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Abstract

In this thesis is presented a study of groups of the form G/G00, where G is

a 1-dimensional, definably compact, definably connected, definable group in a

saturated real closed field M , with respect to a notion called 1-basedness.

In particular G will be one of the following:

(1) ([−1, 1),+ mod 2)

(2)
([

1
b
, b
)
, · mod b2

)
(3) (SO2(M), ∗) and truncations

(4) (E(M)0,⊕) and truncations, where E is an elliptic curve over M ,

where a truncation of a linearly or circularly ordered group (G, ∗) is a group

whose underlying set is an interval [a, b) containing the identity of G, and

whose operation is ∗ mod (b ∗ a−1) .

Such groups G/G00 are only hyperdefinable, i.e., quotients of a definable group

by a type-definable equivalence relation, in M , and therefore we consider a

suitable expansion M ′ in which G/G00 becomes definable.

We obtain that M ′ is interdefinable with a real closed valued field Mw, and

that 1-basedness of G/G00 is related to the internality of G/G00 to either the

residue field or the value group of Mw.

In the case when G is the semialgebraic connected component of the M -points

of an elliptic curve E, there is a relation between the internality of G/G00 to

the residue field or the value group of Mw and the notion of algebraic geometric

reduction. Among our results is the following:

If G = E(M)0, the expansion of M by a predicate for G00 is interdefinable

with a real closed valued field Mw and G/G00 is internal to the value group

of Mw if and only if E has split multiplicative reduction; G/G00 is internal

to the residue field of Mw if and only if E has good reduction or nonsplit

multiplicative reduction.



Contents

Acknowledgements 2

Abstract 3

Contents 4

Chapter 1. Introduction 6

1. Assumptions and notation 6

2. Motivation and preliminaries 7

3. Groups definable in o-minimal structures 11

4. Valued fields 20

Chapter 2. Fundamental notions 23

1. The Logic Topology 23

2. o-minimality of definable sets 27

3. One-basedness 32

4. Summary 37

Chapter 3. Easy cases 38

1. Additive and multiplicative truncations 39

2. SO2(M) and truncations 43

3. Local completeness of nonstandard value groups 46

Chapter 4. Elliptic Curves 47

1. Elliptic curves 47

2. Elliptic r-curves 54

3. Elliptic c-curves 70

4. Truncations of elliptic curves 82

5. Statement of the main result 87

Chapter 5. Generalizations, questions and connections 90

4



CONTENTS 5

1. Ind-hyperdefinable groups 90

2. Shelah expansion 96

3. The connection with work by Hrushovski 98

Chapter 6. Summary 101

1. Possible future directions and questions 102

Bibliography 104



CHAPTER 1

Introduction

1. Assumptions and notation

We assume that the reader is familiar with the basic notions of model theory:

saturation, quantifier elimination, the M eq construction.

We also assume a basic knowledge of o-minimality and the theory of valued

fields, though we shall recall the main notions throughout the thesis.

We denote a structure by M = (M,LM), where LM is the language of the

structure M . When we consider the expansion of a structure by a predicate

P we often omit part of the language, for example if we expand M by P ,

we denote the new structure M ′ = (M,P, . . . ), where the dots stand for the

language of the original structure.

We denote a single element with a latin letter, e.g. x, whilst a tuple is denoted

by an overlined latin letter, e.g., x.

Unless otherwise stated any definable set is intended definable with parameters.

When there is an ordered set we may use a slightly incorrect notation, by

writing, for example, given A a set, b an element and α = (C,D) a cut, A < b

to mean a < b for all a ∈ A; α < b, to mean b ∈ D; or α + 1 to mean the cut

(C ′, D′), where x ∈ C ′ ⇐⇒ x− 1 ∈ C and x ∈ D′ ⇐⇒ x− 1 ∈ D.

We say that a structure M is saturated if it is |M |-saturated. The existence

of such M relies on set theoretical hypotheses that we shall not discuss here.

As is common practice in model theory we shall often identify a formula with

the set it defines. Where it is needed more care, we denote the set defined by

a formula ϕ in a structure M by ϕM .

6
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2. Motivation and preliminaries

The main motivations behind the project developed in this thesis are Pillay’s

conjecture and the extension of geometrical stability theory outside the stable

context.

Pillay’s conjecture is actually now a theorem, a result of work of several people,

to name a few: Pillay, Hrushovski, Peterzil, Otero and Berarducci. In [28] it is

proved in a special case. The complete proof is in [11]. The article [25] gives

a detailed account of the proof, gathering only the needed theorems from a

number of papers. I shall describe this theorem better in the next subsection,

but the rough idea is that a definable group G in a saturated real closed field,

quotiented by the subgroup of its “infinitesimals”, G00, is a real Lie group.

The motivating example is G = ([−1, 1),+ mod 2) in a saturated real closed

field M . Here, G00 is the usual set of infinitesimals and therefore G/G00 is

[−1, 1)R.

This gives rise to a functor L : G→ G/G00 between the categories of definable

(definably compact, definably connected) groups and of (compact, connected)

Lie groups. How topological and algebraic topological properties are preserved

under this functor is now a very active area of study in model theory.

It makes then sense to study on its own the groupG/G00, which, as we shall see,

is a hyperdefinable set (a quotient of a type-definable set by a type-definable

equivalence relation, although in this thesis G will be definable), from a model

theoretical and stability theoretical point of view.

The other motivation lies in the context of the trichotomy theorems for certain

well behaved definable sets.

Recall that a strongly minimal set is an infinite definable set in a saturated

model whose definable subsets are either finite or cofinite, and that, moreover,

it eliminates ∃∞. For such sets algebraic closure is a pregeometry, and therefore

it defines a notion of dimension.
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In the early 80s Zil’ber [36] conjectured that given a strongly minimal set X

exactly one of the following is true:

• X is trivial: for each set A ⊂ X, acl(A) = ∪a∈Aacl(a).

• X is (nontrivial) locally modular: X interprets a strongly minimal

infinite group G all of whose definable sets are essentially cosets.

• X interprets a strongly minimal algebraically closed field.

The idea is that strongly minimal sets can be classified up to structural com-

plexity: a strongly minimal set “resembles” either a pure set, or a vector space

or a field.

This conjecture turned out to be false in this form; Hrushovski in fact disproved

it [9] constructing an example of a non-locally modular strongly minimal theory

that does not interpret an infinite group.

The conjecture though is true in a smaller class of structures, the Zariski

Geometries, as proved by Hrushovski and Zilber in [10].

In more recent years part of the machinery developed for stable theories has

been extended to wider classes of structures, such as the simple and NIP

theories.

A special class of theories introduced by van den Dries, Pillay and Steinhorn in

the 80s, and that have been deeply studied by themselves, along with others,

is the class of o-minimal theories. There are many analogies between these

theories and the strongly minimal ones, in particular algebraic closure is a pre-

geometry, and they have elimination of ∃∞. Both then are geometric structures

and admit a notion of dimension.

It was then natural to ask if it was possible to obtain a trichotomy theorem

also for these structures. A positive answer to this question has been given

by Peterzil and Starchenko in [23]. Their theorem roughly says that if M is

o-minimal and sufficiently saturated, and a ∈M , then either

(1) a is trivial, or
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(2) a has a convex neighbourhood on which M induces the structure of

an ordered vector space, or

(3) a is contained in an open interval on which M induces the structure

of an expansion of a real closed field.

The first two points (triviality and local modularity) can be expressed in terms

of dimension of interpretable curves. We recall that a definable (or inter-

pretable) family of curves {Cu, u ∈ U}, where U is interpretable, is normal if

for u 6= v, Cu and Cv intersect in at most finitely many points; the family of

curves is of dimension n if dim(U) = n. Triviality has a technical definition,

and we will not discuss it here, since it plays no role in this thesis.

For an o-minimal structure M , Peterzil and Starchenko proved that if a ∈ M

is non-trivial, then a has a convex neighbourhood on which M induces the

structure of an ordered vector space if and only if there is an open interval I

containing a such that every interpretable normal family of definable curves in

In is of dimension at most 1. Moreover a is contained in an open interval on

which M induces the structure of an expansion of a real closed field if and only

if given any interval I containing a, there is an interpretable normal family of

curves of dimension > 1.

So, for o-minimal structures, the behaviour (2) can be seen as a property of

certain families of curves; when for all elements a of the structure we have (2),

we say that the structure is locally modular. Moreover, the property that every

interpretable normal family of definable curves in In is of dimension at most 1

is equivalent to a property called 1-basedness, defined in [29] (or CF -property,

in [18]), which will be described in Chapter 2. 1-basedness is the notion that

seems more convenient rather than modularity because it is easier to check

in computations and therefore it is the one that will be used throughout the

thesis.

We recall the basic examples of structures that fit into the classification in the

article of Peterzil and Starchenko:
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(1) Trivial: e.g. (Q, <).

(2) Locally modular/ 1-based: e.g. (R,+, 0, <).

(3) Non-1-based: e.g. (R,+, ·, 0, 1, <).

A natural question that can then be asked is the following: given a saturated

real closed field, is it possible to find a modular/1-based or a trivial hyperde-

finable set?

We firstly would like to point out that the question above is ill-posed: a hy-

perdefinable set is not definable in the real closed field, and we need to modify

the notions of 1-basedness and triviality to adapt them to this context.

A possible example comes from the behaviour of certain groups of the form

G/G00. In particular, if we consider the group G of points of an elliptic curve

and we quotient it by G00, we always obtain a Lie group. On the other hand

there is an algebraic notion of reduction over the reals, which in certain cases

does not behave well, in the sense that the reduced curve is no longer an

elliptic curve (in this case we say that the elliptic curve has bad reduction).

Such “strange” hyperdefinable groups seemed a good candidate for a 1-based

hyperdefinable set.

In this thesis we try to answer a refined version of the question above and

study the hyperdefinable groups of the form G/G00 in an expansion of a real

closed field where they become definable; we then define what we mean by

1-basedness in this context, together with a suitable construction that allows

us to consider the theory of G/G00 with all the induced structure from this

expansion of a real closed field.

We consider a set of examples of 1-dimensional, definably compact, definably

connected, definable groups G in a saturated real closed field M :

List A:

(1) ([−1, 1),+ mod 2), additive truncation.

(2)
([

1
b
, b
)
, · mod b2

)
, multiplicative truncation.

(3) (SO2(M), ∗) and truncations.
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(4) (E(M)0,⊕) and truncations, where E is an elliptic curve over M .

For 1-dimensional, definably compact, definably connected definable groups

there is a classification over the reals, due to Madden and Stanton [20], see

Theorem 1.11 in the next subsection. We conjecture a similar classification for

such groups defined over real closed fields obtaining List A.

We shall analyse case by case the groups G/G00 and find that indeed there

are hyperdefinable groups that are 1-based, even non elliptic curves, and the

behaviour of elliptic curves turns out to be not exactly as expected: there is a

relation between reduction and 1-basedness, but some curves which have bad

reduction are non-1-based; see the theorem in the abstract.

This analysis of groups of the form G/G00 is, moreover, strongly linked with

the theory of real closed valued fields; in particular, G/G00 is 1-based in a

sufficiently enriched structure if G/G00 is internal to the value group of a real

closed valued field interpretable in it. On the other hand, G/G00 is non-1-based

if and only if it is internal to the residue field in the enriched structure.

A complete formulation of the main theorem, highlighting all the links de-

scribed, which considers all the cases of List A can be found at the end of

Chapter 4.

3. Groups definable in o-minimal structures

We explain here what 1-dimensional, definably connected, definably compact,

definable groups in a saturated real closed field are. Then we state Pillay’s

conjecture, and the Madden and Stanton classification for 1-dimensional Nash

groups over the reals.

We conclude this section with a lemma motivating our expectation of a clas-

sification similar to that of Madden and Stanton for 1-dimensional, definably

connected, definably compact, definable groups in a saturated real closed field.
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For the rest of this subsection M will be a totally ordered, o-minimal and

saturated expanson of a real closed field, but many of the following results

are true in a more general setting. Here we will not recall the notion of o-

minimality, but its definition, generalized to the context of definable sets, can

be found in Chapter 2.

A definable group (G, ∗) inM is a group with definable underlying setG ⊂Mn,

and whose operations ∗ : G×G→ G and −1 : G→ G have definable graphs.

For a definable group we define the following subgroups:

Definition 1.1. Given a set A ⊂ G of parameters, we define G0
A as the

smallest A-definable subgroup of finite index, if any. If for each A,B ⊂ G we

have G0
A = G0

B, then G0 is ∅-definable and we say that G0 exists.

Given a set A ⊂ G of parameters, we define G00
A as the smallest subgroup of

bounded index type-definable with parameters from A. If for each A,B ⊂ G

we have G00
A = G00

B , then G00 is ∅-definable and we say that G00 exists.

When the structure in which G is defined is o-minimal, both G0 and G00 exist,

and G0 is a finite index definable subgroup.

We shall consider groups definable in saturated models, but no such group can

be compact with the usual o-minimal topology. The analogy of compactness for

infinite groups in saturated o-minimal structures is the following, introduced

by Peterzil and Steinhorn in [24]:

Definition 1.2. G is definably compact if, given an interval I = [a, b) in M

and a definable, continuous function f : I → G, then lima→b f(x) exists in G.

If M is an o-minimal expansion of a real closed field then a definably compact

group is definably isomorphic to a closed and bounded definable group G such

that the t-topology of G coincides with the topology inherited from the ambient

space Mn.

Also a notion corresponding to connectedness can be defined:
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Definition 1.3. G is definably connected if there are no proper definable

subgroups of finite index.

From [26] definable connectedness is equivalent to G not being the disjoint

union of two non-empty definable t-open subsets, where the t-topology is the

topology induced on a definable manifold explained below.

The o-minimal theories carry a notion of dimension, on which more details can

be found in [35].

Definition 1.4. Given a definable set X,

dim(X) = max{i1 + · · ·+ im| X contains an (i1, · · · , im)− cell}.

Here an (i1, · · · , im)− cell is defined inductively by:

(1) A (0)− cell is a point x ∈M , a (1)− cell is an interval (a, b) ∈M .

(2) Suppose (i1, . . . , im)−cells are already defined; then an (i1, . . . , im, 0)−

cell is the graph of a definable continuous function f : Y →M , where

Y is an (i1, . . . , im)-cell; further an (i1, . . . , im, 1)− cell is a set (f, g)Y

(i.e., the set of points (x, y), x ∈ Y , f(x) < y < g(x)), where f, g

are definable continuous functions f, g : Y → M , f < g and Y is a

(i1, . . . , im)− cell.

We say that a definable group G is n-dimensional if its underlying set is n-

dimensional.

3.1. The definable manifold structure. In [26] Pillay proved that a

group definable in an o-minimal structure can be equipped with the structure

of a definable manifold where the group operation and the inverse become

continuous. Here we present a brief survey and recall Pillay’s conjecture, stated

in [28] and completely proved in [11].

Definition 1.5. Given a set X equipped with a topology τ , a definable atlas

is a finite collection of open subsets {(U1, ψ1), (U2, ψ2), . . . , (Un, ψn)} such that
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for each Uj there is a bijective homeomorphism ψj : Uj → Vj, where Vj is a

definable open subset of Mnj , and whenever Uj∩Uk 6= ∅ then the map ψj ◦ψ−1
k

is a definable bijective homeomorphism ψk(Uj ∩ Uk)→ ψj(Uj ∩ Uk).

Two definable atlases are compatible if their union is a definable atlas. For

fixed X, compatibility of definable atlases is an equivalence relation.

We call n = sup{nj|j < n} the dimension of the atlas.

A definable manifold of dimension n is a definable set X with an equivalence

class of definable atlases of dimension n.

A definable manifold has an induced topology, called the t-topology : Y ⊂ X

is open if and only if each ψi(Y ∩ Ui) is open in Mn.

The main result in [26] is the following:

Fact 1.6. When M is an o-minimal structure, a group G definable in M can

be given the structure of a definable manifold over M in which multiplication

and inverse are continuous operations with respect to the t-topology.

Observation 1.7. This result is obtained by finding a large ∅-definable subset

V of G for which the above holds, where “large” means that dim(G \ V ) <

dim(G). By Lemma 2.4 of [26], finitely many translates of V cover G, and we

can therefore “patch” them to obtain the manifold structure on all G.

Remark 1.8. G is isomorphic to a definable affine group with continuous

operations in Mn, i.e., a group in which the topology is induced by the topology

of M .

This is obtained applying the o-minimal version of Robson’s embedding theo-

rem, Thm. 1.8 pag. 159 of [VdD] to the observation above.

We state now the final formulation of Pillay’s conjecture, as it appears in [28],

where it is proved for 1-dimensional G, and for abelian G; the conjecture has

been proved in full generality in [11].
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Theorem 1.9. [Pillay’s conjecture] Given G a definably connected definable

group in M , then

(1) G has a smallest type-definable subgroup of bounded index G00.

(2) G/G00 is a compact connected real Lie group, when equipped with the

logic topology.

(3) If, moreover, G is definably compact, then the dimension of G/G00

(as a Lie group) is equal to the o-minimal dimension of G.

(4) If G is commutative, then G00 is divisible and torsion free.

Here by Lie group dimension we mean the real manifold dimension of the

underlying Lie group, i.e. n, where G is locally homeomorphic to a Euclidean

n-space.

An important point is that the logic topology is a topology on bounded hyper-

definable sets, whose closed sets are subsets of the hyperdefinable set whose

preimage is type-definable. For an accurate definition see Definition 2.1. Pil-

lay’s conjecture implies that the logic topology on G/G00 as a hyperdefinable

group agrees with the o-minimal topology of G/G00 as definable group in a

suitable expansion of the original structure. We defer a detailed explanation

of this sentence to Chapter 2.

3.2. Nash manifolds. Recall that a semialgebraic subset of Mn is a fi-

nite union of sets of the form {x ∈ Mn : f1(x) = 0, . . . , fk(x) = 0; g1(x) >

0, . . . , gr(x) > 0}, where f1, . . . , fn, g1, . . . , gr are polynomial functions defined

over M .

A semialgebraic function is a function whose graph is a semialgebaic set.

A Nash function is a function from an open semialgebraic subset U of Mn to

M , which is at once semialgebraic and C∞.

Given a semialgebraic subset N of Mn, a Nash chart is a Nash function that

is a homeomorphism ψ : U → S, where U ⊂ N and S ⊂ Mn are open. Two

Nash charts ψi, ψj, with domain Ui, Uj respectively, are Nash compatible if
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ψi(Ui ∩ Uj) is semialgebraic and

ψj ◦ ψ−1
i : ψi(Ui ∩ Uj)→ ψj(Ui ∩ Uj)

is a Nash diffeomorphism. The maps ψj ◦ ψ−1
i : Si → Sj are called transition

maps.

A locally Nash atlas on N is a set of Nash compatible charts whose domains

cover N . We then call N equipped with such atlas a locally Nash manifold. If

the above atlas has finitely many charts we call N a Nash Manifold.

Given a Nash manifold N with atlas {ψi}i<k, its dimension is

dim(N) = supi<k{n|ψi(Ui) is open in Mn}.

A group is a Nash Group if its underlying set is a Nash manifold, and its

multiplication and inverse are Nash functions.

Observation 1.10. Given a definable group G in a real closed field, we know

that a definable function f over a semialgebraic set S is semialgebraic, by

Tarski’s theorem of quantifier elimination. Moreover, a real closed field admits

smooth (or C∞)) cell decomposition, by [15], therefore there is a large subset

S ′ of S over which f is smooth, i.e., the partial derivatives of any order are

defined. We can then choose the large set V in Observation 1.7 (and indeed in

the proof of Proposition 2.5 of [26]) to be a large smooth subset of S ′, so that

multiplication and inversion are smooth (and of course semialgebraic) functions

on G. This implies that G can be definably equipped with the structure of a

Nash group.

3.3. Madden Stanton theorem. We sketch the proof of the Madden

and Stanton classification as proved in [20]:

Theorem 1.11 (List B:). Every connected 1-dimensional real Nash group is

isomorphic as a Nash group (equivalently, definably isomorphic as a definable

group) to one of the following:
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(1) (R,+)

(2) (R>0, ·)

(3) ([−1, 1),+ mod 2)

(4)
([

1
b
, b
)
, · mod b2

)
(5) (SO2(R), ∗) and truncations

(6) (E(R)0,⊕) and truncations,

where E(R)0 is the semialgebraic connected component of the group of R-points

of an elliptic curve E.

A truncation of a group with a linear order (maybe obtained from a circular one

by fixing a point) (Ĝ, ∗, <) is a group G whose underlying set is an interval [a, b)

containing the identity of Ĝ and whose operation is a · b = a ∗ b mod (b ∗ a−1).

If Ĝ is a Nash group then also G is a Nash group, but it is not necessarily

definably isomorphic to Ĝ.

It is a well known fact that the only simply connected (with trivial fundamental

group) real Lie Group is (R,+).

This is unique up to isomorphism in the category of Lie groups. For example

(R, ·) is isomorphic to (R,+) via the function exp. But clearly the function

exp is not semialgebraic, so in the category of Nash groups (R,+) and (R, ·)

are different objects. The classification of Madden and Stanton produces a

classification of one-dimensional, connected, Nash groups up to isomorphism

in this category.

We can limit our attention to to a classification of the maps sending (R,+)

onto Nash groups.

In [20] the approach is somewhat local: it is proved that the translates of a

given single Nash chart on any neighbourhood of the identity of G satisfying

certain algebraicity conditions produce a locally Nash atlas on the group.

More precisely: suppose that there is a map ϕ : U → S, where U ⊂ G is

a neighbourhood of the identity and S ⊂ R is semialgebraic such that ϕ is

analytic, the image by ϕ of the graph of the multiplication of elements of U is
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semialgebraic, and such that for each g ∈ G there is a neighbourhood Ug ⊆ U

such that conjugation by g restricted to Ug: (h, g−1hg) has semialgebraic image

by ψ. Then ψ and its translates determine a locally Nash group atlas on G.

Observe that if G is abelian or connected, the conjugation hypothesis can be

dropped.

In our case, with (R,+), we observe that if a function ϕ is as above, after

complexification it satisfies the algebraic addition theorem: given a domain

D ⊂ C there is a nonzero polynomial G(X, Y, Z) with complex coefficients

(in fact in this case they will be real), such that G(ϕ(x), ϕ(y), ϕ(x + y)) = 0

whenever x, y, x+ y ∈ D.

This is the hypothesis for the Weierstrass theorem: we are given ϕ(u) holomor-

phic in a connected open set containing the origin and satisfying the algebraic

addition theorem. Let Φ be the complete analytic function determined by

ϕ(u). Then one of the following holds:

(1) Φ is algebraic over C(z).

(2) Φ is algebraic over C(exp(αz)), for some α ∈ C.

(3) Φ is algebraic over C(℘(z)) for some Weierstrass ℘-function.

