
Applications of

Bayesian Probability Theory

in Fusion Data Analysis

Christopher Bowman

Doctor of Philosophy

University of York

Physics

June 2016





Abstract

Bayesian probability theory is a powerful tool for solving complex problems in experi-

mental data analysis. In this thesis we explore the use of Bayesian methods in magnetic

confinement fusion with an emphasis toward developing analysis tools and techniques.

The original research content is presented in three chapters. In the first we develop

a new approach to efficiently characterising multi-dimensional posterior distributions.

This is achieved through an algorithm which, for any number of posterior dimensions,

can decide which areas of the probability space contain significant information and

evaluate only those areas. This addresses the computational challenges which arise in

calculating marginal distributions from many-dimensional posteriors. In the second re-

search chapter Bayesian probability theory is applied to the discrete Fourier-transform

of an arbitrary real series containing random noise. The effect of the noise on the

Fourier coefficients is used to derive a correction to the Fourier magnitudes, which

results in a reduction in the overall noise-level after an inverse-transform. Calculat-

ing these corrections requires the solution of a challenging inverse problem which is

discussed at length, and several methods for obtaining approximate solutions are de-

veloped and tested. The correction itself, plus the methods allowing its calculation

together form the basis of a new technique for noise correction which is completely

general, as no assumptions are made about the series which is to be corrected. In the

final research chapter the inference of physics parameters using the DIII-D CER system

is discussed. A Bayesian network approach is used to derive a model for the observed

charge-exchange spectrum, which is itself used to construct a posterior distribution

for the model parameters. The spectrum model is used to explore the possibility of

inferring the time-evolution of physical parameters on sub-integration time-scales.

3





Contents

Abstract 3

Contents 5

List of Tables 9

List of Figures 10

Acknowledgements 13

Declaration 15

1 Introduction 17

1.1 Fusion as an energy source . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 The demand for renewable energy sources . . . . . . . . . . . . 17

1.1.2 The Deuterium-Tritium fusion reaction . . . . . . . . . . . . . . 19

1.1.3 Magnetic confinement fusion . . . . . . . . . . . . . . . . . . . . 20

1.2 Tokamak physics experiments . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Outline of the tokamak concept . . . . . . . . . . . . . . . . . . 21

1.2.2 Progress toward fusion . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Complexity in magnetic confinement fusion . . . . . . . . . . . . . . . . 24

1.3.1 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Bayesian data analysis 29

2.1 Introduction to Bayesian probability theory . . . . . . . . . . . . . . . 30

2.1.1 The Bayesian view of probability . . . . . . . . . . . . . . . . . 30

2.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.3 Fundamentals of probability: the sum and product rules . . . . 31

2.1.4 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.5 Marginalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.6 Conditional independence . . . . . . . . . . . . . . . . . . . . . 33

2.2 Bayes theorem example: decay of an excited state . . . . . . . . . . . . 34

2.2.1 Potential ‘frequentist’ approaches to estimating λ . . . . . . . . 35

2.2.2 Inference from a single time measurement . . . . . . . . . . . . 36

2.2.3 Likelihood of a dataset: multiple time measurements . . . . . . 38

2.2.4 Approaching the frequentist limit . . . . . . . . . . . . . . . . . 40

2.3 Inference of physics model parameters . . . . . . . . . . . . . . . . . . . 42

5



Contents

2.3.1 Example: Spectroscopy data analysis . . . . . . . . . . . . . . . 42

2.3.2 The model parameter posterior distribution . . . . . . . . . . . 44

2.3.3 Marginalisation of nuisance parameters . . . . . . . . . . . . . . 45

2.3.4 Inference of the line widths: P (w1, w2|D) . . . . . . . . . . . . . 46

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Developing tools for Bayesian analysis 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Computational challenges of many-parameter inference . . . . . . . . . 49

3.2.1 Limitations of grid-based approaches . . . . . . . . . . . . . . . 50

3.2.2 Posterior sampling . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Improving grid-based approaches . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 The GridFill algorithm . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Performance testing . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.4 A note on parallelisation . . . . . . . . . . . . . . . . . . . . . . 60

3.3.5 Comparison with MCMC . . . . . . . . . . . . . . . . . . . . . . 62

3.3.6 Future development . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Probabilistic calculation of credible region contour densities . . . . . . . 65

3.4.1 Constructing the bounding density probability distribution . . . 66

3.4.2 Mean, variance and error scaling . . . . . . . . . . . . . . . . . . 68

3.4.3 Effective presentation of inference results . . . . . . . . . . . . . 69

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Probabilistic noise-correction of discrete Fourier transform coeffi-

cients 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Random noise in the Fourier domain . . . . . . . . . . . . . . . . . . . 75

4.2.1 Relating the time and Fourier domain noise levels . . . . . . . . 78

4.2.2 Inference of z̄k . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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“I think it is much more interesting to live with uncertainty than to live with answers

that might be wrong.”

Richard Feynman



Chapter 1

Introduction

1.1 Fusion as an energy source

1.1.1 The demand for renewable energy sources

At present over 80% of global energy demand is met by burning fossil fuels, and this

demand is projected to grow by over 40% by 2040 [1, 2]. Meeting this increase whilst

simultaneously honouring international commitments to reduce carbon emissions poses

a significant challenge. The only available solution is to greatly reduce fossil fuel

consumption and invest heavily in carbon-neutral energy production on a global scale.

At the very least, crude oil and natural gas must be phased out of the fuel mix before

reserves are depleted, which by current estimates will last around 50 years [3]. This

is likely an overestimate of the time available in which to address these problems

for two reasons. Firstly, the impact of climate change may dictate that the total

carbon emissions resulting from the burning of all remaining fossil fuels are completely

unacceptable. Secondly, serious consequences for the global energy market will set in

not when fossil fuels are exhausted completely, but when available supply can no longer

meet demand.

Purely renewable energy sources such as wind, hydro and solar are not sufficient to

meet energy demand alone, mostly due to a combination of limited availability and low
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Chapter 1. Introduction

power output [4]. These renewables will still play an important role in our transition to

carbon-neutral energy production, but they must be supplemented by other sources.

Nuclear fission is a strong option to help bridge the supply gap, having no carbon

emissions and providing high, consistent power production. The total available fuel

for nuclear fission (including estimates of undiscovered resources) is expected to last

roughly 230 years at the current rate of consumption. However we see in figure 1.1 that

fission accounts for only 5% of global energy supply. For fission to play a substantial

role in replacing fossil fuels, this fraction must be brought up to 30-50%. This is a

large increase but not infeasible - note that France, for example, currently generates

around 75% of its total electricity supply through fission. However, greatly increasing

global fission energy production would bring down the lifetime of nuclear fuel reserves

significantly making fission a relatively short-term solution. It may be possible to

extend the lifetime of these reserves by making use of alternative fuels such as Thorium,

or through fast-breeder reactors but these technologies are yet to be widely adopted. It

Figure 1.1: Contributions of various energy sources toward total global energy expenditure
over a ∼ 40 year period. [1]

is also likely that such a drastic increase in fission power would be politically difficult to

accomplish. Fission has long suffered from poor public perception, which has recently

declined further on account of the Fukushima reactor nuclear incident in 2011. Only

days after Fukushima, large anti-nuclear energy protests led to the German government

pledging to shut down all 16 of the country’s fission plants by 2022, which at the time

generated around 25% of Germany’s electricity [5, 6].

Nuclear fusion is a potential source of carbon-free energy that is well-suited to take
18



1.1. Fusion as an energy source

over from fission as a long-term solution to the global energy crisis. Although achieving

fusion power has proved challenging, incredible progress has been made since research

began in the 1950’s and this progress continues today with construction of next-step

devices such as ITER [7]. We now give a brief overview of nuclear fusion as an energy

source.

1.1.2 The Deuterium-Tritium fusion reaction

Nuclear fusion is a process by which two nuclei may fuse together, producing a heavier

nucleus and additional products. By undergoing fusion, the system of the two original

nuclei transition into a state with lower potential energy, and the potential difference is

transferred to the reaction products as kinetic energy. The drop in potential is observed

as an equivalent (through E = m0c
2) reduction in the rest-mass of the system.

For fusion to occur, two nuclei must be brought into close proximity (within tens of

femtometres) such that they interact via the strong nuclear force. This requires that the

reactants have sufficient relative collision velocity to overcome their mutual coulomb

repulsion. The most promising fusion reaction for energy production is that between

the two heavy isotopes of Hydrogen - Dueterium and Tritium:

2
1D + 3

1T −→ 4
2He + n + 17.6 MeV. (1.1)

This is the referred to as the ‘DT’ reaction and is the focus of most fusion energy

research due its very high reactivity as shown in figure 1.2. Dueterium is a naturally-

occurring isotope and is most commonly harvested from seawater. Roughly one in

every 6400 hydrogen atoms in earth’s oceans is Dueterium, so although purification is

required the supply of Deuterium is for practical purposes unlimited. Tritium is an

unstable isotope which undergoes beta decay with a half-life of 12.3 years, and as such

does not occur naturally on earth in useful quantities. Any tritium to be used as fusion

19



Chapter 1. Introduction

Figure 1.2: Plot of the reactivity 〈σv〉 for various nuclear fusion reactions as a function of
temperature. [8]

fuel must therefore be produced artificially, and currently the most promising approach

is neutron-activation of Lithium-6 where

6
3Li + n −→ 3

2He + 3
1T + 4.8 MeV. (1.2)

Most fusion energy schemes aim to make use of the neutron produced in the DT reaction

to activate Lithium, which then produces more Tritium to be used as fuel. Assuming

this process is sufficient to supply all required tritium, the total fuel reserves of nuclear

fusion are effectively dictated by the availability of Lithium. Easily-accessible land-

based lithium resources are estimated to last over one thousand years assuming fusion

were used to generate a significant fraction of global energy, and extraction of Lithium

from seawater could extend this lifetime to over a million years [9].

1.1.3 Magnetic confinement fusion

The two basic challenges of fusion energy production are the following: firstly, we must

heat the DT fuel mixture to high enough temperatures that fusion reactions are oc-

curring at an acceptable rate, and secondly the fuel must be confined in this state for

20
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sufficient time that we may extract useful amounts of energy from the process. Refer-

ring again to figure 1.2 we see that the reactivity of DT increases strongly for higher

fuel temperatures up to around 70 keV (8× 108 Kelvin) where it peaks. The extreme

temperatures required to achieve high reactivity ensure two things: no materials exist

which are capable of physically confining the fuel, and the fuel itself must be a plasma.

Magnetic confinement fusion is currently the most promising fusion energy scheme, and

exploits the fact that when the DT fuel is in a plasma state, it becomes responsive to

electromagnetic fields. In a plasma, the nuclei and electrons in the fuel are no longer

bound together and move independent of one another - they are therefore both affected

by the Lorentz force

F = q (E + v ×B) , (1.3)

for particle velocity v and charge q. The v × B term gives rise to a force which acts

perpendicular to both v and B, causing charged particles to gyrate around magnetic

field lines with the cyclotron frequency ωc = qB/m and Larmor radius rl = v⊥/ωc. Such

a particle can be thought of as being confined to the space surrounding the magnetic

field-line which lies at the centre of its orbit. If we were to configure B such that

this field-line formed a closed loop, the particle would be spatially confined in motion

both parallel and perpendicular to the field. Confining particles in a ‘closed’ field

configuration in this manner is the basic idea which underpins magnetic confinement

fusion.

1.2 Tokamak physics experiments

1.2.1 Outline of the tokamak concept

The most widely studied MCF device is the ‘tokamak’ - a toroidal chamber surrounded

by coils which produce a magnetic field that forms a closed loop around the interior of

the torus. An illustration of the tokamak configuration is shown in figure 1.3. It can be

shown that charged particles in a toroidal device whose magnetic field points only in

either the toroidal or poloidal direction will ‘drift’ towards the wall of the device, and
21
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are therefore not confined. These particle drifts occur due to either additional forces

experienced by the particles (e.g. centripetal force, electric fields) or from gradients in

the local magnetic field.

Figure 1.3: Schematic representation of the tokamak configuration. [10]

The solution to this problem is to create a helical magnetic field configuration which

is the combination of toroidal and poloidal fields. This does not prevent the particle

drifts from occurring altogether, but instead periodically reverses their direction such

that the time-average of the drift motion is zero [11]. The defining feature of the

tokamak concept is the means by which the required helical field is generated. The

toroidal component of the field is generated by current-carrying coils which surround

the exterior of the device, whereas the poloidal component is generated by inducing a

toroidal current in the plasma confined by the tokamak. This plasma current is driven

using a solenoid placed at the central axis of the torus, and has the additional benefit

of resistively heating the plasma.

To achieve the conditions necessary for fusion, the core of the plasma must be brought

up to high temperature and density. The edge however must be kept at a relatively low

density and temperature in order for the plasma-facing device components to survive.
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As a consequence strong gradients in temperature and density between the core and

edge are unavoidable. These gradients give rise to a variety of mechanisms by which

heat and particles are transported away from the core and toward the edge. Although

the diffusive transport we would naively expect is indeed present, energy transport is

in fact dominated by plasma turbulence attributed to various micro-instabilities [12].

This turbulent transport significantly degrades the ability of an MCF device to confine

energy, and is the primary barrier to achieving fusion conditions.

1.2.2 Progress toward fusion

The ultimate goal of MCF research is improve energy confinement to the point where

the self-heating of the plasma due to fusion reactions is greater than the energy losses

due to heat and particle transport. This state is known as ‘ignition’, because the

energy released by the plasma as it ‘burns’ the DT fuel is sufficient to sustain the

burning process. The rate at which the plasma loses energy PL is quantified in terms

of an ‘energy confinement time’ τE such that PL = W/τE where W is the stored

energy. For a homogeneous plasma of volume V , temperature T and number density

n the stored energy is W = 3nTV . The rate at which the plasma gains energy from

fusion reactions is Pα = 1
4
n2〈σv〉EαV . To achieve ignition we require that Pα > PL,

which may be rearranged to give the Lawson criterion

nτE >
12T

〈σv〉Eα
. (1.4)

Both τE and 〈σv〉 are functions of temperature, and based on their behaviour the

ignition criterion can most easily be met in the range T = 10 − 25 keV. Over this

range, the reactivity is well approximated as 〈σv〉 ≈ T 2 × 1.1 × 10−24. Using this

approximation in (1.4) and collecting nTτE on LHS leaves only a product of known

constants on the RHS, allowing the ignition criterion to be expressed as

nTτE > 3× 1021 m−3keVs (1.5)
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This makes nTτE, which we refer to as the ‘fusion triple product’, a useful metric for the

performance of MCF devices because it tells us how ‘far away’ any given device is from

achieving plasma ignition. Figure 1.4 shows triple products measured in major tokamak

experiments, illustrating the huge progress that has been made towards ignition since

research began.

Figure 1.4: The fusion triple-product as measured in various tokamak experiments over the
history of MCF research. [10]

1.3 Complexity in magnetic confinement fusion

The physics of magnetised plasmas and magnetic confinement fusion is a rich and

complex field. There is, for example, an extreme diversity of scales involved. Micro-

instabilities at the Larmor orbit scale which drive energy transport and global magneto-

hydrodynamic instabilities which affect the stability of the entire plasma both play cru-

cial roles, and we must understand the physics of both. There exists similarly extreme

variation in energy densities, with fully-ionised core plasmas at hundreds of millions

of kelvin separated by only a few metres from semi-ionsied plasmas interacting with

material surfaces. MCF is also very diverse with respect to the disciplines required, and

24



1.3. Complexity in magnetic confinement fusion

brings together electromagnetism, plasma kinetics, fluid dynamics, turbulence theory,

plasma chemistry, atomic physics, materials science and more.

This huge variety of physical conditions and phenomena, all of which are important,

require a similar variety of diagnostic equipment and techniques in order to study and

understand the physics at work. This is well illustrated by figure 1.5 which highlights

the major diagnostic systems on the JET tokamak.

Figure 1.5: Schematic of the JET tokamak with many (but not all) of the diagnostic systems
labelled. [13]

In most cases the output of a diagnostic does not vary straightforwardly with a single

parameter. Instead, the data often depend on multiple physical parameters simulta-

neously as well as a variety of diagnostic calibration factors. Consequently, extracting

reliable information regarding a single parameter from the data can be challenging.

Conventional data analysis techniques can provide estimates of these parameters, but

generally fail to properly account for experimental uncertainties or how variation in

one parameter affects our information regarding the others.

Bayesian probability theory offers a solution to these problems. It can aide in the analy-

sis of individual diagnostics by using probabilities to rigorously quantify to what extent

we believe any possible value of a parameter is the true value given the experimental

data. Additionally, it provides a powerful framework for combining information from
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multiple diagnostic sources, an approach referred to as ‘multi-diagnostic inference’ or

‘integrated data analysis’. It allows data from many sources, each of which individu-

ally may carry very weak information regarding a certain parameter, to be combined

to yield strong information about said parameter. Bayesian probability theory has

already been successfully applied to fusion data analysis in several cases [14, 15, 16]

and is growing in popularity within the field.

1.3.1 This thesis

In this thesis we investigate various ways in which Bayesian probability theory may be

applied to data analysis problems within magnetic confinement fusion. In chapter 2

we give an introduction to Bayesian probability theory and present examples of how it

can be used to infer desired parameters from experimental data.

In chapter 3 we discuss computational challenges associated with Bayesian methods,

and investigate techniques for overcoming some of these difficulties. In particular we

present a new approach to efficiently characterising multi-dimensional posterior distri-

butions. This is achieved through an algorithm, the details of which are discussed, that

makes decisions regarding which regions of probability space contain useful information

and evaluates only those areas.

In chapter 4 Bayesian probability theory is applied to the discrete Fourier transform

of an arbitrary signal containing unknown noise. We show that a probabilistic noise-

correction can be made by adjusting the magnitude of the Fourier coefficients based on

their measured values. This correction requires the solution of an interesting inverse

problem which arises naturally during the analysis. Several approaches to obtaining

approximate solutions to the problem are developed and then tested using example

data. Finally the correction technique is used to reduce the noise level in KSTAR

electron-cyclotron emission imaging data. This data was used as part of a collabora-

tion between the York Plasma Institute, POSTECH university and NFRI, the results

from which are published in [17] and included as an appendix to this thesis. My contri-

bution to this publication was the development of software to forward-model measured
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ECEI channel data, and the design of the stochastic fitting approach used to estimate

model parameters. This work was the first example of using 2D ECEI measurements,

which are capable of fully characterising the temperature perturbations associated with

neoclassical tearing modes, to study heat transport around magnetic islands and the

impact this has on their stability.

In chapter 5 we discuss the inference of physics model parameters using the DIII-D

charge-exchange recombination spectroscopy system. In particular the limits of the in-

strument with regard to characterising fast flow velocity fluctuations are investigated.

A Bayesian network approach is used to construct a model for the observed CER spec-

trum, which in turn is used to construct the posterior for the model parameters. The

behaviour of the model under time-varying temperature, density and flow is assessed

both analytically and numerically. Finally, a summary of the thesis and conclusions

are presented in chapter 6.
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Chapter 2

Bayesian inference in physics data

analysis

When conducting a physics experiment our objective is typically to learn something

about a physical parameter of interest. This process always requires two elements - ex-

perimental observations and a model to describe those data. Conventional approaches

to data analysis usually seek to find a ‘best match’ between models and observations,

and take the values of the parameters resulting from this matching to be measurements

of those quantities plus or minus some estimate of the uncertainty.

Bayesian probability theory offers an alternative approach to data analysis which holds

many advantages over conventional techniques. Rather than treating model parameters

as fixed quantities giving rise to possible observations, the Bayesian approach sees the

parameters as fundamentally uncertain, being the distribution of possible causes which

could have given rise to the fixed experimental observations.

In this chapter we give an introduction to Bayesian probability theory, demonstrate

how it may be applied to data analysis problems and discuss the advantages offered

over conventional approaches.
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Chapter 2. Bayesian data analysis

2.1 Introduction to Bayesian probability theory

Given a model for a physical system and assumptions about the state of that system,

we may derive the expected results of any experiments conducted on it. This is the

‘forward problem’, and is an example of deductive logic, where by starting with a known

cause we may deduce the outcomes of that cause with certainty.

Analysis of data from experiments is generally an ‘inverse’ problem where inductive

logic is needed. This is the process of starting with observed outcomes (i.e. data) and

inferring the possible causes of those outcomes. Unlike deductive logic, the conclusions

of inductive logic and inverse problems are not certain - we therefore require a system

for quantifying how much we believe any of the possible causes are the true cause given

our observed outcomes. Physicist Richard Cox showed that for any such system to be

logically consistent, it must follow the rules of probability theory [18].

Bayesian probability theory is a framework for inductive logical reasoning through

probabilities, making it perfectly suited to the problems of data analysis. It is named

for Thomas Bayes who is credited as having founded the field, but Bayes’ ideas were de-

veloped much further by Pierre-Simon Laplace in the early nineteenth century. Laplace

used his formulation of Bayesian probability theory to solve problems in a variety of

fields including medical statistics and celestial mechanics [19].

2.1.1 The Bayesian view of probability

Modern statistical theory (developed by Pearson, Fischer and others from the late

nineteenth century onwards) generally interprets the probability associated with a par-

ticular value of a variable as a ‘frequency’ [20, 21]. The supposition is that if said

variable were the outcome of some experimental trial, and we were able to repeat that

experiment infinitely many times, all possible values of the variable would arise with a

frequency set by their associated probability.
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This is at odds with the view of early pioneers of probabilistic inference like Bayes

and Laplace, for whom probabilities represented a degree of belief in, or a degree of

certainty regarding a particular value of a variable. This ‘Bayesian’ interpretation of

probability is more widely applicable than the ‘frequentist’ view of modern statistics,

which rejected the Bayesian view believing it to be conceptually too nebulous.

In the last few decades however, Bayesian methods have grown in popularity as scien-

tists and engineers have rediscovered their usefulness, especially when combined with

modern computational techniques. This chapter serves as an introduction to the use of

Bayesian inference in physics data analysis. In this section we review some fundamental

results of probability theory which form the tools of Bayesian analysis.

2.1.2 Notation

The notation of Bayesian probability theory is used throughout this thesis, so a brief

review is given here. We denote the ‘probability of A’ as P (A). In the context of physics

data analysis, A will generally be a continuously-valued variable (e.g. the temperature

of a plasma, the wavelength of a photon, ect.), making P (A) a continuous probability

distribution.

A comma is used to represent joint probabilities, such that P (A,B) is the probability

of A and B. The | symbol indicates that the probability of one variable is conditional

on another so that P (A|B) is the probability of A given B. For example, P (A,B|C,D)

represents the ‘probability of A and B given C and D’.

2.1.3 Fundamentals of probability: the sum and product rules

The first of two fundamental rules of probability we will discuss is the product rule,

which states that

P (A,B|I) = P (A|B, I)P (B|I). (2.1)
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Throughout this section we will follow Sivia’s suggestion [19] of assuming variables are

conditional on some unspecified information I, so that these expressions are given in

their most general form. The significance of the product rule is that it allows us to

construct joint distributions of multiple variables from the product of distributions of

a single variable.

The sum rule states that the sum of the probabilities associated with all possible values

of a variable must equal one. For boolean variables, e.g. if A were a statement that

could be either true or false, this implies that

P (A|I) + P (Ā|I) = 1. (2.2)

Generalising this concept to continuous variables yields

+∞∫
−∞

P (A|I) dA = 1, (2.3)

which we recognise as the normalisation property of continuous probability distribu-

tions. The sum and product rules are the basis for the algebra of probabilities and we

will make extensive use of them.

2.1.4 Bayes’ Theorem

In (2.1) the product rule is used to construct the probability of ‘A and B given I’.

Logical consistency requires that this is equivalent to the probability of ‘B and A given

I’, i.e. that P (A,B|I) ≡ P (B,A|I). We may therefore write a transposed version of

the product rule where

P (A,B|I) = P (B|A, I)P (A|I). (2.4)

Comparing (2.1) and (2.4) we see that

P (B|A, I)P (A|I) = P (A|B, I)P (B|I). (2.5)
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This equality is Bayes’ theorem, and much of this chapter will be dedicated to discussing

its applications and importance. Bayes’ theorem is most commonly expressed in a re-

arranged form of (2.5) where we solve for P (B|A, I):

P (B|A, I) =
P (A|B, I)P (B|I)

P (A|I)
. (2.6)

Here we can more easily see that Bayes’ theorem can be used to switch the positions

of two variables which are on opposite sides of the conditioning symbol |.

2.1.5 Marginalisation

Consider the integral of the product rule in (2.1) over all values of A:

+∞∫
−∞

P (A,B|I) dA = P (B|I)

+∞∫
−∞

P (A|B, I) dA. (2.7)

The normalisation condition in (2.3) dictates that the integral on the RHS of (2.7)

must be equal to one, and as such

P (B|I) =

+∞∫
−∞

P (A,B|I) dA. (2.8)

This result is known as marginalisation. Given a joint distribution of multiple variables,

it allows us to remove the dependence on any number of those variables through inte-

gration as shown above. We will demonstrate later that marginalisation is particularly

useful in the case of model parameter estimation.

2.1.6 Conditional independence

If P (A|B, I) = P (A|I), we say that A and B are conditionally independent given I. It

may seem initially that this only implies that A is independent of B given I and not

vice-versa, but consider again the form of Bayes’ theorem given in (2.5):

P (A|B, I)P (B|I) = P (B|A, I)P (A|I). (2.9)
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If we make the substitution that P (A|B, I) = P (A|I) we obtain

P (A|I)P (B|I) = P (B|A, I)P (A|I) =⇒ P (B|I) = P (B|A, I), (2.10)

and as such

P (A|B, I) = P (A|I) ⇐⇒ P (B|A, I) = P (B|I). (2.11)

An important consequence of conditional independence is that the product rule be-

comes

P (A,B|I) = P (A|I)P (B|I). (2.12)

This result may be generalised to an arbitrary number of variables. Consider a set

of n variables {xi} - the joint distribution P (x1, x2, . . . , xn|I) is the product of the

individual P (xi|I) if and only if each of the xi is conditionally independent of all other

variables in the set. This can be expressed mathematically as

P (x1, x2, . . . , xn|I) =
n∏
i=1

P (xi|I) ⇐⇒ P (xi|xj, I) = P (xi|I) ∀ i 6= j. (2.13)

This result is particularly useful in data analysis, as often we want to generate the joint

distribution of a large number of independent measurements, and therefore may do so

by finding the product of the distributions for each individual measurement.

2.2 Bayes theorem example: decay of an excited

state

Understanding the applications of Bayesian inference to data analysis is, in our opinion,

best gained through physically motivated examples. The rest of this chapter will be

dedicated to discussing several such examples, the first of which focusses on the use of

Bayes’ theorem.

Consider a thought experiment where we wish to measure the rate λ at which an

electron decays from some excited state in at atom to one of lower energy. We will
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2.2. Bayes theorem example: decay of an excited state

assume (for now) that we are able to measure the time between excitation and decay

exactly with no uncertainty.

This process is not deterministic, and λ represents the probability per unit time that the

state will decay. It can be shown that a constant λ implies an exponential distribution

of measured state lifetimes, such that the chance that the state takes a time t to decay

for a given λ is

P (t|λ) = λ exp [−λt]. (2.14)

Given some number of independent measurements of t, what is the best approach to

determining λ?

2.2.1 Potential ‘frequentist’ approaches to estimating λ

In order to provide contrast for the Bayesian solution to this problem which we will

subsequently discuss, it is useful to briefly mention some conventional ways a physicist

might approach this task.

If a relatively large number of measurements of t are available (a few hundred or more),

P (t|λ) could be estimated by taking a histogram of the set of t values. Standard curve-

fitting techniques may then be used to fit (2.14) to the data yielding an estimate of

λ.

We might also note that E[ t ] = λ−1, and estimate λ by finding the mean of all our

time measurements and calculating its reciprocal.
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2.2.2 Inference from a single time measurement

Initially we will examine the case where we have only a single measurement of the decay

time t. Based on the non-Bayesian approaches discussed above, one might expect that

little may be learned from one data point as taking an average or a histogram of the

data is no longer possible - in fact Bayes’ theorem provides us with an exact solution.

P (t|λ) is given by our physics model in (2.14), however as our objective is to determine

λ, the probability we actually want is that of λ given our value for t, i.e. P (λ|t). By

referring to Bayes’ theorem in (2.6) we see that we may write P (λ|t) as

P (λ|t) =
P (t|λ)P (λ)

P (t)
. (2.15)

Understanding the meaning of each term in this expression is crucial, so we will now

take some time to discuss them individually.

