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Abstract

Operating with an edge transport barrier (ETB) is central to ITER’s goal of at-
taining a fusion energy gain of ten. The evolution and stability of this ETB is
governed through the interplay of MHD modes and microinstabilities. The balloon-
ing formalism is a mathematical framework that can be utilised to understand the
characteristics of these modes in the linear regime.

When applied to toroidal drift microinstabilities (e.g. ITG), the ballooning
formalism predicts two distinct classes of global eigenmodes: the strongly growing
Isolated Mode (IM) that exists under special conditions, and the relatively benign
General Mode (GM) that is more generally accessible. Here we present findings from
a new initial-value code, developed to study the dynamics of these linear branches in
the presence of a time-evolving equilibrium toroidal flow-shear. The code has been
further extended to incorporate the (quasi-linear) effect of intrinsic flow generated by
these global structures on the modes themselves. The IM/GM dynamics could pro-
vide physical insights into understanding small-ELM regimes and intrinsic rotation
- two unresolved physics issues that are of great significance to ITER.

Firstly, the IM is seen to form more rapidly than the GM. For our chosen fluid-
ITG model, even though both structures are likely to form deep into the nonlinear
regime, there is indication that close to marginal stability, these global modes might
form much sooner to subsequently influence the nonlinear evolution. Secondly, in the
presence of a critical flow-shear, a GM-IM-GM transition can take place to trigger
a burst in the growth rate as the IM is accessed. These dynamics can occur on the
right time-scale and form the basis of a new model for small-ELMs outlined in this
work. Transient bursts are seen in the linear growth rate at high flow-shears, which
may provide an alternative trigger for small-ELMs. Certain other seemingly robust
features are reported, which could guide experimental efforts to test this theory.
Finally, allowing for the feedback of the intrinsic flow on the mode structure, the IM
seems to be a stable equilibrium when the external flow-shear is weak, whereas when
strong equilibrium flow-shears dominate over the intrinsic flow, the GM solution
is more likely. An approach to model the intrinsic flow profile from these global
structures is suggested.
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Chapter 1

Energy outlook

1.1 A rising need for energy and de-carbonisation

With the global energy demand projected to grow by 37% by 2040, in its World
Energy Outlook 2014, the International Energy Agency (IEA) concludes that “the
global energy system is in danger of falling short of the hopes and expectations placed
upon it” [4]. In absolute terms, more than 0.5 billion people in sub-Saharan Africa
alone could be living without access to electricity beyond 2040. While such figures
paint a bleak scenario, some global energy trends are encouraging:

(a) Significant increase in the share of natural gas to the energy mix (as opposed
to increased dependence on coal, which emits much more CO2/BTU1) helped
by, for example, new regulations in the United States limiting power sector
emissions2 and increasingly flexible global trade in liquefied natural gas offering
protection against supply disruption [4, 7].

(b) Around 2035-40, the world’s energy mix is projected to divide into four almost
equal parts (oil, coal, gas and low-carbon sources; see Fig. 1.1) with renewables’
(including biofuels) contribution rising steadily to 8% from the current 3% [6].

Despite this, fossil fuels are predicted to contribute about 81% of the energy produced
in 2035. At this rate, the world would exhaust its 1000 gigatonnes CO2 budget3 by
2040 [4], putting itself on a path consistent with a long-term global temperature rise
of 3.6 ○C, well above the internationally agreed 2.0 ○C pre-industrial level to avert the
most severe implications of climate change [8]. With just over half this budget spent,
we are already experiencing extreme weather events: sea levels have risen twice as fast
between 1993-2010 than 1901-2010 and large-scale wildfires in the western US have

1Natural gas emits 117 pounds of CO2 per million British thermal units (BTU) of energy,
whereas coal emits around 216 pounds of CO2 per million BTU [5] (1 BTU = 1055 Joules).

2The power sector is expected to account for a significant 47% of the total primary energy
consumption in 2035 [6].

3The maximum amount of CO2 that can be released into the atmosphere without exceeding a
given temperature threshold.

1



Chapter 1. Energy outlook 1.1. A rising need for energy and de-carbonisation

(a) (b)

Figure 1.1: (a) Contribution of the various primary energy sources to the global energy
consumption [1 billion toe ≃ 1.33 TWyear] and (b) their percentage share [6].

been seven times more frequent than they were in the 1970s [8]. There is substantial
evidence linking temperature changes to CO2 emissions (Fig. 1.2) and the cause of
climate change to anthropogenic factors (Fig. 1.3). It is therefore of concern that
despite its capacity to displace carbon-intensive baseload generation facilities4, the
readily available nuclear power technology has not been deployed more widely (see
Nuclear trend in Fig. 1.1b) or been developed with more urgency. No doubt that
other low-carbon sources are important to a long-term energy solution, but as will
be discussed, a more central role is envisaged for fission energy in the short-medium
term (∼ decades).
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Figure 1.2: CO2 concentration in atmosphere and global mean (ocean-land) temperature.
(Data obtained from NASA GISS [10, 11].)

4Since 1971, nuclear power has avoided the release of an estimated 1.5 years of CO2 at the
current rate of 35.9 gigatonnes/year [9].
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Chapter 1. Energy outlook 1.2. A case for fission energy

Figure 1.3: Models that only account for natural processes and not the greenhouse gases
emitted by humans fail to explain the observed temperature change. (Adapted from [12]
and courtesy of [13]; permission to publish obtained from the Nature Publishing Group.)

1.2 A case for fission energy

The need to decarbonise is immediate; global warming is only one of the concerns5

- the adverse health effects and risks associated with energy production are issues
that are oft-overlooked.

1.2.1 The energy deathprint

The ‘energy deathprint’ is defined as the number of people killed per kWh of energy
produced, summarised in Table 1.1 for the various energy sources. For fossil fuels
and biomass, upper respiratory distress due to carbon particulates is the main killer,
whereas wind and solar are more associated with installation and maintenance related
fatalities [15]. The figures for hydro-electricity are dominated by the failures of a few
large dams, such as the Banqiao Reservoir Dam, which is estimated to have killed
171,000 people. Nuclear fission energy has the lowest deathprint, despite including
the worst-case Chernobyl numbers and Fukushima projections. The UN Chernobyl
Forum in its report [16] caps the number of eventual deaths among the most-exposed
residents, evacuees and emergency workers to 4000. Compare this to the estimated
2.6-4.3 million annual deaths from indoor pollution due to burning solid fuels (e.g.
coal, biomass in cooking) [17, 18, 19] or the 2.1-2.9 million deaths in 2013 alone from
outdoor pollution [18, 19, 20].

5It is crucial that we note the efficacy and role of other greenhouse gases such as CH4 and N2O
in causing global warming. Methane has a Global Warming Potential (GWP) of 25, i.e. will cause
25 times as much warming as an equivalent mass of CO2 over a 100-year period, though only stays
in the atmosphere 12 years, whereas nitrous-oxide has a GWP of 298 and stays in the atmosphere
for 114 years. The agriculture sector is the major contributor to the release of methane (from
livestock) and nitrous-oxide (from the use of synthetic fertilisers). These gases made up 11% and
6% of all U.S. greenhouse gas emissions from human activities in 2014 [14].
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Chapter 1. Energy outlook 1.2. A case for fission energy

Table 1.1: Deaths per trillion kWh from various energy production sources (calculations
and further references in [15]).

Energy source Mortality rate
(per Trillion kWhr)

Coal 170,000
Oil 36,000

Natural gas 4,000
Solar (rooftop) 440

Wind 150
Hydro 1,400
Nuclear 90

1.2.2 Scalability

In 20-30 years time, the global power demand allowing for a two-fold improvement in
the overall efficiency is projected to be around 10-12 TW [6, 21]. Table 1.2 presents
a possible low-carbon solution. Few things should be noted:

Table 1.2: A possible energy mix in 2040 (reproduced with permission from [21])

Low-carbon Peak power Target power Share in mix Required scaling
energy source (TW) (TW) % from today

Wind 0.02 1.5 15 75
Solar PV 0.0013 0.5 5 384
Solar conc. 0.00046 0.5 5 1090

Hydro 0.32 1.6 16 5
Nuclear 0.4 4.9 49 12

(a) Biomass has not been kept central to this scenario due to questions surrounding
its sustainability and the adverse health-effects of burning biofuels [22].

(b) Hydro will be close to its ∼ 2 TW capacity [23].

(c) Wind, like hydro, is very geographically limited (the UK, for instance, has 40%

of Europe’s wind potential [23]).

(d) Both forms of solar need at least 2 orders of magnitude scale-up and, much like
wind, needs the development of large-scale storage.

It is here that fission energy offers tremendous possibilities: it has a much lower
deathprint than fossil-based energy (section 1.2.1), the fuel is abundant6 and in
principle can be rapidly scaled up. To exemplify, since its first operating nuclear
power plant at Shippingport, the USA rapidly deployed fission power, providing

6Light Water Reactors (LWRs) could run for 230 years at today’s consumption rate, uranium
extracted from sea-water would allow 4000 years of operation at 10 TW [21] and Breeder Reactors
operating in a closed fuel cycle could provide thousands of years worth of power with current output
and reserves [24].
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about 20% of the nation’s energy within the first 30 years (supplying a steady 62.7
GW of power in 1990 - Fig. 1.4). This is possible due to the large power-densities
intrinsic to nuclear reactions.
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Figure 1.4: Nuclear energy’s contribution to total electricity production in US. (Data
derived from [25].)

1.3 Concerns with fission energy

It is imperative that we move towards a low-carbon energy mix, though the transition
will be challenging with all known sources requiring a 10-1000× scale-up. Intermittent
sources such as solar and wind would benefit hugely from the development of grid-
scale storage or smart-grids. Carbon Capture and Storage (CCS)7 and adopting
more efficient energy technologies would no doubt help reduce the carbon footprint
in our atmosphere. Ultimately, we need a diverse energy portfolio, of which fission
needs to be an integral part. However, a number of factors seem to impede the
acceptance of fission energy in the public and political domains:

(a) Disagreement and uncertainty surrounding the true damage extent of nuclear
accidents: Greenpeace [26] for instance, challenges the UN Chernobyl Forum
estimate of 4000 eventual deaths and puts this number around 100,000 – in close
proximity with an earlier estimate in ref. [27].

(b) Misrepresentation of information: One blog [28] states that “A big risk is in-
volved in operating a nuclear power plant. The energy that is generated can
easily be harnessed to make devastating weapons, such as the nuclear bomb.”
While fission bombs exploit the same fundamental principle, not making clear
the technological differences between civilian and military establishments puts
nuclear power in bad light.

7CCS has the potential to sequester up to 85% of CO2 from power stations and large industrial
plants [23].
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(c) Concerns surrounding weapons proliferation: While the fuel and by-product
of LWRs - enriched Uranium and Plutonium - could potentially be used in
nuclear weapons, ref. [29] notes that we lack robust knowledge to correlate
civilian nuclear programmes with weapons acquisition. That said, and despite
stringent checks and safeguards, IAEA does report a small number of incidents
between 1993-2015 involving international trafficking of potentially weapons-
usable material [30].

(d) Radioactive high-level waste (HLW) management: IAEA [31] notes that tech-
nologies and concepts to dispose spent-fuel and HLW have been developed but
are yet to be implemented. Storing the waste on-site under water for 40-50 years
allows the radiation level to drop below 0.1%, making it technically simpler to
develop reprocessing and handling tools and retrieving the valuable Uranium
before permanent disposal [32].

Fission energy clearly has many benefits over conventional non-renewables, but it
seems to be losing support of people due to uncertainties over its connections with
weapons programmes and concerns involving health-and-safety. In a global survey
that followed Fukushima, 62% of citizens in 24 countries opposed the use of nuclear
energy, with only India (61%), Poland (57%) and US (52%) receiving a majority
public support [33]. Public faith in nuclear energy could conjure the political will
necessary to attract more investment and relax the regulatory framework that is
hindering the development of nuclear energy [34]. But with no indication that this
trend will reverse, we must work towards harnessing an energy source that can deliver
clean, safe, abundant and rapidly scalable energy: nuclear fusion.

1.4 Nuclear fusion

Nuclear fusion in nature occurs at the cores of stars: light nuclei like hydrogen
collide and fuse into heavier nuclei, releasing tremendous amounts of energy in the
process. The first terrestrial reactors envisage fusing Deuterium (D) and Tritium
(T) to release a neutron (n) and ‘fusion alpha’ i.e. Helium (He):

2
1D + 3

1TÐ→ 4
2He + 1

0n + 17.6 MeV . (1.1)

This reaction requires typical temperatures of 10-20 KeV, but is still the simplest to
realise among all possible fusion reactions [35]. Deuterium can easily be extracted
from water and tritium can be produced in-situ8 when a fusion-generated neutron

8Tritium decays with a half-life of 12.3 years and is therefore only found naturally in trace
amounts.
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interacts with the Lithium (Li) blanket surrounding the D-T reaction chamber:

6
3Li + 1

0nÐ→ 3
1T + 4

2He + 4.8MeV , (1.2)
7
3Li + 1

0nÐ→ 3
1T + 4

2He + 1
0n (slow) . (1.3)

The neutron reaction with the more abundant 7
3Li isotope (92.5%) is endothermic,

but yields a (slow) neutron. This additional neutron can be captured by another Li
atom to produce more tritium than is being consumed. Nuclear fusion has several
advantages:

(a) Abundant: It is estimated that 9.3 g of D (contained in a typical shower) and
0.25 g of Li is enough to meet an individual’s annual energy demand [36]. Water
is practically inexhaustible and based on the US Geological Survey data [37],
the current economically recoverable Li reserves would be sufficient to power
fusion reactors for ∼ 9000 years (at 1500 tons consumed annually for fusion,
which is 5% of the global production). By switching to D-D reactions in the
future, fusion can supply energy for billions of years.

(b) Clean: Fusion does not emit any greenhouse gas; its major by-product is He,
an inert, non-toxic gas.

(c) No long-lived radioactive waste: The only waste would be from the fusion-
born neutrons activating the surrounding structural components. But these
components will be safe to recycle/dispose within a 100 year period [38]. Choice
of structural materials [39] and optimising the neutron fluence (by tuning the
7Li/6Li mix) could further reduce this period.

(d) Safe: Unlike in fission reactors, whereby a chain-reaction needs to be controlled,
a fusion system like a tokamak needs to be continuously heated and maintained
under optimum conditions. These requirements (discussed in more detail in
section 2.3) further restrict the amount of fuel at any time inside the reactor
with a volume of several 100 m3 to weigh about a postage stamp [38]. Any
deviation from normal operation would rapidly cool the reactor core and stop
the process.

(e) Low risk of proliferation: Fusion does not employ fissile materials. Reference
[40] further concludes that with appropriate safeguards like in fission, prolifera-
tion risks associated with fusion are much lower than fission and gives the global
community the added option of safely disabling the plant without concerns of
radioactive material dispersal.
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Chapter 1. Energy outlook 1.5. Summary

1.5 Summary

Energy consumption and economic growth (and development) are tied [41]. But
reliance on fossil-based energy continues to cause major damage to the human and
planetary health through pollution and global warming. Renewables such as so-
lar and wind have tremendous potential but need development of smart grids and
storage technologies. However, sparse power-densities and the unpredictable nature
of weather, makes reliance on them for baseload power generation limited. These
problems are overcome by nuclear energy, although concerns surrounding safety of
reactors and links with weapons proliferation have hindered the deployment of the
available fission energy. Fusion on the other hand can safely navigate around the
issues plaguing fission. Provided of course the scientific and technological hurdles are
overcome, fusion energy has the potential to completely replace fossil-fuel. Chapter
2 discusses some approaches to fusion energy, in particular magnetic confinement
fusion (MCF) - the concept underpinning the first terrestrial reactor being built to
demonstrate self-sustaining fusion.
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Chapter 2

Magnetic confinement fusion

There are many routes to achieving fusion. In stars, the enormous inwardly di-
rected gravitational pressure balances the (fusing) plasma pressure, preventing the
plasma from dispersing - ensuring a sustained ‘burn’. Under terrestrial conditions
however, such ‘gravitational confinement’ is no longer possible, and we must resort
to alternative approaches to confine the fusion fuel:

(a) Inertial Confinement Fusion: This approach involves heating a multi-layered
spherical pellet of D-T fuel using incident lasers/ion beams [42, 43]. Energy is
rapidly deposited onto the outer ‘ablator’ shell of the pellet, which explodes,
sending an inwardly directed momentum pulse and compressing the inner fuel
layers. Fusion is initiated in the hot, high-density core, and the inertia is
expected to keep the burning fuel together for a sufficiently long period of
time to yield an energy gain before disassembly, i.e. Q = Pfus/Pin > 1. This
approach has demonstrated that more energy can be generated by the D-T fuel
than is deposited [44], but significant laser-target coupling inefficiencies1 and
the inherent pulsed nature of ICF, makes its commercialisation as a source of
electricity extremely challenging.

(b) Magnetic Confinement Fusion: Arguably the more promising route to real-
ising terrestrial fusion energy, magnetic confinement fusion (MCF) involves
containing charged ions using magnetic fields. This approach can be made
steady-state, making it attractive for power generation.

In the following sections we discuss some key physics principles that underpin the
development of MCF-based reactors, with particular focus on the ‘tokamak’ con-
cept. Different routes of optimising the performance of tokamaks are subsequently
discussed.

1Of the 1.8 MJ laser energy, only ∼ 150 KJ was coupled to the ablator. Roughly a tenth of this
ablator energy was ultimately transferred to the D-T fuel.
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Chapter 2. Magnetic confinement fusion 2.1. Charged particle orbits

2.1 Magnetic fields and charged particle orbits

2.1.1 Parallel and perpendicular field-line motion

Consider the Lorentz force on a charged particle:

m
dv

dt
= Ze (E + v ×B) . (2.1)

Following [45], in the absence of any electric field and for a uniform magnetic field
B = Bk̂, we may decompose eqn. 2.1 into its Cartesian coordinates:

dvx
dt

= Ωvy ,
dvy
dt

= −Ωvx and
dvz
dt

= 0 . (2.2)

Here Ω = ZeB/m and Z is the charge state (-1/+1 for electrons/singly-charged ions).
The velocities in the plane perpendicular to the magnetic-field (x, y) form a coupled
system, which is solved by differentiating either equation and substituting the result
into the other, yielding

d2vx,y
dt2

= −Ω2 vx,y . (2.3)

We straightforwardly write vx = A cos Ωt+C sin Ωt and vy = Ω−1 (dvx/dt) = −A sin Ωt+
C cos Ωt. Using the initial conditions vx(t = 0) = 0 and vy(t = 0) = v⊥, we find
vx = v⊥ sin Ωt and vy = v⊥ cos Ωt. Integrating once again with the initial conditions
x0, y0, z0 and v∥:

x(t) − x0 = ρL − ρL cos Ωt , (2.4)

y(t) − y0 = ρL sin Ωt , (2.5)

z(t) − z0 = v∥t , (2.6)

and [x(t) − (x0 + ρL)]2 + [y(t) − y0]2 = ρ2
L . (2.7)

Here ρL = v⊥/Ω is the Larmor radius. The net effect is a helical motion (Fig. 2.1):

(a) Along the field line, the charged particle motion is unaffected (dvz/dt = 0).

(b) Perpendicular to the plane of the applied magnetic field, the particle is ‘con-
fined’ to gyrate in circular orbits with radius ρL about the position (x0+ρL, y0).

2.1.2 Particle drifts

Next, let us consider the Lorentz force equation of 2.1, but now in the presence of an
additional generalised force F. The velocity vector is separated into the gyro-motion
about a centre vg, and the motion of this ‘guiding’ centre vgc. Since mdvg/dt =
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Figure 2.1: The motion of a positively charged particle in a uniform magnetic field as
described by the eqns. 2.4-2.6. We choose x0 = y0 = z0 = 0.0, v∥ = 1.0, ρL = 1.0 and Ω = 0.5.

Ze (vg ×B), the equation of motion reduces to

m
dvgc
dt

= F +Ze (vgc ×B) . (2.8)

Assuming a time-independent drift, F+Ze(vgc×B) = 0. Next taking its cross-product
with B=Bk̂, and noting that v⊥ = v − k̂(v.k̂), it is straightforwardly seen that

vgc,⊥ =
F ×B

ZeB2
. (2.9)

This is the drift of the guiding centre - perpendicular to both the background mag-
netic field and the direction of the applied force. A number of forces can arise in a
plasma; the resulting drifts are described in Table 2.1. Note some of them are due
to inhomogeneous and time-varying fields.

Table 2.1: Guiding centre drifts

Drift Origin Velocity Remarks

∇B Bunching of field-lines v2⊥
2Ω

B ×∇B

B2

Comparable for electrons and ions, but
in the opposite direction leading to
current generation

Curvature
Centrifugal force from
particles following curved
field-lines

v2∥
Ω

R ×B

R2B
Same as ∇B

E ×B Electric field E ×B

B2

Electrons and ions drift at the same
speed and in the same direction, so no
current generated

Polarisation Slowly varying electric
field

1

ΩB

dE

dt

Depends on charge and is greater for
ions leading to a polarisation current
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2.1.3 The magnetic mirror effect

The reflection of particles in a spatially varying magnetic field, or the so-called “mag-
netic mirror effect”, can be understood by referring to Fig. 2.2. In the homogeneous
magnetic field region (a) the Lorentz force FL experienced by the particle, averaged
over a gyro-orbit, is zero. However in region (b), there is clearly a force along −ẑ.
If the initial velocity along ẑ is small in relation to the deceleration caused by this
force, the particle is ultimately reflected. In a rigorous calculation, this behaviour
can be derived from two conserved quantities in a plasma - the particle’s energy ε
and its magnetic moment µ.

Figure 2.2: The magnetic mirror effect (see text for discussion).

2.1.3.1 Energy conservation

We take the scalar product of eqn. 2.1 with velocity; then noting v.∇φ = dφ/dt and
v.dv/dt = 0.5 dv2/dt we derive

mv.
dv

dt
= Ze (v.E) = −Zedφ

dt
. (2.10)

Thereby dε/dt = 0, where ε =mv2/2 +Zeφ.

2.1.3.2 Magnetic moment conservation

The magnetic moment µ of a circular loop carrying a current I with a cross-sectional
area A is defined as µ = IA. For a gyrating charged particle, A = πρ2

L and I =
Ze(2π/Ω)−1, implying that

µ = ZeρLv⊥
2

= mv
2
⊥

2B
. (2.11)

We are interested in the component of the velocity along the magnetic field, i.e. vz.
Consider ∇.B = 0 in cylindrical coordinates and assume azimuthal (θ) symmetry2.
Further taking ∂Bz/∂z to be constant over the Larmor radius scale-length of interest,
we derive Br = −(ρL/2)(∂Bz/∂z). Using the Lorentz force equation and setting Bθ = 0

2These assumptions have been made for simplicity and are easily relaxed following ref. [35].
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for simplicity:

m
dvz
dt

= Zev⊥ (−
ρL
2

∂Bz

∂z
) = −µ∂Bz

∂z
. (2.12)

Noting dε/dt = 0 and vz(dvz/dt) = −(µ/m)(dBz/dt), we derive dµ/dt = 0 (here φ = 0,
though this assumption can be relaxed). Next from the conservation relations for
magnetic moment and kinetic energy, it is straightforward to see

v2
z = v2

0 (1 − B

B0

sin2 Θ) , (2.13)

where v0 and B0 are the velocity and field at the initial position and sin Θ = v⊥,0/v0.
The particle is reflected when v2

z < 0. This is possible if

(a) the particle moves into a high field region such that B > B0/ sin2 Θ, or

(b) for a given maximum B, sin2 Θ > B0/B, i.e. the particle has a high v⊥,0/v0,
which means a relatively weak velocity component along the magnetic field.

2.2 The MCF reactor concept

A current-carrying solenoid provides the simplest way to confine charged particles by
producing a homogeneous axial magnetic field. But open ends imply that particles
are free to escape the system. This end-leakage problem is (partially) circumvented
by establishing stronger magnetic fields at both ends of the solenoid (similar to
Fig. 2.2) and reflecting particles back as they approach the throat of this “magnetic
bottle”. Over time, collisions however scatter particles in the v⊥ − v∥ velocity space,
with particles gaining a high v∥ able to leave the magnetic-mirror trap. This end-
loss problem is ultimately solved by eliminating the ends altogether: the solenoid is
deformed into an axisymmetric torus. The first experimental fusion reactor being
built with the capability of sustaining a self-heated plasma (for up to an hour [46]),
ITER, is based on the ‘tokamak’ design (Fig. 2.3). This concept is discussed in the
following sections.