The Weierstrass theorem is applied to (R,+). It is possible since, given a

locally Nash structure on (R,+), + is a locally Nash map. Moreover, if we

have a Nash chart ϕ : U → R, where U is a neighbourhood of the identity, we

can find an open V which still contains the identity, such that ϕ(V ) ⊂ R is

semialgebraic, and V +V ⊂ U . Then also the graph of (ϕ(x), ϕ(y)) 7→ ϕ(x+y),

contained in ϕ(U)×ϕ(U)×ϕ(U), is semialgebraic. So the required conditions

are satisfied.

After some consideration on these maps, and the fact that we are working

on the reals and not on the complex numbers we find that the 1-dimensional

locally Nash groups are: (R,+), (R, ·), ([0, 1),+ mod 1), ([1, 2),× mod 2),

(SO2(R), ∗), (E℘,⊕), where E℘ is the elliptic curve satisfied by the Weierstrass

℘ function. Observe that, apart from the first two, these groups are Nash.
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Actually Madden and Stanton classify such groups further, defining an equiv-

alence relation between two Nash groups obtained from (R,+), with charts

ϕ, ψ if the graph (ϕ, ψ) is semialgbraic. However, for our purposes this is not

needed.

It is worth observing that then (R,+) is the universal cover of all groups from

List B, via the identity map, the exponential map, the trigonometric functions

Sin and Cos, or the Weierstrass ℘ functions.

In this thesis it is conjectured that a similar result is true for definable, de-

finably connected, definably compact 1-dimensional groups over a real closed

field, namely:

Conjecture 1.12. [List A] A definable, definably connected, definably com-

pact, 1-dimensional group over a real closed field M is, up to definable isomor-

phism of definable groups, one of the following:

(1) ([−1, 1),+ mod 2)

(2)
([

1
b
, b
)
, · mod b2

)
(3) (SO2(M), ∗) and truncations

(4) (E(M)0,⊕) and truncations.

In this thesis we proceed with an analysis of the groups in List A. If Conjecture

1.12 is true, then ours will be a complete analysis of 1-dimensional, definably

compact, definably connected, definable groups in a saturated real closed field.

Conjecture 1.12 is interesting in its own right, and could be a topic for future

research.

One possible approach is to generalize the proof of Madden and Stanton to the

real closed fields, but this involves obtaining results such as the Weierstrass

theorem in a nonstandard context.

A different approach to prove Conjecture 1.12 is to prove a “uniformly definable

version” of Theorem 1.11, i.e. to prove that if the 1-dimensional connected
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Nash groups vary in a definable family then the definable homomorphism with

groups from List B can also be found within a definable family.

The equivalence of this latter version of Theorem 1.11 and Conjecture 1.12

follows easily from a compactness argument. It is therefore requires only a

strengthening of the proof in the real case in place of the generalization of

analytic results used in the proof of Theorem 1.11 to nonstandard fields.

4. Valued fields

Fundamental to this thesis are valued fields. These will be used both as a tool

in calculations and to determine structural properties of groups of the form

G/G00. We shall therefore recall the definition of a real closed valued field and

state its main properties.

Given a field K and an ordered abelian group Γ, a valuation is a surjective

map w : K → Γ ∪ {∞} satisfying the following axioms: for all x, y ∈ K

(1) w(x) =∞ ⇐⇒ x = 0

(2) w(xy) = w(x) + w(y)

(3) w(x− y) ≥ min{w(x), w(y)}

We easily obtain the following consequences:

• w(1) = 0

• w(x) = w(−x)

• w(x−1) = −w(x)

• if w(x) 6= w(y) then w(x+ y) = min{w(x), w(y)}

• If K is an ordered field with convex valuation and sign(x) = sign(y),

then w(x+ y) = min{w(x), w(y)}

We call the structure Kw = (K,LK ,Γ, LΓ, w,∞), where LK is the signature

in the language of ordered rings, LΓ the signature of ordered abelian groups,

a valued field with signature Lw.

We call Γ the value group.
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We define the valuation ring of v: Rw = {x ∈ K|w(a) ≥ 0}; this is a local ring,

and its unique maximal ideal is Iw : {x ∈ K|w(a) > 0}, called the valuation

ideal. Observe that with this definition we can define the value group via

Γ = K/(Rw \ Iw); we denote it by Γw to emphasize the valuation.

The residue field is kw = Rw/Iw.

From now on we suppose the field K is real closed, and the valuation ring Rw

is convex; Kw is then called a real closed valued field.

Remark: in a real closed valued field Kw, Γw is divisible. To see this let γ ∈ Γw,

then there exists x ∈ K positive, with w(x) = γ, but by real closedness there

exists y such that yn = x, so nw(y) = x.

Cherlin and Dickmann (see [5]) proved quantifier elimination for real closed

valued fields in the language above:

Theorem 1.13. The theory of a real closed valued field Kw in the language

LKw is complete and admits quantifier elimination.

We recall the notation for the open balls B>γ(a) = {x ∈ K|w(x− a) > γ} and

closed balls B≥γ(a) = {x ∈ K|w(x − a) ≥ γ}, where γ ∈ Γw and a ∈ K. A

simple remark is:

Remark 1.14. There is a definable field isomorphism B≥γ(0)/B>γ(0) ∼= kw

for any γ ∈ Γw.

Clearly the map f : B≥γ(0) → B≥0Γw
(0), sending x 7→ x

u
, where u ∈ K

such that w(u) = γ, is well defined in the quotients, thus B≥γ(0)/B>γ(0) →

B≥0Γw
(0)/B>0Γw

(0) = kw is a field isomorphism.

4.1. Standard valuation and standard part map. The most com-

monly used valuation on a real closed valued field K extending the reals

is the standard valuation. The standard valuation ring is Fin: the convex

hull of Q in K; the maximal ideal is the infinitesimal neighbourhood of 0:
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µ =
⋂
i∈ω
{
x ∈ K| − 1

n
< x < 1

n

}
; we denote the standard valuation by v,

and the standard real closed valued field by Kv. The value group is then

Γv = K/(Fin \ µ) and the residue field is kv = Fin/µ.

The standard part map st : Fin → R is then defined by st(x) = y where y is

the only element of R such that v(x− y) > 0.

We can identify R with kv and the residue map Fin → kv with the standard

part map.

Clearly µ = ker(st) and st(Fin) = R.



CHAPTER 2

Fundamental notions

In this chapter we shall recall some general facts about the logic topology on

a bounded hyperdefinable set, as developed in [28], and generalize them to a

wider class of sets, namely the bounded ind-hyperdefinable sets. We give some

details of proofs of known results when the old proofs are sketchy. In Section 2

we define the Shelah expansion of a structure and the version of o-minimality

localized to definable sets and related notions. In Section 3 we introduce the

localized version of 1-basedness for o-minimal stably embedded sets and prove

some results for value groups and residue fields of a real closed valued field.

In this Chapter we restrict our attention to countable theories, and we shall

always denote by M a saturated model.

1. The Logic Topology

The results below for the hyperdefinable sets are from [28]. We generalize them

to ind-hyperdefinable sets, inspired by Chapter 6 of [11]. The generalization

to ind-hyperdefinable sets is used mainly in Chapter 5 but, for reasons of

readability, it is presented here.

Given a theory T and a saturated model M , a type-definable set (over A,

|A| < |M |) is a set that is the realization in M of a collection of < |M |

formulas (with parameters from A).

Analogously, given a saturated model M and a type definable set X ⊆ Mn,

we say that an equivalence relation E ⊂ X × X is type-definable if its graph

is a type-definable subset of X × X. In this case the quotient X/E is called

a hyperdefinable set in M . If, moreover, E is a bounded equivalence relation,

i.e., |X/E| < |M |, we say that X/E is a bounded hyperdefinable set.

23
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A basic fact is that a hyperdefinable set X/E in a saturated model M is

bounded if and only if there is a submodel M0 ≺M such that both X and E

are defined (type-defined) over M0 and such that whenever M0 ≺M1 for some

model M1, we have
∣∣(X/E)M0

∣∣ =
∣∣(X/E)M1

∣∣.

Therefore for a bounded equivalence relation we have that, given M ′ �M , X ′

the realization in M ′ of the formula defining X, and E ′ the equivalence relation

defined by the same type as E, the canonical injection i : X/E → X ′/E ′ given

by i(a/E) = a/E ′ is a bijection.

We denote by π : X → X/E the canonical projection.

Definition 2.1. Let X/E be a bounded hyperdefinable set of a structure M .

We call a subset Y of X/E closed if π−1(Y ) is type-definable in M .

These sets induce a topology on X/E called the logic topology.

We recall now the main lemma concerning the logic topology, with the proof,

since we refer to it when proving Theorem 2.6. The first part is due to Pillay

in [28], the moreover part is obtained as an easy consequence of results in [3].

Lemma 2.2. The bounded hyperdefinable set X/E equipped with the logic topol-

ogy is a compact Hausdorff space. If, moreover, E is defined by a countable

number of formulae, X/E is separable.

Proof. Compactness: We have to prove that for every family F of closed

sets with the finite intersection property (FIP) we have
⋂
F 6= ∅.

Since the number of classes is bounded we can give an enumeration zα, α < λ of

the elements of F ; let Zα = π−1(zα), and let Φα be the type defining Zα. The

FIP says that
⋃
α<γ Φα is finitely satisfiable, but by saturation it is satisfiable.

Let x ∈
⋂
Zα; thus we easily see that π(x) is the witness we are looking for.

In fact, suppose that there exists y ∈ X such that E(x, y) but y /∈
⋂
Zα, so,
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for some j, y /∈ Zj; this contradicts E(x, y) by the way in which the Zα are

defined.

Hausdorff: Consider y, z ∈ X/E, y 6= z. We want to find two open disjoint

neighborhoods, i.e., two sets such that the inverse projections of their comple-

ments are type-definable in X.

Let y, z be representatives of y, z respectively. Since y 6= z, we have ¬E(y, z),

thus, by compactness, there is a formula ϕ such that ϕ(y) and ¬ϕ(z), and also

y ⊂ ϕ(x) and z ⊂ ¬ϕ(x). Consider then Y = ϕ(x) and Z = ¬ϕ(x). These sets

are definable in X, disjoint, they partition X, and π−1(y) ⊆ Y , π−1(z) ⊆ Z.

The projection of this set does not respect the equivalence relation, so there

could be a class with elements both in Y and in Z (and in fact there is such a

class by compactness of X/E), so we have to refine these sets somewhat. Con-

sider now Z = {x ∈ X|∃t ∈ Z,E(x, t)}: the closure of Z via E. Analogously,

consider Y .

Now π(Y ) and π(Z) are closed in X/E, since Y and Z are type-definable by

compactness, with y ∈ π(Y ) and z ∈ π(Z). Those two sets are overlapping

and cover X/E, so on taking the complements we get two open sets π(Y )c and

π(Z)c, with y ∈ π(Z)c and z ∈ π(Y )c.

Separability: We shall prove that X/E is second countable (i.e., has a count-

able basis), this will imply that it is separable (i.e., it contains a countable

dense subset).

Remark 1.6 from [3] states: If M0 |= T , X definable over M0, E type-definable

over M0, then the space X/E has a basis of cardinality of at most |M0|+ |L|,

where L is the language of M .

Since E is defined by countably many formulae, only countably many param-

eters (ai) appear in its definition. We then consider X ⊆ M definable in M

with (finitely many) parameters (bj). Let M0 be the model of T which contains

(ai), (bj); by the Lowenheim-Skolem theorem it can be chosen to be of count-

able cardinality. We apply now Remark 1.6 of [3] to get a countable basis.

Hence X/E is second countable, and therefore separable. �



1. THE LOGIC TOPOLOGY 26

We now present some results obtained by considering an ind-definable set X̃.

These are inspired by Remark 7.6 of [11], where it is asked which one is the

right definition for an ind-hyperdefinable set. But firstly we must clarify what

we mean by a “type-definable equivalence relation” in this context.

Definition 2.3. Let M � T , let X0 ⊂ X1 ⊂ X2 ⊂ . . . be a chain of definable

subsets of M and let X̃ =
⋃
i∈ωXi. If a set X̃ can be defined in this way, we call

it an ind-definable set. We say that E ⊆ X̃× X̃ is a type-definable equivalence

relation on X̃ if it is an equivalence relation, for each n ∈ ω, E � (Xn×Xn) is

type-definable, and for each i ∈ ω there exists j ∈ ω such that all the classes

whose intersection with Xi is nonempty are contained in Xj. In this case X̃/E

is called an ind-hyperdefinable set. Analogous to the bounded hyperdefinable

sets, we call X̃/E a bounded ind-hyperdefinable set if E � (Xn × Xn) has a

bounded number of classes for each n.

Remark 2.4. Definition 2.3 is the one required for Remark 7.6 in [11].

Again we denote by π : X̃ → X̃/E the canonical projection.

The logic topology on a bounded ind-hyperdefinable set X̃/E is defined by:

Y ⊆ X̃/E is closed if π−1(Y ) ∪Xn is type-definable for all n ∈ ω.

It is clearly a topology: in fact, for each i ∈ ω, π−1(∅) � Xi is defined by

x 6= x; and π−1(X̃/E) � Xi is defined by the formula defining Xi. Given two

closed sets Y, Z, their preimages are type-defined in each Xi by (ϕiα)α<λ and

(ψiβ)β<µ, so π−1(Z∪Y ) � Xi is defined by
∧

(ϕiα∪ψiλ). Given a family of closed

sets F , each C ∈ F has preimage restricted to i defined by a type, and by

boundedness we have < |M | closed sets in F , so π−1(F) � Xi is defined by a

type, and hence F is closed.

Observe moreover that X̃/E is the topological union of the Xn/E � (Xn×Xn).

In [11] it is observed the following Fact:

Fact 2.5. A subset of X̃/E is compact if and only if its preimage is type-

definable and contained in Xi for some i.
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Theorem 2.6. A bounded ind-hyperdefinable set X̃/E with the logic topology

is a locally compact Hausdorff space.

Proof. Take a point c ∈ X̃/E, the aim is to find a compact neighbourhood

of it, i.e., by Fact 2.5 a neighbourhood of c whose preimage is type-definable

and contained in Xi for some i.

First, note that π−1(c) is contained in Xi for some i.

Then consider the set O of the classes completely contained in Xi, i.e., the set

such that:

π−1(O) =
{
x ∈ X̃|¬∃t(¬Xi(t)) ∧ E(x, t)

}
.

O is an open set in the logic topology being the complement of a closed set

(or we can easily see that its preimage is ind-definable using saturation).

Analogously, we can find a closed set C of all classes meeting Xi, i.e., a set

such that:

π−1(C) = {x ∈ X̃|(∃tXi(t) ∧ E(x, t))}.

C is closed by saturation of the structure. Moreover, C is contained in Xj

for some j ≥ i, by the definition of an ind-hyperdefinable set, and is therefore

compact.

This C contains O, and so is the required compact neighbourhood of c.

The proof that X̃/E is Hausdorff is entirely analogous to the proof in Theorem

2.2.

�

2. o-minimality of definable sets

We want to view the hyperdefinable sets as o-minimal sets, therefore we need

to firstly define a suitable expansion of a model in which we can interpret them,

and then define o-minimality of a set. We introduce here the Shelah expansion
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by all externally definable sets, proving some results in full generality. These

results will then hold also in the reducts used in computations.

Here we recall a theorem due to Baisalov and Poizat, which was then general-

ized by Shelah to a wider class of theories.

Let N be any structure. A subset X ⊆ Nn is externally definable if, there

is N ′ � N and parameters c ∈ N ′ and a formula ϕ(x, y) ∈ LN such that

ϕ(x, c)N
′ ∩N defines X.

Equivalently, X is externally definable in N if there is a structure N ′ � Th(N),

N ′ � N , and a definable set X ′ in N ′ such that X = X ′ ∩N .

We construct from N a new theory Th(NSh) in the following way: for each

externally definable set, defined by an LN ′-formula ϕ say, we add a relation

symbol Rϕ to the language. We call the new language LSh; the model will be

denoted by NSh and this gives rise to a new theory Th(NSh). This new theory

is called Shelah’s expansion of the structure N .

Baisalov and Poizat proved in [1] the following theorem:

Theorem 2.7. If N is an o-minimal structure, Th(NSh) admits quantifier

elimination.

We recall that a structure N in a language with a total linear order, in which

every definable set in one variable is a finite union of convex sets is a weakly

o-minimal structure. If every model of Th(N) is weakly o-minimal we say that

N has weakly o-minimal theory (it is uniformly weakly o-minimal).

We remind the reader that weakly o-minimal theories have NIP.

Theorem 2.7 has been generalized by Baizhanov in [2] to the class of weakly

o-minimal theories, and it has been generalised further by Shelah in [32] to

the NIP theories:

Theorem 2.8. If N is a model of a theory with NIP, then Th(NSh) admits

quantifier elimination and has NIP.



2. O-MINIMALITY OF DEFINABLE SETS 29

From [16] we get the important fact:

Fact 2.9. Any o-minimal model N is uniformly o-minimal.

This is equivalent to saying that any superstructure N ′ � N is o-minimal.

Note that this fact does not hold in general for weakly o-minimal theories.

An immediate consequence of Theorem (2.8) 2.7 is the following:

Remark 2.10. If N is (uniformly weakly) o-minimal then NSh is uniformly

weakly o-minimal.

We now define o-minimality of a set.

Definition 2.11. LetN be any structure with language LN , andX a definable

linearly ordered set in N .

• X is o-minimal, if given any formula ϕ(x) ∈ LN , it defines on X a

finite union of intervals and points.

• X is uniformly o-minimal if, given any formula ϕ(x, y) ∈ LN , we can

find a number nϕ ∈ ω such that for each choice of parameters b ∈ N ,

ϕ(x, b) defines on X no more than nϕ intervals and points.

• X is weakly o-minimal if, given any formula ϕ(x) ∈ LN , it defines on

X a finite union of convex sets.

• X is uniformly weakly o-minimal if, given any formula ϕ(x, y) ∈ LN ,

we can find a number nϕ ∈ ω such that for each choice of parameters

b ∈ N , ϕ(x, b) defines on X no more than nϕ convex sets.

We now consider again the Shelah expansion and prove directly a special case

of Theorem 8.6 [12]:

Theorem 2.12. Given an o-minimal theory T , a saturated model M , a defin-

able, definably densely linearly ordered, 1-dimensional, o-minimal set X ⊂Mn

and a type-definable, externally definable, convex (with each class convex with

respect to the order of X) equivalence relation E with a bounded number of
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classes, then the hyperdefinable set X/E, definable in (MSh)eq, is uniformly

o-minimal in (MSh)eq.

(Note: the convexity assumption is not necessary, but it simplifies the definition

of the induced order on X/E.)

Proof. Since E is convex, the order on X/E can be trivially defined by

[x]∼ ≤′ [y]∼ if x ≤ y. We shall drop the ′ in the future. (If it is not convex, it

is nevertheless possible to define the order using o-minimality of the structure;

see Proposition 8.6 of [12].)

We work in MSh, and we consider a formula ϕ(x, y, c) in L with c ∈M ′ �M .

Since MSh is uniformly weakly o-minimal, for each choice of b ∈M , the set Y

defined by ϕ(x, b, c), is a union of ≤ αϕ convex sets. Without loss of generality

we can suppose Y ⊂ X, in fact Y will determine ≤ αϕ cuts also in X. Let

ψ(x, b, c) be the formula in (MSh)eq that defines the quotient Y/E ⊆ X/E; it

will define ≤ αϕ convex subsets of X/E. Since b was arbitrarily chosen, we get

that X/E is uniformly weakly o-minimal.

To prove now that X/E is uniformly o-minimal it is sufficient to prove that it

is complete (all the convex sets will then have a supremum and an infimum,

and therefore they will be intervals).

Now we forget about Shelah’s expansion and we regard E as a bounded type-

definable equivalence relation in a model M . Consider a Dedekind cut (A,B)

of X/E. For each a ∈ A we can define the set Aa = {x ∈ X/E|a ≤ x}; the

preimage of this set is type-definable in M and therefore it is a closed set.

Analogously for each b ∈ B we define Bb = {x ∈ X/E|b ≥ x}, which has

type-definable preimage, and is therefore closed. Consider now the family of

closed sets {Bb, Aa}a,b; it has the finite intersection property by density of the

order, so, since X/E with the logic topology is compact by Lemma 2.2, there

is an element in the intersection. Thus X/E is complete, and hence weakly

o-minimal.

�
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Observation 2.13. Note that the theorem above holds also if T is uniformly

weakly o-minimal.

Observation 2.14. The theorem above holds also when X/E is considered

in a reduct of MSh over which it is definable, in particular over (M,P, . . . )eq,

the structure obtained by adding a predicate P for an externally definable set

to M .

Observation 2.15. In the cases we study it is easy to prove directly that each

group G considered is o-minimal. But by the results in Razenj [30] if we work

with a definably connected group (as we do in the following chapters of the

thesis), then our group G, seen as a definable manifold and maybe after taking

off a point, can be equipped with definable orientation ≤ that is piecewise

o-minimal, and the group itself “resembles” either the real line or the circle

group S1. By inspecting the overlapping charts we obtain that G is o-minimal

with respect to ≤.

We can easily generalize Theorem 2.12 to ind-hyperdefinable sets. Firstly

notice that the definitions of induced order and those related to o-minimality

can be extended to ind-hyperdefinable sets in the obvious way (in particular we

say that an ind-definable set X̃ is 1-dimensional if each Xi is 1-dimensional).

Theorem 2.16. Given an o-minimal theory T , a saturated model M , an

ind-definable, externally definable, 1-dimensional, o-minimal convex set X̃ =⋃
iXi, densely linearly ordered, such that the restriction of the ordering onto

Xi is definable; and a type-definable, externally definable, convex equivalence

relation E on X̃ with a bounded number of classes, then the ind-hyperdefinable

set X̃/E, definable in (MSh)eq, is uniformly o-minimal in (MSh)eq.

Proof. The proof of uniform weak o-minimality of X̃/E goes through

exactly as in the previous theorem.

We now need to prove completeness: consider a Dedekind cut (A,B) of X̃/E.

Denote X̃/E � Xi by Xi/E. Then there exists Xi ⊂ X̃ such that A∩Xi/E 6= ∅
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and B ∩Xi/E 6= ∅. As in the previous theorem we define Aa = {x ∈ Xi/E :

a ≤ x}, Bb = {x ∈ Xi/E : b ≥ x}, for a ∈ A and b ∈ B. Again the family of

closed sets {Aa, Bb}a,b has the finite intersection property. Theorem 2.6 states

that X̃/E is locally compact, so Xi/E is compact, by Fact 2.5, and we can

find an element in the intersection of {Aa, Bb}a,b. This gives us completeness

of X̃/E and completes the proof. �

Observation 2.17. Also this theorem holds in reducts of MSh over which

X̃/E is definable.

