). Energy based techniques have also 

been developed to allow the calculation of the point interaction energy between a 

probe molecule (e.g. a methyl, hydroxyl or amine group) and the protein(Laurie and 

Jackson, 2005).

The approach of using Q-SiteFinder to analyse bound protein-ligand, or protein-

protein complexes can give insight into the nature of the interactions, but in many 

cases the structure of the bound complex may not be available, there may 
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however, be an unbound structure available. To this end it would be desirable to 

determine a method for assessing the usefulness of our predictions on unbound 

protein complexes. 

Previously in the Q-SiteFinder paper(Laurie and Jackson, 2005) analysis of 

prediction of binding pockets was undertaken by superposing bound protein with 

unbound partner protein, and defning the ligand from the bound protein to be the 

unbound protein ‘ligand’. A successful prediction on the unbound protein was 

defned with the same 25 % precision cut-off. Q-SiteFinder was shown in this case 

to be less successful when predicting on unbound rather than bound structures,  

with fewer structures in the top 3 sites. The method described above has some 

problems when applied to predicting protein-protein interaction pockets from 

unbound structures. Previous work in the lab has investigated 3 methods that may 

be applied to prediction of protein-protein interface pockets(Burgoyne, 2007). 

Briefy these were: pockets determined on the unbound structure within 5 Å of the 

interacting protein superposed on the bound structure; pockets determined on the 

unbound structure that are within 1 Å of a grid point that defnes a pocket when 

superposed with the bound structure; clefts that are lined with the surface of 

interface residues in the bound complex. The best of these methods was 

determined to be assessing the mapping of pockets to Solvent Accessible 

Surface Area (SASA) on the bound protein. A comprehensive discussion of pocket 

detection algorithms is covered by Laurie et al.(Laurie and Jackson 2006) and 

some recent developments are included in the work by Fuller et al.(Fuller, 

Burgoyne, and Jackson, 2009).
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1.2 Biochemical background

1.2.1 Protein-protein interactions

Protein-protein interactions may be defned as interactions that occur between 

two or more protein chains. However, we make further distinction based on the 

size of the interacting protein chains. We defne a ‘pure’ protein-protein interaction 

as one occurring between two distinct protein domains. Making this size 

dependent distinction causes us to exclude protein-peptide interactions (such as 

those between SH2 domains and their interacting peptides). The small size (and 

associated fexibility) of peptides allows them to be treated using techniques that 

would usually be applied to small-molecule compounds.

Protein-protein interactions have been studied widely from both experimental and 

computational perspectives. Interface size, shape and hydrophobicity have been 

investigated. Protein-protein interfaces have been observed to be large (~1,500 - 

3,000 Å2) compared to protein-small-molecule interactions (~ 300 - 1,000 Å2).

The concept of ‘hot-spots’ with regard to protein-protein interactions was brought 

to the fore by Clackson and Wells(Clackson and J A Wells 1995). Using alanine-

scanning mutagenesis, whereby residues from each target are systematically 

mutated to an alanine and the resulting change in binding free energy is  

measured. They demonstrated for the 30 contacting residues in the interaction 

between human growth hormone (hGH) and the extra-cellular domain of its frst  

bound receptor (hGHbp) that a central hydrophobic region dominated by two 

tryptophan residues accounts for three-quarters of the total binding affnity. 

Clackson and Wells observed that the residues surrounding the two important 

tryptophan residues were generally hydrophilic and partially hydrated(Clackson 

and J A Wells 1995). This work was vastly expanded on by Bogan and Thorn who 

compiled a database of 2,325 alanine scanning mutagenesis experiments(Bogan 
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and Thorn 1998). The resulting analysis of this database indicated that the free 

energy of binding is not uniformly distributed across the binding interface. They 

also observed that interfaces are often enriched in tryptophan, tyrosine and 

arginine. Their fnal major observation was that once again the energetically less 

important residues surrounding these residues appear to occlude bulk solvent 

from the hot-spot, which is a necessary condition for energetically favourable 

interactions(Bogan and Thorn 1998). An example of a ‘hot-spot’ is shown in fgure 

Error: Reference source not found.

30

Figure  1.2: A hot-spot on the human Growth Hormone Receptor is shown in red. The two 

tryptophan  residues  contribute  the  most  to  the  overall  binding  affnity  to  human  Growth 

Hormone, with 8 out of 31 residues contributing 85 % of the total binding energy. The green 

region shows the area over which the human Growth Hormone protein interacts(Clackson and 

J A Wells 1995). Image generated with Chimera, using PDB id 1A22.
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Protein-protein interactions are ubiquitous in cell biology with estimates based on 

model organism interactome data, protein domain structure, genome wide gene 

expression data and functional annotation data putting a conservative estimate on 

the number of interacting proteins at around 40,000 interacting protein 

pairs(Rhodes et al. 2005). Protein interaction networks contain an unprecedented 

level of complexity and diversity with a multitude of distinct feedback loops and 

control mechanisms allowing a wide regulatory impact. Malfunction of these 

control mechanisms can lead to disease. As a result it would be desirable to be 

able to target a specifc protein-protein interaction that is acting as a switch for the 

transition between a normal, and a disease state. 

An example of a specifc case whereby disrupting a protein-protein interaction 

would give desirable therapeutic benefts is the Bcl-2 family of apoptosis 

regulators. The Bcl-2 family of proteins is involved in the regulation of programmed 

cell death (apoptosis), by controlling mitochondrial outer membrane 

permeabilzation. Many cancer cells express anti-apoptotic Bcl-2 family members 

in order to avoid apoptosis. It has been shown that selective antagonism of Bcl-2 

family members is possible(Letai 2005), and effective in treating cancer cells 

in-vitro and in-vivo(Oltersdorf et al. 2005).

Chemical genetics is the study of gene-product function at the level of the cell or  

organism. In this approach, small molecules that bind directly to proteins are used 

to alter protein function. The effect of altering protein function is then analysed by 

observing the kinetics of the system in-vivo. Modulation of protein-protein 

interactions would also open up a whole new area of chemical genetics whereby 

biologists could probe specifc interactions in-vivo.
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There has been limited success in modulating protein-protein interactions so far. 

The vast majority of the therapeutics that have currently been marketed are 

biomolecules, such as antisense antibodies, and peptide therapies. These types of  

therapeutics have many disadvantages, such as high cost, and lack of oral  

bioavailability (meaning that they cannot be administered orally). As such it is 

desirable to target these interactions using small-molecules. Small-molecules have 

many advantages, particularly they are generally cheaper than other forms of 

therapeutics, and can be administered orally(Wells and McClendon, 2007).

1.2.2 Small-molecule protein-protein interaction 

inhibitors

Here we defne small-molecule protein-protein interaction inhibitors (PPI inhibitors)  

as small-molecules that directly compete with one of the protein partners from a 

discontinuous protein-protein interface(Wells and McClendon, 2007). This 

defnition specifcally excludes protein-linear peptide motifs e.g. SH2 domains, and 

also allosteric inhibitors e.g. those targeted against TNFα(Berg 2003). As 

previously mentioned it would be desirable to be able to produce small-molecules 

that were capable of inhibiting protein-protein interactions particularly with respect 

to drug discovery. As such a brief overview of progress in the feld of producing 

Protein-protein interaction (PPI) inhibitors suitable as therapeutics is presented.

The discovery of small-molecules that modulate protein-protein interactions has 

largely been unsuccessful(Fry 2006), with only one drug on the market falling into 

this class of therapeutics(D Kuritzkes, Kar, and Kirkpatrick 2008). Previously 

protein-protein interactions have come to be thought of as ‘diffcult’, ‘high-risk’ or 

even ‘undruggable’(Whitty and Kumaravel 2006). However, in recent years there 

have been several successes allowing researchers to become more confdent in 

protein-protein interactions as a possible therapeutic target(Wells and McClendon, 

2007),(Fry 2006),(Arkin and Wells, 2004),(Chène 2006). There are many strategies 

that have been discussed for successfully targeted protein-protein interactions.

32



1 Thesis introduction

1.2.2.a A model for PPI inhibitor drug discovery

One such approach to determining the drugability of protein-protein interfaces is 

to use a decision tree to aid selection(Chène 2006). Chène makes two important 

points before describing a decision tree. The frst is that even if an interface 

doesn’t ft the decision tree, it may still be possible to obtain molecules that 

prevent interface formation. Secondly that even if it is possible to determine 

inhibitors with IC50 values in the low micro molar range, a large number of these 

compounds will never enter clinical use. The decision tree proposed by Chène is  

shown in fgure 1.3 Chène argues that it is favourable to have structural 

information on the target allowing the drug-discovery process to be guided by this 

information. Having access to the structure of the target will be useful in evaluating 

the target prior to embarking on the costly process of drug discovery, whilst also 

helping to improve the potency of compounds during the optimization phase. 

Once an interface for which a structure is available has been selected the structure  

can be evaluated for the presence of cavities. The presence of a well-defned 

pocket across the contact region of the two proteins is the most favourable 

scenario, as the presence of such a pocket is more likely to allow the formation of 

a stable protein-inhibitor complex. However, it is important to bear in mind the fact 

that the contact region of some non-complexed proteins is fexible, and allows 

conformational changes on binding. One particular example is the Interleukin-2 

(IL-2)/Interleukin-2 receptor α (IL-2Rα) complex which has been shown to have a 

fexible binding interface. On binding of the small-molecule SP-4206 to IL-2, the 

molecule accesses a pocket, which is not observed in either the apo, or the 

IL-2Rα bound structure(Thanos, DeLano, and JA Wells 2006). Once a suitable 

pocket has been identifed it is most favourable if the pocket contains hydrophobic 

residues, which favour the design of lipophilic inhibitors. Once a suitable 

hydrophobic pocket has been identifed the size of the pocket can be determined. 

The size of the pocket should be suffcient to accommodate an inhibitor. Analysis 

of 20 marketed drugs has shown that they have solvent-accessible surfaces that 

range from 150 Å2 to 500 Å2(Gadek and Nicholas 2003). Chène also suggests that 

the pocket should not be too large, such that key residues interacting with the 
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inhibitor are not too distant(Chène 2006). The fnal branch in the decision tree is 

shape complementarity between the two interacting subunits within the pocket. 

Chène suggests that the less favourable case occurs when the two interacting 

proteins make many densely packed contacts. This scenario would make it hard 

for inhibitors to make additional new contacts to enhance their potency, whilst also 

mimicking the interactions that are made as standard by the interacting protein 

partners(Chène 2006).

Figure  1.3:  Proposed  decision  tree  for  evaluating  potentially  druggable  protein-protein 

interfaces. Adapted from Chène(Chène 2006).

Several PPIs have been investigated during the course of this investigation. Each 

of them is discussed giving some background to their mechanism of action, the 

approach applied to small-molecule drug discovery, and the success of any 

resulting compounds from the drug discovery effort.

1.2.2.b A database of protein-protein interactions

TIMBAL is a hand-curated database of protein-protein interactions and inhibitors 

mined from literature. The properties of small-molecules from this database have 

been investigated where it was found that many of them have properties that are 

fairly close to those of existing drug-like compounds. Furthermore the database is 

linked to CREDO and PICCOLO, databases of protein-ligand, and protein-protein 

interactions(Higueruelo et al., 2009).
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1.2.3 Protein-protein interactions of interest

1.2.3.a Interleukin-2/Interleukin-2Rα

Interleukin-2 (IL-2) is a 133 residue cytokine, playing a role in growth, activation 

and differentiation of T cells. IL-2 binds to a heterotrimer (IL-2Rα, IL-2Rβ, IL-2Rγ) 

located on the T cell surface. Monoclonal antibodies that recognize IL-2Rα and 

block binding of IL-2 have been developed and marketed as Basiliximab and 

Daclizumab respectively(Waldmann 2003). The success of these antibodies in 

producing a clinical effect to suppress the immune response associated with 

organ transplant rejection validates the IL-2/IL-2Rα interaction as a therapeutic 

target. X-ray crystallography and NMR spectroscopy have been used to 

structurally characterize IL-2(Fry 2006). The pharmaceuticals company Roche 

attempted to fnd small non-peptidic compounds that would act as an inhibitor of 

the interaction by binding to IL-2Rα. They prepared a series of acylphenylalanine 

derivatives designed to mimic Arg38 and Phe42 from the IL-2 binding epitope. 

One compound was found to have an IC50 value of ~ 45 μM. This lead compound 

was further optimized resulting in a compound with an IC50 value of 3 μM. It was 

then discovered that whilst the acylphenyalanine derivatives were designed to bind 

IL-Rα the optimized lead compound actually bound to IL-2(Fry 2006). X-ray 

structures of IL-2/IL-2Rα complex allowed post-analysis of the design strategy 

that had been employed. It showed that the idea to attempt to mimic Arg38 and 

Phe42 appeared to be reasonable, but that the pocket on IL-2Rα was quite 

shallow. It also showed that the optimized compound was a successful (but lucky) 

mimic of IL-2Rα. Further optimization of the 3 μM compound realised an inhibitor 

successful to 60 nM, and have gone on to produce 600 nM inhibitors with 

completely non-peptidic scaffolds(Fry 2006). The IL-2/IL-2Rα case study suggests 

that mimicry of key side-chain interactions may be a successful strategy with 

which to target PPIs. As of April 2008, it appears that IL-2/IL-2Rα drug discovery 

is yet to bring a small-molecule inhibitor to the market.
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1.2.3.b Bcl-XL/Bak-BH3 or Bcl-2/Bak-BH3

Drug resistance has been identifed as a major hurdle in developing effective 

chemotherapeutics(Gottesman 2002). The majority of current chemotherapeutics 

damage cellular components, which can lead to a wide variety of undesirable 

post-damage responses. One of the desirable effects of a chemotherapeutics is to 

induce apoptosis, a mechanism for regulated cell death. Bcl-2 and Bcl-X L are 

anti-apoptotic proteins from the Bcl-2 family of apoptosis regulators, which have 

been frequently observed in solid tumours. Both have been linked to resistance to 

chemotherapy. The presumed mechanism by which the Bcl-2/Bcl-XL proteins 

prevent apoptosis is by inhibiting the function of pro-apoptotic members of the 

Bcl-2 family such as Bax and Bak. This is shown diagrammatically in Figure 1.4. 

Bcl-2 or Bcl-XL binds to the BH3 (Bcl-2-homology 3) domain activating Bcl-2 pro-

apoptotic family members. These anti-apoptotic members then associate with 

active Bak protein (a pro-apoptotic family member) thus inhibiting its action. 

Inhibitors of the anti-apoptotic members of the Bcl-2 family are therefore expected 

to restore the function of pro-apoptotic Bcl-2 members causing release of 

cytochrome C which stimulates apoptosis of the cancerous cell. This is expected 

to increase susceptibility to chemotherapeutics, which were previously lowered 

due to over expression of anti-apoptotic Bcl-2 family genes.
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Figure  1.4: Oncogenic stress causes BH3 to bind Bcl-2 and Bak activating these proteins. 

Association of active Bcl-2 with Bak inhibits Bak thus preventing apoptosis. Inhibition of the 

Bcl-2/Bak interaction by a small molecule (such as Obatoclax or ABT-737) induces apoptosis. 

Figure adapted from Dlugosz et al.(Dlugosz et al. 2006).

Structures of both Bcl-2 and Bcl-XL; bound to a peptide fragment of its partner 

protein Bak; exist.  Examination of these structures suggests that the dimensions 

of a pocket on the protein surface are within limits suitable for effcient binding of a 

drug-like molecule(Fry and Vassilev 2005). Many groups have reported small-

molecule inhibitors of Bcl-2 and Bcl-XL, with the best affnity being reported having 

Kd < 1 nM(Oltersdorf et al. 2005).
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Oltersdorf et al. describe the discovery, optimization and in vitro testing of a small-

molecule inhibitor (ABT-737) of the Bcl-2 anti-apoptotic protein(Oltersdorf et al. 

2005). The method employed was high-throughput “SAR by NMR”(Shuker et al. 

1996) screening of a chemical library resulting in the discovery of 4’-Fluoro-

biphenyl-4-carboxylic acid and 5,6,7,8-tetrahydro-napthalen-1-ol with binding 

affnities of Kd = 0.30 mM and Kd = 4.3 mM respectively(Oltersdorf et al. 2005). 

Both of these compounds bind to distinct adjacent sites on the hydrophobic 

BH3-binding groove of Bcl-XL. SAR by NMR technology is based on the idea that 

once several low affnity binding compounds have been identifed they might be 

linked to achieve high affnity binding. The two lead compounds identifed by SAR 

by NMR were optimised to produce compound 1 with K i = 36 nM. Compound 1 

was severely attenuated in the presence of 1 % Human Serum Albumin (HSA), 

with its affnity reduced by a factor > 280. Oltersdorf et al. then used a structure-

based approach to identify functional groups responsible for tight binding to HSA 

and substituting these groups in order to reduce affnity for HSA whilst retaining 

Bcl-XL affnity. The resulting compound was ABT-737 with binding affnity K i < 1 nM 

for Bcl-XL, Bcl-2 and Bcl-w, but K i = 0.46 μM for the less similar Bcl-B, Mcl-1 and 

A1 pro-apoptosis proteins.

Oltersdorf et al. showed that ABT-737 may be useful as part of a chemotherapy 

regime. They showed enhanced cytotoxicity of the chemotherapy drug paclitaxel 

against lung cancer cells when dosed with ABT-737. However, they note that 

single-agent anti-tumour activity is a more achievable clinical goal(Oltersdorf et al. 

2005). As such they investigated the activity of ABT-737 singularly as an anti-

tumour agent. They observed that ABT-737 exhibited weak activity against many 

solid tumour cell lines. However, they noted that ABT-737 exhibited potent activity 

against cell lines representing lymphoid malignancies and small-cell lung 

carcinoma(Oltersdorf et al. 2005).
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Obatoclax is another small-molecule that is predicted to occupy a hydrophobic 

pocket within the BH3 binding groove of Bcl-2. Obatoclax has been shown to 

interfere with binding of Bak to Mcl-1 (an anti-apoptosis member of the Bcl-2 

family), in mitochondrial outer membranes that had been extracted from the cell,  

and in mitochondrial outer membranes that were present in the cell. Mcl-1 has 

been shown to confer resistance to ABT-737 and Bortezomib (a proteasome 

inhibitor), however, Obatoclax has been shown to overcome this 

resistance(Nguyen et al. 2007). To this end, Obatoclax has entered stage II clinical 

trials as of May 2008.

1.2.3.c hDM2-p53

The murine double mutant oncogene encodes the hDM2 protein, which is a  

negative regulator of the transcription factor p53. The p53 transcription factor is 

involved in regulation of the cell cycle, and as such acts as a tumour suppressor.  

Over-expression of hDM2 has been observed in many human tumours, in these 

cases hDM2 suppresses the tumour suppressor p53. Inhibition of the hDM2-p53 

interaction can restore the effect of p53, and as such is an attractive target in 

cancer therapy(Vassilev et al. 2004).

The crystal structure of hDM2 bound to a peptide from the transactivation loop of 

p53 allows analysis of the hDM2 surface, revealing a relatively deep hydrophobic 

pocket, primarily flled by three side-chains(Kussie et al. 1996). Vassilev et al. 

screened a library of chemical compounds for their ability to inhibit the hDM2-p53 

interaction. They identifed several lead structures, which were then optimized for 

selectivity and potency. One particular class of inhibitors identifed was a group of 

cis- imidazoles, which they named Nutlins. Nutlins were found to displace p53 

from complex with hDM2 with IC50 values in the range 100 nM – 300 nM(Vassilev 

et al. 2004). The crystal structure of hDM2 in complex with Nutlin-2 was 

determined, showing that the inhibitor largely mimics the interactions of the p53 

peptide.
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1.2.3.d ZipA-FtsZ

Z-interacting protein A (ZipA) is a bacterial protein involved in the formation of cell  

walls during cell division. Central to its role is recruitment to an organelle called the 

septal ring at the beginning of cell division. It is recruited by interaction with FtsZ, a 

protein component of the septal ring(Fry 2006). Blocking the ZipA-FtsZ interaction 

is seen as an attractive target for the development of novel antibiotics.

The structure of ZipA in complex with a 17-residue peptide from FtsZ has been 

determined(Y Zhang et al. 2000). Several small-molecule inhibitors of the 

ZipA-FtsZ interaction have been developed, although none have shown high 

affnity in terms of being a suitable drug candidate. High-throughput screening has 

identifed a pyridyl-pyrimidine derivative to be a 12 μM inhibitor(Rush et al. 2005), 

which is comparable to that shown by the FtsZ 17-mer peptide (7 μM(Kenny et al. 

2003)). Further investigation of the inhibitor suggested that there were potential 

toxicity issues with non-specifc activity in both bacterial and yeast based assays. 

Additionally it is noted that pyridyl-pyrimidines are well represented in the literature 

in the context of their kinase inhibition properties(Furet et al. 2000). A second class 

of compounds with an indolo-quinolizinone core has also been reported to have 

high micromolar affnity for ZipA. This class of compounds was also developed 

through lead optimization of a hit determined from high-throughput 

screening(Jennings et al. 2004).

1.2.3.e XIAP-BIR3

X-linked inhibitor of apoptosis (XIAP) is a mediator of programmed cell death, 

which acts by a series of protein-protein interactions. XIAP binds caspases (a 

family of calcium dependent cysteine proteases), maintaining them in a catalytically  

inactive form. The ability to block the interaction of XIAP with caspases thus 

restoring the catalytically active form has therefore been determined a desirable 

drug target for oncology due to the potential to restore apoptosis in cancerous 

cells.
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The BIR domain mediates the XIAP interaction with caspases. A naturally 

occurring competitor protein called SMAC is known to block XIAP-BIR interaction. 

A nine-mer peptide from SMAC has been shown to bind with 430 nM affnity to 

BIR(Z Liu et al. 2000). The subsequent analysis of the structure of the SMAC 

peptide bound to BIR showed that only the frst four residues make signifcant 

contact with BIR(Z Liu et al. 2000). The resulting tetra-peptide was analysed and 

shown to exhibit similar binding affnity (480 nM)(Kipp et al. 2002). This 

tetra-peptide was further optimized to achieve 20 nM binding affnity(Kipp et al. 

2002). Signifcant effort has been made to reduce the peptidic character of these 

inhibitors, whilst retaining the tight binding. One structure has been reported with 

the BIR domain co-crystallised with one of the most potent inhibitors.

1.2.3.f HPV E2-E1

Human papilloma virus (HPV) is responsible for warts and some cervical cancers. 

Currently both of these conditions are untreatable with small-molecules. The 

interaction between the transcription factor E2 and the viral helicase E1 is an 

essential part of the viral life cycle. As such, it is a possible target for intervention 

by small-molecule protein-protein interaction inhibitors.

High-throughput screening has been used to identify a class of indandiones that  

disrupt the HPV E2-E1 interaction with a moderate affnity (Kd = 20 μM). Further 

optimization of the compound allowed production of compound 23, which exhibits 

IC50 values as low of 6 nM. It has been shown that indandiones bind to the 

transactivation domain of E2. The X-ray structure of one indandione compound 

(compound 18) in complex with the transactivation domain E2 shows that one 

copy of the molecule binds to the three helix domain, whilst a second copy sits on 

top(Y Wang et al. 2004).
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The structure of the E2-E1 complex was solved shortly afterwards, showing that 

the indandione compounds are in contact with far fewer residues than the E2-E1 

contact surface(Abbate, Berger, and Botchan 2004). Compound 18 accesses a 

cavity that is not observed in the E2-E1 protein-protein interface. Compound 23 

binds with much higher ligand effciency than the protein-protein interaction,  

possibly because it manages to bury its hydrophobic surface deeper than the 

protein-protein interaction that is spread across the E2 protein surface(Wells and 

McClendon, 2007).

Target
Discovery 
Technique

Maximal 
affnity

Success

IL-2/IL-2Rα HTS - optimize 60 nM No drug.

Bcl-2/Bak SAR by NMR < 1 nM Obatoclax, ABT-737 and more in 
phase II clinical trials.

Bcl-XL/Bak SAR by NMR < 1 nM Obatoclax, ABT-737 and more in 
phase II clinical trials.

hDM2-p53 - 70 nM No drug.

ZipA-FtsZ Peptide 12 μM No drug.

XIAP-BIR3 Peptide 20 nM No drug.

HPV E2-E1 HTS 6 nM No drug.

Table 1.1: Summary of target, discovery method, maximal affnity, and success of prospective 

drug.

1.2.3.g Interactions not structurally characterized

One of the major disadvantages of the structure based approach suggested by 

Chène is that the high-resolution protein structure is required. This excludes a 

relatively large number of protein-protein interactions that have been identifed as 

targets. Since there has been little or no structural information published regarding 
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these interactions, one should bear in mind that they may not ft the criteria that  

we have specifed, however, there is a reasonable chance that they will be 

interesting to investigate as structural information becomes available.

One such example of an interaction of interest is involved in the entry of HIV-1 into 

host cells. HIV-1 entry occurs in a multistep process. It involves binding of the 

HIV-1 envelope protein (gp120) to the host cell CD4 receptor. This is followed by 

interaction of chemokine receptors (CCR5 or CXCR4), which causes 

rearrangement of the envelope transmembrane subunit, allowing membrane 

fusion(Tsibris and DR Kuritzkes 2007). A small-molecule drug (Maraviroc) has been 

developed, which blocks entry of HIV-1 into cells, by inhibiting the gp120-CCR5 

interaction(D Kuritzkes, Kar, and Kirkpatrick 2008).

Another target of signifcant interest is the inhibition of Herpes Simplex Virus (HSV) 

ribonuclease reductase dimerization. HSV is responsible for a large number of 

diseases, including genital herpes. Current drugs are nucleoside analogues, which  

are phosphorylated thus producing inhibitors of DNA polymerase. The inhibition of 

HSV ribonuclease reducatase dimerization has been validated as a drug target. 

Several peptide inhibitors derived from the C-terminus of HSV R2 have been 

further optimized to produce very effective inhibitors of dimerization(Chène 2006). 

However, there has currently been no success in developing small-molecule 

inhibitors.

The transcription factor c-Myc is estimated to be involved in one in seven human 

cancer deaths(Chène 2006),(Dang 1999). The oncogenicity of c-Myc relies on its 

association with its activation partner Max. Inhibitors of the c-Myc/Max interaction 

therefore have therapeutic potential. Both c-Myc and Max belong to the basic 

helix-loop-helix leucine zipper family (bHLH-LZ) family. A structure of the Max/Max 

homodimer exists, and the structure of the c-Myc/Max heterodimer has been 
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speculated on from this data. Chemical libraries have been screened in an effort to  

identify c-Myc/Max dimerization inhibitors. This resulted in the discovery of four 

small-molecule inhibitors(Chène 2006).

1.2.4 Summary

It is clear that whilst drug discovery at the protein-protein interface is a highly 

attractive proposition in terms of the number of new therapeutic possibilities. It is 

also a very diffcult problem to address. However, good progress is being made in 

terms of elucidating small-molecules capable of disrupting protein-protein 

interfaces and in some cases in optimizing them for the market. Notably there are 

several Bcl-2/Bak and Bcl-XL/Bak inhibitors that are currently in phase II clinical 

trials.

Current success in the feld of small-molecule protein-protein interaction inhibitor  

drug discovery, seems to be mainly derived from the use of high-throughput 

screening techniques, peptide binding epitopes, and NMR studies.

Current attempts at elucidating PPI inhibitors have often relied on high-throughput 

screening methods to identify initial lead compounds. Subsequent analysis of the 

strategies employed shows that the small molecule in question often mimics the 

binding epitope of its natural partner protein. The observations that we have made 

may allow identifcation of regions on the protein surface that are likely to 

accommodate small molecule inhibitors. It is hoped this will help in understanding 

the likelihood of success for a given protein target, as well as in many cases acting 

as the basis for the rational targeting of specifc pockets.
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1.2.5 Outline of thesis aims

It is clear that protein-protein interactions are a highly desirable therapeutic target. 

Whilst previous efforts have shown some successes in targeting these 

interactions, it is clear that the methodology for doing so can be improved. The 

fve results chapters contained in this thesis broadly split into two sections. The 

frst two results chapters deal with databases of protein-protein and protein- ligand 

interactions and how one might prioritise drug discovery methods on particular 

proteins from these databases. The fnal three results chapters are a case study 

on techniques to aid design of novel inhibitors of the hDM2-p53 protein-protein 

interaction. The overall aim of these three chapters is to perform accurate 

alchemical free energy calculations that can distinguish high-affnity compounds 

from low-affnity compounds.

The frst results chapter details the use of computational methods for pocket 

detection using the Q-SiteFinder software to study protein-protein interactions that 

have previously been targeted and have been structurally characterised by either 

X-ray crystallography or NMR experiments. The aim of this area of study is to 

identify key properties of protein-protein interactions that are amenable to 

inhibition and compare and contrast these properties to those of currently 

marketed drugs and to protein-protein interactions that have not yet been targeted 

for inhibition by small molecule compounds. Identifcation of properties that might 

distinguish pockets present on some protein-protein interfaces as suitable for 

inhibition has parallels to the concept of 'drugability' of a protein. The second 

results chapter attempts to create a structure-based method that can distinguish a 

pocket likely to be able to bind a small-molecule with high-affnity for a pocket that 

is unlikely to be able to do so.
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The third results chapter is the frst of the chapters that aim to perform alchemical 

free energy calculations. This chapter aims to use docking methods to generate 

conformations of oligoamide compounds bound to hDM2. Once these 

conformations have been generated torsional potentials for the oligoamide 

compounds are identifed from the literature, and charge parameters are 

calculated using Hartree-Fock calculations and AM1 BCC charge calculations.  

The results from the two charge calculation methods are evaluated and the best 

used in further calculations. The fourth results chapter aims to perform molecular  

dynamics simulations of the hDM2-p53 system and current known inhibitors. 

Further simulations of the docked hDM2-oligoamide complexes can then be 

performed. These simulations can be further analysed to determine the length of 

alchemical free energy calculation required to give converged estimates of the free 

energy. The ffth and fnal results chapter aims to generate docked conformations 

for six oligoamide compounds which have been used in a previous study by 

Plante et al.(Plante et al. 2009). Relative free energy calculations for these 

compounds can then be performed using a three process and single process 

technique. Furthermore a Hamiltonian replica-exchange technique can also be  

applied.
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2 Properties of small molecule protein-

protein interaction inhibitors and their 

active volumes

2.1 Abstract

The ability to identify and inhibit key protein-protein interactions (PPIs) that are 

involved in disease pathways is of clear therapeutic beneft. Furthermore, design 

and application of selective inhibitors of protein-protein interactions is of interest to 

the feld of chemical genetics, whereby an interaction could be 'switched on/off'  

by application of an inhibitor, negating problems with production of knockout 

mutants. Here we discuss the application of the pocket detection method 

Q-SiteFinder to large datasets of structures of protein-ligand interactions (PLIs) 

and protein-protein interactions. Key differences are observed, specifcally that 

protein-ligand interactions tend to occur in one large pocket (average volume 

260 Å3), whilst protein-protein interactions tend to occur in a greater number (2-8) 

of smaller pockets (average volume 54 Å3). We then extend this to a comparison 

between proteins bound to marketed drugs and putative inhibitors of protein-

protein interactions. The pockets observed on marketed drugs (average volume 

271 Å3) follow the same trend as those observed in protein-ligand interactions, 

whilst protein-protein interaction inhibitors tend to bind multiple (3-5) pockets that 

lie somewhere between that of protein-ligand/marketed drug interactions and 

protein-protein interactions (average volume 100 Å3). Identifcation of these 

pockets and their properties may enable better screening and help in the design of 

potent selective inhibitors of protein-protein interactions.
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2.2 Introduction

When Lipinski et al. published their seminal work detailing his Rule of Five he 

helped to guide drug discovery efforts towards compounds that were more likely 

to be effcacious. Lipinski's work pertained to the properties of ligands. Hopkins 

and Groom asked questions about the druggable genome soon after the 

publication of the human genome(Hopkins and Groom 2002). Several researchers 

have published asking similar questions making slightly different assumptions as 

new data becomes available on which classes of proteins have been deemed 

druggable(Overington, Al-Lazikani, and Hopkins 2006),(Keller, Pichota, and Yin 

2006),(Billingsley 2008).

Here we detail a study that investigates the properties of protein binding sites that 

can bind ligands. Broadly speaking we are investigating the 'drugability' of the 

binding sites involved. There are a wide range of defnitions (and two spellings!) of  

'drugability/druggability'(Henrich et al. 2010). For the duration of this work we will 

use the defnition of Egner and Hillig, who defne drugability as the “likelihood of  

fnding a selective, low-molecular weight molecule that binds with high affnity to 

the target.’’(Egner and Hillig 2008). This defnition is one of the more fundamental 

defnitions in terms of the protein-binding site since it does not distinguish 

between systems whereby it may be possible to identify compounds that could 

bind to a site but for which it is diffcult to identify compounds that bind selectively 

and those compounds that will bind and it may be possible to identify selective 

compounds. Furthermore the defnition does not take into account ADMET 

properties which generally require different analysis to standard structural 

bioinformatics techniques. The concept of drugability with respect to a defnition 

similar to that of Egner and Hillig is discussed by Hajduk et al.(Hajduk, Huth, and 

Tse 2005).

58



2 Properties of small molecule protein-protein interaction inhibitors and their active volumes

Recently researchers have begun to ask questions about the properties of protein 

binding sites. One of the most comprehensive studies of drugability of binding 

pockets uses both experimental NMR data to identify NMR hit rates to determine 

drugability, followed by analysis of the properties of binding pockets using 

structural bioinformatics techniques(Hajduk, Huth, and Fesik 2005). Broadly 

speaking Hajduk and co-workers use NMR hit-rate to classify protein binding 

pockets into one of three classes: druggable (hit-rate > 0.3 %); diffcult 

(0.1 % < hit-rate < 0.3 %); undruggable (hit-rate < 0.1 %). Furthermore they 

investigated several properties of pockets such as Volume, Surface Area, 

Compactness (ratio of volume to surface area), apolar surface area, polar surface 

area, contact area, apolar contact area, polar contact area, roughness, total 

number of charged residues and principal component analysis to develop a 

drugability index.

2.2.1 Q-SiteFinder and binding sites

Q-SiteFinder was initially developed as a method to identify binding sites from 

protein structural information. The Q-SiteFinder program was able to identify the 

correct binding site in the top predicted site with a precision threshold of > 25 

percent for 71 % of the dataset of 134 protein-ligand complexes from the GOLD 

dataset(Laurie and Jackson 2005). One of the key results from the study was that 

when comparing the volume of sites predicted by Q-SiteFinder to those predicted 

by PocketFinder (a geometric method), was that not only did Q-SiteFinder 

outperform PocketFinder in terms of prediction accuracy, but that Q-SiteFinder 

produced pockets with volumes that were not correlated to the total volume of the 

protein. Furthermore the volume of the Q-SiteFinder sites was more comparable 

to the volume of ligands that adhere to the Lipinski Rule of Five(Laurie and 

Jackson 2005). 
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For the original study the optimal cutoff of -1.4 kcal mol-1 was chosen so as to 

maximise prediction accuracy whilst retaining desirable high-precision predictions. 

A further study of protein-protein interactions using Q-SiteFinder used the cutoff of 

-1.3 kcal mol-1(Nicholas J Burgoyne and Jackson 2006). Burgoyne and Jackson 

used Q-SiteFinder as a method to identify pockets on the protein that could 

potentially be hotspots for protein-ligand or protein-protein interactions. They 

showed that conservation, desolvation potential, electrostatics and unit-

electrostatics could all help to elucidate protein-ligand binding pockets. For 

protein-protein interactions they saw much lower success rates, with desolvation 

potential being the only measure that performed reasonably well in all classes of 

protein-protein interaction. Generally they observed that the best predictions were 

made for enzymes (with desolvation potential performing well for antibodies), 

whilst enzyme inhibitors, antigens and other complexes were much more diffcult  

to make high-quality predictions(Nicholas J Burgoyne and Jackson 2006).

2.2.2 Marketed drug datasets

Studies such as Q-SiteFinder and other pocket detection methods have typically 

used docking benchmarks to assess their performance. These datasets have the 

advantage that they are often well validated and well understood. Docking 

benchmarks can suffer from some problems since they are often aimed at only a 

few classes of targets such as Kinases. 