Firstly, let us examine P (λ) - from notation alone we know that this is a probability

distribution for λ, but crucially one which is not conditional on our experimental data

t. This point is key to understanding the use of Bayes’ theorem, so we emphasise -

P (λ) is the probability associated with (and hence our degree of certainty regarding)

a particular value of λ irrespective of the experimental data. P (λ) therefore represents

our state of knowledge regarding λ before conducting the experiment, and accordingly

is called the prior distribution. Conversely P (λ|t) is our state of knowledge regarding

λ after we have obtained additional information from the experiment, so is referred to

as the posterior distribution. By allowing us to move from the prior to the posterior,

Bayes’ theorem provides a means to update our knowledge in light of new information.

In this example, we have no prior knowledge of λ save that we know λ > 0. Given this

lack of information we might expect that any particular value of λ is no more or less

likely than any other, and therefore would regard all possible values as being equally

probable. Mathematically, this results in a P (λ) which is constant for all λ > 0. This

constant form of P (λ) is called a ‘flat’ or ‘uninformative’ prior because it effectively

carries no information - it also therefore has no dependence on λ.
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It may appear that taking P (λ) to be flat is the only option which is not in some

way ‘biased’ given that we have no prior information, but in fact the choice is not so

straightforward. Consider that we may easily re-parametrise the problem in terms of

the average lifetime τ = λ−1. Clearly, we also have no information regarding τ , so if a

flat prior were the ‘natural’ choice in such a case we would also choose P (τ) to be flat.

The problem now becomes clear - it is not possible to simultaneously assume that all

values of both λ and τ are equally probable. If we take P (λ) to be flat, then it must

be the case that P (τ) ∝ τ−1 and vice-versa. This does not suggest that use of a flat

prior is never appropriate, just that even when using a flat prior we are still making an

assumption of some type. A common alternative to the flat prior is the Jeffreys prior,

which remains invariant under re-parametrisation of variables such as that described

above [22]. We will however, for the sake of simplicity, take P (λ) to be flat for this

example.

P (t|λ) represents the information we have gained from our experiment and is called

the likelihood. For a general case the likelihood includes all sources of uncertainty

involved in obtaining the measurements. These may arise from stochastic physical

processes (e.g. variation in the number of photons emitted by a plasma in a given

time) or from limitations in our instrumentation (e.g. the point-spread function of

a spectrometer, dark current from a CCD, ect). The likelihood is also typically a

function of some physics model which predicts the observations and depends on some

physical parameters we are interested in. The process of building the likelihood for an

experiment will be discussed later in this chapter.

In many applications of Bayes’ theorem (including this example) P (t) is essentially a

normalisation factor and therefore receives little attention. However there are certain

cases, in particular model selection, where P (t) becomes important. For this reason

it is sometimes referred to as the model evidence. Generally P (t) may be determined

using the normalisation condition in (2.3) - integrating Bayes’ theorem in (2.15) over

all λ we see that

∫ ∞
0

P (λ|t) dλ =
1

P (t)

∫ ∞
0

P (t|λ)P (λ) dλ = 1, (2.16)
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which solved for P (t) yields

P (t) =

∫ ∞
0

P (t|λ)P (λ) dλ. (2.17)

In this example however, we have explicitly stated that P (λ) is a flat prior and so has

no λ dependence. This allows us to move P (λ) outside the integral in (2.17) and write

P (t)

P (λ)
=

∫ ∞
0

P (t|λ) dλ =

∫ ∞
0

λ exp [−λt] dλ =
1

t2
. (2.18)

The posterior distribution can now be obtained by substitution of the above result

back into (2.15), which gives

P (λ|t) = λt2 exp [−λt]. (2.19)

We now have a probability density for, and therefore a degree of belief in every possible

value of λ based on the information provided by our value for t. For the t = 1 case

plotted in figure 2.1 it can be shown numerically that the shortest interval which

contains a total probability of 0.95 is [0.042, 4.76] - we may therefore assert that 0.042 <

λ < 4.76 with 95% probability.

2.2.3 Likelihood of a dataset: multiple time measurements

We can now examine the more general case where we have n separate measurements

of t rather than just one. Previously, our goal was to obtain the probability of λ given

one measurement of t, i.e. P (λ|t). Now we want the probability of λ given all n

measurements of t, which we may write as P (λ|t1, t2, . . . , tn).

Just as in the single-measurement case, P (λ|t1, t2, . . . , tn) may be expressed using

Bayes’ theorem as

P (λ|t1, t2, . . . , tn) =
P (t1, t2, . . . , tn|λ)P (λ)

P (t1, t2, . . . , tn)
. (2.20)
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Figure 2.1: Plots of (2.26) versus the decay rate λ for 〈t〉 = 1 and various n. The n = 1
case in the top-left is therefore also a plot of (2.19) where t = 1. Here we follow the common
practice of scaling probability distributions to have a maximum of 1 for the purposes of
plotting, as absolute density values are generally not useful to the reader.

Again taking P (λ) to be a flat prior (because we have no information regarding λ prior

to the experiment) allows P (λ)/P (t1, t2, . . . , tn) to be determined through normalisa-

tion (as shown in (2.18)) such that

P (λ|t1, t2, . . . , tn) =
P (t1, t2, . . . , tn|λ)∫∞

0
P (t1, t2, . . . , tn|λ) dλ

. (2.21)

We therefore need only determine P (t1, t2, . . . , tn|λ) to obtain P (λ|t1, t2, . . . , tn). As

we have stated that the set of time measurements {ti} are independent of each other

(given λ), we may use the result in (2.13) to write

P (t1, t2, . . . , tn|λ) =
n∏
i=1

P (ti|λ) = λn exp

[
−λ

n∑
i=1

ti

]
. (2.22)

Joint distributions of a large number measurements often arise in Bayesian data analy-

sis, and as such it is common practice to represent the set of all data with some symbol

- in this thesis we use D such that P (t1, t2, . . . , tn|λ) ≡ P (D|λ). In this example, it is

39



Chapter 2. Bayesian data analysis

also convenient to write (2.22) in terms of the average time

〈t〉 =
1

n

n∑
i=1

ti, (2.23)

such that (2.22) now simplifies to

P (D|λ) = λn exp [−nλ〈t〉]. (2.24)

All that remains is to find the integral of P (D|λ) as is required by (2.21):

P (D)

P (λ)
=

∫ ∞
0

λn exp [−nλ〈t〉] dλ =
n!

(n〈t〉)n+1 . (2.25)

Substitution of the above result into (2.21) yields our solution

P (D|λ) =
λn

n!
(n〈t〉)n+1 exp [−nλ〈t〉]. (2.26)

Plots of (2.26) for various n are shown in figure 2.1. As one would expect, we see

that increasing n for a fixed 〈t〉 narrows P (λ|D), corresponding to an improvement

in our knowledge of λ as a result of the inclusion of additional experimental data.

Additionally, making the substitution of n = 1 in (2.26) we recover our expression for

P (λ|t) (the single-measurement case) in (2.19).

2.2.4 Approaching the frequentist limit

We see from figure 2.1 that the maximum of P (λ|D) occurs at λ = 1 irrespective of

n. In fact it can be easily shown via differentiation that the rate which maximises the

posterior is

λ0 = arg max
λ

P (λ|D) = 〈t〉−1, (2.27)

indicating that the frequentist approach described in section 2.2.1 yields the mode of the

posterior distribution P (λ|D). Of course the Bayesian solution given here is preferable,

particularly for smaller values of n where the posterior has significant skewness. It is
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informative however to consider what happens in the limit of large n. In this limit, we

can make use of Stirling’s approximation, which states

nn

n!
∼ 1√

2πn
en. (2.28)

Substitution into the posterior yields

P (λ|D) ≈ 1

λ0

√
n

2π

(
λ

λ0

)n
exp

[
−nλ
λ0

+ n

]
. (2.29)

It is now useful to bring the λn/λn0 term inside the exponential as follows

P (λ|D) ≈ 1

λ0

√
n

2π
exp

[
−n
(
λ

λ0

− 1− ln

(
λ

λ0

))]
. (2.30)

We may also note from figure 2.1 that for n � 1 the posterior is very narrow, and as

such λ/λ0 ≈ 1 in areas of significant probability density. Accordingly we may replace

the logarithm in (2.30) with the following second-order Taylor series

ln

(
λ

λ0

)
≈ −1 +

λ

λ0

− 1

2

(
λ

λ0

− 1

)2

. (2.31)

Substitution yields

P (λ|D) ≈ 1

λ0

√
n

2π
exp

[
−n

(
λ

λ0

− 1 + 1− λ

λ0

+
1

2

(
λ

λ0

− 1

)2
)]

, (2.32)

which simplifies to

P (λ|D) ≈ 1

λ0

√
n

2π
exp

[
− n

2λ2
0

(λ− λ0)2

]
. (2.33)

We’ve shown that in the limit of large n the posterior is actually a normal distribution

with standard deviation

σ =
λ0√
n
. (2.34)

It is not unusual for a problem which is well-constrained by a large amount of data to

have a normal posterior, especially for a simple case such as this. This can in some

sense be considered a ‘frequentist’ limit, where a Bayesian and frequentist treatment
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of the problem yield essentially the same results.

We’ve shown here that the Bayesian approach shines in poorly-constrained problems

or where data is sparse, but as we’ll now discuss it is also very effective in tackling

complex problems involving many variables.

2.3 Inference of physics model parameters

In the previous section we examined a case involving only one model parameter (the

decay rate λ). However, our physics models often have multiple parameters, and fur-

thermore we may only be interested in inferring a sub-set of those parameters. For

example if a model contains a background offset or line, typically we are not interested

in the values of those background parameters; they are only present because they are

necessary for the model to properly reproduce the observations.

Bayesian inference offers an excellent solution to the problem of model parameter

estimation. Through a combination of Bayes’ theorem and marginalisation we are

able to obtain a distribution for only the parameters we do wish to infer by integrating

over those we do not. In this section we demonstrate this procedure through the use

of another example.

2.3.1 Example: Spectroscopy data analysis

Consider a thought experiment where a spectrometer-CCD system is being used to

capture the emission spectrum of a low-temperature plasma. Suppose that we are

particularly interested in two closely spaced spectral lines, and in the vicinity of these

lines the spectrum is given by

S(x, θ) =
A1

1 +
(
x−c1
w1

)2 +
A2

1 +
(
x−c2
w2

)2 + bx+ d, (2.35)
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2.3. Inference of physics model parameters

Table 2.1: Values used to generate the simulated data shown in figure 2.2.

A1 A2 w1 w2 c1 c2 b d
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Figure 2.2: Plot of the simulated data to be analysed in this example and the spectrum
from which it was generated.

where x is the CCD pixel coordinate. It is common practice to represent the set of all

parameters in a model with the vector θ (seen as an argument of S(x, θ) above). Here

we will assume the centre of the lines (c1 and c2) are known constants, and as such our

parameter vector is θ = [A1, A2, w1, w2, b, d].

To demonstrate the analysis procedure, a set of simulated data was generated using

(2.35). First, a simulated spectrum was produced by calculating S(x, θ) using the pa-

rameter values given in table 2.1. The simulated data were then generated by assuming

the measured values were Poisson distributed with the simulated spectrum serving as

the expected counts. Both the simulated spectrum and dataset are shown in figure 2.2.

In section 2.2 we obtained the distribution of our only physics parameter λ given the

experimental data. Initially we will seek to do the same here, but as we now have

multiple model parameters we require the joint distribution of the parameters θ given

the data D.
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Chapter 2. Bayesian data analysis

2.3.2 The model parameter posterior distribution P (θ|D)

Making use of Bayes’ theorem we may write the model parameter posterior as

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (2.36)

As before, we do not have information from previous experiments regarding θ, so our

choice of prior should reflect that lack of knowledge. Accordingly, we will take P (θ)

to be flat - a reasonable choice in such a case. We must now construct the likelihood

P (D|θ), which is the probability of all available data given the model parameters.

Let yi be the simulated counts measurement from pixel xi. We know in this case the

distribution of yi is Poisson (because we sampled from Poisson distributions to generate

the data), so the probability of yi given θ is

P (yi|θ) =
(S(xi, θ))

yi

yi!
exp [−S(xi, θ)]. (2.37)

As the {yi} are mutually conditionally independent we may use the result in (2.13) to

write the probability of D (the whole dataset) given the parameters as

P (D|θ) =
n∏
i=1

P (yi|θ) = exp

[
n∑
i=1

yi ln (S(xi, θ))− S(xi, θ)− ln (yi!)

]
. (2.38)

We could at this stage determine P (D) via the following integral:

P (D) =

+∞∫
−∞

· · ·
+∞∫
−∞

P (D|θ)P (θ) dθ, (2.39)

however this step is often omitted when conducting real data analysis. This is because

in general we only require relative values of probability density rather than absolute

values in order to draw conclusions from our results. Consequently, P (θ|D) need only

be determined up to a normalisation constant. Given that P (θ|D) ∝ P (D|θ) (for a flat

prior) we may decline to evaluate the above integral and simply write

P (θ|D) ∝ exp

[
n∑
i=1

yi ln (S(xi, θ))− S(xi, θ)− ln (yi!)

]
. (2.40)
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2.3. Inference of physics model parameters

Interpreting the posterior can be difficult if there are more than a few parameters. For

example, when we determined P (λ|D) in section 2.2 we could simply plot the posterior

as there was only one parameter. In our current example there are six parameters

total, and as there is no useful way to plot a six-dimensional probability distribution

an alternative approach is needed.

One option is to obtain a single-value estimate of all parameters by finding the θ which

maximises P (θ|D):

θ̂ = arg max
θ

[P (θ|D)] . (2.41)

θ̂ is the maximum a posteriori estimate (often called the MAP estimate) of the model

parameters, and is typically determined using a global optimisation algorithm.

2.3.3 Marginalisation of nuisance parameters

Although we could use the MAP estimate to get a value for each parameter, is often

the case that we are only interested in inferring the value of sub-set of the model

parameters rather than all of them. We will now split θ into two groups - one we wish

to infer which we will call z and one we do not which we will call ε. The distribution

we want to obtain is therefore P (z|D) rather than P (θ|D). The ε are often given the

name ‘nuisance parameters’ in the literature, because they are necessary for evaluating

the model but we don’t care about their value.

As P (θ|D) ≡ P (z, ε|D), we may use marginalisation to remove the dependence of the

posterior on ε through integration:

P (z|D) =

+∞∫
−∞

· · ·
+∞∫
−∞

P (z, ε|D) dε (2.42)

This technique of marginalising unwanted model parameters is very powerful, and

one of the key advantages offered by the Bayesian approach. We may think about

the marginalisation procedure as allowing us to give up information regarding the

parameters in ε in order to improve our information regarding those in z.
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In the same way we determined a MAP estimate for all parameters in (2.41), we may

define a MAP estimate of z as

ẑ = arg max
z

[P (z|D)] . (2.43)

We will now discuss an example of applying marginalisation to the simulated spectral

data.

2.3.4 Inference of the line widths: P (w1, w2|D)

Suppose that the objective of our experiment is to determine the widths of the two

spectral lines in the data, and we are not interested in the values of the other pa-

rameters. Following the procedure described above in section 2.3.3 we can divide the

parameters such that z = [w1, w2] and ε = [A1, A2, b, d]. The posterior for the two

widths is then given by

P (w1, w2|D) =

+∞∫
−∞

· · ·
+∞∫
−∞

P (w1, w2, ε|D) dε. (2.44)

P (w1, w2|D) was evaluated numerically using the simulated data and the results are

summarised in figure 2.3. The MAP estimate for the widths is w1 = 2.05 and w2 = 3.29,

and as we would expect, the actual values of w1 = 2 and w2 = 3 lie in the high

probability density region (inside the 95% contour) of P (w1, w2|D).

It is useful at this point to consider the distributions P (w1|D) and P (w2|D) (shown in

figure 2.4) which we can obtain by further marginalising P (w1, w2|D):

P (w1|D) =

∞∫
0

P (w1, w2|D) dw2, (2.45)

P (w2|D) =

∞∫
0

P (w1, w2|D) dw1. (2.46)

Given that P (w1|D) and P (w2|D) are distributions for the two parameters we are

interested in, one might ask “why should we base our conclusions on P (w1, w2|D)
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Figure 2.3: A contour plot of P (w1, w2|D) against the peak widths w1, w2 using credible
regions. Adjacent contours differ in their contained probability by 0.1 (except for the 99%
contour). The ‘actual value’ marker indicates the values of w1 and w2 from table 2.1.

rather than P (w1|D) and P (w2|D)?”. The answer is that if a conclusion relies on the

value of w1 and w2 simultaneously, we must use the probability of w1 and w2 given the

data to inform that conclusion.

2.4 Summary

Gregory [23] gives a concise summary of the merits of Bayesian analysis, saying “It

provides an elegantly simple and rational approach for answering, in an optimal way,

any scientific question for a given state of information. This contrasts to the recipe

or cookbook approach of conventional statistical analysis.” The ‘cookbook approach’

alludes to the fact that conventional statistics has developed separate, and often very

varied, strategies for solving any conceivable class of problem. The frequentist approach

is therefore to ‘look up’ an appropriate strategy by matching the current problem with

one addressed in some statistics reference text.

By contrast, Bayesian probability theory provides a completely general approach to

solving problems from first principles in the following way:
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Figure 2.4: Plot of the marginal posterior distributions for the two widths w1 and w2.

(a) State the problem in terms of the desired posterior distribution.

(b) Express all prior information regarding the problem as probability distributions.

(c) Apply the tools described in this chapter (Bayes’ theorem, the sum and prod-

uct rules, marginalisation) to express the desired posterior in terms of known

quantities and compute the answer.

In this chapter we’ve given a brief introduction to Bayesian probability theory and

shown through simple examples how it may be used to great effect in data analysis

problems. Throughout the rest of this thesis, many of the concepts and techniques

discussed here will be used consistently.
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Chapter 3

Developing tools for Bayesian

analysis

3.1 Introduction

In this chapter we discuss some of the computational challenges associated with Bayesian

approaches to data analysis and how they may be dealt with. In particular we investi-

gate improvements to grid-based posterior evaluation in cases where the conventional

approach breaks down. Calculation of credible region boundary contour densities is

also discussed, along with the use of these boundary contours in presenting inference

results.

3.2 Computational challenges of many-parameter

inference

In the previous chapter we discussed how multi-dimensional integrals arise naturally

in Bayesian data analysis through marginalisation of the nuisance parameters ε. The

dimensionality of the integral which must be evaluated is equal to the number of

parameters in ε, and if this is greater than 5 or 6, conventional approaches to numerical
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Chapter 3. Developing tools for Bayesian analysis

integration are no longer tractable. In this section we discuss why this is the case, and

the conventional solution to the problem.

3.2.1 Limitations of grid-based approaches

When evaluating an integral over many dimensions of a probability distribution we

quickly find that grid-based methods become challenging. To understand why, first

consider that we must choose the prior for marginalised parameters P (ε) somewhat

conservatively as we do not know a priori exactly where in the probability space the

regions of significant density are located, or the extent of those regions. In the absence

of information from other sources, P (ε) is often taken as a uniform prior, which sets

reasonable upper and lower bounds on the values of the ε. We will make multiple

references during this discussion to the idea of the ‘region of significant density’ - we

define this as the region bounded by a contour of constant probability density which

encloses almost all probability. In other words, the integral of the distribution over

the region of significant density is sufficiently close to unity that we would consider the

integral to have converged.

The root of the problem is as follows: any hyper-rectangular grid which is sufficiently

large to capture all regions of significant density will simultaneously have most of its

volume taken up by areas of insignificant density. This may seem counter-intuitive

initially, but can be demonstrated clearly by the following example.

Suppose we have a 2D probability space, and the area of significant density is circular

with radius R. For discussing shapes with an arbitrary number of dimensions, a filled

circle (i.e. one which has area) is referred to as a ‘ball’, or more specifically in this 2D

case as a 2-ball. The best-case scenario for evaluating the integral of this probability

space on a rectangular grid would be to make the grid the smallest square (or 2-cube)

which can contain the 2-ball, i.e. one whose sides are 2R. If we consider the ‘efficiency’

of this grid to be the ratio of the area of significant density to the total area of the
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grid, we find it is π/4 ≈ 0.79. This is fairly good, but consider the volume of the same

ball and cube for n dimensions:

Vball =
πn/2Rn

Γ
(
1 + n

2

) , Vcube = (2R)n. (3.1)

Their ratio, and therefore the grid efficiency is then

Vball

Vcube

=
πn/2

2n Γ
(
1 + n

2

) . (3.2)

We need not graph this function to see what will happen as n is increased - the de-

nominator will grow much more rapidly than the numerator causing the efficiency to

tend to zero as n→∞. Indeed in the jump from 2D to 3D we drop from 79% to 52%

efficiency, and by n = 10 we reach 0.25%. Even in this ideal case, evaluating the entire

grid becomes intolerable for higher dimensionality.

An n-cube of sides 4R is a more realistic scenario (although still generous), and in this

case the 3D efficiency is just 6.5%. This does not imply that grid-based approaches

must be discarded completely, only that calculating an integral by evaluating a multi-

dimensional rectangular grid in its entirety is out of the question.

A general solution to this problem requires an integration method which limits evalua-

tions of the posterior distribution such that the majority take place within the regions

of significant probability density.

3.2.2 Posterior sampling

The most widely-used alternative to grid-based approaches are Markov-chain Monte-

Carlo (MCMC) methods. Rather than trying to map out the posterior in a systematic

way, MCMC seeks to generate a representative random sample from the posterior

distribution. Consequently, the posterior doesn’t need to be explicitly integrated in

order to obtain marginal distributions - they are instead generated by projecting the

sample onto whichever sub-set of the parameters are desired.
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MCMC methods generate a ‘chain’ of locally-correlated samples using a Markov pro-

cess, where the probability of moving to any chosen new state (i.e. point in the prob-

ability space) is set only by the currently occupied state. At a high level MCMC can

be viewed as random walk around the probability space where some steps are rejected

and re-drawn based on particular criteria. If these criteria are chosen correctly, the

walk will produce a representative sample given enough steps. We will not discuss the

specifics of how these methods operate, but useful descriptions can be found in Gelman

[24], Kruschke [25] and a review by Brooks [26].

3.2.2.1 Convergence

It can be challenging to decide at what point a given chain has sufficiently explored

the posterior such that the sample produced can be considered to be representative,

and capable of yielding accurate estimates of marginal distributions. A variety of

methods for making decisions regarding convergence have been proposed [27, 28], but

this remains one of the more difficult aspects of using MCMC.

3.2.2.2 Burn-in

As the starting location of any chain is not guaranteed to lie in an area of the posterior

which contains significant density, often chains must ‘crawl’ towards the high-density

areas before they can begin to generate a representative sample. For this reason the

initial evaluations of the chain, up to some chosen number, are discarded in order to

ensure the sample is not biased. These discarded evaluations are called the ‘burn-in’

period of the chain, and while necessary this procedure does decrease computational

efficiency.

3.2.2.3 Thinning

After a chain is terminated and the burn-in has been removed the sample is sometimes

‘thinned’, where every n’th element of the chain is kept and all others are discarded.

This is done in order to produce uncorrelated samples. Adjacent samples in the chain

are correlated with one another, but the extent of the correlation between two elements

falls as their separation in the chain is increased. By discarding typically the large

majority of the evaluations thinning also has a large impact on computational efficiency,

but because of this its usefulness in most situations has been questioned [29].
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3.2.2.4 Limits on parallelisation

Because the calculation of each new sample in the chain requires the previous one, the

evaluation of a chain is typically limited to a single computational thread. In some

cases the calculation of the posterior may itself be parallelised, but even if this is an

option it is typically not worthwhile unless the cost of a single evaluation is very high.

The workload can instead be distributed by evaluating multiple chains simultaneously

each using its own thread. This does however increase the amount of wasted posterior

evaluations as every chain must discard its burn-in period, and sets an upper-limit on

the number of chains which can be usefully evaluated in parallel.

3.3 Improving grid-based approaches

We now investigate the possibility of an alternative to MCMC methods for problems of

relatively low dimensionality based on intelligently evaluating regular grids. We showed

earlier that evaluating posterior distributions on many-dimensional rectangular grids is

extremely inefficient, because the vast majority of the grid cells contain no significant

probability density. To solve this problem, an algorithm is required which can locate

areas of significant density in the probability space, and only evaluate grid cells in those

regions. For any such algorithm to be of general use, the grid cannot take the form of

a multi-dimensional array for two reasons. Firstly, for higher dimensionality problems

the resulting total amount of grid cells could not be stored in the working memory,

and secondly defining the grid through a fixed array requires that the grid is of finite

extent in the probability space, and we must choose this extent a priori.

Instead we will define the grid simply by discretising the entire probability space,

and store any evaluation of the posterior with the coordinates of that discrete spatial

point. This way, the only cells which must be kept in memory are those which have

been evaluated and the grid has no defined edges. The algorithm must serve 3 primary

functions. First, it must locate the regions of highest probability density in the space,

second it must decide what constitutes ‘significant density’, and finally it must evaluate

all points in the discretised probability space which are considered significant.
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3.3.1 The GridFill algorithm

We now present details of a novel algorithm named ‘GridFill’ which was developed to

meet these criteria. GridFill has three core loops which each serve a specific function:

• ‘Find’ - uses a Monte-Carlo search to locate areas of significant density.

• ‘Climb’ - uses discrete-space hill-climbing to find the maxima of significant density

regions.

• ‘Fill’ - evaluates all cells which are expected to have a value above a threshold

based on a chosen fraction of the global maximum value.

The algorithm makes decisions about which cells to evaluate based on two sources of

information - the density values of cells which have already been evaluated and the

‘status’ value of cells. Each cell has a integer status value of 0, 1 or 2 which are used

to identify a given cell as having a certain property. All cells initially have status 0,

which indicates that they are unevaluated. A status of 1 indicates that the cell has

been evaluated and is an ‘interior’ cell, meaning that all its nearest-neighbours (all

cells reachable by allowing each of the current cell’s grid coordinates to be altered by

a maximum of 1) are also evaluated. A status of 2 indicates that the cell is evaluated

and is an ‘edge’ cell, having at least one unevaluated (i.e. status 0) nearest-neighbour.

Aside from the densities and statuses, there are four additional variables used: s and

smax are the current and maximum ‘search count’. Each time the Find loop evaluates

a cell s is incremented by one - when s reaches smax it is assumed that all significant

maxima have been located and the Fill loop is initiated. smax may be chosen by the

user to suit a particular problem or set automatically based on the grid dimensions.

Pmax stores the current maximum density value of all evaluated cells.

The Climb loop uses discrete-space hill-climbing in order to find local maxima. This

works by calculating the probability density of all the nearest-neighbours of the current

cell and comparing these densities to its own. If no neighbours have a larger density,

the current cell is deemed to be a local maximum, else the neighbour with the largest
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density becomes the new current cell. This process is repeated until a local maximum

is located. This method is likely less efficient than other optimisation algorithms, but

has the significant benefit that because all evaluations occur on the grid, none of the

evaluations are ‘wasted’.

Each time the Climb loop locates a maxima, its value is compared to Pmax, and if

required Pmax is updated to reflect the new maximum density. The ‘threshold’ τ is the

fraction of Pmax which is used to distinguish between density values which are deemed

to be significant or not (i.e. only density values greater than τPmax are considered

significant).

A high-level description of the algorithm is as follows:

(a) Starting cell is chosen as the centre of the grid (unless specified otherwise).

(b) Climb loop evaluates cells in the up-hill direction until the first maxima is located.

Pmax is set equal to the density of the maxima.

(c) Find loop searches for a new cell which has a value greater than τPmax.

(d) Once a cell meeting this criteria is found, the Climb loop travels to the local

maxima of that cell. If the density of the maxima is greater than Pmax, its value

is updated.

(e) Steps (c) & (d) are repeated in order to continually search for significant maxima

while s < smax.

(f) When s = smax the Fill loop identifies every edge cell whose value is greater than

τPmax, then creates a list of the nearest-neighbours of those cells. Any cells in

this list which are status zero are then evaluated (then becoming status two).

(g) Step (f) is repeated until there are no remaining edge cells with value greater

than τPmax, at which point the algorithm terminates.

A complete flow-chart description of GridFill is shown in figure 3.1.
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Figure 3.1: Flow diagram for the current version of GridFill. Action and decision nodes
are outlined in blue and red respectively. ‘Current cell’ is abbreviated as CC, and ‘nearest-
neighbours’ as NN.

3.3.2 Implementation

GridFill has been implemented as a class in Python 3. Early versions were limited to

2D and 3D problems in order to test various approaches to the 3 core program loops

(Find, Climb and Fill). The code was later redeveloped to handle problems of arbitrary

dimensionality. Containing the algorithm inside a class has proved particularly conve-

nient as it allows GridFill to be applied to any problem without modification. After
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the class is initialised, the user requests the ‘to evaluate’ list - this is simply a list of

coordinate vectors which correspond to particular points in the discretised probability

space. The user evaluates the posterior distribution at each of these points, and passes

these values back to the class. GridFill then uses this information to generate a new

list of points to be evaluated and the process is repeated in a loop until the algorithm

terminates.