We are now able to consider o-minimality issues for hyperdefinable sets and

ind-hyperdefinable sets by working in a suitably enriched structure.

3. One-basedness

In the last few years it has been noticed that properties typical of stable the-

ories can be observed also in unstable theories. In this context Peterzil and

Loveys introduced a notion called CF-linearity in [22]. Such theories present

a “trichotomy-like” behaviour, as studied by Peterzil and Starchenko in [23];

in [29] Pillay introduced an equivalent of CF-linearity, called 1-basedness for

o-minimal theories, since it would provide an o-minimal version of 1-basedness

for stable theories. We shall recall that definition and localize it to stably em-

bedded definable sets, in order to obtain a structural complexity classification

of the groups we are studying.

Let M be o-minimal. Given f(x, y) a ∅-definable partial function, and a ∈M ,

we define an equivalence relation ∼a on tuples of the same length as y by

c ∼a c′ if neither f(−, c) nor f(−, c′) is defined in an open neighbourhood of

a, or if there is an open neighbourhood U of a such that f(−, c) = f(−, c′) in

U . We call the equivalence class of c the germ of f(−, c) at a, and denote it

by c/ ∼a.

Definition 2.18. Given an o-minimal theory T , we say that T is 1-based if

in any saturated model M � T , for any a ∈ M , for all definable functions
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f(x, y) : M ×Mn → M , and for any c ∈ Mn such that a /∈ dcl(c), we have

c/∼a ∈ dcl(a, f(a, c)) as an imaginary element, i.e. in the appropriate sort of

M eq.

Definition 2.19. Given a theory T and ϕ(x) ∈ Leq, ϕ is stably embedded in T

if for any saturated model N � T and X = ϕ(N), any subset of Xn definable

(with parameters) in N is definable with parameters from X.

If X = ϕ(N) for some saturated model N , we say that X is a stably embedded

set if ϕ(x) is.

We localize 1-basedness to stably embedded sets. Let X be stably embedded

in N , then we define the structure X = (X,Ri), where Ri is a relation symbol

for any ∅-definable (in N) subset of Xn. Observe that this is sufficient to

capture in X all the structure induced on X by N . To see this observe that

if we consider a superstructure N ′ � N , and denote by X ′ the subset of N

defined by the formula defining X and by X ′ the structure obtained by adding

a relational symbol to X ′ for any ∅-definable (in N ′) subset of (X ′)n, then

X ′ � X .

Definition 2.20. We say that a uniformly o-minimal stably embedded set

X in a saturated structure N is 1-based in T if the theory TX = Th(X ) is

1-based.

Let ϕ(x) be an Leq-formula, M any model of T , and suppose X = ϕ(M) is

a uniformly o-minimal set in M . Then X is stably embedded by Theorem 2

of [8].

An easy example of non-1-based sets are intervals: let M be an o-minimal

expansion of a saturated real closed field. Then:

Remark 2.21. Any interval I ⊆M , is in definable bijection with [−1, 1).

We obtain then easily a lemma:

Lemma 2.22. An interval I in M is non-1-based (as a definable set).
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Proof. By Remark 2.21 I is stably embedded in M , and so it makes sense

to talk about its 1-basedness.

Let f be the definable bijection of I with the interval [0, 1), and let a < b < c

be independent elements in [0, 1) such that a · b + c = d is still an element of

[0, 1), and thus dim(a, b, c, d) = 3 (we mean here the dimension determined by

the definable closure dcl).

Observe that in this case the imaginary element (b, c)/ ∼a is simply the tuple

(b, c).

Define partial maps on I as follows: given x, y ∈ I, let x+̃y = f−1 (f(x) + f(y))

and x̃·y = f−1 (f(x) · f(y)). So the partial function gbc(x) = x̃·f−1(b)+̃f−1(c)

witnesses non-1-basedness of I, since if I were 1-based we would have (b, c) ∈

dcl(a, d), and so dim(a, b, c, d) = 2, but this is clearly not possible since

dim(a, b, c, d) = 3. This proves then that I has to be non-1-based. �

3.1. Internality and useful lemmas. We define the notion of internal-

ity, introduced in [27].

Definition 2.23. Given a definable set X in a saturated structure N we say

that a definable set Y is internal to X if Y ⊆ dcl(X ∪ A), where A is a finite

set of parameters.

The obvious example of a set Y internal to X is when Y is a definable subset

of X.

In [7] (Chapter 7.5, pages 77-78) internality is used in the context of stability

in algebraically closed valued fields, mainly to correlate stability of definable

sets with their internality to the residue field sort.

In this thesis we shall consider bijections between groups G/G00 and the sorts

Γw (value group) or kw (residue field) of a real closed valued field, in order to

transfer 1-basedness (or non-1-basedness, respectively) from Γw or kw to our

groups G/G00 in a suitable ambient structure.

A fundamental lemma for our results is:
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Lemma 2.24. Given a saturated structure N expanding a field, uniformly o-

minimal 1-dimensional definable sets X, Y , and a definable bijection f : X →

Y , then X is (non-) 1-based if and only if Y is (non-) 1-based.

Proof. By Theorem A of Ramakhrishnan in [14], whose solution in the

1-dimensional case was already known to Steinhorn, we have that there is

a definable, piecewise order preserving, embedding g1 of X into N , and a

definable, piecewise order preserving, embedding g2 of Y into N . Since any two

intervals of N are in definable bijection, and such a bijection is piecewise either

order preserving or order reversing, we have that f : X → Y is piecewise order

preserving or order reversing. Let us then consider a function h witnessing non-

1-basedness in an interval I of X. Without loss of generality we can suppose

f to be order preserving in I (if f is order reversing the case is analogous),

then clearly f · h witnesses non-1-basedness in Y . This proves the lemma. �

3.2. One-basedness in real closed valued fields. A classical example

of a structure that has both a 1-based and a non-1-based uniformly o-minimal

set is a real closed valued field. We prove here that given a saturated real

closed valued field Mw, with language Lw, the value group Γw is 1-based and

the residue field kw is non-1-based. In the rest of the thesis these two sets will

be the “basic” sets that we shall use to check (non-) 1-basedness for groups of

the form G/G00, using Lemma 2.22 and Lemma 2.24.

The following is a theorem of Mellor (Lemma 3.13 of [21]). We recall a

strengthening of stable embeddedness, and the proof of the Lemma.

Definition 2.25. Given a structure N in language L, and a definable set X;

let L′ a sublanguage of L and N ′ be an L′-structure whose base set is X, then

N ′ is fully embedded if

• X is a stably embedded set in N , and

• for every ∅-definable set C ⊆ N in the language L, the set C ∩ N ′

is ∅-definable in the language L′ (if this condition is satisfied we say

that N ′ is canonically embedded in N).
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The meaning of this definition is that for a set X fully embedded as an L′-

structure, the structure induced on X by the ambient structure N as a stably

embedded set (i.e, X ) is precisely the L′-structure we considered.

Lemma 2.26. Given a real closed valued field Mw, its value group Γw, as a

divisible ordered abelian group (with constants), and its residue field kw, as a

real closed field, are fully embedded.

Proof. By Theorem 1.13, Mw admits quantifier elimination in the lan-

guage Lw, thus any definable set in the value group sort can be defined by a

boolean combination of formulae of the form

t
(
γ1, . . . , γn, v(p(a))

)
≥ t′

(
γ′1, . . . , γ

′
m, v(p′(a′))

)
,

where t, t′ are terms in the language of the value group sort, γi, γj ∈ Γ, and

p(a), p′(a′) are polynomials in variables a = (a1, . . . , ar), a
′ = (a′1, . . . , a

′
s) ∈M .

By using the properties of valuation, and factorizing as much as we can, v(p(a))

can be written as
∑

i αiv(h(ai)), similarly v(p′(a′)) becomes
∑

i α
′
iv(h(a′i)),

with αi, α
′
i ∈ Z and h a polynomial of degree 1 or 2; clearly v(h(ai)), v(h(a′i))

are elements of Γ and the sum is in Lw. Therefore any formula defining a set in

Γ is equivalent to a formula with parameters only from Γ in the language of a

divisible ordered abelian group, and therefore is fully embedded as a divisible

ordered abelian group.

The proof of full embeddedness of kw as a real closed field is similar. �

Corollary 2.27. The value group Γw of a real closed valued field Mw is 1-

based in Mw.

The residue field kw of a real closed valued field Mw is non-1-based in Mw.

Proof. Full embeddedness of Γw, proved in Lemma 2.26, implies that

TΓw = Th(Q,+, <, 0). Since it is well known that the theory of a divisible

ordered abelian group is 1-based, we obtain the corollary.
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We recall the proof of 1-basedness for the theory of divisible ordered abelian

groups. Let D be a saturated model of Th(Q,+, <, 0, ). By quantifier elim-

ination a definable function f(x, y) on D is piecewise of the form f(x, y) =∑
i qiyi + qx, there qi, q ∈ Q. Thus, given a tuple c = (ci), in a neighbourhood

Ua of a, f(x, c) = qx +
∑
qici. Suppose that f(x, c′)

∑
i qiy

′
i + qx = f(x, c) in

u, this happens if and only if
∑

i qiy
′
i =

∑
i qiyi; we call d =

∑
i qiyi. Thus the

germ is c/ ∼a= d and we can define it using a, f(a, c) by d = f(a, c)− a. This

proves that c/ ∼a∈ dcl(a, f(a, c)), and thus that Th(Q,+, <, 0, ) is 1-based.

For the proof that kw is non-1-based in Mw, we recall that by Lemma 2.26,

the theory of the residue field is the theory of real closed fields, therefore kw

is non-1-based in Mw, following the same proof as that of theorem 2.22.

�

4. Summary

In this section we recalled the logic topology and the main results concerning

it, gathering them from various sources. We then introduced the localized

notions of (uniformly) (weakly) o-minimality of a set, and defined 1-basedness

of a stably embedded set. All of this material has then been generalized to

ind-hyperdefinable sets. The latter will become fundamental in Chapter 5 of

the thesis. Moreover, we presented the fundamental examples of a 1-based and

a non-1-based set, and lemmas to transfer such properties between definable

sets of a structure via definable bijections.



CHAPTER 3

Easy cases

In this chapter we study one-basedness for G/G00, where G is one of the first

three cases of List A, i.e., G is either an additive truncation, a multiplicative

truncation, or it is SO2(M) or one of its truncations. The case when G is

determined by an elliptic curve is treated in the next chapter and requires

some notions from elliptic curve theory.

We firstly give a general outline of the procedure, then the single cases will be

dealt with in following subsections.

For the rest of this chapter we denote by M a saturated real closed field. A

group (G, ∗), which is 1-dimensional, definably connected, definably compact,

definable in M can be definably circularly ordered by Proposition 2 of [30]. By

fixing a point (for example the identity) we can suppose G is linearly ordered

and o-minimal with respect to this ordering.

Without harm o-minimality could be defined for a circular ordering, and the

results of this thesis can be obtaining just considering the groups of List A

as circularly ordered groups. This approach, though, is just a rather tedious

elaboration of the notions defined and is therefore not carried on in this thesis.

Pillay showed in Proposition 3.5 of [28] that the logic topology on G/G00 (as

a hyperdefinable set in M) coincides the standard topology of G/G00 as a Lie

group. Moreover this latter topology is exactly the o-minimal topology on

G/G00 (as a uniformly o-minimal set in M ′ = (M,G00, . . . )eq).

Again in Proposition 3.5 of [28], Pillay proved the following Lemma:

Lemma 3.1. Given a definably connected, definably compact, definable group

G in an o-minimal structure, then G00 is the neighbourhood of the identity

bounded by the torsion points

38
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In this sense it can be viewed as the set of “infinitesimals” of G. We can

consider the equivalence relation determined by G00: x ∼ y if and only if x ∗

y−1 ∈ G00. This is externally definable, being determined by the cuts of

G00; type-definable, using the torsion points; and convex with respect to the

ordering of G. Thus G/G00 is a bounded hyperdefinable set in M and it

satisfies the hypothesis of Theorem 2.12.

We then consider the structure M ′ = (M,G00, a, . . . )eq obtained by adding a

predicate for G00 and parameters a defining G, if needed. Then G/G00 is a

∅-definable linearly ordered set in M ′. By Theorem 2.12 (to be precise, by the

observation that the theorem holds in reducts of MSh), G/G00 is uniformly

o-minimal in M ′.

We can therefore extract the theory of G/G00; it makes sense to apply Defi-

nition 2.20 to the group G/G00 in M ′, and talk about G/G00 being 1-based

or non-1-based in M ′. In Chapter 5 we shall prove that in fact if G/G00 is

1-based it will be 1-based also in the expansion by all externally definable sets

MSh.

We shall prove directly 1-basedness or non-1-basedness for the simplest cases;

for the harder ones, we need to use Lemma 2.24.

1. Additive and multiplicative truncations

These cases are the fundamental examples to which we shall refer throughout

the thesis.

1.1. The additive truncation. Consider now the case in which G is a

truncation ([−1, 1),+ mod 2) of the additive group of M .

We firstly need to compute G00. We recall that the torsion points are of the

form Tn = {x|[n]x = 0} for some n ∈ N, where [n]x indicates the formal

product by a natural number defined by:

[n]x = x (+ mod 2) x (+ mod 2) . . . (+ mod 2) x, n times ;



1. ADDITIVE AND MULTIPLICATIVE TRUNCATIONS 40

or, using the usual product of M , we have Tn = {x|n · x ∈ Z} for some n ∈ N.

Since G00 is the subgroup of G bounded by the torsion points, it is type defined

by
⋂
n∈ω{x| − 1 < n · x < 1}; this clearly is the set of the infinitesimal ele-

ments around 0 (with the standard valuation), therefore G/G00 = [−1, 1)/µ =

[−1, 1)R. Clearly the operation (+ mod 2) is well defined in the quotient, so

(G/G00,+ mod 2) =
(
[−1, 1)R,+ mod 2

)
.

We add now a predicate for G00 to M , obtaining M ′ = (M,G00, . . . )eq. We

discuss 1-basedness of G/G00 in M ′. We shall do it in two ways: firstly by

witnessing non-1-basedness with a function, then by showing that G/G00 lives

in a non-1-based sort.

Let G ′ be of the form G′/(G′)00 where (G′)00 is the interpretation of the pred-

icate for G00 in a sufficiently saturated extension M ′′ of M ′.

Clearly we identify G ′ with G′/(G′)00, and therefore define in G ′ the operations

+, · as follows: given g, h ∈ G ′, let ĝ, ĥ be the identification of g, h in G′/(G′)00,

then let ĝ+̂ĥ be π−1(π(ĝ)+M ′′π(ĥ)) and ĝ·̂ĥ be π−1(π(ĝ)·M ′′π(ĥ)) for a suitable

projection on a coordinate of M ′′. Then let g+h and g ·h be the identification

in G ′ of ĝ+̂ĥ and ĝ·̂ĥ.

By saturation of G ′ we can find algebraically independent elements a, b, c ∈ G ′.

Let d = a · b + c; clearly dim(a, b, c, d) = 3 (where dim refers to the dcl-

dimension).

Let us now define a function fb,c(x) = x · b + c; the germ of this function

at a is exactly (b, c)/ ∼a= (b, c): in fact fb,c = fb′,c′ at a neighbourhood of

a if and only if (b, c) = (b′, c′). If G/G00 were 1-based we would have then

(b, c)/ ∼a= (b, c) ∈ acl (a, fb,c(a)) = acl(a, d), so dim(a, b, c, d) = 2, which

contradicts that which we have previously observed.

This proves non-1-basedness of G/G00.

We have therefore proved:
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Theorem 3.2. If G is a truncation of an additive group of M , then G/G00 is

non-1-based in M ′.

There is also an indirect way to prove a strengthening of Theorem 3.2. We

noticed that G00 = µ = Iv, therefore M ′ is interdefinable with the standard

real closed valued field M eq
v .

Lemma 3.3. Given an additive truncation G in M , the structures M ′ and M eq
v

are interdefinable.

Proof. In M ′, G00 = Iv, the standard valuation ideal; we can then define

Rv by {x ∈M |x−1 /∈ Iv}. The value group Γv is then as usual Γv = M/(Rv\Iv)

and the residue field kv = Rv/Iv.

On the other hand in M eq
v , Iv is definable and it is equal to G00.

Therefore M ′ and M eq
v are interdefinable. �

This means that G/G00 = [−1, 1)R is a ∅-definable subset of kv, therefore

G/G00 is non-1-based in M eq
v = M ′ by Lemma 2.22 or Corollary 2.27.

We obtain therefore an improvement of Theorem 3.2:

Theorem 3.4. If G is a truncation of an additive group of M , then G/G00 is

non-1-based in M ′, and it is a definable subset of kv in M eq
v .

Note: It will be common notation throughout the thesis to call M ′ the expan-

sion of M by a predicate for G00 and, if necessary, a finite number of constants.

Moreover we shall improperly denote M eq
w by Mw, where Mw is a saturated

real closed valued field, since the additional imaginaries of Mw play no role in

this project. When M ′ is interdefinable with a real closed valued field Mw we

shall use M ′ and Mw interchangeably.

Observation 3.5. If we consider any additive truncation

A = ([−a, a),+ mod 2a), then there is a definable isomorphism of A with

([−1, 1),+ mod 2); thus A/A00 is non-1-based, and internal to kv.
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1.2. The multiplicative truncations. The second case is when G is a

multiplicative truncation, i.e., G =
(
[b−1, b), · mod b2

)
, with b > 1.

Again the first step is to compute G00. Since G00 is the neighbourhood of

the identity bounded by the torsion points, G00 =
⋂
n∈ω{x|b−1/n < x < b1/n},

truncation of (M>0, ·).

The operation · mod b2 on G00 coincides with the multiplication on M and is

closed, so G00 is also a multiplicative subgroup of M .

The following valuation theoretical observation is fundamental (see [34] Defi-

nition 3.4 and Proposition 3.5):

Observation 3.6. Given a convex multiplicative subgroup S of M ,

• If 2 ∈ S, then S is the set of positive units of the convex valuation

ring Rw defined as {a||a| < g for some g ∈ S}

• If 2 /∈ S and S is closed under taking square roots (of positive ele-

ments), then S−1 is the underlying set of a (convex) additive subgroup

of M (note that also the converse holds: for every additive convex sub-

group S of M such that 1 /∈ S, 1 + S is the set of a multiplicative

group of M). Moreover, S − 1 is the maximal ideal Iw of a valuation

ring Rw.

We shall apply this observation to G00 in place of S and show how the be-

haviour of G/G00 depends entirely on whether the parameter b defining G is

finite or infinite.

1.2.1. Small multiplicative truncations. Let G = ([b−1, b), · mod b2), with b

a finite element (i.e., v(b) ≥ 0, where v, we recall, is the standard valuation).

Then 2 /∈ G00, so G00 − 1 is the maximal ideal Iw for some valuation w.

Analogously to the additive case, we can either prove non-1-basedness ofG/G00

in a direct way: we define the operation ⊕ : G × G → G: a ⊕ b = a + b − 1,

that is well defined in the quotient G/G00, and witness non-1-basedness with

the function f : (x · y)⊕ z.
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Or we can simply observe that, given x, y ∈ G, x/G00 = y/G00 in G00 if and

only if x− y ∈ Iw, and thus G/G00 embeds as a set in kw.

We omit the details of the proofs.

1.2.2. Big multiplicative truncations. In this case b is an infinite element

(i.e., v(b) < 0). Clearly 2 ∈ G00, so G00 is the set of positive units of a valuation

w, say.

It is easy to show that M ′ = (M,G00, b, . . . )eq is interdefinable with the real

closed valued field Mw, the proof is as in Lemma 3.3.

Moreover, since G/G00 = G/(Rw \ Iw) ⊂ M 6=0/(Rw \ Iw) = Γw, we have that

(G/G00, · mod b2) is a truncation of (Γ,+) in Mw.

We proved in Corollary 2.27, Chapter 2, that Γw is 1-based in Mw.

We can then consider Γw as a model of TΓw , andG/G00 will be a group definable

in this structure. By stable embeddedness of Γw in Mw, all definable sets of

G/G00 in Mw are definable with parameters from Γw. We can therefore use

1-basedness of TΓw to obtain 1-basedness of G/G00 in M ′ = Mw. Consider a

saturated model G ′ of TG/G00 ; there is a saturated model Γ′ of TΓw for which

G ′ is a truncation. If G ′ were non-1-based, then Γ′ would not be 1-based,

contradicting what we have just observed.

We have therefore proved:

Theorem 3.7. The group G/G00, where G = ([b−1, b) , · mod b2), is 1-based

in M ′ if and only if v(b) < 0 and if and only if it is a definable subset of Γw

in Mw. If v(b) ≥ 0, then G/G00 is non-1-based in M ′ and is a definable subset

of kw in Mw.

2. SO2(M) and truncations

The last family of groups we consider in this chapter are (SO2(M), ∗) and its

truncations. We can consider them as subsets of M2 by Remark 1.8.
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We denote the definable circular anticlockwise ordering on SO2(M) by ≺, the

inverse of a point P by −P , the formal product P ∗ P ∗ · · · ∗ P , n times, by

[n]P , and the projections of P onto the x- and y-axis by xP and yP respectively.

We can suppose the ordering to be linear by fixing O = (1, 0), the identity of

SO2(M) and supposing (−1, 0) to be the smallest element. Observe that this

ordering is not translation invariant.

A truncation of SO2(M) is a group
(
[−S, S), ∗ mod [2]S

)
, where [−S, S) is

an interval with respect to the ordering ≺. Let then G = (SO2(M), ∗), or

G =
(
[−S, S), ∗ mod [2]S

)
.

The case when G = SO2(M) is straightforward, clearly G00 = {P ∈ G|xP >

0∧v(yP ) > 0}, so we can define the standard valuation in M ′ = (M,G00, . . . )eq,

and G/G00 can be identified with SO2(kv) = SO2(R). Thus, in M ′ = Mv,

G/G00 is a definable subset in the standard residue field and is therefore non-

1-based.

If G is a truncation, it is sufficient to consider G when it is a truncation

with xS ∈
[

1
2
, 1
)
; in fact if such truncation is non-1-based then any other

truncation G′ with G00 = G′00 is non-1-based. Given a truncation G =(
[−S, S), ∗ mod [2]S

)
of SO2(M), either xS ∈

[
3
4
, 1
)

or G00 = {P ∈ G|xP >

0∧ v(yP ) > 0}, in fact, in the second case, by inspecting the torsion points we

obtain that G00 coincide with SO2(M)00 = {P ∈ G|xP > 0 ∧ v(yP ) > 0}.

We need now to compute G00. The following lemma gives us a definition of

G00 in terms of the standard valuation:

Lemma 3.8. A group G =
(
[−S, S), ∗ mod [2]S

)
, xS ∈

[
3
4
, 1
)

has

G00 = {P ∈ G|v(yP ) > v(yS)} .