There is a wealth of other structural information that can be used to identify and 

develop novel datasets. The most obvious is the PDB which has advanced search 

features that can be employed to flter results by a range of criteria(Berman et al. 

2002). DrugBank is a resource for bioinformatic and cheminformatic information 

relating to drugs, targets and modes of action. It is cross-referenced with many 

major databases KEGG, PubChem, ChEBI, Swiss-prot, GenBank and the 
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PDB(Wishart et al. 2006),(Wishart et al. 2008). A manually curated database for 

proteins determined to < 2.5 Å resolution and related binding information is 

available in the form of the BindingMOAD(Benson et al. 2005).

Recently a powerful resource for studying protein-ligand complexes available in 

the PDB has been made available (CREDO)(Schreyer and T Blundell 2009), and 

related to this is a database (TIMBAL) that collates information on protein-protein 

interaction inhibitors(Higueruelo et al. 2009).

2.2.3 Predictions on unbound complexes

Pocket detection has been widely evaluated by removing the bound ligand from 

the protein-ligand complexed structure, applying the pocket detection algorithm, 

and then comparing the predicted pocket with the position of the bound ligand. 

Unfortunately there are several problems inherent with this technique. The frst 

problem is that taking a bound structure with known ligand location, and 

predicting the location is of no practical use since most binding sites will undergo 

at least some degree of structural rearrangement on binding. For drug discovery 

or protein function annotation it would be desirable to be able to take the structure 

of an unbound protein and make an accurate prediction of the ligand binding site.  

One of the major problems with this is that proteins are fexible and as such may 

undergo large conformational change moving from the unbound to the bound 

conformation. Eyrisch and Helms investigated the opening and closing of pockets 

on protein-protein interaction partners and observed that binding pockets 

appeared transiently sometimes on the order of picoseconds(Eyrisch and Helms 

2007). Additionally virtual screening strategies have been employed to systems 

such as hDM2/hDMX with the aim of improving hit-rates(Barakat et al. 2010).
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2.2.4 Study aims

Small-molecule protein-protein interaction inhibitors are attractive to 

pharmaceuticals companies as they offer the opportunity to intervene 

therapeutically in a range of diseases in which it was not previously possible to do 

so. However, whilst previous ideas suggesting that this class of interactions was 

‘undruggable’ are being challenged, there has still only been limited success in this  

feld of drug discovery(Wells and McClendon 2007),(Arkin and Wells 2004). As 

such it would be desirable to better understand the similarities and differences 

between the interactions between: proteins and traditional marketed drugs, 

protein partners, and newly discovered small-molecule protein-protein 

interactions. To this end we defne envelopes whereby it is energetically favourable 

for a ligand to interact with the protein and compare them between different 

classes of interactions. In understanding similarities and differences between these 

classes of interactions it is hoped that the chances of discovering novel small-

molecule inhibitors of protein-protein interactions will be increased.

2.3 Methods

2.3.1 Preparation of datasets

Broadly speaking we use four datasets in this study: protein-ligand; protein-

protein; protein-drug; protein-protein interaction inhibitor. We can further subdivide 

each dataset into bound and unbound subsets. We defne the bound subset as 

complexes whereby a protein and ligand (or interacting protein partner) are in 

direct contact. We then remove the ligand from the PDB fle in order to run Q-

SiteFinder. The removed ligand is retained to test whether the Q-SiteFinder 

predicted sites are successful. We defne the unbound subset as protein 

structures that correspond to proteins in the bound subset with a high degree of 

sequence similarity (> 95 % sequence identity). This sequence identity cutoff 

means that we are looking at very similar proteins that differ mostly because they 

are no-longer co-crystalized with their cognate ligand. This allows us to test the 
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predictive power of Q-SiteFinder in a situation similar to what would be found in a 

drug discovery scenario. Here a protein structure might be available, and the 

question is where a ligand might bind to the protein. Q-SiteFinder would then 

identify likely binding sites. When a protein binds a ligand it can change 

conformation thus altering the binding pocket. So whilst in many cases testing on 

the bound protein as previously described can be a useful metric, testing on the 

unbound protein allows a more realistic test. 

Since we defne the bound subset with no knowledge of unbound partners we 

note that the unbound subset is likely to be smaller than the bound subset. All  

bound and unbound protein-small-molecule datasets consist of only one protein 

chain, except in the rare cases where it is predicted that two or more protein 

chains may contribute to the ligand binding site, in these cases all relevant chains  

are retained prior to being passed through the following flter stage. After selection 

of PDBs for each dataset all datasets were fltered in order that they were suitable 

for input to the pocket detection algorithm Q-SiteFinder. The fltering removed all 

ligands that were not the intended ligand, whilst retaining any cofactors as part of 

the protein (such as HEM, NAD). The PDB fles were then separated into two fles 

one containing the protein (and any cofactors), the second containing the ligand 

fle.

2.3.1.a Protein-ligand

The protein-ligand bound dataset consists of 134 complexes, which were initially 

described by Nissink et al.(Nissink et al. 2002). The dataset is non-redundant at 

the SCOP superfamily level(Murzin et al. 1995).
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1aaq 1blh 1die 1glq 1lcp 1nis 1tka 2ack 2r07 4fab

1abe 1bma 1dr1 1hdc 1ldm 1pbd 1tmn 2ada 2sim 4phv

1acj 1byb 1dwd 1hdy 1lic 1pha 1tng 2ak3 2yhx 5p2p

1acl 1cbs 1eap 1hef 1lmo 1phd 1tni 2cgr 3cla 6abp

1acm 1cbx 1eed 1hfc 1lna 1phg 1tnl 2cht 3cpa 6rnt

1aco 1cdg 1epb 1hri 1lpm 1poc 1tph 2cmd 3gch 6rsa

1aec 1cil 1eta 1hsl 1lst 1rds 1tpp 2ctc 3hvt 7tim

1aha 1com 1etr 1hyt 1mcr 1rne 1trk 2dbl 3mth 8gch

1apt 1coy 1fen 1icn 1mdr 1rob 1tyl 2gbp 3ptb

1ase 1cps 1fkg 1ida 1mmq 1slt 1ukz 2lgs 3tpi

1atl 1ctr 1fki 1igj 1mrg 1snc 1ulb 2mcp 4aah

1azm 1dbb 1frp 1imb 1mrk 1srj 1wap 2phh 4cts

1baf 1dbj 1ghb 1ive 1mup 1stp 1xid 2pk4 4dfr

1bbp 1did 1glp 1lah 1nco 1tdb 1xie 2plv 4est

Table 2.1 – PDB codes of the 134 protein-ligand complexes that constitute the protein-ligand 

bound dataset.

The protein-ligand unbound dataset consists of 21 complexes described in Table 

2.2. The protein-ligand unbound dataset is a subset of the dataset of 35 

complexes described by Laurie & Jackson(Laurie and Jackson 2005) where 

structures that corresponded to entries in the docking benchmark of 305 

complexes(Nissink et al. 2002), but not the bound docking benchmark of 134 

complexes described in Table 2.1 were removed.

1qif 1bya 1ifb 1a4j 1ahc 1bbs 2rta 1krn 1chg 2ptn

1djb 1cge 1hsi 1ime 1phc 1stn 2ctb 2sil 6ins 3p2p

7rat

Table 2.2 – PDB codes of the 21 protein monomers that constitute the protein-ligand unbound 

dataset.
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2.3.1.b Protein-protein

The protein-protein bound dataset consists of the antibody-antigen and protease-

inhibitor representatives of the protein-protein docking benchmark 1.0 described 

by Chen et al.(Chen et al. 2003). This dataset was expanded on by Burgoyne & 

Jackson and was further extended for this work, whereby the same redundancy 

criteria as described in the paper by Burgoyne & Jackson was applied(Nicholas J 

Burgoyne and Jackson 2006). The protein-protein bound dataset contained 103 

pairwise-bound, non-obligate, hetero-protein complexes, corresponding to 206 

protein monomers (shown in Table 2.3).

1a0o 1bql 1efu 1hcf 1im9 1kxq 1ml0 1ppe 1tab 1x86

1a2k 1brc 1eo8 1he1 1j2j 1kxt 1mlc 1pvh 1tgs 2jel

1acb 1brs 1ewy 1he8 1jhl 1kxv 1mz8 1qab 1tx4 2kai

1ahw 1bvk 1f6m 1hlu 1jwm 1kzg 1nbf 1qfu 1udi 2mta

1akj 1cgi 1f80 1hxy 1jzd 1l0y 1nca 1re0 1uex 2ptc

1am4 1cho 1fbi 1hyr 1kac 1lo5 1nmb 1s9d 1ugh 2sic

1atn 1cse 1fq1 1i4d 1kkl 1m27 1o6s 1sq0 1w1i 2sni

1avw 1de4 1fss 1i8l 1kkm 1mah 1o94 1stf 1wej 2tec

1avz 1dfj 1g4u 1iai 1ktz 1mel 1p4l 1svx 1wq1 2vir

1b6c 1dqj 1gaq 1igc 1kxp 1mi5 1p8v 1t6b 1www 4htc

1bdj 1e96 1ghq

Table 2.3 – PDB codes of the 103 protein-protein complexes that constitute the protein-protein 

bound dataset.

The protein-protein unbound dataset consists of 190 monomers in Table 2.4, 

which fulfl the same redundancy criteria as the protein-protein bound dataset 

described above.
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1byu 3lzt 1dqt 7rsa 1ijb 6pti 1a2p 1b3j 1d4t 1omp

1chn 1efu 1hhl 1kxv 1ppe 3ssi 5cha 1i49 2ace 1acc

1tde 1dkj 1igd 1m05 1mj0 1udi 1chg 1dr9 1pif 1ppn

1cd8 1fxa 1nkr 1dok 1sht 1poh 1cx8 1fbi 1kgc 1maa

1mh1 1keb 1naf 3lzt 1stf 2tec 5cha 1kcu 1dqq 1rgp

3dni 1l0h 1iai 1cei 1fsc 1chn 1bvl 1qqd 1m08 2ptn

1cse 2viu 1ck1 1ubi 1a2b 1bdj 1hh8 1o3y 1nb8 1jwi

1shf 1fpz 1l6p 1lza 1tab 1f6m 1d8t 1aif 1mel 2ptn

1d6o 1acb 1eaj 7nn9 1ijb 1hhj 1bql 1dlh 1nca 1mlb

2a0b 1mh1 1sph 1edh 1hpt 1rgp 1que 1jzo 1djn 1wer

1hrc 1a70 1sph 1o96 1ndw 1rdw 1eo8 1nob 1vac 1txd

1ba7 1ly2 1m9z 1ja3 1lza 5cha 1b39 1jb1 1m0z 1qfu

1aap 1wwb 1rdw 1jou 5p21 1avv 2bhn 1kw2 1sup 1akz

6pti 1mh1 1ghl 2c12 1he7 1ias 1g4w 1jhl 1bqu 2pka

1boy 5p21 1kxq 1lki 1dpf 1chn 1gaw 1pif 1nmb 2ptn

2ovo 1pne 1kxt 1brp 2viu 1qbl 1c3d 1pif 1ku1 1sup

1hpt 1enf 1an0 7nn9 1ugi 2ptn 1he9 1rj2 1pbv 1udh

1a6z 1hq8 1esf 1hur 1aan 1bra 1e8y 1bec 1m0z 2jel

2ovo 1an0 1shf 1hur 6pti 1fgn 1rdw 1dlh 2ptn 1thm

Table  2.4 –  PDB  codes  of  the  190  protein  monomers  that  constitute  the  protein-protein 

unbound dataset.

2.3.1.c Protein-drug

The protein-drug dataset of 50 complexes was designed to refect the diversity 

that can be found in marketed drugs. For the design of this dataset a marketed 

drug is defned as one that is labelled as ‘approved’ in the DrugBank(Wishart et al. 

2006),(Wishart et al. 2008). An ‘approved’ drug is one that has been approved by 

the U.S. Food and Drug Administration (FDA). It should be noted that not all of 

these drugs are orally bioavailable, although they are all small-molecule drugs, (i.e.  

peptides, antibodies and other forms of therapeutics are not covered by this 

dataset). The dataset is non-redundant at the SCOP super family level, i.e. there 

are no two representatives from the SCOP superfamily included in the 

dataset(Murzin et al. 1995). It should be noted that 23 out of the 50 protein 
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complexes are represented at SCOP family level within the protein-ligand dataset 

of 134 complexes, and 27 out of 50 protein complexes are represented at the 

SCOP super family level. This level of redundancy is necessary to ensure a wide 

diversity of ligands is covered by the protein-drug dataset, but it is clear that there 

is still suffcient diversity at the protein level between the protein-drug and protein-

ligand datasets.

1a4gA 1cqpA 1eveA 1gtbA 1jolA 1m17A 1p5zB 1rr8C

1ayvA 1dtlA 1f5lA 1h87A 1jqeA 1m4dA 1phg_ 1s1xA

1b3nA 1dy4A 1fem_ 1hpvA 1js3B 1mmkA 1pxxC 1s2aA

2a1hA 2bmlB 2kceA 2o7oA 1vm1A 1uofA 1upfA 1uumA

1b4e 1e7wA 1ffyA 1j78B 1lbcB 1nf7A 1qmfA 1tbfA

1a4lB 1cebA 1errB 1fkbA 1jffB 1liiA 1oq5A 1qzrB

1uzfA 1th6A

Table  2.5 –  PDB codes of  the 50 protein-drug complexes that  constitute  the protein-drug 

bound dataset.

The members of the 50 bound complexes defne the protein-drug unbound 

dataset of 33 complexes. For each bound complex the PDB(Berman et al. 2002) 

was queried, with any hits having a 90% sequence identity across the whole query 

sequence and no bound ligands (excepting crystallographic solvents as described 

by Gold & Jackson(Gold and Jackson 2006)) being marked as suitable 

candidates. All hits were then manually assessed for suitability, resulting in the 

dataset shown in Table 2.5.

132l 1bjz 1eea 1gta 1js6 1lfa 1m44 1pvg 1rxf 3phv

1a31 1ca2 1ekf 1hbq 1kas 1lio 1o8a 1qme 1shv 5cox

1aj4 1cl5 1f4b 1j8t 1kw2 1m14 1phc 1rtj 2cel 5dfr

1bd3 1d6o 1fto

Table 2.6 – PDB codes of the 33 protein monomers that constitute the protein-drug unbound 

dataset.
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2.3.1.d Protein-protein interaction inhibitor

The protein-protein interaction inhibitor bound dataset of 24 complexes was 

created by searching the literature for any references to protein-protein interaction 

inhibitors followed by query of the PDB for relevant structures. Due to the fact that 

at the time of writing only 7 classes of protein-protein interaction inhibitor have 

structures available in the PDB(Berman et al. 2002), the redundancy criteria were 

relaxed, and as a result the protein-protein interaction inhibitor dataset is the only 

dataset used in this study that is redundant at the SCOP family level.

1ysw 2o2f 1ysi 2o2m 2yxj 1m49 1py2 1rv1 1ttv 1tft

2o22 1ysg 1ysn 2o2n 1m48 1pw6 1qvn 1t4e 1tfq 1s1j

1y2g 1r6n 1s1s 1y2f

Table 2.7 – PDB codes of the 24 protein-protein interaction inhibitor complexes that constitute 

the protein-protein interaction inhibitor bound dataset.

The protein-protein interaction inhibitor unbound dataset of 7 complexes was 

created using the same criteria as in the creation of the protein-drug unbound 

dataset, due to the redundancy mentioned during the creation of the protein-

protein interaction inhibitor bound dataset, only 7 structures compose this dataset.

1g5m 1maz 1m47 1z1m 1f9x 1f46 1r6k

Table 2.8 – PDB codes of the 7 protein monomers that constitute the protein-protein interaction 

inhibitor unbound dataset.

2.3.2 Q-SiteFinder

Q-SiteFinder was used to calculate 99 pockets on the surface of each member 

protein of the four datasets, using the method described by Laurie and 

Jackson(Laurie and Jackson 2005). Briefy summarised the method has four 

constituent steps. Step one is to add hydrogens to the protein using the method 
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described by Jackson et al.. Step two rotates the protein about the geometric 

centre to minimize the bounding box volume, allowing the calculation speed to be 

increased as generally the fewest number of grid points are required for the 

calculation. Step 3 calculates the non-bonded interaction energy of a methyl  

probe, using the GRID force feld parameters(Jackson 2002), with the protein at 

each position on a defned cubic grid of resolution 0.9 Å. Probes with a van der 

Waals interaction energy more favourable than -1.4 kcal mol-1 are retained for 

clustering. Step 4 is clustering probes to create active volumes. Clusters are 

defned by their spatial proximity, with any retained probes lying directly adjacent 

on non-cubic diagonals forming clusters. The sum of interaction energies from all  

probes comprising of the same cluster are then used to rank the clusters in order 

from the most to least favourable. The active volume is defned as the sum of 

cubes with sides of dimension 0.5 Å within 2 Å of the probe sites defning the 

cluster.

2.3.3 Analysing unbound datasets

We used the method of mapping pockets to the SASA of the unbound protein to 

determine whether the pockets determined in the unbound structure are likely to 

correspond to pockets that are occupied in the bound structure, as this method 

has been shown to work well for protein-protein interactions(Nicholas John 

Burgoyne 2007).

The method determines the SASA of the bound structure, followed by the SASA 

of the bound structure with the ligand removed. We then defne interface residues 

to be those residues that are involved in a change in SASA. The SASA of the 

unbound protein is determined, followed by the SASA of each of the 99 pockets in 

turn. An unbound structure active volume is determined to be occupied when 

there is a change in SASA that involves greater than 95 % interface residues. This 

method allows us to map residues that are involved in a change of SASA on 

binding.
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2.3.4 Optimising unbound predictions

To determine which cut-off value is the most optimal we aim to produce a 

distribution of pockets targeted that is close to that observed in the protein-ligand 

and protein-protein datasets. The cut-off value is determined by carrying out the 

mapping of pockets to SASA analysis described above using different cut-off 

values ranging between 0.5 Å and 1.0 Å at 0.05 Å intervals, for the protein-ligand 

and protein-protein datasets. We then measure the correspondence between the 

distribution of pockets targeted for the bound and unbound datasets using 

Fisher’s exact test (fsher.test() in the R package stats), taking the best value to be 

our cut-off value. That is to say we use Fisher’s exact test to ensure the closest 

match between the distribution of number of pockets targeted by ligands for the 

bound datasets, when compared to the same distribution as determined by our 

method of mapping pockets to SASA for the case of unbound datasets.

2.4 Results

We present results pertaining to several properties that allow us to distinguish 

noticeable similarities and differences between datasets. First we compare 

protein-ligand interactions to protein-protein interactions using volume of all 

surface pockets, active volume and percentage occupancy of pockets in Figure 

2.1. We then move on to investigate noticeable similarities and differences 

between protein-drug interactions and protein-protein interaction inhibitors using 

the same properties described above in Figure 2.7. In Figure 2.3 we compare all 

four datasets using average active volume of bound pockets compared to average 

active volume of unbound pockets observed. The datasets are then analysed to 

show the distribution of occupied pockets in a given protein in Figure 2.6. The 

analysis of the predictions made on unbound datasets are then shown in Figure 

2.5. Illustrations of typical protein-drug binding sites are then shown alongside 

representative protein-protein interaction inhibitor binding sites are then shown in 

Figure 2.4. Finally the average surface pocket volume and active volume are 

compared in the case of bound and unbound datasets in Figure 2.2. 
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2.4.1 Volume of protein pockets

2.4.1.a Protein-protein interactions compared to 

protein-ligand interactions

We frst compare the protein-ligand interactions to protein-protein interactions. 

Several striking differences are observed, as shown in Figure 2.1. The frst 

difference observed is that of the size of all active volumes on the protein surfaces. 

We defne active volumes as the volume of any pocket for which Q-SiteFinder has 

predicted a favourable van der Waals interaction energy, regardless of whether the 

pocket is indeed coincident with a ligand. That is to say, the active volume is 

defned by a pocket where the interaction with a ligand may be favourable. Once 

pockets have been generated over the entire protein surface we can ask whether 

or not a ligand is coincident with the pocket, and in cases where this is true can 

determine the active volume of occupied pockets. For protein-ligand interactions 

the active volume for the top ranked pocket is large (508 Å3), which is considerably 

more than the volume of protein-protein monomers (350 Å3). As the rank of the 

pocket decreases we notice a decrease in active volume volume. It is also 

observed that the active volume (the area of the pocket for which it is favourable 

for methyl carbons to reside) of the top occupied pockets in protein-ligand 

interactions (471 Å3) is twice that of protein-protein interaction (233 Å3). We also 

observe a strong propensity for active volumes to be occupied if they are ranked 

highly (positions 1-3) in the case of protein-ligand interactions. This is however, not 

true for protein-protein interactions, where many occupied pockets are ranked low 

(positions 11-99), with only 30.6 % of occupied sites located in the top 3, 

compared to 85.8 % in the case of protein-ligand interactions.
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Figure  2.1:  Average volume for  all  surface  pockets (orange),  occupied  pockets  (blue)  and 

population of  pockets  (%)  with  occupancy for  a  given  rank  (pink  fll).  Both  measures are  

compared  to  the  pocket  rank,  where  a  pocket  with  the  most  favourable  van  der  Waals 

interaction energy is ranked one. Protein-ligand interactions a) are represented by a set of 134 

protein-ligand complexes, the dataset is non-redundant(Nissink  et al. 2002), Protein-protein 

interactions b) are represented by a set of 97 pairwise bound complexes, all of which are non-

obligate, hetero-protein complexes, a total of 194 monomers(Burgoyne and Jackson 2006). 

Occupied  pockets  (those  in  which  Q-SiteFinder  has  been  successful  in  identifying  the 

ligand(Laurie and Jackson 2005)) are defned for each protein as those pockets that have their 

volume occupied by 25 % or greater by atoms from the interacting molecule (ligand or protein).

2.4.1.b Protein-protein interaction inhibitors compared 

to marketed drugs

Given that we have observed several differences between protein-ligand 

interactions and protein-protein interactions, we have gone on to investigate a 

dataset comprising of protein-drug interactions, with a view to determining 

whether these behave in a similar manner to a more general set of protein-ligand 

interactions. Equally we pose the question, do small-molecule protein-protein 

interaction inhibitor interactions share properties that link them to protein-ligand, 

protein-drug or protein-protein interactions? Comparison of protein-ligand 

interactions (Figure 2.1a) and protein-drug interactions (Figure 2.7a) seems to bear 

some similarities as might be expected (although the protein-ligand set contains 

few drug compounds it was designed as a protein-ligand docking benchmark and 

thus inevitably has ligands with drug-like properties). Indeed the protein-drug 
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dataset has a top ranked pocket with active volume slightly larger (580 Å3) than 

the protein-ligand interaction (508 Å3). In line with this slight increase in active 

volume of the top site, the active volume of the top occupied site also increases 

slightly (570 Å3) when compared to the protein-ligand top occupied site (471 Å3). 

We also see a similar pattern in the population of pockets, with high occupancy of  

top ranked pockets (78 % in top 3 pockets), and little occupancy of low ranked 

pockets (11-99). We next compare protein-protein interactions to protein-protein 

interaction inhibitor interactions noticing similar patterns of active volume size for 

both all pockets (288 Å3) and occupied pockets (310 Å3). However, we notice that 

the population of pockets seems to resemble the patterns seen in protein-ligand, 

protein-drug interactions (88 % in top 3 pockets). Finally we also note that whilst 

protein-ligand, protein-drug and protein-protein interaction inhibitor interactions all  

have occupied pocket active volumes that track the overall active pocket volume, 

however, this is not true for protein-protein interactions.
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Figure  2.2:  Average  volume for  all  surface  pockets  (orange),  occupied  pockets  (blue)  and 

population  of  pockets  (%)  with  occupancy for  a  given  rank  (pink  fll).  Both  measures  are 

compared  to  the  pocket  rank,  where  a  pocket  with  the  most  favourable  van  der  Waals 

interaction energy is ranked one. Protein-drug interactions a) are represented by a set of 50 

protein-ligand complexes,  the dataset  is non-redundant at the SCOP superfamily level and 

shares  only  14  superfamily  relatives  with  the  protein-ligand  dataset(Fuller,  Burgoyne  and 

Jackson, 2009), Protein-small-molecule Protein-protein interaction inhibitors b) are represented 

by a set of 24 complexes, representing 7 distinct families of protein-protein interaction which is 

being  blocked(Fuller,  Burgoyne  and  Jackson,  2009).  Occupied  pockets  (those  in  which 

Q-SiteFinder has been successful  in identifying the ligand) are defned for each protein as 

those  pockets  that  have  their  volume  occupied  by  25%  or  greater  by  atoms  from  the 

interacting molecule (ligand or protein).

The data about active volumes from Figure 2.1 and Figure 2.7 is summarised in 

terms of the average pocket volume over all pockets, and all occupied pockets in 

Figure 2.3. Protein-drug interactions have both the largest difference (∆370 Å3) 

between average volumes of all pockets (79 Å3), and occupied pockets (449 Å3). 

There is a similar picture for protein-ligand interactions, although the difference 

(∆306 Å3) is slightly less marked due to the average occupied volume (383 Å3) 

being slightly lower, average volume of all pockets (77 Å3), however remains the 

same. It is clear that for the two ‘pure’ protein-ligand interaction datasets, the 

average pocket volume is considerably lower than the average pocket volume for 

occupied pockets. That is to say, it appears that traditional ligands attempt to 

maximise the active volume of the pocket in which they bind. In the case of  

protein-protein interactions the difference (∆60 Å3) between the average volume of 
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all pockets (64 Å ), and occupied pockets (124 Å3) is far less marked. The protein-

protein interaction inhibitor interactions lie somewhere between the two extremes. 

The difference (∆176 Å3) between the average volume of all pockets (52 Å3) and 

occupied pockets (228 Å3), is once again due mainly to the volume of all pockets 

remaining around a basal level, whilst the volume of occupied pockets is 

somewhat increased when compared to protein-protein interactions.

Figure  2.3: Average active volume of pockets for all sites on a protein surface compared to 

average active volume of occupied pockets. In all  cases the occupied pockets have larger 

average volumes, than for a general pocket.

2.4.2 Number of pockets

After investigating the properties of the active volumes on the protein surface and 

observing some striking differences, we next investigate the number of these 

pockets that are targeted by ligands. We defne a pocket to be targeted by a 

ligand if the pocket has > 25 percent of its volume covered by the ligand. In Figure 
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2.6 we observe that protein-ligand interactions shown in a) predominantly target 

one pocket (66 percent of cases), with the likelihood of greater than 3 pockets 

being targeted becoming increasingly unlikely. Protein-protein interactions follow a 

totally different trend, with the average number of pockets targeted being 5 (± 3). 

The distribution of pockets targeted is far less skewed for protein-protein 

interactions, when compared to protein-ligand interactions, which are strongly 

positively skewed. Protein-drug interactions also appear to follow the positively 

skewed distribution observed for protein-ligand interactions, although the peak at 

one site is slightly less strong (40 percent). Protein-protein interaction inhibitor 

interactions also target more than one pocket, with the average being around 

4 (± 1).
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Figure 2.4: Histograms showing the relative frequency of a protein having a pocket targeted by 

its bound ligand. a) Protein-ligand dataset (134 complexes)(Nissink  et al. 2002),  b)  Protein-

protein  dataset  (97  pairwise-bound  hetero  complexes)(Burgoyne  and  Jackson  2006),  c) 

Protein-drug dataset (50 complexes non-redundant at SCOP superfamily level, containing only 

drugs marked as approved by the FDA)(Fuller, Burgoyne and Jackson, 2009), d) Protein-protein 

interaction inhibitor dataset (24 complexes taken from 7 protein-protein interaction inhibitor 

interaction classes with structures available)(Fuller,  Burgoyne and Jackson,  2009). a) and c) 

both show a very positively skewed distribution, whilst b) and d) both show only slight positive  

skew.

We have now made several observations regarding the nature of interactions of 

proteins with a variety of different classes of ligands, and a set of interacting 

protein partners. All of the previous observations have been made using bound 

complexes. As of June 2010, there are more than 56,000 X-ray structures held 

within the PDB(Berman et al. 2002), of which more than 40,000 are co-crystallised 

with a ligand although many of these are crystallographic compounds, around 
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10,000 are biologically relevant. This is a very small diversity of chemical space 

and as such it would be informative to see whether the observations made for 

bound structures hold true when applied to unbound structures. As discussed 

earlier it is necessary to have a defnition of success for the unbound dataset. The 

results in Figure 2.6 show the results pertinent to the optimisation of the method of 

mapping pockets to the SASA. a) to d) show the distribution of the number of 

pockets targeted by ligands in the bound structures. e) to h) show the distribution 

of the number of pockets targeted by ligands in the unbound structures when 

using the 95 % cutoff. The dark blue line shows the distribution of the unbound 

dataset, whilst the light blue line shows the distribution of the bound dataset. The 

method is aiming to optimise the correspondence between the two lines. When 

comparing the protein-ligand distributions in Figure 2.6e, we notice that although 

the distribution shows strong positive skew, it does not show the strong peak at 1, 

which is observed in the bound distribution. Fortunately when comparing protein-

drug interactions in Figure 2.6f, we once again see the strong positive skew and a 

higher peak for pockets ranked at position 1. We do however see that a relatively 

large proportion (25 %) of ligands in this distribution do not appear to be targeting 

any pockets. Results for the protein-protein interaction inhibitor interactions in 

Figure 2.6g show a reasonably strong correlation between the two datasets, with 

the modal peak centred around 4 for the bound dataset, and slightly nearer 5 for 

the unbound dataset. The results for the protein-protein interactions in Figure 2.6, 

also show a strong correspondence between distributions, with the modal peak 

once again being centred near 6 for both bound and unbound distributions.
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Figure  2.5: a)-d) show histograms of Frequency density vs. Number of pockets targeted for 

each  of  the  investigated bound datasets.  e)-h)  show histograms of  Frequency density  vs. 

Number of pockets targeted for each of the investigated unbound datasets. For the unbound 

datasets a pocket was determined to be targeted if the change in SASA (SASA of the unbound 

complex  plus  the  relevant  active  volume  minus  SASA  of  the  unbound  complex)  due  to 

interface residues was greater than 95 %. The light blue line corresponds to the distribution of 

the bound dataset, whilst the dark blue line corresponds to the distribution of the unbound 

dataset. Matching the distributions shown by the light blue and dark blue lines optimised the 

cut-off value of 0.95.

Figure 2.5 attempts to give an insight into the nature of the pockets that we have 

discussed. The left hand panel (a-f) shows some representatives from the protein-

drug dataset. Many of these have top ranked pockets that accurately envelope 

the ligand binding site. It should be noted that these ‘representative’ sites are in 

many cases close to the volume that one would expect to fnd given the results 
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previously presented. The right hand panel (g-l) shows protein-protein interaction 

inhibitor  representatives from 6 of the 7 families covered by the dataset. The Bcl-

2/BH3 interaction was not chosen, as it is relatively similar to Bcl-XL/BH3 in nature.

Figure 2.6: Images of the protein-ligand interface with the ligand coloured according to atom 

type, protein solvent accessible surface area shown in grey, and active volume of the pocket 

coloured according to the rank of the site. a)-f) show six representatives from the protein-drug 

dataset  of  50  complexes,  g)-l)  show  representatives  of  6  out  of  7  of  the  protein-protein 

interaction inhibitor classes represented in the protein-protein interaction inhibitor dataset of 24 

complexes. PDB codes are given in order a)-f) 1fem, 1err, 1s1x, 1abe, 1f5l, 1pxx. g)-l) 1qvn,  

1t4e,  1r6n,  2yxj,  1tft,  1s1j.  Binding  pocket  images  were  prepared  using  UCSF 

Chimera(Pettersen et al. 2004).

We have previously observed (in Figure 2.4) that when looking at bound datasets, 

the average pocket volume of pockets on the protein surface is less than the 

average active volume in all cases except protein-protein interactions. The 

magenta bar in Figure 2.7 shows the same results as Figure 2.4, whilst the dark 

blue bar shows the average active volume of the top ranked pocket from each 

complex to allow comparison with unbound proteins. We note that in all cases the 
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average surface pocket volume for unbound proteins is slightly less for the 

unbound datasets. However, the striking difference is observed when comparing 

the average active volume of the top occupied pocket. For each dataset there is a 

signifcant decrease in active volume. This decrease is most noticeable for the 

protein-drug (Δvolume: 314 Å3) and protein-ligand (Δvolume: 223 Å3) datasets. 

However it is also signifcant to for protein-protein interaction inhibitors (Δvolume: 

137 Å3) and to a lesser extent protein-protein interactions (Δvolume: 78 Å3).

Figure  2.7: Average active volume of pockets for all sites on a protein surface in the bound 

(purple) and unbound (pink) states, and all occupied top ranked sites in the bound (blue) as 

well as those top unbound sites defned as corresponding to an occupied site in the bound 

protein structure (cyan). Error bars show standard error on the mean.

2.5 Discussion and Conclusion

The frst major observation that we make is that PLIs have much larger active 

volumes than PPIs. In fact the average active volume for PLIs is more than twice 

that of the active volume observed with PPIs. We also see that PLIs generally 

81



2 Properties of small molecule protein-protein interaction inhibitors and their active volumes

occur in a single pocket, compared to PPIs that tend to occur in multiple pockets. 

So ligand binding appears to favour targeting a single high-volume pocket where it  

can bind and optimize itself effciently. PPIs on the other hand tend to target 

several lower volume pockets on the protein surface. Proteins binding to their 

cognate protein are able to achieve this due to their far larger size compared to 

binding to a cognate ligand.

We expect to see a similar picture when we transfer for looking at the general PLI  

dataset to the marketed drug dataset. This is indeed the case, with a slight 

increase in the average active volume targeted. This is likely due to variance in the 

data. The fact that the average volume of surface pockets is the same for both the 

PLI and marketed drug datasets also adds to confdence that the two datasets 

are very similar.

We next make comparison between the marketed drug dataset and the PPI 

dataset. It is observed that all three datasets have similar average surface pocket 

volumes. Marketed drugs have active volumes that are nearly twice that of protein-

protein interaction inhibitors, which in turn have active volumes nearly 60 % larger 

than PPIs. Thus protein-protein interaction inhibitors lie in an intermediate, having 

active volumes somewhere between those of marketed drugs and PPIs. We have 

already made the observation that PLIs and marketed drugs tend to occupy a 

single high volume pocket, whilst PPIs tend to occupy several lower volume 

pockets. Once again protein-protein interaction inhibitors appear to occupy an 

intermediate position, whereby they tend to occupy more than one pocket, but 

fewer pockets than PPIs.

The evidence presented above suggests that current efforts at elucidating small-

molecule inhibitors of protein-protein interaction inhibitors may have been 

successful due to the compound's abilities to target several pockets on a protein 
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surface. These pockets are generally smaller than those found occupied in PLIs 

and marketed drugs, but larger than those found in PPIs. The fact that multiple 

pockets are targeted perhaps confers dual benefts to any small-molecule 

attempting to out compete an interacting protein partner. The frst is that it allows 

a larger proportion of the native protein interface to be shielded from the 

competing protein. The second is that it allows the small-molecule to increase its 

binding potency by targeting several energetically favourable hot-spot regions. 

This leads us to believe that in order to increase success levels in targeting 

protein-protein interactions, knowledge of the location and properties of hot-spot 

regions that confer stability to protein-protein interactions, yet are also favourable 

for the binding of ligands is required.
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3 Predicting ligand binding pockets: 

using physical models and machine 

learning techniques

3.1 Abstract

The ability to accurately determine which regions of a protein are involved in 

binding are of interest to several felds including molecular docking and functional  

annotation of proteins. Furthermore, the ability to prioritise certain binding pockets 

as more likely to accommodate high-affnity drug-like ligands would allow 

resources to be focussed towards those drug targets with better chance of 

success. We frst analyse a large dataset of biologically relevant ligands from the 

PDB to determine the range of energies that they interact with the protein using 

the GRID force feld. We then present a method that uses Q-SiteFinder to identify 

pockets and the GRID force feld parameters to investigate whether certain probe 

types can give more information about the drugability of the pocket. Additional 

parameters identifed in previous work by Hajduk et al.(Hajduk, Huth, and Fesik 

2005) are added to create a pool of predictor variables that are used by a random 

forest machine learning method that aims to identify binding and non-binding 

pockets and furthermore to identify binding pockets that might accommodate 

high-affnity drug-like ligands.