2.2.1 Toroidal field coils

The toroidal magnetic field Bφ is produced by passing currents through the toroidal
field coils. The close packing of coils at the inboard side leads to a radial variation
in the magnetic field, Bφ ∝ 1/R, with ∇B pointing radially inwards. This causes
the electrons and ions to drift in opposite directions, inducing an electric field as
illustrated in Fig. 2.4. The effect of the curvature-drift is similar to the ∇B drift,
enhancing this vertical electric field and the associated E ×B drift. The net effect is
that both electrons and ions drift radially outwards and confinement is lost.
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Inner Poloidal field coils

(Primary transformer circuit)

Outer Poloidal field coils

(for plasma positioning and shaping)

Plasma electric current

(secondary transformer circuit)

Poloidal magnetic field

Resulting Helical Magnetic field

Toroidal magnetic field

Toroidal field coils

JG05.537-1c

Figure 2.3: The tokamak design: The inner poloidal field coils generate a plasma current,
which together with the toroidal field coils provide a helical magnetic configuration to con-
fine the plasma. The outer poloidal field coils provide additional stability and help channel
the exhaust plasma to special targets designed to handle high heat fluxes. (Reproduced
with permission from [47].)

2.2.2 Inner poloidal field coils

To minimise the outward drift resulting from charge polarisation, a poloidal field Bθ is
imposed. This field is generated by driving a plasma current in the toroidal direction
through a transformer action: the inner poloidal coils (Fig. 2.3) act as the primary
windings and the plasma itself acts as the secondary (the current drive in a tokamak
is not necessarily inductive; see section 2.2.4.1). The current also ohmically heats the
plasma. The resulting helical field ‘shorts’ the top and bottom of the poloidal plane,
substantially reducing the undesired charge separation. Note that the particles are
still drifting vertically, but sampling the full poloidal plane cancels this effect (see
Fig. 2.8b for explanation). However, there is a limit on the strength of this poloidal
field that is generated by the equilibrium current Ip: there is a Bθ pressure difference
due to Ip following the toroidal curvature, which would amplify any perturbation to
the equilibrium current. A strong axial field Bφ is essential to the stability of such
systems, since the perturbations must first expend their energy bending this imposed
field. Formally, such ‘kink’ perturbations are completely stabilised when

q(r) = ∮
r

R

Bφ

Bθ

dθ > 1 . (2.14)
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Figure 2.4: Ions and electrons drift vertically in opposite directions due to ∇B and
curvature drifts. The resulting polarisation induced E ×B drift causes both species to drift
radially outwards.

This is the Kruskal-Shafranov criterion [48, 49] and limits the maximum current
(∝ Bθ) that can be carried by the plasma for an available Bφ. The appearance of q ≤ 1

surfaces3 in tokamaks lead to periodic collapses in the temperature/density/current
profiles, termed ‘sawtooth-oscillations’ [50].

Flux surfaces

The combination of toroidal and poloidal fields leads to the formation of magnetic
flux surfaces (Fig. 2.5a). As noted in Appendix A, these surfaces are contours
of constant pressure. Special surfaces on which the ‘safety-factor’ q(r) is rational,
magnetic field lines map back onto themselves - these have important implications for
stability and shall be discussed in detail later. Now due to their bending in a torus,
the flux surface area on the outboard side is more than that on the inboard side.
This leads to an outward ‘Hoop-force’ and the centre of these surfaces get shifted by
an amount ∆, referred to as the ‘Shafranov shift’ (Fig. 2.5b). The minimisation of
the flux-surface separation leads to increased magnetic- and flow-shears, and these
have stabilising influences on a number of instabilities responsible for degrading the
confinement in a tokamak (discussed in Chapter 3). The pressure can then build-up,
increasing the Shafranov shift and this positive cycle ensues until the shear can no
longer stabilise the dominant class of plasma instabilities.

2.2.3 Outer poloidal field coils

The outer poloidal field coils are typically employed to create a vertical magnetic
field Bv, such that an inwardly directed J×Bv force stabilises the plasma expansion
(here J is the plasma current density). Since the plasma current is generally very

3The safety-factor q(r) is also the number of toroidal turns a magnetic field must make in order
to complete a single poloidal turn.
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(a) (b)

Figure 2.5: Schematics of (a) magnetic field lines (blue) spiralling around flux surfaces
(middle surface highlighted) forming a set of nested tori, and (b) the Shafranov shift of
these surfaces as visualised on the poloidal plane.

high, a small Bv is sufficient to stabilise the plasma and the magnetic fields follow
the typical ordering Bφ > Bθ > Bv [51]. Going beyond this, TCV (Tokamak à
Configuration Variable), for example, uses up to 16 poloidal coils [52] to optimise the
plasma geometry for stability [53, 54] and developing novel heat handling techniques
such as the Snowflake divertor [55].

2.2.4 Alternative designs and scenarios

Before proceeding further, it is useful to comment on one key challenge the tokamak
design faces en-route to delivering commercial fusion energy. In order to generate
the plasma current that produces Bθ, current through the inner poloidal coils must
be ramped up (or down). The current cannot be varied indefinitely, highlighting the
pulsed nature of such a scenario.

2.2.4.1 Non-inductive current drive and heating

The transformer action not only drives a toroidal current, but also provides resistive
heating, with a power/volume of POH = ηj2 deposited in the plasma (here η ∝ T −3/2

is the plasma resistivity and j the current density). Above 3 keV ohmic heating is
no longer effective and supplementary heating is required to reach the 10 keV tem-
perature range to maximise the fusion cross-section and get significant self-heating
(see section 2.3). The additional heating can either be provided by injecting neutral
beams into the plasma or by launching radio frequency (RF) waves. Neutral Beam
Injection (NBI) can not only heat the plasma, but tangentially directed beams can
impart significant torque (the sizeable benefits of this are discussed in Chapter 3).
Because the beams ions transfer their energy to plasma ions and electrons at different
rates (see ref. [51], section 8.2), this approach can also be used to drive a current.
RF waves can be launched at ion (30-120 MHz) and electron (28-140 GHz) cyclotron
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frequencies and their harmonics to resonantly heat a particular species. Since the cy-
clotron frequency varies with B, and B with the radius, tuning the frequency allows
heating of specific locations in the plasma. Finally, RF waves can be launched at the
intermediate Lower Hybrid frequency (1-8 GHz) parallel to the magnetic field. The
phased array antenna couples preferentially with electrons travelling in one direc-
tion; wave to electron energy transfer through Landau damping then results in a net
current. Reference [56] reviews methods to generate a continuous plasma current.

2.2.4.2 Stellarators

By employing a complex set of coils, stellarators can generate the helical fields neces-
sary for confinement without the need for plasma current. This makes them intrinsi-
cally steady-state and also removes a whole class of current-driven plasma instabili-
ties (such as the sawteeth). While these are key advantages over the tokamak design,
stellarators are extremely complicated to build, and once constructed, lack the flex-
ibility of tokamaks to experiment with varied plasma configurations. Reference [57]
compares the plasma operation in both devices.

2.3 Fusion triple product

The fusion triple product is a figure of merit used in nuclear fusion research and
simply gives the condition to create sufficient power to sustain a self-heated fusion
plasma, i.e. ignition. This can be derived from simple power balance arguments.
The energy content of a D-T plasma is

W = ∮
3

2
n (Te + Ti)dV = ∮ 3nT dV . (2.15)

But this energy leaks out at a rate characterised by τE (the energy confinement time)
and the resulting power loss PL = W /τE must be compensated either by external
heating PH or via self-heating through fusion-born alphas Pα. Ignition is when

Pα = ∮
1

4
n2⟨σv⟩Eα dV > PL , (2.16)

i.e. nτE ≥ 12T

⟨σv⟩Eα
. (2.17)

Here Eα is the energy carried by the fusion-born alphas and ⟨σv⟩ characterises the
D-T reaction rate. In the temperature range of 10-20 keV where this cross-section
is maximised, ⟨σv⟩ ≈ 1.1 × 10−24T 2 m−3s−1 (with T in keV). These numbers give
the condition nTτE ≥ 3 × 1021 m−3keVs. A more accurate treatment with parabolic
(instead of flat) temperature and density profiles yield a slightly higher requirement
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on the fusion triple product [35]

nTτE ≥ 5 × 1021 m−3keVs . (2.18)

Figure 2.6 shows the steady progress that has happened over the years towards the
attainment of this condition. Consider the three parameters that appear in the
triple-product:

(a) The temperature T indicates the energy needed to overcome the Coulomb
repulsion for fusion. If the particles are too energetic, the time-window for
interaction decreases, making fusion less probable. The optimum temperature
window of 10-20 keV is routinely accessed in most tokamaks (Fig. 2.6).

(b) In present day devices, the maximum attainable line-averaged electron density
is set by the empirical Greenwald scaling ne,G = κj, where κ is the plasma elon-
gation and j is the poloidally-averaged current density [58, 59]. The optimum
value of n is ∼ 10−6 times the atmospheric density4.

(c) τE, or the energy confinement time, has been the most challenging to maximise.
It is here that the biggest advances have been, and need to be made.

2.3.1 Optimising the confinement time

Using T ∼ 10 keV and n ∼ 1020 m−3 we find that τE ∼ seconds for ignition. ITER,
which will have twice JET’s major radius, be 30% hotter and have a 50% stronger
toroidal magnetic field on axis, hopes to ignite by improving from the τE ∼ 0.5 − 1 s
observed on JET [60] to ∼ 5 s. This can be inferred from the scaling τE ∝ L3B2T −3/2

[62]. Expressed another way, the triple-product nTτE ∝ (βNH98/q2
95)R1.3B3 [63], can

be optimised using three distinct approaches:

(a) Make the device bigger, i.e. increase the radius R, so that it takes longer
for the energy to escape. This is the reason why the current generation of
tokamaks, including ITER, need to be so large. But the strong cost scaling
with device size (∝ R3) implies that this may not be the most economical route
to commercialising fusion energy.

(b) Technological innovations such as high field, high temperature superconductors
allowing powerful magnetic fields B [64], would allow a strong increase in the
triple-product while allowing the device to become smaller. The conceptual
ARC reactor, a JET-scale device with an ITER-like performance, is based on
such a technological advance [65].

4An alternate constraint on the density comes from the maximum achievable magnetic field
pressure B2/2µ0 which must balance the plasma pressure 3nT . For B ∼ 1 Tesla and T ∼ 10 keV,
n ∼ 1020 m−3.
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Figure 2.6: Plot showing the improvements made in the fusion triple product by various
reactors over time. JET holds the record in fusion performance, producing 16 MW of alpha
power and Q = Pfus/Pin = 0.62 [60]. Reference [61] however reports achievement of the
equivalent reactivity of ‘break-even’ Q > 1 on JT-60U, assuming their D-D fuel could be
replaced with D-T. (Reproduced with permission from [47].)

(c) Finally, if we could minimise transport, the confinement time improvement,
quantified directly by H98 (see section 3.3.1) and βN 5, would enable the plasma
to achieve ignition conditions.

It is only because we can access regimes where transport is substantially reduced,
does ITER not have to be twice as large to achieve its Q = 10 goal [66]. It is important
therefore that we try and understand the mechanisms driving transport and get a
better handle on the factors that could minimise the associated losses.

2.4 Particle losses and transport

Let us begin by considering the fluid equation of motion for either species in a plasma
[67], in the absence of a magnetic field:

mn [∂v

∂t
+ (v.∇)v] = ZenE −∇p −mnνv . (2.19)

5βN = β/(aB/Ip), where a is the minor radius and β is the plasma pressure normalised by the
magnetic field pressure.
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In steady state ∂v/∂t = 0, and if the collision frequency6 ν is large or v is small, the
fluid element does not move into regions of different E and ∇p. Therefore the con-
vective derivative can also be neglected. The flux for either species in an isothermal
plasma can be written as

Γ = nv = µnE −D∇n . (2.20)

Here µ = Ze/mν and D = KT /mν are referred to as the mobility and diffusion co-
efficients. For neutrals, or in the absence of electric fields7, eqn. 2.20 reduces to
Fick’s first law of diffusion: Γ = −D∇n. In plasmas however, with the possibility
of organised motion (e.g. waves), this diffusive behaviour may not be strictly obeyed.

Particles are confined in a torus as long as they follow the magnetic field lines, but
collisions in the perpendicular direction of motion could lead to radial excursions
and ultimately loss from the torus. Such a process can be regarded as diffusive and,
to estimate the distance a particle would travel in the radial direction, we invoke
a simple 1D model of the classic random-walk problem. Then the squared-distance
travelled after N steps, with step-length δ is

⟨x2(N)⟩ = ⟨[x(N − 1) ± δ]2⟩

= ⟨x2(N − 1)⟩ + δ2

= Nδ2 .

The motivation for summing over x2(N) as opposed to x(N) is physical, since sys-
tems that perform random-walks (e.g. a “drunken sailor”), are likely to cover more
ground with time [68], whereas ⟨x(N)⟩ = 0. If each step takes a characteristic time
τ , the total time t = Nτ . This allows us to define the diffusion coefficient D = δ2/τ .
Clearly, the distance d covered after N random-walk steps is

d =
√
Nδ =

√
t

τ
δ . (2.21)

2.4.1 Classical theory

It is evident from Fig. 2.7 that collisions between like particles do not lead to a
net particle transport, whereas collisions between unlike particles leads to a net
diffusion. Of the terms in eqn. 2.21, δ is determined by the electron/ion Larmor

6The collision frequency ν = nσv (σ is the interaction cross-section) is obtained by averaging
over all the particle velocities v, and is defined such that eqn. 2.19 is correct. For illustration, here
ν is approximated as a constant [67].

7In a tokamak, for trapped particles, the bounce-averaged toroidal equation of motion yields
v⊥ = −Eφ/Bθ. Noting that the fraction of trapped particles is ∼ ε1/2 [35], the convective particle
flux (Ware pinch) is found to be ∼ −ε1/2nEφ/Bθ.
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radius and τ is governed by the time-scale that causes the electron/ion velocity to
change considerably upon collision8 with the opposite species. For typical tokamak

(a) (b)

Figure 2.7: Particle trajectories before (blue) and after (red) collision for like (a) and
unlike (b) particles.

parameters of Te = 10 keV, n = 1020 m−3 and B = 1 T, in 1 second an electron would
have diffused de = ρe/

√
τei = 1.8 cm. As the ions begin to diffuse out quickly due

to their larger Larmor radii, an electric field is set up to accelerate the electrons
and retard the ion motion. This is known as ‘ambipolarity’ and ensures de = di [67].
However, heat transport may occur when like-particles collide if they have different
thermal velocities (e.g. in the presence of a temperature gradient). It turns out that
due to the much larger step-length, ion-ion collisions are the dominant heat transport
mechanisms. Note now τ = τii = τei

√
(mi/me)/Z2 [69]. For the same parameters, in

a second the energy diffuses a distance dE = 14 cm. The discussion in section 2.3.1
then suggests that a machine with a minor radius of few 10s of cm should ignite.

2.4.2 Neoclassical theory

In tokamaks, the dominant toroidal magnetic field varies with major radius as Bφ ∝
1/R. Particles starting off at the outboard side move into regions of stronger magnetic
field as they follow the field lines. As discussed in section 2.1.3, this could lead
to particle trapping. Neoclassical theory incorporates the effect of such trapped
particles and describes the resulting transport. Following [69], for a large aspect-
ratio circular cross-section tokamak (Fig. 2.8a), we can define the toroidal field
variation as B = B0(1 − ε cos θ), where ε = r/R0 ≪ 1 is the inverse aspect-ratio and
B0 ∝ 1/R0. Following the procedure in section 2.1.3, we can write

v2
∥ = v2 (1 −

v2
⊥0
v2

[1 + 2ε sin2(θ/2)]) . (2.22)

8The time it takes for an electron to deflect by 90○ upon collision with an ion is given by the
formula τei = 3.44×1011T

3/2
e (neZ ln Λ)−1. Here ne is in m−3, Te is in eV and ln Λ ∼ 10−20 for fusion

plasmas. The much more massive ions take considerably longer to be deflected by the electrons:
τie = (mi/me)τei [69].
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Figure 2.8: Schematics of the (a) poloidal cross-section of circular flux-surfaces (in blue),
(b) passing particle dynamics (in red) and (c) the characteristic banana orbit of trapped
particles. The vertical drift vD is always upwards for ions in this geometry.

Here v⊥0 represents the perpendicular velocity at the outboard side. The maximum
field is at θ = π and this gives the condition

v⊥0
v∥0

≥ 1√
2ε

(2.23)

(note that
√

2ε is the trapped-particle fraction). Because of the curvature and ∇B
drifts in the vertical direction, the particles do not stay on their starting flux surface.
This leads to the characteristic ‘banana orbit’ (Fig. 2.8c) and the parameter δrb sets
the diffusive step length. For barely trapped particles, bouncing between θ = ±π,
v∥ =

√
2εvth and the distance travelled along the field line to complete half the orbit

is 2πRq. The time to complete this is tb = (2πRq)(
√

2εvth)−1 and the width δrb is
therefore given by

δrb =
2πRq√
2εvth

(v∇B + vR) . (2.24)

Noting B = (c/R)êφ and R = R∇R (where c is a constant), and using the relations
from Table 2.1, we can straightforwardly write

δrb =
1

RΩ
(v2
∥ + v2

⊥/2)
2πRq

vth
√

2ε
(2.25)

= 1

RΩ
(2εv2

th + v2
th/2)

2πRq

vth
√

2ε
(2.26)

= πqρL√
2

(4ε + 1√
ε

) ≈ πq√
2ε
ρL , (2.27)

where we assume a large aspect ratio. Therefore, if the particle is scattered from
the passing to trapped orbit, the random-walk step-size increases by roughly q/

√
ε.

For heat diffusion via ion-ion collision, N ∼ (t/τeff)
√

2ε and τeff = τiiε. Here we
have multiplied with the fraction of trapped particles, and τeff is needed to satisfy
continuity requirements at the trapped-passing boundary. Combining these relations
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we obtain
dneo = ( qπ

21/4ε3/4)dc , (2.28)

where dc is the distance the energy diffuses in one second from classical estimates.
For typical values of ε ∼ 0.33 and q ∼ 2.0, the neoclassical heat transport is ∼ 10

greater than the classical transport in a tokamak, setting the minimum radius for
ignition to ∼ 1 m.

2.5 Turbulent transport

In tokamaks, confinement time predictions made using neoclassical estimates of dif-
fusion coefficients are an improvement on the classical value, but are still typically
one to two orders of magnitude higher than experimentally observed levels [70]. This
‘anomalous’ transport is thought to be made up of turbulent transport. Turbulence
arises due to the non-linear interaction of small scale fluctuations/instabilities, called
microinstabilities, which are driven by the gradients in equilibrium plasma param-
eters. Experimental measurements and theoretical studies suggest that a class of
microinstabilities known as drift modes are of particular importance (refer to section
3.2).

2.5.1 The electron drift wave

There are a range of drift instabilities that can develop in a tokamak plasma driven by
the electron drift wave. It is therefore useful to understand the drift wave. Consider
a slab of plasma (Fig. 2.9) with uniform electron temperature Te, cold ions Ti = 0,
no equilibrium flows or magnetic shear, but an equilibrium density gradient in the
−x̂ (radial) direction. A small ion density perturbation n1 ∼ exp[i(kzz + kyy)] on
the length scale 1/kz,y is introduced. Due to their small mass, electrons can respond
rapidly along the magnetic field B and establish force balance on time-scales much
smaller than that characterising the perturbation dynamics. This is referred to as the
adiabatic/Boltzmann response. The resulting potential perturbation φ1 (associated
with n1) leads to an E ×B drift of particles along x̂, where E = −(∇φ1)y. The
resulting drift wave propagates in the y (poloidal) direction with a velocity v∗, as
shown in Fig. 2.9. In this case there is no amplitude growth (equivalently, radial
transport). Dissipative effects such as electron-ion collisions or collisionless wave-
particle interactions can break the adiabatic/Boltzmann phase relationship between
n1 and φ1 [70]. This introduces an imaginary component and the wave becomes
unstable (or stable). The unstable mode is referred to as the electron drift mode.
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Perturbed density 
contour

Figure 2.9: Schematic of the electron drift wave in a shearless slab. The density gradient
∇n is along −x̂, the ion density perturbation is shown by the black contour and the asso-
ciated E ×B drift is shown by the green contour. The wave propagates in the ŷ direction
with a velocity v∗. The electrons è respond along the magnetic field B⃗.

2.5.2 The Ion Temperature Gradient mode

Introduction of other equilibrium gradients can also destabilise the drift wave: one
such instability results from the presence of an ion-temperature gradient (ITG). As
for the case of the electron drift wave, we assume the electrons to respond adiabati-
cally. Following the work of Dickinson [71], we use a two-fluid (electron-ion) model
to characterise the ITG mode dynamics. Reference [72] notes that observations of
comparable electron and ion transport is suggestive of a fluid-like picture. Signif-
icant ion-temperature is allowed such that Pi ≠ 0 and ∇Ti ≠ 0, but Te is taken to
be constant. The underlying physics has been explained with the help of Fig. 2.10.
The ITG instability does not require a density gradient, but we retain ∇n to demon-
strate its important stabilising influence. A good understanding of the ITG mode
physics can be obtained by studying its linear characteristics. Linearisation is per-
formed by decomposing a quantity f into its steady-state and fluctuating parts, i.e.
f = f0(x)+f1(x, t); the fluctuation in turn is described by the form exp[i(k.x−Ωt)],
where Ω = ω + iγ is the complex mode frequency. The product of two fluctuating
parts is neglected and the plasma is considered stationary, i.e. v0 = 0. Since we
consider a finite Pi, it is necessary to describe the ion-pressure fluctuations. This is
governed by the adiabatic equation of state (introduced to provide closure to the set
of fluid equations):

d

dt
(Pn−κ) = 0 . (2.29)

Here κ is the adiabatic index. Using the linearised ion continuity equation

∂n1

∂t
+ n0∇.v1 + v1.∇n0 = 0 , (2.30)
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Figure 2.10: Schematic of the ITG mode in slab. (a) shows the contour of constant
pressure (in green) with temperature (and associated pressure) perturbations. The ∇B
drift leads to hotter particles drifting faster (see Table 2.1) and subsequent formation of
regions of higher and lower densities. Using the picture of the electron drift wave described
in Fig. 2.9, (b) shows how the resulting E × B drift amplifies the initial temperature
perturbation.

we are able to eliminate density from eqn. 2.29 to obtain

∂P1

∂t
+ κP0∇.v1 + v1.∇P0 = 0 . (2.31)

Next, consider the force balance equation for each species. The electron response
parallel to the field line is obtained by neglecting collisions and electron inertia:

0 = neqeE∥ −∇∥Pe . (2.32)

Noting that parallel gradients are only in the perturbed quantities and by linearising
density we derive the adiabatic/Boltzmann relation:

ne1 = −n0
qeφ1

Te
. (2.33)

Next, neglecting collisions, consider the perturbed parallel ion motion using the
momentum equation:

vi,∥ = −
i

miΩ
(qi∇∥φ1 +

∇∥P1

n0

) . (2.34)

Consider now eqn. 2.30. In deriving the second term, we note that ∇.v⊥ = 0 in a
shearless slab, and take v⊥ to be given predominantly by the E ×B drift [72]. Hence
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only

∇.vi,∥ =
iω2
s

TeΩ
(qiφ1 +

P1

n0

) (2.35)

enters the ion continuity equation. Here we have defined ωs = kzcs, with cs the ion
sound speed at the electron temperature and ωs the associated frequency. Next we
consider the term v1.∇ in eqn. 2.30. Since the equilibrium gradients are only in the
radial direction, only the perpendicular velocity component is present:

v1,⊥.∇n0 = −(∇φ1 × b̂
B

) .∇n0 = −
n0

LnB
(x̂ × b̂) .∇φ1 (2.36)

= −
ikyn0

LnB
φ1 . (2.37)

Here Ln = n/n′ is the density scale-length. Before proceeding further, it is useful to
define the diamagnetic frequency. Considering the ion continuity in the perpendicular
direction, we find

iΩn1 = −
ikyn0

LnB
φ1 . (2.38)

Invoking quasi-neutrality and the Boltzmann relation we derive

ωn∗i =
kyTi
LnBqi

. (2.39)

Finally, collecting all the terms together, the ion-continuity equation is written as

−iΩn1 −
ikyn0φ1

BLn
+ iω2

sn0

ΩTe
(qiφ1 +

P1

n0

) = 0 . (2.40)

Setting ne1 ≈ ni1 and using the Boltzmann response to eliminate n1:

ω2
sP1 = [Ω2 −Ωωn∗e − ω2

s] qiφ1n0 . (2.41)

Following a similar procedure for eqn. 2.31, we derive

[Ω2 − κω
2
s

τ
]P1 = [κω

2
s

τ
−ΩωP∗ ] qiφ1n0 . (2.42)

Here τ = Te/Ti and the pressure diamagnetic frequency ωP∗ = (kyTi)(qiBLp)−1 has
been introduced, with Lp = p/p′ the pressure scale-length. Substituting eqn. 2.41
into 2.42 yields the desired ITG mode dispersion relation:

Ω3 −Ω2ωn∗e −Ωω2
s (1 + κ

τ
) + ω2

s (ωP∗ +
κ

τ
ωn∗e) = 0 . (2.43)

We next isolate the effects of temperature and density gradients from the pressure
term. Noting L−1

p = L−1
T +L−1

n we find ωP∗ = ωT∗i −ωne τ−1 , where ωT∗i = (kyTi)(qiBLT )−1
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has been similarly defined. Our dispersion relation then takes the final form:

Ω3 −Ω2ωn∗e −Ωω2
s (1 + κ

τ
) + ω2

s [ωT∗i + (κ − 1

τ
)ωn∗e] = 0 . (2.44)

2.5.2.1 Stability analysis

A cubic of the form a + bx + cx2 + dx3 = 0, with real coefficients, has complex roots
provided 18abcd − 4c3a + c2b2 − 4db3 − 27d2a2 < 0. The positive imaginary solution
corresponds to the unstable ITG mode branch. In Fig. 2.11 we plot ωn∗e/ωs against
ωT∗i/ωs. It can be seen that even in the absence of a density gradient, i.e. ωn∗e =
0, a small temperature gradient can be supported. In general, for higher density
gradients, the mode becomes unstable only by exceeding higher critical temperature
gradients 1/LT,crit, illustrating the stabilising influence of ∇n0.