Proof. The lemma follows immediately from the following claim: and the

fact that G00 is bounded by its torsion points:

CLAIM: either v(y[2n]P ) = v(yP ) for any n ∈ ω, or v(yP ) = 0.
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This follows from the fact that if P is a torsion point, the points [2n]P , for

n ∈ ω, are a subset of the torsion points that are cofinal in G\G00. Thus if the

claim is true, the sequence y[2n]P , n ∈ ω, is cofinal in M \ {y : v(y) > v(yS)},

and so it defines G00 as {P ∈ G|v(yP ) > v(yS)}.

We now prove the claim by induction. We fix P such that v(yP ) > 0; ob-

serve that x[2]P = x2
P − y2

P and y[2]P = 2xPyP . If v(yP ) > 0, then v(xP ) =

0, so v(y[2]P ) = v(2xPyP ) = v(yP ). Suppose now v(y[2n]P ) = v(yP ), then

v(y[2n+1]P ) = v(2x[2n]Py[2n]P ) = v(y[2n]P ) = v(yP ).

This proves the claim and therefore that G00 = {P ∈ G|v(yP ) > v(yS)}. �

We work now in M ′ = (M,G00, xs, ys, . . . )
eq.

To prove non-1-basedness we use Lemma 2.24: we construct a definable (in

M ′) bijection of G/G00 with a non-1-based group, namely the quotient of an

additive truncation A by its own A00.

Lemma 3.9. Given G = ([−S, S), ∗ mod [2]S), xS ∈
[

3
4
, 1
)
, the group G/G00 is

in definable bijection in M ′ with A/A00, where A =
([
− yS

xS
, yS

xS

)
,+ mod 2 yS

xS

)
is an additive truncation.

Proof. We define the function l : G → M which sends a point P ∈ G

to the second coordinate of the intersection of the line through P and the

origin with the line x = 1. Namely l(P ) = yP

xP
. We then define A =(

[−l(S), l(S)),+ mod 2 l(S)
)

. Observe that v(l(S)) = v(yS), and therefore

A00 =
{
x|v(x) > v(l(S))

}
= l(G00) by Lemma 3.8. It is then sufficient to

prove that l : G/G00 → A/A00 is well defined and injective passing to the

quotient; by construction l will then be a bijection. So it suffices to show that,

given P̃ , Q̃ ∈ G \ G00, and P,Q ∈ G representatives of the respective equiva-

lence classes, v(l(P ∗ −Q)) > v(l(S)) if and only if v(l(P ) − l(Q)) > v(l(S)).

By assumption v(yP ) = v(yQ) = v(yS), and since we impose xS ∈
[

3
4
, 1
)
,

we have v(xPxQ − yPyQ) = 0, so v(l(P )) = v(l(Q)) = v(l(S)), and then

v
(
l(P ∗ −Q)

)
= v

(
xQyP−xP yQ

xP xQ−yP yQ

)
= v (xQyP − xPyQ) = v

(
xPxQ

(
yP

xP
− yQ

xQ

))
=

v
(
yP

xP
− yQ

xQ

)
= v(l(P )− l(Q)). This proves the statement. �
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Observe that the proof above shows that l is a group isomorphism l : G/G00 →

A/A00.

By Lemma 2.24, Theorem 3.4 and Observation 3.5 we get the theorem:

Theorem 3.10. Given G = SO2(M) or G a truncation of SO2(M), G/G00 is

non-1-based in M ′ and it is internal to kv in Mv.

3. Local completeness of nonstandard value groups

We analysed 1-basedness for G/G00 where G is one of the first three cases in

List A; i.e. G is either an additive truncation, a multiplicative truncation,

SO2(M) or one of its truncations.

We found that there is only one case in which G/G00 is 1-based: when G is a

“big” multiplicative truncation, a truncation of the multiplicative groups by an

infinite element, and that in this case we can see G/G00 as a definable subset

of the value group Γw of a nonstandard real closed valued field.

We know that G/G00 is a compact Lie group, and this suggests that the value

group of a nonstandard real closed valued field is somehow “small”, at least in

a neighbourhood of the identity:

Theorem 3.11. The value group Γw of a nonstandard real closed valued field

Mw, where M is saturated, determined by the G00 of a big multiplicative trun-

cation G, has a complete (in the usual metric) neighbourhood of the identity.

Proof. We have shown in the proof of 3.7 that G00 = Rw \ Iw.

Since G/G00 is a definable set in Γw, it is sufficient to prove that it has a metric

for which it is complete. This obviously implies the theorem.

Since G/G00 is o-minimal we can use the standard o-minimal distance as a

metric. With the o-minimal topology G/G00 is compact by Pillay’s conjecture

1.9; and it is a well known fact that a compact metric space is complete. �

In the next chapter the M -points of certain elliptic curves will provide more

examples of groups in which we obtain 1-basedness of the quotient.



CHAPTER 4

Elliptic Curves

The only groups remaining to be considered from List A are the semialgebraic

connected component of the group of M -points of an elliptic curve and its

truncations.

In Section 1 we introduce some theory of elliptic curves, adapting some known

notions, in particular the notion of minimal form for the Weierstrass equation

and the notion of algebraic geometric reduction, to the context of real closed

fields. This allows us to limit our attention to groups defined by equations in a

simple form, depending only on one parameter. We shall split such curves into

two categories: r-curves and c-curves. The former will be analysed in Section

2, and the latter in Section 3. In Section 4 we shall consider the truncations

of the groups mentioned above, completing a study of all the possible cases.

1. Elliptic curves

The book of Silverman [33] gives an introduction to the theory of elliptic

curves; here the notions needed for this project are recalled.

An elliptic curve over a field F is a nonsingular projective curve satisfying the

following equation:

ZY 2 + a1XY Z + a3Y Z
2 = X3 + a2X

2 + a4XZ
2 + a6Z

3;

the identity is O = [0 : 1 : 0].

When we consider the affine equation (i.e., we put Z = 1), we obtain:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ F . The identity becomes the point at infinity.

47
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If the characteristic of F is other than 2, we can rewrite E as

E : y2 = 4x3 + b2x
2 + 2b4x+ b6, (1)

where b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6.

Define b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

A curve in the form 1 is an elliptic curve (i.e., is nonsingular) if and only if

∆ 6= 0, where ∆ = −b2
2b8−8b3

4−27b2
6 +9b2b4b6 is the discriminant of the curve.

Equations of this form are called Weierstrass equations.

Given a field F we denote by E(F ) the F -points of E, i.e., the realization of

the formula defining E in F 2 plus a point at infinity: the identity O.

Given a point P ∈ F we denote by xP , yP the projections of P onto the x and

y-axis respectively.

The curve E(F ) can be endowed with a group structure; we denote the oper-

ation by ⊕ and the inverse of a point P by 	P . On an elliptic curve any line

intersects the curve in precisely three points (considering also O as a point).

Given points P,Q, the line through P and Q (or the tangent line if P = Q)

intersects E at the point R. The vertical line through R will again intersect

E at one point, which we call R′. P ⊕Q is then defined to be this R′.

It is then immediate that if P = (xP , yP ) then 	P = (xP ,−yP ).

The explicit addition formula, for P 6= Q, given P = (xP , yP ) and Q =

(xQ, yQ), is:

xP⊕Q =

(
yQ − yP
xQ − xP

)2

+ a1
yQ − yP
xQ − xP

− a2 − xP − xQ.

Given m ∈ Z, we define

[m]P =


P ⊕ P ⊕ · · · ⊕ P (m times) if m > 0

O if m = 0

[−m]	 P if m < 0
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The doubling formula is:

x[2]P =
x4
P − b4x

2
P − 2b6xP − b8

4x3
P + b2x2

P + 2b4xP + b6

.

1.1. Minimal form. In order to analyse elliptic curves, we need to per-

form some simplifications. Since all the properties we are going to deal with

are invariant under definable isomorphisms, we will consider, for each curve

E, a curve E ′ definably isomorphic to E, expressed in a generalized version of

the minimal Weierstrass equation.

Firstly we recall that two elliptic curves E and E ′ over F are isomorphic over

F and preserve the form E : y2 = 4x3 + b2x
2 + 2b4x + b6 if it is possible to

obtain E ′ from E by the following change of variables: x = u2x′ + r,

y = u3y′ + u2sx′ + t,
(2)

where u, r, s, t ∈ F , u 6= 0. Such a transformation is a combination of a

translation and a homothety, and it is clearly definable.

When applying the transformation (2) the new curve will have determinant

∆′ = u−12∆.

Observe that given a valuation ring Rw with valuation w, we can always write

the curve with coefficients from Rw (recall that x ∈ Rw ⇐⇒ w(x) ≥ 0):

Lemma 4.1. Given a curve y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, we can

always suppose that the coefficients ai are in Rw.

Proof. If this is not the case, there exists a coefficient ai such that w(ai) <

0. We can replace (x, y) by (u−2x, u−3y), so each ai in the equation becomes

aiu
i. Therefore it is sufficient to take u such that w(u) ≥ maxi(

−1
i
w(ai)), so

that for each aiu
i we shall have w(aiu

i) = w(ai) + iw(u) ≥ 0.

Hence we obtain a curve with all coefficient in Rw. �
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We recall that if we work in a local field the valuation is discrete, so the minimal

Weierstrass equation can be defined in a unique way as the equation whose

coefficients are all in the valuation ring and w(∆) ≥ 0 is minimized.

Given an elliptic curve E defined over a local field, with valuation ring R and

valuation w, an equation for E is in minimal form if w(∆) ≥ 0 is minimized

subject to the condition a1, a2, a3, a4, a6 ∈ R.

In our case since we are in a real closed field, equipped with a valuation ring,

the definition above gives us a family of curves, and we need to adapt the

definition as follows:

By a root of E we mean a solution of the equation with y = 0.

Definition 4.2. An elliptic curveE defined over a real closed fieldM equipped

with a valuation ring Rw and a valuation w is in minimal form if w(∆) is min-

imised subject to the conditions: a1, a2, a3, a4, a6 ∈ R, one root of E is in (0, 0)

and w(ai) = 0 for some i.

An analogue of Proposition 1.3 of [33] can now be proved in this context:

Proposition 4.3. (1) Every elliptic curve E defined over a real closed

field M has a minimal Weierstrass equation of the form y2 = x(x2 +

ax+ b).

(2) This minimal Weierstrass equation is unique up to a change of coor-

dinates  x = u2x′ + r,

y = u3y′,
(3)

where r = −a±
√
a2 − 4b and w(u) = 0 (if possible, i.e., if a2 ≥ 4b).

Proof. 1) The equation of an elliptic curve over a real closed field can

always be factorized as y2 = (x−e1)(x2 +ax+b), with a, b ∈M . A translation

guarantees that we can translate a root of E at (0, 0). We can then suppose

our curve is in the form y2 = x(x2 +ax+b), with a, b ∈ Fin. For curves in this

form the determinant is ∆ = 16a2b2(a− b)2. If neither a nor b have valuation
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0, then w(∆) = w(16a2b3− 64b3) = 2w(b) +w(a− 16b) > 0. A transformation x = u2x′,

y = u3y′,

gives us a curve E ′ : y2 = x(x2 + a′x+ b′), for which a′ = a/u2 and b′ = b/u4.

We can therefore find u with positive valuation such that either a′ or b′ have

valuation 0. Such u will then be the unique element which produces an elliptic

curve satisfying the conditions on the minimal form.

2) In the change of coordinates above, the choice of r preserves one root at

(0, 0). Observe that the new curve E ′ is y2 = x
(
x− a+

√
a2−4b

2u2

)(
x− a−

√
a2−4b

2u2

)
,

and that w
(
a+
√
a2−4b

2u2

)
+w

(
a−
√
a2−4b

2u2

)
= w(a2 − a2 + 4b)−w(u4) = w(b). By

the proof of (1), either v(a) or v(b) is 0. Now if we have w(b) = 0, then

w
(
a+
√
a2−4b

2u2

)
and w

(
a−
√
a2−4b

2u2

)
are both 0, since they are both non-negative.

Thus the valuation of the determinant ∆′ of E ′ is w(∆) = 2w
(
a+
√
a2−4b

2u2

)
+

2w
(
a−
√
a2−4b

2u2

)
+ 2w

(
a+
√
a2−4b

2u2 − a−
√
a2−4b

2u2

)
= w(a2 − 4b), that is equal to the

determinant of E, and so the new equation is still a minimal Weierstrass equa-

tion.

Otherwise, w(b) > 0, and w(a) has to be 0 by minimality of the starting

Weierstrass equation y2 = x(x2 + ax + b). Therefore either w
(
a+
√
a2−4b

2u2

)
or

w
(
a−
√
a2−4b

2u2

)
has to be 0. We consider the first case, the second is identical,

so w(∆′) = 2w
(
a−
√
a2−4b

2u2

)
= w(a2−4b) and the new equation is still minimal.

�

By working with a curve in minimal form we guarantee that we can define

certain properties in a unique way for the all the curves in the isomorphism

class (in particular it determines a unique reduction over a residue field, which

will be discussed in the following subsection).

1.2. Algebraic geometric reductions. An important tool in the arith-

metic study of elliptic curves defined over local fields is the notion of reduction

over a residue field. This topic is developed in Chapter VII of [33].
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We present here a description of this tool, adapted to the context of real closed

fields.

We suppose E is defined over a saturated real closed field M , and equip M

with the standard valuation. As we noticed in Lemma 4.1 we can suppose

E to be defined by coefficients in Fin, and by Property 4.3 we can moreover

suppose E to be in minimal form.

When we project the M -points E(M) of the elliptic curve onto the standard

residue field we obtain a curve Ẽ(R) which is easier to study. The definition

of this operation is delicate and requires some care.

We define the reduction Ẽ of a curve E : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6

in minimal form as the curve over kv defined by y2 + st(a1)xy + st(a3)y =

x3 + st(a2)x2 + st(a4)x+ st(a6). Here st : Fin→ kv is the standard part map

defined in Chapter 1, Section 4.

Observe that the equation over kv is well defined since we supposed the coef-

ficients to be in Fin (and Fin /µ = kv = R).

This gives us a reduction map

E(M) → Ẽ(R),

P 7→ P̃ ,

defined as follows: given a point P = (x, y) ∈ E(M) we rewrite it in homo-

geneous coordinates: P = [x; y; 1]. This clearly can always be rewritten with

coefficients in Fin: P = [x′; y′; z′] (it is sufficient to multiply the factors by a

sufficiently small λ ∈M , if x and y are infinite). We can now project the coor-

dinates onto the residue field, and P reduces to P̃ = [st(x′); st(y′); st(z′)]. We

multiply back by λ−1 to obtain P̃ = [λ−1 (st(x′)) ;λ−1 (st(y′)) ;λ−1 (st(z′))]. In

affine coordinates it is then simply P̃ = (st(x), st(y)) if x, y ∈ Fin

P̃ = O if x, y /∈ Fin .
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This operation, however, is not harmless: Ẽ may not longer be an elliptic

curve, and it could have singularities. The set of nonsingular points of Ẽ

forms a group defined over R, denoted by Ẽns (see Proposition 2.5 pag. 61

and Exercise 3.5 pag 104 of [33]).

We define two subsets of E(M) depending on how the curve reduces:

E0(M) = {P ∈ E(M) : P̃ ∈ Ẽns(R)}, (4)

i.e., the set of all points of E(M) whose reduction is nonsingular (as in the

usual sense, has both partial derivatives vanishing at a point), and

E1(M) = {P ∈ E(M) : P̃ = Õ} (= {P ∈ E(M)|v(xP ) < 0}), (5)

i.e., the set of all points whose reduction is the identity of Ẽ(R), or, equiva-

lently, the set of all points whose reduction is infinite.

Such notions are well defined by Proposition 4.3.

By E0(M)0 and E1(M)0 we shall denote {P ∈ E(M)0|P̃ ∈ Ẽns(R)} and

{P ∈ E(M)0|P̃ = Õ} respectively.

A useful proposition is the following:

Proposition 4.4. There is a group isomorphism E0(M)/E1(M) ∼= Ẽns(R).

Proof. The proof is in Proposition 2.1 of [33], observing that a real closed

valued field satisfes Hensel’s lemma. �

Taking the algebraic closure of M : M [i] we can factorize our equation into

y2 = (x − e1)(x − e2)(x − e3) (applying y 7→ y
2

to the Weierstrass equation

(1)), where the ei’s are the roots of the curve in M [i]. By the properties of

real closed fields we have only two possibilities:

(1) e1, e2, e3 ∈ M , and so the curve has 3 roots and two connected com-

ponents.
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(2) e1 ∈ M , e2, e3 ∈ M [i] and e2 = e3. I.e., the curve has an unique

semialgebraic component and only one root (e1, 0).

We call the curves of the first kind (y2 = (x−e1)(x−e2)(x−e3), e1, e2, e3 ∈M)

elliptic r-curves, and the curves of the second kind (y2 = (x−e1)(x−e2)(x−e2),

e1 ∈ M, e2, e2 ∈ M [i]) elliptic c-curves. We shall analyse these two cases

separately in the next two sections.

For the rest of the chapter, M will denote a saturated real closed field.

2. Elliptic r-curves

The methodology will be similar for both r-curves and c-curves: firstly we

determine the minimal Weierstrass equation for E. The group G is E(M)0,

the semialgebraic connected component of the M -points of the elliptic curve

E containing the identity; we compute G00 in terms of the standard valua-

tion, characterizing also the unique valuation definable from G00. Then we

use Lemma 2.24 to prove 1-basedness or non-1-basedness of G/G00, either by

constructing a definable bijection from G/G00 onto a group already studied in

Chapter 3, or by using internality to the residue field of the real closed valued

field obtained by adding a predicate for G00.

If E is an elliptic r-curve, its equation is y2 = (x − e1)(x − e2)(x − e3) with

ei ∈M , i = 1, 2, 3. We want to write this curve in a minimal form with respect

to the standard valuation and fix two roots.

We apply the transformation  x 7→ x+ e1,

y 7→ y,

and get an isomorphic curve with a root at (0, 0): y2 = x(x−e′2)(x−e′3), where

e′2 = e2 − e1 and e′3 = e3 − e1.
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We can suppose that v(e′2) ≤ v(e′3); by divisibility of the value group we can

take u such that v(u2) = −v(e2). Applying the transformation x 7→ u−2x,

y 7→ u−3y.

we get an isomorphic curve y2 = x(x − e′′2)(x − e′′3) where e′′2 = u2e2, and

e′′3 = u2e3. Therefore v(e′′2) = 0, v(e′′3) ≥ 0, i.e., all the roots are in Fin.

This is a necessary condition for a minimal equation.

We have now 2 possibilities: either e′′2 > 0 or e′′2 < 0.

(1) If e′′2 > 0 then (e′′2)
1
2 is in M , and we can therefore apply the transfor-

mation  x 7→ e′′2x

y 7→ (e′′2)
3
2y.

This produces the isomorphic curve y2 = x(x − 1)
(
x− e′′3

e′′2

)
; observe

that since v(e′′2) ≤ v(e′′3), we have that
e′′3
e′′2
∈ Fin.

We can transform such a curve into a curve of the form y2 =

x(x+ 1)(x− ε), via  x 7→ x+ 1

y 7→ y.

(2) If e′′2 < 0 then (−e′′2)
1
2 is in M , and we can therefore apply the trans-

formation  x 7→ −e′′2x

y 7→ (−e′′2)
3
2y,

This produces the isomorphic curve y2 = x(x + 1)
(
x+

e′′3
e′′2

)
, where

again − e′′3
e′′2
∈ Fin. Renaming − e′′3

e′′2
= ε we get y2 = x(x+ 1)(x− ε).

We have therefore obtained a form for the equations of the elliptic curves with

three “real” roots in which each curve (and its isomorphism class) is determined

by a single parameter (note that there can be ε 6= ε′ ∈M such that they define

curves in the same isomorphism class).
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We need to check that it is a minimal form with respect to the standard

valuation.

One of the roots is at (0, 0), and one is in Fin \µ, thus the determinant has

valuation v(∆) = v(16 · 12 · ε2 · (ε + 1)2) = 2v(ε) + 2v(ε + 1). Clearly either

v(ε) or v(ε + 1) is equal to 0. If both are equal to 0 we are done; if not, any

transformation of the form (3) in Proposition 4.3 with v(u) 6= 0 would send

−1 to either µ or to M \ Fin, contradicting minimality. Therefore this is a

minimal form.

We can rewrite the sum and the doubling formulae for curves in this form in

a simpler way: given P,Q ∈ E(M)0, P 6= Q:

xP⊕Q =

(
yQ − yP
xQ − xP

)2

− (1− ε)− xQ − xP , (6)

x[2]P =
(x2

P + ε)2

4xP (xP + 1)(xP − ε)
. (7)

We can also explicitly define an ordering C on E(M)0:

P CQ if



yP < 0 and yQ > 0,

xP > xQ and yP , yQ > 0,

xP < xQ and yP , yQ < 0,

yP = 0 and xQ > 0,

yP < 0 and Q = O,

yQ > 0 and P = O.

Observe that this definition is compatible with ⊕: we remark that 	P is the

other intersection point of the vertical line passing through P and the elliptic

curve, and so P BO ⇒ 	P CO.

Moreover we have the following fact, that will be fundamental in the compu-

tations below:
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Fact 4.5. Given T4 and 	T4 the 4-torsion points with projection on the y-axis

positive and negative respectively, if OCP E QCT4 then OCP E QCP ⊕Q.

Proof. We consider the geometric definition of the operation⊕, ifOCP E

QCT4, the line between P and Q (or the tangent line to P if P = Q) intersects

E(M) in a point R such that yR < 0 and xR < xQ, xP (it is sufficient to observe

that the slope of such line has to be negative). Therefore P⊕Q = R′ ([2]P = R)

and the intersection of the vertical line through R and E(M) has yR′ > 0 and

xR′ < xQ, xP . Thus QC P ⊕Q (P C [2]P ). �

Immediate consequences are the following:

• OCP CQCT4, then xP⊕Q < xQ and v (xP⊕Q) ≥ max {v (xP ) , (xQ)}.

• O C P C T4, then x[2]P < xP and v
(
x[2]P

)
≥ v (xP ).

• OBPBQB	T4, then xP⊕Q < xQ and v (xP⊕Q) ≥ max {v (xP ) , (xQ)}.

• O B P B	T4, then x[2]P < xP and v
(
x[2]P

)
≥ v (xP ).

For such curves we can compute the possible reductions over the reals:

Remark 4.6. We obtain three kinds of curves:

(1) Good reduction curves: if v(ε) = 0 and v(ε + 1) = 0, this implies

that the standard part of the root (ε, 0) (i.e., (st(ε), 0)) does not co-

incide with any of the other roots, and therefore the reduced curve is

nonsingular.