3.2 Introduction

In recent years many new methods of pocket detection have been proposed, 

however, broadly speaking they tend to be based around one of several main 

concepts(Laurie and Jackson 2006). Most of these pocket detection methods can 

reliably determine binding sites in the top ranked sites from a dataset in at least 

87



3 Predicting ligand binding pockets: using physical models and machine learning techniques

50 % of cases, indeed many have been shown to be far more successful. 

Knowledge of the location and shape of binding pockets have been used for  

docking studies and also as a tool for functional annotation of proteins.

One of the frst discussions of the maximal affnity that a ligand might be able to 

develop for a protein is presented by Kuntz et al.(Kuntz et al. 1999). They 

performed an analysis of the binding energies of a large selection of ligands 

showing that the strongest binders produce on average -1.5 kcal mol-1 per non-

hydrogen atom, with relatively little increase for greater than 15 non-hydrogen 

atoms(Kuntz et al. 1999). The average binding energy contributed per non-

hydrogen atom is now known as the ligand effciency. Cheng and co-workers took 

the idea of maximal affnity of ligands and asked the converse question, what is 

the maximal affnity that the ideal ligand might develop in a pocket on the protein 

surface. They developed a simple physical model based on a desolvation score for 

the binding site, a desolvation score for the ligand and a constant contribution 

from factors such as van der Waals interactions, electrostatics interactions and 

changes in entropy(Cheng et al. 2007). The solvation model for the binding site is 

based on the curvature of the site, whilst for the ligand it is a constant multiplied 

by the solvent accessible surface area of the ligand(Lee and Richards 1971). The 

authors then applied their maximal affnity score to a small set of proteins of which 

some were classed as druggable, some diffcult and the remaining undruggable 

according to a binding affnity threshold (undruggable if predicted Kd > 100nM). 

They showed reasonable success in classifying their data into these classes using 

their model. Halgren discusses some of the problems that might be associated 

with using the maximal affnity model proposed by Cheng, and develops a novel 

method based on concepts based on pocket detection(Halgren 2009). The model 

is based on weighted, rescaled contributions from three variables calculated from 

the site. The frst is the number of grid points defning the site, the second is the 

enclosure of the site and the third is hydrophillic score of the site. Two scores are 

then generated, a site score and a drug score. The former aims to distinguish 
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binding sites from non-binding sites, whilst the latter aims to determine whether a 

binding site is likely to accommodate a high-affnity ligand. The score and weights 

were trained using a dataset from BindingMOAD such that the score correlates 

with measured binding affnities(Benson et al. 2005). The drug score is then 

applied to a dataset based on the work previously described by Cheng(Cheng et  

al. 2007), where Halgren showed the ability to classify drugs into each of the three 

categories based on the magnitude of the drug score(Halgren 2009).

Hajduk and co-workers had previously used NMR hit-rates to approach the 

question of 'drugability' of a binding site. They observed that higher NMR hit-rates 

tend to correlate to binding sites that could accommodate a high-affnity drug-like 

compound(Hajduk, Huth, and Fesik 2005). They further investigated the properties 

of 'druggable' binding sites to determine whether there are certain properties that 

predispose a binding site to accommodate a high-affnity ligand. They observed 

that there is wide variability in many properties of pockets such as volume, surface 

area and number of charged residues(Hajduk, Huth, and Fesik 2005).

In order to avoid confusion several key terms used in this study are defned here to 

avoid ambiguity. When discussing bound pockets we are describing pockets 

identifed using Q-SiteFinder - and a 25 % precision threshold described in the 

previous chapter - from the crystal structure of a protein-ligand complex. Unbound 

pockets are other pockets identifed on the complex using Q-SiteFinder. That is to 

say that unbound does not describe pockets derived from the apo crystal 

structure and mapped to their relative location on the protein-ligand complex. It 

describes other pockets that do not contain a ligand but are derived from the 

protein-ligand bound coordinates. When discussing probes we mean specifc 

locations at which a GRID type is located. A GRID type in this context is 

describing an atom or functional group for example C3 represents a methyl group. 

When discussing a GRID atom we mean that the energy of an atom (or group of 

atoms) from a specifc ligand bound to a protein.
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Regarding datasets we use three key datasets all of which are described in detail  

in the methods. We describe a large dataset of biologically relevant ligands, a 

dataset of proteins contained within BindingMOAD(Benson et al. 2005). 

BindingMOAD contains crystal structures of resolution better than 2.5 Å, and 

includes binding affnity data of the compound for the protein where available. The 

dataset previously described by Cheng et al.(Cheng et al. 2007) and used in work 

by Halgren(Halgren 2009). We refer to the datasets as: the biologically relevant 

ligands; BindingMOAD; the Halgren dataset, respectively.

Previously machine learning techniques have been applied to the problem of  

drugability prediction. Sugaya and Ikeda identifed the SMAD4/SKI interaction as a 

candidate drugable PPI using a Support Vector Machine (SVM) that used 

Structural, Chemical and Functional information(Sugaya and Ikeda 2009). In this 

study a random forest classifer was used as it has previously been shown to 

perform well on unbalanced datasets and additionally on datasets with correlated 

learning features(Chen, Liaw, and Breiman 2004). Furthermore random forest 

classifers, in contrast to  SVMs, have the ability to show which learning features 

are used to make predictions, thus allowing evaluation of which features are most 

important. A random forest is a collection of decision trees. An input vector of 

learning features is fed into the each of the decision trees that comprise the 

random forest. Each decision tree outputs a classifcation which are then 

combined with the classifcations from other trees. The class with the most 

decision trees voting for it is then chosen as the 'correct' classifcation.

This study aims to answer two key questions: 1) Is it possible to distinguish a 

binding pocket from a non-binding pocket on the protein surface? A combination 

of GRID point energies, a simple solvation measure, surface area and presence of 

donor/acceptor residues are combined and a machine learning approach is 

applied to determine whether a reliable classifer can be identifed using these 
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metrics. The second more diffcult problem is to ask the question 2) Is a pocket 

identifed as a binder druggable? This has been attempted before in several  

papers previously detailed, and in this context we are not directly asking what the 

maximal affnity of a ligand for a site might be, but whether the previously derived 

classifer might allow druggable binding sites to be distinguished from diffcult or 

undruggable sites.

3.3 Methods

3.3.1 Datasets

3.3.1.a Biologically relevant ligand dataset

The advanced search feature of the PDB was used to retrieve all structures from 

the PDB with R-free < 0.25 that were determined to less than 2.5 Å by X-ray 

crystallography and also contained a ligand. Biounit data from the PDB accessed 

on 09/02/2010 was downloaded in PDB format(Berman et al. 2002). A list of 

ligands known to be crystallographic solvents and additives was used to exclude 

several ligands(Strömbergsson and Kleywegt 2009). Further to this criteria used to 

exclude ligands were that the nearest ligand atom to the protein should be less 

than 5 Å in distance. The ligand should have more than 10 heavy atoms including 

at least one carbon and at least one nitrogen or oxygen. This produced a total of 

8,861 complexes.

3.3.1.b BindingMOAD dataset

The BindingMOAD dataset was accessed on 23/06/2010 and all ligands with 

binding data were downloaded and processed using the same rules as described 

for the biologically relevant dataset to produce a total of 250 complexes. 
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3.3.1.c Halgren (Cheng) dataset

The PDB fles described in the paper by Halgren were downloaded from the PDB 

and processed using the same criteria as previously defned in the section on 

generating the biologically relevant ligands dataset to produce a total of 62 

complexes(Halgren 2009). The PDB 1T03 was excluded from the dataset as it 

was not clear which ligand should be used in the analysis.

3.3.2 GRID

Ligand atoms were assigned GRID atom types using the gmol2 program whilst 

the GRID calculations themselves were performed using liggrid, an implementation 

of GRID described previously by Jackson(Jackson 2002). GRID calculations for 

ligands were calculated over a box enclosing the ligand centred on the ligand 

centre of mass. A C program written by Alasdair Laurie was used to calculate the 

interaction energy of the ligand atoms based on the interaction energy of the 

nearby points. In order for this to occur the ligand was frst minimized on the grid 

using the algorithm defned in the paper by Jackson(Jackson 2002). Calculations 

corresponding to the comparison of GRID energies of Q-SiteFinder sites to the 

energies of GRID atoms in ligands used all GRID points with spacing 0.5 Å in the 

box defned by the centre of mass plus the maximum dimensions of the 

Q-SiteFinder site. GRID calculations for OH2 probes defning a Q-SiteFinder site 

were performed on a GRID with spacing 0.9 Å centred on the Q-SiteFinder pocket 

centre of mass and grid points that did not coincide with a Q-SiteFinder site point 

were discarded.

3.3.3 Q-SiteFinder

Q-SiteFinder was used to calculate 99 pockets on the surface of each member 

protein of the four datasets, using the method described by Laurie and 

Jackson(Laurie and Jackson 2005). Briefy summarised the method has four 

constituent steps. Step one is to add hydrogens to the protein using the method 

described by Jackson et al.(Jackson 2002) Step two rotates the protein about the 
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geometric centre to minimize the bounding box volume, allowing the calculation 

speed to be increased as generally the fewest number of grid points are required 

for the calculation. Step 3 calculates the non-bonded interaction energy of a 

methyl probe, using the GRID force feld parameters(Goodford 1985), with the 

protein at each position on a defned cubic grid of resolution 0.9 Å. Probes with a 

van der Waals interaction energy more favourable than -1.4 kcal mol-1 are retained 

for clustering. Step 4 is clustering probes to create active volumes. Clusters are 

defned by their spatial proximity, with any retained probes lying directly adjacent 

on non-cubic diagonals forming clusters. The sum of interaction energies from all  

probes comprising of the same cluster are then used to rank the clusters in order 

from the most to least favourable. The active volume is defned as the sum of 

cubes with sides of dimension 0.5 Å within 2 Å of the probe sites defning the 

cluster.

3.3.4 Identifying high energy probes

We hypothesised that high energy probes (identifed by GRID) would indicate 

regions where particular atoms from a ligand could favourably reside. We 

developed a z-score based method that uses the data collected from probes 

observed in biologically relevant ligands to generate mean and standard deviation 

values for each probe type. Each probe contained within a pocket then uses a 

z-score cut-off to exclude all probe energies with a z-score less favourable than 

1.7 from the mean. Since we were initially interested in determining the most likely 

probe type at that location, from a set of several probe types, the probe with the 

most favourable z-score is retained.

3.3.5 Half-sphere exposure

Buried binding pockets tend to be more druggable, so we used a method called 

half-sphere exposure to identify solvent accessibility. Half-sphere exposure was 

calculated using the algorithm implemented in the Biopython toolkit(Cock et al. 

2009). The algorithm is described in detail in the paper by Hamelryck(Hamelryck 
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2005). Briefy the algorithm counts the number of atoms within 13 Å from the Cα 

in two half-spheres. One points along the Cα-Cß direction (hse_u, the solvent 

facing sphere), whilst the second half-sphere points along the Cß-Cα direction 

(hse_d, the protein facing sphere). 

3.3.6 Machine learning

Machine learning was performed using two alternative types of Random Forest. In 

both cases the BindingMOAD dataset was split into four separate equally sized 

sets. In each of four cross-validations three sets were used for training whilst one 

set was used for testing. As a further investigation the Halgren dataset was used 

to test the predictions of each of the previously determined random forests.

The frst random forest method is a standard implementation of Random Forest in 

the R statistical computing language called randomForest(Anon 2009). Default 

parameters were used in this instance. The second is an implementation of an 

unbiased random forest written for the weka machine learning package based on 

the original fast random forest package(Hall et al. 2009). The methods are 

described in detail in a technical report(Chen, Liaw, and Breiman 2004), and have 

been applied in a study looking to identify peptide biomarkers(Fusaro et al. 2009).

Rationale for inclusion of individual machine learning feature is included in the  

results and discussion, however, a description of each of the variables is given in 

table 3.1.
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Learning 
feature

Description

C3 points The total number of C3 points defning the pocket

C3 energy The sum of the energy of the C3 points defning the pocket

OH2 points The total number of OH2 points that have energy greater than the 
coincident C3 point.

OH2 energy The sum of the energy of OH2 points that have energy greater than 
their coincident C3 point.

Pocket rank The rank (1-99) of the Q-SiteFinder pocket

hse_u Half-sphere exposure (up) the number of Cα atoms contained within 
the 11 Å half-sphere centred on the Cα atom pointing towards the 
Cβ atom. Cα atoms are not double counted.

hse_d Half-sphere exposure (down) the number of Cα atoms contained 
within the 11 Å half-sphere centred on the Cα atom pointing directly 
away from the Cβ atom. Cα atoms are not double counted.

Near atoms Number of atoms within 3 Å of each Cα atom defning the pocket.

Donor residues Number of Cα atoms of TYR, THR, SER, ARG and TRP residues 
defning the binding site.

Acceptor 
residues

Number of Cα atoms of TYR, CYS, SER and THR residues defning 
the binding site.

Charged 
residues

Number of Cα atoms of LYS, ARG, HIS, ASP and GLU residues 
defning the binding site.

Volume Volume of binding site as defned by Q-SiteFinder(Laurie and 
Jackson 2005).

Surface area Count the number of 0.5 Å3 cube faces not covered by an adjacent 
cube centred on a C3 point and multiply by √0.5. 

Compactness The ratio of the volume to surface area as originally defned by 
Hajduk et al.(Hajduk, Huth, and Fesik 2005).

Table 3.1: Summary of the learning features used in the machine learning section.
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3.4 Results and Discussion

3.4.1 GRID applied to datasets

3.4.1.a GRID atom types observed in ligand dataset

We frst investigate the distribution of GRID atom types present in the biologically 

relevant ligands dataset, then ask about the distribution of energies on a per GRID 

atom type basis.

Figure 3.1 shows the observed frequency of GRID atom types from the dataset of 

all biologically relevant ligands in the PDB. The data is generated from 8,861 

biological units and consists of a total of 14,306 compounds. In total there are 

425,951 GRID atoms represented in the dataset, these comprise a total of 62 

different atom types. The most populous group is C1 (an sp3 aliphatic carbon 

bonded to one hydrogen) containing just short of 59000 representatives. 

Unsurprisingly carbon atom types are most widely represented with C2 (methylene 

CH2 group), C= (sp2 carbon not bonded to hydrogen in aromatics, olefns and 
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Figure 3.1: Observed frequency of GRID atom types in the biologically relevant dataset (8,861 

complexes, 14,306 compounds). 425,951 total GRID atoms.



3 Predicting ligand binding pockets: using physical models and machine learning techniques

esters), C1= (aromatic CH group) being next most represented, with C3 (methyl 

CH3 group) and C (sp2 carbon not bonded to hydrogen in unionised carbonyl or 

amide) also containing more than 12000 representatives. Oxygen and nitrogen 

atom types are the next most populous groups followed by phosphorous, sulphur 

and then the halogens Cl, F and Br.

Figure 3.2 shows the distribution of energies of 43 GRID atom types for which the 

dataset of all biologically relevant ligands has no fewer than 200 entries. All  

energies greater than +5 kcal mol-1 have been removed. Generally carbon GRID 

atom types tend to form either Extreme or Gaussian like distributions with 

maximum values somewhere between -4 and -2 kcal mol-1. This is slightly more 

than the -1.5 kcal mol-1 observed by Kuntz et al. when looking at per atom 

contributions(Kuntz et al. 1999) although the energies reported here cannot be 

directly compared with binding energies since they neglect any desolvation energy 

contributions. Atom types that are mediated by charge interactions tend to be 
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Figure  3.2:  Frequency  density  plots  showing  the  distribution  of  GRID  energies  for  ligands 

observed in the PDB. Atom type and number of occurrences is shown above each histogram. All 

energies greater that +5 kcal mol-1 have been removed, and no atom types with fewer than 200 

representatives are presented.
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able to form more energetically favourable interactions. In many cases, such as 

O=, OC2, OH, P-1, OC1, F, CL, BR, N1+, the energies still form Gaussian type 

distributions. However many of the nitrogen atom types, N:=, N2, N1:, N=, tend to 

have tailed distributions skewed towards more negative energies and are more like 

Extreme value distributions. Also of interest is the fact that several atom types that 

carry a formal charge such as N+, N=, P-2 have signifcant numbers of atoms that  

register a positive energy of several kcal mol-1.

3.4.1.b Q-SiteFinder applied to the Halgren dataset

Figure 3.3 shows that for the proteins described as 'druggable' in the Halgren 

dataset, there is signifcant enrichment of occupied pockets when looking at the 

top 5 ranked pockets, with the top ranked pocket showing the most enrichment. 

The picture is less clear when looking at the diffcult and undruggable datasets,  

which are smaller datasets than the druggable set. These datasets are much 

noisier due to their relatively small size, although do still appear to show some 
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Figure  3.3:  Precision  of  binding  site  predictions  on  the  Halgren  dataset.  25 %  precision 

threshold  used  to  define  a  successful  prediction.  Data  from  all  63  PDBs  shown  in  blue, 

druggable subset in orange (43), difficult subset in yellow (10) and undruggable subset (10) in 

green.



3 Predicting ligand binding pockets: using physical models and machine learning techniques

enrichment in the higher ranked pockets. The Halgren dataset also appears to be 

a more diffcult challenge than datasets that have been traditionally investigated by 

pocket fnding algorithms, as seen by the lower percentage of ligands observed in 

the top three pockets, compared to the GOLD docking benchmark of 134 

proteins used in the original Q-SiteFinder study(Laurie and Jackson 2005). 

However, this might be anticipated since the GOLD benchmark contains only 

validated binding pockets with known inhibitors that are generally to be high 

affnity binders.
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3.4.1.c Distribution of GRID energies

Figure 3.4 shows the distribution of energies of GRID probes observed in pockets 

defned by Q-SiteFinder on proteins in the Halgren dataset (Bound and Unbound 

pockets) compared to the distribution of energies of GRID probes observed in 

ligands from the biologically relevant dataset (Ligands). The probes from the 
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Figure 3.4: Shows distributions of GRID energies for six different atom types C3, C1, O1, N:=,  

CL,  N3+.  The  red  line  shows  the  distribution  of  energies  observed  in  biologically  relevant 

ligands, whilst the blue line shows the energies observed in Q-SiteFinder pockets from the 

Halgren dataset that are designated as bound (precision > 25 %) whilst the green line shows 

the distribution of the GRID atoms in the Q-SiteFinder pockets designated as unbound.
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Q-SiteFinder pockets are further split into a bound and unbound subset to allow 

comparison. The C3 and C1 probes both behave as van der Waals spheres with 

Gaussian like distribution of energies. It is noticeable that in both cases the 

distribution of energies for bound and unbound pockets is almost identical. 

Furthermore in the case of C1, the probes observed in ligands have an energy 

distribution almost identical to those of the bound/unbound pockets identifed by 

Q-SiteFinder. The C3 probe type has an energy distribution that deviates from that 

of the Q-SiteFinder pockets, although not by a large amount, this is due to the fact 

that the GRID spacing is 0.5 Å rather than the 0.9 Å used for Q-SiteFinder and the 

fact that some additional GRID points are contained as the calculation is 

performed on a box placed over the Q-SiteFinder site. Whilst this has some 

limitations, the effect is that the right hand tail includes more positive values than 

expected since some of the box is outside the Q-SiteFinder site and therefore not 

necessarily a favourable probe site. However, the left hand tail is not signifcantly 

affected. As a result it is not expected that the difference between the bound and 

unbound pockets should change signifcantly. The initial hypothesis that the bound 

pockets energy distribution might be expected look more like the ligand 

distribution, whilst the unbound pockets would exist somewhere to the right 

allowing for discrimination between the two classes is not fulflled. 

The O1 and N:= probes also show few differences in distributions between bound 

and unbound pockets. Again there is little difference between the pocket energy 

distribution and that observed for the biologically relevant ligands. In the case of 

C3, O1 and N:= there is some tendency for slightly more negative energies to be 

favoured, however a majority of ligand atoms have GRID energies comparable to 

those observed in probes from Q-SiteFinder pockets. It would appear in most 

cases that there is no discernable difference between the distributions of the 

bound and unbound pockets of the Halgren dataset.

101



3 Predicting ligand binding pockets: using physical models and machine learning techniques

The largest differences between bound and unbound pockets and ligand atoms is 

observed in the CL and N3+ atom types. In the case of CL we see that the mean 

energy of ligand atoms is shifted to more negative energies. Additionally we see 

that the energy distribution for unbound pockets is slightly more negative than that 

of bound pockets. In the case of N3+ the converse is true of unbound and bound 

pockets, with bound pockets tending to have more negative energies than 

unbound pockets. Additionally we notice that N3+ atoms in ligands have a larger 

negative tail than either of the bound pockets or unbound pockets.

The fact that the majority of probe types do not appear to clearly distinguish 

between bound and unbound sites is explainable retrospectively. A Q-SiteFinder 

pocket demarcates a region of space for which van der Waals energy is 

favourable. However, a ligand may only require a region of the size several GRID 

points to generate a favourable interaction between an atom and the protein. 

Whilst the Z-score method does in several cases show regions of favourable 

interactions from a probe type that is similar to the atom in the cognate ligand, it is 

still diffcult to distinguish these regions from regions of favourable interaction 

elsewhere on the protein.
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3.4.1.d Regions of Favourable GRID energy

We investigated the fraction of probes that comprise Q-SiteFinder sites for their 

propensity to favour one of six probe types. We used the C2, N:, N+, N1, OH and 

P-1 probe types as they are relatively common and represent a selection of charge 

neutral, positive, negative and hydrogen bond donor and acceptor properties. The 

mean and standard deviation of each of the probe types was calculated from the 

ligand distributions similar to those shown in fgure 3.4. From this z-scores were 

calculated for each probe position and the probe with the largest z-score 

(z-score > 1.7) at that position is retained. Figure 3.5 shows the mean fraction of 
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Figure 3.5: Fraction of probes selected by highest z-score for each probe position comprising a 

Q-SiteFinder site for druggable bound sites (dark blue) and druggable test sites (green), difficult 

bound sites  (orange)  and  difficult  test  sites  (brown),  undruggable  bound sites  (yellow)  and 

undruggable test sites (light blue).
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probes from a Q-SiteFinder site that are selected as having the largest z-score 

greater than 1.7. It is clear from fgure 3.5 that the C2 probe very rarely fulfls this 

criteria, which is not altogether surprising given that it can only interact through 

van der Waals interaction which are likely to be favourable anyway given that the 

probe comprises a Q-SiteFinder site. Also of note is that the P-1 probe is rarely 

observed as the highest scoring probe in bound pockets in the druggable or 

diffcult dataset, although it is observed as having the highest z-score for 11 % of 

the probes in typical bound undruggable sites. The P-1 probe is observed 

between 2-3 % for each of the unbound Q-SiteFinder pockets. The N+ probe is 

rarely observed in the undruggable bound pockets, whilst being observed in 9 % 

and 6 % of probes for druggable and diffcult pockets respectively. The remaining 

N:, N1 and OH probes tend to have percentage site occupancies that don't vary 

by more than a couple of percent from a mean value of 5 %.

Use of the six probes (C2, N:, N+, N1, OH and P-1) enables the use of a reduced 

number of probes that cover some of the common properties of ligand-protein 

interactions. Namely: C2 (van der Waals); N: (H-bond acceptor); N+ (positive 

charge); N1 (H-bond donor); OH (H-bond donor/acceptor); P-1 (negative charge). 

It appears that the only strong discriminator here is charge, whereby positive 

charge is observed more in druggable/diffcult sites, whereas negative charge is 

more often observed in undruggable sites. The use of charge as a discriminator 

between binding sites has been used before in work by Hajduk et al., however, 

they observed that generally binding sites carry little formal charge(Hajduk, Huth, 

and Fesik 2005). It is not clear that this is a genuine distinguishing feature of 

druggable/undruggable binding sites. Certainly the undruggable set is very small  

and redundant with just four classes of protein (HIV integrase, ICE1, PTPB1 and 

Cathepsin K) so addition of just a few sites carrying net formal charge could bias 

the results heavily.
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3.4.2 Drugability indices

Figure 3.6 shows a variety of pocket descriptors defned from the coordinates of 

the pockets. Half sphere exposure is a simple measure of solvation potential that 

is designed to take into account solvent accessible surface area dependent 

properties(Hamelryck 2005). In fgure 3.6a we see that the number of atoms 

contained in the solvent facing half sphere (hse_u) is greater for druggable bound 

pockets (128) than it is for both diffcult and undruggable bound pockets (70 and 

65 respectively). A similar picture is observed for the protein facing half sphere 

(hse_d), 140 for druggable bound pockets, compared to around 100 for all other 

classes except undruggable unbound pockets (58).
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Figure 3.6: Pocket descriptor properties generated using Q-SiteFinder to define a pocket: a) half 

sphere exposure; b) half sphere exposure/volume; c) volume and surface area of pocket; d) 

pocket compactness (volume/surface area); e) number of near atoms, donor residues, acceptor 

residues and charged residues.
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In fgure 3.6b we use a measure of half sphere exposure except that we normalise 

for the volume of the site chosen. Normalizing by site volume somewhat alters the 

observed measure of half sphere exposure. We now see that the solvent facing 

half sphere remains larger (0.87) in the case of druggable bound sites, whereas 

the score for diffcult and undruggable bound sites drops to around 0.4 and 0.65 

respectively. The score for unbound sites is this time closer to 1 in all cases. When 

looking at the score for the protein facing half sphere (hse_d) we observe that the 

undruggable bound pockets have a score of close to 1.2 which is similar to that of 

unbound druggable pockets. This time druggable bound pockets score 0.87, 

whilst diffcult bound pockets score 0.67.

We next look at the volume and surface area of pockets in fgure 3.6c. A clear 

decreasing trend is seen when moving through druggable, diffcult and 

undruggable, this is extended when looking between bound pockets and 

unbound pockets in the case of both volume and surface area. Average volume of  

druggable bound sites is 190 Å3 with surface area being 270 Å2. Diffcult sites are 

smaller (125 Å3) with correspondingly smaller surface area (210 Å2). Undruggable 

sites are the smallest of all with volume 95 Å3 and surface area 165 Å2. It is 

noticeable that the volume of druggable and diffcult unbound pockets are similar  

in volume to those of undruggable bound pockets, this lends some weight to the 

idea of using the bound/unbound classifcation as a proxy for the 

druggable/undruggable classifcation.

A related concept to that of volume and surface area is that of compactness 

which measures the ratio between the two values(Hajduk, Huth, and Fesik 2005). 

Figure 3.6d shows that druggable bound pockets have a compactness score of 

close to 0.6 with diffcult sites being close in value with 0.57. Undruggable bound 

sites score just over 0.5, which is comparable to the scores of unbound druggable 

pockets and unbound diffcult pockets.
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Finally we investigate the average number of atoms or residues of a certain type 

within a radius of the points comprising the pocket in fgure 3.6e. For the bound 

pockets we observe an average of 6, 3.65 and 3.8 atoms within a radius of 5 Å of 

pocket points for druggable, diffcult and undruggable respectively. In the case of 

unbound pockets the averages are 4.4, 4.4 and 3.05 respectively. We observe 

that the average number of donor residues is close to one for druggable and 

undruggable bound pockets whilst slightly higher at one and a half for diffcult  

bound pockets. When looking at average number of acceptor residues we 

observe an average of close to one for druggable and diffcult bound pockets, and 

0.6 for undruggable bound pockets. The average of the charged residue count 

varies slightly around close to one.

Several of the measures that we investigated are likely to be highly correlated, 

which is one reason for the choice of the random forest as a machine learning  

method applied to the above data, which is discussed further shortly. Examples of 

correlated variables are the volume, surface area and compactness, since 

compactness is calculated from these two measures alone it will also be 

correlated. The number of near atoms might also be expected to show correlation 

to the volume and surface area of sites, although this is not necessarily the case,  

as it can be seen that the number of atoms for diffcult and undruggable bound 

sites is lower than that of unbound sites from druggable and diffcult sites. This 

might indicate that the degree to which a ligand might be able to bury itself in the 

protein surface is being identifed by this measure.

In the cases investigated here we notice that half-sphere exposure and 

volume/surface area appear to be the two measures that are most likely to 

distinguish between bound/unbound or druggable/undruggable. However, in most 

cases there doesn't seem to be a strong differential between bound/unbound 

pockets, meaning that it may be diffcult to develop a good predictor.
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We note that the paper by Halgren appeared to make good use of descriptors 

based on pocket size, enclosure and hydrophilicity. As previously discussed we 

already have several measures of pocket size in volume and surface area. 

Additionally we have information on the total number of C3 probes comprising a 

pocket, and the total energy of these probes. We have a measure of enclosure 

implicitly within the Q-SiteFinder energy score since more deeply buried pockets 

will tend to have a larger energy score, and additionally we have included the 

number of near atoms and the protein facing half-sphere exposure (hse_d). 

Furthermore we have included a hydrophilicity measure that places an OH2 probe 

at all probe positions and calculates the interaction energy with the protein. If the 

probe has energy more favourable than that of the C3 probe at that point it is 

retained and a measure of total OH2 energy and total number of OH2 probes in 

the pockets is counted. The measurements shown in fgure 7 and the C3 probe 

count, total C3 probe energy, OH2 probe count and total OH2 probe energy along 

with the rank of the Q-SiteFinder site are then included as predictor variables for a 

machine learning technique. Since there are a large number of potentially  

correlated predictor variables and a small number of true positives compared to a 

large number of true negatives a random forest machine learning is determined to 

be a suitable methodology to apply.
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3.4.3 Random forests to identify druggable 

pockets

3.4.3.a All learning features

Training set prediction Test set prediction

Bound Unbound Class 
Error

MCC Bound Unbound Class 
Error

MCC

Observed
Set 1 
(101,202)

Bound 286 19 7.59 % 0.892 94 7 6.93 % 0.848

Unbound 35 575 6.37 % 14 188 6.93 %

Observed
Set 2 
(99,204)

Bound 282 20 6.67 % 0.870 95 4 4.04 % 0.884

Unbound 38 572 6.23 % 12 192 5.88 %

Observed
Set 3 
(102,204)

Bound 282 20 6.62 % 0.859 100 2 1.96 % 0.935

Unbound 36 574 5.90 % 7 197 3.43 %

Observed
Set 4 
(102,204)

Bound 283 19 6.29 % 0.864 96 6 5.88 % 0.844

Unbound 43 570 6.56 % 16 188 7.84 %

Table  3.2: Results from four balanced training sets, with resulting forests applied to test sets 

generated from the remaining data.

Table 3.2 shows results from a four-fold cross-validation of using a random forest 

to classify pockets as bound or unbound using the predictor variables: number of 

C3 points; sum of C3 point energies; number of OH2 points; sum of OH2 point  

energies; half-sphere exposure (hse_u); half-sphere exposure (hse_d); pocket 

volume; pocket surface area; pocket compactness; number of near atoms; 

number of donor residues; number of acceptor residues; number of charged 

residues; Q-SiteFinder rank of pocket. We generally observe classifcation error of 

between 5.9 % and 7.6 % in the training sets. Prediction of bound and unbound 

pockets in the test set are generally successful with prediction errors generally 

remaining low and comparable in magnitude to those observed in the training 

data. Use of the random forest allows us to recover details of which predictor 

variables are most important for making predictions. In all cases pocket rank is the 

most important variable, followed by total C3 energy and number of C3 points. 

Volume and surface area are also often important variables. 
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We use the Matthews Correlation Coeffcient (MCC) to compare the performance 

of the random forest under four-fold cross-validation. Use of the MCC also 

measures the quality of prediction on our test sets. The MCC is a measure of the 

success of classifying binary variables. MCC varies between -1 (perfect 

classifcation into the opposite classes), 0 (random classifer) and +1 (perfect 

classifcation). Results for the MCC in each of the test cases are presented in 

Table 3.2. In our training sets we observe MCCs of between 0.859 and 0.892, 

whilst in our test sets we score between 0.844 and 0.935. We aim to classify the 

Halgren dataset into bound and unbound using our previously trained random 

forests. If a reasonable level of success is achieved it will then be possible to 

investigate whether bound sites incorrectly classifed as unbound tend to be 

enriched with sites that are labelled by Halgren as diffcult of undruggable.

Halgren dataset predictions

Bound Unbound Class Error MCC

Observed
RF 1

Bound 84 133 61.3 % 0.209

Unbound 433 5488 7.31 %

Observed
RF 2

Bound 85 132 60.8 % 0.214

Unbound 426 5495 7.19 %

Observed
RF 3

Bound 85 132 60.8 % 0.200

Unbound 476 5445 8.74 %

Observed
RF 4

Bound 85 132 60.8 % 0.206

Unbound 454 5467 7.67 %

Table 3.3: Results from Halgren dataset predictions using each of the four forests. 217 bound 

pockets and 5921 unbound pockets.

Table 3.3 shows the results from applying each of the four forests previously 

trained to the Halgren datasets. Here we observe that error rates for unbound 

sites remain between 7.19 % and 8.74 % which is very close to those observed in 
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Table 3.2. Error rates for classifying bound sites are far larger than previously 

observed, being consistent at 60-61 %, which is ten times the error rate previously 

observed in the cross validation set.

3.4.3.b Discarding pocket rank from learning features

Training set prediction Test set prediction

Bound Unbound Class 
Error

MCC Bound Unbound Class 
Error

MCC

Observed
Set 1 
(101,202)

Bound 261 42 13.9 % 0.800 84 11 10.9 % 0.790

Unbound 39 573 6.37 % 17 191 8.42 %

Observed
Set 2 
(99,204)

Bound 261 44 14.4 % 0.800 78 10 10.1 % 0.763

Unbound 37 573 6.06 % 21 194 10.3 %

Observed
Set 3 
(102,204)

Bound 263 39 12.9 % 0.807 91 11 10.8 % 0.766

Unbound 39 571 6.40 % 22 182 10.8 %

Observed
Set 4 
(102,204)

Bound 256 46 15.2 % 0.772 92 9 8.8 % 0.860

Unbound 46 564 7.54 % 10 195 4.90 %

Table 3.4: Results from four balanced training sets after disregarding pocket rank as a predictor 

variable, with resulting forests applied to test sets generated from the remaining data.

Results from generating new random forest predictors on the same training/test 

set as previously without using the pocket rank predictor are shown in Table 3.4. 

MCC calculations for each of the cross-validations are also presented. It is clear 

that after removing pocket rank as a predictor variable the class error for 

predicting bound pockets has increased to between 12.9 % and 15.2 % from 

between 5.9 % and 7.6 %. Class error for predicting unbound pockets remains at 

between 6.1 % and 7.5 % from between 6.2 % and 6.6 %. With increasing class 

error we also observe decreased MCC values, with training results of between 

0.77 and 0.80 for training data, and comparably 0.76 and 0.86 for test data.

When the random forest is applied to the Halgren dataset (Table 3.5) we notice 

that the performance is even lower than previously, with MCC scores of between 

0.14 and 0.16. Once again we notice that whilst class error observed when 
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predicting unbound sites remains comparatively low (10.3 % - 11.7 %), class error 

for predicting bound sites is 61.8 % to 64.5 %, several times that observed in the 

training data.

Halgren dataset predictions

Bound Unbound Class Error MCC

Observed
RF 1

Bound 77 140 64.5 % 0.141

Unbound 647 5274 10.9 %

Observed
RF 2

Bound 81 136 62.7 % 0.156

Unbound 620 5301 10.5 %

Observed
RF 3

Bound 83 134 61.8 % 0.148

Unbound 691 5230 11.7 %

Observed
RF 4

Bound 81 136 62.7 % 0.158

Unbound 609 5312 10.3 %

Table  3.5:  Results from Halgren dataset predictions using each of  the four random forests 

trained after disregarding pocket rank as a predictor variable. 217 bound pockets and 5921 

unbound pockets.