Figure 2.11: The plot indicates the stability boundary for the ITG mode in a slab ge-
ometry for the parameters κ = 1 and τ = 1. For ωn∗e = 0, the mode becomes unstable when
ωT∗i > 1.089ωs.

The critical-gradient onset of turbulence is an important concept in tokamaks.
The rapid increase in transport fluxes when 1/LT > 1/LT,crit, pins the profiles close
to this threshold (for example, see Fig. 3.2).

2.6 Fluctuations and transport

It is believed that electrostatic and electromagnetic instabilities release the free en-
ergy trapped in the equilibrium gradients by driving a steady level of fluctuation. The
fluctuations in the associated perturbed quantities - temperature/density/magnetic
field/electrostatic potential - can in turn lead to a radial excursion of particles and
heat. For electrostatic modes in a slab, the perturbed radial velocity from the dom-
inant E × B motion is δvx = (δE ×B)x /B2 = δEy/B, whereas for electromagnetic
modes, the magnetic field stochasticization leads to a perturbed radial magnetic
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field component δBx. Density fluctuations cause associated charge separations, re-
sulting in an outward drift of the underlying density perturbation, whereas the bulk
species can freely stream along any magnetic field perturbation. The net convective
radial flux of particles for a species j, Γj, is therefore

Γj =
⟨δEy δnj⟩

B
+ nj

⟨δv∥j δBx⟩
B

. (2.45)

Associated with this convective particle flux is a heat flux (5/2)TΓj. The total
thermal energy Qj transported radially is a sum of this convective and two other
conductive parts [35]:

Qj =
5

2
TΓj +

3

2

nj⟨δEy δTj⟩
B

+ κ∇∥Tj . (2.46)

Here the second term is due to temperature fluctuations and the third term is due to
the magnetic perturbations directing the large parallel conductive heat flux radially
(the function κ depends on δBx, collisionality and strength of the turbulence). The
brackets ⟨. . . ⟩ denote an average over the y coordinate (or the flux-surface). Mea-
surements over an entire flux-surface are impractical, therefore, the surface-average
is typically replaced by the time-average at each radial point [35]. Such a procedure
should be carefully applied, since fluctuations may not be poloidally symmetric (see
Section 3.5).

2.6.1 Theoretical description

We attempt a simple theoretical description of electrostatic-fluctuation driven trans-
port using a random-walk model. Decomposing the perturbed potential into Fourier
harmonics we may directly write

δvk = −i
kyδφk
B

. (2.47)

If the particle velocity δvk persists for a time τk, known as the correlation time,
the particle would have travelled a distance δrk = δvkτk. The diffusion coefficient is
simply

Dk ≈
(δrk)2

τk
= −(

kyδφk
B

)
2

τk . (2.48)

The parameter τk is determined by the process which most rapidly limits the uni-
directional radial E ×B drift. For example, with trapped particles, 1/τk may corre-
spond to the frequency with which collisions cause de-trapping. One could estimate
the fluctuation amplitudes δφk and δnk from the ‘mixing-length estimate’. Accord-
ing to this, the instability drive is removed for the amplitude of δnk such that the
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equilibrium gradient becomes equal to the perturbed gradient, i.e.

n

Ln
∼ δnk
λ⊥

. (2.49)

Further invoking the Boltzmann response, we see

eδφk
T

= δnk
n

∼ 1

k⊥Ln
. (2.50)

There is experimental evidence of this scaling across a number of tokamaks [73].

2.6.2 Measuring fluctuations

In order to understand the role fluctuations play in setting tokamak transport, it
is necessary to measure the terms of eqn. 2.45. Note that the fluctuating radial
velocity δEy/B in the first term of eqn. 2.45 time-averages to zero (see Fig. 2.9). A
net transport can only occur if there are correlated variations in δn, such that more
particles travel in one direction than the other. It should also be noted that the fluc-
tuating electric field is associated with a potential variation and a scale-length 1/k⊥
- knowledge of the wavenumber spectrum S(k⊥) helps identify the mechanism(s) un-
derlying these fluctuations. This highlights the complexity of correlating fluctuation
measurements with transport studies: we require amplitudes and phases of δn, δφ,
δT , δBr, δv∥ and S(k⊥). The most comprehensive measurements so far have been
made using Langmuir Probes (LP) [74] and Mirnov Coils (MC) [75] at the plasma
edge (Fig. 2.12a). Towards the core, the probes no longer work because they would
melt from the high heat fluxes, further injecting the impurities directly into the re-
actor core. In this region, diagnostics such as the Heavy Ion Beam Probe (HIBP)
[76, 77], Beam Emission Spectroscopy (BES) [78, 79], Far Infra Red (FIR) scattering
[80], Electron Cyclotron Emission Correlation Radiometry (ECECR) [81, 82], Cross
Polarisation Scattering (CPS) [83] and Reflectometry [84] provide valuable insights.
This has been summarised in Table 2.2.

2.6.3 Experimental correlation: fluctuation and transport

If transport is caused by fluctuations, it must be possible to correlate them (note
however that fluctuations do not necessarily imply some transport, e.g. the stable
drift wave described in section 2.5.1). At the plasma edge, probe measurements of
amplitudes and phases allows for detailed quantitative comparisons between fluxes
and fluctuations (see Fig. 2.12). In the plasma bulk however, making such measure-
ments is much more challenging and we must resort to alternate means of relating
fluctuations with transport. For example, in TFR, a clear linear correspondence
was found between the inverse global energy confinement time 1/τE and (δn/n)2 in
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Table 2.2: Diagnostics and typical fluctuation amplitude measurements (in brackets).
Most of the data has been derived from [85, 86] and the references therein. See Fig. 2.12a
for comparison.

Fluctua-
tion

Edge mea-
surement

Core
measurement Remarks

δn

n
LP (> 30%)

Microwave/FIR
scattering, BES,
Reflectometry,
HIBP (< 1%)

• BES can be used to obtain 2D poloidal
distribution of fluctuations

• FIR allows monitoring of the entire S(k⊥, ω)
spectra throughout the discharge [87]

eδφ

Te
LP HIBP

• (Expect) eδφ/Te > δn/n at the edge, whereas
Boltzmann response followed in the core [85]

• The heavy-ion, e.g. thallium, energies
E ∼ 100 − 1000 keV ≫ eδφ for small-medium
tokamaks, implying application to the largest
devices requiring higher beam energies is
extremely challenging

δTe
Te

LP (> 20%) ECECR (∼ 1%)

• Intrinsic thermal fluctuations are noise to the
data; only recent advances have been able to
separate noise from turbulent fluctuations with
good confidence [82]

δBr
B

MC (∼
10−4 − 10−5) CPS (∼ 10−4)

• Despite such low fluctuation levels, there is
evidence linking internal magnetic perturbations
to the right level of electron heat transport [88]

• During strong tearing mode activity in the core,
δBr/B ≤ 10−2 has been measured using HIBP [89]

ohmic, ion cyclotron and neutral beam heated plasmas [35]. Assuming the Boltz-
mann relation holds in the core, this would resemble a scaling of the form 2.48.
Further, the drop in the fluctuation level and the formation of an edge transport
barrier (see Chapter 3) is seen to occur almost simultaneously (within 100 µs) [90].
Finally, advanced numerical simulations have allowed validations of turbulence mod-
els against experimentally measured fluxes to within experimental uncertainties [91].
However, other key parameters such as particle transport, wavenumber spectra and
fluctuation levels were not compared. Confidence in our predictive capabilities will
involve recovering simultaneously as many turbulent features as possible [92].
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Figure 2.12: (a) shows the spatial profiles of different fluctuations in a TEXT limiter
discharge and (b) shows the electrostatic particle flux Γf,E for the same shot. There is a
close positive correlation between the radial dependence of Γf,E and eδφ/Te. (Reproduced
from ref. [85] with permission from AIP Publishing LLC.)

2.7 Summary

Tokamaks and stellarators offer promising routes towards fusion energy. However,
several technological, materials and physics challenges need to be overcome before
commercialising fusion energy becomes possible. From the physics point of view,
increasing the confinement time will significantly benefit the pursuit of fusion energy.
There is mounting evidence that the anomalous transport observed over classical and
neoclassical estimates can be attributed to turbulent fluctuations. A grand physics
challenge is to minimise this turbulence caused by small-scale plasma instabilities.
The next chapter discusses some candidate instabilities, how they could be stabilised,
and the deleterious consequences associated with too good confinement. Finally,
some key open questions, motivating the research carried out during this PhD, are
identified.
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Chapter 3

Towards modelling small-ELMs and
intrinsic rotation

The discussion in Section 2.6 was about generic fluctuations and their relationship to
transport in tokamak plasmas, without any reference to the underlying instabilities,
or indeed, how this turbulent transport could be minimised or suppressed. In this
chapter we will expand on these areas, as we build towards the outstanding physics
questions that have motivated this project.

3.1 Quasi-linear theory for transport

Following [35], a more rigorous form for the diffusion coefficient (c.f. eqn. 2.48),
relating the growth rate and wavenumber of a particular linear mode to the turbulent
flux is derived. Let us begin by considering the continuity equation in the presence
of an equilibrium source S

∂n

∂t
+∇.(nv) = S (3.1)

and linearise the fluid density n = ⟨n⟩ + δn and velocity v = δv (assuming zero
equilibrium flow). Gradients are only in the radial direction x. Neglecting the
product of two perturbed quantities and assuming incompressibility, the fluctuating
part of eqn. 3.1 reads

∂δn

∂t
+ δvx

∂⟨n⟩
∂x

= 0 . (3.2)

In the linear regime, we may decompose perturbations into Fourier harmonics k in
the usual way, writing each component as exp[−i(ωk + iγk)t] and only picking out
the irreversible part (i.e. real component) that contributes to the transport flux:

δnk = −
γk

ω2
k + γ2

k

δvx,k
∂⟨n⟩
∂x

. (3.3)
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Using Γx,k = δvx,kδnk and Fick’s law (eqn. 2.20) one notes

D⊥ =
γk

ω2
k + γ2

k

∣δvx,k∣2 . (3.4)

We next write the velocity in terms of the radial plasma displacement ξx and keep the
irreversible contribution upon linearisation, i.e. γk ξx,k = δvx,k. The radial displace-
ment of a particle is typically within the instability’s wavelength, and this assump-
tion is used to write ξx,k ≈ 2π/kx. A further simplification is possible for isotropic
perturbations: kx ≈ ky = k⊥. Then, ∣ξx,k∣2 = 4π2/k2

⊥ and

D⊥ = 4π2 (γk
k2
⊥

γ2
k

ω2
k + γ2

k

)
max

. (3.5)

From this quasi-linear estimate, we infer that instabilities with stronger linear growth
rates and wider spatial extents would dominate transport in their non-linearly satu-
rated states.

3.1.1 Flow-shear and transport

From eqn. 3.5, we note that turbulent diffusivity is reduced if the perpendicular
wavenumber of the underlying instability could somehow be increased. One way of
achieving this is by putting the isotropic turbulent eddy in a sheared velocity field
vE×B = γEx (Fig. 3.1a), associated with a radially varying electric field Er [93].
It is straightforward to note from Fig. 3.1b that the major axis1 gets modified as
Ll = L

√
1 + (γEt)2. Further assuming that the eddy area πLlL⊥ is conserved, the

perpendicular wavenumber is modified according to

k⊥,γE = k⊥,0 (1 + γ2
Et

2)1/2
. (3.6)

This process persists for a correlation time t = τk. Combining eqns. 2.50 and 3.6, we
derive

⟨δn2⟩
⟨δn2⟩0

≈ 1

1 + γ2
Eτ

2
k

. (3.7)

In the presence of sheared flows, the fluctuation amplitude, and therefore the particle
and heat transport, are reduced. This simple picture of turbulent eddies tilting (and
ultimately, splitting) seems to be supported by the 2D Gas Puff Imaging diagnostic
on TEXTOR [94].

1The major axis of the ellipse is stretched along the E ×B velocity field, whereas the minor axis
shrinks and rotates to align perpendicular to the flow.
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(a) (b)

Figure 3.1: (a) An initial isotropic fluid eddy with a sheared velocity field vE×B imposed
on it. (b) The fluid eddy is stretched with time and (not shown) can ultimately break down
into multiple smaller eddies.

3.2 Candidate modes for turbulent transport

A number of drift modes exist in a torus, with their stability and scale-length de-
termining γk and k⊥. A few key ones are the ion/electron temperature gradient
(ITG/ETG) mode, the trapped ion/electron mode (TIM/TEM), the kinetic bal-
looning mode (KBM) and the micro-tearing mode (MTM). Some of their features
and the mechanisms responsible for driving and stabilising them are summarised in
Table 3.1. More complete discussions can be found in references [95, 92].

3.2.1 Profile-stiffness

Before proceeding, it is useful to discuss the two closely related concepts of profile-
stiffness and critical-gradient onset of turbulence. There is strong theoretical and
experimental evidence that significant turbulent ion heat transport is triggered when
a critical gradient in the ion-temperature is exceeded. The toroidal ITG mode is a
strong candidate to explain this transport [119, 120]. Referring to Fig. 3.2, at low
rotation, clearly R/LTi = −c(r) with c(r) a weakly varying function of r. Then the
core temperature Tcore is related to the edge temperature Tedge according to

Tcore

Tedge

= exp
⎛
⎜
⎝

edge

∫
core

c(r)
R

dr
⎞
⎟
⎠
≈ constant. (3.8)

Reference [122] reports evidence of this scaling in ASDEX Upgrade.

3.3 Suppressing turbulence

In section 3.1.1 we discussed how flow-shear reduces turbulent transport. But cru-
cially, electron and (in particular) ion diffusivities can be reduced to neoclassical
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Table 3.1: Examples of toroidal drift modes and some of their key features [92, 96].

Mode k⊥ρi
Destabilisa-

tion Stabilisation Remarks

ITG ≤ 0.5 ∇Ti
∇ni, E ×B
shear [97, 98]

• Associated turbulence isotropic
[99]

• Linear critical-gradient
up-shifted due to the stabilising
influence of the nonlinearly
generated, sheared ‘zonal’ flows
[100, 101]

TEM/TIM
[102]

0.2-1.0
∇T and ∇n
of trapped
particles

Minimising bad
curvature

region where
particles are
trapped [103],
E ×B [97, 98],
Shafranov shift

[104]

• Trapped particles are minimised
in highly collisional edges and
towards the core [35]

• Dissipative (collision dependent)
branch predicted to be more
dangerous than the collisionless
branch [35]

ETG ≥ 2.0 ∇Te

∇ne, ŝ
[105, 106],

Shafranov shift
[107]

• Not affected by flow-shear due to
small spatial scales and large
linear growth rates [107]

• Forms radially elongated
‘streamer’ structures with
kr ≪ kθ [108]

• Can match experimentally
relevant critical gradient profile
[109]

MTM
≤ 1.0

[110], ∼ 3
[111]

∇Te ∇ne

• Electromagnetic mode; involves
tearing and reconnection of
magnetic field-lines

• Virulent close to the pedestal top
[111]

KBM
[112]

≤ 0.5
[113]

∇p [111],
energetic
ions [114]

Finite
gyro-radius

[115]

• Similar in spatial-scale to ITG,
but exhibits shorter correlation
times and much higher heat and
particle transport [116]

• An electromagnetic mode, so
important at high β [117, 118]

levels when the E × B shearing rate exceeds the growth rate of the most unstable
mode: ωE×B > γmax [123, 124]. There are several significant consequences of such a
paradigm change in transport characteristics, and we discuss these in the subsequent

36



Chapter 3. Small-ELMs & intrinsic rotation 3.3. Suppressing turbulence

1.5

0
20

P
ino

rm
(ρ

to
r=

0.
33

) 
(M

W
)

R/L Ti

JG08.178-1c

4 6 8 10
0

10

20

30

2.0

1.0

0.5

q i
gB

(ρ
to

r=
0.

33
) 

(g
yr

oB
oh

m
 u

ni
ts

)

Low
rotation

GS2
non-lin
no coll

DEMO

ITER

χs=7 χs=2

GS2 non-lin
with coll

χs=0.5

High
rotation

neoclassical

GS2 linear
threshold

Figure 3.2: Plot showing the normalised ion heat flux as a function of temperature gradient
for various plasma rotations (circles, triangles and squares). The ‘stiffness’ parameter χs
characterises the ion thermal transport: a lower χs, associated with high rotation, would
support stronger gradients due to reduced transport. (Reproduced from [121] courtesy of
[47]; permission to publish obtained from the American Physical Society.)

sections.

3.3.1 High-confinement mode

In order to increase the plasma energy content beyond what is achievable with ohmic
heating alone, tokamaks rely on additional heating (section 2.2.4.1). It was initially
found that the confinement degraded with applied power P . This was referred to
as the Low-confinement or ‘L-mode’ of operation, with the confinement time τE,L ∝
P −0.5 [125]. But curiously, as the heating exceeded a certain threshold, a bifurcated
state associated with an improved energy confinement time (typically twice that of
the L-mode) could be accessed [126]. This high-confinement or ‘H-mode’ of operation
has been reported by almost all tokamaks2. Figure 3.3 compares the two auxiliary
heated modes of operation with the help of a cartoon. Note that the improved plasma
pressure achieved across the radius can be attributed to a narrow region of improved
confinement (∼ cm) at the very edge of the plasma, called the ‘pedestal’3 [128, 129].
From eqn. 3.8, we observe straightforwardly that the core temperature Tcore ∝ Tped,
the temperature at the pedestal top. ITER’s goal of delivering an energy gain of 10
is tightly hinged on its ability to access the H-mode.

Often in discharges with non-monotonic q profiles, or reversed shear, internal
transport barriers (ITBs) can instead form near low-order rational surfaces (q =
2,3) [130]. The desired q profile can be obtained by locally modifying the plasma
current through non-inductive current drive schemes (see section 2.2.4.1). Although

2Often the parameter H98 is used to measure the ‘quality’ of the H-mode. This is basically the
confinement time normalized to the IPB98(y,2) confinement time scaling for Type-I ELMy H-modes
[126].

3The pedestal width can be given by the scaling ∆ped ∝ ρνpola
1−ν , where ρpol is the poloidal

Larmor radius, a is the minor radius and 0 ≤ ν ≤ 1 [127].
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reversed shear is not a sufficient condition for the formation of ITBs, it facilitates
turbulence suppression through other processes such as flow-shear. The internal and
edge transport barriers can co-exist, allowing very high performances with H98 =
1.7 − 1.9 [131]. The physics of ITBs is reviewed in ref. [130].

H-mode 
profile

L-mode 
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Edge transport 
barrier (ETB) /

pedestal
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sm
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Normalised radius r/a0 1

Figure 3.3: Cartoon illustrating the L- and H-modes of operation. The formation of a
narrow (∼ cm) edge transport barrier (ETB), or pedestal, characterises the H-mode.

3.3.2 Edge localised modes

The strong pressure gradient and the associated bootstrap-current4 in the pedestal,
can simultaneously destabilise pressure-driven ‘ballooning’ and current-driven ‘peel-
ing’ modes [132]. This results in an explosive edge instability called the edge localised
mode (ELM). At ELM onset, plasma filaments carrying substantial amount of parti-
cles and heat break away [133, 134]. These ‘Type-I’ ELMs can be extremely damaging
to ITER, with the biggest ELMs projected to expel up to ∼ 30 MJ of energy 20 times
per second [135]. Such intense bursts of energy and particles would severely damage
the heat-handling target plates, significantly reducing ITER’s operational lifetime
[136]. An acceptable lifetime for this ‘divertor’ plate requires an energy loss of < 6

MJ per ELM [137]. Such Type-I ELMs are unacceptable, but smaller ELMs within
the material limits are in fact desirable: these periodic bursts of energy and particles
help remove impurities (Helium ash, high-Z wall material sputtered into the plasma,
etc.) and control density, allowing steady-state operation. There are many ways to
avoid large ELMs: actively mitigate them by increasing their frequency (thereby re-
ducing the energy released per ELM), eliminate/suppress them altogether, or identify
intrinsic small/no-ELM regimes. These are discussed in turn:

4In the presence of a density gradient, radially-neighbouring trapped particles undergoing ba-
nana motion are associated with a parallel current. They can further transfer momentum to the
untrapped ions and electrons. The bootstrap current arises due to the difference in the momentum
exchanged with the passing electrons versus ions.
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3.3.2.1 Active ELM control techniques

Magnetic fields generated by in-vessel current coils can ‘puncture’ the equilibrium
flux surfaces, enhancing the radial transport. These resonant magnetic perturba-
tions (RMPs) can mitigate [138] or completely suppress [139] Type-I ELMs without
significant/any pedestal pressure degradation. Although in order to smooth the
toroidally asymmetric heat-fluxes associated with RMP application [140], the ITER
RMP coils are being designed to rotate the applied perturbation at few Hz [141].
Another approach involves firing small cryogenic D-pellets. Reference [142] showed
that the natural ELM frequency, fELM ≈ 30 Hz, could be completely replaced by the
pellet frequency fpel above fpel ≥ 1.5fELM, with a mild degradation in the pedestal
stored energy, Wped ∝ f−0.16

pel . It is understood that the cloud of deuterium gener-
ates a strong cross-field pressure-gradient, triggering small-ELMs. Reference [143]
reviews these and other ELM-control methods for application to ITER scenarios.
Although, while such techniques may provide the solution on ITER, going beyond,
steady-state scenarios will benefit from intrinsic small/no-ELM regimes, which are
likely to relax the level of shielding and maintenance that become necessary with
added ELM-control components.

3.3.2.2 Small/no-ELM regimes

There are many different ELM categories. One may refer to [144] for a discussion
on their characterisation or [145] for an overview of theoretical ideas relating to
their onset. Here we briefly review the peeling-ballooning (PB) model that robustly
describes the Type-I ELMs, and further provides plausible explanations for other
small-/no-ELM regimes (see Fig. 3.4):

(a) In a hot plasma with a relatively long current diffusion time, one could expect
the pressure gradient to quickly reach the ballooning boundary, where it’ll
remain tied due to the critical-gradient argument given before. The associated
bootstrap current then rises towards the PB limit, triggering a large crash.
This is widely accepted as the mechanism behind Type-I ELMs [129].

(b) Type-II ELMs are associated with Type-I-like pressure pedestals and exist in
a narrow operational window at high densities. It is speculated that these
ELMs are purely ballooning [145], with the high collisionality suppressing the
bootstrap current, preventing the PB instability.

(c) Type-III ELMs are divided into 2 categories [146]: a high ne, low Te branch
and a low ne, high Te branch (the latter is sometimes referred to as Type-IV).
Both branches are associated with degraded pedestals in comparison with their
Type-I counterpart. The low ne branch, with a lower collisionality, is associated
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Figure 3.4: (a) The localised peeling mode (driven by current density and stabilised by
pressure gradient) can couple (dashed-line) with the extended ballooning mode (destabilised
by pressure gradient and stabilised by current density) for intermediate toroidal mode
numbers (typically n ∼ 10−15). (b) Different trajectories on this peeling-ballooning diagram
can lead to different ELM types (see text for discussion).

with the pure-peeling mode whereas the high ne, low Te branch is associated
with the resistive ballooning mode triggered at lower pressure gradients.

(d) The quiescent H (QH) mode [147] is a stationary ELM-free regime with high
confinement. Low collisionality is important for its accessibility, making it
ITER relevant. The following mechanism is thought to be responsible for its
onset [148]: low n kink mode is destabilised by flow-shear; the radial mode
growth damps the sheared flow (mode coupling to the wall provides another
mechanism to brake the torque); the mode is stabilised and the flow-shear may
increase again; this provides a saturation mechanism.

Another attractive operation scenario is the grassy-ELM regime. This is charac-
terised by high confinement, tolerable energy loss per ELM, and appears in low-
collisionality plasmas that are again relevant for ITER [144]. As of date, a robust
theoretical understanding of the responsible physics mechanisms, which could guide
the accessibility of small/no-ELM regimes on ITER, is lacking, and has been identi-
fied as a priority area by the ITPA Pedestal and Edge Physics topical group [149].