Figure 3.2 shows the evaluated areas of a 2D probability space containing four bivariate

normal distributions at various stages of the algorithm. The process by which the

probability space is mapped out is difficult to illustrate in more than two dimensions,

but the progression is effectively the same as that seen in Figure 3.2 regardless of the

number of dimensions.
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Figure 3.2: Plots of a 2D posterior distribution evaluated using GridFill after various num-
bers of cell evaluations. The upper-left panel shows the first 250 evaluations of the posterior,
and the upper-right and lower-left panels show 750 and 1250 evaluations respectively. The
lower-right panel shows the posterior after GridFill has terminated, in this case after ∼ 1700
evaluations. The colour of each cell indicates the posterior value at that location.
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3.3.3 Performance testing

The total run-time T of the algorithm may be expressed as

T = m (t̄ev + t̄d) , (3.3)

where m is the total cell evaluations, and t̄ev, t̄d are the mean evaluation and decision

times respectively. We define t̄ev as the average time required to evaluate the posterior

distribution for a single cell, and t̄d as the amount of time GridFill spends deciding

which cells to evaluate divided by the total number of evaluations. If we assume that

evaluating the same problem on a rectangular grid takes a time T0 = m0t̄ev where m0

is the total number of elements in the grid, then the speed-up factor given by GridFill

is

T

T0

=
m

m0

(
1 +

t̄d
t̄ev

)
. (3.4)

The two ratios m/m0 and t̄d/t̄ev are therefore the key factors which determine the

performance of the algorithm. To investigate these quantities we will use the following

test posterior distribution

P (θ|D) =
A1(

σ
√

2π
)n exp

[
−

n∑
i=1

(θi − c1)2

2σ2

]
+

A2(
σ
√

2π
)n exp

[
−

n∑
i=1

(θi − c2)2

2σ2

]
, (3.5)

where n is the number of dimensions. The rationale here is that this simple posterior

can be marginalised analytically for any of the θ, yielding

P (θ0|D) =
A1

σ
√

2π
exp

[
− 1

2σ2
(θ0 − c1)2

]
+

A2

σ
√

2π
exp

[
− 1

2σ2
(θ0 − c2)2

]
. (3.6)

This allows direct comparison between the analytically and numerically determined

marginal posterior.

GridFill was used to evaluate the test posterior for n between 2 and 7, and the results

are summarised in figure 3.3. The computation times quoted in these results were

obtained using a Intel Xeon X5470 processor. Firstly we see that in all cases m < m0,

but additionally that the ratio m/m0, the fractional reduction in total evaluations
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Figure 3.3: Summary of GridFill testing results. (upper-left): The amount of evaluations
requested by GridFill prior to termination, and the minimum size any rectangular grid which
could hold those evaluations. (upper-right): The fractional reduction in total evaluations
(with respect to the ideal rectangular grid), along with the upper-bound predicted in (3.2).
(lower-left): The mean decision time t̄d for each test case. (lower-right): Comparison of the
analytically and numerically determined marginal posterior for the n = 6 case.

compared with a rectangular grid, falls off quickly with n (super-exponentially, in fact).

Due to the symmetry of the test problem, the minimum rectangular grid needed to

contain the significant density regions has the same number of points in each dimension

regardless of the total number of dimensions. Consequently the size of this grid (shown

in red, top-left figure 3.3) is given by Ln for grid length L and dimensionality n, with

L = 40 in this case. We also find that m/m0 falls under the theoretical upper-bound

set by the ideal case of the minimum n-cube able to encapsulate a given n-ball, the

expression for which is given in (3.2).

The calculated values of the mean decision time were initially unintuitive, having a

minimum at n = 4. After consideration, we found that this occurs because the Find

and Climb loops are unavoidably less efficient on a per-cell basis than the Fill loop.

For low n, the number of cells evaluated in the Find/Climb loops is comparable to the

Fill loop, but as n increases the Fill loop quickly dominates the evaluations causing the
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initial fall in t̄d. However, because the computational complexity of GridFill increases

(albeit gently) with both n and m (and that m increases rapidly with n), t̄d begins to

rise again for n > 4. In this case t̄ev ≈ 20µs, and as such variation in the t̄d/t̄ev term

from (3.4) has little impact on the speed-up factor when compared with m/m0.

We also note that the numerical marginalisation results from GridFill show excellent

agreement with the analytical result in (3.6) for all n tested. Ultimately the accuracy

of the numerical results depends the spacing of the probability space discretisation and

the threshold value (which was taken to be e−7 in these tests).

3.3.4 A note on parallelisation

For greater than 2 dimensions, the overwhelming majority of the posterior evaluations

take place during the algorithm’s ‘Fill’ state. Typically, these evaluations are requested

in a relatively small number of large batches. Figure 3.4 shows the number of requested

posterior evaluations per iteration during the Fill loop for the 5-dimensional test case

from the previous section. All of the requested evaluations may be computed indepen-
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Figure 3.4: Plot of the number of evaluations requested by GridFill per iteration during
the Fill loop in a 5D test-case.

dent of one another, meaning that workload of each batch can be distributed across

effectively any amount of available CPU cores because there are many thousands of
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evaluations per batch. In this case the 99.2% of the total evaluations occurred during

the Fill loop, making the overall process very parallelisable. Although GridFill is cur-

rently implemented in Python, the function which evaluates the posterior may be in

another language which is simply called from Python.

This approach was successfully tested using a posterior function implemented in For-

tran. The coordinates of requested evaluations were written to file as binary during

each GridFill iteration, and then a Fortran executable was called from Python. The

Fortran code distributed the evaluations of the posterior at each coordinate over any

chosen number of processors using OpenMP.

Distributing the posterior evaluations in this way reduces the mean evaluation time

t̄ev, but has no impact on the mean decision time t̄d. Assuming an ideal scaling where

for p processors t̄ev is reduced to t̄ev/p, the parallel running time is

Tp = m

(
t̄ev
p

+ t̄d

)
, (3.7)

which implies a speed-up factor of

T

Tp
=

t̄ev + t̄d
p−1t̄ev + t̄d

=⇒ lim
p→∞

T

Tp
= 1 +

t̄ev
t̄d
. (3.8)

The effectiveness of parallelisation is therefore determined by the ratio t̄ev/t̄d. Some

effort was made to optimise GridFill during the course of its development, which re-

duced t̄d significantly, however we expect meaningful further reduction is possible if

additional time were dedicated to optimisation. For the test calculations summarised

in figure 3.3 we found that t̄ev ≈ 20µs, meaning t̄ev > t̄d for all n tested. This is

encouraging because the posterior distribution used in the tests was extremely com-

putationally inexpensive when compared to posteriors in physics inference problems,

which are typically tens or hundreds of times more expensive. Consequently, in applied

cases we can expect that t̄ev � t̄d, implying that parallelisation will offer significant

performance improvements.
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3.3.5 Comparison with MCMC

Although the results presented clearly demonstrate the advantages of GridFill over

conventional grid-based approaches, we must also consider how it compares to MCMC

methods. GridFill has some desirable properties in this regard: unlike MCMC, all

posterior evaluations are kept and contribute towards characterising the posterior, none

are ‘thrown away’. Additionally, as GridFill self-terminates when all significant areas

of the posterior have been evaluated, it does not suffer from the uncertainty of MCMC

methods when deciding whether the chains have converged to a representative sample.

Provided that the Monte-Carlo search in the ‘Find’ loop successfully locates all high-

density areas, GridFill will yield the same answers any time it is run for the same

problem, making it effectively deterministic in comparison to the stochastic nature of

MCMC.

In order to make a direct comparison, an implementation of the Metropolis-Hastings

algorithm (MHA) and GridFill were applied to the same test problem, specifically a

5-dimensional problem of the type shown in (3.5). The MHA implementation used for

these tests has the ability to automatically tune its proposal distribution widths to

optimal values, such that the chain explores the posterior as efficiently as possible. To

make the comparison, the run-time of GridFill was measured over multiple applications

to the test problem - many instances of the MHA were then executed for the same

length of time. These results are summarised in figure 3.5.

We find that the MHA produces very unreliable estimates of marginal distributions for

chain lengths having a similar execution time to GridFill for this problem. The total

number of posterior evaluations required by GridFill for this test was ∼ 2.5 × 105,

with the equivalent MCMC chains having length ∼ 9× 104. The error in the GridFill

estimate was small, being less than 1% of the peak value everywhere. The test problem

examined here was not intentionally chosen to be a failure-case of the Metropolis-

Hasting algorithm, but it appears that this is the case. We do not expect that MCMC

will perform this poorly versus GridFill over a range of different test cases. As such,

further testing on other problems is required - this will be the subject of future work.
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Figure 3.5: Comparison of GridFill and the Metropolis-Hastings algorithm. (left): GridFill
estimate of the marginal distribution for a 5D test problem. The difference between the
spline estimate and the actual marginal distribution would not be visible at the scale of
this graph. (right): MCMC estimates of the marginal distribution. The solid lines show 15
separate estimates obtained using the MHA, with the actual marginal distribution shown as
the dashed line.

3.3.6 Future development

Despite the benefits discussed in the previous subsection, as it stands the number of

total posterior evaluations required still grows too fast to allow the algorithm to be

applied to problems with more than 7 or 8 dimensions meaning MCMC remains the

only option in these cases, at least for now. To understand why, we must consider the

behaviour of probability distributions in many-dimensional spaces. Provided that the

posterior is not periodic in any direction, we can make a few general statements, which

are true in most cases:

(a) Near the mode, the probability density is high and changes rapidly over small

length scales.

(b) Far from the mode, the probability density is low and changes slowly over large

length scales.

(c) For large n, The volume of the probability space containing densities similar to the

mode density Pmax is much, much smaller than that which contains probabilities

similar to the threshold density τPmax.
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From these statements we can make several useful observations. Firstly, to properly

characterise the quickly-varying, high-density region near the mode a finely-spaced grid

is needed. As the volume of this region is small, this is in itself not a problem. However,

if this same finely-spaced grid is also used to map out the low density areas, which have

an extremely large volume, the total number of cells required becomes impractical. The

implication is clear: the volume of the grid cells must vary with the local probability

density if this problem is to solved. This is in fact the key behind the effectiveness

of Markov-chain methods - by generating a sample from the posterior, the number of

evaluations around a particular density is proportional to that density, ensuring the

posterior can be well characterised without extremely large numbers of evaluations.

The next version of GridFill, which is currently in development, will adaptively sparse

the grid as the probability density falls. This will be achieved by initially setting the

threshold value τ to be much higher than we expect would be ultimately required.

GridFill then would run as described in figure 3.1, but once the end condition is met,

rather than terminating, GridFill would lower the threshold value and move back into

the Fill loop. At each change of threshold, we are able to track the total probability

of all cells in the grid, allowing us to set an end condition based on the convergence

of the total probability rather than needing to guess the appropriate threshold level a

priori.

In addition to the tracking total probability, we will also track the average probability

per cell of evaluations carried out between threshold adjustments. The probability per

cell can then be used as part of a criterion for deciding when the grid density should be

sparsened. After sparsening, the greatly increased volume of each cell will significantly

raise the probability per cell initially, but it will continue to fall as the threshold is low-

ered potentially leading to additional sparsenings. This approach effectively separates

the evaluated space into multiple contiguous regions, with each region characterised

by an effectively separate grid, When the posterior is integrated in order to calculate

marginal distributions, the integrals over each region may be calculated separately and

summed together.
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3.4. Probabilistic calculation of credible region contour densities

Even without these proposed improvements, we have still found GridFill to be a useful

tool, and it has been used during this thesis to calculate marginal distributions for both

the spectroscopy analysis example given in chapter 2 and charge-exchange parameters

in chapter 5.

3.4 Probabilistic calculation of credible region con-

tour densities

Credible regions are an important tool for effectively presenting and interpreting prob-

ability distributions obtained via Bayesian inference, especially in the case of bivariate

distributions. They are the regions of the probability space which contain all values

of probability density greater than some bounding value z, and enclose a total prob-

ability c which we choose. c is typically chosen as either an ‘n-sigma’ value, which is

the probability contained within ±nσ of the mean of the normal distribution, or as a

suitably high fraction such as 95%.

Defining credible regions in this manner (sometimes referred to as highest-density re-

gions) ensures both that the region has the smallest possible extent whilst still con-

taining the chosen total probability, and that every value of the parameters inside the

region is more probable than all those outside.

Consider an arbitrary multivariate probability distribution f(x). Let the total proba-

bility contained in the region f(x) ≤ z be F :

F (z) =

∫
· · ·
∫

f(x)≤z

f(x) dx, (3.9)

where 0 ≤ z ≤ max(f). F (z) is in some sense a cumulative distribution of f(x), but

one where the total probability is mapped as a function of the values of f(x) itself

rather than x. Let the bounding density of the credible region enclosing a probability

c be ẑ which may be obtained as the solution to F (ẑ) = 1 − c. Evaluating F (z) is

challenging using grid-based numerical integration techniques as the region f(x) ≥ z

65



Chapter 3. Developing tools for Bayesian analysis

can have a somewhat arbitrarily shaped footprint. Here we show that a semi-continuous

probability distribution for the bounding density may be constructed using any set of

samples drawn from f(x).

3.4.1 Constructing the bounding density probability distribu-

tion

Suppose we have n samples {xk} drawn from f(x), and each sample has a corresponding

probability density fk = f(xk). Let the {fk} be ordered such that fk−1 < fk < fk+1.

Consider a probability density value z in the range [fk, fk+1] - we know that there are

k samples with a lower probability density than z and n − k samples with a higher

density. The probability that this arrangement occurs is

P (f1, . . . , fk ≤ z < fk+1, . . . , fn) = F k(1− F )n−k. (3.10)

Given that F ∈ [0, 1] we can convert the above into a probability density through

division by ∫ 1

0

F k(1− F )n−k dF =
k!(n− k)!

(n+ 1)!
, (3.11)

yielding a probability distribution for F (z):

P (F |n, k) =
F k(1− F )n−k(n+ 1)!

k!(n− k)!
. (3.12)

Recall from (3.10) that the value of k defines a range of possible z values, and if we

set F (z) = 1 − c the density z becomes the bounding density ẑ. We now make this

substitution in (3.12) to obtain an expression we will label pk:

pk =
(1− c)kcn−k(n+ 1)!

k!(n− k)!
. (3.13)

For ẑ in the range [fk, fk+1] we may say that P (ẑ|c) ∝ pk. Given that we know

0 ≤ ẑ ≤ max (f), it is at this point convenient to add two extra elements to the {fk}:

f0 = 0, fn+1 = max (f) . (3.14)
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Figure 3.6: Two evaluations of the 1-sigma bounding density probability distribution for
two separate samples drawn from a circular bivariate normal distribution with unit variance.
The dashed line shows the exact analytical value of the 1-sigma bounding density.

This allows the distribution P (ẑ|c) to be defined in a piecewise manner as follows

P (ẑ|c) =



p0/λ : f0 < ẑ < f1

p1/λ : f1 < ẑ < f2

...

pn/λ : fn < ẑ < fn+1

, (3.15)

where λ is a normalisation constant given by

λ =
n∑
k=0

pk (fk+1 − fk) . (3.16)

We now have the density of ẑ everywhere in [f0, fn+1] which, because of our additions

in (3.14), is the full domain [0,max(f)]. The mode can be easily obtained as the region

fm < arg max
ẑ

P (ẑ|c) < fm+1, m =

⌊
1− c
n

⌋
. (3.17)

Figure 3.6 shows P (ẑ|c) evaluated for two separate sets of samples drawn from the
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following circular bivariate normal distribution:

f(x) =
1

2π
√
|Σ|

exp

[
−1

2
x>Σx

]
, Σ =

1 0

0 1

 , x =

x
y

 . (3.18)

The bounding densities can be obtained analytically for this distribution as

c =

∫∫
f(x)≥ẑ

f(x) dx =⇒ ẑ =
1− c
2π

. (3.19)

Taking the 1-sigma probability of c = 0.6827 gives the bounding density as z = 0.0505,

which as expected falls within the high probability regions of P (ẑ|c) for both sets of

samples.

3.4.2 Mean, variance and error scaling

Calculating the moments of P (ẑ|c) is trivial given that the probability density is con-

stant between each set of samples [fk, fk+1], so P (ẑ|c) has no explicit ẑ dependence.

The mean is therefore a weighted sum of the integrals of ẑ over each [fk, fk+1] interval:

µ =

fn+1∫
f0

ẑP (ẑ|c) dẑ =
1

λ

n∑
k=0

pk

fk+1∫
fk

ẑ dẑ =
1

2λ

n∑
k=0

pk
(
f 2
k+1 − f 2

k

)
. (3.20)

In the same way the variance is simply

Var [ẑ] =
1

λ

 n∑
k=0

pk

fk+1∫
fk

ẑ2 dẑ

− µ2 =
1

3λ

(
n∑
k=0

pk
(
f 3
k+1 − f 3

k

))
− µ2. (3.21)

Clearly, because P (ẑ|c) is constructed from a random sample the mean and variance

themselves have some distribution of possible values prior to the drawing of the sample.

This is not to suggest that the expression in (3.21) is an approximation - the calculated

variance is exact for a given sample. The distribution of possible values arising from

different samples reflects that each sample carries different information contributing

toward our knowledge of ẑ. This is illustrated in figure 3.7 - variances calculated from

different samples of the same size have a distribution of values, but the expected value
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Figure 3.7: Each point represents an independent sample drawn from (3.18). The variance
of the bounding density calculated using (3.21) is here seen to be inversely proportional the
the sample size n.

of this distribution is inversely proportional to the sample size n. This aligns with our

expectation from Monte-Carlo techniques that the error (i.e. the standard deviation)

should fall as one over the root of the sample size, which is indeed what we see:

√
Var [ẑ] ∝∼

1√
n
. (3.22)

The ability to calculate the variance exactly is useful because it allows the sample size

to be increased until the uncertainty in the contour density falls to the desired level.

The tolerance required can be determined from the fact that the separation between

the modes of the distributions for adjacent contours must be much larger than the

standard deviation of either distribution.

3.4.3 Effective presentation of inference results

Bivariate distributions are often presented in a fashion similar to that in figure 3.8.

Colour plots such as this can be useful for gaining qualitative appreciation for the

structure of the distribution, but do a poor job of giving quantitative information

about the probability of the result falling in particular regions of the parameter space.
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Figure 3.8: Example of a typical colour contour plot used to show the structure of a
bivariate probability distribution. The distribution shown here is used only for the purpose
of discussing plotting techniques.

Boundary contours of credible regions may be added to colour plots to alleviate this

problem.

However, we assert that optimal way to present results of this type is to contour

exclusively using credible regions. Normally in contour plots the levels for each contour

are selected based only on probability densities - for example by picking a maximum

and minimum density and generating a number of uniformly-spaced levels to fill that

range. In this case the jump between adjacent contours represents a fixed change in

probability density. Our suggestion is to choose the contour levels such that the jump

between adjacent contours represents a fixed change in total contained probability.

The distribution shown in figure 3.8 has been re-plotted in figure 3.9 using the suggested

method. Every contour (other than that at 99%) has a total contained probability

which differs from its neighbours by 0.1. Contouring in this way gives much clearer

quantitative information to the reader, and additionally gives a sense of the gradients of

contained probability in the parameter space, rather than gradients in local probability

density.
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Figure 3.9: The distribution shown in figure 3.8 is plotted here using only credible region
boundary contours. The solid contours run from 5% to 95% contained probability with gaps
of 10%. The contours at 65% and 95% are highlighted as they are closely analogous to the
one and two sigma contours. The cross marker shows the location of the global maximum
(i.e. the mode).

3.5 Summary

Calculation of marginal distributions in Bayesian data analysis often necessitates the

evaluation of many-dimensional integrals over the posterior. In section 3.2 we demon-

strated theoretically that conventional grid-based approaches to evaluating such in-

tegrals for a high number of dimensions n are extremely inefficient, with only a tiny

fraction of the grid cells containing any significant probability density. A brief overview

of Markov-chain Monte-Carlo methods was given, which are currently the most widely-

used solution to the problems of high-n integration.

In section 3.3 we investigated whether grid-based approaches could be improved to

offer a viable alternative for certain classes of integration problem. This led to the

development of the GridFill algorithm, which determines what areas of a probability

space contain significant probability density and evaluates only these areas. Discussions

of GridFill’s design and implementation were presented, and the performance of the
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algorithm was assessed for various n using a test-case which could be scaled to any

chosen number of dimensions. The results showed that GridFill performs drastically

better than a conventional grid, and that it is undoubtedly a useful tool for lower-

n marginalisation problems. The issue of GridFill’s lack of applicability to higher-n

problems was discussed at length, and a modification to the algorithm was proposed,

which we expect to greatly improve performance for large n. Future work on GridFill

will focus on implementing these improvements, and further quantitative comparison

with MCMC methods.

In section 3.4 the usefulness of credible regions in interpreting results in Bayesian

inference was discussed. The calculation of the probability density of the contour which

forms the boundary of a credible region is challenging using grid-based approaches, but

is made much easier with a Monte-Carlo approach. We showed that a semi-continuous

probability distribution for the boundary density for a region containing any chosen

amount of total probability may be constructed using any sample drawn from the

distribution. This allows the uncertainty in the calculation of the boundary density to

be determined exactly, so that the sample size may be increased until the uncertainty

falls to desired levels. Finally, we discussed the presentation of 2D inference results,

and proposed a standardised approach where distributions are visualised using the

boundary contours of a series of credible regions containing a set of fixed probabilities.

72



Chapter 4

Probabilistic noise-correction of

discrete Fourier transform

coefficients

4.1 Introduction

Advancing our understanding of magnetic confinement fusion has often necessitated

progressively more challenging measurements and complex diagnostic systems. The

ability of our instruments to make such measurements can be limited by a poor signal-

to-noise ratio (SNR). As a result, the use of signal processing techniques to extract

information from noisy data has become an important part of modern magnetic con-

finement research.

This work was motivated by an experiment on the KSTAR tokamak in South Korea

in which electron temperature measurements required careful signal analysis. KSTAR

possesses an electron-cyclotron emission imaging (ECEI) diagnostic capable of measur-

ing fluctuations in electron temperature in a 2D plane with excellent spatiotemporal

resolution [30]. The nature of the emission process causes the temperature as mea-

sured over an integration time to fluctuate randomly about the true value, resulting in

thermal Gaussian noise.
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The experiment aimed to measure two physics parameters, ∆′ and wc, which determine

the stability and evolution of neo-classical tearing modes [17, 31]. In particular, wc is

predicted to subtly affect the spatial profile of the electron temperature in the vicinity

of a magnetic island [32]. The thermal noise present in the measurements makes

distinguishing these subtle features very challenging, and prompted an investigation

into the removal of random noise from measured signals. An example of the data in

question is shown in figure 4.1, where the level of noise compared with the oscillation

amplitude can be seen clearly.

Figure 4.1: Plot of KSTAR ECEI channel #91 from shot #6123. The upper panel shows
the variation of the channel across the entire shot, with the dashed line indicating the starting
point of the lower panel, which shows the temperature oscillations. The ECEI channel voltage
here is used as a proxy for the electron temperature.

In particular we focused on the discrete Fourier transform (DFT), which is commonly

used to analyse the frequency-space information of measured signals. In the experi-

ment, all relevant information was known to reside within a 0.25 − 10 kHz frequency

band such that band-pass filtering could be used to remove the majority of the noise.

However, this approach does not address the noise which remains within the pass-band.

Given the difficulty of the measurement in question, finding a means to correct for the

noise in the pass band would be highly beneficial.
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In this chapter we demonstrate that probability concepts can be used to derive a

correction to DFT coefficients which results in a reduction in the overall noise level

of a signal after an inverse-transform. This allows for a partial removal of the noise

contained in the pass-band, which under normal circumstances remains untreated.

Previous work in which probability theory has been applied to the DFT is often based

on the use of some assumed model for the signal of interest [33]. The approach described

here seeks to be more general by assuming only that the ‘true’ signal which we wish to

estimate is deterministic, and the noise by which it is obscured is random. This allows

the signal to be separated into random and non-random components, in turn allowing

the construction of probability distributions for the deterministic signal.

In section 4.2 we discuss the effect of the forward-DFT on the random noise component

of the signal and its implications for deriving a noise-correction. Section 4.3 introduces

a noise-correction to the Fourier magnitude and explores the efficacy of such a correc-

tion theoretically, as well as addressing the possibility of a correction to the Fourier

phase. Section 4.4 discusses various mathematical approaches to estimating the prior

distribution, which is required for the calculation of the magnitude correction. In sec-

tion 4.5 an example calculation of the correction is presented. In Section 4.6 simulated

datasets are used to investigate the performance of the magnitude correction with re-

spect to reducing the level of random noise. In section 4.7 the correction technique is

applied to the KSTAR ECEI data which motivated this work. Finally, conclusions and

further work are discussed in section 4.8.

4.2 Random noise in the Fourier domain

Consider a series G ∈ R having N elements, whose discrete Fourier transform (DFT)

is given by

zk = F{G}k =
1

N

N−1∑
n=0

Gn exp

(
−i2πkn

N

)
. (4.1)

Let Gn = Ḡn + En where Ḡn is a deterministic series which we wish to estimate, and

En is a stochastic variable which represents the presence of random noise in Gn. Due
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to the linearity of the DFT we may write F{G} = F{Ḡ} + F{E}. Considering the

transform of E separately we have:

F{E}k =
1

N

N−1∑
n=0

En cos

(
2πkn

N

)
− i 1

N

N−1∑
n=0

En sin

(
2πkn

N

)
. (4.2)

The terms inside the summations in (4.2) are themselves random variables due to

the presence of En, so for sufficiently large N (and certain constraints on En) the

central limit theorem [34] ensures that both the real and imaginary parts of F{E}k

are normally distributed with variance σ2. Defining F{G}k = zk = xk + iyk and

F{Ḡ}k = z̄k = x̄k + iȳk allows the probability distributions for x and y to be expressed

as

P (x|x̄, σ) = N (x̄, σ2) =
1

σ
√

2π
exp

[
−(x− x̄)2

2σ2

]
, (4.3)

P (y|ȳ, σ) = N (ȳ, σ2) =
1

σ
√

2π
exp

[
−(y − ȳ)2

2σ2

]
.

The noise distribution in the Fourier-domain is therefore independent of that in the

time-domain provided the aforementioned conditions are met. This effect is illustrated

in figure 4.2, where noise generated from two non-gaussian distributions is shown to

agree with the normal distributions in (4.3) after a discrete Fourier-transform.
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Figure 4.2: The top-left panel shows histograms of two samples of size 105 drawn from a
triangle distribution and the convolution of a uniform distribution and a normal distribution.
The DFT of these samples was calculated, and histograms of the real/imaginary parts and the
magnitude are shown in the other panels. The points are the probability densities determined
from histograms, and the lines are analytical predictions made using equations (4.3), (4.7)
and (4.15).
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Chapter 4. Probabilistic noise-correction of discrete Fourier transform coefficients

4.2.1 Relating En to the Fourier domain noise level σ

We may relate the Fourier-domain noise standard-deviation σ to that in the original

series by making use of Parseval’s theorem, which in this context states that

1

N

N−1∑
n=0

E2
n =

N−1∑
k=0

|F{E}k|2 . (4.4)

Using F{E}k = (xk − x̄k) + i(yk − ȳk) we may instead write

1

N

N−1∑
n=0

E2
n =

N−1∑
k=0

(xk − x̄k)2 +
N−1∑
k=0

(yk − ȳk)2 . (4.5)

The probability distributions in (4.3) imply that

lim
N→∞

1

N

N−1∑
k=0

(xk − x̄k)2 = lim
N→∞

1

N

N−1∑
k=0

(yk − ȳk)2 = σ2, (4.6)

so again assuming N is acceptably large, (4.5) may be re-written as

σ2 ' 1

2N2

N−1∑
n=0

E2
n. (4.7)

This relationship between the noise level in the original series and the Fourier domain

will be used later when predicting the performance of noise-corrections.

4.2.2 Inference of z̄k

Bayes’ theorem may be applied to the real and imaginary parts’ distributions individ-

ually to obtain

P (x̄|x, σ) =
P (x|x̄, σ)P (x̄)

P (x)
, (4.8)

P (ȳ|y, σ) =
P (y|ȳ, σ)P (ȳ)

P (y)
. (4.9)

Additionally, the independence of x and y allows us to write their joint distribution as

P (x, y|x̄, ȳ, σ) = P (x|x̄, σ)P (y|ȳ, σ) , (4.10)
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4.2. Random noise in the Fourier domain

the joint probability distribution for x̄ and ȳ is therefore

P (x̄, ȳ|x, y, σ) =
P (x, y|x̄, ȳ, σ)P (x̄, ȳ)

P (x, y)
. (4.11)

Simultaneous inference of x̄ and ȳ is only equivalent to inferring them individually as

in (4.8) and (4.9) on the assumption that P (x̄, ȳ) = P (x̄)P (ȳ). There is no reason

to expect that this is true in general, and as such deriving a correction based on

P (x̄, ȳ|x, y, σ) is preferable.