(2) Non-split multiplicative reduction curves: if v(ε + 1) > 0 (and so

v(ε) = 0), this implies that the root (ε, 0) is sent by the standard

part map to the root (−1, 0), and therefore the reduced curve has a

complex node (i.e. a singularity of multiplicity 2 and complex slopes).

(3) Split multiplicative reduction curves: if v(ε) > 0 (and so v(ε+ 1) = 0)

and ε > 0, this implies that the root (ε, 0) is sent by the standard

part map to the root (0, 0), and therefore the reduced curve has a real

node (i.e. a singularity of multiplicity 2 and real slopes).
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2.1. Computing G00. We can now analyse for which curves E the groups

G/G00, where G = E(M)0, are 1-based in the structure M ′ = (M,G00, . . . )eq.

We proved that any elliptic r-curve is isomorphic to a curve of the form y2 =

x(x+ 1)(x− ε) with ε ∈ Fin.

Our first step is to determine the cut on M produced by G00 (or, better, by

its projection onto the first coordinate). In order to compute it we need to

consider a sequence of torsion points. We recall that a torsion point is a point

T such that [n]T = O for some n ∈ ω.

Definition 4.7. We call bounding sequence of torsion points the sequence

(Tn)2<n<ω of torsion points so defined: Tn is the smallest positive n-torsion

point in the order C, i.e., [n]Tn = O and there is no other point T such that

O C T C Tn and T is an n-torsion point.

The reason of defining such sequence is that, since by Lemma 3.1:

G00 =
⋂
n∈ω

{P |∀T [(T BO ∧ [n]T = O)→ 	T C P C T ]} , (8)

we can determine G00 using the torsion point is the bounding sequence:

G00 = ∩2<n<ω{T | 	 Tn C T C Tn}. (9)

Moreover the sequence above has the following properties (easy to verify, using

Fact 4.5):

(1) For i < j < ω, xTi
< xTj

.

(2) For i < j < ω, yTi
< yTj

.

(3) For i < j < ω, Ti B Tj.

In the computations we shall often use a subsequence of the bounding sequence:

(T2n)n∈ω, on which it is possible to use the duplication formula (7).

We know that the root ofG is either (0, 0) or (ε, 0), if ε < 0 or ε > 0 respectively,

by the study of minimal forms for r-curves.
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It is convenient to compute separately the projection of the 4-torsion points

T4; the 4-torsion points have a valuation that is meaningful to determine G00.

We shall then compute inductively an approximation of xT2n for n ∈ ω.

Lemma 4.8. The 4-torsion points of G are (
√
−ε,±

√
1− ε+ 2

√
−ε) if ε < 0,

and (ε+
√
ε
√
ε+ 1,

√
ε
√
ε+ 1(

√
ε(2 + ε) +

√
ε+ 1(2ε+ 1)) if ε > 0.

Proof. We split the proof in the two cases: ε < 0 and ε > 0.

• If ε < 0 (so T2 = (0, 0)), the tangent to the curve passing from T2 is

y = αx, with α such that the following system has a double solution: y = αx,

y2 = x(x+ 1)(x− ε).

On solving it we obtain

x2 + (1− ε− α2)x− ε = 0. (10)

The α must then satisfy (1−ε−α2)2+4ε = 0, so α2 = 1−ε±2
√
−ε; we

take the positive root to obtain the tangent to G (otherwise, taking the

negative root, we obtain the tangent to the semialgebraic component

E(M) \G).

Substituting into the solution of (10) we get x = 1−ε+2
√
−ε+ε−1

2
=

√
−ε = xT4 . Thus T4 = (

√
−ε,+

√
1− ε+ 2

√
−ε) and

	T4 = (
√
−ε,−

√
1− ε+ 2

√
−ε).

• If ε > 0 (so T = (ε, 0)), the system to be solved to obtain the 4-torsion

points is  y = αx− αε,

y2 = x(x+ 1)(x− ε).

This leads to the solutions α2 = ε±
√
ε2 − ε and so xT4 = ε+

√
ε
√
ε+ 1.

(Observe that we cannot have ε = 0 since E is an elliptic curve,

therefore it is nonsingular)

�
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Before proving the main lemma we do the following observation:

Observation 4.9. If E has v(ε) > 0, there is an elliptic curve E ′ : y2 =

x(x+ 1)(x− ε′) isomorphic to E with v(ε′) > 0 and ε′ > 0.

In fact if ε < 0 we can apply to E : y2 = x(x− 1)(x+ ε) the homothety: x = 1
1+ε

x′,

y = y′.

Since v(ε) > 0 we have v( 1
1+ε

) = 0, and therefore such a transformation does

not harm the minimality of the equation by Proposition 4.3.

We can now compute G00 in terms of ε.

We recall now and we shall often use without further mention the following

fact: if v(a) 6= v(b) or sign(a) = sign(b), then v(a+ b) = min{v(a), v(b)}.

Lemma 4.10. Let E be a curve in the form y2 = x(x+ 1)(x− ε), G = E(M)0.

Then G00 =
⋂
n∈ω
{
P ∈ G|v (xP ) < 1

n
v(ε)

}
.

Proof. The idea is to compute the valuation of the projection of the

torsion points using the doubling formula; an induction will show the behaviour

of the valuation of the 2n-torsion points.

We consider a bounding sequence of torsion points Tn, thus xTn > xTi
for i < n,

v
(
xTn+1

)
≤ v (xTn) and yTn ≥ 0 for all n ∈ ω.

We have two cases:

(1) v(ε) = 0, i.e., ε is not infinitesimally close to 0.

To get the desired G00 = {P ∈ G|v(xP ) < 0} we need to prove

that the torsion points have projection, and are cofinal, in Fin, by 9.

The first part is easy, by inspecting the bounding sequence of tor-

sion points of Definition 4.7, the second is equivalent to the statement

that for each s ∈ Fin we can find a torsion point whose projection

onto the x-axis is greater than s; it suffices to prove that for some
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n ∈ N the point P such that xP = s has x[n]P ≤ xT4 . In fact this

implies that for some n, xP ≤ xT2n−2 , by Fact 4.5, i.e. P BT2n−2 , thus

P /∈ G00 by 9.

We have two sub-cases:

• ε > 0, so xT4 = ε+
√
ε
√
ε+ 1 > 2ε by Lemma 4.8. We prove that

if P = (xP , yP ) has xP > xT4 then x[2n]P ≤ xT4 , for some n ∈ N.

Recall the duplication formula: x[2]P =
(x2

P +ε)2

4xP (xP +1)(xP−ε)
. Since we

suppose P is smaller (with respect to the order C of E0(M))

than T4, then xP > 2ε, so x[2]P <
(x2

P +
xP
2

)2

4xP (xP +1)(xP−
xP
2

)
=

(xP + 1
2

)2

2(xP +1)
=

xP (xP +1)+ 1
4

2(xP +1)
= xP

2
+ 1

8(xP +1)
< xP

2
+ 1

8xP
< xP

2
+ 1

16ε
.

We define a sequence of points pi using the formula above, setting

p0 = xP and defining pi = p0

2i +
Pi−1

j=0 2i

2i+4ε
= p0

2i + 2i−1
(2−1)2i+4ε

= p0

2i −
1

2i+4ε
+ 1

16ε
. Observe then that for each i, pi ≥ x[2i]P . But since

limi→ω pi = 1
16ε

, we must have that for some n ∈ ω, x[2n]P ≤ pn ≤

xT4 .

• ε < 0, so xT4 =
√
−ε by Lemma 4.8. As above we take P =

(xP , xQ) and suppose xP >
√
−ε. Using the duplication formula

we get x[2]P =
(x2

P +ε)2

4xP (xP +1)(xP−ε)
<

x4
P

4x3
P

= xP

4
. We can therefore find

an n ∈ ω such that x[2n]P ≤ xT4 as in the previous case.

(2) If v(ε) > 0, then, by Observation 4.9, ε > 0, and so T2 = (ε, 0). We

denote by pn the projection on the x axis of the n-torsion point. The

calculation of the 4-torsion points leads to xT4 = ε +
√
ε
√
ε+ 1. So

v(xT4) = v(
√
ε) + v(

√
ε+
√
ε+ 1) = v(

√
ε) = 1

2
v(ε).

The doubling formula for n-torsion points (n even) from a bound-

ing sequence can be then written as:

xTn/2
=

1

4

x4
Tn

+ 2εx2
Tn

+ ε2

x3
Tn

+ (1− ε)x2
Tn
− εxTn

. (11)

Passing to the valuation we get v
(
xTn/2

)
= 2v

(
x2
Tn

+ ε
)
−v(xTn)−

v(xTn + 1)− v(xTn − ε).

A couple of considerations:
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• All torsion points have valuation of the first coordinate strictly

positive. In fact, by induction let 2n be the smallest such that

v(xT2n ) ≤ 0. Then v
(
xT2n−1

)
= 2v(x2

T2n ) − v(xT2n ) − v(xT2n +

1) − v(xT2n ) = 4v(xT2n ) − 3v(xT2n ) = v(xT2n ) ≤ 0, contradicting

our assumption that T2n−1 C T2n and yT2n , yT2n−1 > 0.

• We need to make sure that the valuation of xT8 is strictly less than

v(xT4). Again by contradiction suppose v(xT8) = v(xT4) = 1
2
v(ε).

Then 1
2
v(ε) = v(xT4) = 2v(x2

T8
+ ε)−v(xT8)−v(xT8 +1)−v(xT8−

ε) ≥ 2v(ε)− 1
2
v(ε)− 1

2
v(ε) = v(ε), which contradicts v(ε) > 0.

In conclusion we have for n ≥ 8: 1
2
v(ε) > v(xTn) > v(xT2n) > 0 (It is

in fact trivial to prove this for n > 8).

By the considerations above we get v(xT2n−1 ) = 2v(x2
T2n )−v(xT2n )−

v(xT2n ) = 2v(xT2n ), i.e., v(xT2n ) = 1
2
v(xT2n−1 ).

By Lemma 4.8, v(xT4) = 1
2
v(ε). Applying this and v(xTn) =

1
2
v(xTn) in 9 we obtain G00 =

⋂
n∈ω
{
P ∈ G|v (xP ) < 1

n
v(ε)

}
.

�

We recall that a valuational cut in a structure (N,+, 0, <, . . . ) expanding an

ordered group is a cut α such that there is ε ∈ N , ε > 0, for which α+ ε = α.

By Theorem 6.3 of [19], if N is a weakly o-minimal expansion of an ordered

field with a definable valuational cut, then N has a nontrivial definable convex

valuation.

It is easy and left to the reader to check that the projection on the x-axis

of G00 is a valuational cut, and that therefore there is a unique valuation

w, not necessarily the standard one, associated to G00, definable in M ′ =

(M,G00, . . . )eq.

We now study which curves produce 1-based G/G00, relating them to the

behaviour of E(M) when reduced over the standard residue field.

We have three possible kinds of reduction; see Remark 4.6.
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2.2. The good reduction case. This is the case of a curve E : y2 =

x(x+ 1)(x− ε) with v(ε) = 0, and v(ε+ 1) = 0. Here the algebraic geometric

reduction leads to the elliptic curve Ẽ(R) : y2 = x(x+ 1)(x− st(ε)).

Clearly then E(M) = E0(M), and, by Lemma 4.10,

E1(M) = {P ∈ E(M)|v(xP ) < 0} = G00.

This, together with Proposition 4.4, implies that

G/G00 = E(M)0/E(M)00 = E0(M)0/E1(M)0 ∼= Ẽ0(R). (12)

We add now to M a predicate for G00 as in Chapter 3: let M ′ = (M,G00, . . . )eq.

We can define in it the sets Fin and µ:

Fin =
{
x ∈M |∀y ∈M

(
(x, y) /∈ G00 ∧ (−x, y) /∈ G00

)}
, (13)

µ =
{
x ∈M |x−1 /∈ Fin

}
. (14)

Clearly in the standard real closed valued field Mv = (M,Fin, µ, v, . . . )eq the

set G00 is definable, so M ′ is interdefinable with Mv; since the standard part

map is definable in M ′, then also the isomorphism G/G00 ∼= Ẽ(R)0 is definable.

Moreover G/G00 is definably isomorphic to a definable set in kv and it is clearly

internal to kv in M ′. By Remark 2.26 kv is non-1-based in Mv = M ′ and by

Lemma 2.24 also G/G00 is non-1-based in M ′.

2.3. The non-split multiplicative reduction case. In this case we

have a curve E : y2 = x(x+ 1)(x− ε), with v(ε+ 1) > 0 and v(ε) = 0, i.e., the

roots (ε, 0) and (−1, 0) are infinitely close.

The algebraic geometric reduction here leads to a singular curve with a “com-

plex node”: the semialgebraic component without the identity is sent by the

standard reduction map to the point (−1, 0).
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We can easily compute the sets G00 = {P ∈ G|v(xP ) < 0} = E1(M)0 = E1(M)

and G = E0(M)0 = E0(M).

We can use the same argument as in the good reduction case to prove non-

1-basedness of G/G00. By Proposition 4.4 and Lemma 4.10 we have that

G/G00 = E0(M)0/E1(M)0 ∼= Ẽ(R)0 as abelian groups.

Again the structure M ′ = (M,G00) defines Fin and µ and so we find that M ′ is

interdefinable with the standard real closed valued field Mv, the isomorphism

G/G00 ∼= Ẽ(R)0 is definable, and that G/G00 is internal to kv = R. Thus, by

Lemma 2.24, G/G00 inherits non-1-basedness from kv.

In this and the previous subsections we proved the following lemma:

Lemma 4.11. Given an elliptic curve E in minimal form, and such that E(M)

has good or nonsplit multiplicative reduction, the group G/G00, where G =

E(M)0, is non-1-based in M ′ = (M,G00, . . . ) and is internal to kv, the residue

field of the standard real closed valued field, interdefinable with M ′.

We highlight now what is the actual Lie group structure of G/G00. By Proposi-

tion 4.4, it is sufficient to consider the connected component of y2 = x(x+ 1)2,

i.e., of Ẽ(R). We will follow the procedure shown in Exercise 3.5, page 104

of [33]: first we find an isomorphism of E(C) into (C, ·), then show that

E(R) ∼= {t ∈ C : |t| = 1}; therefore E(R) ∼= SO2(R).

The node is clearly N = (−1, 0), and to find the tangent it is sufficient to solve

the system  y = αx+ α,

y2 = x3 + 2x2 + x,

in a way in which α leads to a multiple root, so that we have (α2−x)(x+1)2 =

0, and so α = ±i. The isomorphism f : (E(C),⊕) ∼= (C, ·) is (x, y) 7→
y−ix−i
y+ix+i

, by Proposition 2.5, page 61 of [33]. We now have just to show that

if x, y ∈ R then |f(x, y)| = 1. In fact y−ix−i
y+ix+i

= 1
y2+(x+1)2 |(y − i(x + 1))2| =

1
y2+(x+1)2

√
(y2 − (x+ 1)2)2 + 4y2(x+ 1)2 = y2+(x+1)2

y2+(x+1)2 = 1.
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We notice here a difference between the algebraic geometric reduction of the

full set of M -points of an elliptic curve with non-split multiplicative reduction

E(M) and the functor L : E(M) → E(M)/E(M)00. With the algebraic geo-

metric reduction we obtain a connected component isomorphic to SO2(R) and

an isolated point (−1, 0) (see [33] exercise 3.5, page 104 for details), whereas

the image under the functor L is instead a nonsingular curve with the two

connected components in bijection (via the map x 7→ x−ε
x+1

), and therefore both

isomorphic to SO2(R).

2.4. The split multiplicative reduction case. This is the case of a

curve E : y2 = x(x+ 1)(x− ε), where v(ε) > 0 and ε > 0.

The algebraic geometric reduction leads here to a curve with a singularity,

more precisely a “real” node, in (0, 0).

We denote by H the group
(
[ε, 1

ε
), · mod ε2

)
(the truncation of the multiplica-

tive group by ε). Theorem 3.7 states that the group H/H00 is 1-based in

MH00 = (M,H00, . . . )eq.

To obtain 1-basedness for G/G00 in M ′ = (M,G00, . . . ) from the known case of

the “big” multiplicative truncation, it will suffice, by Lemma 2.24, to show that

MH00 is interdefinable with M ′, and to find a definable bijection f : G/G00 →

H/H00.

We denote by P a point in G and by P∼ the class in G/G00 of which P is a

representative. Analogously with x we denote an element of H and with x∼

we denote an element in H/H00.

We firstly define a map f∗ : G→ H as follows:

f∗(P ) =



1 if xP ≥ 1,

(
1
xP

)
if yP ≥ 0 ∧ xP < 1,

xP if yP < 0 ∧ xP < 1.
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We prove that f∗ induces a well defined map f : G/G00 → H/H00 on the

quotients, i.e., that given P∼ the image f(P∼) does not change if we change

the representative P .

It is convenient to study aside the cases of G00 and of (T2)∼.

Lemma 4.12. The map f∗ sends G00 to H00.

Proof. We recall Lemma 4.10:

G00 =
⋂
n∈ω {P | ∀T BO, [n]T = O ⇒ 	T C P C T} =⋂

n∈ω
{
P | v(xP ) < 1

n
v(ε)

}
. And it is easy to see that

H00 =
⋂
n∈ω
{
x| ε < xn < 1

ε

}
=
⋂
n∈ω
{
x| |v(x)| < 1

n
v(ε)

}
.

Thus f∗(G
00) = H00, and then also f(G00) = H00. �

We characterize (T2)∼ via the valuation of the projection of its points on the

x-axis.

Lemma 4.13. We have (T2)∼ =
⋂
n∈ω
{
P ∈ G|v

(
xP

ε
− 1
)
> 1

n
v
(

1
ε

)}
.

Proof. By definition P ∈ (T2)∼ if and only if P 	 T2 ∈ G00 if and only if

v(xP	T2) < 1
n
v(ε), for all n.

Then, using Formula (6),

v(xP	T2) = v
(

y2
P

(xP−ε)2 − 1 + ε− xP − ε
)

= v
(
xP (xP +1)(xP−ε)

(xP−ε)2 − 1− xP
)

=

v
(
x2

P +xP−xP +ε−x2
P +xP ε

xP−ε

)
= v(ε) + v(1 + xP )− v(xP − ε).

Since v(1 + xP ) = 0 and since P ∈ (T2)∼ implies that v(xP	T2) < 1
n
v(ε), we

have that v(ε)− v(xP − ε) < 1
n
v(ε), for all n. Therefore −v

(
xP

ε
− 1
)
< 1

n
v(ε),

from which we get the Lemma. �

It is now easy to prove the following lemma:

Lemma 4.14. The function f is well defined for (T2)∼, i.e., if P ∈ (T2)∼, then

f∗(P ) · f∗(T2)−1 ∈ H00.
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Proof. Observe that f∗(T2) = 1
ε
, and that if yP > 0, then f∗(P ) = 1

xP
.

So f∗(P )f∗(T2)−1 = ε
xP

, thus f∗(P )f∗(T2)−1 is in H00 if and only if 1
n
v(ε) >

v( ε
xP

) ≥ 0 for all n; i.e., if 0 ≥ v(xP

ε
) > 1

n
v
(

1
ε

)
for all n.

On the other hand if yP < 0, then f∗(P ) = xP , so f∗(P )f∗(T2)−1 ∈ H00 if and

only if 0 ≥ v
(
xP

ε

)
> 1

n
v
(

1
ε

)
.

So what we need to prove is that if P ∈ (T2)∼, i.e., v
(
xP

ε
− 1
)
> 1

n
v
(

1
ε

)
for all

n, then v(xP

ε
) > 1

n
v(1

ε
) for all n.

This is obvious: suppose v
(
xP

ε

)
< 1

k
v
(

1
ε

)
for some k ∈ ω, v

(
xP

ε

)
< 0,

then v
(
xP

ε
− 1
)

= v
(
xP

ε

)
< 1

k
v
(

1
ε

)
, contradicting P ∈ (T2)∼. Thus f∗(P ) ·

f∗(T2)−1 ∈ H00.

�

We want to prove for all the other cases that the map f is well defined.

Theorem 4.15. The map f : ∗ induces a well defined function f : G/G00 →

H/H00.

Proof. Let P,Q ∈ P∼, then P 	Q ∈ G00, i.e., v(xP	Q) < 1
n
v(ε), for all n.

Our aim is to prove that f∗(P ) ∼ f∗(Q): i.e., f∗(P )f∗(Q)−1 ∈ H00. Notice that

we already proved this for the class of T2 and for G00; we shall then suppose

P,Q /∈ (T2)∼, and P,Q /∈ G00, so we have, by convexity of the equivalence

relation, sign(yP ) = sign(yQ), v(xP ) > 0 and v(xQ) > 0. Moreover

v(xP ) <
1

nP
v(ε) and v(xQ) <

1

nQ
v(ε) for some nP , nQ ∈ N. (15)

We make now some observations regarding the choice of P = (xP , yP ) and

Q = (xQ, yQ).

Due to the symmetry of E with respect to the x-axis there is no harm in

supposing xQ < xP , and yP , yQ > 0; the other case is analogous. Let us call

f∗(P )f∗(Q)−1 =
xQ

xP
= h.
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Observation 1 : 0 ≤ v(h) < v(ε).

Proof: Since we supposed xQ < xP we get 0 ≤ v(h); for the other inequality

suppose v(h) = v(xQ) − v(xP ) ≥ v(ε), but v(xP ) > 0, so v(xQ) > v(ε),

contradicting Equation (15).

We proceed now with the proof that if for all n ∈ ω v(xP	Q) < 1
n
v(ε) then for

all n ∈ ω v(
xQ

xP
) = h < 1

n
v(ε).

Obviously if v(h) = 0 we are already done, so let v(h) > 0.

Recall that xP	Q =
(yP +yQ)2

(xP−xQ)2 − 1− xP − xQ + ε.

The yi’s are hard to deal with directly, but (yP + yQ)2 = y2
P

(
1 +

yQ

yP

)2

=

y2
P

(
1 +

√
xQ

xP

√
xQ+1

xP +1

√
xQ−ε
xP−ε

)2

, and, since xQ < xP , we get
xQ+1

xP +1
< 1 and

xQ−ε
xP−ε

< h. Thus (yP + yQ)2 < y2
P (1 + h)2 = xP (xP + 1)(xP − ε)(1 + h)2.

So 1
n
v(ε) > v(xP	Q) ≥ (∗), for all n, where

(∗) = v

(
(xP + 1)(xP − ε)(1 + h)2

xP (1− h)2
− 1− xP (1 + h) + ε

)
.

We shall use (∗) to compute v(h).

Observation 2 : v

(
(xP + 1)(xP − ε)(1 + h)2

xP (1− h)2

)
= 0.