3.4.3.c Improving learning with unbalanced data

Currently applying random forest learning methods to our binding dataset has 

initially appeared promising, although when the methods are applied to the 

Halgren dataset it becomes clear that the Halgren dataset must have features that 

are considerably different to our binding dataset. We also note that although 

random forests have traditionally been thought to perform well when applied to 

unbalanced datasets, we note that our training appears to always perform well at 

predicting unbound pockets, but struggles at predicting bound sites when applied 

in a new context. Thus we need to consider methods to better balance our data.
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Using the same datasets as above we frst apply an unbiased random forest to 

our set of predictors after pocket rank has been excluded. We have decided to 

exclude pocket rank from the analysis as whilst it has clearly worked as a strong 

learning feature, we are worried that for diffcult/undruggable pockets it may not 

be a reliable measure when transferred across datasets. Pocket rank may not be 

scale invariant, so the same pocket on a different protein may have a vastly 

different rank, whereas a quantitative measure such as pocket volume might 

distinguish pockets in a certain range or interest.

Training set prediction

Bound Unbound Class Error MCC

Observed
(404,24295)

Bound 404 0 0 % 0.353

Unbound 2510 21785 10.3 %

Table 3.6: Results from four balanced training sets after disregarding pocket rank as a predictor 

variable, with resulting unbiased forests applied to test sets generated from the remaining data.

Halgren dataset predictions

Bound Unbound Class Error MCC

Observed Bound 102 115 53.0 % 0.153

Unbound 938 4983 15.8 %

Table  3.7: Results from Halgren dataset predictions using each of the four unbiased random 

forests trained after disregarding pocket rank as a predictor variable. 217 bound pockets and 

5921 unbound pockets.

The unbiased random forest performs extremely well when trained with class error 

for unbound pockets around 10 % which is slightly more than previously 

observed, but class error for bound pockets is 0 % with all predictions correct. 

However, when the method is transferred to pockets in the Halgren dataset, the 

high class error for bound pockets (53.0 %) once again becomes noticeable. 
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Furthermore the class error for unbound pockets increases. This results in an 

MCC of 0.153 compared to values in the range 0.14 and 0.15 in the case of the 

standard random forest.

A fnal test of the standard random forest was applied to the datasets, whereby 

pockets of volume less than 150 Å3 are removed from the Halgren dataset. 

There are 83 bound pockets contained in this dataset. From each of the four 

random forests 631 out of 5905 pockets are predicted to be bound, with 402 of 

these predictions common across all forests. Druggable pockets account for 66 of 

these pockets, with diffcult pockets accounting for 9 and undruggable 8 (results 

not shown). When each of the random forests are applied to the Halgren dataset 

the vast majority of these pockets are correctly predicted although there are a 

large number of false negative predictions. Additionally the hypothesis that 

undruggable sites might be predicted as unbound sites does not appear to be the 

case as these sites are rarely classifed as unbound.

The major issue with this method appears to be two-fold. The predictor variables 

contain a lot of noise, and secondly the random forests appear to be struggling 

with a heavily biased dataset. Therefore we proceed by using a set of unbound 

sites from the top 5 binding sites. This will create a ratio of bound:unbound of 

somewhere in the region 1:5 rather than the previous 1:50. In many ways this 

should be a more straightforward prediction task although it will mean that 

successful predictors like volume will be less predictive since top ranked sites all  

tend to have large volumes.
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Training set prediction Test set prediction

Bound Unbound Class 
Error

MCC Bound Unbound Class 
Error

MCC

Observed
Set 1 
(101,202)

Bound 154 97 38.6 % 0.472 62 39 38.6 % 0.435

Unbound 77 430 15.2 % 37 167 18.3 %

Observed
Set 2 
(99,204)

Bound 190 115 37.7 % 0.459 26 21 21.2 % 0.435

Unbound 103 507 16.9 % 14 87 6.86 %

Observed
Set 3 
(102,204)

Bound 154 96 38.4 % 0.459 69 33 32.4 % 0.471

Unbound 83 426 16.3 % 40 162 19.6 %

Observed
Set 4 
(102,204)

Bound 151 99 39.6 % 0.411 68 34 33.3 % 0.524

Unbound 98 409 19.3 % 30 174 14.7 %

Table  3.8: Results from four training sets using all bound Q-SiteFinder sites and only the top 

fve unbound Q-SiteFinder sites, with resulting forests applied to test sets generated from the 

remaining data.

Halgren dataset predictions

Bound Unbound Class Error MCC

Observed
RF 1

Bound 188 29 13.4 % 0.668

Unbound 49 200 19.7 %

Observed
RF 2

Bound 184 33 15.2 % 0.678

Unbound 42 207 16.9 %

Observed
RF 3

Bound 191 26 12.0 % 0.609

Unbound 68 181 27.3 %

Observed
RF 4

Bound 188 29 13.4 % 0.672

Unbound 48 201 19.3 %

Table  3.9:  Results from Halgren dataset predictions using each of  the four random forests 

trained. 217 bound pockets and 249 unbound pockets.

3.4.4 Identifying druggable pockets

Compared to using the top ranked Q-SiteFinder site which identifes 24 out of 217 

bound pockets as bound pockets if choosing the top ranked site or 48 out of 217 

if choosing the top three sites (Table 3.6), the machine learning method performs 
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very well, identifying between 184, 188, 188 and 191 out of 217 as bound sites, 

with a relatively low error rate. Pockets predicted as unbound in all four forests, 

but bound in the diffcult dataset are 1A4G, 1NNC, 1QMF, 2QWK with 1KTS 

identifed by one forest and 1NLJ, 1BMQ, 1NNY and 1ONZ from the undruggable 

dataset with 1Q1M identifed by one forest, which identifes Neuraminidase, 

Penicillin Binding Protein and Thrombin as potentially undruggable. This 

distinguishes the compounds Cathepsin K, ICE1 and PTP1B from HIV1-integrase 

as potentially undruggable. The pockets from the druggable set of 1DMP, 1H07, 

1H08, 1HVR, 1HW8, 1HWR, 1KE8, 1KE9, 1KV1, 1M17, 1QBS and 1RTH are all 

predicted as unbound when they are actually bound pockets for each of the 

random forests.

There are three Neuraminidase structures whose pockets were labelled as 

unbound consistently. Neuraminidase drugs tend to be administered as prodrugs. 

Oseltamivir uses a protected carboxylic acid to form three salt bridges with the 

protein(Cheng et al. 2007). The penicillin binding protein drugs such as the ß-

lactam inhibitor Clavulanic acid acts by forming a covalent disulphide bond with 

the protein(Poirel et al. 2005). This indicates that these binding modes may not be 

well described by the method in its current form. Thrombin has been targeted by 

peptidic inhibitors such as Hirudin (and derivatives), and several prodrugs such as 

Ximelagatran and Dabigatran. However, it has also been targeted by the small 

molecule Argatroban, thus the classifcation as a diffcult target may not be truly 

justifed.

3.5 Conclusion

The model that we originally developed has many similar measures to those 

described by Halgren. The three key parameters used by Halgren were size of 

pocket (capped at a maximum value), enclosure of pocket and hydrophilicity of 

pocket. Our measure also contained parameters related to the size (volume, 

number of C3 points, total C3 energy), furthermore we believe that use of the C3 
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probe also gives some measure of the enclosure of the pocket, as high energy 

values are more probable for a C3 probe surrounded by many nearby atoms. The 

C3 probe does not directly give a measure of hydrophilicity, which is why the OH2 

probe was used. The data presented in the paper by Halgren shows much 

promise for not only increasing the quality of predictions of bound pockets, but 

also for stating whether they are likely to accommodate high-affnity ligands. Our 

model does not appear to show similar success. Although there are several key 

points to be considered that may explain this discrepancy. 

A physical model such as that of Cheng et al. has several benefts over a 

classifcation into somewhat arbitrary classes. Whilst the concept of drugability will  

always suffer from the issue that it will never be possible to genuinely know the 

maximal affnity of a pocket. Presenting a numerical value for the maximal affnity is  

a more easily testable result, since it is possible to look at the best affnity 

compounds for a given protein and determine whether there are any compounds 

that have signifcantly better affnity than the stated maximal affnity. By contrast 

classifcation into druggable or undruggable classes suffers from the major 

problem that the distinction can be somewhat arbitrary as perhaps illustrated by 

the distinctions made in the paper by Cheng et al.(Cheng et al. 2007). Halgren 

uses two models that are individually parameterised, one to determine whether a 

pocket is bound or unbound, the second to determine whether a bound pocket is 

druggable or undruggable. We conjecture that it might be more reasonable to 

assume that an individual measure should be applied to determine whether a 

pocket is druggable or undruggable, since any pocket that is unbound should 

immediately be descriminated as undruggable. That is if you could identify a 

pocket on the protein surface and show that there are no ligands that bind 

selectively and with any reasonable affnity to that site, it is by defnition 

undruggable. Using a two tiered system means that it may be possible to 

determine a site as unbound but druggable! Clearly the method that we employ 

does not meet our own criteria in that it only classifes as bound or unbound, 
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which is then used as a proxy for druggable or undruggable based on 'mis-

classifcations'. It does however, improve prediction of whether a site is bound or 

unbound, and identify several compounds as potentially correctly classifed as 

undruggable when using this classifcation by proxy system. It is not clear whether 

the diffcult classifcation is helpful since in cases like Thrombin Cheng et al. 

detemined that the maximal affnity for Thrombin may be well within the range that 

would make it suitable for a drug target, and indeed Argatroban is a small 

molecule known to target thrombin(Cheng et al. 2007).

In reality it appears that the unbiased random forest performs very well given the 

diffculty of the problem. Comparison of the results for the prediction task to those 

of the simplifed task of identifying the bound pockets from the top 5 pockets 

rather than the top 99 pockets, shows a similar quality of results. In some respects 

this is likely to be due to the fact that the problem is more straightforward as there 

are fewer negative results to deal with. Conversely the pockets in the smaller set 

are more likely to be similar in character, due to their similar size and energy. The 

simpler prediction task is more likely to be a test representative of a task that a 

researcher may want to carry out, as many of the smaller, lower ranked pockets 

would be likely to be immediately discarded. One of the main problems with 

smaller pockets, is that several nearby small pockets may link to form a larger 

pseudo pocket. The current Q-SiteFinder algorithm does not take this into 

account. Previous work by Bridgett in a masters thesis develops a smoothing 

algorithm that allows smaller pockets to be represented as a more diffuse entity 

that can expand to encompass a larger volume. Spacing of GRID atoms in 

pockets might also link to the maximal affnity observed by Kuntz et al.(Kuntz et al. 

1999), would distances closer to the length of C-C bonds be more appropriate, 

since pocket energies would then scale with number of grid points which would 

be similar to total number of atoms that could ft in a pocket. 
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Halgren uses a distance criteria to combine several smaller pockets to create a 

larger pocket. The main issue with this method is that as the size of pockets is 

increased, the probability of making a successful prediction increases. Therefore 

precision and coverage scores must be used to balance this improved success 

rate that comes from choosing a larger site, with choosing sites that more 

accurately describe a potential binding site. With regards to a maximal affnity 

model, Halgrens use of limited additional score after a certain size does marry to 

work of Kuntz et al.(Kuntz et al. 1999).

Research in the feld of pocket detection lacks standard tests of a methods 

success. Fields such as ligand docking, protein-protein docking or protein 

structural prediction have standard test sets and in some cases blind prediction 

competitions that allow methods to be critically assessed. Development of a 

standard test would allow methods to be compared on a more even footing, and 

furthermore would perhaps enhance the understanding of the limitations of such 

tests, paralleling perhaps datasets such as DUD(Huang, Shoichet, and Irwin 

2006).

In our model we show that when a very diffcult test of the method is performed 

the success rate is low. When a more reasonable test on a dataset with fewer 

negative results is performed the performance improves. However, this still 

highlights an important shortcoming of the machine learning method. If the 

method can identify high-affnity sites from non-binding sites accurately the 

number of negative binding sites shouldn't signifcantly adversely affect the 

method.

Predicting the maximal affnity of a pocket is in general a diffcult problem. It is 

hampered by the diverse nature of pockets. There is large variation in the size and 

shape of pockets on a protein surface. The simple physical models that we 
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applied do not appear to adequately describe the properties of the pockets. 

Successful representation of the effect of the presence of water in the pockets is 

likely to go some way to improve predictions. An improved model might do well to 

use methods to compare pockets on the protein surface to those of known ligand 

binding pockets much in the same way as functional annotation methods 

sometimes attempt. Furthermore design of datasets to test predictions is also 

hampered by addition of unspecifed statistical bias.
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4 Docking to identify likely 

conformations of novel oligoamide 

compounds designed to mimic helical 

peptides and bind in pockets on the 

hDM2 protein

4.1 Abstract

The design of novel α-helix mimetic inhibitors of protein-protein interactions is of 

interest, since an optimal scaffold that can present side-chains at a geometry 

analogous to that of an α-helix could be tuned to give inhibitors of high specifcity 

and affnity. Oligoamide compounds are of specifc interest since they have been 

shown to be synthetically accessible through a series of simple solution phase 

reactions allowing inclusion of a variety of side-chains to a rigid backbone with 

geometry similar to that of an α-helix. The hDM2-p53 interaction is a suitable 

model system since there is considerable structural information detailing both the 

wild-type p53 peptide interaction as well as several hDM2 inhibitor compounds.

Currently two structures of hDM2 bound to p53 helices, two of hDM2 bound to 

designed inhibitors and one NMR structure of apo hDM2 exist in the public 

domain, but none of hDM2 bound to novel oligoamide compounds. We use 

structure-based computational methods such as shape-matching and molecular 

docking to generate putative models for the interaction between these oligoamide 

compounds and hDM2 with the aim of competitively inhibiting a helix from the p53 

protein. Additionally, we perform RESP charge ftting to parameterize the 

oligoamide compounds for further computational study using molecular dynamics 

simulations with the AMBER force feld. Here we show that there are two putative 
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classes of binding modes for oligoamide compounds: the frst in which the 

oligoamide compound lies parallel to the observed p53 helix; the second in which 

the oligoamide compound lies anti-parallel to the p53 helix. The side-chains from 

the best docking/shape matching conformations explore the same binding 

pockets as the p53 helix. The results presented here will allow us to perform 

further molecular dynamics studies on a variety of the best scoring complexes to 

better assess their potential for binding hDM2 and inhibiting the p53 interaction. 

Furthermore, the methodology can be applied in the study of any oligoamide 

compound designed to target the hDM2-p53 interaction.

4.2 Introduction

The interaction between the E3 ubiquitin ligase hDM2 and a helical peptide that  

forms part of the p53 tumour suppressor domain is of great interest as a target for 

protein-protein interaction inhibitor drug discovery(Dickens, Fitzgerald, and PM 

Fischer 2009). Several drugs have been developed that are in clinical trials, 

additionally the system is both well studied from a biochemical perspective(Bond 

et al. 2008), and importantly for this study there is a wealth of structural data on 

the system(Kussie et al. 1996),(Grasberger et al. 2005),(Vassilev et al. 2004).

4.2.1 The p53 pathway

The p53 pathway is complex and further work has to be done to improve our 

understanding of the mechanisms involved. However, many aspects of the p53 

pathway are well understood. In particular the p53 pathway has been shown to 

modulate response to cellular stress(Bond et al. 2008). We are particularly 

interested in its involvement in the modulation of apoptosis, in combination with its 

negative regulator hDM2. This part of the p53 pathway has been studied in detail  

due in part to interest in targeting and disrupting the hDM2-p53 protein-protein 

interaction with the aim of inducing apoptosis in cancerous cells(Dickens, 

Fitzgerald, and PM Fischer 2009).
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4.2.2 hDM2 p53 protein structures

The hDM2 protein structure was frst solved in complex with a 15mer wild-type 

p53 peptide (SQETFSDLWKLLPEN) by Kussie et al.(Kussie et al. 1996). This 

structure is shown in fgure 4.17. Grasberger and colleagues later determined the 

structure of a p53 related helix that had been optimised to bind hDM2 with higher 

affnity than the wild-type helix(Grasberger et al. 2005). The 9mer high affnity 

peptide (RFMDYWEGL) retains the key binding residues: Phe; Trp; Leu, that 

target the deep hydrophobic pocket present on the hDM2 surface. The wild-type 

helix is 15 residues long and has a calculated binding affnity (Kd) of 600 nM(Kussie 

et al. 1996). It has been shown that in general shorter helices will bind more 

tightly(Böttger et al. 1997). It appears that the optimized helix gains some of its 

affnity by lining the solvent exposed face of the helix (the face opposite the 

Phe-Trp-Leu residues) with charged residues such as Glutamine and Arginine. 

Experimental observation of the helix propensity for solvent exposed residues in 

the middle positions of α-helices suggests that these charged residues are 

generally favoured in solvent exposed helices(Pace and Scholtz 1998).
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In 2004, Fry et al. published the NMR structure of Xenopus Laevis hDM2 bound to 

a small-molecule inhibitor(Fry et al. 2004) which is very similar to the Nutlin 

compounds described in the work by Vassilev et al.(Vassilev et al. 2004). This 

work published the structure of hDM2 in complex with an cis- imidazoline 

compound to 2.3 Å resolution. The authors screened a diverse range of 

compounds identifying the cis- imidazoline compounds as promising lead 

compounds. The cis- imidazoline compound for which they published a structure 

of is known as nutlin-2 and was determined to have an IC50 of 0.14 µM using a 

surface plasmon resonance solution competition assay. An improved IC50 of 

0.09 µM was determined from an enantiomer of their nutlin-3 compound(Vassilev 

et al. 2004). 
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Figure  4.1:  The wild-type p53 peptide is  shown with green carbon,  blue nitrogen and red 

oxygen  atoms.  The  SASA  of  hDM2  is  shown  in  transparent  grey,  with  blue  cartoon 

representation of the protein backbone. Contacting residues are shown in stick representation 

with standard atom colours and grey for carbon atoms.
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An NMR structure detailing the structure of unbound hDM2 has also been 

published(McInnes et al. 2005). The authors of the paper detailing the NMR 

structure of the apo protein note the rearrangement of the region of the p53 

binding site. Whilst this does not directly affect the future directions of this study it 

is important to note the fexibility of the site when choosing suitable structures for 

investigation. It also raises important questions as to whether it might be possible 

to design a protein-protein interaction inhibitor given only the apo structure of 

protein binding partners. Eyrisch and Helms previously investigated three protein-

protein interactions including the hDM2-p53 interaction using molecular dynamics 

simulations and pocket detection(Eyrisch and Helms 2007). They concluded that 

pockets binding ligands were observed opening and closing on the time-scale of 

their simulations and in some cases on picosecond time-scales(Eyrisch and Helms 

2007). Investigation into conformational changes undergone by hDM2 and a 

structurally related protein MDMX have been undertaken by Carotti et al. they 

used 60 ns MD simulations to investigate structural changes undergone in the 

bound and unbound forms of each protein(Carotti et al. 2009).

4.2.3 Designing hDM2 inhibitors

Much work has been undertaken in designing inhibitors for the hDM2 interaction,  

as discussed previously the initial inhibitors of the hDM2 interaction for which there 

are structures, were identifed using High Throughput Screening (HTS) methods. 

Wang and co-workers identifed spiro-oxyindole based scaffolds, using the GOLD 

docking program, that could inhibit the hDM2-p53 interaction with micromolar 

affnities(Nikolovska-Coleska et al. 2005). This method appears to be quite 

successful, although as with any structure-based design method, it is reliant on 

structures of the target protein being available.

Many groups have focussed on designing peptides to target the hDM2-p53 

interaction, using both experimental and computational techniques to approach 

the problem. Peptide libraries developed using phage display technology have 

128



4 Docking to identify likely conformations of novel oligoamide compounds designed to mimic helical peptides and bind in pockets on the hDM2 protein

been employed as an ideal experimental technique(V Böttger et al. 1996). 

Massova and Kollman studied the hDM2-p53 interaction using a technique that 

they developed and named computational alanine scanning(Massova and Peter A. 

Kollman 1999). They used an MMPBSA model of the free energy change required 

to mutate a side-chain to alanine. This allowed them to identify key residues that 

contribute to the binding energy, and suggest mutations. Similar work was 

performed by Kortemme and Baker, who produced a simple model using a 

simplifed theoretical approach to the MMPBSA method(Kortemme and Baker 

2002). They identifed residues on both the p53 peptide and the hDM2 binding site 

that contribute signifcantly to binding energy. More recently studies have been 

undertaken by several other groups using similar techniques(Zhong, & Carlson 

2005),(Moreira, Fernandes, & Ramos 2008),(Kalid and Ben-Tal 2009).

β-peptides are synthetically produced from β amino acids which have their amino 

group bonded to the β carbon instead of the α carbon. They have advantages 

over traditional optimized peptides since they are stable in the cell. Michel and co-

workers took a previously discovered β-peptide and applied a de-novo design 

strategy to identify 50 candidate side-chain replacements from 10,000 structures 

with aromatic and non-aromatic heterocycles substituted(Michel et al. 2009). 

Binding free energies were then calculated with MC/FEP calculations for the 

peptides using the OPLS/AA force feld and TIP4P water. A selection of 8 of the 

most synthetically accessible compounds were re-evaluated using a second more 

accurate round of MC/FEP. The study revealed novel β-peptides with affnity 

improved from 204 nM in the starting compound to 27.6 nM in the case of the 

β-peptide with the best affnity for hDM2(Michel et al. 2009). This study was also 

notable in that it also produced high-affnity β-peptides that target the related 

hDMX interaction with differing levels of specifcity between hDM2 and 

hDMX(Michel et al. 2009). One of the disadvantages of working with β-peptides is 

that altering the side-chains can signifcantly affect the entropic cost of creating 
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secondary structure elements such as helices. This means that whilst it may be 

desirable to add a side-chain to gain interactions with the protein target, this may 

introduce an unfavourable entropic cost that will lower overall binding affnity.

4.2.4 Properties of oligoamide compounds

4.2.4.a Synthesis of oligoamide compounds

Previously we have discussed β-peptides, which are part of a class of molecules 

known as foldamers. Foldamer compounds take inspiration from nature, where 

polymers such as proteins and RNA can have well defned secondary and tertiary 

structure(Gellman 1998),(Hill et al. 2001). The aromatic oligoamide compounds 

that we are investigating are synthetically accessible using methods similar to 

those used in synthesis of peptides and can be designed to adopt a rod-like 

conformation which can present side-chains at locations similar to those at the i,  

i+4, i+7 locations on an α-helix(Plante et al. 2008). The work by Warriner et al. 

shows that X-ray structures of these oligoamide compounds show an 

intramolecular hydrogen bond between the amide NH and ether oxygen. This is 

mirrored in solution NMR of the oligoamide compound in deuterated DMSO and 

CDCl3. 2D 1H-1H NOESY spectra indicate that there is free rotation about the 

ArCO bond, whilst the intramolecular hydrogen bonding described above restricts 

rotation about the ArNH bond(Plante et al. 2008). Further work has identifed that 

these compounds can act as low µM inhibitors of the hDM2-p53 interaction(Plante 

et al. 2009), this results from this work are backed by elegant synthetic work that 

provides access to several further types of related compound(Shaginian et al. 

2009). In the work by Plante et al. six trimer oligoamides were synthesised and 

screened against the hDM2-p53 interaction using a fuorescence polarization 

assay.
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4.2.4.b Parameters for oligoamide compounds

In addition to synthetic work on designing oligoamide compounds there has been 

progress in the use of quantum mechanics and molecular dynamics to study the 

properties of arylamide compounds, many of which bear striking similarity to those 

that we intend to study. A quantum mechanics study of the torsional profle of 

arylamide compounds calculated the location of minima and the heights of 

barriers to rotation away from these minima(Vemparala et al. 2006). Work has also 

been undertaken that uses molecular dynamics to investigate the behaviour of 

arylamide compounds designed to mimic heparin in solution(Pophristic et al. 2006). 

In the above works the authors use compounds with thioether bonds instead of 

the ether bond found in the work by Plante et al.(Plante et al. 2009), however the 

compounds investigated have similar ArNH bonds and ArCO bonds which prove 

useful since the GAFF force feld(Wang et al. 2004) does not have parameters that 

agree with the crystallographic and NMR data presented by Plante et al.(Plante et  

al. 2009). Vemparala and co-workers note that altering the thioether to an ether 

group is one way in which the fexibility of the compound could be controlled. For 

the purposes of our investigation we use the torsional parameters presented in the 

work of Vemparala et al.(Vemparala et al. 2006), since we are predominantly 

interested in the correct location of minima in the torsions. This should allow us to 

well sample the thermodynamic properties of the system, even if our observation 

of the kinetic properties of this bond are slightly incorrect. Additional investigation 

of foldamer systems with arylamide bonds have been investigated, in particular the 

predicted response to different solvent environments has been studied by 

molecular dynamics and compared to experimental NMR studies(Galan et al. 

2009).
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4.2.5 Study aims

The aim was to use computational methods to guide synthesis of novel 

oligoamide compounds that can inhibit the hDM2-p53 interaction with high affnity. 

As we have seen above there are several approaches that could be applied to this 

problem. In particular we aimed to perform alchemical free energy calculations in 

order to determine the relative binding affnity of a series of oligoamide compounds 

and indeed this is described in the next chapters. In order to carry out alchemical  

free energy calculations knowledge of the 3D structure of the hDM2-oligoamide 

complex is necessary, this is the primary aim of this chapter. Once reasonable 

starting conformations have been generated that will enable further study a 

second aim is to generate parameters for the oligoamide complex. Given that 

torsional parameters have previously been identifed a set of charge parameters 

that accurately describe the oligoamide molecules in a molecular mechanics force 

feld is also developed.

4.3 Methods

4.3.1 Structural Superposition

Structural superposition of proteins was performed using UCSF Chimera version 

1.4 on the Mac OS X operating system using the MatchMaker function with 

default settings(Pettersen et al. 2004). hDM2 chains (1Z1M-model 9, 1YCR-chain 

A, 1T4F-chain M, 1RV1-chain A, 1T4E-chain B) were superposed using the 

MatchMaker algorithm, whilst the bound ligands where present were subjected to 

the same rotation and translation as its partner protein. This means that the ligand 

is retained in the same position relative to partner protein, and all ligands can be 

compared in their common binding site.
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4.3.2 Electrostatic surfaces

Electrostatic surfaces were calculated using DelPhi V. 4 Release 1.1(Rocchia, 

Alexov, and Honig 2001), with computations carried out through the DelPhi 

controller module of UCSF Chimera(Pettersen et al. 2004). An interior dielectric of 

2.0, and an exterior dielectric of 80.0 and Debye-Huckel boundary conditions 

were used in the calculation. Results were visualised using UCSF Chimera version 

1.4 on the Mac OS X operating system.

4.3.3 Hydrophobic surfaces

Hydrophobic surfaces were generated using the hydrophobic surface preset from 

UCSF Chimera version 1.4 on the Mac OS X operating system(Pettersen et al. 

2004). Residues are coloured according to the Kyte-Doolittle scale, with blue 

showing the most hydrophillic residues, white showing a value of 0.0 and orange 

showing the most hydrophobic residues(Kyte and Doolittle 1982).

4.3.4 FTMap

FTMAP identifes the likely binding location of several small organic probe 

molecules on the surface of a protein. The authors frst validated the method on 

elastase, for which the locations of 8 organics solvents has already been identifed 

experimentally, followed by using the method to identify the location and 'trace 

out' the structure of aliskiren, the frst approved renin inhibitor. FTMAP was 

accessed online from: http://ftmap.bu.edu/ and default settings were used(Brenke 

et al. 2009).

4.3.5 Docking

Two rounds of docking using Autodock(Morris et al. 1998),(Seeliger and de Groot 

2010) were performed. The frst round used Autodock 4.0 to perform 2.5 million 

evaluations for 27,000 generations with population size 300 using the compound 

detailed in Figure 4.11 to produce 101 compounds. The results from this set of 
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dockings were clustered at a 2 Å RMS cutoff. The lowest energy representative 

structures of these clusters were used in the initial MD simulations and are 

representatives from the largest low energy clusters labelled: clu1; clu2; clu3. The 

second round of docking calculations were performed using Autodock 4.2.1 using 

a Lamarkian genetic algorithm. 150 docked conformations were generated, with 

each using 25 million evaluations for 27,000 generations of population size 300. 

Random number seeds were generated from the Autodock PID and the current 

system time. The protein structure used was derived from the structure of hDM2 

bound to a high-affnity p53 helix, with all water molecules removed, protonation 

states manually assigned and the high-affnity p53 helix removed (1T4F-chain M). 

A grid centred on 13.119, 18.969, 10.941 was used with spacing of 0.375 Å and 

52, 58 and 48 points in the x, y and z directions.

In order to make a comparison the docking program FRED (OpenEye) was also 

used to generate 150 docked poses with default settings. FRED is a rigid body 

docking program, conformations for the oligoamide compounds were generated 

using the OMEGA conformational generator also supplied by OpenEye. OMEGA 

used an energy window of 25 to generate a maximum of 1 million conformers 

(maxconfgen), of which a maximum of 10000 with RMS less than 0.5 Å were kept 

(maxconfs).

4.3.6 Geometric matching

A geometric hashing algorithm was used to superpose atoms from oligoamide 

compounds that had been generated by OMEGA. The method has been 

described previously(Brakoulias and Jackson 2004), but is described here briefy. 

Triplets of atoms that by defnition form a triangle are generated for the database 

molecule (p53 peptide) and query molecule (oligoamide compound). All possible 

pairs of triplets where each pair consists of a triplet from both query and database 

molecules are compared. All triplets with the same atom at each triangle vertex 

and similar distances between vertices are treated as a match. The resulting 
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triplets then defne a rotation and translation matrix which will map the query 

molecule onto the database molecule. At this point the number of coincident 

atoms can be determined, and the transformation which provides the largest 

number of coincident atoms is treated as the best match.

4.3.7 Charge calculations

Charge calculations were performed to determine which method for charge 

calculation would be most appropriate for the hDM2-oligoamide system. We 

compared AM1 BCC semi-empirical calculations to Hartree-Fock calculations 

using the HF 6-31G* basis set.

4.3.7.a Generating conformers for AM1 BCC 

calculations

Conformers were generated for AM1 BCC calculations using OpenEye OMEGA. 

Parameters were selected based on those most likely to produce ligand 

conformations that are bioactive, thus an energy window of 25 kcal mol-1 was 

used(Kirchmair et al. 2006), RMS tolerance and maximum number of generated 

conformers was set so as to generate a wide range of conformers such that 

approximately 350 conformers in total were generated. This meant a value 

between 0.45 Å and 0.55 Å was used for the RMS cutoff and maxconfgen was 

set to 10,000. This resulted in: 310 Phe-Trp-Leu; 361 Phe-Nap-Leu; 380 

Val-Phe-Propyl; 361 CH3-CH3-CH3, conformations.

4.3.7.b AM1 BCC calculations

Semi-empirical AM1 BCC charge calculations were performed for each of the 

conformers generated; using OMEGA as described in the above section; with the 

Antechamber program supplied with AMBER 8(35). Calculation of charge for each 

conformer took of the order several minutes. The mean and variance for the 

charge of each atom were then calculated using a custom script for the R 

statistical computing language(Anon 2009).
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4.3.7.c Quantum calculations

Quantum calculations were performed using the Hartree-Fock level of theory and 

the HF 6-31G* basis set. Initial conformations of compounds were generated in 

Gaussview. The REDIII.1 software(Dupradeau et al. 2008) was used in tandem 

with Gaussian 03 to perform the calculations(M. J. Frisch, G. W. Trucks, H. B. 

Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T.  

Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone,  

B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Pet 2004) , which consisted 

of a geometry optimization followed by Molecular Electrostatic Potential calculation 

followed by charge ftting using the RESP method. This scheme was chosen since 

it most closely resembles the method that was originally employed for deriving 

charge parameters for the AMBER force feld. Calculations were performed on full  

oligoamide compounds with Phe-Trp-Leu substitution pattern, CH3-CH3-CH3 

substitution pattern. Full molecule calculations took of the order one week to 

complete when carried out using a 2.2 GHz Opteron processor. Fragment 

compounds containing the central benzene ring, carboxylic acid, primary amine 

and a single substitution of CH3 or Trp were also investigated, these calculations 

took approximately 2 days to complete using a single processor.

4.4 Results and Discussion

The results in this chapter are presented in two distinct sections. The frst deals 

with generation of hDM2-oligoamide complexes that are suitable for further study 

by molecular dynamics and might provide insight into oligoamide binding. The 

second section is concerned with identifcation and generation of parameters for  

the oligoamide compounds of interest.

136



4 Docking to identify likely conformations of novel oligoamide compounds designed to mimic helical peptides and bind in pockets on the hDM2 protein

4.4.1 Generation of hDM2 oligoamide complexes

Key to any study aimed at calculating the free energy of association of a protein-

ligand complex is an accurate structure for the protein-ligand complex. Ideally this 

would come from X-ray or NMR structures. In the case of hDM2 we have already 

seen that there is an NMR structure of the free protein in addition to high-

resolution X-ray structures of the protein bound to a wild-type p53 helix, a high-

affnity p53 helix, a benzodiazepinedione compound and Nutlin-2. The former two 

are peptides whilst the latter two are small-molecules specifcally designed to 

target this interaction. Unfortunately there are no published crystal structures of 

the oligoamide compounds. Therefore we must use knowledge of the behaviour of 

oligoamide compounds from published literature to assist in the development of a 

model of the bound structure in order that we can proceed with the free energy 

calculations. To this end we have used two molecular docking programs in 

addition to using an alternative superposition based method. Our key assumption 

in the creation of our docking model is that since the four compounds for which 

we have high resolution structures available all bind to the same site, then this site 

is where we expect the oligoamide compounds to bind. Furthermore, since the 

oligoamide compounds have been designed to mimic the side-chains present at 

positions i, i+4, i+7 on an α-helix then we expect to fnd oligoamide substituents 

bound at these sites. With this in mind we proceeded with comparing results from 

Autodock and FRED. Both docking programs are quite different in the way that 

they work and additionally use different scoring functions to rank their solutions. 

Since there are no structures of immediately similar compounds to the 

oligoamides in which we are interested, and there is no data about binding 

affnities of a wide range of these compounds, we are limited in the way that we 

can assess the quality of the results produced by these programs, and as such we 

must be guided by comparison to the structural data that we do have.
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4.4.1.a Analysis of hDM2 binding site properties

Structural superposition of different hDM2 protein-ligand complexes is a simple 

way to investigate the binding site. The frst thing noticed is that the two reported 

inhibitors target the same regions of the binding pocket as the high-affnity p53 

peptide mimicking the interaction of Phe-Trp-Leu side-chains from the p53 

peptide. This is interesting since both series of inhibitors were discovered through 

independent high-throughput screens, although they both have scaffolds that 

allow the presentation of their key functional groups in very similar spatial locations 

to the high-affnity peptide.

It can be seen in fgure 4.2b that the nutlin-2 compound closely mimics the 

binding epitope of the high-affnity p53 helix. The two chlorophenyl groups target 

the Leu and Trp pockets, whilst the ethyl ether moiety binds in the Phe pocket. 

The crystal structure of hDM2 bound to a high-affnity helix previously described 

was reported at the same time as a 2.6 Å structure of hDM2 bound to a 

benzodiazepinedione compound(Grasberger et al. 2005). Once again the 

benzodiazepinedione compound targets the same Phe-Trp-Leu binding epitope 

as the p53 peptides which can be seen in fgure 4.2c. The authors noted that the 

inhibitor interacts with the hDM2 binding pocket through non-specifc van der 

Waals contacts. If we plan to target the hDM2 binding pocket with oligoamide 

based helix mimetics, it will be reasonable to assume that high-affnity compounds 

should also target these same regions of space. 
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It is important to note that there is no hydrogen bonding of the peptides or 

compounds to the hDM2 binding pocket. Many successful drug compounds can 

gain a large amount of binding affnity by picking up hydrogen bonds to the target 

protein. This can also be a useful way to gain specifcity for a particular member of  

a family of proteins. 

We can see in fgure 4.3 that the pocket is particularly hydrophobic, as is 

mentioned by Grasberger et al.(Grasberger et al. 2005). Additionally we can see 

from fgure 4.3 that the pocket doesn't carry a strong electrostatic charge. 

