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Abstract 

Over 500,000 people in the UK have heart failure (HF). After an initial insult to the heart, 

sympathetic drive increases which leads to detrimental remodelling of cardiac β-adrenergic 

receptors (βAR) and further cardiac dysfunction.  The main βAR expressed in the heart are 

the β1AR and β2AR. In heart failure, remodelling is characterised by reduced β1AR density, 

desensitisation of the remaining β1AR and aberrations of normal βAR signal 

compartmentalisation.  

Caveolae, flask-shaped lipid rafts, are present in most cells including cardiac myocytes and 

are characterised by the presence of caveolin and cavin proteins. Caveolar proteins create 

distinct micro-domains within the membrane and play a key role in compartmentalisation 

of signalling from both the β1AR and β2AR. Isolated reports of changes in caveolar structure 

and proteins in HF have implications for β-AR signalling, however the full array of caveolar 

protein changes in HF has not previously been assessed. Here we establish how the 

expression and membrane location of β-AR cascade and caveolar proteins changes in rat 

models of right ventricular (RV) and left ventricular (LV) failure induced by monocrotaline 

and aortic banding, respectively. For the RV model, we examined changes in β-AR 

responsiveness, and tested the potential for reversing functional and caveolar remodelling 

using a common LV therapy (the β-blocker metoprolol). Quantitative analyses of caveolar 

protein expression in myocyte and myocardial samples was also carried out using custom-

designed calibrating peptides (CavCATs). 

Both HF models showed a reduction in caveolar protein expression, with protein 

redistribution also found in the RV model. Decreased expression of β-AR signalling proteins 

(β1AR, adenylyl cyclase) accompanied by increased expression of inhibitory proteins (Gαi, 

GRK2) was also observed in both models, with some remodelling of membrane distribution. 

β-blocker treatment in RV failure partially recovered expression of caveolar and β-AR 

cascade proteins.  Cardiac β1AR responsiveness was reduced in RV failure and again, this 

was partially recovered by β-blocker treatment. Quantitative work highlights the 

importance of studying non muscle-specific caveolar protein isoforms in the cardiac 

myocyte given e.g. similar expression of Cav 3 and Cav 1 in these cells. 

Caveolae are dynamic membrane compartments which change in HF. This work suggests 

that caveolar changes affect β-AR signalling protein membrane location, which contributes 

to aberrations of signalling which (in the case of RV failure) can be reversed by β blockers.  
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1. Chapter 1. Introduction 

1.1. General introduction 

Heart failure is a multicausal disease with poor survival rates; after being admitted to 

hospital the majority of patients die within 5 years (Nieminen et al., 2006). Approximately 

26 million people are living with heart failure worldwide (Xie et al., 2012), resulting in a 

large burden on the health services and society. Heart failure is a chronic disease with most 

treatments only relieving symptoms and not specifically treating the failing heart. When 

heart failure becomes severe, mechanical devices or heart transplant become the only 

options.  

An initial insult to the heart, such as a myocardial infarction, causes the body to compensate 

in order to maintain cardiac output, typically by increasing sympathetic drive to the heart. 

When this compensation is prolonged the adaptive responses of the heart, such as 

hypertrophy, then become maladaptive. The heart can no longer maintain sufficient output 

for the body’s metabolism and clinical symptoms of heart failure follow. The heart typically 

becomes desensitised to increased sympathetic drive in addition to muscle mechanical 

failure. A better understanding is needed of the changes in the myocardium when this de-

compensatory/failure stage is reached. By understanding the basic changes which underlie 

dysfunction and remodelling within the myocyte, novel pharmacological targets could be 

identified. In particular our interests lie in the changes to β-adrenergic receptors (βAR) and 

their signalling proteins at the membrane, and the way that their organisation via caveolae 

is altered.  

 

1.2. The heart 

1.2.1. Human embryological development 

The heart is formed from the cardiogenic field, which starts to develop around the third 

week after fertilisation. The steps of heart development are depicted in Figure 1-1. Initially 

the heart is a primitive tube enlarging within the newly formed pericardial cavity, made up 

of three layers: endocardium, myocardium and epicardium (Sadler and Langman, 2014).  

The coronary arteries are formed from the epicardium layer. By day 23, the heart tube 

begins to bend and form the cardiac loop, the primitive atrium and major vessels at the 
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caudal end of the tube shift dorsally and rostrally while the primitive ventricle bends 

ventrally, caudally and to the right. All the while the heart tube continues to enlarge. By the 

end of the formation of the heart loop, trabeculae carneae begin to form in the primitive 

ventricle while most of the bulbus cordis remains smooth (Sadler and Langman, 2014). The 

proximal third of the bulbus cordis also becomes trabeculated and forms the primitive right 

ventricle, while the primitive ventricle mostly forms the primitive left ventricle (Kramer, 

1942). By the fourth week of development the heart receives an umbilical blood supply via 

the sinus venosus, a common chamber which receives blood before entering the primative 

atria. The sinus venosus and part of the right sinus horn leading into the sinus venosus will 

eventually form part of the right atria (Larsen et al., 2001). The major septa of the heart are 

formed between week 4 and 6. The foramen ovale within the atrial septum remains open 

until birth. The atrioventricular junction, which originally flowed only into the primitive left 

ventricle, enlarges to the right allowing blood to pass into the primitive right ventricle as 

well. The atrioventricular valves are formed from dense mesenchymal tissue on the 

surrounding atrioventricular orifice (Schoenwolf et al., 2015). The division of the 

ventricular outflow tract is formed by three conotruncal ridges which twist around each 

other to form the aortic pulmonary septum. The interventricular septum forms from two 

parts, a muscular and a membranous part, which fuse together (Kramer, 1942). The 

pacemaker cells of the heart originate in the sinus venous which is incorporated into the 

right atria forming the sinoatrial node (SAN). The atrioventricular node (AVN) and the 

bundle of His are formed from the cells from the sinus venosus and the atrioventricular 

canal. By week 8, the heart is a functional four chambered vessel resembling that in post-

natal life enabling blood circulation for the embryo.  
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Figure 1-1 Embryological development of the human heart 

Figure modified from (Touchnet, 2016), shows the formation of the primitive heart tube, 

and the stages in folding to form the 4 chambers of the heart. Formation of the septum and 

valves is shown in the bottom of the diagram. Time post fertilisation is listed under each 

stage.   

 

  

Primitive left 
ventricle 

Primitive right 
ventricle 
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1.2.2. Anatomy 

After birth the foramen ovale closes, pressure within the pulmonary vessels drops and the 

circulation changes to its adult course. This change in pressure within the ventricles also 

causes a change in function within the different chambers and leads to rapid thickening of 

the left ventricular wall and the thinning of the right ventricle within the first postnatal 

month (Keen, 1955). From the second postnatal month, both ventricles go through a 

progressive increase in size as the heart grows during development.  

In an adult human the right ventricular free wall is an average of 4-5 mm in thickness, while 

the left ventricular free wall is around 10-15 mm in thickness (Traill et al., 1978). Sitting 

within the chest cavity within the pericardial sac the right ventricle makes up most of the 

inferior border of the heart. The left ventricle makes up the right border of the heart and the 

most inferior and ventral aspect known as the apex. The right atria, receiving blood from 

the inferior and supervisor vena cava, makes up the right border and the left atria makes up 

the base of the heart at its most dorsal aspect (Noble, 2005). The right ventricle receives 

blood from the right atria through the tricuspid valve and pumps blood to the lungs through 

the pulmonary truck which splits into the right and left pulmonary arteries running towards 

the right and left lung (mean pulmonary artery pressure 10-20 mmHg)(LiDCO Group). The 

left atria receives blood from four pulmonary veins, and pumps blood to the left ventricle 

through the mitral valve which then circulates the oxygenated blood round the systemic 

circulation (mean arterial pressure 70-105 mmHg)(LiDCO Group). The cardiac output of the 

right ventricle is equal to that of the left ventricle, but due to the reduced pressure within 

the pulmonary vasculature does so with ~ a fifth of the energy cost (Friedberg and 

Redington, 2014).  

1.2.3. The conducting system  

From around week 6 of development the heart begins to beat and does so until the end of 

life (Schoenwolf et al., 2015). There are specialised myocytes within the heart which are 

self-excitable, called pacemaker cells. Only 1% of the developing cells within the heart 

represent this phenotype; these are located within the SAN and AVN and within the bundle 

of His. Each has its own intrinsic rhythm; SAN 60-100 beats/min, AVN 40-55 beats/min and 

the bundle of His 25-40 beats/min (Noble et al., 2013). The branches of the vagus nerve and 

branches from the sympathetic chain form cardiac plexuses on the heart and innervate the 

SAN controlling its excitation rate. The balance between sympathetic and parasympathetic 



5 

 

nervous innervation is controlled by the cardiovascular centre within the brain and 

regulates the beating rate of the heart.  

Cardiac excitation normally begins in the SAN located on the crista terminalis, the junction 

between the primitive atria and the sinus venosus in development. The electrical signal is 

then propagated through the atrial cardiac myocytes till its reaches the AVN, where the 

signal is delayed. This delay in signal propagation serves to allow the ventricles to fill after 

atrial contraction. From the AVN, the signal travels down the bundle of His into the right 

and left bundle branches within the interventricular septum towards the apex of the heart. 

Excitation of the ventricular muscle is then initiated starting at the apex with the electrical 

signals propagated towards the base of the heart (Noble et al., 2013). Purkinje fibers allow 

rapid conduction of the action potential within the ventricle and help synchronous 

contraction. Purkinje fibres also aid in initiating contraction within the papillary muscles, 

which are attached to the atrioventricular value via chordae tendineae, and help prevent 

regurgitation of blood back into the atria.   

1.2.4. Extracellular matrix 

The cardiac myocyte is not the only cell type present within the heart; there are many other 

cell types including, fibroblasts, endothelial cells and vascular smooth muscle cells, as well 

as the extra cellular matrix (ECM). The ECM forms a scaffold within the heart providing 

strength and support for the cells and allowing for distribution of mechanical forces. It is 

comprised mainly of collagen types I and III, but also contains other collagen types as well 

as glycoproteins and fibronectin. Fibroblasts are the key cell within the heart which 

maintain the ECM (Eghbali, 1992). 

 

1.3. Cardiac myocyte 

1.3.1. Basic structure 

In humans the average size of an individual myocyte is around 50-100 µm in length and 

about 10-20 µm in diameter. An example of the cardiac myocyte cellular structure is 

depicted in Figure 1-2. Cardiac cells are multinucleated and contain a high proportion of 

mitochondria due to the cells’ high metabolic demand. The plasma membrane forms a 

number of long protrusions into the cell called transverse tubules (t-tubules). The 

sarcoplasmic reticulum (SR) is a store of Ca2+ within the cell which is essential for 
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contraction. Within mammalian physiology there are three types of muscle; cardiac muscle, 

skeletal muscle and smooth muscle. The cardiac myocyte is the contractile cell of cardiac 

muscle, which contracts from pre-natal life till death. The contractile unit within the cardiac 

myocyte is the sarcomere (~2 µm length). These are bordered at each end by the Z-line 

which is formed from the α-actinin protein. F-actin attaches to the Z-lines and forms the thin 

filaments made of G-actin monomers and tropomyosin joined in a helical shape. Running in-

between these parallel thin filaments are strands of myosin protein forming thick filaments. 

Where the thick and thin filaments overlay, cross-bridges can be formed (Noble et al., 2013). 

Multiple sarcomeres are joined end to end and run in parallel to make up a myofibril, making 

up the majority of the cellular volume. Cardiac myocytes form connections with other 

cardiac myocytes through specialised junctions called intercalated discs, which contain gap 

junctions (connexons) allowing electrical communication, and desmosomes which provide 

strength to the junction.  

1.3.2. Plasma membrane 

The plasma membrane is a lipid bilayer surrounding the cell which in mammalian cardiac 

myocytes can be defined as two distinct areas: the surface sarcolemma and the t-tubules. T-

tubules are long invaginations of the cell which generally line up with the z-line of the 

sarcomere and are key for synchronous contraction of the cell.  The surface sarcolemma and 

t-tubules are continuous with one another, with the t-tubules calculated to comprise 21% 

to 64% of the membrane (Bers, 2001; Page, 1978; Page et al., 1971).  

The plasma membrane serves to control movement in and out of the cardiac cell and 

communicates with the extracellular matrix and other cells within the heart. The lipid 

bilayer is a fluid and dynamic structure which is highly changeable. The mobility of the 

membrane is variable depending upon its lipid composition. Membrane lipid bilayers are 

asymmetrical and enriched in phospholipids and sphingolipds (Allan, 1996; Meder and 

Simons, 2006). The outer leaflet is enriched in sphingolipids such as sphingomyelin and 

glycosphingolipids while the inner leaflet is mainly comprised of 

phosphatidylethanolamines and phosphatidylserine.  Cholesterol is present in both the 

outer and inner leaflets of the lipid bilayer (Meder and Simons, 2006). Within the plasma 

membrane co-clusters of lipids exist known as lipid rafts. Some specialised lipid rafts form 

small invaginations within the membrane called caveolae which are discussed later (Section 

1.4).  
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Figure 1-2 Structure of a cardiac myocyte 

A. Drawing of a cat cardiac myocyte adapted from (Fawcett and McNutt, 1969) showing the 

t-tubules, sub-sarcolemmal mitochondria, sarcomeres (made up of contractile 

myofilaments), and sarcoplasmic reticulum (SR). The surface sarcolemma is invaginated 

into two t-tubules with the SR forming close connections to this and the surface sarcolemma 

B. Electron micrograph (EM) of a transverse section of a cat cardiac muscle from  (Fawcett 

and McNutt, 1969). EM shows four T tubules (TT) extending inward into the body of the 

myocyte. Mitochondria (M) can also be visualised within this section. In the paper this is 

stated as a rare image, due to the fact that the plane of a thin section seldom coincides with 

one of the rows of T tubules opening onto the surface. X 32,000.  

  

B 

A 

M 
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1.3.3. T-tubules  

T-tubules are not present in neonatal cardiac myocytes (Sedarat et al., 2000), and are not as 

prevalent in atrial cells from some small mammals as in adult ventricular myocytes 

(Richards et al., 2011). The increase in cardiac myocyte size in development means that Ca2+ 

diffusion from the sarcolemma is no longer sufficiently rapid to synchronously activate Ca2+ 

induced Ca2+ release (CICR)(further detail in section 1.3.7.2) within the cell. In a study of 

rabbit development, the percentage of couplon (paired L-type Ca2+ channels and ryanodine 

receptors (Section 1.3.7.2)) events at the surface reduce from 80% in 3 day-old rabbits to 

20% at day 20 (Sedarat et al., 2000). The precise mechanisms for t-tubule formation are not 

understood but scaffolding proteins help stabilise the structure throughout the normal 

cardiac cycle (Kostin et al., 1998). Caveolin 3 (Cav 3), junctophilin 2 (JPH2) and bridging 

integrator 1 (BIN1) are all implicated in assisting the structure and organisation of t-tubule 

(Galbiati et al., 2001; Beavers et al., 2014; Lee et al., 2002). In the adult mammalian cardiac 

myocyte t-tubules are regularly spaced, occurring around every 2 µm and contain 

longitudinal and axial components (Page, 1978; Brette and Orchard, 2003). Thanks to 

advances in super resolution imaging and new electron microscopy (EM) techniques, the 

finer details and structure of t-tubules, such as variation in t-tubule diameter, are beginning 

to be discovered (Jayasinghe et al., 2015; Rog-Zielinska et al., 2016; Pinali et al., 2013).  In 

the adult cardiac myocyte, the t-tubules are the location of the majority of couplons, as well 

as many important ion channels and other proteins that modulate function within the 

cardiac myocyte, including cAMP-dependent protein kinase (Brette and Orchard, 2003; 

Chen-Izu et al., 2006). Using the technique of detubulation, which functionally uncouples 

the t-tubules from the cell by osmotic shock, it was shown that 80% of the L-type Ca2+ 

current (ICa,L) and 63% of the Na+/Ca2+ exchanger (NCX) current is located within the t-

tubules (Brette et al., 2004; Despa et al., 2003).   

1.3.4. Mitochondria 

Mitochondria take up around 35% of the volume of the cardiac myocyte in mammals (Page, 

1978). They contain an outer membrane and a folded inner membrane (cristae). The cardiac 

myocyte has a high demand for energy in the form of ATP. The main source of ATP in the 

cell is from oxidative phosphorylation (OXPHOS) which takes place in the mitochondria. 

ATP from fatty acid β-oxidation accounting for the majority of mitochondrial ATP 

production (60% - 90% contribution), while glucose oxidation contributes to a smaller 

percentage  (10% - 30%) (Neely and Morgan, 1974). Fatty acid binding proteins (FABP) 

transport fatty acid into the cell after which fatty acyl CoA synthase adds a CoA group 



9 

 

allowing long-chain fatty acids into the mitochondria (Lopaschuk et al., 2010). These are 

then converted to acetyl CoA by fatty acid β-oxidation. Pyruvate is formed by glycolysis of 

glucose within the cell which, when coupled with glucose oxidation, allows pyruvate to 

enter the mitochondria (Stanley et al., 2005). Pyruvate is then converted into acetyl CoA by 

pyruvate dehydrogenase (PDH) (Fillmore and Lopaschuk, 2013; Herzig et al., 2012).  Acetyl 

CoA enters the tricarboxylic acid (TCA) cycle which produces NADH and FADH2, two high 

energy intermediates which enter the electron transport chain.  The electron transport 

chain then uses the NADH and FADH2 to drive H+ ions across the internal membrane of the 

mitochondria and synthesises ATP from ADP (Scheffler, 2007). Mitochondria are also 

involved in buffering the cytosolic Ca+. The Ca+ exchange in the mitochondria is slow 

compared to the beat-to-beat regulation by the SR, but the cumulative effect of Ca+ entering 

the mitochondria enhances ATP production (Bers, 2008).  

1.3.5. Sarcoplasmic reticulum  

The sarcoplasmic reticulum (SR) is a form of specialised endoplasmic reticulum which is 

the main Ca2+ store within the cardiac myocyte. A 3D reconstruction of the SR within the 

sheep cardiac myocyte shows the SR to be a continuous interlinking network within the cell 

(Pinali et al., 2013). The SR forms close connections with the t-tubules and surface 

sarcolemma known as dyadic clefts (10-20 nm). The SR have “feet” (ryanodine receptors, 

see Section 1.3.7.2) at these points of close connection with t-tubules and the surface 

sarcolemma (Franzini-Armstrong, 1975).  

The sarcoplasmic reticulum Ca2+-ATPase (SERCA) is the main protein involved in Ca2+ 

uptake into the SR. Different forms of SERCA are present in different cell types, and SERCA2a 

is the isoform expressed within the cardiac myocyte (Brandl et al., 1987). The SERCA pump 

initially opens to the cytosol which allows two Ca2+ ions to enter, then with the hydrolysis 

of ATP the channel is momentarily occluded. SERCA is then phosphorylated by ATP causing 

the channel to change state allowing for the Ca2+ to enter the SR lumen in exchange for two 

H+ ions pumped out into the cytosol (MacLennan, 1970; Clarke et al., 1989). Post-

translational modifications of the SERCA pump, including phosphorylation and oxidation, 

modulates its activity. Phospholamban (PLB) interacts with SERCA2a and reversibly 

inhibits the pump by decreasing Ca2+ transport (Fujii et al., 1987; Tada and Katz, 1982). PLB 

can also be phosphorylated, which lowers its affinity with SERCA2a thereby increasing the 

Ca2+ pump rate (MacLennan and Kranias, 2003).  
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The ryanodine receptor (RyR) is responsible for release of Ca2+ from the SR. RyR type 2 

(RyR2) is the main isoform expressed in cardiac myocytes. RyR2 is made up of four subunits 

containing a large cytosolic domain and α-helical membrane domain. Ca2+ binds to the RyR2 

causing Ca2+ release from the SR. The cytosolic RyR2 domain has a number of other binding 

sites, as revealed by the crystal structure, for calmodulin (RyR2 stabilizer) and FK-506 

binding protein (FKBP) (Wagenknecht et al., 1997);  both of which tightly regulate the 

open/closed state of the channel and reduce open probability (Hwang et al., 2014; Guo et 

al., 2006; Xu and Meissner, 2004). Like SERCA, RyR2 can be phosphorylated at multiple sites 

by protein kinase A (PKA) or Ca2+-Calmodulin dependent protein kinase (CaMKII) which 

also changes the activity of the channel, increasing the open probability (Valdivia et al., 

1995; Witcher et al., 1991; Bers, 2016).        

1.3.6. The contractile units of the myocyte 

The contractile unit of the cardiac myocyte, as mentioned above, is the sarcomere. 

Contraction occurs through movement between the thick and thin filaments. The thick 

filament contains ~300 myosin molecules along with titin and cardiac myosin-binding 

protein C (cMyBP-C) (Bers, 2001). Each myosin molecule is composed of two myosin heavy 

chains and two myosin light chains associated with each heavy chain. The myosin heavy 

chains consist of an α-helical tail, which coil together to form the body of the thick filament, 

and a globular head which interacts with the thin filament to form the crossbridge (Bers, 

2001). The light chains on each myosin consist of an essential light chain and a regulatory 

light chain. cMyBP-C is associated with the thick filament and aids in modulation of 

contraction by regulating cross-bridge formation probability, phosphorylation of cMyBP-C 

alters its binding to myosin and increases the rate of force development (Moss, 2016).  
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Figure 1-3 Cardiac myocyte contraction cycle 

Modified from (Ikonnikov and Yelle, 2016). Flow diagram demonstrates the process of 

contraction. When [Ca2+]i is low tropomyosin inhibits the formation of crossbridges. When 

[Ca2+]i  rises after CICR the depicted crossbridge cycling is activated.   
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The thin filament consists of helical ropes of globular actin molecules with tropomyosin 

lying in the grove between these. The individual tropomyosin molecules link together and 

overlap by 5-10 amino acids with the next tropomyosin (Lehrer et al., 1997).  The troponin 

complex, which is composed of three subunits (troponin T (TnT), troponin C (TnC), and 

troponin I (TnI)), is attached to the tropomyosin strand every seventh actin. The TnT 

molecule lies along the tropomyosin and spans three actin molecules, while TnI binds to 

both TnT and TnC, as well as directly to actin to inhibit myosin binding. TnC contains three 

Ca2+ binding sites, and binding of Ca2+ to the Ca2+-specific site on TnC causes an increase in 

strength of interaction between TnC and TnI destabilising the TnI interaction with actin. 

This allows the myosin head to form a crossbridge with actin (Gordon et al., 2000). The actin 

filament is then moved over the myosin causing a small contraction from the rotation of the 

myosin head (Huxley and Simmons, 1971; Tyska et al., 1999). Ca2+ is also essential for the 

myosin ATPase to hydrolyze ATP which alters the conformation of the myosin head. At rest 

myosin is bound to ATP, but with a rise in Ca2+ the phosphate is released and the myosin 

bound ADP interacts with actin (Goldman and Brenner, 1987). The actin-myosin bond is 

dissociated when ATP binds to myosin again. In this manner the myosin head walks along 

the actin filament until either Ca2+ or ATP is depleted (Figure 1-3).  

The Frank-Starling mechanism, discovered by Otto Frank (1895) and Ernest Starling 

(1914), describes the situation whereby the resting length of the muscle in diastole 

determines the work performed during systole. This occurs partly through increased 

crossbridge formation (via changes in myofilament overlap) but mainly by increased Ca2+ 

sensitivity of the myofilaments (Fuchs and Smith, 2001).           

1.3.7. Cardiac excitation contraction coupling   

The process of excitation-contraction coupling (EC coupling) begins with the electrical 

stimulation of the cell and results in mechanical contraction as first described by Sandow 

(Sandow, 1952). Ca2+ enters the cardiac cell through voltage gated Ca2+ channels, activated 

by depolarisation of the cell membrane, which causes the further release of Ca2+ from the 

intracellular stores (SR) resulting in an increase in intracellular Ca2+ concentration ([Ca2+]i) 

and contraction (Bers, 2002). To terminate contraction, and to allow for relaxation, the Ca2+ 

is either sequestered back into the SR (and mitochondria), or extruded from the cell via ion 

pumps or exchangers. This is summarised in Figure 1-4 
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Figure 1-4 Excitation contraction coupling in a cardiac myocyte 

Figure from (Bers, 2002). Ca2+ channels are activated in response to electrical activation. 

Figure depicts the main ion channels and exchangers involved in cardiac excitation 

contraction coupling (EC coupling). Inset depicts action potential (AP), the intracellular Ca2+ 

concentration [Ca2+]i, changes during contraction of a rabbit ventricular myocyte.  
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The force of the contraction is graded by the [Ca2+]i, the higher the [Ca2+]i the more actin-

myosin crossbridges form.       

1.3.7.1. Action potential  

EC coupling is initiated within the cardiac myocyte by an action potential (AP). The action 

potentials of different myocytes within the heart vary according to their location and 

function (Figure 1-5A). An AP represents the change in membrane potential of the cell as a 

result of the co-ordinated opening and closing of ion channels. An AP can be recorded with 

a sharp microelectrode inserted into the cardiac myocyte, and the membrane potential (Em) 

measured as the potential difference across the membrane. A summary of the ventricular 

action potential and the ion channels involved is depicted in Figure 1-5B. The ventricular 

myocyte AP can be summarised in 4 phases; the rapid upstroke is designated as phase 0, 

there is then a brief period of repolarisation which is classed as phase 1, following this is a 

plateau of sustained depolarisation (phase 2), followed by a repolarisations back to the 

resting membrane potential which is much slower than the depolarisation in phase 0. There 

is then a lag phase, classed as phase 4, before the next action potential starts (Bers, 2001).  

At rest the intracellular K+ concentration greatly exceeds that in the extracellular fluid, 

which is controlled by K+ channels. The opposite is true for Na+, as the extracellular Na+ 

concentration greatly exceeds the intracellular concentration. The resting potential of the 

ventricular cells is around -85 mV, which is maintained by the Na+/K+ ATPase.  

During the action potential, there is an initial rise in Em through electrical coupling with 

neighboring cells, via gap junctions, which triggers the opening of the voltage gated Na+ 

channels. This results in an inward current of Na+ (INa), causing the Em to rise to between 

+20 and +30 mV. The Na+ channels are rapidly inactivated by this increase in membrane 

potential and remain closed for the duration of the AP. The brief initial repolarisation in 

phase 1 is due to rapid activation of the transient outward K current (Ito). Ito consists of a 

fast and a slow inactivation channels (Nerbonne, 2000). Both K+ and Ca2+ channels are 

activated by the depolarisation of the cell, which forms phase 2, with Ca2+ entering the cell 

through L-type Ca2+ channels and K+ leaving through a number of different K+ channels.  

Delayed K+ rectifying currents (IKr, IKs, IKur) are activated towards the end of phase 0, but 

take considerably longer time to become active compared to some of the other channels 

(Sanguinetti and Jurkiewicz, 1990).  
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Figure 1-5 Cardiac action potential 

A. Modified from (Nerbonne and Kass, 2005) shows the variations in the cardiac action 

potential in different areas on the heart.  B.  A single cardiac action potential time course 

demonstrating inward (downward deflections) and outward (upward deflections) currents 

activated in a single action potential in a human ventricular myocyte.  

 

A 
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During phase 3, the efflux of K+ exceeds the influx of Ca2+, and this brings the cell back to its 

resting Em. Restoration of the Na+ and K+ concentrations is driven by Na+/K+ ATPase in phase 

4. An AP in rat ventricular myocytes lack the extended lag phase (phase 2) during 

repolarisation, due to low or absent IKr and IKs channels, allowing for a faster resting heart 

rate (380-480 beats per minute)     

1.3.7.2. Ca2+ induced Ca2+ release  

Ca2+ induced Ca2+ release (CICR) is the widely accepted mechanism of Ca2+ activated SR Ca2+ 

release, first described in cardiac myocytes by Fabiato and Fabiato (Fabiato and Fabiato, 

1975). When the cell membrane is depolarised at the beginning of the action potential the 

L-type Ca2+ channel is activated allowing a small influx of Ca2+ into the cell. The L-type Ca2+ 

channel (dihydropyridine receptor; DHPR) exhibits Ca2+ dependent inactivation by 

calmodulin which limits the amount of Ca2+ entry into the myocyte (Peterson et al., 1999). 

The DHPR is composed of six membrane-spanning domains and is found concentrated (10-

25 channels) around the dyadic junction in association with the “feet” of the SR which 

contains around 100-200 RyRs. A collection of DHPRs coupled with RyRs at the dyad are 

known as a couplon and these form the functional Ca2+ release unit. The initial influx of Ca2+ 

activates the RyR2 and allows the release of Ca2+ from the SR store (Bers, 2008). A single L-

type Ca2+ channel opening can cause a Ca2+ release event, but usually several channels in a 

cluster  (10-25 DHPRs) open during rhythmic contraction of the cell (Bers, 2001). This 

raises the [Ca2+]i within the dyadic clef to 200-400 µM, from where the Ca2+ diffuses into the 

cytosol (Bers, 2001). For synchronous contraction of the cell to occur all couplons must be 

activated simultaneously

The Na+/Ca2+ exchanger (NCX) is a reversible antiporter which extrudes one Ca2+ in 

exchange for three Na+ ions (an inward INa/Ca) (Fujioka et al., 2000). This can be reversed to 

bring Ca2+ ions into the cell in exchange for Na+ (outward INa/Ca), by a positive membrane 

potential and high [Na+]i (Bers, 2001).  The NCX may contribute to the influx of Ca2+ at the 

beginning of the action potential, but until recently this was not thought to be the main 

mechanism for CICR.  However, renewed interest in the role of the NCX in CICR has come 

about with the advances in spatial resolution within the dyad offered by super resolution 

microscopy. Computer models of the NCX using this new information predict that the NCX 

may have more of an influential role in Ca2+ entry into the dyad during the depolarisation 

stage of the action potential, as outward INa/Ca was predicted to precede the activation of L-

type Ca2+ channels and RyR2 (Chu et al., 2016). The mechanisms which terminate Ca2+ 
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release events from the SR are not clear, but the luminal SR [Ca2+] content is thought to play 

a role by favouring the closed state of the RyR (Bers, 2008).  

[Ca2+]i is then extruded from the cytsol via the NCX which uses the electrochemical Na+ 

gradient to drive inward INa/Ca, and by pumping of Ca2+ back into the SR via the SERCA pump, 

allowing for relaxation of the muscle (Bers, 2002). In a steady state of contraction, during 

each beat the amount of Ca2+ extruded from the cell is equal to that which entered at the 

beginning of the action potential (Eisner et al., 2000).   

       

1.4.  Caveolae 

Caveolae are small flask-shaped invaginations of the cell membrane, typically 50-100 nm in 

size. They are a type of lipid raft, enriched in cholesterol and sphingolipids,  but their lipid 

composition differs from other lipid rafts (Yao et al., 2009). Caveolae were first visualised 

by electron microscopy (EM) in the 1950s by Palade (Palade, 1953). Since then caveolae 

have been found to be present within most mammalian cells and are particularly abundant 

in endothelial and adipose cells (Hibbs et al., 1958; Parton, 2003). Caveolae are defined by 

the presence of caveolin proteins, required for caveolae formation, whose molecular 

identity was confirmed in the 1990s (Monier et al., 1995; Fra et al., 1995; Rothberg et al., 

1992). These consist of caveolin 1 (Cav 1), caveolin 2 (Cav 2) and the muscle specific 

caveolin 3 (Cav 3). Typically ~ 144 caveolin molecules are suggested to be integrated into a 

single caveolae (Pelkmans and Zerial, 2005).  

Caveolae have multiple functions and are proposed to act as mechanosesonsors and 

membrane reservoirs, aid in regulation of lipid transport, form scaffolds for signalling 

proteins and act as endocytosis vesicles (Komarova and Malik, 2010; Sinha et al., 2011; 

Siddiqui et al., 2011; Pilch and Liu, 2011; Kozera et al., 2009). The importance and function 

of caveolae within the cell has been extensively studied (Cheng and Nichols, 2016), but there 

is still much which is unknown about these functional units of the plasma membrane. This 

is, in part, related to difficulties in imaging caveolae due to their size which is below the 

diffraction limit of normal light microscopy. This means that visualisation of these 

membrane domains to date has been through EM.  New imaging techniques being developed 

are beginning to overcome some of the problems and are revealing new information about 

caveolae.    
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1.4.1. Caveolins  

Cav 1, and Cav 3 in muscle cells, is vital for formation of caveolae within the plasma 

membrane (Park et al., 2002). The tissue distribution of Cav 2 is similar to that of Cav 1 but 

it is not required for caveolae formation, as knock out (KO) of Cav 2 only causes a reduction 

in Cav 1 expression and no change to the morphologically defined caveolae, measured in 

endothelial and adipose cells (Razani et al., 2002). Interestingly Cav 1 and Cav 3 knock-out 

mice are viable and fertile but display a number of different phenotypes including 

dyslipidemia and cardiac dysfunction (Woodman et al., 2002; Park et al., 2002).  

Monomeric caveolin proteins (18-22 kDa) insert in the membrane in a hairpin formation 

with both the N and C termini facing the cytosol (Dupree et al., 1993)(Figure 1-6). Caveolin 

oligomerise after synthesis within the Golgi and within the plasma membrane. Amino acid 

residues 97-135 of human Cav 1 (and equivalent sequences in Cav 2 and 3) have been 

demonstrated to form a “horseshoe” shape which is suggested to form a “wedge” in the 

membrane aiding in deformation and forming the characteristic caveolar shape (Yang et al., 

2014). The three caveolin isoforms contain a conserved region towards the N-terminus 

called the caveolin-scaffolding domain (CSD) which can bind to proteins containing a 

complementary caveolar binding motif, a sequence rich in aromatic residues (ΦXΦXXXXΦ, 

ΦXXXXΦXXΦ, or ΦXΦXXXXΦXXΦ (Couet et al., 1997) (Figure 1-6 inset). For many years it 

was accepted that the CSD interacts with a number of different signalling proteins through 

the caveolar binding motif, however this concept has more recently been questioned as 

many of the binding motifs are buried deep in the 3D structure of proteins and are 

unavailable for interaction (Byrne et al., 2012). The CSD, as well as the intramembrane 

domain (amino acids 102-135) have also been shown to be important for caveolar 

formation (Ariotti et al., 2015).  

Caveolin can have either direct positive or negative effects on its binding partners. Negative 

regulation is the most common, as illustrated by effects on endothelial nitric oxide synthase 

(eNOS) (Garcı́a-Cardeña et al., 1997). Caveolin binding constitutively inhibits eNOS and loss 

of Cav 1 results in persistent eNOS activation and an increase in nitric oxide (NO) generation 

within the cell (Yu et al., 2006).  
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Figure 1-6 Caveolin shape and components 

Modified from (Patel and Insel, 2009) shows the typical shape of a caveolin protein hairpin 

insertion into the plasma membrane. Inset details the sequences of the caveolar scaffolding 

domain (CSD) in the different caveolin proteins and the corresponding caveolin binding 

motif.  
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On the other hand caveolin binding to insulin receptors increases activity (Yamamoto et al., 

1998). Caveolin proteins can also have an indirect effect on signalling and cellular function 

via recruitment of additional proteins to aid in signalling control (Balycheva et al., 2015). 

Cav 1 and Cav 3 are subject to a number of post-translational modifications, including 

palmitoylation (at multiple sites) which may affect additional protein binding and location 

within the membrane (Kim et al., 2014; Wypijewski et al., 2015). Other post-translation 

modifications include SUMOylation in Cav 3, which alters β2-adrenergic receptors 

expression (Fuhs and Insel, 2011), and phosphorylation of Cav 1, which is required for 

caveolar dependent endocytosis (Parton and Simons, 2007). 

1.4.2. Cavins 

Within the last decade, a new class of protein, the cavins, have been discovered to play a role 

in caveolae formation and function within the cell (Briand et al., 2011; Hill et al., 2008). The 

cavin proteins were not originally considered as caveolar proteins (Jansa et al., 1998), hence 

the dual naming of this family: cavin 1 (PTRF - polymerase 1 and transcript release factor), 

cavin-2 (SDR - serum deprivation response protein), cavin-3 (SRBC -serum deprivation 

response factor-related gene product that binds to C-kinase) and cavin-4 (MURC -muscle-

restricted coiled-coil protein). Cavins do not aid in the formation of caveolae but are 

recruited to the membrane after caveolin formation, and help stabilise the caveolae shape. 

Cavin 1 has been shown to have a crucial role in stabilisation of caveolae, with KO of cavin 

in mouse models showing a dramatic reduction and almost complete loss of caveolae in all 

cell types studied, including lung, intestine and muscle (Liu et al., 2008; Hill et al., 2008; Hill 

et al., 2012). Cavin 2 aids in regulation of the caveolae shape and morphology and has been 

shown to bind to cavin 1 and promote its recruitment to caveolae (Hansen et al., 2009). 

Cavin 3 aids in trafficking and internalisation of the caveolae, as demonstrated by partial 

impairment of intracellular Cav 1-mediated trafficking when cavin 3 expression is reduced 

(McMahon et al., 2009). Cavin 4, like the Cav 3 protein, is a muscle specific caveolar protein. 

The percentage similarities between cavin isoforms is show in Figure 1-7. The cavin 

proteins share a number of PEST (proline, glutamic acid, serine, and threonine-rich) 

domains (see Figure 1-7). These PEST domains have been suggested to play an important 

role in regulation of homeostasis and function of the cavin proteins through proteolysis 

(Bastiani et al., 2009; Kovtun et al., 2015).   

 

 



21 

 

 

 

 

Figure 1-7 Cavin proteins basic sequence and homology 

A. Figure from (Bastiani et al., 2009) shows cavin protein sequence with common proline, 

glutamic acid, serine, and threonine-rich (PEST) domains, leucine-rich regions (LR) and 

nuclear localization sequences (NLS) sights (mouse) B. Percentage similarity in cavin 

proteins (murine) 

 

  

B 

A 
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Cavin 1 is phosphorylated at multiple sites, with phosphorylation at Ser36 and Ser40 

thought to be important for membrane location (Bai et al., 2011), while insulin-dependent 

phosphorylation of cavin 1 in adipocytes triggers movement of cavin 1 from the plasma 

membrane (Aboulaich et al., 2011). Cavin 1 has been shown to have little or no direct 

interaction with the caveolin proteins (Liu and Pilch, 2008). 

1.4.3. Caveolar coat complex 

The exact organisation of the caveolar proteins within caveolae is not fully understood, but 

the shape of the caveolae is thought to play a role in its function. As mentioned previously, 

the size of caveolae causes limitations in imaging techniques available and impeded detailed 

investigation. New EM techniques and labelling has vastly improved within the last 5 years 

which, paired with computer technology, has enabled the 3D reconstruction of caveolae and 

caveolar proteins (Ludwig et al., 2013). Oligomerisation of caveolin is thought to be crucial 

for the formation of caveolae which initially happens in the trans-Golgi network and is 

cholesterol dependent (Hayer et al., 2010). This results in an 8S complex of caveolin 

molecules (Monier et al., 1996). The cavin monomer forms rod shaped homotrimers, or 

heterotrimers with either cavin 2 or cavin 3 (Gambin et al., 2014), and around 18-20 trimers 

are then thought to be involved in the caveolar coat complex forming a “nano-net” (Stoeber 

et al., 2016). Cavin 2 and cavin 3 appear to compete for binding sites within the caveolar 

coat complex (Ludwig et al., 2013). The final caveolar coat complex is an 80S caveolin 

complex with cavins forming a network mesh lining. Two recent cryo-EM studies of the 

caveolar coat complex have both come to the conclusion that the  membrane forms a 

polyhedral structure  with an edge length predicted at 31.6 nm and 30-40 nm (Stoeber et 

al., 2016; Ludwig et al., 2016) (Figure 1-8).  

1.4.4. Caveolae in the cardiac myocyte  

Caveolae are found within the plasma membrane of the cardiac myocytes, although the 

exact extent of the membrane composed of caveolae or the location of caveolae (surface/t-

tubules) have remained controversial. Cav 3 is the muscle specific caveolin protein which is 

highly abundant in the myocyte cell, as visualised with immunocytochemistry (Figure 1-9). 

The Cav 3 protein can be located within caveolae and on non-caveolar sarcolemmal 

membranes, as Cav 3 expression is seen in both buoyant (cholesterol-rich) and heavy (non-

lipid raft membranes) fractions in sucrose gradient fractionations, however the presence of 

caveolae within the t-tubules is much debated, see (Wright et al., 2014).  
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Figure 1-8 Model and theory of assembly of the caveolar coat complex 

Modified from (Stoeber et al., 2016; Ludwig et al., 2016) shows two recent papers which 

have used EM to visualise and reconstruct the possible structure of the caveolar coat 

complex. Model A.  Cavin 1 monomers form trimers which then interconnect to form 

oligomers. The cc1 domains (red) form a parallel trimeric coiled-coil creating a stiff rod 

shaped structure 17-nm-long. The 12 faces of the dodecahedron are predicted to be 

occupied by disc-shaped caveolin oligomers. Addition of cavin 2 and cavin 3 may induce 

breaks in the polyhedron as they do not contain the c22 domain. (Stoeber et al., 2016) 

Model B. Caveolin oligomerises in a polyhedral shape and then further oligomerise into a 

polyhedral cage. Cavin oligomers associate with the edge of the polyhedral shapes (Ludwig 

et al., 2016)  

 

 

 

 

A 
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Figure 1-9 Immunocytochemistry of caveolin 3 staining in a cardiac myocyte 

Images from (Garg et al., 2009) and (Wong et al., 2013) A. (right) Confocal image of adult 

rat cardiac myocyte stained with Cav 3 antibody (green), white box represents the enlarged 

area shown to the right. (right) Close up highlighting staining along the z-lines (Garg et al., 

2009). B. Super resolution image of cardiac myocyte stained with Cav 3 (green) and RyR2 

(red) antibodies. White trace shows t-tubules (Wong et al., 2013) 

  

B 

A 
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With EM, caveolae are imaged routinely within the surface sarcolemma (Wright et al., 2014) 

but due to the difficulty in sectioning t-tubules along their length, there are few reports of 

caveolae in the t-tubular membrane, see (Levin and Page, 1980). However this may soon 

change with new imaging techniques, highlighting the role of caveolae and caveolar proteins 

within the t-tubules. Super resolution microscopy has placed a larger percentage of the 

RyR2 than was previously thought co-localised with caveolin 3 within the t-tubules (Wong 

et al., 2013).  