It is crucial to note that because P (x|x̄, σ) and P (y|ȳ, σ) are normal distributions,

any correction based on P (x̄, ȳ|x, y, σ) is entirely determined by the choice of prior

P (x̄, ȳ). This is because if an uninformative (flat) prior is chosen, P (x̄, ȳ|x, y, σ) is

bivariate normal centred on x, y. In this case, the optimal estimate of (x̄, ȳ) is simply

(x, y) - i.e. there is no correction whatsoever.

4.2.3 The P (x̄, ȳ) prior distribution

One might assume that because x̄ and ȳ are properties of the unknown true series Ḡ

we have no information from which to estimate P (x̄, ȳ). This is not the case, which

we can demonstrate by first constructing the joint distribution

P (x, y, x̄, ȳ, σ) = P (x, y|x̄, ȳ, σ)P (x̄, ȳ)P (σ) . (4.12)

We cannot obtain P (x̄, ȳ) by marginalising x, y and σ from the above, as the following

circular result is obtained:

P (x̄, ȳ) =

∫∫∫
Ω

P (x, y, x̄, ȳ, σ) dx dy dσ (4.13)

= P (x̄, ȳ)

∞∫
−∞

P (σ)

 ∞∫
−∞

∞∫
−∞

P (x, y|x̄, ȳ, σ) dx dy

 dσ = P (x̄, ȳ) .
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Chapter 4. Probabilistic noise-correction of discrete Fourier transform coefficients

We can, however, obtain P (x, y) by integrating over x̄, ȳ and σ:

P (x, y) =

∞∫
−∞

P (σ)

 ∞∫
−∞

∞∫
−∞

P (x, y|x̄, ȳ, σ)P (x̄, ȳ) dx̄ dȳ

 dσ (4.14)

We assume that P (x, y) is a function which is representative of the local densities of

the set of measured xk and yk, and as such we have information from which we can

estimate it. Typically P (σ) may also be obtained from the measured signal, which will

be discussed in detail later. In principle, all quantities in (4.14) other than P (x̄, ȳ) are

known - this is a deconvolution problem with P (x̄, ȳ) as the solution.

4.2.4 Challenges of correcting zk

We have demonstrated that a measured series does carry sufficient information to

make a Bayesian noise-correction to discrete Fourier transform coefficients. However,

obtaining P (x̄, ȳ) as a solution to the inverse problem in (4.14) is difficult for several

reasons. Firstly, 2-dimensional inverse problems are challenging in their own right -

In general there will be infinitely many forms of P (x̄, ȳ) which satisfy (4.14), and as

such the problem often requires additional constraints to produce physically sensible

answers. Additionally, any solution for P (x̄, ȳ) will be based on an inevitably imperfect

estimate of P (x, y) from the finite sample given by the xk and yk.

We could instead make the assumption that P (x̄, ȳ) = P (x̄)P (ȳ), and infer x̄ and

ȳ separately, thereby reducing the 2D inverse problem to two separate 1D inverse

problems. Although more manageable, these corrections share the same issues as the

simultaneous inference approach - they are based entirely on the estimated priors. In

the following section, we will show that progress can be made by considering the same

problem in polar coordinates.
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4.3. Deriving a magnitude correction

4.3 Deriving a magnitude correction

In this section the distributions for the measured Fourier magnitude and phase are

used to investigate the correction problem in polar coordinates. Initially we consider

only a correction to the magnitude - the phase is discussed later.

4.3.1 Distribution of the Fourier magnitude

Consider that z is a circular bivariate normal random variable, so called because it

comprises of two normally-distributed parts with identical variance. The probability

distribution for the magnitude of a circular normal variable (with non-zero mean), in

this case |z|, is given by the Rice distribution [35]:

P (|z||s, σ) =
|z|
σ2

exp

[
−s

2 + |z|2

2σ2

]
I0

(
|z|s
σ2

)
, (4.15)

where s is the unperturbed magnitude

s =
√
x̄2 + ȳ2 (4.16)

and I0(u) is the modified Bessel function of the first kind of zeroth order, for which the

general form is

Iν(u) =
∞∑
m=0

1

m!Γ(m+ 1 + ν)

(u
2

)2m+ν

. (4.17)

It is convenient for now to assume that σ is known to sufficient accuracy that we may

treat it as a constant (this assumption can be retracted later), and define the normalised

measured magnitude R = |z|/σ and the normalised true magnitude S = s/σ. The

probability of R given S can now be obtained by multiplying P (|z||s, σ) by dz/dR = σ:

P (R|S) = R exp

[
−S

2 +R2

2

]
I0 (RS) . (4.18)

For a given S we therefore have complete information regarding the probability of any

R. Suppose that rather than a singular value of S we have some set of values {Sk},
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Figure 4.3: Plot of P (R) resulting from a given P (S). Here P (S) is taken to be a log-normal
distribution with parameters µ = 0.1 and σ = 1.

and the local density of this set can be represented by some density function P (S).

We are not required to assume that the {Sk} are an uncorrelated sample drawn from

P (S), only that P (S) is a good representation of the local density. Making use of the

product rule we may now write

P (S,R) = P (S|R)P (R) = P (R|S)P (S). (4.19)

Integrating the above joint distribution over S or R yields P (R) and P (S) respectively,

giving the following pair of relations:

P (R) =

∫ ∞
0

P (R|S)P (S) dS, (4.20)

P (S) =

∫ ∞
0

P (S|R)P (R) dR. (4.21)

As P (R|S) is known analytically, we see in (4.20) that our definition of P (S) also

defines a corresponding P (R), which is a function representative of the local density of

the set of {Rk} values. As before, we need not assume that the {Rk} are uncorrelated,

or a sample drawn from P (R). An example of this process is given in figure 4.3, where

the P (R) resulting from a log-normal P (S) is shown.
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4.3. Deriving a magnitude correction

4.3.2 Correcting the magnitudes

From a Bayesian perspective, the measured magnitudes |zk| are fixed constants and

the sk are random variables representing the distribution of possible true magnitude

values. We now introduce a ‘correction factor’ τ :

τ =
s

|z|
=
S

R
. (4.22)

Consider the magnitude of the quantity zτ , noting that τ ∈ R and hence τ = τ ∗:

|zτ | =
√
ττ ∗zz∗ = τ

√
x2 + y2 =

s

|z|
|z| = s. (4.23)

The error in the magnitude could therefore be corrected by replacing zk with τkzk in

the inverse-DFT if the τk were known. Let Jn be the result of the inverse-transform

where this hypothetical correction is used:

Jn =
N−1∑
k=0

τkzk exp

(
i2πkn

N

)
. (4.24)

In reality the τk are not known constants but random variables, making Jn a sum of

N random variables. Assuming the CLT holds for the τk, in the limit of large N the

distribution of Jn will approach a Gaussian:

lim
N→∞

Jn ∼ N (E[Jn],Var[Jn]) . (4.25)

If we wish we obtain a single-value estimate for each of the values in the true series Ḡ

we may use the expectation of Jn, which given that it is normally distributed is also

the mode. This is convenient because the linearity of expectation allows us to write

Ĝn = E [Jn] =
N−1∑
k=0

E

[
τkzk exp

(
i2πkn

N

)]
=

N−1∑
k=0

E [τk] zk exp

(
i2πkn

N

)
, (4.26)

where Ĝn is the magnitude-corrected series. To obtain Ĝn we therefore require a general

expression for E [τ ]. Noting that the Rk are derived from the measured signal and are
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Chapter 4. Probabilistic noise-correction of discrete Fourier transform coefficients

therefore known constants, and that τ = S/R we may write

E [τ ] =
E [S]

R
. (4.27)

The expectation of S may be obtained via integration as

E [S] =

∫ ∞
0

SP (S|R) dS. (4.28)

P (S|R) has no analytic form as it is determined entirely by P (R|S) and P (S) via

Bayes’ theorem:

P (S|R) =
P (R|S)P (S)

P (R)
=

P (R|S)P (S)∫∞
0
P (R|S)P (S) dS

. (4.29)

Using the above we obtain

E [τ ] =
1

R

∫ ∞
0

SP (R|S)P (S)

P (R)
dS. (4.30)

This expression allows us to calculate the necessary corrections for all Fourier magni-

tudes. In an applied case where the {Rk} are known constants we are able to estimate

P (R), but we cannot use the same approach to estimate P (S) because the {Sk} are

not known. It is also not possible to obtain P (S) via (4.21) due to the presence of the

P (S|R) term.

We can, however, obtain an estimate of P (S) as the solution of an inverse problem

defined by (4.20) given that P (R|S) is known and P (R) may be estimated from our

data. Much of the remainder of this chapter is dedicated to investigating this inverse

problem. In the course of these discussions we refer to P (S) as the ‘prior’ and P (R) as

the ‘evidence’ on account of their placement within Bayes’ theorem in (4.29). It should

be noted however that while P (S) may be referred to as the prior in the context of

(4.29), it does not represent our ‘prior knowledge’ of the correction problem as a whole,

and so would not be considered a prior in a philosophical sense.

We now investigate some of the properties of E [τ ] using simple analytic models for the

prior distribution.
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4.3.3 Analytical result for a uniform prior: P (S) ∝ 1

In the simple (although generally unrealistic) case of a uniform prior where all values

of S are equally likely, i.e. P (S) ∝ 1, an analytical solution exists for E [τ ]. In this

case, P (S) vanishes from (4.29) yielding:

P (S|R) =

√
2

π
exp

[
−1

2

(
R2

2
+ S2

)]
I0 (RS)

I0

(
1
4
R2
) . (4.31)

It is worth noting that the distribution for τ can be easily determined by substitution

of S = τR and multiplying by dS/dτ = R:

P (τ |R) = R

√
2

π
exp

[
−R

2

2

(
1

2
+ τ 2

)]
I0 (R2τ)

I0

(
1
4
R2
) . (4.32)

E [τ ] may now be obtained either via finding E [S] as in (4.30) or by integrating P (τ |R)

directly (they are entirely equivalent):

E [τ ] =

∫ ∞
0

τP (τ |R) dτ =
1

R

√
2

π
exp

[
1

4
R2

]
I−1

0

(
1

4
R2

)
. (4.33)

In the limit of large R, E [τ ] becomes:

lim
R→∞

E [τ ] = 1. (4.34)

This limiting behaviour is certainly expected for physically sensible priors, as a coef-

ficient with an infinitely large signal-to-noise ratio should remain unchanged by the

correction because it is unaffected by the noise. It is clear from figure 4.4 that in

the limit of vanishing R, E [τ ] approaches infinity. This behaviour may be initially

unintuitive, but can be easily understood by considering E [S] in the same limit:

lim
R→0

E [S] =

√
2

π
. (4.35)

As E [S] approaches a constant rather than zero, the correction must tend towards an

infinite size in order to account for the vanishing size of R.
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Figure 4.4: Plots of analytical results for E [τ ] using a flat prior and a half-normal prior
plus a constant. It can be seen that all the curves approach unity as R → ∞. This is true
for all cases in which α > 0.

4.3.4 Analytical result for a half-normal prior

Although we know in actuality that P (S) must equal zero in the limit that S → 0,

a half-normal distribution plus a constant is a simple model for which E [τ ] may be

obtained analytically. It is convenient to parametrise the prior in the following way:

P (S) ∝ α +
(1− α)

w
exp

[
− S2

2w2

]
, (4.36)

where 0 ≤ α ≤ 1 and w > 0. The resulting expectation of τ is

E [τ ] =
1

R

√
2

π

exp

[
1

2
R2

]
+ γ2

(
1− α
αw

)
exp

[
1

2
R2γ2

]
exp

[
1

4
R2

]
I0

(
1

4
R2

)
+ γ

(
1− α
αw

)
exp

[
1

4
R2γ2

]
I0

(
1

4
R2γ2

) , (4.37)

where

γ =
w√

1 + w2
. (4.38)
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Plots of (4.37) for various w, α are shown in figure 4.4. As expected, when w →∞ or

α→ 1 we recover the result for a flat prior:

lim
w→∞

E [τ ] = lim
α→1

E [τ ] =
1

R

√
2

π

exp
[

1
4
R2
]

I0

(
1
4
R2
) . (4.39)

4.3.5 Residual error after magnitude correction

To understand the nature of the noise that remains after applying the E [τ ] magnitude

correction, we must investigate how effective Ĝn is as an estimator of Ḡn. To do so,

we must consider a fixed set of (x̄k, ȳk) giving rise to a distribution of possible (xk, yk)

values. Assuming again that Ĝn is purely real, we may write:

Ĝn =
N−1∑
k=0

E [τk] (xk cos (ωkn)− yk sin (ωkn)) . (4.40)

Using the distributions for (xk, yk) given in (4.3) we may determine the distribution of

Ĝn. Starting by treating the sine and cosine terms separately we have:

E [τk]xk cos (ωkn) ∼ N
(

E [τk] x̄k cos (ωkn), E [τk]
2 σ2 cos2 (ωkn)

)
, (4.41)

E [τk] yk sin (ωkn) ∼ N
(

E [τk] ȳk sin (ωkn), E [τk]
2 σ2 sin2 (ωkn)

)
.

Accounting for the sum over both terms gives the distribution for Ĝn as

Ĝn ∼ N

(
N−1∑
k=0

E [τk] [x̄k cos (ωkn) − ȳk sin (ωkn)], σ2

N−1∑
k=0

E [τk]
2

)
, (4.42)

and we may therefore note that

E
[
Ĝn

]
=

N−1∑
k=0

E [τk] [x̄k cos (ωkn)− ȳk sin (ωkn)], (4.43)

Var
[
Ĝn

]
= σ2

N−1∑
k=0

E [τk]
2 . (4.44)
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A standard measure of performance for an estimator is the mean-squared error:

MSE
[
Ĝn

]
= Var

[
Ĝn

]
+ Bias

[
Ĝn

]2

, (4.45)

where the bias of an estimator is given by the difference between the expectation value

and the true value:

Bias
[
Ĝn

]
= E

[
Ĝn

]
− Ḡn (4.46)

=
N−1∑
k=0

(E [τk]− 1)[x̄k cos (ωkn)− ȳk sin (ωkn)].

In full, the mean-squared error is

MSE
[
Ĝn

]
=

(
N−1∑
k=0

(E [τk]− 1)[x̄k cos (ωkn)− ȳk sin (ωkn)]

)2

+ σ2

N−1∑
k=0

E [τk]
2 . (4.47)

As seen above, the MSE of Ĝn has a dependence on n, so will be different for each

element of the corrected series. To quantify the average level of noise remaining in Ĝn,

we define the ‘initial’ and ‘corrected’ noise levels δi and δc:

δi =

√√√√ 1

N

N−1∑
n=0

(
Gn − Ḡn

)2
=

√√√√ 1

N

N−1∑
n=0

E2
n, (4.48)

δc =

√√√√ 1

N

N−1∑
n=0

(
Ĝn − Ḡn

)2

. (4.49)

To theoretically predict the value of δc we may replace
(
Ĝn − Ḡn

)2

with MSE
[
Ĝn

]
using (4.47). This allows us to write

δ2
c = σ2

N−1∑
k=0

E [τk]
2 +

1

N

N−1∑
n=0

(
N−1∑
k=0

(E [τk]− 1)[x̄k cos (ωkn)− ȳk sin (ωkn)]

)2

. (4.50)

Comparing (4.7) with the definition of δi in (4.48) we see that

σ ' δi√
2N

. (4.51)
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The noise reduction factor δc/δi is a useful figure of merit which captures the fractional

reduction in the root-mean-squared error of the series due to the correction. δc/δi may

now be expressed as

δc
δi

=

√√√√ 1

2N

N−1∑
k=0

E [τk]
2 +

1

δ2
iN

N−1∑
n=0

(
N−1∑
k=0

(E [τk]− 1)[x̄k cos (ωkn)− ȳk sin (ωkn)]

)2

.

(4.52)

The second term in (4.52) contains both x̄n and ȳn, so in an applied case where the true

signal is unknown this term cannot be calculated. The first term depends only upon

the measured signal, so may be calculated freely. As both terms are positive-definite,

the first term provides a calculable lower-bound on the value of δc/δi:

δc
δi
≥

√√√√ 1

2N

N−1∑
k=0

E [τk]
2. (4.53)

4.3.6 On the possibility of phase-correction

For measured phase φ and true phase φ̄ given by

φ = arctan
(y
x

)
, φ̄ = arctan

( ȳ
x̄

)
, (4.54)

there exists an expression for the distribution of φ given φ̄ and S [36], which is

P (φ|φ̄, S) =
1

2π
exp

(
−S2

2

)[
1 +

√
π

2
Q exp

[
Q2
](

1 + erf (Q)
)]
, (4.55)

where

Q =
S cos (φ− φ̄)√

2
. (4.56)

Unlike the measured normalised magnitude R, which depends only on the true nor-

malised magnitude S, the distribution of the measured phase depends both on φ̄ and

S. Consequently, a correction to the phase cannot be obtained via the solution of a

1D inverse problem in the same way that is possible for the magnitude. For example,
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a correction could be obtained by constructing P (φ̄|φ) as follows:

P (φ̄|φ) =

∫ ∞
0

P (φ̄, S|φ) dS =
1

P (φ)

∫ ∞
0

P (φ|φ̄, S)P (φ̄, S) dS. (4.57)

This requires P (φ̄, S) which can only be obtained by solving the full 2D inverse problem

P (R, φ) =

∫ ∞
0

∫ ∞
0

P (R, φ|S, φ̄)P (S, φ̄) dS dφ̄, (4.58)

where P (R, φ|S, φ̄) = P (φ|φ̄, S)P (R|S). Due to this, we will consider only corrections

to the magnitude in this chapter.

4.4 Estimating the prior distribution P (S)

As discussed in the previous section, in order to calculate the correction function E [τ ]

we require P (S), which can be obtained as solution to the following inverse problem:

P (R) =

∫ ∞
0

P (R|S)P (S) dS. (4.59)

In this section, we investigate the properties of this inverse problem and various ap-

proaches to solving it.

4.4.1 Properties of P (S)

Before considering the inverse problem any further, it is important to discuss what

properties we expect P (S) to have as this will affect our approach. We now introduce

data from a low-noise 44 kHz audio signal consisting of 217 ≈ 105 points. This data

will be used later for testing and benchmarking the magnitude correction, but here

is used to gain insight into P (S). The analysis of this data is summarised in figure

4.5. The top-left plot in the figure shows the magnitude spectrum for the data. The

cumulative distribution of the measured magnitudes F (|z|) is shown in the top-right

plot. We see that the CDF rises extremely sharply near zero, but quickly flattens and
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4.4. Estimating the prior distribution P (S)

Figure 4.5: Summary of the audio test signal data. Top-left: DFT magnitude spectrum
of the test signal. Top-right: cumulative distribution of the DFT magnitudes. Bottom-left:
Cumulative distribution of the log-magnitude, plotted with a fit of the data using the sum of
two normal distributions. Bottom-right: residual of the fit in the bottom-left plot.

approaches 1 slowly - this corresponds to an extremely skewed PDF. Looking at F (|z|)

with respect to ln |z| (the bottom-left plot) yields a much clearer picture - we recognise

that F (ln |z|) is roughly the normal distribution CDF, and as such P (|z|) is roughly

log-normal. In fact, P (|z|) is in this case represented extremely well by the sum of two

log-normal distributions as shown by the fit residual (bottom-right plot).

Given that the level of noise in the data is relatively low, we will assume that for the

purposes of studying the inverse problem the log-normal distribution is a reasonable

model for P (S), such that

P (S) =
1

Sw
√

2π
exp

[
−1

2

(
lnS − µ

w

)2
]
. (4.60)

In order to properly choose the parameters for the log-normal model, we need to

examine what a given prior implies about the level of noise in the signal. Let U be the
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ratio of the RMS noise to the RMS true signal:

U =

√√√√(N−1∑
n=0

E2
n

)/(
N−1∑
n=0

Ḡ2
n

)
. (4.61)

U will be used as a metric for the noise level in the data. It is possible to establish a

link between U and P (S) in the following way. First, using Parseval’s theorem we may

write

1

N

N−1∑
n=0

Ḡ2
n =

N−1∑
k=0

∣∣F{Ḡ}k∣∣2 =
N−1∑
k=0

s2
k. (4.62)

Given that we have assumed the density of the Sk = sk/σ is represented by P (S), the

mean of the squares of the Sk is approximately

1

Nσ2

N−1∑
k=0

s2
k ≈

∫ ∞
0

S2P (S) dS. (4.63)

Comparing (4.62) and (4.63) we see that

√√√√ 1

N

N−1∑
n=0

Ḡ2
n ≈ σ

√
N

∫ ∞
0

S2P (S) dS. (4.64)

In (4.7) we established that

√√√√ 1

N

N−1∑
n=0

E2
n ≈ σ

√
2N, (4.65)

so taking the ratio of (4.65) and (4.64) we obtain

U =

√√√√(N−1∑
n=0

E2
n

)/(
N−1∑
n=0

Ḡ2
n

)
≈
(

1

2

∫ ∞
0

S2P (S) dS

)−1
2

. (4.66)

Taking P (S) to be log-normal as in (4.60) we find that

∫ ∞
0

S2P (S) dS = e2(µ+w2) (4.67)

and as such

U =
√

2e−(µ+w2). (4.68)
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Figure 4.6: Plots of the re-parameterised log-normal distribution in (4.69) for w = 1 and
various U . The solid lines show P (S) and the dashed lines show P (R).

The skewness of the log-normal distribution is a monotonically increasing function of

w only, as such w dictates the ‘shape’ of the log-normal distribution and µ the scale.

Solving the above for µ and making the substitution back into (4.60) we obtain

P (S) ≈ 1

wS
√

2π
exp

[
−1

2

(
1

w
ln

(
SU√

2

)
+ w

)2
]
. (4.69)

Plots of (4.69) for w = 1 (comparable to that found in the example data) and various

U are shown in figure 4.6. The figure also shows the corresponding P (R) distributions

calculated numerically using (4.20). As expected, we see for low U values that P (R) is

very similar to P (S), but the differences are significant for larger U . The log-normal

model developed here will be used to inform and test approaches to estimating P (S)

in the rest of the chapter.

4.4.2 Modifying the inverse problem

Before discussing methods to solve the inverse problem, we first examine various ways

in which the problem can be modified. Consider that because P (S) has no dependence

on R, we may apply any linear operator which acts on R to both sides of (4.20) and

P (S) will be unaffected. Let F (R) be the cumulative distribution function of P (R)

such that

F (R) =

∫ R

0

P (R′) dR′. (4.70)
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Applying the above integral to both sides of (4.20) we obtain

F (R) =

∫ R

0

P (R′) dR′ =

∫ ∞
0

(∫ R

0

P (R′|S) dR′
)
P (S) dS =

∫ ∞
0

F (R|S)P (S) dS.

(4.71)

This is a new inverse problem, still with P (S) as its solution, but now the transform

kernel is the cumulative distribution of P (R|S) rather than P (R|S) itself. This new

form may be advantageous because rather than needing to estimate P (R) from the

{Rk} sample, we need only estimate F (R). A cumulative distribution can be estimated

much more robustly than its corresponding probability distribution for a given sample.

Hence by modifying the problem in this way, the term we are forced to estimate will

contain less errors. This can be extremely important in inverse problems, as small

variations or errors in the input function can produce large differences in the estimate

of P (S). It is worth noting that we could integrate or differentiate (4.20) with respect

to R any number of times and still retain an integral equation for P (S), giving rise

to an infinite set of potential inverse problems - however given the aforementioned

advantages of working with cumulative distributions we suggest that (4.71) is a good

choice.

Another type of modification can be made to the problem by applying integration by

parts to (4.20), which yields

∫ ∞
0

P (R|S)P (S) dS = (4.72)[
P (R|S)

∫
P (S) dS

]∞
0

−
∫ ∞

0

(
∂

∂S
P (R|S)

)(∫
P (S) dS

)
dS.

Consider that
∫
P (S) dS can differ from F (S) by only a constant. Making the substi-

tution
∫
P (S) dS = F (S) + b for some constant b into the above yields

∫ ∞
0

P (R|S)P (S) dS =

[
P (R|S)F (S)

]∞
0

+ b

[
P (R|S)

]∞
0

(4.73)

−
∫ ∞

0

(
∂

∂S
P (R|S)

)
F (S) dS − b

[∫ (
∂

∂S
P (R|S)

)
dS

]∞
0

.

Given that [∫ (
∂

∂S
P (R|S)

)
dS

]∞
0

=

[
P (R|S)

]∞
0

, (4.74)

94



4.4. Estimating the prior distribution P (S)

the two terms containing the constant b in (4.73) cancel to give

∫ ∞
0

P (R|S)P (S) dS =

[
P (R|S)F (S)

]∞
0

−
∫ ∞

0

(
∂

∂S
P (R|S)

)
F (S) dS. (4.75)

Additionally, because lim
S→∞

P (R|S) = 0 and lim
S→0

F (S) = 0 it follows that

[
P (R|S)F (S)

]∞
0

= 0, (4.76)

and as such

P (R) =

∫ ∞
0

(
− ∂

∂S
P (R|S)

)
F (S) dS. (4.77)

We’ve now modified the problem such that the solution is F (S) rather than P (S). This

could be advantageous because a CDF has several useful properties which can be used

to constrain solutions. For example, the values of a CDF must lie in the interval [0, 1]

everywhere, and the first derivative must be non-negative everywhere. Integration by

parts can also be used to obtain a further inverse problem where the solution is the

derivative of P (S), but this is not desirable so we do not derive it here.

Now consider applying the cumulative integral in (4.70) to both sides of (4.77) to obtain

∫ R

0

P (R′) dR′ =

∫ ∞
0

(
− ∂

∂S

∫ R

0

P (R′|S) dR′
)
F (S) dS. (4.78)

Define the modified transform kernel as

K(R, S) =

R∫
0

R′ exp

[
−S

2 +R′2

2

]
(SI0 (R′S)−R′I1 (R′S)) dR′, (4.79)

so that the transform can be expressed in the standard form

F (R) =

∞∫
0

K(R, S)F (S) dS. (4.80)

This combination of the two previous modifications produces an inverse problem where

both P (R) and P (S) are replaced with their cumulative counterparts F (R) and F (S).

There is one further alteration that can be made: we noted in section 4.4.1 that the
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cumulative distributions of lnR and lnS are better behaved than F (R) and F (S). Let

R̃ and S̃ be scaled versions of R and S:

S̃ = ln (S), R̃ = ln (R). (4.81)

By substitution we may write the inverse problem in terms of F (R̃) and F (S̃) as

F (R̃) =

∞∫
−∞

K(R̃, S̃)F (S̃) dS̃, (4.82)

where

K(R̃, S̃) =

R̃∫
−∞

exp

[
2R̃ + S̃ − e2S̃ + e2R̃

2

](
eS̃I0

(
eR̃+S̃

)
− eR̃I1

(
eR̃+S̃

))
dR̃. (4.83)

In the remainder of this section we develop multiple approaches to solving the various

possible inverse problems derived here.

4.4.3 Bayesian iterative procedure for estimating P (S)

We previously remarked that (4.21) was not useful for determining P (S) - this is true

in its current form, the reason being that P (S|R) (the inverse transform kernel) is not

known. Here we consider the result of using an approximation for P (S|R). By making

use of (4.19) and (4.20) we may write:

P (S|R) =
P (R|S)P (S)∫∞

0
P (R|S)P (S) dS

. (4.84)

Substituting the above into (4.21) allows us to express P (S) as:

P (S) =

∫ ∞
0

(
P (R|S)P (S)∫∞

0
P (R|S)P (S) dS

)
P (R) dR. (4.85)

Now define a function f0 obtained by omitting P (S) from the RHS of (4.85):

f0 =

∫ ∞
0

(
P (R|S)∫∞

0
P (R|S) dS

)
P (R) dR ≈ P (S). (4.86)
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Although this new expression is not equal to P (S), it is at least calculable as all the

terms are known. We have effectively approximated P (S) to be a flat prior, but despite

this the expression still carries information regarding the true P (S) in the form of P (R).

f0 therefore represents an initial guess at the form of P (S) in the absence of any other

information. We now assume that f0 better approximates P (S) than the uniform prior

which was used to generate it, such that we may obtain a better approximation by

replacing P (S) in the RHS of (4.85) with f0 rather than omitting it completely:

f1 = Q̂f0 = f0

∫ ∞
0

P (R|S)P (R)∫∞
0
P (R|S)f0 dS

dR. (4.87)

The operator Q̂ may then be recursively applied to f0 producing successively better

approximations of P (S):

fn = Q̂nf0, fn+1 = Q̂fn. (4.88)

The fractional difference between successive approximations is given by

fn+1 − fn
fn

= f−1
n

(
Q̂ − 1

)
fn

=

∫ ∞
0

P (R|S)P (R)∫∞
0
P (R|S)fn dS

dR− 1. (4.89)

This implies that if the approximation converges such that fn+1−fn = 0, then fn must

satisfy (4.20), and as such:

fn+1 = fn =⇒ P (R) =

∫ ∞
0

P (R|S)fn dS. (4.90)

P (S) may not uniquely satisfy (4.20), so convergence does not necessarily imply that

fn = P (S):

∫ ∞
0

P (R|S)fn dS =

∫ ∞
0

P (R|S)P (S) dS 6=⇒ fn = P (S). (4.91)

Despite this, (4.20) is still a fairly strong constraint on the form of P (S), so if f0 is suf-

ficiently similar to P (S) we can expect a converged fn to provide a good approximation

to P (S).
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4.4.3.1 Testing the iterative procedure

To study the convergence properties of the algorithm we will use the prior model

developed in section 4.4.1:

P (S) =
1

wS
√

2π
exp

[
−1

2

(
1

w
ln

(
SU√

2

)
+ w

)2
]
. (4.92)

This will be used to calculate P (R) numerically, after which the iterative procedure

will be used to recover an approximation of P (S). To quantify the convergence and

performance of the method we make use of the Kullback–Leibler divergence

KL (f(x), g(x)) =

∫ ∞
−∞

f(x) ln

(
f(x)

g(x)

)
dx, (4.93)

which is a commonly used metric for the similarity between two probability distribu-

tions. To examine convergence we calculate

KL (fn, fn−1) =

∫ ∞
0

fn ln

(
fn
fn−1

)
dS, (4.94)

and to examine performance we calculate

KL (P (S), fn) =

∫ ∞
0

P (S) ln

(
P (S)

fn

)
dS. (4.95)

Calculations of fn, KL (fn, fn−1) and KL (P (S), fn) up to n = 40 using the test prior

in (4.92) are summarised in figure 4.7. We see that for both values of U that fn

does converge, yielding distributions which satisfy the forward transform. However,

f∞ 6= P (S), confirming our expectation that P (S) is not a unique solution of (4.20).