Hydrophobic pockets are often diffcult to develop compounds that bind with a 

high degree of specifcity. Additional binding affnity can sometimes be gained by 

the use of halogenated functional groups, such as the chlorophenyl rings seen in  

Benzodiazepine compounds(Hernandes et al. 2010). The main issue with these 

elements is the decrease in solubility that is observed both experimentally and 

through QM/MM studies(Baum et al. 2009). Additionally, halogenated drug 

compounds can often show undesirable ADMET properties such as accumulation 

in fat tissue.
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Figure 4.2: Representations of high affnity helix (green) shown relative to: a) wild type helix; b) 

Nutlin-2; c) Benzodiazepinedione compound. Figures were generated using the matchmaker 

function from Chimera to superpose hDM2 from pdb code 1T4F to pdb codes: a) 1YCR; b)  

1RV1; c) 1T4E.
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Figure 4.3: The hDM2 binding pocket shown with electrostatic surfaces (red - negative charge, 

blue  -  positive  charge)  a)-e)  and  hydrophobic  surfaces  (blue  -  hydrophillic,  white  -  no 

preference,  orange  -  hydrophobic)  f)-j).  a/f)  hDM2  apo  (1Z1M);  b/g)  hDM2  wild  type  p53 

(1YCR); c/h) hDM2 high affnity p53 (1T4F); d/i) hDM2 Benzodiazepinedione (1T4E); e/j) hDM2 

Nutin-2  (1RV1).  Images  produced  using  Chimera,  electrostatic  surfaces  calculated  using 

Delphi.
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4.4.1.b Binding site properties of hDM2

We ran an analysis of the hDM2 binding site using Q-SiteFinder. We saw that 

Q-SiteFinder identifed binding pockets that overlapped the key functional groups 

of the nutlin and benzodiazepine compounds. We then investigated the binding 

site using FTMap. In Figure 4.4 we show the predicted location of benzene 

fragments with respect to the high-affnity p53 helix and the benzodiazepine 

compound respectively. In Figure 4.4a it can be seen that the method predicts that 

benzene (yellow) is favoured at those locations where cyclic side-chains are 

observed in hDM2-helix interaction. In Figure 4.4b once again the method 

identifes benzene to be favoured at locations similar to those where the two 

halogenated benzene functional groups are observed. Successful identifcation of 

favoured benzene rings at this location on the protein is a positive outcome for 

several reasons. Most obviously it further supports our hypothesis that oligoamide 

compounds are likely to bind at this location on the protein. Secondly it identifes 

FTMap as a promising tool that might be useful in identifying the types of 

functional group suited for substitution onto oligoamides designed for higher 

affnity to the hDM2 protein.
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Figure  4.4:  FTMap  results  with  hDM2  represented  as  grey  cartoon  model  with:  a)  p53 

helix(purple)  showing  the  predicted  location  of  benzene  rings  (yellow)  using  the  FT-Map 

algorithm;  b)  hDM2(grey)-benzodiazepinedione compound (cyan/red)  showing  the predicted 

location of benzene rings (yellow) using the FT-Map algorithm(Brenke et al. 2009).
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4.4.1.c Autodock

An initial test using Autodock 4.0 was performed to provide a selection of 

probable conformers for further study by MD. By default Autodocktools was able 

to identify the amide bond present in the oligoamide compound as rigid. Plante et  

al. reported free rotation about the ArCO bond whilst the ArNH bond was 

observed to exist in a planar conformation(Plante et al. 2009). The planar 

conformation is facilitated by an intramolecular hydrogen bond between the ether 

oxygen and the NH group, stabilising the structure most favourably into this 

conformation, but allowing an alternative  less stable conformation with the NH 

and ether O to exist at 180º from each other. These observations have been 

backed up by in-silico studies by Vemparala et al.(Vemparala et al. 2006). 
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A preliminary screen was performed that did not restrict any torsional angles to 

determine whether the Autodock energy function could accurately describe this 

non-standard behaviour. Figure 4.6 shows that this is unlikely to be the case since 

the ArNH dihedral is 90º to the benzene ring to which it is attached. This position 

lies at the peak of a metastable region identifed by Vemparala et al. and is about 

6 kcal mol-1 greater in energy than its most stable energy minimum, thus an 

extremely unlikely conformation(Vemparala et al. 2006). As a result all further 

Autodock simulations also restrained the oligoamide into the favoured 

conformation (observed in X-ray structure and NMR data) whereby the ArNH 
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Figure  4.5: Compounds used in the docking study in this chapter. The left hand compound 

was synthesised by Plante et al. whilst the right hand compound contains the tryptophan side-

chain  mimic.  Note  the  intramolecular  hydrogen  bond  restricting  the  conformation  of  the 

compound. Partial sp2 character of the ArNH bond also allows for a less stable conformation 

with the ArNH bond rotated by 180º causing the intramolecular hydrogen bond to be broken.
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dihedral is oriented such that the amide hydrogen can form the intramolecular  

hydrogen bonds with the ether oxygen observed in the NMR study in the work of 

Plante et al.(Plante et al. 2009).

We performed a preliminary docking of 150 compounds with the ArNH dihedral 

restrained to its preferred low energy conformation previously discussed, to allow 

us to select a small number of compounds to use for initial MD simulations of the 

hDM2 binding site. We identifed three possible docking modes from the top 3 low 

energy clusters when using a 2 Å RMS clustering threshold. The resulting 

structures are representatives from each cluster and are shown in fgure 4.7 

relative to the position of high affnity p53 helix. The fgure was produced by 

identifying the rotation and translation that maps the hDM2 atoms used in the 

docking run onto the 1T4F atoms, and applying the same rotation and translation 

to the oligoamide compound, allowing comparison of the docked compounds to 

that of the high-affnity p53 peptide. This produces two possible classes of results. 

The frst we call parallel conformations, that is those conformations which present 

their C-terminus spatially proximal to the location to the C-terminus of the p53 

helix, and their N-terminus spatially proximal to the N-terminus of the helix such as 
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Figure  4.6: A representative for the second -most highly populated cluster- for an autodock 

experiment whereby the ArNH torsion was not restricted.
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in fgure 4.7b. The second class of conformations we call anti-parallel, that is 

those conformations that present their C-terminus spatially proximal to the N-

terminus of the p53 helix, and their N-terminus spatially proximal to the C-terminus 

of the p53 helix, such as in fgure 4.7a and 4.7c.

For the parallel conformation in fgure 4.7b we see that it presents side-chains in a 

very similar way to the high-affnity helix, and as a result the wild-type helix. Figure 

4.7a shows the oligoamide side-chains in the anti-parallel conformation occupying 

a large part of the pocket that is normally occupied by the Leucine, Tryptophan 

and Phenylalanine residue. However, these are not presented such that they 

directly map to residues presented by the helices. As such the Leucine mimic 

does not fll the region of the pocket that would normally be flled by the 

Phenylalanine of the p53 peptide. In the case of the result from cluster 3, fgure 

4.7c we see another anti-parallel conformation. Once again this structure presents 

Phenylalanine and Tryptophan residues that map to the Leucine and Tryptophan 

residues of the p53 peptide. However this conformation has a twisted ArCO bond 

at the C-terminus meaning that the Leucine side-chain does not fll the pocket  

normally occupied by the Phenylalanine of the p53 peptide.
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Since these docking calculations used sampling parameters that are less 

extensive than those suggested by the developers of Autodock for molecules with 

> 10 torsional degrees of freedom (the Phe-Trp-Leu compound has 12 active 

torsions), it is more than likely that the lowest energy conformation may not have 

been identifed. As a result the parameters were altered and a second study was 

carried out, to identify whether a parallel or anti-parallel conformation might be 

more likely. Increasing the sampling of the torsional degrees of freedom took 

signifcantly more time thus the results were calculated on a computer cluster 

rather than a standalone PC. The results from the enhanced docking simulation 

are presented in fgure 4.8, where the mean Autodock binding energy score is 

presented for each of the clusters generated using a 2 Å RMSD cutoff. 

Representative structures from each of the large low energy clusters are shown 

inset, alongside a representation of the high-affnity p53 helix shown in cyan (fgure 

4.8). Whilst there is plenty of literature to suggest that docking experiments are not 
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Figure  4.7: Representative structures from a preliminary docking screen that  were used for 

initial  MD  studies  (atom  coloured),  shown  relative  to  high  affnity  helix  from  1T4F. 

Representatives from: a) Cluster 1, representative 6; b) Cluster 2 representative 1; c) Cluster 3; 

representative  6.  Figures  were  generated using the  matchmaker  function  from Chimera  to 

superpose hDM2 from docked conformations to hDM2 from 1T4F(Pettersen et al. 2004).
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generally suffcient to predict the binding affnity of protein-ligand complexes, they 

are still relevant in the context of comparison amongst molecules of similar 

classes. So whilst comparing the Autodock score of Gleevec bound to Tyrosine 

Kinase ABL2 and that of Nutlin-2 bound to hDM2 is likely to be irrelevant, the 

comparison of scores within classes of similar proteins and ligands is likely to be 

useful but not quantitative. Here we compare the energy of the clusters to identify 

the likely binding mode with the warning from the developers that a score that has 

highly populated clusters within 2.5 kcal mol-1 of each other are unlikely to be 

distinguished from an incorrect binding mode. So whilst conformation 2 has the 

lowest energy of about -11.8 kcal mol-1, conformation 1 also has a highly 

populated cluster with mean Autodock energy of -10.8 kcal mol-1, a difference of 

only 1 kcal mol-1.
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Figure 4.8: Mean autodock binding energy score and corresponding cluster occupancy created using a 2 Å RMSD cutoff. Representatives that were used as initial 

conformations for later MD simulations and the cluster from which they originated are highlighted.
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The results in fgure 4.8 suggest a bias towards anti-parallel conformations, with 

fve of the six large low energy clusters showing this orientation. It is unclear 

whether this bias is due to the fact that oligoamide conformers are more stable in 

their anti-parallel conformation, perhaps due to steric clashes, since in fgure 4.7 a 

and 4.7c it is possible to see the extension of the C-terminal beyond the N-

terminal of the p53 helix in anti-parallel conformations allowing the possibility of  

steric clash with protein in this region. Perhaps the negatively charged C-terminal  

of the oligoamide is favoured in the region of the N-terminus of the p53 helix, since 

the surface potential is slightly positive in this region (see fgure 4.3).

Given there are several plausible structures, it seems prudent to continue with a 

handful of likely structures when carrying out free energy calculations. Whilst it is of  

extremely low probability that parallel and anti-parallel conformations might inter-

convert on the time-scale of MD simulations, one might expect likely parallel (or  

anti-parallel) conformations to inter-convert. Potentially this could result in 

convergence towards a consensus structure for parallel or anti-parallel 

conformations respectively. For the purposes of free energy calculations we may 

then decide to only use one starting conformation if there is evidence it will inter-

convert between likely binding conformations on the time-scale of our 

calculations. To this end we continue using the fve anti-parallel conformations  

(conformation 1, 2, 3, 7, 8) shown in fgure 4.8. We also continue to use the 

parallel conformation determined above, whilst also selecting two additional 

plausible conformations to even the data set slightly (conformation 4/9, 10, 11). It 

may then be possible to determine the free energy difference between parallel and 

anti-parallel conformations of the oligoamide which would allow determination of  

the most likely binding mode.
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4.4.1.d FRED

FRED is a rigid-body docking program that uses conformers of ligands generated 

by OMEGA and a static representation of the protein molecule, although it has the 

ability to consider fexible residues. A variety of scoring functions are available for 

FRED, we briefy assessed Chemgauss 3.

Figure 4.9 shows the top ranked docked position when using the Chemgauss 3 

scoring function on the dataset of 150 conformations produced by FRED. 

Chemgauss 3 is the default scoring function for FRED and has been assessed as  

performing well on hydrophobic pockets from the amyloidogenic protein 

transthyretin in previous work performed in the lab. The score is dominated by the 

contribution from the steric term, with all but 3 conformations showing a 

favourable contribution by the steric term. All results show an unfavourable 

desolvation contribution to the overall score. When assessing whether the 

conformations are in the parallel conformation or anti-parallel conformation we 

observe 49 in the former and 101 in the latter. The heavy reliance of the scoring 

function on the steric scores seems to bias towards conformations that target the 

p53 Tyrosine residue (RFMDYWEGL), instead of the main Phe-Trp-Leu pocket, 

indeed many of the conformations observed have at least one side-chain outside 

the main pocket region, as can be seen in fgure 4.9.
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In general we decided that whilst FRED is a fast docking program the binding 

poses did not look as convincing as those from Autodock. It is not possible to 

decide for certain which method is likely to produce the best results in terms of 

similarity to an X-ray structure for a given oligoamide compound, or the ability to 

correctly rank compounds in terms of binding affnity, due to the lack of available 

experimental data.

4.4.1.e Superposition Method

Since we are applying the hypothesis that side-chains from synthesised oligamide 

compounds directly mimic the side-chains from the p53 helix that are known 

hotspot residues in the hDM2 interaction, it is reasonable to assume that a simple 

method for generating starting conformations for free energy calculations is to 

simply overlay the oligoamide onto the p53 helix such that the side-chains mimic 

the hDM2-p53 interaction as closely as possible. We used the GH8 program to 

superpose oligoamide conformers generated using the OMEGA program onto the 
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Figure 4.9: Best pose from FRED using the Chemgauss 3 scoring function (green, red, blue and 

white coloured atoms) compared to the Phe-Trp-Leu high-affnity p53 helix. hDM2 molecular 

surface shown in grey. Note the tyrosine ring from the p53 helix (beige) towards the top right  

hand corner of the fgure.
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high-affnity p53 helix. We observed that as this was carried out there was a heavy 

bias to matching oligoamide atoms to the helix side-chain atoms that are known 

to be less energetically important for the interaction. As a result we ran the 

superpositions again using only the side-chain atoms from the Phe-Trp-Leu 

residues. We now observed that whilst we no longer had the problem of matching 

side-chains to the wrong region, we lost information from the peptide about the 

preferred orientation of the side-chains with respect to the protein. That is to say 

that whilst we might match atoms from the oligoamide side-chains to those of the 

peptide well, we might then arrange the oligoamide backbone where the hDM2 

protein would normally exist. We struck a balance by using only the peptide 

backbone atoms and all of the atoms from the Phe-Trp-Leu residues. 

Representative structures from the method are shown in fgure 4.10, with 4.10a 

showing a fairly successful match. In this case the Tryptophan rings are matched 

extremely well, but the method only identifed anti-parallel conformations. Figure 

4.10b shows a similarly successful match which is slightly worse due to the fact 

that the Leu residue is twisted out of alignment from the Phe residue of the 
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Figure 4.10: Oligoamide compounds shown coloured according to atom type superposed onto 

the binding Phe-Trp-Leu residues and backbone atoms from the high-affnity p53 helix shown 

in dark green.  All  compounds shown are oriented in  the anti-parallel  conformation with:  a) 

showing a good match; b) a reasonable match; c) a poor match which would sterically clash  

with the hDM2 protein.
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peptide. Figure 4.10c shows a bad match which would result in a steric clash with 

the hDM2 protein. This is similar to many of the matches that were observed in the 

previously described superposition of oligoamide compounds onto Phe-Trp-Leu 

residue side-chain atoms only.

We observed several issues with using superposition methods in the context of 

this system. The frst is that it is diffcult to score the results in such a way that it 

would be possible to prioritise those that are more likely to be observed in reality. 

For example 15 atoms are matched in both fgure 4.10a and 4.10b, but when 

looking at the results a) is clearly a better match. Additionally fgure 4.10c matches 

14 atoms, only one less than 4.10a and 4.10b, but does not match the side-

chains atoms very well, and would have problems with steric clashes with the 

hDM2 protein atoms. Whilst this would be acceptable for setting up a single 

system, this method would not be appropriate for a larger scale system where 

several different oligoamide compounds are investigated. Additionally it is not clear 

how well this method would fare when applied to oligoamide compounds that 

have side-chains designed to bind hDM2 with higher affnity, whilst perhaps having 

different molecular shapes. For example a napthylene ring instead of the ring from 

a tryptophan is likely to score less well even if all of the non ring atoms are located 

in exactly the same place. The fnal consideration is that the method is very reliant  

on the quality of the conformations used in the method, and whilst it appears that 

OMEGA is successful in generating good conformers, in the absence of a sensible  

scoring scheme a large amount of manual inspection is required which is  

unfeasible for high throughput applications.

4.4.2 Oligoamide charge calculations

Two charge calculation methods were evaluated, these were the AM1 BCC semi-

empirical method(Jakalian, Jack, and Bayly 2002) implemented with Antechamber 

from the AMBER package(D.A. Case, T.A. Darden, T.E. Cheatham, III, C.L. 

Simmerling, J. Wang, R.E. Duke et al. 2004) and high level Hartree-Fock molecular 
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electrostatic potential calculation methods followed by RESP charge ftting using 

the REDIII.1 program(Dupradeau et al. 2008). Both methods calculated backbone 

charges for the compound shown in fgure 4.11. Additionally side-chain charges 

for positions R1, R2 and R3 were calculated for the four compounds shown in 2D 

to the right of fgure 4.12, for comparison these values were compared to related 

side-chain charges from the AMBER99 force felds. The two charge calculation 

methods were chosen since they are consistent with the charge calculation 

methods used to calculate charges for the AMBER force felds. In particular 

Hartree-Fock calculations using the 6-31G* basis set followed by RESP charge 

ftting was used to derive charge parameters for the original AMBER94 force feld 

described by Cornell et al.(Cornell et al. 1995). The AM1 BCC charge calculation is 

considered as an alternative to the HF 6-31G* method, since it is several orders of 

magnitude faster, whilst also being parameterized such that it should reproduce 

charges calculated using the HF 6-31G* basis set and the RESP method(Jakalian, 

Jack, and Bayly 2002). Comparison is made between backbone AM1 BCC 

charges for oligoamide compounds calculated for a large number of conformers of 

4 compounds described in fgure 4.12. Side-chain charges for Leucine and 

Phenylalanine mimics are also compared using the AM1 BCC charge method. We 

then make comparison of two HF 6-31G* methods for backbone charge 

calculation; one in which we perform the calculation for the entire oligoamide 

compound shown in fgure 4.11, the second in which the compound is split into 

one of three fragments that when combined could describe the entire molecule;  

additionally we make comparison to the AM1 BCC method. The fragment method 

for calculating HF 6-31G* method would allow for increased speed of 

computation, since if we wanted to simulate a selection of oligoamide compounds 

derived from a library of three side-chains we would need to perform 27 full 

molecule oligoamide simulations, compared to 3 individually less expensive 

fragment HF 6-31G* calculations. The HF 6-31G* full molecule and fragment  

calculations are fnally compared to the AM1 BCC charge method for side-chain 

mimics of alanine and tryptophan, which are additionally compared to the values 

provided with the AMBER force felds.
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4.4.2.a Oligoamide Backbone charges

The frst comparison made was between backbone charges calculated using the 

AM1 BCC charge method. Figure 4.12 shows backbone calculations for: a) 

-CH3-CH3-CH3; b) Phe-Trp-Leu; c) Phe-Nap-Leu; d) Val-Phe-Propyl. It is clear 

that there is not much variation between each of the backbones, indicating that  

the method provides a reasonable consensus, this is backed up by very small 

calculated error bars. Of note are C16, C2 and C9 which comprise the 3 carbons 

that form the amide bond between aryl groups that have the largest positive 

charges: +0.699 e; +0.655 e; +0.697 e; for carbon atoms. We also note that since 

the oligoamide compound is an oligomer we see a degree of symmetry in the 

results. That is to say that C20, C13 and C6 (carbon atoms that exist at equivalent 

positions in the oligomer) are all slightly positive with charges of: +0.199 e; 

+0.098 e; +0.097 e; respectively. For all atom types (carbon, hydrogen, nitrogen 

and oxygen) we do not see any cases where a charge is not calculated as all  

positive or all negative for the collection of 4 compounds which do not vary in 

backbone structure but do have varying side-chains. Nitrogens N1 and N2 carry 

almost identical negative charges, whilst nitrogen N3 carries a larger negative 

charge. We might expect more variation in the charges of the ether oxygens O3, 
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Figure 4.11: Schematic of the atom labelling scheme used in the charge calculation work for 

backbone  atom  labelling,  showing  the  atomic  element  and  the  number  used  to  identify 

specifc atoms.
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O5 and O7 that occupy positions that mimic positions of the Cα at positions i, i+4 

and i+7 on a superposed helix. There is little variation in the charge calculated for  

these oxygens, however, they are less negative than the oxygen atoms that form 

the amide bonds.
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Figure  4.12: Atomic charge calculated using the AM1 BCC charge method implemented in the Antechamber program from AmberTools 1.2. Mean and 95 % 

confdence interval was calculated for the stated number of conformations as generated using the OMEGA package provided by OpenEye software. a) 361 

structures from a triple -CH3 substituted compound; b) 310 structures from a Phe-Trp-Leu mimic; c) 361 structures from a Phe-Nap-Leu mimic; d) 380 structures 

from a Val-Phe-Propyl compound.
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4.4.2.b Oligoamide side-chain charges

In fgure 4.13 we look at how the AM1 BCC charge calculation varies; for side-

chains that attempt to mimic Leucine/Valine side-chains due to the compound to 

which it is attached. In all cases the backbone is the same; however in the case of  

the Val-Phe-Propyl compound the side-chain of interest is at the N-terminus of the 

compound rather than the C-terminus of the compound as for the Phe-Trp-Leu 

and Phe-Nap-Leu compounds. These compounds are shown in 2D to the right of 

fgure 4.12d, 4.12b and 4.12c respectively. Bars for C24, H241 and H242 are 

missing for the Val-Phe-Propyl compound since these atoms are not present in 

this compound. The strong electronegativity of the ether oxygen is clear from the 

large positive charge for C24 in Phe-Trp-Leu and Phe-Nap-Leu and for C25 in the 

case of Val-Phe-Propyl. The two carbons farthest from the attachment ether, C26 

and C27 have similar positive charge values in all three compounds. As a 

comparison charge values for the Leucine side-chain contained in the AMBER99 

force feld are included. They follow the pattern C24 slightly negative, C25 large 

positive, C26 and C27 negative, with values:  -0.110 e; +0.353 e; -0.412 e; 

-0.412 e; respectively. Hydrogen values in all cases are much more comparable 

between all data sets. AMBER99sb hydrogens attached to C26 and C27 are 

approximately double those calculated with the AM1 BCC charge methods.
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Figure 4.14 provides a similar comparison to the above Leucine side-chains for 

Phenylalanine mimics from the Phe-Trp-Leu, Phe-Nap-Leu and Val-Phe-Propyl 

compounds. The Phenylalanine mimic in the Val-Phe-Propyl compound is missing 

the alkyl carbon C37 and corresponding hydrogens H371, H372 as can be seen 

to the right of fgure 4.12d. As a result carbon C37 bound to the ether oxygen has 

a charge of about +0.1 e compared to ~ +0.2 e for C37 and -0.1 e for C38 from 

Phe-Trp-Leu and Phe-Nap-Leu compounds that contain the alkyl carbon before 

the benzene ring. Despite this difference the charge on the other ring atoms is  
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Figure  4.13:  AM1  BCC  charge  calculations  for  Leucine  side-chain  mimics.  Mean  values 

calculated  from the result of: 310 conformations from a Phe-Trp-Leu compound (blue); 361 

conformations  from  a  Phe-Nap-Leu compound  (orange);  380  conformations  from  a 

Val-Phe-Propyl compound (yellow); AMBER99sb Leucine side-chain charges for comparison 

(green).
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generally comparable between all three compounds, and in addition phenylalanine  

atoms with the exception of C37 and C38 (and corresponding hydrogen atoms) 

also have comparable charges in the AMBER99 force feld.

AM1 BCC charge calculations as implemented here have the problem that they do 

not take into account symmetry of atoms in a calculation. For example in Figure 

4.14 the phenylalanine side-chain calculations for C39 and C43 in the 

Va-Phe-Propyl compound have charge values of -0.137 e and -0.170 e 

respectively. Yet they are indistinguishable particles thus any model should ideally 

treat them as identical, meaning that they should end up with the same charge.
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Figure 4.14: AM1 BCC charge calculations for Phenylalanine side-chain mimics. Mean values 

calculated  from the result of: 310 conformations from a  Phe-Trp-Leu compound (blue); 361 

conformations  from  a  Phe-Nap-Leu  compound  (orange);  380  conformations  from  a 

Val-Phe-Propyl compound (yellow); AMBER99sb Leucine side-chain charges for comparison 

(green).
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It is reassuring that the conformation of the molecule that OMEGA generates does 

not have a large effect on the charge of the molecule as shown by the small error  

bars observed in fgure 4.12. Additionally the calculations appear to arrive at a 

consensus value for the charge of the backbone that is independent of the 

substitution of pattern for the side-chain groups. It should be noted that the side-

chain mimics investigated in this study are all alkyl or aryl groups with no net 

charge, so some care must be taken if these compounds are investigated.

4.4.2.c Full quantum mechanical vs. semi-empirical 

charge calculations

We next look at the results for HF 6-31G* backbone charge calculations 

compared to AM1 BCC charge calculations for R1=CH3,R2=CH3,R3=CH3 

substituted compounds. The results are presented in fgure 4.15 and generally 

show broad agreement. The main disagreement is for C23 which is part of the N-

terminal methyl cap. This capping group is not present in the fnal oligoamide 

simulations presented later in the chapter, as it was initially thought to be 

necessary for performing accurate free energy calculations. Thus disagreement 

between the two charge methods for this atom have no impact on the free energy 

calculations described later. Since the two charge methods agree well in the case 

of the backbone calculations we need to make a fnal comparison of charge 

calculation methods for side-chains before we can decide which charge method 

we can proceed further with.
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Figure 4.15: Backbone atomic charges calculated using the HF6-31G* level of theory (blue) compared to backbone atomic charges calculated using the AM1 BCC 

level of theory (orange). Full QM calculations were carried out using Gaussian and the REDIII.1 software package, semi-empirical QM calculations were carried out  

using Antechamber from AmberTools 1.2. Full details are given in the methods section.
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In fgure 4.16 we compare the two HF 6-31G* charge methods with AM1 BCC 

and provide comparison to AMBER charges for Alanine. Since we calculated the 

value for the CH3 side-chain only once using the fragment HF 6-31G* method, we 

include the results against each side-chain that was calculated using the 

HF 6-31G* and AM1 BCC methods. We might expect that the full molecule 

methods for side-chain charge calculation should produce the same value for  

each CH3 thus validating the fragment HF 6-31G* method as a suitable candidate. 

However we see that it disagrees with the full molecule side-chain calculations for  

the carbons comprising the two side-chains closest to the C-terminal. Full 
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Figure 4.16: Comparison of charge calculation methods applied to the triple alanine substituted 

oligoamide.  Results  for  the  HF 6-31G*  level  of  theory  applied  to  a  full  molecule  (blue); 

HF 6-31G* level of theory applied to a fragment containing the alanine side-chain (orange); the 

mean value from 361 conformations of the full compound using the AM1 BCC level of theory 

(yellow); and the charge values specifed for the corresponding alanine side-chain atoms in the 

AMBER99sb force feld (green).
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molecule calculations in this case yield values of +0.081 e and -0.003 e compared 

to -0.100 e for the fragment calculation. However, the fragment and full-molecule 

calculations are in strong agreement with the value for the N-terminal side-chain 

carbon atom, -0.100 e and -0.120 e respectively. The calculations for the 

hydrogens in the CH3 side-chains once again show the problem that the AM1 

BCC method has with assigning differing charges to indistinguishable atoms, that 

is not visible in either of the HF 6-31G* methods. The CH3 side-chain calculations 

is the frst time that we see a disagreement between the HF 6-31G* and AM1 

BCC charge methods. The AM1 BCC charge method produces very similar values 

for all CH3 side-chains, whilst the HF 6-31G* method produces values that 

decrease from positive at the C-terminal substituent to negative at the N-terminal 

substituent. This in turn encourages the bound hydrogens to increase their charge 

values from approximately +0.05 e to +0.1 e from C to N-terminal. In this case the 

HF 6-31G* method appears to be taking into account the dipole moment of the 

molecule, since the C-terminus carries a negative charge thus is likely to have an 

electron donating character, whilst the N-terminus carries a positive charge thus is 

likely to have an electron withdrawing characteristic. Finally we note that the 

AMBER charges most closely resemble those of the fragment CH3 compound 

with the HF 6-31G* method. This is in many ways expected since the fragment 

method essentially creates a compound which is most similar to those created 

when the original AMBER force feld was parameterized.
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Tryptophan side-chain charge calculations are also performed using AM1 BCC 

and fragment HF 6-31G* methods. Full molecule HF 6-31G* calculations are not 

evaluated since these calculations did not converge to an answer for over a week 

of CPU time. We see broad agreement with the charges calculated for atoms from 

both methods and the AMBER charges. There are some notable exceptions, the 

frst is the AM1 BCC charge of +0.2 e for C28, the alkyl carbon bound to the 

backbone ether oxygen, compared to charges much closer to 0 e in the case of 

the HF 6-31G* calculation and those provided with the AMBER force feld. We 
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Figure  4.17:  Comparison of  charge calculation methods applied to  the  Tryptophan from a 

Phe-Trp-Leu substituted oligoamide. Results for the HF 6-31G* level  of  theory applied to a 

fragment containing the alanine side-chain (orange); the mean value from 310 conformations of 

the full compound using the AM1 BCC level of theory (yellow); and the charge values specifed 

for the corresponding alanine side-chain atoms in the AMBER99sb force feld (green).
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also note a value close to -0.2 e for the AM1 BCC charge assigned to N4 (the 

tryptophan nitrogen), compared to a value slightly over -0.4 e for the HF 6-31G* 

calculation.

4.4.2.d Charge calculations summary

In general we have shown that the two charge calculation methods appear in 

broad agreement in the contexts to which they have been applied. It is likely that 

the HF 6-31G* method would provide more robust results, although the increased 

calculation time required is a very considerable additional overhead. If this type of 

charge calculation is to be used in an extensive modelling study it is likely that the 

AM1 BCC charge calculations should be suffcient and necessary in order to 

generate models in suffcient time. HF 6-31G* methods, or perhaps some 

intermediate level of theory could be used, as in the study by Vemparala et al.

(Vemparala et al. 2006). These calculations are required to generate ab-initio 

torsional parameters for some of the compounds. It would then be possible to use 

these calculations and RED to do RESP charge ftting.

In addition to investigating the variation in charge parameters we can ask how 

much we think that incorrectly assigning charge parameters to our molecules 

might affect the results of a free energy calculation. Indeed, this question has been 

asked in the context of solvation free energies; in TIP3P and TIP4P-Ew water; of a 

set of 44 small neutral compounds. The GAFF force feld was used to determine 

the bonded parameters, whilst a variety of MP2, B3LYP, HF 6-31G*, AM1 CM2 

and AM1 BCC charge calculations were performed. The results from these 

alchemical free energy calculations were then compared to experiment. In this 

study all computed errors for free energies of hydration were less than 

0.1 kcal mol-1 which is less than the reported 0.2 kcal mol-1 error reported in the 

study from which the experimental data is taken(Mobley et al. 2007). This report 

provides extra weight to support a policy of spending some time to ensure that the 

calculated charge values are as accurate as possible, whilst bearing in mind that  
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the additional speed provided by AM1 BCC methods probably outweighs any 

disadvantages due to inaccuracies in these charge calculations. In addition it can 

be noted that AM1 BCC charge methods have been used in other studies of 

hydration free energies to good effect(Mobley et al. 2009) and have additionally 

been used in successful calculations of protein-ligand free energy of  

association(Mobley et al. 2007).

4.5 Conclusion

The main aim of these experiments is to identify and assess a method for the 

preparation of plausible models for hDM2-oligoamide complexes for free energy 

calculations. Summarised below are the key results from this study, both in terms 

of those specifc to carrying out free energy calculations on these particular 

complexes, and in terms of the methods employed to make these decisions.

In terms of docking and conformer generation, the results from both Autodock 

and FRED led us to believe that Autodock was producing more plausible docked 

conformations. However, it seems clear that the oligoamide compounds have a 

large degree of conformational fexibility and the Autodock scoring function 

predicts that many of these low energy clusters will exist within a small energy 

range meaning that it is not possible to identify with high probability a single lowest 

energy docked conformer. Indeed, it was not even possible to conclusively 

suggest whether the anti-parallel or parallel conformation is preferred. There are 

several lines of evidence to support the anti-parallel conformation as the most 

likely, this includes the larger number of low energy clusters for the anti-parallel  

conformation, secondly, the larger cluster sizes are also mainly in the anti-parallel  

conformation. Further evidence comes from the molecular superposition, in that 

the most convincing visual alignments are for the anti-parallel conformation. As a 

result several likely conformers will need to be taken forward for free energy 
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calculations including both parallel and anti-parallel conformations, where we 

believe that it will be possible to determine which conformations are the most 

favourable.

Regarding generation of charge parameters, the frst key result is that there 

appears to be little variation in the charge values calculated for the oligoamide 

backbones when using the AM1 BCC charge calculation methods as compared 

to HF 6-31G* methods. The results from the two methods are in less agreement 

when it comes to side-chain calculations, however, the calculations nearly always  

agree on the sign of the charge, and often agree on the magnitude of the charge.  

Besides the fact that the AM1 BCC method is a lower level of theory than the 

HF 6-31G* method, the key disadvantage of the AM1 BCC method that we noted 

is that of the variation in charges assigned to indistinguishable atoms. However, 

both methods are designed to be consistent with the AMBER family of force felds 

including GAFF, and we conclude that it is appropriate to begin calculation of free 

energies using the AM1 BCC charge method since it is much faster than the 

Hartree-Fock method. It should also be noted that the acpype software front-end 

for Antechamber is considerably less involved to use than REDIII.1. This combined 

with the results from the study by Mobley et al. is enough to convince us that the 

AM1 BCC method is robust and accurate enough for the simulations reported in 

later chapters. 

The results of the binding site analysis and the docking suggest that whilst the 

suggested poses can be quite variable (parallel and anti-parallel conformations),  

there is no decisive reason to expect one over the other, and there does appear to 

be reasonable correlation between the docking score and how well the docked 

conformation explores the binding pocket. Furthermore we showed that it is 

possible to generate charges for oligoamide compounds that are compatible with 

the GAFF force feld. Since we have satisfed two of the requirements for MD 
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simulation it should now be possible to investigate the stability of the 

hDM2-oligoamide complexes generated here using MD simulations, and indeed 

these simulations are presented in the next chapter.
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5 Molecular dynamics simulation of 

novel Arylamide compounds bound to 

hDM2

5.1 Abstract

Molecular dynamics (MD) simulations are carried out in order to understand the 

behaviour of hDM2-p53 systems for which high-quality structures are already 

available. Following this further MD simulations are performed in order to refne 

simulation protocols and to determine the suitability of structures of oligoamide 

complexes generated using the computational methods described in the previous 

chapter. Recent methodologies for carrying out alchemical free energy calculations 

have shown that there are several particularly important features that need to be 

accurately sampled in order to be confdent in the quality of the calculated free 

energy differences. Of particular importance is the sampling of dihedral angles that 

form the binding site and the dihedral angles present in the bound ligand. We 

investigate dihedral angles by analysis of the angles sampled, and additionally in 

using autocorrelation functions that will allow the length and number of MD 

simulations required to perform accurate alchemical free energy calculations. 

Finally we investigate the spatial sampling of ligands forming hDM2-oligoamide 

complexes to determine whether some starting conformations can interconvert 

and the time-scales over which this might occur. We show that generally some 

spatial sampling does not occur on the time-scale of typical MD simulations 

(> 20 ns), however, many do interconvert. Overall, the analysis described here 

increases our confdence that we can use a reduced number of starting 

conformations to proceed with alchemical free energy calculations and fnd 

quantitative relationships for hDM2-ligand binding.
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5.2 Introduction

Molecular dynamics has been used as a tool to study both protein-ligand 

interactions and protein-protein interactions, with a variety of techniques being 

developed to improve sampling and ask a variety of questions(Woods, King, and 

Essex 2001),(Woo and Roux 2005),(Im, Feig, and Brooks 2003),(Lawrenz et al. 