Loss or mutation of the caveolar proteins (cavin 1 and Cav 3) produces a range of different 

effects on the heart including reduced ejection fraction, increased cardiac fibrosis and long-

QT syndrome (Taniguchi et al., 2016; Vatta et al., 2006). By contrast, over-expression of Cav 

3 has been shown to be cardio protective (Markandeya et al., 2015).  Caveolae and/or Cav 

3 have been implicated numerous times in regulation of the β-adrenergic signalling within 

the heart (Calaghan et al., 2008; Rybin et al., 2000; Head et al., 2005; Insel et al., 2005), as 

discussed in the next section.         

      

1.5.  β-adrenergic receptors  

Regulation of the rate and force of contraction of the heart is important for homeostasis and 

is controlled through sympathetic and parasympathetic innervation of the heart and 

circulating hormones (e.g. adrenaline). During periods of increased metabolism within the 

body, such as during exercise, there is a reduction in parasympathetic output and an 

increase in sympathetic stimulation of the heart resulting in an increased heart rate and 

cardiac output. This is achieved through the β-ARs located in the cardiac myocyte 

membrane. 

The β-ARs are part of a large family of G-protein coupled receptors (GPCR)(Table 1-1). They 

have 7 transmembrane α-helical domains and are coupled with a trimeric (αβγ) G-protein 

on the intracellular side. Of the GPCR family, muscarinic and adrenergic receptors play key 

roles in the regulation of cardiac function (Rockman et al., 2002). Other GPCRs in the heart 

include prostanoid and histamine receptors (Salazar et al., 2007). The adrenergic receptor 

family tissue distribution and signalling pathways are outlined in Figure (Table 1-1).  
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Receptor β1 β2 β3 α1/A/B/D/AT1/ET α2 M2 

Primary G 
protein 

Gs Gs/Gi Gs/Gi Gq/G11 Gi Gi 

Tissue 
distribution 

Heart Heart, 
lungs, 
vessels, 
kidney 

Adipose, 
heart 

Heart, vessels, 
smooth muscle 

Coronary 
vessels, CNS, 
pancreas, 
platelets 

Heart 

Primary 
effector in 
heart tissue 

AC, L-type 
Ca2+ 
channel 

AC, L-type 
Ca2+ 
channel 

AC PLC-β AC AC, K+ 

channels 

Signals ↑ 
cAMP/PKA 

↑ 
cAMP/PKA, 
MAPK 

↑ cAMP/PKA ↑ DAG/InsP3, PKC, 
MAPK 

↓ cAMP/PKA ↓cAMP/PKA 
↑PI(3)K 

Endogenous 
agonist 

NA, A NA, A NA, A NA, A, angiotensin 
II, endothelin 

NA, A ACh 

 

Table 1-1 Seven transmembrane-spanning domain receptors in the heart  

α, α-adrenergic receptor subtypes 1,2 ; β, β-adrenergic receptor subtypes 1, 2, 3; AC, adenylyl cyclase; ACh, acetylcholine; A, adrenaline; ATII, 

angiotensin-II receptor subtype 2; cAMP, adenosine 3’,5’ monophosphate; DAG, diacylglycerol; ET, endothelin receptor; InsP3, inositol 1,4,5 

triphosphate, M2, muscarinic cholinergic receptor subtype 2; MAPK, mitogen-activated protein kinase; NA noradrenaline; PKA, protein kinase A; PKC, 

protein kinase C; PLC-β, phospholipase C-β. Modified from (Rockman et al., 2002) 
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Binding of an extracellular ligand drives a conformational change in the GPCR and 

subsequently causes a switch from GDP to GTP binding to the α subunit of the associated G-

protein. This results in a dissociation of the Gα subunit from the GPCR which initiates 

downstream signalling events (Telser, 2002).  

In the cardiac myocyte there are three subtypes of βARs, β1AR, β2AR and β3AR, with β1AR 

being the predominant. β3AR expression is very low compared to β1AR and β2AR, although 

expression has been shown to increase in some forms of heart disease (Belge et al., 2014). 

β3AR acts through the secondary messenger cyclic guanosine monophosphate (cGMP), 

through NO mediated signalling and inhibits cardiac contraction (Gauthier et al., 1998). 

However much is still not understood about this receptor which has shown to produce both 

positive and negative contractile effects on the heart (Napp et al., 2009; Bundgaard et al., 

2010). β1AR and β2AR both act through cyclic adenosine 3′,5′-monophosphate (cAMP) as a 

secondary messenger, although the downstream targets and signalling response are 

distinctly different. One of the main differences between these two receptors is that β2AR 

couples with both the αi (inhibitory) and the αs(stimulatory) G protein subunit, while β1AR 

only couples with αs. The αs subunit activates adenylyl cyclase (AC) stimulating production 

of cAMP from adenosine triphosphate (ATP), cAMP then binds the regulatory subunit of 

cAMP-dependent protein kinase (PKA) which in turn phosphorylates a number of target 

proteins (Xiang and Kobilka, 2003).  By contrast, the αi subunit inhibits AC activity. 

Stimulation of the β1AR produces a robust global cAMP response causing an increased 

inotropic (contraction), chronotropic (heart rate) and lusitropic (rate of relaxation) effect; 

while β2AR stimulation only produces a small localized cAMP response and a modest 

inotropic effect (Nikolaev et al., 2006).  

 

1.5.1. Regulation of contraction 

The β1AR make up around 70-80% of the total β-AR population within the heart and couple 

solely with the Gαs subunit. Upon stimulation of the β1AR the Gαs  increases cAMP 

production through AC 5 and 6, which are the main cardiac isoforms (Defer et al., 2000), 

this in turn activates PKA. PKA has many targets involved in EC coupling which cause a 

positive ionotropic response. These include the L-type Ca2+ channel, RyR2 and PLB 

(Rapundalo, 1998; Bers, 2008).  PLB is phosphorylated at Ser16 which decreases its infinity 
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for SERCA inhibition and causes an increase in the rate and amount of Ca2+ taken back into 

the SR via the SERCA pump (MacLennan and Kranias, 2003). This in turn generates a larger 

release of Ca2+ during CICR producing a larger force of contraction (Luo et al., 1994). L-type 

Ca2+ channel phosphorylation enhances the ICaL by increasing open probability (van der 

Heyden et al., 2005). PKA also has targets within the contractile proteins including cMyBP-

C and TnI. TnI is phosphorylated at Ser23/24 and this decreases the Ca2+ sensitivity of the 

myofilaments and speeds the rate of relaxation (Kobayashi and Solaro, 2005).  

Although the secondary messenger cAMP is common to both β1AR and β2AR signalling 

pathways, selective stimulation of these two receptors produces distinctly different results. 

Stimulation of the β2AR does not cause phosphorylation of proteins of the SR (PLB) or 

myofilaments (TnI) (Calaghan et al., 2008; Nikolaev et al., 2006). The different responses to 

stimulation of these two βARs are thought to arise as a result of compartmentalisation.   

1.5.2. Compartmentalisation of signalling 

Following β-AR stimulation, cAMP-dependent PKA activates proteins which contribute to 

compartmentalisation of the signal. These proteins include phosphodiesterases (PDE) and 

protein phosphates (PP)(Conti and Beavo, 2007).  

PDEs hydrolyse cAMP and tightly control the cAMP-dependent signalling. They consist of a 

larger family of 11 proteins; PDE4 and PDE8A specifically hydrolyse cAMP while PDE1, 

PDE2 and PDE3 can hydrolyse cAMP or another common secondary messenger cGMP 

(Beavo, 1995; Conti et al., 2003; Patrucco et al., 2010). PDE2 and PDE3 are thought to 

compartmentalise the cAMP signal of EC coupling proteins under basal conditions, but upon 

β-AR stimulation PDE4 is recruited and contributes to compartmentalisation (Mika et al., 

2013). In rat ventricular myocytes PDE3 and PDE4 are the predominant PDEs responsible 

for hydrolysis of cAMP, and play an important role in controlling SR Ca2+ load (Leroy et al., 

2008; Mika et al., 2013).  PDEs are directly activated by PKA and act as a negative feedback 

loop. PDE2 has been specifically implicated in modulation of  ICa,L when β-AR are stimulated 

(Verde et al., 1999).  

The two main PPs PP1 and PP2A contribute to more than 90% of the PP activity within the 

mammalian heart (Macdougall et al., 1991). PP1 inhibitor-1 (I-1) is phosphorylated by PKA 

and inhibits PP1 activity, in turn enhancing PLB phosphorylation promoting re-uptake back 

into the SR and producing a positive feedback loop (Braz et al., 2004). PPs play an important 
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role in de-phosphorylating various EC coupling proteins, including myofilament proteins 

and L-type Ca2+ channels,  during the cardiac cycle (duBell et al., 2002).   

Spatial compartmentalisation and physical distribution of signalling proteins is another way 

in which the β-AR signalling is compartmentalised. In a recently created computer model of 

β-AR signalling in the cardiac myocyte, PDEs alone (at a physiological concentration) were 

not enough to produce the compartmentalisation of the cAMP signal seen in cardiac 

myocytes, instead it was suggested that physical diffusion barriers and scaffolding of 

proteins also played a role (Yang et al., 2016). A-kinase anchoring proteins (AKAPs) are a 

family of scaffolding proteins which bind to PKA and localize it to the targeted 

phosphorylation sites. In particular AKAP5 has been shown to play an important role in 

sympathetic regulation (Nichols et al., 2010). Nichols et al. showed that AKAP5 formed 

complexes with Cav 3, AC5/6, β-AR, PKA, PP2B and the L-type Ca2+ channel. Using KO 

animals it was seen that AC 5/6 and PP2B were dependent on AKAP5 for their association 

with the Cav 3 complex. Selective stimulation of the βARs revealed an essential role of 

AKAP5 in targeting PKA to the RyR2 and PLB (Nichols et al., 2010), two proteins which are 

major players in the inotropic and lusitropic response to βAR stimulation.  

1.5.2.1. Caveolae compartmentalisation  

Caveolae and the caveolar proteins are another form of scaffold within the cardiac myocyte 

which aid in β-AR signalling compartmentalisation. The Cav 3 CSD sequence contains a 

binding site for both AC 5 and PDE 4 which acts to restrict the cAMP being produced 

(Timofeyev et al., 2013). The CSD has also been found to bind the G-protein α subunit, G-

protein regulated kinase (GRK)2 and PKA. GRK2 phosphorylates the βAR and causes 

internalization, and desensitization of the receptor (Freedman et al., 1995). Cav 3 as 

mentioned previously is an important structural protein for the t-tubules, and can be 

located within caveolae or on the non-caveolar sarcolemma. Many of the β-AR signalling 

proteins, such as β-AR, AC 5/6, Gα etc. have found to be located within the caveolae and lipid 

rafts (Head et al., 2006; Rybin et al., 2000; MacDougall et al., 2012). It is currently unclear to 

what extent caveolae play a role in compartmentalisation of the β1AR signalling pathway,  

although β1AR has been detected in lipid rafts and cholesterol depletions significantly 

increases isolated cardiac myocytes response to low levels of isoprenaline estimation 

(Agarwal et al., 2011). Selective stimulation of the β1AR also causes an increase in the 

percentage of cavin 1 located within the caveolar domain (Wypijewski et al., 2015). Both of 

these results suggest a dynamic regulation of the β1AR, It is more widely accepted that 
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caveolae play an important role in compartmentalisation of the β2AR (Calaghan and White, 

2006; MacDougall et al., 2012; Wright et al., 2014). Both disruption to membrane 

cholesterol and the Cav 3 protein cause an increase in the signalling response recorded after 

β2AR stimulation in the cardiac myocyte (Wright et al., 2014; MacDougall et al., 2012). 

Translocation of the β2AR from lipid rich/caveolar membranes to non-caveolar membranes 

(Rybin et al., 2000),  and an increase in cavin 1 located within the caveolar domain after 

isoprenaline stimulation of cardiac myocytes again suggest a dynamic regulation of the 

β2AR by caveolae (Wypijewski et al., 2015).    

1.5.3. β2-adrenergic receptor  

The β2AR does not produce as large a cAMP signal as the β1AR, and only produces a small 

inotropic response to stimulation (Xiao et al., 1999b). In part this is due to the 

compartmentalisation of the β2AR signal, but the ability of the receptor to couple to both 

Gαs and Gαi also contributes to the diminutive response (Xiao, 2001). The coupling of β2AR 

to Gαi aids in preventing overstimulation of the cAMP pathway and also promotes anti-

apoptotic signalling through the phosphatidylinositol 3-kinase (PI-3K) signalling pathway 

(Chesley et al., 2000).   The primary location of the β2AR has been contested, some groups 

claim that it is predominantly located within the t-tubules in non-caveolar sarcolemma 

(Nikolaev et al., 2010), with an additional small  functional role in caveolar at the surface 

sarcolemma (Wright et al., 2014), while other find the main population of  β2AR within 

caveolae (Rybin et al., 2000).  In the experimental setting, stimulation of the β2AR in the 

cardiac myocyte produces varied responses which, in part, can be ascribed to the use of 

different combinations of antagonist/agonist.  A new three state receptor model has been 

proposed for the β2AR, with different agonists showing differential activity on the receptor. 

Some agonists were shown to stabilise the active state of the β2AR, while others which 

stabilise the active state can simultaneously destabilise the inactive state (Staus et al., 2016).   

1.5.4. Down regulation of the β-adrenergic receptor 

Stimulation of the β-AR results in agonist desensitisation, which can happen in a non-

specific manner through direct phosphorylation of the β-AR via PKA or PKC resulting in a 

conformational change which prevents the receptor’s interaction with G-protein subunits 

(Lefkowitz, 1998).  This type of desensitisation does not discriminate between stimulated 

and unstimulated receptors.  Agonist-specific desensitisation occurs through the G-protein 

receptor kinase family, with GRK2 and GRK5 being the most abundant isoforms expressed 

in the heart (Penela et al., 2006). GRK phosphorylation of the β-AR promotes arrestin 
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binding to the receptor preventing further stimulation. KO of GRK2 in mice causes fatality 

at day 12-15 of embryonic life due to severe underdevelopment of the heart and heart 

failure (Jaber et al., 1996). Phosphorylation of the β2AR via PKA and GRK also causes the 

shift in coupling with Gαs to Gαi coupling (Zamah et al., 2002; Wang et al., 2008).   

 
 

1.6. Heart failure 

Heart failure is defined as the inability of the heart to reach the cardiac output needed to 

meet the body’s metabolic demands. It is a serious problem affecting nearly 1 million people 

in the UK today and incurs substantial costs to the National Health Service every year. The 

causes of heart failure can vary from genetic mutations, which are inherited, to coronary 

artery disease or hypertension. Heart failure usually starts with a primary insult, such as 

myocardial infarction (MI) or mechanical overload, which then results in necrosis of tissue, 

remodelling and impaired contractility of the heart. In response to the primary insult to the 

heart which results in decreased cardiac output, there is an increase in sympathetic 

stimulation to the heart to increase output to normal levels. In heart failure patients there 

is typically a sympathetic hyperactivity and attenuated parasympathetic activity 

(Triposkiadis et al., 2009). Remodelling describes the many different cellular changes which 

the heart adopts to try to adapt to the initial insult (Swynghedauw, 1999); this occurs during 

the progression to heart failure. Initially remodelling is a compensatory mechanism, but this 

quickly becomes detrimental to the heart.  To maintain sufficient cardiac output the heart 

often has to work harder. The majority of mitochondrial ATP is produced through fatty acid 

oxidation (see Section 1.3.1), but excessive β-AR stimulation drives excessive mobilisation 

of free fatty acids and fatty acid oxidation which has been linked with oxygen waste (Opie 

and Knuuti, 2009). Towards the end stages of heart failure there is a down regulation of 

fatty acid oxidation and glucose oxidation is unregulated, with mitochondrial dysfunction 

and OXPHOS inefficiency (Dávila-Román et al., 2002; Park et al., 2016).  Short term and long 

term stimulation of the β2AR has been linked with increased glucose uptake into the cell and 

altered energy metabolism (Ciccarelli et al., 2013). 

Structural remodelling of the cell and the ECM has also been noted in heart failure. In both 

human patients and animal models of heart failure, a remodelling of the t-tubular system 

has been reported, characterised by super resolution microscopy and confocal microscopy 

(Crossman et al., 2015; Kostin et al., 1998; Dibb et al., 2009). Loss of t-tubules in heart failure 
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results in dis-synchrony of CICR and EC coupling, and redistribution of many of the proteins 

involved in regulation of contraction (Guo et al., 2013).  

The idea of ‘reverse remodelling’ (a reversal of the detrimental remodelling seen in the 

progression of heart failure) is becoming a popular strategy for treatment of  heart failure 

(Koitabashi and Kass, 2012). One example of this is in the use of β-blockers which have been 

shown to re-sensitise the βAR (Reiken et al., 2003) and increase exercise tolerance. 

Although the exact mechanisms by which the β-blockers work is not fully understood, the 

principle of reversing the destructive changes in heart disease is what many new drug 

targets and therapies aim to achieve. An alternative means of reverse remodelling is the use 

of left ventricular assist devices (LVADs) which unload the failing ventricle. Clinical studies 

have looked at the differences in myocytes before and after the insertion of an LVAD and 

shown that there is a restoration of both β1AR density and  AC activity (Kassner et al., 2012). 

Mechanically aiding the heart in this way helps improve cell compliance and function.  

1.6.1. β-adrenergic changes in heart failure 

One characteristic of cardiac remodelling in heart failure is a reduction in β1AR and  

desensitisation of β-AR signalling (Bristow et al., 1982).  Desensitization can come about 

from chronic stimulation of the β-AR  leading to an increase in GRK2 expression as reported 

in patients with heart failure (Ungerer et al., 1993a). Necrosis has also been seen to increase 

with the chronic stimulation of the βAR (Teerlink et al., 1994). The normal positive 

ionotropic response in human hearts is diminished (Colucci et al., 1988), resulting in 

exercise intolerance and fatigue. Reduced expression of the β1AR at both the mRNA and 

protein level has been shown in human patients and animal models of heart failure 

(Engelhardt et al., 1996; Steinfath et al., 1992). Uncoupling of the Gαs subunit from the βAR 

and hypophosphorylation of PLB, TnI and cMyBP-C have been reported within the failing 

human heart (Bartel et al., 1996; Messer et al., 2007). On the other hand 

hyperphosphorylation of the RyR2 (Marx et al., 2000), and increased L-type Ca2+ channel 

open probability has been detected in myocytes isolated from heart failure transplant 

patients (Schröder et al., 1998). Chronic β-AR stimulation induced phosphorylation of RyR2 

mediated through CamKII and increased RyR Ca2+ (Grimm et al., 2015). These changes in 

phosphorylation state have all been suggested to be linked with the changes in β-AR 

signalling in heart failure. 

Desensitisation of the β-AR is considered to be a protective mechanism which prevents 

aberrations in myocyte function through arrhythmias, energy deletion and apoptosis 
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(Eschenhagen, 2008). Desensitisation is primarily mediated through GRK2 phosphorylation 

of the β-AR, and consequent β-arrestin binding which targets the receptor for 

internalisation. From this point, the receptor can then either be recycled through de-

phosphorylation via PP2A, or degraded. However chronic β-AR stimulation appears to push 

the β1AR towards the degradation pathway (Ungerer et al., 1993a).  β2AR signalling changes 

in various heart failure models. One influential hypothesis is that β2ARs are relocated from 

t-tubules to the crest (surface) sarcolemma where they produce a more robust cAMP 

response similar to that seen with the β1AR, due to loss of normal t-tubule-based 

compartmentalisation mechanisms (Nikolaev et al., 2010).  

1.6.2. Caveolar changes in heart failure 

Caveolae are essential regulators of cardiac function and it is no surprise that changes in 

these structures and their proteins have been reported in a number of cardiac diseases 

including heart failure. Changes in Cav 1 and Cav 3 protein and mRNA expression have been 

reported in both animal models of heart failure and human patients (Ratajczak et al., 2003; 

Feiner et al., 2011), as well as a reduction in caveolae density as imaged by EM  (Wright et 

al., 2014). In a rat model of myocardial infarction both Cav 1 and Cav 3 were shown to 

dissociate from caveolae to non-caveolar sarcolemma, as measured by sucrose gradient 

fractionation (Ratajczak et al., 2003). Together, these support the idea the caveolae are 

disrupted in heart failure. Cav 3 is found to be co-located with key proteins involved in 

contraction, as measured with immune-precipitation (Insel et al., 2005). Disruption to Cav 

3 may results in disorganisation of these contractile proteins. Mutations of Cav 3 seen in 

patients results in disrupted electrical activity and cardiomyopathies. Congenital long-QT 

syndrome patients were found to have a genetic mutation in CAV3 (Vatta et al., 2006). A 

mutation in the Cav 3 protein has also been found within familial hypertrophic 

cardiomyopathy patients (Hayashi et al., 2004).  Disruption to caveolae in heart failure has 

also been linked with changes in β-AR signalling (Nikolaev et al., 2010), resulting in 

dysregulation of downstream signalling. Mechanically unloading the heart has shown to 

increase cardiac function and β-AR density (Uray et al., 2003; Heerdt et al., 2000). Tissue 

from patients with left ventricular aided devices (used as a bridge to heart transplant) were 

taken before and after the device was inserted. Protein expression and mRNA levels 

increased for all of the caveolin proteins, and this was linked to the reverse remodelling of 

the βAR signalling cascade (Uray et al., 2003).  
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The cavin proteins were only discovered 11 years ago and their potential role in 

cardiovascular disease is just beginning to be studied (Williams and Palmer, 2014). A 

genetic mutation in cavin 1 was found in patients with enlarge but weak muscles, and has 

been shown to cause cardiac arrhythmias  and long-QT syndrome (Rajab et al., 2010).  

1.6.3. Right and left ventricular heart failure 

The right and left ventricle develop from different embryological origins, and in adult life 

are subjected to distinctly different environments. Early in post-natal development the 

ventricles go through very different remodelling phases to enable the LV to cope with high 

pressure and for the RV to become a compliant chamber. In humans the RV does not have 

the same capacity to respond to an acute increase in afterload as that of the LV (MacNee, 

1994), and is incapable of generating pressures higher than 40 mmHg. In comparison the 

LV can respond to a wide range of afterload pressures with very little change in output. In 

mouse, trabeculae from the right and left ventricle produce almost opposite responses to 

α1-adrenergic receptor (α1-AR) stimulation (Wang et al., 2006). In a canine model, the RV 

myocytes have an enhanced response to non-selective β-AR stimulation with isoprenaline 

compared with those from the LV, and this is thought to be shaped by different PDE3 and 

PDE4 compartmentalisation between the ventricles (Molina et al., 2014).  Interestingly in 

Eisenmenger syndrome, which is caused by a congenital defect most often within the 

septum, the RV does not thin during the post-natal development phase and RV and LV 

thickness are similar in the adult. These patients have a higher systemic cardiac index 

(L/min/m2) and lower mortality rates than those with other causes of pulmonary artery 

hypertension (Hopkins et al., 1996). In Eisenmenger syndrome, the RV appears to hold the 

potential to adequately adapt to increased afterload on the heart. The RV and LV show a 

different patterns of change in gene expression in response to increased afterload (Bogaard 

et al., 2009). Friedberg and Redington have summarised the similarities and differences of 

RV and LV adaptation to pressure overload and failure, along with RV and LV interactions. 

They concluded that although there are known differences between the ventricles they still 

share many common maladaptations in failure with the ventricular-ventricular interaction 

playing an important role (Friedberg and Redington, 2014).  However clinical treatment of 

RV or LV heart failure have remained distinctly different due to different reactions 

produced; drugs used for RV treatment show little or no effect in LV failure (Anand et al., 

2004). These differences should be taken into consideration when studying different 

models of heart failure. To date there is no information within the literature of differences 

between the LV and RV in relation to caveolae.  
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1.7.  The study of β-AR and caveolae in heart failure 

Caveolin and β-AR protein expression within myocytes and ventricular homogenates have 

been studied through Western blotting in a number of different animal models of heart 

failure. Caveolae can be visualised with EM (Kozera et al., 2009), and are starting to be 

visualised with super-resolution microscopy (Platonova et al., 2015). However antibodies 

targeting the β-AR are limited and not often used to visualise the β-AR. Instead the study of 

the β-AR focuses on radioligand binding assays ([125I]iodocyanopindolol (ICYP) -binding), 

measurements of cAMP by FRET-based cAMP sensors and the functional response as 

indexed by [Ca2+]i transients and/or contraction/shortening. These approaches examine 

very different aspects of the β-AR signalling cascade. The radio ligand binding assay 

assesses β-AR density on the plasma membrane, whereas FRET-based cAMP sensors 

measure the cAMP produced in response to β-AR stimulation. Neither of these give a direct 

measurement of function, which can be measured at the cellular level in the cardiac 

myocyte, at the multicellular level in trabeculae carnae or in whole heart preparations.  

1.7.1. Caveolar protein knock-out and mutation models    

KO or genetic mutation of the caveolin and cavin proteins has been used to replicate a 

number of different phenotypes observed within heart failure. KO of Cav 1 causes cardiac 

hypertrophy, pulmonary hypertension and cardiac dysfunction (Zhao et al., 2002; 

Wunderlich et al., 2006), however it is not clear whether this is due to loss of caveolin in the 

myocytes or in the other cells within the heart (fibroblast or endothelial cells) (Fridolfsson 

and Patel, 2013).  KO of Cav 3 similarly causes cardiac hypertrophy and dysfunction, as well 

as t-tubule abnormalities within the cardiac myocyte (Galbiati et al., 2001; Woodman et al., 

2002). Mutation of Cav 3 to form a dominant negative from, which lacks three amino acids 

in the CSD and causes a reduction in caveolae, has been used to mimic the phenotype of 

cardiac cells seen in heart failure, which is then rectified when Cav 3 is re-introduced 

(Wright et al., 2014; Barbagallo et al., 2016). Cavin 1 KOshave also been studied in relation 

to mimic cardiovascular diseases (Taniguchi et al., 2016). 

1.7.2. Membrane distribution 

Caveolae are rich in cholesterol and sphingolipids, which can be exploited in two common 

methods to study caveolae and their protein composition. Centrifugation of samples on a 
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discontinuous sucrose density gradient fractionation can separate membrane fractions 

based upon their buoyancy (cholesterol content). Some groups use detergents such as 

Triton-X, as caveolae fractions are thought to be detergent-resistant and this removes the 

need for sonication, however others have seen disruptions in caveolae-associated proteins 

using detergent (Yao et al., 2009). Sucrose density gradient fractionation allows the study 

of protein distribution in the membrane and how this changes with disease. The other is 

through cholesterol depletions by methyl-beta-cyclodextrin (MBCD) (Ilangumaran and 

Hoessli, 1998), and has shown to markedly reduce the number of caveolae in the cardiac 

myocyte (Kozera et al., 2009). Employing this approach has revealed redistribution of 

multiple caveolar proteins in cardiac myocytes and consequent changes in β2AR signalling 

(MacDougall et al., 2012; Wypijewski et al., 2015). The use of a CSD peptide, which is a 

complementary sequence for the CSD and completes for binding on this site, has been used 

to complement  cholesterol-depletion methods (MacDougall et al., 2012). 
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1.8. Aims of the study 

This study aims to test the hypothesis that in heart failure there are changes to an array of 

caveolar proteins/caveole which have an effect on β-AR signalling. There are isolated 

reports of remodelling of caveolae and caveolar proteins in the failing heart which have also 

been linked with changes in β-AR signalling within the heart. However Cav 3 has been the 

main focus of all previous studies linking changes in caveolae/caveolar proteins with 

changes in β-AR signalling. To date caveolar and cavin protein changes have not been 

studied together in relation to β-AR signalling in any animal model of heart failure. Here we 

aim to test the hypothesis by using two models of LV and RV heart failure with the specific 

study aims being:  

 Characterising the LV heart failure model, this has already been done in the RV 

model, by measuring hemodynamic changes and remodelling of the failing heart 

 

 Assessing the impact of heart failure on the β-AR function by measuring isolated 

cardiac myocyte and multicellular preparations response to selective β1AR and β2AR 

stimulation in isolated cardiac myocytes and multicellular preparations 

 

 Assessing the impact of heart failure on the expression of the caveolar and β-AR 

signalling proteins within the myocyte and their distribution across the membrane 

 

 To determine the relative importance of Cav 1 and Cav 3 expression in the cardiac 

myocyte. One by testing how Cav 1 effects the membrane distribution of other 

caveolar and β-AR signaling proteins. Then further measuring protein levels of 

caveolar proteins in a quantitative manner.  

 

Collating these data could help improve our knowledge of caveolae and the changes to the 

caveolar proteins in heart failure and present possible implications and links with aberrant 

β-AR signalling within the failing heart. 
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2. Chapter 2. Methods 

2.1. Heart Failure Models: 

 All UK based animal experiments were carried out in accordance with the Animal (scientific 

procedures) EU Directive 2010/63/EU and conformed to the Guiding Principles in the 

Care and Use of Animals with UK Home Office and local ethical approval. All animal 

experiments in New Zealand were carried out in accordance with the Animal Welfare Act 

1999 and were approved by the University of Auckland Animal Ethics Committee (AEC 

1232). Animals were housed in 50% humidity with a 12h light/dark cycle. 

2.1.1.  Left Ventricular failure model 

Left ventricular (LV) failure was induced by banding of the transverse limb of the arc of the 

aorta (AB), performed by Dr Sarah Calaghan and Prof Jim Deuchars. Male Wistar rats, bred 

by the University of Leeds, target weight 80 ± 20 g were anaesthetised in a chamber 

ventilated with 5% isoflurane (IsoFlo, Abbott Laboratories, IL) mixed with medical O2. 

Animals were transferred to a sterile surgical table and maintained under anaesthesia on a 

ventilator ~3-5% isoflurane. Partial thoracotomy (2 or 3 ribs) was performed and the 

thymus tissue around the aorta was cleared with blunt dissection. Initially, silk suture was 

used to apply constriction around the aorta at a set gauge (silk suture applied around a 23 

gauge needle (O.D 0.6414 mm)). Due to concerns over the appropriate constriction being 

applied and the variability in initial weights of the animals on the day of surgery, a titanium 

hemoclip (Weck) was later adopted to apply constriction around the aorta which varied 

slightly depending on animal weight (for animals <85 g, the internal diameter of clip was 

0.6 mm, whereas for animals >85 g clip size was increased to ≈0.7 mm). Constriction was 

placed after the innominate artery of the aorta. Ribs, muscle and skin were sutured 

separately. Sham animals underwent the same surgery minus clip/silk suture. An intra-

muscular injection of an analgesic agent (buprenorphine, 0.03mL of 0.3 mg/mL solution) 

was injected post-surgery. Animals were checked 3-4 h later for signs of pain, if needed an 

additional injection of analgesia was given. Animals were allowed to recover in heated 

recovery chamber before being singly housed for one week, and then housed in groups of 

3-4 animals per cage. Animals were monitored and weighed weekly for any sign of weight 

loss or distress. Progression of heart failure was assessed by echocardiography 

examination. At the designated end point, hemodynamic measurements were made. 

 

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063
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2.1.2. Right Ventricular failure model  

Monocrotaline (MCT) is a plant based pyrrolizidine alkaloid which, when activated by the 

liver (Kasahara et al., 1997), forms dehydro-MCT in a P450 dependent reaction. Dehydro-

MCT is unstable in aqueous medium and a lysine modification occurs to the dehydro-MCT 

modified protein (Li et al., 2016), which is suggested to be the hepato and pulmonary toxic 

component. Exposure of activated MCT leads to vascular injury, via endothelial hyperplasia, 

thickening of the atrial medial leading to pulmonary artery hypertension (Huxtable, 1990). 

Male Wistar rats target weight 200 ± 20 g bred at the University of Leeds received an intra-

peritoneal injection of 60 mL/kg MCT. Fresh MCT solution was prepared on the day of 

injection by dissolving 68 mg of MCT (Sigma, UK) in 0.5mL of 1M HCl before adding 140 mM 

NaCl and adjusting the pH to 7.4 to give a final concentration of 20 mg/mL MCT. Control 

(CON) rats were injected with an equivalent volume of saline solution (140 mM NaCl). 

Animals were housed 2-3 per cage. Rats were weighed weekly until day 21 post-injection, 

then daily until rapid weight loss was observed (10 g loss in a single day or a total loss of 20 

g)(designated end point).   

 

2.2. Metoprolol dosing 

Chronic dosing with metoprolol has previously been shown to improve survival of MCT 

injected animals (Fowler and 2016). Animals were trained to receive a hand fed oral daily 

dose of Ribena® solution. From 15 days post MCT/saline injection animals were divided 

into three groups, a subset of MCT animals plus all of the CON animals received a daily dose 

(8 mL/kg) of placebo solution (0.3 M Sucrose, 20% Ribena® and water). The remaining 

MCT animals (MCT+BB) received a daily dose (8 mL/kg) of β-blocker solution (metoprolol 

4.68 mM in placebo solution). Dosing was given 2 h before the commencement of the dark 

cycle. CON and MCT+BB animals were taken ± 3 days around the median day that the MCT 

animals went into failure (day 23 post MCT injection for the Leeds cohort of animals). 
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Figure 2-1 Short axis and long axis echocardiography image in AB animal 

Short axis echocardiography images from AB animal (Surgery date – 29/08/13) taken 19 

weeks post-surgery. In the short axis right (RV) and left ventricular (LV) chambers are 

highlighted as well as the papillary muscles. In the long axis the apex of the heart is off the 

left hand side of the display. The aorta and left atria (LA) can also be captured within this 

view. ECG recording is displayed at the bottom of the image as well as heart rate (HR) in the 

bottom right hand corner. Time and date of echocardiographic examination is displayed in 

the top left hand corner. Index down the left had side of the view screen is depth of 

echocardiography examination in cm.   

 

Short axis 

 

 

 

 

 

Long axis 
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Figure 2-2 M-mode images of echocardiography examination of AB and sham banded 

animals 

M-mode imaged in the parasternal short axis view from AB animal (Surgery date – 

08/11/13) taken 19 weeks post-surgery. M-mode is taken running between the two 

papillary muscles and the interventricular septum (IVS). Left ventricle internal diameter 

(LVIS), left ventricle posterior wall (LVPW) measurements are also measured in systole and 

diastole (s/d). ECG recording is displayed at the bottom of the image and heart rate (HR) is 

in the bottom right hand corner. Time and date of echocardiography examination is 

displayed in the top left hand corner. Index down the right hand side of M-mode view screen 

is depth of echocardiography examination in cm. AB animals show reduced contractility.   
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2.3.  In-vivo functional measurements 

2.3.1. Echocardiography 

A proportion of aortic banded (AB) and sham operated (Sham) animals underwent non-

invasive echocardiography examinations to monitor heart function. A GE Vivid7 ultrasound 

machine with a 10S probe was used to perform the examinations. Rats were anesthetised 

and maintained under light anaesthesia (1.5-2% isoflurane), placed in a supine position on 

top of a heated mat with chest hair removed. A small amount of ultrasound gel (Cardiacare, 

Essex, UK) was applied to the chest wall to aid imaging. ECG recordings were taken 

simultaneously while echocardiography images were acquired at 11Hz in the parasternal 

short-axis of the heart at the level of the papillary muscles as well as long-axis video clips, 

representative images (Figure 2-1). For AB animals, ejection fraction (EF) was calculated 

using the inbuilt Vivid 7 computer’s software (to determine if the ejection fraction had fallen 

below the 45% threshold set). Animals were taken immediately for hemodynamic 

measurements if ejection fraction was below the threshold. Images were analyzed offline 

for measurement of LV internal diameter in systole and diastole to calculate fractional area 

changed. In M-mode (motion mode) images inter-ventricular septum (IVS), LV posterior 

wall (LVPW) and LV internal diameter (LVID) were all measured in systole and diastole, a 

representative image is shown in Figure 2-2. From these measurements, EF and fractional 

shortening ([LVIDd - LVIDs/LVISd]*100 where LVID is measured as the left ventricular 

internal dimensions at the end of diastole and systole respectively) were calculated. 

Ejection fraction is calculated using the Teichholz calculation (Teichholz et al., 1976) 

(volume = [7.0/2.4 + internal dimension(D)] (D3), and a squared calculation (((LVIDd2 - 

LVIDs2)/LVID2)*100). Both these calculation have limitations due to assumptions of the left 

ventricle geometry and volume and heterogeneity of ventricular contractions (Wandt et al., 

1999).  MCT and saline animals have already been well characterized by echocardiography  

examination (Benoist et al., 2012), and more recently, MCT animals treated with β-blockers 

have been similarly characterised (Fowler and 2016). (Fowler et al., 2016 [in submission])     

2.3.2. Hemodynamic measurements 

Most AB and Sham animals underwent in vivo hemodynamic measurements at the 

designated end stage. After echocardiography examinations, animals were transferred to a 

heated surgical table where rats were mechanically ventilated and maintained under 

anaesthesia at 1.5% isoflurane mixed with medical O2. Surgery was performed by Dr Mark 

Drinkhill. The chest wall was opened and a Millar conductance catheter (SPR-869, Millar 
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Instruments, TX) passed through the left ventricular free wall around the apex of the heart. 

Volume and pressure measurements of the left ventricle were recorded simultaneously. 

Volume was calculated using intravenous injections of a known volume of saline and 

corrected to the blood volume conductance measured in a cuvette (P/N 910-1048, Millar 

Instruments, TX) which was taken at the end of the experiment (Pacher et al., 2008). Once 

readings had settled to a steady state, pressure-volume (PV) loop relationships were 

recorded. End-diastolic pressure-volume relationships (ESPV) were measured by transient 

occlusions of the inferior vena cava in the abdominal region. 

 

2.4. Cell Isolation 

At the designated end point the right ventricular failure animals were killed by cranial 

stunning and cervical dislocation and hearts quickly extracted and mounted on a 

Langendorff apparatus (Figure 2-3). The aorta was cannulated and the coronary circulation 

was cleared through retrograde perfusion with isolation solution (I.S.) ((mM) 130 NaCl, 5.4 

KCl, 1.4, MgCl2·6H20, 0.4 NaH2PO4, 5 HEPES, 10 creatine, 20 taurine, 10 glucose pH 7.4) with 

calcium added (750 µM CaCl2) at a constant flow rate of 7 mL/min. The heart was 

sequentially perfused with I.S. containing 0.1 mM EGTA for 4 min then a collagenase 

solution (3.2 mg protease (type XIV, Sigma, UK) and 40 mg collagenase type 2 (Worthington 

Biochemical, USA) in 40 mL I.S) for 7-8 min. The RV and LV were then dissected from the 

hearts and weighed before shaking in protease solution in conical flasks by a rotary shaker 

held in a 37 oC water bath. All solutions were continually oxygenated and heated to 37 oC. 

Cells were collected by straining tissue in collagenase solution through a gauze (200 µm2 

nylon mesh); myocytes collected from this centrifuged (50 x g for 40 s) supernatant 

removed and re-suspended in I.S.  Isolated cells were kept in I.S. with 750 µM Ca2+ at room 

temperature until needed for experiments. 
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Figure 2-3 Langendorff system used for cardiac myocyte isolation 

The aorta was cannulated and a silk suture tied around to secure it to the metal cannula. 

Hearts were retrogradely perfused with 750 μM Ca2+ isolation solution (I.S) (flow rate 7 

mL/min) and the coronary circulation cleared before switching to 0.1 mM EGTA I.S for 4 

min. The heart was then perfused with enzyme I.S which was recirculated for 7-8 min. All 

solutions were bubbled with 100% O2 and heated in a water jacket to 37 oC  

  

750 μM Ca
2+ 

I.S 

0.1 mM EGTA
 
I.S 

Enzyme I.S Water jacket 
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2.5. Trabeculae Dissection 

Animals were decapitated following anaesthesia by isoflurane (5% medical O2), hearts were 

quickly removed, weighed and placed into chilled Muscle Tyrode solution ((mM) 141.8 

NaCl, 74.56 KCl, 1.2 MgSO4.H2O, 1.2 Na2HPO4, 10 HEPES pH 7.4) before transfer to the 

dissection chamber. The aorta was then cannulated while perfusing with Muscle Tyrode 

with (mM): 20 butanedione monoxime (BDM), 10 glucose and 0.25 Ca2+ bubbled with O2. 

Free running trabeculae were dissected and mounted in a chamber connected to a force 

transducer as previously described (Kaur et al., 2016).  In brief, trabeculae were transferred 

to a Perspex bath mounted on the stage of an inverted microscope (Nikon Diaphot 300, 

Japan) and perfused with Muscle Tyrode solution containing 10 mM glucose and 0.5 mM 

Ca2+ bubbled with O2. One end of the trabeculae was cradled in a wire hook of the force 

transducer while the other end was held in a nylon snare extending from the end of a 

stainless steel tube attached to a micromanipulator. Trabeculae were field stimulated at 0.2 

Hz at room temperature until stable contractions were observed, upon which the [Ca2+] of 

the Tyrode’s solution was increased to 1 mM before loading with Fura-2/AM (10 μmol/L; 

Teflabs, TX, USA) in 10 mL Tyrode at room temperature as previously described (Ward et 

al., 2003) for 2 h.  

 

2.6. Selective β-adrenergic receptor stimulation  

2.6.1. Pharmacological agents used 

Selective β1AR stimulation was achieved with the β1AR agonist isoproterenol bitratrate 

(ISO) (Sigma I2760) in combination with ICI 118,551 (Sigma I127), a selective β2AR 

antagonist.  Various concentrations of ISO with ICI 118,551 (ICI) were made in Cell Tyrode 

solution ((mM) 136.9 NaCl, 5.4 KCl, 0.33 NaH2PO4·H2O, 0.5 MgCl2·H2O, 5 HEPES, 5.6 Glucose, 

1 CaCl2, pH7.4).  Selective β2AR stimulation was achieved with the β2AR agonist zinterol 

(Tocris 1051) in combination with CGP-20712A (Sigma C321), a selective β1AR antagonist. 