3.3.3 Intrinsic rotation

As the plasma enters the H-mode, there is an associated build-up of intrinsic torque
in the co-current direction. Modelling [150] and observation [151] indicate that the
rotation at the top of the pedestal increases with its width, propagating inwards into
the core. Ion ITBs also exhibit spontaneous rotation [152], as does the I-mode regime
which is characterised by an H-mode like temperature pedestal but L-mode like
particle confinement [153]. The change in the toroidal rotation velocity ∆Vφ across
the L-H transition is given by the ‘Rice-scaling’, ∆Vφ ∼ ∆W /Ip (∆W is the change in

40



Chapter 3. Small-ELMs & intrinsic rotation 3.3. Suppressing turbulence

the plasma stored energy and Ip the plasma current), with spontaneous core impurity
toroidal rotations as high as 130 km/s, or a thermal ion Mach number Mi = 0.3,
measured in plasma discharges [154, 155]. Understanding rotation in tokamaks is
crucial for a number of reasons: (a) the L-H power threshold depends strongly on
toroidal rotation [156]; (b) rotation can stabilise macroscopic MHDmodes such as the
internal kink5 [157] and resistive wall modes [158]; and (c) profiles in rotating plasmas
can become less stiff (Fig. 3.2), supporting stronger gradients. However, neutral
beam injected torque, significant in present tokamaks, is predicted to be modest on
machines such as ITER, with Mi ≈ 0.05 [159]. Intrinsic torque is then expected to
provide the dominant source of rotation, necessitating a deeper understanding of its
physics. The underlying drive requires symmetry-breaking, which can occur via a
number of mechanisms. References [160, 161] provide a comprehensive summary on
the theories of turbulent momentum transport and intrinsic rotation. Here, we briefly
comment on the ‘heat-engine’ model of [162], which captures some of the features of
the Rice-scaling. According to this model, the radial inhomogeneity in temperature
(i.e. ∇T ) drives drift-wave turbulence, which generates flow via residual stresses.
Detailed theoretical analysis yields the estimate ⟨V∥⟩ ∝ ρ∗Ls/LT (here ρ∗ = ρ/a,
Ls = q/q′ and LT = T /T ′). Noting that Ls ∝ q ∝ I−1

p and L−1
T ∝ ∆W , we recover

the form of Rice-scaling. The linear scaling of torque with gradients is consistent
with experimental observations [152, 153] and global gyrokinetic simulations of ITG
[163] and collisionless TEM [164, 165] modes. The main limitation of this model
is the ρ∗ scaling, which the experimental findings of [155] show no dependence on.
These results may have severe implications for ITER’s operation. In the ‘Solomon-
cancellation’ experiment [166], a net on-axis counter-NBI torque was used to cancel
the pedestal co-intrinsic torque to yield a flat rotation profile right across the minor
radius. It is speculated that in the electron cyclotron-heated H-mode, the counter-
torque associated with the excitation of ∇Te-driven TEM [167, 168] could cancel the
pedestal co-torque at the q = 2 surface6. The locking of a 2/1 neoclassical tearing
mode island to the wall allows it to grow rapidly, likely ending the discharge with a
disruption [169]. Indeed, understanding intrinsic rotation and the impact of rotation
on L-H power threshold and suppression of turbulence, have been identified by the
ITPA Transport and Confinement topical group as key areas [170].

5An intuitive understanding of the physics can be gained from an analogy with the gyroscopic-
stabilisation of a spinning top. The toroidally rotating plasma has an angular momentum about the
central column; distortions introduced by the kink-modes alter this momentum, which the spinning
plasma opposes.

6The ‘flat’ rotation profile of Solomon, when core-counter-NBI cancels the pedestal-co intrinsic
torque, must be contrasted with the formation of a ‘connection-layer’ when counter-core and co-
pedestal intrinsic torques interact [161].
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3.4 Dynamics of pedestal formation

Since the H-mode is so rich with physics, while being critical to the success of ITER,
it is worthwhile to understand the dynamics of the pedestal evolution here (in par-
ticular, the high performance Type-I ELMing discharges). In most tokamaks such as
MAST, NSTX, Alcator C-Mod and DIII-D [111, 171], the pedestal forms through an
interplay between two distinct physical mechanisms (refer Fig. 3.6 for a schematic):

(a) Immediately following a large-ELM, small-scale microinstabilities responsible
for turbulent transport, such as the Kinetic Ballooning Mode (KBM), constrain
the pressure-gradient, allowing the pedestal to widen (Fig. 3.5) [113].

(b) The pedestal keeps expanding radially inwards until it encounters the global
stability limit of the ideal-MHD peeling-ballooning mode [132]. For small
pedestal widths, the global MHD mode is unable to ‘fit’ inside the pedestal,
and this has a stabilising influence on the mode [172], allowing for a higher
threshold in the gradient. (Once the mode is able to fit inside, increasing the
pedestal width should have no further bearing on the mode’s stability.)
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Figure 3.5: Plot (a) shows the evolution (green → blue → red) of the density profile in
between two Type-I ELMs on MAST, with (b) showing the corresponding temperature
evolution. The pressure pedestal formation therefore follows (a). The plasma core is to the
right in both figures. (Reproduced from [111] with permission from the American Physical
Society.)

The EPED model [173] uses these constraints to predict the pedestal height and
width at the onset of a Type-I ELM. With MHD ballooning and toroidal drift modes
central to the pedestal dynamics, it is important that we understand the physics of
their onset. The ‘linear ballooning formalism’ is an extremely useful tool towards
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Figure 3.6: Illustration of the EPED model (see text for discussion).

this study7.

3.5 Ballooning framework

Toroidal drift modes and MHD ballooning modes are strongly localised about ratio-
nal flux surfaces (minimising field-line bending), with the rational surface spacing
given by ∆ = (nq′)−1 (n is the toroidal mode number and q′ is the radial derivative
of the safety factor profile). For high-n modes, ∆ ≪ Leq with Leq characterising the
length-scale over which equilibrium profiles vary. The formalism exploits this ap-
proximate invariance of rational surfaces, and expands in the small parameter ∆/Leq
to reduce a system describing a 2D perturbation (in r and θ) to two uncoupled 1D
equations (in the field-aligned coordinate η (related to θ) and the radial coordinate
r). To the lowest order, the perturbations on adjacent rational surfaces are decou-
pled and evolve independently of each other. The problem is then of one along the
field-line η and yields the local eigenvalue λ(r, η0), together with the mode struc-
ture. At this level both η0 (an arbitrary phase offset) and r are free parameters and
typically chosen to yield the most unstable mode. But the higher-order theory im-
poses constraints (section 3.5.3). Before discussing this, we must make an important
distinction between MHD ballooning and toroidal drift modes.

3.5.1 MHD ballooning modes

Ideal MHD is Hermitian [174] and the eigenvalue λ = γ2(r, η0) is real, where γ is
the growth rate. Further, the stability of these eigenmodes affect the entire plasma.
Therefore, if an unstable mode was to exist, all we need to do is pick r and η0 that
maximises the growth rate. To see this, Taylor-expand the local eigenvalue in the
neighbourhood of r0 where γ2 is maximised (Fig. 3.7): λ = λ0(r0, η0)+ λr(r0, η0)(r −

7While the linear theory deals with the instability triggers, nonlinear theory is instrumental in
determining the consequences of the instability onset.
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r0) + λrr(r0, η0)(r − r0)2/2 + . . . (here λr and λrr are the first and second radial
derivatives). To obtain the maximum growth rate, one requires λr(η0 = η̂) = 0, where
(∂λr/∂η0)∣η0=η̂ = 0. For ballooning modes in an up-down symmetric equilibria, the
instability drive is maximised at the outboard-midplane, thus η̂ = 0 typically satisfies
the constraint. Under these assumptions the global eigenvalue is accurate to the
local limit within O(1/n) [172], so the local solution is a very good description of
the full 2D problem.

Figure 3.7: Cartoon of the ideal-MHD ballooning mode growth rate variation with radius.

3.5.2 Toroidal drift modes

For toroidal drift modes the situation is a little more subtle due to the eigenvalue
being complex: λ = ω0(r, η0) + iγ0(r, η0). Here ω0 and γ0 are the frequencies and
growth rates of the linear perturbations for different r and η0. A treatment similar to
MHD cannot be uniquely followed since the stationary point condition λr(η0 = η̂) = 0

is not trivially satisfied. This is illustrated in Fig. 3.8. Consider the pressure pedestal
of H-mode. The instability drive is expected to be maximum somewhere inside the
pedestal where the profile gradients are the steepest. There is no apparent reason
why the frequency should peak at the same radial location (Fig. 3.8a). Now from the
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Figure 3.8: Schematic of the pressure pedestal demonstrating why (a) the complex local
eigenvalue is not necessarily stationary at the same radial location, and (b) how a linearly
sheared flow profile can transiently make this possible.

force balance equation, it can be seen that the pressure gradient is associated with
equilibrium toroidal flows. A Doppler shift associated with the linearly sheared flow
ω′x (x = r − r0, with r0 our reference frame) could shift the frequency to transiently
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align the peaks in γ0 and ω0 (Fig. 3.8b). Note that the peaks only align in the
presence of a critical flow-shear ω′c. Only now could a treatment similar to the one
adopted for MHD ballooning modes be followed. Therefore, a higher-order theory
that treats general radial profile variations, is desirable.

3.5.3 Higher-order theory: two branches

The lowest order treatment yields the mode structure along the field-line η and the
local eigenvalue λ(r, η0), with both r and η0 being free parameters. Moving on to
the next order, the problem becomes one in radius: the theory uses the radial varia-
tion in λ(r, η0) to construct the global mode structure and global (true) eigenvalue.
Depending on the profiles, the parameter η0 is now predicted by theory, and is es-
sentially the poloidal location where the most unstable mode sits. When applied
to toroidal drift modes (ITG, KBM etc.), two distinct classes of global instabilities
have been identified by theory [175, 176, 177, 178]: the General Mode (GM) and
the Isolated Mode (IM). The IM exists in the special situation when λ(r, η0) has a
stationary point in r and η0 (Fig. 3.8b). This is closely related to the local solution
obtained for ideal MHD. In typical up-down symmetric equilibrium this mode will
balloon close to the outboard-midplane (i.e. η̂ = 0) and have a strong growth rate,
γ ∼ max[γ0]. More general (e.g. shaped) equilibria can result in non-zero values of
η̂. The GM on the other hand does not have any such constraint on λ(r, η0) and is
therefore always accessible (Fig. 3.8a). For a circular cross-section, it will typically
peak at the top/bottom of the poloidal plane, and the growth rate is obtained by
averaging λ(r, η0) over η0 [177, 179, 180] (λ is periodic in η0). The GM is therefore
more stable than the IM. Finally, global eigenvalue simulations [178, 181] have shown
that the two branches can transition into one another in the presence of a critical
flow-shear.

3.6 Project motivation

Global turbulence codes that treat profile variations cannot, in general, distinguish
between the two branches (IM and GM) without knowledge of the local eigenvalue
λ(r, η0). However, and as we shall see in Chapter 5, knowledge of local solutions
does enable us to efficiently8 reconstruct the global eigenmode [181]. The thrust of
turbulence modelling in fusion research has been to understand the different microin-
stabilities responsible for transport and how the associated losses could be minimised.
For any given set of (typically static) equilibrium profiles, global codes are employed
to predict the linear instability threshold and the nonlinear fluxes, without needing

8Solving multiple 1D ordinary differential equations to map λ(r, η0) can be done independently in
the r−η0 plane. The subsequent step of calculating the global eigenvalue from λ(r, η0) is effectively
a one-step Fourier integral.
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to make a distinction between the two branches. However, some exciting physics
ideas do emerge when considering the dynamics of the IM and GM and how the two
branches can transition into one another as the profiles evolve. This research aims
to address three key areas.

3.6.1 Dynamics of eigenmode formation

The global mode comprises of coupled Fourier modes, each of which evolve on rational
flux surfaces. There are two time-scales of significance: firstly, how quickly do the
neighbouring local modes couple with the right amplitudes and phases to establish
the global mode structure; and secondly, how long does it take the local modes to
have significant amplitude to drive the system nonlinear. If by the latter time period
the global modes have not formed, the plasma cannot make a distinction between the
IM and GM, and these structures should have no bearing on the nature of turbulence
(e.g. GM driven turbulent transport is likely to be most virulent at the top/bottom
of the poloidal cross-section). This could additionally have important implications
for local flux-tube turbulence simulations, which cannot make a distinction between
the IM and GM, and take the more unstable IM to drive growth in the linear phase
leading up to saturation.

3.6.2 A model for small-ELMs?

Assuming that the global modes can form sufficiently quickly, thereby allowing them
to influence the nonlinearly saturated states, their dynamics can form the basis of a
new model for small-ELMs. This is illustrated using Fig. 3.9. Based on Fig. 3.8a,
we argue that the gradient at which the KBM holds the pedestal is one associated
with the GM (KBM-GM). Since the KBM-IM is more violent, we posit that there
exists a lower critical gradient for the onset of this branch. However, due to the strict
stationary point constraint on λ(r, η0), the plasma is normally unable to access the
IM. Type-I ELMs occur when the critical flow-shear needed to trigger the KBM-
IM is outside the trajectory of the evolving pedestal (red-star). Plasma shaping
can move the peeling-ballooning boundary or NBI can influence the flow-shear to
make this lie in the pedestal trajectory (green-star). At this point the plasma sees
the IM much above its threshold, triggering a sudden increase in growth rate and,
likely, an associated burst in transport. Furthermore, the rapid adjustment of profiles
would terminate the crash and re-establish the GM, limiting the energy released, and
allowing the cycle to repeat. Indeed, there is experimental evidence of NBI [182] and
strong shaping [183] triggering grassy-ELMs on JT-60U. Of course, a key question
is whether the GM-IM-GM transition does in fact drive a burst in transport. This
would require nonlinear simulations well outside the scope of present linear studies.
Here we only seek to address the time-scales associated with the aforementioned
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GM-IM-GM dynamics.
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Figure 3.9: Sketch illustrating extensions to the standard EPED-type model of Fig. 3.6 to
accommodate small-ELMs (see relevant text for discussion). The ‘stars’ indicate the critical
flow-shear needed to access the IM which may (green) or may not (red) be encountered by
the evolving pedestal constrained at the critical gradient of GM.

3.6.3 Towards intrinsic rotation modelling

There is another important piece of physics to consider: the effect the mode structure
would have on the flow, through Reynolds stresses [184] for example. Following [185],
it is intuitive that a radially-outward-directed ‘effective gravity’, experienced by all
toroidal plasmas, would cause any poloidally asymmetric density (and through the
Boltzmann relation, electrostatic potential) imbalance to align with the effective-
gravity. Though magnetic-pumping9 may impede such flows [186], sufficiently strong
poloidally asymmetric particle/momentum sources may overcome this damping [187].
If such an effect was to be significant, the more general asymmetric GM would not
be stable according to this picture, whereas the special IM would be! References
[188, 189] further conclude that asymmetric modes such as the GM are expected
to generate a significant torque compared to the symmetric IM. This motivates the
following questions: (a) does the intrinsic torque generated by the GM drive the mode
towards the IM structure?; (b) could a balance between the intrinsic and externally
(e.g. NBI) driven torque influence the stability of IM/GM solutions?; and (c) is
there a correlation between the torque associated with these linear mode structures
and the nonlinearly saturated flows? Answering the final question again requires
nonlinear simulations and cannot be addressed here.

Note that the equilibrium profiles set the critical flow-shear for a GM-IM tran-
sition. If the GM torque drives towards an IM (the latter not expected to produce
any significant torque), then this can tell us about the flow-shear that is produced.

9When a ‘flux-tube’ of plasma gets convected poloidally from the outboard to the inboard side,
the compression of magnetic field-lines causes more collisions. These collisions dissipate the kinetic
energy of the poloidal rotation as heat, damping such flows.
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We posit that global modes sitting on resonant surfaces would drive torques and
set boundaries on the neighbouring modes; integrating across the minor radius with
global boundary conditions (e.g. core NBI and scrape-off layer flows) would give the
plasma rotation profile. This could potentially provide a handle on torque profile
control using shaping (for example) to modify the global mode structure. There is
evidence of plasma shaping strongly influencing the intrinsic toroidal rotation profile
on TCV [190].

3.7 Summary

In this chapter we looked at microinstabilities in a torus and how flow-shear may
reduce the associated turbulent transport. High enough flow-shears can lead to tur-
bulence suppressed regimes. Such regimes are accompanied by edge plasma eruptions
and spontaneous rotation, driven by the steep profile gradients that form. Both ar-
eas are crucial to the success of ITER and yet we lack robust predictive capabilities
to guide ITER’s operation. The global theory of microinstabilities could provide a
firm physics basis to build this capacity. For all toroidal microinstabilities, two dis-
tinct branches are predicted: an asymmetric yet generally accessible branch (General
Mode), and a strongly unstable, symmetric, although generally inaccessible branch
(Isolated Mode). The working hypotheses are (1) a transition between the relatively
benign and violent branch could drive a burst of transport and (2) the asymmetric
accessible branch could drive intrinsic torque. In Chapter 4 we shall introduce the
new initial value code and present benchmarks. The code will be used to explore
the global mode dynamics in Chapter 5, in particular the GM-IM-GM transition,
from the point of view of the ELM problem. In Chapter 6, the more self-consistent
problem accounting for the feedback of the mode on the flow is explored.
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Chapter 4

A time-dependent code to study
toroidal drift modes

From the previous chapter it is amply clear that, in order to address the questions
on small-ELM and intrinsic rotation modelling, we need a global initial value code
that permits profile evolution. The following sections describe the development and
testing of this new code to study toroidal drift modes.

4.1 Physics model

To explore the dynamics of the GM-IM-GM transition as flow-shear evolves, we
require a physics model that captures the essential features of toroidicity and radial
profiles generic to all toroidal micro-instabilities. The global toroidal fluid model of
[191] contains this physics. This model is derived from the gyrokinetic equation in
the fluid limit of small Larmor radius for a large aspect-ratio circular cross-section
tokamak. It is electrostatic with adiabatic electrons, and describes both ITG and
electron drift modes. The equation for the perturbed potential φ̃ = φ1(x, θ) exp(inϕ)
in this model is

[ρ2
s

∂2

∂x2
− k2

θρ
2
s −

σ2

Ω2
( ∂
∂θ

+ inq)
2

− 2εn
Ω

(cosθ + i
sinθ

kθ

∂

∂x
) − Ω − 1

Ω + ηs
]φ1(x, θ) = 0. (4.1)

Here, the first two terms containing ρs are due to finite Larmor radius effects; the
third term is the ion-sound term and encapsulates the parallel dynamics; the fourth
term arises due to the toroidal curvature; and the final eigenvalue term captures the
adiabatic electron response. The various equilibrium parameters used are as follows
(prime denotes a radial derivative): ρ2

s = ρ2
i τ , where ρi is the ion Larmor radius and

τ = Te/Ti the electron to ion temperature ratio; εn(r) = Ln/R is the density scale
length Ln(= ns/n′s) normalised to the plasma major radius R; σ(r) = εn/(qkθρs);
kθ = m0/r is the poloidal wavenumber, with q(r0) = m0/n and n the toroidal mode
number; q = q(r0) + q′x is the safety factor profile with x = r − r0 and r0 some
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reference rational surface; ηs = (1 + 1.5ηi)/τ , where ηi(r) = nsT ′
i /Tin′s is the ITG

mode drive; and finally, Ω = ω + iγ is the global mode frequency normalised to the
electron diamagnetic frequency ω∗e.

In eqn. 4.1, balancing the eigenvalue term with the rest (which are small)
requires either Ω ≃ 1 or ηs ≫ 1. The ordering Ω ≃ 1 gives rise to the electron drift
mode, whereas the condition ηs ≫ 1 corresponds to the ITG branch [35] - the latter
is the focus of this work. Note that because ηs ≫ 1, we are constrained to consider
only strongly unstable modes. This model is, of course, a great simplification of
the full ITG mode physics, which requires a gyrokinetic or gyrofluid treatment to
take proper account of drift-resonances, and should also include electromagnetic
effects particularly at high β [117]. That said, the applicability of the gyrokinetic
framework itself rests on the smallness of the parameter ρs/L – an ordering that
may well break down at the edge where the ELM dynamics are of interest. This
constrains us to the study of microinstabilities whose scale-lengths do not violate the
gyrokinetic ordering. Nevertheless, since we are more interested in the dynamics of
the two toroidal eigenmode categories (IM and GM) as opposed to the details of any
particular micro-instability, the use of this model, shown previously to analytically
capture the two branches, is justified [192].

4.1.1 Cylindrical limit

By Fourier-expanding eqn. 4.1 with φ1(x, θ) = ∑m φm(x) exp(−imθ), it can be shown
that each Fourier harmonic satisfies:

[bŝ2 ∂
2

∂y2
− b + (σ

Ω
)

2

(m′ − y)2 − Ω − 1

Ω + ηs
]φm = εn

Ω
∑
±

[1 ± ŝ ∂
∂y

]φm±1. (4.2)

Here b = k2
θρ

2
s, m′ =m −m0, nq′ = kθŝ (ŝ = rq′/q is the magnetic-shear), and we have

further defined the dimensionless radial variable y = nq′x (note y takes integer values
at rational surfaces). This form also explicitly highlights the coupling of mode m
with m±1 modes, which is a result of the curvature drift term. Dropping the toroidal
coupling terms on the right hand side of eqn. 4.2, we obtain the cylindrical branch
of the ITG mode. Next defining m′ − y = z, we have

[bŝ2 ∂
2

∂z2
+ σ

2z2

Ω2
− λ̂]Ψ(z) = 0 (4.3)

where
Ω − 1

Ω + ηs
+ b = λ̂ . (4.4)
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Defining z = t/α, we derive

Φ′′(t) + [ σ2t2

Ω2α4(ŝ
√
b)2

− λ̂

(αŝ
√
b)2

]Φ(t) = 0 . (4.5)

Here Ψ(z) = Ψ(t/α) = Φ(t). Referring to Appendix B.1, we see that it is possible to
write eqn. 4.5 in an analytically solvable form by choosing α such that

σ2

Ω2α4(ŝ
√
b)2

= −1 . (4.6)

This yields the expression

Φ′′(t) + [−t2 − λ̂

(ŝ
√
b)2

(Ωŝ
√
b

±iσ
)]Φ(t) = 0 . (4.7)

Equation 4.7 is solved by the form Φ(t) = exp(−t2/2)Hk(t), where Hk is the order-k
Hermite polynomial. We choose the positive sign in front of σ to give a decaying
form for the electrostatic potential. Equation B.3 is again used to determine the
order of the Hermite polynomial:

− λ̂

(ŝ
√
b)2

(Ωŝ
√
b

iσ
) = (2k + 1) . (4.8)

Rearranging into a quadratic form for the complex mode frequency Ω:

Ω2(1 + b) +Ω (bηs − 1 + (2k + 1)(iσŝ
√
b)) + (2k + 1) (iσŝ

√
bηs) = 0 . (4.9)

Motivated by the choice of parameters in ref. [178], eqn. 4.9 is solved numerically
for the values m0 = 90, n = 50, ŝ = 2.0, b = 0.1, εn = 0.03 and a range of ηs and τ .
A scan is also performed in the k space to identify the most unstable solution. The
result is plotted in Fig. 4.1. Clearly, for these parameters the most unstable mode
is not the fundamental. From the quasi-linear mixing-length estimate (eqn. 3.5),
it is clear that diffusivity depends both on the growth rate and radial wavenumber
of the linear instability. In this situation, the very high-order modes - which are
radially extended and strongly unstable - are expected to dominate transport. A
more rigorous kinetic treatment (including ion Landau damping) restricts the mode
number k that can exist in the plasma [193].

4.2 Numerical modelling

The eigenmode eqn. 4.2 was first solved numerically for arbitrary profiles by Dick-
inson [178]. Here we develop a time-dependent system. But before describing the
algorithm, let us consider the role of sheared flows.
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Figure 4.1: Contour plot showing mode numbers of the most dominant cylindrical eigen-
modes (labelled inset), obtained by solving eqn. 4.9.

4.2.1 Incorporating the effect of flow-shear: Doppler shift

Sheared perpendicular (v′⊥) and parallel (v′∥) flows are ubiquitous to the edge pedestal.
In our analysis, we consider the toroidal flow vφ as dominant due to effects such as
NBI driven toroidal momentum input and strong neoclassical damping of poloidal
flows [186]. If the flow is much less than the sound speed, as we shall assume, then
the centrifugal and Coriolis forces can be neglected. We next set vθ = 0, and this
constraint allows us to relate vφ with v∥ and v⊥. The perpendicular E × B shear
provides a stabilisation mechanism [194] and also convects the ballooning modes in
the poloidal angle [195]. If the toroidal flow varies on the equilibrium scale, the
shear between adjacent rational surfaces will be of O(1/n). The Doppler shift from
the convective derivative vφ.∇ = −invφ/R, however, has an O(1) effect on the ITG
growth rate in the vicinity of the GM-IM-GM transition. As we seek to explore the
dynamics of this transition, it is appropriate to neglect the parallel velocity gradient
drive in comparison to the ITG drive [196]. Then, toroidal flow-shear is included in
our model through the transform Ω → Ω + nΩ′

φx [197], where Ω′
φ is a real number

and sets the flow-shearing rate (note that this definition implies the toroidal rotation
frequency Ω′

φx is also normalised to ω∗e). We work in the reference frame where the
rational surface of interest at r = r0 is at rest.