Despite this, in both cases f∞ ≈ P (S) and is a better approximation than assuming

P (S) is numerically equal to P (R), i.e. that

P (S) ≈
∫ ∞

0

δ(S −R)P (R) dR. (4.96)

Although we do note that in the limit of U → 0 the above is true exactly:

P (S) = lim
U→0

∫ ∞
0

δ(S −R)P (R) dR. (4.97)
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Figure 4.7: The top-left and top-right plots show P (S), P (R) and f40 for U = 0.4 and
U = 0.1 respectively. The bottom-left and bottom-right plots show the corresponding KL-
divergences given in (4.95) and (4.94). The dashed line shows the KL-divergence obtained
by approximating that P (S) = P (R).

In summary, this approach performs well and is promising - at least for the smooth

P (S) functions used in testing. For this reason it is likely best to estimate P (S) as a

sum of well-behaved distributions as shown in figure 4.5.

4.4.4 Linearisation of integral transforms

The type of inverse problem we must address is an integral transform, also sometimes

referred to as an integral equation or a Fredholm equation of the first kind. The general

form is

g(x) =

∞∫
−∞

K(x, y)f(y) dy, (4.98)

where g(x) is known and we wish to solve for f(y). Here we demonstrate that such an

equation may be approximated as a linear system which can, in principle, be solved
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directly. We begin by expressing f(y) and g(x) as linear combinations of some set of

basis functions φi(x)

f(y) =
∑
i

ciφi(y), g(x) =
∑
j

bjφj(x), (4.99)

which are orthonormal with respect to an inner product 〈φi, φj〉:

〈φi, φj〉 ≡
∫

Ω

φi(x)φj(x)W (x) dx = δij, (4.100)

where W (x) is a weighting function and Ω is the domain on which the basis is or-

thonormal. As g(x) is known, the coefficients bj may be obtained through the inner

product

〈g(x), φj〉 =

∫
Ω

g(x)φj(x)W (x) dx =
∑
k

bk

∫
Ω

φk(x)φj(x)W (x) dx =
∑
k

bkδkj = bj

(4.101)

Now replace f(y) and g(x) in the integral equation from (4.98) with their new series

representations in (4.99) to give

∑
j

bjφj(x) =

∫
Ω

K(x, y)

(∑
i

ciφi(y)

)
dy (4.102)

=
∑
i

ci

(∫
Ω

K(x, y)φi(y) dy

)
.

We see that the RHS is equal to a weighted sum of the integral transform operating

on each of the basis functions. Let the result of this transform be Φi such that

Φi(x) =

∫
Ω

K(x, y)φi(y) dy. (4.103)

As Φi is a function of x only we are free to express it in terms of the basis:

Φi =
∑
q

Aqiφq(x), (4.104)

where the coefficients Aqi are given by

Aqi = 〈Φi, φq〉 =

∫
Ω

Φi(x)φq(x)W (x) dx (4.105)
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The value of Aqi depends only on the transform and the choice of basis, and is therefore

independent of f(y) and g(x). We may now express (4.102) as

∑
j

bjφj(x) =
∑
i

ci
∑
q

Aqiφq(x). (4.106)

We seek a linear relationship between the coefficients bj and cj. As the LHS of (4.106) is

just a sum over the basis, the bj may be extracted by using the inner product 〈g(x), φj〉

as shown in (4.101). Taking the inner product of (4.106) and simplifying we obtain

〈(∑
j

bjφj

)
, φ`

〉
=

〈(∑
i

ci
∑
q

Aqiφq

)
, φ`

〉
(4.107)

∫
Ω

W (x)

(∑
j

bjφj(x)

)
φ`(x) dx =

∫
Ω

W (x)

(∑
i

ci
∑
q

Aqiφq(x)

)
φ`(x) dx (4.108)

∑
j

bj

(∫
Ω

W (x)φj(x)φ`(x) dx

)
=
∑
i

ci
∑
q

Aqi

(∫
Ω

W (x)φq(x)φ`(x) dx

)
(4.109)

∑
j

bj〈φj, φ`〉 =
∑
i

ci
∑
q

Aqi〈φq, φ`〉 (4.110)

∑
j

bjδj` =
∑
i

ci
∑
q

Aqiδq` (4.111)

b` =
∑
i

ciA`i, (4.112)

and as ` is a dummy index we may write

bj =
∑
i

ciAji. (4.113)

In practice we must truncate the sum of basis functions in (4.99) to some order M in

order to carry out calculations:

f(y) =
M∑
i

ciφi(y), g(x) =
M∑
j

bjφj(x), (4.114)
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allowing the following matrices to be defined:

b =



b1

b2

...

bM


, c =



c1

c2

...

cM


, A =



A1,1 A1,2 · · · A1,M

A2,1 A2,2 · · · A2,M

...
...

. . .
...

AM,1 AM,2 · · · AM,M


. (4.115)

The integral transform can now be represented as the following system of linear equa-

tions

b = Ac. (4.116)

The simplest solution would be to find the inverse of A such that c = A−1b, however

in general this approach does not produce an accurate solution for c. This occurs for a

variety of reasons - firstly there is almost certainly not a unique c which satisfies (4.116)

for a given b, but rather infinitely many solutions making this an ill-posed problem.

Additionally, integral transforms tend to have a ‘smoothing’ effect on functions, which

in the context of the linear system reduces the size of the higher-order coefficients

significantly. Reversing this process requires potentially very small coefficients in b

being scaled up by large factors. Consequently, small numerical inaccuracies in the

values of b can result in extreme changes in the values of c. Next we discuss the

choice of basis functions and how the inverse problem can be constrained to improve

the estimation of c.

4.4.5 Chebyshev representation and prior constraints

The Chebyshev polynomials Tn(x) form an orthonormal basis with respect to

∫ 1

−1

Tn(x)Tm(x)Wm(x) dx = δnm, (4.117)

where

Wm(x) =
hm

π
√

1− x2
, hm =

 2 m > 0

1 m = 0
. (4.118)
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Chebyshev polynomials are widely used as a basis set for numerical calculations on

account of their fast convergence, i.e. that a Chebyshev series approximation of a

function can achieve high accuracy with a small number of terms relative to other

bases. Although the Tn(x) are orthogonal on [−1, 1], they can be scaled to represent

functions on any chosen domain. In this case a scale factor ν is used such that the

domain of F (S̃) and F (R̃) is limited to [−ν, ν]. Accordingly their Chebyshev series

representations are given by

F (S̃) =
M−1∑
n=0

cnTn(S̃/ν), F (R̃) =
M−1∑
n=0

bnTn(R̃/ν). (4.119)

On account of the modifications made to the inverse problem in section 4.4.2 we have

ensured that F (S̃) has the following properties:

0 ≤ F (S̃) ≤ 1,
∂

∂S̃
F (S̃) ≥ 0, lim

S̃→−ν
F (S̃) ≈ 0, lim

S̃→ν
F (S̃) ≈ 1. (4.120)

Making use of the fact that

Tn(1) = 1, Tn(−1) = (−1)n (4.121)

we can derive the following constrains on c:

lim
S̃→−ν

F (S̃) =
M∑
n=0

cnTn(−1) =
M∑
n=0

cn(−1)n ≈ 0, (4.122)

lim
S̃→ν

F (S̃) =
M∑
n=0

cnTn(1) =
M∑
n=0

cn ≈ 1. (4.123)

Referring to the right-hand plot in figure 4.6 we see that F (S̃) is very flat for extreme

values of S̃. On this basis we can reasonably expect the first and second derivative of

F (S̃) to be small at ν and −ν, i.e. that

∂

∂S̃
F (S̃)

∣∣∣∣
S̃=−ν

≈ ∂

∂S̃
F (S̃)

∣∣∣∣
S̃=ν

≈ ∂2

∂S̃2
F (S̃)

∣∣∣∣
S̃=−ν

≈ ∂2

∂S̃2
F (S̃)

∣∣∣∣
S̃=ν

≈ 0. (4.124)

The derivative of Tn(x) is given by

∂

∂x
Tn(x) = nUn−1(x), (4.125)
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where Un(x) are the Chebyshev polynomials of the second kind (Tn(x) being the first

kind). The derivative of F (S̃) is therefore

∂

∂S̃
F (S̃) =

M∑
n=0

cn
∂

∂S̃
Tn(S̃/ν) ∝

M∑
n=0

cnnUn−1(S̃/ν). (4.126)

The Un(x) have the property that

Un−1(1) = n, Un−1(−1) = n(−1)n−1, (4.127)

from which we can obtain the following constraints

M∑
n=0

n2cn(−1)n−1 ≈ 0,
M∑
n=0

n2cn ≈ 0. (4.128)

The second derivative of Tn(x) at x = ±1 can be shown to be

∂2

∂x2
Tn(x)

∣∣∣∣
x=−1

= (−1)n
(n4 − n2)

3
,

∂2

∂x2
Tn(x)

∣∣∣∣
x=1

=
(n4 − n2)

3
. (4.129)

These results yield the final pair of constraints as

M−1∑
n=0

cn(−1)n
(n4 − n2)

3
≈ 0,

M−1∑
n=0

cn
(n4 − n2)

3
≈ 0. (4.130)

We will now show that it is possible to enforce all of these constraints in a probabilisti-

cally motivated way whilst keeping the problem directly soluble for c. To do so we will

construct an approximation of the posterior for c using only normal distributions. To

begin, consider that on account of small numerical errors in b, we expect that Ac ≈ b

rather than being exactly equal. We will approximate that the uncertainties in all

elements of b are normally distributed, such that the probability of b given c is

P (b|c) ∝ exp

[
−|Ac− b|2

2σ2
b

]
. (4.131)

A simplified prior for c may be constructed using the previously derived constraints for

cumulative distributions. First, define a series of length-M column vectors qi whose

104



4.4. Estimating the prior distribution P (S)

elements are given by

(q1)n = 1, (q2)n = (−1)n, (q3)n = n2

(q4)n = n2(−1)n−1, (q5)n = 1
3
(n4 − n2), (q6)n = 1

3
(n4 − n2)(−1)n.

(4.132)

This allows the summation constraints to be expressed via matrix multiplication as

q>1 c =
∑M−1

n=0 cn, q>2 c =
∑M−1

n=0 cn(−1)n,

q>3 c =
∑M−1

n=0 n2cn, q>4 c =
∑M−1

n=0 n2cn(−1)n−1,

q>5 c =
∑M−1

n=0
1
3
cn(n4 − n2), q>6 c =

∑M−1
n=0

1
3
cn(n4 − n2)(−1)n.

(4.133)

As before, we will approximate that the uncertainty in each constraint is normal so

that the prior is given by

P (c) ∝ exp

[
−|q

>
1 c− 1|2

2σ2
1

−
6∑

n=2

|q>n c|2

2σ2
n

]
. (4.134)

The posterior for c can then be obtained via Bayes’ theorem as P (c|b) ∝ P (b|c)P (c):

P (c|b) ∝ exp

[
−|Ac− b|2

2σ2
b

− |q
>
1 c− 1|2

2σ2
1

−
6∑

n=2

|q>n c|2

2σ2
n

]
. (4.135)

The objective is now to determine the vector ĉ which maximises the posterior. This can

be done easily by differentiating the natural log of the posterior to find its maximum:

∂

∂c
lnP (c|b) ∝ − ∂

∂c

(
|Ac− b|2

2σ2
b

+
|q>1 c− 1|2

2σ2
1

+
6∑

n=2

|q>n c|2

2σ2
n

)
. (4.136)

Carrying out the differentiation and setting the expression equal to zero yields

A>(Aĉ− b)

2σ2
b

+
q1(q>1 ĉ− 1)

2σ2
1

+
6∑

n=2

qnq
>
n ĉ

2σ2
n

= 0, (4.137)

which may be solved for ĉ to obtain

ĉ = arg max
c

[
P (c|b)

]
=

(
A>A

σ2
b

+
6∑

n=1

qnq
>
n

σ2
n

)−1(
A>b

σ2
b

+
q1

σ2
1

)
. (4.138)
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Finally let F̂ (S̃) be the estimate of F (S̃) given by

F̂ (S̃) =
M−1∑
n=0

ĉnTn(S̃/ν) (4.139)

In order to test this method P (S) was taken to be the modified log-normal distribution

defined in section 4.4.1 (making F (S̃) a cumulative normal distribution). F (R̃) was

calculated numerically then used to obtain the coefficients b, which were used to obtain

ĉ. The resulting F̂ (S̃) is shown in the left-hand plot of figure 4.8.

We see that although the series shows the correct behaviour at the two ends of the

domain, the accuracy of the estimate everywhere else is very poor. This is to be

expected, because the prior only constrains the value of F (S̃) and its first derivative

at −ν and ν - it does nothing to limit the total absolute value of the coefficients.
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Figure 4.8: Results of estimating F (S̃) using the maximum of two versions of an approxi-
mate posterior for c. For this test P (S) was taken to be the modified log-normal distribution
in (4.69) with parameters U = 0.4 and w = 1. The errors used for the priors were σn = 0.005
for all n, and σc = 0.75.

To address this, we can impose an assumption that because F (S̃) and F (R̃) are similar

in form, c should not deviate significantly from b. Ideally we would set a prior for

each ci that is flat in a region around bi and zero elsewhere, but for now we will

continue to use normal distributions in order to preserve the analytic solution for ĉ.

The strengthened version of the prior is

P (c) ∝ exp

[
−|Γ(c− b)|2

2σ2
c

− |q
>
1 c− 1|2

2σ2
1

−
6∑

n=2

|q>n c|2

2σ2
n

]
, (4.140)
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where Γ is a diagonal M ×M matrix with Γnn =
√
n. Γ serves to scale σ2

c (how much

we expect c to deviate from b) to smaller values for higher-order coefficients to account

for the fact that their magnitude falls off with n. Repeating the derivation of ĉ from

earlier we find that

ĉ =

(
A>A

σ2
b

+
Γ>Γ

σ2
c

+
6∑

n=1

qnq
>
n

σ2
n

)−1(
A>b

σ2
b

+
(Γ>Γ)b

σ2
c

+
q1

σ2
1

)
. (4.141)

The results obtained using the strengthened prior are shown in the right-hand plot

of figure 4.8. We see that there is a dramatic improvement in performance over the

weaker prior, particularly for S̃ > 0 where the estimation is very good. In this case the

ratio of the mean absolute difference of c and ĉ to the mean absolute value of c was

around 7%.

Although these results are promising, the simplified prior used to obtain them intro-

duces an unwanted bias into ĉ. We now investigate whether using ĉ as an initial guess,

an improved solution can be obtained from a non-linear optimisation problem resulting

from a switch to a less-biasing prior in which we are not limited to using only normal

distributions.

4.4.6 Estimating c via non-linear optimisation

We observed in the previous section that inclusion of the |Γ(c− b)|2 term in the prior

was necessary for obtaining physically sensible solutions. This term does however

introduce an unwanted bias into the posterior distribution, so we now seek to replace

it with a new term which enforces the inequality constraints given in (4.120) without

introducing bias. To do so we evaluate the series and its first derivative at a range of

points across the domain of orthonormality. Accordingly define a series of points xn

with length L that spans [−ν, ν]:

xn = ν

(
2

(
n− 1

L− 1

)
− 1

)
. (4.142)
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Now define the following matrices

T =


T0(x1/ν) · · · TM−1(x1/ν)

...
. . .

...

T0(xL/ν) · · · TM−1(xL/ν)

 , U =


0 · · · (M − 1)UM−2(x1/ν)

...
. . .

...

0 · · · (M − 1)UM−2(xL/ν)

 .
(4.143)

This allows the calculation of F (S̃) and F ′(S̃) (the first derivative) as the following

matrix products:

Tc =



∑M−1
n=0 cnTn(x1/ν)∑M−1
n=0 cnTn(x2/ν)

...∑M−1
n=0 cnTn(xL/ν)


=



FS̃(x1)

FS̃(x2)

...

FS̃(xL)


, (4.144)

Uc =



∑M−1
n=0 ncnUn−1(x1/ν)∑M−1
n=0 ncnUn−1(xL/ν)

...∑M−1
n=0 ncnUn−1(xL/ν)


=



F ′
S̃
(x1)

F ′
S̃
(x2)

...

F ′
S̃
(xL)


. (4.145)

Because we are using a finite Chebyshev series we cannot completely exclude all c

which violate the inequality conditions in (4.120). Instead define a new term H which

is zero provided that the inequalities are satisfied at all xn and quadratic otherwise:

H =
L∑
i=1

1

2σ2
T


(Tc)2

i : 0 > (Tc)i

0 : 0 ≤ (Tc)i ≤ 1

((Tc)i − 1)2 : 1 < (Tc)i

+
1

2σ2
U

 (Uc)2
i : 0 > (Uc)i

0 : 0 ≤ (Uc)i

 .

(4.146)

Including e−H as a multiplicative factor in the prior now allows the posterior to be

expressed as

P (c|b) ∝ exp [−(L+H)] (4.147)
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where

L =
|Ac− b|2

2σ2
b

+
|q>1 c− 1|2

2σ2
1

+
6∑

n=2

|q>n c|2

2σ2
n

. (4.148)

By multiplying out the squares and dropping terms with no dependence on c, it can

be shown that

L = c>(A∗c− b∗) (4.149)

where

A∗ =
A>A

2σ2
b

+
6∑

n=1

qnq
>
n

2σ2
n

, b∗ =
A>b

σ2
b

+
q1

σ2
1

. (4.150)

This form drastically reduces the number of matrix operations needed to calculate L,

and as A∗ and b∗ have no c dependence they may be pre-calculated and stored.

Additionally, rather than determining only the maximum of the posterior for c as be-

fore, we will generate a sample from the posterior using Markov-chain Monte-Carlo

techniques in order to extract uncertainties on the reconstruction of F (S̃) and subse-

quently E[τ ]. A purpose-written Gibbs sampler was used to generate a Markov chain

of length 2.2 × 106, and the sample with the largest associated posterior probability

was taken as the MAP estimate. To determine uncertainties, the first 2× 105 samples

were discarded as burn-in and the remaining were thinned by a factor of 20 yielding an

uncorrelated sample of size 105. Of those, the 5% with the lowest associated posterior

probabilities were discarded, leaving only samples lying in the 95% credibility region.

Both F (S̃) and E[τ ] were computed for each of these samples in order to produce a

95% credibility envelope - these results are shown in figure 4.9.

We see that although F (S̃) lies outside of the error estimate for some negative values

of S̃, E[τ ] is well inside the error estimate and lies close to the MAP estimate. This is

not surprising due to the fact that S̃ = lnS, and that P (R|S)→ 0 as R, S → 0. Thus

negative values of S̃ correspond to small values of S where P (R|S) is near zero, and

therefore make only a small contribution toward the calculated values of E[τ ].
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Figure 4.9: Summary of results from Markov chain Monte-Carlo sampling of the posterior
for c. The left plot compares the MCMC estimate of F (S̃) with its true values, and the
right-hand plot compares the MCMC estimate of E[τ ] with its true values.

A long chain was necessary in order for the MCMC estimate to properly converge,

likely due to the shape of the posterior surface being extremely complex. This arises

due to the multiple constraints expressed as summations over the c. It is generally not

possible to change only one or two elements of c in such a way that these constraints

continue to be met as before. Instead precise simultaneous changes to most, if not

all, elements of c are needed to move to a new solution which meets the constraints.

This requires the Markov chain to make very small steps, and consequently require

many steps in order to fully explore the posterior. The computational cost of the large

number of required steps is offset significantly however by the low cost each posterior

evaluation, due mainly to the mostly linear nature of the calculation.

4.4.7 Prior-evidence equivalence approximation

We noted in section 4.4.3.1 that for small values of U

P (S) ≈
∫ ∞

0

δ(S −R)P (R) dR = P̂ (S) (4.151)

In this section we examine how the validity of using P̂ (S) shown above as an approx-

imation of P (S) changes as a function of U . As we’ve been referring to P (S) as the

prior, the corresponding nomenclature for P (R) would be the ‘evidence’ - as such we
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will refer to P̂ (S) as the prior-evidence equivalence approximation. The magnitude

correction effectively replaces each value of R with E [S], where

E [S] =

∫ ∞
0

SP (R|S)P (S)∫∞
0
P (R|S)P (S) dS

dS. (4.152)

The absolute size of the correction to R is therefore |R−E [S] |, and the average absolute

correction size can be obtained through integration as

∫ ∞
0

P (R)
∣∣E [S]−R

∣∣ dR. (4.153)

Let Ê[S] be the approximate expectation of S obtained by replacing P (S) with P̂ (S)

in (4.152). The mean absolute error in the correction is therefore

∫ ∞
0

P (R)
∣∣E [S]− Ê[S]

∣∣ dR. (4.154)

We may now define the mean absolute fractional correction error as the ratio of (4.154)

to (4.153):

MAFCE =

(∫ ∞
0

P (R)
∣∣E [S]− Ê[S]

∣∣ dR

)/(∫ ∞
0

P (R)
∣∣E [S]−R

∣∣ dR

)
(4.155)

If the MAFCE is small, then making the prior-evidence equivalence approximation will

still result in a reduction of the noise, although most likely a less significant reduction.

Calculations of the MAFCE for the log-normal test prior as a function of U and w are

shown in figure 4.10. As expected we see that for small values of U the MAFCE tends

toward zero, but also that its behaviour can be strongly dependent on the shape of the

prior, which is altered here by varying w.

4.4.8 Comparison of prior estimation techniques

The test cases used to develop the various techniques for estimating the prior P (S) in

this section are not sufficient to properly understand their effectiveness. To do so a full

calculation of the correction factors using an estimated prior is required. Only then can

we see how inaccuracies in the estimate of P (S) translate to errors in the correction
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Figure 4.10: Plots of the mean absolute fractional correction error defined in (4.155) for
the log-normal test prior (from (4.69)) as a function of U and w.

factors and presumably a loss in correction performance. Testing on real data is also

important to demonstrate that the estimation techniques produce acceptable results

when P (R) is not smooth and unimodal. The testing necessary to quantitatively

compare the prior estimation techniques is presented later in this chapter.

4.5 Demonstration of magnitude correction method

Now we bring together the work in previous sections to demonstrate the complete

procedure and calculations necessary in order to obtain a noise-corrected signal. The

data to which the correction will be applied is the audio signal introduced in section

4.4.1.
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4.5.1 Inference of σ

We have thus far assumed that σ is a known constant, but in reality it must be inferred

from the measured signal. The best way to determine σ is by analysing an area of

the frequency space which contains little or no power from the true signal, assuming

such a region exists. We could assume that the true Fourier magnitude s in the Rice

distribution is zero, in which case we obtain the Rayleigh distribution. This yields an

analytic posterior for σ (assuming a flat prior).

Although there are typically regions of the frequency space where the true signal power

is small compared to the noise power, it is unlikely that there will be a region where it

is zero. Instead we suggest selecting a set of |zk| values from the region with the lowest

power density (because the noise power is constant with frequency this is necessarily

the area which has the least true signal power) and assume that over this region the

true signal power can be approximated as some constant ρ. Letting D represent the

chosen set of |zk|, the likelihood is a product of Rice distributions:

P (D|ρ, σ) =
∏
k

P (|zk||ρ, σ) =
∏
k

|zk|
σ2

exp

[
−ρ

2 + |zk|2

2σ2

]
I0

(
|zk|ρ
σ2

)
. (4.156)

The joint distribution for σ and ρ is given by Bayes’ theorem as

P (σ, ρ|D) =
P (D|ρ, σ)P (ρ, σ)

P (D)
, (4.157)

and the marginal distribution for σ can then be obtained by integration as follows

P (σ|D) =

∫ ∞
0

P (σ, ρ|D) dρ =
1

P (D)

∫ ∞
0

P (D|ρ, σ)P (ρ, σ) dρ. (4.158)

To infer σ for this demonstration, |zk| values from were taken from the region of the

frequency space between 17 kHz and 18 kHz (visible in figure 4.5) and the prior P (σ, ρ)

was taken to be flat. The calculated joint posterior P (σ, ρ|D) is shown in the left-hand

plot of figure 4.11 and the marginal distribution P (σ|D) in the right-hand plot. We

see that there exists a non-trivial amount of probability density in the region where
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ρ > 0, which then influences the shape of P (σ|D) - a feature which would have been

missed if ρ was assumed to be zero.
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Figure 4.11: (left): Plot of the joint posterior P (σ, ρ|D) calculated for the test data. The
global maximum is marked with a cross, and the distribution is described using credible region
contouring. (right): Plot of the marginal distribution P (σ|D) obtained from integrating over
the posterior in the left plot.

If the uncertainty in σ is very small we can for simplicities sake use the mode of P (σ|D)

as a single-value estimate and treat it as a known constant. However for a less well-

determined σ we may wish to calculate the correction factors E [τ ] in a way which

accounts for this uncertainty. This can be achieved by calculating E [s] /|z| rather than

E [S] /R, which may be expressed as

E [τ ] =
E [s]

|z|
=

1

|z|

∫ ∞
0

sP (s|D, |z|) ds (4.159)

=
1

|z|P (|z|)

∫ ∞
0

s

(∫ ∞
0

P (|z||s, σ)P (s|σ)P (σ|D) dσ

)
ds.

Note however that this contains the term P (s|σ), which to calculate requires that we

obtain many estimates of the prior distribution as a function of σ. Doing so requires

that the prior estimation process is automatic (i.e. no manual analysis is involved),

robust and computationally inexpensive. Through a combination of the techniques

developed in section 4.4 it should be possible to develop an algorithm which meets

these criteria - this is beyond the scope of this thesis but may be the subject of further

work. In light of this, we will continue by using the single-value estimate σ̂ = 0.694,

taken from the mode of the marginal distribution shown in figure 4.11.
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4.5.2 Selecting the pass-band region of frequency space

We noted in the introduction to this chapter that one of the motivations for this work

was to address the problem of noise remaining in the pass-band after the application of

a frequency-based filter. Here we discuss probabilistic approach to selecting which areas

of the frequency space can be filtered out and which are to be magnitude-corrected.

As mentioned in the previous section, in an area where there is no true signal power

the measured magnitudes have the following Rayleigh distribution

P (|z||σ) =
|z|
σ2

exp

[
−|z|

2

2σ2

]
. (4.160)

Now suppose we were to calculate the likelihood that the |zk| are Rayleigh-distributed

in a given window of frequency space defined by f0± δf . Letting the set of magnitudes

in this window be represented by W we may write

P (W|σ) =
∏
k

P (|zk||σ). (4.161)

The conditionality on σ can be removed by using P (σ|D) (which we calculated in the

previous section) and marginalisation as follows.

P (W) =

∫ ∞
0

P (W , σ|D) dσ =

∫ ∞
0

P (W|σ)P (σ|D) dσ. (4.162)

By considering how P (W) varies with f0 we can identify which regions of the proba-

bility space are not well described by the Rayleigh distribution, indicating that these

areas should not be filtered out because they contain meaningful amounts of true signal

magnitude. A plot of ln (P (W)) versus f0 for the test data is given in figure 4.12. We

see that the likelihood starts to fall very rapidly at around 11 kHz, so a cut-off of 12

kHz was chosen for the low-pass filter to ensure no useful signal information was dis-

carded. The distribution of the Rk can now be estimated from the non-zero magnitudes

remaining in the pass-band in order to obtain the correction factors.
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Figure 4.12: Plot of the likelihood P (W) from (4.162) as a function of the window central
frequency f0. The window width used here is 1 kHz. The dashed line indicates the chosen
cut-off for the low-pass filter based on the results.