Zinterol Ki for β2AR (460 nM) (Bylund and Snyder, 1976). Concentrations of antagonists 

were chosen on the basis of previous use in the literature and the rat Ki values for β1AR and 

β2AR in the presence of the selective antagonist; ICI 118,551 Ki for β2AR (1.78 nM) and  Ki 

for β1AR (194.98 nM) (Tsuchihashi et al., 1990), CGP 20712A  Ki for β1AR (1.3 nM) and Ki 

for β2AR (600 nM) (Cerbai et al., 1995). Antagonist concentrations used: CGP-20712A (300 

nM), ICI 118,551 (100 nM) 
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2.6.2. Contraction and Ca2+ recordings in isolated myocytes 

Cell shortening and [Ca2+]i transients were recorded simultaneously using  digital edge-

detection software (IonOptix, MA, USA) and an OptoScan monochromator  [illuminating 

cells with 10 ms pulses of 340 and 380 nm light (Cairn Research, UK)]. Isolated cardiac 

myocytes from the right ventricle were field stimulated at 1 Hz after loading with the 

fluorescent Ca2+ indicator Fure-2 AM (F1221, Invitrogen, USA). Fura-2 has been a popular 

dye since it was first utilized (Grynkiewicz et al., 1985; Tsien et al., 1985) to study calcium 

content within cells including cardiomyocytes (Xu et al., 1997; Wier et al., 1987).  The Fura 

acetoxymethyl (AM) attachment allows the dye to cross the cell membrane and once in the 

cells cytosolic esterases cleave the ester group forming an impermeable dye within the cell. 

Isolated cardiac myocytes (1-2 mL) were incubated with 1 µM FURA-2AM/ mL Cell Tyrode 

for 10 min before centrifugation (40 s, 500 rpm), removal of supernatant and re-suspension 

and incubation in fresh Cell Tyrode for 30 min to allow de-esterification. Cells were 

individually perfused using a solution switcher (MPRE8, CellMicro Controls, USA) 

containing different concentrations of ISO (Figure 2-4). All baseline recordings were made 

with selective antagonist (in the absence of antagonist) in Cell Tyrode. Bath solution was 

continually perfused with selective antagonist in Cell Tyrode. Both bath (by a HPRE2 Cell 

MicroControls, USA) and switcher solutions (inbuilt) were heated to 37 oC. Flow rate and 

rapid solution switching within the solution switcher were controlled by a channel flow 

controller (cFlow, Cell MicroControls, USA)  

2.6.3. Force and Ca2+ recordings in trabeculae 

Trabeculae force and [Ca2+]i transients within a restricted window of approximately 300 

µm2 were recorded simultaneously using a spectrophotometry system (Cairn Research, UK) 

and a micro force sensor (AE801, Sensor One, USA). Base line recordings were taken when 

trabeculae were stretched to L.max (the length of the muscle at which developed tension 

was maximum) and field stimulated at 1 Hz (model D100; Digitimer, UK). Solutions were 

heated to 37 oC and recirculated.  
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Figure 2-4 Solution switcher 

Isolated cardiac myocytes were placed in the bath and allowed to settle on the glass cover 

slip before perfusion of the bath and field stimulation (at 1 Hz) was commenced. The rapid 

solution switcher mounted on a micromanipulator was then placed up-stream from the 

chosen cardiac myocyte and then the solution switcher turned on. This enabled rapid 

solution changing for individual cells. Cell shortening and [Ca2+]i were simultaneously 

recorded. Both bath and solution switcher solutions were heated to 37oC 
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2.7. Histology  

2.7.1. Wax embedding sections 

Tissue was wax-embedded to allow for sectioning and histological staining. Before wax 

embedding tissue samples were assigned a random 3 digit code generated on Excel, which 

was used to blind the samples. Un-blinding was not performed until the end of the image 

analysis. Longitudinal sections of ventricular tissue, approximately 100 mg in weight, were 

taken and placed in 4% PFA (PBS) solution overnight. Tissue was then dehydrated in an 

alcohol series of 25%, 50%, 70% ethanol (EthOH) in ultrapure water (MilliQ), 30 min in 

each, and stored in 70% EthOH at 4 oC until all the tissue was collected. The Thermo Citadel 

2000 automatic processor was operated by Tim Lee to embed the tissue in paraffin wax. 

Wax embedded tissue was sectioned on a microtone at 10 µm thickness (American optical 

Spencer 820 microtome), floated on a heated water bath and then mounted on a coated 

glass cover slide (VWR polysine coated slices 48382-117). 

2.7.2. Picro-sirius Red staining  

Collagen content of the heart was indexed by picro-sirius red staining which is used to 

identify fibrosis within the heart (Michel et al., 1986; Tanaka et al., 1986). Sirius red stains 

all types of collagen and picric acid dye stains the myocytes yellow causing a colour contrast 

and allowing image thresholding and quantification by a light microscope. Sections were 

immersed in Histoclear 2 x 5 min (National Diagnostics, Atlanta, GA) to deparaffinise the 

sections and rehydrated in a 100%, 90%, 70% and 50% EtOH series, 2 min in each. Slides 

were then stained in 0.1% picrosirius solution (Direct Red 80, Sigma-Aldrich, Pool, UK, in 

saturated picric acid pH 2.15) for 90 min. Excess stain was then removed by washing with 

a 0.01M HCl solution and dehydrated in the same EtOH series. To clear the sections, slides 

were placed into Histoclear for 10 min before a drop of DPX (distyrene plasticiser (butyl, 

pfthalate, styrene), xylene; Sigma UK) mounting media was placed onto each section and a 

glass cover slip placed on top. Slides were left to dry and fix at room temperature overnight. 

Images were taken using an upright Nikon Eclipse E600 light microscope at 20x 

magnification. Multiple images were taken from multiple sections for each animal. Only 

cross-sectional images of cardiac myocytes were used in the analysis; images with large 

capillaries within the frame were excluded. ImageJ (National Institute of Health, Bethesda, 

MA) was used for quantification by creating a Lab stack (Luminance (L) and two colour-

opponent dimensions (a, b)) and then manually setting a threshold for red (collagen) and 
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blue (total cell and collagen staining minus background). Thresholds varied slightly from 

image to image depending on background staining.  

 

2.8. Sample preparation 

2.8.1.  Homogenised tissue for protein analysis 

For measurement of protein expression in myocardial homogenates, ventricular muscle 

was homogenised (Ultra-Turrax T8; Ika) 6 x 20 s each at full power (30000 rps) in Laemmli 

Sample buffer (63.5 mM Tris [pH 6.8], 10% glycerol, 2%SDS, 1x protease (Roche Applied 

Science) and phosphatase (Thermo Scientific Pierce) inhibitor cocktails. For measurement 

of protein distribution in different membrane fractions ventricular muscle was 

homogenised 6 x 20 s in detergent free buffer (500mM Na2CO3 (pH 11), 1x protease (Roche 

Applied Science) and phosphatase (Thermo Scientific Pierce) inhibitor cocktails. Both 

samples were stored at -20 oC until required.  

2.8.2. Sucrose density gradient fractionation  

Samples in detergent free buffer were thawed to 4 oC then sonicated (Vibra Cell; Sonics) 6 

times each for 10 s at full power, kept on ice at all times. Samples were then centrifuged  for 

30 min at 5000 g, 4 oC, and 2 mL of supernatant mixed with 2 mL of 90% sucrose in MES-

buffered saline (25 mM MES, 150 mM NaCl, 2mM EDTA, pH 6.5) to form a 45% sucrose 

solution. To create a discontinuous sucrose gradient 4 mL of 35% and ~4 mL 5% sucrose 

solution (MES-buffer saline with 250 mM Na2CO3) was layered on top. Sucrose gradients 

were centrifuged at 39000 rpm (Beckman SW40Ti rotor) at 4 oC for 17 h. After 

centrifugation 12 fractions were collected starting from the top using a Gilson pipette 

(p1000) (1 mL each), then frozen at -20 oC until required (Calaghan et al., 2008).  Fractions 

9-12 contain non lipid rich membrane fractions and cytosolic proteins are designated the 

heavy fractions. These fractions are considered to be fairly homogenous, so equal portions 

were loaded in a mixed sample for analysis with SDS-PAGE and Western blotting. 
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2.9.  Cholesterol and Protein analysis 

2.9.1. Amplex® red assay 

Cholesterol content was measured by the Amplex® Red Cholesterol Assay Kit (Invitrogen, 

A12216). Fractionated samples from the sucrose gradient fractionation were diluted in 1 x 

reaction buffer (5 x reaction buffer (20 mL of 0.5 M potassium phosphate pH 7.4, 0.25 M 

NaCl, 25 mM cholic acid, 0.5% Triton X-100) diluted in MilliQ water) before loading 

duplicates of 50 µL into a 96 well plate. Reference standard (2 mg/mL cholesterol reference 

standard) was diluted in 1 X reaction buffer to give a range of 2-20 µL/mL cholesterol. 

Working solution was prepared and 50 µL added to each well (1.5% Amplex Red (dissolved 

in DMSO to make 20 mM stock), 1% horseradish peroxidase (HRP) (200 U/mL dissolved in 

1 X reaction buffer), 1% cholesterol oxidase (200 U/mL cholesterol oxidase, from 

Streptomyces dissolved in 1 X reaction buffer), 0.1% cholesterol esterase (200 U/mL 

cholesterol esterase, from Pseudomonas dissolved in 1 X reaction buffer) and 96.4% 1 X 

reaction buffer. The plate was then protected from light and transferred to an incubator 

heated to 37 oC for 30 min. Fluorescence excitation was at 590 nm and emission measured 

at 545 nm with 12 nm bandwidth.     

2.9.2. De-glycosylation by PNG-ase F 

N-linked glycosylation is an asparagine-linked carbohydrate post-translational 

modification of a protein which aids in protein migration to lipid rich membranes. Peptide-

N-Glycosidase F (PNG-ase F) can be used to test for N-linked glycosylation as this enzyme 

cleaves between the innermost GlcNAc and asparagine residue of the oligosaccharides from 

N-linked glycoproteins (Maley et al., 1989). This reduces the molecular weight of the 

protein, the reduction in molecular weight can then be detected by SDS-PAGE. PNGase-F 

was supplied by New England Biolabs (P0704S) and the denaturing protocol used. Sample 

containing glycoprotein (5-9 µL) was mixed with 1 µL Glycoprotein Denaturing Buffer 

(10X)(5% SDS, 0.4 M DTT) and H2O when necessary to make up a reaction volume of 10 µL. 

Samples were then denatured by heating to 95oC for 10 min before chilling samples on ice 

and centrifuging. The final reaction volume was then made up to 20 µl with 2 µL GlycoBuffer 

2 (x 10) (0.5 M Na2PO4 pH 7.5), 2 µL 10% NP-40 and 6 µL milQ. H20. 1 µL PNG-ase F (PNG-

ase F purified from Flavobacterium meningoseticum, stored in 50 mM NaCl, 20 mL Tris-HCL 

pH 7.5, 5 mM Na2EDTA and 50% glycerol) was then gently mixed into the sample and placed 

in an incubator held at 37 oC for 1 h. The enzyme reaction was terminated by addition of 5 
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x Laemmli sample buffer or heating sample to 75 oC for 5 min. Samples were analysed by 

SDS-PAGE.   

2.9.3. Western blotting 

2.9.3.1. Bicinchonincic acid (BCA) assay  

A bicinchonincis (BCA) assay was used to determine total protein concentration. The BCA 

protein assay has the advantage over other protein assays as it can detect a wide range of 

protein concentrations and sample solution can contain up to 5% detergent. The BCA assay 

relies on a two reaction process, first the biuret reaction in which peptides containing three 

or more amino acid residues reduce the copper ion from cupric to cuprous form, then a 

chelation reaction of two BCA molecules with one cuprous ion to form the purple colour.  2-

3 dilutions of each sample were made before loading duplicates of 10 µL into a 96 well plate 

along with 10 µL of bovine serum albumin (BSA) standards (2-10 µg/µL) used to construct 

a standard curve. 80 µL of a solution containing BCA (Sigma-Aldrich BCA1-1KT) and Cu2SO3 

in a 50:1 ratio was then added to every well before placing the plate at 37 oC to incubate for 

30 min. Absorbance at 570 nm was measured on a Varisoskan plate reader (Thermo 

Scientific) and this was used to calculate average protein concentrations by reference to the 

BSA standard curve. This allowed equal total protein loading of samples in Western blotting.  

2.9.3.2. SDS-PAGE 

Laemmli Sample buffer (62.5 mM Tris [pH 6.8], 10% glycerol, 2% SDS, 5% β-

mercaptoethanol) was added to ventricular homogenates collected from the sucrose 

gradient fractionation, and 5% β-mercaptoethanol was added to myocardial samples 

homogenised in sampler buffer, before heating to 95 oC for 5 min. Proteins were separated 

by electrophoresis in SDS-PAGE gels (6-12% acrylamide) in SDS-PAGE running buffer 

(0.01% SDS in 25 mM TRIS, 192 mM glycine) and transferred to a polyvinylidene difluoride 

(PVDF) membrane by semi-dry blotting for 85 min at 60 mA per membrane (target protein 

below 100 kDa: 20% methanol, 0.0375% SDS in 48 mM TRIS, 39 mM glycine) (target protein 

above 100 kDa: 0.0375% SDS in 48 mM TRIS, 39 mM glycine).  Methanol has been shown to 

impede the transfer of large molecular weight proteins (Beisiegel, 1986). Non-specific 

binding sites were then blocked in milk-TRIS buffer (5% no-fat dried milk powder, 0.1% 

Tween-20 in 50 mM TRIS/Hl, 150 mM NaCl) before staining with specific antibodies. 

Antibodies used listed in Table 2-1. Chemiluminescence (Amersham ECL Prime Western 

Blotting Detection Reagent, GE Healthcare, UK was used for low abundance proteins and 
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Thermo Scientific™ SuperSignal™ West Pico Chemiluminescent Substrate used for high 

abundance proteins) was used to detect secondary antibodies before either exposing and 

developing signals onto Fluorotrans 0.2 µm film (Pall international) or imaging signal 

intensity (Syngene G:BOX Chemi XT4). Band intensities were then quantified (Aida Image 

Analyzer). GAPDH was used as a normaliser, no difference in signal expression was 

observed between samples.         

2.9.3.1. Phos-tag gel 

Phos-tagTM Acrylamide reagent developed by the Department of Functional Molecular 

Science at Hiroshima University is used to study the phosphorylation of proteins for which  

phospho-specific antibodies are not available. Phosphorylation is a crucial post-

translational modification which regulates protein function, localisation and targeting.  

Phos-tagTM Acrylamide provides a phosphate affinity which slows the migration of 

phosphorylated proteins during electrophoresis, which can be detected with Western 

blotting. Phos-tagTM reagent is added to SDS-PAGE gels to create a final concentration 

between 30-90 µM Phos-tag, in addition to equal concentrations of MnCl2. The 

concentrations of all other components in the SDS-PAGE gel and running buffer remain the 

same. Gels were run slowly on ice before SDS-PAGE gel were washed 2x 10 min in transfer 

buffer (as stated above) with the addition of 2 mM EDTA and subsequently washed 2 x 10 

min in transfer buffer without EDTA. The rest of the Western blot protocol continues as 

stated above with the transfer time being run twice as long as the usual gels.         

 

2.10. Statistical analysis 

Statistical analysis was performed on Prism 6/7 (Graphpad, La Jolla, CA). All data are 

expressed as mean ± S.E.M or of n = determinations (number of animal or number of cells). 

Normality was tested using Prism 6/7 normality tests (D’Agostino-Pearson omnibus or 

Shapiro-Wilk).  

Significant differences between two independent groups were assessed by unpaired 

Student’s t-test if data were normally distributed. Where data were non-normal Mann-

Whitney U tests were used. If three or more independent groups were being tested for 

statistical differences a one-way ANOVA with Tukey’s multiple comparison tests was used 

assuming that the data was normal. When data was non-normal a Kruskal-Wallis test was 
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used to compare more than two independent groups. Where multiple measurements were 

made and compared between different groups, a two-way repeated measure ANOVA was 

used.  

To measure if there was a correlation between two variables the correlation coefficient with 

confidence intervals were calculated. A Pearson’s test was used if the data were normal and 

a Spearman’s rank test was used if data were non-normal.    

To test for significant effects in binomial data a Chi-squared test was used to calculate 

expected values and determine if a significant difference was observed between the 

expected and observed values between one or more groups. For individual variations 

between expected and observed adjusted residual values were calculated with Bonferroni 

adjustment to test for individual statistical variation.   

Where multiple measurements were taken over time, linear regression was calculated and 

line equation tested for significant deviation from a zero gradient.  

Statistical significance is considered at P<0.05.  



54 

 

Antibody Company, Cat # Dilution  Species MW (kDa) 

AC Santa Cruz 590 1:500 Rabbit 132 

β1AR Santa Cruz 567 1:500 Rabbit 67 

β2AR Alomone AAR-016 1:1000 Rabbit 55 

BIN1 Santa Crus 30099 1:500 Rabbit 100, 75 

Caspase 3 Cell signalling 9665 1:1000 Rabbit 17, 19, 35  

Cav 1 BD Bioscience 610406 1:1000 Mouse 21-24 

Cav 3 BD Bioscience 610421 1:5000 Mouse 18 

Cavin 1 Proteintech 18892-1 1:4000 Rabbit 60 

Cavin 4 Sigma HPA 021 021 1:2000 Rabbit 55 

eNOS BD Bioscience 610297 1:1000 Mouse 140 

Gαi2 Santa Cruz 13534 1:500 Mouse 41 

Gαi3 Santa Cruz 262 1:500 Rabbit 45 

GAPDH Sigma-Aldrich G9545 1:100000 Rabbit 37 

GRK2 Santa Cruz 8329 1:500 Rabbit 75 

JP 2 Santa Cruz 5131 1:500 Goat 90 

 

Table 2-1 Table of antibodies used in Western blotting 

The supplier, catalogue number, dilution used and predicted molecular weight (MW) band is given. 
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3.  Chapter 3. Characterisation of aortic banding model leading to 

left ventricular failure 

 

3.1. Introduction 

According to the NICE guidelines around 0.9 million people are living with heart failure in 

the UK today (NICE, 2010). In the US, ~6 million are people living with heart failure and 1 

in 5 adults over the age of 40 is likely to develop heart failure in their lifetime (NICE, 2010; 

Mozaffarian et al., 2016) . Failure of the left ventricle (LV) is most common with either 

systolic or diastolic dysfunction of the LV resulting in a reduced cardiac output to the body. 

In response to an initial insult on the heart, such as hypertension, the compensatory 

mechanism of the body is to increase sympathetic drive to the heart. Chronic sympathetic 

stimulation results in the desensitisation of the β-adrenergic receptors (β-AR) and further 

cardiac dysfunction (Steinfath et al., 1992). To study the β-AR and caveolar protein changes 

in LV heart failure a model with clinical relevance must first be established.   

A rat model of aortic banding was chosen to determine these molecular changes in end stage 

heart failure. Aortic banding in rat is a slow progressive model of heart failure, which is a 

closer representation of clinical heart failure in humans compared to other faster onset 

models (Patten and Hall-Porter, 2009). A rat model is advantageous over a mouse model 

because of the larger mass of tissue, allowing for multiple different aspects to be studied 

(protein expression and membrane distribution, fibrosis etc.), but it is still inexpensive 

compared to larger animal models. This aortic banding (AB) model of heart failure was new 

to the University of Leeds so characterisation of the model was needed. It was imperative 

to be sure that end stage heart failure was reached before further studying the tissue at the 

molecular level. Previous studies have been criticised for not properly characterising heart 

failure within the model and only relying on single measurements to assume clinical heart 

failure (Houser et al., 2012; Patten and Hall-Porter, 2009).    

Banding of the transverse limb of the arc of the aorta is used frequently to study multiple 

and varied aspects of heart failure (Miyamoto et al., 2000; Feldman et al., 1993; Litwin et al., 

1995). Previous models of aortic banding have used echocardiography-Doppler 

measurements to assess LV function and progression of heart failure (Litwin et al., 1995; 

Miyamoto et al., 2000). In our model, echocardiography was used periodically to measure 
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the progression of heart failure, along with weekly body weight measurements to monitor 

any sudden changes in weight. In-vivo heamodynamic pressure volume loop measurements 

were taken at the end point to further analyses change in LV function. Dissected organ 

weights as well as fibrosis measurements were used to further characterise this heart 

failure model and give clinical relevance. Fibrosis is often present in human heart failure 

patients causing stiffness of the cardiac muscles (Tanaka et al., 1986), and is another clinical 

trait which can be measured in small animal models. By measuring a wide array of different 

parameters we hope to characterise this model of heart failure at Leeds, enabling the model 

to have clinical relevance.   

 

3.2. Methods       

Partial thoracotomy (2-3 ribs) was performed on male Wistar rats 80±20 g (target range) 

under anaesthesia (3-5% isoflurane) and a constriction (suture/clip) placed around the 

aorta (detailed in Methods section 2.2.2). Sham animals underwent the same surgery minus 

the constriction. Rats were then monitored and weights recorded weekly. 

Progression of heart failure was monitored by echocardiography examination. ECG 

recordings were taken simultaneously while echocardiography images were acquired at the 

parasternal long and short-axis of the heart. Images were then analyzed offline to calculate 

fractional shortening and ejection fraction (Methods 2.3.1). Ejection fraction below 45% 

was used to define heart failure. Normal ejection fraction is considered to be > 50% 

(McMurray et al., 2012). 

A proportion of AB animals with an ejection fraction below 45% were taken for 

hemodynamic measurements and pressure volume loop analysis (Methods 2.3.2). A 

proportion of Sham animals time matched to the AB also underwent the same procedure.  

Lung, liver, heart and dissected heart were all weighed post end point, and normalised to 

total body weight and tibia length. Longitudinal sections of the LV were taken and placed in 

4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) overnight before 

dehydrating in an alcohol series and being wax-embedded and sectioned (as detailed in 

Methods section 2.7.2). Picro-sirius red staining was then used to identify collagen. Images 

were taken on an upright light microscope at 20x magnification. ImageJ was used to quantify 

images and calculate the percentage collagen staining per image (Methods section 2.7.2).  
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3.3. Results    

3.3.1. Animal grouping 

This was a new animal model to the University of Leeds and it became apparent when 

monitoring the animals with echocardiography that not all of the banded animals would 

reach the reduced ejection fraction used to define heart failure. The silk suture could have 

been absorbed within the aorta during growth or the metal clip may have slipped. Not all 

sutures/clips were found at the end point around the aorta of the banded animals. Feldman 

et al. 1993 observed, in a model of aortic banding, that 20-weeks post-surgery not all of the 

banded animals exhibited clinical signs of heart failure, but did present with moderate signs 

of hypertrophy (Feldman et al., 1993). In the present study, the size of the constriction 

placed on the aorta varied between animals and appeared to play a role in the severity and 

progression of heart failure. A few of the clips were kept and using imageJ the internal area 

(constriction) of the clip was calculated and plotted against  weeks post-surgery/heart 

weight to body weight ratio (Figure 3-1).  There was a significant correlation between the 

constriction placed on the aorta and the relationship between time taken to reach a heart 

failure phenotype and increased heart weight (R2=0.9462, P<0.01). In vivo hemodynamic 

measurements and echocardiography revealed that not all the banded animals reached the 

cut off threshold of ejection fraction<45%. However in these animals there was an increase 

in posterior LV wall thickness and heart weight suggesting some degree of remodelling had 

occurred. Using the heart weight to body weight ratio and ejection fraction data, banded 

animals were split into two groups: banding with hypertrophy (AB(H)) which had a HW:BW 

ratio of greater than two standard deviations above the Sham mean and greater than 45% 

ejection fraction, and banding with end stage heart failure (AB (Fail)) with an ejection 

fraction below 45%.  Out of the 28 animals that underwent aortic banding 9 animals reached 

an ejection fractions below 45% and 7 animals with ejection fraction above this had a 

HW:BW ratio which reached the AB(H) group definition. There were also three unexpected 

deaths which occurred within the first 6 weeks of surgery. 



58 

 

w e e k s  p o s t s u r g e r y  /  H W :B W

C
li

p
 a

r
e

a
 (


m
2

)

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0

8

1 0

1 2

1 4

1 6

1 8

 

Figure 3-1 Correlation between aortic constriction and weeks post-surgery 

standardised by heart weight to body weight ratio  

Internal area of titanium clip or silk suture was calculated on ImageJ and calibrated by a 

graticule placed in the same scanned image, which was then plotted against number of 

weeks post-surgery standardised to heart weight to body weight (HW:BW) . R2=0.9462  

 

3.3.2. Growth curves 

Growth was measured by recording body weight weekly, monitoring for any sudden 

changes in weight. When animals were split into their retrospective groups based on 

surgery, ejection fraction and heart weight to body weight ratio, there was no significant 

difference in weight gain between groups over a 30 week period (Figure 3-2). One group of 

animals whose surgery was performed on the same day, two AB(Fail) and two Sham, did 

show a marked difference in growth, with a stunting in growth in the two AB(Fail) animals 

by over 10% from week 10 post surgery onwards(Figure 3-2) (Sham n=2). However this 

was a single example and other date- and surgery-matched AB(Fail) and Sham animals 

showed no difference in weight gain. Fluid on the lungs was often found in the AB(Fail) 

animals at end point, which could indicate oedema and fluid retention. This may mask any 

weight loss occurring in these animals.  
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Figure 3-2 Growth Curve 

Weight measurements were taken weekly to monitor for any sudden changes in weight 

from day of surgery. A. Grouped growth curve of all animals weights, mean ± SEM (Sham 

n=20, AB(H) n=7, AB(Fail) n=6) B.  Individual growth curve of animals with same date of 

surgery (aortic banding 07120 (2+3) animal ID, sham operated 07120(4+6) animal ID) 
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3.3.3. Echocardiography and haemodynamic measurements 

Echocardiography was performed to monitor changes in heart structure and function, and 

to identify the end-point within banded animals. A proportion of the sham animals also 

underwent the same monitoring. When ejection fraction was measured to be below 45% by 

echocardiography measurements, pressure volume loop analysis was performed. Further 

offline analysis was performed on multiple cineloop recordings and the average of 3-4 

cineloops was taken to give the final measurements. Echocardiography measurements 

taken at the end point were then used to analyse LV geometry and wall thickness (Figure 

3-3). There was no significant difference in interventricular septum (IVS) thickness 

between Sham, AB(H) and AB(Fail) animals in diastole or systole (Figure 3-4). Left 

ventricular posterior wall (LVPW) thickness in both AB(H) and AB(Fail) was significantly 

increased (P<0.01, P<0.05) during diastole with over a 50% increase in thickness from 

Sham, indicating left ventricular hypertrophy. AB (H) animals showed a reduced left 

ventricular internal diameter (LVID) in diastole and systole of up to a third compared with 

both Sham and AB(Fail)(P<0.05, P<0.01)(Figure 3-4). By contrast AB(Fail) animals had a 

significantly larger internal diameter in systole than both Sham and AB(H)(P<0.001), which 

would indicate systolic dysfunction and result in a reduced ejection fraction. This could 

suggest concentric hypertrophy in the AB (H) group which progressed to dilation in the AB 

(Fail).  

Figure 3-3 M-mode images of echocardiography examination of AB and sham banded 

animals 

A. M-mode imaged in the parasternal short axis view from AB animal (Surgery date – 

08/11/13) taken 26 weeks post-surgery. B. Short axis image in M-mode from Sham animal 

(Surgery date – 12/03/13) taken 25 weeks post-surgery. C. Short axis image in M-mode 

from AB animal (Surgery date – 22/03/13). Short M-mode is taken running between the 

two papillary muscles and the interventricular septum (IVS). Left ventricle internal 

diameter (LVIS) and left ventricle posterior wall (LVPW) measurements are also made in 

systole and diastole (s/d). ECG recording is displayed at the bottom of the image as well as 

heart rate (HR) in the bottom right hand corner. Time and date of echocardiography 

examination is displayed in the top left hand corner. Index down the right had side of M-

mode view screen is depth of echocardiography examination in cm.  
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Figure 3-4 Echocardiography measurements taken at end point 

Interventricular septum (IVS) and left ventricular posterior wall (LVPW) thickness as well 

as left ventricular internal diameter (LVID) were all measured at the end of diastole and 

systole in the short-axis parasternal M-mode. Data presented as dot plots ± SD (Sham n=6, 

AB(H) n=4, AB(Fail) n=7. One-way ANOVA comparison *P<0.05, **P<0.01, ***P<0.001.  
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Haemodynamic measurements were taken under anaesthesia with a pressure catheter 

(Figure 3-5) to measure LV pressure and volume during the cardiac cycle. Representative 

trace for AB(H) unfortunately do not fit completely with mean data in table. There was a 

large amount of variation within the end-diastolic volume measurement recorded and 

representative trace   differs from the mean value. Haemodynamic measurements from 

AB(H) animals were the same as those of the Sham group apart from end-systolic pressure 

which was significantly increased (P<0.05). An increased end systolic pressure suggests 

increased afterload, indicative of some form of constriction placed on the aorta. End systolic 

pressure was also increased in the AB(Fail) (P<0.01) compared to Sham. End systolic 

volume was increased in the AB(Fail) animals compared to Sham and AB(H) (P<0.01) which 

fits with the increased LV internal diameter and reduced ejection fraction indicating LV 

systolic failure. Ejection fraction was significantly reduced in AB(Fail) compared with both 

AB(H) and Sham (P<0.001). There is a trend for a decrease in stroke volume in AB(Fail) 

compared with Sham animals which then results in a significant reduction in cardiac output 

as there is no significant change in heart rate. Arterial elastance, which is the calculated 

measurement of arterial load, is also increase in AB(Fail) compared with Sham. Many of 

these volume and pressure measurements are significantly different in AB(Fail) compared 

to Sham, however there is no significant difference between AB(Fail) and AB(H) in most of 

the measurements. This would indicate that the AB(H) animals are in an intermediate 

functional state. The AB(H) animals could be in a compensatory state, moving towards the 

failing state but without a dilated LV and with a preserved ejection fraction.             

 

Pressure volume loops taken from Sham (black), AB(H) (green) and AB(Fail) (red) animals 

shown in top diagram. End systolic pressure volume loop relationship (ESPVLR). Ea = 

ESP(end systolic pressure)/SV(stroke volume). Data presented as mean ± SEM (Sham n=10, 

AB(H) n=4, AB(Fail) n=8. One-way ANOVA comparison *P<0.05, **P<0.01, ***P<0.001 

AB(Fail) vs CON,  P<0.001 AB(Fail) vs AB(H), #P<0.05 AB(H) vs CON.    

 

Figure 3-5 Haemodynamic measurements taken at end point   
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 Sham AB (H) AB (Fail) 

Heart rate (bpm) 339 ± 8.72 351.5 ± 22.55 309 ± 13.33 

End-systolic Volume 
(µL) 

46.29 ± 7.38 73.43 ± 15.02 
178.2 ±15.02 *** 

 

End-diastolic Volume 
(µL) 

165.6 ± 17.70 162.8 ± 24.60 217.3 ± 14.22 

End-systolic Pressure 
(mmHg) 

130.9 ± 9.41 199.8 ± 15.24 # 200.7 ± 11.59 *** 

End-diastolic 
Pressure (mmHg) 

8.335 ± 1.06 8.45 ± 1.85 14.23 ± 1.61 * 

Ejection Fraction (%) 76.90 ± 2.60 68.59 ± 3.41 33.87 ± 3.57 ***   

Stroke volume (µL) 132.3 ± 14.26 118 ±19.01 
85.62 ± 12.06 

(P=0.071) 

Cardiac Output 
(µL/min) 

45046 ± 4990 41793 ± 7867 26842 ± 4342 * 

Cardiac Output/ Body 
weight  ((µL/min)/g) 

94.38 ± 11.69 84.64 ± 12.32 
60.08 ± 8.59 

(P=0.075) 

Arterial Elastance 
(Ea) (mmHg/µL) 

1.16 ± 0.21 1.88 ± 0.35 2.84 ± 0.52 ** 

ESPVR (linear) 0.059 ± 0.019 0.083 ± 0.043 0.211 ± 0.043 ** 
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3.3.4. Organ weight ratios 

Body weight, plus whole and dissected organ weights, were recorded at the end point, after 

hemodynamic measurements where these were made. The left tibia was dissected and 

measured with a pair of callipers. As mentioned previously, heart weight to body weight 

(HW:BW) ratio was used to allocate the banded animals to a AB(H) group which showed 

signs of hypertrophy. This was used as not all the banded animals showed signs of 

hypertrophy or other clinical symptoms and some appeared to have no apparent 

constriction placed on the aorta. In both AB(H) (n=7) and AB(Fail) (n=8) HW:BW ratio was 

significantly increased compared to control (n=13) (P<0.01, P<0.001 respectively),with the 

AB(Fail) HW:BW ratio over double of that of Sham (Figure 3-6). Heart weight normalised to 

tibia length (HW:Tibia) was also significantly increased in AB(H) and AB(Fail) compared to 

Sham(P<0.001) (Figure 3-6). Body weight measurements showed a significant correlation 

with tibia length (Pearson correlation coefficient P<0.05) with no difference between the 

Sham and AB groups. To be consistent across the heart failure models body weight was used 

to normalise further measurements.  For a small number of animals from the hypertrophy 

group, a method devised by MacDougall and Calaghan was employed to isolate single cells 

from the base, and prepare whole muscle samples from the apex, of the same heart 

(MacDougall and Calaghan, 2013). This meant that whole right ventricle (RV) and LV weight 

could not be obtained from these animals. There was a significant increase in the right 

ventricle to body weight (RV:BW) and left ventricle and septum to body weight (LV+S:BW) 

in the AB (Fail) group compared to Sham (P<0.001) (Figure 3-7). The AB(H) group showed 

no significant difference to the Sham or the AB (Fail) animals, indicating an in-between state 

between sham and failure. There was no difference in the LV to RV ratio for AB(H) or 

AB(Fail) compared with Sham suggesting a total heart hypertrophy instead of ventricle-

specific hypertrophy. Lung weight in the AB(Fail) group was significantly increased 

compared with both Sham and AB(H) indicated by a significant increase in lung weight to 

BW (Figure 3-7). Fluid around the lungs of the AB(Fail) animals was often observed 

resulting from high pressure within the pulmonary vasculature, suggesting pulmonary 

oedema was present. Liver weight to body weight ratio was significantly increased in AB 

(Fail) compared to Sham, which may be a result of fluid retention.  
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Figure 3-6 Post-mortem organ and body weight ratios 

A. Body weight (BW) and whole heart weight (HW) were recorded at the end point of each 

animal. Left tibia was dissected and measured using callipers. Data presented as dot plots ± 

SD (Sham n=10, AB(H) n=4, AB(Fail) n=8). One-way ANOVA comparison *P<0.05, **P<0.01, 

***P<0.001. B. Relationship between tibia length and body weight used to normalise organ 

weight (Sham n=14 R2=0.359, AB (H) n=7 R2=0.536, AB(Fail) n=8 R2= 0.286)  
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Figure 3-7 Post-mortem organ and body weight ratios 

Body weight (BW) and dissected organ weight was recorded at the end point for each 

animal. Whole heart weight (HW) was recorded before dissecting into atria, right ventricle 

(RV) and left ventricle and septum (LV+S) which was then further dissected into left 

ventricle (LV) and septum. Data presented as dot plots ± SD (Sham n=10, AB(H) n=4, 

AB(Fail) n=8). One-way ANOVA comparison *P<0.05, **P<0.01, ***P<0.001.    
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3.3.5. Fibrosis staining 

Longitudinal sections of the left ventricle were taken for picro-sirius red staining to assess 

fibrosis. Images were acquired using an upright light microscope, which did not 

differentiate between collagen type I and III, so these were measured together. When 

acquiring the images it was noted that there was an increased amount of fibrosis around the 

blood vessels in some of the samples which, when the samples were un-blinded, was 

revealed to be exclusively within the AB(Fail) samples (Figure 3-8). When analysing 

sections of tissue, images with blood vessels within the frame were excluded from analysis 

as equivalent size blood vessels were not found across all animals; if included this could 

create bias between animals. When fibrosis was quantified as a percentage per image there 

was a significant increase in percentage of fibrosis in the AB(Fail) group compared with 

both Sham and AB(H). AB(Fail) mean percentage fibrosis was increased two fold compared 

with the Sham group. AB(H) also showed a significant increase in fibrosis compared with 

the Sham group (Figure 3-8). Between 16 and 30 weeks post-surgery, time does not appear 

to have any effect on the percentage fibrosis in the Sham or AB(Fail) animals. However, 

within the same time period, there is a significant effect of time post-surgery on fibrosis in 

the AB(H) group. The linear relationship between mean fibrosis and weeks post-surgery 

significantly deviated from zero using a linear progression test within the AB(H) animals 

(Figure 3-9). This is unlikely to be due to age as the rats around 6 months are still classed 

as young in aging studies (Pacher et al., 2004), so is more likely to be the longer period of 

time with increased afterload on the heart or a delayed development of fibrosis due to a 

lesser constriction.   
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Figure 3-8 Representative images staining for fibrosis 

Longitudinal sections of the left ventricle were fixed in PFA before dehydrating and wax 

embedding. Sections 10 µm thick were then stained with picro-sirius red, top four images 

are representative sections from AB(Fail) (A,C) and Sham tissue (B,D). E.F representative 

images of the perivascular fibrosis. Scale bar 100 µM 

AB (Fail)                             Sham 

A B 

C D 

E F 
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Figure 3-9 Picro-sirius red collagen staining 

Sections of tissue were stained with Pico-sirius red to determine collagen content. At least 

10 images from each animal were used to produce an index of fibrosis. A. Averaged fibrosis 

percentage. Data presented at mean ± SD (Sham n=8, AB(H) n=5, AB(Fail) n=3). One-way 

ANOVA comparison *P<0.05, **P<0.01, ***P<0.001. B, Individual image analysis for each 

animal plotted against time post-surgery, with linear regression calculated for each group 

(Sham n=8, AB(H) n=5, AB(Fail) n=3)     
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3.4. Discussion 

These results collectively support the classification of animals in the AB(Fail) group being 

in end stage heart failure, showing many of the clinical signs  of cardiac dysfunction seen in 

human patients. As mentioned previously not all of the animals reached this stage of heart 

failure. Some animals showed no signs of aortic constriction, probably as a result of 

absorbed sutures  (Lygate, 2006) or slipping of the metal clip around the aorta. These were 

excluded from any analysis. Suture absorption has previously been reported in mice 

(Lygate, 2006) which result in the desired constriction not being applied. Those animals 

which did show an increase in heart weight to body weight ratio but still had an ejection 

fraction over 45% showed an intermediate stage of heart failure.  Many of the functional 

pressure and volume measurements in the AB(H) group showed no significant difference to 

Sham or AB(Fail). This would suggest these animals are in a compensatory phase with 

increased left ventricular wall thickness and increased left ventricular end systolic pressure 

but with a preserved ejection fraction and cardiac output.  Although the tissue from these 

animals cannot be grouped together with the failing tissue it may be interesting to analyse 

the differences within this transition phase. The end point of our study varied between 12 

weeks to 36 weeks post-surgery, which could be ascribed to the degree of clip constriction 

placed on the aorta and is an important factor to consider when looking at molecular aspects 

of the model. The model of aortic banding progressing from concentric to dilated heart 

failure has previously been studied using echocardiography (Litwin et al., 1995). In this 

study six weeks after aortic banding concentric left ventricular hypertrophy was reported 

using echocardiography to have an increase in LV mass.  Litwin et al.’s model progresses to 

a dilated diastolic and systolic dimension by 18 weeks after banding. The aortic constriction 

in our model is similar to that in the Litwin et al. model, which placed a tantalum clip of 0.58 

mm (internal diameter) around the aorta of 60 to70 g Wistar rats. This produced 

comparable measurements for the left ventricular internal dimensions which reports both 

systolic and diastolic dysfunction.  

3.4.1. Clinical translation 

The typical clinical presentations of heart failure in human patients such as fatigue and 

exercise intolerance, which is used in part to define the stage of heart failure by the New 

York Heart Association guidelines (Association, 1964), are not easily tested in animals. 

Other clinical presentations such as fluid on the lungs and ejection fraction instead must be 

used to relate the clinical presentations of small animal heart failure to humans. The aim of 
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developing this model was to examine molecular changes within the myocardium at the end 

stage of heart failure. Although the nature of the initial insult to the heart may vary, the end 

result of the heart being unable to pump a sufficient output to the body to meet its metabolic 

needs is the same. The importance of being able to relate small animal models of heart 

failure to human patients is sometimes overlooked. Houser et.al have produced a statement 

from the American Heart Association with guidelines for what should be observed in 

animals models of heart failure, including their uses and limitation (Houser et al., 2012). 

This is a useful reference point to check with human clinical studies as well as other animal 

models. With each different type of initial insult to the heart, such as dilated 

cardiomyopathy, there are recommendations of clinical observations that are critical to 

replicate in the model in animals (in this case, relative wall thinning and eccentric 

hypertrophy). It also highlights the complexities within the disease and lists possible 

comorbidities often seen in these patients, such as diabetes and metabolic syndrome. The 

statement also references detailed methods papers, such as using pressure-volume 

conductance catheter techniques in mice and rats, to help standardize the calibrations made 

and basic parameters measured (Pacher et al., 2008).  It is hoped that if more of these 

checkpoints were met that there would be a higher likelihood of clinical translation of the 

findings. 

The concept of pressure overload or hypertension transitioning from compensatory heart 

hypertrophy to heart failure is well documented in both animal models and human cases 

(Frohlich  et al., 1992; Dadson et al., 2016). The progression to heart failure normally begins 

with a preserved ejection fraction with increased ventricular pressure and wall thickness 

which then progresses towards dilation of the ventricle with increase end-diastolic and end-

systolic left ventricular blood volumes, like that seen in the AB(Fail) group. Houser et al. list 

changes which should be seen in hypertensive heart disease leading to failure including: 

increased LV mass, changes in LV geometry, myocardial fibrosis which eventually leads to 

systolic/diastolic dysfunction. Pressure overload is also a listed method used to replicate  

the dilated cardiomyopathy phenotype, but with more focus on change in ventricular 

geometry with reduced output and elevated filling pressures (Houser et al., 2012). 

Progression of the AB(Fail) group was monitored by echocardiography but there were not 

enough time points recorded to be able to say whether the animals in this group went 

through a concentric hypertrophic phase before entering a dilatory failure phase. Image 

quality and reproducibility across groups was also not sufficient to look at long axis 

measurements of the left ventricular chamber (Teichholz et al., 1976; Bellenger et al., 2000). 