4.2.2 A time-dependent formalism

We start with eqn. 4.2 and perform the transformation Ω→ Ω + f , where f = γEy is
the Doppler shift due to the flow-shear. We further define three new fields Gm = Ωφm,
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Hm = ΩGm and Fm = ΩHm for mathematical convenience. This allows eqn. 4.2 to
be written in a differential-difference form

α̂Fm = − (∆̂φm + β̂Hm + Γ̂Gm) + χεn[κH + κG(2f + ηs) + κφ(f 2 + ηsf)] . (4.10)

Here we have introduced the fictitious parameter χ that can be set to zero to neglect
toroidal coupling. The spatial operators acting on the fields in the presence of flow-
shear are defined in table 4.2 (note G± and H± follow φ±), which are related to the
operators in the absence of flow-shear, table 4.1. Next transforming Ω → i∂/∂t, we

Table 4.1: Spatial operators in the absence of plasma flow.

α bŝ2∂2
y − (b + 1)

β ηs(bŝ2∂2
y − b) + 1

Γ σ2(m′ − y)2

∆ ηsσ2(m′ − y)2

φ± φm+1 ± φm−1

Table 4.2: New operator definitions upon the incorporation of flow-profile f .

α̂ α

β̂ β + 3fα

Γ̂ Γ + 2fβ + 3f 2α

∆̂ ∆ + fΓ + f 2β + f 3α
κφ φ+ + ŝ∂yφ−
κG G+ + ŝ∂yG−
κH H+ + ŝ∂yH−

see

∂

∂t

⎛
⎜⎜⎜
⎝

φm

Gm

Hm

⎞
⎟⎟⎟
⎠
= −i

⎛
⎜⎜⎜
⎝

Gm

Hm

Fm

⎞
⎟⎟⎟
⎠
, (4.11)

which we solve using the 4th-order Runge-Kutta scheme, with Fm calculated consis-
tently at every time-step by inverting eqn. 4.10 (see Appendix C for details). An
instantaneous complex mode frequency

Ωm(t) = i
∂ lnφm
∂t

(4.12)

can be associated with each individual Fourier mode, evaluated at the rational surface
where q(rm) = m/n, i.e. at y = m′. Once an eigenmode is established, we expect
Ωm(t) to be the same for all m and independent of time.
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4.3 Global growth rate from electrostatic potential

For an eigenmode formulation we may write:

φ(x, θ, t) = e−iΩt∑
m

φm(x)e−imθ (4.13)

= e−iΩtφ̂. (4.14)

Multiplying through by the complex-conjugate φ∗ gives ∣φ∣2 = e2γt∣φ̂∣2, where

∣φ̂∣2 = (∑
m

φme
−imθ)(∑

k

φ∗ke
ikθ) (4.15)

= (∑
m

φmφ
∗
m) + (∑

m
∑
k≠m

φmφ
∗
ke

−iθ(m−k)) . (4.16)

Integrating over the poloidal cross-section ⟨...⟩θ provides

⟨∣φ̂∣2⟩
θ
= 2π∑

m

∣φm∣2.

Further integrating in x, we can define the quantity

ζφ = ⟨∣φ∣2⟩1/2
θ,x

= eγt
√

2π

√
∑
m
∫
x
∣φm∣2dx , (4.17)

from which we derive the global growth rate:

γ = 1

ζφ

∂ζφ
∂t

. (4.18)

The advantage of defining the global growth rate in this way is that (a) it is insensitive
to where the global mode peaks in x and θ, and (b) it factors in the amplitude of
all constituent Fourier harmonics; therefore, the peripheral harmonics which do not
have significant amplitudes compared to the dominant harmonics, do not affect the
global growth rate calculations sizeably. Further from Gm = Ωφm,

∑
m

Gme−imθ = Ω∑
m

φme−imθ . (4.19)

Multiplying eqn. 4.19 with its complex-conjugate, and performing a similar integral-
sum that enabled us to derive eqn. 4.17, provides:

∣Ω∣ =
√
γ2 + ω2 = ζG

ζφ
, (4.20)

from which we may derive the global mode frequency ω. It is seen that the negative
root of ω matches the right solution.
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4.4 Benchmarks

To test the new global initial value code, several benchmarks were performed. First,
insensitivity of the converged eigenvalues and mode structures to the initial condi-
tions and numerical parameters were verified. For profiles held fixed in time, the
growth rate and mode frequency of the time-evolving global mode is seen to con-
verge (Fig. 4.2) as expected from an eigenmode treatment. To quantify this, the
converged eigenvalue was first compared against the analytic cylindrical solution of
eqn. 4.9, and then with the full 2D global eigenvalue code developed by Dickinson
[178].
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Figure 4.2: (a) shows the evolution of Ωm(t) = ωm(t) + iγm(t) (eqn. 4.12), where each
line is a different poloidal harmonic m. (b) shows the real part of the eigenfunction in the
poloidal plane, corresponding to the time indicated by the dashed vertical line in (a). We
note that the global mode peaks at r0/a = 0.965; all our 2D plots have been scaled to help
clearer visualisation of the mode structure.

4.4.1 Cylindrical limit

Neglecting toroidal coupling (setting χ = 0 in eqn. 4.10), the reduced initial-value
code was run with the following parameters: b = 0.1; τ = 10.0; ηs = 1.0; ŝ = 2.0;
q = 1.8; n = 50; m0 = 90; γE = 0; and εn was varied in the range shown in Fig. 4.3.
The choice of parameters at this stage is purely to do with performing validations
in a regime where different harmonics are progressively unstable. This provides a
better handle on running of the code. As evident, the percentage difference between
the analytics and numerics is 0.01 − 0.1% everywhere, except for very low values of
εn. As εn is decreased further, this difference is much higher. This observation can
be explained with the help of Figs. 4.3a and 4.3b. At low values of εn, the complex
mode frequency of the most unstable mode is comparable to other harmonics and,
consequently, Ωnum receives significant contribution from a mixture of harmonics for
a specified run-time. With time, Ωnum is dominated by the single most unstable
mode and the agreement becomes better.
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(a)

(b)

(c)

Figure 4.3: The three plots look at (a) the most unstable ITG mode number k in the
cylindrical limit, (b) the corresponding growth rates and (c) the mode frequencies of the
converged solutions. The analytical frequencies and growth rates are plotted in black,
whereas the percentage-difference between the analytical and numerical solutions are given
by the blue squares.

4.4.2 Full toroidal system

Next, comparisons were made with the full 2D eigenvalue code of Dickinson [178]
(Fig. 4.4) with the same parameter set used for the cylindrical benchmark. The
converged Ωini from the initial-value code was used as a guess for the eigenvalue
code and Ωeig was calculated. Differences in the range of 0.01 − 0.25% indicate that
the two codes are in very good agreement. A final validation was performed with
the inclusion of flow-shear around the GM-IM-GM transition point (with parameters
defined in section 4.5). The agreement is likewise very good. This result is deferred
to the next chapter, after the global modes have been introduced, though one may
refer to Fig. 5.3 for completeness.
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(a)

(b)

Figure 4.4: The two plots show the (a) growth rate and (b) mode-frequency of the global
toroidal eigenmode as a function of εn. Results from the new initial-value code are plotted
in blue and the percentage difference upon comparisons with the eigenvalue code of [178]
are in green.

4.5 Equilibrium parameters

Table 4.3 lists the physical parameters used in subsequent simulations (deviations
from these are mentioned where appropriate). In addition, the ITG drive ηs has
a radial profile of the form ηs = ηg(1.0 − ηcx2), with ηg = 2.0, ηc = 1062.5, and 40

Fourier-modes on either side of m0 are found to be sufficient for convergence. For

Table 4.3: Equilibrium parameters used in simulations.

a R r0/a kθρi ŝ εn τ q n m0 γE

0.5 2.5 0.965 0.2 25.0 0.08 1.0 1.4 50 70 -0.006 to 0.006

any given set of parameters, several radial harmonics of an eigenmode are simulta-
neously unstable. The initial-value code becomes dominated in time by the most
unstable harmonic. To find the dominant linear mode more rapidly, we have cho-
sen parameters where the most unstable harmonic has a significantly higher growth
rate than the other modes, and is also close to the fundamental radial harmonic
(further relaxing the grid resolution needed to resolve the finer spatial structures
associated with higher harmonics). This means the solution will rapidly converge to
the dominant mode from initial conditions, allowing for numerical efficiency and easy
comparison with earlier eigenmode solutions to eqn. 4.1. Another guiding influence

57



Chapter 4. Time-dependent approach 4.6. Summary

for our parameter choice is to ensure that the same eigenmode is the most unstable
as the flow-shear is varied through the GM-IM-GM transition. That said, and with
small-ELM dynamics in mind, our parameters are relevant to those typically found
in the pedestal.

4.6 Summary

In this chapter, the development of a new global initial value code1 was discussed,
which can capture the dynamics of the GM and IM branches as profiles evolve2. The
physics model used describes the fluid-ITG mode in a circular cross-section geometry.
The choice of this model allows comparisons with an earlier eigenvalue code, and
various benchmarks have been successfully performed. In the next chapter, after
discussing the theory of global eigenmodes, we will consider the dynamics associated
with the GM/IM formation and transition, in the presence of an externally imposed
flow-shear.

1Solutions for typical parameters converge on the order of hours. A Message Passing Interface
(MPI) based parallelisation provides speed-up in some cases.

2The code is available from the University of York’s Data Catalogue [198].
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Chapter 5

The response of toroidal drift modes
to profile evolution

In this chapter, we provide an intuitive overview of ballooning instabilities, followed
by a mathematical description of the framework used to obtain the two generic
(Isolated and General) branches of toroidal drift-ballooning instabilities. The new
initial-value fluid-ITG code is then used to explore the dynamics of these global
modes in the presence of evolving equilibrium sheared flows.

5.1 Ballooning modes: an intuitive overview

Based on reference [199], a simple physical description of the effect of flow on balloon-
ing modes is presented. MHD ballooning instabilities require a combination of high
plasma pressure gradient and magnetic field curvature. Since bending of magnetic
field lines in a plasma requires energy, and is therefore stabilising, the most unstable
modes tend to minimise field line bending. Let us introduce a q =m/n = 10/5 plasma
wave to the system (Fig. 5.1); as the toroidal and poloidal directions are periodic,
we must fit a whole number of wavelengths in these directions. Furthermore, if the
crests of the wave align with the magnetic field lines, as the wave amplitude grows,
it will just raise the field line as a whole without bending it. As we move away from
the q = 2 surface, the crests will lie at a different angle to the field line and this will
cause field line bending. Therefore, this type of mode is highly localised in the vicin-
ity of rational surfaces. Now a wave consisting of a single radially localised Fourier
harmonic m has the same amplitude on both the inboard (good curvature) and the
outboard (bad curvature) side1. In a tokamak, plasma shaping allows the good cur-
vature to dominate and the wave is damped. One way to beat the stabilising effect of

1When a flux surface is radially perturbed, the curvature drift causes a vertical separation
of opposite charges. A radial pressure gradient implies that there is a charge imbalance on the
perturbed flux surface. The resulting electric field reinforces the perturbation on the outboard side
and damps it on the inboard side.
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Figure 5.1: Flux surfaces in a torus (radius r, poloidal angle θ and toroidal angle ϕ) are
cut and opened into a slab. An m/n = 10/5 mode is next introduced. Note the wave crests
are parallel to the q = 2 field lines (in blue).

the average good curvature is to construct a mode that has a maximum amplitude in
the bad curvature region. This can be achieved by fixing n and combining a number
of poloidal Fourier modes2 m, m ± 1, m ± 2 etc. This situation is illustrated by Fig.
5.2a. The waves are seen to constructively interfere on the outboard side (this is
labelled by the ‘ballooning angle’ θ0). Though clearly, in order to interfere with each
other, the poloidal modes must extend radially to the adjacent rational surface. The
result of this small but finite radial extent is that the field lines are actually bent a
little, providing a stabilising influence.

(a) (b)

Figure 5.2: (a) shows different poloidal harmonics interfering to give a maxi-
mum/minimum amplitude on the outboard/inboard side. Here the ballooning angle θ0 = 0
(labelled by the red dashed-line). (b) illustrates how a sheared flow can introduce a phase
shift (indicated in green), leading to a non-zero value of θ0.

2Within linear theory, toroidal symmetry of the tokamak means we cannot couple different
toroidal harmonics.
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The effect of flows

We consider each flux surface as a rotating rigid body, free to move relative to
others - this allows sheared flows. Shearless flows only affect the mode frequency
- the growth rate, and thereby stability, remain unaffected. Initially, the waves
constructively interfere on the outboard side (Fig. 5.2a); with time, as the flux
surfaces move relative to each other, the poloidal angle where the modes interfere to
give a maximum, rotates (Fig. 5.2b). Thus, θ0 rotates poloidally from the outboard
side to the inboard side, and back to the outboard side.

The role of magnetic shear

The formation of ballooning modes depends on the radial coupling of poloidal Fourier
harmonics (Fig. 5.2). The separation of flux surfaces ∆ = 1/nq′ which determines
the extent of the radial overlap, therefore the coupling, is controlled by the magnetic
shear ŝ∝ q′. Evidently, in regimes with low ŝ, the radial coupling of poloidal modes
is weak and the resulting modes are not well described by the ballooning formalism.
The strength of this coupling has been shown to vary with the magnetic shear as
exp(−1/∣ŝ∣) [200].

To summarise, in the absence of sheared flows, the growth rate will be given
by the dominant mode’s growth; the most violent modes typically balloon on the
outboard side. With flow-shear, the poloidal angle where the ballooning mode peaks
is expected to vary. The time-averaged growth rate of the ballooning mode will
therefore involve an average over the mode’s instantaneous growth at each poloidal
location - making it more stable. Finally, note that while the electrostatic modes
are also localised about rational surfaces, the physics is different. On irrational flux
surfaces, the field lines can come arbitrarily close to one another, with an arbitrary
phase on the perturbations. The fluctuations are thus more likely to cancel out and
are unable to establish any coherent structure.

5.2 Ballooning theory: the mathematical framework

The ballooning formalism is an extremely useful tool to study high-n instabilities
in axisymmetric toroidal systems such as tokamaks. This framework was first in-
troduced to study MHD ballooning modes [172]. Broadly following the analyses in
[71, 201], the subsequent sections introduce this formalism in detail.
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5.2.1 The formalism

The potential perturbation φ̃ in an axisymmetric torus can be described as

φ̃(r, θ,ϕ) = φ(r, θ)ein[ϕ−∫ θ q∗dθ] (5.1)

≈ φ(r, θ)e−inqθeinϕ . (5.2)

Here q∗ = rBϕ/RBθ is the local safety factor; the integral ∫
θ
q∗dθ describes the change

in the toroidal coordinate as one traverses a poloidal angle θ whilst moving along
a magnetic field line; and q = (2π)−1 ∮ q∗dθ is the poloidally-averaged safety factor.
The above approximation is valid as long as the local q∗ does not deviate much from
the averaged q. The focus is on determining φ(r, θ) exp(inqθ); the dependence on ϕ
can be recovered by simply multiplying with exp(inϕ). The problem with this form,
however, is that it violates the poloidal periodicity constraint on φ̃. To see this, note
that the electrostatic potential must be periodic in θ, i.e.

φ(r, θ + 2π)
φ(r, θ)

exp (i2πnq) = 1 . (5.3)

This is true if nq is an integer. The radial variation of q implies that away from
rational surfaces, this periodicity constraint is violated.

One technique is to map a function f(θ) from the finite θ domain, periodic
between −π and π, to f̂(η) in the infinite ‘ballooning domain’ η. This is possible
through the transform

f(θ) =∑
m
∫

∞

−∞
f̂(η) δ(η − 2πm − θ)dη , (5.4)

where δ is the Dirac-delta function. For a givenm, the integral picks out the function
f̂(2πm + θ). Convergence of the integral in eqn. 5.4 requires f̂(η) → 0 as η → ±∞.
For any suitably defined function, the summation then adds infinite copies of it, with
each shifted by 2π. It is intuitive why this would lead to a periodic function. Next,
making use of the identity

2π
∞
∑
k=−∞

δ (r − 2πk) =
+∞
∑

m=−∞
eimr (5.5)

(see Appendix B.2 for proof), eqn. 5.4 is straightforwardly written as

f(θ) = (2π)−1∑
m
∫

∞

−∞
f̂(η)eim(η−θ) dη . (5.6)

Equation 5.6 is the standard ballooning transform. Then, the (periodic part of the)
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electrostatic potential may be expressed according to eqn. 5.6 as:

φ (r, θ)e−inqθ =∑
m

e−imθ ∫
∞

−∞
eimη φ̂ (r, η) dη (5.7)

=∑
m

e−imθum(r) . (5.8)

The potential φ̂(r, η), free from the periodicity constraint, is now amenable to the
Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) eikonal approach. Convergence of the
integral 5.7 requires that φ̂ → 0 as η → ±∞. Note, in neglecting profile variations
(including in q) as a leading order assumption, ∆ = (nq′)−1 → 0 and the Fourier
mode m is identical to m ± 1. However, when we consider the full problem in the
high-n limit, ∆ is small and the adjacent Fourier modes are considered to differ by
a slowly varying amplitude factor A(x) and a constant phase difference θ0 (as we
shall see shortly, this phase difference is indeed the ‘ballooning angle’). It is therefore
appropriate to seek solutions of the form

um(x) = u0 (x −
δm

nq′
)A(x)eimθ0 . (5.9)

Here, the function u0(x) represents the radial variation of the reference mode m0 =
nq0 and x = r − r0 (r0 is the rational surface where q(r0) = m0/n). The constant
exp(−im0θ0) is dropped for convenience. Writing u0(x) as a Fourier transform be-
tween the normalised radial coordinate −nq′x and the field-aligned coordinate η

(brought out by eqns. 5.7 and 5.8):

u0(x) =
∞

∫
−∞

e−inq′xη û(η) dη ; (5.10)

together with eqn. 5.9, gives

um(x) = A(x)eimθ0

∞

∫
−∞

û(η) ei(δm−nq′x)η dη . (5.11)

We may finally express the perturbed potential φ(x, θ) = ∑m um(x) exp(−imθ) as

φ (x, θ) =∑
m

e−im(θ−θ0)
∞

∫
−∞

ei(δm−nq′x)ηA(x)û(η) dη . (5.12)

5.2.2 The ballooning angle θ0

The role of θ0 is revealed by eqn. 5.12: Fourier harmonics constructively interfere
at θ = θ0, and the global mode has a maximum, i.e. ‘balloons’ at θ0. Reverting our
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attention back to eqn. 5.7, φ̂ can be written as (cf. eqn. 5.2)

φ̂(r, η) = Â(x, η) e−inqη (5.13)

= A(x, η)einq′S(x)e−inqη . (5.14)

Here A(x, η) is the slowly varying amplitude envelope in x, the function S(x) varies
slowly with x, but the phase exp[iS(x)/∆] varies rapidly between rational flux sur-
faces. Taking the leading-order radial derivative of eqn. 5.14, i.e. ignoring the radial
variation of A(x, η):

∂

∂x
→ inq′ (dS(x)

dx
− η) . (5.15)

Comparing with the Fourier derivative representation, d/dx → ikx, we can see that
nq′ dS/dx = kx (evaluated at η = 0). Next, compare eqns. 5.12 and 5.7 with the help
of 5.14; we observe

A(x) û(η) eimθ0 = A(x, η) einq′S(x) . (5.16)

Assuming A(x, η) ≈ A(x) û(η), it is apparent

mθ0 = nq′S(x) . (5.17)

Noting δx = δm∆, i.e. nq′ = δm/δx ≈ dm/dx, we find

dS(x)
dx

= θ0 , (5.18)

which from the earlier relation nq′(dS(x)/dx) = kx, relates the ballooning angle to
the radial wavenumber:

kx = nq′θ0 . (5.19)

5.2.3 Fourier-ballooning representation

Substituting mθ0 = nq′S(x) into eqn. 5.12, and upon some rearrangement

φ(x, θ) = einq′S(x)A(x)∑
m

∞

∫
−∞

eim(η−θ) e−inqη û(η)dη . (5.20)

We first express the radial variation to the potential as a Fourier transform:

einq′S(x)A(x) =
∞

∫
−∞

χ(p)A(p) einq′xp dp . (5.21)

Here p is the conjugate Fourier variable to nq′x, χ(p) and A(p) label the slow and
fast variations in p. Next, with the help of eqn. 5.6, we express the integral-sum in
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eqn. 5.20 as

∑
m

∞

∫
−∞

eim(η−θ)û(η) e−inqη dη = ξ̂(θ)e−inqθ . (5.22)

The potential φ(x, θ) is now written using eqns. 5.21 and 5.22 as

φ(x, θ) =
∞

∫
−∞

ξ̂(θ)χ(p)A(p) einq′x(p−θ)e−inq0θ dp (5.23)

=
∞

∫
−∞

ξ(p, θ)A(p) einq′x(p−θ)e−inq0θ dp , (5.24)

where the term ξ(p, θ) varies slowly in p in relation to A(p) and q = q0 + q′x. The
above equation is referred to as the Fourier-Ballooning representation and was first
introduced in [202].

5.2.4 Leading-order theory

To put in use the formalism developed so far, we study a simple fluid-ITG system
described by eqn. 4.1. Decomposing the potential into poloidal harmonics

φ(x, θ) =∑
m

um(x)e−imθ , (5.25)

and noting that
π

∫
−π

(∑
m

um(x)e−imθ) eikθdθ = 2πum(x) , (5.26)

we straightforwardly project out the Fourier harmonics to write:

[ρ2
s

d2

dx2
+ σ

2

Ω2
(δm − nq′x)2 − ( Ω − 1

Ω + ηs
+ k2

θρ
2
s)]um

− εn
Ω

[(1 + 1

kθ

d

dx
)um+1 + (1 − 1

kθ

d

dx
)um−1] = 0 .

(5.27)

Equation 5.27 is effectively 2D, since it needs to be solved for a finite set of poloidal
mode numbers {um(x)}, such that the behaviour of the global mode is properly
captured. Using eqn. 5.11 however, it may be reduced to a 1D ordinary differential
equation (ODE) along the field line coordinate η. For this, we must make the leading-
order assumption of neglecting the effect of equilibrium scale variations, captured
by the term A(x). Then we may write

dum
dx

= A(x)eimθ0

∞

∫
−∞

(−inq′η) û(η)ei(δm−nq′x)η dη . (5.28)
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Next multiplying um by i(δm − nq′x) and integrating by parts (noting û(η) → 0 as
η → ±∞)

i(δm − nq′x)um = A(x)eimθ0

∞

∫
−∞

−dû(η)
dη

ei(δm−nq′x)η dη . (5.29)

Finally, using eqns. 5.11, 5.28 and 5.29 with eqn. 5.27, we arrive at the local/leading-
order ballooning equation for the structure of the perturbation along the magnetic
field-line:

[σ
2

Ω2

d2

dη2
+ (ρsnq′η)2 + 2εn

Ω
(cos(η + θ0) + ŝη sin(η + θ0)) + ( Ω − 1

Ω + ηs
+ k2

θρ
2
s)] û(η) = 0 .

(5.30)

This is a one-dimensional ODE which can be solved for the eigenfunction û(η) given x
and θ0 - free parameters at this order. Here we stress upon the important distinction
between the local eigenvalue of eqn. 5.30, henceforth referred to as Ω0(x, θ0), and the
global (true) eigenvalue of eqn. 4.1, Ω, which is independent of x and θ0. The two
eigenvalues are in fact related; this relation is brought out by the plasma profiles -
an effect neglected in the leading order treatment, but captured by the higher-order
theory discussed next. The ballooning angle θ0 is also predicted at this higher-order.