4.5.3 Calculating the correction factors

Results from estimating the prior and the subsequent calculation of the correction

factors E [τk] are shown in figure 4.13. Following our observation in section 4.4.1 that

the PDF of the Fourier magnitudes is represented particularly well by a sum of log-

normal distributions, a continuous estimate of P (R̃) was obtained by fitting a sum of

normal distributions to the sample of R̃. The residual plot for the fit given in the results

demonstrates that this approach is highly effective, the largest deviation between the

fit and the data being only ∼ 0.002. This accuracy was obtained using a total of

eight normal distributions, but the majority of these added only small refinements - we

found that a maximum deviation of ∼ 0.003 could be achieved using only three normal

distributions.

The analytic representation of P (R̃) was then used to generate an estimate of P (S̃) us-

ing the iterative Bayesian approach developed in section 4.4.3. The estimate converged

after around 30 iterations, confirming that it satisfies the forward transform integral

equation. We found that the estimated prior produced a correction function E [τ ] with

the expected limiting behaviour that was derived using simple analytic prior models

in sections 4.3.3 and 4.3.4 - namely that E [S] /R → 1 as R →∞ and ∂
∂R

E [S]→ 0 as

R → 0. The fact that E [S] has a non-zero minimum value limits the distribution of
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4.5. Demonstration of magnitude correction method

corrected magnitudes to have zero density below this value. We see the consequences of

this in the lower-right plot of figure 4.13, where the distribution of the log-magnitudes

after the correction has a sharp, skewed peak because all magnitudes with a value lower

than the minimum in E [S] have been moved to or above the minimum.
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Figure 4.13: (top-left): The P (R̃) measured directly from the test data and the corre-
sponding estimate of P (S̃) obtained using the iterative approach described in section 4.4.3.
(top-right): The difference between the sample estimate of the CDF for R̃ and the fit using a
series of normal distribution CDFs. (bottom-left): E [S] calculated using the estimated prior.
(bottom-right): Comparison between the corrected and un-corrected Fourier magnitude dis-
tributions.

4.5.4 Demonstration of reduction in magnitude errors

In order to demonstrate that this correction procedure does in fact result in an overall

reduction in the error of the Fourier magnitudes we present the results shown in figure

4.14. Gaussian noise was added to the audio test data, with the resulting signal having

a noise-level of U = 0.5. The original and noisy signals yielded a set of sk and |zk|

values respectively, allowing the calculation of the corresponding correction factors

τk = sk/|zk|. These τk are shown in the left-hand plot, along with the corresponding
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Figure 4.14: (left): Point-plot of the correction factors τk for the test data with added
Gaussian noise, with the corresponding correction curve E[τ ] overlaid. (right): Probability
distributions for the ‘uncorrected’ magnitude errors |zk|−sk and ‘corrected’ errors E[τk]|zk|−
sk.

curve of E[τ ] calculated as part of the correction procedure. This plot is a useful

visualisation of why this method reduces the overall magnitude error - the average

distance between the τk and the E[τ ] is lower than that between the τk and the τ = 1

line, which would correspond to no correction.

The ‘error’ in the measured magnitudes |zk| introduced by the noise is given by the

difference |zk| − sk. The corresponding error in the corrected magnitudes is therefore

given by E[τk]|zk| − sk. By comparing the distribution of the magnitude errors before

and after correction, shown the right-hand plot, we are able to quantify the effect of

the correction. For this particular case, we find that the mean of the corrected errors

is much closer to zero with µ = −0.24 versus the uncorrected mean of µ = 6.98. The

square-root of the raw second moment provides a useful quantification of the overall

level of error in the magnitudes. In the uncorrected case we find a value of
√
µ′2 = 8.76

and one of
√
µ′2 = 3.73 in the corrected case - a 57% reduction.

4.6 Correction performance testing

In this section we investigate the performance of the magnitude correction technique

by applying it to a variety of simulated datasets. These datasets were generated using

the audio signal that was the subject of the demonstration correction in the previous
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section. This signal was low-pass filtered with the cut-off at 12 kHz and stored to be

used as the true series Ḡn. Various ‘measured’ signals were then generated by adding

different levels of Gaussian noise to the true signal.

Initially we examine the ideal case where the correction is calculated using the ex-

act (usually unknown) prior P (S). Performance resulting from estimated priors is

discussed later in this section.

4.6.1 Investigating ideal correction performance

In section 4.3.5 we defined the following initial and corrected noise levels (δi and δc

respectively) as

δi =

√√√√ 1

N

N−1∑
n=0

(
Gn − Ḡn

)2
=

√√√√ 1

N

N−1∑
n=0

E2
n, δc =

√√√√ 1

N

N−1∑
n=0

(
Ĝn − Ḡn

)2

. (4.163)

As we have taken the noise series En to be normally distributed with zero mean, the

initial noise δi is an estimator of the time-domain standard deviation because it is equal

to the root-mean-square value of the {En}. In all testing we found that the difference

between the true and corrected signals Ĝn − Ḡn was also normally distributed, which

supports the assumption of CLT validity made in equation (4.25). Additionally this

means that δc is an estimator of the corrected time-domain standard deviation. The

‘fractional noise reduction’ δc/δi will be used throughout this section as a metric for

the performance of the correction technique.

It is also important to study how δc/δi varies with U , the level of noise in the signal.

Comparing the definitions of δi above and U from (4.61) we see they are related as

follows

U = δi

(
1

N

N−1∑
n=0

Ḡ2
n

)− 1
2

. (4.164)

The fractional noise reduction was calculated as a function of U for 200 separate sim-

ulated datasets (generated using different sets of Gaussian noise) and the results are

given in figure 4.15. The noise reduction was calculated for the magnitude correction

and a low-pass filter, and then for the low-pass filter only. We see that in the limit
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where U → 0 the additional noise reduction from the magnitude correction vanishes

leaving only that from the low-pass filter. The variation in δc/δi over the different

simulated datasets was found to be normal distributed but with a small standard devi-

ation, as shown by the right-hand plot. This is to be expected given the relatively large

number data points (217) in the audio signal, which should ensure that any random

variation is small.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

U

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
a
l 
n
o
is

e
 r

e
d
u
ct

io
n

magnitude correction

low-pass only

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

U

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

fr
a
ct

io
n
a
l 
u
n
ce

rt
a
in

ty

1e 3

Figure 4.15: (left): Plot of the overall noise reduction resulting from both a low-pass filter,
and the same filtering plus the probabilistic magnitude correction. (right): The variation in
the correction performance observed from by calculating the correction for 200 different sets
of applied Gaussian noise.

4.6.2 Quantitative comparison of prior estimation techniques

All that remains is to compare the ideal correction performance with that obtained

when the prior is estimated using the techniques developed in section 4.4, as it must

be in any applied case. Both the Bayesian iterative prior approximation (BIPA) and

the prior-evidence equivalence approximation (PEEA) proved to be robust and give

smoothly-varying performance as a function of U as shown in figure 4.16. It might

have been expected that in the high-noise limit the prior estimates would break down

and begin to lose correction performance, but we see the estimates continue to yield

improved performance with increasing U . The BIPA estimates performs better than

the PEEA estimate, which we would certainly expect given that PEEA is the trivial

approximation (only the assumption of a flat prior being more trivial). The perfor-

mance results for the linearisation prior estimation approach are not given here because
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Figure 4.16: Comparison of the correction performance when using estimated priors versus
the ideal case with the exact prior. Here BIPA is the Bayesian iterative prior approximation
and PEEA is the prior-evidence equivalence approximation.

in testing it failed to produce robust results - performing well in some cases but not

others. This approach may still prove useful with some further work to constrain the

solutions, but for now will be set aside.

The figure shows two separate performance curves for the BIPA estimate - this is

because two alternate versions of the technique were tested. The results labelled ‘BIPA’

are obtained from the approach exactly as described in section 4.4.3. Here it was noted

that the ‘zeroth’ iteration f0 represented an initial guess at the prior in the absence

of other information. For the results labelled ‘PEEA seeded BIPA’ f0 was replaced

with the PEEA estimate to investigate what effect this would have on the correction

performance. We see that using the original definition of f0 yields the best results in

this case. Furthermore, we see that the standard BIPA performs better than the ideal

case where the exact prior is used, and seems to converge to the ideal case for large

U . This is certainly unexpected, and the cause is not yet understood. Further work

testing different datasets is needed to see if the performance ordering of the various
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prior estimates persists.

On this basis of the results shown here, we conclude that the BIPA estimation approach

is the best option of the three investigated. The full correction procedure can now be

summarised as:

(a) Calculate the DFT of the measured signal.

(b) Infer the posterior for the Fourier-space standard deviation.

(c) Estimate the distribution of the measured Fourier magnitudes (either as a sum

of log-normal distributions or through other means).

(d) Use the Bayesian iterative prior approximation to obtain an estimate of the true

magnitude distribution.

(e) Calculate the correction function E [τ ] and multiply each Fourier coefficient by

the corresponding correction factor.

(f) Calculate the inverse-DFT of the spectrum to obtain the noise-corrected series.

4.7 Application to KSTAR ECEI data

Now the correction procedure has been developed and tested, it can be applied to the

KSTAR electron-cyclotron emission imaging data which motivated this investigation

into noise-correction. KSTAR possesses multiple ECEI systems, each having 192 in-

dividual channels. This necessitated that the correction procedure be automated, as

by-hand analysis of each channel is not practical. This automation has been success-

fully implemented such that an arbitrary time-series can be passed to a single function

which carries out each step of the process described at the end of the previous section

and returns to corrected data. An example showing the correction of one of the chan-

nels is shown in figure 4.7. As we would expect, the correction has an overall smoothing

effect on the time-series data.
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Figure 4.17: Plots of KSTAR ECEI channel #125 from shot # 6123. (top): The uncorrected
Fourier magnitude spectrum of the data from 6.6 to 6.8 seconds. (bottom): Comparison
between the corrected and uncorrected channel data. For both signals all frequencies below
0.25 kHz and above 8 kHz have been removed.

It is our intention that the corrected ECEI data will be used in future collaborations

with NFRI and POSTECH, in particular as part of an extension to the work carried

out in [17], which is attached to this thesis as an appendix. My contribution to this

publication was the development of software to model the measured ECEI signals, and

the design of the stochastic fitting approach used to estimate model parameters. We

anticipate that a combination of the noise-corrected data and a Bayesian approach

to model parameter inference will yield improved estimates of tearing mode stability

parameters.

4.8 Conclusions and further work

A novel technique which corrects for the effects of random noise in an arbitrary real

series Gn has been presented. The basis of the technique is to adjust the discrete Fourier
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transform magnitudes of Gn such that they optimally estimate the ‘true’ magnitude

which would be measured if no noise were present.

In section 4.2 it was demonstrated that for a sufficiently large series length N , after a

discrete Fourier transform random noise is normally distributed in the real and imag-

inary parts with identical variance. A correction based on the joint-posterior for the

true real and imaginary parts P (x̄, ȳ|, x, y) was investigated, and shown to be depen-

dent entirely on the prior P (x̄, ȳ). It was also shown that this prior could be estimated

as the solution to a 2D deconvolution problem.

To make the problem more approachable a change to polar coordinates was made, and

in section 4.3 a correction to the Fourier magnitude was derived using the Rice dis-

tribution and Bayes’ theorem. The result is a correction function E [τ ], which adjusts

each Fourier coefficient individually based on its magnitude. By considering the distri-

bution for the measured phase P (φ|φ̂, S) it was shown that phase-correction required

the solution of a 2D inverse problem.

Section 4.4 examines the problem of estimating the prior distribution P (S) starting

from a known P (R). Initially some basic properties of P (S) were investigated using

test data, and it was found that whilst P (S) and P (R) tend to be extremely skewed

and difficult to work with, the distributions of the natural log of S and R are much

better behaved and are able to be well approximated as a sum of normal distributions.

It was then shown that various modifications to the inverse problem can be made which

make it more tractable. Three approaches to approximating the prior were presented:

the first was an iterative approach based on fundamental probability results. The

second made use of the Chebyshev polynomials as an orthonormal basis to transform

the modified integral inverse problem into a linear algebra inverse problem. Lastly

the possibility of a trivial approximation where P (S) is assumed to be numerically

equivalent to P (R) was discussed.

In section 4.5 the previous results were combined to demonstrate the magnitude correc-

tion technique using real data containing unknown noise. Discussions were presented
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on how best to infer the value of the Fourier-domain noise standard deviation and the

location of frequency based filter cut-offs.

The performance of the correction technique (and the various prior distribution esti-

mators) were tested quantitatively in section 4.6 using simulated datasets. Gaussian

noise was added to a known ‘true’ signal which was then corrected, and the result-

ing reduction in the noise calculated. It was found that the Bayesian iterative prior

approximation yielded the best results, having very similar performance to the ‘ideal’

case obtained by using the exact prior. Meaningful reduction in the noise level was

demonstrated for U ≥ 0.1, and was shown to improve consistently with increasing U .

Application of the noise-correction to KSTAR ECEI data was discussed in section 4.7,

along with planned future work which will make use of the corrected dataset.

4.8.1 Potential further work

An interesting possibility would be to consider whether an improved correction can be

obtained by splitting the frequency space up into sections, each having its own P (R)

and P (S). The logic for this would be that the ‘local’ version of P (S) for each frequency

region may better represent the contained Sk values than a ‘global’ prior. This would

yield a separate correction function for each region. It could also be considered whether

this probabilistic correction approach could be extended to time-frequency transforms,

such as the wavelet or Gabor transforms.

Although it was demonstrated that for fixed standard deviation, the specific noise series

has little effect on the correction performance (for sufficiently largeN), it was not shown

whether it varies significantly based on the data being corrected. The source of this

variation, significant or not, must arise from differences in P (S) between different sets

of data. It would therefore be interesting to seek a theoretical relationship between

P (S) and the correction performance, in addition to simply testing other datasets

to observe any variation directly. Testing additional datasets is also necessary to gain

insight into why the correction using the BIPA estimate out-performed (albeit slightly)

that from the exact prior.
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Chapter 5

Forward-modelling of plasma

parameter time-dependence effects

in the DIII-D CER system

5.1 Introduction

Charge-exchange recombination (CER) is a physical process which forms the basis for

several important diagnostic techniques in high-temperature plasmas physics. It is the

mechanism by which a bound electron may be exchanged between two atoms during a

collision. Magnetic confinement devices such as tokamaks generally have a core plasma

which is fully ionised, and as such the amount of atomic line radiation produced in

these regions is negligible.

However, if additional neutrals are introduced into the core plasma from an outside

source, charge-exchange may take place between these neutrals and the background

plasma, thereby stimulating line emission to occur where there would otherwise be

none. Standard spectroscopy techniques may then be used to diagnose the line spectra,

allowing us to measure important plasma parameters such as ion density, temperature

and flow.
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Figure 5.1: Top-down schematic view of the DIII-D torus, showing the layout of the various
neutral beams and diagnostic lines-of-sight. [37]

Neutral beam injection (NBI) is typically the source by which the additional neutrals

are introduced into the plasma. Often CER spectroscopy systems make use of the

pre-existing neutral beams which are used to heat the plasma and inject momentum,

but occasionally a separate ‘diagnostic’ neutral beam is used. By using a diagnostic

line of sight which intersects a neutral beam, we are able to localise the collected line

emission to a relatively small volume of plasma. Additionally we are able to make

our measurements spatially resolved by collecting radiation from multiple lines-of-sight

which intersect the neutral beam at different points along its length. An example of

such a layout on the DIII-D tokamak is shown in figure 5.1.

The plasma flow around magnetic islands created due to neo-classical tearing modes

is predicted to influence their stability and evolution. Differences in electron and ion

inertia dictate that they each respond differently to the flux perturbation associated

with a magnetic island as they flow around it. This leads to a ‘polarisation current’

[38, 39] which affects tearing stability. This effect is expected to play an important

role in determining the threshold size and behaviour of NTMs, which is itself an area

of much interest as understanding this threshold behaviour is key to preventing or

stabilising NTMs in future MCF devices.
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As part of an experiment on DIII-D to study NTM stability, the CER system was

used to measure the ion flow in the vicinity of a magnetic island as it rotated past the

diagnostic line-of-sight. The rotation frequency of the islands in question was around 1

kHz or slightly above, but the maximum available time-resolution of the CER system

was 274 µs. Consequently the experiment sought to push to its limit the ability of the

CER system to resolve fast velocity fluctuations.

In this chapter we develop a Bayesian inference framework for the DIII-D CER system,

specifically with the goal of inferring ion flow velocities and assessing the system’s limit

in characterising velocity fluctuations.

5.2 Constructing the CER spectrum

To infer physical quantities of interest from the observed CER spectral data, we must

construct a physics model for the spectrum. Here the various mechanisms which affect

the CER spectrum are discussed, with emphasis on their relevance in low-density,

high-temperature tokamak plasmas.

5.2.1 Relativistic effects

For Carbon ions, thermal velocities are typically too low even at high plasma temper-

atures to require a proper relativistic treatment. The Lorentz factor for a carbon ion

travelling at the thermal velocity in a 50 keV plasma differs negligibly from unity:

γ − 1 =

(
1− Ti

mic2

)− 1
2

− 1 = 2.23× 10−6 (5.1)

On this basis effects such as relativistic beaming (where radiation is preferentially

emitted toward the direction of motion such that an observer measures an increased

amount of blue-shifted photons) may be ignored.
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5.2.2 Doppler effects

An emitted CER photon seen by an observer is Doppler-shifted by the source ion’s

velocity component along the line-of-sight between the ion and observer. For positive

source velocity defined to be moving away from the observer, the observed and source

frequencies ν and ν0 are related via

ν = γ (1− β) ν0 = ν0

√
1− β
1 + β

. (5.2)

Solving for β we obtain

β =
ν2

0 − ν2

ν2
0 + ν2

=
λ2 − λ2

0

λ2 + λ2
0

, (5.3)

allowing the source velocity to be inferred from ν and ν0. However as previously noted,

for Carbon ions in MCF-relevant temperature plasmas β � 1. Taylor expanding the

right-hand side of (5.2) to first order about β = 0 and solving for velocity gives

v = c

(
1− ν

ν0

)
= c

(
1− λ0

λ

)
. (5.4)

Ions with some velocity distribution Pv(v) emitting monochromatic photons of wave-

length λ0 will therefore give rise to the following distribution of observed wavelengths

Pλ(λ) dλ = Pv

(
c

(
1− λ0

λ

))(
dv

dλ

)
dλ =

cλ0

λ2
Pv

(
c

(
1− λ0

λ

))
dλ. (5.5)

5.2.3 Natural line-width

All spectral lines have a natural width associated with the finite lifetime of excited

quantum states. The uncertainty principle tells us that the spread of the state energy

is roughly ∆E ∼ ~/τ where τ is the state lifetime. A full treatment of the problem

yields the following Lorentzian line-shape

P (ν|ν0, τ) =
2τ

1 + (2πτ(ν − ν0))2 . (5.6)
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τ can be calculated as the reciprocal of the sum of the Einstein Aij coefficients for all

possible transitions from the initial state plus all transitions from the final state - this

accounts for the distribution of energies of both states. Typically Aij ∝ ν3
ij, resulting in

short lifetimes for higher-energy transitions and a correspondingly greater natural line-

width [40]. The natural broadening tends to be unimportant in hot plasmas because it

is completely dominated by the thermal broadening, but for lower-temperature plasmas

and transitions in the ultraviolet and above it may be relevant. As the DIII-D CER

system diagnoses the C6+ n = 8→ 7 transition at λ = 529.046 nm (around the middle

of the visible light spectrum) and the plasma temperatures being observed are high,

we are able to dismiss the broadening from the natural width as negligible.

5.2.4 Fine-structure splitting

Coupling between a bound electron’s orbital and intrinsic angular momentum, in addi-

tion to some relativistic effects, leads to atomic ‘fine structure’ where quantum states of

the same n but differing l, j have slightly different energies. Consequently the natural

emission spectrum for the C6+ n = 8→ 7 transition is in fact a series of closely spaced

spectral lines of the form shown in (5.6) each with their own natural line-width. This

effectively increases the observed natural width of the transition, but despite this it

still appears to be a negligible effect.

5.2.5 Charge-exchange cross-section variation

At high neutral beam energies the sensitivity of the charge-exchange cross-section to

changes in relative velocity is increased [41]. This effect, coupled with high plasma

temperatures, can result in non-negligible variation of the cross-section across the dis-

tribution of relative collision velocities, leading to a non-gaussian line shape. This effect

is more pronounced for light-ion targets due to their higher thermal velocities.

Experiments on JET at high ion temperatures (20 keV) demonstrated that failure to

account for this effect can result in large errors in temperature estimation (as much
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as 25%) when using Dueterium lines, but errors of only a few percent when using

carbon lines. These experiments found no detectable differences in measured ion flow

using carbon spectra as a result of taking this effect into account. Due to the use of

Carbon in the DIII-D CER system, and the lower ion temperatures (relative to the

aforementioned JET experiments) we may conclude that modelling the effect of cross-

section variations due to the distribution of relative velocities is unnecessary for our

analysis.

5.2.6 Non-thermal ion populations

Certain types of MHD instabilities or turbulent micro-instabilities may produce small

populations of ions with non-thermal velocity distributions. As a result the velocity

distribution of the ions at a particular point in the plasma may be slightly perturbed

away from a thermal distribution. This could in principle introduce errors into mea-

surements of the spectrum parameters, as the Gaussian line-shape assumed for thermal

Doppler broadening relies on a Maxwellian ion velocity distribution.

Non-thermal ion populations appear to have little impact on the carbon CER spec-

troscopy measurements on DIII-D as the spectrum model derived from a Gaussian line-

shape agrees with the data very well. If there were a statistically significant amount of

non-thermal ions with velocities within a few standard deviations of the mean velocity

we would expect to find an apparently non-random discrepancy between the model

and the data, however no such discrepancy has been observed.

5.3 Bayesian inference in CER spectroscopy sys-

tems

The DIII-D CXR system records a digitised ‘counts’ value for each available pixel in

the CCD. Our physics model must therefore make a prediction of this counts level in

order for us to infer information about the model parameters. As a step toward this, we
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first consider the fraction of all photons dispersed by the spectrometer which interact

with a particular CCD pixel. This may be interpreted in a probabilistic sense as the

average probability of a photon interacting with a pixel over all possible wavelengths.

5.3.1 Modelling photon detection probability

Let δn be the event that a photon interacts with pixel n. It is helpful to express

δn and the factors on which it depends as a Bayesian network. This will allow the

requisite expression for the probability of δn to be easily derived. Bayesian networks are

often defined through directed acyclic graphs (DAGs), where variables in the system

are represented as nodes, and the dependencies between those variables by directed

edges (arrows). For example, for a system of two variables A and B, where A has a

dependence on B, the appropriate DAG has a directed edge pointing from the B node

to the A node.

To construct a Bayesian network in this fashion, we begin by creating a node for δn, add

nodes for the variables on which it depends, and connect them with the appropriate

edges. This process is repeated for each new node added until there are no further

dependencies to include, and the network is complete.

Clearly, the position x at which a photon meets the CCD will influence whether that

photon is detected in any given pixel. Additionally, the quantum efficiency of the CCD

will depend on the wavelength λ of the photon. δn is therefore determined by both x

and λ.

Next we must consider the dependencies of x and λ. As the spectrometer disperses

the photons based on their wavelength, x depends on λ. A model for the dispersion

is required to describe precisely the relationship between λ and x. At this point we

need not specify anything about such a model other than that it is defined by some

parameter vector α. x is therefore determined by both λ and α.

The probability a given photon has wavelength λ depends on the spectrum of light

which leaves the spectrometer. The dependencies of λ are therefore the parameters of
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Figure 5.2: A directed acyclic graph of the Bayesian network for the photon detection
probability δn. Such networks provide a convenient way to map out the dependencies of
variables in a system.

our model for this spectrum. Any such model will include the mean flow velocity v0

and impurity ion temperature Ti which determine the charge-exchange spectrum. v0

and Ti have no dependencies, so there are no further nodes to be added to the network.

The completed network is illustrated as a DAG in figure 5.2.

The network allows us to easily derive the joint probability distribution P (δn, x, λ|v0, Ti, α)

as the product of the individual distributions for δn, x, λ, which may be determined from

the graph in 5.2. We may therefore write

P (δn, x, λ|v0, Ti, α) = P (δn|x, λ)P (x|λ, α)P (λ|v0, Ti). (5.7)

We want the probability a photon is detected irrespective of its wavelength or position.

This may be obtained by integrating (5.7) over all λ, x yielding:

P (δn|v0, Ti, α) =

∞∫
0

∞∫
0

P (δn|x, λ)P (x|λ, α)P (λ|v0, Ti) dλ dx. (5.8)

At this point it is useful to provide some context by discussing the physical mean-

ingfulness of the three distributions on the right-hand side of (5.8). P (λ|v0, Ti) can

be straightforwardly interpreted as describing the wavelength spectrum of incoming

CER photons. P (x|λ, α) is the distribution of possible locations a photon of given
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wavelength may land on the CCD, which is typically referred to as the ‘instrument

function’ of the spectrometer-CCD system. P (δn|x, λ) is the probability that a photon

with a particular wavelength and position interacts with pixel n, and as such may be

interpreted as the ‘pixel sensitivity’.

5.3.2 Distribution of wavelengths for incident photons: P (λ|v0, Ti)

Our starting point is to assume a thermal velocity distribution with a mean flow

P (v|v0, Ti) =
1

vth
√
π

exp

[
−(v − v0)2

v2
th

]
, vth =

√
2Ti
mi

, (5.9)

where v0 is the line-of-sight flow velocity, and Ti,mi are the ion temperature and mass

respectively. As discussed in section 5.2.1, even at very high plasma temperatures the

thermal velocities of carbon ions are not sufficient to require relativistic treatment. As

such, we take the non-relativistic limit of the Doppler effect, where

v = c

(
λ0

λ
− 1

)
. (5.10)

λ0 is the initial wavelength and λ is wavelength as seen by a lab-frame observer. To

obtain the distribution for the wavelength, we make the following substitution:

∫ λ2

λ1

P (λ|v0, Ti) dλ =

∫ v(λ1)

v(λ2)

P (v|v0, Ti)

(
−dv

dλ

)
dλ, (5.11)

such that we may write

P (λ|v0, Ti) dλ = P (v|v0, Ti)

(
−dv

dλ

)
dλ = P (v|v0, Ti)

(
cλ0

λ2

)
dλ. (5.12)

P (λ|v0, Ti) is the probability that an incident photon has wavelength λ for a given

v0, Ti, and may now be expressed as

P (λ|v0, Ti) =
cλ0

vthλ2
√
π

exp

[
− c2

v2
thλ

2

(
λ0 − λ

(
1 +

v0

c

))2
]
. (5.13)
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This is sufficient to model the charge exchange emission at a single point in time and

space, but in reality the detected emission originates from some volume of space Vi

over an integration time ti. Accounting for the time-dependence of model parameters

is addressed later in section 5.3.5. Spatial variation of the temperature and flow over

the integration volume will not be modelled explicitly. It is instead assumed that local

gradients in v0 and Ti are sufficiently small that the spatial variation may be ignored.

5.3.3 Model for the instrument function: P (x|λ, α)

The point-spread function (PSF) for the CER system is parametrised about zero as a

sum of Gaussian functions:

PSF =
∑
k

Ak

Sk
√

2π
exp

[
−1

2

(
x− Lk
Sk

)2
]
, (5.14)

which is appropriately normalised provided that

∑
k

Ak = 1. (5.15)

The Ak, Lk, and Sk are experimentally-determined constants. The PSF does not

depend on λ, so to obtain P (x|λ, α) we must include a model for the dispersion. The

dispersion is a function which relates λ to the point x0 on the CCD where a photon

of that wavelength would land in the absence of any point-spread effect. This is often

determined through experimental calibration, and parametrised as a polynomial with

coefficients d. In this case, the dispersion is taken to be linear:

x0 = d1λ+ d0. (5.16)

We will see later in section 5.4.1 that a linear dispersion relation is an important feature

of the experimental design from an analysis perspective, as it allows the instrument

function convolution to be dealt with analytically. This represents a huge simplification

and computational cost saving, and is not possible if non-linear terms are needed to

adequately describe the dispersion. We require that the PSF is centred about x0 rather
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than zero, which can be achieved by replacing x with x− x0 in (5.14). Doing so allows

us to define

P (x|λ, α) =
∑
k

Ak

Sk
√

2π
exp

[
−1

2

(
x− Lk − d1λ− d0

Sk

)2
]
. (5.17)

As we defined α to be the vector of all parameters needed to specify P (x|λ, α), it

necessarily contains d, A, L, and S.