2010). A brief overview of some of the key techniques is provided in the thesis 

introduction, here we focus on application of these techniques to the feld of  

protein-ligand and protein-protein interactions and if applicable to the hDM2-p53 

system.

5.2.1 Molecular dynamics for studying protein-

ligand interactions

Calculation of protein-ligand binding affnities has been performed using both 

Monte Carlo and molecular dynamics techniques. One of the earliest examples of  

free energy calculations was by Wong and McCammon who used the GROMOS 

molecular dynamics program to simulate for up to 64 ps and then used 

exponential averaging to compute free-energies of two benzamidine inhibitors of 

trypsin, and of benzamidine for wild-type and mutant trypsin(Wong and 

McCammon 1986). Essex et al. applied Monte Carlo FEP calculations to obtain 

relative free-energies of four Trypsin-Benzamidine complexes(Essex et al. 1997). 

Both studies showed success in predicting accurate free-energies. Essex et al. 

attributed worse performance on one complex to defciency in partial charges of 

this complex. In addition Monte Carlo simulations have also been used to study 

the specifcity of a series of non-peptidic inhibitors of the SH2 protein(Price and 

Jorgensen 2000). More recently Mobley et al. have applied alchemical free energy 

calculations to the T4 lysozyme system where they learnt some important lessons, 

that will be detailed later(Mobley, Chodera, and Dill 2006).
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Molecular dynamics has also been applied to the hDM2 system. Zhong and 

Carlson used a GBSA approach to calculate frst the binding affnity of the p53 

peptide to hDM2 (-7.4 kcal mol-1), followed by applying the technique to a p53 

mimic which has some similarity to Nutlin-2 for which there is both a structure and 

reported binding affnity. They also identifed key hot-spot residues in the hDM2 

binding site (L54, I61, M62, G58, and V93)(Zhong and Carlson 2005).

5.2.2 Molecular dynamics for studying protein-

protein interactions

Computational methods have been applied to many aspects of the study of 

protein-protein interactions. Perhaps the most widely known is the Critical 

Assessment of Predicted Interactions (CAPRI)(Janin and Wodak 2007). However, 

computational techniques have also been applied to the investigation of 

interactions of proteins with peptides. An excellent review of the feld is provided 

by Russell et al.(Russell et al. 2009). Molecular dynamics has specifcally been 

used to look at PDZ interactions(Basdevant, Weinstein, and Ceruso 2006) as well 

as SH2 interactions(Gan and Roux 2009). Inspired by Kollman and Massova who 

used a GBSA model to perform Computational Alanine Scanning Mutagenesis of 

the hDM2-p53 system(Massova and Kollman 1999), Kortemme and Baker have 

applied a relatively simple physical model of protein-interactions to the hDM2-p53 

system(Kortemme and Baker 2002). Kollman and Massova performed 400 ps 

simulations in TIP3P water and took 400 snapshots at 1 ps intervals. They then 

used a continuum solvent model to apply free energy calculations, which allowed 

them to successfully correlate their results with observed changes in IC50s. 

Kortemme and Baker show that their results are comparable in accuracy to that of 

Kollman and Massova, but the computation has the beneft of being easier to 

perform and requiring less computing power. The method of Kollman and 

Massova has the beneft with respect to that of Kortemme and Baker in that it has 

the potential to be more widely applicable to hDM2-ligand interactions since it is 

not trained on a particular set of data(Massova and Kollman 1999). More recently 
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Kalid and Ben-Tal applied a GBSA technique based on sampling conformations 

from implicit solvent simulations to the hDM2 system and a range of p53 

peptidomimetic compounds which is very similar to that initially performed by 

Kollman and Massova(Kalid and Ben-Tal 2009). They report a high correlation 

between their values for ∆G and experimentally reported pKd for p53 

peptidomimetics. The authors report that peptide models were built using the p53 

peptide in 1YCR as a model with which to modify who used 100 data points 

sampled at 2 ps intervals between 200 ps and 400 ps of simulation. A more 

comprehensive study of the hDM2 and related MDMX system has been performed 

by Carotti et al. who used several tools such as Essential Dynamics and Linear 

Discriminant analysis to try to identify key residues involved in p53 binding(Carotti 

et al. 2009).

5.2.3 Dihedral sampling for alchemical free 

energy calculations

The overall aim of the project is to use the technique of alchemical free energy 

calculations to the hDM2-oligoamide system. Previously the technique has been 

successfully applied to the T4 lysozyme system as detailed by Mobley et al.

(Mobley, Chodera, and Dill 2007). Mobley et al. identifed several key factors that 

can adversely affect the result of an alchemical free energy calculation. These will  

be discussed in further detail in the proceeding chapter detailing the application of  

free energy calculations to the hDM2-oligoamide system. Immediately the key 

important result is that inadequate sampling of dihedral angles can adversely affect 

the free energy calculation.

5.2.4 Study Aims

Previously we used docking methods to develop starting conformations of an 

oligoamide compound bound to hDM2. In this chapter we will continue to use the 

nine conformations that have been previously been developed. We use the same 

nomenclature in this chapter to refer to these conformations. 
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We aim to identify a set of force feld parameters that can adequately describe 

hDM2 systems for which structural data currently exists. These parameters should 

be suitable for transfer to the hDM2 oligoamide systems previously developed, 

and additionally be compatible with planned free energy calculations. These initial  

simulations will provide a benchmark with which to compare hDM2 oligoamide 

simulations.

Finally the sampling of certain parameters (particularly dihedral angle sampling) will  

be studied to ensure that the system is converging. With the overall aim of 

identifying a protocol that will allow free energy calculation to be applied to the 

system using the AMBER99sb/GAFF force felds.

5.3 Methods

5.3.1 Constructing systems for MD simulation

5.3.1.a Preparation of structures

All structures were taken from the Protein Data Bank (PDB)(Berman et al. 2002), in 

cases where multiple chains were present a single hDM2 chain was selected: 

1T4E-B(Grasberger et al. 2005); 1T4F-M(Grasberger et al. 2005); 1YCR-A(Kussie 

et al. 1996); 1RV1-A(Vassilev et al. 2004); 1Z1M(McInnes et al. 2005) model 9. 

Also selected was the corresponding bound ligand where appropriate: 1T4E-

A(Grasberger et al. 2005); 1T4F-P(Grasberger et al. 2005); 1YCR-B(Kussie et al. 

1996); 1RV1-A(Vassilev et al. 2004). Water molecules were removed in all cases 

and protonation states were manually assigned. Ligand molecules were 

parameterized with GAFF(Wang et al. 2004) parameters and AM1BCC charges 

using the default settings from the acpype front end to Antechamber(D.A. Case, 

T.A. Darden, T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke et al. 2004). 
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The grompp program from GROMACS was used to assign AMBER99sb(Hornak 

et al. 2006) force feld parameters from the ffamber ports(Sorin and Pande 2005). 

Version 3.3.1 of grompp and ffamber force feld ports was used for initial MD 

simulations and version 4.0 was used for oligoamide simulations.

5.3.1.b Initial MD simulations

Initial MD simulations were performed using GROMACS 3.3.1(Lindahl, Hess, and 

Spoel 2001) using the 2.6.16.60-0.31-smp Linux kernel running on x86_64 

hardware. All structures were minimised to a tolerance of 100 kJ mol-1 nm-1 with an 

initial step size of 0.01 nm for a maximum of 5000 steps of L-BFGS minimisation 

with 10 correction steps, followed by a maximum of 500 steps of steepest 

descent minimisation. Minimisation was followed by 10 ps of isothermal dynamics 

followed by 100 ps of isothermal/isobaric equilibration using the Berendsen 

algorithms. Production simulations were run for a total of 10 ns. In the latter two 

stages pressure coupling was performed using a Berendsen barostat with 

reference pressure of 1 atm, compressibility of 4.5x10-5 bar-1 and relaxation time of 

0.5 ps.

All simulations used the stochastic integrator with reference temperature 300K 

and relaxation time 0.1 ps for the entire system, with an integration step size of 

2 fs. PME parameters are the same as those used in the work of Mobley et al.

(Mobley, Chodera, and Dill 2007), PME spline order of 6, relative tolerance of 

1x10-6 and a Fourier spacing of 0.1 nm. A long range dispersion correction is also 

applied for energy and pressure, to correct for the effect of truncating the long-

range dispersive interactions. A Lennard Jones function with switching between 

0.8 nm and 0.9 nm was used for the van der Waals interactions. The neighbour 

list was set to 1 nm and was updated every 10 simulation steps. All bonds with 

H-atoms were constrained using the LINCS algorithm with highest order 

expansion of the constraint coupling matrix of 12. SETTLE is used to constrain 

water bonds and angles.
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5.3.1.c Oligoamide MD simulations

An updated version of GROMACS, version 4.0.4(Hess et al. 2008) was used for all 

oligoamide MD simulations using conformations generated from the second round 

of Autodock docking carried out in the previous chapter (5 anti-parallel and 4 

parallel conformers labelled conf1, 2, 3, 7, 8 and conf4, 9, 10, 11 respectively).  

The same simulation scheme as previously discussed was used with two minor 

changes. Firstly the maximum number of steepest descents minimization steps 

was increased from 500 to 2000 steps. Pressure coupling was altered to use 

Parrinello-Rahman with a relaxation time of 5.0 ps, 1 atm, compressibility 

4.5x10-5 bar-1.

5.3.2 Analysis of GROMACS simulations

GROMACS simulations were analyzed using 4 key tools to determine: the RMSD, 

throughout the time-course of the simulation, from the initial structure after two 

rounds of minimization as described previously (g_rms); the RMSF of individual 

residue Cα atoms from the initial structure after two rounds of minimization 

(g_rmsf); the number of pairs of atoms that are with 3.5 Å where one atom is part 

of the hDM2 structure and the second is part of the bound ligand structure 

(g_hbond); the difference in the distance between the centre of mass of the hDM2 

molecule and the bound ligand molecule compared to the initial structure after two 

rounds of minimization (g_dist).

5.3.3 Dihedral analysis

5.3.3.a Distribution graphs and traffc light fgure.

The distribution of dihedral angles over 20 ns of production simulation was plotted 

for each �  angle of all contacting residues and each dihedral present in the 

oligoamide compound shown in fgure 5.9 for each of the 5 anti-parallel and 4 

parallel starting conformations. Additionally the starting value of each dihedral was 

marked on the distribution. We analysed the distributions such that dihedral 
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angles which are sampled in most simulations but missing in others can be 

identifed. Angles are labelled as: 'well sampled' where all simulations sample the  

same distribution; 'mostly well sampled' where all but one simulation samples the 

same distribution, or some peaks are considerably different in height but still  

sampled and located at the same angle; and 'possible sampling problem' where 

peaks are missing from more than one simulation indicating that some starting 

conformations can access dihedral angles that others may not be able to access.

5.3.3.b Autocorrelation analysis 

Autocorrelation functions of length 10 ns (from simulations of length 20 ns) were 

generated for each ϗ angle from hDM2 binding residues shown in fgure 5.10 for 5 

anti-parallel and 4 parallel starting conformations of the Phe-Nap-Leu conformer, 

with the autocorrelation function y(x) = < cos(ϗ(τ)) . cos(ϗ(τ+t)) > being ftted to an 

exponential of the form y=exp(-x/τ) using the g_chi program from GROMACS 

4.0.4. Numerical integration of the exponential, also carried out using g_chi, yields  

the relaxation time for the ϗ angle.

5.3.4 Spatial sampling method

Spatial sampling was analysed by projecting the position of each of the three ether 

oxygen atoms from 20 ns simulations at time intervals of 10 ps onto a plane 

defned by the Cα atoms of Tyrosine 56, Methionine 62 and Valine 93. These three 

atoms lie in the periphery of the binding site and defne a plane that cuts through 

the site at a roughly constant depth. A Python program using the Numpy toolkit 

was written that solves the equations:

l a l b− l a t (39)

p0p1−p0up2−p0v (40)
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Here la and lb are points on a line (la is the position of an ether oxygen, and lb is a 

point defned by following a vector along the unit normal to the plane from la) and 

p0, p1, p2 are points on the plane (Cα atoms from Tyr 56, Met 62 and Val 93), and 

t, u, v are arbitrary real numbers.

5.3.5 Cluster analysis of Oligoamide 

conformations

The GROMACS 4.0.4 program g_cluster was used to generate clusters using the 

GROMOS clustering method to generate clusters with a minimum RMS of 1.5 Å. 

The GROMOS clustering method takes a structure and counts all structures within 

the RMS threshold, it then takes the largest cluster and chooses the structure with 

the largest number of neighbours, and eliminates this and additional cluster  

members from the structures in the pool, which is repeated until the pool of 

structures is empty(Daura et al. 1999). Cluster size (number of members of each 

cluster), and the id of each cluster member was generated for the pooled 

conformations taken at 10 ps intervals between 3 ns and 20 ns from 5 anti-parallel 

(1, 2, 3, 7, 8). The same was repeated for the 4 parallel (4, 9, 10, 11) starting 

conformations.

5.4 Results and Discussion

5.4.1 Initial hDM2 MD simulations

Initial simulations were carried out for hDM2 in complex with the four compounds 

for which there are crystal structures. This allows us to determine sensible 

simulation protocols and parameters for use when simulating oligoamide 

compounds. Five replicates of each simulation allowed us to determine the 

expected variability in our simulations. Parameters followed throughout the length 

of the 10 ns simulations were: RMSD from the minimized structure; RMS 

fuctuation of individual residue Cα from their minimized location; number of 
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contacting atom pairs from each of hDM2 and complexed ligand within 3.5 Å; 

difference in centre of mass distance of hDM2 from its complex relative to the 

distance observed in the minimized structure.

5.4.1.a Stability of hDM2-compound simulations

The frst property studied was the RMS distance of the structures from the 

coordinates of their minimized structure. The results are shown in fgure 5.1, with 

hDM2 in complex with: a) wild-type p53 helix; b) high-affnity p53 helix; c)  

benzodiazepinedione; d) nutlin-2. Generally we see that the RMSD will increase 

from the value at t = 0 ps and approach a fuctuating but averaging constant 
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Figure  5.1:  Running averages (100 ps  window)  of  the RMSD (Å)  for  5  replicates of  hDM2 

simulated  for  10 ns  in  complex  with:  a)  wild-type  helix;  b)  high-affnity  helix;  c) 

benzodiazepinedione; d) nutlin-2.
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value. This indicates that the complex requires some time to relax from the 

structure that is presented in the PDB, but that the complex is well behaved. It is 

therefore unlikely that the protein is unfolding; the protein is likely to be in a 

dynamic equilibrium sampling states in a global energy minimum. In all but two 

cases the RMSD never exceeds 1.5 Å, typically simulations with RMSD < 2.5 Å 

are said to be stable. In the two cases where RMSD does exceed 1.5 Å it remains 

well below the 2.5 Å cutoff and returns to less that 1.5 Å. These two cases are 

trajectory 1 in the benzodiazepinedione simulation (fgure 5.1), and trajectory 4 in 

the nutlin-2 simulation (fgure 5.1). It is also clear from fgure 5.1 that all of the 

replicates are behaving in a similar manner, which also indicates that we are using  

suitable simulation parameters.
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Figure  5.2:  RMS  fuctuation  compared  to  experimental  b-factor  (as  specifed  in  the 

corresponding  PDB  fle),  using  the  relationship  in  equation  39 for  5  replicates  of  hDM2 

simulated for 10 ns in complex with: a) wild-type helix (1YCR); b) high-affnity helix (1T4F); c) 

benzodiazepinedione (1T4E); d) nutlin-2 (1RV1).
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In fgure 5.2 we investigate the RMS fuctuation of Cα atoms from hDM2. 

Additionally we use the relationship(Willis and Pryor 1975):

RMSF =3B/8π2 (41)

Where B is the experimentally determined b-factor extracted from the atom 

records of the PDB coordinate fle. Figure 5.2 compares the experimentally 

observed b-factor in beige to the RMSF observed in our MD simulations. It should 

be noted that there is likely to be some discrepancy between this model and 

experiment due to the fact that crystal structures are usually determined at less 

than 300 K (the temperature at which the MD simulations are carried out), as well 

as the  possibility of infuences from crystal packing.

When discussing the RMSF of residues we ignore the frst and last few residues 

from discussion, since they are not restrained by the motion of surrounding 

residues they are much more free to move than one would expect to observe in 

most crystal structures. We see in fgure 5.2a the RMSF plot for hDM2 bound to 

wild-type p53. We see excellent agreement between simulations, and furthermore 

the simulations agree well with the RMSF calculated from the experimentally 

determined B-factor. The maximum values from the RMSF are of the order 2.5 Å 

to 3 Å which is approximately double the RMSF calculated from the experimental 

b-factor. We observe a similar picture in fgure 5.2b in the case of hDM2 bound to 

high-affnity p53. It is important to note that each of the fve replicates are in 

agreement as to the value of the RMSF during the simulation. Figure 5.2c shows 

the RMSF for hDM2 bound to benzodiazepinedione, which shows a distribution of 

RMSF values that closely follows the RMSF calculated from the experimental b-

factor. Figure 5.2d shows that the RMSF for hDM2 bound to nutlin-2 calculated 

from the experimental b-factor is nearly fat with a value of approximately 1.2 Å, 

this perhaps indicates that the experimental b-factors from this structure might be 
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less reliable than for the other three structures. The simulations of nutlin-2 show 

that the RMSF remains below this 1.2 Å value except for a slight deviation by two 

residues.

We also looked at the total number of contacts (fgure 5.3), where a contact is 

defned as a pair of atoms, one from hDM2 and one from the ligand which exist  

within 3.5 Å of each other. Since the van der Waals radius of a carbon atom is 

approximately 1.7 Å this means that we are essentially counting the number of 

contacts of the complexed molecule with the hDM2 protein. This gives us a very 

rough measure of how tightly bound the ligand is. In the case of co-crystallised 

ligands we might expect the number of contacts to stay roughly constant for the 
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Figure 5.3: Total number of contacts, pairs of atoms that are within 3.5 Å of each other, one 

from  hDM2 and  one  from  complex  structure:  a)  wild-type  helix;  b)  high-affnity  helix;  c) 

benzodiazepinedione; d) nutlin-2.
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duration of the simulations, since it should already be in a global minimum. It  

should be noted that in the high-affnity helix simulations in fgure 5.3b all 

simulations start with a larger number of contacts than they fnish with, moving 

from approximately 140 contacts to approximately 110 contacts. All simulations 

make this transition between 2 ns and 4 ns of simulation time. Once the high-

affnity helix simulation settles to its new number of contacts this value is roughly 

the same as that of the wild-type helix. This is unsurprising since whilst the wild-

type helix is slightly longer than the high-affnity helix they both share the same 

contact epitope. Much of the increase in affnity of the high-affnity helix appears to  

be from decreasing the overall helix length to the minimum amount required to 

maintain helicity, whilst substituting residues on the solvent exposed face of the 

peptide for those that are helix stabilisers with a high helix propensity and 

additionally have hydrophillic properties(Pace and Scholtz 1998). It is also of 

interest that the total number of contacts for both benzodiazepinedione and 

nutlin-2; fgure 5.3c and 5.3d respectively; remain constant with values around 

110. This is directly comparable to both of the p53 helices. When combined with 

the images of the binding site and compound superpositions from the previous 

chapter fgure 4.2 and fgure 4.1 it becomes clear why this is. All compounds are 

targeting essentially identical regions of the binding pocket and the 3.5 Å cutoff for 

contacts is very strict, meaning that peripheral atoms are not counted.
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In fgure 5.4 we frst calculate the distance between the centre of mass of the 

hDM2 protein and the centre of mass of the ligand binding partner. We then 

subtract the centre of mass distance observed in the minimized structure from all 

further observations. This allows us to determine whether the binding partner 

might be binding more deeply or alternatively less tightly in the pocket. In the case 

of simulations starting from known structures this value should remain close to 

zero since the system is likely to already be at a minima. In fgure 5.4a we see that 

the wild-type helix distance varies between -1 Å and +1 Å and may be the most 

variable of all the families of simulations. The high-affnity helix in fgure 5.4b shows 

less variability with minima and maxima closer to -0.5 Å and +0.5 Å. The 
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Figure 5.4: Difference in centre of mass distance (Å) from the distance measured after the initial  

structure undergoes the two stages of minimization described in the methods, between hDM2 

and  complex molecule:  a)  wild-type helix;  b)  high-affnity  helix;  c)  benzodiazepinedione;  d) 

nutlin-2.
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benzodiazepinedione and nutlin-2 families of simulations in fgure 5.4c and 5.4d 

respectively, appear to slightly increase centre of mass distance. Whilst the two 

peptide simulations in a) and b) oscillate around a zero value, the two small-

molecule simulations in c) and d) seem to oscillate around mean values of  

approximately +0.2 Å which is within the error range of the simulation. These 

values are nevertheless also very stable.

The basic analysis of initial molecular dynamics provided in the previous section 

serves two purposes. Firstly, it allows us to be confdent that the parameters 

chosen for the simulation are suitable for the system in question. Secondly it  

allows us to gain an idea of reasonable values for observables when comparing to 

molecular dynamics simulations using similar parameters. Thus we have a basis 

from which to compare the stability of the oligoamide simulations.

5.4.2 hDM2-oligoamide simulations

A slightly altered set of parameters was used to simulate hDM2 oligoamide 

complexes. The change in parameters was designed to be compatible with free 

energy calculations in GROMACS when Verlet integrators are provided as 

standard. Whereas in the initial MD simulation work we simulated 5 replicates for 

each starting conformation, we instead choose to use just one replicate and a 

group of docked conformations that are similar. This is due to the reasons 

discussed in the section on generating starting conformations. Chiefy since we 

are unsure of the correct low energy conformation we use several possible 

conformations for study. Use of fve replicates of nine conformations is 

computationally intractable, whereas just simulating nine conformations is still  

possible. The starting conformations used are shown in fgure 5.5 for anti-parallel 

conformations and fgure 5.6 for parallel conformations.
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Figure 5.5: Anti-parallel docked conformations identifed by Autodock in the previous chapter 

and used in the molecular dynamics study detailed here. In order to allow easy discussion 

conformations are labelled: a) Conf 1; b) Conf 2; c) Conf 3; d) Conf 7; e) Conf 8.
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5.4.2.a Stability of hDM2-oligoamide simulations

In fgure 5.7 and fgure 5.8 we see RMSD/RMSF and number of 

contacts/difference in centre of mass respectively. These two fgures have parallel 

oligoamide starting confgurations on the left, and anti-parallel oligoamide starting 

confgurations on the right.
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Figure 5.6: Parallel docked conformations identifed by Autodock in the previous chapter and 

used  in  the  molecular  dynamics  study  detailed  here.  In  order  to  allow  easy  discussion 

conformations are labelled: a) Conf 4/9; b) Conf 10; c) Conf 11.
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Both parallel and anti-parallel starting conformations have an average RMSD of 

less than 1.5 Å, with conformation 4 and conformation 3 occasionally slightly 

exceeding this value. In all cases RMSD remains below 2 Å. RMS fuctuation 

behaviour is similar for both parallel and anti-parallel simulations. Fluctuation 

generally remains below a maximum of 2 Å. For the protein hDM2 there are areas 

of greater plasticity from residue 18-22, 44-47 and 69-77. The frst two more 

plastic regions are common to all simulations, whilst parallel conformation 9 and 

anti-parallel conformations 2, 7 and 8 appear to be far more rigid than their 

counterpart simulations. We can compare the values in these simulations to the 

same regions of hDM2 from our initial MD simulations. The residue numbering 
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Figure  5.7: Behaviour of parallel (left) and anti-parallel (right) Phe-Nap-Leu conformations: a) 

RMSD relative to initial minimized parallel conformation; b) RMSD relative to initial minimized 

anti-parallel conformation; c) RMS fuctuation of C-alpha atoms from initial minimized parallel 

conformation; d) RMS fuctuation of C-alpha atoms from initial minimized parallel conformation.
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scheme in fgure 5.7 is slightly different, so the residue range for the initial MD 

simulation will be compared to those from fgure 5.8. It is diffcult to make 

comparison with the RMSF for hDM2 in complex with the p53 peptides shown in 

fgure 5.7a and 5.7b due to the large fuctuations in these simulations. However, it 

is possible to make comparison to the simulation of another ligand 

benzodiazepinedione from fgure 5.7c and the nutlin-2 simulation from fgure 5.7d. 

We see that the frst plastic region is also visible for the hDM2 

benzodiazepinedione complex for equivalent residues 28-32, and the hDM2 

nutlin-2 complex for equivalent residues 18-22. These are residues: alanine; 

glutamine; lysine; asparagine and threonine, and they defne a loop region on the  

far side of hDM2 relative to the p53 binding site. The second plastic region is also 

visible in the hDM2 benzodiazepinedione complex for equivalent residues 54-57, 

and in the hDM2 nutlin-2 complex for equivalent residues 44-47. These 

correspond to residues glutamic acid, lysine, glutamine, glutamine. These residues 

exist at the N-terminus of the high-affnity p53 peptide structure, with the glutamic 

acid in particular contacting the N-terminus of the helix. These residues also form 

a short loop between a pair of beta strands, which is likely to explain why the 

increased RMSF is observed in all structures from both the oligoamide simulations 

and the initial MD simulations. The third plastic region in the oligoamide system is  

between residues 69-77, however, equivalent higher RMSF regions are not visible 

in fgure 5.7c residues 79-87 or fgure 5.7d residues 69-77. These residues are 

lysine, glutamic acid, histidine, arginine, lysine, isoleucine, tyrosine, threonine and  

methionine. These residues all exist in proximity of the n-terminus of the p53 helix  

in the structure of hDM2 bound to the high-affnity p53 helix.
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There are larger fuctuations in the total number of contacts between hDM2 and 

oligoamide (fgure 5.8) than in the simulations involving hDM2 and compounds for 

which there are X-ray structures (fgure 5.3). We also notice that in the case of 

anti-parallel simulations there appears to be two clusters of contacts. 

Conformations 2, 3 and 7 make more contacts, averaging roughly 175. Whilst 

conformations 1 and 8 make fewer contacts, averaging roughly 115. In the case 

of the parallel conformations we see in fgure 5.8 that conformation 4 and 9 take 

less than 1 ns and about 4 ns to reach their equilibrium values. Furthermore we 

observe that the total number of contacts tends to cluster towards a single 

average value after equilibration indicating the conformations 4 and 11 appear to 
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Figure  5.8: Behaviour of parallel (left) and anti-parallel (right) Phe-Nap-Leu conformations: a) 

RMSD relative to initial minimized parallel conformation; b) RMSD relative to initial minimized 

anti-parallel conformation; c) RMS fuctuation of C-alpha atoms from initial minimized parallel 

conformation; d) RMS fuctuation of C-alpha atoms from initial minimized parallel conformation.
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be stabilising towards a more favourable conformation. This is an interesting 

observation since it suggests that the starting conformations aren't the optimum in 

terms of number of contacts. Additionally in the case of these two conformations 

they are actually identical at the start of the simulation. This means that we must 

allow a reasonable amount of equilibration time (which could be as long as 5 ns) to 

allow simulations to reach their optimum values.

In the case of the initial MD simulations we observed in fgure 5.4 that there was 

fuctuation but little deviation from the initial value of the difference in the centre of  

mass distance between hDM2 and complexed ligand. This was likely due to the 

fact that the compounds were already in their global minima. In the case of hDM2 

bound to the Phe-Nap-Leu oligoamide, we already know that not all docked 

compounds can be in their global minima since we have a variety of low energy 

docked complexes. As a result it is reasonable to assume that this distance might 

decrease if the oligoamide manages to further optimize itself in the hDM2 binding 

site. Indeed fgure 5.8 does show that in some simulations the average distance 

does tend to decrease. This is more pronounced in the anti-parallel simulations. 

The decreased distance between centre of masses is particularly obvious in the 

case of conformation 3 and is mirrored by an increased number of contacts. 

Conformation 3 shows a decrease in distance of 2 Å, and additional increase in 

the number of contacting atoms meaning that binding of the oligoamide to the 

protein is likely tighter as the system equilibrates.

5.4.2.b Traffc light analysis of dihedral angles

Sampling of dihedral angles can be one of the slowest observables to properly 

converge in molecular dynamics simulations so we investigated the timescales 

over which dihedral angles are sampled in our simulations. This includes dihedral  

angles from the hDM2 binding site side-chains and dihedrals present in the 

oligoamide compound. The importance of sampling dihedral angles is shown in 

the work by Mobley et al.(Mobley, Chodera, & Dill 2006). First we look at which 
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dihedral angles are likely to be well sampled, or poorly sampled on the timescales 

of our simulations. We then use the autocorrelation function of a dihedral angle to  

determine the relaxation time of the angle ft to a simple exponential model. The 

relaxation time corresponds to the average time the simulation needs to run for the 

a dihedral angle to ‘forgets' information about its previous value. We can then use 

this to guide whether we need to use several simulations with multiple starting 

angles, in the case of for large relaxation times, or whether a single starting 

conformation should allow comprehensive sampling of the relevant region of 

phase space. In this section we use a simple classifcation system to identify those 

dihedrals which are not suffciently sampled. In order to do this we classify dihedral  

angles into one of three possible bins. Bins are determined from the results of 

analyzing the dihedral angle distribution over the course of the simulation (full  

results presented in supplementary information).  The dihedral distribution is 

plotted for each of the simulations and compared to the other distributions. If all  

the distributions are in agreement the dihedral is classifed as 'well sampled',  

which implies that the dihedral has been well sampled during the course of the  

simulation. If only one of the distributions differs signifcantly from the others, the 

dihedral is labelled as 'mostly well sampled'. If more than one distribution contains 

a region that differs signifcantly between simulations the dihedral is labeled as 

'poorly sampled', which implies that more than one simulation does not sample a 

possibly important region of dihedral space. In this case it will be necessary to use 

multiple starting conformations to carry out free energy simulations as one of the 

rotameric states that is not sampled may contribute signifcantly to the free energy 

of interaction.
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Figure 5.9 shows a representation of the parallel and anti-parallel Phe-Nap-Leu 

oligoamide compounds. Bonds with sampled dihedral angles are shown in bold, 

with a colour scheme representing the quality of sampling of the angle. From a 

total of 16 dihedral angles investigated, well sampled dihedral angles (green) are 

observed in 10 parallel and 11 anti-parallel dihedral angles. There are three mostly 

well sampled dihedral angles (orange) from parallel conformations and 5 mostly 

well sampled dihedral angles in the anti-parallel simulations. There are no poorly  

sampled dihedral angles (red) in the anti-parallel conformations, whilst the parallel  

conformations have poorly sampled dihedral angles for the three ϗ angles for the 

bonds attaching the 2-napthalene group. This data is derived from results not 

shown here.
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Figure 5.9: 2D representations of parallel and anti-parallel conformations of the Phe-Nap-Leu 

oligoamide with rotatable bonds shown in bold with colour: green (well sampled); orange (well  

sampled in all but one simulation); red (poorly sampled across simulations).
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Figure 5.10 shows the binding site from hDM2 (cyan backbone, atom coloured 

side-chains) bound to the high-affnity p53 helix (dark green). It is immediately clear  

that there are no aromatic residues that might have restricted dihedral sampling 

due to say intermolecular π-π stacking effects, assuming that the oligoamide 

binding mode somewhat mimics that of the p53 peptide. However, it is still  

necessary to identify which residues are likely to be well sampled, and whether we 

expect any to be an issue. The results are shown in table 5.1, using the same 

three bin classifcation scheme as used previously for the oligoamide compounds 

dihedral angles.
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Figure  5.10:  Binding site residues that are investigated in dihedral angle sampling analysis 

shown in table 1. hDM2 protein backbone shown in ribbon style(cyan); high-affnity p53 helix 

(green); residues (atom colours).
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Dihedral Identifer Anti-parallel conformations
(1, 2, 3, 7, 8)

Parallel conformations 
(4, 9, 10, 11)

LEU30 ϗ 1 Poorly sampled Well sampled

LEU30 ϗ 2 Mostly well sampled Mostly well sampled

PHE31 ϗ 1 Mostly well sampled Well sampled

PHE31 ϗ 2 Well sampled Well sampled

LEU33 ϗ 1 Well sampled Well sampled

LEU33 ϗ 2 Mostly well sampled Mostly well sampled

GLN35 ϗ 1 Mostly well sampled Mostly well sampled

GLN35 ϗ 2 Mostly well sampled Poorly sampled

GLN35 ϗ 3 Well sampled Mostly well sampled

ILE37 ϗ 1 Well sampled Well sampled

ILE37 ϗ 2 Mostly well sampled Well sampled

MET38 ϗ 1 Well sampled Poorly sampled

MET38 ϗ 2 Mostly well sampled Mostly well sampled

MET38 ϗ 3 Well sampled Well sampled

TYR43 ϗ 1 Poorly sampled Well sampled

TYR43 ϗ 2 Poorly sampled Well sampled

GLN48 ϗ 1 Mostly well sampled Well sampled

GLN48 ϗ 2 Well sampled Well sampled

GLN48 ϗ 3 Well sampled Well sampled

VAL51 ϗ 1 Well sampled Well sampled

VAL69 ϗ 1 Mostly well sampled Well sampled

ILE75 ϗ 1 Poorly sampled Mostly well sampled

ILE75 ϗ 2 Mostly well sampled Mostly well sampled

TYR76 ϗ 1 Mostly well sampled Well sampled

TYR76 ϗ 2 Mostly well sampled Well sampled

Table 5.1: Summary of sampling of hDM2 binding site side-chain ϗ angles for 20 ns simulations 

with  anti-parallel  and  parallel  conformations  of  a  Phe-Nap-Leu  oligoamide  compound. 

Residues in the binding site are shown in fgure 5.10.
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We see that dihedral angles are often well sampled or mostly well sampled in both 

parallel, and anti-parallel simulations. In fact from a total of 25 dihedral angles we 

see only two poorly sampled dihedrals in the case of parallel simulations, and four  

poorly sampled dihedrals in the case of anti-parallel simulations. 

5.4.2.c Autocorrelation analysis of dihedrals

One of the important factors that will determine the accuracy of our free energy 

calculations is the length of time that we run them for, since we have already 

discussed that one of the major issues is ensuring proper sampling of binding site 

dihedral angles. We can use the autocorrelation function of a dihedral angle to  

determine the relaxation time of the angle if we ft it to a simple exponential model.  

The relaxation time allows us to fnd out how long a simulation would have to be 

run until a dihedral angle 'forgets' information about its starting value. That is we 

can use this to guide us as to whether we need to use several simulations with 

multiple starting angles (for large relaxation times), or whether a single starting 

conformation should allow comprehensive sampling of the relevant region of 

phase space.
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In fgure 5.11 we can see that the relaxation times for hDM2 binding site residues 

from parallel simulations is generally long with the frst Χ angle from isoleucine 37 

being the longest at 450 ns. However, it should be noted that any relaxation times 

longer than 20 ns (the length of the simulation) actually just have correlation times 

longer than 20 ns, but we can't say exactly how long this correlation time is. This 

length of simulation is intractable for all but the very longest of current molecular 

dynamics simulations. The second longest angle is the second isoleucine 37 ϗ 

angle with a relaxation time of 300 ns. Tyrosine 43 ϗ angles one and two are also 

204

Figure  5.11:  Relaxation  times  for  dihedral  angles  from  the  hDM2 binding  site  for  parallel 

conformations of bound oligoamide compounds as calculated by ftting a function of the form 

y=exp(-x/a) to the autocorrelation function for the dihedral angle.
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of concern with several simulations showing relaxation times in excess of 100 ns. 

However, we also see that many dihedral angles have relaxation times that are 

less than the duration of our simulations, which in this case is 20 ns.

We note that there are some extremely long relaxation times observed for certain 

dihedral angles from simulations of anti-parallel oligoamide conformations (Figure 

5.12). Particularly that of the frst ϗ angle in isoleucine 37 with a relaxation time 

somewhere between 100 ns and 450 ns, with the majority of simulations 

producing results that are nearer the larger value. There are also several angles for 
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Figure  5.12: Relaxation times for dihedral angles from the  hDM2 binding site for anti-parallel 

conformations of bound oligoamide compounds as calculated by ftting a function of the form 

y=exp(-x/a) to the autocorrelation function for the dihedral angle.
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which the relaxation time is considerably less than 20 ns meaning that we can be 

confdent that these dihedrals should be well sampled if simulated for the lengths 

of time determined by the relaxation time.