5.2.5 Higher-order theory

The relation between the local and global eigenvalues is more readily brought out by
employing the Fourier-ballooning transform (eqn. 5.24). Taking the differentials of
this equation leads to:

∂φ

∂x
=

∞

∫
−∞

inq′(p − θ) ξ(p, θ)A(p)einq′x(p−θ)e−inq0θ dp , (5.31)

∂φ

∂θ
+ inqφ =

∞

∫
−∞

∂ξ(p, θ)
∂θ

A(p)einq′x(p−θ)e−inq0θ dp . (5.32)

Substituting the above equation set into eqn. 4.1 yields eqn. 5.30 with the following
transformations:

η → θ − p û(η)→ ξ(p, θ) θ0 → p . (5.33)
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We note a final transformation by multiplying eqn. 5.24 with x:

xφ =
∞

∫
−∞

xAξ einq′x(p−θ)e−inq0θ dp (5.34)

= 1

inq′

∞

∫
−∞

Aξ
∂

∂p
einq′x(p−θ)e−inq0θ dp (5.35)

= − 1

inq′

∞

∫
−∞

dA

dp
ξeinq′x(p−θ)e−inq0θ dp , (5.36)

where the last step is obtained by integration by parts, with ∣∂ξ/∂p∣ ≪ ∣dA/dp∣ and
vanishing boundary conditions on ξ(p, θ). We accordingly define the transformations:

xA→ − 1

inq′
dA

dp
x2A→ − 1

(nq′)2

d2A

dp2
. (5.37)

5.2.5.1 Relating the local and global eigenvalues

To summarise the results obtained so far, the global time-dependent problem

L [ i

nq′
∂

∂x
,
∂

∂θ
+ inq(x), x, θ, ∂

∂t
]φ(x, θ, t) = 0 (5.38)

is reduced to
L [(θ − p), ∂

∂θ
, x, θ,

∂

∂t
] ξ(p, θ, x, t) = 0 (5.39)

by the Fourier-ballooning transformation of 5.24. Note that the time dependence
is implicit to both equations. Local flux-tube codes such as GS2 solve ξ(p, θ, x, t)
for the free parameters x and p, such that the instability growth rate is maximised.
Now the global (Ω) and local eigenmodes (Ω0) of the above equations are seen to be
related by

∂φ

∂t
= −iΩφ = −i

∞

∫
−∞

Ω0(x, p)ξ̂(x, p)einq′x(p−θ)e−inq0θA(p)dp , (5.40)

where we have assumed ξ = ξ̂ exp(−iΩ0t) and φ = φ̂ exp(−iΩt). Next, Taylor-
expanding Ω0 in x:

∞

∫
−∞

[Ω0(p) +Ωxx +
Ωxx

2
x2 −Ω]A(p)ξ̂(x, p)einq′x(p−θ)e−inq0θdp = 0 , (5.41)

(Ωx and Ωxx denote the first and second order partial derivatives in x) and making
use of the transforms 5.37, we derive

Ωxx

2(nq′)2

d2A

dp2
+ Ωx

inq′
dA

dp
− [Ω0(p) −Ω]A = 0 . (5.42)
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Equation 5.42 must be solved subject to the periodicity constraint A(p) = A(p+ 2π)
to ensure that the electrostatic potential is periodic in θ; note also Ω0(p) is periodic
in p. Finally, depending on the radial variation in Ω0, as determined by the plasma
profiles, we find two distinct classes of microinstabilities in a toroidal plasma.

5.2.5.2 Isolated Mode: quadratic radial variation

In the special situation when Ω0 is stationary in the x − p plane, i.e. Ωx = 0 (both
real and imaginary parts must be stationary at the same radial location) and Ωp = 0

(typically at the outboard midplane, i.e. p = 0), eqn. 5.42 reduces to

Ωxx

2(nq′)2

d2A

dp2
− [Ω00 +

Ωpp

2
p2 −Ω]A = 0 (5.43)

(here we have Taylor-expanded Ω0(p) = Ω00+Ωpp+Ωppp2/2+. . . ). Due to the stringent
requirement on its existence, this class of toroidal drift instabilities, following [176,
192], were referred to as Isolated Modes (IMs). Equation 5.43 is easily rewritten as

d2A

dp2
+ (λ − µp2)A = 0 , (5.44)

where λ = 2(nq′)2(Ω−Ω00)/Ωxx and µ = (nq′)2(Ωpp/Ωxx). Equations of the form 5.44
are solved according to Appendix B.1 by

A(p)∝Hl(p) exp(−σp2) . (5.45)

Here l is the order of the Hermite polynomial and σ is to be determined. For
simplicity, we restrict ourselves to the fundamental l = 0 mode in this analysis.
Substituting A∝ exp(−σp2) into eqn. 5.44, we find the structure of the perturbation:

A∝ exp

⎡⎢⎢⎢⎢⎣
−nq

′

2

√
Ωpp

Ωxx

p2

⎤⎥⎥⎥⎥⎦
, (5.46)

and an expression relating the global and local eigenvalues:

Ω = Ω00 +
1

2nq′

√
ΩxxΩpp . (5.47)

Equation 5.46 implies that A(p) is a Gaussian localised near p = 0, and scales in width
as ∆p ∼ (Ωxx/Ωpp)1/4/

√
nq′. Since A(p) is directly related to φ(x, θ) through the

Fourier-ballooning integral, we expect φ to have a similar Gaussian radial envelope
which scales with the toroidal mode number as 1/

√
n. Equation 5.47 tells us that,

for the Isolated Mode, the global eigenvalue is equal to the local eigenvalue at the
latter’s stationary point, with a 1/n correction introduced as a result of profile effects.
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5.2.5.3 General Mode: linear radial variation

But there exists a more general class, which does not have any constraint on its
existence. This class is referred to as theGeneral Mode (GM). To study its properties,
we consider only the first-order radial variation to eqn. 5.42:

Ωx

inq′
dA

dp
= [Ω0(p) −Ω]A . (5.48)

Upon integrating in p over the 2π periodic domain we find

lnA(p + 2π) − lnA(p) = inq′∮
Ω0(p) −Ω

Ωx

dp . (5.49)

Noting that A(p) must be periodic, we are left with

1 = exp(inq′∮
Ω0(p) −Ω

Ωx

dp) = exp(2πiw) (5.50)

(here w is an integer). With the poloidal average defined as ⟨. . . ⟩ = (2π)−1 ∮ . . .dp,
eqn. 5.50 simplifies to

Ω = 1

⟨Ω−1
x ⟩

⟨Ω0(p)
Ωx

⟩ − w

nq′⟨Ω−1
x ⟩

. (5.51)

For a circular cross-section plasma, the simplest p variation that satisfies the periodic-
ity constraint on the local frequency is Ω0(p) = Ω+ε cosp, where Ω = (2π)−1 ∮ Ω0(p)dp

is defined to be the averaged local frequency. Further assuming that Ωx has no p
dependence, we find

Ω ≈ Ω . (5.52)

That is, the global complex frequency is just an average of the local complex fre-
quency over p at the chosen radial location (plus an 1/nq′ correction). The GM is
therefore more stable than the IM (the latter effectively picks out the most unstable
local eigenvalue). To determine the mode structure in our simplified model, we use
Ω = Ω together with eqn. 5.48 to arrive at

A(p)∝ exp(inq′
ε

Ωx

sinp) . (5.53)

From the method of stationary phase, for high n, the integral 5.24 will be strongly
localised around the turning point of sinp, i.e. when p = ±π/2. The correct sign
is determined in conjunction with the sign of ε/Ωx, such that the integral is well
behaved.
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Figure 5.3: In (a), the solid curves show the converged eigenvalues from the initial-value
code, whereas the crosses are solutions to the eigenmode eqn. 4.1 using the code from ref.
[178]. The subsequent frames show how the IM (b) smoothly evolves (c) into the GM (d),
as the flow-shear increases from γE = 0, through γE = −0.001 and finally to γE = −0.004, as
indicated by the vertical lines in (a). The instability is a fully developed GM for ∣γE ∣ ≥ γE,GM

(dashed lines in (a)).

5.3 Global mode behaviour: stationary profiles

Having established the theory of drift-ballooning modes, we now proceed to study
their dynamics using the new global initial-value fluid-ITG code. For the results
discussed in this section, all simulations were performed with plasma profiles held
fixed in time. The simulations were initialised with noise, and after sufficient time,
the initial-value code is seen to converge to an eigenmode solution (Fig. 4.2). Note
how all the individual Ωm(t) converge to a single global complex mode frequency Ω

as the eigenmode establishes.

5.3.1 Obtaining the global eigenmodes: the IM and GM

We first set the flow-shearing rate γE = 0, and neglect all profile variations except for
a quadratic ηs profile. As described in [178, 181], we then expect the IM which should
balloon at the outboard-midplane (see Fig. 5.3b). The incorporation of flow-shear
Doppler shifts the real part of the complex mode frequency, removing the stationary
point from the complex Ω0(x). The IM is therefore no longer possible and the global
eigenmode moves to peak away from the outboard midplane. Referring to Fig. 5.3a,
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Figure 5.4: The plots show the poloidal mode-structure of the instability as it evolves
towards a GM, after initiating the perturbation on the inboard side (to the left of each
figure) with γE = −0.95γE,GM. (a) shows the initial perturbation; (b)-(c) show the rapid
formation of the outboard structure (only for γE = γE,IM does the final eigenmode establish
here), accompanied by a decay of the initial inboard perturbation; and (d)-(f) show the
subsequent evolution towards the GM. The frames correspond to the times 0T, 0.017T,
0.071T, 0.125T, 0.5T and 1.0T, where T is the eigenmode formation time.

the IM is seen to have the strongest growth. As the flow-shear magnitude is steadily
increased towards ∣γE ∣ = γE,GM, the ITG growth rate γ is reduced, and the IM is
seen to smoothly evolve into the GM (Figs. 5.3b-5.3d), rotating from the outboard
midplane at θ = 0 for γE = 0 to the top/bottom at θ = ±π/2 for ∣γE ∣ > γE,GM. For our
parameters (refer to Table 4.3), ∣γE,GM∣ = 0.004. The GM complex growth rate is only
weakly dependent on γE, and the transition to this asymptotic regime is labelled by
γE,GM in Fig. 5.3a. The IM therefore exists within a narrow window in γE, which, in
our model, is in the vicinity of γE = 0. In general, as we introduce plasma profiles (i.e.
an x-dependence of q, εn etc.), the IM is accessed for a non-zero value of γE = γE,IM
[181, 203]. Also note the small difference between γGM and γIM. This is likely a
result of the large aspect-ratio assumption (εn ≪ 1) and high magnetic shear, which
favour the slab-like modes. For realistic geometries, we expect the Fourier modes to
be more strongly coupled, leading to more highly unstable IMs compared to GM.
But qualitatively, the results would be similar to those presented here.

5.3.2 Dynamics of eigenmode formation

The previous section was only concerned with the final states of the time-evolving
perturbations; this section discusses their evolution. Depending on how the pertur-
bation is initialised, we observe three distinct scenarios for the formation of the eigen-
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mode. Firstly, as illustrated in Fig. 5.4, if the initial perturbation peaks around the
inboard-midplane, then independent of γE, the initial structure decays rapidly, and
almost simultaneously, a transient double-structure is established near the outboard-
midplane - this is not yet an eigenmode. Now if ∣γE ∣ < γE,GM, this double-structure
combines into a single coherent eigenmode structure localised on the outboard side
(at the midplane if γE = γE,IM = 0). This is the situation shown in Fig. 5.4, where
γE = −0.0038 = −0.95γE,GM. Figures 5.3b and 5.3c give two further examples of
the converged eigenmode structure for smaller values of ∣γE ∣ < γE,GM (γE = 0 and
−0.001). If however ∣γE ∣ ≥ γE,GM, the coherent mode is convected poloidally and per-
forms many poloidal rotations, before finally settling down to the eigenmode. This
Floquet behaviour is distinguished by its periodic variation in γ(t) (Fig. 5.5a), and
will be described in more detail in Section 5.3.3. Secondly, if the perturbation is ini-
tialised anywhere on the outboard side, independent of γE, a strong single coherent
structure first forms at the position of the initial perturbation, before being con-
vected to its final eigenmode position. Figure 5.5b shows the evolution of the global
growth rate when the initial perturbation amplitude is maximum at the outboard-
midplane. Finally, when initialised with random noise distributed uniformly in the
poloidal angle, a coherent structure first forms at the outboard-midplane indepen-
dent of the size of γE. Next, and as with both previous scenarios, if ∣γE ∣ < γE,GM, the
structure rotates to the poloidal position associated with its eigenmode and stays
there, whereas if ∣γE ∣ ≥ γE,GM, the coherent structure rotates continually to establish
the Floquet Mode (Fig. 5.5c).

5.3.3 Floquet Modes

With the inclusion of sheared plasma rotation, the standard ballooning representa-
tion no longer captures the eigenfunction efficiently, as the sheared rotation destroys
the underlying equivalence of adjacent rational flux surfaces. Cooper [204] addressed
this by employing a time-dependent eikonal, which then leads to Floquet Modes.
In ref. [205], Taylor and Wilson use an alternative eigenmode representation and
conclude that, when higher-order (1/n) effects are considered (as captured directly
by these global simulations), a perturbation adopts a time-dependent Floquet form
which evolves towards the eigenmode over ∼ n Floquet periods. Our simulations
shed more light on this mechanism and we quantify this for specific cases. We first
establish the most unstable eigenmode for the parameters εn = 0.04 and γE = −0.003,
which is located near the bottom of the poloidal cross-section, as shown in Fig. 5.6b.
We then re-start the simulation, and at t = 200, switch the flow-shear to γE = 0.006

instantly, and hold it fixed in time for the remainder of the simulation. Figure 5.6a
shows how the global instantaneous Floquet Mode growth rate, γFM(t), evolves in
time in response to this change in γE. The eigenmode for this new shearing rate
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Figure 5.5: Evolution of the global growth rates in time, as a function of the flow-shearing
rate for different initial perturbations: (a) maximum amplitude on the inboard side; (b)
maximum amplitude on the outboard side; and (c) poloidally uniform noise. For the case
γE = 1.25γE,GM, we just show the first few Floquet periods.

would be localised at the top of the plasma. However, instead of rotating poloidally
to the top and staying there (Fig. 5.6c), the mode overshoots to the inboard side
(Fig. 5.6d), then makes a rapid transition (Fig. 5.6e) to the outboard side (Fig.
5.6f), before again slowly tracking across the top; this rotation in the poloidal angle
continues for many periods. The final three plots (Figs. 5.6g, 5.6h, 5.6i) show a
similar behaviour for the next Floquet period, except now the onset of the rapid out-
board transition occurs closer to the top, and the mode whips even faster around the
bottom. Further into the simulation, the evolving Floquet Mode gradually spends
less time at the bottom and more time at the top with each cycle, before eventually
settling down as a GM, with γFM(t)→ γGM as predicted in ref. [205]. Our simulations
suggest that the onset of this Floquet-like poloidal precession occurs when the flow-
shear exceeds the threshold value, indicated by γE,GM in Fig. 5.3. For ∣γE ∣ ∼ γE,GM,
the instability goes to the top/bottom of the poloidal cross-section and stays there,
but exceeding this value tips the mode into a Floquet oscillation.

Taylor and Wilson [205] further conclude that Floquet solutions evolve to the
eigenmode over a time of order nκ/κ1 Floquet periods, where the radial flow profile is
given by f = κy+κ1y2/n (cf. Table 4.2). Note that in a higher-order treatment, even
with κ1 = 0, the radial variation in other equilibrium quantities typically contribute
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Figure 5.6: (a) shows the global growth rate γ (green) and flow-shear γE (blue) as a func-
tion of the normalised time. The dashed vertical lines indicate time-slices that correspond
to the potential plots presented in frames (b)-(i) in chronological order. The potential plots
are non-uniformly spaced in time.

anO(n−2) piece to the quadratic term (such as ηs(x)), implying then that the Floquet
Mode settles down to the eigenmode after O(n2) periods of rotation, as is the case
in Fig. 5.6. Note also that ref. [205] analyses the electron-drift branch of eqn. 4.1.
Nonetheless, we expect their conclusions will hold for all toroidal drift modes, in
particular the ITG mode considered here; this is confirmed in Fig. 5.7. Each run
is initialised with a perturbation on the outboard side, then performing scans in κ1

at fixed κ and n, we find that the number of Floquet periods (approximated by the
decaying amplitude envelope in Fig. 5.7a falling below a threshold) to converge to
the eigenmode, is well described by the analytic linear scaling nκ/κ1 of [205] (with
the coefficient of determination R2 = 0.97). Note that for nκ/κ1 = −40 and −100,
Fig. 5.7a shows the classic Floquet behaviour. For nκ/κ1 = −30 however, there is
no Floquet behaviour, as the expected γE would have dropped below the γE,GM for
these parameters.
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Figure 5.7: (a) shows the evolution of the growth rate in time for three different values
of nκ/κ1. Scans have been performed with fixed κ = −0.005, n = 50 and εn = 0.04, while
κ1 was varied. (b) shows the number of Floquet periods required for the decaying global
growth rate envelope in (a) to converge to within 0.1% of the eigenmode growth rate.

5.4 Global mode behaviour: dynamic profiles

The trigger for Type-I ELMs is well described by the ideal-MHD peeling-ballooning
model [132, 173], and some other ELM types are qualitatively consistent with MHD
triggers (section 3.3.2.2). But, are all ELMs necessarily MHD events? Or can the
linear properties of toroidal drift modes provide an alternative model for some small-
ELM types? In exploring whether such a model could explain small-ELMs, we are
interested in how these modes would respond to evolving plasma profiles, particu-
larly, as the flow-shear passes through a critical value that triggers the GM-IM-GM
transition.

Since our interest is in the GM-IM-GM eigenmode transition as γE evolves
from −γE,GM, through γE,IM to γE,GM, we choose to remove the Floquet dynamics
from this study and initiate our simulations with an eigenmode that is close to a
fully developed GM (ballooning at θ ∼ −π/2 for γE = −0.95γE,GM). We then ramp
the flow-shear through the critical value (γE = γE,IM = 0 for our parameters) to
access the IM, and then hold the flow-shear fixed (at γE = 0.95γE,GM) to obtain
another GM (ballooning now at θ ∼ π/2). The rate of change of flow-shear, dγE/dt,
is then considered on three distinct time-scales: (1) a sufficiently slow change such
that the instability retains its eigenmode form as it evolves in response to γE(t),
with dγE/dt = 1.0e-6; (2) a much faster ramp with dγE/dt = 1.0e-4; and (3), in the
limiting case of dγE/dt → ∞, i.e. a sudden switch in γE. We discuss these cases in
turn.

5.4.1 Mode response to slowly varying profiles

If the equilibrium profiles vary sufficiently slowly, the linear modes have time to re-
spond and retain the eigenmode structure corresponding to the instantaneous plasma
parameters. Figure 5.8a represents this scenario. We know that the evolving insta-
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Figure 5.8: Plots (a)-(c) show the evolution of the growth rate of each Fourier mode
(coloured curves) as a function of flow-shear γE (solid blue) for different dγE/dt. (d)-(f)
show the corresponding mode-structures at the times when the instantaneous global growth
rate is maximum, indicated by the dashed-vertical lines in the frames above. The green-
horizontal line indicates the IM growth rate, whereas the solid-red line is the instantaneous
global growth rate. Potential structures at the times annotated by the arrows in (c) can be
seen in Fig. 5.9. [For ω∗e = 106 Hz, 1000 units on the time-axis ∼ 1 ms.]

bility is an eigenmode throughout since the plotted significant Fourier modes3 have
the same Ωm(t) for each time point. Figure 5.8d shows the eigenfunction at the time
when the global growth rate is the maximum (indicated by the dashed-vertical line
in Fig. 5.8a). As expected, the mode balloons at θ = 0 and has the same growth rate
as the IM for γE = γE,IM = 0. Note that this scenario is similar to Fig. 5.3, where
each value of γ, for the corresponding γE, was obtained by running the simulation
to long times with profiles held fixed in time.

5.4.2 Mode response to rapidly varying profiles

Changing the flow-shear over a much quicker time-scale (Fig. 5.8b) in turn leads to
several interesting observations:

Coherent identity

If the profiles change rapidly, the evolving instability can no longer retain its eigen-
mode identity. This is apparent from the different growth rates γm(t) associated
with the significant Fourier harmonics (Fig. 5.8b). Nevertheless, the perturbation

3The significant Fourier modes are defined to be those with an amplitude greater than 1% of
the global-mode amplitude envelope.
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does retain a coherent structure as it rotates from the bottom of the plasma to the
top with evolving γE. This characteristic is demonstrated in Fig. 5.9, but in the
limit when dγE/dt→∞ (see section 5.4.3).

Strong growth

Even though some Fourier harmonics can transiently have growth rates greater than
the IM, the global growth rate as defined in Section 4.3 never exceeds γIM for the
parameters considered, but does transiently approach it. This may be expected since
the IM is obtained by combining the amplitudes and phases of the Fourier modes to
yield the maximum growth rate. What is intriguing, perhaps, is that max[γ(t)] ≈ γIM

even though the structure is not exactly that of the eigenmode.

Profile lag

We observe that the growth rate peaks, approaching that of the IM, somewhat after
γE has passed through its critical value for the IM. Further, referring to Fig. 5.8e,
we note that this maximum in growth rate occurs after the mode has rotated past
the outboard-midplane.

5.4.3 Mode response to a sudden profile switch

Finally, we ask what happens when the flow-shear passes through the critical value
in the limit dγE/dt→∞, switching γE suddenly from negative to positive (Fig. 5.8c).
We find that all the features discussed in section 5.4.2 are recovered. Note also that
the global growth rate approaches γIM after only ∼ 300 e-foldings, and then returns
to the γGM value over a much longer period of ∼ 1500 e-foldings. These numbers are
approximately of the order it takes the IM and GM to establish their structures from
noise.

5.4.4 Eigenmode-Floquet dynamics

So far, Floquet dynamics were removed from our GM-IM-GM transition studies by
stopping the flow-shearing rate γE from going beyond γE,GM. In Fig. 5.10a, we show
that if γE is ramped beyond γE,GM at the same rate as for Fig. 5.8a, the mode
develops into a Floquet Mode. If one ramps γE more slowly (so that the eigenmode
can be treated in time more precisely) as in Fig. 5.10b, we find that the eigenmode
performs two full Floquet cycles as γE exceeds γE,GM, before settling to oscillate at
the bottom of the tokamak (see γ around t = 8.4e4 in Fig. 5.10c). We return to
consider the possible implications of this in ELM dynamics in Section 5.5.
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Figure 5.9: (a)-(f) show the poloidal mode-structure of the time evolving instability
following a step in γE , with γE < γE,GM (chronologically at times indicated by arrows in
Fig. 5.8c).

5.5 Summary

In the high-n limit, the higher-order ballooning eigenmode theory predicts two dis-
tinct linear mode structures (Isolated Mode and General Mode) for all toroidal mi-
croinstabilities (ITG, TEM, KBM etc.). While we consider the ITG mode as a
specific example, we expect our results to be generic to most toroidal microinstabil-
ities.

In Section 5.3, holding all plasma profiles fixed in time, we obtain both mode
structures from our initial value approach and further characterise their behaviour
leading up to the eigenmode formation. First, considering the eigenmode, we demon-
strate that the GM, sitting at the bottom of the poloidal cross-section for a negative
flow-shear, rotates to the top for a positive flow-shear, accessing the IM on the out-
board side for an intermediate critical flow-shear. Note that if the direction of the
curvature and ∇B drifts are reversed, the GM will then balloon at the bottom (top)
for a positive (negative) flow-shear. It is interesting to note that Brower et al [87]
in their study of the spatial and spectral distribution of tokamak microturbulence,
observe a strong up-down asymmetry in the poloidal density fluctuation distribution
along a vertical chord passing through the plasma centre, which inverts with current
reversal. This could be connected to the presence of General Modes. Second, we find
that for our strongly unstable cases, the GM structure takes ∼ 1300 e-foldings to form
from noise, while the IM takes considerably fewer ∼ 300 e-foldings4. These values

4These timescales are found to be broadly similar for a range of initial conditions.
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Figure 5.10: (a) shows the situation in Fig. 5.8a, except now the flow-shearing rate
(dashed-blue line) has been pushed past the γE that would give a GM in the eigenmode limit
(refer to Fig. 5.3); the case in (b) is for a much slower evolution of γE , with dγE/dt=1.0e-7.
Plot (c) shows the magnified images of the shaded regions in (a) and (b).

indicate that, in this case, non-linear terms are likely to become important before
the linear mode-structures can establish. However, we note that our fluid model is
constrained to consider only strongly unstable modes. As we gradually increase ηs
by 100%, we find that the global growth rate increases by over 80%, whereas the
time to form the eigenmode only changes by 0.1%. Future studies should test these
ideas in a more realistic plasma model - if the time to form the eigenmode remains
insensitive to the linear drive when profiles are held close to marginal stability, then
the linear dynamics may play an important role in the turbulence close to the linear
threshold. Thirdly, for high linear flow-shears κ (equivalently, γE), we find the in-
stability exhibits Floquet behaviour. The addition of a quadratic flow-profile κ1y2/n
damps the Floquet oscillations so that γFM(t) approaches γGM, as the Floquet Mode
evolves towards the eigenmode, over O(nκ/κ1) Floquet periods; this is in agreement
with the theoretical predictions in ref. [205].

In Section 5.4, the response of these toroidal drift modes as the flow-shear is
evolved through a critical value to trigger a GM-IM-GM transition was investigated.
For small deviations from the critical flow-shear, i.e. ∣γE ∣ < γE,GM, the flow profile
was changed over three time-scales. When the flow is varied on a slow time-scale
compared to the eigenmode formation time, as the mode structure responds, it re-
tains the instantaneous eigenmode form. However, when the flow profile was changed
more rapidly, and subsequently in the limiting case of dγE/dt→∞, several interesting
features emerge: (1) the evolving instability is no longer an eigenmode, but never-
theless maintains a coherent structure which is convected poloidally throughout the
flow-ramp; (2) despite not being an eigenmode, the peak growth rate γmax ∼ γIM; (3)
there is a noticeable lag, with γmax realised some time after the profiles pass through
the critical γE (which would give the IM for flows held fixed in time); and (4) the
peak in growth rate occurs when the mode structure has rotated slightly beyond the
outboard-midplane. Next when the flow-shear is taken into the ∣γE ∣ > γE,GM regime,
the presence of Floquet transients seem ubiquitous to our system. The parameter
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(d2Ωφ)/(dqdt) strongly influences the eigenmode-Floquet dynamics and determines
how closely the instability tracks an eigenmode.