In fact v
(

(xP +1)(xP−ε)(1+h)2

xP (1−h)2

)
= v(xP + 1) + v(xP − ε) + 2v(1 + h) − v(xP ) −

2v(1 − h). Since 0 < v(xP ) < v(ε) and v(h) > 0, v(1 + h) = v(1 − h) = 0, so

v
(

(xP +1)(xP−ε)(1+h)2

xP (1−h)2

)
= 0 + v(xP )− v(xP )− 0 = 0.

This implies that there are two summands with same valuation in (∗) (the

other one is 1), so to compute (∗) we need to expand the whole expression.

Moreover (∗) ≥ min
{
v
(

(xP +1)(xP−ε)(1+h)2

xP (1−h)2 − 1− xP (1 + h)
)
, v(ε)

}
. Since we

supposed (∗) < 1
n
v(ε), for all n, clearly (xP +1)(xP−ε)(1+h)2

xP (1−h)2 −1−xP (1 +h) has to

have smaller valuation than v(ε), and we can exclude ε from the computation
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of (∗):

(∗) = v

(
(xP + 1)(xP − ε)(1 + h)2

xP (1− h)2
− 1− xP (1 + h)

)
.

This implies (∗) ≥ min
{
v
(

(xP +1)(xP−ε)(1+h)2

xP (1−h)2 − 1
)
, v(xP (1 + h))

}
. We already

observed that v(xP (1 + h)) = v(xP ). Moreover if the two valuations are dif-

ferent the inequality becomes an equality (this will be the first case in the

following two cases). We distinguish two cases:

• v
(

(xP +1)(xP−ε)(1+h)2

xP (1−h)2 − 1
)
6= v(xP ).

Then (∗) = v(x2
P (1+h)2+4hxP−ε(1+h)2(1+xP ))−v(xP ). Clearly

v(ε(1 + h)2(1 + xP )) = v(ε) is greater than v(x2
P (1 + h)2) = 2v(xP )

and v(4hxP ) = v(xQ).

Observe that since both x2
P (1+h)2 and 4hxP are positive, v(x2

P (1+

h)2 + 4hxP ) = min{v(x2
P (1 + h)2), v(4hxP )}. So either (∗) = v(x2

P )−

v(xP ) = v(xP ), or (∗) = v(xQ)− v(xP ) = v(h); if the former happens

(∗) < 1
n
v(ε) for all n, which contradicts (15), if the latter v(h) = (∗) <

1
n
v(ε) for all n by the hypothesis, and this concludes the proof of the

case.

• v
(

(xP +1)(xP−ε)(1+h)2

xP (1−h)2 − 1
)

= v(xP ).

Then

(∗) = v
(

(xP +1)(xP−ε)(1+h)2

xP (1−h)2 − 1− xP (1 + h)
)

=

= v (hx2
P (1 + h)(2− h) + 4xPh− ε(1 + xP )(1 + h)2)− v(xP ).

Since v(hx2
P (1 + h)(2− h)) = v(xPxQ), v(4xPh) = v(xQ) and v(ε(1 +

xP )(1 + h)2) = v(ε), we get (∗) = v(h), so v(h) < 1
n
v(ε) and we have

finished the proof of Theorem 4.15.

�

Easy to check now is

Corollary 4.16. The map f is a bijection.

Proof. Surjectivity: trivial by construction.
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Injectivity: Suppose f(P∼) = f(Q∼). By choosing the representatives P,Q

such that sign(yP ) = sign(yQ) in case P or Q are in (T2)∼, we have
∣∣∣v (xQ

xP

)∣∣∣ =

v(h) < 1
n
v(ε), for all n.

Now we need to prove that also |v(xP	Q)| < 1
n
v(ε) for all n. We can suppose

xP > xQ, so 0 ≤ v(xP	Q), and, by the choice of the representatives, (yP +

yQ)2 < y2
P . So 0 ≤ v(xP	Q) ≤ (◦), where

(◦) = v

(
(xP + 1)(xP − ε)
xP (xP − h)2

− 1− xP (1 + h)− ε
)
.

Thus 0 ≤ v(xP	Q) ≤ (◦) = v(−ε(xP + 1) + h(2xP − hxP + hx2
P − h2x2

P ) +

ε(xP (1 − xP )2)) − v(xP ) = v(hxP ) − v(xP ) = v(h) < 1
n
v(ε), for all n. Thus

P ∼ Q, so P∼ = Q∼ and f is injective. �

A natural and seemingly easy, but involving hard computations is the following

question:

Question 4.17. Is f a group isomorphism G/G00 → H/H00?

In Section 3 it was highlighted how the structure (M,H00, . . . ) is interdefinable

with a nonstandard real closed field Mw, whose valuation is w and how H/H00

is a definable subset of Γw in Mw. Hence the bijection f together with Lemma

2.24 implies the following theorem:

Theorem 4.18. Given an elliptic r-curve E with split multiplicative reduc-

tion, let G = E(M)0, then the group G/G00 is 1-based in the structure M ′ =

(M,G00, . . . )eq.

3. Elliptic c-curves

This is the case where the curve is defined by E : y2 = (x− e1)(x− e2)(x− e2),

e1 ∈ M , e2 ∈ M [i]. If either e1 or |e2| are not in Fin, then we can find
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u > 0 (∈M) such that v(u2) = −min {v(e1), v(e2)}, and apply x′ = u−2x,

y′ = u−3y.

With this transformation we can suppose both e1 and |e2| are in Fin.

Applying then the transformation x′ = x+ e1,

y′ = y.

we get y2 = x(x− e)(x− e) where e = e1 +Re(e2) + i[Im(e2)] ∈M [i].

Observe that since v (|e|) = v
(√

Re(e)2 + Im(e)2
)

=

(since squares are positive, and so we get the equality in the valuation)

= 1
2
min {2v (Re(e)) , 2v (Im(e))} = min{v (Re(e)) , v (Im(e))},

and, since v (|e|) ≥ 0, we get both Re(e), Im(e) ∈ Fin.

To obtain a minimal equation we calculate the determinant ∆: for y2 = x(x2−

2Re(e)x+ |e|2), ∆ = 64|e|4(Re(e)2 − |e|2) = −64|e|4Im(e)2, so its valuation is

v(∆) = 4v(|e|) + 2v(Im(e)). It is minimized when v(Im(e)) = 0, so Im(e) ∈

Fin \ µ. For simplicity of calculation we can canonically put Im(e) = 1.

The transformation to obtain such Im(e) is x′ = u−2x,

y′ = u−3y,

where u is such that u2 = 1
|e| (we can find such u, since |e| > 0).

The resulting equation can be written either as E : y2 = x(x−e)(x−e), where

e ∈ M [i] and |e| = 1, or as E : y2 = x(x2 − 2rx + 1), where r ∈ M is Re(e).

With the latter equation ∆ is simply 1− r2.

We have then proved:

Lemma 4.19. Any elliptic c-curve is isomorphic to a curve of the form E :

y2 = x(x2 − 2rx+ 1), with −1 < r < 1. Moreover such a curve is in minimal

Weierstrass form.
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For such curves the sum and doubling formulae assume the following form:

xP⊕Q =
(yQ + yP )2

(xQ − xP )2
+ 2r − xP − xQ, (16)

x[2]P =
(x2

P − 1)2

4xP (x2
P − 2rxP + 1)

. (17)

The definition of the ordering is the same as in the r-curve case.

We consider its M -points, so let G = E(M). (Observe that in this case

E(M) = E(M)0).

The torsion point T2 is (0, 0) and we can easily compute T4 = (1,
√

2(1− r))

and 	T4 = (1,−
√

2(1− r)): to obtain these values this we solve y = αx,

y = x3 − 2rx2 + x,

with ∆ = 0, so we get α2x = x2 − 2rx + 1. Imposing ∆ = 0 we get α2 =

±2(1 − r), from which we get x = ±1. We can exclude x = −1 since on

substitution we would get y =
√
−2(1 + r), which leads to a “complex” y (in

fact 1 + r =
√
r2 + Im(e) + r ≥ 0, so −2 − 2r < 0, and its square root is

“complex”).

We have then only two kinds of reduction for curves of such form:

(1) either the curve E has good reduction, if v(1− r) = 0, or

(2) it has split multiplicative reduction, if v(1− r) > 0.

3.1. Computing G00. As in the previous section we computeG00 in terms

of the standard valuation.

Lemma 4.20. Let E be a curve in the form y2 = x3−2rx2 +x and G = E(M).

Then G00 =
⋂
n∈ω{P ∈ G|v(xP − 1) < 1

n
v(r − 1) ∧ xP > 1} =

⋂
n∈ω{P ∈

G|v(yP ) < 1
n
v(r − 1) ∧ xP > 1}.
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Proof. The proof is similar to the computation of G00 in the r-curve case:

Lemma 4.10. We recall that, by Lemma 3.1,

G00 =
⋂
n∈ω

{P |∀T [(T BO ∧ [n]T = O)→ 	T C P C T ]} .

By using the bounding sequence of torsion points defined in Definition 4.7, we

obtain again that

G00 = ∩2<n<ω{T | 	 Tn C T C Tn}. (18)

Recall that the 4-torsion points are T4 = (1,+
√

2(1− r)) and

	T4 = (1,−
√

2(1− r)).

We find now a general formula for the valuation of the 2n-torsion points.

By Equation (17) v(xT2n−1 ) = 2v(x2
T2n − 1) − v(xT2n ) − v(x2

T2n − 2rxT2n + 1).

We work by induction for n > 2, considering, for symmetry reasons, only the

torsion points with xTn > 1, yTn > 0, and TnB Tn+1; therefore we can suppose

v(xT2n−1 ) = 0 and v(xT2n ) ≤ 0.

If v(xT2n ) < 0 then v(xT2n−1 ) = 4v(xT2n ) − v(xT2n ) − 2v(xT2n ) = v(xT2n ) < 0

contradicting the inductive hypotesis.

So v(xT2n ) = 0.

We distinguish 2 cases: either v(r − 1) = 0 or v(r − 1) > 0.

(1) If v(r − 1) = 0, i.e., v(yT4) = 0 and E(M) has good reduction. We

want to prove that supposing v(xT2n−1 − 1) = 0, we get v(xT2n − 1) =

0. Then, observing that v(x2
T2n − 1) = v(xT2n − 1) + v(xT2n + 1) =

v(xT2n−1), we get 0 = v(xT2n−1 ) = 2v(x2
T2n−1)−v(x2

T2n−2rxT2n +1) =

2v(xT2n − 1)− v ((xT2n − 1)2 + 2(1− r)xT2n ).

Since (xT2n − 1)2 > 0, 2(1 − r)xT2n > 0 and v(1 − r) = 0,

v ((xT2n − 1)2 + 2(1− r)xT2n ) = min{v((xT2n−1)2), v(2(1−r)xT2n )} =

0. Thus 0 = 2v(xT2n − 1) + 0, and so v(xT2n − 1) = 0, as demanded.
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We have to prove now that the torsion points of a bounding se-

quence have projection and are cofinal in Fin>0.

As in the proof of Lemma 4.10, we prove that if xP > xT4 then

there is n ∈ ω such that x[2n]P ≤ xT4 . By Formula (17), and since

r < 1 < xP , x[2]P =
(x2

P−1)2

4xP (x2
P−2rx+1)

< 2xP (xP +1)(xP−1)2

4xP (x2
P−2x+1)

= (xP +1)(xP−1)2

2(xP−1)2 =

xP

2
+ 1

2
. This clearly implies that by iterating the duplication formula

finitely many times we obtain that x[2n]P ≤ xT4 , for some n.

(2) If v(r − 1) > 0, we proceed in computing the 8-torsion points. Since

xT4 = 1, 1 = xT4 =
(x2

T8
−1)2

4xT8
(x2

T8
−2rxT8

+1)
, i.e., x4

T8
− 4x3

T8
+ 2(4r − 1)x2

T8
−

4xT8 + 1 = 0. Let xT8 = 1 + s; substituting this in the equation we

obtain s4 = 8(1 − r)(1 + s)2. Since we supposed v(1 + s) = 0 and

v(1− r) > 0 we have v(xT8 − 1) = v(s) = 1
4
v(1− r) > 0.

We compute now v(xT2n ). Let 1 + t = xT2n−1 and 1 + s = xT2n .

Equation (17) becomes now 1 + t = ((1+s)2−1)2

4(1+s)((1+s)2−2r(1+s)+1)
, thus s4 =

4t ((1 + s)3 − 2r(1 + s)3 + (1 + s))− 8(1 + s)2(1− r).

Before proceeding in the computation, we recall that by inductive

hypothesis v(s) ≤ v(t) ≤ 1
4
v(1− r).

Consider firstly ((1 + s)3 − 2r(1 + s)3 + (1 + s)) =

= (2(1 + s)2(1− r) + s2(1 + s)); we have v(1 + s) = 0 and v(s2) =

2v(s) < v(1− r).

Therefore v (4t (2(1 + s)2(1− r) + s2(1 + s))) = v(t) + 2v(s).

On the other hand v(8(1 + s)2(1 − r)) = v(1 − r), and, since

v(t) + 2v(s) < v(1 − r), we get v(s4) = 4v(s) = v(t) + 2v(s), from

which v(s) = 1
2
v(t), i.e., v(xT2n − 1) = 1

2
v(xT2n−1 − 1). An induc-

tion argument similar to the one in Lemma 4.10 proves that G00 =⋂
n∈ω{P ∈ G|v(xP − 1) < 1

n
v(r − 1) ∧ xP > 1}.

To prove that G00 =
⋂
n∈ω{P ∈ G|v(yP ) < v(r− 1)∧ xP > 1} we observe that

v(yP ) = 1
2
[v(xP ) + v(x2

P − 2rxP + 1)] = 1
2
v ((xP − 1)2 + 2xP (1− r)). Since

v(xP − 1) < 1
n
v(r − 1), we easily get that v(yP ) = v(xP − 1).

�



3. ELLIPTIC C-CURVES 75

3.2. The good reduction case. If E(M) has good reduction, v(1−r) =

0. Thus the algebraic geometric reduction leads to an elliptic curve Ẽ(R)

defined by y2 = x(x2 − 2st(r)x+ 1).

Thus E(M) = E0(M), and by Lemma 4.20, E1(M) = {P ∈ E(M)|v(xP ) <

0} = {P ∈ E(M)|v(xP − 1) < 0} = G00.

Again this and Proposition 4.4 imply that

G/G00 = E(M)0/E(M)00 = E0(M)0/E1(M)0 ∼= Ẽ0(R). (19)

As in the good reduction case for the elliptic r-curves, M ′ is interdefinable

with the standard real closed valued field Mv; G/G
00 is internal to kv, and, by

Lemma 2.24, G/G00 is non-1-based in M ′.

3.3. The split multiplicative reduction case. Suppose E(M) has split

multiplicative reduction, i.e., v(1− r) > 0.

We want to construct a definable bijection of G/G00 with a group we know is

1-based. We can just consider a restriction of G to a subset of M2: the box B

determined on M2 by the convex sets µ+ 1 on the x-axis and µ on the y-axis,

this allows to exclude most points that aer either in G00 or in the class of the

2-torsion point. We shall prove that there is a representative in this box for

each element of G/G00; this is an easy consequence of the computation of the

classes G00 and (T2)∼.

We then compute (T2)∼.

Lemma 4.21. (T2)∼ =
⋃
n∈ω{P ∈ G|v(1− xP ) < 1

n
v(1− r) ∧ xP < 1}.

Proof. A point P is in (T2)∼ if and only if v (xP	T2 − 1) < 1
n
v(1 − r)

for all n ∈ ω. By Equation (16) v (xP	T2 − 1) = v
(
y2

P

x2
P

+ 2r − xP − 1
)

=

v
(
xP (x2

P−2rxP +1)

x2
P

+ 2r − xP − 1
)

= v(xP − 1)− v(xP ).

If v(xP ) > 0, then v(xP − 1) = 0, and v (xP	T2 − 1) = v(xP − 1) − v(xP ) =

−v(xP ) < 0 < 1
n
v(1− r), for all n. Thus P ∈ (T2)∼.
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If v(xP ) = 0, then v (xP	T2 − 1) = v(1− xP ), therefore P ∈ (T2)∼ if and only

if v (xP − 1) < 1
n
v(1− r) for all n ∈ ω. �

Since G00 determines a convex equivalence relation, and from the computation

of G00 and (T2)∼, it is clear that G \ {G00 ∪ (T2)∼} ⊂ B and there is both a

representative of G00 and one of (T2)∼ in B.

We shall need also a characterization of the classes of the 4-torsion points. We

compute them now.

Lemma 4.22. The 4-torsion points of G/G00 are

(T4)∼ =
⋂
n∈ω{P ∈ G|v(1 − xP ) > 1

2
v(1 − r) − 1

n
v(1 − r) ∧ yP > 0} and

(	T4)∼ =
⋂
n∈ω{P ∈ G|v(1− xP ) > 1

2
v(1− r)− 1

n
v(1− r) ∧ yP < 0}.

Proof. It is clearly sufficient to compute one of them, (T4)∼ say.

A point P is in (T4)∼ if [2]P ∈ (T2)∼, i.e., if v(x[2]P − 1) < 1
n
v(1 − r), for all

n ∈ ω. Working in B we recall that v(xP ) = 0.

But v(x[2]P−1) = v
(

(x2
P−1)2

4xP (x2
P−2rxP +1)

− 1
)

= v((x2
P−1)2−4xP (x2

P−2rxP +1))−

v((xP−1)2 +2xP (1−r)) = v((xP−1)4−8xP (1−r))−v((xP−1)2 +2xP (1−r)).

Now we could compute this splitting into various cases: 4v(xP −1) < v(r−1);

4v(xP − 1) = v(r − 1); 4v(xP − 1) > v(r − 1) and 2v(xP − 1) < v(r − 1);

4v(xP − 1) > v(r − 1) and 2v(xP − 1) = v(r − 1); and 4v(xP − 1) > v(r − 1)

and 2v(xP − 1) > v(r − 1). But since the equivalence relation determined by

G00 is convex, it is sufficient to consider the unique case among those above in

which there are both points in (T4)∼ and points not in (T4)∼.

This is the case 4v(xP − 1) > v(r − 1) and 2v(xP − 1) < v(r − 1); in fact

then v(x[2]P ) = v(1 − r) − 2v(1 − xP ), and this is in (T4)∼ if and only if

v(1−r)−2v(1−xP ) < 1
n
v(1−r) for all n, i.e. v(1−xP ) > 1

2
v(1−r)− 1

n
v(1−r) for

all n. This determines the points that are either in class (T4)∼ or (	T4)∼. �



3. ELLIPTIC C-CURVES 77

Observation 4.23. From now on, when we consider a point P /∈ (T4)∼, (	T4)∼,

we can suppose the following: v(xP −1) < 1
2
v(1−r), and in particular we have

v(x2
P − 2rxP + 1) = 2v(xP − 1).

We define a group H as follows: consider the interval

[√
2(1− r), 1√

2(1−r)

)
and plug two copies of it in M2, one on the x-axis, and one on the line y = 1.

The group H is definable in M , since its universe is the set{
(x, y)|x ∈

[√
2(1− r), 1√

2(1− r)

)
, y ∈ {0, 1}

}
;

the operation is the obvious modular operation having the unit (1, 0), the

2-torsion point at (1, 1) and seeing this as living in a Möbius band (i.e., we

glue together the points

(
1√

2(1−r)
, 1

)
and (

√
2(1− r), 0), and glue together(

1√
2(1−r)

, 0

)
and (

√
2(1− r), 1)).

It is immediate to see that H is definably isomorphic to the group

H ′ =

([
2(1− r), 1

2(1− r)

)
, · mod 2(1− r)−2

)
.

(The definable isomorphism ϕ : H → H ′ is ϕ(h, 0) = h, ϕ(h, 1) = 2(1−r)
h

if

h ≥ 1, and ϕ(h, 1) = 1
2(1−r)h if h < 1).

We define a function f∗ : G � B → H and prove that it is well defined

and induces a bijection on the quotient G/G00 → H/H00 (in the structure

(M,G00), after showing it is interdefinable with (M,H00)). We denote such

map by f : G/G00 → H/H00.

f∗(P ) =



(
1
yP
, 0
)

if xP ≥ 1 ∧ 0 < yP < 1,

(yP , 1) if xP < 1 ∧ 0 < yP < 1,(
− 1
yP
, 1
)

if xP < 1 ∧ −1 < yP ≤ 0,

(−yP , 0) if xP ≥ 1 ∧ −1 < yP ≤ 0.

(20)

We need to study the torsion points of H. In order to compute H00, observe

that the 4-torsion points h4 and h−1
4 are

(√
2(1− r), 0

)
and

(√
2(1− r), 1

)
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respectively, therefore, as seen in Chapter 3, Section 1.2,

H00 =
⋂
n∈ω

{
(t, 0)|

√
2(1− r) < tn < 1√

2(1−r)

}
=

=
⋂
n∈ω
{

(t, 0)| − 1
n
v(1− r) < v(t) < 1

n
v(1− r)

}
.

(21)

We compute also the class (h2)∼ of the 2-torsion point, and the classes (h+
4 )∼

and (h−4 )∼ of the 4-torsion points.

Lemma 4.24. The class (h2)∼ is

{(h, 1) ∈ H|(h, 0) ∈ H00} =

{
(h, 1) ∈ H| − 1

n
v(1− r) < v(h) <

1

n
v(1− r)

}
.

Proof. To compute, recall that H ∼= H ′, where H ′ is defined above.

Clearly (H ′)00 = ϕ(H00), so (h′2)∼ = {ϕ(h)|h2 ∈ H00}. We now compute

(h′2)∼. Let t ∈ H ′ such that t2 ∈ (H ′)00, then it is obvious that either

t > 1√
2(1−r)

or t <
√

2(1− r). By symmetry we just need to compute the

case t > 1√
2(1−r)

, this means t = 1
2(1−r)h for some (h, 1) ∈ H, with h < 1. So

the condition t ∈ (h′2)∼ is equivalent to t · t · (2(1− r))2 ∈ (H ′)00 (actually it is

in the part of (H ′)00 that is less than 1, i.e., v(t · t · (2(1− r))2) > − 1
n
v(1− r),

for every n); thus v
(

(2(1−r))2)
h·h·(2(1−r))2)

)
> − 1

n
v(1 − r), for every n. This clearly

means that v(h) < 1
n
v(1− r) for every n. Analogously t <

√
2(1− r) implies

v(h) > − 1
n
v(1 − r), for every n. Thus t ∈ (h′2)∼ if (and only if) its preimage

f−1(t) = (h, 1) is projected by the map ι(s, 1) 7→ (s, 0) into H00. This proves

the statement. �

Lemma 4.25. (h+
4 )∼ =

⋂
n∈ω
{
P ∈ H|

(
P = (x, 0)∧v(x) < −1

2
v(1−r)+ 1

n
v(1−

r)
)
∨
(
P = (x, 1) ∧ v(x) > 1

2
v(1− r)− 1

n
v(1− r)

)}
, and (h−4 )∼ =

⋂
n∈ω
{
P ∈

H|
(
P = (x, 1) ∧ v(x) < −1

2
v(1 − r) + 1

n
v(1 − r)

)
∨
(
P = (x, 0) ∧ v(x) >

1
2
v(1− r)− 1

n
v(1− r)

)}
.