The results from the analysis of relaxation times calculated from autocorrelation 

functions suggests that simulations are unlikely to adequately sample dihedral 

space in the time that simulations are to be run. It is clearly untenable to calculate 

free energies from simulations of lengths approaching or exceeding half a 

microsecond using current mid range cluster computing. As a result it will be 

necessary to pick starting conformations that sample different regions of dihedral 

space. Additionally it would be desirable to use enhanced sampling techniques 

such as Hamiltonian exchange in replica space, which would allow the ligand to  

“pass through” the dihedrals as it mutates towards a smaller more mobile side-

chain and then back towards the larger more restricted side-chain.

5.4.2.d Spatial sampling of oligoamide compounds

As with the previously discussed measures of dihedral angle sampling, we also 

investigated spatial sampling of the oligoamide in the vicinity of the hDM2 binding 

pocket. Figures 5.13 and 5.14 show ether oxygen atoms from anti-parallel and 

parallel starting conformations of the oligoamide respectively projected onto a 

plane defned by three Cα atoms from the binding site as detailed in the methods 

section. Inset to the graph is a representation of the starting conformation shown 

relative to the crystal structure of the high-affnity p53 helix. The N-terminal ether 

oxygen points are coloured red, central ether oxygen points are coloured black, 

and C-terminal ether oxygen points are coloured violet.
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In the case of anti-parallel conformations (fgure 5.13) it is clear that there is some 

variability in the plots a)-e). However, a), b) and e) all show the same global feature 

of a group of vertically stacked points. This confguration is relatively stable 
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Figure 5.13: Ether oxygens from anti-parallel conformations of Phe-Nap-Leu projected onto a 

plane  defned  by  Cα  atoms from Tyrosine 56,  Methione 62  and  Valine 93.  Data  points  are 

colour coded depending on which ether oxygen they belong to: R1 (Red); R2 (Black); R3 (Violet). 

Data points  were plotted at  10 ps intervals  starting after  4 ns of  data collection.  Values at 

t = 0 ps are plotted with diamonds. Graphs show image of starting conformation relative to the 

high affnity p53 helix and data from: a) conformation 1; b) conformation 2; c) conformation 3; 

d) conformation 7; e) conformation 8.
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throughout the simulation and agrees well with the confguration of the R-groups 

of the high affnity p53 helix. a) and e) are not particularly skewed, although b) is  

skewed such that the C-terminal ether oxygens are more positive in the x-direction 

and the N-terminal ether oxygens are more negative in the x-direction. Since the 

end to end distance of the oligoamide compound is not very variable, the 

maximum y-distance explored is slightly less in the case of b) with respect to a) 

and e). Figure 5.13d shows similar behaviour to fgure 5.13b although since the 

leucine side-chain is signifcantly rotated out of the binding pocket at the start of  

the simulation due to a rotation about the ArCO bond of the central benzene ring. 

This is evident in the similar behaviour of the R1 and R2 side-chains but the heavily 

skewed distribution of the leucine R3 side-chain. Conformation 3 in fgure 5.13c is 

initially puzzling since it doesn't appear to show behaviour similar to any of the 

other simulations. In actual fact, since the oligoamide is docked such that the 

N-terminus is pointing out of the page and the C-terminus is pointing into the page 

means that the angle between the oligoamide and the plane is much closer to 90 

rather than the desired zero degrees. This, coupled with the fact that the R1, R2 

and R3 side-chains are not arranged such that they are all on the same side of the 

ligand, means that the graph is not as useful to observe the behaviour of the 

oligoamide relative to the pocket and the canonical p53 helix interaction. However, 

it does appear that this conformation samples the pocket quite differently to the 

other conformations and represents a completely different binding mode to that of 

the canonical helix form.

It is promising to see that in the case of fgure 5.13d the conformation appears to 

be converging towards that of fgure 5.13b which in turn does sample similar 

regions of the pocket to the conformations shown in fgure 5.13a and 5.13e. A 

clear limitation of the method is shown in fgure 5.13c in the case where the angle 

between the ligand and the plane representing the binding site is signifcantly  
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different to zero. However, in many cases this should not be an issue, for example 

in the case of many enzyme binding sites which are deep and usually well defned 

it can often be diffcult for compact drug-like molecules to rotate in this pocket.

We see some further interesting observations in the case of the parallel oligoamide 

conformations in fgure 5.14, particularly that of 5.14a and 5.14b conformations 4 

and 9, which are actually the same starting conformation but describe different 

trajectories. The C-terminus R3 of both simulations does sample some of the same 

region of space. However, it appears that the N-terminus R1 explores a totally 

different region of space. Indicating perhaps that the docked conformation is 
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Figure 5.14: Ether oxygens from parallel conformations of Phe-Nap-Leu projected onto a plane 

defned by Cα  atoms from Tyrosine 56, Methionine 62 and Valine 93. Data points are colour 

coded depending on which ether oxygen they belong to: R1 (Red); R2 (Black); R3 (Violet). Data 

points were plotted at 10 ps intervals starting after 4 ns of data collection. Values at t = 0 ps are 

plotted  with  diamonds.  Graphs  show  image  of  starting  conformation  and  data  from:  a) 

conformation 4; b) conformation 9; c) conformation 10; d) conformation 11.
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actually docked into a metastable state from which it can decay into one of two or 

more stable states. The graphs suggest that in fgure 5.14b the N-terminal 

phenylalanine remains in its rotated form (ArCO dihedral such that the R1 group is 

opposite the R2, R3 groups) somewhat similar to the conformation in fgure 5.14d, 

whilst in fgure 5.14a this dihedral relaxes such that R1, R2 and R3 exist on the 

same side. As in fgure 5.13c we see in fgure 5.14c that the compound lies in 

slightly different orientation, that once again raises the angle between oligoamide 

and binding pocket plane creating a confusing graph. Visualization of molecular  

dynamics trajectories in order to identify important trends is a diffcult task. 

Sometimes simple measurements such as the previously investigated RMSF and 

number of contacts can provide a good assessment of the behaviour of the 

system. Usually viewing the trajectory in a molecular viewer can also provide value, 

however, in this case these methods did not provide the necessary quantitative 

information. Projection onto the plane has several problems in that the plane varies 

throughout the simulation and between conformations. It does appear to show 

some utility in identifying the regions of space sampled more clearly. A clear 

improvement to the technique would be to show the time evolution of the 

simulations, as this might allow the method to better show whether two 

simulations are converging towards the same regions of space. Cluster analysis is 

another technique that allows a ligand centric analysis of sampling and is  

investigated in the next section.

5.4.2.e Cluster analysis of oligoamide compounds

Cluster analysis allows us to track those conformations of the oligoamide 

compound that we see regularly during the course of our simulations. We used 

the g_cluster tool from GROMACS to defne clusters using the GROMOS 

clustering technique described previously in the methods. In turn this allows us to 

ask the question, which clusters can inter-convert? Presented in fgure 5.15 is an 

analysis of the number of clusters observed during the course of the fve anti-
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parallel and three parallel oligoamide simulations each of length 20 ns. Snapshots 

were taken every 10 ps for the fnal 17 ns of simulation, resulting in a total of 8,500 

and 5,100 conformations of oligoamides respectively.

In fgure 5.15a we see nearly 3000 members of the most populated cluster, 1500 

for the second most populated, approximately 1400 for the third most populated 

and just short of 1250 for the fourth most populated. The ffth most populated 

cluster has fewer than 500 members. There are 33 clusters of anti-parallel 

conformations in total. However, we have seen that the vast majority of 

conformations are contained in the four top ranked clusters. We see a similar 

picture in fgure 5.15b with approximately 1700 members in the most populated 

cluster, slightly more than 1000 in the second most populated and just short of 

900 in the third most populated cluster. There are 27 clusters in total with more 

than 50 % of conformers contained in the top 3 clusters. The utility of this 

clustering is that we can now ask the question whether these relatively diverse 

clusters of conformers can inter-convert between clusters on the time-scales of 

our simulations.
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Figure 5.15: Number of conformers ftting clusters defned at an RMS threshold (of 1.5 Å) from 

the fnal 17 ns of simulation, sampled every 10 ps for a) 5 anti-parallel simulations; b) 3 parallel 

simulations.
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In fgure 5.16 we show the representative member (frst cluster member) of each of 

the top 4 clusters from anti-parallel starting conformations, next to a time evolution 

of cluster membership during each of the fve individual simulations. We observe 

that cluster #1 is mainly comprised of representatives from simulations with 

starting conformation 2 (red squares) and starting conformation 7 (blue triangles). 

However, it is also possible to observe a small number of conformers that 

emanate from starting conformation 1 (black circles). These are visible just after 

9.5 ns and between 13 ns and 14 ns and between 15 ns and 16 ns. When we 

look at the results for the cluster #4, we see a complimentary picture to the case 

of cluster #1. In this cluster we see that it is mainly populated by members of 

conformation 1, but it is also clear that it is visited by members of starting 

conformation 7 around 7 ns to 8 ns, and starting conformation 2 around 18 ns to 

20 ns. Thus we can conclude that there is a reasonable amount of interconversion 

between cluster #1 and #4, hence it may be acceptable to choose only a single 
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Figure  5.16:  Occupancy  of  the  top  4  anti-parallel  clusters  colour  coded  by  starting 

conformation during the fnal 17 ns of the simulation.
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representative to sample these states suffciently. It should be noted that these 

clusters appear to be quite similar with the phenyl ring in a similar orientation, the 

napthalene ring slightly twisted between the two conformations, and the leucine 

being the major difference, with a signifcant rotation about the leucine ϗ angles. 

Cluster #2 and #3 are both only visited by members of one starting conformation, 

eight and three respectively. It is noticeable that whilst they both share similar 

orientation of the napthalene ring, there is a large rotation about the ArCO bond 

from the central benzene ring, and that the ϗ angles for the phenylalanine are 

signifcantly different. This perhaps explains why these two clusters do not appear 

to interconvert on this time-scale. It is also noted that the orientation of the 

napthalene ring in cluster #2 and #3, is quite different to that observed in cluster  

#1 and #4.
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Figure  5.17: Occupancy of the top 3 parallel clusters colour coded by starting conformation 

during the fnal 17 ns of the simulation.
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In fgure 5.17 we show the representative member of each of the top 4 clusters 

from parallel starting conformations. In this case it is immediately obvious that both 

cluster #2 and #3 are not populated during the frst 6 ns and 8 ns of the 

simulations. However, after this time they begin to be occupied far more often, 

implying that the ligand conformation converges towards these clusters during the 

simulation. We also note that cluster #2 and #3 do not have any members from 

the simulation of starting conformation 4. However, cluster #1 which is mainly 

populated by starting conformation 4 is also visited by conformation 10 between 

6 ns and 9 ns.

5.5 Conclusion

Broadly speaking the experiments and results described in this chapter ft into two 

categories: a molecular dynamics study of known hDM2 complexes; a molecular 

dynamics study of proposed oligoamide complexes.

The initial molecular dynamics study of binders with known structure was broadly 

successful, showing that it is possible to simulate the hDM2 system with a set of 

parameters similar to those that have previously been used in accurate free energy 

calculations. Additionally it validates our choice of a force feld designed to both 

simulate the properties of the protein well, whilst being compatible with the GAFF 

force feld allowing the simulation of a large number of possible oligoamide side-

chains. Finally it sets a benchmark with which to compare our future simulations,  

with those which were undertaken in section 2 of this chapter.

Simulation of the oligoamide compounds showed broad agreement with many of 

the properties such as RMSF, number of contacts and RMSD that were observed 

in the initial MD study of hDM2 to binders with known structure. It appears that the 

cluster analysis and spatial sampling best show when there is convergence 

behaviour from two different starting conformations. For example in the anti-
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parallel simulations conformations 1, 2 and 7 exhibit convergence behaviour in the 

cluster analysis (fgure 5.16). This convergence behaviour is somewhat mirrored in 

the spatial sampling graph shown in fgure 5.13. In the case of the parallel 

simulations this is somewhat harder to observe. This may be due to the lower 

quality of docked conformations (remember that anti-parallel conformations were 

predicted to bind with higher affnity). During the course of the simulation of 

oligoamide compounds we also spent time evaluating the distribution of dihedral 

angles visited, and the relaxation time for autocorrelation functions created for 

each of the dihedrals featuring in the hDM2 binding pocket. It is unfortunate but 

not unexpected in high affnity complexes that several of the hDM2 binding pocket 

residues have such long relaxation times, as this has implications for the possible 

accuracy of our free energy calculations. It is hoped that the use of replica-

exchange techniques that allow exchange of their Hamiltonian with differing values  

of lambda will allow enhanced sampling of these dihedral angles, thus reducing  

the length of these relaxation times. In principal if a suffcient number of replicas 

could transition from a state with all side-chains switched on, to one with all side-

chains in the alanine state, these alanine side-chains should be more free to rotate  

than the larger more constrained side-chains. This increased fexibility of the 

decoupled state should allow for the correlation time of these dihedral angles to 

decrease. If this is not observed to be the case, then some alternative orientations 

of these angles with long relaxation times may have to be chosen.

We have presented a novel method to investigate the spatial sampling of the 

hDM2 binding site, which could be used in other protein binding studies. This 

spatial sampling method could be improved by accounting for the time 

dependence of sampling, that might better show whether several simulations are 

converging to the same region of space. This method as with several others 

suffers from the key issue that there are no defned levels of statistical signifcance. 

For example, which docking results should we choose if we were to only choose 

one, or how many clusters should we consider before we deem our results no 
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longer likely binding conformations? In the case of the comparison of distributions 

we may consider the use of statistical tests such as the Kolmogorov-Smirnoff test. 

In the case of the clustering of conformations we chose an RMSD cutoff of 1.5 Å 

since it generated a small number of clusters that facilitated graphical analysis. It  

would be ideal to frst look at the variability of the RMSD of all conformations and 

then decide on cluster sizes that have a statistical meaning or alternatively we may 

be interested in picking a number of clusters that cover a large number of the total  

number of conformations sampled in a length of time required for all  

conformations to inter-convert.

In general, we have shown a variety of techniques that aim to show whether our 

system is likely to be adequately sampled in the time-scales that we can sample 

for with free energy calculations. When the evidence from: comparing oligoamide 

simulations to known inhibitors and the native p53 peptide; analysis of the 

sampling of dihedral angles in the oligoamide and the protein binding site; spatial  

sampling of the oligoamide relative to the binding site; and the conformations 

visited by the oligoamide is taken into account we show that there is a reasonable 

body of evidence to suggest that we can proceed with free energy calculations.
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6 Free energy calculations to 

determine the binding affnity of novel 

Arylamide compounds bound to hDM2

6.1 Abstract

Free energy calculations have long been pursued as a key objective of 

computational chemistry. The ability to rapidly calculate the binding affnity of a 

ligand for a protein of interest would bring about a paradigm shift in the rational 

design of compounds in drug discovery efforts, allowing focus to be shifted 

towards other challenging areas of drug discovery. However, whilst free energy 

calculations have shown much promise, with several striking applications of their  

success, they are diffcult to calculate rapidly and consistently. Here we present an 

application of free energy calculations to the hDM2-p53 systems that combines 

published examples of best-practice calculations with the aim of illustrating a 

relatively straightforward way of performing consistently accurate simulations. We 

show that our method can achieve acceptable levels of accuracy, and more 

importantly, we demonstrate a methodology that could be replicated with relative 

ease given a relatively basic level of knowledge of molecular dynamics simulation 

provided that prior knowledge of the system such as that detailed over the 

previous two chapters is available.

6.2 Introduction

The topic of free energy calculations is a large one, with many different 

methodologies that have been applied to a wide variety of systems with differing 

levels of success. Previously, in the thesis introduction we introduced a selection 

of techniques that could be applied to the problem of estimating the binding 

affnities of a series of ligands for a specifc protein. Here we review specifc 
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techniques that are suitable for the hDM2 oligoamide system that we are studying. 

We then review systems where free energy calculations have been successfully 

applied, then focus on the hDM2-p53 system where several free energy 

calculation methods have already been applied. Finally, we set out the aims and 

techniques that will be used in this free energy study.

6.2.1 Successful application of free energy 

methods

The T4 lysozyme system has become a system that is regularly used to test free 

energy methods. The protein is relatively small, and the ligands have relatively few 

torsional degrees of freedom. Additionally there are a large number of high-quality 

crystal structures available. This allows for a relatively large amount of sampling to 

be performed in a reasonable amount of time. Alchemical free energy calculations 

have been applied to the T4 lysozyme system by Mobley et al., where they 

developed a technique based on applying orientational restraints on ligand 

conformations to ensure that important conformational transitions that may not be 

sampled in a typical simulation can be properly accounted for(Mobley, Chodera, 

and Dill 2006). Application of this technique to a larger selection of ligands showed 

absolute binding free energies calculated to within an RMS error of 1.9 kcal mol-1 

of experimental results(Mobley, Chodera, and Dill 2007). More recent work by 

Mobley et al. has shed some light on the use of different charge calculation 

techniques used for hydration free energy calculations, indicating that standard 

charge calculation methods tend to affect the results at a level of around 

1 kcal mol-1 RMS error(Mobley, Chodera, and Dill 2007). In addition to the charge 

models for ligands, work has been done on the effect of different water models on 

free energy of hydration of methane. In this work it was found that the variation 

between water models was relatively small with SPC/E and TIP4P-Ew giving the 

largest variation from experiment and TIP3P performing well(Shirts and Pande 

2005).
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6.2.2 Dispersion corrections

Effcient simulation of molecular systems invariably requires use of cut-offs or 

switched potentials to facilitate rapid calculation of the behaviour of the system. 

Effects of using cut-off values for electrostatic calculations can have signifcant 

effects on certain parameters, however these can be mitigated by use of a 

technique such as Particle Mesh Ewald (PME). PME decomposes electrostatic 

calculations into a two summations, frst of the short range interaction energy up 

to some cut-off; and second of the long range interaction energy calculated in 

Fourier space. When PME calculations in molecular dynamics are performed it is  

required to assume a periodic arrangement of a single box flled with water 

molecules which in effect represents calculation of long range interactions to an 

infnite range with appropriate choice of PME parameters. Lennard Jones 

parameters however are often cut-off after less than 1 nm where their effect is 

perceived to be relatively small. However, cut-off schemes perceived to contain 

little error can still have signifcant differences between observed quantities of the 

system. As a result it is necessary to apply accurate dispersion corrections that 

can eliminate the difference between different cut-off values. Dispersion 

corrections to correct for the pressure and energy have been applied to isotropic 

liquids. These methods (and the isotropic assumption) have been applied to larger 

non-isotropic systems such as solvated proteins. Recent work has investigated 

whether these assumptions are acceptable for these non-isotropic systems(Shirts 

et al. 2007). Shirts et al. observed that when investigating free energy of ligand 

binding, discrepancies of between 1-2 kcal mol-1 could be observed when 

inappropriate dispersion corrections were applied(Shirts et al. 2007). These 

techniques will be applied in this chapter in order to calculate the most accurate 

free energy values possible.
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6.2.3 Replica-exchange

Replica-exchange techniques have been investigated as a possible method of  

improving sampling in free energy calculations. Traditionally replica-exchange has 

been applied between identical systems simulated over a ladder of temperatures. 

In free energy calculations the same system is used but simulated at a variety of 

values of lambda as per a standard FEP, TI or BAR calculation. Exchanges are 

made subject to a criteria defned by detailed balance allowing swaps between 

adjacent lambda values.(Cossins et al. 2009)

exp {[UB  j −U B i −U A  j U A  i ] }rand 0,1 (42)

Comparison of replica-exchange thermodynamic integration (RETI) to standard 

FEP, WHAM and several variants of TI were performed by Woods et al. where they 

showed that RETI performed the best when applied to determining the free energy 

of hydration of methane(Woods, Essex, and King 2003). replica-exchange 

methods are relatively straight forward to implement indeed it is possible to 

perform them in Desmond with no modifcations to the standard code(Bowers et  

al. 2006). Additionally it can be a helpful tool to investigate sampling by looking at 

the rate of exchange between particular values of lambda. Well sampled regions 

with good overlap in phase space will have high rates of acceptance of replica-

exchange, whereas regions with low overlap in phase space will have low rates of  

acceptance. This allows a graphical view of the sampling, and may be helpful to  

guide both the number and placement of lambda windows.

6.2.4 Applications to the hDM2/p53 system

Since the hDM2/p53 system is of signifcant biological and medicinal interest, it is 

not surprising to fnd that several different free energy methods have been applied 

to a variety of compounds designed to inhibit the interaction. In one study a very 

simple docking method has been applied to the system, although no attempt was 

made to extrapolate these results to calculate the free energy of binding for 

different compounds(Shaginian et al. 2009). MM-GBSA methods have been 

applied to both predict the affnity of p53 based peptides and those of known 
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inhibitors, they used 2000 snapshots taken every 1 ps(Zhong and Carlson 2005). 

Moreira et al. used MMPBSA methods to investigate the binding affnity of a series 

of hDM2 and p53 mutants, with 25 snapshots taken from the last 0.5 ns of 

trajectories(Moreira, Fernandes, and Ramos 2008). Generally these studies tend to 

use relatively short trajectories, presumably due to constraints in the amount of 

computational time available for the investigations. Michel et al. used an MC 

based technique to predict the binding affnity of ß-peptides designed to mimic the 

p53 interactions with hDM2, where they managed to achieve good accuracy in 

their calculations(Michel et al. 2009).

6.2.5 Study Aims

We aim to perform the rigorous calculation of the binding free energy of 

oligoamide compounds for hDM2, using alchemical free energy calculations and 

fully fexible protein simulations. We build on work described in the previous two 

chapters, docking of compounds to provide starting structures and parameters for 

simulation. Combining results from these chapters with alchemical techniques 

described in the introduction should allow for accurate and transferable free 

energy calculations.

6.3 Methods

6.3.1 Docking with Autodock

We used a docking procedure that utilises Autodock to dock the compounds 

shown in fgure 6.8 into the hDM2 binding site in order to generate conformations 

with which to perform alchemical free energy calculations in order to determine the 

relative binding affnity of the compounds to the common compound shown in 

fgure . Two rounds of docking using Autodock(Morris et al. 1998),(Huey et al. 

2007) were performed. The frst round used Autodock 4.2.1 to produce 300 

docked conformations with a maximum of 25 million evaluations for 27000 

generations with population size 300 using the compounds detailed in Figure 6.8. 
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The results from this set of docking and clustering at a 2 Å RMS cutoff are 

presented in Figure 6.3. The second round of docking calculations were 

performed using Autodock 4.2.1 using a Lamarkian genetic algorithm. 600 

docked conformations were generated, with each using 250 million evaluations for 

64,000 generations of population size 600. Random number seeds were 

generated from the autodock PID and the current system time. The protein 

structure used was derived from the structure of hDM2 bound to a high-affnity 

p53 helix (1T4F), with all water molecules removed, protonation states manually 

assigned and the high-affnity p53 helix removed from the coordinates. A grid 

centred on 13.119, 18.969, 10.941 was used with spacing of 0.375 Å and 52, 58 

and 48 points in the x, y and z directions.
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Figure 6.1: Oligoamide compounds that have previously been synthesised and tested and have 

been investigated further during the course of this work(Plante et al. 2009).
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6.3.2 Free energy calculations with Desmond

6.3.2.a Equilibration

All simulations performed where subjected to a six step equilibration procedure to 

ensure that the system was in a suitable low energy state before the free energy 

calculations were carried out.

A minimum of 10 steepest descent minimization steps were performed until the 

minimum gradient was less than 50. This was followed by a minimum of 10 

steepest descent minimization steps were performed until the minimum gradient 

was less than 25, before continuing with a maximum of 2000 L-BFGS 

minimization steps until a gradient of 5 is met. 3 minimization steps were 

performed between each migration step and the normal of the frst step was 

0.005. Twelve ps of molecular dynamics simulation was then performed. It was 

performed in the nVT regime with Berendsen thermostat. Velocities were scaled in 

the range 0.85 – 1.2 and tau set to 0.1, an integration timestep of 1 fs was used. 

Centre of mass motion was removed. Temperature was held at 10 K. The bonded 

interval was 1 timestep, with non-bonded far 3 timesteps, and non-bonded near 1 

timestep. A migration interval of 12 fs was used. The M-SHAKE algorithm was 
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Figure 6.2: Structure to which all compounds from fgure 6.8 are mutated alchemically.
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used to constrain hydrogen bond lengths to a tolerace of 1.0x10-8, using a 

maximum of 8 iterations. This was followed by 12 ps of molecular dynamics 

simulation in the nPT regime, temperature was held at 10 K with a Berendsen 

thermostat. Velocities were scaled in the range 0.85 - 1.2 and the relaxation time 

was set to 0.1. Box size was varied in the range 0.95 - 1.1 per step. Pressure was 

scaled isotropically with a Berendsen barostat to 1.01325 bar, whilst the system 

compressibility was set to 4.5x10-5 bar-1 and a relaxation time of 50 ps were used. 

An integration timestep of 2 fs was used. This was followed by 24 ps of molecular 

dynamics simulation using the same parameters as above but at a temperature of 

300 K. The fnal equilibration step was 24 ps of molecular dynamics simulation. In 

the nPT regime using the previous parameters except that the relaxation time of 

the barostat was decreased to 2 ps, whilst the relaxation time for the thermostat 

was raised to 1 ps.

6.3.2.b Free energy simulation

The majority of simulations were performed using a Hamiltonian replica-exchange 

methodology described below, however, comparison was made to some non 

replica-exchange free energy calculations. Both sets of simulations used the same 

simulation parameters listed in the fnal equilibration stage, except as noted.

We performed 5 ns of molecular dynamics simulation. The Martyna-Tobias-Klein 

constant pressure and temperature method was used with a piston mass of 2. 

The reference temperature was retained at 300 K, Two discrete updates to Nose-

Hoover barostat variables per timestep and a time constant of 1 ps was used.

Replica-exchange calculations with 24 replicas with parameters described in table 

6.1 were carried out for 5 ns with exchanges between neighbouring replicas 

attempted every 12 ps. Exchanges were accepted if both replicas fulflled the 

Metropolis criteria.
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exp {[UB  j −U B i −U A  j U A  i ] }rand 0,1 (43)

In order to make comparison to the Hamiltonian replica exchange method, we 

used 24 separate simulations with standard molecular dynamics with the same 

simulation parameters as used for the Hamiltonian replica exchange calculations.

6.3.2.c Lambda parameters

We used the dual topology approach that is available in Desmond to perform our 

alchemical transformations. Alchemical free energy calculations were performed 

using an alpha parameter of 0.5 for the soft core potential(Shirts and Pande 2005). 

We used 24 windows with charge, bonded and van der Waals parameters altered 

as shown in Table 6.1. In the case of the bonded parameters these represent 

switching off the c-c bond that joins the mutated group to the oligoamide 

backbone. Additional lambda parameters for 12 and 40 windows are detailed in 

Table 6.2 and 6.3.
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Charge A Charge B Bonded A Bonded B vdW A vdW B

0 1.0 0.0 1.0 0.0 1.0 0.0

1 0.889 0.0 1.0 0.076 1.0 0.067

2 0.778 0.0 1.0 0.143 1.0 0.119

3 0.667 0.0 1.0 0.214 1.0 0.158

4 0.556 0.0 1.0 0.286 1.0 0.190

5 0.444 0.0 1.0 0.357 1.0 0.218

6 0.333 0.0 1.0 0.429 1.0 0.247

7 0.222 0.0 1.0 0.5 1.0 0.282

8 0.111 0.0 1.0 0.571 1.0 0.325

9 0.0 0.0 1.0 0.643 1.0 0.382

10 0.0 0.0 0.929 0.714 0.827 0.456

11 0.0 0.0 0.857 0.786 0.675 0.553

12 0.0 0.0 0.786 0.857 0.553 0.675

13 0.0 0.0 0.714 0.929 0.456 0.827

14 0.0 0.0 0.643 1.0 0.382 1.0

15 0.0 0.111 0.571 1.0 0.325 1.0

16 0.0 0.222 0.5 1.0 0.282 1.0

17 0.0 0.333 0.429 1.0 0.247 1.0

18 0.0 0.444 0.357 1.0 0.218 1.0

19 0.0 0.556 0.286 1.0 0.190 1.0

20 0.0 0.667 0.214 1.0 0.158 1.0

21 0.0 0.778 0.143 1.0 0.119 1.0

22 0.0 0.889 0.071 1.0 0.067 1.0

23 0.0 1.0 0.0 1.0 0.0 1.0

Table 6.1: Parameter scaling for different values of lambda in the 24 window schedule used in 

the fnal simulations (and the lambda error calculations). Values rounded to 3 signifcant fgures.

Charge A Charge B Bonded A Bonded B vdW A vdW B

0 1 0 1 0 1 0

1 0.75 0 1 0.14 1 0.12

2 0.5 0 1 0.29 1 0.19

3 0.25 0 1 0.43 1 0.25

4 0 0 1 0.57 1 0.33

5 0 0 0.86 0.71 0.67 0.46

6 0 0 0.71 0.86 0.46 0.67

7 0 0 0.57 1 0.33 1

8 0 0.25 0.43 1 0.25 1

9 0 0.5 0.29 1 0.19 1

10 0 0.75 0.14 1 0.12 1

11 0 1 0 1 0 1

Table 6.2: Parameter scaling for different values of lambda in the 12 window schedule used in 

the lambda error calculations.
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Charge A Charge B Bonded A Bonded B vdW A vdW B

0 1 0 1 0 1 0

1 0.75 0 1 0 1 0

2 0.5 0 1 0 1 0

3 0.25 0 1 0 1 0

4 0 0 1 0 0.9 0

5 0 0 1 0 0.8 0

6 0 0 1 0 0.85 0

7 0 0 1 0 0.7 0

8 0 0 1 0 0.65 0

9 0 0 1 0 0.6 0

10 0 0 1 0 0.55 0

11 0 0 1 0 0.5 0

12 0 0 1 0 0.45 0

13 0 0 1 0 0.35 0

14 0 0 1 0 0.25 0

15 0 0 1 0 0.1 0

16 0 0 0.8 0 0 0

17 0 0 0.6 0 0 0

18 0 0 0.4 0 0 0

19 0 0 0.2 0 0 0

20 0 0 0 0.2 0 0

21 0 0 0 0.4 0 0

22 0 0 0 0.6 0 0

23 0 0 0 0.8 0 0

24 0 0 0 1 0 0.1

25 0 0 0 1 0 0.25

26 0 0 0 1 0 0.35

27 0 0 0 1 0 0.45

28 0 0 0 1 0 0.5

29 0 0 0 1 0 0.55

30 0 0 0 1 0 0.6

31 0 0 0 1 0 0.65

32 0 0 0 1 0 0.7

33 0 0 0 1 0 0.85

34 0 0 0 1 0 0.8

35 0 0 0 1 0 0.9

36 0 0.25 0 1 0 1

37 0 0.5 0 1 0 1

38 0 0.75 0 1 0 1

39 0 1 0 1 0 1

Table 6.3: Parameter scaling for different values of lambda in the 40 window schedule used in 

the lambda error calculations.
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6.3.2.d Nonbonded interactions

Near van der Waals and electrostatic interactions used a cut-off of 9 Å, and a lazy 

migration radius of 10 Å. Lennard Jones parameters were cut-off at 9 Å. Far 

electrostatic interactions were calculated using PME on a cubic FFT grid with 32 

points in each direction, PME interpolation order 4 and Ewald sigma coeffcient 

2.17. We used the soft-core potential detailed in equation 44.

U ij
vdW  r ij ;=4 ij  {

1

[vdW 1−2 r ij

 ij 
6

]
2−

1

[vdW 1−2 r ij

 ij 
6

]}
(44)

In the above equation for the van der Waals potential U ij, we used a value of 0.5 

for the scaling parameter αvdW, �  is the previously discussed order parameter along 

which the mutation is performed, � �ij is the location of the minimum of the van der 

Waals function, � ij  is the point at which the van der Waals function crosses the x-

axis nearest to zero and rij is the distance between atoms i and j.

6.3.2.e Global cell

Simulations were partitioned such that each used 8 CPUs decomposed such that 

2 partitions were located in each axis direction. The rounded clone policy was 

used, with an estimated number of 1 atom per particle array voxel. The clone 

radius was set to 11 Å (signifcantly larger than the default 5.00000001 Å, in order 

to allow multiple functional group mutation).

6.3.2.f Dispersion Correction

Snapshots from each simulation were taken from the lambda = 0 trajectories at 

intervals of 200 ps. The energy of the system was calculated using the same 

parameters as described for the free energy calculations, with the only differences 

being the use of a cut-off value of 25 Å instead of 9 Å, and the removal of the 

switched potential for the long-range calculations. A cut-off of 25 Å has been 
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shown to be a reasonable parameter to account for long range interactions in 

previous work by Shirts et al.(Shirts et al. 2007). The energy difference between 

the standard cut-off and the long cut-off is determined for each cutoff and then 

combined using equation 43:

dF =
1


ln 〈exp−dE 〉  (45)

The dispersion correction is applied to the free energy calculations by considering 

the thermodynamic cycle that converts protein and ligand in complex, and ligand 

in solution with short-range cut-offs to protein and ligand in complex and ligand in  

solution with long-range cutoffs.

6.3.2.g Overlap integrals

In Bennett's original derivation of the Bennett Acceptance Ratio a formula for the 

variance associated with a free energy measurement is defned:

 2=
2
n [∫ 20 1

01

dqN 
−1

−1 ] (46)

Here ρ0, ρ1 is the normalized confguration density space of state A and state B 

respectively. The integral containing the two confguration spaces is the overlap 

between the two confguration spaces. Bennett shows that the ratio between the 

two partition functions (hence the free energy) can only be determined accurately if  

a number of confgurations greater than the reciprocal of the overlap between ρ0, 

ρ1.

We can defne an overlap O(x0,x1) between two regions of phase space:

 N 2

x0 x11 
−1

=
O x0, x1

x0 x1

(47)
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where N is the total number of samples in each trajectory (0 and 1), x0 is the 

number of samples in trajectory 0 divided by N, x1 is the number of samples in 

trajectory 1 divided by N. σ2 is the variance in the free energy moving from state 0 

to state 1. In the cases presented in this chapter the samples all have x0 equal to 

x1, and N is 9982. An overlap close to 0 indicates that state 0 and 1 are not close 

in phase space, whereas an overlap close to 1 is the maximum and indicates two 

states that completely overlap in phase space. Variance can be large because of 

either a small overlap, or because of a small effective N. Determination of overlap 

can determine whether it might be more effcient to increase the number of 

samples taken (length of simulation) or to increase the number of lambda windows 

(or perhaps reorganise the spacing).

6.4 Results and Discussion

6.4.1 Generating starting conformations

6.4.1.a First round of docking

Whilst the method for generating starting conformations for compound 1aec (see 

fgure 6.8) has been tested with some success in a previous chapter, the same 

method must be applied to generate more starting conformations for the fve 

remaining compounds also detailed in Figure 6.8. It is expected that using the 

method again with the same parameters should produce results that look 

reasonable for the fve new compounds. However, we expect that the method 

should reproduce results that are similar to those seen in the previous work when 

conformations for compound 1aec were generated.