When analysing the heart in the short axis M-mode, several assumptions are made about 
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the geometry of the heart which may not always be valid in the AB(Fail) group if there has 

been dilation and structural remodelling, which is often seen in heart failure. From 

echocardiography measurements, animals in the AB(H) group have decreased left 

interventricular diameter in both diastole and systole and increased left ventricular 

posterior wall thickness. The AB(Fail) group only have an increased internal diameter in 

systole. This suggests that there may be concentric hypertrophy in the AB(H) group and 

systolic dysfunction  and dilation in the AB(Fail) group 

Increased fibrosis is a characteristic of the remodelling heart in response to an increased 

pressure; this is initially a compensatory mechanism in an attempt to normalise wall stress, 

which progressively leads to ventricular stiffness and becomes de-compensatory. There are 

two main types of fibrosis: reactive fibrosis, which follows the vasculature and is initially 

perivascular and then extends into the interstitial space; or replacement fibrosis which 

occurs after myocyte necrosis (Segura et al., 2014). The extracellular matrix plays an 

important structural and connective role within the heart and one of the main components 

within this is fibrillar collagen, which makes up around 2-4% of the myocardium in a healthy 

human heart (Knoebel and Weber, 1989). The collagen network consists of mainly type I 

collagen which provides tensile strength and determines myocardial stiffness, and a smaller 

proportion of type III which contributes to elasticity. Changes in the extracellular matrix 

and increased collagen and fibrosis have previously been linked with increased left 

ventricular end-diastolic pressure and reduced ejection fraction (Villarreal et al., 1993). 

Increased collagen and fibrosis has been repeatedly reported in hypertensive heart disease 

patients both by post-mortem analysis and in vivo measurements (Tanaka et al., 1986; 

Dadson et al., 2016). Without access to a polarised microscope, it is impossible to assess the 

different percentage of collagen I and III, however the total percentage of collagen has 

increased in the AB(fail) animals, with an apparent increase in perivascular fibrosis noted. 

A number of different factors play a role in the relationship between collagen synthesis and 

degradation; upregulation of cytokines, for example can tip the balance towards increased 

synthesis (Díez, 2007). 

3.4.2. Study limitations 

The data collection across all the parameters used to characterise heart failure is not 

complete for all animals. Not all the animals have full weekly growth data, echocardiography 

measurements and/or in vivo haemodynamic measurements. A summary is given in table 

(Table 3-1 and Table 3-2). While the echo and in vivo measurements hold the most value 
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for classifying heart failure, organ weight and fibrosis measurement are also needed to 

support its clinical relevance. 

3.4.3. Final animal grouping 

The aortic banding of this group of animals has produced a wide range of time and 

progression to heart failure, which in some part may be due to slight variations in surgery. 

This adds a large amount of variability to the study with an increasing number of different 

factors which would then need to be considered, reducing the power of any findings which 

may occur. For this reason it was decided to select a smaller range of animals to further 

study the molecular aspects of heart failure. Six AB(Fail) animals from 19-26 weeks post 

banding with time matched Sham animals were chosen, highlighted in blue in Table 3-1 and 

Table 3-2  

 

3.5. Conclusion         

This model of transverse aortic banding has produced a group of animals with heart failure 

which has been characterised with a number of clinically relevant parameters. Ensuring 

that the model has clinical translation is important for interpretation of what is seen at the 

molecular level and its relevance to human patients. Having multiple measurements 

indicating that heart failure is present within each individual animal aids further molecular 

analysis. Heart failure is not a simple definition of heart dysfunction measured by one 

parameter but more a graded progression of dysfunction in multiple aspects of the 

myocardium and vasculature. Having the individual function/structural measurements can 

facilitate correlations with molecular findings. Six AB(Fail) animals were selected with six 

time matched Sham animals with equivalent functional measurements to study changes in 

protein expression.      
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Animal ID Surgery date End date Weeks post- surgery ECHO PV Fibrosis Organ W Weight G 

AB (3) 20/08/2013 14/11/2013 12      

AB (4) 01/08/2012 21/11/2012 16      

AB (6) 30/08/2012 18/12/2012 16      

AB (18) 29/08/2013 08/01/2014 19      

AB (13) 29/08/2013 14/01/2014 20      

AB (3) 12/07/2012 14/12/2012 22      

AB (2) 12/07/2012 17/12/2012 22      

AB (8) 22/08/2013 28/01/2014 23      

AB (2) 08/11/2012 02/05/2013 25      

 AB (3) 08/11/2012 07/05/2013 26      

AB (10) 14/11/2013 17/05/2013 26      

AB (2) 23/05/2012 26/11/2012 27      

AB (1) 23/05/2012 26/11/2012 27      

AB (2) 30/04/2013 17/10/2013 28      

AB (1) 17/10/2012 09/05/2013 29      

AB (2) 08/01/2013 15/07/2013 29      

AB (7) 22/08/2013 01/04/2014 32      

Table 3-1 Summary data of AB animal analysis
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Animal ID Surgery date End date Weeks post-surgery ECHO PV Fibrosis Organ W Weight G 

Sham(23) 20/08/2013 22/11/2013 13      

Sham(3) 01/08/2012 21/11/2012 16      

Sham(9) 30/08/2012 18/12/2012 16      

Sham(7) 30/08/2012 18/12/2012 16      

Sham(20) 30/08/2013 14/01/2014 20      

Sham(19) 30/08/2013 15/01/2014 20      

Sham(1) 20/08/2013 28/01/2014 23      

Sham(4) 08/11/2012 02/05/2013 25      

Sham(6) 08/11/2012 07/05/2013 26      

Sham(8) 14/11/2012 17/05/2013 26      

Sham(12) 14/11/2012 17/05/2013 26      

Sham(3) 23/05/2012 26/11/2012 27      

Sham(3) 17/10/2012 01/05/2013 28      

Sham(6) 22/08/2013 17/03/2014 30      

Sham(4) 12/03/2013 01/11/2013 32      

Table 3-2 Summary data of Sham animial analysis 



77 

 

4. Chapter 4. Changes in membrane protein expression and 

distribution in left ventricular heart failure 

4.1. Introduction:  

In heart failure, the initial insult to the heart can affect how the myocardium will respond 

and remodel; there may be different adaptive responses to different insults (Houser et al., 

2012). The model of heart failure used in this study has been characterised by in vivo 

function (echocardiography and pressure volume loops) and post-mortem (fibrosis staining 

and organ to body weight ratios) measurements (Chapter 3). This gives the opportunity to 

link possible protein expression changes within the myocardium to specific functional 

measurements made. The rat aortic banding model has previously been used to study 

changes in Ca2+ current, ion channel and SERCA expression as well as being used for 

therapeutic interventions (Feldman et al., 1993; Miyamoto et al., 2000), but to date there 

has been no investigation of changes to caveolar proteins in detail including possible 

changes in membrane location. 

Caveolin 3 (Cav 3) is considered to be the most highly expressed of the caveolar proteins in 

cardiac myocytes, and although prominently located within caveolae, is also found in non-

caveolar sarcolemma membrane (Calaghan and White, 2006; Calaghan et al., 2008). Using 

sucrose gradient fractionation the majority of Cav 3 expression is found within the buoyant 

fraction, with a smaller proportion found within the heavy fractions which contain non-raft 

membranes. Along with cavin 1, Cav 3 is a major component involved in the formation of 

caveolae within the cardiac myocyte. The cavin proteins cavin 1 and cavin 4 (the latter being 

muscle specific), are highly expressed within myocardium (Bastiani et al., 2009; Briand et 

al., 2011). Caveolin proteins have been linked to changes in cardiac function numerous 

times (Taniguchi et al., 2016; Ogata et al., 2014; Wright et al., 2014), but many aspects of the 

remodelling of caveolae and cavin proteins in heart failure remain unexplored.  

The response of the ventricular myocyte to sympathetic stimulation - positive inotropy and 

lusitropy - relies on effective signalling of the β-adrenergic receptors (β-AR) (Richardson et 

al., 1967; Reddy, 1976). The two main subtypes β1AR and β2AR are both located within the 

caveolar domain.  However, evidence from several groups suggest that only a small 

proportion of β1AR is located within the caveolae, while β2AR populations are mainly 

localised within caveolae  This difference in sarcolemmal distribution is suggested to play a 
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significant role in controlling downstream signalling (Head et al., 2005; MacDougall et al., 

2012). 

The response of the heart to an increased afterload, such as aortic banding, is to increase 

sympathetic stimulation to the heart to maintain cardiac output. When sympathetic 

stimulation becomes chronic the heart goes through a remodelling phase, which is initially 

compensatory but eventually becomes de-compensatory (Triposkiadis et al., 2009). Hearts 

from the failing aortic banded (AB (Fail)) animals have a significantly reduced ejection 

fraction and cardiac output. This suggests that these hearts have entered a de-

compensatory phase causing disruption to the protein composition and expression at the 

membrane.  It is predicted that there will be changes in protein expression and membrane 

organisation in a number of caveolar and β-AR signalling proteins in this model of heart 

failure. To test this hypothesis we measured caveolar and -AR signalling protein 

expression, as well as changes in these proteins location within the membrane with a view 

to linking these to the functional changes observed.   

 

4.2. Methods:  

At the designated end point AB and Sham animals were humanely culled using an 

appropriate listed Schedule 1 technique. The coronary circulation was then cleared using a 

cannula attached to a 1 mL syringe to perfuse the heart through the aorta with Tyrode 

solution prepared fresh on the day. Hearts were then weighed and right and left ventricles 

dissected and weighed. A 100 mg longitudinal strip of LV free wall was cut and placed in a 

labeled Eppendorf and snap-frozen in liquid nitrogen to be homogenised in Laemmlli 

sample buffer for the study of protein expression (as stated in Methods 2.8.1). For analysis 

of protein distribution in different membrane fractions, approximately 350 mg LV free wall 

was homogenised 6 x 20 s in detergent free buffer (500 mM Na2CO3 (pH 11), 1x protease 

(Roche Applied Science) and phosphatase (Thermo Scientific Pierce) inhibitor cocktails). 

Samples were then stored at -20 oC till samples were ready to be run on a discontinuous 

sucrose gradient.  

Sucrose gradient fractionation was performed as stated in Methods (Section 2.8.2). In brief, 

samples were sonicated and then centrifuged before layering on to a discontinuous sucrose 

gradient. Gradients were centrifuged overnight at 4 oC and fractions were then collected and 

frozen at -20 oC until required.  
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The protein concentration of fractioned samples and LV muscle homogenate was measured 

using a bicinchonincic acid (BCA) assay as stated in Methods 2.8.5.1. This enabled equal 

protein loading for protein analysis by SDS-page and Western blot (Section 2.8.5.2.)   

De-glycosylation experiments were performed on both muscle homogenates and 

fractionated samples as described in Methods section 2.8.4. PNG-ase F had not previously 

been used within the research group so a number of optimisation steps were also 

performed. To determine which conditions should be used to de-glycosylate the β2AR a non-

denaturing protocol was also tested which omitted the denaturing step and incubated 

sample and PNG-ase F for 20 h.  For denaturing conditions, samples (5-9 µL) were mixed 

with 1 µL denaturing buffer and denatured at 95 oC for 10 min. The volume of 10% NP-40 

was adjusted for each reaction to ensure the final concentration was equal to that of the SDS 

in solution.  As initial experiments could not replicate the shift in molecular weight bands 

seen in previous studies of the cardiac β2AR by Rybin et.al., an experiment was designed to 

replicate the conditions stated in (Rybin et al., 2003; Rybin et al., 2000). Freshly isolated 

ventricular cardiac myocytes were homogenised in cell buffer ((mM) 15 Tris-HCl (pH 7.5), 

60 NaCl, 1.25 EDTA and 1% SDS) as used in Rybin et al. The resulting homogenate was 

centrifuged at 16000g at 5 oC and supernatant removed (Rybin et al., 2000). AB and Sham 

samples homogenised in Laemlli sample buffer were also analysed in this test run, with 8 

µL of input sample being subjected to the PNG-ase F protocol (Section 2.8.4). Enzyme 

incubation time was extended to 2 h at 37 oC with the reaction being terminated by the 

addition of 5 x Laemlli sample including bromephenol blue and - mercaptoethanol to 

replicate conditions outlined. 

Phosphorylation of proteins was studied by the use of phos-tag gels as described in Methods 

(Section 2.8.5.3). Briefly, Phos-tagTM was added to the SDS-PAGE gel which slows the 

migration of phosphorylated proteins compared to non-phosphorylated proteins through 

the gel. This can be detected in Western blotting as additional bands when compared to 

normal gels. 
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4.3. Results 

4.3.1. Altered protein expression in left ventricular myocardium following 

aortic banding 

4.3.1.1. Caveolar proteins 

Western blotting of left ventricle myocardial homogenate from AB animals showed a 

significant reduction in Cav 1 expression compared to Sham animals (P<0.01). AB Cav 1 

protein expression was around 50% of that seen in the Sham animals. Cavin 1 protein 

expression was also significantly reduced in AB animals when compared with Sham 

(P<0.05) (Figure 4-1). There was no change in Cav 3 expression between the two groups. 

Cavin 4 expression on the other hand was significantly increased by almost 50% in the AB 

animals compared to Sham (P<0.05) (Figure 4-1). A strong positive correlation (R2=0.684) 

was observed between Cav 1 protein expression and ejection fraction, (the latter being one 

of the key measurements used to define cardiac function)(Figure 4-1). Protein expression 

of the other caveolar proteins were examined for links with functional measurements such 

as ejection fraction, heart weight (HW) to body weight (BW) and left ventricular (LV) weight 

to BW ratios but no significant correlations were revealed (Figure 4-2). 

4.3.1.2.  -adrenergic signalling proteins 

Cardiac 1AR expression in the AB animals was significantly reduced to and around half that 

measured in the Sham animals (P<0.05) (Figure 4-3). The 2AR expression showed no 

significant difference between groups, although there was a wide range in expression levels 

among banded animals. This was, in part, due to a slightly higher molecular weight band 

(Figure 4-3); the reason for this higher molecular weight band is addressed later in the 

chapter. There was a ~50% reduction in AC 5/6 expression in the AB left ventricle as 

compared with Sham (P<0.05). G-protein receptor kinase 2 (GRK2) expression in the left 

ventricle of the AB animals was significantly increased compared with the sham animals 

(P<0.05) (Figure 4-3). There was no difference in the expression levels of eNOS or Gαi3 

between the AB and Sham animals (Figure 4-3). Two AB animals showed higher expression 

levels of Gαi3 although there appeared to be no obvious link to supressed cardiac function, 

as measured by ejection fraction, or correlation with 2AR expression.  
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Figure 4-1 Caveolar protein changes in left ventricular heart failure. 

A. Western blot of left ventricular muscle homogenised in Laemmli sample buffer, signal 

normalised to GAPDH and expressed as a percentage of mean Sham value, box and whisker 

graph. Sham n=6, AB n-6, Student t-test, *P<0.05, **P<0.01. B.  Representative Western blot. 

C. Cav 1 protein expression plotted against ejection fraction (EF) recorded from 

haemodynamic measurements.   
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Figure 4-2 Caveolar protein correlated with heart measurements 

A Cavin 1 protein expression plotted heart weight to body weight (HW:BW) ratios.  B.  Cav 

3 protein expression plotted against ejection fraction (EF) recorded from haemodynamic 

measurements C. Cavin 4 protein expression plotted against left ventricular and septum 

(LV+S) weight normalised to body weight (BW).  
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Figure 4-3 β-adrenergic (β-AR) signalling protein changes in left ventricular heart 

failure 

A. Western blot of left ventricular muscle homogenised in Laemmli sample buffer, signal 

normalised to GAPDH and expressed as a percentage of mean Sham value, box and whisker 

graph. Sham n=6, AB n-6, Student t-test, *P<0.05, **P<0.01. B.  Representative Western blot.  
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Figure 4-4 Correlation of βAR signalling proteins and ejection fraction 

A. G-protein receptor kinase (GRK2) protein expression normalised to GAPDH plotted 

against ejection fraction (EF), R2=0.566, (Persons correlation P<0.01). B. β1AR protein 

expression normalised to GAPDH plotted against EF, R2=0.412 C. Adenylyl cyclase (AC 5/6) 

protein expression normalised to GAPDH plotted against EF, R2=0.281 
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Figure 4-5 β2-adrenergic (β2AR) double band analysis 

A. Western blot of left ventricular muscle homogenised in Laemmli sample buffer, signal 

normalised to GAPDH, box and whisker graph of band at 50 kDa only, and with the addition 

of the upper band. Sham n=6, AB n-6, Student t-test, *P<0.05, **P<0.01. B.  Representative 

Western blot. 
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4.3.2. Altered protein membrane distribution following aortic banding 

4.3.2.1. Caveolar proteins 

Fractions are collected starting at the top of the sucrose gradient (5% sucrose) with fraction 

1. Fraction 4 and 5, which sit at the boundary of the 5% and 35% sucrose, are the 

buoyant/caveolar containing fractions and fractions 9-12 are the heavy fractions which 

represent non-raft sarcolemma and cytosolic proteins (Wypijewski et al., 2015). Around 50-

60% of total Cav 3 expression was located within the caveolar fractions, with a smaller 

percentage (20-30%) found within the heavy fraction (Figure 4-6), which is similar to 

previous results (Calaghan et al., 2008). There was no difference between the Sham and AB 

animals in Cav 3 distribution and no correlation between Cav 3 distributions and function, 

as measured by ejection fraction or time post-surgery (Figure 4-6).  Cav 1 was found solely 

within the caveolar fractions for both AB and Sham animals (Figure 4-6).  It was noted that 

the banding pattern for cavin 1 and cavin 4 was altered in fractionated samples compared 

with muscle homogenate samples. In myocardial homogenate a clear band was seen just 

above 50 kDa, whereas in the fractionated samples bands around 37 kDa and below were 

present (Figure 4-7). The predicted molecular weight for cavin 1 is 43 kDa, but it routinely 

runs at a higher molecular weight due to multiple post-translational modifications including 

phosphorylation and ubiquitination (Liu and Pilch, 2016). These lower bands could be the 

de-ubiquitinated form of the protein. Further experiments using a control peptide identical 

to the original immunizing peptide would determine whether the observed bands were 

truly cavin 1 or the result of non-specific antibody binding to a different protein. Given that 

such a peptide was not available at the time, the identity of the bands could not be 

confirmed. Cavin 4 has previously been shown to run at 43 kDa (Bastiani et al., 2009) which 

is lower than what is seen in the whole LV muscle homogenate (Figure 4-1). Due to 

uncertainty of banding pattern seen results were not analysed. Phos-tag gels were used to 

look at the phosphorylation state of cavin 1 in Sham and AB LV muscle homogenate. This 

revealed multiple bands (Figure 4-7). There was no difference between the AB and Sham 

groups in these phosphorylated bands, although analysis was slightly impaired by the 

intensity of the 50 kDa band. 
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Figure 4-6 Caveolar protein membrane distribution changes in left ventricular heart 

failure  

A. Western blot of left ventricular muscle homogenised in Na2CO3 buffer run on a sucrose 

gradient. Equal volumes of each fraction 4-8,(9-12) were loaded with equal total protein 

loading between AB and aged matched Sham. Protein expression in fractions expressed as 

a percentage of total expression from all fractions (4-12) box and whisker graph. Sham n=9, 

AB n-9, B.  Representative Western blot.  C. Percentage of Cav 3 expression located within 

the buoyant fractions plotted against ejection fraction (EF) 
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Figure 4-7 Caveolar protein membrane distribution and phosphorolation 

A. Western blot of left ventricular muscle homogenised in Na2CO3 buffer run on a sucrose 

gradient. Equal volume of each fraction 4-8 +(9-12) were loaded with equal total protein 

loading between AB and aged matched Sham. Sham n=9, AB n-9, B. Representative Western 

blot of left ventricular muscle homogenate in Laemmli sample buffer with control and phos-

tag gel.    
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4.3.2.2. -adrenergic signalling proteins 

Previous studies have observed that 1AR can localise within the caveolar membrane or on 

the non-caveolar sarcolemma (Rybin et al., 2000). The predicted molecular weight of 1AR 

is 51 kDa however when blotting for 1AR there was often only a very faint band (or no 

band) around 50 kDa which made analysis of 1AR distribution too variable to give 

meaningful results. The predicted molecular weight for the 2AR is 46 kDa and 2AR 

membrane distribution showed a clear band at 50 kDa in the caveolar fractions and in the 

heavy fractions. There was also a higher molecular weight band, which was apparent at high 

exposures in the LV homogenate sample, which only appeared in the caveolar fractions 

(Figure 4-8). This caused a significant increase in buoyant fraction to heavy fraction ratio in 

the AB animals compared to the Sham (P<0.05) (Figure 4-8). This higher molecular weight 

band was calculated to be around 63 kDa with the lower molecular weight band calculated 

at 55 kD, making an 8 kDa shift between the bands (Figure 4-9). This higher band was 

confirmed as 2AR receptor with the use of a specific blocking peptide (Figure 4-9). 

4.3.2.3. Additional β2AR band 

The molecular weight shift in the β2AR in the buoyant fractions was thought to be too large 

to be caused by a phosphorylation. The 2AR has previously been shown to have N-linked 

glycosylation which promote targeting to the caveolae and affect the receptor’s binding to 

Gαi3 (Rybin et al., 2003). The additional sugar moiety from glycosylation could explain this 

size shift. To test to see if the band at 63 kDa could be a glycosylated version of β2AR, PNG-

ase F was used on samples from fraction 4 and 5 to cleave the N-linked glycosylation. This 

should result in a single band analysed with Western blotting. After a number of attempts 

using the PNG-ase F on the fractionated samples, with no change seen in the molecular 

weight of the bands (Figure 4-9), and consulting the product manufacturers about the salt 

and sucrose concentrations which may affect the reactivity of the PNG-ase F enzyme, it was 

decided to run an experiment and replicate the conditions from the original paper which 

reported glycosylation of the cardiac β2AR (Rybin et al., 2003).  
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Figure 4-8 β2AR protein membrane distribution changes in left ventricular heart 

failure 

A. Western blot of left ventricular muscle homogenised in Na2CO3 buffer run on a sucrose 

gradient. Equal volume of each fraction 4-8 + (9-12) were loaded with equal total protein 

loading between AB and aged matched Sham. Protein expression in fractions expressed as 

a percentage of total expression from all fractions (4-12) box and whisker graph. Sham n=9, 

AB n-9, B. Representative Western blot. C. Buoyant fraction (fraction 4+5) (BF) to heavy 

fraction (fractions 9-12) (HvF) ratio, percentage of totally expression in sample, Sham n=9, 

AB n=9, student t-test ***P<0.01. 
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Figure 4-9 β2AR higher molecular weight band calculations 

A. Western blot of left ventricular muscle homogenised in Na2CO3 buffer run on a sucrose 

gradient with and without the pre-incubation of primary antibody with antibody peptide to 

test for specific banding, B. Molecular weight of higher band was calculated by plotting the 

molecular weight marker and calculating the exponential line, this was then used to 

calculate the predicted weight from the migration distance of the lower and higher bands. 

C. Example of PNG-ase F experiment testing different conditions and controls on sample 

from fraction 5 in Na2CO3 AB (Fail) animals. Sample buffer (SB), glycosylation buffer (glycol 

buffer) 
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Figure 4-10 De-glycosylation by PNG-ase F. 

A ~20 µg samples of Sham (Sh), aortic banded (AB (Fail)) homogenised left ventricle and 

homogenised cells (C) were incubated for 2 h with PNG-ase-F or equivalent volume of 50% 

glycerol in dH2O before Western blot for 2AR. B. Identical samples run on a separate 

Western blot with and without pre-incubation of 2AR primary antibody with peptide. C. 

Membrane A was stripped and re-probed for AC to ensure enzyme was active.  
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LV muscle which had been homogenised in Laemmli sample buffer was used in the test run 

as this contained a lower salt and sucrose content, and had previously been seen to contain 

the 63 kDa band. Of note, Rybin et al. 2003 also characterised the difference between 

isolated adult cardiac myocyte samples and whole ventricular homogenate in rat. The 

experimental run to replicate Rybin et al. 2003 included freshly isolated cardiac myocytes 

which were homogenized in cell buffer, on the day of the experiment (Figure 4-10). To 

ensure that all of the bands were correctly identified as β2AR, samples were tested with the 

epitope blocking peptide provided with the antibody (Figure 4-10). The addition of PNG-

ase F caused no change in the molecular weight in any of the bands. The molecular weight 

of the band seen in the isolated cardiac myocytes sample was identical to that in the LV 

homogenate; this differs from what was previously seen in isolated adult cardiac myocytes, 

which ran at a lower molecular weight. Rybin et al. had previously looked at the 

glycosylation of other proteins within cardiac myocytes using PNG-ase F (Rybin et al., 2000). 

In this earlier paper, AC 5/6 was shown to migrate at a higher than predicted molecular 

weight due to N-linked glycosylation which, after PNG-ase F treatment, shifts to a molecular 

weight around 120 kDa. The PVDF membrane in Figure 4-10.A. was washed in Western 

blotting stripping buffer, to remove primary and secondary antibodies, and re-probed with 

a AC 5/6 antibody to test if the enzyme was working in the set conditions used to produce 

a similar result to the Rybin et.al (2000). With the addition of PNG-ase F there was a shift in 

molecular weight of the band for Sham and AB LV homogenate samples, as well as the 

isolated cardiac myocytes sample, suggesting that the enzyme was working in the 

conditions used. From this it was concluded that the 63 kDa band observed was not caused 

by an N-linked glycosylation of β2AR. 

4.3.3. Correlations in protein expression 

 A correlation between Cav 1 protein expression and function was noted earlier in the 

chapter (Figure 4-1.). Cav 1 was seen to be solely located within the caveolar fractions; this 

is where the increase in β2AR expression was seen. When comparing myocardial Cav 1 

expression with β2AR expression in the buoyant fractions there was a significant negative 

correlation (R2=0.682)(Pearson’s P<0.05) (Figure 4-11). When comparing the percentage 

of β2AR expression within the buoyant fraction with function (ejection fraction) there is a 

slight negative correlation (R2=0.595)(Pearson’s P<0.05) (Figure 4-11).  
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Figure 4-11 Correlation data. 

A. Cav 1 protein expression normalised to GAPDH plotted against percentage of 2AR total 

expression located in the buoyant fraction, R2=0.682, P<0.05 B. Percentage of 2AR total 

expression located in the buoyant fraction against ejection fraction (EF) as recorded from 

haemodynamic experiments R2=0.588, P<0.05 
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4.4.  Discussion:  

One of the advantages of the aortic banding model is the detailed collection of functional 

data which can be linked with protein expression in LV homogenate as well as distribution 

of membrane proteins. Ventricular remodelling should also be consistent throughout the 

ventricle due to the effect of pressure overload on the whole chamber, unlike the more 

regional variations in remodelling seen with myocardial infarction models. Aortic banding 

in rat is an established model of heart failure and has been successfully employed numerous 

times to examine a multitude of cardiac parameter, from global function to protein and 

mRNA expression (Pacher et al., 2004; Feldman et al., 1993; Tsutsui et al., 1993).  

A handful of studies to date have examined the impact of pressure-overload on the β-AR and 

other components of caveolae. Kikuchi et al. measured an increase in Cav 3 protein 

expression in a model of pressure overload in rat (Kikuchi et al., 2005). In this paper animals 

were banded for 28 days before blood pressure measurements were taken from the right 

carotid artery. The carotid artery hemodynamic measurements along with the LV to body 

weight ratios in Kikuchi et al. are more comparable to the AB (H) within this study than the 

AB(Fail) group. In the present study, LV to bodyweight ratio in the AB(Fail) group is double 

that of Sham, compared to the 27% increase reported by Kikuchi et al. In some initial 

Western blots performed on a small group of Sham and AB without reduced EF, animals Cav 

3 protein expression in myocardium was increased (data not shown): this may be an initial 

compensatory mechanism in response to elevated afterload on the heart. A canine pressure 

overload model produced a reduction in β-AR receptor number as well as reduced 

responsiveness to stimulation (Vatner et al., 1984). Isolated cardiac myocytes from 

hypertrophied hearts induced by aortic banding in rat show a reduced sarcoplasmic 

reticulum Ca2+ ATPase (SERCA2a) activity as well as an impaired response to stimulation 

by isoprenaline (Miyamoto et al., 2000). Some of the remodelling responses of the heart to 

pressure overload have been shown to be reversible with SERCA therapy and unloading of 

the heart in animal models (Dadson et al., 2016; Miyamoto et al., 2000). Although these 

treatments were applied after a relatively short period of time it does show that the 

myocardium may hold some reverse re-remodelling potential. Reverse re-modelling of 

protein and gene expression has been reported in heart failure patients fitted with left 

ventricular assisted devices (LVAD) which helps to unload the heart in a bridge to 

transplantation (Uray et al., 2003; Heerdt et al., 2000; Uray et al., 2002). 
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4.4.1. Caveolin 3 

One of the surprising findings from experiments using this model of heart failure was the 

lack of effect on Cav 3, protein expression (left ventricular muscle homogenates) and 

distribution across the membrane (from sucrose gradient fractionation). Cav 3 has been the 

focus of many studies linking change in Cav3/caveolae with cardiac function (Wright et al., 

2014; Woodman et al., 2002; Feiner et al., 2011). In mice cardiac specific Cav-3 over 

expression is cardio protective and attenuates cardiac hypertrophy (Horikawa et al., 2011; 

Markandeya et al., 2015) as well as mimicking ischemic preconditioning (Tsutsumi et al., 

2008). On the other hand, deletion of the Cav 3 gene in the heart results in loss of cardiac 

caveolae, hypertrophic dilation and reduced fractional shortening (Woodman et al., 2002). 

Wright et al. have used adenoviral transfection with a mutant Cav 3, which lacks three 

nucleotides within the caveolin scaffolding domain (CSD) and acts in a dominant negative 

fashion (preventing effective binding to CSD), to disrupt the regulatory control of Cav 3 on 

β2AR signaling. This has a similar impact to that observed in the myocardial infarction 

model of heart failure. This phenotype in heart failure was rescued when Cav 3 was over 

expressed (Wright et al., 2014). The conclusion that this is only due to Cav 3 however is 

based on; the assumptions that there are no caveolae within the t-tubules; that Cav 3 has a 

direct regulatory action on β2AR; and that functional changes are not achieved through 

other proteins within the micro domain the caveolae creates. The Cav dominant negative 

used in this study resulted in a significant decrease in caveolae as seen by electron 

microscopy (Wright et al., 2014).   

There are many key contractile proteins which are found to co-localise with Cav 3 in 

caveolae including a sub-population of L-type Ca2+ channels. L-type Ca2+ channels (LTCC) are 

responsible for triggering Ca2+ induced Ca2+ release and the majority are involved in EC 

coupling (Bers, 2002). Cav 3 plays a crucial role in regulating the phosphorylation of L-type 

Ca2+ channel within the t-tubules (Bryant et al., 2014). This was determined by disrupting 

the Cav 3 scaffolding domain with a trans-activating transcriptional activator sequence 

(TAT)-tagged peptide (C3SD) (MacDougall et al., 2012), which resulted in a decrease in 

staining intensity of a phospho-specific LTCC antibody within the transverse striations 

(Bryant et al., 2014). The A-kinase anchoring protein 5 (AKAP5) aid in targeting AC, PKA 

and a sub-population of LTCC to Cav 3 complexes in the membrane (Hall et al., 2007). In a 

AKAP5 KO mouse model, only the subpopulation of LTCC bound with Cav 3 is found to be 

phosphorylated by PKA via sympathetic stimulation (Nichols et al., 2010). The presence of 

Cav 3 within the dyad however is contested when imaging cardiac myocytes using super 
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resolution microscopy. Although the presence of Cav 3 staining in immunocytochemistry of 

cardiac myocytes within the t-tubules and co-localised with the RYR2 is high, Cav 3 is 

thought to be excluded from the majority of RYR2 junctions, suggesting exclusion from the 

dyad (Jayasinghe et al., 2009; Wong et al., 2013). This sub-population of LTCC which is 

presents in the Cav 3 complexes has shown not to be involved in EC coupling in feline 

cardiac myocytes (Makarewich et al., 2012). Instead this sub-population is suggested to 

modulate the size of the cardiac myocyte (Makarewich et al., 2012).  

4.4.2. Caveolin 1 

Published studies often conclude that Cav 3 is the only important caveolar protein in cardiac 

myocytes and that Cav 1 does not exist in these cells (Taniguchi et al., 2016; Wunderlich et 

al., 2006). Many studies of KO Cav 1 mouse models which see cardiac re-modelling and 

reduced cardiac function completely rule out any possible change to the cardiac myocytes 

and explain the cardiac remodelling entirely through other cells located within the heart 

(Zhao et al., 2002; Murata et al., 2007). The presence of Cav 1 in cardiac myocytes is 

discussed in a Chapter 7.  

Caveolin 1 has been demonstrated to be expressed in cardiac myocytes from different 

species including humans (Hagiwara et al., 2002; Yang et al., 2010; Robenek et al., 2008; 

Wunderlich et al., 2008; Kozera et al., 2009), although its presence in the cardiac cell is not 

universally accepted (Chapter 7). Despite knock-out (KO) of Cav 1 not affecting the 

formation of caveolae in the cardiac myocytes this does not rule out any other functional 

roles it may have within the cell. Uray et al. found a significant increase in both protein and 

mRNA levels of Cav 1 in human ventricular tissue after LVAD insertion with no change in 

Cav 3 protein levels (but an increase in mRNA), when compared to tissue samples from 

before fitting of the device (Uray et al., 2003). The role of Cav 1 within the cardiac myocyte 

has been somewhat overlooked so far. In the model of heart failure used in the current study 

there was a correlation between Cav 1 protein expression and cardiac function as measured 

by ejection fraction. More recently, there has been some interest in Cav 1’s functional role 

within the cell (Bai et al., 2016) – see Chapter 7. 

4.4.3. Cavins 

In the last 5 years, the cavin proteins have been discovered to play an important role in 

caveolae formation and function within the cardiac myocyte (Briand et al., 2011). KO of 

cavin 1 reduced the number of caveolae in cardiac myocytes (Liu and Pilch, 2008). Increased 
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cavin 4 expression in the heart has been linked with increased hypertrophy (Ogata et al., 

2014). Overexpression of the coiled-coil domain in cavin 4, by plasmid transfection, in the 

heart also increased interstitial fibrosis (Naito et al., 2015). Cavin 4 protein expression in 

this model of heart failure is significantly increased compared to Sham animals in 

association with a significant increase in LV+S:BW ratio and fibrosis within the 

myocardium. Unfortunately there were not enough measurements of fibrosis to match 

these directly with cavin 4 expression in individual animals to see if there is link between 

the two. No correlation was seen between cavin 4 expression and LV:BW or HW:BW. 

Dissected organ ratios cannot be directly used as an indication of fibrosis, as there also 

appeared to be an increase in cell size, most likely from cellular hypertrophy (Korecky and 

Rakusan, 1978). A more recent study has linked a KO of the cavin 1 gene with an increase in 

fibrosis in cardiac tissue (Taniguchi et al., 2016). However, in the present study there was 

no obvious correlation between cavin 1 protein expression and fibrosis measurements 

collected. It was not possible to measure the distribution of the cavin proteins within the 

membrane due to multiple banding patterns which may be explained by cavin protein 

degradation within the samples. These samples were collected over a period of over a year, 

and stored in Na2CO3 at -20 oC during this time. Even with protease and phosphatase 

inhibitors this may not prevent de-ubiquitination of proteins. The storage solution was 

detergent free, due to the nature of the sucrose gradient fractionation experiment, meaning 

that break down of tissue is reliant upon the homogenisation which may not effectively 

expose all the cellular content to protease and phosphatase inhibitors.     

4.4.4. β-AR changes in heart failure 

Hearts from the aortic banded animals in this study, in general, showed a decrease in 

protein expression of β-AR signalling components promoting cAMP signalling and an 

increase in the inhibitory components. Although β2AR protein expression in LV myocardium 

did not change, the 2AR membrane distribution changed, with an increase in expression in 

buoyant fractions due to the presence a higher molecular weight band. In heart failure, 

reduction in 1AR protein expression as well as mRNA expression is routinely observed 

which is linked to a decrease in -AR responsiveness (Hata et al., 2004; Engelhardt et al., 

1996). The reduction in β1AR is routinely seen in rat models of heart failure and is linked 

with a blunted response to β-AR stimulation (Gorelik et al., 2013; Zhu et al., 2003; Houser 

et al., 2012). GRK2 is activated by β-AR signalling and phosphorylates the activated -AR 

targeting the receptor for internalisation. An increase in GRK2 protein and mRNA has been 

linked with a reduced 1AR expression and reduced cardiac function in human heart failure 
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(Freedman et al., 1995; Ungerer et al., 1993b). In the present study there is a significant 

increase in GRK2 protein expression in AB animals which is correlated with a reduction in 

function. This would promote binding of -arrestin and uncoupling of the -AR from 

cognate G-protein subunits. AC 5/6, are key signalling proteins in the -AR signalling 

pathway which are often reported to be down regulated and uncoupled from the -AR in 

heart failure (Marzo et al., 1991; Bristow et al., 1989). In the present model of heart failure 

there is a decrease in protein expression of AC, again this would be expected to contribute 

to reduced -AR intracellular signalling. 

While 1AR is commonly seen to be reduced in the failing heart, there is often no change in 

protein expression of the 2AR subtype which causes a shift in the 1AR:2AR ratio 

(Steinfath et al., 1992). A reduction in total cardiac 1AR protein expression is recorded in 

the banded animals in this study, with no change in 2AR expression. This decreases the 

1AR:2AR. β2AR differs to β1AR in its ability to couple both Gαs or Gαi enabling stimulation 

or inhibition of AC production of cAMP (Xiao, 2001). The downstream cAMP production of 

β2AR differs from that of the β1AR which produces a more global response, due to several 

mechanisms including Gαi coupling, and regulation through phosphodiesterases (PDEs) 

(Isidori et al., 2015). This in part has been shown to be caused by regulation through 

caveolae (MacDougall et al., 2012). When cholesterol was depleted by methyl-β-

cyclodextrin (MBCD) in isolated cardiac myocytes, which disrupts caveolae, there was an 

increase in fractional shortening and Ca2+ transient amplitude in response to β2AR 

stimulation (Haque et al., 2016; MacDougall et al., 2012).  

Studies aimed at clarifying the effects of induced heart failure on cardiac  AR signalling   

tend to agree on findings relating to 1AR but disagree in relation to 2AR (Zhu et al., 2012; 

Nikolaev et al., 2010). Experiments in failing rat cardiac myocytes which used FRET-based 

biosensors to image cAMP signalling demonstrate a reduction to selective 1AR signalling 

while 2AR signalling increased (Nikolaev et al., 2010; Gorelik et al., 2013). By contrast in 

failing mouse cardiac myocytes, the contractile response to β2AR stimulation was reduced, 

which was in part due to a Gαs to Gαi switch mediated by GRK2 (Zhu et al., 2012). The 

location of the 2AR is also contested; at a membrane level, some results from sucrose 

gradient fractionations show the 2AR solely within the caveolae containing fractions 

(Rybin et al., 2000; Xiang et al., 2002) while others show it distributed throughout the 

membrane (MacDougall et al., 2012; Head et al., 2006). At a cellular level there are also 

conflicting results as to whether the 2AR is located and active only within the t-tubule 
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membranes (Nikolaev et al., 2010) or whether there is a cell surface component too (Wright 

et al., 2014). The disparity in results may, however, highlight the dynamic and complex 

signalling of the 2AR. Different approaches to studying function divergent methods of 

preparing cardiac myocytes may also contribute.  

4.4.4.1. Higher molecular weight band 2AR 

In Western blotting of myocardial homogenates and fractionated samples an additional 

higher molecular weight band for β2AR was observed. This higher molecular weight band 

appeared at around 63 kDa, was found only within the caveolar fractions and is most likely 

to be a post translational modification. This was not an N-link glycosylation, as it is not 

sensitive to PNG-ase F. This result contradicts what has previously been reported of the 

β2AR in adult ventricular myocardium (Rybin et al., 2003). Rybin et al. proposed that all 

β2ARs are glycosylated in the ventricles which aids in migration of the receptor to the 

caveolar membrane. PNGase-F was used to test for N-linked glycosylations in both these 

experiments, with the main difference between these two experiments being the β2AR 

antibody used. Rybin et al. use a commercially available antibody sourced from Santa Cruz 

which targets a 20-30 amino acid region close to the C terminus. The antibody used in the 

present study was from Alomone and targets N-terminal amino acids 14-30 (Figure 4-12). 

There are two N-linked glycosylation sites in the β2AR, N6 and N15, with a third glycosylation 

site in humans 187EL2 (Selvam et al., 2012). The second amino acid recognition site of the 

Alomone antibody cross over the N15 site; this should not have an effect on protein 

recognition as the proteins are de-natured and tertiary structures removed before addition 

of PNG-ase F, but it may cause recognition issues. Another point of interest is the difference 

between the molecular weight of the band in isolated cardiac myocytes and homogenised 

ventricular myocardium. In this study there is no difference in molecular weight, compared 

to the Rybin et al. study where the molecular weight of β2AR in isolated cardiac myocytes is 

lower, which is reasoned to be due to the cleavage of the N-linked glycosylation site (Rybin 

et al., 2003). One explanation could be that the Alomone antibody does not recognise the 

glycosylated form of β2AR, although this would then suggest a large amount of β2AR is un-

glycosylated within the membrane. This however does highlight the issues with studying 

these complex and dynamic GPCR within the heart. If antibodies supplied do not recognise 

the correct protein, or all possible version of the protein then a false positive result could 

be obtained.    
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Figure 4-12 PNG-ase F action and β2AR amino acid protein sequence 

A. Figure modified from BioLabs® PNGase F description, arrow demonstrates where the 

sugar molecule is cleaved from its N-link to the target protein B FASTA protein sequence 

taken from PUBMed of Rattacus β2-ardernergic receptor (β2AR). The two “N” underlined are 

the residues where N-linked glycosylation occurs, highlighted in blue is the target epitope 

sequence for the Alomone antibody, highlighted in orange is the range of amino acids in 

which a 20-30 epitope is targeted (SantaCruz does not give specific target sequences)  

 
  

RAT – β2AR – protein FASTA 

MEPHG N D SDFLLAP N G SRAPGHDITQERDEAWVVGMAILMSVIVLAIVFGNVLVITA

IAKFERLQTVTNYFITSLACADLVMGLAVVPFGASHILMKMWNFGNFWCEFWTSIDVLCVTA
SIETLCVIAVDRYVAITSPFKYQSLLTKNKARVVILMVWIVSGLTSFLPIQMHWYRATHKQAIDC
YAKETCCDFFTNQAYAIASSIVSFYVPLVVMVFVYSRVFQVAKRQLQKIDKSEGRFHAQNLSQ
VEQDGRSGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIRANLIPKEVYILLNW
LGYVNSAFNPLIYCRSPDFRIAFQELLCLRRSSSKTYGNGYSSNSNGRTDYTGEQSAYQLGQEK
ENELLCEEAPGMEGFVNCQGTVPSLSIDSQGRNCNTNDSPL  

A 

B 
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The higher molecular weight band in this study was only seen in the buoyant fractions, so 

is only found within caveolae (or other lipid rafts). This band was also predominantly within 

the banded animals, which may suggest a switch in function. The percentage of total β2AR 

expression located in the caveolar fractions, when plotted against the Cav 1, shows a 

negative correlation; this might suggest a regulatory control of Cav 1 with recruitment of 

β2AR to the caveolae. There was also a slight negative correlation of the percentage of β2AR 

total expression located within the caveolae fractions and function, as measured by ejection 

fraction.  