5.3.4 Model for pixel sensitivity: P (δn|x, λ)

If we assume that the quantum efficiency Q of the CCD varies negligibly over the range

of x, λ in the experiment so that we may treat it as constant, then the simplest model

we can write for P (δn|x, λ) is:

P (δn|x, λ) =

 Q if |x− xn| < 1
2
w

0 otherwise
, (5.18)

where xn is the centre location of pixel n and w is the width of a pixel. This model

also assumes that the angle of incidence φ is zero for all x, but is good approximation

provided φ remains small. The potential for charges to leak between adjacent pixels has

been purposefully ignored here, as this effect should be captured by the experimentally-

determined instrument function profiles in P (x|λ, α).

5.3.5 Expected counts & time-dependence of the CER spec-

trum

If the model in (5.18) is used, (5.8) becomes

P (δn|v0, Ti) = Q

xn+ 1
2
w∫

xn− 1
2
w

∫ ∞
0

P (x|λ, α)P (λ|v0, Ti) dλ dx. (5.19)
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Let Rγ be the rate at which charge-exchange photons leave the spectrometer. The

number of photons detected in pixel n is then

Cn(θ) = Q

t0+ 1
2
ti∫

t0− 1
2
ti

Rγ

xn+ 1
2
w∫

xn− 1
2
w

∫ ∞
0

P (x|λ, α)P (λ|v0, Ti) dλ dx dt, (5.20)

where ti is the integration time of the measurement, t0 is the time at the centre of the

integration window and θ is a vector containing all model parameters.

Generally, when physical quantities are inferred based on diagnostic data collected over

an integration time, it is assumed that these quantities do not vary significantly over

the time window such that they can be assumed to have zero time-dependence.

However if meaningful variation in the model parameters does occur on time-scales

comparable to ti, this assumption is no longer satisfactory. To address this, the time

dependences of v0, Ti, Rγ are modelled as Taylor expansions about the centre of the

integration window:

v0(t) ≈
N∑
n=0

(t− t0)n

n!
v

(n)
0 , (5.21)

Ti(t) ≈
N∑
n=0

(t− t0)n

n!
T

(n)
i , (5.22)

Rγ(t) ≈
N∑
n=0

(t− t0)n

n!
R(n)
γ . (5.23)

This approach is convenient because the model parameters which determine these quan-

tities (the v
(n)
0 , T

(n)
i and R

(n)
γ ) are now by definition their time-derivatives evaluated at

t0. Consequently, we may now infer probability distributions for these time-derivatives

as an alternative (or in addition) to those for the values of the quantities at t0.

It should not be necessary to expand v0, Ti and Rγ past second-order. If the time-

behaviour of these quantities during the integration time cannot be adequately approx-

imated by a quadratic, then ti is likely too large to properly capture their dynamics.

Expanding to higher orders also greatly increases the number of model parameters,

thereby significantly increasing computational costs.
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We must also consider the effect of background emission (any radiation reaching the

CCD not arising from the charge exchange process) on the number of detected photons.

To account for this we include a background model βn(u) which at this point can remain

unspecified other than that is defined by some set of parameters u. After inclusion of

this model Cn(θ) becomes

Cn(θ) = Q

t0+ 1
2
ti∫

t0− 1
2
ti

Rγ

xn+ 1
2
w∫

xn− 1
2
w

∫ ∞
0

P (x|λ, α)P (λ|v0, Ti) dλ dx dt+ βn(u). (5.24)

5.3.6 Inference of model parameter distributions

To infer the probability of the model parameters θ, we first require a statistical model

for the uncertainty in the observed data, given our model for the expected counts. Let

the predicted total amount of detected photons across all pixels be m;

m =
∑
n

Cn. (5.25)

We can think of Cn(θ)/m as an updated photon detection probability which now in-

cludes our model for background light sources. In this sense we can model the prob-

ability of observing a number of photons yn in pixel n through the following binomial

distribution:

P (yn|θ) =
m!

yn!(m− yn)!

(
Cn
m

)yn (
1− Cn

m

)m−yn
. (5.26)

Note here that as yn is a number of observed photons, this is not necessarily equal

to the ‘counts’ value reported by the CCD - typically multiple photons must interact

with a given pixel in order to accumulate enough charge to register a CCD count.

Consequently, a calibration for the average photons per count is needed to obtain

the yn. Often counting uncertainties are taken to be Poisson-distributed. Figure 5.3

illustrates that the Poisson distribution is in fact a limiting case of the above binomial

distribution when cn � m;

lim
m/cn→∞

P (yn|θ) =
Cyn
n

yn!
exp (−Cn). (5.27)
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Figure 5.3: Plots of the binomial distribution in (5.26) for various values of m (lines), and
the limiting Poisson distribution in (5.27) (points) with Cn = 20. It can be seen that in the
limit where m/Cn � 1 the uncertainty becomes Poisson distributed.

For most pixels in DIII-D CER measurements the m/Cn values are very large and the

binomial distribution is indistinguishable from the Poisson distribution. Pixels around

the peak of the CER spectrum could have a m/Cn as low as 30, but even in this case

the two distributions differ by only a few percent at their peak. Accordingly we will

assume that the yn are Poisson distributed and mutually statistically independent, such

that the joint probability of all yn can be written as the product of their individual

likelihoods. Let D = {yn}, then:

P (D|θ) =
∏
n

P (yn|θ) = exp

[∑
n

yn ln (Cn(θ))− Cn(θ)− ln (Γ(yn + 1))

]
. (5.28)

We may now use Bayes’ theorem to obtain the probability of the model parameters θ:

P (θ|D) =
P (D|θ)P (θ)

P (D)
(5.29)

The prior distribution P (θ) represents any information on the model parameters which

is already known, for example knowledge obtained from a Bayesian treatment of an-

other diagnostic system. The distribution P (D) may be determined through normali-

sation of P (D|θ)P (θ).

We may now infer the probability distribution of a sub-set of desired model parameters.
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Let z the set parameters which we wish to infer, and ε be the complement of z with

respect to θ such that θ = [z, ε]. The ε are often referred to as ‘nuisance parameters’ and

are removed from the joint probability distribution by integrating over each variable -

this process is known as marginalisation. Accordingly we may express P (z|D) as

P (z|D) =

∞∫
−∞

· · ·
∞∫

−∞

P (z, ε|D) dε. (5.30)

The full calculation of P (z) may now be summarised as:

P (z|D) =

∞∫
−∞

· · ·
∞∫

−∞

exp

[∑
n

yn ln (Cn(θ))− Cn(θ)− ln (Γ(yn + 1))

]
P (θ)

P (D)
dε (5.31)

Cn(θ) = Q

t0+ 1
2
ti∫

t0− 1
2
ti

Rγ

xn+ 1
2
w∫

xn− 1
2
w

∫ ∞
0

P (x|λ, α)P (λ|v0, Ti) dλ dx dt+ βn(u). (5.32)

5.4 Numerical optimisation of the model

Computational cost is a concern for the numerical implementation of Bayesian inference

systems, usually due to the presence of a high-dimensionality integral such as that in

(5.31). It is therefore important to consider whether the calculation of the physics

model (in this case Cn(θ)) may be simplified without sacrificing significant accuracy.

The obvious target for our efforts in this regard are the three integrals in (5.32).

5.4.1 Wavelength integration

If the range of λ over which the spectrum is observed is small in comparison to λ0,

then (
1− λ

λ0

)
≈ −

(
1− λ0

λ

)
. (5.33)
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The above may be used with (5.13) to yield a Gaussian approximation of P (λ|v0, Ti),

which we will call f(λ):

P (λ|v0, Ti) ≈ f(λ) =
c

vthλ0

√
π

exp

[
− c2

v2
thλ

2
0

(
λ− λ0

(
1− v0

c

))2
]
. (5.34)

f(λ) has mean and variance

µf = λ0

(
1− v0

c

)
, σ2

f =
1

2

(
vthλ0

c

)2

. (5.35)

For DIII-D relevant spectrum parameters the fractional error in this approximation is

less than 1% within µf ± 3σf , as illustrated in figure 5.4. Now temporarily re-arrange
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Figure 5.4: Plot of the fractional error in f(λ) for Ti = 4 keV, v0 = 30 km/s and λ0 =
5920.46 Å. The green dashed line marks the location of µf and the red dashed lines mark
µf ± 3σf .

(5.17) as a Gaussian in λ:

P (x|λ, α) =
∑
k

Ak

Sk
√

2π
exp

[
−1

2

d2
1

S2
k

(
λ− x− Lk − d0

d1

)2
]
, (5.36)

which has mean and variance

µk =
x− Lk − d0

d1

, σ2
k =

S2
k

d2
1

. (5.37)
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Replacing P (λ|v0, Ti) with f(λ) in (5.19) allows us to evaluate the integral over λ

analytically:

∑
k

Ak
2πσfσkd1

∫ ∞
0

exp

[
−1

2

(
λ− µf
σf

)2

− 1

2

(
λ− µk
σk

)2
]

dλ (5.38)

=
∑
k

Ak

d1

√
2π
(
σ2
f + σ2

k

) exp

[
−1

2

(µf − µk)2

σ2
f + σ2

k

]

The exponential in P (δn|v0, Ti) may now be expressed as a Gaussian in x:

P (δn|v0, Ti) = Q
∑
k

xn+ 1
2
w∫

xn− 1
2
w

Ak

σx
√

2π
exp

[
−1

2

(
x− µx
σx

)2
]

dx, (5.39)

with mean and variance

µx = Lk + d0 + d1λ0

(
1− v0

c

)
, σ2

x =

(
Ti
mic2

)
λ2

0d
2
1 + S2

k . (5.40)

5.4.2 Pixel-width integration

Now the integrand in P (δn|v0, Ti) has been reduced to a Gaussian, the x integral can

be easily calculated as

xn+ 1
2
w∫

xn− 1
2
w

1

σx
√

2π
exp

[
−1

2

(
x− µx
σx

)2
]

dx = (5.41)

1

2

[
erf

(
xn − µx + 1

2
w

σx
√

2

)
− erf

(
xn − µx − 1

2
w

σx
√

2

)]
,

such that the detection probability is now

P (δn|v0, Ti) = Q
∑
k

Ak

[
1

2
erf

(
xn − µx + 1

2
w

σx
√

2

)
− 1

2
erf

(
xn − µx − 1

2
w

σx
√

2

)]
. (5.42)
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5.4.3 Time integration

The model for the expected counts has now been simplified to

Cn(θ) = Q

∑
k

Ak

t0+ 1
2
ti∫

t0− 1
2
ti

Rγ

[
1

2
erf

(
ψ + η√

2

)
− 1

2
erf

(
ψ − η√

2

)]
dt

+ βn(u), (5.43)

where

ψ =
xn − µx
σx

, η =
w

2σx
. (5.44)

The remaining integral over time has no analytical solutions for even simple models

of time-dependence (for example if v0, Ti, Rγ are assumed to vary linearly with time).

We must therefore either evaluate the integral numerically or find a suitable analyt-

ical approximation. An infinite-series solution to the integral can be constructed by

considering the Taylor expansion of the integrand y(t) about t0;

y(t) = Rγ

[
1

2
erf

(
ψ + η√

2

)
− 1

2
erf

(
ψ − η√

2

)]
=
∞∑
k=0

(t− t0)k

k!
y(k)(t0). (5.45)

The integral may now be represented exactly as

t0+ 1
2
ti∫

t0− 1
2
ti

y(t) dt =
∞∑
k=0

y(k)(t0)

k!

t0+ 1
2
ti∫

t0− 1
2
ti

(t− t0)k dt =
∞∑
k=0

2−2k(t2k+1
i )

(2k + 1)(2k)!
y(2k)(t0) (5.46)

= y(t0)ti + y(2)(t0)
t3i
24

+ y(4)(t0)
t5i

1920
+ · · ·

Truncating this series at the second order term yields an excellent approximation of

the integral for physically sensible time-variation. To compute the second-order term

we require the second-derivative of y from (5.45) with respect to time. To simplify this

process let

∂

∂t

1

2
erf

(
z√
2

)
=
∂z

∂t
G(z), G(z) =

1√
2π

exp

[
−z

2

2

]
. (5.47)
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Differentiating y twice gives

∂2y

∂t2
=
∂2Rγ

∂t2

[
1

2
erf

(
ψ + η√

2

)
− 1

2
erf

(
ψ − η√

2

)]
+ (5.48)

2
∂Rγ

∂t

[(
∂ψ

∂t
+
∂η

∂t

)
G (ψ + η)−

(
∂ψ

∂t
− ∂η

∂t

)
G (ψ − η)

]
+

Rγ

[(
∂2ψ

∂t2
+
∂2η

∂t2
− (ψ + η)

(
∂ψ

∂t
+
∂η

∂t

)2
)
G (ψ + η)−(

∂2ψ

∂t2
− ∂2η

∂t2
− (ψ − η)

(
∂ψ

∂t
− ∂η

∂t

)2
)
G (ψ − η)

]
.

This in turn requires the first and second derivatives of ψ and η, which are:

∂η

∂t
=

∂

∂t

(
w

2σx

)
= − w

2σ2
x

∂σx

∂t
, (5.49)

∂2η

∂t2
=

w

σ3
x

(
∂σx

∂t

)2

− w

2σ2
x

∂2σx

∂t2
, (5.50)

∂ψ

∂t
=

∂

∂t

(
xn − µx
σx

)
= −xn − µx

σ2
x

∂σx

∂t
− 1

σx

∂µx

∂t
, (5.51)

∂2ψ

∂t2
=

2

σ2
x

∂µx

∂t

∂σx

∂t
− xn − µx

σ2
x

∂2σx

∂t2
+ 2

xn − µx
σ3
x

(
∂σx

∂t

)2

− 1

σx

∂2µx

∂t2
(5.52)

=
2

σ2
x

∂µx

∂t

∂σx

∂t
− ψ

σx

∂2σx

∂t2
+

2ψ

σ2
x

(
∂σx

∂t

)2

− 1

σx

∂2µx

∂t2
.

Finally we need the derivatives of µx and σx in terms of Ti and v0:

∂µx

∂t
=

∂

∂t

(
Lk + d0 + d1λ0

(
1− v0

c

))
= −d1λ0

c

∂v0

∂t
, (5.53)

∂2µx

∂t2
= −d1λ0

c

∂2v0

∂t2
, (5.54)

∂σx

∂t
=

1

2σx

∂σ2
x

∂t
=

1

2σx

∂

∂t

((
λ0d1

c

)2
Ti
mi

+ S2
k

)
=

1

2σx

1

mi

(
λ0d1

c

)2
∂Ti

∂t
, (5.55)
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∂2σx

∂t2
=

1

2σx

1

mi

(
λ0d1

c

)2
∂2Ti

∂t2
− 1

2σ2
x

1

mi

(
λ0d1

c

)2
∂Ti

∂t

∂σx

∂t
(5.56)

=
∂σx

∂t

(
∂2Ti

∂t2

/
∂Ti

∂t

)
− 1

σx

(
∂σx

∂t

)2

.

Referring back to the definitions of v0(t), Ti(t) and Rγ(t) in (5.21), (5.22) and (5.23)

we see that their derivatives at t = t0 are the corresponding model parameters which

define the Taylor expansions:

[(
∂

∂t

)n
v0(t)

]
t=t0

= v
(n)
0 ,

[(
∂

∂t

)n
Ti(t)

]
t=t0

= T
(n)
i ,

[(
∂

∂t

)n
Rγ(t)

]
t=t0

= R(n)
γ .

(5.57)

For the general case these expressions are large, so much so that in practice numerical

integration techniques such as quadrature or the Newton-Coates formulae yield com-

parable approximations at less computational expense. The current implementation

evaluates the integral using a 9-point composite Boole’s rule - numerical testing has

shown this to be extremely accurate for physically sensible model parameters.

These expressions can been simplified significantly in special cases however - for exam-

ple under the assumption at there is no variation in temperature and linear changes in

velocity and photon rate we obtain

∂2y

∂t2
=

(
d1λ0

σxc

)(
∂v0

∂t

)(
2

(
∂Rγ

∂t

)
[G (ψ + η)−G (ψ − η)]− (5.58)

Rγ

(
d1λ0

σxc

)(
∂v0

∂t

)
[(ψ + η)G (ψ + η)− (ψ − η)G (ψ − η)]

)
.

For the case where only the velocity is allowed to vary (and does so linearly) the

expression becomes very simple:

∂2y

∂t2
= Rγ

(
d1λ0

σxc

)2(
∂v0

∂t

)2

[(ψ − η)G (ψ − η)− (ψ + η)G (ψ + η)] (5.59)

These cases are simplified enough that the series solution is a reasonable alternative to

numerical integration.
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5.5 Effects of time-dependence on predicted spec-

tra

As changes in the ion temperature, flow or density during the course of the diagnostic

integration time distort the observed spectrum, we could in principle retrieve informa-

tion about this time evolution from the experimental data. In effect, this would push

the time-resolution of the instrument below the integration time.

This would require both that we have model which can describe the time-evolution

of the parameters during the integration time, and that any such evolution has a

non-negligible impact on the experimental data. Because of the forward-modelling

approach used to derive our model for the observed counts, an integral over the inte-

gration time arises naturally, and the time-dependence of the plasma parameters can

be conveniently modelled through Taylor expansions as described in section 5.3.5, so

the first requirement is already met.

In this section we investigate the second requirement: does the time-evolution of the

temperature, density and flow during the integration time result in measurable differ-

ences to the observed spectra?

5.5.1 Analytical results for linear velocity changes

For the general case, the time-integration in the time-dependent model must be evalu-

ated numerically - however in the case of linear velocity changes only progress can be

made analytically. Using the series in (5.46) truncated to second-order, the fractional

change arising from the inclusion of time-dependence is

y(t0)ti + y(2)(t0)
t3i
24

y(t0)ti
− 1 =

t2i
24

y(2)(t0)

y(t0)
. (5.60)
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Referring to (5.59) for the linear velocity case, we see that the maximum absolute

change occurs at ψ = 0. Evaluating the fractional change with ψ = 0 gives

[
t2i
24

y(2)(t0)

y(t0)

]
ψ=0

= −2
t2i
24

(
d1λ0

σxc

)2(
∂v0

∂t

)2

η
G (η) +G (−η)

erf
(

η√
2

)
− erf

(
− η√

2

) (5.61)

= − t
2
i

12

(
d1λ0

σxc

)2(
∂v0

∂t

)2
ηG (η)

erf
(

η√
2

) .
η arises from pixel-width effects and is small. In the limit that η → 0 the terms

containing η become

lim
η→0

 ηG (η)

erf
(

η√
2

)
 =

1

2
√

2π
. (5.62)

Using this limit to remove the η dependence from (5.61) we obtain

[
t2i
24

y(2)(t0)

y(t0)

]
ψ=0

= − t2i
24
√

2π

(
d1λ0

σxc

)2(
∂v0

∂t

)2

. (5.63)

As we have specified that the velocity changes are linear, the time-derivative of v0 may

be replaced with a total velocity change ∆v0 over the integration time. We may also

expand σx at this stage. This yields the final expression

[
t2i
24

y(2)(t0)

y(t0)

]
ψ=0

= − 1

24
√

2π

(
Ti
mic2

+
S2
k

d2
1λ

2
0

)−1(
∆v0

c

)2

. (5.64)

As expected, we find that the broadening associated with the ion temperature and

the instrument function determines what changes in velocity are needed to produce a

appreciable perturbation to the spectrum. Solving the above for the velocity change

required to produce a 1% perturbation at ψ = 0, Ti = 4 keV and without instrument

function effects we obtain ∆v0 ≈ 48 Km/s. This change in velocity is at least an order

of magnitude larger than any that could be expected over one integration time, and

still produces only a 1% perturbation at the peak of the spectrum. On this basis we

may conclude that linear changes in velocity have no appreciable or detectable effect

on the observed CER spectrum.
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5.5.2 Simultaneous linear changes in v0, Ti and Rγ

When (v0, ti, Rγ) are changing simultaneously, it is no longer the case that the largest

change in the spectrum always occurs at ψ = 0. Here we also look at changes in the

complete model Cn(θ) rather than just the time-dependent part y(t). Let C̃n(θ) be

the ‘static’ model where (v0, ti, Rγ) remain constant over the integration time. We use

the following metric to interpret the differences between the static and time-dependent

models:

ε =

∣∣∣∣∣∣
max

(
Cn(θ)− C̃n(θ)

)
max

(
C̃n(θ)

)
∣∣∣∣∣∣ (5.65)

ε is the maximum absolute change between the two models as a fraction of the peak

value of the static model. This allows ε to be expressed as a percentage making it

easy to interpret. As we have specified that all changes are linear, it is convenient to

calculate ε as a function of the total change in (v0, ti, Rγ) across the integration time, i.e.

ε = ε (∆v0,∆Ti,∆Rγ). The results of calculating ε are summarised in figure 5.5. Slices

through planes of constant ∆Rγ are shown to illustrate the variation with ∆Rγ. The

planes with negative ∆Rγ have been omitted as they are identical to the corresponding

positive ∆Rγ planes, except rotated through π radians. Consistent with the prediction

in section 5.5.1 we see that exceptionally large linear changes in velocity are needed to

produce even small changes to the spectrum. The changes in temperature required to

produce a change of ε = 1% are less extreme, but still very large at ∆Ti ∼ 2 keV. We

also note that the changes in Rγ introduce an asymmetry between positive/negative

changes in the velocity and temperature which are not present when ∆Rγ = 0. This

asymmetry makes changes in the spectrum easier to produce for certain changes in

velocity and temperature, but not by a meaningful amount.

It is therefore likely infeasible to infer information regarding the time-evolution tem-

perature, density or flow velocity on time-scales less than the integration time, as for

fusion-relevant plasma conditions any such time-evolution has too subtle an affect on

the experimental data as to be reasonably detected.
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Figure 5.5: Contour plots of ε from (5.65). The plasma conditions used to generate these
results are v0 = 20 Km/s, Ti = 4 keV and Rγ = 5× 107 s−1.
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5.6. Inference validation

Table 5.1: Values for the various parameters which define the experimentally determined
instrument function used in the framework validation. These values are taken from the
tangential#03 chord for shot #141948. The way in which these parameters are incorporated
into the spectrum model is discussed in section 5.3.3.

i 1 2 3 4 5 6

Ai 0.0510733 0.0141003 0.0368144 0.136463 0.500188 0.261359
Li -8.01830 -9.83847 8.15435 -5.36806 3.11777 -2.21490
Si 1.30378 0.893262 1.57581 1.86573 3.13346 2.44473
di 2.439×104 -4.58×1010

5.6 Inference validation using simulated data

In order to test the implementation of the inference scheme we first generate the ex-

pected counts using (5.43) for some chosen parameters θ. Simulated measured counts

data is then obtained through sampling from Poisson distributions as described in

(5.27). The implementation can then be validated by comparing marginal distributions

for the physics parameters derived from the simulated data with the actual values used

to generate the data.

Here we give an example of results obtained using this validation procedure. The data

was simulated for the tangential#03 chord, the instrument function and dispersion

coefficients for which are given in table 5.1. Rγ, Ti and v0 were taken to be static in

accordance with the conclusions of section 5.5 - additional insight cannot be gained

by allowing these parameters to vary over the integration time. The model for the

background βn(u) was taken to be linear such that

βn(u) + u1xn + u0. (5.66)

An example of simulated counts data, along with the spectrum model used to generated

it is shown in figure 5.6. Here each detected photon is assumed to produce a CCD count

- this is reasonable for validation purposes, but calibration data for the CCD would be

required for analysis of experimental data. GridFill (discussed earlier in chapter 3) was

used to calculate marginal distributions for parameters of interest for the simulated

data. These results, plus estimates obtained from a least-squares treatment of the

problem are given in figure 5.7.
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Figure 5.6: The expected counts is plotted in red, and one possible simulated dataset drawn
from the expected counts is plotted in black. The parameters used to generate this data are
v0 = 13 Km/s, Ti = 3.5 keV, Rγ = 5× 107 s−1, b0 = 35, b1 = 0.02 and ti = 274µs.
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distributions are shown in blue, estimates from least squares fitting in red and the actual
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5.7. Summary

Agreement between the calculated marginal distributions and the actual parameter

values used to generate the simulated data indicate that the inference framework works

as intended. For some parameters very close agreement between the Bayesian and least-

squares estimates is seen. To fully assess the performance of the Bayesian parameter

estimates versus those obtained from least-squares, this process could be automated to

analyse thousands of simulated datasets. The distribution of probability densities at

which the correct parameter values occur for both approaches can then be used to draw

conclusions regarding estimation performance - this is a potential subject of further

work.

5.7 Summary

In this chapter a framework for the Bayesian inference of certain physics parameters

using the DIII-D charge-exchange spectroscopy system was presented. A graphical

model was used to construct the probability that a randomly selected photon leav-

ing the spectrometer would be detected in a given CCD pixel. It was then shown

that these detection probabilities result in a binomial distribution of observed CCD

counts, which under experimentally-relevant conditions is very well approximated by

the Poisson distribution. This allowed the construction of a likelihood function for the

data, and in turn a posterior distribution for the model parameters. In order to reduce

the computational expense of the posterior calculation, various approximations were

proposed and their accuracy and range of validity was assessed.

The spectrum model was then used to investigate whether perturbations to the pre-

dicted spectra arising from time-evolution of the temperature, density and flow during

the integration time could be used to infer the dynamics of these quantities on sub-

integration time-scales. This idea was tested theoretically in the simplified case of only

linear velocity changes, and numerically for the more general case of simultaneous lin-

ear changes in all 3 parameters. It was concluded that time variation of the parameters

of the sort that could be reasonably expected in DIII-D experiments does not result
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in perturbations to the spectrum which are significant enough to allow us to extract

useful information.

As part of future work we plan to generate simulated datasets containing flow velocity

oscillations of various amplitudes and frequencies, and use the inference framework

presented here to attempt to recover the time variation. This will allow us to establish

what types of flow oscillation can be reasonably characterised by the CER system,

which in turn will assist in guiding experiment and choosing which data is merits

analysis.
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Chapter 6

Summary & Conclusions

The threat of climate change and the limited nature of fossil fuels demands that, in

the near future, we as a global society make significant changes to how we produce

and consume energy. If we are to remove our dependence on fossil fuels a sustainable,

high-output and carbon-neutral source of energy is needed. Nuclear fusion meets all

these criteria and is a promising long-term solution, having fuel reserves which will last

a minimum of several thousand years. Realising fusion energy has proved to be a huge

challenge, but incredible progress has been made over the last half-century and this

looks to continue with the ITER project on the horizon.

In this thesis we investigated the application of Bayesian probability theory to several

problems in magnetic confinement fusion data analysis. Bayesian probability theory is

a framework for inductive logical reasoning through probabilities, and when applied to

problems in data analysis offers advantages over conventional techniques. An introduc-

tion to the theory was presented by first discussing some fundamental mathematical

results, and then demonstrating the application of these results through several exam-

ples.

The first of the three research chapters presented focused on the challenges surrounding

numerical integration in Bayesian data analysis. Calculation of marginal distributions

from many-dimensional posteriors is typically achieved through Markov-chain Monte-

Carlo methods. While undoubtedly very useful, MCMC does have drawbacks, and this
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fact motivated an investigation into whether a more advanced grid-based approach

could be a viable alternative. A new approach to characterising many-dimensional

posterior distributions was developed and implemented as the ‘GridFill’ algorithm.

By evaluating only the areas of the probability space containing significant density,

GridFill was shown to be highly efficient in comparison with conventional grid-based

approaches. While the current implementation has applicability for relatively low-

dimensional problems, it was found that it cannot currently compete with MCMC

methods for high-dimensionality problems. The fundamental causes of this limitation

were discussed at length, and a modification to the algorithm was proposed which

will address these problems. Even without these proposed improvements, GridFill

was shown to outperform an MCMC scheme in a 5D test-case, and has been usefully

exploited to calculate marginal distributions for several problems discussed in this

thesis.

Credible regions are an important tool in the interpretation of inference results, but

calculating the probability density which defines the boundary contour of any such

region requires an unusual integration over the distribution which is challenging using

regular grids. We demonstrated that a semi-continuous distribution for the boundary

density can be constructed from any random sample drawn from the distribution. This

offers an easier and more elegant means of calculating boundary densities, and because

the posterior for the density is known, the uncertainty can be reduced to whatever

level is required. Effective means of presenting inference results, particularly in the

case of two-dimensional distributions were also discussed. We proposed a standardised

approach where the distribution is visualised using the boundary contours of a series

of credible regions containing a fixed set of probabilities. We argue that this approach

easily conveys important quantitative information about the results to the reader in

ways colour density plots cannot.