Experimental test of theory

These results, although based on a relatively simple fluid-ITG model, are expected to
be generic for all types of toroidal micro-instabilities, and thus provide some robust
experimentally testable predictions:

(a) Towards understanding the origin of tokamak turbulence and the ubiquity/role
of the General Mode, we remark that the density/potential/magnetic fluctua-
tion measurements, viewed over a wide poloidal angle, should indicate asym-
metries about the mid-plane, which would typically reverse when the direction
of the ∇B drift is reversed.

(b) Further, if some small-ELM types are indeed triggered by the GM-IM-GM
transition, data from the above diagnostic, resolved temporally between suc-
cessive small-ELM bursts, should indicate poloidally shifting fluctuations at
the time of ELM onset. This feature is expected to be quite robust, since
the mode structure remains coherent with a strong growth rate, independent
of how rapidly the profiles change. It is interesting to note that for a typi-
cal ω∗e = 106 Hz, the GM-IM-GM dynamics occur on the O(ms) time-scale
characteristic of small-ELMs [182].

So far, the parameter controlling the transition between the GM and the IM has
been an externally imposed toroidal flow-shear. However, there is strong evidence
of intrinsic toroidal rotation in tokamaks [155], a likely source of which could be
turbulent fluctuations themselves [161, 206, 207]. A self-consistent (quasi-linear)
coupled system that accounts for the feedback of the turbulence on the flows is
therefore explored in the next chapter.
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Chapter 6

Self-consistent mode–flow interaction

In this chapter, we begin by presenting new analytical calculations of the intrinsic
torque that is generated by the General Mode. The GM is of particular interest since
these structures are predicted to be more generally accessible by the plasma. Next, a
fluid plasma model is derived for the diffusion of the fluctuation-driven toroidal flow,
which is coupled to the fluid-ITG model for the electrostatic fluctuation introduced in
the previous chapters. The extended quasi-linear initial-value code is then utilised to
study the interaction between the global modes, the residual intrinsic and equilibrium
flows.

6.1 Toroidal momentum transport

The conservation of the toroidal angular momentum density Pφ yields an equation
describing the evolution of the toroidal rotation in the presence of external sources
and sinks Sφ [160, 189]:

∂⟨Pφ⟩
∂t

+ 1

V ′
∂

∂r
[V ′Γrφ] = Sφ . (6.1)

Here V ′ denotes the radial derivative of the volume enclosed by a flux-surface at
radius r and Γrφ is the flux surface-averaged ⟨ ⟩ toroidal angular momentum density
flux. The momentum flux is further expressed as:

Γrφ
⟨n⟩mR

= χφ
∂⟨vφ⟩
∂r

+ Vco⟨vφ⟩ +Πr,φ . (6.2)

Here the term with the coefficient χφ characterises the diagonal, or diffusive, con-
tribution; the Coriolis force due to the plasma rotation gives rise to the pinch, or
convective, term with the coefficient Vco [208]; the final term Πr,θ describes the ‘resid-
ual’ flux – essentially to do with symmetry-breaking [161]. As discussed in section
3.3.3, in devices such as ITER, we expect Sφ to be small in comparison to the intrin-
sic contributions arising from (for example) the electrostatic fluctuations simulated
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Figure 6.1: An orthogonal coordinate system defined by the poloidal flux ψ, the toroidal
angle ϕ and the poloidal angle χ. Their gradients are shown in green.

here. Considering then the terms of eqn. 6.2, from the context of this work crucially,
we note that the diffusive and convective terms are only weakly dependent on the
ballooning angle θ0 [189]. Since we are interested in the evolution of the IM (θ0 = 0)
and GM (θ0 = ±π/2) in the presence of intrinsic flows they generate, we only treat the
Reynolds residual contribution Πr,θ. In the linear regime at least, this residual stress
can be significant, comparing in magnitude to the diagonal term [189]. Note that
there are in fact various symmetry-breaking mechanisms [161] – here we shall only
consider the residual stress generated by the (r, θ) tilting of ballooning structures.

6.2 Reynolds stress in a tokamak

The Reynolds stress associated with fluctuations is expected to generate a torque
that spins the plasma. This torque takes the form [184]

∂⟨v⟩
∂t

= − ⟨(u.∇)u⟩ , (6.3)

where v is the plasma flow, u = (B×∇φ)/B2 is calculated from the electrostatic poten-
tial fluctuation. In a steady-state, this intrinsic torque is balanced by a viscous-drag
term (and any external source of torque). To calculate u, we adopt the orthogo-
nal coordinate system described in Fig. 6.1. Following Appendix A, we define the
magnetic field on a flux-surface as

B = f∇ϕ +∇ϕ ×∇ψ (6.4)

(f = RBϕ is constant on a flux-surface). In this coordinate system

∇ = ∇ϕ ∂

∂ϕ
+∇χ ∂

∂χ
+∇ψ ∂

∂ψ
, (6.5)

u = uϕ
∇ϕ

∣∇ϕ∣
+ uχ

∇χ

∣∇χ∣
+ uψ

∇ψ

∣∇ψ∣
. (6.6)
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It can be seen that ∣∇ϕ∣ = R−1. Next, taking the dot product of eqn. 6.4 with the
poloidal field Bp, we find ∣∇ψ∣ = RBp. Finally, noting that the Jacobian J is related
to the volume of the parallelepiped defined in this coordinate by (∇ϕ×∇ψ).∇χ = J−1,
we deduce ∣∇χ∣ = (JBp)−1.

The components of u in this coordinate are next evaluated:

uϕ =
u.∇ϕ

∣∇ϕ∣
= R

B2
(B ×∇φ) .∇ϕ = R

B2
(∇ϕ ×B) .∇φ

= R

B2
[∇ϕ × (∇ϕ ×∇ψ)] .∇φ

= − R
B2

∣∇ϕ∣2∇ψ.∇φ

= − R
B2

∣∇ϕ∣2∣∇ψ∣2 ∂φ
∂ψ

= −
RB2

p

B2

∂φ

∂ψ
;

uχ =
u.∇χ

∣∇χ∣
=
JBp

B2
(B ×∇φ) .∇χ = −

JBpf

B2
(∇ϕ ×∇χ) .∇φ

= −
JBpf

B2
[∇ϕ × (∇ϕ ×∇ψ)

JB2
p

] .∇φ

= f

B2Bp

[∣∇ϕ∣2∇ψ] .∇φ

=
fBp

B2

∂φ

∂ψ
,

uψ =
u.∇ψ

∣∇ψ∣
= 1

RBpB2
(∇ψ ×B) .∇φ

= 1

RBpB2
(R2B2

∇ϕ − fB) .∇φ

≈ 1

RBp

∂φ

∂ϕ
;

Here we have treated the parallel derivative B.∇φ ≈ 0. Collecting the above terms:

u = [−
R2B2

p

B2

∂φ

∂ψ
]∇ϕ + [ f

B2

∂φ

∂ψ
]∇ϕ ×∇ψ + [ 1

R2B2
p

∂φ

∂ϕ
]∇ψ . (6.7)

To estimate the intrinsic torque generated in the toroidal direction, we evaluate
(u.∇)uϕ. With the help of eqn. 6.4, which allows us to neglect the parallel derivative,
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eqn. 6.7 yields

(u.∇)uϕ =
B2
p

B2

∂φ

∂ψ

∂

∂ϕ
(
RB2

p

B2

∂φ

∂ψ
) +

B2
φ

B2

∂φ

∂ψ

∂

∂ϕ
(
RB2

p

B2

∂φ

∂ψ
) − ∂φ

∂ϕ

∂

∂ψ
(
RB2

p

B2

∂φ

∂ψ
) (6.8)

= ∂φ
∂ψ

∂

∂ϕ
(
RB2

p

B2

∂φ

∂ψ
) − ∂φ

∂ϕ

∂

∂ψ
(
RB2

p

B2

∂φ

∂ψ
) (6.9)

=
RB2

p

2B2
[ ∂
∂ϕ

(∂φ
∂ψ

)
2

] − { ∂

∂ψ
(
RB2

p

B2

∂φ

∂ψ

∂φ

∂ϕ
) −

RB2
p

2B2
[ ∂
∂ϕ

(∂φ
∂ψ

)
2

]} . (6.10)

Integrating over the periodic variable ϕ, the first and third terms vanish:

∮ (u.∇)uϕ dϕ = − ∂

∂ψ ∮
RB2

p

B2

∂φ

∂ψ

∂φ

∂ϕ
dϕ . (6.11)

To find the net torque, the velocity is first expressed as

u = uϕeϕ + uχeχ = u∥e∥ + ûϕeϕ (6.12)

(here eχ is the unit vector along χ, etc.). In order to calculate the Doppler shift which
arises from the u.∇ convective derivative, we note that u.∇ ≈ ûϕeϕ.∇. We therefore
need to evaluate ûϕ. From the relations B = Be∥ = Bφeϕ +Bpeχ, uχ = u∥(Bp/B) and
uχ = −(Bφ/Bp)uϕ, we derive

ûϕ = uϕ − uχ(Bφ/Bp) (6.13)

=
B2
φ

B2
p

(1 +
B2
p

B2
φ

)uϕ . (6.14)

Then, the torque that spins ûϕ is given by eqn. 6.11 with a factor (1 + B2
φ/B2

p)
upfront:

∂⟨v⟩
∂t

= Tq =
∂

∂ψ ∮
f 2

RB2
(1 +

B2
p

B2
φ

) ∂φ
∂ψ

∂φ

∂ϕ
dϕ (6.15)

(note sign change from eqn. 6.3). To estimate the torque associated with the global
mode structures, we adopt the Fourier-ballooning representation (eqn. 5.24):

φ =R
⎡⎢⎢⎢⎢⎣
e−iΩteinϕ

∞

∫
−∞

ξ(ψ, p, θ)e−im0θe−iy(θ−p)A(p)dp

⎤⎥⎥⎥⎥⎦
. (6.16)

Here R represents the real part of the complex potential. Provided we remain close
to ψs (ψ and r have been used interchangeably), A(p) is seen to satisfy eqn. 5.42:

Ωxx

2n2q′2
d2A

dp2
− iΩx

nq′
dA

dp
+ [Ω −Ω0(p)]A = 0 . (6.17)

Here Ω is the global mode’s complex frequency and Ω0(x, p) = Ω0(p) + Ωx(p)x +
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Ωxx(p)x2/2 + . . . is the local eigenvalue.

6.2.1 Model assumptions

If we are close to the maximum in the linear growth rate (at ψ = ψs), then Ωx is
approximately real. From the convective derivative, we see that the toroidal flow-
shear modifies the real frequency through a Doppler shift Ω → Ω + nΩ′

ϕx (assuming
a linear flow-shear Ω′

ϕ). Equilibrium profiles also introduce a variation to Ωx, but
Ωx ≈ nΩ′

ϕ due to the large parameter n. However, Ωxx is complex in general and
approximately nΩ′′

ϕ (in our specific case, Ωxx = 0). Finally note, since we are working
in a frame where the rational surface ψs is at rest, Ω0(p) is O(1) due to profile
variations in p.

6.2.2 Analytical estimation

With these assumptions, we may drop the first term of eqn. 6.17, which is O(1/n)
(this forbids the IM and we can only consider the GM), and integrate to write

A(p) = exp [− inq′

Ωx
∫

p

(Ω −Ω0(p)) dp] . (6.18)

Periodicity of φ in θ requires that A(p) is periodic in p, i.e. A(p + 2π)/A(p) = 1 =
exp(i2πN) for any integer N . Using this condition we derive

Ω = 1

2π ∮
Ω0(p)dp − Ωx

nq′
N (6.19)

= ⟨Ω0(p)⟩ −
Ωx

nq′
N (6.20)

Defining a new perturbed quantity

Ω̃(p) = Ω0(p) − ⟨Ω0(p)⟩ , (6.21)

we may express

A(p) = exp [ inq′

Ωx
∫

p

Ω̃(p)dp] exp (iNp) . (6.22)

The electrostatic potential is now written as

φ =R
⎡⎢⎢⎢⎢⎣
e−iΩteinϕ

∞

∫
−∞

ξ(ψ, p, θ)e−im0θe−iyθeinq′S(p) dp

⎤⎥⎥⎥⎥⎦
(6.23)

=R [e−iΩteinϕφn] , (6.24)

where
S(p) = (x + N

nq′
)p + 1

Ωx
∫

p

Ω̃(p)dp . (6.25)
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(a) (b)

Figure 6.2: (a) shows a typical variation of Ω0(p) in the periodic p domain (blue). The
General Mode eigenvalue (green) is obtained by averaging Ω0(p) over the complete period
(section 5.2.5.3). (b) illustrates why Ω̃(p) = 0 at p = ±π/2 in a circular cross-section
geometry. Note that in our model, this variation is assumed to be sinusoidal.

Note that the integer N simply shifts x = ψ − ψs by N rational surfaces, i.e. labels
different global mode solutions on various ψs. Since these structures evolve indepen-
dently in the linear regime, we only consider a single mode labelled by N = 0. To
evaluate the integral given by eqn. 6.24, we can use the method of stationary phase.
Accordingly, the integral receives the dominant contribution from the region around
p where S(p) is stationary, i.e. dS(p̂)/dp = 0. This is given by

Ω̃(p̂) = −Ωxx . (6.26)

To evaluate p̂, expand
Ω̃(p̂) ≈ Ω̃(p0) + Ω̃p(p̂ − p0) (6.27)

around the region where Ω̃(p0) = 0. For our circular cross-section model, p0 = ±π/2
(see Fig. 6.2 for a pictorial description). The correct sign of p0 is determined by the
∇B drift and is such that the integral for φ converges. We solve for p̂ to find

p̂ = p0 −
Ωxx

Ω̃p(p0)
. (6.28)

Taylor-expanding S(p) around p̂:

S(p) = S(p̂) + S
′′(p̂)
2

(p − p̂)2 + . . . (6.29)

= xp0 −
Ωxx2

Ω̃p(p0)
+ 1

Ωx
∫

p̂

Ω̃ dp +
Ω̃p(p̂)
2Ωx

(p − p̂)2 . (6.30)

Using this stationary phase approximation for S(p), we may express eqn. 6.24 as

φn = e−iyθe−im0θeinq′p0xe
− inq′Ωx

2Ω̃p(p0)
x2

e
1

Ωx ∫
p̂ Ω̃ dp

∞

∫
−∞

ξ exp [
inq′Ω̃p(p̂)

2Ωx

(p − p̂)2]dp . (6.31)
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For the integral over p to be defined, the imaginary component of Ω̃p, I(Ω̃p), must
be positive. This simultaneously ensures that the Gaussian in x does not diverge as
x→∞. We next define three new complex variables

σ = iq′Ωx

2Ω̃p(p0)
, µ = −

iq′Ω̃p(p̂)
2Ωx

and k = √
µn(p − p̂) . (6.32)

This allows us to write (absorbing any constant term in C):

φn =
C

√
µn

e−im0θe−nσx
2

e−inq′x(θ−p0)
∞

∫
−∞

e−k
2

ξ (ψ, p̂ + k
√
µn

, θ) dk (6.33)

= C
√
µn

e−im0θe−nσx
2

e−inq′x(θ−p0)
∞

∫
−∞

e−k
2 [ξ(p̂) + ∂ξ

∂p

k
√
µn

+ ∂
2ξ

∂p2

k2

µn
+ . . . ]dk (6.34)

= C
√
µn

e−im0θe−nσx
2

e−inq′x(θ−p0) [ξ(p̂)
√
π +O ( 1

µn

∂2ξ

∂p2
)] (6.35)

≈ C
√

π

µn
e−im0θe−nσx

2

e−inq′x(θ−p0)ξ(ψ, p̂, θ) . (6.36)

In the steps above, ξ has been Taylor-expanded in k about p̂, and the integral
involving the odd-function in k has gone to zero. Next writing σ = σr + iσi and
ξ = ∣ξ∣ exp(iF ) (where F is a slowly varying function of ψ, equivalently x), we derive

φ =R [e−iΩteinϕe−im0θe−nσrx
2

e−inσix
2

e−inq′x(θ−p0)∣ξ∣eiF ] (6.37)

= e−nσrx
2 ∣ξ∣ cos [nϕ −m0θ − nσix2 − nq′x(θ − p0) + F −Ωt] (6.38)

= e−nσrx
2 ∣ξ∣ cosλ . (6.39)

Here we have dropped the constant factors. We are interested in calculating the
terms of eqn. 6.15. Towards this we evaluate:

∂φ

∂ϕ
= −ne−nσrx

2 ∣ξ∣ sinλ (6.40)

∂φ

∂ψ
= e−nσrx

2 [cosλ
∂∣ξ∣
∂ψ

− 2nσrx∣ξ∣ cosλ− ∣ξ∣ sinλ(−nq′(θ − p0) − 2nσix +
∂F

∂ψ
)]

(6.41)

Noting that

2π

∫
0

sin(αx + β) cos(αx + β)dx = 0 and
2π

∫
0

sin2(αx + β)dx = π
α

(6.42)

for any integer α, we derive

∮
∂φ

∂ψ

∂φ

∂ϕ
dϕ = −πe−2nσrx2 ∣ξ∣2 [nq′(θ − p0) + 2nσix −

∂F

∂ψ
] . (6.43)
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The flux-average of a quantity Ψ in our coordinate system is expressed as

⟨Ψ⟩ = ∮
dϕ∮ dχRJBpΨ

∮ dϕ∮ dχRJBp

. (6.44)

For a circular cross-section, noting ∣∇χ∣ = 1/r, it is seen that Jdχ = (r/Bp)dθ. This
implies RJBpdχ = (R3Bpq/f)dθ. The surface-averaged torque is therefore

⟨Tq⟩ = G [∮ dθ∮ dϕR3Bp
∂

∂ψ
{ f 2

RB2
(1 +

B2
p

B2
φ

) ∂φ
∂ψ

∂φ

∂ϕ
}] [2π∮ R3Bpdθ]

−1

. (6.45)

The parameter G is a scale factor that sets the saturation amplitude for φ. Using
eqn. 6.43 and only taking radial derivatives of terms with the large parameter n
upfront:

∂⟨V̂ϕ⟩
∂t

= −Gπ [∮ dθR3Bp
f 2

RB2
(1 +

B2
p

B2
φ

) ∂

∂ψ
{e−2nσrx2 ∣ξ∣2 [nq′(θ − p0) +

∂F

∂ψ

2nσix −
∂F

∂ψ
]}] [2π∮ R3Bpdθ]

−1

= −Gπ [∮ dθ
f 2BpR2

B2
(1 +

B2
p

B2
φ

) ∣ξ∣2e−2nσrx2 {2nσi − 4nσrx [nq′(θ − p0) +
∂F

∂ψ

2nσix −
∂F

∂ψ
]}] [2π∮ R3Bpdθ]

−1

≈ +Gπ [∮ dθ
f 2BpR2

B2
(1 +

B2
p

B2
φ

) ∣ξ∣2e−2nσrx2

4n2q′σrx(θ − p0)] [2π∮ R3Bpdθ]
−1

In the last step we only keep the term with the highest power in n. Note that
8n2σrσix2 has been neglected since, across the mode width, x ∼ O(1/

√
n). Next,

defining a new flux-function Q(ψ) that excludes all but equilibrium scale radial
variations

Q(ψ) = [∮ dθ
f 2BpR2

B2
(1 +

B2
p

B2
φ

) ∣ξ∣2(θ − p0)] [2π∮ R3Bpdθ]
−1

, (6.46)

we arrive at the equation

∂⟨V̂ϕ⟩
∂t

= Ĝq′σrxe−2nσrx2

Q(ψ) . (6.47)

Here G has been rescaled to Ĝ to absorb all constants (including n). Noting that σr =
I(Ω̃p)(q′Ωx)(2∣Ω̃p∣2)−1, where I denotes the imaginary part of a complex quantity,
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we see

∂⟨V̂ϕ⟩
∂t

= Ĝq′2

2∣Ω̃p∣2
I(Ω̃p)xΩxe

−2nσrx2

Q(ψ) (6.48)

= ĤI(Ω̃p)Q(ψ)V̂ϕ . (6.49)

We have written xΩx = V̂ϕ/R and defined Ĥ to absorb all the positive factors. This
has the solution

⟨V̂ϕ⟩ = ⟨V̂ϕ,0⟩ eκt , (6.50)

where κ = ĤI(Ω̃p)Q(ψ). Recall that I(Ω̃p) > 0. Then, depending on the sign of
Q(ψ), two situations may arise:

(a) For arbitrary flow-shear and general profiles, only the GM is expected to exist.
But the associated Reynolds stress as the plasma tries to establish this mode,
would damp the flow and drive Ωx → 0 (provided Q(ψ) < 0), triggering the IM.

(b) If the sign is opposite, or the Isolated Mode is associated with non-zero Reynolds
stress, this is likely to spin up the plasma. However, this cannot happen with-
out bound, and it is reasonable to speculate that some physical mechanism
eventually constrains κ ≤ 0.

6.3 A model for Reynolds stress and flow diffusion

To derive a model for the effect of Reynolds stress on the background flow, we start
with the Navier-Stokes equation

ρ [∂u

∂t
+ (u.∇)u] = −∇p + µ∇2u +F . (6.51)

Here, ρ is the mass density, u is the fluid velocity and µ the viscosity. The term
F describes ‘body forces’, i.e. forces acting on the fluid particles at a distance (e.g.
gravity, magnetic field)1. Making use of the Einstein notation,

ρ [∂tui + uj∂jui] = −∂ip + µ∇2ui + Fi . (6.52)

Noting uj∂jui = ∂j(uiuj) − ui∂juj and assuming incompressibility, i.e. ∂juj = 0:

ρ [∂tui + ∂j(uiuj)] = −∂ip + µ∇2ui + Fi . (6.53)

Next, each instantaneous component, such as the velocity ui, is written as a sum of
its time-averaged (ūi) and fluctuating (ũi) parts. By definition, the time average of

1Contrast this to ‘surface forces’, which are due to direct contact with other fluid particles.
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a random fluctuation is zero. For the quantities a = ā + ã, b = b̄ + b̃ and the constant
c, Reynolds’ rules of averages imply:

a + b = ā + b̄ ; ca = cā ; ab = āb̄ + ãb̃ ;
∂a

∂x
= ∂ā
∂x

. (6.54)

Decomposing each term in eqn. 6.53 into its mean and fluctuating components, and
averaging over time:

ρ [∂tūi + ∂j (ũiũj) + ∂j (ūiūj)] = −∂ip̄ + µ∇2ūi + F̄i .

Defining the slab coordinates (x is radial, y is poloidal and z toroidal) and averaging
over the periodic y direction ⟨ ⟩:

ρ [∂t⟨ūi⟩ + ∂j ⟨ũiũj⟩ + ∂j ⟨ūiūj⟩] = −∂i⟨p̄⟩ + µ∇2⟨ūi⟩ + ⟨F̄i⟩. (6.55)

The incompressibility condition yields ∂x⟨ūx⟩+∂y⟨ūy⟩+∂z⟨ūz⟩ = 0. Assuming axisym-
metry, ∂z → 0, and noting ∂y⟨ ⟩ = 0, we have ūx = 0 (charge conservation implies that
ux cannot be a non-zero constant). Now consider the radial variation (i.e. j → x) to
the Reynolds stress in eqn. 6.55:

ρ [∂t⟨ūi⟩ + ∂x ⟨ũiũx⟩] = −∂i⟨p̄⟩ + µ∂2
x⟨ūi⟩ + ⟨F̄i⟩. (6.56)

In a plasma, the dominant body-force is J×B. Noting that the time-averaged radial
current density J̄x = 0 and B = Byŷ +Bz ẑ, we find F̄x = J̄yBz − J̄zBy and F̄y = F̄z = 0.
Equation 6.56 can now be written for the x, y and z components:

x̂ ∶ ρ [∂x ⟨¯̃u2
x⟩] = −∂x⟨p̄⟩ + ⟨F̄x⟩ ,

ŷ ∶ ρ [∂x ⟨ũyũx⟩] = 0 ,

ẑ ∶ ρ [∂t⟨ūz⟩ + ∂x ⟨ũzũx⟩] = µ∂2
x⟨ūz⟩ .