4.5.  Limitations  

There are many different approaches to studying molecular changes in cardiac myocytes, 

with each possessing advantages and disadvantages. Studying changes in protein 

expression and distribution offers a snap-shot of the molecular mechanisms and can suggest 

links to changes that may be occurring, even if myocyte contraction and [Ca2+]i cannot be 

studied. High resolution imaging gives an idea of 3-D structure and architecture of fixed cells 

and enables visualisation of possible intersections. Using live intact cells to test function 

through techniques such as patch clamping can give a detailed knowledge of the cells’ 

functional capacity. One of the difficulties in studying the caveolae and β-ARs is the dynamic 

nature of these proteins which can show rapid change in sarcolemmal location in response 

to a stimulus (Wypijewski et al., 2015). Differences may arise in cellular and tissue 

processing due to stress on animals/tissue or mechanical handling.  

 

4.6. Conclusion 

The results from this animal model provide an insight into possible links between heart 

failure and caveolar protein localisation and function, adding to the growing wealth of 

information in this area of research. Reduction in Cav 1 and cavin 1 protein expression 

suggest possible disruption to caveolar organisation within the heart, which coupled with 

the Cav 1 correlation with function may induce negative functional effects on the heart. The 

changes in β2AR membrane location and the addition of a post-translational modification 

may indicate a change in signalling of the β2AR which is again seen to be linked with a 

deterioration in cardiac function.   
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5. Chapter 5.  β-adrenergic responses in right ventricular heart 

failure 

 

5.1. Introduction:  

Right ventricular (RV) heart failure is the leading cause of death in patients with pulmonary 

artery hypertension (PAH). PAH causes an increased afterload on the RV resulting in 

hypertrophy of the ventricle, which eventually develops into RV failure. The prognosis for 

PAH patients is poor, with one third of patients dying within the first three years of 

diagnosis (Humbert et al., 2010). Current treatment strategies for PAH target the 

remodelling in the pulmonary vasculature and the increased pressure in the pulmonary 

arteries. No treatments are directly targeted at improving the failing RV (Gurtu and 

Michelakis, 2015).  

β-adrenergic desensitisation is common in both RV (Bristow et al., 1992) and LV (Ungerer 

et al., 1993b) heart failure, secondary to an increase in sympathetic drive, and is 

characterised by decreased β1AR expression and receptor uncoupling (Bristow et al., 1982). 

Increased sympathetic drive is a compensatory response to increase cardiac output and is 

essential in periods of increased metabolic demand. However chronic sympathetic 

stimulation leads to maladaptive changes in the myocardium. β-blockers are routinely 

prescribed to treat LV failure and have been shown to improve the β-AR functional response 

and receptor coupling, however the use of β-blockers in PAH leading to RV failure is 

controversial. When faced with increased afterload, the RV does not have the same ability 

to increase force as the LV (MacNee, 1994). Heart rate is suggested to play a vital role in 

maintaining sufficient RV cardiac output, so the possible negative chronotropic actions of β-

blockers may not to be well tolerated. Contrary to this, there are emerging studies (de Man 

et al., 2012; Bogaard et al., 2010) which support the benefits of treating animal models of 

PAH with β-blockers, but none have yet looked at the direct effect on the β-ARs.  

Monocrotaline (MCT) induced PAH and RV failure is a well-established model within the 

research group (Stones et al., 2013; Benoist et al., 2011; Benoist et al., 2012; Fowler et al., 

2015). Treatment with the selective β1AR antagonist metoprolol has previously been shown 

to significantly improve the median survival of MCT animals from day 23 (post MCT 

injection) to day 31 (P<0.05) (Fowler and 2016). MCT induced PAH closely mimics the 

cardiovascular remodelling observed in PAH human patients, making it an appropriate 
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model for studying metoprolol treatment and the effect on βAR receptors and signalling. 

Metoprolol treatment does not prevent heart failure in this animal model, but enables the 

heart to maintain function for longer under increased pulmonary pressure (Fowler and 

2016).  

The aim of this chapter was to investigate the effects of β-blockers on the RV in the MCT 

model, focusing on β-AR function. All functional experiments were performed around the 

median day that the MCT group went into failure. Two different heart preparations were 

used to look at βAR function in these animals, isolated cardiac myocytes and sections of free 

running heart muscle from the ventricular wall (trabeculae carneae). The trabeculae 

carneae are composed of linearly arranged myocytes and are commonly used to study 

myocardial force production (Hunter et al., 1998; Goo et al., 2009).  

 

5.2. Methods:  

For isolated cardiac myocyte experiments male Wistar rats (target weight 200 ± 20 g) 

received an intra-peritoneal injection of saline (CON) or 60 mg/kg of monocrotaline (MCT) 

as described in Methods (Section 2.1.2). MCT induces PAH and RV hypertrophy which 

progresses to RV heart failure, when clinical signs of heart failure are apparent (e.g. weight 

loss, lethargy) (Benoist et al., 2012). From 15 days post MCT injection a voluntary oral dose 

of placebo solution (Sucrose 0.3 M in Ribena® and water) was given to the MCT and CON 

group, and a β-blocker solution (metoprolol 4.68 mM in placebo solution) was given to the 

MCT+BB group, at 8 mL/kg body weight/daily.  

At the designed end point, cardiac myocytes were isolated from the RV and LV as described 

in Methods (Section 2.4). Cell shortening and [Ca2+]i transients were simultaneously 

recorded in RV myocytes field stimulated at 1Hz and loaded with the fluorescent Ca2+ 

indicator FURA-2 AM (1 μM). Cell shortening was expressed as a percentage of resting cell 

length. Selective β-AR stimulation was achieved with either the β1AR agonist isoprenaline 

bitratrate (ISO) in combination with ICI 118,551 (100 nM), a selective β2AR antagonist, or a 

selective β2AR agonist zinterol in combination with CGP-20712A (300 nM), a selective β1AR 

antagonist. Various concentrations of ISO/zinterol with ICI 118,551/CGP-20712A were 

made in Cell Tyrode solution ((mM): 136.9 NaCl, 5.4 KCl, 0.33 NaH2PO4·H2O, 0.5 MgCl2·H2O, 

5 HEPES, 5.6 glucose, 1 CaCl2 pH7.4). Isolated cells were individually perfused with different 

concentration of agonist using a solution switcher (Section. 2.6.2) All myocytes were 
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continually perfused via bath solution with selective antagonists in Cell Tyrode. All base line 

recordings were made with selective antagonist, in the absence of angonist, in Cell Tyrode. 

Both bath and switcher solutions were heated to 37oC. Statistical analysis was performed 

on cell recordings of factional shortening and Ca2+ transients that fell within two standard 

deviations of the mean of each concentrations within each group.      

Experiments on trabeculae were performed at the University of Auckland, where the MCT 

model had recently been set up. Due to the nature of trabeculae dissection (which requires 

larger hearts), animals were injected at a heavier weight resulting in a longer time post 

injection before exhibiting clinical symptoms of failure. Male Wistar rats 325±25 g (target 

range) bred at the University of Auckland received an intra-peritoneal injection of saline or 

60 mg/kg MCT solution (as described in Methods 2.1.2). Animal were housed 3-4 per cage. 

Animals were weighed twice weekly until day 20, then daily until overt weight loss (15 % 

body weight in one day or more than 20% total loss in body weight) or other symptoms of 

failure were observed (piloerection, dyspnea, lethargy, cold lower body).   

Echocardiography measurements were not used to characterise when the β-blocker 

treatments should commence, in contrast with experimental procedures performed at the 

University of Leeds, due to time restraints. From studying weight records of animals at the 

University of Auckland, MCT animals on average begin to plateau in weight gain around day 

20. Assuming that heart failure progressed in a linear manner dependent on the initial 

weight at which animals were injected, day 20 would be a similar proportion of time as day 

15 (for University of Leeds animals) toward the median day of heart failure. For these 

reasons day 20 was chosen to start metoprolol treatment. Treatment regimens were 

identical to that at the University of Leeds, detailed in Methods 2.2.   

At the designated end point animals were killed by a listed schedule 1 procedure and hearts 

quickly extracted and cannulated in a dissection chamber. Trabeculae were dissected from 

the RV as described in (Kaur et al., 2016) and transferred to the experimental rig, detailed 

in Methods 2.5. Trabeculae were continually superfused with solution. Baseline recordings 

were made in the presence of selective antagonist in Muscle Tyrode ((mM) 141.8 NaCl, 6 

KCl, 1.2 MgSO4.H2O, 1.2 Na2HPO4, 10 HEPES, 10 glucose, 1 Ca2+, pH 7.4) heated to 37 oC and 

bubbled with medical O2. Muscles were stretched to L.max. Agonist and antagonist were the 

same as those used in isolated cell experiments. Details of protocol are given in (Figure 5-1).  
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Figure 5-1 Trabecula carneae experimental protocol 

Trabeculae were mounted on a stage and secured to a micromanipulator and a force 

transducer and continually superfused with Muscle Tyrode (MT) heated to 37 oC bubbled 

with O2. After trabeculae had been loaded with Fura-2 field stimulation was increased to 1 

Hz and muscles stretched to L.max (the length of the muscle at which developed tension 

was maximum). Trabeculae were then allowed to equilibrate before switching bath solution 

to MT containing ICI 118,551 (ICI). After 30 min superfusion with solution containing ICI, 

isoprenaline (ISO) was added to the solution to create a 1 µM ISO final concentration in ICI 

MT. ICI and ISO were then washed out by switching the bath solution back to MT before field 

stimulating at 5 Hz.   
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5.3. Results 

 

Figure 5-2 Resting cell length and [Ca2+]i 

Data presented in box and whisker graph, mean, interquartile range and full data range 

shown. CON n=70, MCT+BB  n=72, MCT n=68, one-Way ANOVA  

 

5.3.1. Myocyte survival at 100 nM isoprenaline 

Isolated cardiac myocytes were superfused with a range of ISO concentrations (1 nM – 100 

nM). This range of ISO concentrations has previously been shown to produce a graded 

increase in contraction in rat cardiac myocytes, with 100 nM and above causing a plateau in 

response (Tamada et al., 1998; Collins and Rodrigo, 2010; McMartin and Summers, 1999). 

The initial concentration range included 200 nM ISO but it very quickly became obvious that 

none of the MCT cells would survive this concentration. When stimulating cells at 100 nM it 

was observed that some cells would spontaneously contract and then stop contacting or 

become hypercontracted. These cells did not recover when solution was switched back to 

ICI alone. Cells that stopped contracting or become hypercontracted when perfused with 

100 nM ISO were defined as dead cells in this instance, recorded and compared across 

groups.  
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Figure 5-3 Cell survival when stimulated with 100 nM isoprenaline:  

Some cardiac myocytes locally perfused with 100 nM isoprenaline (ISO) become 

spontaneously contractile, or hypercontracted or stopped contracting. Cell death was 

defines as irreversible cessation of contraction or hypercontraction. Percentage survival 

compared across the three groups, was significantly different (P=0.0183, X2 test). MCT cells 

percentage survival was significantly lower than expected (Adjusted residual, ɀ<-1.6) Con 

n=41, MCT+BB n=70, MCT n=50 

  

 

 

Cells which exhibited spontaneous contractions or waves but returned to normal 

contractions with each stimulation pulse when solution was returned to ICI alone were not 

counted within this group. The percentage of cell death was different across the groups 

(P=0.0183, X2 test) with CON cells having the lowest percentage cell death (8/41). MCT cells 

were found to have a significantly higher percentage cell death (24/50) than expected value 

(X2 with adjusted residual, ɀ<-1.6). For MCT+BB cells, the percentage of cell death (25/70) 

was no different than expected (Figure 5-3) 

5.3.2. Changes in myocyte fractional shortening in response to β1AR 

stimulation 

Representative contraction and [Ca2+]i transients are shown at baseline and following 

stimulation with 100 nM ISO in CON, MCT+BB and MCT RV myocytes (Figure 5-4). Baseline 

contraction recordings were made in the presence of a selective β2AR antagonist (ICI 
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118,551). At baseline, there was no significant difference between CON, MCT+BB and MCT 

in fractional shortening or time to 50% relaxation. Upon locally superfusion with ISO to 

selectively stimulate the β1AR, cells produced a positive inotropic and lusitropic response. 

Mean concentration data are shown in Figure 5-5 to 5-8.  

At 1 nM ISO, RV myocytes exhibited a small increase in fractional shortening, although this 

was not significantly different from baseline recordings. MCT cells showed a larger 

percentage shortening compared to MCT+BB at 1 nM ISO (P<0.05), but this was not 

significantly different to CON (Figure 5-5). There was no difference in time to 50% 

relaxation at this concentration between groups (Figure 5-6).   

At 30 nM ISO, which was above the EC50 of the concentration response curve of all the 

groups, fractional shortening had increased more than two-fold compared to baseline 

recordings. There was no difference between the groups in cell fractional shortening at this 

concentration and no difference in EC50 between groups. Time to 50% relaxation was 

significantly slower in MCT compared to both CON and MCT+BB at 30 nM ISO (P<0.05). CON 

time to 50% relaxation was significantly faster than baseline recordings, while there was no 

significant decrease in time to 50% relaxation from the MCT group compared with baseline 

recordings. In cells from the MCT+BB group time to 50% relaxation was also significantly 

faster at 30 nM compared to baseline recordings (P<0.05) (Figure 5-6).  

Fractional shortening was significantly blunted in the MCT cells in response to the highest 

concentration (100 nM) of ISO compared with both CON and MCT+BB groups (P<0.001, 

P<0.01) (Figure 5-5). From 30 nM to 100 nM ISO stimulation, the mean percentage 

shortening increased by around 3% in both CON and MCT+BB whereas MCT cells showed 

no further increase in percentage shortening (Figure 5-5 A). At 100 nM ISO time to 50% of 

relaxation was significantly blunted in the MCT group compared with CON (P<0.01). There 

was no significant difference in time to 50% relaxation between MCT+BB and CON or MCT 

at the highest ISO concentration, showing an intermediate state. MCT blunts the increase in 

fractional shortening and reduced time to 50% relaxation at high concentrations of ISO 

stimulation compared to CON; this is partially recovered with metoprolol treatment.  
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Figure 5-4 Representative cell length and [Ca2+]i transient traces at baseline and 

100nM isoprenaline stimulation  

Contraction is plotted as a percentage of resting cell length. Baseline recordings in the 

presence of of ICI 118,551 (ICI) are shown as a solid line. Local perfusion of the cell was then 

switched to 100 nM isoprenaline (ISO) shown as a dotted line. 10-20 contractions/[Ca2+]i 

transients were used to create each average trace. 

Contraction [Ca
2+
]
i
 

MCT 

MCT+BB 

CON 

T im e  (s )

C
a

2
+

3
4

0
/3

8
0

 r
a

t
io

 (
%

)

0 .0 0 .2 0 .4

9 0

9 5

1 0 0

1 0 5

1 1 0

1 1 5

1 2 0

IC I

1 0 0  n M

T im e  (s )

C
e

ll
 l

e
n

g
th

 (
%

)

0 .0 0 .2 0 .4

7 0

8 0

9 0

1 0 0

1 1 0

IC I

1 0 0  n M

T im e  (s )

C
a

2
+

3
4

0
/3

8
0

 r
a

t
io

 (
%

)

0 .0 0 .2 0 .4

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

IC I

1 0 0  n M

T im e  (s )

C
e

ll
 l

e
n

g
th

 (
%

)

0 .0 0 .2 0 .4

9 0

9 5

1 0 0

1 0 5

1 1 0

IC I

1 0 0  n M

T im e  (s )

C
a

2
+

3
4

0
/3

8
0

 r
a

t
io

 (
%

)

0 .0 0 .2 0 .4

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

IC I

1 0 0  n M

T im e  (s )

C
e

ll
 l

e
n

g
th

 (
%

)

0 .0 0 .2 0 .4

7 0

8 0

9 0

1 0 0

1 1 0

IC I

1 0 0  n M



111 

 

 

Figure 5-5 Change in fractional shortening in response to β1AR stimulation 

Cell shortening is expressed as a percentage of cell length. All recordings were made in the 

presence of the β2AR antagonist ICI 118,551 (ICI). A. Concentration-response curve  to 

isoprenaline (ISO), mean ± SEM. B. Dot plots of individual cell shortening with ICI alone and 

1, 30 and 100 nM ISO, mean ± SD. *P<0.05, **P<0.01, ***P<0.001 (One-way ANOVA), (Krus 

Willis). 

IS O  (n M )

F
r
a

c
ti

o
n

a
l 

s
h

o
r
te

n
in

g
:

 (
%

 c
e

ll
 l

e
n

g
th

)

1 0 -1 1 0 0 1 0 1 1 0 2 1 0 3

0

5

1 0

1 5

2 0

C O N

M C T

M C T + B B

IC I

C O N M C T + B B M C T

0

5

1 0

1 5

F
r
a

c
ti

o
n

a
l 

s
h

o
rt

e
n

in
g

:

 (
%

 c
e

ll
 l

e
n

g
th

)

IC I

1 0 0 n M

F
r
a

c
ti

o
n

a
l 

s
h

o
rt

e
n

in
g

:

  
(%

 c
e

ll
 l

e
n

g
th

)

C O N M C T + B B M C T

0

5

1 0

1 5

2 0

2 5
* * *

* *

3 0 n M

F
r
a

c
ti

o
n

a
l 

s
h

o
r
te

n
in

g
:

(%
 c

e
ll

 l
e

n
g

th
)

C O N  M C T + B B M C T

0

5

1 0

1 5

2 0

2 5

1 n M

F
r
a

c
ti

o
n

a
l 

s
h

o
rt

e
n

in
g

:

 (
%

 c
e

ll
 l

e
n

g
th

)

C O N  M C T + B B M C T

0

5

1 0

1 5 *

A 

B 



112 

 

 

Figure 5-6 Change in time to 50% relaxation in response to β1AR stimulation 

Cell relaxation is expressed as time to 50% total cell length, mean ± SEM. All recordings 

were made in the presence of the β2AR antagonist ICI 118,551 (ICI). A. Concentration-

response curve to isoprenaline (ISO), mean ± SEM. B. Dot plots of individual cell data with 

ICI alone and  30 and 100 nM ISO, mean ± SD. *P<0.05, **P<0.01, ***P<0.001 (One-way 

ANOVA).  
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5.3.3. Changes in myocyte Ca2+ handing in response to β1AR stimulation 

Similar trends were observed when measuring myocyte [Ca2+]i handling, as seen in the 

representative traces (Figure 5-4). Data are expressed as change from baseline recordings 

due to gradual decay in signal over time, which was observed in all cells. This signal decay 

resulted in the recordings at low concentrations of ISO (1 nM and 3 nM) being below 100% 

of that recorded at baseline. Selective β1AR stimulation increased the [Ca2+]i transient 

amplitude in CON cells, which was significantly blunted in MCT cells at the highest 

concentration of ISO (P<0.05)(Figure 5-7). There was no difference in the MCT+BB cell 

[Ca2+]i
 transient amplitude compared with either CON or MCT at the highest ISO 

concentration. MCT cells also showed a significantly prolonged time to 50% Ca2+ decay 

compared with CON cells at 100 nM ISO (P<0.001). In MCT+BB time to 50% Ca2+ was 

significantly reduced from MCT cells (P<0.05), with no difference compared to CON. MCT 

blunts the increase in [Ca2+]i transient amplitude and time to 50% Ca2+ decay at high 

concentrations of ISO stimulation compared to CON; this again is partial recovered with 

metoprolol treatment.  

5.3.4. Effects of FURA-2 AM in cells 

It was noted while measuring cell fractional shortening in the presence of ICI that there was 

a trend for a greater percentage shortening in the MCT cells compared with CON (Figure 

5-5). MCT fractional shortening at 1 Hz has previously been shown to be significantly 

greater than that of CON, which is suggested to be a result of the higher [Ca2+]i content in 

MCT cells (Benoist et al., 2012). To examine whether the effect of FURA-2 AM buffering the 

[Ca2+]i has a greater effect in cells with a lower resting [Ca2+]i content, fractional shortening 

was measured in ICI alone and then with the addition of 30 nM or 100 nM ISO in cells which 

had not been loaded with FURA-2 AM (Figure 5-9). At baseline there was a significant 

increase in fractional shortening in unloaded cells, compared to the FURA loaded cells, in 

both the CON and MCT+BB group (P<0.05, P<0.001), with a trend to increase in the MCT 

cells. This difference was abolished at 100 nM ISO. The MCT response to selective β1-AR 

stimulation was still significantly blunted compared to both CON and MCT+BB in the 

unloaded FURA cells (P<0.01). Buffering of [Ca2+]i by FURA only appears to have an effect 

on shortening at lower levels of Ca2+ with a greater effect in CON and MCT+BB cells. 
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Figure 5-7 Change in [Ca2+]i cell transient amplitude in response to β1AR stimulation  

[Ca2+]i  transient amplitude is expressed as a percentage change from baseline [amplitude 

(340/380 ratio). All recordings were made in the presence of the β2AR antagonist ICI 

118,551. A. Concentration-response curve to isoprenaline (ISO), mean ± SEM. B. Dot plots 

of individual cell data at  30 and 100 nM ISO, mean ± SD. *P<0.05 (One-way ANOVA).  
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Figure 5-8 Change in time to 50% [Ca2+]i decay in response to β1AR stimulation 

Time to 50% [Ca2+]i  decay is measured as the time taken to return 50% towards [Ca2+]i  

levels recorded at baseline. All recordings were made in the presence of the β2AR antagonist 

ICI 118,551 (ICI). A. Concentration-response curve to isoprenaline (ISO), mean ± SEM. B. 

Dot plots of individual cell data at  30 and 100 nM ISO, mean ± SD. *P<0.05, **P<0.01, 

***P<0.001 (One-way ANOVA) 
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Figure 5-9 Change in fractional shortening in response to β1AR stimulation: effect of 

Fura loading 

A. Cell shortening is expressed as a percentage of resting cell length.   Concentration 

response curve shows mean fractional shortening ± SEM, fitted with the curve from the 

previous graph (Fig 5-5A) with Fura loaded cells. B.C. Dot plots of cell shortening with ICI 

118,551 (ICI) only and 100 nM isoprenaline (ISO) showing which cells were loaded with 

Fura-2 AM. Student t-test (*P<0.05, ***P<0.001, ***P<0.001). One-way ANOVA (##P<0.01 

MCT+BB vs. MCT, P<0.001 CON vs. MCT)  
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Figure 5-10 Cell response to β2AR stimulation 

Cardiac myocytes were locally superfused with a range of zinterol concentrations in the 

presence of the selective β1AR antagonist CGP 20712A. Not all cells showed a positive 

inotropic response. The number of cells which showed no response or a negative inotropic 

response to zinterol were counted and compared across groups. There was no difference in 

the proportion of cells shortening no response or a negative response. (X2) CON n= 91, 

MCT+BB n= 63, MCT n= 52 

 

 

5.3.5. Response to selective β2AR stimulation in cardiac myocyte 
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Figure 5-11 Change in fractional shortening in response to β2AR stimulation 

Cell shortening is expressed as a percentage of resting cell length. All recordings were made 

in the presence of the β1AR antagonist CGP-20712A (CGP). A. Concentration-response curve 

to zinterol, mean ± SEM. B. Dot plots of individual cell data with GCP alone and 10 µM 

zinterol, mean ± SD. C. Cell shortening is expressed as a percentage increase from baseline.  

**P<0.01, ***P<0.001 vs. baseline (CGP) (Two-way ANOVA).  
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Figure 5-12 Change in time to 50%  [Ca2+]i decay in response to  β2AR stimulation 

Time to 50% [Ca2+]i  decay is measured as time taken to return 50% towards [Ca2+]i  levels 

recorded at baseline. All recordings were made in the presence of CGP -20712A (CGP). A. 

Concentration-response curve to zinterol, mean ± SEM. B. Concentration-response curve to 

zinterol, measured as a percentage change from baseline recordings, mean ± SEM.  
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Selective β2AR stimulation increased the contraction of cells, as measured by fractional 

shortening, in all three groups. This increase became significant at 10 μM zinterol (P<0.01) 

(Figure 5-11 B). There was no difference in fractional shortening at baseline or with 10 µM 

zinterol between the three groups, although there was a trend for a larger increase in 

shortening in response to 10 μM zinterol in CON compared with MCT cells (P=0.14). Time 

to 50% relaxation was significantly decreased from baseline in CON cells with the addition 

of 10 μM zinterol (P<0.01). However this decrease was not significantly different between 

groups and there was no significant difference in relaxation times at baseline or 10 μM 

zinterol (Figure 5-12). There was no change in [Ca2+]i transient amplitude or time to 50% 

[Ca2+]i decay in any of the groups (Figure 5-12). At high levels of zinterol stimulation CON, 

MCT+BB and MCT all show an increase in fractional shortening, which is not different 

between the groups although only CON cell show a reduction in time to 50% relaxation.  

5.3.6. Growth and organ weight ratios in Auckland animals 

Animals at the University of Auckland were injected with MCT at a larger weight due to the 

nature of the trabeculae dissection; this resulted in a longer period of time post injection 

before animals exhibited signs of heart failure. Animals were weighed regularly up until day 

20, when daily weights were recorded. Mean group weight data were plotted and show CON 

continuous weight gain over time, while MCT+BB and MCT animals initially gained weight 

but this slowed over time (Figure 5-13). Individual daily weight changes were plotted to 

closely examine trends in weight variation: CON mean weight variation showed animals 

continued to gain weight in a fairly consistent manner from injection to the designated end 

point (illustrated by the line of best fit), while MCT plateau and the mean change in weight 

becomes negative around day 24 (straight line intersecting the x-axis)(Figure 5-14). In the 

MCT+BB group, the mean change in daily weight starts to plateau and approach zero 

towards day 24-30 post injection (Figure 5-14). The fall in weight seen in the mean data 

plotted in Figure 5-14 is due to a single animal losing weight at that time point. Both 

MCT+BB and MCT daily weight change significantly deviate from zero (linear regression, 

P<0.05).  
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Figure 5-13 Growth curve of CON, MCT+BB and MCT animals (Auckland)  

Animals were weighed regularly from day of injection to day 20, then daily until designated 

end point. Mean animal weight from each group is plotted ± SEM. MCT+BB and MCT weight 

begins to plateau around day 20-24 while CON continue to gain weight. CON n=6, MCT+BB 

n=6, MCT n=5 
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Figure 5-14 Daily change in weight post MCT/Saline injection 

Weight change from the previous day was calculated and individual weight change plotted for each group. Line of best fit for the data is plotted in 

black and linear regression calculated. MCT+BB and MCT slop of the line is significantly deviated from zero (P<0.05). CON animals show a continual 

average gain in weight over time, while MCT+BB begins to plateau in weight gain towards the end and MCT plateaus and becomes negative from day 

25. CON n=6, MCT+BB n=6, MCT n=5  
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Figure 5-15 Changes in organ weight ratios 

At the designated end point hearts were quickly dissected out and whole heart weight 

recorded (HW). Lung weight was also recorded. Dissected organ weights were normalised 

to body weight (BW). After trabeculae dissection the left ventricle and septum (LV&S) were 

weighed. CON n=6, MCT+BB n=6, MCT n=5, One-way ANOVA (*P<0.05, **P<0.01, 

***P<0.001).    
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Heart weight to body weight (HW:BW) ratios were significantly increased in both MCT+BB 

and MCT animals compared to CON indicating hypertrophy of the heart (P<0.001)(Figure 

5-15). The HW:BW ratio was significantly greater in the MCT animals compared to the 

MCT+BB animals (P<0.01). The trabeculae carneae are sensitive to stretch and other 

mechanical stress so needed to be dissected out first, meaning right ventricle free wall 

weight recordings were not possible. Instead, LV and septum to heart weight (LV+S:HW) 

ratios were used as a reverse index for the RV to the heart weight ratio. The LV+S:HW ratio 

was significantly reduced in MCT and MCT+BB compared to CON (P<0.05, P<0.001). Lung 

weight to body weight ratio was also significantly increased in both MCT+BB and MCT 

compared to CON animals (P<0.05). Pulmonary edema was noted in a few of the MCT+BB 

and MCT animals.  

5.3.7. Change in trabeculae stress in response to β1AR stimulation 

Isometric force was measured in mN and normalised to trabeculae cross-sectional area to 

index muscle stress (force production per unit area). Baseline recordings were measured at 

L.max in the presence of ICI. At baseline MCT+BB trabeculae produced significantly more 

stress than CON trabeculae. There was no difference between CON and MCT or MCT and 

MCT+BB. When CON trabeculae were superfused with 1 μM ISO, stress production was 

significantly increased (P<0.05)(Figure 5-16). No significant change in stress production 

was observed in either MCT+BB or MCT trabeculae. However, the CON increase in stress 

production was not significantly different to the change in stress of MCT or MCT+BB 

trabeculae (Interaction P>0.05, Paired Two-way ANOVA). There was no difference in the 

stress measurements during ISO superfusion between the three groups. Time to 50% 

relaxation did not differ between the three groups at baseline and there was no change with 

β1-AR stimulation.  
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Figure 5-16 Change in stress production and relaxation in response to β1AR 

stimulation in trabeculae carneae 

All recordings were made in the presence of the β2AR antagonist ICI 118,551 (ICI). 

Individual recordings are plotted in ICI alone and then with the addition of isoprenaline 

(ISO). A. Stress (force per unit area) production is measured as peak force (in mN) divided 

by the cross-sectional area of the trabeculae (mm2). B. Time to relaxation is measured as 

expressed as time to 50% resting force.  CON n=5, MCT+BB n=6, MCT n=5, Two-way ANOVA 

(*P<0.05, CON ICI vs CON ISO, #P<0.05, CON ICI vs MCT+BB ICI).    
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5.3.8. Change in trabeculae Ca2+ handling in response to β1AR stimulation 

 [Ca2+]i was simultaneously measured with stress. There was no difference in [Ca2+]i 

transient amplitude between the three groups at baseline (Figure 5-17). The [Ca2+]i
 

transient amplitude was significantly increased in CON trabeculae when selective β1AR 

stimulation was applied (P<0.05). There was no significant increase in [Ca2+]i
 transient 

amplitude with addition of ISO in the MCT or MCT+BB groups. However there was no 

difference in [Ca2+]i transient amplitude between the three groups when ISO was applied. 

There was no difference in time to 50% Ca2+ decay between the three groups at baseline and 

there was no change with selective β1AR stimulation (Figure 5-17). CON trabeculae were 

the only group to show a significant increase in both stress and [Ca2+]i transient amplitude.  

5.3.9. Trabeculae stimulated at 5 Hz 

After superfusion with ISO, bath solution was changed back to Muscle Tyrode for 60 min to 

allow for the washout of ISO/ICI. Stress production before ISO stimulation and after 

washout was not significantly different in any of the groups. Trabeculae stimulation 

frequency was then increased to 5 Hz for less than 2 min. When pacing was increased to 5 

Hz, MCT and MCT+BB trabeculae showed a negative stress frequency relationship (P<0.05). 

There was no significant difference in stress production of CON trabeculae when pacing at 

5 Hz compared with 1 Hz (Figure 5-18). The [Ca2+]i transient amplitude after washout was 

not significantly different from recording before ISO stimulation in any of the groups. When 

pacing was increased to 5 Hz there was a significant reduction in [Ca2+]i transient amplitude 

in the CON and MCT+BB group (P<0.05) with a trend for a reduction in the MCT group 

(P=0.06). At 5 Hz stimulation there was no difference in stress of contraction or [Ca2+]i 

transient amplitude between the three groups.  
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Figure 5-17 Change in [Ca2+]i trabeculae amplitude and decay in response to β1AR 

stimulation 

All recordings were made in the presence of the β2AR antagonist ICI 118,551 (ICI). 

Individual recordings are plotted in ICI alone and then with the addition of isoprenaline 

(ISO) A. Trabeculae [Ca2+]i  transient amplitudes  is expressed as peak 340/380 ratio from 

baseline recordings . B. Trabeculae time to 50% [Ca2+]i  decay was measured as the time 

taken to reach 50% of the [Ca2+]i  levels recorded at baseline . CON n=5, MCT+BB n=6, MCT 

n=5 .Two-way ANOVA (*P<0.05, CON ICI vs CON ISO) 
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Figure 5-18 Change in stress production and [Ca2+]i transient amplitude in response 

to pacing at 5 Hz 

Individual recordings are plotted with field stimulation at 1Hz at the end of the washout 

period and then at 5 Hz A. Force production (mN) was normalised to the cross sectional 

area of the trabeculae (mm2).  CON n=4, MCT+BB n=5, MCT n=3, Two-way ANOVA (*P<0.05, 

1Hz vs. 5Hz).    
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Figure 5-19 Comparison of daily weight variation and response to 5 Hz stimulation between different vials of MCT injected 

A.Weight change from the previous day was calculated and individual weight change plotted for each group. Line of best fit for the data is plotted for 

each group and linear regression calculated. For MCT+BB (group 2) and MCT the slope of the line is significantly deviated from zero (P<0.05). MCT+BB 

n=3, MCT+BB- group 2 n=3, MCT n=4, MCT 13 n=1. B.  Individual recordings are plotted of percentage change in stress produced  when field stimulation 

was increased to 5 Hz. Force production (mN) was normalised to the cross sectional area of the trabeculae  (mm2).  CON n=4, MCT+BB n=3, MCT+BB 

– group 2 n=3, MCT n=3,  Two-way ANOVA      
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5.4. Discussion:  

Selective stimulation of the β1ARs in CON myocytes caused increased fractional cell 

shortening and [Ca2+]i transient amplitude, and decreased the time to 50% relaxation and 

50% [Ca2+]i transient decay. This response was significantly blunted in failing myocytes 

from MCT animals compared to CON. MCT+BB myocytes showed a partial recovery from 

the MCT blunted phenotype, with no significant difference between CON in these 

parameters. In vivo heart function of MCT animals treated with metoprolol has previously 

been characterised within the group, through haemodynamic and echocardiography 

measurements (Fowler and 2016). MCT+BB animals had a significantly improved survival 

compared to the MCT animals (P<0.05), increasing the median survival day to 31 from 23. 

RV end diastolic pressure recordings in MCT and MCT+BB were almost double that of CON 

animals, with vascular resistance was also showing a significant increase in both MCT and 

MCT+BB compared with CON. Metoprolol was not expected to affect the pulmonary 

vasculature, in which β2AR are present, due to the selectivity of metoprolol for the β1AR. 

Improved RV function is therefore assumed to be the cause of increased median survival 

day in MCT+BB animal. Treatment with metoprolol started 15 days post injection of MCT; 

an increase in pulmonary artery pressure as well as an increased HW to BW ratio and RV to 

LV+S ratio has been reported at this time point, indicating RV hypertrophy (Lee et al., 1997). 

It is important that treatment is started after signs of hypertrophy have already begun to 

develop for clinical relevance; PAH is normally only diagnosed in later stages of the disease 

when RV hypertrophy is already present. Other studies using the MCT model treated with 

β-blockers have also observed an increase in survival (de Man et al., 2012) (Bogaard et al., 

2010). These studies have used bisoprolol and carvedilol respectively; however neither has 

investigated effects on βAR activity. The present study is the first to examine selective β1AR 

and β2AR responsiveness in MCT animals treated with β-blockers. 

5.4.1. β1-adrenergic changes in PAH  

Typically in LV heart failure, after an initial insult, there is an increase in sympathetic drive 

which leads to a reduction in β1ARs and desensitisation of the β-AR response. The extent to 

which sympathetic nerve activity is increased in PAH induced heart failure is not as clear. A 

number of studies have indicated that sympathetic activity is increased in PAH patients: 

Nagaya et al. observed increased plasma noradrenaline levels in end-stage heart failure PAH 

patients compared to patients with minimally impaired heart function (Nagaya et al., 2000); 

Velez-Roa et al. observed significantly higher sympathetic nerve activity within skeletal 
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muscles of PAH patients compared to control patients, which indicated an increased 

neuronal sympathetic drive (Velez-Roa et al., 2004). However Velez-Roa et al. and other 

studies have questioned whether the observed increase in sympathetic activations reaches 

pathophysiological relevance (Nootens et al., 1995; Velez-Roa et al., 2004; Lowes et al., 

1997), although correlations between increased sympathetic nerved activity and clinical 

deterioration of patients have been observed (Ciarka et al., 2010).   

Despite the increase in sympathetic drive not always being apparent, a reduction and 

desensitisation of the cardiac β-AR receptors is more routinely seen in PAH patients with 

RV heart failure (Bristow et al., 1992; Lowes et al., 1997). In the MCT model, reduced β1AR 

protein expression and mRNA levels have been shown as well as evidence for receptor 

desensitisation (Piao et al., 2012). Ishikawa et al. have reported an increase in plasma 

noradrenaline (as well as Kögler et al.) and tissue adrenaline and noradrenaline within the 

RV of MCT animals compared to CON, suggesting an increased sympathetic drive in the MCT 

(Ishikawa et al., 1991; Kögler et al., 2003). Leineweber et al. and others have used a (−)-

[125I]-iodocyanopindolol (ICYP) radioligand binding assay (Brodde et al., 1981) to measure 

β1AR membrane density within the heart. Using this method on isolated myocytes showed 

that the β1AR subtype made up 75% of the total β-AR population in CON. The β1AR 

membrane density was significantly decreased in MCT animals compared to CON 

(Leineweber et al., 2003), this reduction was only seen in the RV. Using different 

concentrations of ISO in a competitive binding assay, Leinewber also demonstrated a 

reduction in ISO binding in MCT. Ishikawa et al. also used the ICYP radioligand binding assay 

in the MCT model to measure β-AR membrane density in myocardium (Ishikawa et al., 

1991). Unlike Leinebeter et al, this group showed a reduction in β1AR density in both the 

RV and LV. The reduction of β1AR density in LV myocardium was suggested to come from 

changes to non-myocyte cells in the sample. Levels of cAMP were also measured in 

Leineweber et al. via a radioimmunoassay after cardiac myocytes were incubated with ISO. 

The amount of cAMP produced in MCT myocytes after ISO stimulation was significantly 

reduced, by about 68%, compared to CON. In the present study mean fractional shortening 

was reduced by 57% in MCT myocytes compared to CON at 100 nM ISO. Although measuring 

total cAMP activity to ISO stimulation is a useful functional assessment, it fails to elucidate 

possible variation within the different cAMP compartments, which is seen to change in heart 

failure (Gorelik et al., 2013). Assessing individual cardiac myocyte function, by measuring 

cell shortening and [Ca2+]i transient amplitude, prevents measurements of non-myocyte 

being included and gives a better idea of individual cell responses to β-AR stimulation. The 

present study shows a desensitisation of the response to selective β1AR stimulation in 
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cardiac cells from the MCT animals at high concentrations of ISO. This fits with previous 

work that reports decreased cAMP activity and increased GRK2 activity in MCT myocytes 

(Piao et al., 2012).  

When β1ARs were stimulated in isolated RV cardiac myocytes a blunted response in both 

contraction amplitude and rate of relaxation was observed in the MCT group compared with 

CON (representative traces Figure 5-2). This is comparable to the decreased βAR response 

seen in human LV HF patients (Bristow et al., 1982), which results in a reduced exercise 

tolerance in patients and inability to increase cardiac output in response to demand. The 

reduced response in shortening appears to be linked with the [Ca2+]i handling in these cells, 

as [Ca2+]i transient amplitude and time to 50% [Ca2+]i decay were also blunted in the MCT 

group compared with CON. Prolonged decay of the [Ca2+]i transient is linked with reduced 

reuptake of Ca2+ into the sarcoplasmic reticulum (SR) and cardiac alternans (Díaz et al., 

2004), which can lead to potential fatal arrhythmias and sudden cardiac death. In MCT rats 

a reduction in SERCA protein expression has previously been recorded (Xie et al., 2012), as 

well as reduced mRNA and SERCA activity (Benoist et al., 2014). When locally perfusing 

isolated cardiac myocytes with 100 nM ISO, a higher percentage of cells from the MCT 

animals became spontaneously contractile, then stopped contracting compared with the 

CON and MCT+BB groups. This may be due to early after depolarisation (EADs) or delayed 

after depolarisation (DADs). Increased SR Ca2+ content of the MCT cells with reduced mRNA 

expression phospholamban (PLN) has been reported within the research group (Fowler et 

al. in submission) could cause cellular Ca2+ overload when stimulating at higher ISO 

concentrations and result in DAD explaining the increased number of cells developing 

alternans in the MCT group.  

5.4.2. β2-adrenergic changes in PAH  

Within the literature, studies of patients and animal models of PAH which examine possible 

-AR changes in the heart tend to focus mainly on the 1AR components. This may be 

because in normal physiology 2AR makes up only a small proportion of the total AR pool 

within the heart and produces a smaller inotropic response to stimulation. In PAH patients 

the density of the 2AR has not been seen to change within the RV (Bristow et al., 1992). In 

LV heart failure models the total 2AR density in myocytes is similarly unaltered, although 

the membrane location of the receptor is suggested to be relocated, which alters  

downstream signalling (Wright et al., 2014; Nikolaev et al., 2010). In the present study, 

when the cardiac 2AR were selectively stimulated not all cells showed a positive inotropic 
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response. Varying results have been reported in the literature with some studies not seeing 

an increase in percentage shortening with selective 2AR stimulation (MacDougall et al., 

2012), while others see a robust increase in contraction (Xiao et al., 1999a). This, in part, 

may be due to to species, disease and/or agonist used (Xiao et al., 1999b; Staus et al., 2016). 