An experiment studying the stability of neo-classical tearing modes using the KSTAR

ECEI system motivated an investigation into applying probability theory to the dis-

crete Fourier transform as a means of correcting for random noise. The problem was

examined first in terms of the real and imaginary Fourier components, and it was shown

that a correction was possible but was determined entirely by the joint prior for the
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noise-free Fourier components. A change to polar coordinates was made, and a correc-

tion to the magnitude was derived. To calculate the correction the prior distribution for

the noise-free Fourier magnitudes is required, and we showed that this can be obtained

as the solution of a 1D integral equation inverse problem. It was demonstrated that

the integral equation could be transformed in several ways which made the problem

easier to attack.

Several approaches to obtaining approximate solutions to the inverse problem were

developed and tested. First, an iterative approximation constructed using probability

identities was presented, and was shown to yield a solution to the integral equation

if successive iterations converged. A second approach based on using a complete or-

thonormal basis to linearise the integral equation was also investigated. Chebyshev

polynomials were chosen as the basis, and a prior distribution for the basis coefficients

was constructed in such a way as to keep the location of the posterior mode analytically

obtainable.

Of the various prior approximations, the iterative approach was determined to be

the most robust when tested, and also yielded correction performance similar to that

obtained in the ideal case of an exact prior. The testing was based on correcting many

sets of simulated data generated by adding different sets of Gaussian noise to a known

reference signal. The difference between the ratio of the initial and post-correction

noise standard deviation δc/δi was used as a metric for correction performance. This

was calculated as a function of the ratio of the power in the noise to that in the true

signal U , which was used to parametrise the noise-level. In the limit of U → 0, the

correction offered no additional reduction in the noise level, as we would expect. As

U was increased δc/δi was shown to fall rapidly at first, leading to significant noise

reduction for U ≥ 0.1.

Further work was done to automate the correction procedure such that it could be

applied to large datasets without by-hand analysis. Following this, the correction was

applied to KSTAR ECEI data as part of an experiment investigating heat transport

around magnetic islands and its impact on tearing-mode stability. As part of further

work on tearing stability, the corrected KSTAR data will be used to derive marginal
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distributions for the critical island width wc. Although it was this KSTAR work which

motivated the development of the correction technique it is completely general, making

no assumptions regarding the data to be corrected. The technique may therefore have

wider applicability in fusion data analysis, and generally in signal processing.

Experiments on DIII-D attempting to characterise fast fluctuations in ion flow velocity

due to magnetic islands motivated an investigation into the limits of the information

that could be extracted from the data. A model for CCD photon detection probability

was constructed using a Bayesian network approach, which was in turn used to con-

struct a model for the observed data and then the posterior distribution for the model

parameters. The behaviour of the spectrum model in the presence of time-varying

temperature, density and flow was assessed numerically in the general case and analyt-

ically in a simplified case. It was shown that in order to produce non-negligible changes

to the observed data, extreme time-variation of these physical quantities is required

during the integration time. As this level of variation is far beyond what is currently

expected in tokamak experiments, we concluded that inferring the dynamics of these

quantities on sub-integration time-scales is not feasible.
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Abstract
The accuracy in estimation of two important tearing mode stability parameters (�′ and wc) is improved by employing two-
dimensional (2D) ECE imaging data which help one to overcome the resolution limit of conventional one-dimensional data.
The experimentally measured 2D images are directly compared with synthetic ones from a tearing mode Te model to estimate
the parameters and an excellent agreement is achieved. The results imply that the observed tearing mode is classically stable
but has non-negligible bootstrap current drive.

Keywords: tearing mode stability, electron cyclotron emission imaging, synthetic diagnostic

1. Introduction

The tearing mode is an internal resistive instability which
tears the nested magnetic flux surfaces and forms a magnetic
island across the rational flux surface in tokamak plasmas.
The magnetic island of this mode reconnects the inner and
outer regions of the rational surface. When the island size
is sufficiently large so that the cross-field transport effect is
negligible, the pressure profile inside the island is flattened
due to rapid parallel transport along the connected field
line [1]. Since the large island with the flattened pressure
profile prevents high β plasma operation and often leads to
a disruption, a precise understanding of the magnetic island
dynamics has been an important issue and studied actively.

The temporal dynamics of the magnetic island of the
tearing mode has been understood within the frame of the
modified Rutherford equation (MRE) [2] as given in the
following:

a1
τr

rs

dw

dt
= rs�

′ + a2rs
√

εβθ

Lq

Lp

w

w2 + w2
c

+ · · · , (1)

where w is the island half-width, a1 and a2 are coefficients
related to the flux surface geometry, rs is the minor radius of the
rational flux surface, τr = µ0r

2
s /η is the current diffusion time

where η is the plasma resistivity, ε is the inverse aspect ratio,
βθ is the plasma poloidal beta and Lq = q/q ′ and Lp = p/p′

where q is the safety factor, p is the total pressure and the
prime denotes the radial derivative. The first term with the
nonlinear classical tearing stability index �′ is related to the
equilibrium current profile, which can be either stabilizing or
destabilizing. The second term is the neoclassical destabilizing
term which stems from the loss of bootstrap current due to
pressure flattening inside the island. wc is the critical half-
width for the pressure flattening. When the second term is
dominant, it becomes the neoclassical tearing mode which is
known to be harmful for high β plasma operation [3]. Terms
from the polarization current and magnetic field curvature are
omitted, because they are known to be important near the onset
of tearing mode which is not considered in this paper.

Identification of the main driving/decaying mechanism of
the large magnetic island is important for steady-state, high β
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Figure 1. The plasma poloidal beta βθ and the normalized island
half-width are drawn together. The island half-width is normalized
by the half-width at 3.25 s.

plasma operation. In order to develop a control method based
on growth dynamics of the MRE, an accurate determination of
the two stability parameters, �′ and wc, is essential among the
parameters in (1). Numerous studies [4–6] with conventional
one-dimensional (1D) experimental data have been performed
to model the magnetic island Te structure of the tearing mode
and determine those parameters. However, the estimated �′

and wc based on 1D experimental data have been limited to the
uncertainty from insufficient spatial resolution of the data [5].
Techniques such as radial plasma jogging were introduced to
reduce the uncertainties [4], under the assumption that the
perturbation from jogging does not influence the stability of
the tearing mode.

The two-dimensional (2D) electron cyclotron emission
imaging (ECEI) diagnostic is ideal for the study of various
MHD instabilities [7–10] and has provided 2D Te fluctuation
data with an unprecedented high temporal and spatial
resolution. In section 2, the detailed magnetic island structures
measured by the 2D ECEI diagnostic in KSTAR plasmas
are provided with a brief description of the ECEI system.
The Te model [5, 6] to be compared with the measurements
for determination of �′ and wc is introduced in section 3.
Statistical analysis by comparison of the modelled data with
the measured ones (1D and 2D data) is performed and a clear
advantage of 2D data is demonstrated in section 4. A summary
follows at the end.

2. The 2D magnetic island structure of tearing mode
visualized by ECEI

The m/n = 2/1 magnetic island of the tearing mode has been
observed in the KSTAR discharge # 7131. The toroidal field at
the major radius was 1.96 T and the plasma was heated by two
NBI with the total power of 3 MW. The 170 GHz ECRH power
at 0.3 MW was turned on from 3.01 to 3.50 s. The plasma
current was constant at 600 kA. The time evolution of the
plasma poloidal beta (βθ ) and half-width (w) of the m/n = 2/1
island are depicted in figure 1. The half-width of the island is
estimated from the Mirnov coil fluctuation amplitude divided
by fluctuating frequency (

∫
Ḃ dt ≈ Ḃ/f ), and this quantity

is normalized by the half-width at 3.25 s. The mode locking
and unlocking due to the magnetic island have repeated in this
plasma and the βθ and w have evolved with the state of the
plasma. The unlocked phase starts from 2.9 s in figure 1. As
the βθ recovers in time, the w also increases. This correlation

may suggest that the observed mode has the finite neoclassical
driving term in (1). Estimation of �′ and wc is necessary for
more accurate analysis of the tearing mode dynamics, and the
2D ECEI diagnostic data near the 2/1 magnetic island around
3.25 s has been obtained for that purpose.

The 2D ECEI diagnostic measures high-resolution (space
and time) images of the local electron temperature fluctuations
near the m/n = 2/1 magnetic island produced by the tearing
mode as shown in figure 2(a). The 2D image (40 cm × 12 cm)
consists of 192 pixels (24 detectors array and each detector has
8 horizontal channels). Each pixel represents the normalized
fluctuations δTe,ECEI

〈Te,ECEI〉t = Te,ECEI−〈Te,ECEI〉t
〈Te,ECEI〉t , where 〈 〉t means time

average for many fluctuation periods. As the magnetic island
structure rotates in the laboratory frame, different phases of
the island are captured at different times. The first image in
figure 2(b) corresponds to the image of the X-point phase (t1)
when the X-point of the magnetic island is at the centre of the
ECEI view. The ECE images at four different phases (t1–t4)
cover the entire structure of the magnetic island. The channel in
the region of r < rs will detect higher temperatures (inner flux)
at the X-point phase, but the channel at r > rs will measure
lower temperatures (outer flux) at the same time. This results in
the phase inverted temperature fluctuations across the rational
surface. The measured 2D data of δTe,ECEI/〈Te,ECEI〉t will be
compared with the synthetic 2D normalized Te fluctuations
from the Te model of the magnetic island to determine �′

and wc.
Even though the instrumental spatial resolution of the 2D

ECEI diagnostic in (R, Z) is similar to that of the conventional
1D ECE diagnostic, the effective resolution of the 2D data
in (r, ζ ) space can be much finer due to its 2D nature as
illustrated in figure 2(c). Note that ζ is the helical angle in
the direction perpendicular to the magnetic field at rs. For
example, the horizontal channels of the single detector of
the ECEI diagnostic can be considered as the conventional
1D ECE diagnostic, and the horizontal channels have a
separation distance of ∼2.0 cm. The separation distance could
not be reduced much in the 1D diagnostic to allow enough
bandwidth for an adequate signal to noise ratio. However,
the effective separation distance can be smaller than 1.0 cm
with additional independent detectors in the 2D diagnostic as
shown in figure 2(c). The channels from different detector
row fill the r space by overlapping each other without loss of
signal-to-noise ratio. Therefore, the 2D ECEI diagnostic can
provide a fine resolution measurement of the magnetic island
Te structure.

3. The Te model for ∆′ and wc estimation

3.1. Definition of �′ and wc

In this section, a brief description of the nonlinear classical
stability parameter (�′) and critical island half-width (wc) of
the tearing mode is given with basic principle employed in
estimation of the parameters. From Maxwell’s equation and
Ohm’s law, diffusion of the radial magnetic field Br can be
written as

∂Br

∂t
≈ η

µ0

∂2Br

∂r2
. (2)

Using the helical magnetic flux notation B = ∇ψ × êφ with
single-helicity assumption where ψ is the helical magnetic
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Figure 2. (a) The 192 pixels (24 detectors × 8 horizontal channels) of the 2D ECE image near the m/n = 2/1 island in the plasma are
shown. Perturbed magnetic flux surfaces of the island are illustrated with black lines over the EFIT reconstructed equilibrium (dashed lines).
Coloured boxes represent measurement area of channels of three detectors in (R, Z) space. (b) Four images at different phases of the
magnetic island are plotted as it rotates in time around 3.25 s. The X-point and O-point of the island are indicated with the white X and O
marks, respectively. (c) The effective spatial resolution in (r, ζ ) space is significantly improved in the 2D diagnostic. Coloured boxes
represent measurement area of the channels in (r, ζ ) space. Additional detectors allow fine radial measurements of the magnetic island Te

structure.

flux function and êφ is unit vector along magnetic field at
rs and employing the relation Br ∝ w2 and constant ψ

approximation, it is integrated into

dw

dt
∼ η

2µ0

ψ ′

ψ

∣∣∣∣
rs+w

rs−w

. (3)

The relative difference in ψ ′ is defined as �′(w) ≡ ψ ′
ψ

|rs+w
rs−w,

where rs ± w are the magnetic island boundaries. Now, �′

can be determined if the magnetic flux function is known and
the sign of �′ implies either the growth or decay of the island
width as shown in (3).

wc is the critical half-width above which temperature
is flattened inside the magnetic island [1]. It was

derived as
√

RqLq

m
( κ⊥

κ‖
)1/4 by balancing between parallel and

perpendicular heat transport where κ‖ and κ⊥ are the parallel
and the perpendicular thermal conductivity, respectively [1, 2].

Without a significant heat source or sink, the heat flow
q = −κ‖∇‖Te − κ⊥∇⊥Te will have zero divergence,

κ‖∇2
‖Te + κ⊥∇2

⊥Te = 0. (4)

In general, the parallel thermal conductivity is much larger than
the perpendicular one and the perpendicular transport term is
often neglected. However, if the perpendicular term is finite, or
w ∼ wc, the perpendicular transport changes the temperature
profile inside the island in which the temperature does not
follow the magnetic flux contours [1]. Therefore, temperature
distribution over the island can be the measure of wc.

3.2. The Te model in the vicinity of the magnetic island

The model for Te in the vicinity of the magnetic island can be
obtained by solving (4) over the properly modelled magnetic
geometry. The helical coordinates (r, ζ, φ) with the helical
angle ζ = mθ − nz/R0 are used in this modelling [5]. With
κ‖/κ⊥ � 1, equation (4) can be rewritten as[

κ‖
κ⊥

∇2
‖ + ∇2

]
Te = 0. (5)

The Laplacian is approximated as ∇2 ≈ ∂2

∂r2 + (m
rs
)2 ∂2

∂ζ 2 in
this equation, and the parallel gradient will be derived from
the helical magnetic flux notation of magnetic field and slab
geometry assumption as shown in the below:

∇‖ = b̂ · ∇ = 1

|B|
[ −m

rs
ψ1 sin ζ

− ∂ψ0

∂r
− ∂ψ1

∂r
cos ζ

]
·
[

∂
∂r

m
rs

∂
∂ζ

]

= − m

rs|B|
(

ψ1 sin ζ
∂

∂r
+ ψ ′

0
∂

∂ζ
+ ψ ′

1 cos ζ
∂

∂ζ

)
,

(6)
where ψ0 is the equilibrium helical magnetic flux function and
ψ1 is the perturbed flux function.

The equilibrium magnetic flux function will take the form
of ψ0(r) = µ0I0

8π
(( r

a
)2 − ( rs

a
)2)2 from the parabolic current

profile assumption where I0 is the peak value of the plasma
current profile. The perturbed magnetic flux function will be
modelled with three dimensionless parameters, α, β and γ ,
as [5]

ψ1(r) = µ0I0

8π
α

(
r

rs

)m (
1 − β

r

rs

)
for r � rs

= µ0I0

8π

(
α(1 − β) − γ + γ r/rs

(r/rs)m+1

)
for r > rs. (7)
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Figure 3. Dependence of Te solution on four parameters (α, β, γ , κ⊥/κ‖) is illustrated. Black line contours are magnetic flux function
contours and colour contours are Te contours. (a) The first three parameters (α, β, γ ) determine the magnetic geometry of the island and
examples for different �′ are given. (b) κ⊥/κ‖ affects the perpendicular heat transport and determines the temperature distribution over the
island. As the perpendicular conductivity increases, the temperature gradient inside the magnetic island increases.

This model function well behave in both limits r → 0 and
r → ∞, satisfying vacuum solution of the tearing mode
equation [5], and it can provide various forms of realistic
flux function (well fitted into solutions of the tearing mode
equation).

Equation (5) will be solved with (6) and (7) and boundary
Te values to obtain the Te(r, ζ ) profile near the magnetic
island of the tearing mode (see appendix A). Figure 3
shows a parametric dependence of the Te solution. The three
parameters, α, β and γ , determine the magnetic flux geometry
of the island through ψ1, and the conductivity ratio κ⊥/κ‖
affects the flatness of the Te profile inside the island. Examples
of the Te solution for different �′(α, β, γ ) and wc(κ⊥/κ‖) of
the model are given in figure 3.

4. Comparative study between the measurements
and synthetic images

4.1. Reconstruction of synthetic data from the Te model

The Te solution of equation (5) is converted into synthetic
ECEI data in two steps. First, the synthetic 2D Te data are
reconstructed as if they are measured by the ECEI diagnostic
by applying instrumental functions of the KSTAR ECEI system
and emission theory. For example, each synthetic channel has
the Te,syn value by

Te,syn =
∫ ∫

TeFinst(R, Z) dRdZ∫ ∫
Finst(R, Z) dRdZ

, (8)

where Finst(R, Z) = f (R) · g(Z) is the 2D response function
of the ECEI channel. f (R) and g(Z) have a finite coverage
as prescribed by the detection frequency bandwidth and
vertical coverage, respectively. The functional shape of
f (R) is calculated including the relativistic electron cyclotron
radiation frequency downshift effect [11]. In the region where
the 2/1 magnetic island is located, the reabsorption process
minimizes the downshift effect and f (R) is close to ideal
frequency response of the channel. The functional shape of
g(Z) of the KSTAR ECEI diagnostic is known to be close to
Gaussian shape [12]. Note that refraction effect due to the
plasma density gradient is sufficiently small to be neglected in
this case.

Second, the Te,syn is normalized by the time-averaged

value 〈Te,syn〉t such as δTe,syn

〈Te,syn〉t = Te,syn−〈Te,syn〉t
〈Te,syn〉t . Since the

plasma rotates in time, 〈Te,syn〉t is essentially a time-averaged
value along ζ . After normalization, the synthetic term,
δTe,syn/〈Te,syn〉t , can be directly compared with the equivalent
measured ECEI term, δTe,ECEI/〈Te,ECEI〉t . Basically, the
structure of δTe,syn/〈Te,syn〉t depends on the shape of
the Te solution which is deduced from four parameters
(α, β, γ, κ⊥/κ‖). Arbitrary initial boundary Te values (Te(r =
0.1) = 2.1 keV and Te(r = 0.4) = 0.9 keV) introduced in
solving the model equation only affect the overall amplitude
of the δTe,syn/〈Te,syn〉t and not its detailed shape. The solution
can have a degree of freedom to have different boundary
values in case the absolute Te measurement at the boundary
is absent. Here, a scale parameter A is introduced such as

4
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A · δTe,syn/〈Te,syn〉t to allow different boundary values within
the range 0.5 < A < 3.0. The range of A is restricted for the
physically reasonable variation of the boundary values. For
an each model parameter set, the value of A is determined
to give the minimum difference between the synthetic and
experimental data.

4.2. Importance of higher resolution in synthetic data of the Te

model

High spatial resolution is important to resolve small variations
of synthetic data from different Te model parameters. In (r, ζ )
space, the resolution on ζ axis can be increased by employing
additional detectors or using more measurement points in time,
but the radial resolution can only be increased by additional
detectors (figure 2(c)). The improved radial resolution
in 2D diagnostic can enhance the resolving power among
the synthetic data sets with different Te model parameters.
This is demonstrated by comparing the synthetic data sets
reconstructed from 1D and 2D measurements, respectively.

The seven horizontal channels on the midplane of the
ECEI diagnostic system are selected to compose the 1D
measurement. The synthetic data sets are reconstructed by
the seven channels with the model parameter sets p =
(α, β, γ, κ⊥/κ‖) over (0.02 � α � 0.04, 0.82 � β � 0.98,
−0.012 � γ � 0.03, 4 × 10−10 � κ⊥/κ‖ � 2 × 10−8) space.
The 54 = 625 combinations of p over the four-dimensional
parameter space are used to generate the synthetic data sets.
The χ2(pi,pj) = 1

2

∑N
n=1[yn(pi) − ŷn(pj)]2 among the data

sets are calculated to check the difference of a particular
synthetic data set from other synthetic data sets with different
Te model parameters. N is the number of data points (channel
number × measurement points in time = 7 × 67 = 469),
yn(pi) is the synthetic data set of the parameters pi with the
hypothetical random system noise and ŷn(pj) is the synthetic
data set of pj without noise. The 67 measurement points in
time are used to make the ζ resolution comparable to that of
the 2D measurement. If the χ2 difference between pi and pj is
less than the system noise level (

√
((∂χ2/∂y)δy)2 = 0.0017),

the two parameter sets are not distinguishable. The calculation
of χ2(pi,pj) is repeated 20 times for different random system
noises, and the average number of the parameter set whose
synthetic data is indistinguishable with other synthetic data is
19 ± 3.3 out of 625 in the 1D measurement case.

The above processes are repeated with 2D measurement
channels, i.e. 7 (horizontal channels) × 20 (detectors) = 140
channels. In this case, 4 measurement points in time for each
channel is used to make the ζ resolution and total number of
data points N = 7×20×4 = 560 comparable with those of the
previous case. However, the radial resolution is significantly
improved with additional detectors. The average number of
indistinguishable parameter set is 11.8±2.7, which means that
the improved radial resolution results in enhanced resolving
power. More clear distinction among the synthetic data sets
allows higher confidence in the selected parameter set when
they are compared with the experimentally measured data.
This difference leads to more reliable and accurate estimation
of �′ and wc through the usage of 2D measurements as shown
in the following section.

4.3. Comparative analysis between the synthetic and
measured data

The comparison between the synthetic data based on the model
and experimentally measured data is non-trivial due to multi-
variables (four parameters) of the model. The Levenberg–
Marquardt Algorithm (LMA), known as the most standard
multi-parameter fitting algorithm, is introduced for analysis.
After the initial parameter set p = (α, β, γ, κ⊥/κ‖) is given
with the Monte-Claro method, it is updated towards the
minimum χ2(p) = 1

2

∑N
n=1[yn − ŷn(p)]2 difference through

the gradient descent method and Gauss–Newton method. yn is
the measured data points and ŷn(p) is the synthetic data points
from the Te model parameters p. The goal of this algorithm is
to find the parameter set that has a global minimum χ2.

Two independent LMA trials are exercised with the 1D
and 2D measurement channels to demonstrate the accuracy of
parameter determination in the high resolution 2D data. In
the first trial the seven horizontal channels from the single
detector on the midplane among the ECEI detectors array are
selected to simulate the 1D measurement, and then the 140
channels from 20 detectors are used in the second trial. The
results of the LMA fits for 1D data and 2D data are shown
in figures 4(a) and (b). Figure 4(a) shows the dependence
of χ2 on four parameters in the 1D data trial. It has the
minimum χ2 = 0.0168 at α = 0.0534, β = 1.000,
γ = 0.0276 and (κ⊥/κ‖)1/4

√
B0 = 0.003 66, where B0 is

magnetic field strength at the plasma major radius R0. Note
that the χ2 includes the measurement error in ECEI data
(
√

((∂χ2/∂y)δy)2) estimated as 0.0017 in the 1D data. In
other words, the parameter sets whose χ2 difference is less
than this value are statistically indistinguishable. Therefore, a
group of parameter sets which have χ2 < 0.0185 is selected
(below the dashed line in figure 4(a)) for estimation of �′ and
wc rather than a single parameter set.

The result of the 2D fit that has the minimum χ2 =
0.0402 at α = 0.0382, β = 0.949, γ = −0.003 82 and
(κ⊥/κ‖)1/4

√
B0 = 0.006 91 is shown in figure 4(b). The

parameter sets of χ2 < 0.0422 are selected for further analysis
considering the χ2 error of 0.002 (below the dashed line in
figure 4(b). More data points used in the 2D case increased
the propagated error on χ2).

Finally, �′ = ψ ′
ψ

|rs+w
rs−w and wc =

√
RqLq

m
( κ⊥

κ‖
)1/4 calculated

using the selected parameter sets of 1D (black squares) and
2D (red squares) fits are shown in figure 4(c). Note that
the island separatrix estimated by the ECE images is used
for the �′ calculation and w ∼ 3 cm at both ends. The
distribution of �′ and wc values of each group is fitted with the
Gaussian-function. The results are rs�

′ = 7.653 ± 2.251 and
wc = 0.899±0.154 cm for 1D fit and rs�

′ = −1.633±1.265
and wc = 0.612 ± 0.0726 cm for 2D fit. The estimated rs�

′

and wc values from the 1D and 2D fits are very different, and
the standard deviation of the 1D fit is significantly larger than
that of 2D result in both rs�

′ and wc as expected from the
previous section. Large standard deviation implies that the
statistically selected parameter sets from the 1D fit have too
large uncertainty to have a physically convergent solution. In
fact, the result of the 1D fit has a non-physical perturbed flux
function ψ1 which does not converge to zero at the plasma
boundary in contrast to the result from the 2D fit, meaning that
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Figure 4. Parametric dependence of χ2 from (a) 1D fit and (b) 2D fit. Small χ2 parameter sets are selected (below the dashed line) for
estimation of �′ and wc (c) Distribution of rs�

′ and wc from 1D (black squares) and 2D (red squares) fit. The result from 2D fit is
statistically more convergent and also provides physically meaningful solution.

only the 2D fit results in physically meaningful output. Also,
the stability calculation based on the ideal MHD theory (see
appendix B) [13, 14] is consistent with the estimation of the 2D
fit, i.e. classically stable. In conclusion, from the result of the
2D analysis, the negative rs�

′ = −1.633 ± 1.265 represents
that the tearing mode is classically stable and wc/w ∼ 0.2
implies that the pressure profile is almost flat and that the
bootstrap current loss is not negligible.

Good agreement between the measured 2D experimental
data and synthetic data at the minimum χ2 parameter set is
illustrated in figure 5. The upper trace in figure 5 is a point by
point comparison of the measured and synthetic data sets. The
2D measured (upper) and synthetic (lower) ECE images at four
different phases are compared and an excellent agreement at
every phase provides a high confidence in the estimated values
of �′ and wc.

5. Conclusion

High resolution 2D images of electron temperature fluctuations
near the m/n = 2/1 magnetic island of the tearing mode were
measured with the ECEI diagnostic in KSTAR plasmas. The
important stability parameters of the tearing mode (�′ and
wc) are estimated using the 2D δTe,ECEI/〈Te,ECEI〉t data. The
measured data were compared with the synthetic data from
the Te solution of the heat flow equation near the magnetic
island. The Te solution has four dependent parameters:

three parameters (α, β, γ ) are associated with the magnetic
geometry and the parameter κ⊥/κ‖ is associated with the
perpendicular transport over the island. The importance
of high resolution 2D data in estimation of �′ and wc is
demonstrated by comparing with analysis of the self-consistent
1D data. The estimated tearing mode parameters using 2D data
are rs�

′ = −1.633±1.265 and wc = 0.612±0.0726 cm. The
observed tearing mode is expected to be classically stable, but
to have non-negligible neoclassical bootstrap current drive.
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Appendix A. The heat flow equation

The heat flow equation for electron temperature can be
rewritten with equation (6) as[

κ‖
κ⊥

(
m

rs|B|
)2 (

ψ1 sin ζ
∂

∂r
+ ψ ′

0
∂

∂ζ
+ ψ ′

1 cos ζ
∂

∂ζ

)2

+
∂2

∂r2
+

(
m

rs

)2
∂2

∂ζ 2

]
Te = 0. (A.1)
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Figure 5. An excellent agreement between the measured images
and the synthetic ones is shown. The parameter set of the minimum
χ 2 in 2D fit was used to generate the synthetic images. The
measured and synthetic images are matched well at all phases (t1–t4)
of the magnetic island.

In the above equation, Te is expanded in Fourier series
solutions,

Te =
∑
j=0

Tj (r) cos jζ . (A.2)

Substitute (A.2) into (A.1), and then (A.1) is multiplied with
1

2π
cos kζ and integrated with respect to ζ to give the second

order ordinary equation for each k as shown in below:

∑
j=0

ak,jT
′′
j + bk,jT

′
j + ck,j Tj = 0, (A.3)

where ak,j , bk,j and ck,j are corresponding coefficients and
the prime denotes the radial derivative. This equation is
now solved using the second order finite difference method
with boundary Te values and Fourier harmonics up to the
15th order.

Appendix B. ∆′ calculation from the Ideal MHD
theory

The tearing mode equation from the ideal MHD theory can be
reduced as [13, 14]

d2ψ1

ds2
− k

s
ψ1 = 0, (B.1)

where k = −(µ0j
′q/Bθq

′)rs , j
′ is the toroidal current gradient

and s = r − rs. The equation has a singularity at r = rs. This
second order ordinary differential equation is solved with the
shooting method [14]. Form of two independent solutions near
the rational surface rs is known to be

ψ1 = (1 + ks ln |s| + 1
2k2s2 ln |s| − 3

4k2s2)

+A±(s + 1
2ks2 + 1

12k2s3) (B.2)

and its radial derivative is

ψ ′
1 = k(ln |s| + 1) + k2(s ln |s| − s)

+A±(1 + ks + 1
4k2s2) (B.3)

where A− and A+ are constants for r < rs and r > rs

regions, respectively. The solution is restricted by the decaying
boundary condition at both ends (r = 0 and r = a where
a is the plasma boundary). Arbitrary initial A± values are
tried and proper constants A± which satisfy the boundary
condition could be found by after some iterations. Then
�′

ideal(w) = ψ ′
ψ

|rs+w
rs−w can be calculated with the solution ψ1.

The result is rs�
′
ideal(w) = −4.12, which means classically

stable.
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