The results in Figure 6.3 use the method described in the previous chapter (also 

described in the methods in this chapter) and appear to generate several low 

energy clusters for each of the compounds. We note that there appears to be a 

weak trend for the energies of the largest low-energy clusters to correlate to the 

235



6 Free energy calculations to determine the binding affnity of novel Arylamide compounds bound to hDM2

experimentally measured IC50 values(Plante et al., 2009), which are also presented 

in fgure 6.3. We attempted to improve on the previous docking work by identifying 

a new set of parameters to guide the docking.
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Figure 6.3: Mean Autodock binding energy score and corresponding cluster occupancy created 

using a 2 Å RMSD cutoff and 300 docked conformations. Measured IC50 values from the work by 

Plante  et  al. are  shown above  each  graph  with  values  and  errors  measured  in  nM within 

parenthesis(Plante et al. 2009). Inspection of the distributions of binding energies shows weak 

correlation between docked energies and experimental energies.
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6.4.1.b Second round of docking

Figure 6.4 shows a structure generated from 600 docked conformations 

generated using the enhanced sampling parameters discussed in the methods (in  

green) compared to conformation 2 which was identifed and used in work from 

the previous two chapters. Here we see that the newly generated conformation 

(shown in green) is very similar to that of the previously generated conformation 

with the RMSD between the two conformers being very low (conformer 2 from the 

previous two chapters, shown with atoms coloured).
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Figure 6.4: Structure of compound 1aec from a Autodock run with 600 members shown in stick 

representation,  with  atoms  coloured  by  type  compared  to  Conformation  2  as  identified  by 

previous work. Representative 19 from cluster 11. 
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Figure 6.5 shows the two distributions generated when using 600 and 300 

conformations with enhanced sampling parameters. Since the distributions look 

similar it is reasonable to use 300 conformations generated using the enhanced 

sampling parameters. When generating conformers for the remaining fve 

compounds the enhanced sampling parameters and 300 conformations were 

used.

Figure 6.6 shows the Autodock energy distributions from using the enhanced 

sampling parameters and generating 300 conformers for each. Furthermore, the 

average binding energy, calculated from an exponential average of the energies, 

and the energy of the largest cluster is compared to the experimentally determined 

IC50 is shown in Table 6.4. Further to this images of the docked conformations are 

shown in Figure 6.7.
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Figure 6.5: Autodock binding energy distributions for compound 1aec: a) 600 conformations; b) 

300 conformations.  Similar  distributions of  clusters are observed in each indicating that  the 

docking experiment with fewer docked conformations appears to still  sample the same low 

energy regions. Generally this suggests that enhanced sampling parameters are required, but 

that 300 docked conformations is likely be acceptable for adequate sampling.
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Figure 6.6: Mean autodock binding energy score and corresponding cluster occupancy created 

using a  2 Å RMSD cutoff  and 300  docked conformations  generated using  better  sampling 

parameters.  Measured  IC50 values  from  the  work  by  Plante  et  al. is  shown  above  each 

graph(Plante et al. 2009).
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Figure 6.7: The top 3 poses from each docking are shown for illustrative purposes, these poses 

were carried forward to be used as starting points for free energy calculations. a-c) 1aec; d-f)  

1ace; g-i) 1acd; j-l) 1bca; m-o) 1acc; p-r) 1aaa.
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Compound Autodock 
largest 
cluster 
energy/ 

kcal mol-1

Autodock 
average 
binding 
energy/ 

kcal mol-1

Predicted 
binding 
energy 

(using IC50)/ 
kcal mol-1

Experimental 
IC50/μM

1aaa -4.4 -3.929 -6.86 10.0

1acc -7.3 -5.419 -7.26 5.1

1acd -7.4 -5.822 -7.71 2.4

1ace -7.0 -5.983 -7.95 1.6

1aec -7.2 -4.775 -8.23 1.0

1bca -6.65 -5.062 -7.31 4.7

Table 6.4: Autodock binding energies for the largest low-energy cluster and calculated using an 

exponential  average of  energies from all  docked conformations compared to the predicted 

binding energy calculated from experimental IC50.

Table 6.4 shows that both the largest cluster energy and the average binding 

energy clearly distinguish compound 1aaa as the weakest binder. However a 

major problem occurs when considering 1aec, as this is ranked as the second 

weakest binder, when in fact it has the best experimental binding affnity. The 

average binding energy places 1bca followed by 1acc as the next weakest binder, 

which mixed up the experimental IC50s of 4.7 and 5.1, however this is a fairly small 

margin to be able to detect. The average binding energy also does well to rank 

1acd and 1ace correctly. When considering the largest cluster energy 1bca is 

placed as second weakest binder, whereas 1acc is placed as second tightest 

binder. Indeed the predicted range of experimental energies is very small at 

1.37 kcal mol-1 making even an ordered ranking according to experimental energy 

extremely challenging. Hence, one cannot read much into these energy 

differences, particularly as these are simple docked poses where the scoring 

function is unlikely to model macroscopic thermodynamic properties to any 

satisfactory level. That there is some correlation is encouraging, but it must be 

emphasised that this is not statistically signifcant. 
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6.4.2 Free energy calculations

6.4.2.a Single mutations vs. multiple mutations

We assess the difference between performing a single process mutation of all 

three side-chains compared to three stages of mutations that are combined by a 

thermodynamic cycle shown in fgure 6.9. Performing a single process mutation 

rather than a three process mutation should provide a signifcant advantage. For a 

given amount of CPU time a single process mutation can sample for three times 

as long. This is particularly important in cases such as this where dihedral angles 

have long correlation times. We use the thermodynamic cycle to determine the 

total transformation from the sum of individual mutations (<1>-<8>):
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Figure  6.8:   Calculated relative binding energy vs.  experimental  relative binding energy for 

exponentially averaged docked conformations from autodock (red) and energy of the largest 

low-energy cluster as identifed by autodock (blue). There is a clear outlier in the results from 

the exponential averaging which is highlighted by the red circle.
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〈1〉−〈8〉= [〈2〉〈4〉〈6〉 ]−[ 〈3〉〈5〉〈7〉 ] (48)

Results are shown in Table 6.5, which allow us to calculate the change in free 

energy for the single process mutation (-4.16 kcal mol-1) to that of the three 

process mutation (-7.95 kcal mol-1). This is obviously a large difference between 

the two methods. We can also compare the error associated with each 

measurement. The error associated for the single process mutation is slightly more 

(+/- 0.99 kcal mol-1 for the complex and +/- 0.124 kcal mol-1 for the solvent 

calculations, compared to +/- 0.104 kcal mol-1 for the error for an individual stage 

of the three process mutation) than the error associated with each individual stage 

of mutation in the three process strategy. However, when we add the error at each 

step (sum of squares of individual steps of the mutation) we notice a larger overall  

error in measurement (+/- 0.158 kcal mol-1 for the single process mutation and 

+/- 0.239 kcal mol-1 for the three process mutation). Further to the above, it is 

notable that the magnitude of the error compared to the magnitude of the result is 
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Figure 6.9: Thermodynamic cycle used to calculate the total energy change from the three triple 

mutations.
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far larger in the case of mutating the side-chain at the third and frst positions 

(Phenyl, and -CH-(CH3)2 respectively) compared to mutating the second side-chain 

(2-Napthyl), or performing the triple mutation.

To gain insight into possible causes of the discrepancy between the two 

calculations we frst note that the solvent calculations differ by only 0.7 kcal mol-1 

of which roughly 0.25 kcal mol-1 can be explained by statistical error. This implies 

that compared to the calculations for the complex which differ by 4 kcal mol-1 the 

solvent simulation is reasonably likely to be well converged. We know that the 

dihedral angles sampled in the complex calculation may not all be well sampled in  

the 5 ns simulations that we have performed, so extending the simulation for 

longer would be informative to see whether this encourages better convergence 

for the complex calculations. Furthermore carrying out three process mutations on 

some of the other complexes may help to identify which simulation method is 

most likely to be converged. In the case of Monte Carlo free energy calculations 

performed by Michel et al. the beta peptides used are perhaps more likely to be 

docked in the correct low energy conformations as they are likely to closer mimic 

the binding modes of the natural p53 ligand(Michel et al. 2009). In the case of 

large oligoamide compounds it is not clear that the correct binding mode is 

located. However, we tried to mitigate any possible problems here by using 

multiple starting conformations and using rigourous docking parameters. We also 

previously showed that it is likely that our calculations would need to be extended 

to allow better convergence in sampling of properties such as protein and ligand 

dihedral angles.
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Calculation ∆G/kcal mol-1 ∆∆G/kcal mol-1 (+/-) Error/kcal mol-1

1aec_conf2_complex -20.11 - -4.16 0.99 - 0.158

1aec_conf2_solvent -24.27 0.124

R2R3mutR1 complex 1.17 -3.16 -7.95 0.100 0.136 0.239

R2R3mutR1 solvent -1.99 0.093

R2mutR3 complex -1.28 -0.5 0.100 0.140

R2mutR3 solvent -1.78 0.098

mutR2 complex -15.5 -4.29 0.089 0.137

mutR2 solvent -19.78 0.104

Table 6.5: Three stage mutation from original compound to mutated R2 position, to mutated R2 

and R3 position to triple mutant R2, R3 and R1 compared to mutation performed in a single step. 

All simulations use the replica-exchange method.

6.4.2.b Lambda schedules

The number of, and placement of lambda windows in such a way as to minimise 

the variance associated with each measurement is essential in allowing the 

desired accuracy in the calculation. It has further importance in determining the 

number of CPUs required to perform the calculation. In general lambda windows 

should be placed such that the variance associated with calculated at each 

window is approximately equal, since a single large variance will increase the 

variance of the entire calculation signifcantly. In fgure 6.10 and 6.11 errors 

associated with the free energy calculated from moving from a value of lambda 

and the previous value of lambda. So the bar for lambda 1 represents the error for 

the measurement of moving from lambda 0 to lambda 1. The force feld to which 

each lambda value corresponds to are shown in Table 6.1, 6.2 and 6.3 in the 

methods section. Broadly speaking in fgure 8, the simulation with 12 lambda 

windows had the windows spaced half way between each value of the 24 window 

simulations. Doubling the number of windows halves the magnitude of the 

individual errors. 
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The lambda schedules used in fgure 6.10 differ to those in fgure 6.11, whilst they 

both switch off electrostatic interactions separately, the results in fgure 6.11 are 

generated by individually switching off the van der Waals interactions, then the 

bonded followed by turning on the bonded and then the van der Waals 

interactions of the mutant (full details in Table 6.3). Unsurprisingly, switching off the 

electrostatic interactions produce a similar magnitude as in fgure 6.10. Switching 

off/on the van der Waals interactions is also reasonable in terms of the magnitude 

of the errors. However, altering the bonded parameters has a very large error 

associated with it.
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Figure  6.10: Error rate for simulation with 12 lambda windows (left) and 24 lambda windows 

(right), with electrostatics individually switched and van der Waals, bonded switched from on 

to off at the same time.
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The aim of performing the simulation shown in fgure 6.11 was to identify whether 

particular parts of the simulation were adversely affecting the error for the total 

simulation. Since the total error for the simulation is somewhat related to the 

maximum error for a pair of lambda values it is desirable to spread lambda values 

such that they are all of similar magnitude. It is clear that the lambda schedules for  

12 or 24 windows are both reasonable (with 24 windows producing a lower error 

measurement). However, it is not clear whether the results from 40 lambda 

windows is suggesting that bonded interactions are adding to the error, and that 

increasing the number of data points for bonded interactions will lower overall  

error, or whether this is merely an artefact of not performing the bonded interaction 

alterations at the same time as the van der Waals interaction alterations. We chose 
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Figure  6.11:  Error  rate  for  simulation  with  40  lambda  windows  with  each  parameter 

(electrostatics, van der Waals, bonded) individually switched from on to off.
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to use the 24 lambda window method for further calculations since it appeared to 

show a reasonable overall statistical error rate whilst calculations would remain 

computationally tractable with the available resources.

6.4.2.c Hamiltonian exchange vs. a single long 

timescale simulation

Table 6.6 shows that in the case of the compound 1aec when using conformer 

number 2, the results from REMD and non-REMD are relatively similar. The total 

error associated with the calculation of the solvent steps is considerably lower in 

the case of the non-REMD calculation, however the values for each of the pairs of  

calculations are within 0.5 kcal mol-1 indicating that there is no major difference 

between the two methods. Given that the replica-exchange method has sampling 

benefts such as the increased likelihood of sampling dihedral angles that might  

otherwise be poorly sampled, it seems obvious that the replica-exchange method 

has clear benefts. However, we do not observe the performance benefts 

expected. One possible explanation is that replicas may not be exchanging in 

such a manner that might allow a fully coupled oligoamide (Phe-Trp-Leu) to 

transition to a fully decoupled state (-CH3,-CH3,-CH3). Figure 6.12 shows that 

whilst the placement of lambda windows has been optimised to minimise 

statistical error this does not also necessarily encourage transition between all 

lambda states, and furthermore there are some states that undergo transition far 

more regularly than others. The error for the solvent non-remd simulation is 

roughly four times less than that of the equivalent replica-exchange calculation. It  

may be that this is due to the replica-exchange method sampling more phase 

space than the non-remd method resulting in an increase in the error.
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Calculation ∆G/kcal mol-1 (+/-) Error/kcal mol-1

1aec_conf2_complex remd -20.11 0.099

1aec_conf2_solvent remd -24.27 0.124

1aec_conf2_complex non-remd -20.30 0.101

1aec_conf2_solvent non-remd -24.90 0.032

Table 6.6: Numerical values required for the free energy calculation to compare the difference 

of performing a REMD simulation and a standard calculation using the same number of lambda 

windows, but no replica-exchange.

The exchange of replicas throughout the frst 5 ns of a simulation of the 

conformation 2 of compound 1aec complexed with the protein is shown in Figure 

6.12. It can be seen that at least 10 exchanges occur between all adjacent 

replicas. With many lambda values participating in far more than 10 swaps. The 

fgure allows us to identify some important points, frstly that adequate sampling is 

occurring, and secondly it could be used as a tool to identify regions with many 

swaps that might require fewer lambda windows, and regions with few swaps that 

might beneft more lambda windows.
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Figure 6.12: replica-exchange swaps shown over time (5 ns). Initial replicas are labelled on the y-axis and maintain their colour throughout the simulation. Swaps 

between neighbours are attempted every 12 ps and are subject to the detailed balance criteria discussed in the introduction.



Simulation Name
1aaa_conf1 p

18

-0.41 -0.6 13.88 16.77 13.47 16.17 1.08E-02

4.30E-03 5.42E-03 10
1aaa_conf2 -0.41 -0.52 12.59 16.73 12.17 16.21 1.15E-03
1aaa_conf3 -0.41 -0.5 13.06 15.89 12.64 15.38 1.01E-02
1acc_conf1 p 

24

-0.62 -0.92 -14.69 -10.81 -15.31 -11.72 2.44E-03

5.61E-04 8.61E-04 5.1
1acc_conf2 -0.62 -0.93 -16.17 -10.34 -16.79 -11.27 9.40E-05
1acc_conf3 -0.62 -0.78 -14.31 -10.21 -14.93 -10.99 1.35E-03
1acd_conf1

30

-0.74 -1.01 -14.36 -8.07 -15.1 -9.08 4.05E-05

1.10E-04 1.83E-04 2.4
1acd_conf2 p -0.74 -1.07 -14.22 -9.65 -14.96 -10.72 8.06E-04
1acd_conf3 p -0.74 -1.12 -14.68 -9.82 -15.42 -10.93 5.37E-04
1ace_conf1

30

-0.74 -1 -17.08 -12.18 -17.82 -13.18 4.10E-04

3.46E-04 5.69E-04 1.6
1ace_conf2 -0.74 -1.04 -17.02 -11.86 -17.76 -12.9 2.84E-04
1ace_conf3 p -0.74 -1.14 -17.38 -13.66 -18.12 -14.81 3.84E-03
1aec_conf1 p

30

-0.74 -1.15 -24.48 -18.43 -25.22 -19.58 7.71E-05

2.91E-04 5.13E-04 1

1aec_conf2 p -0.74 -0.99 -24.27 -20.11 -25.01 -21.11 1.44E-03
1aec_conf3 p -0.74 -1.05 -24.51 -20.08 -25.25 -21.14 9.94E-04
1aec_conf7 p -0.74 -1.04 -24.01 -18.83 -24.75 -19.87 2.79E-04
1aec_conf8 p -0.74 -1.09 -24.27 -21.13 -25.01 -22.21 9.13E-03
1aec_conf4 a

30

-0.74 -1.14 -24.15 -18.8 -24.9 -19.95 2.45E-04

7.10E-05 1.37E-04 1

1aec_conf9 a -0.74 -1.14 -24.15 -18.8 -24.9 -19.95 2.45E-04
1aec_conf10 a -0.74 -1.08 -24.42 -17.97 -25.16 -19.05 3.47E-05
1aec_conf11 a -0.74 -1.19 -23.91 -18.43 -24.65 -19.62 2.12E-04
1bca_conf1

20

-0.51 -0.65 -7.35 -3.07 -7.86 -3.72 9.63E-04

1.05E-03 1.38E-03 4.7
1bca_conf2 -0.51 -0.7 -8.1 -4.62 -8.61 -5.32 3.94E-03
1bca_conf3 p -0.51 -0.71 -9.33 -4.9 -9.84 -5.6 8.18E-04

Parallel/anti-
parallel

# “Mutated 
out” atoms

Dispersion 
correction 

Solvent 
(simulation) 
/kcal mol-1

Dispersion 
correction 

Complex/kcal 
mol-1

Solvent/kcal 
mol-1

Complex/kcal 
mol-1

Corrected 
solvent/kcal 

mol-1

Corrected 
complex/kcal 

mol-1

Relative Kd

exp(-
(complex-

solvent)/RT)
Combined 

relative Kd/M

Dispersion 
Correction 
Combined 

relative Kd/M
Experimental 

IC50/μM

ap
ap

ap
ap
ap

ap
ap

ap
ap

Table  6.7: Results from free energy calculations, including whether the starting conformation was in a parallel or anti-parallel conformation, the magnitude of  

dispersion correction applied, the calculated relative free energy for mutation from compound to a triple -CH3 substituted compound for individual simulations, the 

average of the relative free energy for a compound and comparison to the experimental IC50
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6.4.2.d Overlap integrals

Transition replica-
exchange

Non 
replica-

exchange

Mutate R2 R2 mutated, 
mutate R3

R2, R3 mutated, 
mutate R1

0 - 1 0.131 0.188 0.013 0.031 0.022

1 - 2 0.033 0.387 0.020 0.026 0.040

2 - 3 0.122 0.249 0.110 0.041 0.127

3 - 4 0.326 0.850 0.194 0.075 0.059

4 - 5 0.157 0.338 0.041 0.155 0.057

5 - 6 0.055 0.564 0.093 0.067 0.038

6 - 7 0.098 0.598 0.127 0.070 0.106

7 - 8 0.140 0.587 0.297 0.194 0.093

8 - 9 0.061 0.826 0.297 0.197 0.035

9 - 10 0.444 0.372 0.253 0.267 0.379

10 - 11 0.031 0.142 0.162 0.188 0.138

11 - 12 0.015 0.320 0.076 0.047 0.140

12 - 13 0.025 0.003 0.150 0.055 0.308

13 - 14 0.090 0.116 0.281 0.267 0.253

14 - 15 0.150 0.379 0.221 0.039 0.044

15 - 16 0.051 0.453 0.099 0.042 0.148

16 - 17 0.052 0.157 0.157 0.410 0.069

17 - 18 0.072 0.672 0.191 0.061 0.124

18 - 19 0.082 0.453 0.051 0.101 0.062

19 - 20 0.058 0.166 0.086 0.058 0.108

20 - 21 0.058 0.134 0.042 0.021 0.020

21 - 22 0.047 0.462 0.050 0.021 0.207

22 - 23 0.033 0.108 0.085 0.036 0.012

Table  6.8 Overlap integrals for a variety of simulations of the 1aec conformation 2 complex. 

Overlap close to zero indicates that the two states are distant in phase space, and a very large 

number of samples would need to be collected in order to obtain a good estimate of free 

energy. Overlap of one is the largest that can be obtained, and indicates that states are close in 

phase space, and would need correspondingly fewer samples to obtain a good estimate of free 

energy. Note that the overlap integral is a unit-less quantity.
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The most striking result from table 6.8 is that the overlap integrals from the non 

replica-exchange simulations are generally considerably larger than those from the 

replica-exchange simulations (which include the three process mutations). We 

observe slightly lower variance for the non replica-exchange simulations and we 

sample the same number of confgurations in each simulation. Hence we observe 

that the overlap between accessible states for the non replica-exchange 

simulations is larger than that of the replica-exchange simulations. When 

comparing to the average overlap between the three processes compared to the 

single process replica-exchange simulation we observe similar trends. The 

implication here would be that it is equally effcient to perform a single large 

mutation rather than three steps of smaller mutations that arrive at the same state. 

This would be a novel result that could beneft researchers investigating 

compounds with similar scaffolds or backbones, but with a diverse range of 

attachment points and functional groups. The ambiguity in whether to use replica-

exchange methods requires further investigation. Simulations not using a replica-

exchange scheme, may fnd it more valuable to increase the length of simulations 

rather than using more lambda windows, since overlap appears to be high. 

However, simulations using the replica-exchange methodology may perform better 

with more lambda windows. Whether one methodology is better than the other is 

unclear, since it may be that the replica-exchange method suffers from higher  

variance (and thus lower overlap) due to sampling more energy minima, whilst the 

non replica-exchange method may be stuck sampling a single energy minima.

6.4.2.e Determining best binding oligoamides

Numerical results calculated from simulation trajectories are included in table 6.7. 

The dispersion correction applied to simulations is detailed in the methods section. 

The number of mutated atoms which are present in the A state, but absent in the 

B state is included (“mutated out” atoms), and the free energy changes are 

calculated with and without dispersion correction. Results from replicate 

compounds are combined using the exponential summation method detailed in 
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the methods(Mobley, Chodera, and Dill 2006). Results are also categorised by 

whether they are a parallel or anti-parallel conformation as was originally discussed 

in the previous two chapters.

6.4.2.f Combining results from simulations

Figure 6.13 shows calculated ∆∆G values for each of the 5 compounds plotted 

against the experimental ∆∆G calculated from IC50. Whilst it is not strictly correct 

to convert IC50 values into binding energies, in the absence of Kd values it is the 

only option, and since the values are all calculated in the same lab using the same  

experimental technique it is probably reasonable to assume quantitative 

comparisons can be made. The calculated results for both the uncorrected (red) 

and corrected (blue) calculated values appear to correlate well with the 

255

Figure 6.13: Experimental free energy change compared to calculated free energy change, with 

and without van der Waals corrections applied.
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experimental values. The uncorrected results actually correlate slightly better than 

the corrected results (R2 = 0.47 vs. R2 = 0.41), and both sets of results have a 

slope approaching the desired value of 1. The graph also shows that the 

calculated free energy of the parallel conformations of compound 1aec are less 

favourable than the anti-parallel conformations (-1.4 kcal mol-1 vs. -2.9 kcal mol-1, 

for the corrected values). This appears to be weakly followed in the case of the 

other compounds, and may be an important consideration required in a structure-

based design strategy. We have also calculated the RMSD from the experimental 

binding energies determining a value of 1.99 kcal mol-1 when the dispersion 

correction has not been applied, and 1.64 kcal mol-1 when the dispersion 

correction is applied.

6.5 Conclusion

We showed that the docking methods that had previously been developed may 

have required slightly increased sampling, and we employed the enhanced 

sampling to generate starting conformations for the compounds that we 

investigated. Therefore 300 conformers were generated for each compound rather 

than the previous 150 and additionally a maximum of 25 million rather than 2.5 

million genetic algorithm generations were generated. We also investigated the 

Autodock binding energy and the energy of the largest low-energy cluster from 

Autodock as possible determinants of binding energy. We observed that the 

energy of the largest low-energy cluster showed some correlation if used to rank 

relative positions rather than actual energies. Further to this we showed that the 

energies of the relative energies of the Autodock scores were in general in good 

agreement with our free energy calculations and experiment. However, this 

interpretation can be challenged as there was an exception for the 1aec 

conformation which is experimentally the best binder, but was predicted by 

Autodock as the worst.
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The difference in the three single mutations and triple mutation is very signifcant 

and it probably illustrates the requirement for good sampling. Theoretically 

performing the triple mutant should show some benefts over performing the three 

single mutations. This should allow sampling for roughly three times as long giving 

more probability of sampling dihedrals well. In practice due to problems with the 

Desmond algorithm the parameter clone radius (a cloned copy of data in the 

vicinity of the simulation box of the local cpu process, required for effcient 

parallelization) had to be extended which required addition of more water 

molecules thus increasing simulation time somewhat.

Use of replica-exchange methods was successful and results from these 

simulations agreed well with the comparison simulations when replica-exchange 

was not used. The main advantage is that sampling should be better. In theory 

dihedrals that are constrained in the A state but not in the B state could transition 

from the A state to the B state and rotate, after which time they could transition 

back to the B state. We can substitute into equation 42 the value of lambda for 15 

(a state that does reach lambda 0 in simulation of 1aec conformation 2), to see 

what magnitude the energy barrier might be in this situation. In the case of lambda 

15 van der Waals interactions for the triple CH3 mutant are all fully switched on 

(meaning the atoms will have their usual van der Waals radius), whilst the 

Phe-Trp-Leu side-chains have their interactions scaled by 0.325. If we look at the 

volume with energy greater than 2 kT and ignore the attractive 1/r6 term we can 

work out the excluded volume for the Phe-Trp-Leu side-chains is still 76 % of the 

excluded volume for lambda 0. This means that it is still very unlikely that the side-

chains would be free to rotate easily. The conclusion here is that Hamiltonian 

replica-exchange may not be improving sampling at all, whilst adding additional 

complexity to the simulations. If Hamiltonian replica-exchange is desired to be 

used more often then work may be needed on placement of lambda windows in 

order to maximise the overlap integral and thus encourage more swaps to be 

made that can transition between all lambda states.
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In principal we don't see an individual replica managing this journey, but since  

there is mixing between all lambda states this will eventually occur in the limit of a  

longer simulation. A major issue with replica-exchange is that in order to run a 

simulation at a sensible speed 8 CPU cores are required for an individual replica, 

thus when 24 replicas are used 192 cpu cores are required. The advent of GPU 

co-processors might alleviate this problem somewhat as this many cores could be 

available on several co-processor cards, rather than requiring a relatively large 

computer cluster with fast interconnects. Whereas government funded research is 

generally likely to be able to gain access to a reasonable amount of CPU time 

since there are a fairly large number of high-performance computing facilities,  

pharmaceuticals companies (with the exception of the very largest) are likely to 

fnd this a signifcant barrier to access. To calculate 192 processes running in one 

box would require 12 core cpus with 2 threads running on each core on a 4 

socket box. However, this is likely to be achievable in the near future, so it might 

be more reasonable to look at the fact that the method is suited for application in 

a parallel environment as a beneft in the longer term. It should also be noted that  

currently running large multiple mutations in a single step with Desmond is not  

offcially supported, and one of the requirements is to increase the value of a 

parameter r_clone, which in turn requires simulation in a box that is larger than 

would otherwise be required. This means that whilst theoretically a single-step 

mutation should be more effcient than a three-step mutation this is currently not 

the case. However, if this issue could be overcome it would be possible to 

generate trajectories that are roughly three times as long when using the single-

step mutation strategy, which would help to overcome the problem of adequate 

sampling of dihedral angles.

The results from the free energy calculations presented here appear to show good 

correlation with the experimental data currently available, however, the range of 

energies from the experimental data is within that of the error associated with the 
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measurement. Better validation of the method would be possible with a larger 

range of binding affnities of oligoamide compounds, ideally with some affnities 

being in the nM range. We have already discussed that comparison to free 

energies calculated from IC50 data is not ideal. However, it was done in the most 

reasonable way possible, where all data is from the same assay performed in the 

same lab. The single-step mutation strategy is a novel technique that is not 

offcially supported in Desmond, and appears to show utility in accurate prediction 

of binding energies. However, further work is required to identify why overlap is 

less for replica-exchange simulations compared to non replica-exchange 

simulations.
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7 Final conclusions

7.1 Overview of results

7.1.1 Protein-protein interactions as drug 

targets

We showed that there are marked differences between the volume of pockets 

observed in protein-ligand interactions compared to those observed in protein-

protein interactions. Furthermore we showed that protein-drug interactions mirror 

protein-ligand interactions, whilst protein-protein interaction inhibitors (137 Å3) tend 

to have pocket volumes that lie somewhere between those observed in protein-

ligand interactions (260 Å3) and protein-protein interactions (54 Å3). We also 

observed differences in the number of pockets targeted by protein-ligand, protein-

drug interactions (one) when compared to protein-protein interactions (between 

fve and eight). Once again we notice that protein-protein interaction inhibitors 

(three to fve) fall somewhere between protein-ligand, protein-drug interactions and 

protein-protein interactions. We conclude that properties of the pockets on protein 

surfaces might guide as when deciding whether a particular protein-protein 

interaction might be amenable to inhibition.

7.1.2 Predicting protein 'drugability'

Following on from the differences that we observed in the volume and number of 

pockets on protein-protein interactions that have been targeted for inhibition we 

attempted to develop a method for determining whether a pocket on a protein 

surface might be 'druggable'. We based our work on ideas from previous work by 

Halgren and by Hajduk(Halgren 2009),(Hajduk, Huth, and Fesik 2005). We looked 

at the distributions of GRID atom energies within pockets that bind ligands and 

those that don't and additionally compared to the GRID energies of GRID atoms 
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centred on ligand atoms observed in the PDB. We developed a number of 

descriptors for each pocket on a protein surface and analysed the differences 

between them. We noted that many of the differences between bound and 

unbound pockets are not statistically signifcant. We attempted to apply our 

method to predict bound from unbound pockets with limited success, and 

attempted to further extend this to classifying 'druggable' from 'undruggable' 

pockets. We are interested to use existing methods for predicting drugability from 

Cheng(Cheng et al. 2007) or Halgren(Halgren 2009) to assess how they perform at 

identifying bound from unbound sites, compared to our machine learning method.

7.1.3 Alchemical free energy calculations

We performed computational docking using Autodock to generate hDM2-

oligoamide conformers in the absence of X-ray crystal structures of the 

complexes. We attempted to better validate these models by performing 

molecular dynamics simulations, that remained stable using parameters similar to 

those used for free energy calculations. We also investigated charge 

parameterization methods for the oligoamide compounds where we identifed the 

AM1 BCC charge calculation method provided with AMBER as being most 

suitable for our system. We then developed methods to assess whether we 

thought our system was likely to produce converged free energy calculations in 

the simulation time available to us. We particularly investigated whether oligoamide 

compounds converted on the time-scale of our simulations, which dihedral angles 

were most likely to be poorly sampled, and the spatial sampling of the binding site.

Alchemical free energy calculations were performed with Desmond using the 

AMBER99sb and GAFF forcefelds. We performed standard simulations at 24 

lambda values, which we compared to a replica-exchange method. Replica-

exchange calculations conceded a performance penalty when carried out,  

although it may be possible to minimize this by altering the way the calculation is 

performed. It is not clear that in their current form replica-exchange calculations 
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did improve sampling in the way expected, but this may be possible with better 

placement of lambda windows. Replica-exchange calculations agreed with non-

replica-exchange calculations to within 0.5 kcal mol-1. The single process 

mutations and triple process mutations varied by 4 kcal mol-1. They should agree 

to within experimental error, it is not clear why this is. Further work on calculating 

the overlap in phase space is needed, and quantifcation in the difference in  

calculated overlap when using Bennett Acceptance Ratio variances to compute 

the overlap, and when using a bootstrapped value of the variance.

7.2 Implications for drug-discovery

It is becoming more and more obvious that current pharmaceutical strategies 

cannot be sustainable. It is incredibly time-consuming and expensive to bring a 

new drug to the market. Broadly speaking this leaves two options to the industry. 

The frst is to use existing drugs better. Examples include using currently approved 

drugs for new purposes(Ashburn and Thor 2004) (repurposing), or using 

information of the patients genetic make-up to select the drug that will work 

best(van't Veer and Bernards 2008) (personalized medicine). The second option is 

to identify and develop new entities better. Whilst Protein-protein interactions in 

general have been diffcult to exploit thus far(Fuller, Burgoyne, & Jackson, 2009), 

the concept of using a relatively small number of backbone compounds that 

mimic naturally occurring structural motifs, may offer a much more effcient 

method to target protein-protein interactions.

7.3 Future Directions

7.3.1 Pocket detection

Recent years have seen a wide variety of pocket detection techniques becoming 

available to researchers. It is clear that they have utility in assisting the analysis of 

both individual protein targets, and also large datasets of proteins. It is also 

important that they remain available to researchers in a format that is relevant to 
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them. That might be as a web-server, a stand-alone program or as a web-service. 

Additionally integration of pocket detection algorithms into currently available 

databases would allow better use of data. An example could be the integration of 

Q-SiteFinder into SitesBase (a database of ligand binding sites) which would allow 

searching of identifed binding sites against sites defned by the shape of ligands 

known to bind to an existing site(Gold and Jackson 2006). Methods such as this 

would be of assistance in both drug repurposing and functional annotation of 

proteins.

7.3.2 Drugability

The work on drugability that we previously discussed might ft in well in the space 

of repurposing where it could be applied in a manner similar to that of functional  

annotation as described in the paragraph above. That is the drugability index 

might allow a protein target to be assessed for whether it might bind to a list of 

approved drugs. This would frst require existing drugability methods to be fully 

evaluated to highlight their strengths and weaknesses.

7.3.3 Targeting protein-protein interactions with 

common scaffolds

For targeting protein-protein interactions, using a single backbone (such as an 

oligoamide) has several key benefts: ease of synthesis; optimisation of solubility; 

simplicity of working with computationally. It is clear that once a backbone of 

interest is identifed efforts can be made to develop a synthetic method that 

means that a library of side-chains can easily be attached. In the case of the 

oligoamide compounds that we worked on this has been achieved by at least two 

groups(Plante et al. 2008),(Shaginian et al. 2009). Secondly in the case of the 

oligoamides that we worked on the solubility of the compounds is a clear limiting 

factor. The backbone is large and greasy meaning that it is diffcult to dissolve in 

water, this is not likely to be good for binding affnity in general. Therefore if an 

alternative backbone could be designed with similar properties but better solubility 
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the affnity of the entire library of compounds would be increased. Computationally 

one of the challenges of simulating these oligoamide compounds was generating 

parameters to accurately describe the compounds(Vemparala et al. 2006),

(Pophristic et al. 2006). Fortunately in our case extensive previous work in 

developing dihedral parameters for our force feld has been undertaken. If these 

parameters had not been available it may have taken far longer to complete the 

simulations, or they may not have achieved the same quality. Limiting the number 

of backbones used would make computational simulation more straightforward in 

this respect.

It is clear that the compounds in general are not likely to be suitable as inhibitors of  

the hDM2 interaction due to their relatively low affnity, part of this is probably due 

to the solubility of the compounds as we already discussed. It is probable that 

substituting alternative side-chains onto the oligoamide backbone would be a 

suitable way to increase affnity of the compounds to some degree. Indeed virtual 

screening, fragment or rapid docking based methods, may all be suitable for this. 

If a particularly large library was available these might even be pre-screened using 

a simple flter before passing to the methods described above. Each of these 

methods might be able to screen a dataset of several thousand compounds down 

to a list of a hundred or so that could be further processed before being 

computationally screened using the free energy methods described.

7.3.4 Alchemical free energy calculations

In the longer term it would be good to compare calculations to measured Kd, 

something that could be achieved by using a different assay to the fuorescence 

polarisation assay originally used by Plante et al.(Plante et al. 2009). A wider range 

of binding affnities (hundreds of μM to sub nM) of compounds with correctly 

measured Kds would allow better validation of a free energy calculation method. 

Ideally synthesis of compounds could be guided by a high-throughput virtual 

screen of suitable side-chains that might produce a list of several hundred 
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candidate compounds. Further input could be provided by synthetic chemists to 

select around ten compounds for synthesis. These compounds could be used for 

free energy calculations which would allow post validation of the technique.

In general alchemical free energy calculations are diffcult to perform and 

computationally expensive. However, performing simulations such as those 

detailed in this thesis allows the identifcation of which methods are appropriate for 

certain situations, and whether certain algorithms and techniques can be applied 

more generally. It is clear that whilst we didn't conclusively show Hamiltonian 

replica-exchange to be benefcial it is a method that is relatively easy to perform, 

and has benefts in the relative ease of creating a parallel implementation of the 

method. Developing and following best practice in the feld of free energy 

calculations should allow for easier comparison of results between labs as well as 

making it easier to create tools to perform alchemical free energy calculations 

more easily. As computer power increases, and the quality of the tools available 

increases it appears very likely that free energy calculations will be of obvious utility 

for the development of novel ligands to target protein-protein interactions.
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