The functional response to selective β2AR stimulation varies within different mammals from 

no contractile response being seen in mouse, to a moderate response in canines and a robust 

inotropic and lusitropic response in the failing human heart (Kaumann et al., 1999). In the 

present study, of those cells that did show a positive response there was a significant 

increase in fractional shortening, which was observed in all three groups (CON, MCT+BB 

and MCT) at 10 µM zinterol in the presence of a selective β1AR antagonist. Time to 50% 

relaxation was also reduced in CON cells with 10 µM zinterol. Although the functional 

response to selective 2AR stimulation did not vary between the groups, this does not rule 

out possible changes to the 2AR coupling and membrane location. The ability of 2AR to 

couple to either Gαs or Gαi further complicates the issue. Redistribution of the 2AR and 

changes to the cAMP signaling have been reported in animal models of LV HF (Wright et al., 

2014; Nikolaev et al., 2010) but functional changes in myocyte 2AR responsiveness were 

not measured. Changes in protein levels and membrane location of the 2AR proteins will 

play an important role in this study to determine any possible changes occurring within the 

cells which are undetectable by the functional measurements made in this study (Chapter 

6). 

5.4.3. The use of β-blockers in PAH  

Under current treatment guidelines for PAH there are no specific targets for the failing RV 

and β-blockers are not recommended. The RV is structurally and functionally different from 

the LV and has a limited ability to increase stroke volume; therefore β-blockers are not 

thought to be well tolerated, due to possible negative chronotropic effects. Recent studies 

have started to question if β-blockers could be used to improve RV function in PAH patient; 

animal models of PAH have tolerated the treatment well (Bogaard et al., 2010; de Man et al., 

2012; Pankey et al., 2016). The importance of which β-blocker (1st, 2nd or 3rd generation) is 

used has recently been highlighted in response to an observational study looking at survival 

and the used of -blockers (Malenfant and Perros, 2016; Bandyopadhyay et al., 2015). The 

initial study showed no change in long term survival of those PAH patients who were 

prescribed β-blockers for co-morbidities compared with those not taking them. The letter 

to the editor highlights that the conclusions from the article may be more positive than 

described in the initial paper, showing that there were was no detrimental effects on 
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survival when taking these drugs (Malenfant and Perros, 2016). The generation or 

specificity of -blockers plays an important role, as many first generation drugs target both 

the β1AR and 2AR receptors which could lead to smooth muscle contraction and 

vasoconstriction within the pulmonary vasculature provoking further pulmonary hypoxia 

and increasing afterload on the RV (Leblais et al., 2008). Metoprolol is a second generation 

β-blocker which is a complete inverse agonist specifically of the β1AR and has been shown 

to bind to agonist sites and hold the receptor in a constitutively inactive state (R), which 

prevents phosphorylation of the receptor (Maack et al., 2000). This would prevent 

internalisation of the receptor through the β-arrestin pathway. Bucindolol and carvedilol, 

2nd and 3rd generation -blockers respectively, which have been used in the MCT model have 

a lower inverse agonist activity and under some conditions show partial agonist signalling 

through the receptor (Lattion et al., 1999).  

One of the advantages of metoprolol is that it is already a licenced drug which is prescribed 

to patients with LV heart failure and has been shown to improve patient survival and 

decrease New York Heart Association (NYHA) functional class (Hjalmarson et al., 2000). 

Chronic metoprolol treatment in human patients with LV heart failure increases the β1AR 

and density re-sensitises the LV (Gilbert et al., 1996), and reduces the instances of sudden 

cardiac death (Group, 1999). 

In this model of MCT, chronic β-blocker treatment with metoprolol appears to aid in the re-

sensitization of the β1AR and improve the β-response in isolated cardiac myocytes. 

Fractional shortening was significantly improved compared with the MCT group at the 

highest concentration of ISO and time to 50% relaxation was also improved. The [Ca2+]i 

measurements mirror improvements seen in contraction. Metoprolol’s action through 

partially blocking over stimulation of the β1AR could prevent the receptor internalisation 

and degradation. There was no difference in the functional response to selective β2AR, 

which is perhaps not surprising as metoprolol is a selective β1AR blocker and there is lack 

of β1AR-β2AR crosstalk. The precise mechanism by which the β-blockers are acting to make 

these functional improvements has not been definitively proven and there may yet be other 

effects of metoprolol on signalling downstream from the receptor. The potential 

mechanisms by which β-blocker improve heart function have yet to be examined in depth 

in the RV. Despite the anatomical differences between the RV and LV, the selective β-blocker 

metoprolol appears to have similar functional benefits.  
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5.4.4. Trabeculae carneae 

Experiments using trabeculae were carried out on a visit to the University of Auckland 

where there is established expertise in measuring force and [Ca2+]i simultaneously in this 

preparation (Kaur et al., 2016; Shen et al., 2016). In Auckalnd, animals took longer to the 

develop signs of heart failure following injection of MCT, even though the animals were 

given the same dose of MCT per kg of body weight (compared with studies conducted in 

Leeds). There appears to be a correlation with injection weight and time taken to exhibit 

signs of heart failure. The reason behind this is not known. In the literature, injection weight 

and average days post injection to reach failure are not routinely stated. 

 Previous studies of trabeculae stress/force production in the MCT model reflect what has 

been shown in the present work measuring isolated cardiac myocytes fractional shortening 

and [Ca2+]i measurements. Trabeculae from MCT animals show a reduction in force 

production and [Ca2+]i handling compared to CON (Versluis et al., 2004; Miura et al., 2011; 

Kögler et al., 2003). [Ca2+]i wave prolongation was observed, as well as an increase in 

diastolic [Ca2+]i within trabeculae from MCT animals stimulated at 2 Hz (Miura et al., 2011). 

In the present study there were no differences baseline stress or [Ca2+]i transient amplitude 

between CON and MCT, although this may be due to poor controls. Extracting the trabeculae 

from the heart is done by fine dissection being careful not to mechanically damage or stretch 

the trabeculae, which is technically demanding. Stress production at the length-tension 

maximum (L.max) in CON animals was almost half of what has previously been reported in 

the literature (Miura et al., 2011; Raman et al., 2006). This would suggest that some of the 

CON trabeculae may have been damaged in the dissection procedure. Despite this low 

baseline force production the trabeculae experiments still show similar tends to those see 

in the isolated cells. CON trabeculae showed a significant increase in force and [Ca2+] 

transient amplitude when perfused with ISO, while the MCT trabeculae did not. There was 

also a trend for a faster time to 50% relaxation in the CON animals compared to the MCT, 

suggesting more efficient SR Ca2+ uptake.  

Unfortunately the metoprolol treatment did not appear to have been as beneficial in the 

Auckland animals as in the Leeds animals, which may be due to using a new (more potent) 

vial of MCT in the last cage of animals. This cage contained one placebo treated and three 

metoprolol treated animals. When comparing these animals to the rest of their cohort, the 

MCT animal showed clinical signs of failure 6 days earlier than the median day of the other 

MCT animals (Figure 5-19.). The MCT+BB animals from the first batch, when plotting 
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change in weight over time maintained a steady positive change in weight (as seen by the 

line of best fit Figure 5-19), whereas MCT+BB from the second batch have a negative change 

in weight gain over time which deviated significantly from zero (linear regression (P<0.05) 

Figure 5-19). The timing of dosing is crucial due to the fast progression of HF in this model; 

ensuring that dosing is early enough to have time to affect the heart, whilst waiting until 

changes in RV dynamics (wall thickness/pressure) appear. Further force experiments 

would require the proper characterisation of MCT animals’ progression to failure at the 

heavier weight (with echocardiography measurements), to enable the correct assignment 

of a day for dosing to begin.  

 

5.5. Conclusion 

We have shown for the first time that metoprolol treatment of PAH induced RV failure 

improved the β1-AR response in isolated rat cardiac myocytes. These data along with other 

supporting evidence (de Man et al., 2012; Fowler and 2016) show the functional benefits 

that could be achieved with β-blocker treatment in PAH patients. The improved β-AR 

function of the heart and potential block of detrimental remodelling signals could help, 

delay if not prevent, the onset of RV HF from RV hypertrophy. The molecular mechanisms 

of β-blockers are still not fully understood; even though they have been shown to 

functionally improve the heart and increase β-AR protein and mRNA expression, there may 

be other pathways contributing to this bar the simple blocking of overstimulation of the 

β1AR. Measuring changes at the molecular level of the β-AR signaling cascade in heart failure 

and remodeling within β-blocker treatment may begin to reveal how these functional 

improvements are being achieved. Regulatory proteins of the β-AR signalling pathway such 

as the caveolar proteins, have previously been seen to be reduced in human patients and 

animal models of LV heart failure (Feiner et al., 2011; Woodman et al., 2002), but have not 

been studied in RV heart failure. Cav-1 peptide administration has previously been shown 

to prevent HF in the rat MCT model (Jasmin et al., 2006). Although this was mainly ascribed 

to primary effects within the pulmonary vasculature, concurrent actions on the ventricle 

were not ruled out. Caveolae have previously been shown to play a key role in regulating 

downstream processes of the β-AR signalling across different agonist concentrations 

(MacDougall et al., 2012; Agarwal et al., 2011). How these proteins change and where they 

are located in the membrane may help explain some of the functional observation seen with 

β-blocker treatment.   
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6. Chapter 6. Protein changes in right ventricular failure  

6.1. Introduction 

The functional response to selective β1AR stimulation in isolated cardiac myocytes from 

MCT animals was blunted compared to that of CON animals. Treatment with the selective 

β1AR blocker metoprolol improved the MCT phenotype towards the response seen in CON 

cells (Chapter 5). Previous examination of this model within the research group revealed a 

reduced t-tubular network and transverse-orientation, as well as reduced Ca2+ handling 

ability in the MCT myocardium (Fowler et al., 2015; Stones et al., 2013). This was partially 

restored with β-blocker treatment. The right ventricle (RV) of MCT animals showed a 

blunted β-AR response and a reduction in β-AR binding with ICYP radioligand binding assay 

(Leineweber et al., 2003). The impact of β-blocker treatment of MCT animals on proteins of 

the β-AR cascade or related signalling proteins has not previously been examined. This was 

the focus of the present study.  

Caveolae are crucial for compartmentalisation of β2AR signalling (Rybin et al., 2000; 

MacDougall et al., 2012), with many of the crucial β-AR signalling proteins located within 

buoyant caveolar fractions following sucrose gradient fractionation, or co- 

immunoprecipitating with caveolar proteins (Agarwal et al., 2011; Insel et al., 2005). 

Disruption to caveolae and the caveolin proteins is linked with disorganised cAMP signaling 

from the β2AR in left ventricular (LV) heart failure (Wright et al., 2014; Feiner et al., 2011). 

Indeed much of what is known about changes to caveolae in heart failure has been studied 

in models of LV heart failure. Although there are similarities between ventricles, there are 

also significant differences (e.g embryological origin, pressure development), and 

assumptions must not be made that both ventricles act identically to stress, as this is not 

always the case. In heart failure induced by pulmonary artery hypertension (PAH), β-AR 

abnormalities are mainly isolated to the RV (Seyfarth et al., 2000). When comparing 

increased overload of the RV and LV across multiple studies, structural remodelling of the 

ventricles appears to share some common features (Bristow and Quaife, 2015), with a 

similar degree of down regulation of the β-AR being reported (Mak et al., 2012; Bristow and 

Quaife, 2015). This might predict that similar changes would be seen to the β-AR signalling 

and caveolar proteins in RV as in the LV heart failure model. This premise has also been 

used to argue the use of β-blocker in PAH patients. Changes to caveolae and caveolar 

proteins have not previously been studied in the heart of MCT animals.  
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Here we look at the remodelling of caveolar and β-AR signalling proteins in the MCT animals 

as well as the impact of β-blocker treatment on these changes. At the heart and cellular level 

of MCT animals, treatment with β-blockers improves function. To study if this improvement 

in function is due to restoration of the β-AR signalling signaling proteins and/or changes in 

their regulation by caveolae both protein expression and protein distribution across the 

membrane was studied.  

 

6.2. Methods 

At the designated end-point animals were humanly culled using a listed schedule one 

technique. For whole RV homogenate, hearts were quickly removed and dissected. The RV 

free wall was removed and 100-200 mg of tissue was snap-frozen in liquid nitrogen ready 

for processing at a later date. Frozen sections of RV were homogenised in homogenisation 

buffer 100 mg/mL ((mM) 5 HEPES, 1 EDTA, 5 MgCl2, 0.1% Triton-X100) 5 x 20 s on ice. 

Samples were then centrifuged at 16000 g at 6 oC and supernatant aspirated. Before SDS-

PAGE and Western blot an aliquot of 5 x Laemmli sample buffer was added to samples to 

create a 1x final concentration.  

For sucrose gradient fractionation, hearts were quickly removed and the coronary 

circulation cleared of blood on a Langendorff apparatus through retrograde perfusion with 

Cell Tyrode solution. Hearts were then weighed and RV free wall dissected and ~250 mg 

homogenised in detergent free buffer (500 mM Na2CO3 (pH 11), 1 x protease (Roche Applied 

Science) and phosphatase (Thermo Scientific Pierce) inhibitor cocktails). Samples were 

then sonicated, centrifuged and layered onto a discontinuous sucrose gradient and spun 

overnight (As detailed in Methods 2.8.2). Fractions were then collected (1 mL each) and 

stored at -20 oC until used for Western blotting.  

Total protein concentration was measured in samples using a bicinchoninic acid (BCA) 

assay (as detailed in Methods 2.8.5.1). RV homogenate samples were run on Precast Midi 

Protein Gels (567-1035, 567-1045, 567-1085, BIO-RAD, UK) before transferring to a PVDF 

membrane described in (Methods 2.8.5.2). Samples from sucrose gradients were run on and 

mini gels (Methods 2.8.5.2). Western blotting performed as described in (Methods 2.8.5.2).        
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6.3. Results 

6.3.1. Altered protein expression in right ventricular muscle homogenate  

6.3.1.1. Caveolar proteins 

In RV muscle homogenate from MCT animals there was a significant reduction (~50%) in 

caveolin 1 (Cav 1) protein expression compared with saline animals (CON) (P<0.001) 

(Figure 6-1). Cav 1 protein expression was also significantly reduced in MCT+BB animal 

compared to CON (P<0.01). Similar effects were seen for Caveolin 3 (Cav 3); protein 

expression was significantly reduced in MCT animals compared to CON (P<0.01). MCT Cav 

3 protein expression was also significantly reduced compared with MCT+BB (P<0.05), 

however by comparison with data for Cav 1, there was no difference between MCT+BB and 

CON, suggesting that β-blocker treatment attenuates effects of MCT on Cav 3. Cavin 1 RV 

protein expression was significantly decreased by around 20% in MCT animal compared to 

CON (P<0.05). There was no difference between MCT+BB cavin 1 expression and CON or 

MCT, again suggesting that β-blocker treatment attenuates effects of MCT on cavin 1 

expression. Cavin 4 protein expression was similar in all three groups. 

6.3.1.2. β-adrenergic signalling proteins  

Figure 6-2 summarises changes in expression of the β-AR cascade proteins. β1AR protein 

expression in MCT RV homogenate was significantly reduced by around 30% compared 

with CON (P<0.01). There was no difference in β1AR protein expression between MCT+BB 

and either CON or MCT. In this heart failure model a single band at around 50 kDa was 

observed for the β2AR in Western blot. This contrasts with the double bands seen in the AB 

model (discussed in Chapter 4). The β2AR protein expression levels did not significantly 

differ between the CON and MCT animals. In MCT+BB, β2AR expression was significantly 

reduced compared to CON (P<0.05), with no difference between MCT+BB and MCT. 

Adenylyl cyclase (AC) 5/6 protein expression was significantly reduced by over 50% in MCT 

animals compared to CON (P<0.001). AC 5/6 expression in the MCT group was also 

significantly reduced compared to MCT+BB animals (P<0.01). Expression of the inhibitory 

Gαi 3 subunit was significantly increased in MCT by >100% compared with CON (P<0.001) 

and the Gαi 3 expression was also significantly higher in MCT compared to MCT+BB 

(P<0.001). Compared to CON, MCT RV G -protein receptor kinase 2 (GRK2) protein 

expression was doubled (P<0.001). GRK2 expression in MCT was also significantly 

increased compared to that of MCT+BB animals (P<0.001). 
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Figure 6-1 Caveolar protein expression in right ventricular heart failure 

A. Western blot of right ventricular muscle homogenised in Laemmli sample buffer. 

Expression is normalised to GAPDH and expressed as a percentage of mean CON value, box 

and whisker graph. CON n=6, MCT+BB n=6, MCT n=6 One-way ANOVA, *P<0.05, **P<0.01, 

***P<0.001. B.  Representative Western blot.  
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Figure 6-2 β-adrenergic signalling protein in right ventricular heart failure 

A. Western blot of right ventricular muscle homogenised in Laemmli sample buffer. 

Expression is normalised to GAPDH and expressed as a percentage of mean CON value, box 

and whisker graph. CON n=6, MCT+BB n=6, MCT n=6 One-way ANOVA, *P<0.05, **P<0.01, 

***P<0.001. B.  Representative Western blot.  
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Figure 6-3 Cellular remodelling protein changes in right ventricular heart failure 

A. Western blot of right ventricular muscle homogenised in Laemmli sample buffer. 

Expression is normalised to GAPDH and expressed as a percentage of mean CON value, box 

and whisker graph. CON n=6, MCT+BB n=6, MCT n=6 One-way ANOVA, *P<0.05, **P<0.01, 

***P<0.001. B.  Representative Western blot.  
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To summarise, MCT resulted in a reduction in expression of β1AR and AC and an increase in 

expression of Gαi 3 and GRK2 proteins, all these changes were normalised to some extend 

by β-blocker treatment. 

6.3.1.3. Cellular remodelling proteins 

Figure 6-3 shows that expression of endothelial nitric oxide synthase (eNOS) protein in the 

RV was similar in all three groups (P>0.05). The expression of caspase-3 was significantly 

increased in the MCT compared to CON (P<0.01). Caspase-3 expression was also 

significantly increased in MCT+BB compared to CON (P<0.05). We could not detect 

fragments of cleaved (activated) caspase-3 in any group. Bridging integrator 1 (BIN 1) 

protein expression within the RV homogenate was significantly reduced in the MCT group 

compared to CON (P<0.01). BIN 1 expression was also significantly decreased in MCT+BB 

compared to CON (P<0.05). To summarise, expression of proteins linked with remodelling 

of the heart during failure progression were reduced in the MCT group compared with CON, 

but treatment with metoprolol had no significant effect on this.  

6.3.2. Membrane protein distribution changes in right heart failure 

Using data from fractionated samples, the distribution of membrane proteins has been 

analysed in two ways which give different results and have different meanings (See Figures 

6-4). The first (A) is by normalising each individual blot by signal intensity; on a single blot 

the total amount of protein across the fractions 4-12 is equally loaded in CON, MCT+BB and 

MCT, as calculated by BCA assay. Comparisons were made across animals which were time-

matched to days post injection. Values are given as absolute expression percentage 

normalised to the highest intensity band on the individual blots; this enabled comparison 

across multiple blots and allowed analysis of changes in expression within specific fractions. 

The second way (B) is to normalise to distribution across the membrane in individual 

animal hearts; by calculating the total signal expression per heart and calculating 

expression in different fractions as a percentage of this. Values are given as expression in 

each fraction as a percentage of the sum of expression across all fractions; this enabled the 

analysis of membrane distribution to be studied. 
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6.3.2.1. Caveolae proteins 

In CON the majority of the Cav 3 expression is located within the buoyant fractions (fraction 

4+5). The expression of Cav 3 in the caveolar containing fractions was significantly 

decreased in MCT animals compared to CON (Figure 6-4. A) (P<0.01). There was no 

difference in expression in the other fractions. Membrane distribution of Cav 3 changed in 

the MCT animals, with a significant reduction in the proportion present in the buoyant 

fraction (P<0.01) and a significant increase in the heavy fractions (P<0.05) compared to 

CON RV (Figure 6-4. B). There was no difference in Cav 3 distribution in the buoyant or 

heavy fractions in MCT+BB compared with CON. To summarise there was a reduction in Cav 

3 expression within the buoyant fraction and a change in membrane distribution in MCT 

animals which is partially restored with β-blocker treatment. 
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Figure 6-4 Caveolin 3 (Cav 3) protein membrane distribution in right ventricular 

heart failure 

Western blot of right ventricular muscle homogenised in Na2CO3 buffer and fractionated on 

a sucrose gradient. Equal volumes of each fraction (4, 5, 8 and 9-12) were loaded with equal 

total protein loading between MCT and aged matched CON and MCT+BB. A. Individual 

Western blot comparing age-matched CON, MCT+BB and MCT were normalised to protein 

expression intensity on each membrane, box and whisker graph B. Protein expression in 

fractions was expressed as a percentage of total expression from all fractions (4-12) box 

and whisker graph. CON n=6, MCT+BB n=6, MCT n=6 C. Representative Western blot. 
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6.3.2.2. β-adrenergic signalling proteins 

With the β1AR distribution, similar problems occurred with the fractioned samples as 

previously experienced in the AB animals. After several attempts only three blots could be 

used for analysis. These gave varying results when analysing signal intensity within 

individual blots. There was no significant difference between the groups when data were 

presented as normalised expression (Figure 6-5. A). However, when data were presented 

as normalised distribution a different pattern emerged (Figure 6-5. B). There was a 

significant shift in the distribution of β1AR across the different fractions, from the buoyant 

fraction to the heavy fraction in MCT (P<0.01). This shift was also significant in the MCT 

group compared to MCT+BB (P<0.001). This would suggest a redistribution of β1AR from 

the caveolar membranes to the non-caveolar membranes in MCT. For the β2AR there was 

no significant change in expression levels within the different fractions and no significant 

change in distribution between the different fractions between groups (Figure 6-6). 

There was a significant decrease in adenylyl cyclase (AC) 5/6 expression within the caveolar 

fraction in MCT animals compared to CON (P<0.05) with no difference in heavy fraction 

expression (Figure 6-7. A). There was also a significant decrease in the expression of AC 

within the buoyant fractions in the MCT+BB animals compared to CON. For the Gαi 3 

expression there was a trend for an increase in the MCT buoyant caveolar fractions 

compared to CON (P=0.19) (Figure 6-8. A). A significant increase in the expression of Gαi 3 

in the caveolar fractions in MCT+BB compared to CON was shown (P<0.05). In the heavy 

fractions there was a significant increase in expression in the MCT animals compared to 

CON (P<0.01). There was a trend for an increase in the G-protein receptor kinase (GRK) 2 

expression levels in the heavy fraction in MCT compared to CON (P=0.064)(Figure 6-9. A). 

MCT+BB show a significant increase in GRK2 expression in the heavy fraction compared to 

CON (P<0.01). For the AC 5/6, Gαi 3 and GRK2 the proportion of protein found in different 

membrane fractions significantly differ between the three groups. This highlights the 

advantages of studying distribution using both methods. Although there may be a reduction 

of expression observed within the caveolae/buoyant fractions (as seen in AC 5/6), as the 

majority of the protein expression is located here, changes in distribution may be too small 

to cause significant differences.  
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Figure 6-5 β1 adrenergic receptor (β1AR) protein membrane distribution in right 

ventricular heart failure 

Western blot of right ventricular muscle homogenised in Na2CO3 buffer and fractionated on 

a sucrose gradient. Equal volumes of each fraction (4, 5, 8 and 9-12) were loaded with equal 

total protein loading between MCT and aged-matched CON and MCT+BB. A. Individual 

Western blot comparing age matched CON, MCT+BB and MCT were normalised to protein 

expression intensity on each membrane, box and whisker graph B. Protein expression in 

fractions was expressed as a percentage of total expression from all fractions (4-12) box 

and whisker graph. CON n=3, MCT+BB n=3, MCT n=3  
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Figure 6-6 β2 adrenergic receptor (β2AR) protein membrane distribution in right 

ventricular heart failure 

Western blot of right ventricular muscle homogenised in Na2CO3 buffer and fractionated on 

a sucrose gradient. Equal volume of each fraction (4, 5, 8 and 9-12) were loaded with equal 

total protein loading between MCT and aged-matched CON and MCT+BB. A. Individual 

Western blot comparing age matched CON, MCT+BB and MCT were normalised to protein 

expression intensity on each membrane, box and whisker graph B. Protein expression in 

fractions was expressed as a percentage of total expression from all fractions (4-12) box 

and whisker graph. CON n=6, MCT+BB n=6, MCT n=6  
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Figure 6-7 Adenylyl cyclase (AC) 5/6 protein membrane distribution in right 

ventricular heart failure 

Western blot of right ventricular muscle homogenised in Na2CO3 buffer and fractionated on 

a sucrose gradient. Equal volumes of each fraction (4, 5, 8 and 9-12) were loaded with equal 

total protein loading between MCT and aged-matched CON and MCT+BB. A. Individual 

Western blot comparing age matched CON, MCT+BB and MCT were normalised to protein 

expression intensity on each membrane, box and whisker graph B. Protein expression in 

fractions was expressed as a percentage of total expression from all fractions (4-12) box 

and whisker graph. CON n=6, MCT+BB n=6, MCT n=6  
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Figure 6-8 Gαi3 protein membrane distribution in right ventricular heart failure 

Western blot of right ventricular muscle homogenised in Na2CO3 buffer and fractionated on 

a sucrose gradient. Equal volume of each fraction (4, 5, 8 and 9-12) were loaded with equal 

total protein loading between MCT and aged-matched CON and MCT+BB. A. Individual 

Western blot comparing age matched CON, MCT+BB and MCT were normalised to protein 

expression intensity on each membrane, box and whisker graph B. Protein expression in 

fractions was expressed as a percentage of total expression from all fractions (4-12) box 

and whisker graph. CON n=6, MCT+BB n=6, MCT n=6  
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Figure 6-9 G-protein receptor kinase 2 (GRK2) protein membrane distribution in 

right ventricular heart failure 

Western blot of right ventricular muscle homogenised in Na2CO3 and fractionated run on a 

sucrose gradient. Equal volumes of each fraction (4, 5, 8 and 9-12) were loaded with equal 

total protein loading between MCT and aged matched CON and MCT+BB. A. Individual 

Western blot comparing age-matched CON, MCT+BB and MCT were normalised to protein 

expression intensity on each membrane, box and whisker graph B. Protein expression in 

fractions was expressed as a percentage of total expression from all fractions (4-12) box 

and whisker graph. CON n=6, MCT+BB n=6, MCT n=6  
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6.4. Discussion 

As with the functional measurements of β-AR responsiveness made in isolated myocytes, 

protein expression of some caveolar and β-AR signalling proteins in the MCT animals 

treated with β-blocker is improved towards expression levels seen in CON animals. The MCT 

RV failure model has previously been extensively characterised within the research group 

(Benoist et al., 2011; Benoist et al., 2012; Benoist et al., 2014; Stones et al., 2013), although 

the caevolar and β-adrenergic signalling proteins have not been studied to date. Metoprolol 

treatment of these MCT animals has been reported to improve survival and Ca2+ handling 

dysfunction (Fowler et al. in submission).  

Changes to the βAR and its signalling proteins in RV heart failure using the MCT model have 

been previously been reported. A significant reduction in the β-AR density has been 

observed in isolated right ventricular myocytes (Leineweber et al., 2003), seen specifically 

in the β1AR population which significantly changes the β1AR:β2AR ratio within the RV 

myocytes. Downstream production of cAMP was measured in response to stimulation with 

isoprenaline, which was significantly reduced in MCT treated animals (Leineweber et al., 

2003). Similar results have been observed in intact right ventricular muscle (Kasahara et 

al., 1997; Seyfarth et al., 2000). The 50% reduction in β-AR density as measured with (−)-

[125I]-iodocyanopindolol (ICYP) is not dissimilar to the reduction in protein expression 

observed within the present study (although Western blotting is semi-quantitative). The β-

blocker treated animals show a stepped improvement of β1AR expression with no difference 

compared with either the CON or MCT group. There is a shift in distribution of the β1AR 

across different membrane fractions in the MCT animals, which appears to be recovered 

back to CON distribution with β-blocker treatment. This would suggest that selective 

blocking of the β1AR aids, in part, by restoring β1AR expression and distribution within the 

membrane. Expression of AC 5/6 in the RV is reduced in the MCT animals, which is 

comparable with previous studies showing a reduction in cAMP production in MCT animals 

(Leineweber et al., 2003). Again, this change in expression in MCT is recovered with β-

blocker treatment. Expression and membrane distribution of the β2AR receptor does not 

change in the MCT animals compared to CON,  similar to previous been reports (Seyfarth et 

al., 2000). This links with functional data showing no difference in fractional shortening in 

response to selective stimulation of the β2AR in isolated cardiac myocytes from MCT 

compared to CON (Chapter 5). Most LV heart failure models similarly see no change in β2AR 

expression, although some have reported a change in the β2AR distribution moving from 
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caveolae to non-caveolar sarcolemmal membranes resulting in a change in β2AR cAMP 

production (Wright et al., 2014).  

Increased sympathetic drive and excessive stimulation of β-ARs as seen in both RV (Velez-

Roa et al., 2004) and LV (Floras, 2009) heart failure patient studies in humans, leads to a 

decrease in both mRNA and protein expression of the β1AR (Bristow et al., 1982) as well as 

G-protein receptor uncoupling (Ungerer et al., 1993b) in the myocardium. Desensitization 

of the β1AR is caused by Gβγ activation of the GRK2 which phosphorylates the β1AR causing 

it to be targeted by β-arrestin preventing further activation of the receptor and receptor 

internalization (Lohse et al., 1990); elevated levels of GRK2 have been reported in human 

HF patients (Ungerer et al., 1993b). In the present study there in an increase in GRK2 protein 

expression in the RV of the MCT animals; this was significantly reduced with metoprolol 

treatment. Seyfarth et al. have shown in the same model there is a reduction β1AR and 

uncoupling from its functional G-protein subunit, as well as a reduction in the Gαs protein in 

the RV (Seyfarth et al., 2000). Protein expression of the Gαs was not measured in this study, 

although there was a significant increase in expression of the Gαi3 in the MCT animals, 

which again was significantly reduced with metoprolol treatment. 

6.4.1. Caveolar changes in right ventricular failure 

The reduction in Cav 1, Cav 3 and Cavin 1 expression in RV homogenate of MCT animals 

would suggest a decrease in caveolae number within this chamber. However due to time 

constraints it was not possible to show this using electron microscopy. Cav 3 and cavin 1 

protein expression levels are partially recovered with β-blocker treatment suggesting a 

partial restoration of the caveolar microdomain. In the double KO of Cav 1 and Cav 3, 

increased RV wall thickness has been reported (Park et al., 2002). LV wall thickness is also 

increased in double Cav1/3 KO animals; interestingly there was no significant increase in 

LV thickness in the singular Cav 1 null or Cav 3 null animals compared with wild type. This 

may suggest that both Cav 1 and Cav 3 are needed within normal myocardial function. 

However, it should be noted that in other studies of KO mice, Cav 1 or Cav 3 KO both showed 

an increase in RV wall thickness (De Souza et al., 2005).  

The shift in the distribution of Cav 3 in the fractionated samples from the MCT animals, and 

the reduction of Cav 3 expression in the buoyant fraction would also suggest a reduction in 

caveolae. A significant reduction in the buoyant fraction and an increase in the heavy 

fraction of Cav 3 was reported in an model of myocardial ischemia and myocardial infarction 

(Ballard-Croft et al., 2006) (Ratajczak et al., 2003). This was also paired with a reduction of 
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cholesterol content in the buoyant fractions, as well as a reduction in Cav 1 expression 

suggesting a reduction in caveolae. Interestingly in both these models there was no 

difference in the total Cav 3 expression, unlike what was seen in this MCT model of heart 

failure. This could be due to the nature of the heart failure models use; myocardial ischemia 

and myocardial infarction cause regional variation within the ventricles resulting from an 

acute initial insult to the heart. The MCT model is a whole ventricle pressure overload which 

is expected to cause homogenous changes to the ventricle, so homogenous reduction in Cav 

3. Changes to caveolae or caveolar proteins within the RV of PAH patients or animal models 

have not previously been studied. Our understanding of changes in caveolae in heart failure 

relies on what has been studied within the LV, which may not be applicable to the right 

ventricle. 

 There was no change in muscle specific cavin 4 expression in the MCT or MCT+BB animals. 

Increased cavin 4 expression has previously been linked with an increase in hypertrophy 

and fibrosis within the heart (Ogata et al., 2014). The MCT animal model is a fast onset 

model of heart failure and although there is an increase in RV and heart weight to body 

weight ratios and an increase in cellular hypertrophy there is no evidence of increased 

fibrosis (Fowler, 2016, in submission) (Fowler and 2016). The membrane distribution of 

the cavin proteins could not be studied in this model as described previously (Chapter 4) 

due to the presence of multiple bands instead of a single band at 50 kDa on Western blotting. 

Interestingly, it was noted is that degradation of the 50 kDa band was most prominent in 

the CON animals. The reason for degradation of the cavin proteins within the fractionated 

samples is currently unknown.  

6.4.2. β-AR and the microenvironment 

Scaffolding proteins are important for ensuring correct protein grouping at the sarcolemma 

to provide effective and accurate downstream β-AR signalling. Caveolin and A-Kinase 

Anchoring Proteins (AKAP) have both been shown to play important scaffolding roles in 

aiding regulation of the βAR response (Kritzer et al., 2012; Insel et al., 2005).  

Caveolin isoforms all have a conserved region toward the N terminus, the caveolin 

scaffolding domain (CSD), which allows interaction with other proteins (Couet et al., 1997). 

The CSD can bind to the G-protein α subunit, GRK2 and protein kinase A (PKA). The Cav 3 

CSD sequence binds both AC5 and phosphodiesterase (PDE) 4 which acts to restrict the 

cAMP being produced (Timofeyev et al., 2013). Through recruitment and binding of 

additional proteins, caveolins aid in controlling β-AR signalling (Rybin et al., 2003) and have 
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a direct role in the compartmentalization of β2AR signal (MacDougall et al., 2012). 

Disruption of these scaffolding proteins (Cav 3 and AKAP) has been observed in human 

heart failure (Zakhary et al., 2000; Feiner et al., 2011) and linked with ventricular 

dysfunction. Within the MCT model we observe a change in distribution of the Cav 3 from 

the buoyant fraction to the heavy fraction. This may then in turn affect the distribution of 

other proteins within the buoyant fractions. The distribution of AC 5/6 does not change 

between the three groups, but there is a significant decrease in AC 5/6 expression within 

the buoyant fraction of the MCT and MCT+BB animals. This is due to the majority of the AC 

5/6 expression locating within the buoyant fractions, which may result in any changes in 

membrane distribution being too small to reach significance in this sample size. Reduction 

in AC 5/6 within caveolae may have an impact on downstream cAMP production and 

suggest uncoupling/disruption of the β-AR signalling cascade. 

The distribution of the β-AR and their signalling proteins from sucrose gradient 

fractionations is highly varied from study to study (Rybin et al., 2000; MacDougall et al., 

2012; Balijepalli et al., 2006). Some report that the β2AR is solely located within the buoyant 

fractions, while others report a more diffuse distribution. This could be, as mentioned 

previously (Chapter 4), due to the antibody recognition. Distribution of the β2AR between 

the different fractions of the sucrose gradient was the same in both CON (MCT model) and 

Sham (AB model) animals. There are also mixed reports of the location of β1AR within 

different fractions of sucrose gradients. Sucrose gradient fractionation shows a proportion 

of β1AR located within the caveolar fractions in some studies (Balijepalli et al., 2006; Rybin 

et al., 2000; Ostrom et al., 2001), while others report that it is only found on non-caveolar 

sarcolemmal membranes (Nikolaev et al., 2010). In the present study the proportion of the 

β1AR location in the buoyant fractions was slightly higher than the proportion of β2AR in 

these fractions. Although there was no difference in expression levels of the β1AR between 

fractions in any of the three groups, there was a shift in the distribution of β1AR in the MCT 

animal compared to CON, which was restored metoprolol treatment. The difference in 

results was partly due to the variability within the β1AR expression between different 

Western blots. 

6.4.3. Remodelling in the RV 

PKA signalling is not the only downstream pathway from the β1AR, the β1AR also activates 

the mitogen-activated protein kinase MAPK pathway (Bogoyevitch et al., 1996) which 

promotes extracellular signal-regulated kinase (ERK) and janus kinase 2 (JAK) signalling 

resulting in hypertrophy and remodelling of the myocardium. Elevated levels of ERK and 

https://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase
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JAK have both been observed in a model of heart failure induced by chronic ISO treatment 

in the rat (Takemoto et al., 1999; Zhang et al., 2005). Myocyte hypertrophy is initially a 

compensatory mechanism to cope with the increased afterload placed on the heart, but 

increased inflammation (Rondelet et al., 2012) and fibrosis (Vonk-Noordegraaf et al., 2013) 

eventually leads to decompensation of the RV and RV failure. Prolonged β1AR stimulation 

can also induce apoptotic signalling in a PKA independent manner through the 

Ca2+/calmodulin pathway (Zhu et al., 2003). As mentioned previously there is no increase 

in fibrosis found within this model of MCT (Fowler and 2016), which may be due to the short 

onset of this model and limited time the failing heart is under stess.  

Other G-protein coupled receptors which activate hypertrophic signalling include the α1AR, 

which is also able to active ERK signalling (Ogata et al., 2014). When a selective β1-blockers 

was used to treat a model of excess ISO stimulation, there was a significant reductions in 

fibrosis of the heart (Brouri et al., 2004). Metoprolol treatment may be, indirectly, having 

an effect on aspects of remodelling due to stimulation of other receptors and effect receptor 

cross-talk.  

6.4.4. Molecular mechanisms of metoprolol 

The use of β-blockers to successfully treat LV heart failure patients and pulmonary artery 

hypertensive animal models has been reported, each proposing mechanisms of how this 

may be achieved (Böhm et al., 1997; Bogaard et al., 2010; Group, 1999; Heilbrunn et al., 

1989). However many aspects of the changes which occur with β-blocker treatment are not 

fully understood. Not only has metoprolol been reported to aid in increasing β-adrenergic 

density, it also helps to restore the cAMP response to stimulation through the PDE3 

inhibitor milrinone (Böhm et al., 1997) via β-AR independent effects. This could be through 

the re-coupling of the β-AR to Gαs protein subunits and AC, as β-blocker treatment has also 

been shown to reduce GRK2 activity and expression (Iaccarino et al., 1998). These works 

demonstrated that long term activation of the β-AR leads to increased levels of GRK2 mRNA, 

protein and activity. In the present study, GRK2 protein expression is significantly increased 

in the MCT animals, and this effect is reverse towards CON levels with β-blocker treatment.  

Metoprolol treatment of the MCT model within the group has previously been reported to 

improve Ca2+ handling by restoring SR content and reducing Ca2+ waves in isolated cardiac 

myocytes (Fowler and 2016). The Ca2+ wave synchronicity within the isolated cardiac 

myocytes was also disrupted in the MCT animals, which was restored with β-blocker 

treatment. This, in part, is suggested to be linked with the restoration of the t-tubular system 
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(Fowler and 2016). Similar restoration of wave propagation was seen in metoprolol 

treatment of a genetic mouse model of heart failure (sympathetic hyperactivity-induced 

heart failure)(Bartholomeu et al., 2008). PP1 expression was increased in this model of 

heart failure which was returned towards control levels with metoprolol treatment. A 

reduction in both CaMKII and troponin I phosphorylation were also observed. Within 

isolated cardiac myocytes metoprolol acts to prevent the reduction in β-AR membrane 

receptor density and preserve the response to isoprenaline stimulation after incubation 

with isoprenaline (Flesch et al., 2001). This would suggest that selective blocking of the 

β1AR prevents against overstimulation and receptor down regulation.     

In the setting of diabetes induced heart dysfunction and failure, metoprolol treatment has 

been shown to have reverse remodelling effects on the heart (Sharma et al., 2011). These 

works showed that metoprolol attenuated the reduction in myocardial Cav 3 expression and 

was linked with prevention of the excessive activation of caspase-3 which is suggested to 

be Cav 3 dependent. In diabetes, treatment with the β-blocker metoprolol is suggested to 

decrease the overstimulation of the cAMP/PKA signalling pathway (Sharma and McNeill, 

2011). In the present study metoprolol treatment of MCT animals aids in restoration of the 

Cav 3 protein expression and membrane distribution towards CON levels. In Sharma et al. 

metoprolol treatment was suggested to work by Cav 3 preventing the caspase-3 from being 

activated by sequestering away from its targets (Sharma et al., 2011). There is an elevation 

in protein expression of caspase-3 in MCT and MCT+BB. Although there were still high levels 

of caspase-3 expression in MCT+BB, with the restoration of Cav 3, this may aid in preventing 

excess activation. Due to time restriction the distributions of caspase-3 was not studied. 

Furthermore, cleaved (activated) caspase-3 could not be detected in samples from any 

groups, meaning a more direct comparison with the effect of metoprolol treatment on 

diabetes cannot be made. Cav 3 expression has also been linked with preventing cell death 

within vascular smooth muscle cells exposed to oxidized low density lipoproteins (oxLDL), 

again linked with a reduction in cleaved caspase-3 (Gutierrez-Pajares et al., 2015). However, 

in this case, the suggested protective mechanism was by Cav 3 inhibition of Oxidized low-

density lipoprotein receptor 1 (OLR1) activating down downstream signalling pathways to 

induce cell death (Gutierrez-Pajares et al., 2015).  
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7. Chapter 7. The role of Caveolin 1 in protein membrane 

distribution  

 

7.1. Introduction 

It is well known that caveolin 1 (Cav 1) is not required for the formation of caveolae within 

the cardiac myocyte, as Cav 1 knock-out (KO) animals still form caveolae (Park et al., 2002). 

This may be one reason why several groups have put forward the view that Cav 1 is not 

expressed within the cardiac myocyte (Taniguchi et al., 2016; Wunderlich et al., 2006). 

However, Cav 1 protein expression have been reported several times within cardiac 

myocytes of different species (Yang et al., 2010; Robenek et al., 2008; Kozera et al., 2009). 

Although Cav 1 does not regulate the formation of caveolae in cardiac myocytes, this does 

not rule out a possible functional role within the caveolae. To date there is only a small 

handful of studies which has investigated Cav 1 and the functional role it may play within 

the cardiac cell (Bai et al., 2016; Patel et al., 2007).  

In both the left ventricular (LV), aortic banding, and right ventricular (RV), pulmonary 

artery hypertension, models of heart failure Cav 1 protein expression is reduced in 

myocardial homogenate samples compared to respective control animals (Chapter 4, 

Chapter 6). Within the LV model of heart failure a correlation was observed between 

reduced Cav 1 protein expression and a decrease in heart function, as measured by ejection 

fraction (Chapter 4). There was also a trend for a negative correlation between Cav 1 protein 

expression and an increase in β2AR expression within the buoyant fractions (fractions 4-5). 