Proof. We compute (h+
4 )∼; it is defined by (h+

4 )∼ = {(x, i) ∈ H|(x, i) ·

(x, i) ∈ (h2)∼}, i.e., it is such that (x, i) · (x, i) = (h, 1) and − 1
n
v(1 − r) <

v(h) < 1
n
v(1− r). For symmetry reasons we need only to compute the points
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in H � (y = 0) such that − 1
n
v(1− r) < v(x ·mod (2(1−r))−1 x) < 1

n
v(1− r), from

these it is immediate to deduce (h+
4 )∼.

If x > 1, and therefore v(x) ≤ 0, x ·mod (2(1−r))−1 x = x · x · 2(1 − r), thus by

our assumption v(x) < −1
2
v(1− r) + 1

n
v(1− r) for all n ∈ ω.

Analogously if x < 1, and therefore v(x) ≥ 0, x ·mod (2(1−r))−1 x = x.x.(2(1 −

r))−1, so v(x) > 1
2
v(1− r)− 1

n
v(1− r) for all n ∈ ω.

Putting them together and back on the Möbius strip, (h+
4 )∼ =

⋂
n∈ω
{
P ∈

H|
(
P = (x, 0) ∧ v(x) < −1

2
v(1 − r) + 1

n
v(1 − r)

)
∨
(
P = (x, 1) ∧ v(x) >

1
2
v(1− r)− 1

n
v(1− r)

)}
. �

We shall now prove that the map f∗ is well-defined in the quotient. We firstly

check it for G00 and the classes of the 2-torsion and 4-torsion points.

Lemma 4.26. (1) f∗(G
00) = H00,

(2) f∗((T2)∼) = (h2)∼,

(3) f∗(T4)∼ = (h+
4 )∼, and

(4) f∗(	T4)∼ = (h−4 )∼.

Proof. (1) In fact, for any P such that xP > 1 we have that the

second coordinate of the image is 0. We have two cases:

• If P ∈ G00 and yP > 0, then f∗(P ) =
(

1
yP
, 0
)

, with 0 ≤ v(yP ) <

1
n
v(r− 1) for each n (the bound 0 ≤ v(yP ) is because we work in

the restriction of G to B), so 0 ≥ 1
yP

> − 1
n
v(r − 1), so f∗(P ) ∈

H00.

• If P ∈ G00 and yP < 0, f∗(P ) = (−yP , 0), with 0 ≤ v(yP ) <

1
n
v(r− 1), so also 0 ≤ v(−yP ) < 1

n
v(r− 1), proving that f∗(P ) ∈

H00.

It is clear then that f∗(G
00) = H00.

(2) By (20), given P ∈ (T2)∼ (i.e., (1 − xP ) < 1
n
v(1 − r)) we have either

f∗(P ) = (yP , 1) if yP ≥ 0, or f∗(P ) = (− 1
yP
, 1) if yP < 0. In the former

case v(yP ) = 1
2
(v(xP )+v((xP −1)2−2xP (1−r))) = 1

2
(v((xP −1)2)) =

v(xP − 1) < 1
n
v(1 − r) by our assumption that P ∈ (T2)∼, but then
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also f∗(P ) ∈ (h2)∼. The latter case is analogous. It is immediate to

check that this map is surjective.

(3) Recalling that v(yP ) = v((xP − 1)2 + 2xP (1 − r)), we have two

possibilities when P ∈ (T4)∼: either 2v(xP − 1) < v(1 − r), then

v(yP ) = v(xP − 1) > 1
2
v(1 − r) − 1

n
v(1 − r), f∗(P ) = (yP , 1) and

v(yP ) > 1
2
v(1− r)− 1

n
v(1− r); or f∗(P ) = 1

yP
, and therefore v

(
1
yP

)
<

−1
2
v(1− r) + 1

n
v(1− r), so the image f∗(P ) is (h+

4 )∼.

(4) Analogous to (3) above.

�

We complete now the proof that the map f is a well defined map f : G/G00 →

H/H00.

Theorem 4.27. The map f : G/G00 → H/H00 is well defined.

Proof. We want to prove that given P,Q ∈ G, P ∼ Q if and only if

f∗(P ) ∼ f∗(Q).

By Lemma 4.26 it suffices now to consider the points P ∈ G that are not in

the classes G00, (T2)∼, (T4)∼, (	T4)∼, and by symmetry of Equation (16), we

can suppose that 0 < v(xP − 1) < 1
2
v(1− r), xP > xQ and v(xP ) = v(xQ) = 0.

By convexity of the equivalence relation we can always suppose either (T2)∼C

P,Q C (	T4)∼, or (	T4)∼ C P,Q C G00, or G00 C P,Q C (T4)∼, or (T4)∼ C

P,QC (T2)∼. We shall prove in detail the theorem only when xP , xQ > 1 and

yP , yQ > 0, i.e., when G00C P,QC (T4)∼; the other three cases are analogous.

By (16) and (21), we need to prove that 0 < v (xP	Q − 1) =

= v
(

(yP +yQ)2

(xQ−xP )2 + 2r − xP − xQ − 1
)
< 1

n
v(1−r), for all n if and only if − 1

n
v(1−

r) < v
(
yQ

yP

)
< 1

n
v(1− r), for all n (or, equivalently, − 1

n
v(1− r) < v

(
xQ−1

xP−1

)
<

1
n
v(1− r)).

We firstly prove LHS implies RHS.

Since if v(xP−1) = v(xQ−1) we are done, we can suppose v(xP−1) < v(xQ−1),

i.e., v(yP ) < v(yQ). Observe that then v(xP − xQ) = v(1 − xP ) < v(1 − xQ).
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With this consideration LHS leads to an easier supposition (substituting yQ

with yP and (xP − xQ)2 with (xQ − 1)2: v
(

(2yP )2

(xQ−1)2 + 2r − xP − xQ − 1
)
≤

v (xP	Q − 1) < 1
n
v(1 − r). We can rewrite the leftmost formula as (�) =

v(4xP (x2
P − 2rxP + 1)− (xP + 2r − xQ − 1)(xQ − 1)2)− 2v(xQ − 1).

Since v(4xP (x2
P − 2rxP + 1) = 2v(xP − 1), v((xP + 2r − xQ − 1)(xQ − 1)2) =

2v(xQ − 1), and by our supposition, 0 > (�) = 2v(xP − 1) − 2v(xQ − 1) =

v
(
xP−1
xQ−1

)
> − 1

n
v(1− r). This proves RHS.

We now prove RHS implies LHS.

Observe that (yQ + yP )2 > y2
Q + y2

P , that 1
(xP−xQ)2 >

1
(xP−1)2 , and that 2r −

xP − xQ − 1 > −xP − 1 (recall that we have 0 < r < 1 < xQ < xP ).

Thus v(xP	Q − 1) ≤ v
(
y2

P +y2
Q

(1−xP )2 − xP − 1
)

=

= v
(

y2
Q

(1−xP )2 + xP (xP−1)2

(xP−1)2 + 2xP (1−r)
(xP−1)2 − xP − 2(xP − r)

)
=

= v
(

y2
Q

(1−xP )2 + 2xP (1−r)
(xP−1)2 − 2(xP − r)

)
= (∗).

Now, by RHS, and the choice xQ < xP , 0 ≤ v
(

y2
Q

(1−xP )2

)
< 1

n
v(1− r) for all n;

by the fact that xP /∈ G00, v(xP −r) ≥ 1
m1
v(1−r) for some m1 ∈ ω; by the fact

that xP /∈ (T4)∼ =
⋃
n∈ω{P ∈ G|v(1− xP ) > 1

2
v(1− r)− 1

n
v(1− r) ∧ yP > 0},

v
(

y2
Q

(1−xP )2

)
= v(1 − r) − 2v(xP − 1) ≥ 1

m2
v(1 − r), for some m2 ∈ ω. Thus

(∗) = v
(

y2
Q

(1−xP )2

)
< 1

n
v(1− r) for all n ∈ ω; i.e.: P 	Q ∈ G00, and this proves

LHS.

Thus we have shown that the map f : G/G00 → H/H00 is well defined.

�

It is easy now to obtain the following corollary:

Corollary 4.28. The map f : G/G00 → H/H00 is a definable bijection.

By Theorem 3.7 and Lemma 2.24 we obtain that G/G00 is 1-based in M ′, and

that it is internal to Γw.

We thus obtain the theorem:
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Theorem 4.29. Given an elliptic c-curve E, let G = E(M)0; if E has good

reduction, then G/G00 is non-1-based in M ′ and it is internal to kw; if E has

split multiplicative reduction, then G/G00 is 1-based in M ′ and internal to Γw.

4. Truncations of elliptic curves

We still need to consider the possible truncations of the group ofM -points of an

elliptic curve seen in the two previous sections. We will again treat separately

the elliptic r-curves and c-curves. Since in the latter E(M) = E(M)0, to ease

the notation we shall denote the original group always as E(M)0, but when E

has “complex” roots we should imagine it as referring to all the M -points of

E.

We recall that given an elliptic curve E defined over a saturated real closed field

M , we call a group G of the form ([	P, P ),⊕ mod [2]P ), where P ∈ E(M)0

and the interval is considered according to the order C of E(M), a truncation

of E(M)0.

We shall denote by Q∗,C∗,⊕∗, [n]∗ the points, order, operation and formal

multiplication on E(M)0 respectively and by Q,C,⊕, [n] those on G.

Both for the r-curves and the c-curves, we shall consider separately the case

when E(M)0 has good reduction or nonsplit multiplicative reduction, and the

case when E(M)0 has split multiplicative reduction.

We shall prove the following theorem:

Theorem 4.30. Given a truncation G = ([	P, P ),⊕ mod [2]P ) of the M-

points of an elliptic curve E, one of the following holds:

Either the following equivalent conditions hold:

(1) G/G00 is 1-based in M ′.

(2) G/G00 is internal to the value group Γw determined by G00 in M ′.

(3) One of the following holds:
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• E is an r-curve, E(M) has split multiplicative reduction and

v(xP ) > 0.

• E is a c-curve, E(M) has split multiplicative reduction, v(xP −

1) > 0 and xP > 1.

Or, G is not of either of the forms in (3), G/G00 is non-1-based in M ′, and it

is internal to the residue field kw determined by G00.

Proof. We shall consider all the possible cases, and therefore get all the

implications in the theorem by exhaustion.

r-curves :

Firstly we prove that for the good reduction and nonsplit multiplicative reduc-

tion case, non-1-basedness is preserved in truncations.

We split into two subcases:

Subcase 1: The point P defining the truncation is in E(M)0 \ E(M)00; and

Subcase 2: The point P is in E(M)00.

Subcase 1: G = ([	P, P ),⊕ mod [2]P ) and P /∈ E(M)00. Then this implies

that T ∗n C
∗ P C∗ T ∗n+1 (or T ∗n B

∗ P B∗ T ∗n+1) for some n. We consider the first

inequality, the second one is identical. Let Tk be a torsion point of G, then

it is easy to see that xT ∗kn
< xTk

< xT ∗
k(n+1)

. So for each torsion point T of G,

there are two torsion points of E(M)0 whose projections on the x-axis bound

the projection of T , therefore G00 = E(M)00. Moreover G/G00 is a definable

truncation of E(M)0/E(M)00 = Ẽ(R)0 in the expansion of M by a predicate

for G00, and so it is non-1-based by Corollary 4.16.

Subcase 2: G = ([	P, P ),⊕ mod [2]P ) and P ∈ E(M)00. Clearly G00 6=

E(M)00. We show then that G00 is still definable in the expansion M ′ of M

by E(M)00 and that moreover it is definable in a sort of (M ′)eq interdefinable

with kv ∼= R in (M ′)eq. This clearly implies non-1-basedness.

Observe that v(xP ) < 0. We firstly want to determine G00.
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We recall that v(ε) ≥ 0, and that if S ∈ G, then v(xS) < 0, since G ⊆ E(M)00.

Hence v
(
x[2]S

)
= v

(
(x2

S+ε)2

4xS(xS+1)(xS−ε)

)
= 2v(x2

S + ε) − v(xS) − v(xS) − v(xS) =

v(xS), and we find that

G00 = {S ∈ G|v(xS) < v(xP )} . (22)

We prove now that S ∼ Q (i.e., S	Q ∈ G00) if and only if v(xS−xQ) > v(xP )

and yS, yQ have the same sign (of course also if S ∼ P and Q ∼ P ). Then we

get that G/G00 is definable in the sort B≥v(xP )(0)/B>v(xP )(0) ∼= kv ∼= R (by

Remark 1.14), and therefore that G/G00 is internal to the residue field of a

real closed valued field, and so it is non-1-based by Lemma 2.24.

Observe that for each S /∈ G00, v(xS) = v(xP ), by 22, so it is sufficient to show

that the following claim holds:

CLAIM: v(xS	Q) < v(xS) if and only if v(xS − xQ) > v(xS), or equivalently

v
(
xQ

xS
− 1
)
> 0.

Proof of the claim: Thoughout the claim we denote δ =
xQ

xS
− 1. Firstly we

prove RHS ⇒ LHS.

We use the standard valuation: v(xS	Q) = v
(

(yQ+yS)2

(xQ−xS)2 − 1 + ε− xS − xQ
)

.

After substituting δ and a bit of manipulation we find that it is equal to:

v
(

(xS + 1)(xS − ε)
(
yQ

yS
+ 1
)2

− (1− ε)xSδ2− x2
Sδ

2− xSxQδ2
)
− v(xS)− 2v(δ).

Now some considerations: v(xS) = v(xQ) implies v(yS) = v(yQ), therefore

v
(
yQ

yS

)
= 0, and since sign(yS) = sign(yQ) we get v

(
yQ

yS
+ 1
)

= 0; moreover

v(δ) ≥ 0.

Also: v(xS + 1) = v(xS), v(xS − ε) = v(xS).

We consider separately the parts of the above polynomial:

• v
(

(xS + 1)(xS − ε)
(
yQ

yS
+ 1
)2
)

= 2v(xS).

• v ((1− ε)xSδ2) = v(xS) + 2v(δ) > 2v(xS).

• v (x2
Sδ

2 + xSxQδ
2) = 2v(xS) + 2v(δ).
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So v

(
(xS + 1)(xS − ε)

(
yQ

yS
+ 1
)2

− (1− ε)xSδ2 − x2
Sδ

2 − xSxQδ2

)
≥ 2v(xS),

therefore v(xS	Q) ≥ 2v(xS)−v(xS)−2v(δ) = v(xS)−2v(δ). Since we assumed

v(xS	Q) < v(xS), we obtain −v(δ) < 0, so v
(
xQ

xS
− 1
)
> 0 and we are done.

For the other direction, LHS ⇒ RHS, suppose v(δ) > 0. Then v(xS	Q)

is v

(
(xS + 1)(xS − ε)

(
yQ

yS
+ 1
)2

− (1− ε)xSδ2 − x2
Sδ

2 − xSxQδ2

)
− v(xS) −

2v(δ), with v(

(
(xS + 1)(xS − ε)

(
yQ

yS
+ 1
)2
)

= 2v(xS) and, since v(δ) > 0,

v(1− ε)xSδ2), v(x2
Sδ

2), v(xSxQδ
2) > 2v(xS), thus v(xS	Q) = 2v(xS)− v(xS)−

2v(δ) = v(xS)− 2v(δ) < v(xS) = v(xP ), so S 	Q ∈ G00.

This concludes the proof of the claim, and hence of Subcase 2.

We consider now the case of E(M) with split multiplicative reduction, i.e., E

is defined by y2 = x(x+ 1)(x− ε) where v(ε) > 0. We have four subcases:

(1) If P ∈ E(M)0 \ E(M)00, it is analogous to Subcase 1 above: we

have that G00 = E(M)00. Let H be the multiplicative truncation(
[ε, 1

ε
), · mod ε2

)
. The definable bijection f : E(M)0/E(M)00 →

H/H00 of Theorem 4.15 restricted to G/G00 is then a definable bi-

jection f ′ : G/G00 → H ′/H ′00, where

H ′ =

([
f(P ),

1

f(P )

)
, · mod f(P )2

)
is a “big” multiplicative truncation. By Lemma 2.24, G/G00 is then

1-based and it is clearly internal to the value group of a real closed

valued field.

Therefore f ′ transfers 1-basedness of H ′/H ′00 to G/G00 as in the

proof of Theorem 4.18.

(2) P ∈ E(M)00 and v(xP ) < 0. This is identical to Subcase 2 of the

good reduction and nonsplit multiplicative reduction above, and the

same calcualtion leads to non-1-basedness of G/G00.

(3) P ∈ E(M)00 and v(xP ) > 0. Observe that if xS ∈ G, and v(xS) > 0,

then also v(xS) < v(ε). Then v
(
x[2]S

)
= v

(
(x2

S+ε)2

4xS(xS+1)(xS−ε)

)
= 2v(x2

S+

ε)− v(xS)− 0− v(xS) = 2v(xS).
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As in the split multiplicative case we shall produce a definable

bijection G/G00 → H/H00 with H =

([
xS,

1
xS

)
, · mod

(
1
xs

)2
)

a

“big” multiplicative truncation.

We define the map f∗ : G→ H as

f∗(S) =



1 if S ∈ O∼,

(
1
xS

)
if yS ≥ 0,

xS if yS < 0.

Consider the induced map f : G/G00 → H/H00. The same calcu-

lation that led to Corollary 4.16 gives us that f is a definable bijection.

ThereforeG/G00 inherits 1-basedness fromH/H00 by Lemma 2.24 and

again it is internal to the value group of a real closed valued field.

(4) P ∈ E(M)00 and v(xP ) = 0. It is again immediate to observe that

if xS ∈ G and v(xS) = 0, v
(
x[2]S

)
= v(xS). Therefore G00 = {S ∈

G|v(xS) < 0}. By the same argument as Subcase (3), we obtain a

definable bijection with a multiplicative truncation, though this time

it is a “small” one, and therefore G/G00 is non-1-based and internal

to the residue field of a real closed valued field again by Lemma 2.24.

c-curves:

In the good reduction case, i.e., E : y2 = x(x2−2rx+ 1) and v(r−1) = 0, and

G is a truncation of E(M), the proof that G/G00 is non-1-based and internal

to kv is an analogue of the proof for the r-curves. We quickly present it:

(1) If P /∈ E(M)00, an easy argument on the torsion points proves that

G00 = E(M)00 and the function f of Theorem 4.27 together with

Lemma 2.24 and Theorem 3.7 witnesses non-1-basedness of G/G00

and its internality to Γw.

(2) If P ∈ E(M)00, we need to compute G00 and again we use the torsion

points. Notice that if S ∈ G, then v(xS) < 0. Also v(xT2n−1 ) =
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v

(
(x2

T2n
−1)2

4xT2n (x2
T2n
−2rxT2n+1)

)
= 4v(xT2n ) − 3v(xT2n ) = v (xT2n ). From this

we deduce that G00 = {S ∈ G|v(xS) < v(xP )} and that therefore

in M ′ = Mv, G/G
00 is a definable subset of B≥v(xP )(0)/B>v(xP )(0).

Therefore G/G00 is internal to kv and non-1-based (as in the proof for

the truncations of r-curves with good reduction).

We consider lastly the split multiplicative reduction case: v(r − 1) > 0. We

have again 4 subcases:

(1) If P ∈ E(M) \ E(M)00. As before, it is 1-based and internal to Γw.

(2) P ∈ E(M)00 and v(xP − 1) < 0. Analogous to Subcase (2) of the

c-curves case above, and therefore non-1-based and internal to kv.

(3) P ∈ E(M)00 and v(xP−1) > 0. The proof is identical to the analogous

case for the r-curves. G/G00 is therefore 1-based in M ′, and internal

to Γw.

(4) P ∈ E(M)00 and v(xP − 1) = 0. Then, if S ∈ G, v(xS) = v(xS − 1) =

0, for the torsion points we have v(xT2n−1 ) = v

(
(x2

T2n
−1)2

4xT2n (x2
T2n
−2rxT2n+1)

)
=

0, so G00 = {S ∈ G|v(xS) < 0}, and therefore G/G00 is non-1-based

and internal to kv.

With these we have considered all possible cases and concluded the proof of

Theorem 4.30.

�

5. Statement of the main result

In this and the previous chapter we have analysed all the cases in List A.

This, if Conjecture 1.12 holds, is a complete analysis of 1-dimensional, defin-

ably compact, definably connected, definable groups in a saturated real closed

field M . We found a strong link between the geometric stability notion of

1-basedness for the group G/G00 in a suitably enriched ambient structure M ′,

and the notion of internality to the value group or the residue field of a real

closed valued field Mw interdefinable with M ′; moreover in the elliptic curve
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case we obtained also a relationship with the algebraic geometrical notion of

reduction.

We have therefore proved the following theorem:

Theorem 4.31. Given a group G from List A in a saturated real closed field

M , the structure M ′ = (M,G00, . . . )eq (obtained by adding a predicate for G00

to M) is interdefinable with a real closed valued field Mw.

There are two possible behaviours, either the following equivalent conditions

hold:

(1) The group G/G00 is 1-based in M ′.

(2) The group G/G00 is internal to Γw in Mw.

(3) • Either G =
([

1
b
, b
)
, · mod b2

)
, and b is an infinite element of M ,

or

• G = E(M)0 and E is an elliptic curve with split multiplicative

reduction, or

• G is the truncation of E(M)0 by a point P such that v(xP ) > 0,

where E is an elliptic r-curve with split multiplicative reduction,

or

• G is the truncation of E(M)0 by a point P such that v(xP−1) > 0

or xP < 1, where E is an elliptic c-curve with split multiplicative

reduction.

Or the following equivalent conditions hold:

(1) The group G/G00 is non-1-based in M ′.

(2) The group G/G00 is internal to kw in Mw.

(3) • Either G = ([−1, 1),+ mod 2), or

• G =
([

1
b
, b
)
, · mod b2

)
, and b is a finite (or even infinitesimal)

element of M , or

• G = SO2(M), or

• G is truncation of SO2(M), or
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• G = E(M)0 and E has good or nonsplit multiplicative reduction,

or

• G is the truncation of E(M)0 by a point P such that v(xP ) ≤ 0,

where E is an elliptic r-curve with split multiplicative reduction,

or

• G is the truncation of E(M) by a point P such that v(xP−1) ≤ 0

and xP > 1, where E is an elliptic c-curve with split multiplicative

reduction.