Here we have treated ūy ≈ 0 due to neoclassical magnetic damping (as discussed
in section 4.2.1, this provides a relationship between the predominant toroidal and
perpendicular flows). The x component provides a small correction to the radial
pressure-balance, whereas the z component provides an equation for the evolution
of the toroidal velocity. Considering again the dominant E ×B drift:

ũx = −
∂yφ

B
and ũz = −

By∂xφ

B2
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(assuming Bz ≈ B). Finally, in the slab/toroidal coordinate, the evolution equation
for the toroidal velocity due to the fluctuation induced Reynolds stress is:

∂⟨ūz⟩
∂t

+
By

B3

∂

∂x
⟨∂φ
∂x

∂φ

∂y
⟩ = ν ∂

2⟨ūz⟩
∂x2

∂⟨ūφ⟩
∂t

+ Bθ

B3

∂

∂ψ
⟨ 1

ψs

∂φ

∂ψ

∂φ

∂θ
⟩ = ν

∂2⟨ūφ⟩
∂ψ2

(here ν = µ/ρ is the momentum diffusivity and ψs is a reference flux surface). Finally,
with uφ ≈ R0Ωφ, where R0 is the major radius, we obtain an equation describing the
evolution of the toroidal rotation frequency Ωφ in the presence of fluctuation-induced
flows:

∂⟨Ωφ⟩
∂t

+ Bθ

RB3

∂

∂ψ
⟨ 1

ψs

∂φ

∂ψ

∂φ

∂θ
⟩ = ν

∂2⟨Ωφ⟩
∂ψ2

. (6.57)

Since B.∇φ ≈ 0, this implies (∂φ/∂θ) ≈ −q(∂φ/∂ϕ). The above equation then re-
sembles eqn. 6.15, except for a geometrical factor, plus a viscous-drag term which
balances the Reynolds stress-induced torque in the steady state. An equation of the
form 6.57 has also been used in ref. [209] to treat parallel momentum transport.

6.3.1 Normalisation

Incorporating eqn. 6.57 into the new fluid-ITG would benefit from the equation
being in the same normalised units (variables in space and time are normalised by
the rational surface spacing and electron diamagnetic frequency, respectively). We
define new dimensionless variables Ω̂φ = Ωφ/ω∗e and t̂ = tω∗e, allowing us to express
the first term in eqn. 6.57 as

∂⟨Ωφ⟩
∂t

= ω2
∗e
∂⟨Ω̂φ⟩
∂t̂

.

In tokamak plasmas, the ratio of the ion momentum diffusivity ν to the ion thermal
conductivity χi (the Prandtl number) is close to unity [210]. Since χi ∼ 1 m2/s for
ITG turbulence, and further anticipating fine-scale flows, we normalise ν by ρ2

scs/rs
(an O(1) factor). Of course in these simulations, the underlying assumption is that
the linear fluctuations would drive nonlinear turbulence (not treated in this work),
which in turn determines ν and relaxes the flow-profile to influence the linear fluctu-
ation characteristics. Strictly, the ‘self-consistent interaction’ is described within this
scope. Noting kθŝ = nq′, ω∗e = kθρscs/Ln and nq′(ψ − ψs) = y (henceforth, y labels
the integer rational surface spacing and not the poloidal angle as was introduced for
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the slab coordinate):

ν
∂2⟨Ωφ⟩
∂ψ2

= [ω∗e(nq
′)2ρ2

scs
ψs

] ν̂
∂2⟨Ω̂φ⟩
∂2y

= ω2
∗eµ̂

∂2⟨Ω̂φ⟩
∂2y

,

where µ̂ = ν̂(kθρss2Ln/ψs). In normalising the Reynolds stress term, we define the
dimensionless potential φ̃ = eφ/Te and note ρscs = Te(eB)−1. This allows us to write

Bθ

RB3

∂

∂ψ
⟨ 1

ψs

∂φ

∂ψ

∂φ

∂θ
⟩ = Bθ

ψsRB

∂

∂y
⟨∂φ̃
∂y

∂φ̃

∂θ
⟩ (nq′ρscs)2

= ω2
∗eλ̂

∂

∂y
⟨∂φ̃
∂y

∂φ̃

∂θ
⟩ ,

with λ̂ = ŝ2ε2n/q. Gathering all the terms, we arrive at the normalised evolution
equation for the toroidal rotation frequency (dropping the hat on Ωφ for convenience):

∂⟨Ωφ⟩
∂t

+ λ̂ ∂
∂y

⟨∂φ̃
∂y

∂φ̃

∂θ
⟩ = µ̂

∂2⟨Ωφ⟩
∂2y

. (6.58)

6.4 Numerical solution to the coupled problem

To summarise, in order to study the self-consistent interaction between the flow
(fluctuation-induced and background) and the global mode structure, the following
equations must be simultaneously solved (poloidal average is implicit):

∂Ωφ

∂t
+ λ̂Ty(φ̃) = µ̂

∂2Ωφ

∂2y
, (6.59)

L( ∂
∂t

− inΩφ,
∂

∂y
,
∂

∂θ
, y, θ) φ̃ = 0 . (6.60)

Here φ̃ = ∑m φm(y) exp(−imθ), Lφ̃ = 0 is described by the fluid-ITG equation 4.1,
and following ref. [211], we define the intrinsic torque Ty = ∂yRy, where

Ry = ⟨∂φ̃
∗

∂y

∂φ̃

∂θ
+ ∂φ̃
∂y

∂φ̃∗

∂θ
⟩
θ

(6.61)

is the poloidally-averaged Reynolds stress. A further simplification is possible by
noting

∂φ̃

∂y

∂φ̃∗

∂θ
= i∑

m

(φ∗m
∂φm
∂y

m) + i∑
m
∑
k≠m

(φ∗k
∂φm
∂y

ke−i(m−k)θ) , (6.62)

allowing us to reduce

⟨∂φ̃
∂y

∂φ̃∗

∂θ
⟩
θ

= i∑
m

(φ∗m
∂φm
∂y

m) . (6.63)
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Finally, the Reynolds stress is expressed as

Ry = i∑
m

(φ∗m
∂φm
∂y

− φm
∂φ∗m
∂y

)m

= −2∑
m

I (φ∗m
∂φm
∂y

)m

6.4.1 Parameters

The principal motivation behind the choice of λ̂ and µ̂ are as follows (other equilib-
rium parameters, unless stated otherwise, are defined in table 4.3):

(a) It is desirable that the forced diffusion equation 6.59 achieves steady state
quickly. This requires a high µ̂ = 5 × 10−2 - this choice is only limited by the
numerical time-stepping of our explicit RK4 solver. Note that the long time
behaviour of eqn. 6.59 is only dependent upon the ratio λ̂/µ̂. Therefore, the
absolute value of µ̂ is not as important provided the temporal characteristics
are qualitatively described.

(b) The external and self-generated flows should be comparable, and sufficient to
influence the GM-IM dynamics. Based on this we set λ̂ ∼ 1.0 × 10−4.

Realistically, of course, λ̂ is determined by the saturation amplitude of the instability
and µ̂ is typically set by the turbulent diffusivity. The former is indeterminate in
our linear model for φ̃ (eqn. 6.60). However, assuming

q ∼ ν̂ ∼ O(1) and
ψs
R

∼ kθρs ≪ 1 , (6.64)

it is found that λ̂/µ̂ ∼ Ln/R. We take the major radius R ∼ 1 m. Further, in the
core, Ln ∼ 1 m and ∣φ̃∣2 ∼ 10−4, whereas Ln ∼ 10−2 m and ∣φ̃∣2 ∼ 10−2 at the edge
(Table 2.2). In steady state, the ratio of the Reynolds stress and diffusive term
is ∣φ̃∣2λ̂/µ̂ ∼ 10−4. Our numerically motivated choice of λ̂/µ̂ = 2 × 10−3 is therefore
not entirely unreasonable. In these simulations, the linearly growing perturbation
is normalised at every time-step (∣φ̃∣2 ∼ O(1)), so as to retain only the effect of the
mode structure on the stress-driven flow.

6.5 Stability characteristics of eigenmodes

Normalising the amplitude of the linearly growing mode allows the coupled system
to achieve steady state for a φ̃ structure that does not change with time (cf. eqn.
6.59). This is seen in Fig. 6.3. We now focus on the dynamics of the IM and GM
within this coupled system.
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(a) (b)

Figure 6.3: (a) shows the evolution of the growth rate of a mode, slightly perturbed from
the IM, when the coupled system is solved; the highlighted region indicates the switching
on of the Reynolds stress term. (b) shows the corresponding behaviour for the GM.

6.5.1 Perturbed IM

When the simulation is initiated with a background linear flow profile (Fig. 6.4a),
which would give a mode structure (Fig. 6.4b) slightly perturbed from the IM, the
torque associated with the mode subsequently creates a stationary point in the flow
profile, driving the mode back towards the IM (Fig. 6.4d). There is an accompanying
increase in the growth rate (Fig. 6.3a) and the overall flow profile is pushed down-
wards as the flow peaks locally (Fig. 6.4c). Also observe that, while the flow-shear
remains unchanged (except locally where the mode sits), the difference between the
initial and final flow, on either side of the mode, is asymmetric (Fig. 6.4c).

6.5.2 Perturbed GM

In this case, the initialising background flow (Fig. 6.5a) is such that the mode sets off
to perform Floquet cycles (see Fig. 6.3b). The choice of initial mode structure (Fig.
6.5b) is therefore arbitrary. With time of course, the poloidally precessing mode
would settle down as a GM (section 5.3.3). Here, instead, as the intrinsic flow is
switched on while the mode is performing Floquet cycles, the peak in the flow profile
traps the mode, preventing further Floquet oscillations (Fig. 6.3b). The initialisation
described here is analogous to starting off with the parameters of section 6.5.1 and
increasing the boundary shear. Since the steady state solution to eqn. 6.59 is a
straight line, far away from the mode, we impose Neumann boundary conditions.
Observe that in this situation, the mode does not balloon at the bottom of the
poloidal cross section (Fig. 6.5d). However, as the magnitude of the intrinsic torque
is reduced in comparison to the background flow-shear, the mode rotates to settle
down at the bottom of the plasma cross-section.
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(a) (b)

(c) (d)

Figure 6.4: (a) shows the initial flow profile (γE = −0.001) and (b) the corresponding
structure of a mode perturbed about the IM, whereas (c) and (d) show the final states. In
(c), the dashed line indicates the initial profile.

6.6 Summary

In this chapter, our fluid-ITG initial-value code has been extended to allow for a feed-
back of the mode structure on the flow profile. For solutions weakly perturbed from
the IM structure, the intrinsic torque creates a stationary point in the flow profile,
driving the mode back towards an IM solution. When strong equilibrium flow-shears
dominate over the intrinsic flow, the GM solution is possible. Further, the trapping
of the eigenmode by the intrinsic flow profile, which would have otherwise under-
gone O(n) Floquet rotations in the presence of a high background flow-shear before
settling down (section 5.3.3), could reduce the GM formation time. The balance of
the intrinsic and external torques ultimately determine the poloidal angle where the
global mode balloons. The quantification of these effects, influenced significantly by
the saturated mode amplitude, require nonlinear simulations which are beyond the
scope of this thesis.
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(a) (b)

(c) (d)

Figure 6.5: (a) and (b) show the flow profile (γE = −0.005) and structure of a mode
initialised to perform Floquet precessions. (c) and (d) are the converged states.
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Chapter 7

Conclusions and future work

7.1 Conclusions

The success of ITER will help ensure the timely delivery of fusion energy to the
power grid, but for this to happen, a range of physics, engineering and materials
challenges must be overcome. A key physics challenge is to understand the edge
pedestal dynamics, dictated primarily through the balance between MHD stability
and turbulent transport. Suppression of edge turbulence improves confinement and
raises the edge current and pressure towards the MHD stability limit imposed by the
peeling-ballooning (PB) boundary - breaching this makes the tokamak susceptible to
damage by energetic edge plasma eruptions. The PB boundary is widely accepted as
a robust stability condition on the pedestal, but there remains much less confidence
about the edge transport physics.

The ballooning theory is a powerful mathematical framework that can be used
to analyse both MHD ballooning and toroidal drift modes (the latter thought to be
responsible for turbulence in tokamak plasmas in their nonlinearly saturated states).
Central to this theory is the separation between the equilibrium length-scale and
spacing of rational flux surfaces (in the vicinity of which such modes are strongly
localised). Adjacent flux surfaces are then approximately equivalent, and this allows
the simplification of a linearised 2D partial differential equation for fluctuations in
radial and poloidal coordinates, to two 1D ordinary differential equations along the
magnetic field line (local solution) and radius (providing the global mode envelope).

The formalism predicts two distinct classes for all linear toroidal microinstabil-
ities (e.g. ITG, KBM): the strongly growing but usually inaccessible Isolated Mode
(IM), and the relatively benign yet more readily accessible General Mode (GM).
Specifically, the IM exists when the maxima in the frequency and growth rate of
the radially varying local complex mode frequency coincide. The IM typically peaks
at the outboard-midplane, while the GM peaks away from it. Analytic theory and
numerical modelling have previously established that the plasma profiles affect the
accessibility of these eigenmode branches, with the radially-varying toroidal plasma
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flow of particular interest due to a Doppler shift it can introduce in the mode fre-
quency. Indeed, in the presence of a critical radial flow-shear, a transition between
the two branches is possible.

This research has involved the development of a new time-dependent code
to study the dynamics of the IM and GM for an electrostatic fluid-ITG model.
A number of questions were raised in Section 3.6, the answers to which are now
summarised.

7.1.1 Eigenmode formation dynamics

When initialised with random noise, the IM is seen to form more rapidly (O(300)
e-foldings) than the GM (O(1300) e-foldings) (section 5.4.3). Our numerical simula-
tions indicate that, for a peaked ITG drive profile with a background flow-shear, at
first, the individual Fourier modes rapidly adjust their amplitudes to establish the
IM at the outboard-midplane. Then, the flow-shear causes the phase between the
adjacent Fourier modes to change, convecting the radial eigenmode in the poloidal
plane to establish the GM at the top/bottom of the plasma. The appearance of
Floquet transients for high flow-shears, before their eventual decay into the GM on
an O(n) time-scale, further delays the GM formation time (section 5.3.3).

These time-scales indicate that, at least for our situation, the system is very
likely to enter the nonlinear phase before the linear structures can establish. For our
fluid-ITG model, the high instability growth rate implies that the radial eigenmodes
are strongly driven in the linear phase. Doubling the ITG drive roughly doubles
the growth rate, whereas the eigenmode formation time Teig is almost unaffected.
Close to marginal stability, this could imply that the factor exp(γTeig) is small. In
such a situation, the radial eigenmode may form before the linearly growing Fourier
modes (that constitute the radial eigenmode) begin to drive the nonlinear terms.
Addressing this topic clearly necessitates a more complete physics model that allows
marginally stable situations.

7.1.2 A model for small-ELMs?

Next, with profiles held such that the GM is accessible, the flow-shear is changed to
access the more unstable IM. For our parameters, this dynamic can in fact occur at
a small-ELM relevant time-scale (Section 5.4). The appearance of Floquet Modes at
high flow-shears as the GM tries to establish, and the associated transient bursts in
the linear growth rate, could provide an alternative trigger mechanism. Again, non-
linear modelling is needed to correlate these linear triggers with any abrupt increase
in transport.

The observation of certain robust features could guide experimental efforts to
verify the small-ELM model of section 3.6.2 (provided of course that these global
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modes affect the structure of turbulence in the saturated phase). Starting with an
initial GM, even when the profiles are varied too rapidly (d/dt →∞), the perturba-
tion structure is seen to remain coherent (Fig. 5.9), with an accompanying strong
growth as it passes through the outboard-midplane. Diagnostics that are able to
resolve fluctuations over a wide poloidal angle with good temporal resolution, should
therefore observe poloidally shifting structures between successive small-ELM bursts.

7.1.3 Towards intrinsic rotation modelling

The global mode structures are themselves expected to generate a torque and modify
the equilibrium flow-shear. For a given saturated mode amplitude, in the presence
of a weak background shear that moves the IM slightly away from the outboard-
midplane, the self-generated torque creates a stationary point in the flow profile and
drives the mode back towards the IM again. As the background flow-shear is driven
more strongly, due to edge electric fields setting up flows for instance, the intrinsic
torque gets dominated and the mode moves away from the outboard-midplane. In
summary, our quasi-linear modelling indicates that both the IM and GM can be
stable solutions. Again, nonlinear simulations must be performed to quantify these
effects for realistic cases.

7.2 Future work

The current investigation presents many new questions, which can only be answered
by moving to more accurate gyrokinetic (e.g. [212]) or gyrofluid (e.g. [213]) plasma
models. Firstly, it is important to explore these self-consistent dynamics in a realis-
tic situation where profiles are held close to marginal stability (e.g. for the kinetic
ballooning mode). Ultimately, nonlinear simulations are needed to test the inter-
action of turbulence with flows as the GM-IM-GM transition is triggered linearly.
These ideas are summarised in Table 7.1 (extensions marked with an asterisk are not
necessary for answering the most immediate questions).

While gyrokinetic models are typically much slower to run than gyrofluid mod-
els, the latter are unable to accurately describe the dynamics of the n = 0 Zonal
modes [214]. Zonal flows are large-scale, nonlinearly generated, sheared E ×B flows
which play a crucial role in turbulence saturation [101]. These modes are collisionally
damped; gyrofluid models on the other hand employ linear collisionless (Landau) ro-
tation damping, which completely suppresses the Zonal mode [214]. A method that
captures the benefits of both approaches is one adopted by GryfX [215]. Within
this framework, the gyrokinetic code GS2 is used to treat the response of the linear
zonal mode, whereas a gyrofluid model is used to evolve all other modes1 (i.e. the

1A spectral representation makes this decomposition trivial for the linear terms.
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Table 7.1: Extensions to the present work

Present model Extension Motivation

Linear Nonlinear
To quantify change in transport fluxes
associated with the linear GM-IM-GM
transition

Fluid Kinetic Studying global mode dynamics close to
marginal stability

Circular
cross-section *Shaped Effect on eigenmode structure for scenario

optimisation

Electrostatic *Electromagnetic Important for high β plasmas

small-scale turbulent structures). One may envisage a similar approach, but using
the BOUT++ framework [216] to simulate a gyrofluid model2, whereas a global GK
code (e.g. ORB5 [217, 218]) could be used to capture the Zonal mode. The success-
ful implementation of such a framework could contribute greatly towards addressing
some key open questions in fusion research:

(a) There is evidence of shaping influencing the intrinsic toroidal rotation [190].
Could this be mediated by the global mode structures? If such a correla-
tion exists, this could provide a handle on the intrinsic torque profile control,
through tailoring the plasma shape and background profiles to influence the
global modes (see section 3.6.3).

(b) Can the GM-IM-GM transition in the nonlinear phase allow the profiles to
partially collapse and re-build in a cyclic manner? This could be achieved by
coupling the fluxes from nonlinear BOUT++ simulations (for example) to a
transport code which can evolve the background plasma profiles. This may
be an important step in moving towards the first self-consistent small-ELM
simulations.

2The benefit of this approach is that the modular nature of BOUT++ enables the users to
quickly implement and test various physics models.
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Appendix A

Flux-surfaces

Begin by considering the divergence of the magnetic field in a cylindrical coordinate
system axisymmetric in φ (i.e. ∂/∂φ→ 0):

∇.B = 1

R

∂ (RBR)
∂R

+ ∂BZ

∂z
= 0 . (A.1)

This is satisfied by the functions BR = (1/R)(∂ψ/∂Z) and BZ = (−1/R)(∂ψ/∂R),
where ψ = ψ(R,Z) is a poloidal flux function1. Note that B.∇ψ = 0, and from the
force balance J ×B = ∇p, we see that B.∇p = 0. This implies that magnetic field
lines lie on constant ψ surfaces, which are also surfaces of constant pressure p. Using
these definitions of BR and BZ , we can write

B = Bϕêϕ +BRêR +BZ êZ (A.2)

= RBϕ∇ϕ +
1

R

∂ψ

∂Z
êR −

1

R

∂ψ

∂R
êZ (A.3)

= RBϕ∇ϕ
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

Toroidal field

+ ∇ϕ ×∇ψ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Poloidal field

. (A.4)

We introduce a new flux function f similar to ψ, and define JR = (−1/µ0R)(∂f/∂Z)
and JZ = (1/µ0R)(∂f/∂R) to give ∇.J = 0. Using Ampère’s law ∇ × B = µ0J, we
straightforwardly see that f(R,Z) = RBϕ. In a tokamak, Bϕ ∝ 1/R, implying that
the ‘toroidal field function’ f is typically constant. Next from J.∇p = 0 we note
(∇f ×∇p) .êϕ = 0. This condition is satisfied if f = f(p), as then ∇f = (df/dp)∇p,
implying RBϕ = f(ψ).

For completeness, we derive a similar form for the current density by noting
Bϕ → Jϕ and ψ → −f/µ0. Then

J = RJϕ∇ϕ −
1

µ0

df

dψ
∇ϕ ×∇ψ , (A.5)

B = f(ψ)∇ϕ +∇ϕ ×∇ψ . (A.6)

1B2
p = B

2
R +B

2
Z = ∣∇ψ∣2/R2, so ψ describes the poloidal field Bp.
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Then using the force balance equation, we can relate the current, field and pressure
as

Jϕ = −R
dp

dψ
− f

µ0R

df

dψ
. (A.7)

Eliminating Jϕ using Ampère’s law gives the Grad-Shafranov equation for ψ:

R
∂

∂R
( 1

R

∂ψ

∂R
) + ∂

2ψ

∂Z2
= −µ0R

2 dp

dψ
− f df

dψ
. (A.8)

The Grad-Shafranov equation can be solved iteratively upon specifying the boundary
conditions on p(ψ) and f(ψ). Its solution, equilibrium ψ surfaces, form a set of
nested tori (Fig. 2.5a).
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Appendix B

Mathematical tools

B.1 Hermite polynomials

Differential equations of the form

d2y

dx2
− 2x

dy

dx
+ 2ny = 0 (B.1)

are solved by Hermite polynomials of order n, Hn(x). Now consider φ = e−µx
2
Hn(x).

It is then possible to write

Hn(x) = eµx
2

φ , H ′
n(x) = eµx

2 [φ′ + 2µxφ] ,

H ′′
n(x) = eµx

2 [φ′′ + 4µxφ′ + (4µ2x2 + 2µ)φ] .

Substituting the above set of equations into B.1, we derive

[φ′′ + φ′(4µx − 2x) + φ(4µ2x2 + 2µ − 4µx2 + 2n)] eµx
2 = 0 . (B.2)

Noting that exp(µx2) ≠ 0 and setting µ = 1/2:

φ′′ + [(2n + 1) − x2]φ = 0 . (B.3)

Therefore, equations of the form B.3 are solved by the polynomials

φ(x) = e−x
2/2Hn(x) . (B.4)

B.2 Dirac comb

The Dirac-comb or the Shah function is defined as

X(x) =
+∞
∑
k=−∞

δ(x − k) , (B.5)
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where δ(x) is the Dirac-delta function and k defines integers. If g(x) is a continuous
function, g(x).X(x) has the property of sampling g(x) at integer values. If instead
we wish to sample with a period T = 2π, the Shah function may be suitably modified:

X(x) =
+∞
∑
k=−∞

δ(x − 2πk) . (B.6)

Now any function f(x), with a periodicity 2π, may be Fourier expanded as

f(x) =
+∞
∑

m=−∞
cmeimx , (B.7)

where

cm = 1

2π

π

∫
−π

f(x)e−imx dx . (B.8)

With f(x) =X(x), we have

cm = 1

2π

π

∫
−π

(
+∞
∑
k=−∞

δ(x − 2πk)) e−imx dx

= 1

2π

+∞
∑
k=−∞

π

∫
−π

δ(x − 2πk)e−imx dx

= 1

2π

+∞
∑
k=−∞

π−2πk

∫
−π−2πk

δ(t)e−imte−im2πk dt ;

where we have used the coordinate transform x − 2πk = t. Observe that ∀k ≠ 0, the
integration domain excludes the point t = 0. Properties of the Dirac-delta function
reduce the above equation to cm = (2π)−1. This yields the useful form:

2π
+∞
∑
k=−∞

δ(x − 2πk) =
+∞
∑

m=−∞
eimx . (B.9)
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Appendix C

Numerically solving second order
ODE

We begin by discretising a second order ordinary differential equation (ODE)

a(x)d2f

dx2
+ b(x)df

dx
+ c(x)f = d(x) (C.1)

at a grid point i as

ai (
fi+1 − 2fi + fi−1

h2
) + bi (

fi+1 − fi−1

2h
) + cifi = di . (C.2)

This can be rewritten in the form

Aifi−1 +Bifi +Cifi+1 = di , (C.3)

where
Ai = ( ai

h2
− bi

2h
) Bi = (−2ai

h2
+ ci) Ci = ( ai

h2
+ bi

2h
) . (C.4)

Note than A1 and CN are not defined for the first and last grid points respectively.
With x discretised into N grid points, the ODE represented by eqn. C.3 can be cast
into the N ×N tridiagonal matrix form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 C1 0 ⋯ 0

A2 B2 C2 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ AN BN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2

⋮
fN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

⋮
dN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C.5)

Next we specify the boundary conditions. A Dirichlet (fixed value) boundary is
specified on f1 by noting

B1f1 +C1f2 = d1 , (C.6)
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which upon setting B1 = 1 and C1 = 0 allows us to specify f1 = d1. We can similarly
impose a Neumann (fixed gradient) boundary condition by setting C1 = 1/h and
B1 = −1/h such that

f2 − f1

h
= d1 . (C.7)

It is important to note that, in specifying the boundary gradients, an O(h) finite-
difference scheme would only allow the solution f(xi) to be accurate to O(h). Matrix
equations of the form Mf= D, given by C.5, are efficiently solved for f with the help
of routines available in LAPACK [219], or using other methods described in ref.
[220].
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