These data suggest that there may be a link between Cav 1 expression and the β-ARs in the 

heart. Within the present study, Cav 1 protein expression was solely found within the 

buoyant fractions run on a discontinuous sucrose gradient fractionation, suggesting the Cav 

1 is only associated with caveolae. It should also be noted that other cell types within the 

heart (endothelial cells, fibroblasts, vascular smooth muscle cells) also express Cav 1.  

A collaboration was established with a group in Manchester which provided the 

opportunity to study Cav 1 KO mouse hearts. Due to the nature of the tissue fixation (frozen 

tissue), functional studies of the heart could not be performed, however, assessment of 

protein expression and membrane distribution was possible. The location of β-AR signalling 

proteins within the membrane can play an important role in cardiac myocyte function 

(Wright et al., 2014; Rybin et al., 2000). Cav 3 has previously been shown to play a role in 
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compartmentalising a number of different proteins involved in β-AR signalling, although the 

same has not been done for Cav 1. To test the hypostasis that Cav 1 plays a role in 

orchestrating the location of the membrane location of the β-AR cascade proteins and 

caveolar proteins, membrane distribution was studied using a sucrose gradient 

fractionation.  

 

7.2. Methods 

Due to the smaller size of the mouse heart ~100 mg, in comparison to the rat heart 1-2 g, all 

of the ventricular tissue (right ventricle, septum and left ventricle) was used for the sucrose 

gradient fractionation.  

7.2.1. Mouse heart sucrose gradient fractionation  

The Cav 1 KO mouse hearts, along with littermate wild type hearts, were a kind gift from Dr 

Toryn Poolman at the University of Manchester. C57BL/6 mice, 8-10 weeks old, were killed 

via an overdose of pentobarbital. For the test sucrose gradient, spare cardiac tissue from 20 

week old wild-type C57BL/6 mice (University of Leeds) was used.   

The established sucrose gradient fractionation protocol (Methods section 2.8.2) needed to 

be tested for its suitability and adapted for use of murine tissue. After an initial run on 

mouse tissue it was predicted that over or under sonication were giving misleading results. 

Three different sonication protocols were then tested on spare mouse hearts to see the 

impact on protein distribution between fractions. Snap frozen hearts (~100 mg) were 

partially defrosted to be able to remove the atria and aorta before ventricular tissue was 

quickly cut into smaller pieces and homogenised in detergent-free Na2CO3 buffer (detailed 

in Methods 2.8.1) 6 x 20 s. Samples were then further sonicated 3, 6 or 9 x 10 s before being 

centrifuged at 5000 g for 30 min at 4oC. The supernatant was layered onto a scaled-down 

discontinuous sucrose gradient (total volume reduced from 12 mL to 4.8 mL (0.8 mL 45% 

sucrose and sample, 1.6 mL 35% sucrose, 1.6 mL 5% sucrose)). A SW55Ti rotor, which 

works with 5 mL swing bucket tubes, was used instead of the SW40 which contained 12mL 

swing buckers tubes. Sucrose gradients were centrifuged at 45000 rpm for 15 h at 4 oC 

(SW55Ti rotor, Beckman UK); this subjects the sucrose gradient to the equivalent g force as 

produced in the larger rotor as calculated by Beckman G-force calculator. After 

centrifugation, 12 fractions were collected from the top using a Gilson pipette (p1000) (400 

µL each), then frozen at -20 oC until required. A BCA assay was used to measure the protein 
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concentration and an Amplex Red® assay used to measure cholesterol content within each 

fraction (as detailed in Methods 2.9.3.1 and Methods 2.9.1 respectively). SDS-PAGE and 

Western blotting were performed on samples as detailed in Methods 2.9.3.2). 

7.2.2. Limitations 

Snap frozen hearts from the University of Manchester had varying amounts of blood within 

the heart. The atria and aorta were removed and most of the blood cleared before whole 

ventricular tissue (right ventricle, septum and left ventricle) was homogenised in detergent 

free buffer. The whole ventricular tissue was used due to the limit in tissue size (~100mg). 

KO of Cav 1 is known to cause cardiac hypertrophy, fibrosis and dysfunction (Murata et al., 

2007; Zhao et al., 2002). This would cause an increase in extracellular matrix, and possibly 

an increase in other non-myocyte cells within the heart. For this reason, and because of the 

addition complication of unknown amounts of blood in the samples, total expression across 

the different fractions (see Chapter 6 for example) was not compared. Due to a limited 

sample number the same statistical analysis, comparison of target protein expression in 

different fractions by a two-way ANOVA (as performed in Chapter 6), was not possible on 

these samples. Therefore only the trend for differences between membrane distribution of 

proteins in WT and KO mouse heart can be reported, without statistical significance.  
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7.3.  Results  

7.3.1. Mouse heart sucrose gradient test run 

Sucrose gradient fractionation of mouse tissue has not previously been performed within 

the research group. When a scaled down version of the rat protocol (described in Methods 

2.8.2) was used for the mouse heart, the distribution of specific proteins in the gradient did 

not fit with the distribution previously seen. It was thought that due to a smaller volume of 

solution being used (because of the smaller size of the mouse heart compared to rat) the 

samples may have been over-sonicated. Sonication is an important step within the sucrose 

gradient fractionation protocol (Waugh et al., 2011; Smart et al., 1995); samples need to be 

sonicated enough to break up the membrane into fragments which are small enough to 

separate caveolar membrane from the rest of the sarcolemma, without completely 

fragmenting the membrane (Macdonald and Pike, 2005). 

Three different sonication protocols were used (n=2 hearts) to test the impact on the 

distribution of different proteins across the membrane. Membrane protein and cholesterol 

content in the different fractions is depicted in Figure 7-1. Fractions 1 and 2 were not 

studied; no protein was detected in these fractions as lipid rich membrane fractions do not 

float to this level in detergent free fractionation (Smart et al., 1995; Song et al., 1996a). There 

was a reduction in protein concentration and cholesterol concentration in the buoyant 

fractions (fraction 4 and 5) from the 9 x 10 s protocol compared to the 3 x 10 s and 6 x 10 s 

protocols. This could suggest that 9 periods of 10 s sonication is over-sonicating the samples 

resulting in a redistribution of caveolar/membrane raft proteins and cholesterol to the 

heavy fractions.  

Figure 7-2 shows the change in protein expression distribution of Cav 3, hydroxyacyl-CoA 

dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), 

alpha subunit (HADHA) and clathrin heavy chain (clathrin HC) with the different sonication 

protocols. Protein distribution of HADHA (a marker for mitochondria), and clathrin HC (a 

marker for non-caveolar membrane) are similar across the different protocols and is 

comparable to what has previously been observed (Wypijewski et al., 2015). The largest 

difference between protocols was seen in the membrane distribution of Cav 3. In samples 

sonicated for 3 x 10 s there was an average of 40% of Cav 3 located within the buoyant 

fractions, while those sonicated for 6 x 10 s and 9 x 10 s had an average of 22% and 18% in 

the buoyant fractions respectively. The Cav 3 distribution following 3 x 10 s is most 

consistent with previous reports in the heart using a detergent-free sucrose gradient 
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fractionation in the rat (Wypijewski et al., 2015; Calaghan et al., 2008). For this reason the 

3 x 10 s sonication protocol was implemented in all subsequent experiments with mouse 

tissue.  Caveolin 1 KO hearts 

The Cav 1 KO hearts came from global Cav 1 KO mice. Hearts from wild type (WT) littermate 

mice were used as a control. Cav 1 KO was confirmed from heart muscle homogenate 

samples not used in the sucrose gradient fractionation (Figure 7-3). In WT and KO hearts 

total protein distribution between fractions was almost identical, and there was no marked 

change in the distribution of the clathrin HC and HADHA proteins (Figure 7-4). Expression 

of the Clathrin HC and HADHA across the different fractions was also similar to that seen in 

the test run using the 3 x 10 s sonication protocol.  
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Figure 7-1 Protein and cholesterol distribution in fractions from different sonication 

protocols using mouse heart 

Three different sonication protocols were used, 3 x 10 s, 6 x 10 s, and 9 x 10 s, (n=2), Data 

are expressed as mean ± SEM.  

A. Protein concentrations in different fractions as measured by a BCA assay B. Cholesterol 

concentrations in different fractions as measured by an Amplex Red assay.  
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Figure 7-2 Protein distribution of membrane compartment markers following three 

different sonication protocols in house heart 

Western blot of three different sonication protocols were used, 3 x 10 s, 6 x 10 s, and 9 x 10 

s, (n=2), Data are expressed as mean ± SEM. A. Distribution of Caveolin 3 (Cav 3) protein 

expression B. Distribution of HADHA protein expression C. Distribution of clathrin heavy 

chain (clathrin HC) protein expression.  
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Figure 7-3 Western blot confirming Cav 1 KO 

A. Ventricular muscle homogenate from wild type (WT) mice and caveolin 1 (Cav 1) knock-

out (KO) mice, WT n=3, KO n=3. B. Ventricular muscle homogenate distribution from 

sucrose gradient fractionation. Non-specific band seen at 25 kDa.  
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7.3.1.1. Caveolar protein distribution 

Figure 7-5 shows the membrane distribution of the caveolar proteins in WT and Cav 1 KO 

hearts. The majority of Cav 3 expression (30-50%) is located within the buoyant fractions 

(fractions 4-5) in both the WT and KO hearts. There was no significant difference in 

percentage expression of Cav 3 within each fraction between groups; however there was a 

greater variation in Cav 3 expression in buoyant fraction 4 of the KO hearts compared with 

WT. In the Western blot of the cavin 1 fractionated samples a single band at 50 kDa was 

observed. Cavin 1 expression is mainly located within the heavy fractions (fraction 9-12), 

with a smaller percentage located within the buoyant fractions (5-10% in WT and 3-9% in 

KO). The cavin 1 distribution across the fractions is similar between groups, apart from 

fraction 4 which has slightly less in the KO (mean 1.93% ± 0.705 SEM) compared to the WT 

(mean 3.74% ± 0.350 SEM), although this was not significantly different. Western blot of 

cavin 4 expression showed a doublet band at 50 kDa (close to the predicted molecular 

weight). The distribution of cavin 4 is unlike any of the other proteins studied before, with 

highest expression in fractions 5-7. Cavin 4 membrane distribution, as measured with a 

discontinuous sucrose gradient, has not been reported in the literature before. Around 60% 

of the cavin 4 expression is located within these fractions in both KO and WT. The 

distribution of cavin 4 in all fractions was similar in both groups. The Western blot of cavin 

1 and cavin 4 showed bands which were different to what had previously been observed in 

fractionated samples of rat tissue (Chapter 4 and Chapter 6). Previous Western blots of 

fractionated samples, cavin 1 and cavin 4, showed multiple bands below 50 kD and often no 

band present at 50 kDa. The reason for a single band at 50 kDa in the murine samples was 

proposed to be the limited time tissue spent in storage. In the KO mouse experiments time 

from initial homogenisation in the detergent free buffer to sonication and running in a 

sucrose gradient was very short (one day), where previous samples were stored in the 

Na2CO3 buffer for longer periods of time (1 month – 2 years) before processing.  
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Figure 7-4 Distribution of total protein and membrane compartment markers in wild 

type (WT) and Cav 1 knockout (KO) mice 

Western blot of ventricular muscle homogenate from WT mice and Cav 1 KO mice, (n=3), 

Data are presented as mean ± SEM. A. Protein concentrations in different fractions as 

measured by a BCA assay B. Distribution of HADHA protein expression C. Distribution of 

clathrin heavy chain (clathrin HC) protein expression 
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7-5 Caveolar protein membrane distribution markers in wild type (WT) and Cav 1 knockout (KO) mice 

Western blot of ventricular muscle homogenates from WT mice and Cav 1 KO mice, (n=3), Data are presented as mean ± SEM A. Distribution of Caveolin 

3 (Cav 3) protein expression B. Distribution of cavin 1 protein expression C. Distribution of cavin 4 protein expression.  

 

C a v  3

F ra c t io n s

P
r
o

te
in

 e
x

p
r
e

s
s

io
n

 (
%

 o
f 

to
ta

l 
e

x
p

re
s

s
io

n
)

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0
W T

KO

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

0

5

1 0

1 5

2 0

2 5

C a v in  1

F ra c t io n

P
r
o

te
in

 e
x

p
r
e

s
s

io
n

 (
%

 o
f 

to
ta

l 
e

x
p

re
s

s
io

n
)

W T

KO

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

0

5

1 0

1 5

2 0

2 5

3 0

C a v in  4

F ra c io n

P
r
o

te
in

 e
x

p
r
e

s
s

io
n

 (
%

 o
f 

to
ta

l 
e

x
p

re
s

s
io

n
)

W T

KO

A B C 



169 

 

7.3.1.2. β-adrenergic signaling protein distribution  

Figure 7-6 shows a summary of the distribution of β-AR signalling proteins between 

fractions in WT and KO animals. The majority of adenylyl cyclase (AC) 5/6 expression is 

located in the buoyant fractions (~60%) in both the KO and WT mouse hearts. The 

distribution of AC 5/6 is very similar in WT and KO animals and comparable to what was 

observed in normal (CON) rats (Chapter 6). In WT mouse hearts only a small percentage of 

the β2AR protein expression was found in the buoyant fractions with the majority of protein 

located within the heavy fractions, which replicates data in the rat (Chapter 6). Cav 1 KO 

had a marked impact on β2AR distribution. In the KO animals, even at very high exposures 

(time developing Western blot), no β2AR could be detected within the buoyant fractions. In 

the KO hearts β2AR protein expression was solely located within the heavy fractions. In the 

WT hearts Gαi 3 protein expression was mainly located within the buoyant fractions 

(~50%); KO hearts had an almost identical membrane distribution of Gαi 3 to the WT heart. 

This also resembled the distribution of Gαi 3 found within the myocardium of normal (CON) 

rats (Chapter 6). As mentioned previously (Chapter 4 and Chapter 6), Western blotting of 

the β1AR in fractionated samples had caused difficulty as a clear band at the predicted 

molecular weight (50 kDa) was not always evident. Two of three WT fractionations showed 

a band which would be analysed at 50 kDa but none of the KO animals produced a clear 

band suitable for analysis at 50 kDa. The β1AR Western blot produces multiple non-specific 

bands, as seen with peptide blocking. Overall, KO of Cav 1 had no impact on the protein 

distribution of AC and Gαi 3 within the membrane, but it appeared to prevent the 

localisation of β2AR within the buoyant/caveolae fractions. 
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Figure 7-6 β-adrenergic signalling protein membrane distribution markers in wild type (WT) and Cav 1 knockout (KO) mice 

Western blot of ventricular muscle homogenates from WT mice and Cav 1 KO mice, (n=3), Data are presented as mean ± SEM A. Distribution of adenylyl 

cyclase 5/6 (AC 5/6) protein expression B. Distribution of β2AR protein expression C. Distribution Gαi 3 protein expression.  
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7.3.2. β-adrenergic protein expression in myocardium 

Due to the differences observed in the distribution of β2AR in the KO mice, whole protein 

expression was examined in small aliquots of myocardial homogenate which had not been 

layered onto the sucrose gradient. β1AR was also examined due to the fact that none of the 

fractionated samples in the KO hearts showed a clear single band at 50 kDa. There was no 

significant difference in protein expression (P>0.05) of the β1AR in the KO hearts compared 

to WT (Figure 7-7). There was also no difference (P>0.05) in β2AR expression in KO 

compared to WT. There is a trend for a decrease in the β2AR (P=0.2), but due to the limited 

sample size these comparisons are underpowered (alpha = 0.53).  

 

Figure 7-7 β-adrenergic protein expression in wild type (WT) and Cav 1 knockout 

(KO) mice 

Western blot of ventricular muscle homogenate from WT mice and Cav 1 

 KO mice, A. β1AR protein expression B. β2AR protein expression. Signal normalised to 

GAPDH protein expression. WT n=3, KO n=3. Dot plot with mean 
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7.4.  Discussion 

The membrane distribution of the caveolar proteins and most components of the β-AR 

signalling cascade in the heart remain unchanged with knock-out of Cav 1. The notable 

exception to this is β2AR, which is no longer located within the buoyant fractions in the 

absence of Cav 1 expression. This would go some way towards suggesting that, although Cav 

1 does not determine membrane location of other caveolar proteins or the β-AR signalling 

proteins, it does have a role in the recruitment of the β2AR to caveolae.  

7.4.1. β2-adrenergic receptor and caveolae 

In the present study, the percentage of β2AR expression within the buoyant fractions was 

lower than that reported previously (Rybin et al., 2000; MacDougall et al., 2012; Balijepalli 

et al., 2006), although these previous studies have not quantified percentage expression 

there are apparent bands in the buoyant fractions without overexposure of the heavy 

fractions. The variability in the membrane location of β2AR may be due to variable antibody 

recognition of different β2AR conformations, as mentioned previously (Chapter 4 section 

4.1.2). There are a limited number of commercially available antibodies, and most Western 

blotting experiments use the antibody produced by Santa Cruz (Rybin et al., 2003; Rybin et 

al., 2000; Head et al., 2005; MacDougall et al., 2012), which in our hands produced variable 

results. The functional response to selective β2AR stimulation also varied in cardiac 

myocytes from the same heart, as seen in the present study (Chapter 4) and between 

different studies with some seeing no increase in contraction and [Ca2+]i while others see 

distinct cAMP signalling within the t-tubules and an increase in ICa   (Wright et al., 2014; 

MacDougall et al., 2012; Barbagallo et al., 2016; Bryant et al., 2014). This highlights the 

variability seen within the study of β2AR.  

In two models of LV heart failure, the β2AR shows a redistribution from its usual location 

within the caveolae to other non-caveolar sarcolemma membranes which increased the 

downstream cAMP response to stimulation, as examined with fluorescence resonance 

energy transfer (FRET) (Barbagallo et al., 2016; Wright et al., 2014). Within the present 

study, the LV heart failure model showed an increased in β2AR protein expression within 

the buoyant fractions compared to sham animals (Chapter 4). These are two different 

approaches to examine the location of β2AR, with different interpretations drawn from 

them. Neither directly proves that β2AR moves in or out of caveolae, but instead suggests it 

as a reasonable conclusion of the data. The conclusions of Barbagallo et al. and Wright et al. 

that β2AR is relocated from caveolae is based upon the assumption that β2AR cAMP 
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production is solely regulated by Cav 3 in caveolae. In the models of heart failure used in 

these studies, decrease in Cav 3 was observed in association with an increase in β2AR cAMP 

production, ascribed to β2AR relocation from caveolae (Barbagallo et al., 2016; Wright et al., 

2014). Similarly, in sucrose gradient fractionation, an increase in β2AR protein expression 

within buoyant fractions does not directly translate to an increase in β2AR within caveolae, 

as there are lipid rich non-caveolae membranes also located within buoyant fractions. 

Interestingly though the majority of AC 5/6, which is the primary target for Gαs to produce 

cAMP, is located within the buoyant fractions within this present study and in others (Rybin 

et al., 2000).  

The data from Cav 1 KO mice in the present study suggest that in normal physiology of the 

heart, Cav 1 plays a role in the recruitment of β2AR to the buoyant fractions/caveolae. When 

cholesterol is extracted from normal myocyte membranes with methyl β cyclodextrin, there 

is an increase in β2AR cAMP signalling (MacDougall et al., 2012), suggesting that lipid 

rafts/caveolae exert compartmentalisation control of the β2AR cAMP. As assessed by 

sucrose gradient fractionation, isoprenaline stimulation results in a re-location of β2AR out 

of caveolae, as (Rybin et al., 2000), and selective β2AR stimulation also results in recruitment 

of cavin 1 to caveolae (Wypijewski et al., 2015). The different studies of the β2AR are difficult 

to fit into one coherent model of caveolar control. One issue which may have been slightly 

overlooked is the protein composition of caveolae in heart disease, and that in fact there 

may be different caveolae with different pools of proteins. The role of Cav 1 and the cavins 

has also not been considered in most studies to date. If there was a reduction in caveolae 

and also a change to the proteins located within the caveolae then simple KO of Cav 3 or 

disruption to the Cav 3 protein may not in fact correctly represent the disease phenotype, 

but may still produce similar responses to β-AR stimulation. This may overlook the complex 

structural makeup of caveolae and overlook potentially proteins which are functionally 

important. 

7.4.2. Caveolar protein membrane distribution  

 Fraction 4 from the sucrose density gradient, which has previously been used to study 

proteins within caveolae (Wypijewski et al., 2015), shows the widest amount of variation in 

Cav 3. This could be a result of variation between fractionation, although this is unlikely as 

expression of total protein, and other proteins located within the buoyant fraction (AC 4/5 

and Gαi 3) are not as varied. Instead this could reflect an increased variation of Cav 3 located 

in caveolae from Cav 1 null mice. Cavin 1 protein expression was mainly located within the 

heavy fractions, which concurs with similar patterns in cavin 1 membrane distributions 
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seen when studied by sucrose gradient fractionations (Wei et al., 2015). Within the buoyant 

fractions, the cavin 1 expression within fraction 4 and fraction 5 was fairly even. As 

mentioned above, cavin 1 membrane location has been shown to be highly dynamic 

following selective β-AR stimulation (Wypijewski et al., 2015). The pattern of Cavin 4 

membrane distribution in the murine heart is dissimilar to all other proteins assessed 

within the present study. Most studies of caveolae by sucrose gradient fractionation only 

report data on buoyant fractions (fraction 4-5) and the heavy fractions (fractions 9-12), and 

fail to mention the fractions in between (Head et al., 2005; Smart et al., 1995; Rybin et al., 

2000). Bastiani et al. show that cavin 4 co-localised with Cav 1 and is dependent on Cav 1 

for its location on the plasma membrane in a BHK cell line (Bastiani et al., 2009). In addition, 

partial co-localisation of cavin 4 with Cav 3 in muscle cells as imaged by immunolabelling 

was reported by this group (Bastiani et al., 2009). The different caveolar proteins show 

different distributions across the membrane, and in particular different concentrations in 

fraction 4 and 5. This supports the idea that there may be different populations of caveolar 

composed of different caveolar proteins. There is still much which is unknown about cavin 

4, but from the results of the Cav 1 KO hearts we can suggest that Cav 1 is not needed for the 

location of cavin 1 or 4 within the plasma membrane in the cardiac myocyte. 

7.4.3. Difference in sucrose gradient fractionation 

Measuring membrane protein distribution using sucrose gradient fractionation gives 

divergent results within the literature. Although the same basic protocol may be 

implemented there can still be user variability and small differences in the procedure which 

make a significant difference - as observed when first applying a scaled-down protocol from 

rat tissue to use in murine tissue. The reduced volume resulted in over sonication of the 

sample with implications for caveolar protein distribution. The degree of sonication applied 

to a sample is not routinely stated within the literature.  

Many papers concur with the results shown in this study that Cav 1 is expression solely 

located within the buoyant fractions, as seen with homogenates from endothelia cells and 

cultured cell line (Wei et al., 2015; Lisanti et al., 1994; Yao et al., 2009). However, there are 

other reports in the literature of a more diffuse distribution of Cav 1 expression with the 

majority of Cav 1 expression within the buoyant fraction but also expression in the heavy 

fractions in mouse and rat (Bai et al., 2016; Kozera et al., 2009); these studies have looked 

specifically at distribution within cardiac myocyte preparations. Interestingly a previous 

study of mouse heart homogenate run on a discontinuous sucrose gradient found the 

majority of Cav 1 expression within the heavy fractions (Patel et al., 2007). It was noted 
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when performing Western blot on fractionated samples that a non-specific band appeared 

at 25 kDa with the Cav 1 antibody. Both Bai et al. and Kozera et al. use a Cav-1 antibody 

purchased from BD Transduction Laboratories (#610058 and #610406). Our antibody was 

from the same company (#610406) but the two antibodies differ in the epitope against 

which the antibody was raised. Another variation in protocol which may explain differences 

between studies relates to samples loading discrepancies for SDS PAGE. The approach in 

the present study is to load equal volumes of samples from each fraction. As demonstrated 

in Head et al., the alternative approach of loading an equal amount of protein gives a very 

different result when studying Cav 3 distribution, skewing the distribution towards the 

buoyant fractions (Head et al., 2005). Many studies do not explicitly state that equal volumes 

of samples in each fraction are loaded. The addition of the detergent Triton-X to the sucrose 

gradient has been shown to disrupt the distribution of Cav 1 in cultured 3T3-L1 cell line 

(Yao et al., 2009). Yao et al. also raise the point that, while the non-detergent Na2CO3 buffer-

based fractionation is useful for isolating caveolar membrane fractions, these will also be 

contaminated with non-caveolar lipid rafts. They go on to detail a modified protocol which 

adds an addition layer to the conventional sucrose gradient (a 21% sucrose solution 

between the 35% and 5% solution). This extra layer of sucrose positioned where lipid rich 

fractions would normally be located, further separates the fractions so that light low-

density insoluble membrane fractions were located towards the 21% and 35% gradient 

border. The Cav 1 rich micro-domains were located towards the 21% and 35% gradient 

border which contains morphologically identifiable caveolae when imaged with electron 

microscopy (Yao et al., 2009).  

7.4.4. Caveolin 1 KO mouse models 

In Bai et al. knock-out of Cav 1 caused a reduction of Cav 2 protein within cardiac myocytes, 

but no change in Cav 3 protein expression or Cav 3 membrane distribution as measured 

with a sucrose gradient fractionation (Bai et al., 2016). It was noted however that 

phosphoinositide-3 kinase (PI3K), protein kinase B (Akt) and β1 subunit of Na+/K+-ATPase 

was slightly reduced in the caveolar fractions. In another Cav 1 KO mouse model isolated 

working hearts were examined in response to an increase in preload and isoprenaline 

stimulation (Chow et al., 2010). Surprisingly Cav 1 KO hearts showed an increase in cardiac 

output and cardiac work compared to control mice. In response to the highest levels of 

isoprenaline stimulation there was a significant increase in heart rate and rate pressure 

product (beats per min x mmHg) compared to control mice. It should be noted that these 

functional studies were performed on KO Cav 1 mice 6-8 weeks old, which is well before 



176 

 

cardiac hypertrophy and fibrosis develops (4-5 months) (Murata et al., 2007; Zhao et al., 

2002). In the present study, there appears to be a redistribution of the β2AR to the non-

caveolar sarcolemma membranes in Cav 1 KO myocardium which could in turn enhance the 

inotropic response to β2AR stimulation; as described for the effect of cholesterol depletion 

in cardiac myocytes which causes an increase in selection β2AR stimulation (MacDougall et 

al., 2012).  
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8.  Chapter 8. Quantitative Western blotting of myocardial and 

myocyte samples 

Homogenised myocardium has been used throughout the present study to measure changes 

in protein expression and membrane distribution in disease models and transgenic animals. 

An alternative approach is to isolate cardiac myocytes and use myocyte homogenates for 

the same assessments. Each technique has its own advantages and disadvantages. In 

myocardial homogenates, cardiac myocytes are not the only cell within the sample and are 

suggested to make up ~30% of the cell count within the heart; other cells include fibroblasts 

and endothelial cells (Vliegen et al., 1991). However myocytes are the largest cell in the 

myocardium and are suggested to make up ~80% of the volume in myocardial samples 

(Vliegen et al., 1991). These estimates are for the normal healthy hearts; in heart disease 

there is typically an increase in extracellular matrix, which decreases the proportion of 

protein that myocytes contribute to a myocardial sample (Schwab et al., 2013; Vliegen et al., 

1991). By contrast, myocyte homogenates only contain protein from myocytes, eliminates 

protein contamination of the sample from other cell types. The disadvantages to using 

myocyte preparations include the process by which cells are isolated which may place some 

stress (mechanical and chemical) on the cardiac myocytes. Even when maximising the cell 

viability of preparations, myocyte homogenates will still contain a proportion of dead cells, 

and this small/varying percentage of dead cells will have an impact on the protein content. 

Use of cell sorting to enrich myocyte suspensions in live cells is problematic as conventional 

cell sorting protocols are not generally appropriate for large rod shaped cardiac myocyte. 

Another consideration is the possible bias of cell selection, that by the process of isolating 

cardiac myocytes this may inevitably selective the healthier cells within the heart. This 

effect could be further compounded in disease models. As mentioned previously (Chapter 

4, Chapter 6 and Chapter 7) caveolae and the β-AR are highly dynamic components within 

the myocyte which can change within minutes (Wypijewski et al., 2015; Rybin et al., 2000). 

The time to sample fixation is much longer for myocyte preparations than myocardial 

preparations and this may cause changes to the membrane location of proteins within this 

time.  

Caveolin 3 (Cav 3) and cavin 4 are muscle specific caveolar proteins whereas caveolin 1 (Cav 

1) and cavin 1 are ubiquitously expressed in all the cell types within the heart. In a 

myocardial sample it is not known how much of the ubiquitously expressed caveolar 

protein expression comes from cardiac myocytes and how much is from non-myocyte cells 
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in the heart. It is well known that in cardiac myocyte β1AR has a higher expression than 

β2AR, with β1AR contributing to around 70% of the total βAR population. By comparing 

protein concentrations of β1AR and β2AR in myocytes could be used as a positive control.  

Here we looked to assess the difference in relative expression of caveolar protein isoforms 

between myocyte and myocardial homogenate samples using new tools for protein 

quantification. A collaboration with Prof. John Colyer and the University of Liverpool was 

established which enabled the absolute quantification of protein expression within a 

sample in Western blotting. The CavCAT (caveolarCAT) standard tools used are based on 

Quantification concatamers (QconCAT) (Brownridge et al., 2012; Mackenzie et al., 2016; 

Brownridge et al., 2013), in which artificial proteins are created expressing the same amino 

acid recognition site (epitope) as the desired protein being quantified, these are then loaded 

into a Western blot at known expression levels to create a standard (calibration) curve, so 

that band density can then be extrapolated to absolute protein expression. A capillary based 

Western blotting system (Simple Western from ProteinSimple®) was used, which 

eliminates the transfer step of traditional SDS-PAGE and Western blotting, and has been 

proven to be a more quantitative approach to Western blotting that the traditional protocol 

(O'Neill et al., 2006; Chen et al., 2015; Chen et al., 2013).  

 

8.1. Methods 

Peptide design was performed at the University of Leeds; CavCAT protein sequence was 

designed in the University of Liverpool by Mr Richard Bennett and Prof Rob Beynon. 

Expression, purification, quantification and optimisation steps of the CavCAT peptide and 

final Western blots were performed by Mrs Victoria Harman. Final analysis and 

interpretation of results was done in the University of Leeds. 

8.1.1. CavCAT synthesis 

The first CavCAT design included the study of six proteins (Cav 1, Cav 3, cavin 1, cavin 4, 

β1AR and β2AR), details of the protein amino acid sequences and amino acid recognition 

sights are detailed in Figure 8-1. Some of the antibodies used in previous studies (e.g. Cav 1 

and cavin 1) were not suitable for use in this work; a short epitope sequence (optimum 10-

30 resides) was required for synthesis of the calibrating peptide. Initially all protein 

epitopes were included in one CavCAT peptide, however, this showed poor expression 
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levels when the sequence was transfected into Escherichia coli. and so was redesigned as 

two separate CavCAT peptides. In addition, not all antibodies used in traditional Western 

blotting are compatible with the Simple Western system, which is thought to be due to the 

immobilization step securing the protein to the capillary glass tube modifying antibody 

recognition. This was the case for the β-AR in our study. Due to unusual banding patterns in 

the β-AR Western blotting results and limitations on time, the study of the β-AR proteins 

was discontinued. CavCAT contain the epitope recognition site of the chosen antibodies, 

with additional amino acids either side (Figure 8-2). A hexa-His Tag (highlighted in green) 

at the C terminus was added to enable purification of the protein. At the N-terminus a 

glufibrinopeptide was added to allow for CavCAT standard quantification. 

Detailed methods of CavCAT protein production and quantification can be found in 

Brownridge et al., which is the protocol employed here (Brownridge et al., 2012). In brief, 

CavCAT sequences were sent to Eurofins Genomics (Edersberg, Germany) for gene 

synthesis. The genes were then transfected into Escherichia coli. which were driven to 

express the CavCAT protein heterologously. For extraction, pellets of cell culture (50 mL) 

were sonicated in 25 mM ammonium bicarbonate buffer with protease inhibitor. Samples 

were centrifuged at 6000 g for 6 min and the soluble fraction removed. The remaining 

inclusion body pellets (which contained the CavCAT) were solubilised in purification Buffer 

A (mM: 20 sodium phosphate, 50 NaCl, 10 imidazole, 6 M guanidine HCl). Solubilised 

inclusion bodies were purified using a His-trap 1 mL column on the ÄKTA start system (GE 

healthcare, UK). Fractions were eluted using a 20 mL gradient elution from 0% to 100% 

(500 mM imidazole final). CavCAT optimisation was performed to calculate a detectable 

linear range for CavCAT loading the matching antibodies. As a set volume of sample was 

loaded per Western blot, a range of sample dilutions were trialed to ensure that the protein 

signal fell within the linear range of the CavCATs signal.  
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Figure 8-1 Design of CavCAT recognition sights. 

For each target the FASTA protein sequence (acquired from PubMed protein library) from 

Rattus norvegicus is matched with the amino acid recognition site. Antibody amino acid 

recognition sequence highlighted in orange and used for CavCAT design. Any discrepancies 

in the antibody epitope from the FASTA sequence are highlighted in blue. Under each target 

are details of antibody: company, catalogue number, species from which peptide sequence 

was raised against and species peptide raised in. 

 

RAT – Caveolin 3   
MMTEEHTDLEARIIKDIHCKEIDLVNRDPKNINEDIVKVDFEDVIAEPEGTYSFDGVWRVSYT

TFTVSKYWCYRLLSTLLGVPLALLWGFLFACISFCHIWAVVPCIKSYLIEIQCISHIYSLCIRTFCNPLF
AALGQVCSNIKVVLRREG 

  
BD (610421) – Rat peptide (antibody raised in mouse)  
TEEHTDLEARIIKDIHCKEIDL 

RAT -Caveolin 1  
MSGGKYVDSEGHLYTVPIREQGNIYKPNNKAMADEVNEKQVYDAHTKEIDLVNRDPKHLNDDVVK
IDFEDVIAEPEGTHSFDGIWKASFTTFTVTKYWFYRLLSTIFGIPMALIWGIYFAILSFLHIWAVVPCIK

SFLIEIQCISRVYSIYVHTFCDPLFEAIGKIFSNIRISTQKEI  

 
Boster (PA1514)– Human peptide (antibody raised in rabbit)  
GKIFSNVRINLQKEI 

RAT – Cavin 1 (PTRF) 
 MEDVTLHIVERPYSGYPDASSEGPEPTPGEARATEEPSGTGSDELIKSDQVNGVLVLSLLDKIIGA

VDQIQLTQAQLEERQAEMEGAVQSIQGELSKLGKAHATTSNTVSKLLEKVRKVSVNVKTVRGSLE
RQAGQIKKLEVNEAELLRRRNFKVMIYQDEVKLPAKLSVSKSLKESEALPEKEGDELGEGERPEED
AAAIELSSDEAVEVEEVIEESRAERIKRSGLRRVDDFKKAFSKEKMEKTKVRTRENLEKTRLKTKEN

LEKTRHTLEKRMNKLGTRLVPVERREKLKTSRDKLRKSFTPDHVVYARSKTAVYKVPPFTFH

VKKIREGEVEVLKATEMVEVGPDDDEVGAERGEATDLLRGSSPDVHTLLEITEESDAVLVDKSDSD 
  
Origen (NP_036364) – Human peptide  (antibody raised in rabbit)  
CLVPAERREKLKTSR 

RAT Cavin 4 (MURC) 
MEHNGSASNAGKIHQNRLSSVTEDEDQDAALTIVTVLDRVATVVDSVQASQKRIEERHREMGNAI

KSVQIDLLKLSQSHSNTGYVVNKLFEKTRKVSAHIKDVKARVEKQQVRVTKVETKQEEI
MKKNKFRVVIFQEDVPCPASLSVVKDRSLPENEEEAEEVFDPPIDLSSDEEYY
VEESRSARLRKSGKEHIDHIKKAFSKENMQKTRQNFDKKVSGIRTRIVTPERRERLRQSGERLRQ

SGERLRQSGERFKKSISNATPSKEAFKIRSLRKPKDPKAEGQEVDRGMGVDIISGSLALGPIHEFH
SDGFSETEKEVTKVGYIPQEGGDPPTPEPLKVTFKPQVRVEDDESLLLELKQSS 

 
Sigma (HPA021021)– Human peptide (antibody raised in rabbit) 
KVSAHIKDVKARVEKQQIHVKKVEVKQEEIMKKNKFRVVIFQEKFRCPTS

LSVVKDRNLTENQEEDDDDIFDPPVDLSSDEEYYVE  
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Figure 8-2 CavCAT final gene sequence 

Final gene sequence of CavCATs, each CavCAT is named with a list of protein targets 

underneath. Amino acid recognition sights highlighted in orange, with additional ammino 

acids either side underlined. Glufibrinopeptide (Glufib) sequence highlighted and 

underlined in green and hexa-His Tag at C terminus highlighted in green. The β-AR target 

sequences are highlighted in red. A tobacco etch virus protease cleavage site is in bold. 

  

CavCAT1_1 
(Cav 1, Cavin 4, β2AR) 

MGTREGVNDNEEGFFSARAIGKIFSNIRISTQKEIREVT
KVGYIPQEGGDPPTPEPLKVTFKPQQIDLLKLSQSHSN
TGYVVNKLFEKTRFLLAPNGSRAPGHDITQERDEAWV
VRIQCISRVYSIYVHTFCDPLFEAIGKIFSNIRFDGIWKAS
FTTFTVTKYWFYRENLYFQGQDRKTRKVSAHIKDVKA
RVEKQQVRVTKVETKQEEIMKKNKFRVVIFQEDVPCP
ASLSVVKDRSLPENEEEAEEVFDPPIDLSSDEEYYVEE
SRSPDFRIAFQELLCLRRSSSKTVIAVDRYVAITSPFKY
QSLLTRAGAGAAGHHHHHH 

CavCAT1_2 
(Cav 3, Cavin 1, β1AR) 

MGTREGVNDNEEGFFSARGLRVIALDRYLAITLPFRYQ
SLLTCYNDPKCCDFVTNRAYAIARGTRLVPVERREKLK
TSRDKLYSLCIRTFCNPLFAALGQVCSNIKVVLRREVVP
CIKSYLIEIQCISHIYSLCIRTFCNPRENLYFQGQDRMMT
EEHTDLEARIIKDIHCKEIDLVNRDPKLSLLDKIIGAVDQI
QLTQAQLEERQAEMEGRDKLRKSFTPDHVVYARSKTA
VYEKSDDDDDDAGATPPARLLEPWAGCNGGTTTVDS
DSSLDEPGRQGFSSESKVGRAGAGAAGHHHHHH 
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8.1.2. Sample preparation 

Cardiac myocyte samples were prepared using freshly isolated cells (detailed in Methods 

2.4) from the left ventricle of saline-injected animals (Methods 2.1.2). Cells were 

centrifuged, supernatant removed and then re-suspended in Laemelli Sample buffer before 

homogenising 4 x 20 s. Samples were then centrifuged for 10 min at 16000 g 6oC, 

supernatant removed and stored at -20 oC. Myocardial samples were prepared from left 

ventricular free wall from saline-injected animals (Methods 2.1.2) snap-frozen in liquid N2 

and stored at -80 oC. Myocardium was quickly defrosted and processed as detailed in 

Methods (Section 2.8.1). Protein concentration was measured using a BCA assay as detailed 

in Methods (Section 2.9.3.1). 

8.1.3. Simple Western, Western blotting 

Protocol for Western blotting followed the manufacturer’s guidelines (ProteinSimple, 

2016). Samples were diluted to the desired concentration, calculated in the optimization 

steps, and mixed with the fluorescent master mix. Both biotinylated ladder and samplers 

were denatured by heating to 95oC for 5 min. Five CavCAT standards, diluted samples, a 

biotinylated ladder and primary and secondary antibodies were loaded into a 

ProteinSimple® Western plate. The plate was then loaded into the ProteinSimple Wes 

machine and automated Western blotting started. A diagrammatic representation of the 

immunoassay is detailed in Figure 8-3. Results were analysed using Compass software 

following the guidelines given by the manufacturer.  

For groups with small sample sizes, Shapiro-Wilk normality test was used and power 

calculations performed to ensure results presented had sufficient statistical power; an alpha 

value equal to or greater than 0.8 was deemed as sufficient.   
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Figure 8-3 Diagrammatic representation of Simple Western immuno assay 

(Diagram from ProteinSimple®) Sample is loaded from the plate automatically into the 

capillary tubes. Samples are separated by size through the stacking and separation matrix 

which fills in the capillary tube. Proprietary, photoactivated capture chemistry then 

immobilises proteins to the capillary wall. Primary antibodies are then used to detect target 

which are then visualised with a horseradish peroxidase-conjugate substrate. 

(http://www.proteinsimple.com/simple_western_assays.html) 
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8.2.  Results 

CavCAT standards were initially characterised by loading different concentrations of 

CavCAT with different dilutions of a sample of left ventricular homogenate to find the 

optimum CavCAT standard range with sample dilution (data not shown). Final runs of 

CavCAT standards and sample signal are plotted in Figure 8-4. CavCAT standards for Cav 3, 

cavin 1 and cavin 4 all have good expression (high signal to noise ratio) and antibody 

recognition. Unfortunately one of the CavCAT standards in the Cav 1 plates was 

undetectable (10 fmol), and another (500 fmol) did not appear to have worked, as the signal 

detected was very low, in the Cav 1 Western blot plate 1. A standard curve was still 

constructed, but the lower number of standards was taken into consideration when 

applying weighting to the results. The absolute concentration of protein in the samples was 

then calculated from this standard curve.  

8.2.1. Cardiac myocytes vs. Myocardium  

The caveolar protein quantification summary data is presented in Figure 8-5. Cav 1 protein 

concentration was significantly higher (by ≈100%) in myocardial samples compared to 

myocyte samples (P<0.01). There was no difference (P=0.25) in the protein concentration 

of Cav 3 in the myocardium compared to the myocyte samples. Cavin 1 protein 

concentration was significantly higher (by ≈300%) in myocardium compared to myocyte 

samples (P<0.001). Cavin 4 protein expression was also significantly higher (by ≈100%) in 

the myocardium compared to myocyte samples (P<0.001). Post hoc power calculations for 

cav1, cavin 1 and cavin 4 all result in an alpha value above 0.8. It was predicted there would 

be a slight decrease in the Cav 3 protein concentration within the myocardial samples 

compared to the cardiac myocyte samples, although any very small changes in Cav 3 may be 

too small to detect at this sample size (alpha =0.26).    