CHAPTER 5

Generalizations, questions and connections

The contents of this chapter are more to give an idea of some generalizations of

the results obtained so far, hence some of the proofs are not carried in complete

detail and some results are only partial. In the first two sections we attempt a

generalization of the main result, Theorem 4.31, in two directions: in Section 1

we consider the ind-hyperdefinable groups G̃/G̃00, where G̃ is ind-defined from

one of the truncations G from List A, and extend Theorem 4.31 in this way; in

Section 2 we deal with a variant of Theorem 4.31 where 1-basedness of G/G00

is considered in the full Shelah expansion MSh of our starting saturated real

closed field M . In Section 3 we show some links with work by Hrushovski in

the unpublished paper “Metastable groups” [13].

For the rest of the chapter M denotes again a saturated real closed field.

1. Ind-hyperdefinable groups

We consider the groups (G, ∗) from List A that are truncations of some defin-

able 1-dimensional, definably connected, definable group (Ĝ, ·) in M , i.e.:

(1) G = ([−1, 1),+ mod 2), a truncation of Ĝ = (M,+), or

(2) G =
([

1
b
, b
)
, · mod b2

)
, a truncation of Ĝ = (M>0, ·), or

(3) G a truncation of Ĝ = (SO2(M), ∗), or

(4) G a truncation of Ĝ = (E(M)0,⊕), where E is an elliptic curve.

Definition 5.1. We ind-define G̃ as follows: G̃ =
⋃
i∈ω Gi (as a set) where

G0 = G and Gi+1 = Gi · Gi, the set of elements of the form k · h where

k, h ∈ Gi and the operation · is the operation in the untruncated group Ĝ.

Thus Gi+1 = [g−1 · g−1, g · g), where Gi = [g−1, g), g ∈ Ĝ, and the interval

is considered according to the definable ordering of G̃ given by Proposition 2

90
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of [30]. In Gi+1 the group operation is defined as follows: ∗i+1 = · mod g4.

Therefore (Gi, ∗i) is a truncation of (Ĝ, ·).

Observe that although the operations in Gi, and in G̃ are different, when we

restrict them to G00
i and G̃00 we have (G00

i , ·) = (G̃00, ·). This immediately

implies the following lemma:

Lemma 5.2. Given a truncation G as above, then G̃00 = G00.

Observe also that G̃ is an ind-definable set in the sense of Definition 2.3;

moreover Definition 5.1 is equivalent to Definition 7.1 of [11].

Our aim is to transfer 1-basedness (or non-1-basedness) from (G, ∗) to (G̃, ·)

in a sufficiently enriched structure:

Theorem 5.3. A group G̃/G̃00, where G̃ is ind-defined from a truncation

G, defined with parameters a, as in Definition 5.1, is 1-based in the struc-

ture M ′′ = (M, G̃, G̃00, a, . . . )eq if and only if G/G00 is 1-based in M ′ =

(M,G00, a, . . . )eq.

We split into two cases: if G/G00 is non-1-based in M ′, and if G/G00 is 1-based

in M ′.

In the former case we show that M ′′ is interdefinable with M ′, in Lemma

5.4, then Theorem 5.3 will follow easily. In the latter case we shall prove

1-basedness of G̃/G00 directly in M ′′.

Case 1: Let G/G00 be non-1-based in M ′.

Lemma 5.4. If G/G00 is non-1-based in M ′, the structure

M ′′ = (M, G̃, G̃00, a, . . . )eq, in which G̃/G̃00 is definable, is interdefinable with

M ′ = (M,G00, a, . . . )eq.

Proof. Since G00 = G̃00 we only have to show that G̃ is definable in a

structure with a predicate for G00.
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We firstly recall that if G/G00 is non-1-based in M ′, then G is one of the

following:

(1) Either G = ([−1, 1),+ mod 2): an additive truncation, or

(2) G =
([

1
b
, b
)
, · mod b2

)
, v(b) ≥ 0: a small multiplicative truncation, or

(3) G = ([−S, S), ∗ mod [2]S): a truncation of SO2(M), or

(4) ([	P, P )⊕ mod [2]P ), such that P ∈ E(M)0, and either E has

good or nonsplit multiplicative reduction, or E is an r-curve with

split multiplicative reduction and v(xP ) ≤ 0, or E is a c-curve with

split multiplicative reduction and both v(xP − 1) ≤ 0 and xP > 1.

We shall define G̃ in M ′ case by case:

(1) Additive truncation: if G̃ is constructed from an additive truncation

G = ([−1, 1),+ mod 2), then G00 is the set of infinitesimal elements,

and G̃ the set of finite elements, so we can simply define G̃ as {x|x−1 ∈

G00}. Clearly any additive truncation A = ([−a, a),+ mod 2a) is

definably isomorphic to G above, so analogously we can define Ã using

A00.

(2) Small multiplicative truncation: if G̃ is constructed from a multi-

plicative truncation G = ([b−1, b), · mod b2), with v(b) ≥ 0, then

we know that G00 − 1 = A00, by Observation 3.6: the minimal

bounded index type-definable subgroup of the additive truncation

A =
([
− (b − 1), b − 1

)
,+ mod 2(b − 1)

)
. We just proved that

Ã is definable in the structure M ′ = (M,G00, b, . . . )eq using the pred-

icate for A00 and this latter is definable using G00. We now define G̃

using Ã: let α be the upper cut of Ã, it is sufficient to prove that α+1

is the upper cut of G̃. This will prove that we can define G̃ using G00.

Consider then g ∈ G̃, and g > 1. To prove that g − 1 < α, it

is sufficient to show that v
(
g−1
b−1

)
≥ 0, since 1

b−1
α is the upper cut of

Fin. But g ∈ G̃ implies that g < bn for some n, and so g−1
b−1

< bn−1
b−1

.

Using the valuation, v
(
g−1
b−1

)
≥ v

(
bn−1
b−1

)
= v(bn−1 +bn−2 + · · ·+1) = 0.
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On the other hand if a < α, a ∈ Ã, then a < n(b− 1) for some n,

thus a+1 < n(b−1)+1 < (b−1)n+· · ·+n(b−1)+1 < (b−1+1)n < bn,

and therefore a+ 1 ∈ G̃.

This proves that G̃ is definable in (M,G00, b, . . . )eq.

(3) Truncations of SO2(M). If G̃ is constructed from a truncation G =

[−S, S) of SO2(M), then either v(yS) = 0, and in this case G̃ is

SO2(M) itself, by inspection of the torsion points, and we are done, or

v(yS) > 0. If this is the case, we want to construct a definable bijection

(in the structure M ′ = (M, G̃00, xS, yS, . . . )
eq) between G̃/G00 and the

quotient of an ind-definable group Ã from an additive truncation A,

by its own A00.

We consider again the function l : G̃→M , l(P ) = yP

xP
.

Let A =
(
[−l(S), l(S)) + mod 2 · l(S)

)
, then A00 = {x|v(x) >

v(yS)}, in fact v(l(S)) = v(yS). Then Ã = {x|v(x) ≥ v(l(S))}.

Following the proof of Lemma 3.9 we obtain that l(G00) = A00.

The same argument proves also that l(G̃) = Ã = {x|v(x) ≥ v(yS)}.

Thus M ′ is interdefinable with (M,A00, l(S), . . . )eq, in which Ã is de-

finable. We can therefore define G̃ in M ′, by considering G̃ = l−1(Ã

and observing that l−1 is definable in M ′.

(4) In all the cases of truncations G = [	P, P ) of M -points of an elliptic

curve, where G/G00 is non-1-based, by results in Chapter 5, G00 de-

termines a cut on M of the form {x ∈ M |x > 0 ∧ v(x) ≥ γ}, where

γ ∈ Γv. We prove the following claim: {x ∈ M |x > 0 ∧ v(x) > γ},

definable in M ′, defines G̃.

In fact G2n = [	P2n , P2n), and [n]P2n = P . But on checking the

proof of Theorem 4.30 we observe that if S ∈ G2n \ G00, v(x[2]S) =

v(xS), from which we obtain that for each n, v(xP2n ) = v(xP ), from

which we get the claim.

Therefore we have proved by exhaustion the lemma. �
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By Lemma 2.16, G̃/G00 is uniformly o-minimal in M ′, so it makes sense to

talk about 1-basedness of the theory of G̃/G00 in M ′.

It is clear that in these cases also G̃/G00 is non-1-based: in fact we can witness

non-1-basedness in a neighbourhood of the identity with the same function

used to prove non-1-basedness of G/G00 in the corresponding cases of the

previous section.

This proves Theorem 5.3 in the cases when G/G00 is non-1-based.

Case 2: Let G/G00 be 1-based in M ′.

By Theorem 4.31, G/G00 is internal to Γw: the value group of the real closed

valued field interdefinable with M ′.

The only truncations G that have the behaviour described above are:

(1) G =
([

1
b
, b
)
, ·mod b2

)
, v(b) < 0: a big multiplicative truncation,

(2) G = [	P, P ) a truncation of E(M)0, M -points of an elliptic curve,

with E an r-curve in minimal form with split multiplicative reduction,

and v(xP ) > 0, or E a c-curve in minimal form with split multiplica-

tive reduction and either v(xP − 1) > 0 or xP < 1.

We consider the structure M ′′ = (M,G00, G̃, a, . . . )eq. Again there is a real

closed valued field Mw definable in M ′′ with the cut determined by G00 on M .

If G is a big multiplicative truncation, we proved in Theorem 3.7 that G/G00 is

a definable subset of Γw. Moreover if G is determined by an elliptic curve, we

proved in Chapter 4 that there is a definable bijection between G/G00 and the

quotient of a big multiplicative truncation H by H00. It is clear that we can

extend such a bijection to the groups Gi/G
00 → Hi/H

00 in the ind-definition

of G̃ and H̃. Thus we have a definable bijection f : G̃/G00 → H̃/H00.

As seen in Chapter 4 it is then sufficient, by Lemma 2.24, to prove that G̃/G00 is

1-based in M ′′ for G a big multiplicative truncation, and thus obtain Theorem

5.3 for all G̃/G00 when G/G00 is 1-based in M ′.
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By Theorem 2.16 the group G̃/G̃00 is a uniformly o-minimal set in M ′′. It

makes sense then to talk about 1-basedness of G̃/G̃00 in M ′′ as in Definition

2.20.

We work in the value group Γw given by the valuation w, seen as living in M ′′.

We are within the conditions of Theorem 3.1.1 of Shaw’s Thesis [31], thus the

structure Γ̃w, obtained from Γw by adding a predicate P for w(G̃) = G̃/G00,

has quantifier elimination in the language L = (+, <, 0, c1, c2, G̃/G
00), where

c1 is a positive element of G̃/G00 and c2 a positive element of Γ̃w \ G̃/G00.

It is then easy to prove that G̃/G00 is fully embedded in Γ̃w as a divisible

ordered abelian group, using quantifier elimination. The last step to prove

that G̃/G00 is 1-based in M ′′ is then the following claim (suggested by Pillay):

CLAIM: Γ̃w = (Γw,+, <, 0, P ) is fully embedded in M ′′ as a divisible ordered

abelian group.

Proof of the claim: Firstly observe that M ′′ is interdefinable with (Mw, P ) =

((M,+, ·, <, 0, 1), (Γw,+, 0, <, P ), . . . ), so it suffices to work in (Mw, P ).

We work in a saturated model (M ′
w, P

′) = ((M ′, . . . ), (Γ′w, . . . , P ), . . . ) of

Th(Mw, P ).

Let c ⊂M ′
w, and X be a c-definable subset of (Γ′w)n in (M ′, P ). We show that

X is definable with parameters in (Γ′w,+, <, 0, P ).

Let Lw be the language of Mw, i.e.,the language of a real closed valued field,

and d = dcl(c)∩Γ′w (note, here we work in the language without the predicate

P ).

Since (Γ′w,+, <, 0) is stably embedded in M ′
w, every automorphism of (Γ′w,+, <

, 0) fixing d extends to an automorphism of M ′
w fixing c.

In particular, when we work with the predicate P , any automorphism f of

(Γ′w,+, <, 0, P ) fixing d, extends to an automorphism g of (M ′
w, P ).
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It follows that given a, b n-tuples, tp(a/d) = tp(b/d) in (Γ′w,+, <, 0, P ) if and

only if tp(a/c) = tp(b/c) in (M ′
w, P ).

In particular the map from complete n-types over c in Th(M ′
w, P, c) to com-

plete n-types over d in Th(Γ′w,+, <, P, d) is a continuous (in the Stone space

topology) bijection, and therefore it is a homeomorphism, and therefore sends

clopens (i.e, formulae) to clopens (formulae). Therefore it is a map sending the

formula defining X to a formula in (Γ′w,+, <, 0, P, d), and so (Γ′w,+, <, 0, P )

is stably embedded in (M ′
w, P

′).

When we consider c = ∅ we obtain that (Γ′w,+, <, 0, P ) is also canonically

embedded in (M ′
w, P

′), and we proved the claim.

So G̃/G00 is fully embedded in M ′′ as a divisible ordered abelian group, there-

fore it is 1-based in M ′′.

With this case we have proved Theorem 5.3.

2. Shelah expansion

We look now at a generalization of Theorem 4.31 in another direction: we

consider 1-basedness in the full Shelah expansion of a real closed field. Observe

that the expansion M ′ = (M,G00, . . . )eq used in the previous chapters to turn

the bounded hyperdefinable groups into definable groups (and even M ′′ in the

previous section, to deal with certain ind-hyperdefinable groups) are all reducts

of the Shelah expansion (MSh)eq. It is therefore natural to ask whether the

above groups are 1-based or non-1-based in (MSh)eq.

It is clear that if G/G00 is non-1-based in M ′ = (M,G00, . . . )eq, G/G00 will

also be non-1-based in (MSh)eq. So we need to check 1-basedness in (MSh)eq

for the groups G/G00 that are 1-based in M ′.

The main tool to prove 1-basedness is stable embeddedness of the value group

Γ, but we need here to describe what we mean by the value group in (MSh)eq.

There are in fact many definable valuations in (MSh)eq, and if we consider

one of these definable value groups, it has a much richer structure than a pure
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divisible ordered abelian group, since there are predicates for all externally

definable sets.

Given a predicate P in MSh for a convex multiplicative group in M with 2 ∈ P

and closed under square roots, it defines a unique valuation w. We denote by

ΓP the value group determined by w, as a sort in (MSh)eq. This will have

predicates for all externally definable sets. Our aim is to prove that ΓP is

stably embedded, meaning that Th(ΓP ) = Th(Γw
Sh) where Γw is a divisible

ordered abelian group.

We recall that M ′ = (M,P, . . . ) is interdefinable with a real closed valued

field, so we call the value group, in the language LM ′ , Γw. Observe that ΓP

and Γw have the same base set, they differ when considered as structures on

their own.

Observe firstly that (MSh)eq = ((M ′)Sh)eq. Moreover denote by M an |M ′|+-

saturated model of Th(M ′), then every definable set in (MSh)eq = ((M ′)Sh)eq

is definable in M ′ with parameters from M . Denote by Γw the value group

of M . By full embeddedness of the value groups as divisible ordered abelian

groups, we have that Γw � Γw, and that given any externally definable set X

of M ′, X ∩Γw is definable with parameters from Γw. So every definable set of

ΓP is definable with parameters from an elementary extension Γw of Γw, and

therefore Th(ΓP ) = Th(Γw
Sh).

By the positive solution of the Trace Conjecture in the case of divisible or-

dered abelian groups, due to quantifier elimination for divisible ordered abelian

groups, we have that Th(Γw
Sh) = Th(Γw

cuts), the theory of a divisible abelian

ordered group expanded by all Dedekind cuts.

Consider now G a big multiplicative truncation of M . Then G/G00 is a defin-

able subset of ΓP , and, analogously to the study of big multiplicative trunca-

tions in Chapter 3, we can work in TΓP
= TΓSh

w
.

Theorem 3.11 implies that G/G00, as a set definable in ΓP , is complete, and

therefore there are no Dedekind cuts; thus, by what was shown above, there is
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no further structure induced on G/G00 in MSh. Therefore TG/G00 in ΓP equals

TG/G00 in Γw, and this proves that if G/G00 is 1-based in M ′, then it is 1-based

in MSh.

Therefore we have proved:

Theorem 5.5. Given a big multiplicative truncation G in M , G/G00 is 1-based

in (MSh)eq.

If G is the group of M -points of an elliptic curve or a truncation of an elliptic

curve, for which G/G00 is 1-based in M ′ = (M,G00, . . . ), the definable bijection

f : G/G00 → H/H00, where H is a big multiplicative truncation, seen in

Chapter 4, Theorem 5.5 above and Lemma 2.24 easily imply that G/G00 is

1-based in MSh.

We have therefore proved the following theorem:

Theorem 5.6. Given a group G from List A, definable in a saturated real

closed field M , G/G00 is 1-based in M ′ = (M,G00, . . . )eq if and only if G/G00

is 1-based in (MSh)eq.

3. The connection with work by Hrushovski

I shall briefly outline how my research fits into the project of Hrushovski in [13].

In the article [13] Hrushovski introduces the class of metastable theories, whose

motivating example is the theory of algebraically closed valued fields.

We state what Theorem 5.9 of [13] roughly means:

Theorem 5.7 (Hrushovski). Given G a commutative definable group in an

algebraically closed field K, there is a definable homomorphism f : G → H,

where H is a group in Γeq (the value group of K) and ker(f) is a stably

dominated group (i.e., a group with a definable generic type which is stably

dominated).
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We are likely to prove analogous behaviour in the cases studied in this thesis

in the context of real closed valued fields. We work in a saturated standard

real closed valued field M , and consider elliptic curves over M : G = E(M)0.

The following version of the theorem above, specific to real closed valued fields,

whose solution should follow from Theorem 5.7 is the following:

Statement 5.8. Given G = E(M)0, then in Mv, the standard real closed

valued field, either:

(1) there is a definable epimorphism of G onto a group H definable in Γv,

such that in a suitably enriched structure G/G00 is definably isomor-

phic to H/H00, or

(2) there is a definable epimorphism of G onto a group H definable in kv;

moreover it is simply the map G→ G/G00 = H.

We would like to obtain directly the statement above from our results. This

thesis shows already that for G = E(M)0 and E an elliptic curve with good

or nonsplit multiplicative reduction the statement is true, and we are in the

second case of Statement 5.8. The only obstacle to prove that if E has split

multiplicative reduction we have the behaviour described in the first case is

the following open question:

Question 5.9. Does the map f∗ : G → B defined in Chapter 4 for the

split multiplicative reduction cases of r-curves and c-curves, and where B =([
1
b
, b
)
, ∗ mod b2

)
is a multiplicative reduction, induce a group homomorphism

f ′∗ : G→ v(B) on the image of B under the standard valuation, with the usual

value group operation?

It would actually suffice to prove that f ′∗ defines a group structure on v(B),

then by a result of Eleftheriou and Starchenko (Theorem 1.4 in [6]), we would

be able to find the epimorphism required in Statement 5.8.

Observe also that it makes no sense to talk about stable domination for such

structures, since both the value group and the residue field of a real closed
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valued field are unstable, therefore a more suitable notion such as “o-minimal

domination” needs to be developed. This could be a topic of future research.



CHAPTER 6

Summary

In Chapters 1 and 2 of this thesis we introduced and generalized some notions,

and described the groups to be analysed in the following chapters. We con-

sidered G a 1-dimensional, definably compact, definably connected, definable

group in a saturated real closed field M , and wrote a list (List A) inspired by

a theorem of Madden and Stanton, conjecturing that it is a complete classifi-

cation of such groups G. We then considered the quotient of G by its group

of “infinitesimals”, G00, and described two topologies on it: the logic topology

(viewing G/G00 as an hyperdefinable group in M), and the o-minimal topology

(viewing G/G00 as a structure on its own), showing how they coincide. We

then explained how can we define structural properties, such as 1-basedness,

of G/G00 by working in a sufficiently enriched structure M ′.

In Chapters 3 and 4 we proceeded with the analysis of the groups from List A

up to 1-basedness. The simpler examples are contained in Chapter 3, the more

involved examples of elliptic curves are in Chapter 4, after the development of

some elliptic curve theory for real closed fields. We highlighted the link between

the structure of G/G00 and the real closed valued fields by characterizing 1-

basedness ofG/G00 in terms of internality to the residue field or the value group

of some real closed valued field. In Chapter 4 we also related 1-basedness with

the notion of algebraic geometric reduction for elliptic curves. The main result

is stated at the end of Chapter 4.

In Chapter 5 we discussed about generalizations of the results obtained, firstly

considering a wider class of groups: the 1-dimensional, definably compact,

definably connected, ind-definable groups G in M . Afterwards we studied the

groups G/G00 up to 1-basedness in the full Shelah expansion of M . At the

end it is described a possible link with work of Hrushovski.

101



1. POSSIBLE FUTURE DIRECTIONS AND QUESTIONS 102

We now state some open questions which could be the basis for future research

after the end of my doctorate.

1. Possible future directions and questions

We conclude this thesis by stating some open questions and some ideas for

possible future research.

The most important question left open in this thesis is Conjecture 1.12: the

generalization to real closed fields of the theorem of Madden and Stanton 1.11.

We recall that the positive solution of Conjecture 1.12 implies that Theorem

4.31 is a complete description of G/G00 when G is a 1-dimensional, definably

compact, definably connected, definable group in a saturated real closed field

M .

A natural question from looking at the proof of 1-basedness for the split multi-

plicative reduction cases in Chapter 4 is the following. Is the definable bijection

f : G/G00 → H/H00, where, we recall, G = E(M)0 for some elliptic r-curve or

c-curve E with split multiplicative reduction, and H is a “big” multiplicative

truncation, a definable isomorphism of groups? A weaker conjecture, whose

solution might be computationally easier is the following: does f induce an

inclusion preserving bijection between the convex subgroups of G/G00 and

H/H00, where by convex we mean convex in the order defined for such groups

in the thesis?

In the previous chapter we planted the seeds for a link between this thesis

and the article [13] of Hrushovski, the solution of the question above would

probably solve also Conjecture 5.8. Moreover, it would be interesting to explore

the connection between my results in real closed fields (and real closed valued

fields) and Hrushovski’s results in algebraically closed valued fields.

It is also natural to ask what happens when G is an arbitrary abelian variety

over M , or just a simple abelian variety over M . In order to obtain results
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in this direction it would be necessary to modify most of the notions we in-

troduced, in fact such groups would not be o-minimal, but semi-o-minimal,

as defined in [12]. Moreover it would be necessary to find a more general

proof of Theorem 4.31, which does not involve computing G00 and the bijec-

tion between G/G00 and the value group or residue field of a real closed valued

field.

Another possible generalization of the results can be obtained by considering

our ambient structure M to be a polynomially bounded o-minimal expansion

of a real closed field.
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