In summary, the ubiquitously expressed isoforms of caveolin (Cav 1) and cavin (cavin 1) are 

the most highly expressed caveolar proteins in myocardial samples, whereas in myocyte 

samples, the muscle-specific caveolin, Cav 3, is the most highly expressed caveolar protein, 

closely followed by Cav 1.     
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Figure 8-4 CavCAT standards and samples protein expression 

Individual plate results of CavCAT and sample detected signal. Sample concentration calculated from standard curve produced from CavCAT signals.  

  

0 2 0 4 0 6 0 8 0

0

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

fm o l

C
h

e
m

il
u

m
in

e
s

c
e

n
c

e c a v c a t

s am p les

C a v in  4

0 5 1 0 1 5 2 0

0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

C a v  3

fm o l

c
h

e
m

il
u

m
in

e
s

c
e

n
c

e c a v c a t

s am p les

0 5 1 0 1 5 2 0

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

C a v in  1

fm o l

C
h

e
m

il
u

m
in

e
s

c
e

n
c

e C a vC A T

S a m p le s

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

0

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

C a v  1  -  p la te  1

fm o l

C
h

e
m

il
u

m
in

e
s

c
e

n
c

e C a vC A T

M y o c a rd iu m

C O N

M C T + B B

M y o c y te s

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

0

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

C a v  1  p la te  2

C
h

e
m

il
u

m
in

e
s

c
e

n
c

e C a vC A T

M C T

fm o l

 



186 

 

8.2.2. Quantitative protein changes in the right ventricle of MCT animals 

Myocardial homogenates which were previously used for analysis in Chapter 6 were tested 

with the CavCAT standards on the Simple Western system (Figure 8-6). Cav 1 protein 

concentration was significantly decreased by almost 50% in MCT animals compared to CON 

(P<0.05). MCT+BB samples showed a range of concentrations and there was no significant 

difference from CON or MCT. This differs from what was seen using traditional Western 

blotting in which both MCT and MCT+BB were significantly decreased compared to CON. 

Cav 3 protein concentration was significantly decreased in MCT compared to CON 

(P<0.001), with Cav 3 concentration in MCT almost half of that in CON. There was also a 

significant decrease in MCT+BB compared to CON (P<0.01). Again this was different to what 

was seen using traditional Western blotting in which there was a significant decrease in 

MCT expression compared to CON (P<0.01) and MCT+BB (P<0.05). Cavin 1 protein 

concentration was not different between the three groups, although there was a trend for a 

decrease in protein concentration in the MCT animals compared to CON (P=0.14), which 

mimics the significant decrease (P<0.05) in protein expression seen in the traditional 

Western blot. There was also no change in protein concentration of cavin 4 between the 

three groups, which corresponds to what was seen using traditional Western blot. 

Differences between the CavCAT and traditional Western blotting may also be down to 

reduced sample size measured in the CavCAT experiments, which resulted in some of the 

protein comparisons in the CavCAT being under powered.  

The protein concentration of the caveolar proteins in CON animals was similar to the 

protein concentration seen in the myocardial homogenate sample (Figure 8-7). Cavin 4 

protein expression is the only one which is significantly different between the two. CON, 

which is homogenised right ventricle from saline injected animals has a significantly higher 

protein concentration compared to the myocardial homogenate (P<0.01), which are left 

ventricular homogenates from saline injected animals. This could be an interesting 

difference between RV and LV cavin 4 protein concentrations, but as the RV and LV come 

from different animals at different times, the differences in these data points do not hold 

any significant meaning.    
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Myocardium 

 

Myocytes 

 

Mean SEM 

 

Mean SEM 

Cav 1 0.309 0.019 

 

0.162 0.004 

Cav 3 0.174 0.013 

 

0.192 0.005 

Cavin 1 0.591 0.046 

 

0.135 0.017 

Cavin 4 0.079 0.005 

 

0.034 0.002 

 

Figure 8-5 Caveolar protein concentrations in myocyte and myocardial samples 

Protein concentration was calculated from the standard curve from each CavCAT standard 

run on the same Western blot. Protein concentration was then corrected for the loading 

concentration of the sample so that the final protein concentration could be calculated. 

Myocardial homogenate samples (myocardium) n=3, myocyte homogenate samples 

(myocytes) n=3. Student’s t-test, **P<0.01, ***P<0.001      

 

C a v  1 C a v  3 C a v in  1 C a v in  4

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

p
M

 p
r
o

te
in

 /
 u

g
 t

o
ta

l 
p

r
o

te
in

M y o d a rd iu m

M y o c y te s* *

* * *

* * *

  
  
  

p
m

o
l 
p

ro
te

in
 /
 µ

g
 t

o
ta

l 
p

ro
te

in
 



188 

 

 

 

 

 
CON 

 
MCT+BB 

 
MCT 

 
Mean SEM 

 
Mean SEM 

 
Mean SEM 

Cav 1 0.245 0.011 
 

0.201 0.022 
 

0.163 0.008 

Cav 3 0.209 0.018 
 

0.140 0.006 
 

0.132 0.011 

Cavin 1 0.664 0.056 
 

0.560 0.030 
 

0.503 0.068 

Cavin 4 0.235 0.020 
 

0.207 0.034 
 

0.193 0.010 

 

Figure 8-6 Caveolar protein concentrations in right ventricular myocardial 

homogenate from MCT animals 

 Protein concentration was calculated from standard curve for each CavCAT standard run 

on the same Western blot. Protein concentration was then corrected for the loading 

concentration of the sample so that the final protein concentration could be calculated. Cav 

1 CON n=6, MCT+BB n=6 MCT n=6.Cav 3, cavin 1, cavin 4, CON n=4, MCT+BB n=4 MCT n=4, 

One-Way ANOVA *P<0.05, **P<0.01, ***P<0.001      
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Myocardium 

 
CON 

 
Mean SEM 

 
Mean SEM 

Cav 1 0.309 0.019 
 

0.258 0.012 

Cav 3 0.174 0.013 
 

0.209 0.018 

Cavin 1 0.591 0.046 
 

0.664 0.056 

Cavin 4 0.079 0.005 
 

0.235 0.020 

      

 

Figure 8-7 Caveolar protein concentrations in right ventricular muscle homogenate 

(CON) and left ventricular muscle homogenate (myocardium) 

Protein concentration was calculated from standard curve for each CavCAT standard run on 

the same Western blot. Protein concentration was then corrected for the loading 

concentration of the sample so that the final protein concentration could be calculated. 

Myocaridum n=3, CON Cav 1 n=6, CON Cav 3, cavin 1 and caivin 4 n=4. 
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8.3. Limitations 

When designing experiments for the Simple Western, Western blotting system, a number of 

limitations were evident which restricted the results which could be achieved. The 

automated Simple Western loads a set volume (4-5 µL) into the capillary tubes, which was 

identical for each of the samples within the plate. In accordance with manufacturer’s notes, 

the sample volume loaded into the capillaries can vary from plate to plate. This meant that 

samples had to be diluted to equal protein concentrations, and this therefore limited the 

amount of protein that could be loaded for each sample. This was a problem when trying to 

measure protein concentrations in samples from myocyte sucrose gradient fractionation. 

Sample concentration was too low in many of the samples and caused issues with protein 

detection, and for this reason the results were unmeasurable. Ensuring the samples were 

diluted enough to fit within the linear range of the CavCAT standard was also another issue. 

Antibodies have a linear detectable range within which they should be used (Taylor et al., 

2013). Several optimisation runs were performed to calculate the dilution needed for the 

samples to fall within the linear range of the CavCAT standards, and a limited number of 

Western blots fell within the measurable range. The Simple Western plate design and final 

loading volumes of samples and can be found in Appendix 1. Due to the length of time spent 

optimising sample and CavCAT concentrations and time limitations only a small number of 

samples were run through the Simple Wester process. This meant that some of the 

comparisons were underpowered and small changes or changes in samples with large 

amounts of variation may not be detected.      

8.4. Discussion  

The results from the quantitative measurements of the caveolar proteins in the muscle and 

myocyte samples were unexpected, in the context of current views of the expression of 

caveolar proteins between cell types. Two observations were particularly surprising: Firstly 

that the protein concentration of Cav 1 in myocyte samples is half that in myocardium, and 

second how close Cav 1 expresison levels are to that of Cav 3 (Cav 1 mean 0.162 pmols/µg 

sample, Cav 3 mean 0.192 pmols/µg sample). In the literature Cav 3 is considered as the 

most important caveolar protein within cardiac myocytes, and as mentioned previously (in 

Chapter 7), the role of Cav 1 within the cardiac myocyte has been all but dismissed. Within 

the myocardial sample however the Cav 1 protein concentration is almost twice as that in 

the myocyte sample, suggesting that around half of the cav 1 expression within the 

myocardial sample is from non-myocyte cells.  
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It was noted in the results that there was a problem with the CavCAT standards in plate 1, 

but despite this both the myocyte samples and myocardial samples chemiluminescence 

were close to a CavCAT standard, which were shown to run as a linear range up to 2 

pmol/µL. Ideally this plate would have been re-run to confirm this result but due to time 

restrictions this was not possible. This result along with the results from Chapter 7, and the 

recent publication (Bai et al., 2016), will hopefully cause the scientific community to take a 

closer look as the possible role of Cav 1 within the cardiac myocyte.  

One expected result was the similarity between Cav 3 protein concentration in myocyte and 

muscle samples. Although myocytes do not make up 100% of the protein content in the 

myocardial sample, they are predicted to make up the majority. Vascular smooth muscle 

cells are also present in the myocardial sample, although in very small quantities, which 

could contribute to the Cav 3 expression within the myocardial sample. Cav 3 is a 

predominantly muscle specific caveolin known to be highly expressed within cardiac 

myocytes (Song et al., 1996b). Cav 3 is also the most highly expressed of the caveolar 

proteins within the myocyte samples, consistent with its functional importance within the 

cardiac myocyte (Woodman et al., 2002; Tsutsumi et al., 2008; Parton et al., 1997).  

8.4.1. Cavins 

A large difference between cavin 1 protein concentration in myocardium and myocyte 

preparations illustrates an important caveat in interpreting cavin 1 protein expression 

results in myocardial samples. Cavin 1 is ubiquitously expressed in all the of cells types 

within the heart and within the vasculature supplying the heart (Hansen et al., 2013; 

Bastiani et al., 2009; Liu et al., 2008). What is surprising is the four fold difference in protein 

concentration in myocyte samples compared to myocardium, suggesting a large part of the 

cavin 1 protein expression in a myocardial homogenate comes from non-myocyte cells. This 

should be taken into consideration especially in disease models in which other cells within 

the heart can also undergo remodelling and increase the contribution the extracellular 

matrix makes to the myocardial structure (Fan et al., 2012; Vliegen et al., 1991; Schwab et 

al., 2013). This result may also go some way in explaining the discrepancies in changes to 

cavin 1 protein expression seen in different models of heart failure (Liu and Pilch, 2016; 

Mohamed et al., 2016). Cavin 1 was not originally discovered for its role in caveolae (Jansa 

et al., 1998), and there are still many aspects of its function which remain unclear. The 

precise role of cavin 1 in the cardiac myocyte is also not fully understood. Knock-out or 

mutations of Cavin 1 lead to a vast array of cardiac dysfunctions including cardiac 
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hypertrophy, fibrosis, and arrhythmias, and results in an almost complete loss of Cav 1 and 

Cav 3 protein expression within the heart (Liu et al., 2008; Rajab et al., 2010; Taniguchi et 

al., 2016). Cavin 1 is also shown to be a highly dynamic protein; after the selective β1AR or 

β2AR stimulation of cardiac myocytes cavin 1 is recruited to caveolae (Wypijewski et al., 

2015). The dynamic capability is something to consider when studying the membrane 

location of cavin 1, and the potential benefit that the reduced processing time for myocardial 

samples confers. However, these data raise the question when studying the fractions from 

a sucrose gradient fractionation of how much of each fraction comes from the cardiac 

myocyte.  

The significant reduction in cavin 4 protein concentration in cardiac myocytes compared 

with the myocardial samples is also unexpected. Cavin 4 is thought be a muscle specific 

cavin (Bastiani et al., 2009). One possibility is that the reduction in cavin 4 in myocyte 

preparations is from ubiqitination and degradation of the protein, which contains multiple 

proline, glutamic acid, serine, and threonine-rich (PEST) domains, as a result of the longer 

processing time for the myocyte samples (Bastiani et al., 2009). This may also affect Cavin 

1 (which also contains multiple PEST domains) and may contribute in part to the 

dramatically lower protein concentrations of cavin 1 in the mycocyte sample compared to 

the myocardial sample (Bastiani et al., 2009; Wei et al., 2015). 

8.4.2. Implications for measuring protein expression within the heart 

 There are a handful of studies to date which have addressed possible discrepancies within 

the literature because of the use of myocyte or myocardial sample (Leineweber et al., 2003; 

Yoshida et al., 2001). These two studies were looking at the differences in protein 

expression of the β-AR and their Gα subunits in heart disease models. Leineweber et al. 

showed a decrease in β1AR expression (as measured with (+/-)[125Iodo] cyanopindolol 

(ICYP)) in both the RV and LV in myocardial homogenates from MCT animals compared to 

control animals, whereas they only observed a decrease in β1AR expression in the RV in 

myocyte homogenates (discussed in Chapter 5). In a myocardial infarction rat model 

Yoshida et al. reported no change in Gαs protein expression in myocardial homogenates but 

a significant decrease in myocyte samples compared to controls. This highlights the possible 

false positive and false negative interpretations from these kinds of data. The quantitative 

measurements of the caveolar proteins within this study highlight the differences in the Cav 

1 and cavin 1 between myocyte and myocardial samples, which should be taken into 
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consideration when drawing conclusions from changes expression of these proteins in 

disease models.      
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9. Chapter 9. General discussion  

9.1. Introduction  

Cardiac myocytes are unlike any other cell in the body; they are highly specialised to allow 

for continuous and synchronous contractions throughout life. The membrane of the cell is 

the sole pathway for communication with the surroundings and vital for effective transport 

in and out of the cell. Caveolae are specialised microdomains of this membrane that organise 

proteins responsible for this transport. In this study we aimed to address how caveolar 

proteins change in heart failure and their putative influences on β-adrenergic (β-AR) 

signalling.  By studying in vivo heart function and cellular responses to β-AR as well as 

protein expression and membrane location we can begin to theorise how function is 

influenced by changes in caveolar organisation.    

The muscle-specific isoform, caveolin 3 (Cav 3), was originally thought to be the only 

caveolin protein present in cardiac myocytes, but a number of studies have shown evidence 

of both caveolin 1 (Cav 1) and caveolin 2 (Cav 2) expression in cardiac myocytes from a 

range of species (Head et al., 2006; Robenek et al., 2008)(Discussed in Chapter 7 and 8).  

Despite this, the presence of Cav 1 in ventricular myocytes is not widely accepted as many 

papers continue to state (lacking any citation or robust evidence) that Cav 1 is not present 

in the cardiac myocyte (Schwencke et al., 2006; Taniguchi et al., 2016). With only a few 

exceptions, Cav 3 is the main target in the study of cardiac myocytes, with demonstrated 

involvement in the regulation of many signalling elements, from localisation of the NCX and 

L-type Ca2+ channels to aiding in compartmentalisation of β2AR cAMP signalling (Barbagallo 

et al., 2016; Bryant et al., 2014; Liu et al., 2003).  

Caveolae and caveolar proteins are instrumental in orchestrating membrane location and 

function of many of the proteins involved in excitation contraction coupling and β-AR 

signalling. The way in which the spatial characteristics of β2AR signalling are achieved in 

normal physiology is still not fully understood, although many mechanisms of cAMP 

compartmentalisation have been shown to play a role including the coupling of Cav 3 and 

PDE, and dual coupling of the receptor with Gαs and Gαi. Conflicting reports still remain 

within the literature, suggesting that a full understanding of the signalling of these receptors 

has not being reached (Wright et al., 2014; Rybin et al., 2000).  

By characterising two models of heart failure, one of right ventricular (RV) failure and one 

of left ventricular (LV) failure, we have gathered a breadth of functional measurements from 
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the heart, cardiac muscle and myocytes and can relate these to changes in protein. This body 

of work aims to add to the current information within the literature and to support the idea 

of the dynamic regulation of caveolae in the myocyte. 

 

9.2. Characterisation of heart failure  

The characterisation of the LV failure model was achieved by in vivo hemodynamic 

measurements, post mortem organ weights and collagen staining of the heart. All heart 

failure animals developed increased heart weight, normalised to body weight, with reduced 

function (ejection fraction 33.9 ± 3.6% vs 76.9 ± 2.6% in the Sham group). Dilation of the 

left ventricle, and reduced ejection fraction and cardiac output were also observed with 

echocardiography and hemodynamic measurements (Chapter 3.). Increased lung and liver 

weight suggest systemic failure and fluid retention in these animals. All these features have 

clinical translation, as discussed in Houser et al., which is important for the use of small 

animal models of heart failure in relation to the clinical presentation (Houser et al., 2012). 

With reference to these guidelines, the phenotype presented in this model of pressure-

overload heart failure has clinical relevance to dilated cardiomyopathy and hypertensive 

heart disease. The observed increase in collagen and fibrosis within the heart suggests an 

increase in extracellular matrix and possible stiffening of the myocardium (Jalil et al., 1989).  

The RV model, induced by monocrotaline (MCT), and treated with the selective β1AR 

blocker metoprolol, has previously been extensively characterised within the group 

(Benoist et al., 2011; Benoist et al., 2012; Stones et al., 2013; Fowler and 2016).  In vivo 

hemodynamic measurements, post mortem organ weight and collagen staining of the heart 

have all been reported previously. In MCT animals, an increase heart weight normalised to 

body weight (which comes specifically from an increase in right ventricular weight), 

reduced ejection fraction (MCT 49.2 ± 2.8% vs CON 73.1 ± 3.6%) and cardiac output, and 

increased systolic and diastolic pressures were observed compared to the CON group 

(Fowler and 2016). Unlike the LV heart failure model there was no increase in fibrosis in 

the RV model, which may in part be due to the time progression to heart failure. The MCT 

model causes rapid onset of heart failure, from around 21 days post MCT injection, while in 

the LV model, onset of heart failure ranged from 12-28 weeks.   The increased time in which 

the failing heart is under mechanical stress would produce more advanced remodelling 

within the heart and synthesis of the extracellular matrix. Of the functional and 
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haemodynamic measurements made, metoprolol treatment showed significant 

improvements in survival and a reduced wall thickness compared to MCT animals.  

 

9.3.  β-adrenergic signalling in heart failure  

Hyperactivity of the sympathetic nervous system and increased sympathetic drive to the 

heart, with resultant β-AR desensitisation, are characteristic of heart failure. Increased 

levels of circulating plasma noradrenaline and tissue adrenaline and noradrenaline have 

been reported in both the MCT RV failure model (Kögler et al., 2003; Ishikawa et al., 1991) 

and the aortic banding LV failure model (Siri, 1988). This sympathetic drive is thought to 

cause desensitisation of the β-AR, uncoupling it from G protein subunits and promoting 

internalisation.  

9.3.1. β-adrenergic responsiveness 

β-adrenergic responsiveness, as measured by single myocyte contraction and [Ca2+]i, has 

not been studied in MCT animals to date. There are previous reports of decreased β1AR 

density in isolated RV cardiac myocytes from MCT animals compared to controls, with a 

reduced cAMP production in response to stimulation (Leineweber et al., 2003).  

In this study we showed a blunted response to selective β1AR stimulation in terms of 

contraction amplitude, relaxation time and [Ca2+]i transient amplitude in MCT animals 

compared to CON. This was partially recovered with β-blocker treatment. In multicellular 

trabeculae preparations from MCT animals, no significant increase in force in response to 

selective β1AR stimulation was seen, which contrasts with the increase in force seen in 

muscle from CON animals. Metoprolol dosing had no effect on the response in MCT animals, 

perhaps because the dosing with metoprolol commenced too late after MCT injection 

(discussed in Section 5.4.4). In response to selective β2AR stimulation in single myocytes, a 

proportion of cells showed a small increase in contraction amplitude in all three groups 

(CON, MCT+BB, MCT), with no difference between the groups. Only the CON animals 

showed a reduced time to 50% relaxation with selective β2AR stimulation. This is similar to 

other reports that β2AR stimulation only produces a small inotropic and lusitropic effect 

(Kuschel et al., 1999b), because of strong Gαi coupling in the rat (Kuschel et al., 1999a). 

Around one third of the cells in each group did not shown a positive inotropic response as 

indexed by fractional shortening. Taken together, these data suggest that there is a 



197 

 

reduction in the β1AR functional response to stimulation in the RV heart failure, which is 

partially recovered with metoprolol treatment.  

Selective stimulation of β-ARs was not performed in muscle or myocytes from the AB 

animals, as characterisation of the animal model took priority; it was not possible to isolate 

cells after hemodynamic recordings were performed.  It is possible to measure β-AR 

responsiveness in vivo in tandem with hemodynamic measurements; previous studies have 

recorded the response to isoprenaline injection in vivo after recording stable pressure 

volume loops (Udelson et al., 1989). Although these experiments make it possible to 

measure β-AR responsiveness as well as hemodynamic measurements, it would not be 

appropriate for the present investigation as cardiac tissue from these animals could not be 

used for protein chemistry as β-AR stimulation has been shown to cause changes in the 

membrane location of key proteins of interest (cavin 1 and β2AR) (Rybin et al., 2000; 

Wypijewski et al., 2015). The responses may also differ in the disease model compared to 

controls, giving misleading results.   

9.3.2. β-adrenergic protein expression and membrane location 

Changes in protein expression and membrane distribution are summarised in Table 9-1. In 

both the LV and RV model of heart failure there was a reduction in β1AR and AC protein 

expression and an increase in G-protein receptor kinase (GRK)2 expression. In the RV model 

there was also an increase in Gαi protein expression which was not evident in the LV model. 

For all proteins whose expression changed in the RV model, metoprolol treatment partially 

recovered these changes in expression towards CON levels. These data suggest that, for both 

models, GRK2 internalisation contributes to the reduced β1AR density on the plasma 

membrane. The reduction in β1AR in the MCT animals fits with the reduction in response to 

β1AR stimulation, with restoration of β1AR expression in MCT+BB animals mimicking the 

restoration in β1AR function. There was no change in β2AR expression in either the RV or LV 

model compared to their respective controls.  This again rationalises the lack of change in 

β2AR function, measured by contraction amplitude, in the MCT animals compared to CON.  
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RV heart failure    + BB 

 
LV heart failure 

Protein 

expression 

 

      
β1AR   ↓ -   ↓ 

β2AR 
 

- ↓ 
 

- 

AC 5/6 
 

↓↓↓ - 
 

↓ 

Gαi3 
 

↑↑↑ - 
 

- 

GRK2   ↑↑↑ -   ↑ 
       

Protein 

membrane 

distribution 

 

      
β1AR % ↓↓ BF ↑↑↑ HvF - 

 
n/a 

β2AR % - - 
 

↑↑↑ BF ↓↓↓ HvF 

AC 5/6 
 

↓ BF ↓ BF 
 

n/a 

Gαi3 
 

↑↑ HvF ↑ HvF 
 

n/a 

GRK2 
 

↑ HvF (0.06) ↑↑HvF 
 

n/a 
       

Protein 

expression 

 

      
Cav 1   ↓↓↓ ↓↓   ↓↓ 

Cav 3 
 

↓↓ - 
 

- 

Cavin 1   ↓ -   ↓ 

Cavin 4 
 

- - 
 

↑ 
       

Protein 

membrane 

distribution 

 

      
Cav 3 

 
↓↓ BF  - 

 
- 

Cav 3 % ↓ BF ↑ HvF - 
 

- 

Cav 1 
 

- - 
 

- 

       
Table 9-1 Summary data from Western blotting in heart failure models 

Changes in protein expression of: β1-adrenergic (β1AR), β2-adrenergic (β2AR), adenylyl 

cycles (AC)5/6, Gα-inhibitor (Gαi)3, G-protein receptor kinase (GRK)2, caveolin 1 (Cav 1), 

caveolin 3 (Cav 3), cavin 1 and cavin 4 in myocardial homogenate and in fractionated 

samples, buoyant fractions (BF), heavy fractions (HvF), as measured by Western blotting  

Arrow represent significant changes in Western blotting, ↑/↓ P<0.05, ↑↑/↓↓ P<0.01, ↑↑↑/↓↓↓ 

P<0.001   
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The effect of LV and RV failure on the membrane distribution of the β-AR signalling proteins 

was also investigated. In the LV model when studying the β2AR it was noted that an extra, 

higher molecular weight, band was present which was not apparent in Sham animals. This 

higher molecular weight band was present solely within the buoyant/caveolar fractions. A 

previous report has shown that the β2AR is glycosylated and that this affected the 

membrane location (Rybin et al., 2003). However neither band within the buoyant fraction 

was shown to have an N-linked glycosylation, as tested with PNG-ase F (Chapter 4 .3.2.3). 

Other explanations for this higher molecular weight band include phosphorylation or 

palmitoylation (Liu et al., 2012; Adam et al., 1999), although these post-translational 

modifications were not tested within this study. It was noted there was a negative 

correlation between β2AR located within the buoyant fraction and function, as measured by 

ejection fractions. Although this does not show a causative link, it is possible to speculate 

that this post-translational modification of the β2AR within the lipid rich fractions, could 

have a negative influence on cardiac function.   

Membrane protein organisation was more extensively studied within the RV model of 

failure. AC 5/6 expression was predominantly located within the buoyant/caveolae 

fractions, in agreement with previous studies (Head et al., 2006; Rybin et al., 2000; 

MacDougall et al., 2012). By contrast, β1AR and β2AR expression was predominantly located 

within the heavy/non-caveolar membrane fractions and Gαi 3 expression was equally 

distributed between caveolar and heavy fractions. In the MCT animals there was a reduction 

of AC 5/6 in the caveolar fractions as well as a reduction in the proportion of total β1AR 

expression located here. This was coupled with an increase in expression of Gαi3 and GRK2 

within the heavy fractions.  The MCT animals treated with β-blockers showed similar trends 

in expression of different membrane compartments (buoyant fractions/heavy fractions) as 

the MCT animals. The membrane distribution of β2AR differs from previous reports, which 

was discussed in Chapter 4 and 6 (Section 4.3.2.3 and 6.4.2).  

In the RV model, the membrane distribution data taken together with total protein 

expression suggests that there is a reduction in AC 5/6 which is predominantly caused by a 

reduction in AC 5/6 in the caveolar membrane fractions. This, in concert with reduced 

expression of β1AR and its redistribution into non-caveolar membranes, suggests an 

uncoupling of β1AR from AC 5/6. MCT animals treated with metoprolol improve the pattern 

of protein distributions in the membrane compared to the MCT animals. Together these 

data show that treatment with β-blockers acts to reverse remodelling of the myocardium 

by altering β-AR signalling protein expression, and to normalise altered protein 



200 

 

distribution. However specific membrane compartments in the β-blockers treated animals 

still showed altered protein expression levels similar to MCT (AC 5/6 and GRK2). Changes 

in protein expression may serve to promote increase survival and β-AR responsiveness, but 

it is not enough to completely rescue the failing phenotype.  

 

9.4.  Caveolae in remodelling in the RV and LV models 

This is the first study to look at the array of caveolar protein changes in heart failure; these 

changes are summarised in Figure 9-1 and Figure 9-2. The overall trend was for a reduction 

in caveolar protein expression in the failing heart. Cav 1 and cavin 1 protein expression were 

both reduced in the LV and RV model of heart failure compared to their respective controls. 

Cav 3 expression was reduced in the RV model compared to CON, and was partially 

recovered with metoprolol treatment. Cavin 4 expression was increased in the LV model, 

but not the RV model, compared to the respective control groups. The increase in cavin 4 

could be linked with the increased cellular hypertrophy and fibrosis seen in the AB animals 

(Ogata et al., 2014) (Chapter 4.4.1.3). The difference between LV and RV models may again 

reflect the difference in time of progression to heart failure.  

As seen in Chapter 8, only a proportion of the Cav 1, cavin 1 and cavin 4 measured in 

myocardial samples originate in cardiac myocytes. Furthermore, the degree of change in 

caveolar protein concentration in RV samples (vs. CON) measured using the CavCAT 

standards and SimpleWestern system did not directly correlate with the degree of change 

in protein expression in the same model measured using traditional Western blotting. 

Although caveolar protein expression changes in both models of heart failure, consideration 

of other cellular changes in heart failure, such as an increase in fibrosis in the LV model, 

should be taken into consideration. A proliferation of fibroblasts or a reduction in vascular 

smooth muscle may alter the proportion of myocyte protein in a myocardial sample and 

mask or exacerbate changes in caveolar protein expression.   
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Figure 9-1 Summary of reported changes to caveolar and β-AR signalling proteins in heart failure 

A number of key β-AR signalling proteins lie within the caveolar domain in a healthy cardiac myocyte including β1AR, β2AR, AC 5/6, Gαs (Head 
et al., 2006; Head et al., 2005; Calaghan and White, 2006; MacDougall et al., 2012; Rybin et al., 2000; Agarwal et al., 2011; Wypijewski et al., 
2015). Currently the presence on caveolae in t-tubules is debated, although there are EM and super-resolution images that suggest they are 
present (Hong and Shaw, 2017; Fawcett and McNutt, 1969). In animal models and human patients with heart failure cardiac myocytes show a 
reduction in the number of t-tubules and morphological caveolae present, which in animals models is coupled with a reduction in cav 3 and other 
β-AR signalling proteins (Zhu et al., 2012; Gorelik et al., 2013; Feiner et al., 2011). Cav 3 and β2AR proteins have also shown to be re-distributed 
from t-tubules to the surface sarcomere (Wright et al., 2014; Barbagallo et al., 2016). 
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Figure 9-2 Summary of what the present study has added to our current knowledge of caveolae and β-AR 

signalling changes in heart failure: 

The work from this thesis suggest that Cav 1 is vital for recruitment of the β2AR to the caveolar domain, as well as supporting previous 
evidence of an array of different β-AR signalling proteins being present within this domain in healthy cardiac myocytes. In heart failure 
there was a reduction in Cav 3*, Cav 1 and cavin 1 suggesting a disruption to caveolar domain. Protein expression and membrane 
distribution was altered in key β-AR signalling proteins listed. * Changes only seen in the RV heart failure model. 
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It is interesting to note that there was no change in either Cav 3 expression or membrane 

distribution in the LV model. This may suggest that there is no change in Cav 3 function or 

morphologically-identifiable caveolae within the heart in this model. However, the 

reduction in cavin 1 (which is required for caveolar formation in all tissues (Park et al., 

2002) could impact on caveolar density. Due to time restrictions, the visualisation of 

caveolae with election microscopy (EM) was not possible. EM is the only approach currently 

available to validate changes in morphological caveolae in the membrane. By contrast to the 

LV model, in RV failure there was a reduction in Cav 3 expression and a redistribution of 

Cav 3 from caveolar fractions. Taken in the context of the impact of Cav3 KO on caveolae in 

the cardiac cell (Galbiati et al., 2001), these data suggest a reduction in caveolae and 

disruption to their functional role within the heart. The changes in Cav 3 observed in the RV 

model and potential effects on caveolae may, in turn, explain some of the changes in 

expression and distribution of β-AR signalling proteins in MCT animals. 

 

9.5.  Caveolae in heart failure 

Within the literature there are isolated reports of a reduction in Cav 3 expression and a 

reduction in caveolae in animal models of heart failure, as well as in samples from human 

patients (Feiner et al., 2011; Wright et al., 2014). Cav 3 is assumed to be the key protein 

within caveolae which is instrumental for β-AR signalling, and this is often the sole protein 

studied in relation to caveolar changes in heart failure. Cav 3 has been highlighted as 

potential target for treating heart failure, as cardiac-specific over-expression of Cav 3 has 

been shown to be cardio protective, and re-introduction of Cav 3 helps rescue some of the 

parameters of the failing phenotype (Song et al., 1996b; Barbagallo et al., 2016; Horikawa 

et al., 2011).  Interestingly in our model of aortic banding we do not see any changes in Cav 

3 expression or distribution across the membrane. Our data have shown for the first time 

that most of the myocardial Cav 3 expression comes from cardiac myocytes, as seen in the 

results of the quantitative blotting (Chapter 8.). The study of caveolae and Cav 3 in heart 

failure has been approached in many different ways including: EM, immunocytochemistry, 

cholesterol depletion, mutation of Cav 3, Western blotting of muscle homogenates 

(expression) and sucrose gradient fractions (distribution). The results of different 

approaches give slightly different conclusions which do not all fit neatly together into a 

cohesive model of caveolae changes in the failing heart. Taken together the current 
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literature of changes in caveolar protein and the results from the present study, we propose 

that sub-populations of caveolar exist which contain different caveolar proteins and related 

components and that, in a disease state such as heart failure, these populations may be 

differentially affected.  The heterogeneity of caveolar protein content is not surprising 

considering the 249 proteins found to be high-confidence caveolar residents in the cardiac 

myocyte (Wypijewski et al., 2015). There would simply not be enough space within each 

individual caveola for this number of proteins. Other reports within the literature have also 

speculated on non-homogenous caveolar populations in the cardiac myocyte (Sampson et 

al., 2007; Shibata et al., 2006). 

KO models may over-simplify the complex and dynamic micro-domains created by caveolae. 

Studies focusing on Cav 3 in heart failure may, in the process, discover new roles for 

caveolae in regulation of cardiac function. However, our quantitative analysis of caveolin 

isoform expression in the cardiac cell has highlighted the importance of studying the Cav 1 

alongside Cav 3 in the cardiac cell. Cav 1 protein concentration in normal cardiac myocyte 

preparations was almost equal that of Cav 3 (Chapter 8). In the heart, Cav 1 has been shown 

to have a vital role in the heart’s ability to protect against ischemic reperfusion injury by 

ischemic preconditioning (Patel et al., 2007). Cav 1 KO has also revealed a role for Cav 1 in 

regulation of the N+/K+-ATPase in the heart by facilitating interactions with other signalling 

proteins (Bai et al., 2016). Complexes of Cav 1/Cav 3 form with the ligand gated ion channel 

P2X7R in murine atrial cells (Pfleger et al., 2012). In the present study a reduction in Cav 1 

and cavin 1 expression was seen in both models of heart failure, with a close correlation of 

Cav 1 expression with function in the LV failure model. It is therefore speculated that the 

reduction in Cav 1 and cavin 1 expression is linked with the reduced function of the heart. 

Further study of heart and myocyte function using mutated Cav 1 and cavin 1 (introduced 

by viral transfection) may help prove this link.   

 

9.6.  Caveolar interaction with β-adrenergic signalling  

There are discrepancies in the literature regarding the location and compartmentalisation 

of β-AR signalling within the heart. It is generally agreed that β1AR stimulation produces a 

robust cAMP response, which results in an increased inotropic and lusitropic effect, which 

is reduced in heart failure. On the other hand, data regarding the response to β2AR are 

slightly more complex. It has previously been suggested that compartmentalised β2AR 

signalling arises as a result of β2AR coupling with Gαi in caveolae (MacDougall et al., 2012). 
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When interventions which disrupt caveolae are applied (disruption of Cav 3 binding via its 

scaffolding domain or cholesterol depletion), a more robust cAMP signal is achieved in 

response to selective β2AR stimulation (MacDougall et al., 2012; Nikolaev et al., 2006). 

Interestingly in our RV heart failure model, although Cav 3 expression and caveolar 

localisation are reduced, the response to selective β2AR stimulation (indexed by 

contraction) does not differ from CON animals. This again highlights different approaches 

to studying changes in heart failure; an increase in cAMP production may not directly 

translate to an increase in contraction. For the β2AR, Barbagallo et al found that PDE4 was 

involved in compartmentalisation of the signal at caveolae and PDE3 in preventing 

myofilament (TnI) phosphorylation in normal myocytes, whereas in heart failure (rabbit) 

compartmentalisation by both PDEs was reduced with a consequent increase in TnI 

phosphorylation in response to selective β2AR stimulation (Barbagallo et al., 2016). This 

was thought to be due to a decrease of PDE4 activity at the plasma membrane and a 

decrease in PDE3 influence at the myofilaments. In this model of heart failure, there was an 

increase in β2AR signalling at the plasma membrane β-AR stimulation, promoting cAMP 

production and increasing phosphorylation of the myofilament protein TnI. However, the 

enhanced cAMP signals did not target SR proteins (PLB). Interestingly, the loss of normal 

compartmentalisation of the β2AR signal in the failing myocyte could be restored by over 

expression of Cav 3, highlighting the essential role for Cav 3 in compartmentalisation of the 

β2AR signal. This study also demonstrated disparities in compartmentalisation of β2AR 

signalling in heart failure, possibly due to heterogeneous populations of caveolae being 

differentially affected.    

9.6.1. Caveolin 1 and the β-adrenergic receptors 

KO of Cav 1 has been shown to have many consequences for the cardiac myocyte and heart 

including: changes to the distribution of the β2AR (as seen in this study using sucrose 

density gradient fractionation); reduced expression and altered distribution of MMP (as 

seen with immunocytochemistry (Cho et al., 2007)); reduced β-AR plasma membrane 

density, cardiac function and survival in a mouse model of myocardial infarction (Jasmin et 

al., 2006); impaired cardiac protection from ischemic reperfusion injury (Patel et al., 2007). 

No change in the density or morphology of caveolae has been reported in the cardiac 

myocyte of Cav 1 null mice, however this has only been assessed in surface sarcolemmal 

caveolae. It is possible that Cav 1 KO impacts on t-tubular caveolae. However, the presence 

of caveolae within the t-tubules remains a controversial topic due to their size (50-100 nm) 

and the distance between sarcolemmal and sarcoplasmic membrane in the dyads (10-15 
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nm). Caveolae in t-tubular membranes must lie outside the dyadic couplings. EM imaging of 

t-tubular structures along their entire longitudinal length is extremely difficult due to the 

nature of sectioning of EM. New cryo-EM techniques allowing 3D reconstruction of cells may 

reveal more details of microstructures within the t-tubules in the near future. Jasmin et al. 

propose that Cav 1 is involved in recruiting β-AR signalling proteins to the plasma 

membrane (Jasmin et al., 2006). Cav 1 may aid in recruiting a different population of 

proteins to the caveolae (compared with Cav 3) which results in a different form of 

compartmentalisation. In mouse ventricular myocytes (Cho et al., 2007) and rat ventricular 

myocytes (data not shown) immunocytochemisty reveals punctate staining for Cav 1 along 

the z-lines of the cardiac cell which may represent a population of caveolae/lipid rafts co-

ordinating different signalling to that on the surface sarcolemma.     

 

9.7. Future work   

Post-translational modifications are important for regulation of protein membrane location 

as well as function. A possible post-translational modification was noted for β2AR 

subpopulations contained in the buoyant fraction of heart homogenates prepared from LV 

heart failure animals. Although previously thought to be essential for membrane location, 

data in the present study strongly suggest that N-linked glycosylation cannot explain the 

observed shift in molecular weight band. However, the extent to which N-linked 

glycosylation is vital for the β2AR location or function could be further investigated with 

mutation studies of the β2AR and how mutation of the site of glycosylation would affect 

membrane location. Phosphorylation and, separately, palmitoylation – candidate forms of 

β2AR post-translational modification – could be tested using with Phos-tag gels TM 

acrylamide gel electrophoresis and commercially available palmitoylation kits, respectively. 

Gene KO mouse models are useful tools for confirming that the specific protein is involved 

in a mechanism or process being studied, although many of the KO models used are KO from 

birth and adaptive or compensatory mechanisms to the absence of the target protein are 

not known. This technique may also inappropriately simplify the conclusion(s) drawn, 

causing conflicting reports from different research groups. Heart-specific KO of Cav 1 could 

answer many questions regarding cardiomyopathies seen in the general Cav 1 KO model 

and reveal to what extent the observed cardiac dysfunction is due to lack of Cav 1 in cardiac 

myocytes.  Responses to (non-selective) β-AR simulation are enhanced in hearts from Cav 

1 KO mice compared to those of wild-type mice (Chow et al., 2010). One possible 
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explanation for this is that the loss of normal β2AR-Gαi coupling due to mislocalisation of 

the β2AR (as we observed) enhances the β2AR component of this response. It would be 

interesting to examine responses to selective β-AR stimulation in myocytes from Cav1 null 

animals compared to wild type mice for similarities in cholesterol depletion or competition 

for binding in caveolae with the Cav scaffolding domain peptide. It is reasonable to speculate 

that disruption of Cav 3 interactions at the scaffolding domain does not change the location 

of the β2AR but disrupts recruitment of proteins involved in compartmentalisation, whereas 

cholesterol depletion, disrupting both Cav 1 and Cav 3, causes changes in membrane 

location of both β2AR and regulatory proteins. Imaging of these proteins could help tease 

apart these differences. 

Recent advances in super resolution microscopy may aid in revealing heterogenous 

populations of caveolae. Imaging of caveolar and caveolar proteins has previously only been 

achieved through EM and immunogold staining. Techniques such as single molecule 

location microscopy (SMLM) now allow for resolutions of 5-10 nm during 

immunofluorescent imaging, which would be high enough to begin to resolve collections of 

different caveolar proteins (Jayasinghe et al., 2015). Using SMLM to study the membrane 

location of different caveolar proteins could provide an experimental scenario in which 

heterogenous caveolae could be visualised. It would be very interesting to additionally 

address the possibility of disparities in caveolae subpopulations between the surface 

sarcolemma and t-tubule membranes. SMLM could also determine the extent to which βARs 

localise with caveolar proteins, thereby furthering the understanding of putative functional 

links between them. 

  



208 

 

Appendix 1 

 

Example of plate used in SimpleWester Western blotting system (Chapter 8) 

(ProteinSimple, 2016) 
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Plate loading template for quantitative Western blotting in SimpleWestern system (Chapter 8) 

Each plate contains 25 wells for loading. Antibody used listed in each plate template. Biotiylated ladder is loaded in the first well followed by a black 

well with 0.1 x sample buffer (SB). The chosen dilution range of CavCAT was loaded in wells 2-7 and samples loaded in wells 8-25. Samples included 

right ventricular (RV) homogenate from CON (Saline), MCT (MCT) and MCT+BB (BB) animals (Chapter 6), as well as left ventricular homogenate (LV 

hom) and myocyte homogenate (myocyte hom) (Chapter 8).  Samples from AB and Sham animals were tested in original runs, but due to time 

limitations were not included in subsequent runs.   
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